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SOME INEQUALITIES FOR SINGULAR
CONVOLUTION OPERATORS IN L^-SPACES

ANDREAS SEEGER

ABSTRACT. Suppose that a bounded function m satisfies a localized multi-

plier condition sup(>0 ||^"n(tp-)llM„ < °°, f°r some bump function <p. We

show that under mild smoothness assumptions m is a Fourier multiplier in

Lp. The approach uses the sharp maximal operator and Littlewood-Paley-

theory. The method gives new results for lacunary maximal functions and for

multipliers in Triebel-Lizorkin-spaces.

Introduction. Given a bounded function m the associated multiplier transfor-

mation Tm is defined by [Tm/]A(£) = m(£)/A(0, / e ^(Rn). Here S? denotes

the Schwartz space of rapidly decreasing C°°-functions and 9~f = /A the Fourier

transform, m is called a Fourier multiplier in LP(R") if Tm extends to a bounded

operator in Lp(Rn); the multiplier norm ||m||M„ equals the operator norm of Tm.

Suppose that <j> is a radial C^-function with compact support in Rq = R" \ {0}

'and suppose that

(!) IHI> =sup||</)m(<-)||Mp < oo.
"        t>0

The purpose of this paper is to find easily verified conditions that (1) implies

m E Mp.   The condition ||m|| ^   < oo is satisfied if and only if m is a Fourier

multiplier on the class of homogeneous Besov-spaces B£ (see Peetre [14, p. 132]). In

fact the space Mv can be characterized by JKV; a theorem of Johnson [10] states that

m e Mp if and only if m(- + y) G J£p for every y €E R™. However, a straightforward

verification of this condition seems to be impossible for many singular convolution

operators.

In some applications it is useful to replace the ordinary dilations x i—» tx by

anisotropic ones: x >—> tpx = exp(Plog£)z, where P is a real n xn-matrix with trace

v, the real parts of the eigenvalues being contained in (oo, a0), ao > 0. Then we ask,

under which conditions supt>0 ||0to(£p-)IIm„ < oo implies m € Mp. Throughout

this paper <j> will always be chosen as in the following

DEFINITION. <j> e C0X(R'S) satisfies a Tauber condition with respect to the

dilations (tp) if for every x ^ 0 there is a tx such that (j)(tPx) ^ 0.

Sometimes we need special bump functions of the following kind: Let p e

C°°(Ro) be a P-homogeneous distance function; this means that p(tpx) = tp(x),
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260 ANDREAS SEEGER

x G R", t > 0 and p(x) > 0, x ^ 0. Then we set 0 = <f>0 o p, where

(2) <p0eC0x(R+),    supple (^,2),     ^^o(2fcs) = 1'    alls>0-

We note that every P-homogeneous distance function satisfies a triangle inequality

p(x + y) < b[p(x) + p(y)], for some b > 1.

It is easily seen that the condition supt>0 ||0m(ip)||Mp < 00 is independent of

the special choice of 4>. In fact, assume that <p, <j) are chosen as in the definition.

By a compactness argument, there are so, • •., sjv > 0 such that J2i=i ^2(six) > 0

for all x G supp0. Since MXMV c Mp, we have

Hrn(tp-)\\Mp<cf2H2(s?-)rn(tP-)\\Mp
t=0

<CY1   <M)m    (_ )    • <csup\\cj)m(sp-)\\Mp-
,=0 \A*'       J    Mp S>°

We are most interested in the cases 1 < p < 00. For p = 1 a satisfactory result is the

Hormander multiplier criterion [9]. Here the condition supt>0 ||<?!>ra(£p-)||Mi < °°

is replaced by the somewhat stronger assumption

(3) sup/       |^-1[</,m(^P-)]|^<P(l+w)_£,    allw>0.
t>0./|x|>w

(3) implies that Tm is of weak type (1,1) and m G Mp, 1 < p < 00.   The usual

assumption

sup \\<j)m(tp■)||^2 < 00,        a > n/2,
t>o

(J2?2 denoting the Bessel-potential space as in Stein [18]) implies (3) for some B,

if e < a - n/2.
We use the following notations: J?o denotes the subspace of Schwartz functions

whose Fourier transforms are compactly supported in Rg. A/j is the difference

operator, Ahf = /(• + h) — /(•). The Lipschitz space A£ is normed by

H/IIa. = ll/lloc + sup IhriAfc/IU    if 0 < e < 1.

By |S| we denote the Lebesgue measure of a set S. The barred integral fs f denotes

the mean value |S|_1 /s f(y) dy. c will be a general constant with different values

in different occurrences.

1. Main result.

THEOREM 1. Suppose that m is a bounded function which satisfies for some p,

I <p < 00, e >0

(i) sup\\ct>m(tp-)\\Mp <A,
t>o

(ii) sup/"        {^-^(pm^-^x^dx^B^+uj)-6.
t>0j\x\>ui
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Then

\\m\\Mp<cA[\og(2 + B/A)]^-1^.

REMARK. Of course, condition (ii) alone implies m G Mp, 1 < p < oo, with

multiplier norm < cP, which may however be much larger than the constant in the

theorem. This constant is actually sharp; it cannot be replaced by A[\og(2 + B/A)]1

with 7 < 11/p —1/2|. This can be seen by a well-known counterexample of Littman,

McCarthy, Riviere [12], modified in Triebel's monograph [19]. Choose <j) as in (2)

and vectors Ok, satisfying p(erfc) = (2b)k. Define

2AT

mN(0= Ee—^e-a*).
k=N

Since ||c£mjv(Ar)||Mp ^ c and \\Da[(l>mN(Af)]\\Mp < c2Na°W for all multi-indices

a, Theorem 1 implies ||m^||mp < cpNl(-p\ with ~/(p) = \l/p - 1/2|.

On the other hand, the discussion in [19, p. 125] shows that ||mjv||Mp > Cp7V"y'p'.

The counterexample shows that the condition (1) alone does not imply m G Mp.

In the following corollaries we shall see that this is valid under weak smoothness

assumptions on m. The proof of Theorem 1 is given in §2.

COROLLARY 1.   Suppose that for some 1 < p < oo

(i) snp\\(l)m(tp-)\\Mp<A0,
t>o

(ii) sup/ \\Ah[<l>m{tp-)}\\Mpdh<Ai.

Then

IHU„<Ai + £/|1/p"1/2U<-

i>i

PROOF. We may choose <f> as in (2). Let tp be a C°°-function, supported in

{p(0 < (8b)-1}, JiP(Od£ = 1. Further set tf, = 2ln^(21-), Xi = tf|-tfl-i {I > 1),
Xo = V>o-

We split

jez

= E £[*< * (<t>m(Vp-)W-]P-) =■■ £>.
jez i>o ;>o
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Set g2 = (j>m(2]P-). Then xi * 9j is supported in {j < p(£) < 4}. If / > 1, we have

for 2k < s < 2k+1 (6 denoting Dirac measure)

k+4

||<Am(sF-)llMp < c   E   Wxi * 93\\mp
j = k-4

k+4

<c   E   ll(^ — -0/—l) *93- + (tpi ~6)*9j\\mp
j=k-4

k+4     r   . .

<c  E     / M(»?)ll|A,ffil|Mpd»7+ / |^-i(«)|||A77ffj||Mp(ir?
j = fc-4 '■■' •>

<c(j4|_i+i4,)-

For all multi-indices a it follows by a similar computation (2k < s < 2k+1)

||PQ(0m,(sF-))ll2
k+4 (

<c   E   E      \^0)(r])\\\g]^-2-lr1)-gJ(^-2-l+iV)\\oodV
]=k-4 0<aJ

<c2'lQl(/l,_1+^)-

Now we apply Theorem 1 and obtain

IHIIm^c^-^i^-i+a,),      i>l

Analogously ||mo||Mp < cAq, and the assertion follows by summation.

COROLLARY 2.   Suppose that supt>0 \\<{>m(tp-)\\Mp < oo, for some pG (l,oo).

(i) If for some e > 0

sup sup |/i|-£||A,,[0m(£p-)]||Mp < oo
«>o heR"

then m G Mp.

(ii) //sup(>0 \\<t>m(tp-)\\As < °°> then m e Mr, UA - 1/2I < |l/p — 1/2|.

PROOF, (i) is weaker than the assertion of Corollary 1. (ii) then follows by

interpolating the inequalities

\\Ah[4>m(tp-)}\\Mp < c,     ||Ah[0m(fp-)]||M2 < c\hf.

2. Proof of Theorem 1.

2.1. Some tools needed in the proof. Let r be a distance function, homoge-

neous with respect to the adjoint dilations tp , satisfying a triangle inequality with

constant b. Let W be the collection of all r-balls

Q = {x; r(x0 -x)< 2k},        x0 G R", k G Z,

xq is the "center" of Q, 2k = radQ its "radius".

The Hardy-Littlewood maximal operator with respect to W is defined for func-

tions with values in a Banach-space B by

J?f(x) =    sup    /  \f(y)\edy.
x€Qe#  Jq
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By f* we denote the Fefferman-Stein sharp maximal function, defined by

/*(*) =    sup    / \f(y)-f\Bdy.

The basic fact about /# is

PROPOSITION. Assume that 1 < p < oo, 1 < po < P and f G Lp°(Rn,P). //

f* G Lp(Rn), then J?f G Lp(Rn) and \\Jtf\\p < c\\f*\\p.

The proof is an adaptation of the proof given by Fefferman and Stein [8] in

the more general setting of homogeneous spaces (see [15]). Another tool needed

in the proof is Littlewood-Paley theory [18, 13]. Let <f> G Co°(Ro) and r)k =

^-1[^(2-*/>-)]. 9(f) = (Zkez \Vk * /|2)1/2- Then ||ff(/)||„ < c\\f\\p, 1< p < oo.
We will choose <j> = $o°P as in (1). Then we also have ||/||p < c||c/(/)||p, 1 < p < oo.

Let </> G Cq°(Ro) be equal to 1 on supp^. Then we associate to <f> in the same way

the functions fjk and <?(/)■

2.2. Proof of the theorem. By duality we may assume 2 < p < oo. We associate

to T = Tm a vector-valued operator T, defined by [Tf]k = Vk * Tf. We will show

that

(4) \\(ff)*\\v<cANl'2-^\\f\\p

where

N = maxOr^o1) log2(2 + B/A).

If / G <9o, Tf is a priori in Lp(l2). By Littlewood-Paley theory and the Fefferman-

Stein inequality we get

l|r/||p<c1||?(r/)||p = c1||f/||Lp(J2)

< Cl||^(f/)||p < C2||(P/)#||P < csAN^-^WfW,.

It remains to prove (4). In order to apply interpolation arguments it is useful to

linearize the operator / i—> (Tf)*. Fix / G Lp. Following [8, p. 157] we may find

for each x G Rn a ball Qx G W containing x, the center and the radius being

measurable functions of a;, further functions Xk(x,y), with (]P \Xk(x,y)\2)1^2 < 1,

x G Rn, y G Qx, such that the following inequality holds:

(ff)*(x)<2Sf(x)

where

(5) Sf(x)=-f   Y,\m*Tf(y)- I   rlk*Tf(z)dz\Xk(x,y)dy.
JQt I JQX J

Define l(x) by ra.dQx = 2'^'. Instead of 5 we consider the following operators <7i,

(72 acting on sequence-valued functions P = {/&}, H — {hk}.

(6) <t1(P,x)= j E        Vk * fk(y) ~ f Vk * fk  Xk(x,y)dy,
JQ* \k+l(x)\<N L J -I

(7) a2(H,x)= j E        m*Thk(y)- jr,k*Thk   Xk(x,y)dy.
JQ* \k+l{x)\>N L J



264 ANDREAS SEEGER

In 2.3 and 2.4 we will show that

(8) ||fT1(P)||p<cA/1/2-1/p||P||LP(;p)

and

(9) \\a,(H)\\p < cAWHUw,

the constant c being independent of A, N and the choice of Qx, Xk(x,y).   We

proceed by observing

Sf = o-1({r,k*Tf})+cr2({rlk*f}).

By Littlewood-Paley theory (9) implies

\fo({nk*f})\\P<cA\\f\\p.

Using the hypothesis (i) we get

IK*?* * Tf}\\pLP{lP) = E 11*7* * T(fjk * f)\\pp <ApJ2 11% * f\\l

<Ap\\{rtk*f}\\pLP{l2)<cAp\\f\\p

and from (8) we conclude

\\oi{r,k*Tf}\\p<cANl'2-"p\\f\\p.

These estimates imply (4).

2.3. Estimation o/ct.(P). Since ux(F) < 2Jf[(J2k \r)k * Pfc|2)1/2], it follows by

L2-boundedness of J?

\\MF)h<c\T\\vk*Fk\\2j       <c'||P||L2((2).

If p = oo, we have

|MP)||oo<    Jf    SUp E      l%***|2)

L J    oo

< cN1'2 sup \\r,k * PfcHoo < c'N^WFU^,^.
kez

Now an application of the Riesz-Thorin interpolation theorem establishes (8).

2.4. Estimation of 02(H). The operator u2(H) represents the "remainder"-terms

similarly treated as in the Calderon-Zygmund theory. By L2-boundedness of ^#

and the Plancherel theorem we get

\\o-2(H)\\2 = J2\\Vk*Thk\\2
k

= ||0(2-fcp.)m^||2 < A2 E \\hAk\\l = A2\\H\\lm>y
k

We show

(10) ||^2(P)||oo<cyl||P|Uoo((2)

and (9) follows by interpolation.
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We need a further splitting of ct2 . Denote by Rx the ball with same center as

Qx and radPx = 2bradQx. For a function H we denote by RXH multiplication

with the indicator function of Rx; similarly define RXH for the complement Rx.

We have the majorization o2(H, x) < \(x) + II(x), where

l(*)=f    \Y.\rik*nRxhk){y)A       dy

and

n(*)= /    (      E      \{Vk*T(Rcxhk)(y)- jVk*T(Rxhx)(z)dz}\2\       dy.
jQ*   \\k+l(x)\>N J J

By Holder's inequality and Plancherel's theorem we get

\l(x)\<\Qx\-^2(J2\\Vk*T(Rxhk)\\2y/2

<\Qx\-1/2A^2\\Rxhk\\2)1/2

<cA-f   ElM</)|2<*2/
JRt

<CA||P||I,=o((2).

To estimate II(a;) set Kk(x) = &~-1[<j>m(A2k-)]. Then with

Ek(x,y,z)= f   2kv\Kk(2kP'(y - w)) - Kk(2kP'(z - w))\dw,

it happens that

(11) Ek(x,y,z) < cBmm{2-^k+l{x)),2ao{k+l^},

whenever y,z €E Qx.

Summing a geometrical series we obtain

|II(x)|<   sup E     [Ek(x,y,z)}2\      ||^||L=(««.)
v.*e«* \{k+l{x){>N J

< cPmax{2-£Af,2-a°;v}||P||Loo((oc)

<  c4||P||Loo(;oo)   < CVt||P||/,oo(;2).

(11) follows by a standard calculation. Denote by x0 the center of Rx. Then for

w G Rcx, y G Qx

r(y -w)> r(x0 - w)/b - r(x0 -y)> 2l{x);

hence

Ek(x,y,z) < 2 f 2ku\Kk(2kP'u)\du < cB2~^k+l^e
Jr(u)>2'<*)
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by hypothesis (ii). If k + l(x) < -TV, we use the fact that 0 * Kk = Kk and obtain

by Taylor's formula

Ek(x,y,z)<2J    [    \2kv[(2kp'(y-z)-V)Kk\(2kp'(z-W + sy-sz))\dzds
JO   JRCX

<c||[2fcP*(j/-2)-V]^*/ffc||1

KcWllXr'iy-z)-?}^]]^

< cB2^k+l^x^a°

if y,zG Rx.

This completes the estimation of a2(H) and concludes the proof of the theorem.

3. Some variants and applications.

3.1. The case p = 1. There is a simpler counterpart of Theorem 1.1 for p = 1

which strengthens slightly the Hormander multiplier criterion. It involves a weak-

type (1, 1) and an (P1,L1)-estimate for the operator Tm. Here P1 is the parabolic

Hardy-space, defined as in [1] with respect to the (tp )-dilations.

THEOREM 2. Suppose that the hypotheses (i), (ii) of Theorem 1 are satisfied

with p = 1.  Then

(a) ||Tm/||1<CA[log(2 + PM)]1/2||/||H1.

(b) suPQ|{|Tm/| > a}| < epilog (2 + ^) II/Hl
q>0 V A)

PROOF. To prove (a) we use the atomic decomposition (see Latter and Uchiyama

[11]). Let a be an atom, supported in {r(xc, — x) < 21}, ||a||oo < c2-'". Choose

N as in the proof of Theorem 1 and split Ta — Ti^a + Tit2a, where Ti^a =

^2\k+i\<N Vk * Ta. Using the standard Calderon-Zygmund estimates it follows

||T(,2a||i < cPmax(2-£Ar,2-ao;v)||o||i < cA.

Further

||P(,ia||<^      E    l^*al
\k+l\<N 1

<cAN^2    (El^H2) <c'AN1'2,

by Littlewood-Paley theory in P1.

The proof of (b) is similar and involves a Calderon-Zygmund decomposition. We

can only achieve the larger constant cAN, because Littlewood-Paley functions do

not define bounded operators in L1.    □

REMARK. The counterexample m/v mentioned in §1 shows that the constants in

Theorem 2 are sharp. For the (H1, L1)-estimate this follows from [19, p. 125]. The

essential part of the kernel ^'~1[mN] lies near the points ak, N < k < 2N, and

a straightforward computation shows that ||^'~1[mAr]IU1°0 > cN (L1o° denotes

the Lorentz-space).   Let x£^, x(0 = 1 near 0, xi = 2(l/x(2iP*-)-  For large /
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we have TmNxi — ̂ ~_1[m.?vb tms implies ||Tmjv||(LiiLi°o) > cN for the weak-type

operator-"norm" of TmN.

3.2. Application to quasiradial multipliers.

COROLLARY 3. Let p G C°°(Ro) be a P-homogeneous-distance function and

m = mo o p, where mo G L°°(R+). Suppose that for some p, 1 < p < 2n/(n + 1),

sup||r/>m0°<p||Mp < oo.

Then mo ° p G MT, p < r < 2.

PROOF. The smoothness assumption of Corollary 2, (ii) is satisfied, since the

necessary conditions for quasiradial multipliers [17] imply

sup||0orao(<-)|l   p' ^csupl^mooipIlM
«>o "'        t>o

a = (n- l)(l/p - 1/2). Here 0O G C0X(R+) and B^p(R) is the standard Besov

space defined in [19]. Now Pg'p C A£ if 0 < e < a - 1/p' and a - l/p' > 0

if p < 2n/(n + 1). The assertion follows from Corollary 2 and the elementary

inequality

||0o o pm0 o tp\\As(Rn) < c\\(pomo(t-)\\As(R).    □

The following criterion for quasiradial multipliers is proved in [16].

COROLLARY 4. Let p G C°°(R%), the unit sphere {p(£) = 1} being strictly

convex.  Then

\\m0 o p\\Mp<csup\\<t>omo(t-)\\L2{R),
t>o

a > n\l/p - 1/2|,  1< p < 2(n + l)/(n + 3).

The condition sup(>0 \\(pm o (/9||mp < oo can be verified following Stein's treat-

ment of the Bochner-Riesz multiplier [7, 16]. The approach via Corollary 2 consid-

erably simplifies the proof of Corollary 4 in [16]. It avoids also the weighted norm

inequality in Christ's proof of (essentially) the same result (see [3]).

3.3. Lacunary maximal operators. Given a multiplier m, we define for / G 5"

the lacunary maximal operator T^ by

T?;/ = sup|^-1H2fcp-)/A]|.
kez

To prove boundedness results for Tm we shall need information about a vector-

valued singular integral operator r, defined for functions P = {Fk i] with values in

/2(Z2) by

b-Wlfc = E %+<***•'•

Lemma. \\t(F)\\lp(12{z)) < c||P||LP(i2(Z2)), l < p < oo.

PROOF. For p = 2 the inequality follows by Plancherel's theorem. Then for p <

2, by Calderon-Zygmund theory we are led to verify the following weak Hormander

condition

[ 211/2    (    v/a
/ E Yyik+i(x-y) -Vk+i(x)]akA dx<c    EaL
Jr(*)>™ [ k    l J \x;    J
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whenever r(y) < t, (akti) G /2(Z2). The verification of (12) is a routine matter, so

it is omitted. The case p > 2 follows by observing that the adjoint r* is similarly

defined as r (k,l are exchanged).    □

THEOREM 3.   Suppose that for some 1 < p < oo, r = min(p, 2), e > 0

(D (/o°°ii0^p.)irMpf)1/r<co,

a°° r ir dt \ l^r
sup|/i|-£||Ah</)m(ip-)||Mp     —\      <oo.

Then

\T\^-l[m(2kP-)n\2\ <c\\f\\p.

p

PROOF. Choose <j) as in (2),

a, = ||0m(2'p-)||Mp,    6, =sup|/l|-£||A/l[0m(2;p-)]|Up.

Then the hypotheses of the theorem are equivalent with XXa[ + b\) < oo; this

essentially requires the same argument as in the Introduction.

We apply the lemma with Fk,t = 9r-l[^(2-^k+l">p-)m(2-kP-)fA] to deduce

fel^"1N2"*P-)/A]|)       <   (ei^I2)
p      \k'1       J     p

If p > 2 we have by Minkowski's inequality

1/9 / 9\   1/^

feH /(?II(?H1L •
whereas if p < 2 we use lp c I2 and interchange summation and integration to get

jfeH"lH?IK?H'T)";
Denote by r^ the sequence of Rademacher functions (see [18, p. 276]) and let

mi,a = Y,rk(s)k2~(k+l)P-)rn(1-kP-),        » G [0,1).

fc

An application of Corollary 1.2 gives

3

II^(,s||mp < E a'+j+ fe'+-"   uniformlyin s e I0-11-

j=-3
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By Chinchin's inequality and interchanging the order of integrals we see

/        y/2 p     ,1

E i^.'i2      ^c / ih.xp dx<cj2 <+3+b*+j.
\  k J J° j=-3

P

Now summation over / proves the assertion.    □

Of course, Theorem 3 implies boundedness of Tm in Lp. For p > 2 there is

a simpler result which follows from Littlewood-Paley theory and does not rely on

Theorem 1.

COROLLARY 5.   Suppose 2 <p < oo and

(|o°°||0m(<p.)||^f)1/2<oo.

Then \\Tmf\\P < 4f\\p.

PROOF. We use the inequality

s>.« s (?l9i|2)1/2 '
p p

1 < p < oo, which, by duality, is a consequence of Littlewood-Paley theory. Now

k/Hp< fEi^"V(2-fcP-)/A]r)

/     ( V      V/2,y/2

^c   E   (El%+'*^~1[*n(2-fcp-)/A]|2J

(   r 12/p"\1/2
<*    E   Ell^_1^(2-(fc+')F-)*n(2-*P-)]*%+«*/ll?

<c\THm(2lP-)\\2MP)       r£\\Vk*f\\lj      ,

and a second application of Littlewood-Paley theory implies the assertion.

COROLLARY 6. Suppose that m G Mp satisfies for some 6 > 0 |m(£)| < c|£|*,

»/|el<l and \m(Z)\ < c\Z\-s, if\£\>l.
(i) Ifp > 2, then \\T^f\\r < cr||/||r, 2 < r < p.

(ii) //p < 2, and supt>0 ||4>m(*F-)lk < oo, then \\Tmf\\r < c\\f\\r, p < r < 2.

The proof follows by interpolation. Note that (i) is already contained in [4].

REMARK. In many cases, the decay condition at the origin is not valid, but m

is smooth near £ = 0. Then one may split m = mo + mi, where mo is compactly

supported and smooth and equals m near the origin. TmQf is majorized by the

Hardy-Littlewood maximal function ^'f', and T^ can be handled by the above

corollaries. For example we can deduce the following result of Duoandikoetxea and
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Rubio de Francia [6] (which, however, does not require the full strength of Theorem

1.1):
Let p be a compactly supported measure satisfying pA(£) < c(l + |£|)~6,

sup \[ f(x-2kP'y)dp(y)       < c||/||p, 1< p < oo.
Ifcez \J p

Write p — m + rh, where m(£) = 0 near the origin and suppm is compact. Since

p is compactly supported, m, m are smooth; further |PQpA(£)| < c(l -I- \£\)~6 for

every multi-index a. Then \T^f\ < cJff. If t > 1 we have

\\<pm(tP-)\\oc<ct-6a°,    ||PQ(0m(ip-))||oo<cr°,    |a| = l

which implies supt>0 ||</>m(£p-)||A£ < £, for some e > 0.    D

3.4. Multipliers on Triebel-Lizorkin spaces. Define for 1 < p,q < oo, rjk as in 2.1,

/    oo x1/?

»,(/)=   E i%*/n
\fc=-oo /

and the homogeneous Triebel-Lizorkin space Fpq = Fpq(P) by ||/||^P, = ||ffg(/)||p.

Fpg should be considered as a subspace of y'(Rn) modulo polynomials; the

definition depends on the dilation group (tp).

Let y^pq = s£pq(P) be the subspace of bounded functions whose norms

||m||>M =sup{||^-1[m/A]||^,;/G^0,||/|lFP, < 1)

are finite. Note that So is dense in Fpq. Multipliers in Fpq are multipliers in

the whole scale Fpq, — oo < s < oo (defined in [19] for isotropic dilations) since

Fpq = IsFpq, where Isf = ■<^r~1\p~sfA] for some P-homogeneous distance function

p G Coo(R01)- For simple properties of J(pq we refer to Triebel [19, p. 128], where

the inhomogeneous case is discussed. Observe that J£p = ^PP(P) equals the space

of multipliers on anisotropic homogeneous Besov spaces Bpq as mentioned in the

Introduction.

THEOREM 4. Suppose that m is a bounded function satisfying for some p, 1 <

p < oo, e > 0

(i) sup\\<t>m(tp-)\\Mp<A,
t>o

(ii) sup/        |.^-1[0m(ip-)]|c(2:<cP(l+c<;)-£.
t>0j\x\>uj

Thenm is a Fourier multiplier in Fpq (P), |l/g-l/2| < |l/p-l/2|, and \\m\\ # <

cA\\og(2 + B/A)}\l/p-llq\.

PROOF. By duality, we may assume p > q. It suffices to consider the case

q = p'; the remaining cases follow by interpolation. The proof is a repetition of the

arguments needed for Theorem 1, so we omit the details. The operators S, o\, a2

are defined as in (5), (6), (7) but now with (£ \xk(x,y)\p')1/p' < 1- Then

IMP)IIp < cNW'-V'WFhw, \\o2(H)\\p < c\\A\\LP{lpl).
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Instead of Plancherel's theorem and Littlewood-Paley theory, we use the hypothesis

sup(>0 \\(t>m(tp-)\\m , < A and the definition of Fpp .    □

As in §1, this theorem implies several corollaries, e.g.

COROLLARY 7.   Suppose that for some e > 0

sup||0m(ip-)||Ae < oo.
t>0

If m is a multiplier on the homogeneous Besov space FPP(P), then it is also a

multiplier on Fr9(P), p < r,s < p'.

It is an interesting problem whether the hypothesis of Corollary 7 implies m G

jt2s(P) for some |l/s - 1/2| > |l/p - 1/2|.

During the preparation of this paper the author was informed by A. Carbery,

that he also established some of the results of this paper (see [2]), using another

approach. In particular he found Corollaries 2 and 6, as well as some weak-type

estimates in the endpoint cases.
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