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MIXED NORM ESTIMATES FOR CERTAIN MEANS

LENNART BORJESON

ABSTRACT. We obtain estimates of the mean
Fl(t)= Cv/ (1= 1y1®)7f(z - ty) dy
lyl<1

in mixed Lebesgue and Sobolev spaces. They generalize earlier estimates of
the spherical mean Fy (t) = Cfsn_l f(z — ty) dS(y) and of solutions of the

wave equation Azu = 8%u/dt2.

Introduction. For f € C§°(R") and v > —1 we define the mean

27@0) Tt [ e
i e ie—wa,

z€R" t € R. T is the gamma function. A computation of the Fourier transform
of F(t) gives (see [SWe, p. 171])

F(t) =

A~

O = [ =0 ds=mo0)f(),

where the multiplier
my(§) = 1€172 77Tz 14 (I€)).

J 5 4~ is the Bessel function of order § ++~. (For more details about Bessel functions
consult [E or W].) But since the multiplier m., is well-defined for all complex A,
we can extend the mean F7 to these ~’s.

The same letter C' will be used to denote various constants, not necessarily the
same at each occurrence.

For some values of v the mean F7 has a special meaning.

If v =0, then

Po=c[ fe-twa=—="—1{ jway
lyl<1 |B(:E, t)l B(z,t)

the mean of f over the ball B(z,t) of radius ¢ with its centre in z.

If y = —1, then

F0 =0 [ fla—t)dsw)

the mean of f over the sphere of radius ¢ with its centre in z. dS is the normalized
Lebesgue measure on the unit sphere ™1,
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518 LENNART BORJESON

If v = =252, then u(z,t) = CtF, 'n-;(t) solves the following Cauchy problem
for the wave equatlon
0%u 0%u ou
W("Lt) a 2(:1,‘ t) Azu(zvt)7 U(I,O) 0, It (I 0) f( )

In this case the multxpher is given by

m_as (t€) = [t€] 72 T4 (Jt€]) = C(sint€])/tl¢].
If y = -2t then u(z,t) = CtF; = (t) solves the wave equation with Cauchy
data 3
u

U(I,O) = f(I), 5

The multiplier is then m_ng1 () = €12 T_ 4 (t€]) = C cost|€].

Estimates of spherical means which are related to the results in this paper can be
found in [B1-B3, OB, PS, Sj1-Sj5, St2, STW, SWa and Str]. Related results
of regularity properties of the solution of the wave equation are found in [Ma, Mi,
Pr, Ss, St2 and Str|. [Sj2] also contains an application to convergence of Fourier
integrals.

2. Preliminaries. Let C§°(R \ {0}) be the functions in C*°(R) with compact
support in R\ {0}.

The operator J© is defined by the relation (J*)™(s) = (1+5%)%/25(s), and the
norm in the Bessel potential space .Z/?(R) is defined by ||¢||or = [[J%¢llp, 1 <

p < co. Cf. [St1]. Z3(R\{0}) is the closure of Cg°(R \ {0}) in the norm || ||_sz.

1
2
1

(z,0) =0.

_%Q(R\ {0}) is the space obtained by complex interpolation between & [25] (R\{0})
and i’fﬂ]H(R \ {0}), where [f] is the integral part of 8, ] < B < 6] + 1. The

o
norm is denoted || || ;. and coincides, by definition, with the norm of Z% when g
B

is an integer. Properties of the spaces Z%(R\ {0}) and _{’f (R\ {0}) can be found
in [LM].
BMO(R) is the space of functions of bounded mean oscillation normed by

lellaso =sup 1117 [ 1o = 17 [ ots)as o

where [ is a bounded interval. Cf. [St1, p. 164].
As(R), 6 > 0, is the Lipschitz space with norm

k-6

lollng = llplleo + supy=? |21, )
Plias = [|Plloo t’g)y ayk 'Y
where u(t,y), t € R, y > 0, is the Poisson integral of ¢ and k is the smallest integer
greater than 6. See [St1].

The Hardy space HP?(R™), 0 < p < 1, is defined to be the set of all temperate
distributions f such that

”f”HP =

< 00,
4

sup |f * Y|
>0
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where ¢ is some fixed element of .’(R™) (the Schwartz class) with [ (z)dz # 0
and ¢¢(z) = e "P(z/e). If 1 < p < 0o, HP is defined to be equal to L? with norm

Ifll#e = [Ifllp- Cf. [FS].
Our results are the following.

THEOREM 1. Ifn>2, 2+ 5 =1,
(i) v>-z,
(i) 3= <P
(i) B=2ft 4+, and
(iv) a=2+3+7
then

1/2
W (/R leF2I, dw) < Cllell g s,

where p € L (R\{0}) and f € CP(R™)NHP(R"). For0< < 1, ZF(R\{0})
and _%2(R) coincide. (1) is best possible in the sense that we cannot have o >
L4+
REMARK 1. When v = —1 and ¢ is a fixed function in C§°(R) with compact
support in (0,00) and ||| ;. is replaced by Cy, in (1), then the result was obtained
B

by P. Sjolin in [Sj2]. In [Sj4] this was extended to a larger class of means, viz.

/SM f(z = ty)p(z,y) dS(y),

where p(z,y) satisfy certain differentiability properties.

COROLLARY 1. Let n > 2 and v, p and B satisfy (i) and (iii) of Theorem 1,
p € ZZ(R\{0}) and f € C(R™) N HP(R™).
If(v) o3t SP< 745 aondg=—(5 +7)7", then

2
’ (/R Iz lize dz) < Cligll 2 1/l

n

If (vi)p= iy then

2
@ (/R leF2 a0 dz ) < Clil o

If (vii) s <pP<2and b =7+, then

1
2
(1) (. 1218, az)" < Clel 51l

1t is not possible to take ¢ > —(; +5)~! in (2). The BMO-norm in (3) cannot be
replaced by a Lipschitz-norm and (4) is no longer true if § > z% +7.

REMARK 2. For —1 <~ <0, set

1\t
_n_"’ _ . < l
@) = { |z| (log |z|> , if0<|z] <5

0, otherwise.
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Then f € L+ (R™), but F(|z|) = 0o. This shows that the BMO-norm in (3) is
not replaceable by the sup-norm. If p > 1, v > —1 and p € C°(R \ {0}), then
(1)-(4) is valid for f € LP(R"). (The case ¥ = —1 is contained in [Sj2].) The
details are carried out at the end of the proof of Corollary 1.

THEOREM 2. Assume thatn > 2, p € C°(R\ {0}) and f € C§°(R™).
If (viii) -2 <y < -1, (ix) 22 <p<2,p<r<yp,and(x) 0Z

n+~y
/
a <2 4y 41 (or (iX) 2<p<—m=(%),r=p,and(x') 0<a<
—5—— +'7+ 1), then
1
(%) ([ 1orizpas)” < colisl.

If ~ satisfies (viii) and is equal to an integer or is such that %‘ + ~ 1s equal to an
integer, then the conclusion still holds, if r = p > 1 and if < is replaced by < in

(ix), (%), (ix’) and (x').
REMARK 3. We conjecture that Theorem 2 is still true if we also allow p = ﬁ%
in (ix) and equality in (x) and (x'), since the conclusion holds for the endpoints

y=—-land y= -ﬂg'—l and for some values in between.

COROLLARY 2. Letn >2, p € C(R\{0}), f € C(R™) and -2 <4 <
—1.

i) 22 <p< <2, pg< B+ p<r <y (or (x0)
2< - l+,]'_p<—" ,p<g< ("p2+'y+1)‘1,r=p),then

©) ([ 1erz1za2)” < ol

If (xii) n+ <p<2,p<r<yp (or (xii) 2<p<—1_::‘;, r = p), then

1
) ([ 1eFlsmodz)” < Colflp

If(xii) 2 <p<2,0<86<B 4y, p<r<yp (or(xii') 2<p<-152,
0<6<"p2+7+1 r = p), then

® ([ terzis, aa)” < colfly

REMARK 4. Here we also have the corresponding better estimates when ~ or
"“ + ~ are integers. A combination of the methods and results of this paper
w1th the estimates of FJ(1) given by Strichartz [Str] should give more mixed norm
estimates.

COROLLARY 3. Let p € C°(R). Then 1t is possible to replace p(t) by o(t)[t|"
in (5)-(8), if )
n> ;.—, + s P S 2a
or
-2
n > ll—p—— +v+1, p>2
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REMARK 5. Corollary 3 is contained in [Sj4, Theorem 4] in the case v = —1
and p < 2, where it is also shown that the value [ — 1 is best possible.

EXAMPLES. The estimate (3), for n = 2, v = —1, can be seen as an endpoint
result of Theorem 2 in [St2] and Theorem 1 in [B3].
Let p=1and v = —%. Then it is easy to see that the H'-norm in (1) cannot

be replaced by the L!'-norm. However, we have that F; 3 (t) maps L!'(R™) to weak
L2(R™) (since (1 — |y|2)~% is in weak L2(R™)), i.e.

{z;|Fa (1) > A} < Ot % (%)2
This also shows that the estimate
IF~ Wl < Cllf Il
cannot be extended to
IF~H**# W <CWIflli,  neR,

where F~1+i#(1) and C(u) satisfy the hypothesis of the interpolation theorem of
Stein [SWe, p. 205]. For it would then be possible to interpolate with

IF#(1)lloo < Ce™™Iflh,  neR,

to get

IF=#(1)]l2 < ClIfll,
but this is false.

3. Proofs.

PROOF OF THEOREM 1. We start with the case where @« = 0 and prove a
somewhat better estimate than (1). Let ¢ € C°(R\ {0}), f € C§°(R™) N HP(R"™)
and y =k +iu— %1, where k is a nonnegative integer and u € R. With Fubini’s
theorem and Plancherel’s identity we obtain

(. torziz dz) %
(oot e o

_C<// |t5|—ﬂ+_+_ —k— zMJ,, EEsE (129))) E)' dEdt)1

([ [ letmertmr e i)] d&dt)%

The next step is to invoke the asymptotic estimate of Bessel functions for large
arguments, i.e.

1
2
g t dg dt)

1
-42
‘J—%+k+m(r) < Cyrze?mIk,
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where r > 0, k € N = {0,1,...}. See [W, pp. 217-218] or [B8]. So (9) can be
majorized by

cwm ([ [ Jowneite| dedt)%

=t ([ ot ) ([ o] ae)”

Now we make use of the assumption that ©(*)(0) = 0 and Hardy’s inequality, to

see that
k|2 : k+1(2 2
(/ lo(t)t*] dt) < Ck </ |’ (t)t*+| dt)
\/R R

k 2 %
<...<Ck (/R’so()(t)‘ dt) < Ckllell 2.

See [T, p. 262]. This gives

1

2 R
(10) ([ tomitzde)’ < cublol 1 141
for k € N. Consider the function G}(t), defined by

(G7(1))7(8) = €[+ ().
Then (10) becomes

1
7 ~
(/R leG2I13 dz) < Cee®™ el g2 1 fll2 = Cre®™ ¥ oll 21 £ 12,

where k € N. Using complex interpolation (see [CJ, Theorem 2]) between k and
k + 1, we obtain

2
([ teczigaz)” < clell 1

for —521+k§7$—%1+k+1,ﬂ=%1+'yandk€N,orequivalently

2 ~
(1) (. terzigde)” < el 1171

for v > —",_,—‘*'—1 and 3 = %i + . This is the improved inequality in the case a = 0.
We now consider the case o = 8, i.e. p =2 in (iv). Let ¢, f and ~ be as in the
proof of the case o = 0 and set D! = d%lr. In this proof we use the following

LEMMA 1. Ifv€C,l€N,r >0 and Rv > — 1, then
[rtD' (r=¥ Ju(r)) | < CedmIsvI,

C depends only on Rv and l.
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We postpone the proof of the lemma.
The L?(#2) norm of pF7, v =k + iu — %F1, is split into two L? norms.

; ; ;
([ remitzan) sc|( [ werzizas)” + ([ 1ip*orie)
R™ k R" R"

The first one is easily estimated (! = 0 in the lemma).

([ tormgas) = ([ [ 1ot R P agar)
—o ([ [ ety ptieniof dedt)l

< Ce M|l fllz < CE™Hlpl| 2112

n

Set B(r) = r~2~7Jz,,(r) and estimate the second term again by Hardy’s inequal-

) 2
1ty.
2 3
dz)
2

3 k
k _
(f DI ds) sc(/ Z(k_,)Dk LoD
; }
<oy ([ 10ten'Eigas)
1=0 \JE"

(
=c§([ D [ D dea)” |
c%( [ e [ Do asa)” |
c%(/ Dt [l egne) (D' B)eeDf)| dsdlt)’
—o> ([ 1tetr e [ et mwensie dear)”
< Ce®nlv ; ( /R IDE ()" ? /R . llf(f)Pdsdt)%
= Celv Zf:o ([ 10#tetentpar) " e

< S DFplla|lfll2 < CE™Mloll gz £z,
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because R(% + ) =k — 3 >/ — 1 and the condition in the lemma is fulfilled. So

1
2
([ terzisd) < comiioi i,

for k € N, and as before we interpolate between the k’s. Using again the extension
of Stein’s interpolation theorem for the complex family ¢ F7 we get

z
(12 ([ ter1tza2)" < Cleli

for v > -2t and B = "—'2‘1 + 7. See [CJ, Theorem 2]|. For interpolation of the
spaces L2(42), see [BL, pp. 107 and 153]. This proves the theorem in the case
a=p.

We end up by interpolating between (11) and (12) with the following result.

1
2 u
([ Moz d) < Cliel 717115l

where 0 < a < 3. But from the boundedness of fractional integrals on LP spaces
and its extension to H? spaces we also get that

1£1-1°7Pll2 < Cllfll o,
! 1 1 B-a T+v7-a
P Rl
See [BL, p. 168 or P, p. 50].

Hardy’s inequality carries over from C§°(R \ {0}) to é 2(R\ {0}) if the deriva-
tives are to be understood in the weak sense. Consequently, the proof for p €
C$ (R \ {0}) holds also for ¢ € ,(f’,%(R\ {0}).

We continue with the proof of the identity Z,?(R \{0}) = ZFR),0<8< 3.

It is enough to show the identity ,SO/%(R \ {0}) = ZF(R), since °Sﬁf(R\ {0}) =
FARN{0}) f0< B <3 (see [LM, p. 64)).

Take a p in Z%(R\{0}) and let {¢;}{° be a sequence in C5°(R\{0}) converging
to . Extending the sequence to the whole real line by ¢;(0) = 0, for all ¢, we obtain
a sequence in C§°(R) that converges to . Thus Z3(R \ {0}) C ZF(R).

Now take a ¢ in .%Q(R) and a sequence {p;}{° in C§°(R) such that
lle — @ill 7 R 0, n — oo. From this sequence we shall construct another one

in C§°(R), with supports in R \ {0} and converging to ¢ thus showing that
ZFR) Cc Z%4(R\{0}).

Let ¢(t) € C§°(R) be equal to 0, if |¢] < %, and equal to 1, if |t| > 1. For given
€ > 0, choose ¢ such that 1/i < e and | — <p,-||_/62 < g/2. We claim that it is
possible to choose, for each 7, an R = R(7) > 1 such that

+ 7.

DO =

i.e a'—n+
b) . p]

1
lei = eivorellep < 55
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Here yr(t) = ¥(Rt). Then {p;1r(;)}3° is the desired sequence, because

€ 1
-+ —=<e.

e = eivrellzz < lle—illzz + e — Pivbrep 2z < 5t 5

Now to the proof of the claim. For § = 1 we estimate the norm

o — pivrllzz = lloi(1 - ¥r)| 22
<l = yr)l2 + 1l (wi(1 — ¥r))' ||2
= llps(1 = ¥r)ll2 + lps(1 = ¥r) + ©i(1 — ¥r)2
< llpilloolll = ¥rllz + ll@illooll(1 = &) ll2 + 1€ loolll — ¥rll2
< (leilloo + lleslloo) 211 = Brll2 + I(1 = ¥r) [I2)
= ([leilloo + ll@zlloo) (2l11 = Yrll2 + RI(1 = ) (R-)|l2)-
A dilation gives that
lei = etvrllzz < (I@illoo + 1€ 100) (RTE2]11 = 912 + RE[|(1 = 9)'||2)-
< R*2(|@illoo + 104lo0) 11 — Pll 22,
if we choose R > 1. Setting ¥; = 1 — 1 this can be rewritten as
(13) loivs (Rl 2 < RZ2([l0illoo + ll@illoo) 1¥1]] 222-
For 8 =0, we have
lloi — pivrllzz = llpi(1 — ¥r)ll2 < l@illoolll — ¥rll2

-1 _1
= |leillooR™Z (|11 — ¥ll2 < R™22(||0illoo + l@illoo) 11 — %l
or equivalently

(14) leaps (Rl 2z < R™22(|@illoo + 10} loo) 191 ]] 22-
Interpolating between (13) and (14) yields
(15) loawor (Rl < RO-32(lpillon + 6o 612

Since 0 < B < % it is possible to choose R > 1 so that the right-hand side of (15)
becomes less than 3.

We finish the proof of Theorem 1 by showing that it is impossible to have o >
43 +in (1)

Take a fixed a > 1. Set T, f(z) = FJ(t) and go(z) = g(az). Computing the

—

Fourier transform of g, yields (gq)(&) = a™"g(&/a). With these identities we get

(T7(f2))7(8) = my(t€)(fa) (€) = mo(t€)a" f(¢/a)
= m,(atéa™")a"" f(¢/a) = a (T3 £)(&/a) = (T7:f)a) (E)-
That is T} (fa)(z) = (T, f)(az). Applying (1) gives

(et isoan s - ([ 1otz Nz d)
< Clle(a)ll gzl fallae-
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Putting ¥4(t) = ¥(at) = T, f, then

1

lpatall ez = ( [ oy @ra e ds) 2

) ('/R la™! (pU)(s/a)*(1 + 5)° d8> 2

~1 (/ |(@)(t)|2(1 + a2t2)aadt> %
(/ 1(09) (1) 2 (a%t2)* d >%
e </R|(@)(t)|zt2a dt)

A change of variables in the integral defining the HP-norm gives || fo||ze = a™ 7 || f|| e
We introduce the space

E}%(R\{O}) = {so; p e LR\ {0}), |~|[ﬂ]‘ﬁD”’]<p€L2(R\{0})}

with norm

lelles, = llellrz + 11 - W1=0 D],
B

With this space we have a description of ,%:’ﬂ?(R\ {0}), viz

o

Z%(R\{0}), otherwise.

See [LM, p. 66]. Thus ,OS;%(R\ {0}) c ,%2(R \ {0}) and we get that
le(a)ll 2z < llela)llez +1II- ¥1=2 Dl (a-)|l,

(/ la=1@(s/a)|?(1 + s )ﬁds)l +(/R’|t|[B]—ﬂa[ﬂ](D[ﬁhp)(at)rdt)%

" (s ad")%+(/R’“B""“’]"’<D“’]so)(v>!2a—ldv>%
_</ 1B (w)2(a2(1 + u ))ﬁdu)% +a—%+ﬁ(/R‘|v|lﬁ]“’(Dw]¢)(v)‘2dv>%

=a 7Jrﬂ“@”:;z-

oo2 ) ~ .
FHRA\{0)) = { ZHRAON, 5[ =5

I/\

Summing up the estimates gives

(/. heatmzna uﬂdz) ot ([ et sl i)

_&
2qa

IV

%+aC Ca—%—§+a
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. does not depend on a. But we also have that

2 n - -
</ IIsOaT”(fa)(x)lli'fzfdz) < Cllgall gz fallr < a=3+9Ca™30 = Ca™ #4073,
R'l

pes ?, With the a’s on the left-hand side

g B-itots—fty _ pe-b-5+3 < 0
or n n
2 p
because a > 1. But this implies
n n n+l n o n 1
< - — == —— == 4=
asf+g > s Ity ;g
So it is impossible to have
a>n+1+
P2

This ends the proof of Theorem 1. O
PROOF OF LEMMA 1. We use the formula

2DYJ,(r) = J,_1(r) = g1 (r)
and the fact that
|J,(r)] < Ce2mI%vlp—3

if Rv > —% and r > 0. Here C depends only on Rv. See (W, pp. 45 and 217-218]
or [B&]. The first identity repeated j times gives

J
D, (r) = Y aidugs(r).
i=—j
So

1 l J
DU T (r) =t Y b TEIDI (1) = Y by T Y T aidua(r)

=0 =0 i=—j
l j . . . ' j o . .
= Tt Z Z bja,'r_l"""'“r_"_’J,,H(r) = Z Z b]‘az'T'7+z1‘_(u+z)Ju+i(7‘).
§=0i=—j j=0i=—j
The case 0 < r < 1: ¥** < 1, since 7 +¢ > 0 and
lr—(V+i)Ju+i(r)| < CerlIsvl

since R(v+1) >2Rv-32>2Rv-12> —% and as a consequence the double sum is
bounded by Ce®"IS¥!, because b; have only polynomial growth in Q.
The case r > 1. We have that

|r—(u+i)JU+i(,r)| S Ce27r|%u|,'.-—%—u—i,
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since R(v +1) > —1. Therefore,

!
D! (e 2 (1) | < D byas 7=+ |CemI
J=0
!
< Ce37r|3‘u| ZT—ERV+J'—% < Ce37rl3‘u|’
3=0
because —Rv + 7 — % <-Rv+1l- % < 0. This shows the lemma. 0O
PROOF OF COROLLARY 1. If 2 = {—cand 0 < & < 3, then Z2(R) C LY(R)
with corresponding norm inequalities. Thus (2) follows if
n 1 1 1 1 n 1
0<=++= = d - =--(=+=
_p,+2+7<2 an 72 <p,+2+’7>,
but this is (v).
5’; (R) is continuously embedded in BMO(R), i.e.
1 n 4 1 "
2 - p T2
which is (vi) and then (3) follows.
If
1

b=« ! and a—£+ + >1
- %73 Ty Tty

then .Z2(R) C As(R) and as a consequence we have (4) if (vii) holds.
Compare with the proof of Corollary 2.
In the homogeneity argument showing the necessity of

_n 1
a = 17 + 5 +
in (1), we used that
leallzz > Ca™ 2t
Here C is independent of a. In the same way it is easy to see that (2), (3) and (4)
can not be improved using
lealle = a~%llelq
and, for0 <6 < 1,

lla(u +t) = pa(u)lloo

”‘pa“/\s = ”@a”oo + sup o
1t1>0 It]
> sup lp(au + at) — p(au)llo _ a® sup lio(v +at) — o(0)lloo _ Cad®.
T je>0 |t|® 1t>0 lat[®

When § > 1 the argument is similar but involves higher order differences. See [St1,
Chapter V, §4].

Next we prove the extension of f to LP(R™) if p > 1, v > —1 and p €
Cg°(R\ {0}).

Assume that supp ¢ C (0,00) and f € LP(R"™). Let {fx}$° be a sequence of
functions in C§°(R™) converging to f in LP(R"), as k — oo, and let F,(t) be
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the mean of fi. Estimating the Fourier transform of (t)(F; (t) — F (t)) in the
t-variable gives

(p(F2 = F2,))(s)| = | [ e - Fu00) dt]

-|[ " eminty(t) [ Ua- )= fula - )@ - ) dya
0 R"

0o 1
=/0 0 /0 [5 (= e = try) (1 - ) dS(y)r drdt

1 .
= / (1= %) / (f = fi)(z — ry)e~*Wo(ly|)|y|* ™ dydr|.
0 Rn

Set 1(y) = ©(|y|)|ly|*~™ and change variables, y = £, in the inner integral. Then
ol dr
eE? = F2 @I < | [ e (3)[17 = fe = 2)ldar =27

/||m |, =7 s = sl

by Holder’s inequality. Here

[ el o

ifp>1,v>—1,and ||f — fxl]lp — 0 as k — oo. An application of Fatou’s lemma
now shows that

(/Rn loFg 1% dx)% _ (/Rn/RKsoFg)A(s)P(l+32)°‘dsd9¢)%
i </ "/ lim (0 F7 ) (s)* (1 + 5%) dsdx)%
(/ /ISDFV “(8)P(1+ 8% dsdx)%

<lim C|| fkll, = Cl|fll»

and (1)-(4) can be extended to f € LP(R").

This also applies to ¢ such that supppy C (—00,0), and therefore all o €

§°(R \ {0}) by splitting the support in two. 0O

PROOF OF THEOREM 2. The proof is divided into two parts. In the first
one we prove (5) in the case & = 0. The second part contains an interpolation
argument, where the result proved in the first part is interpolated with the L? case
of Theorem 1.

Assume that ¢ € Cg°(R \ {0}) and f € C§°(R™) N H?(R"™). Consider the mean
fory=-14+e+iu,0<e<1,u€eR.

C2c-
T(e+1p)

I/\

F1revin(y) = [ =)o - )y,
lvl<1
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C depends on the dimension n only. Taking ¢ = 1, the L*(R™) norm of the mean
can be estimated:

C2&~i
T(e+ip)
—€
< _or -
IT(e + i)l Jyy)<1
Cc2-¢ _
< m I |<1(1 =y~ dy ||/l
v

< CelP(e +im)l /1l = Cee™ ™| £

||F—1+5+i#(1)”1 — / dz

/I AT ) dy
Y

n

(=) [ =yl dady

The estimate of the gamma function can be found in [E, Volume 1, p. 47].
We continue with the L? estimate of the mean when ~ = —"T“ +ipand t = 1.
In this case the multiplier

m_nan o, (6) = 16177y 10 (1€))

and as we have seen in Lemma, 1 it can be estimated, i.e.
n ) < Ce37IHl
m_%ﬂu(f) <Ce

C depends only on the dimension n. Therefore by Plancherel’s identity

n+1

|F=*F (1)l = CF~* 5+ 4(1) ]l = Cllm_ng
< Ce™H| flla = CeMI| £,

i N2

The operator F7(1) is of “admissible” growth, so we can perform the complex
interpolation of Stein (see [SWe, p. 205]) to get the following:

(16) IF (Wl < Cllfllp,

where —2H < 4y < -1 +eand p = % By duality we also have (16) if

p = ':l—:_l—,;t%: Now the standard dilation argument shows that (16) can be replaced

with
IEY ()l < Cll fllp-

The constant C does not depend on the variable ¢. Now by Fubini’s theorem

(L. IIsoF;’llﬁdm)% -([ [ !@(t)FJ(t)I”dtdxy

= ([1ewr [ 1F20paa)”

1

< ( [ Iw(t)l”C”IIfIIZdt); — Cllell/ -
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Take ¢, f, €, and u as before and define a = max(a,0). This gives

. 2——6+1—iu 2r -% i
lpFE= ¥, = /R o(t) (2m) [ -l e )dy[ dt

I'(e+ip)
A change of variable 2z = ty makes this equal to

21-¢(2m)~

dt.
T(e + o) |

/ ER)E R (o) d

Again using the asymptotic expansion of the gamma function and Fubini’s theorem
we get that

loPs g < Coet™ [ if@=2)| [ ool - 375 e
If we can show that the kernel
/ ()1t (1 = |2[2)5 dt

of the convolution of the right-hand side is bounded, then

(17) sup [l Fz |l < Cee®™ || f]]1.
z

But by the trivial estimate (1 —|2|2)57" < (1 — |Z|)57" and splitting the integral
defining the kernel in two parts, we can find a bound of the kernel

/ lo(®l1e] ™™ (1 — 151%)°~" dt S/ le@)Ilt]="(1 = [5)*~" at
lt]]2|

[t1=>]2]

= / [t =™ (1 15D~ dt +/ le@IIE1 ™™ (1 = 13)°~" dt
[t]>2]z]

|z|<[t|<2|z|

< / (Ol 21= dt + / ot e~ e~ (1 - [2)e~ dt
[t]>2]z] |z|<[t1<2|2|
<o / lo(0)]1t] ™ dt
[t]>2]z|

sl / (1= |20 |t at.
|z|<[t]<2]z] 3<]z/t]<1

Changing variable s = J%l in the second integral makes it equal to

1 o€
/ (l—ls|)€_l‘f|@ds$4/ (l—s)""lds=4 z
3<Isl<1 Zl s 3 €

Summing up we see that the kernel is bounded if p € C§°(R\ {0}). We now use an
extended version of Stein’s interpolation theorem for a complex family of operators
(see [BP, p. 313]) to get

1
/ o’
(18) ([ terzg )™ <<,
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p= %, from (17) and the earlier used L? estimate

1
2
0 ([ werFHHR ) < el = M

Let ~ be fixed in [—%‘—L, —1]. Using Riesz-Thorin’s theorem for vector-valued
functions (see [BL, p. 107]) we can interpolate between

(20) ([ terzizac) < el

wherep—';—_:;‘f—s>land( ) fora=p8="2E + 14, ie.

3
1) ([ terziz de) < cliolzlrle

and obtain

P
22) (L Mozl dz)” < Clelis el 171

Here’:l—ﬁ";gg—pOSpSQ,a— +'y+1+5(1——)ando9=9‘-

Using the same argument we can interpolate between (20) w1th p such that

p=;5= % < oo and (21) to obtain (22) with2$p5p()=—"1:_1,7t2€e,
a="= 1+’7+1+5(1— ,)and0=3.

We now continue with the interpolation of (18), p = %=1%2¢ and (21). This

n+y+e?
yields
, 7
(23) ( /R leF21p dz)” < ol
for ’;—_:‘*ﬁ__— <p<2andaoa=221+~y+1+¢(l- 5) Another application of the
above type of Riesz-Thorin’s mterpolatlon theorem, now applied to (22) and (23),
gives
1
([ terzigdz) < colfly.
Here 7;__‘_2% <p<2,p<r<panda=1=2 1+’7+l+€(1——) (7 fixed). But

since the spaces .ZP(R) decrease when a mcreases the conclusxon still holds if we
allow 0 < a < "p—_,1+'7+1+e(1—%) (or0<a< "—;i+'7+1+6(1—-z%) if p>2).
So, for an arbitrary p such that ”‘1 <p<2and0<La< "p_,l +~+ 1 we choose a
small positive ¢ so that 2 S < M <p<2anda< "‘1 +’7+1+6(1 - 2)

n+vy+e
B2 1 + v+ 1. The same thmg is done for 2 < p < ———— and0< a< =2 o Lty+1
ThlS proves (5) under the conditions (viii), (ix) and ( ) (or (viii), (ix’) and (x')).
We now prove (5) under the assumption that oo < 2= n=l 4 ~ 41 and the restriction

r = p and ~ an integer.
Let M(A, B) be the class of multipliers that give bounded operators from A
to B, and set M, = M(L?, L?). The estimate ||f * dS||; < C||f||1 is easy, since
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the convolution with a finite measure is bounded in L!(R™). This shows that the
corresponding multiplier

m(|€]) = [dS)(€) = Cle|" 1 T5_1(I€]) € M.

Now a computation (see [Pr and E, Volume 2, p. 11]) of the derivative of the
multiplier gives

dm 1 )
— () =—r TR a(r (ZR (z:dS(z ) (r),

where r = |€| and R; are the Riesz transforms, defined by (R/z\f )(&) = ]%T f(e),
1=1,...,n. So the new operator looks as follows:

(Zm zzdS(z) =Y ((Ri(z:dS(z)) Z(R,f (z; dS(z)).

=1 1=1

The convolution of a function with the measure z; dS(z) is bounded on L!(R™),
since it is finite. The Riesz transforms are bounded on H!(R™) (see [St1, p. 232]).
Thus the operator Y i ((Rif) * (z; dS(z)) from H'(R™) to L'(R™) is bounded,
or equivalently ||~ %+1Jy(|¢|) € M(H*,L").

y LEMMA 2. Assume that —%4+ <y < ~1,p(7) = 575 and 0 < A < B+
€17 8770514 (1€]) € Mp(y),

then
|§|'\|€|_%_7J%+7(|§|) € Mp(y-»)-
If
€178 g 1y (1€]) € Myyy, 7 < -1,
then

1€1}|€]~ % TV a 4q+1(1€]) € Mp(q-r)-

Assume for a moment the truth of this lemma. We use induction to prove our
assertion. The induction hypothesis is

(24) T_§+1+kJ%_1_k(T), r‘%““"J%_k(r) € Mp(—k—l)’
where k=1,2,...,m—1land m < %1 We shall show that (24) holds true even
for k = m.

With use of the recursion formula J,,_1(r) = 22J,(r) = J,41(r) (see [E, Volume
2, p. 12]) we obtain

T_%+l+mJ%—l—m(r)

2(3 +m)
r

=m+2m) 2N g0 () — T BRI g0 ()

= tam g 1-(m-1)(r) = J3—1-(m-2)(7)

The first term belongs to Mp(_,) according to the assumption, but Mp(_pm) C
My(_m_1) by duality and interpolation. See [BL, p. 133]. The second term
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belongs to My (_m_1), because
7'_%+1+(m_1)*]%—1—(m—2)(7') € Mp(—m)
by the assumption and this together with the lemma gives
T 7‘_%+1+(m—1)t]§—1—(m—2)(7) € Mp(—m-1)-

Therefore, r‘%“*'mJ%_l_m(r) € Mp(—m—1)-
Consider now

T—%+1+mJ%_m(,’.) =r. T_%+1+(m-l)t]!'5—l—(m—l)(T)~
But according to the assumption
7'_%+1+(m_1)=]§—1—(m—1)(r) € Mp(—m)

and a multiplication with r puts the multiplier in the class Mp(_y,_1) by the lemma.
Thus (24) is true for k = m. This proves the induction step. To conclude the
starting point k£ = 1, we observe that it follows from the fact that

(25) re2tJa_i(r)eM; and r2t1Ja(r) e M(H',LY).

Applying the above argument and the inclusions M,_;) = M; C M(H',L') C
Mp(_2y. (25) can be interpreted as step k = 0. But the assumption (24) implies
that ||[F7(1)|l, < C| f|lp, for integral . By the same homogeneity argument as

before one easily sees that

I1E7®)lp < Clifllps »=p(),

with C independent of ¢, and as a consequence, for r = p,

(/R lers ”?dzf = ( / lsO(t)I”llF"’(t)||§,’dt>% < Cllells |11

Thus (5) follows from the above mentioned interpolation with (1) (o = 8).

We next assume that o < "p;,l +~+1,r =pand %i + ~ is equal to an integer.
For such +’s Jz 4 becomes a “spherical” Bessel function and the remainder term
in its asymptotic expansion vanishes (see [E, Volume 2, p. 78]), i.e.

k

Taa€)) = 3 (cie€l + die161) |41,

i=0
Let ¢ be a cut-off function in C§°(R) such that ¢(|¢]) =1 for |€] < 1 and ¢(|¢]) =0
for || > 2. Then

SUENIEI" "5 14(1€]) € My, p 2 1,
since |¢|"#77J52,(|€]) is C*° and bounded for small £ if v > —24L. Tt will be
enough to find an estimate for the first term (1—¢(|€)) (coe'él + de=#1¢1) |¢]= "+~
in
(1 =(IEMIEI™2 Tz 1 (I€])
= (1= (1€])) (coe'l + doe €1 ||~

oo (1= B(1€D) (enelel 4 dee™ 1) g = =7k,
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since the others decay faster. k is a number depending on 7 + -y only. But such an
estimate falls under the scope of Theorem 1 in [Mi] and as a consequence we get
that the first term belongs to M (H?, H?) if
1 1 n+1
=53 <
This means that [|F7(1)|l, < C||fllp, 1 < p < o0, if =2 <y < —1 and ;l"—;—,ly <
p<2(or % <p' <2). [F71(1)|; < C|f|l1 is contained in the above case where
~ is an integer. From this we obtain, as before, (5) under the desired conditions by
interpolation with (1) (a=4). O
PROOF OF LEMMA 2. It is known that |£|** € M(H,H') c M(H!,L),
u € R, with

+7

W€ e,y < C(L+ |ul)™*.

(J€|** satisfies Hormander’s hypothesis for the Mihlin multiplier theorem and gives
rise to an operator bounded on H!(R"™). See [FS, p. 159].) This implies that

e+ =+ s 1 (1€]) € M(H', LY,
because _
S
€17 F 1 T2 _1(1€]) = C(dS)(€) € My
We have that M(H', L') C My, if -2+ <~ < —1, and as a consequence
lflz“___7Jn+7(|§|) € Mp('y)
if
€172 77 T3 44 (1€]) € Mp(s).
In the other endpoint we have that
nt+1 ; -n__
€1 e~y (16| = 1l g (D] < ©
if y> -2, Cf. Lemma 1 (I =0). Thus

€155 R "R (€]) € My,
with the M;-norm independent of u. Interpolating the complex family of operators,
defined by the multipliers |£|***#|£|=2~7Ja ,(|£]), between the endpoints A = 0
and A = "T“ + 7 gives
€1Mg|" %~ g 44([€]) € Mp(y-x)»
O<A< 2l 4o OIf
€178 g ey (€) € My, <=1, or [6"H+1Jg(gl) € M(H',LY),

we replace Jg 4~ (Jg—1) by Ja2 4441 (Jg) in the previous discussion and obtain

|€|A|§|___7J"+7+1(|§|) € My(-x),

for0< A < %+7. O
PROOF OF COROLLARY 2. As in the proof of Corollary 1 we use that ZP is
continuously embedded in L9, BMO and As for certain values of p, o, q and 6.
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For ¢ = 2 —aand 1 < p < ¢ < 0o we have the embedding -Z?(R) C LI(R).
See [BL, p. 153]. So for v, p and « satisfying (vii), (ix) and (x) this becomes true

if
1 1 1 n-1 n
—=-——a>-- -y=-1==(=+7v]) 20,
g p p v (P' 7)
If p and o satisfy (ix’) and (x’) instead of (ix) and (x), g is then

which is (xi).
forced to satisfy
1 1 1 - -
-=——a>——"—1—7—1=—<f’—2+7+1> > 0.
q p p p p
This is (xi’) and proves that (xi) or (xi’) is sufficient for (6).
Ifa= % and 1 < p < 0o, the space .Z?(R) embeds continuously in BMO(R).
See [St1, p. 164]. This substitutes the endpoint ¢ = oo in the previous case, and
by the same reasons (7) is true if

-2
_(§+7>20 (p<2) or —(”p +~y+1>20 (p22)

which is contained in (xii) and (xii’).
In the proof of (8) we need the following embedding Z?(R) C As(R), a = %+6 ,
1 < p < o0, 6 >0, which can be obtained from the chain of embeddings

2
%p+5 - Ali.,.& C Aziojg C A§°® = Ay, p<2
P P P
or
foM C A’;”+6 C A’ﬁ’é CAP® =As, p>2.
P P P

(The definition of the Lipschitz-Besov spaces AR? and the embeddings can be found
in [St1, Chapter V, §5-6].) With « satisfying (x) we have

1 n—1
—t+d=a< ——++1
p D

and therefore § < Z+~ so that if ;ﬁ; < p < 2 the conditions for the embedding

are satisfied. This proves (8) in the case (xiii). For «a satisfying (x') we get that
-2
6 < ‘n—i—— +7+1

and (5) if
n—2
2<p<——.
=PSTTHy
PROOF OF COROLLARY 3. We recall the estimates in the proof of Theorem 2
and take a closer look at the dependence of o.

Another estimate of the kernel
[ e - 1505 a

gives
Clllel- 17 + llel - 17" Hloo)
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as an upper bound. Therefore (17) can be rewritten to yield

sup [l Fg =+l < Cee®™MIC (Il - 17"l + lleel - 17" lloo) I £ 1
T

Interpolating with the L? estimate (19) of the endpoint v = —"—2"’1- + iu gives

C\F ) -
o) ([ 1eFzI ds)” < Cll- 7 + el 1 o) S

where
_n—1+42
n+y+e
and
0 _3__ l1+~v+c¢
YTy T m—1+2e

We continue, as in the proof of Theorem 2, by the interpolation between (26) and
(21) with the following result (replacing (23)):

N
(27) R" leF2 1z do
<C(llel- 17+ llel - 17" o) * lellr) % ||so||.os‘zi;,2||f||p-

Here 22142 — py < p <2, 0 =201 +y+1+¢(1-2), =" +yand § =

o
E.
Finally, we interpolate (27) with (22) (6 = 62) in the case when p < 2 and obtain

1

([ ozl ac)
Rn

(28) <CUlel- 7™+ llel - 17 loo) = lllgt) =% II$0||f%,z)""3
- 9
x (llellpy® IIsOII_;;)"“ £l

Where p < r < p’ and
-1

03 = 1

RIS
S| +
| ==

Choose pp € C§°(R \ {0}) so that supp po C {t; 3 < |t| < 2} and

oo

3 @) =1, t#0.

k=—o00

Set pk(t) = po(2¥t), k € Z, and
p(t) =D po(2¥t),
k=0

then p(t) = 1 for 0 < |t| < 1. It is sufficient to prove that (5) holds with p(t)|t|"
instead of p(t)|t|?. We first obtain (5) with pk(t)|t|” and then the full result by
summing them up. Here is where the above estimates come in. Replacing ¢ by
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pk| - |7 in (28) gives that

— - - 01y1— 0 - - (2
(2 i P 1 R il Y AR "lesOII}g)l “(llellp "ZIISOII_L%)%

can be estimated and an upper bound is a constant times a power of 27k, If 5 is
chosen so that the exponent becomes positive, then the geometric series converges
and we obtain (5).

Therefore, we proceed with the estimates of the norms of pg| - |”

lowl - 7117+ okl - 7] 17 loo = C(27F)7774Y,

- L
lloxl - "llpo = C(27%)"" %0

and

— _ 1
loxl - 171l 7z < C27F)7=7*%.

So the considered exponent becomes

[kn—n+UU—0ﬂ+(n+%)%}U—Hﬂ+<n—ﬂ+%>%]ﬂ—0ﬁ

[l e foore el
—n+ -[(l—n)(1—01)+%] (1—02)+(%—ﬂ)02] (1 — 65)

1 1
+ -p—?(l —02) + (5 —ﬂ> 92] 03
—n+ (1—n)(1—al)+%‘] (1 02)(1 — 03)

1 1
+ p—o(l —62)03 + <§ - ,3> 0.

Since we only consider positive exponents we can take € = 0 where it appears above.

Performing the substitutions

n—1 n+1 1+~
= s = ~+’ 0 = — s
Po= o g 5t 0 —1
n—1 1 1
2ol 4y +1 1+1i-1
o= 2 ——— and f3=14F
) p 1
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in the exponent gives

-1 1 1

1+4) 147 e+l Ftp—1

-n)(1+2 - -2 ) |l1-r
”+((1 "’( * n—l) n—1)< =+ » -

+"+7<1—np__’1+7+1)%+%‘1_<E+V)ZP_2_JL“
n-l iy ) I- 2 =g
=n+<1—n-2-27—1+”)%iﬁ“”‘"p__'l“’-l.%—l—%—%ﬂ
n-1 R 2 - 3)
Lnty M-t -l %+§—1_(ﬁ+v)%g+7+1
s e AL
=77+(—1—n 2’7—nt}l) (n_"_‘:_l(%_%) (%1_%1)
7t 2(; - 3)
nty(-DG-3) 7+y—1 n- (n+27)#+’l'_t}
n-l g4y 23-a) 2 EESRNIPS

n—1 1 1+ n+7y
=N+ ——|-|{-1-n—-2y-— +
" n+2’7+1[p< g -

147

—(m+2y) (1+ =1

(n+ 29 (14 227))]
—n+ n—1 [n_n+2'7+1_

n+
z 2~ 4+ 1)1
n+2y+1|r n—1 (n+2y+ )n 1]
=n+= (n+9)= z
=n+- N=n-5-0
Which is positive if n > 2 + 4.

n—1

For p > 2 we repeat the argument for (22) (§ = 62), but now putting pg = -5
and

2=l 4y +1
0 = 2

i
The exponent becomes

(77+;)1;) (1—92)+(n—ﬂ+%)92

1 1
="7+p—0(1—02)+<§‘-ﬂ>02
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and with the substitutions

144 2l by +1 (n )”—,—j‘+7+1
n—1 24y 2 !
_ o, 1 I+ -(n-1(F+1)
P L
=—n+2
1 1 24
+(v+1) (- + 7 277

n-1" (D +y) g

=1

-v-1

Taking n > "TTQ +~+1 gives a positive exponent. This ends the proof of Corollary
3. O
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