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SPECTRAL THEORY OF MULTIPLE INTERVALS

PALLE JORGENSEN, STEEN PEDERSEN, AND FENG TIAN

Dedicated to the memory of William B. Arveson

Abstract. We present a model for spectral theory of families of selfadjoint
operators, and their corresponding unitary one-parameter groups (acting in
Hilbert space). The models allow for a scale of complexity, indexed by the
natural numbers N. For each n ∈ N, we get families of selfadjoint operators
indexed by: (i) the unitary matrix group U(n), and by (ii) a prescribed set of n

non-overlapping intervals. Take Ω to be the complement in R of n fixed closed
finite and disjoint intervals, and let L2(Ω) be the corresponding Hilbert space.
Moreover, given B ∈ U(n), then both the lengths of the respective intervals,
and the gaps between them, show up as spectral parameters in our correspond-
ing spectral resolutions within L2(Ω). Our models have two advantages. One,
they encompass realistic features from quantum theory, from acoustic wave
equations and their obstacle scattering, as well as from harmonic analysis.

Secondly, each choice of the parameters in our models, n ∈ N, B ∈ U(n),
and interval configuration, allows for explicit computations, and even for
closed-form formulas: Computation of spectral resolutions, of generalized
eigenfunctions in L2(Ω) for the continuous part of the spectrum, and for scat-
tering coefficients. Our models further allow us to identify embedded point-
spectrum (in the continuum), corresponding, for example, to bound-states in
scattering, to trapped states, and to barriers in quantum scattering. The pos-
sibilities for the discrete atomic part of the spectrum includes both periodic

and non-periodic distributions.
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1. Introduction

The study of unitary one-parameter groups ([vN49]) is used in such areas as
quantum mechanics ([Bar49,Chu11,AHM11] to mention a few), in PDE, and more
generally in dynamical systems, and in harmonic analysis; see e.g., [DHJ09]. A
unitary one-parameter group U(t) is a representation of the additive group of the
real line R, t ∈ R, with each unitary operator U(t) acting on a complex Hilbert
space H . By a theorem of Stone (see [Sto90, LP68, DS88] for details), we know
that there is a bijective correspondence between: (i) strongly continuous unitary
one-parameter groups U(t) acting on H ; and (ii) selfadjoint operators P with dense
domain in H .

In quantum mechanics, the unit-norm vectors in the Hilbert space H correspond
to quantum states, and the unitary one-parameter groups U(t) will represent the
solutions to a Schrödinger equation, with (H , U(t)) depending on the preparation
of the quantum system at hand. In linear PDE theory, unitary one-parameter
groups are used to represent time-dependent solutions when a conserved quantity
can be found, for example for the acoustic wave equation; see [LP68]. In dynamical
systems, selfadjoint operators and unitary one-parameter groups are the ingredients
of Sturm-Liouville equations and boundary value problems.

In these applications, the first question for (H , U(t)) relates to the spectrum.
We take the spectrum for U(t) to be the spectrum of its selfadjoint generator. Hence
one is led to study (H , U(t)) up to unitary equivalence. The gist of Lax-Phillips
theory [LP68] is that (H , U(t)), up to multiplicity, will be unitarily equivalent to
the translation representation, i.e., to the group of translation operators acting in
L2(R,M ), the square-integrable functions from R into a complex Hilbert space M .
The dimension of M is called multiplicity. For interesting questions one may take
M to be of finite small dimension; see the details below, and [JPT12b,JPT12a].

In this paper, we study a setting of scattering via translation representations in
the sense of Lax-Phillips.

To make concrete the geometric possibilities, we study here L2(Ω) when Ω is
a fixed open subset of R with two unbounded connected components. For many
questions, we may restrict ourselves to the case when there is only a finite number
of bounded connected components in Ω.

In other words, Ω is the complement of a finite number of closed, bounded and
disjoint intervals. We begin with Dirichlet boundary conditions for the derivative
operator d/dx, i.e., defined on absolutely continuous L2 functions with f ′ ∈ L2(Ω)
and vanishing on the boundary of Ω, f = 0 on ∂Ω. Using deficiency index the-
ory ([vN49, DS88]), we then arrive at all the skew-selfadjoint extensions, and the
corresponding unitary one-parameter groups U(t) acting on L2(Ω).

We expect that our present model will have relevance to other boundary value
problems, for example in the study of second order operators, and regions in higher
dimensions; see e.g., [Bra04].

1.1. Overview. In this setting, we resolve the possibilities for the spectrum, and
we show how they depend on the respective interval lengths, and their configu-
ration, i.e., the length of the interval-gaps, as well as of the assigned boundary
conditions. Our conclusions are computational, in closed-form representations, and
are expressed in terms of explicit direct integral formulas for each of the unitary
one-parameter groups U(t).
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For each of these unitary one-parameter groups UB(t), we compute its spectral
decomposition as an explicit direct integral of generalized eigenfunctions ψλ, func-
tions of two variables, the spectral variable λ ∈ R, and of the spatial variable x ∈ Ω.
The direct dependence of generalized eigenfunctions on the boundary condition B
is computed. The functions ψλ fall within the family known as exponential polyno-
mials (see e.g., [AHD10,MN10]), or Fourier exponential polynomials. We further
identify in detail those special selfadjoint extension operators for which there is an
embedded discrete spectrum.

Our paper is closely related to Fuglede’s conjecture in one dimension. Let d ∈ N.
Recall that

Definition 1.1. For λ ∈ Rd we denote eλ (x) := e2πiλ·x. We say that a finite
Borel measure μ on Rd is spectral if there exists a set Λ ⊂ Rd such that the family
of exponential functions E (Λ) := {eλ : λ ∈ Λ} is an orthogonal basis for L2 (μ).
We call Λ a spectrum for μ. If E (Λ) is an orthogonal set, then we say that Λ is
orthogonal.

We say that a bounded Borel subset Ω of Rd is spectral if the restriction of the
Lebesgue measure to Ω is a spectral measure. We say that a finite subset A of Rd

is spectral if the counting measure on A is a spectral measure.
Spectral sets have been introduced in relation to the Fuglede conjecture [Fug74]:

Conjecture 1.2. A bounded Borel subset Ω of Rd is spectral if and only if it tiles
Rd by translations, i.e., there exists a set T in Rd such that {Ω + t : t ∈ T} is a
partition of Rd (up to Lebesgue measure zero).

This conjecture is known to be negative when d ≥ 3; see the details below.
It was shown by Fuglede [Fug74] that the conjecture is true if Ω is a funda-

mental domain for a lattice. He also showed that circles and triangles are not
spectral. Moreover, he gave some examples of spectral tiles that are not funda-
mental domains. Recently, Tao [Tao04] gave a counterexample to disprove the
conjecture on d ≥ 5. It was eventually shown that the conjecture is false in both
directions on d ≥ 3 [KM06a, FMM06,Mat05,KM06b]. All these counterexamples
involve the study of the Fuglede conjecture on finite abelian groups and also on the
integer lattice, or they involve some counterexamples for the seemingly stronger
conjectures called the universal spectrum conjecture (USC) and universal tiling
conjecture (UTC) introduced in [LW97,PW01].

There are recent current papers dealing with dimension 1. The relevance of our
paper, to the Fuglede problem in dimension 1, is the case when Ω is a union of
non-overlapping open intervals. Indeed this case is generally considered to offer a
key to the resolution of the Fuglede problem in dimension 1. About dimension 1,
see for example [DL13,DH12,DJ12].

We now move on to the technical details in our construction, beginning with
operator theory. A more detailed overview is postponed until the start of section
3. In fact, we will have a fuller discussion of applications in sections 3 through 5
below. In each, we begin with an outline of both the new main ideas introduced, as
well as their spectral theoretic relevance to quantum mechanics, to wave equation
scattering, and to harmonic analysis.

In section 8, for comparison, we consider some cases when the given open set
Ω has an infinite number of connected components, still including the two infinite
half-lines. This is of interest for a variety of reasons: One is the recent studies of
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geometric analysis of Cantor sets [DJ07,DJ11,JP98,PW01]; so the infinite compo-
nent case for Ω includes examples when Ω is the complement in R of a Cantor set
of a fixed fractal scaling dimension. This offers a framework for boundary value
problems when the boundary is different from the more traditional choices. And
finally, the case when the von Neumann-deficiency indices are (∞,∞) offers new
challenges (see e.g., [DS88]) involving now reproducing kernels, and more refined
spectral theory. Finally, these examples offer a contrast to the finite case; for exam-
ple, for finitely many intervals (Theorem 3.21) we prove that the Beurling density
of the embedded point spectrum equals the total length of the finite intervals. By
contrast, when Ω has an infinite number of connected components, we show in
section 8 that there is the possibility of a dense point spectrum.

For the reader’s benefit, we have included an overview of prior literature in the
Appendix.

1.2. Unbounded operators. We recall the following fundamental result of von
Neumann on extensions of Hermitian operators.

In order to make precise our boundary conditions, we need:

Lemma 1.3. Let Ω ⊂ R be as above. Suppose f and f ′ = d
dxf (distribution

derivative) are both in L2(Ω); then there is a continuous function f̃ on Ω (closure)

such that f = f̃ a.e. on Ω, and lim|x|→∞ f̃(x) = 0.

Proof. Let p ∈ R be a boundary point. Then for all x ∈ Ω, we have

(1.1) f(x) − f(p) =

ˆ x

p

f ′(y)dy.

Indeed, f ′ ∈ L1
loc due to the following Schwarz estimate:

|f(x) − f(p)| ≤
√
|x− p| ‖f ′‖L2(Ω) .

Since the RHS in (1.1) is well-defined, this serves to make the LHS also meaningful.
Now set

f̃(x) := f(p) +

ˆ x

p

f ′(y)dy,

and it can readily be checked that f̃ satisfies the conclusions in the lemma. �

Lemma 1.4 (see e.g. [DS88]). Let L be a closed Hermitian operator with dense
domain D0 in a Hilbert space. Set

D± = {ψ± ∈ dom(L∗) |L∗ψ± = ±iψ±},
C (L) = {U : D+ → D− |U∗U = PD+

, UU∗ = PD−},(1.2)

where PD± denote the respective projections. Set

E (L) = {S |L ⊆ S, S∗ = S}.
Then there is a bijective correspondence between C (L) and E (L), given as follows:

If U ∈ C (L), let LU be the restriction of L∗ to

(1.3) {ϕ0 + f+ + Uf+ |ϕ0 ∈ D0, f+ ∈ D+}.
Then LU ∈ E (L), and conversely every S ∈ E (L) has the form LU for some
U ∈ C (L). With S ∈ E (L), take

(1.4) U := (S − iI)(S + iI)−1 |D+
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and note that

(1) U ∈ C (L), and
(2) S = LU .

Vectors f ∈ dom(L∗) admit a unique decomposition f = ϕ0 + f+ + f−, where
ϕ0 ∈ dom(L), and f± ∈ D±. For the boundary-form B(·, ·), we have

iB(f, f) = 〈L∗f, f〉 − 〈f, L∗f〉
= ‖f+‖2 − ‖f−‖2 .(1.5)

2. Momentum operators

In this section we outline our model, and we list the parameters of the family
of boundary value problems to be studied. We will need a technical lemma on
reproducing kernels.

By momentum operator P we mean the generator for the group of translations
in L2(−∞,∞); see (2.5) below. There are several reasons for taking a closer look at
restrictions of the operator P. In our analysis, we study spectral theory determined
by the complement of n bounded disjoint intervals, i.e., the union of n bounded com-
ponents and two unbounded components (details below). Our motivation derives
from quantum theory, and from the study of spectral pairs in geometric analysis;
see e.g., [DJ07], [Fug74], [JP99], [�Lab01], and [PW01]. In our model, we examine
how the spectral theory depends on both variations in the choice of the n intervals,
as well as on variations in the von Neumann parameters.

Granted that in many applications, one is faced with vastly more complicated
data and operators; nonetheless, it is often the case that the more subtle situations
will be unitarily equivalent to a suitable model involving P . This is reflected for
example in the conclusion of the Stone-von Neumann uniqueness theorem: The
Weyl relations for quantum systems with a finite number of degrees of freedom are
unitarily equivalent to the standard model with momentum and position operators
P and Q. For details, see e.g., [Jør81].

2.1. The boundary form, spectrum, and the group U(n). Fix n > 2, let
−∞ < β1 < α1 < β2 < α2 < · · · < βn < αn < ∞, and let

(2.1) Ω := R\
(

n⋃
k=1

[βk, αk]

)
=

n⋃
k=0

Jk

be the exterior domain, where

(2.2) J0 := (−∞, β1) , J1 := (α1, β2) , . . . , Jn−1 := (αn−1, βn), Jn := (αn,∞) .

Moreover, we set

(2.3) J− := J0, J+ := Jn

for the two unbounded components; see Figure 2.1.

1 α1 2 α2 3 α3 4 αn 1 n αn

J J0 J1 J2 J3 Jn 1 J Jn

Figure 2.1. Ω =
⋃n

k=0 Jk =
(⋃n−1

k=1 Jk

)
∪(J− ∪ J+), i.e., Ω = the

complement in R of n finite and disjoint intervals.
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We shall write α = (αi) for all the left-hand side endpoints, and β = (βi) for
the right-hand side endpoints in ∂Ω.

Let L2(Ω) be the Hilbert space with respect to the inner product

(2.4) 〈f, g〉 :=

n∑
k=0

ˆ
Jk

f(x)g(x)dx.

The maximal momentum operator is

(2.5) P :=
1

i2π

d

dx

with domain D(P ) equal to the set of absolutely continuous functions on Ω where
both f and Pf are square-integrable.

The boundary form associated with P is defined as the form

(2.6) i2πB (g, f) := 〈g, Pf〉 − 〈Pg, f〉

on D (P ). This is consistent with (1.5): If L = Pmin, then L∗ in (1.5) is P . Recall
that D(Pmin) = {f ∈ D(P ) ; f = 0 on ∂Ω}.

Lemma 2.1. Let α = (αi), β = (βi) be the system of interval endpoints in (2.2),
and set

ρ1(f) := f(β) =

⎛⎜⎜⎜⎝
f(β1)
f(β2)

...
f(βn)

⎞⎟⎟⎟⎠ , ρ2(f) := f(α) =

⎛⎜⎜⎜⎝
f(α1)
f(α2)

...
f(αn)

⎞⎟⎟⎟⎠
for all f ∈ D(P ); then

(2.7) i2πB(g, f) = 〈g(α), f(α)〉
Cn − 〈g(β), f(β)〉

Cn ,

where 〈·, ·〉
Cn is the usual Hilbert inner product in C

n.

Proof. First note that for the domain of the operator L∗ in L2(Ω), we have

dom(L∗) = {f ∈ L2(Ω) ; f ′ ∈ L2(Ω)}.

This means that every f ∈ dom(L∗) has a realization in C(Ω), so is continuous
up to the boundary. As a result the following boundary analysis is justified by
von Neumann’s formula (1.5) in Lemma 1.4 and is valid for for all f, g ∈ dom(L∗):

−i2πB(g, f) = 〈L∗g, f〉Ω − 〈g, L∗f〉Ω
=

ˆ
Ω

d

dx

(
g(x)f(x)

)
dx

=

⎛⎝ˆ β1

−∞
+

n−1∑
j=1

ˆ βj+1

αj

+

ˆ ∞

αn

⎞⎠ d

dx

(
g(x)f(x)

)
dx

= g(β1)f(β1) +
n−1∑
j=1

(
g(βj+1)f(βj+1) − g(αj)f(αj)

)
− g(αn)f(αn)

= 〈g(β), f(β)〉
Cn − 〈g(α), f(α)〉

Cn .

�
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Corollary 2.2. It follows that the system (Cn, ρ1, ρ2), ρ1(f) = f(β) and ρ2(f) =
f(α), represents a boundary triple, and we get all the selfadjoint extension operators
for Pmin indexed by B ∈ U(n); we shall write PB. Explicitly, see e.g., [dO09],

(2.8) D (PB) := {f ∈ D (P ) | Bρ1(f) = ρ2(f)} .

Our results on the continuous spectrum of PB include

Theorem 2.3. If B is non-degenerate (see Definition 3.4), then the continuous
spectrum is the real line with uniform multiplicity one and the spectral measure is
absolutely continuous with respect to Lebesgue measure.

We also provide a detailed investigation of the discrete spectrum. In some cases
our analysis is very explicit:

Theorem 2.4 (For details, see Corollary 3.22). If B =

(
u B′

c w∗

)
, where c =

e(θ1), B
′ = diag (e(θ2), . . . , e(θn)), then the continuous spectrum of PB is the real

line and the discrete spectrum of PB is
⋃n−1

k=1

(
θk+1

�k
+ 1

�k
Z

)
, the multiplicity of

each eigenvalue λ is # {2 ≤ k ≤ n | �kλ− θk ∈ Z} , and by counting multiplicities

the discrete spectrum has density
∑n−1

k=1 �k.

The remainder of the paper is devoted to a list of detailed results concerning
the spectral resolution, and the scattering theory, for this family of selfadjoint
extensions.

In the Appendix, we have included some details on Lax-Phillips obstacle scat-
tering for the acoustic wave equation to which we will refer.

2.2. Some results in the paper. We identify a number of sub-classes within the
family of all selfadjoint extensions PB of the minimal operator in L2(Ω).

If the open set Ω is chosen (as the complement of a fixed system consisting of n
bounded, closed and disjoint intervals), then the set of all selfadjoint extensions is
indexed by elements B in the matrix group U(n). The possibilities for the spectral
resolution of a particular PB are twofold: (i) pure Lebesgue spectrum with uniform
multiplicity one; or (ii) still Lebesgue spectrum but with embedded point spectrum
(within the continuum).

While all the operators within class (i) are unitarily equivalent, it is still the
case that, within each of the two sides in the rough subdivision, there is a rich va-
riety of possibilities: Via a set of scattering poles, we show that the fine-structure
of the spectral theory for each of the selfadjoint operators of PB, and the corre-
sponding unitary one-parameter groups UB(t), depends on all the geometric data:
The number n, the choice of intervals, their respective lengths, and the location
of the gaps; see Figure 2.1. More precisely, these spectral/scattering differences
reflect themselves in detailed properties of an associated system of scattering coeffi-
cients; see (3.1) in subsection 3.1 below. To identify particulars for a given unitary
one-parameter group UB(t) we study the location of a set of scattering poles.

The resolution of these questions is closely related with a more coarse distinction:
This has to do with decomposition properties for the unitary one-parameter groups
UB(t) in L2(Ω), a question taken up in the last three sections of the paper.
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In sections 3 and 4 below we prove the following theorem.

Theorem 2.5. If B ∈ U(n) is non-degenerate (see Definition 3.4), then there is

a system of bounded generalized eigenfunctions {ψ(B)
λ ;λ ∈ R}, and a positive Borel

function FB(·) on R such that the unitary one-parameter group UB(t) in L2(Ω)
generated by PB has the form

(2.9) (UB(t)f) (x) =

ˆ
R

eλ(−t)
〈
ψ
(B)
λ , f

〉
Ω
ψ
(B)
λ (x)FB(λ)dλ

for all f ∈ L2(Ω), x ∈ Ω, and t ∈ R, where〈
ψ
(B)
λ , f

〉
Ω

:=

ˆ
Ω

ψ
(B)
λ (y)f(y)dy.

In section 3, we prepare with some technical lemmas; and in section 4 we com-
pute explicit formulas for the expansion (2.9) above, and we discuss their physical
significance.

Our study of duality pairs x and λ in systems of generalized eigenfunctions ψλ is
related to, but different from, another part of spectral theory, that of dual variables
for bispectral problems; see e.g., [Grü11,GR10,DG09].

Theorem 2.6. Let dσB(·) be the measure in (2.9) and let VB : L2(Ω) → L2(R, σB)
be the spectral transform in (4.3) with adjoint operator V ∗

B : L2(R, σB) → L2(Ω).
Then

VBV
∗
B = IL2(σB) and

V ∗
BVB = IL2(Ω).

Moreover,

(2.10) VBUB(t)V ∗
B = Mt,

where Mt is the unitary one-parameter group acting on L2(R, σB) as follows:

(Mtg) (λ) = eλ(−t)g(λ)

for all t, λ ∈ R, and all g ∈ L2(R, σB).

Let Q be a measurable subset of Rd and let p be a regular positive Borel measure
on Rd. We will say that (Q, p) is a spectral pair if (1) for each f in L1 (Q)∩L2 (Q)
the continuous function Ff (λ) := (f, eλ) is in L2(p) and (2) the map f �→ Ff of
L1 (Q) ∩ L2 (Q) ⊂ L2 (Q) into L2(p) is isometric and has dense range. We say Q
is a spectral set when there is a p such that (Q, p) is a spectral pair. Spectral sets
with infinite measure were considered in [Ped87] and in [JP99].

Corollary 2.7. The exterior domains, i.e., the sets forming the exterior to a finite
union of intervals, are not spectral sets.

Proof. When Ω has infinite measure and is a spectral set, then every point in the
spectrum is an accumulation point of the spectrum; see [Ped87]. In fact, if λ
is an isolated point in the spectrum, then it is an eigenvalue with corresponding
eigenvector eλ, but eλ is not in L2 (Ω), contradiction.

If Ω is a spectral set, then we can choose B such that the generalized eigenfunc-
tions in (3.1) have AB

k (λ) = 1 for all k, λ. It follows from (3.4) that e(λα1) is a
linear combination of e(λβ1), . . . , e(λβn). By linear independence of the functions
e(λβ1), . . . , e(λβn) it follows that α1 = βj for some j, contradicting α1 < β1 <
α2 < · · · < βn. �
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2.3. Reproducing kernel Hilbert space. In this section we introduce a certain
reproducing kernel Hilbert space H1(Ω); it is a first order Sobolev space, hence
the subscript 1. Its reproducing kernel is found (Lemma 2.8), and it serves two
purposes: First, we show that each of the unbounded selfadjoint extension operators
PB, defined from (2.8) in section 2.1, have their graphs naturally embedded in
H1(Ω). Secondly, for each PB, the reproducing kernel for H1(Ω) helps us pin down
the generalized eigenfunctions for PB. The arguments for this are based in turn on
Lemma 1.4 and the boundary form B from (2.7).

Lemma 2.8. Let

(2.11) Ω =

n⋃
k=0

Jk

be as above, and L2(Ω) be the Hilbert space of all L2-functions on Ω with inner
product 〈·, ·〉Ω and norm ‖·‖Ω. Set

H1(Ω) = {f ∈ L2(Ω) | Df = f ′ ∈ L2(Ω)};
then H1(Ω) is a reproducing kernel Hilbert space of functions on Ω (closure).

Proof. For the special case where Ω = R, the details are in [Jør81]. For the case
where Ω is the exterior domain from (2.11), we already noted (Lemma 1.3) that

each f ∈ H1(Ω) has a continuous representation f̃ , and that f̃ vanishes at ±∞.
The inner product in H1(Ω) is

(2.12) 〈f, g〉H1(Ω) = 〈f, g〉Ω + 〈f ′, g′〉Ω .

Let x ∈ Ω =
⋃n

k=0 Jk, and denote by J the interval containing x; also let p be a
boundary point in J . Then an application of Cauchy-Schwarz yields∣∣∣f̃(x)

∣∣∣2 − ∣∣∣f̃(p)
∣∣∣2 = 2�

ˆ x

p

f(y)f ′(y)dy

≤ ‖f‖2J + ‖f ′‖2J ≤ ‖f‖2H1(Ω) .

We conclude that the linear functional

H1(Ω) � f � f̃(x) ∈ C

is continuous on H1(Ω) with respect to the norm from (2.12). By Riesz, applied to
H1(Ω), we conclude that there is a unique kx ∈ H1(Ω) such that

(2.13) f̃(x) = 〈kx, f〉H1(Ω)

for all f ∈ H1(Ω).
If x in (2.13) is a boundary point, then the formula must be modified using

instead f̃(x+) = limit from the right if x is a left-hand side endpoint in J . If x

is instead a right-hand side endpoint in J , then use f̃(x−) in formula (2.13). This
concludes the proof of the lemma. �

Proposition 2.9. If Ω is the union of a finite number of bounded components, and
two unbounded (see (2.1)–(2.3) and Figure 2.1), i.e.,

(2.14) Ω = (−∞, β1) ∪
n−1⋃
i=1

(αi, βi+1) ∪ (αn,∞),
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where

−∞ < β1 < α1 < β2 < α2 < · · · < αn−1 < βn < αn < ∞,

then set

kR =

⎛⎜⎜⎜⎝
kβ1

kβ2

...
kβn

⎞⎟⎟⎟⎠ and kL =

⎛⎜⎜⎜⎝
kα1

kα2

...
kαn

⎞⎟⎟⎟⎠
in
⊕n

i=1 H1(Ω). Let B be a unitary complex n × n matrix, i.e., B ∈ U(n). Then
there is a unique selfadjoint operator PB with dense domain D(PB) in L2(Ω) such
that

(2.15) D(PB) =

⎧⎨⎩f ∈ H1(Ω); f ⊕ · · · ⊕ f︸ ︷︷ ︸
n times

⊥ (kR −BkL) in

n⊕
i=1

H1(Ω)

⎫⎬⎭
and all the selfadjoint extensions of the minimal operator Dmin in L2(Ω) arise this
way. In particular, the deficiency indices are (n, n).

Proof. Follows from the arguments above. �

Proposition 2.10 (Bound-states). Let n ≥ 2 and set Ji = (αi, βi+1), J− =

(−∞, β1), J+ = (αn,∞) as in (2.14). Set Ω̃ =
⋃n−1

i=1 Ji, so

(2.16) L2(Ω) ∼= L2(Ω̃) ⊕ L2(J− ∪ J+).

Of the selfadjoint extension operators PB, indexed by B ∈ U(n), we get the ⊕ direct
decomposition

(2.17) PB
∼= PΩ̃ ⊕ Pext,

where PΩ̃ is densely defined and s.a. in L2(Ω̃) and Pext is densely defined and s.a.
in L2(J− ∪ J+), if and only if B (in U(n)) has the form

(2.18)

⎛⎜⎜⎜⎝
0
... B̃
0

e(θ) 0 · · · 0

⎞⎟⎟⎟⎠
for some θ ∈ R/Z, and B̃ ∈ U(n− 1).

Proof. Note that presentation (2.18) for some B ∈ U(n) implies the boundary
condition f(αn) = e(θ)f(β1) for f ∈ D(PB) when PB is the selfadjoint operator
in L2(Ω) determined in Proposition 2.9. And, moreover, the ⊕ sum decomposition
(2.17) will be satisfied.

One checks that the converse holds as well. �

Let B =

(
u B′

c w∗

)
∈ U(n), where u,w ∈ C

n−1, and c ∈ C. In section 3, we

consider the subset in U(n) given by u �= 0 (see Corollary 3.29), but it is of interest
to isolate the subfamily specified by u = 0.

For n = 2, the unitary one-parameter group UB(t), acting on L2(Ω), is unitarily
equivalent to a direct sum of two one-parameter groups, Tp(t) and Tc(t). See
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0 1 α

0

Tp t

Tc t , t 0

barrier 1 barrier 2

Figure 2.2. Infinite barriers (n = 2). Bound-states in one interval.

Figure 2.2. These two one-parameter groups are obtained as follows:
(i) Start with T (t), the usual one-parameter group of right-translation by t,

f �→ f(· − t). The subscript p indicates periodic translation, i.e., translation by t
modulo 1, and with a phase factor. Hence, Tp(t) accounts for the bound-states.

(ii) By contrast, the one-parameter group Tc(t) is as follows: Glue the rightmost
endpoint of the interval J− starting at −∞ to the leftmost endpoint in the interval
J+ out to +∞. These two finite endpoints are merged onto a single point, say
0, on R (the whole real line.) This way, the one-parameter group Tc(t) becomes
a summand of UB(t). Tc(t) is just translation in L2(R) modulo a phase factor
e(ϕ) = ei2πϕ at x = 0.

For n > 2 (Figure 2.3), note that the B̃-part (B̃ ∈ U(n − 1)) in the orthogonal
splitting

UB(t) ∼= UB̃(t) ⊕ Tc(t), t ∈ R,

in

L2(Ω) ∼= L2(
⋃

n−1
i=1 Ji) ⊕ L2(R)

allows for a rich variety of inequivalent unitary one-parameter groups UB̃(t). The
case L2(J1 ∪ J2) is covered in [JPT12b].

3. Spectral theory

In this section we establish a number of theorems giving detailed properties of
each of the selfadjoint extension operators introduced in subsection 2.1 above. In
Theorem 3.10 (the general case), we present the spectral resolutions as direct inte-
grals: We give explicit formulas for the associated generalized eigenfunctions; and
we study their properties. Among other things, we prove that they have mero-
morphic extensions to the complex plane C minus isolated poles, we give explicit
formulas, and we study the scattering poles, both those falling on the real axis, as
well as the complex poles.
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1 αn

1 αn 0

J J1 J2 J3 Jn 1 J

Tc t , t 0

UB t

barrier 1 barrier 2 barrier 3 barrier n

Figure 2.3. The complement of n bounded intervals in R (n > 2).
Bound-states in the union of n− 1 intervals, and tunneling.

We now turn to some detailed spectral analysis of the operators acting on L2(Ω).
The first issue addressed may be summarized briefly as follows:

We study three equivalent conditions 1 through 3 below, where:
1. An element B ∈ U(n) is decomposable as a unitary matrix, i.e., it has at least

two non-trivial unitary summands B1 and B2. Note however, that this definition
presupposes a choice of an ordered orthonormal basis (ONB) in Cn.

2. As a selfadjoint operator in L2(Ω), PB is a corresponding orthogonal sum of
the two operators Pi, i = 1, 2.

3. The unitary one-parameter group UB(t) generated by PB decomposes as an
orthogonal sum of two one-parameter groups with generators Pi, each unitary in a
proper subspace in L2(Ω).

Below are some details about the corresponding summands in L2(Ω), infinite vs.
finite.

The two infinite intervals: If a particular B in U(n) is decomposable, then
the corresponding summands in L2(Ω) arise from lumping together the L2 spaces
of the intervals Jj , j from 0 to n, each corresponding to a closed subspace in
L2(Ω). But when lumping together these closed subspaces, there is the following
restriction: one of the two infinite half-lines cannot occur alone—the two infinite
half-lines must merge together. The reason is that L2 for an infinite half-line, by
itself, yields deficiency indices (1, 0) or (0, 1).

The finite intervals: If a subspace L2(Jj) for j from 1 to n − 1 occurs as
a summand, there must be an embedded point-spectrum (called bound-states in
physics) embedded in the continuum.

Caution about “matrix decomposition”. The notion of decomposition for B in
U(n) is basis-dependent in a strong sense: it depends on prescribing an ONB in
Cn, as an ordered set, so it depends on permutations of a chosen basis. Hence an
analysis of an action of the permutation group Sn enters. So a particular property
may hold before a permutation is applied, but not after.

This means that some B in U(n) might be decomposable in some ordered ONB
(in Cn), but such a decomposition may not lead to an associated (PB, L2(Ω))-
decomposition.
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For our matrix analysis we work with two separate notions, “non-degenerate”
and “indecomposable”, but a direct comparison is not practical. The reason is that
they naturally refer to different orderings of the canonical ONB in C

n.

3.1. Spectrum and eigenfunctions.

Definition 3.1. Fix n > 2, and let Ω be the exterior domain (2.1); see Figure 3.1
below.

(1) Let B = (bij) ∈ U (n). Define the generalized eigenfunction by

(3.1) ψ
(B)
λ (x) :=

(
n∑

k=0

A
(B)
k (λ)χJk

(x)

)
eλ (x) , λ ∈ R,

where eλ (x) := ei2πλx. The function

(3.2) a(·, ·) : U(n) × R → C
n+1

given by

(3.3) a (B, λ) :=
(
A

(B)
0 (λ) , . . . , A(B)

n (λ)
)

satisfies the boundary condition

(3.4) B

⎛⎜⎜⎜⎜⎝
A

(B)
0 (λ) eλ (β1)

A
(B)
1 (λ) eλ (β2)

...

A
(B)
n−1 (λ) eλ (βn)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A

(B)
1 (λ) eλ (α1)

A
(B)
2 (λ) eλ (α2)

...

A
(B)
n (λ) eλ (αn)

⎞⎟⎟⎟⎟⎠ ,

with matrix-action on the LHS in (3.4).
(2) Set

Dα (λ) := diag (eλ (α1) , . . . , eλ (αn)) ,

Dβ (λ) := diag (eλ (β1) , . . . , eλ (βn))

and let

(3.5) Bα,β (λ) := D∗
α (λ)BDβ (λ) ,

where B is the matrix from (3.4).
Then (3.4) can be written as

(3.6) Bα,β (λ)

⎛⎜⎜⎜⎜⎝
A

(B)
0 (λ)

A
(B)
1 (λ)

...

A
(B)
n−1 (λ)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A

(B)
1 (λ)

A
(B)
2 (λ)

...

A
(B)
n (λ)

⎞⎟⎟⎟⎟⎠ ,

where the matrix Bα,β(λ) is acting on the column vector

⎛⎜⎜⎜⎜⎝
A

(B)
0 (λ)

A
(B)
1 (λ)

...

A
(B)
n−1 (λ)

⎞⎟⎟⎟⎟⎠.

In other words, with the definition in (3.5), the two problems (3.4) and
(3.6) are equivalent.



1684 PALLE JORGENSEN, STEEN PEDERSEN, AND FENG TIAN

Figure 3.1. ψ
(B)
λ (x) = (

∑n
k=0Ak (λ)χJk

(x)) eλ (x).

Proposition 3.2. The boundary matrix function has the following form:

(3.7) Bα,β(λ) =

⎛⎜⎝ b11 eλ (β1 − α1) · · · b1n eλ (βn − α1)
...

. . .
...

bn1 eλ (β1 − αn) · · · bnn eλ (βn − αn)

⎞⎟⎠ .

Proof. Follows from the arguments above. �
3.2. The role of U(n). The role of the group U(n) of all unitary complex matrices
is as follows:

On C
n × C

n (� C
2), we introduce the form B(·, ·) from (2.7);

(3.8) B(z, ζ) = ‖z‖2 − ‖ζ‖2 ,
where ‖z‖2 =

∑n
1 |zj |2 is the usual Hilbert norm-squared.

The projective space Pn,n is the complex manifold [Wel08] consisting of all com-
plex subspaces L ⊂ C

n × C
n such that Pr1L = C

n, and

(3.9) B(z, ζ) = 0, for all (z, ζ) ∈ L.

We use the notation Pr1(z, ζ) = z.
The direction from U(n) to Pn,n is easy: If B ∈ U(n), set

(3.10) L(B) := {(z,Bz) ; z ∈ C
n};

it is then clear that L(B) ∈ Pn,n.
For the converse argument, show that U(n) � B �→ L(B) maps onto Pn,n; see

for example [Wel08].

3.3. A linear algebra problem. To understand the coefficients Ai(λ) in the rep-
resentation (3.3) of the generalized eigenfunctions, we will need a little complex
geometry and linear algebra.

Fix n > 2, and let

(3.11) B =

(
u B′

c w∗

)
∈ U (n) ,

where u,w ∈ C
n−1, and c ∈ C.

Definition 3.3. An element B ∈ U(n) is said to be indecomposable iff it does not
have a presentation

(3.12) B =

(
B1

B2

)
,

1 ≤ k < n, B1 ∈ U(k), B2 ∈ U(n − k); i.e., iff B as a transformation in C
n does

not have a non-trivial splitting B1 ⊕B2 as a sum of two unitaries.
(The blank blocks in the block-matrix from (3.12) are understood to be a zero-

operator between the respective subspaces. For more details, see section 6.)

Definition 3.4. Let B ∈ U(n) as in (3.11). We say B is degenerate if 1 ∈ sp(B′),
i.e., there exists ζ ∈ Cn−1\{0} such that B′ζ = ζ.
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Theorem 3.5. Let B =

(
u B′

c w∗

)
∈ U(n) as in (3.11), where u,w ∈ Cn−1,

and c ∈ C. Then the solutions to

(3.13) B

⎛⎜⎜⎜⎝
v0
v1
...

vn−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
v1
v2
...
vn

⎞⎟⎟⎟⎠
are as follows:

(1) If B is non-degenerate:

(3.14)

⎛⎜⎝ v0
...
vn

⎞⎟⎠ = x0

⎛⎜⎝ 1

(In−1 − B′)
−1

u

c +
〈
w, (In−1 −B′)

−1
u
〉
⎞⎟⎠

for some constant x0 ∈ C.
(2) If B is degenerate: let ζ ∈ ker (In−1 −B′), ζ ∈ Cn−1\{0}; then

(a) if u is not in the range of In−1 −B′,

(3.15)

⎛⎜⎝ v0
...
vn

⎞⎟⎠ =

⎛⎝ 0
ζ

〈w, ζ〉

⎞⎠ ;

(b) For u in the range of In−1 −B′,

(3.16)

⎛⎜⎝ v0
...
vn

⎞⎟⎠ = x0

⎛⎝ 1
ζ0

c + 〈w, ζ0〉

⎞⎠+

⎛⎝ 0
ζ

〈w, ζ〉

⎞⎠
for some constant x0 ∈ C and some fixed ζ0 such that u =
(In−1 −B′)ζ0.

Proof. Note that (3.13) is equivalent to

(3.17) u v0 + B′

⎛⎜⎝ v1
...

vn−1

⎞⎟⎠ =

⎛⎜⎝ v1
...

vn−1

⎞⎟⎠ , and

(3.18) c v0 +

〈
w,

⎛⎜⎝ v1
...

vn−1

⎞⎟⎠〉 = vn.

If 1 /∈ sp(B′), solving (3.17) and (3.18) gives rise to (3.14). The remaining cases
are similar. �

Example 3.6. Suppose n = 3; then

(3.19) B =

⎛⎝ 0 1 0
0 0 −1
1 0 0

⎞⎠
is degenerate. Here, B′ =

(
1 0
0 −1

)
and B′ζ = ζ, where ζ =

(
1
0

)
.
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Example 3.7. For n = 3, let

(3.20) B =

⎛⎝ 0 0 −1
0 −1 0
1 0 0

⎞⎠
so that B′ =

(
0 −1
−1 0

)
. Note that B′ζ = ζ, where ζ =

(
1
−1

)
; hence B is

degenerate.

Example 3.8. For n = 4,

B =

⎛⎜⎜⎝
0 1 0 0

1/2 0 1/
√

2 1/2

1/2 0 −1/
√

2 1/2

1/
√

2 0 0 −1/
√

2

⎞⎟⎟⎠
is degenerate and

I3 −B′ =

⎛⎝ 0 0 0
0 1 − 1√

2
− 1

2

0 1√
2

1
2

⎞⎠ .

Hence u =

⎛⎝ 0
1/2
1/2

⎞⎠ is in the range of I3−B′, and consequently we get an example

for case (2)(b) of Theorem 3.5.

Example 3.9. For n = 2, let

B =

(
a b

−b a

)
∈ SU(2),

i.e., |a|2 + |b|2 = 1. Suppose

(3.21)

(
a b

−b a

)(
v0
v1

)
=

(
v1
v2

)
.

That is,

av0 + bv1 = v1,

−bv0 + av1 = v2.

If b �= 1 (non-degenerate), then⎛⎝ v0
v1
v2

⎞⎠ = x0

⎛⎜⎜⎝
1
a

1−b

1−b
1−b

⎞⎟⎟⎠ , x0 ∈ C.

If b = 1 (degenerate, a = 0), the solution space is two dimensional, given by

x0

⎛⎝ 1
0
−1

⎞⎠+ y0

⎛⎝ 0
1
0

⎞⎠ , x0, y0 ∈ C.
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3.4. The generalized eigenfunctions. We apply results in the previous section
to the generalized eigenfunctions in (3.1)-(5.1).

Theorem 3.10. Fix B ∈ U(n), and let

(3.22) ψ
(B)
λ (x) =

(
n∑

k=0

A
(B)
k (λ)χJk

(x)

)
eλ (x) , λ ∈ R,

be the generalized eigenfunction in (3.1) satisfying the boundary condition (3.4).

Then a (B, λ) =
(
A

(B)
0 (λ) , . . . , A

(B)
n (λ)

)
in (3.3) is a solution to

(3.23) Bα,β (λ)

⎛⎜⎜⎝
A

(B)
0 (λ)
...

A
(B)
n−1 (λ)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A

(B)
1 (λ)
...

A
(B)
n (λ)

⎞⎟⎟⎠ ,

where Bα,β = D∗
αBDβ ; see (3.5) and (3.7). Moreover, writing

Bα,β (λ) =

(
u (λ) B′

α,β (λ)

c (λ) w (λ)∗

)
where

c (λ) = bn,1eλ (β1 − αn) ,

u (λ) =

⎛⎜⎜⎜⎝
b11 eλ (β1 − α1)
b21 eλ (β1 − α2)

...
bn−1,1 eλ (β1 − αn−1)

⎞⎟⎟⎟⎠ , w (λ) =

⎛⎜⎜⎜⎝
bn,2 eλ (β2 − αn)
bn,3 eλ (β3 − αn)

...
bn,n eλ (βn − αn)

⎞⎟⎟⎟⎠ ,

and

(3.24) B′
α,β (λ) =

⎛⎜⎝ b12 eλ (β2 − α1) · · · b1n eλ (βn − α1)
...

. . .
...

bn−1,2 eλ (β1 − αn−1) · · · bn−1,n eλ (βn − αn−1)

⎞⎟⎠ ,

then the solutions to (3.23) are as follows:
Setting

(3.25) Λp =
{
λ ∈ R | det

(
In−1 −B′

α,β(λ)
)

= 0
}
.

(1) If Λp = φ, then Bα,β(λ) is non-degenerate, and

(3.26)

⎛⎜⎜⎝
A

(B)
0 (λ)
...

A
(B)
n (λ)

⎞⎟⎟⎠ = x0

⎛⎜⎜⎜⎝
1(

In−1 −B′
α,β(λ)

)−1

u (λ)

c (λ) +

〈
w (λ) ,

(
In−1 −B′

α,β (λ)
)−1

u (λ)

〉
⎞⎟⎟⎟⎠

for some constant x0 ∈ C. The points λ ∈ Λp from (3.25) are the real poles
in the functions Aj from (3.26).



1688 PALLE JORGENSEN, STEEN PEDERSEN, AND FENG TIAN

(2) Suppose Λp �= φ. For all λ ∈ Λp, Bα,β(λ) is degenerate, and there is

ζ (λ) ∈ Cn−1\{0}, such that ζ (λ) ∈ ker
(
In−1 −B′

α,β(λ)
)
. Then

(a) If u (λ) is not in the range of In−1 −B′
α,β(λ) and(

In−1 −B′
α,β(λ)

)
ζ0 (λ) = u(λ),

then ⎛⎜⎜⎝
A

(B)
0 (λ)

...

A
(B)
n (λ)

⎞⎟⎟⎠ =

⎛⎝ 0
ζ (λ)

〈w (λ) , ζ (λ)〉

⎞⎠ .

(b) If u (λ) is in the range of In−1 −B′
α,β(λ) and⎛⎜⎜⎝

A
(B)
0 (λ)
...

A
(B)
n (λ)

⎞⎟⎟⎠ = x0

⎛⎝ 1
ζ0 (λ)

c (λ) + 〈w (λ) , ζ0 (λ)〉

⎞⎠+

⎛⎝ 0
ζ (λ)

〈w (λ) , ζ (λ)〉

⎞⎠
for some constant x0 ∈ C. In particular, Λp consists of eigenvalues
for PB.

Proof. This follows directly from Theorem 3.5. �

Corollary 3.11. Fix a system of interval endpoints α = (αi) and β = (βi). Then
the subset of R,

(3.27) Λp =
{
λ ∈ R | det

(
In−1 −B′

α,β(λ)
)

= 0
}
,

consists of isolated points, i.e., has no accumulation points.

Proof. It follows from (3.24) that the function

(3.28) λ �→ D (λ) = det
(
In−1 −B′

α,β (λ)
)

is entire analytic, i.e., is a restriction to R of an entire analytic function.
To see this, note that λ �→ B′

α,β(λ) in (3.24) is entire, and since the determinant

is multilinear, it follows that D(·) in (3.28) is also entire. Since it is non-constant
the properties of Λp (see (3.25)) follow from analytic function theory. �

Corollary 3.12. Let Ω be fixed as before, and select a B ∈ U(n); then the functions

A
(B)
j (·) in (3.26) and (5.1) have meromorphic extensions to C. The extension is

obtained by replacing λ in (3.24), (3.25) and (3.26) with z ∈ C. The poles in the

function C � z �→ A
(B)
j (z) occur at the roots

(3.29) det
(
In−1 −B′

α,β(z)
)

= 0

and the embedded point-spectrum of the selfadjoint operator PB (in L2(Ω)) are the
real solutions to (3.29).

Proof. The assertions in the corollary follow directly from the formulas (3.24) and
(3.26) in Theorem 3.10. �

Remark 3.13. To find the meromorphic extension of the function

(3.30) R � λ �→
(
In−1 − B′

α,β(λ)
)−1
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from (3.26) in Theorem 3.10, we proceed as follows. Extend (3.30) by formally
substituting z ∈ C for λ, and then proceed to compute the formal power series
expansion for the function

(3.31) C � z �→ Rα,β(z,B′) := (In−1 −Dα(−z)B′Dβ(z))
−1

in the complement of the set of isolated poles. (The (n − 1) × (n − 1) matrix B′

in (3.31) is fixed, but it is assumed to come from some B =

(
u B′

c w∗

)
∈ U (n)

as in (3.11).) For iteration of the d
dz -derivatives in (3.31), it will be convenient to

introduce −1
2πi

d
dz , Lα = diag (αj)

n−1
j=1 , Lβ = diag (βj)

n
j=2, and

(3.32) δα,β(M) := MLβ − LαM

defined for all (n− 1) × (n− 1) matrices M .
Then in the complement of the complex poles of Rα,β(z,B′) in (3.31), we get

(3.33)

(
−i

2πi

d

dz

)
Rα,β(z,B′) = Rα,β(z,B′)δα,β(B′)Rα,β(z,B′).

And, as a result the higher order complex derivatives
( −i
2πi

d
dz

)n
may be obtained

from (3.33), and from a recursion which we leave to the reader. It introduces a
little combinatorics and an iteration of δα,β in (3.32).

In conclusion, we note that the complex extension

C � z �→ Rα,β(z,B′)

is entire analytic in the complement of its isolated poles.

Example 3.14. Let n = 2, and fix −∞ < β1 < α1 < β2 < α2 < ∞. Let

B =

(
a b

−b a

)
, where a, b ∈ C, and |a|2 + |b|2 = 1. Then

D (λ) = 1 − b eλ(β2 − α1), λ ∈ R.

As a result,
Λp = φ ⇐⇒ |b| < 1 ⇐⇒ a �= 0.

If a = 0, then there is a θ ∈ R, such that b = e(θ), and then

Λp = (β2 − α1)
−1

(−θ + Z) .

Remark 3.15. Note that the complex poles discussed in Corollary 3.12 for Example
3.14 (b �= 0) may be presented as follows: Select a branch of the complex logarithm
“log”; then the complex poles are

(3.34)

{
z ∈ C, z ∈ 1

length (J1)

(
−1

2πi
log b + Z

)}
.

3.5. The groups U(n) and U(n− 1). In the proof of Theorem 3.5, we considered
the following operator/matrix block presentation of elements B ∈ U(n),

(3.35) B =

(
u B′

c w∗

)
,

where u,w ∈ Cn−1, c ∈ C, and B′ is the (n− 1)× (n− 1) matrix in the NE corner
in (3.35).

We consider the coordinates in u as the matrix entries

(3.36) bi1 = ui, 1 ≤ i ≤ n− 1.
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For c ∈ C, we have

(3.37) bn1 = c.

The notation w∗ indicates that w is a row-vector; we have

bn,j+1 = wj , 1 ≤ j ≤ n− 1.

Finally we denote the Hilbert inner product 〈·, ·〉, and it is taken to be linear in
the second variable. With this convention we have

w∗u = 〈w,u〉 ∈ C.

Theorem 3.16. If B =

(
u B′

c w∗

)
∈ U (n) and g ∈ U (n− 1), assume 1 /∈

sp (B′). Then

(3.38) αg(B) :=

(
gu gB′g−1

c (gw)∗

)
∈ U (n) .

If v = (vi)
n
i=0 ∈ C

n+1 solves

(3.39) B

⎛⎜⎜⎜⎝
v0
v1
...

vn−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
v1
v2
...
vn

⎞⎟⎟⎟⎠ ,

then

(3.40) vg :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v0

g

⎛⎜⎜⎜⎝
v1
v2
...

vn−1

⎞⎟⎟⎟⎠
vn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
solves

(3.41) αg(B)

⎛⎜⎜⎜⎜⎜⎝
v0

g

⎛⎜⎜⎜⎝
v1
v2
...

vn−1

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
g

⎛⎜⎜⎜⎝
v1
v2
...

vn−1

⎞⎟⎟⎟⎠
vn

⎞⎟⎟⎟⎟⎟⎠ .

Proof. Since B in (3.35) is in U(n), we get the following presentation of the C
n

norm:

‖x0u + B′x‖2 + |cx0 + 〈w,x〉|2 = |x0|2 + ‖x‖2

for all

(
x0

x

)
∈ Cn. We choose coordinates such that x0 ∈ C, and x ∈ Cn−1.

Since g ∈ U(n− 1), we get∥∥x0gu + gB′g−1x
∥∥2 + |cx0 + 〈gw,x〉|2 = |x0|2 + ‖x‖2

for all

(
x0

x

)
∈ Cn. The assertion in (3.38) follows from this.
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We now use Theorem 3.5 to solve the problem for αg(B). Hence the solution vg

to the αg(B) problem is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vg0⎛⎜⎝ vg1
...

vgn−1

⎞⎟⎠
vgn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= v0

⎛⎜⎝ 1(
In−1 − gB′g−1

)−1
gu

c +
〈
gw,

(
In−1 − gB′g−1

)−1
gu
〉
⎞⎟⎠

= v0

⎛⎜⎝ 1

g (In−1 −B′)−1 u

c +
〈
w, (In−1 −B′)

−1
u
〉
⎞⎟⎠ ,

which is the desired conclusion in (3.40).
Inside the computation, we use the following formula from matrix theory:(

In−1 − gB′g−1
)−1

= g (In−1 − B′)
−1

g−1,

and as a result,〈
gw,

(
In−1 − gB′g−1

)−1
gu
〉

=
〈
gw, g (In−1 −B′)

−1
u
〉

=
〈
w, (In−1 −B′)

−1
u
〉
,

where we used g∗g = In−1, i.e., g ∈ U(n− 1). �

Corollary 3.17. Let B =

(
u B′

c w∗

)
be such that, for some g ∈ SU(n− 1), we

have gB′g−1 = diag(zj)
n−1
j=1 , zj ∈ C, |zj | ≤ 1. Then

(3.42) det
(
In−1 −

(
gB′g−1

)
α,β

(λ)
)

=

n−1∏
k=1

(1 − zk e(λLk)) ,

where Lk = length(Jk), 1 ≤ k < n.

Lemma 3.18. Given B ∈ U(n), then the following are equivalent:

(1) αg(B) = B, for all g ∈ U(n− 1), and
(2) B has the form

(3.43) B =

(
0 In−1

c 0

)
, c ∈ C, |c| = 1.

Proof. Immediate from the definition of αg, (3.38), i.e.,

(3.44) αg

((
u B′

c w∗

))
=

(
gu gB′g−1

c (gw)∗

)
;

see Corollary 3.11. �

Lemma 3.19. If B is degenerate and ζ ∈ Cn−1 is an eigenvector of B′ with
eigenvalue 1, then P0ζ = Pnζ = 0.

Proof. Note that B′ = P⊥
n BP⊥

0 is contractive, and B′∗ = P⊥
0 B′∗P⊥

n ; also B′ζ = ζ
implies that B′∗ζ = ζ. Hence P⊥

n ζ = ζ, P⊥
0 ζ = ζ, and so Pnζ = P0ζ = 0. �
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Corollary 3.20. Let B be degenerate. Then u and w are orthogonal to ζ, where
ζ is an eigenvector as above, i.e.,

〈u, ζ〉 = 0 = 〈w, ζ〉 .

Proof. By definition

Be1 =

(
u
c

)
∈ C

n−1 ⊕ C.

But recall P1ζ = Pnζ = 0, by Lemma 3.19. Then

〈u, ζ〉 = 〈u, B′ζ〉 = 〈u, Bζ〉 = 〈B∗u, ζ〉 = 〈e1, ζ〉 = 0

since P1ζ = 0. The same argument yields 〈w, ζ〉 = 0. �

Theorem 3.21. Set J0 = J−, Jn = J+. Let B be determined by (3.43), that is,

(3.45) B =

(
0 In−1

c 0

)
, c ∈ C, |c| = 1.

Then the continuous spectrum of PB is the real line and the discrete spectrum of PB

is
⋃n−1

k=1
1
�k
Z, where �k = βk+1 − αk is the length of the kth bounded interval. The

multiplicity of each eigenvalue λ is # {1 ≤ k ≤ n− 1 | �kλ ∈ Z} . Hence, 0 is an
eigenvalue with multiplicity n − 1, and counting multiplicity the discrete spectrum
has uniform density

∑n−1
k=1 �k, in the sense that, for any a we have

number of eigenvalues in [a− n, a + n]

2n
→

n−1∑
k=1

�k

as n → ∞.

Proof. Note that

(3.46) B

⎛⎜⎜⎜⎝
A0 (λ) eλ (β1)
A1 (λ) eλ (β2)

...
An−1 (λ) eλ (βn)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A1 (λ) eλ (α1)
A2 (λ) eλ (α2)

...
An (λ) eλ (αn)

⎞⎟⎟⎟⎠
is equivalent to

Ak (λ) eλ (βk+1) = Ak (λ) eλ (αk) , k = 1, . . . , n− 1,

cA0 (λ) eλ (β1) = An (λ) eλ (αn) .

Consequently, L2(Ω) = L2(J− ∪ J+) ⊕
⊕n−1

k=1 L
2(Jk) and

PB = P0 ⊕
n−1⊕
k=1

Pk,

where P0 is a selfadjoint operator acting in L2(J− ∪ J+) determined by cf(β1) =
f(αn) and has Lebesgue spectrum (see Figure 2.3), by [JPT12b], and Pk acting in
L2(Jk) is determined by f(βk) = f(αk) and has spectrum 1

βk−αk
Z. Since the set

1
�Z has uniform density �, the density claim follows. �
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The same argument shows

Corollary 3.22. If

B =

(
u B′

c w∗

)
,

where c = e(θ1), B
′ = diag (e(θ2), . . . , e(θn)), then the continuous spectrum of PB is

the real line and the discrete spectrum of PB is
⋃n−1

k=1

(
θk+1

�k
+ 1

�k
Z

)
, the multiplicity

of each eigenvalue λ is # {2 ≤ k ≤ n | �kλ− θk ∈ Z} , and counting multiplicities

the discrete spectrum has density
∑n−1

k=1 �k.

Remark 3.23. Recall the cyclic permutation matrix:

S =

⎛⎜⎜⎜⎝
0 · · · 0 1
1 0 0

. . .
. . .

...

0 1 0

⎞⎟⎟⎟⎠ , and S−1 = S∗ =

⎛⎜⎜⎜⎜⎝
0 1 0
... 0

. . .

0
. . . 1

1 0 · · · 0

⎞⎟⎟⎟⎟⎠ ;

then

(3.47) BS =

(
u B′

c w∗

)
S︸ ︷︷ ︸

matrix product

=

(
B′ u
w∗ c

)
.

For an application of this remark, see section 5, cases 1 and 2 in subsections 5.1
and 5.2.

Corollary 3.24. A n × n complex matrix

(
u B′

c w∗

)
is in U (n) if and only if

the following list of conditions hold:

(3.48)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B′∗B′ + ‖w‖2 Pw = In−1,

B′B′∗ + ‖u‖2 Pu = In−1,

B′w + cu = 0,

‖w‖2 + |c|2 = ‖u‖2 + |c|2 = 1,

where the following notation is used for vectors x ∈ Cn−1. We denote the projection
in C

n−1 onto the one-dimensional subspace Cx by Px.

Proof. Combine (3.47) and (3.48). �

Corollary 3.25. Let B ∈ U(n) have the representation given in Corollary 3.24
with entries, matrix corner B′, vectors u, w, and scalar c. Then B′ is a normal
matrix if and only if the vectors u and w are proportional, with the constant of
proportion of modulus 1.

Proof. Immediate from the system of equations (3.48). �

Remark 3.26 (A dichotomy). Corollary 3.25 tells us precisely when B has its matrix
corner B′ a normal matrix.

Combining Corollary 3.25 and Theorem 3.16, then note that, by the spectral
theorem for normal matrices, we may pick g ∈ U(n–1) in order to diagonalize the
normal matrix B′, i.e., with gB′g−1 = diag(z1, . . . ., zn−1).
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For this case, we then get the following dichotomy:
(i) The set Λp (= the real poles) is non-empty if and only the eigenvalue list

{zj} contains an element of modulus 1. The corresponding selfadjoint operator PB

in L2(Ω) then has an embedded point-spectrum.
(ii) If every number in the list {zj} has modulus strictly smaller than 1, then all

the poles are off the real line, and as a result, PB has a purely continuous spectrum.
Now the matrices in Corollary 3.25 account for only a sub-variety in U(n), but

are “large.” Recall B′, being a corner of a unitary, is typically not unitary; but, if
it’s normal, then the spectral theorem applies.

3.6. Permutation matrices.

Example 3.27. Let

(3.49) B =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ ∈ U(4).

That is, u = e3, w = e1, c = 0. Note that B′ is non-normal. We have

B′
α,β(λ) =

⎛⎝ 0 eλ(β3 − α2) 0
0 0 eλ(β4 − α2)
0 0 0

⎞⎠ ,

D(λ) = det
[
I3 −B′

α,β(λ)
]
≡ 1, ∀λ ∈ C,

and

(
I3 −B′

α,β(λ)
)−1

=

⎛⎝ 1 eλ(β3 − α2) eλ(β3 + β4 − α1 − α2)
0 1 eλ(β4 − α2)
0 0 1

⎞⎠ .

Hence, by Theorem 3.10 (1), we get

(3.50)

⎧⎪⎨⎪⎩
A1(λ) = eλ(β1 + β3 + β4 − α1 − α2 − α3),

A2(λ) = eλ(β1 + β4 − α2 − α3),

A3(λ) = eλ(β1 − α3)

for all λ ∈ C. See Figure 3.2.

Conclusions.

(1) The functions λ �→ Ai(λ), 1 ≤ i ≤ 3, have no poles in C.
(2) The functions λ �→ Ai(λ), 1 ≤ i ≤ 3, are complex exponentials, depending

only on interval endpoints.
(3) The spectrum of PB is a purely continuous Lebesgue spectrum.
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1 α1 2 α2 3 α3 4 α4

J J0 J1 J2 J3 J J4

b31 b42

b13 b24

Figure 3.2. The case B selfadjoint and B′ non-normal yields ran-
dom jumps between the intervals.

Figure 3.2 illustrates the action of the unitary one-parameter group UB(t) acting
in L2(Ω), and generated by the selfadjoint operator PB coming from the boundary
matrix B (∈ U(4)) from Example 3.27; see (3.49)).

The unitary one-parameter group UB(t) in Example 3.27 acts by local transla-
tions to the right, acting on L2 functions in Ω. The action “locally” by translation
here refers to translations to the right within the individual connected components
in Ω. Moreover, Figure 3.2 illustrates these local translations when interval end-
points are encountered.

For comparison, we sketch, in Figure 3.3 below, the modification of the diagram
(in Figure 3.2) when the boundary matrix B from (3.49) is changed into the 4 × 4
identity matrix I4.

Conclusion: If B = I4, then the associated group UB(t) is acting in L2(Ω) by
simply crossing over the gaps between successive components in Ω, moving from
the left to the right, and jumping between neighboring boundary points.

Both the illustrations with the two versions of B correspond to a hit-and-run
driver, constant speed, and instantaneous jumps between components in Ω. The
second one (B = I4) rides right through without changing direction, but the first one
is drunk and jumps between components in Ω, in either direction, until eventually
escaping to +∞.

Caution: With B = I4, the associated corner 3×3 matrix B′ is still non-normal.
In fact, as for the boundary matrix B in Example 3.27, the B′ from B = I4 is
nilpotent.

1 α1 2 α2 3 α3 4 α4

J J0 J1 J2 J3 J J4

b11 b22 b33 b44

Figure 3.3. B = I4, and B′ is non-normal.

Corollary 3.28. Let n > 2, fix Ω as above, and let B ∈ U(n) be a permutation ma-
trix. Let PB be the associated selfadjoint operator. Then the unitary one-parameter
group UB(t) is acting in L2(Ω) by local translations to the right of velocity 1. Let
L be the sum of the lengths of the n − 1 bounded components in Ω. Then, as t
increases from −∞ to +∞, UB(t) acts in an interval of length L by simply crossing
over the gaps between components in Ω, jumping between boundary points, in either
direction. In a time interval of length L, UB(t) makes a permutation of the n − 1
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bounded components Jj in Ω, where 1 ≤ j < n. For every n > 2, there is a per-
mutation matrix B ∈ U(n) which makes the permutation of the intervals into the
identity permutation, i.e., the local translations riding right through, jumps between
successive components in Ω, until eventually escaping to +∞.

Corollary 3.29. Suppose

(
u B′

c w∗

)
∈ U (n). Then

(3.51) B′ ∈ U (n− 1) ⇐⇒ u = 0 ⇐⇒ w = 0.

Proof. Immediate from (3.48). �

Corollary 3.30. Let n > 2, and let B ∈ U(n). Consider the presentation B =(
u B′

c w∗

)
in (3.35). Then the following bi-implication holds:

(3.52) c = 0 ⇐⇒ B′∗B′ is a non-zero orthogonal projction in C
n−1.

In particular, if (3.52) holds, then ‖B′‖ = 1, and so B is degenerate.

Proof. (=⇒) Assuming c = 0, then from the equations in the system (3.48), we get

(3.53)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖u‖ = ‖w‖ = 1,

B′∗B′ = In−1 − Pw,

B′B′∗ = In−1 − Pu,

and so in particular, both B′∗B′ and B′B′∗ are orthogonal projections in Cn−1. It
is known that orthogonal projections have norm 1, so

‖B′‖2 = ‖B′∗B′‖ = ‖In−1 − Pw‖ = 1

as asserted. Indeed, the projection P⊥
w = In−1 − Pw has rank n − 2 ≥ 1 by the

assumption in the corollary.
The converse implication (⇐=) may be proved by the same reasoning. �

Remark 3.31. We will show in section 5 that the unitary one-parameter group
UB(t) in L2(Ω) has bound-states if and only if the condition (3.51) in Corollary
3.29 holds; see also Figure 2.3.

Example 3.32. Let U =

(
a b

−b a

)
∈ SU(2), |a|2 + |b|2 = 1, z ∈ C, |z| = 1,

and set B =

⎛⎝ a b 0

−b a 0
0 0 z

⎞⎠ ∈ U(3), decomposable. Then B′ =

(
b 0
a 0

)
, and

B′∗B′ =

(
1 0
0 0

)
is the orthogonal projection onto the one-dimensional subspace

in C2 spanned by e1.

Lemma 3.33. Let n > 2, and let α = (αi) and β = (βi) be a system of interval
endpoints in Ωα,β =

⋃n
i=0 Ji, where J0 = J− = (−∞, β1), Ji = (αi, βi), 1 ≤ i < n,

Jn = J+ = (αn,∞) and with interval length Li := βi+1 − αi; see Figure 3.4. Let
B ∈ U(n) have the form

B =

(
u B′

c w∗

)
;
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then

(3.54) D(λ) := det(In−1 −B′
α,β),

as a function on R (λ ∈ R), only depends on the interval lengths Li, i = 1, 2, . . . , n−
1.

1 α1 2 αn 1 n αn

L1 2 1 Ln 1 n n 1

Figure 3.4. Interval lengths.

Proof. Write B′ = (gij), for R � λ → D(λ) in (3.54); we then get the inside matrix
as follows:
(3.55)

B′
α,β(λ)=

⎛⎜⎜⎜⎜⎝
g12 eλ(L1) g13 eλ(β3 − α1) · · · g1,n eλ(βn − α1)

g22 eλ(β2 − α2) g23 eλ(L2) g2,n−1 eλ(βn−1 − α2)
...

. . .
...

gn−1,2 eλ(β2 − αn−1) · · · gn−1,n eλ(Ln−1)

⎞⎟⎟⎟⎟⎠.

As a result, for D(λ), we get
(3.56)

det

⎛⎜⎜⎜⎜⎝
1 − g12 eλ(L1) −g13 eλ(β3 − α1) · · · −g1,n eλ(βn − α1)

−g22 eλ(β2 − α2) 1 − g23 eλ(L2) −g2,n−1 eλ(βn−1 − α2)
...

. . .
...

−gn−1,2 eλ(β2 − αn−1) · · · 1 − gn−1,n eλ(Ln−1)

⎞⎟⎟⎟⎟⎠.

The conclusion now follows by induction: The determinant may be computed from
its (n − 2) × (n − 2) sub-determinants, doing the computations entry-by-entry in
the first row of the inside matrix in (3.56). �

A second proof may be obtained from the following proposition:

Proposition 3.34. Let T be a k × k matrix, and let Di, i = 1, 2, be two unitary
k × k matrices; then the following formula holds:

(3.57) det (I −D∗
1TD2) = det (D∗

1D2) det (D1D
∗
2 − T ) .

Proof. Follows directly from a use of the multiplicative property of the determinant.
�

From Figure 3.1, note that the numbers Gi = αi − βi are the lengths of the
gaps between the successive intervals, i.e., between Ji−1 and Ji, 1 ≤ i ≤ n. Set
Gtot =

∑
i Gi = total gap-length. For the unitary diagonal matrices D1 and D2 in
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(3.57), take D1 = Dα(λ) and D2 = Dβ(λ), where

Dα(λ) =

⎛⎜⎜⎜⎜⎝
e(λα1) 0 · · · 0

0 e(λα2)
. . .

...
...

. . .
. . . 0

0 · · · 0 e(λαn−1)

⎞⎟⎟⎟⎟⎠,

Dβ(λ) =

⎛⎜⎜⎜⎜⎝
e(λβ2) 0 · · · 0

0 e(λβ3)
. . .

...
...

. . .
. . . 0

0 · · · 0 e(λβn)

⎞⎟⎟⎟⎟⎠ ,

and

Dβ−α(λ) = diag
(
[e(λLj)]

n−1
j=1

)
.

Then, for the determinant function R � λ → D(λ) in (3.54), we get the following
useful identity:

(3.58) D(λ) = e(−λLtot) det [diag (e(λLj)) −B′] ,

where B′ is the (n− 1) × (n− 1) matrix from (3.35).

Corollary 3.35. The determinant D in (3.54) is a function only of λ ∈ R, (Li) ∈
R

n−1
+ , i.e., D(λ) = D(λ, L1, . . . , Ln−1, B

′).

Corollary 3.36. Let

(3.59) R � λ �→ D(λ) = det
[
diag (e(λLj))

n−1
1 −B′

]
be the determinant factor on the RHS in (3.58). For j = 1, 2, . . . , n− 1, let Dj(λ)
be the determinant of the (n− 2) × (n− 2) sub-matrix obtained from

(3.60)
[
diag (e(λLj))

n−1
1 −B′

]
by omission of its jth row, and its jth column. Then

(3.61)
1

2πi

d

dλ
D(λ) =

n−1∑
j=1

Lj e(λLj)Dj(λ).

Proof. Differentiate (3.59), viewing the determinant as a multi-linear function on
the n− 1 columns in (3.60). Applying 1

2πi
d
dλ to the jth column in (3.60) yields the

desired formula (3.61). To see this, note that the matrix in (3.60) is⎛⎜⎜⎜⎝
e(λL1) − b12 −b13 · · · −b1n

−b22 e(λL2) − b23 · · · −b2n
...

...
. . .

...
−bn−1,1 −bn−1,2 · · · e(λLn−1) − bn−1,n

⎞⎟⎟⎟⎠ .

�
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Corollary 3.37. Let α = (αi) and β = (βi) be as above, i.e., the specified interval

endpoints. Let B ∈ U (n) be written as

(
u B′

c w∗

)
. Then the following two

conditions are equivalent:

(1) The (α, β)-B problem is non-degenerate for all α and β; and
(2) ‖B′‖ < 1, where ‖·‖ is the Cn−1-operator norm.

Proof. Recall that (1) is the assertion that R � λ �→ B′
α,β (λ) satisfies

(3.62) det
(
In−1 −B′

α,β (λ)
)
�= 0

for all λ ∈ R. In other words, (1) states that for all λ ∈ R, 1 is not in the spectrum
of B′

α,β (λ).

Using (2) we see that this is equivalent to
∥∥∥B′

α,β (λ)
∥∥∥ < 1. �

Corollary 3.38. Let B =

(
u B′

c w∗

)
∈ U (n). Then w is an eigenvector for

B′∗B′ with eigenvalue |c|2, and u is an eigenvector for B′B′∗ with eigenvalue |c|2.
Proof. From Corollary 3.24 we know that

B′w + cu = B′∗u + cw = 0.

Now, applying B′∗ to the first, and B′ to the second, the desired conclusion follows,
i.e., we get the two eigenvalue equations:

B′∗B′w = |c|2 w, and(3.63)

B′B′∗u = |c|2 u.(3.64)

�

Corollary 3.39. Let B =

(
u B′

c w∗

)
∈ U (n); then

(3.65) ‖B′‖ ≥ |c| .
Proof. The proof divides into two cases. First if w = 0, then B′ ∈ U (n− 1) by
Corollary 3.29, and so ‖B′‖ = 1, and (3.65) holds. Conversely, suppose w �= 0;
then by (3.63), |c| ∈ sp (B′∗B′), but from operator theory, we know that

‖B′‖2 = max {s ∈ R; s ∈ sp (B′∗B′)} = ‖B′∗B′‖2 = ‖B′B′∗‖2 .
Hence |c|2 ≤ ‖B′‖2, which is the desired conclusion (3.65). The inequality (3.65)
may be sharp. �
Lemma 3.40. Let n > 2, and let A be an (n− 1) × (n− 1) matrix, u,w ∈ C

n−1,

c ∈ C. Suppose B :=

(
A u
w c

)
∈ U(n). Then B = B∗ if and only if

(1) A = A∗,
(2) u = w,
(3) c ∈ R,

(4) ‖u‖2 + |c|2 = 1,

(5) A2 + ‖u‖2 Pu = In−1, and
(6) u ∈ N (A + cIn−1).

Proof. A direct computation. �
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Example 3.41. Consider the following selfadjoint unitary 3 × 3 matrix B and its
cyclic permutation B̃ where

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b
g√

1 +
(
a
b

)2
b

b2

a + c
− c

−g√
1 +
(
b
a

)2
g√

1 +
(
a
b

)2 −g√
1 +
(
b
a

)2 c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a, b, c > 0, and g =
√

1 − c2. One verifies that if c is close to 0, then g is
close to 1; hence b must be close to 0, and a closed to 1. But the norm of the corner
matrix

B′ =

⎛⎝ a b

b
b2

a + c
− c

⎞⎠
is a (= its numerical range). Thus, the inequality (3.65) may be strict.

Proposition 3.42. Let B =

(
u B′

c w∗

)
and B̃ =

(
B′ u
w∗ c

)
. If ζ is an eigen-

vector for B′ with eigenvalue e(θ) for some real θ, then(
B′ u
w∗ c

)(
ζ
0

)
=

(
e(θ)ζ
w∗ζ

)
.

But B̃ is unitary, in particular

(
ζ
0

)
and

(
e(θ)ζ
w∗ζ

)
have the same norm; hence

(3.66) w∗ζ = 0,

slightly generalizing a claim in Corollary 3.20. If B̃ is selfadjoint, then w = u;
hence implies (3.48) B′u = −cu. In particular, u is in the range of In−1 − B′, if
c �= −1. On the other hand, if c = −1, then (3.66) implies u = 0.

Consequently, if B̃ is selfadjoint, then we are never in case (2)(a) of Theorem
3.5.

4. The continuous spectrum is simple

The generalized eigenfunctions studied in the previous section (see Theorem 2.5
and (3.1)) yield a separation of variables, a harmonic part (in the spatial variable

x as eλ(x)), and a finite family of scattering coefficients {A(B)
j (λ)}, functions of

the spectral variable λ. In this section we study the meromorphic extension of
scattering coefficients, the extension to non-real values of λ.

We show (Theorem 4.1) that, if the first of the scattering coefficients is normal-
ized to 1, then the continuous part of the spectrum for each of the operators is
purely Lebesgue, with spectral measure having Radon-Nikodym derivative equal to
the constant 1. We further show that each point on the real line R occurs in the
continuous spectrum with multiplicity 1.

Let the open set Ω be as before, i.e., Ω is the complement of n bounded closed
and disjoint intervals. The minimal momentum operator will then have deficiency
indices (n, n), and as a result, the boundary conditions are indexed by the matrix
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group U(n). As before, we denote the unbounded selfadjoint extension operators PB

indexed by a fixed element B ∈ U(n), and the corresponding unitary one-parameter
group is UB(t). These operators are acting in the Hilbert space L2(Ω).

We restrict the element B as in Theorem 3.10, i.e., it is assumed non-degenerate.
In this generality we are able to establish (Theorem 4.1) the complete and detailed
spectral resolution for PB, and therefore for the one-parameter group UB(t) as it
acts on the Hilbert space L2(Ω). We show that, if the first coefficient in the formula
for the generalized eigenfunction system in (5.1) is chosen to be 1, then the measure
σB in the spectral resolution for UB(t) becomes Lebesgue measure. Moreover, we
show that the multiplicity is uniformly one. In the theorem, we further compute
all the details, closed formulas, for the spectral theory.

Theorem 4.1. Let α = (αi) and β = (βi) be a system of interval endpoints:

(4.1) −∞ < β1 < α1 < β2 < · · · < βn < αn < ∞,

with J0 = J− = (−∞, β1), Jn = J+ = (αn,∞), and Ji = (αi, βi+1), i = 1, . . . , n−1.
Let B ∈ U (n) be chosen non-degenerate (fixed), and let

(4.2) ψλ (x) := ψ
(B)
λ (x) =

(
n∑

i=0

χi (x)A
(B)
i (λ)

)
eλ (x)

be as in Theorem 3.10, where Ω =
⋃n

i=0 Ji, χi := χJi
, 0 ≤ i ≤ n, and where the

functions
(
A

(B)
i (·)

)n
i=0

are chosen as in (3.26) with A
(B)
0 ≡ 1.

For f ∈ L2 (Ω), setting

(4.3) (VBf) (λ) = 〈ψλ, f〉Ω =

ˆ
ψλ (y)f (y) dy,

we then get the following orthogonal expansions:

(4.4) f =

ˆ
R

(VBf) (λ)ψλ (·) dλ,

where the convergence in (4.4) is to be taken in the L2-sense via

(4.5) ‖f‖2L2(Ω) =

ˆ
R

|(VBf) (λ)|2 dλ, f ∈ L2 (Ω) .

Moreover, we have

(4.6) VBUB (t) = MtVB, t ∈ R,

where
(Mtg) (λ) = eλ (−t) g (λ)

for all t, λ ∈ R, and all g ∈ L2 (R) .

L2 (Ω)
UB(t) ��

VB

��

L2 (Ω)

VB

��
L2 (R)

Mt

�� L2 (R)

Figure 4.1. Intertwining.
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Remark 4.2. The reason for the word “generalized” referring to the family (4.2) of
generalized eigenfunctions is that, for a fixed value of the spectral parameter λ, the
function ψλ is not in L2(Ω), so strictly speaking it is not an eigenfunction for the
unbounded selfadjoint operator PB in L2(Ω). But there is a fairly standard way
around the difficulty, involving distributions; see e.g., [JPT12a,Mau68,Mik04].

Example 4.3. Set n = 2, B =

(
a b

−b a

)
, a, b ∈ C, |a|2 + |b|2 = 1. With the

normalization A
(B)
0 ≡ 1, we get the following representation of the two function

R � λ �→ A
(B)
i (λ), i = 1, 2: Fix −∞ < β1 < α1 < β2 < α2 < ∞; set L := β2 − α1,

and G := α2 − β1; then

(4.7)

⎧⎪⎪⎨⎪⎪⎩
A

(B)
1 (λ) =

a eλ(β1 − α1)

1 − b eλ(L)
, and

A
(B)
2 (λ) =

eλ(L−G) − b eλ(G)

1 − b eλ(L)
.

Note the poles in the presentation of the two functions in (4.8). In the meromorphic
extensions of the two functions, we have, for z ∈ C,

(4.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A

(B)
1 (z) =

a e(z(β1 − α1))

1 − b e(zL)
,

A
(B)
2 (z) =

e(z(L−G)) − b e(−zG)

1 − b e(zL)
.

Remark 4.4. It follows from Corollaries 3.11 and 3.12 that also in the general case
with Ω open and associated α = (αi)

n
i=1, and β = (βi)

n
i=1, the scattering coefficients

A
(B)
j (·) have meromorphic extensions. With this information, one may derive a

suitable de Branges-Hilbert space of meromorphic functions [dB84,ADV09], for a
detailed and geometric analysis of the general case. It follows that formulas (4.7)-
(4.8) in Example 4.3 are indicative for the study of the general case; only in the

general case n > 2 is the extension of the meromorphic functions C � z �→ A
(B)
j (z)

substantially more difficult.

Proof. Outline of proof in sketch. Given B in U(n), we get a specific selfadjoint
operator PB, as outlined in section 1. And there is therefore an associated strongly
continuous unitary one-parameter group UB(t) generated by PB and acting on
L2(Ω). We begin with an application of the abstract spectral theorem: Given the
selfadjointness of the operator PB, we may apply the spectral theorem to it, but
this yields only the abstract form of the spectral resolution, not revealing very
much specific information. At the outset, the general theory does not say what the
spectral data are, such as detailed information about the measure σB arising in the
direct integral representation for PB. Given the properties of PB it does say that
σB must be absolutely continuous with respect to Lebesgue measure on R. But it
does not say what the Radon-Nikodym derivative FB is. Our assertion is that with
the normalization A0 = 1, we obtain FB = 1.

Having σB, we proceed to apply the theory of Lax-Phillips [LP68] to the uni-
tary one-parameter group UB(t) as it is acting on L2(Ω). To do this, we must
assume that B is non-degenerate, so that PB will have no point-spectrum. To
apply Lax-Phillips, we do not need to know details about the measure σB. Its
abstract properties are enough. To begin with, we first establish that L2(J0) serves
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as an incoming subspace D− in L2(Ω) for the action of the unitary one-parameter
group UB(t). Recall J0 = (−∞, β1). To show that this incoming subspace D− does
satisfy the Lax-Phillips axioms, again we do not need detailed information about
the measure σB . Finally, with an application of Lax-Phillips, and a number of other
steps, in the end, assuming A0 = 1, we are able to conclude that the measure σB

is Lebesgue measure on R.
Proof in detail. First note that the assumption on B rules out point spectrum;

see Corollary 3.11. Using [JPT12a] and the theory of generalized eigenfunctions
[DS88, Mau68, Mik04, MM63], we note that there is a Borel measure σB (dλ) on
R, absolutely continuous with respect to Lebesgue measure such that the formulas
(4.4) and (4.5) hold with σB (dλ) on the RHS of the equations. Our assertion is that
σB (dλ) = dλ = Lebesgue measure on R, i.e., then the Radon-Nikodym derivative

(4.9)
dσB (dλ)

dλ
= FB (λ) ≡ 1.

The validity of (4.9) uses the assumption A
(B)
0 ≡ 1 in an essential way. Hence in

(4.2), we have

(4.10) ψ
(B)
λ (x) =

⎛⎝χ(−∞,β1) (x) +

n∑
j=1

A
(B)
j (λ)χj (x)

⎞⎠ eλ (x) .

We will now suppress the B-dependence in ψ
(B)
λ (·) and A

(B)
j (·). It is understood

that ψλ (·) is a function on Ω, and each Aj (·) is a function on R; see Theorem 3.10
for the explicit formulas.

In the computation below, we will be using the normalized Fourier transform ·̂,
and its inverse ·̌.

Let Pj = multiplication by χj for 0 ≤ j ≤ n, viewed as projection operators in
L2 (Ω). We then have

(4.11)
n∑

j=0

Pj = I = IL2(Ω), and PjPk = δj,kPj .

From (4.10), we then get the following expression for VB : L2 (Ω) → L2 (σB):

(4.12) (VBf) (λ) = (P0f)∧ (λ) +
n∑

j=1

Aj (λ) (Pjf)∧ (λ) ,

for all f ∈ L2 (Ω), and all λ ∈ R; and

(4.13) f = P0f +
n∑

j=1

χj (·)
(
Aj (·) (Pjf)∧

)∨
.

(It is understood in (4.12), (4.13) and the sequel that Aj = A
(B)
j depends on a

choice of B ∈ U(n).)
With B ∈ U (n) specified as in the theorem, we get a unique selfadjoint operator

PB in L2 (Ω) as a selfadjoint extension of the minimal operator 1
i2π

d
dx , i.e., the

minimal operator specified by the condition f ∈ L2 (Ω), f ′ ∈ L2 (Ω) and f = 0 on
∂Ω; see [JPT12a].

Let, for t ∈ R,

(4.14) UB (t) : L2 (Ω) → L2 (Ω)
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be the corresponding strongly continuous unitary one-parameter group generated
by PB; see [Sto90,vN32,vN49].

Applying (4.13), we get the following formula for UB (t) f , f ∈ L2 (Ω), under-
stood in the sense of L2-convergence:

(4.15) (UB (t) f) (x) = χ0 (x) (P0f) (x− t) +
n∑

j=1

χj (x)
(
Aj (·) (Pjf)∧

)∨
(x− t)

for all f ∈ L2 (Ω), and all x ∈ Ω, t ∈ R.
We now prove (4.6) as an operator-identity, i.e., the assertion that

(4.16) VB : L2 (Ω) → L2 (σB)

intertwines the two unitary one-parameter groups specified in (4.6).
Let f ∈ L2 (Ω), x ∈ Ω, and λ, t ∈ R. Then,

(VBUB (t) f) (λ)

= 〈ψλ, UB (t) f〉Ω (by (4.3))

= 〈UB (−t)ψλ, f〉Ω (by the theory of generalized eigenfunctions)

= 〈eλ (t)ψλ, f〉Ω (by (4.10))

= eλ (−t) 〈ψλ, f〉Ω (since 〈·, ·〉 is conjugate linear in the first variable)

= eλ (−t) (VBf) (λ) (by (4.3))

= (MtVBf) (λ) .

Since this holds for all λ ∈ R, the desired formula (4.6) is verified.
We now establish formulas (4.4) and (4.5) first for f ∈ L2 (J0) = L2 (−∞, β1),

and we recall from [JPT12a] that this subspace serves as an incoming subspace D−
for UB (t) in the sense of Lax-Phillips [LP68]; see also [JPT12a], i.e.,

(4.17) D− = H0 = L2 (J0) = L2 (−∞, β1) .

Proof of (4.4). For f0 ∈ D− and x ∈ Ω, then (in the sense of L2-convergence):

f0 (x) = χJ0
(x) f0 (x)

= χJ0
(x)

ˆ
R

eλ (x) (P0f0)
∧

(λ) dλ (by (4.12))

= χJ0
(x)

ˆ
R

ψλ (x) (P0f0)
∧ (λ) dλ (by (4.10))

=

ˆ
R

(VBf0) (λ)ψλ (x) dλ (by (4.3) and (4.10)),

which is the desired formula (4.4). �

Proof of (4.5). By the spectral theorem (see [JPT12a]), the measure σB (λ) satisfies

(4.18) ‖f‖2L2(Ω) =

ˆ
R

|(VBf) (λ)|2 σB (dλ) ;

see also (4.16). Now specialize to f = f0 ∈ D− ⊂ L2 (Ω). Using (4.4), and
Parseval’s formula, we get

(4.19) ‖f0‖2L2(Ω) =

ˆ
R

∣∣∣f̂0 (λ)
∣∣∣2 σB (dλ) =

ˆ
R

∣∣∣f̂0 (λ)
∣∣∣2 dλ

which is (4.5) on vectors f0 ∈ D−. To see this, use (4.12). �
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The conclusions (4.4) and (4.5) for vector f0 ∈ D− = H0 may be stated in terms
of the projection-valued measure

EB (·) : {Borel-sets in R} →
{
Projections in L2 (Ω)

}
as follows:

(4.20) ‖EB (dλ) f0‖2Ω =
∣∣∣f̂0 (λ)

∣∣∣2 dλ.
It remains to prove that

(4.21) ‖EB (dλ) f‖2Ω = |(VBf) (λ)|2 dλ

holds, for all f ∈ L2(Ω).
But by Lax-Phillips [LP68] and [JPT12a], the linear span of the vectors

(4.22) {UB (t) f0 ; t ∈ R, f0 ∈ D−}

is dense in L2 (Ω). This is where non-degeneracy of B is used.
As a result, it is easy to establish (4.21) when f ∈ L2 (Ω) has the form f =

UB (t) f0, t ∈ R, f0 ∈ D− = H0.
We proceed to do this. We have

(4.23) ‖EB (dλ)UB (t) f0‖2Ω = ‖EB (dλ) f0‖2Ω ,

and for the RHS in (4.21) with f = UB (t) f0,

|(VBUB (t) f0) (λ)|2 dλ
= |eλ (−t) (VBf0) (λ)|2 dλ (by (4.6))

=
∣∣∣f̂0 (λ)

∣∣∣2 dλ (by (4.12)).(4.24)

The two right-hand sides in the last two equations (4.23) and (4.24) agree as a
consequence of (4.20), and we can therefore conclude that (4.21) holds for all f =
UB (t) f0 as asserted. �

Proposition 4.5. The axioms for EB (·) in (4.20) and (4.21) are as follows:

(1) EB (S) is a projection in L2 (Ω) for all Borel subsets S ⊂ R, S ∈ B;
(2) B � S �→ EB (S) is countably additive;
(3) EB (S1 ∩ S2) = EB (S1)EB (S2), ∀S1, S2 ∈ B;
(4) f =

´
R
EB (dλ) f holds for all f ∈ L2 (Ω);

(5) UB (t) f =
´
R
eλ (−t)EB (dλ) f holds for all f ∈ L2 (Ω), t ∈ R.

Moreover, the conclusion in (4.21) may be restated as follows:
For Borel sets S (∈ B), let MS := multiplication by χS in L2 (Ω), and let

VB : L2 (Ω) → L2 (R) be the transform in (4.3) and (4.4); then

(4.25) EB(S) = V ∗
BMSVB ; S ∈ B.

Proof. Follows from the arguments above. �

Convention. For functions f on R, we set MA to be the corresponding multipli-
cation operator (MAg) (λ) = A (λ) g (λ), λ ∈ R, with adjoint M∗

A = MA, and ·
denoting complex conjugation. On L2(Ω) ⊂ L2(R), we view the Fourier transform

as a unitary operator so Ff = f̂ , and F ∗g = g∨, for all f, g ∈ L2(R).
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Corollary 4.6. Let Ω, and B ∈ U(n) be specified as in the theorem, and let {ψ(B)
λ }

be the system of GEFs in (4.10) with coefficients {A(B)
i }ni=0. Then the spectral trans-

forms VB and V ∗
B from (4.3) have the following representation as Fourier integral

operators:

VB =
n∑

j=0

F ∗M∗
Aj

FPj , and(4.26)

V ∗
B =

n∑
j=0

PjF
∗MAj

F(4.27)

where Pj = MχJj
, 0 ≤ j ≤ n, and recall

L2(Ω)

VB

��
L2(R)

V ∗
B

��

Proof. For all f ∈ L2(Ω), by (4.3), we have

(VBf) (λ) =

ˆ
Ω

ψλ (y)f (y) dy

=

ˆ
Ω

(
n∑

i=0

χi (y)A
(B)
i (λ)

)
eλ (y)f(y)dy

=

n∑
i=0

A
(B)
i (λ)

ˆ
Ω

eλ (y)χi (y) f(y)dy

=

n∑
i=0

A
(B)
i (λ)F (Pif) ;

and this yields (4.26). On the other hand, for all g ∈ L2(R), we have

(V ∗
Bg) (x) =

ˆ
R

ψλ (x) g (λ) dλ

=

ˆ
R

(
n∑

i=0

χi (x)A
(B)
i (λ)

)
eλ (x) g(λ)dλ

=

n∑
i=0

χi (x)

ˆ
R

A
(B)
i (λ) eλ (x) g(λ)dλ,

which gives (4.27). �

Remark 4.7. For relevant details on Fourier integral operators, see e.g., [Dui11].

Corollary 4.8. Select a pair of elements B and C in U(n) specified as in Corollary

4.6. Let (A
(B)
i ) and (A

(C)
j ) be the corresponding systems of scattering coefficients.

Then for the operator V ∗
CVB we have

(4.28) V ∗
CVB =

n∑
i=0

n∑
j=0

PiF
∗A

(C)
i A

(B)
j FPj ;
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i.e. in each (i, j)-scattering block V ∗
CVB has the function

(4.29) R � λ �→ A
(C)
i (λ)A

(B)
j (λ)

as a Fourier multiplier.

Proof. Immediate from (4.26) and (4.27) in Corollary 4.6. �

Corollary 4.9. Fix 1 ≤ i ≤ n − 1, and let Pi be the projection from L2(Ω) onto
L2(Ji) = L2 (αi, βi+1). Then for all f ∈ L2 (Ω), we have

(4.30) (Pif)
∧

(λ) =

ˆ
R

Shanni (λ− ξ) |Ai|2 (ξ) (Pif)
∧

(ξ) dξ,

where

Shanni(ξ) :=

ˆ
Ji

eξ (x)dx

= eξ

(
−αi + βi+1

2

)
sin (πξ (βi+1 − αi))

πξ
(4.31)

is the Shannon kernel on the bounded interval Ji; see [DM72].

Proof. By (4.12), we have

(VBPif) (λ) = Ai (λ) (Pif)
∧

(λ) ;

hence, by (4.4),

(Pif) (x) = Pi

ˆ
R

(VBPif) (λ)ψλ (x) dλ

= χi (x)

ˆ
R

(VBPif) (λ) (χi (x)ψλ (x)) dλ

= χi (x)

ˆ
R

|Ai (λ)|2 (Pif)
∧

(λ) eλ (x) dλ.

Therefore,

(Pif)
∧

(λ) =

ˆ
R

χ̂i (λ− ξ) |Ai (ξ)|2 (Pif)
∧

(ξ) dξ

and (4.30) holds. �

4.1. An inner product on the system of boundary conditions. While large
families within the selfadjoint extensions PB, B ∈ U(n), are unitarily equivalent,
there are much more refined measures that pick out specific scattering theoretic
properties for the selfadjoint operators and the corresponding family of unitary
one-parameter groups. Below we compute two such; one is an inner product, or a
correlation function, defined initially on U(n) and then extended by sesqui-linearity.
The second is the family of scattering semigroups; see [LP68].

Corollary 4.10 (An inner product on the system of boundary conditions.). Let
α = (αi)

n
i=1 and β = (βi)

n
i=1 be fixed as above. For each of the finite intervals

Jj := (αj , βj+1), j = 1, . . . , n − 1, in Ω, let Shj = ShJj
be the corresponding

Shannon kernel

(4.32) Shj(λ) =

ˆ
Jj

e(λx) dx, λ ∈ R.
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For a pair of bounded Borel functions g1 and g2 on R, set

(4.33)
〈
g1, |Shj |2 g2

〉
:=

ˆ
R

g1(λ)g2(λ) |Shj |2 (λ)dλ.

For elements B ∈ U(n) specified as in Theorem 4.1, let VB and V ∗
B be the associated

transforms.
For pairs of elements B,C ∈ U(n) we have that

(4.34) 〈VBχj , VCχj〉L2(R) =
〈
A

(B)
j , |Shj |2 A(C)

j

〉
and that

(4.35) 〈VBχfin, VCχfin〉L2(R) =

n−1∑
j=1

〈
A

(B)
j , |Shj |2 A(C)

j

〉
,

where χfin :=
∑n−1

j=1 χJj
= indicator function of the union

⋃n−1
j=1 Jj of the finite

intervals.
Note that (4.35) extends by sesqui-linearity to a Hilbert inner product 〈B,C〉,

and then

〈B,B〉 =

n−1∑
j=1

〈
A

(B)
j , |Shj |2 A(B)

j

〉
.

Proof. Follows from Theorem 4.1 and Corollaries 4.8 and 4.9. �

Example 4.11. Let n = 2. Fix a system of interval endpoints

−∞ < β1 < α1 < β2 < α2 < ∞

and let J− = J0 = (−∞, β1), J1 = (α1, β2), and J2 = J∞ = (α2,∞).

Let B =

(
a b

−b a

)
and C =

(
c d

−d c

)
, where a, b, c, d ∈ C, and |a|2 + |b|2 =

|c|2 + |d|2 = 1. By (4.7), we have

A
(B)
1 (λ) =

a eλ(β1 − α1)

1 − b eλ(L1)
,(4.36)

A
(C)
1 (λ) =

c eλ(β1 − α1)

1 − d eλ(L1)
,(4.37)

where L1 = length(J1) = β2 − α1. Then

〈B,C〉 =

ˆ
R

A
(B)
1 (λ)A

(C)
1 (λ) |Sh1(λ)|2 dλ

= (a c)

ˆ
R

1

(1 − b e(λL1))
(
1 − d e(−λL1)

) |Sh1(λ)|2 dλ.(4.38)

In particular, if B = C, we get

(4.39) 〈B,B〉 = |a|2
ˆ
R

1

1 − 2 |b| cos(2π(ϕ + L1λ)) + |b|2
|Sh1(λ)|2 dλ,

where b := |b| e(ϕ). See also (4.39).
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Corollary 4.12. Let B =

(
a b

−b a

)
∈ U(2) be as above (b = |b| e(ϕ), |a|2+|b|2 =

1); then

(4.40)
(
PER |Sh1(·)|2

)
(λ) ≡ L2

1.

(See [BJ02].) For the Poisson-kernel,

(4.41) Pb(ξ) :=
1 − |b|2

1 − 2 |b| cos(2πξ) + |b|2
, ξ ∈ R,

we have

(4.42) 〈B,B〉 = L2
1

ˆ 1
L1

0

Pb(ϕ + L1λ)dλ = L1,

and

〈B,C〉 = (a c)L2
1

ˆ 1
L1

0

dλ

(1 − b e(λL1))
(
1 − d e(−λL1)

)
=

a c

1 − b d
L1(4.43)

for all B =

(
a b

−b a

)
and C =

(
c d

−d c

)
∈ U(2).

Proof. See Example 4.11.
The justification for the identity (4.40) is from wavelet theory. Indeed, the

assertion (4.40) is equivalent with the fact that the Shannon wavelet is an ONB-

wavelet in L2(R). The summation in (4.44) below is justified since |Sh1|2 is in

L1(R), and as a result PER |Sh1|2 is in L1 in any period-interval.
Since the first function inside the integrals in (4.46) and (4.39) is periodic with

period 1/L1, we introduce a periodized version of the function as follows:

(4.44) PER |Sh1|2 (λ) :=
∑
n∈Z

∣∣∣∣Sh1

(
λ +

n

L1

)∣∣∣∣2 ≡ L2
1.

(See [BJ02].)
Note that

(4.45) PER |Sh1|2 (λ +
1

L1
) = PER |Sh1|2 (λ), ∀λ ∈ R,
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and as a result, we get

〈B,C〉 = (a c)

ˆ 1
L1

0

(
PER |Sh1|2

)
(λ)

(1 − b e(λL1))
(
1 − d e(−λL1)

)dλ
= (a c)L2

1

ˆ 1
L1

0

1

(1 − b e(λL1))
(
1 − d e(−λL1)

)dλ
= (a c)L2

1

ˆ 1
L1

0

∞∑
m,n=0

bmdn e((m− n)λL1)dλ

= (a c)L2
1

( ∞∑
n=0

(bd)n

)ˆ 1
L1

0

dλ

=
a c

1 − b d
L1.(4.46)

Equation (4.42) follows from this.
A direct verification of (4.42) is given as follows:

〈B,B〉 = |a|2
ˆ 1

L1

0

(
PER |Sh1|2

)
(λ)

1 − 2 |b| cos(2π(ϕ + L1λ)) + |b|2
dλ

= |a|2 L2
1

ˆ 1
L1

0

1

1 − 2 |b| cos(2π(ϕ + L1λ)) + |b|2
dλ

= L2
1

ˆ 1
L1

0

1 − |b|2

1 − 2 |b| cos(2π(ϕ + L1λ)) + |b|2
dλ = L1.(4.47)

The conclusion of (4.42) follows from (4.47), (4.41), and the normalization property
of the Poisson kernel. �

Remark 4.13. Equations (4.40) and (4.44) can be verified as follows (also see

[BJ02]): Let g := χJ1
, and g̃(x) := g(−x), so that

(g ∗ g̃)∧(λ) = |Sh1|2 (λ) =

∣∣∣∣ sin(πλL1)

πλ

∣∣∣∣2 .
It follows that

ˆ 1
L

0

ei2πL1nλ
(
PER |Sh1|2

)
(λ) =

ˆ
R

ei2πL1nλ |Shj |2 (λ)dλ

= (g ∗ g̃) (nL1)

=

{
L2
1 n = 0

0 n �= 0.

Hence,
(
PER |Shj |2

)
(λ), as an 1

L1
-periodic function, has the Fourier series(

PER |Sh1|2
)

(λ) = c0 ≡ L2
1.
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4.2. Unitary dilations. For the definitions of key notions, unitary dilation for
semigroups of contractions, minimal unitary dilation, uniqueness up to unitary
equivalence, and intertwining operators, the reader is referred to e.g., [AP01,Jør81,
LP68,Vas07], but the literature in the subject is extensive.

For each of the selfadjoint extension operators PB, we now compute three associ-
ated scattering semigroups. There is one for each of the infinite half-lines contained
in Ω, and one for the union of the bounded components in Ω.

Now, this means that when B is fixed in U(n), then the unitary one-parameter
group UB(t) will be a unitary dilation of each of the three semigroups, one for
the incoming subspace in L2(Ω), one for the outgoing, and a third for bounded
components. This fact yields additional scattering theoretic information for our
problem.

Proposition 4.14 (Unitary dilations). For n ≥ 2, fix the open set Ω with interval
endpoints as in section 3.1 (see Figures 3.1 and 2.3). When a boundary condition
B ∈ U (n) is fixed, we get an associated unitary one-parameter group UB(t). Then
UB (t) is, at the same time, a unitary dilation of three different semigroups of
contractive operators (called “contraction semigroups”).

First, let P− be the projection onto L2(J−) (see Figure 2.3), let P+ be the projec-
tion onto L2(J+), and finally Pm denotes the projection onto “the rest”, i.e., onto
L2 of the union of the n− 1 finite intervals Ji; see Figure 2.3.

The three semigroups are now as follows:

(1) Z−(t) := P−UB(t)P−, t > 0; its infinitesimal generator has von Neumann
indices (0, 1).

(2) Z+(t) := P+UB(t)P+, t > 0; its infinitesimal generator has von Neumann
indices (1, 0)

(3) Zm(t) := PmUB(t)Pm, t > 0; its infinitesimal generator is maximal dissi-
pative (see [JM80,LP68]).

Proof. For every B ∈ U(n) we have a strongly continuous unitary representation
UB(·) of (R,+), i.e., of the additive group of R. When t ∈ R is fixed, UB(t) is a
unitary operator acting in L2(Ω).

Associated with (UB(t), L2(Ω)), one has three contraction semigroups. Each of
the three semigroups is the result of cutting down UB(t), t > 0, with three separate
projections. �

Moreover one easily checks ([Kos09, JM80, LP68]) that the first is a semigroup
of co-isometries, the second a semigroup of isometries, and the third one, Zm(t),
is a semigroup of contraction operators, often called the Lax-Phillips scattering
semigroup.

Lemma 4.15. If Y± denote the respective infinitesimal generators of the two con-
traction semigroups {Z±(t)}t∈R+

in (1) and (2) above, then for their respective
dense domains we have:

(4.48) D(Y+) = {f ; f and f ′ ∈ L2(αn,∞), f(αn) = 0}

dense in H+ = L2(J+), J+ = (αn,∞); and

(4.49) D(Y−) = {f ; f and f ′ ∈ L2(∞, β1)}

dense in H− = L2(J−), J− = (−∞, β1).
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J1 J2 Jn–1

J1 J2 Jn–1
β1

β1

αn

αn

L
E

F
T

O
V

E
R

truncation = co–isometric shift = isometric

h+�L
2(αn, +�)h–�L

2(–�, β1)

Z+(t), t > 0

Z+(t) h+Z–(t) h–

Z–(t), t > 0

Figure 4.2. The action of the two semigroups, Z−(t) acting on
L2(−∞, β1), and Z+(t) acting on L2(αn,∞), t > 0, fixed. The
semigroup Z+(t) is called a semigroup of shifts: Each operator
Z+(t) shifts functions to the right. A given function h+ on the
half-line (αn,∞) is shifted like a Xerox copy. Z+(t) moves it t
units to the right. The L2 norm is preserved: It is a semigroup
of isometries. By contrast, moving instead to the left in (αn,∞),
we get a semigroup of co-isometries; hence truncation, and the
L2 norm is decreased. By symmetry, this duality works in the
reverse on the LHS half-line (−∞, β1). In general the adjoint of a
semigroup of isometries is a semigroup of co-isometries.

As before the interval systems α = (αi), and β = (βi) are specified as in Figure
3.4.

Proof. See e.g., [LP68]. �

Remark 4.16. Using [Kos09], one further checks that (UB(t), L2(Ω)) serves as a
unitary dilation of all three semigroups. Recall [Kos09] finally, that, in general,
unitary dilations may or may not be minimal. As an application of Theorem 4.1, it
follows that (UB(t), L2(Ω)) is a minimal dilation of Z−(t), t > 0, if and only if B is
non-degenerate. In this case, it is also a minimal unitary dilation for the semigroup
on the right, Z+(t).

But minimal unitary dilations are unique up to unitary equivalence [Kos09].
As a result, we get a system of unitary intertwining operators. Below we outline
formulas for these intertwining operators, and their relevance for scattering theory,
and for bound-states.

The next corollary implies in particular that any two distinct non-degenerate
points B1, and B2 in U(n) yield corresponding selfadjoint extensions which are
unitary equivalent. Indeed, combining this with Theorem 4.1, we note that both
of these selfadjoint extension operators will have pure Lebesgue spectrum. So the
variation of the unitary equivalence classes of distinct selfadjoint extensions happens
in the case when the points in U(n) are degenerate.



SPECTRAL THEORY OF MULTIPLE INTERVALS 1713

Corollary 4.17. If B ∈ U(n) is non-degenerate, then the scattering coefficients

A
(B)
j in (4.2) satisfy

∣∣∣A(B)
j (λ)

∣∣∣ > 0 for all λ ∈ R. Moreover if B1, B2 ∈ U(n)

are both non-degenerate, then there is a unitary intertwining operator W in L2(Ω)
subject to the following two conditions:

(4.50)

{
Wh = h, ∀h ∈ L2(−∞, β1),

WUB1
(t)h = UB2

(t)h, ∀t ∈ R, h ∈ L2(−∞, β1).

In Fourier domain, it is determined as follows:

(4.51) χJj
(x)W

(
χJj

(·)g∨(·)
)

= χJj
(x)

(
A

(B2)
j

A
(B1)
j

g

)∨

(x)

for 1 ≤ j ≤ n− 1, g ∈ L2(R), x ∈ Ω, where g∨ = F ∗g denotes the inverse Fourier
transform in L2(R).

5. Degenerate cases

In this section we make a comparison between families of selfadjoint exten-
sions that have purely continuous spectrum, and the cases with embedded point-
spectrum. We outline detailed scattering properties, and in particular, we give
examples of non-periodic periodic spectrum; see Theorem 5.6, and the caption in
Figure 5.3.

The following features from quantum theory are reflected in properties of certain
of our operators PB which allow decomposition (degeneracy); see e.g., Theorem 3.21
above and Figure 2.3, as well as details in the section below. States in quantum
mechanics are represented by wave functions, and they in turn by vectors (of unit-
norm) in Hilbert space. In the paragraphs below, we will use wave-particle duality
(from quantum theory) without further discussion, hence referring on occasion to
particles as opposed to wave functions. Bound-states are states that satisfy some
additional confinement property. Consider now a quantum system where particles
(waves) are subject to confinement, by a potential, or by a spatial region, e.g., a
box, or an interval. These particles then have a tendency to remain localized in
one or more regions of space. In our present analysis we will identify this case by
a discrete set of spectral-points, embedded in a continuum spectrum (embedded
point-spectrum); hence the presence of eigenvectors for the operator PB are under
consideration. The spectrum, for us, will refer to PB, one in a family of selfadjoint
operators (quantum mechanical observables, such as momentum, or position).

In quantum systems (where the number of particles is conserved), a bound-state
is a unit-norm vector in a Hilbert space which is also an eigenvector. They may
result from two or more particles whose interaction energy is less than the total
energy of each separate particle. Hence these particles cannot be separated unless
energy is spent. The mathematical consequence is that the corresponding energy
spectrum for a bound-state is discrete, and in our case, embedded in continuous
spectrum. Bound-states may be stable or unstable, and this distinction will be
illustrated for our model below. Positive interaction energy for bound-states cor-
responds to “energy barriers”, and a fraction of the states will tunnel through the
barriers, and eventually decay. Stable bound-states are associated to, among other
things, stationary wave functions, and they may show up as a poles in a scattering
matrix (see details below).
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Fix n = 3. Recall that Ω =
⋃4

i=0 Ji, where J1 = (α1, β2), J2 = (α2, β3),
J− = J0 = (−∞, β1), and J+ = J3 = (α3,∞). For B ∈ U(3), the generalized
eigenfunction is

(5.1) ψλ (x) := ψ
(B)
λ (x) =

(
4∑

i=0

Ai(λ)χi(x)

)
eλ(x),

with χi := χJi
, i = 0, 1, 2, 3. The coefficients (Ai)

3
i=0 satisfy the boundary condition

(5.2) Bα,β(λ)

⎛⎝ A0

A1

A2

⎞⎠ =

⎛⎝ A1

A2

A3

⎞⎠
as in (3.23).

5.1. Case 1: With UB(t) indecomposable. Let

B =

⎛⎝ a b 0

−b a 0
0 0 1

⎞⎠ ∈ U(3),

where |a|2 + |b|2 = 1. Then

B′ =

(
b 0
a 0

)
, w =

(
0
1

)
, and B′∗B′ =

(
1 0
0 0

)
= I − Pw.

Note that ‖B′‖ = 1.
Standing assumption 0 < |b| < 1. The notation used in the example is the one

introduced above.

Conclusions. After a computation we arrive at a closed-form formula for all four
generalized eigenfunction (GEF) coefficients Ai, with the local index i from 0 to 3,
and, as a result, a closed-form formula for the GEFs ψB

λ in Theorem 2.5; see also
(4.10).

To ensure that the measure in the spectral representation σB is Lebesgue mea-
sure, we pick A0 = 1. Some noteworthy properties of the coefficients: The coeffi-
cient A1 for the first of the finite intervals inside Ω, carries more information than
the remaining three coefficients. Studying transformation of states in L2(Ω) under
the unitary one-parameter group UB(t), with t increasing, we note that the last
GEF-coefficient A3(λ) measures transition into the infinite half-line to the right.
It turns out that the last coefficient, A3, is just a phase factor times the unitary
scattering operator A2. All coefficients, phase factors, and time-delay depend on
the respective lengths of the finite intervals in Ω, as well as the lengths of the gaps
between them.

The A2 function is a scattering operator (see [JPT12a]) adjusted both with a
phase factor and an additive time-delay. Hence, three of the four GEF-coefficients
have modulus 1, i.e., |Ai (λ)| = 1, for i = 0, 2 and 3. The coefficient |A1|2 carries a
probabilistic interpretation. It is a scaled Poisson kernel, with the scaling depending
on a two-state distribution |a|2 + |b|2 = 1, where a and b are complex, the SU(2)
entries from B.

As a result, in the spectral decomposition (Theorem 4.1), we get local densities
= 1, except at one place, for the first of the finite intervals J1, where the distribution
density is |A1|2. So by contrast to the case n = 2 [JPT12a], in the present model we
do not have Poisson uniformly contributing to σB. The spectrum of UB(t) is pure
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Lebesgue spectrum, with no embedded point-spectrum. And the global Hilbert
space L2(Ω) does not decompose.

The boundary conditions are as follows:⎛⎝ f(α1)
f(α2)
f(α3)

⎞⎠ =

⎛⎝ a b 0

−b a 0
0 0 1

⎞⎠⎛⎝ f(β1)
f(β2)
f(β3)

⎞⎠ .

In detail, we get the following transformations:⎧⎪⎨⎪⎩
f(α1) = af(β1) + bf(β2),

f(α2) = −bf(β1) + af(β2),

f(α3) = f(β3).

β1 α1 β2 α2 β3 α3

J J0 J1 J2 J3 J

β3 α3

A0 A1 A2 A3

Figure 5.1. Transition between intervals in Ω.

Set

Bα,β(λ) = Dα(λ)∗BDβ(λ)

=

⎛⎜⎝ a eλ(β1 − α1) b eλ(β2 − α1) 0

−b eλ(β1 − α2) a eλ(β2 − α2) 0

0 0 eλ(β3 − α3)

⎞⎟⎠
so that

B′
α,β(λ) =

(
b eλ(β2 − α1) 0

a eλ(β2 − α2) 0

)
.

Then we have

(5.3) Bα,β(λ)

⎛⎝ A0

A1

A2

⎞⎠ =

⎛⎝ A1

A2

A3

⎞⎠ ;

i.e.,

a eλ(β1 − α1)A0 + b eλ(β2 − α1)A1 = A1,

−b eλ(β1 − α2)A0 + a eλ(β2 − α2)A1 = A2,

eλ(β3 − α3)A2 = A3.

The characteristic polynomial of B′
α,β(λ) is

det

(
x− b eλ(β2 − α1) 0

−a eλ(β2 − α2) x

)
= x (x− b eλ(l1))
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with roots x = 0, x = b eλ(l1) �= 1. But since |b| < 1 we get 1 /∈ sp(B′
α,β(λ)),

∀λ ∈ R; hence Λpt = φ, and (I2 −Bα,β(λ))−1 is well-defined for all λ ∈ R.
Note that

(I2 −Bα,β(λ))−1 =

(
1 − b eλ(β2 − α1) 0

−a eλ(β2 − α2) 1

)

=
1

1 − b eλ(β2 − α1)

(
1 0

a eλ(β2 − α2) 1 − b eλ(β2 − α1)

)
.

Setting A0 = 1, it follows that(
A1

A2

)
= (I2 −Bα,β(λ))−1

(
a eλ(β1 − α1)

−b eλ(β1 − α2)

)

=
1

1 − b eλ(β2 − α1)

(
a eλ(β1 − α1)

eλ(β1 + β2 − α1 − α2) − b eλ(β1 − α2)

)
.

Finally,

A3 =
1

1 − b eλ(β2 − α1)

〈(
0

eλ(β3 − α3)

)
,

(
a eλ(β1 − α1)

eλ(β1+β2 − α1 − α2) − b eλ(l1)

)〉
= eλ(β3 − α3)A2.

We summarize the results in the lemma below:

Lemma 5.1. The solution to (5.3) is given by

A0 = 1,(5.4)

A1 =
a eλ(β1 − α1)

1 − b eλ(β2 − α1)
,(5.5)

A2 =
eλ(β1 − α2)

(
eλ(β2 − α1) − b

)
1 − b eλ(β2 − α1)

,(5.6)

A3 = eλ(β3 − α3)A2 .(5.7)

Lemma 5.2. Setting b = |b| e(ϕ), ϕ ∈ R, then

(5.8) |A1|2 =
|a|2

1 − 2 |b| cos(2π(ϕ + l1λ)) + |b|2
.

Hence |A1|2 is the Poisson kernel with parameter b.

Proof. This follows from (5.5). �

5.2. Case 2: With UB(t) decomposable. Let

(5.9) B =

⎛⎝ 0 a b

0 −b a
1 0 0

⎞⎠ ∈ U(3),
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where

(5.10) B′ =

(
a b

−b a

)
∈ SU(2),

i.e., |a|2 + |b|2 = 1; and u = w =

(
0
0

)
, and c = 1.

Summary of conclusions in the example. Standing assumption 0 < |b| < 1.
The notation used in the example is as before, but the element B in U(3) is now
different. We also fix a system α and β of interval endpoints, subject to the
standard position; see (2.1) through (2.3) in Section 2.1.

As always, the conclusions will depend on both B and the prescribed pair α
and β: Again, we arrive at a closed-form formula for the generalized eigenfunction
(GEF) ψB

λ ; see Theorem 2.5 and (4.10). But this time, we get an embedded point-
spectrum in the continuum (bound-states in physics lingo).

The discrete set Λpt making up the point-spectrum depends on both the lengths
of the two finite intervals J1 and J2, as well as on the gap between them, and the
gaps to the infinite half-lines.

As before, to get the continuous part of σB to be Lebesgue measure on R, we
pick A0 = 1.

Studying transformation of states in L2(Ω) under unitary one-parameter group
UB(t), with t increasing, we note that incoming states from the infinite half-line to
the left turn into bound-states. But the action of UB(t) on the global Hilbert space
L2(Ω) now decomposes as an orthogonal sum of continuous states, and bound-
states.

As a result, in the spectral decomposition (Theorem 4.1), we get local densities
= 1, for the continuous part, and a set of Dirac-combs for the discrete part. But
by contrast to the case n = 2 [JPT12a], in the present model, we get non-periodic
Dirac-combs. The spectrum of UB(t) is a mix of Lebesgue spectrum and embedded
point-spectrum.

The boundary condition takes the form⎛⎝ f(α1)
f(α2)
f(α3)

⎞⎠ =

⎛⎝ 0 a b

0 −b a
1 0 0

⎞⎠⎛⎝ f(β1)
f(β2)
f(β3)

⎞⎠
so that

(5.11)

⎧⎪⎨⎪⎩
f(α1) = af(β1) + bf(β2),

f(α2) = −bf(β1) + af(β2),

f(α3) = f(β1).

See the second line in Figure 5.2 (and also Figure 2.3) for a geometric representation
of the last equation f(α3) = f(β1) in the system (5.11) of boundary conditions.

In this case,

Bα,β(λ) =

⎛⎜⎝ 0 a eλ(β2 − α1) b eλ(β3 − α1)

0 −b eλ(β2 − α2) a eλ(β3 − α2)

1 0 0

⎞⎟⎠ ,
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β1 α1 β2 α2 β3 α3

J J0 J1 J2 J3 J

β1 α3

A0 A1 A2 A3

L2(Ω) = L2(J− ∪ J+) ⊕ L2(J1 ∪ J2)

UB(t) = Ucont
B (t) ⊕ U bound−state

B (t)

Figure 5.2. Transition between intervals in Ω.

where

B′
α,β(λ) =

(
a eλ(β2 − α1) b eλ(β3 − α1)

−b eλ(β2 − α2) a eλ(β3 − α2)

)
∈ SU(2), ∀λ ∈ R.

Now, the boundary condition (5.2) becomes

a eλ(β2 − α1)A1 + b eλ(β3 − α1)A2 = A1,

−b eλ(β2 − α2)A1 + a eλ(β3 − α2)A2 = A2,

eλ(β1 − α3)A0 = A3.

We set A0(λ) ≡ 1 for all λ ∈ R.
As a result, we see that the vector

(5.12) A(λ) =

(
A1(λ)
A2(λ)

)
must be an eigenvector of B′

α,β(λ) for λ to be in the spectrum of PB, or equivalently

for the unitary one-parameter group UB(t).
As a result we get

(5.13) Λpt = {λ ∈ R ; det(I2 −B′
α,β(λ))−1 = 0}.

Hence, as the interval endpoints α = (αi) and β = (βi) are fixed, the set Λpt results
as the solution manifold for

(5.14) det

(
1 − a eλ(β2 − α1) −b eλ(β3 − α1)

b eλ(β2 − α2) 1 − a eλ(β3 − α2)

)
= 0.

Notice (5.14) is independent of β1 and α3.

Example 5.3. Let

α = {1, 2, 3 + ϕ}, ϕ > 0,

β = {0, 3

2
, 3}, and

a = b =
1√
2
.
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Substitute into (5.14):

det

⎛⎝ 1 − 1√
2
eλ( 12 ) − 1√

2
eλ(2)

1√
2
eλ(− 1

2 ) 1 − 1√
2
eλ(1)

⎞⎠ = 1 − 1√
2
e(

1

2
λ) − 1√

2
e(λ) + e(

3

2
λ).

As a result

z(λ) := e(
1

2
λ) = cos(πλ) + i sin(πλ)

must satisfy the cubic equation

(5.15) 1 − 1√
2
z − 1√

2
z2 + z3 = (1 + z)(z2 − (1 +

1√
2
)z + 1) = 0.

Hence,

z = −1 ⇐⇒ λ ∈ 1 + 2Z

or

z2 − (1 +
1√
2
)z + 1 = 0 ⇐⇒ z± =

(
1 + 1√

2

)
± i
√

5
2 −

√
2

2
.

Note |z±| = 1. Let λ± be such that z± = e( 12λ±), with λ± ∈ R. We conclude that

Λpt = (1 + 2Z) ∪ {λ± +
1

2
Z}.

Remark 5.4. In any example with Ω as in Figure 5.2, i.e., when Ω is the complement
of three finite closed intervals, Ω will have two bounded components, i.e., open in-
tervals Ji, i = 1, 2, and two unbounded. If further UB(t) is assumed decomposable,
there will be one summand U bdst

B(t) acting on L2(J1 ∪ J2) of the union of the two
intervals Ji.

Example 5.3 produces one particular configuration for this possibility, and so
a computation of the spectrum of U bdst

B(t) when there are bound-states. In an
earlier paper [JPT12b] we found all the configurations for the spectrum for each
one of the possible momentum operators in L2 of the union of any pair of finite
open intervals Ji.

This in turn is a question of interest both for the study of both quantum systems,
and of spectral pairs; see e.g., [Fug74,JP98,JP99,DJ11, �Lab01].

Remark 5.5. More generally, if

B1 =

⎛⎜⎜⎜⎝
0

g ...
0

0 · · · 0 1

⎞⎟⎟⎟⎠ ∈ U(n)

with g ∈ SU(n − 1), then the corresponding unitary one-parameter group UB1
(t)

does not decompose. See Case 1 of section 5.1.
On the other hand, for

B2 =

⎛⎜⎜⎜⎝
0
... g
0
1 0 · · · 0

⎞⎟⎟⎟⎠ ∈ U(n),
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where g ∈ SU(n− 1) as before, the unitary group UB2
(t) decomposes. See Case 2

of section 5.2.
Set

S =

⎛⎜⎜⎜⎝
0 · · · 0 1
1 0 0

. . .
. . .

...

0 1 0

⎞⎟⎟⎟⎠ ;

then (see (3.47))⎛⎜⎜⎜⎝
0
... g
0
1 0 · · · 0

⎞⎟⎟⎟⎠S =

⎛⎜⎜⎜⎝
0

g ...
0

0 · · · 0 1

⎞⎟⎟⎟⎠ .

Theorem 5.6. Let Li = length(Ji), i = 1, 2, be the lengths of the two bounded
intervals J1 and J2. Then,

D(λ, a, L1, L2) := det
(
B′

α,β(λ)
)

= 1 + eλ(L1 + L2) − a eλ(L1) − a eλ(L2),(5.16)

where det(B′
α,β(λ)) is defined in (5.14). The solution manifold Λpt (5.13), i.e., the

embedded point-spectrum, is the set of zeros

(5.17) Z(a, L1, L2) := {λ ∈ R ; D(λ, a, L1, L2) = 0}
of the exponential polynomial in (5.16). Moreover, setting a := w e(ϕ0), 0 < w < 1,
(5.16) is equivalent to

(5.18) e(λL2 − ϕ0) =
1 − w e(λL1 + ϕ0)

w − e(λL1 + ϕ0)
.

Proof. Equation (5.16) follows from a direct computation. As noted in [JPT12b],
both sides of (5.18) can be interpreted as periodic motions on the torus T

1:
(i) the LHS is a uniform motion with constant velocity;
(ii) the Möbius transformation on the RHS has the form eig(λ), where

(5.19) g(t) := −1

2
+

1

2π
Im

ˆ t

0

γ′

γ
= −1

2
−
ˆ t

0

1 − w2

1 − 2w cos(2πu) + w2
du.

The solution to (5.18) is obtained at the intersection of the two motions. In partic-
ular, the solution (point-spectrum) is periodic if and only if L2/L1 is rational. See
Figure 5.3. �

Proposition 5.7. For all λ ∈ Λpt = Z(a, L1, L2), the vector of coefficients (5.12)
satisfies

A1 (λ) =
b

1 − a e (λL1)
e (λ (β3 − α1))A2 (λ) ,

A2 (λ) =
−b

1 − a e (λL2)
e (λ (β2 − α2))A1 (λ) .

Note that |A1 (λ)| = |A2 (λ)|.
Moreover, the pair of sets

(5.20) (J1 ∪ J2,Λpt)
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⋃15
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Figure 5.3. Dense orbits: The spectrum as a random-number
generator [JPT12b]. This is obtained in a number of steps: Step
1. Consider the curves for argument function from the right-hand
side of (5.18) and the lines with slope L2 from the left-hand side
of (5.18), assuming L2/L1 is irrational. Step 2. Identify the
asymptotes. Let Si, i ∈ Z, be the ith interval between neighboring
branch cuts; fix S0 to be the closest to 0. Note that all the intervals
have the same fixed unit-length, and they extend both to the left
and to the right of S0. Step 3. The embedded point-spectrum
Λpt is discrete and infinite, it intersects all these intervals between
branch cuts as Λi := Λpt ∩ Si. Now, translate all of these finite
intersections down to S0. Conclusion: Since the line-slope L2/L1

is irrational, the set
⋃

i∈Z
(Λi − i) is dense in S0.

forms a spectral pair if and only if

(5.21) A1 (λ) = A2 (λ) , ∀λ ∈ Λpt;

and when (5.21) holds, J1 ∪ J2 is said to be a spectral set.
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Proof. The first part of the proposition follows from the arguments above. For the
second part, see [JPT12b]. �

Indeed, the union of [1, 3
2 ] and [2, 3] in Example 5.3 is not a spectral set; one way

to see that is to notice that it is not a tile for the real line under translations: you
cannot fill the gap [ 32 , 2]. For more details, see [JPT12b].

5.3. Other examples.

Example 5.8. For n = 3, let

B =

⎛⎝ 0 1 0
0 0 −1
1 0 0

⎞⎠ ,

and so B′
α,β(λ) =

(
eλ(L1) 0

0 −eλ(L2)

)
, where Li = length(Ji), i = 1, 2, as

before. Solving the equation

det
(
I2 −B′

α,β(λ)
)

= (1 − eλ (L1)) (1 + eλ (L2)) = 0

we get

Λpt =

(
1

L1
Z

)
∪
( 1

2 + Z

L2

)
.

As shown in Figure 5.4, the Lebesgue spectrum arises from lumping together L2(J−)
and L2(J+); and the embedded point-spectrum Λpt accounts for the bound-states
in L2(J1) ⊕ L2(J2).

β1 α1 β2 α2 β3 α3

J J0 J1 J2 J3 J

β1 α3

A0 A1 A2 A3

Figure 5.4. Embedded point spectrum.

Example 5.9. Let n = 3 and

B =

⎛⎝ 0 1 0
b21 0 b23
b31 0 b33

⎞⎠ ∈ U(3),

assuming |b23| �= 1. Here, B′
α,β(λ) =

(
eλ (L1) 0

0 b23 eλ (L2)

)
. The determinant

criterion

det

(
eλ (L1) − 1 0

0 b23 eλ (L2) − 1

)
= 0

yields

Λpt =
1

L1
Z.
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As illustrated in Figure 5.5, we have

UB(t) = U bound−state
B ⊕ Ucont

B (t)

acting on L2(J1)⊕L2(J−∪J2∪J+). For a detailed analysis of Ucont
B (t), see [JPT12a].

β1 α1 β2 α2 β3 α3

J J0 J1 J2 J3 J
A0 A1 A2 A3

Figure 5.5. Embedded point-spectrum.

6. Decomposability

As we outlined in sections 3–5, as B ∈ U(n) varies, the unitary one-parameter
groups UB(t) act in L2(Ω). Now the given open subset Ω is a disjoint union of its
connected components, i.e., of a specific set of intervals. As a result, L2(Ω) splits
up as an orthogonal direct sum of a corresponding number of closed subspaces; one
L2-space for each of the component intervals. But it is also true that the typical
scattering theory for UB(t) corresponds to an action in L2(Ω) that mixes these
closed subspaces in L2(Ω). Indeed, when B ∈ U(n) is fixed, our results in Corol-
laries 4.6, 4.8, 4.10, Proposition 4.14, and Figure 4.2 yield formulas for transition
probabilities, referring to transition between the interval-subspaces, and govern-
ing the global behavior of UB(t) as it acts in L2(Ω). The term “decomposability”
in the title above refers to invariance under UB(t), for all t ∈ R, of some of the
interval-subspaces in L2(Ω); clusters of subspaces.

In this section it is convenient to use a slightly different labeling of the self-
adjoint operators PB. Let Ω :=

⋃n
k=0 Jk, where J0 :=] − ∞, βn], Jk := [αk,βk],

k = 1, 2, . . . , n − 1, and Jn := [αn,∞[. So Ω is the complement of n intervals:
Ω = R \

⋃n
k=1]βk, αk[. The selfadjoint restriction of P are indexed by the unitaries

B from �2(αk) → �2(βk). Identifying the spaces �2(αk) and �2(βk) with Cn we
realize B as an n× n matrix.

n α1 1 α2 2 α3 3 αn 1 n 1 αn

J J0 J1 J2 J3 Jn 1 J Jn

Figure 6.1. The complement of n bounded intervals in R (n > 2).

As usual the domain of the maximal operator is the absolutely continuous func-
tions on Ω and the selfadjoint restrictions PB are in one-to-one correspondence with
the unitaries B. The domain of the selfadjoint restriction PB determined by B is
the set of absolutely continuous functions f : Ω → C satisfying the set of boundary
conditions

(6.1) B

⎡⎢⎢⎢⎣
f(α1)
f(α2)

...
f(αn)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(β1)
f(β2)

...
f(βn)

⎤⎥⎥⎥⎦ ,
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and PBf = 1
i2πf

′. Suppose B is block diagonal; this is

B =

[
B1 0
0 B2

]
= B1 ⊕B2,

where B1 is a k×k matrix and B2 is an (n−k)× (n−k) matrix. Then Bj , j = 1, 2,
are unitaries and we can write Ω = Ω1 ∪ Ω2 where

Ω1 := J1 ∪ J2 ∪ · · · ∪ Jk and

Ω2 := J0 ∪ Jk+1 ∪ Jk+2 ∪ · · · ∪ Jn.

Consequently, L2 (Ω) = L2 (Ω1) ⊕ L2 (Ω2) and PB = PB1
⊕ PB2

, where PB1
is the

momentum operator determined by

(6.2) B1

⎡⎢⎢⎢⎣
f(α1)
f(α2)

...
f(αk)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(β1)
f(β2)

...
f(βk)

⎤⎥⎥⎥⎦ ,
and PB2

is the momentum operator determined by

(6.3) B2

⎡⎢⎢⎢⎣
f(αk+1)
f(αk+2)

...
f(αn)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(βk+1)
f(βk+2)

...
f(βn)

⎤⎥⎥⎥⎦ .
Hence, if B is block diagonal it is sufficient to study PB1

and PB2
.

Remark 6.1. A reason for grouping the unbounded intervals this way is that the defi-
ciency indices work this way. The restriction of P to each C∞

c (Jk) , k = 1, . . . , n−1,
and the restriction of P to C∞

c (J0 ∪ Jn) all have deficiency indices (1, 1). Conse-
quently, the restriction of PB1

to C∞
c (Ω1) has deficiency indices (k, k) and the

restriction of PB2
to C∞

c (Ω2) has deficiency indices (n − k, n − k). Furthermore,
if k = 2 the PB1

problem is investigated in [JPT12b], and if n − k = 2 the PB2

problem is investigated in [JPT12a].

Recall that a permutation matrix is an n× n matrix obtained from the identity
matrix In = diag (1, 1, . . . , 1) by permuting of the columns of In.

Definition 6.2. We say two unitary matrices A and B are permutation equivalent,
if there is a permutation matrix S such that B = S∗AS. We say a unitary matrix
B is decomposable, if B is permutation equivalent to a block diagonal matrix, and
we say B is indecomposable, if B is not decomposable.

Example 6.3. Let n = 4, and

B =

⎡⎢⎢⎣
b11 0 b13 0
0 b22 0 b24
b31 0 b33 0
0 b42 0 b44

⎤⎥⎥⎦ ∈ U(4).

The boundary condition reads⎡⎢⎢⎣
b11 0 b13 0
0 b22 0 b24
b31 0 b33 0
0 b42 0 b44

⎤⎥⎥⎦
⎡⎢⎢⎣

f(α1)
f(α2)
f(α3)
f(α4)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f(β1)
f(β2)
f(β3)
f(β4)

⎤⎥⎥⎦ .



SPECTRAL THEORY OF MULTIPLE INTERVALS 1725

4 α1 1 α2 2 α3 3 α4

J J0 J1 J2 J3 J J4

b44

b24

b22

b42

b11

b31

b33

b13

Figure 6.2. B is permutation equivalent to A. The system decou-
ples into a direct sum of two subsystems: (i) The dashed diagram
contains two bounded intervals J1 and J3, and this corresponds to
[JPT12b]; (ii) The solid diagram consists of one bounded compo-
nent J2 and two unbounded components J±, and it is investigated
in [JPT12a].

Note that B is permutation equivalent to

A =

⎡⎢⎢⎣
b11 b13 0 0
b31 b33 0 0
0 0 b22 b24
0 0 b42 b44

⎤⎥⎥⎦ ,
and it follows that the system decouples as shown in Figure 6.2.

Supposing B is permutation equivalent to A we can write (6.1) as

AS

⎡⎢⎢⎢⎣
f(α1)
f(α2)

...
f(αn)

⎤⎥⎥⎥⎦ = S

⎡⎢⎢⎢⎣
f(β1)
f(β2)

...
f(βn)

⎤⎥⎥⎥⎦ ;

using that S is a permutation this can be written as

A

⎡⎢⎢⎢⎣
f(αi1)
f(αi2)

...
f(αin)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(βi1)
f(βi2)

...
f(βin)

⎤⎥⎥⎥⎦ .
So Suppose B is permutation equivalent to a block diagonal matrix A = A1 ⊕ A2;
then B is permutation equivalent to a block diagonal matrix A such that in = n.
Putting it together we have

Theorem 6.4. If B is decomposable, then we can write S∗BS = B1⊕B2⊕· · ·⊕Bk,
where each Bj is indecomposable and S is a permutation. The PBj

problems, j =
1, 2, . . . , k − 1, only contain bounded intervals and the PBk

problem contains the
unbounded intervals and, perhaps some of the bounded intervals.

Since the unbounded intervals are “special” it is useful to write it as

B =

[
B′ u
w c

]
.
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Lemma 6.5. If B is decomposable, then B′ is degenerate, i.e., has an eigenvalue
with absolute value one.

7. Eigenfunctions

Fix some unitary matrix B. The generalized eigenfunctions
(7.1)

ψλ(x) :=

⎛⎝A0(λ)χ]−∞,βn[(x) +
n−1∑
j=1

Aj(λ)χ[αj ,βj [(x) + An(λ)χ[αn,∞[(x)

⎞⎠ eλ(x)

satisfy (6.1) for the generalized eigenspace corresponding to λ. The coefficient Aj =

Aj(λ) is obtained by solving the differential equation d
dxψ = 2πiψ on the interval

Jj . Plugging (7.3) into (6.1) we see the generalized eigenfunctions are determined by
the solutions A0, A1, · · · , An to the system of n linear equations in n+1 unknowns:

(7.2) B

⎡⎢⎢⎢⎢⎢⎣
A1e(λα1)
A2e(λα2)

...
An−1e(λαn−1)

A0e(λαn)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A1e(λβ1)
A2e(λβ2)

...
An−1e(λβn−1)

Ane(λβn)

⎤⎥⎥⎥⎥⎥⎦ .
Let Dα :=diag(e(λα1), e(λα2), . . . , e(λαn)), Dβ :=diag(e(λβ1), e(λβ2), . . . , e(λβn)),
and Bα.β := D∗

βBDα. Then our eigenvector equation can be written as

(7.3) Bα.β

⎡⎢⎢⎢⎢⎢⎣
A1

A2

...
An−1

A0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A1

A2

...
An−1

An

⎤⎥⎥⎥⎥⎥⎦ .
Writing C

n = C
n−1 ⊕ C we have the decomposition

(7.4) Bα,β =

[
B′ u
w c

]
,

where c is a complex number, u,w are in C
n−1 and B′ is an (n − 1) × (n − 1)

matrix. With this notation we can write (7.3) as

[
B′ u
w c

] [
A′

A0

]
=

[
A′

An

]
,

where A′ = [A1, A2, . . . , An−1] .

Theorem 7.1. If u is in the range of I ′ −B′ and η0 is such that u = (I ′ −B′) η0,
then the solutions to (7.3) are determined by:

A′ = A0η0 + ζ,

An = A0 (c + wη0) + wζ,

where ζ ∈ ker (I ′ −B′) and A0 ∈ C. If u is not in range of I ′−B′, then the solutions
to (7.3) are determined by:

A′ = ζ,

An = wζ,

where ζ ∈ ker (I ′ −B′) and A0 = 0.
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Proof. We can write (7.3) as

B′A′ + A0u = A′,

wA′ + cA0 = An.

The result is immediate from this. �
Neither the theorem nor the first corollary require B to be unitary, but the second

corollary needs u = 0 implies w = 0, which is a consequence of the assumption
that B is unitary.

Corollary 7.2. If 1 is not an eigenvalue for B′, then the solutions to (7.3) are
determined by:

A′ = A0 (I ′ −B′)
−1

u,

An = A0

(
c + w (I ′ −B′)

−1
u
)
.

In particular, the set of solutions to (7.3) is one dimensional.

Proof. If 1 is not an eigenvalue for B′, then the kernel of I ′ − B′ equals {0} and
the range of I ′ −B′ is C

n−1; in particular, u is in the range of I ′ −B′. �
Corollary 7.3. If u = 0, then the solutions to (7.3) are determined by:

A′ = ζ,

An = A0c + wζ,

where ζ ∈ ker (I ′ −B′) and A0 ∈ C.

Proof. If u = 0, then u is in the range of I ′ −B′. Since B is unitary |c| = 1, hence
w = 0. �

As an immediate consequence of Theorem 3.10 and Corollary 3.29 we have

Theorem 7.4. If B′ is not degenerate, then the spectrum of PB has uniform mul-
tiplicity one.

Corollary 7.5. Suppose B is decomposable with decomposition
⊕k−1

j=1 Bj ⊕ Bk in
the sense of Theorem 6.4 and each Bj is not degenerate. Then the spectrum of

PB =
⊕k−1

j=1 PBj
⊕PBk

where the spectrum of PBj
is a set Λj of simple eigenvalues

and PBk
has spectrum equal to the real line and the spectral measure is absolutely

continuous with respect to Lebesgue measure.

In particular, the set of eigenvalues of PB is
⋃k−1

j=1 Λj and the multiplicity of an

eigenvalue λ is the number of elements in {j = 1, 2, . . . , k − 1 | λ ∈ Λj} .

8. Scratching the surface of infinity

In this section we consider some cases when the given open set Ω has an infinite
number of connected components. As in the discussion above, we still assume that
two of the components are the infinite half-lines. Our motivation for studying the
infinite case is four-fold:

One is the study of geometric analysis of Cantor sets; so the infinite case includes
a host of examples when Ω is the complement in R of one of the Cantor sets studied
in earlier recent papers [DJ07, DJ11, JP98, PW01]. The other is our interest in
boundary value problems when the boundary is different from the more traditional
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choices, and finally, the case when the von Neumann-deficiency indices are (∞,∞)
offers new challenges (see e.g., [DS88]) involving now reproducing kernels, and more
refined spectral theory.

Finally we point out how the spectral theoretic conclusions for the infinite case
differ from those that hold in the finite case (see the details above for the finite
case). For example, for finitely many intervals (Theorem 3.21) we computed that
the Beurling density of the embedded point spectrum equals the total length of the
finite intervals. By contrast, we show below that when Ω has an infinite number of
connected components, there is the possibility of dense point spectrum; see Example
8.5.

Let Ik = (rk, sk) be a sequence of pairwise disjoint open subintervals of the open
interval (0, 1). Let

Ω = (−∞, 0) ∪ (1,∞) ∪
∞⋃
k=0

Ik.

The functions satisfying the eigenfunction equation 1
i2π

d
dxψλ = λψλ are the func-

tions

ψλ(x) =

(
A−∞(λ)χ(−∞,0)(x) + A∞(λ)χ(1,∞)(x) +

∞∑
k=0

Ak(λ)χIk(x)

)
eλ(x),

where A−∞, A∞, and Ak are constants depending on λ. Let r0 = 1 and s0 = 0.

Example 8.1. An example of this is the complement of the middle-thirds Cantor
set C. We can write the complement of the Cantor set C as

(−∞, 0) ∪ (1,∞) ∪
∞⋃
j=0

2j⋃
k=1

(
aj,k, aj,k + 3−(j+1)

)
,

where in base 3

a0,1 = .1, a1,1 = .01, a1,2 = .21,

a2,1 = .001, a2,1 = .021, a2,3 = .201, a2,4 = .221,

and so on. So aj,k, k = 1, . . . , 2j , are the numbers with finite base three expansions
of the form

0.x1x2 · · ·xj1, x� ∈ {0, 2}.
In this case the generalized eigenfunctions are

ψλ(x) =

(
A−∞(λ)χ(−∞,0)(x) + A∞(λ)χ(1,∞)(x)

+

∞∑
j=0

2j∑
k=1

Aj,k(λ)χ(aj,kaj,k+3−(j+1))(x)

)
eλ(x).

Consider a selfadjoint restriction PB of the maximal momentum operator on Ω
such that Ak ∈ �2 and

BDr(λ)

⎡⎢⎢⎢⎢⎢⎣
A∞
A1

A2

A3

...

⎤⎥⎥⎥⎥⎥⎦ = Ds(λ)

⎡⎢⎢⎢⎢⎢⎣
A−∞
A1

A2

A3

...

⎤⎥⎥⎥⎥⎥⎦ ,
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where

Dr(λ) = diag (e(λr0), e(λr1), e(λr2), · · · ) = diag (e(λ), e(λr1), e(λr2), · · · ) ,
Ds(λ) = diag (e(λs0), e(λs1), e(λs2), · · · ) = diag (1, e(λs1), e(λs2), · · · )

and B is some unitary on �2.

Theorem 8.2. If B = diag (1, 1, . . .) , then the spectrum of PB is the real line and
the embedded point spectrum is Λp =

⋃∞
k=1

1
�k
Z, where �k = sk − rk is the length of

Ik. The multiplicity of λ ∈ Λp equals the cardinality of the set {k | λ�k ∈ Z}.
Proof. Similar to the proof of Theorem 3.21. �
Example 8.3. Some examples illustrating this are:

(1) If �k = 2−k, then Λp = 2Z. Let Zodd be the odd integers. The eigenvalues
in 2kZodd have multiplicity k and 0 has infinite multiplicity.

(2) For the complement of the middle thirds Cantor set Λp = 3Z. The eigen-
values that are multiples of 3k but not of 3k+1 have multiplicity 2k − 1 and
0 has infinite multiplicity.

(3) If �k/�j is irrational for all j �= k, then 0 has infinite multiplicity and all
other eigenvalues have multiplicity one.

Corollary 8.4. If B = diag (e(θ0), e(θ1), . . .) , then the spectrum of PB is the real

line and the embedded point spectrum is Λp =
⋃∞

k=1

(
θk
�k

+ 1
�k
Z

)
, where �k = sk−rk

is the length of Ik. The multiplicity of λ ∈ Λp equals the cardinality of the set
{k | λ�k − θk ∈ Z}.

When we have a finite number of intervals the point spectrum has uniform density
equal to the sum of the lengths of the intervals; see Theorem 3.21. The following
example shows that this need not be the case for infinitely many intervals.

Example 8.5. Suppose B = diag (e(θ0), e(θ1), . . .) and �k = 2−k. Then 2k (θk + m)
= 2j (θj + n) if and only if 2j+k (θk − θj) = 2k+j (n−m) . Hence, if θk − θj is not
an integer when k �= j, then each eigenvalue has multiplicity one. Note 2kθk is an
eigenvalue for each k. Hence, if 2kθk → λ0, then λ0 is a limit point of Λp. Similarly,
by a suitable choice of the sequence θk, we can arrange that PB has dense point
spectrum.

Theorem 8.6. If we write �2 = C⊕ �2, then B takes the form

B =

(
c w∗

u B′

)
.

If the spectrum of B′ does not intersect the unit circle, then the spectrum PB is
the real line and each point in the spectrum has multiplicity one; in particular, the
point spectrum is empty.

Proof. This is similar to parts of the proof of Theorem 3.5 and Theorem 3.10. �

Appendix A

A.1. Prior literature. There are related investigations in the literature on spec-
trum and deficiency indices. For the case of indices (1, 1), see for example [ST10,
Mar11]. For a study of odd-order operators, see [BH08]. Operators of even order in
a single interval are studied in [Oro05]. The paper [BV05] studies matching interface
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conditions in connection with deficiency indices (m,m). Dirac operators are stud-
ied in [Sak97]. For the theory of selfadjoint extensions operators, and their spectra,
see [Šmu74,Gil72], for the theory; and [Naz08,VGT08,Vas07,Sad06,Mik04,Min04]
for recent papers with applications. For applications to other problems in physics,
see e.g., [AHM11,PR76,Bar49,MK08], and [Chu11] on the double-slit experiment.
For related problems regarding spectral resolutions, but for fractal measures, see
e.g., [DJ07,DHJ09,DJ11].

The study of deficiency indices (n, n) has a number of additional ramifications
in analysis. Included in this framework is Krein’s analysis of Voltera operators and
strings, and the determination of the spectrum of inhomogenous strings; see e.g.,
[DS01,KN89,Kre70,Kre55].

Also included is their use in the study of de Branges spaces (see e.g., [Mar11],
where it is shown that any regular simple symmetric operator with deficiency indices
(1, 1) is unitarily equivalent to the operator of multiplication in a reproducing ker-
nel Hilbert space of functions on the real line with a sampling property Kramer).
Further applications include signal processing, and de Branges-Rovnyak spaces:
Characteristic functions of Hermitian symmetric operators apply to the cases uni-
tarily equivalent to multiplication by the independent variable in a de Branges space
of entire functions.

A.2. Stone’s Theorem. For the reader’s convenience, we record the following
theorem of Stone in the form it is used.

Theorem A.1. Fix a Hilbert space H . There is a bijective correspondence between
the following three items:

(1) all self-adjoint operators H (generally unbounded);
(2) all strongly continuous unitary one-parameter groups {U (t) ; t ∈ R}; and
(3) all orthogonal projection-valued resolutions E (dλ) of IH .

From (1) to (2), the correspondence is

U (t) = eitH (the RHS defined by the spectral theorem).

From (2) to (3), the correspondence is

U (t) =

ˆ
R

eitλE (dλ) , t ∈ R.

From (3) to (1), the correspondence is

H =

ˆ
R

λE (dλ) , and

domain (H) =

{
h ∈ H ;

ˆ
R

λ2 ‖E (dλ)h‖2 < ∞
}
.

Proof. We refer to the literature for details; for example [DS88]. �

A.3. The acoustic wave equation. Below we sketch the use of our interval-model
for Lax-Phillips obstacle scattering ([LP68]) for the acoustic wave equation, with
water waves; i.e., waves in a 2D medium. By [LP68], one knows that the solution
to the wave equation, subject to obstacle scattering, may be presented by a unitary
one-parameter group U(t) acting on an energy Hilbert space HE consisting of
states representing initial waves as an initial position and wave velocity. But, via a
Radon transform (see [Hel98,LP68]), U(t), acting on the energy Hilbert space HE ,
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is in turn unitarily equivalent to a translation representation acting on L2(R,M ).
The Hilbert space M encodes the direction of the waves under consideration. In
Figure A.1 we illustrate a fixed compact planar obstacle, and four different states
f1, f2, f3, and f4, each one with a different scattering profile. The first state f1
transforms under U(t) in a manner unitarily equivalent to an interval model Ω with
two bounded component intervals; see (2.1) and (2.2). For the second state f2 the
interval model has only one bounded component. The third state f3 has no bounded
component, but as with all four cases, the Ω model will have two unbounded infinite
half-lines. The interval model for f4 corresponds to Ω = the complement in R of a
single point.

Ω=J–�J1�J2�J+
f1

UB(t)f1

B�U(3)

Ω=J–�J1�J+
f2

UB(t)f2

B�U(2)

Ω=J–�J+

f3

UB(t)f3

B�U(1)

Ω�� � {0}

f4

UB(t)f4

B�U(1)
tangential case

Figure A.1. Obstacle scattering data as cross-sectional scans of
a bounded planar object.
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