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CONVERGENCE OF NON-STATIONARY PARALLEL

MULTISPLITTING METHODS

FOR HERMITIAN POSITIVE DEFINITE MATRICES

M. JESÚS CASTEL, VIOLETA MIGALLÓN, AND JOSÉ PENADÉS

Abstract. Non-stationary multisplitting algorithms for the solution of linear
systems are studied. Convergence of these algorithms is analyzed when the
coefficient matrix of the linear system is hermitian positive definite. Asyn-
chronous versions of these algorithms are considered and their convergence
investigated.

1. Introduction

In this paper, we study the parallel solution of linear systems of the form

Ax = b,(1.1)

where A ∈ Cn×n is a nonsingular matrix and x, b ∈ Cn.
In order to get an iterative method to solve system (1.1) on a parallel com-

puter, O’Leary and White [23] introduced the multisplitting technique. Later, this
technique was studied by many authors; see e.g., Frommer and Mayer [11], [12],
Neumann and Plemmons [22], or White [28], [29], [30].

The multisplitting method (see [23]) consists of having a collection of splittings

A = Fj −Gj , 1 ≤ j ≤ r, det(Fj) 6= 0,(1.2)

and diagonal nonnegative weighting matrices Ej , 1 ≤ j ≤ r, which add to identity,
and the following algorithm is performed.

Algorithm 1. (Multisplitting).

Given the initial vector x(0).

For l = 0, 1, 2, . . . , until convergence.

For j = 1 to r

Fjyj = Gjx
(l) + b

x(l+1) =

r∑
j=1

Ejyj .
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As it can be appreciated, Algorithm 1 corresponds to the following iteration

x(l+1) =
r∑

j=1

EjPjx
(l), l = 0, 1, 2, . . . ,(1.3)

where the operators Pj : Cn −→ Cn, 1 ≤ j ≤ r, are defined as

Pjx = F−1
j Gjx+ F−1

j b.(1.4)

Thus, iteration (1.3) can be rewritten as

x(l+1) = Tx(l) +

r∑
j=1

EjF
−1
j b, l = 0, 1, 2, . . . ,

where T =

r∑
j=1

EjF
−1
j Gj is the iteration matrix.

Conditions on the splittings (1.2) and on the weighting matrices which ensure
the convergence of Algorithm 1 in some important cases were given by O’Leary
and White [23]. In particular they showed that convergence (i.e., ρ(T ) < 1, where
ρ(T ) denotes the spectral radius of T ) when A is a symmetric positive definite
matrix and the splittings (1.2) are P–regular (see definitions in Section 2). In an
efficient implementation of a multisplitting method on a multiprocessor system,
each operator Pj , defined in (1.4), represents the task assigned to one of the r
processors to obtain its local approximation. Each local approximation is updated
exactly once using the same previous iterate x(l). However, it is possible to update
that approximation more than once using different iterates computed earlier. In
this case we call this method a non-stationary method. The main idea of these
methods is that at the lth iteration each processor j solves the system defined by
its operator Pj , q(l, j) times, updating each time the right-hand side by using the
new calculated vector, i.e.

Algorithm 2. (Non–stationary Multisplitting).

Given the initial vector x(0)

For l = 0, 1, 2 . . . , until convergence

In processor j, j = 1 to r

y
(0)
j = x(l)

For k = 1 to q(l, j)

Fjy
(k)
j = Gjy

(k−1)
j + b(1.5)

x(l+1) =

r∑
j=1

Ejy
(q(l,j))
j .(1.6)

Bru, Elsner and Neumann [3] showed the convergence of this algorithm when
A−1 ≥ 0 and the splittings (1.2) are weak regular (F−1

j ≥ 0 and F−1
j Gj ≥ 0, 1 ≤

j ≤ r). They used the term chaotic for these non-stationary methods; however
we have chosen the non-stationary term since in the classical literature chaotic is
synonymous with asynchronous, e.g., as in [8].
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In Algorithm 2 a relaxation parameter ω ∈ R, ω 6= 0, can be introduced by
replacing the computation of x(l+1) in (1.6) with the equation

x(l+1) = ω

r∑
j=1

Ejy
(q(l,j))
j + (1− ω)x(l).(1.7)

Clearly, with ω = 1, equation (1.6) is recovered. In the case of ω 6= 1 we have a
Relaxed Non-stationary Multisplitting Algorithm (Algorithm 3). The convergence
of algorithms 2 and 3 when A is an H–matrix was studied by Mas, Migallón, Pe-
nadés and Szyld [20]. Furthermore, in [20] the authors report computational results
of those algorithms on a multiprocessor system that show a better behavior of the
non-stationary models than the stationary ones (Algorithm 1). For a background
on parallel non-stationary models see also [5], [6], [7], [13], [14] or [15].

In this paper we concentrate our study on the case where A is a hermitian
positive definite matrix. In Section 3 we study the convergence of Algorithm 2,
together with its relaxed version, Algorithm 3. We also study their extension to
asynchronous algorithms where the solution of the systems (1.5) proceed in each
processor without waiting for the completion of the computation of the iterates
in the other processors; see Section 4. Previously, in Section 2 we present some
notation, definitions and preliminary results which we refer to later.

2. Notation and preliminaries

For any matrix A ∈ Cn×n, |A| denotes the matrix whose entries are the modulus
of the corresponding entries of A; the matrices AT and AH denote respectively
the transpose and the conjugate transpose of A. Similarly the transpose and the
conjugate transpose of a vector x ∈ Cn are denoted by xT and xH , respectively. A
matrix A ∈ Cn×n is symmetric if A = AT , and hermitian if A = AH . Obviously a
real symmetric matrix is a special case of a hermitian matrix.

Recall that a complex, not necessarily hermitian matrix A, is positive definite
if the real part of xHAx is positive, for all complex x 6= 0. When A is hermitian,
this is equivalent to requiring that xHAx > 0, for all complex x 6= 0. In addition,
a general matrix A is positive definite if and only if the hermitian matrix A +AH

is positive definite. Let A ∈ Cn×n be a hermitian positive definite matrix, then
〈x, y〉 = (xHAy)1/2 defines an inner product on Cn. Hence, ‖x‖A = (xHAx)1/2

is a vector norm on Cn. The matrix norm induced by that vector norm will also
be denoted by ‖ · ‖A. In addition, ‖ · ‖∞ denotes the infinite matrix norm. Let
A ∈ Cn×n, the splitting A = M −N is called P–regular if the matrix MH + N is
positive definite; see e.g., [2], [24], [25], for an extensive bibliography on hermitian
matrices and positive definite matrices.

The following theorem gives convergence conditions for iterative methods based
on a single splitting A = M −N , when A is a hermitian matrix. The proof can be
found, e.g, in [2].

Theorem 2.1. Let A = M −N be a P–regular splitting of a hermitian matrix A.
Then ρ(M−1N) < 1 if and only if A is positive definite.

A similar result for Algorithm 1 was obtained by O’Leary and White [23], as-
suming that the weighting matrices Ej , 1 ≤ j ≤ r, of Algorithm 1 have the form
Ej = αjI. Although that result was given for symmetric matrices, it can be ex-
tended without difficulty to hermitian matrices.
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Theorem 2.2. Let A = Fj −Gj , 1 ≤ j ≤ r, be P–regular splittings of a hermitian

positive definite matrix, and Ej = αjI, 1 ≤ j ≤ r, with αj > 0 and
r∑

j=1

αj = 1.

Then Algorithm 1 is convergent.

We point out that if the weighting matrices Ej are not of the form Ej = αjI,
Algorithm 1 may not converge when A is hermitian positive definite, even though
the splittings of A are P–regular. Here we report an example, different to that
used in [23], that illustrates this situation. Later, we will use this example for the
non-stationary methods.

Example 2.3. Consider

A =

[
0.75 0
0 0.75

]
= F1 −G1 = F2 −G2,

where

F1 =

[
0.3934 −2.0660
2.0660 7.6244

]
, G1 =

[ −0.3566 −2.0660
2.0660 6.8744

]
,

and

F2 =

[
7.6244 2.0660

−2.0660 0.3934

]
, G2 =

[
6.8744 2.0660

−2.0660 −0.3566

]
.

Setting E1 =

[
0 0
0 1

]
, E2 =

[
1 0
0 0

]
, the iteration matrix T = E1F

−1
1 G1 +

E2F
−1
2 G2 =

[
0.9594 0.2132
0.2132 0.9594

]
, has spectral radius equal to 1.1726, and so Algo-

rithm 1 is not convergent. However, Algorithm 1 converges setting other weighting
matrices that do not satisfy Theorem 2.2. For example, if the above matrices E1

and E2 are interchanged, the spectral radius of the resulting iteration matrix is
0.4264.

The following lemmas will be very useful in our convergence analysis.

Lemma 2.4. Given a nonsingular matrix A and a matrix T such that (I − T )−1

exists, there is a unique pair of matrices P,Q such that P is nonsingular, T = P−1Q
and A = P −Q. The matrices are P = A(I − T )−1 and Q = P −A.

Proof. See Lemma 8 of Lanzkron, Rose and Szyld [18].

Lemma 2.5. Let T (l), l = 0, 1, 2, . . . , be a sequence of square complex matrices.
If there exists a matrix norm ‖ · ‖ such that ‖T (l)‖ ≤ θ < 1, l = 0, 1, 2, . . . , then

lim
l→∞

T (l)T (l−1) · · ·T (0) = 0.

Proof. See Lemma 2 of Bru and Fuster [4].

Lemma 2.6. Let A be a hermitian positive definite matrix. If the splittings A =
F −G = P −Q are P–regular, then the matrix T = P−1QF−1G has spectral radius
less that one. Moreover, the unique splitting A = B − C induced by the iteration
matrix T , such that T = B−1C, is also P -regular.

Proof. See Theorem 4.6 of Benzi and Szyld [1]. This theorem was given for sym-
metric matrices. The hermitian case is analogous.
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3. Convergence of non-stationary methods

Given an initial vector x(0), the Non-stationary Multisplitting Algorithm 2 pro-
duces the sequence of vectors

x(l+1) =

r∑
j=1

EjP
q(l,j)
j x(l), l = 0, 1, 2, . . . ,(3.1)

where the operators Pj , 1 ≤ j ≤ r, are defined in (1.4). We rewrite (3.1) as

x(l+1) = T (l)x(l) + c(l), l = 0, 1, 2, . . . ,(3.2)

where T (l) are the iteration matrices

T (l) =

r∑
j=1

Ej

(
F−1
j Gj

)q(l,j)
, l = 0, 1, 2 . . . ,(3.3)

and

c(l) =

r∑
j=1

Ej

q(l,j)−1∑
i=0

(F−1
j Gj)

i

F−1
j b, l = 0, 1, 2 . . . .

The exact solution of the linear system (1.1) is a fixed point of the operators
Pj , 1 ≤ j ≤ r. Then, using error analysis, it is easy to see that the sequence of
vectors generated by iteration (3.1) (or equivalently, iteration (3.2)) converges to

the solution of the linear system (1.1) if and only if lim
l→∞

T (l)T (l−1) · · ·T (0) = 0.

The following lemma is very useful when analyzing the iteration matrices (3.3).

Lemma 3.1. Let A be a hermitian positive definite matrix. Assume the splitting
A = F −G is P–regular. Given s ≥ 1, there exists a unique splitting A = M −N
such that (F−1G)s = M−1N . Moreover, the splitting is P–regular.

Proof. The proof of the existence and uniqueness follows from Theorem 2.1 and
Lemma 2.4. To show the P–regularity we proceed by induction. For s = 1 the
result follows from the uniqueness. Suppose that the result is true for s−1, that is,
we know that the unique splitting A = P −Q, such that (F−1G)s−1 = P−1Q, is P–
regular. Now, using Lemma 2.6 with the P–regular splittings A = F −G = P −Q
the proof is completed.

Theorem 3.2. Let A be a hermitian positive definite matrix. Let A = Fj−Gj , 1 ≤
j ≤ r, be P–regular splittings and Ej = αjI, 1 ≤ j ≤ r, with αj > 0 and

r∑
j=1

αj = 1.

Then, there exists a unique splitting A = R(l)−S(l), induced by each iteration matrix
T (l), l = 0, 1, 2, . . . , defined in (3.3), such that T (l) = (R(l))−1S(l). Moreover, that
splitting is P–regular.

Proof. Since A = Fj − Gj , 1 ≤ j ≤ r, are P–regular splittings of a hermitian
positive definite matrix then, from Lemma 3.1, for each j, l there exists a unique

P–regular splitting A = M
(l)
j −N (l)

j such that (F−1
j Gj)

q(l,j) = (M
(l)
j )−1N

(l)
j . Then,

the iteration matrices (3.3) can be written as

T (l) =

r∑
j=1

Ej

(
F−1
j Gj

)q(l,j)
=

r∑
j=1

Ej(M
(l)
j )−1N

(l)
j , l = 0, 1, 2, . . . .
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Now, for each fixed l, T (l) is the iteration matrix corresponding to Algorithm 1 by

setting the splittings A = M
(l)
j − N

(l)
j , 1 ≤ j ≤ r. Since these splittings are P–

regular, Theorem 2.2 ensures that ρ(T (l)) < 1. On the other hand, since each M
(l)
j

is positive definite, the matrix

r∑
j=1

Ej(M
(l)
j )−1 is also positive definite, and therefore

it is nonsingular. Thus, each matrix T (l), l = 0, 1, 2, . . . , is also the iteration matrix
of an iterative method based on the single splitting

A = R(l) − S(l),(3.4)

where R(l) =

 r∑
j=1

Ej(M
(l)
j )−1

−1

, and S(l) = R(l)T (l). Since ρ(T (l)) < 1, from

Lemma 2.4 these splittings are unique. Moreover, from Theorem 3.2 of [21], it
follows that the splittings (3.4) are P–regular.

From the above theorem follows the convergence of Algorithm 2 when the number
of times q(l, j) that the jth processor works is fixed in each iteration l. That is, if
q(l, j) = q(j), l = 0, 1, 2, . . . , 1 ≤ j ≤ r, then there is a unique iteration matrix
T = T (l), l = 0, 1, 2, . . . ; thus, from Theorem 3.2, ρ(T ) < 1. However, since the
product of convergent matrices may not tend to zero (see e.g., Johnson and Bru
[17], or Robert, Charnay and Musy [27]), then other tools are needed to show the
convergence of Algorithm 2 for any sequence of integers q(l, j) ≥ 1. So, we have
the following result.

Theorem 3.3. Let A be a hermitian positive definite matrix. Let A = Fj− Gj , 1 ≤
j ≤ r, be P–regular splittings and Ej = αjI, 1 ≤ j ≤ r, with αj > 0 and
r∑

j=1

αj = 1. Assume that q(l, j) ≥ 1, 1 ≤ j ≤ r, l = 0, 1, 2, . . . . Then, the

Non-stationary Multisplitting Algorithm 2 converges to the solution of the linear
system (1.1), for any initial vector x(0).

Proof. Since A = Fj−Gj , 1 ≤ j ≤ r, are P–regular splittings of a hermitian matrix,

the matrix A − (F−1
j Gj)

HA(F−1
j Gj) = (F−1

j A)H(FH
j + Gj)(F

−1
j A) is hermitian

positive definite. Then, letting the vector norm ‖ · ‖A, we have

‖F−1
j Gjx‖2

A = xH(F−1
j Gj)

HA(F−1
j Gj)x < xHAx = ‖x‖2

A, for all x 6= 0.

Hence ‖F−1
j Gj‖A < 1, 1 ≤ j ≤ r, and there exists a real constant 0 ≤ θ < 1 such

that ‖F−1
j Gj‖A ≤ θ < 1, 1 ≤ j ≤ r. Hence, for all l = 0, 1, 2, . . . , we have

‖T (l)‖A = ‖
r∑

j=1

Ej

(
F−1
j Gj

)q(l,j) ‖A ≤
r∑

j=1

αj‖
(
F−1
j Gj

)q(l,j) ‖A ≤ θ < 1.

From Lemma 2.5, this implies that lim
l→∞

T (l)T (l−1) · · ·T (0) = 0, and then the proof

is completed.

Theorem 3.3 generalizes Theorem 1.b of [23] (Theorem 2.2 of Section 2) for the
non-stationary case, and it gives an alternative proof of the convergence result by
O’Leary and White [23].
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Note that in Theorem 3.3 we have restricted the weighting matrices in the
same way as in Theorem 2.2. If we consider the splittings of Example 2.3 and
we compute the iteration matrices of Algorithm 2, setting q(l, 1) = q(l, 2) = 2
or 3, l = 0, 1, 2, . . . , we obtain ρ(T (l)) > 1, l = 0, 1, 2, . . . , in the first choice of
weighting matrices. However, if we set q(l, 1) = q(l, 2) = 4, l = 0, 1, 2, . . . , we get
ρ(T (l)) < 1, l = 0, 1, 2, . . . , in both choices of weighting matrices. Consequently it
motivates the convergence study of Algorithm 2 without the additional hypothesis
Ej = αjI, 0 < αj ≤ 1. The following theorem shows the convergence of Algorithm
2 when each processor performs enough local iterations (1.5).

Theorem 3.4. Let A be a hermitian positive definite matrix. Let A = Fj−Gj, 1 ≤
j ≤ r, be P–regular splittings. Assume further that lim

l→∞
q(l, j) = ∞, 1 ≤ j ≤ r.

Then the Non-stationary Multisplitting Algorithm 2 converges to the solution of the
linear system (1.1), for any initial vector x(0).

Proof. Since A = Fj − Gj , 1 ≤ j ≤ r, are P–regular splittings of a hermitian

positive definite matrix, by Theorem 2.1, ρ(F−1
j Gj) < 1, 1 ≤ j ≤ r. Then,

lim
i→∞

(F−1
j Gj)

i = 0, 1 ≤ j ≤ r. Thus, given an ε > 0, there exists an integer i0

such that for any matrix norm ‖ · ‖, ‖(F−1
j Gj)

i‖ ≤ ε, for all i ≥ i0. Particularly, we

can choose the infinite norm. Since lim
l→∞

q(l, j) = ∞, there exists an l0 such that

‖(F−1
j Gj)

q(l,j)‖∞ ≤ ε, ∀l ≥ l0, 1 ≤ j ≤ r.

Hence, for l ≥ l0,

‖T (l)‖∞ = ‖
r∑

j=1

Ej(F
−1
j Gj)

q(l,j)‖∞ ≤ max
1≤j≤r

‖(F−1
j Gj)

q(l,j)‖∞ ≤ ε.

Setting ε < 1 the convergence of Algorithm 2 follows from Lemma 2.5.

It is well known when the Jacobi, Gauss-Seidel and SOR splittings (and their
block splitting versions) of a hermitian positive definite matrix are P–regular; see
e.g., [2] and [25]. Another class of P–regular splittings of a hermitian positive
definite matrix A is the unique splitting induced by the iteration matrix of an
alternating iterative method of the form

x(l+1/2) = M−1Nx(l) +M−1b, x(l+1) = P−1Qx(l+1/2) + P−1b, l = 0, 1, 2, . . . ,

where A = M−N = P −Q are P–regular splittings; see [1]. So, the SSOR splitting
is an important example of this class. Besides SSOR, one can consider, for example,
the alternating iterations based on a splitting of the form A = A1+A2, where A1, A2

are positive definite and A2 = AT
1 ; choosing M = βI + A1, N = βI − A2, P =

βI + A2 and Q = βI − A1, with β > 0, the splittings A = M − N = P − Q
are P–regular; see e.g., [19]. Furthermore, there are other ways to construct r
P–regular splittings of a hermitian positive definite matrix; for example, see [23],

let A =

r∑
j=1

Aj be a hermitian positive definite matrix, and let Dj , 1 ≤ j ≤ r,

be diagonal matrices such that Fj = Aj + Dj, 1 ≤ j ≤ r, are nonsingular. If
the matrices 2(Aj + Dj) − A, 1 ≤ j ≤ r, are positive definite, then the splittings
A = Fj−Gj, 1 ≤ j ≤ r, are P–regular, and so we can apply the above convergence
results.
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On the other hand, the proof of Theorem 3.4 shows that ‖(F−1
j Gj)‖∞ < 1, 1 ≤

j ≤ r, is a sufficient condition for the convergence of Algorithm 2 for any matrix A,
without additional hypotheses on the weighting matrices. So we have the following
result.

Corollary 3.5. Let A = Fj −Gj , 1 ≤ j ≤ r, be splittings of the matrix A ∈ Cn×n

such that ‖(F−1
j Gj)‖∞ < 1, 1 ≤ j ≤ r. If q(l, j) ≥ 1, 1 ≤ j ≤ r, l = 0, 1, 2, . . . ,

then the Non-stationary Multisplitting Algorithm 2 converges to the solution of the
linear system (1.1), for any initial vector x(0).

Proof. Since ‖(F−1
j Gj)‖∞ < 1, 1 ≤ j ≤ r, there exists a real constant 0 ≤ θ < 1

such that ‖(F−1
j Gj)‖∞ ≤ θ < 1, 1 ≤ j ≤ r. By computing the infinite norm of T (l),

defined in (3.3), we obtain for l = 0, 1, 2, . . . , ‖T (l)‖∞ ≤ max
1≤j≤r

‖F−1
j Gj‖q(l,j)∞ ≤ θ <

1.

We note that Corollary 3.5 can be proved in the same way if the infinite norm
is replaced with any matrix norm such that if for arbitrary matrices T, Tj and

weighting matrices Ej , 1 ≤ j ≤ r, such that T =

r∑
j=1

EjTj , then ‖T ‖ ≤ max
1≤j≤r

‖Tj‖;

see e.g., [4]. In particular one can use any weighted max-norm associated with a
positive vector; see e.g., [15], [16] or [26] for descriptions and applications of these
norms.

To finish this section we analyze the convergence of the Relaxed Non-stationary
Multisplitting Algorithm 3. If in addition, we assume 0 < ω < 2

1+max1≤j≤r ‖F−1
j Gj‖A

in Theorem 3.3 and 0 < ω < 2
1+max1≤j≤r ‖F−1

j Gj‖∞ in Corollary 3.5 the same results

hold for Algorithm 3. Since its iteration matrices can be written as ωT (l)+(1−ω)I,
with T (l) defined in (3.3), the proofs follow in a similar way. Furthermore, if in
Theorem 3.4 we assume 0 < ω < 2

1+ε , then the convergence of Algorithm 3 also
holds. So, the convergence of Algorithm 3 is shown under the same hypotheses as
in the above results, setting ω in an interval (0, ω0), with ω0 > 1.

4. Asynchronous iterations

The motivation of defining an asynchronous non-stationary method is to obtain a
parallel implementation of the non-stationary iterative methods on a multiprocessor
system such that the communication and synchronization between the cooperating
processes are reduced. To illustrate that, consider Algorithm 2; this algorithm
is synchronous in the sense that step (1.6) is performed only after all processors

have computed their iterate vectors y
(q(l,j))
j , 1 ≤ j ≤ r. Alternatively, we can

consider a parallel implementation of a non-stationary multisplitting method in

which each part of x(l+1), i.e., Ejy
(q(l,j))
j , can be updated without waiting for the

other parts of x(l+1) to be updated. In order to construct an asynchronous version
of Algorithm 2, we consider a different scheme where all processors are always
working without waiting for information from the other processors. In a formal
way, let {jl}∞l=0, 1 ≤ jl ≤ r, be a sequence of integers that indicates the processor
which updates the approximation to the solution at the lth iteration. Let rl − 1
be the number of times that processors other than the jlth processor update the
approximation of the solution during the time interval in which the jlth processor’s
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calculations are performed. This implies that rl is the smallest positive integer
such that jl = jl+rl . Assume that there exists a positive integer K such that
0 ≤ rl − 1 < K, that is, in carrying out the evaluation of the lth iterate, a process
cannot make use of any value of the components of the jth iterate if j < l − K.
With this notation we consider the following asynchronous scheme

x(l+rl) = (I − Ejl)x
(l+rl−1) + EjlP

q(l,jl)
jl

x(l), l = 0, 1, 2, . . . ,(4.1)

where the operators Pj , 1 ≤ j ≤ r, are defined in (1.4) and x(−K) = x(−K+1) =

· · · = x(0). As it can be appreciated, scheme (4.1) corresponds to the following
algorithm.

Algorithm 4. (Asynchronous Non-stationary Multisplitting).

Given the initial vectors x(−K) = x(−K+1) = · · · = x(0).

In processor jl, l = 0, 1, 2, . . . , until convergence.

y
(0)
jl

= x(l)

For k = 1 to q(l, jl)

Fjly
(k)
jl

= Gjly
(k−1)
jl

+ b

x(l+rl) = (I − Ejl)x
(l+rl−1) + Ejly

(q(l,jl))
jl

.(4.2)

In the same way as in the synchronous case, a relaxation parameter ω ∈ R, ω 6= 0,

can be introduced in Algorithm 4, by replacing the vector y
(q(l,jl))
jl

in (4.2) with the

equation ωy
(q(l,jl))
jl

+ (1 − ω)x(l). When ω 6= 1 we have a Relaxed Asynchronous

Non-stationary Multisplitting Algorithm (Algorithm 5).
The following theorem shows the convergence of Algorithm 4 under similar hy-

potheses as those for the synchronous Algorithm 2 in Theorem 3.3.

Theorem 4.1. Let A be a hermitian positive definite matrix. Let A = Fj −
Gj , 1 ≤ j ≤ r, be P–regular splittings and Ej = αjI, 1 ≤ j ≤ r, with 0 < αj ≤ 1.
Assume that there exists a positive integer K such that 0 ≤ rl − 1 < K. If
q(l, j) ≥ 1, 1 ≤ j ≤ r, l = 0, 1, 2, . . . , then the Asynchronous Non-stationary
Multisplitting Algorithm 4 converges to the solution of the linear system (1.1), for
any initial vector x(0).

Proof. In order to analyze the convergence of the asynchronous iteration (4.1) (or
Algorithm 4), we will construct a procedure in CnK , with K satisfying 0 ≤ rl−1 <
K. To this purpose, let us use the following notation. Let ξ be the unique solution
of the linear system (1.1) and let e(l) = x(l) − ξ be the error vector in the lth
iteration of the asynchronous scheme (4.1). Define

el =
(
(e(l))T , (e(l−1))T , . . . , (e(l−K+1))T

)T
∈ CnK .(4.3)

Since 0 ≤ rl − 1 < K, it follows that l+ rl −K ≤ l ≤ l+ rl − 1, l = 0, 1, 2, . . . , and
then we can write

e(l) = Slel+rl−1,(4.4)

where Sl, l = 0, 1, 2, . . . , is an n× nK matrix with an n× n identity block in the
rl position and the remaining K − 1 blocks are zero. From (4.1) and (4.4), and
knowing that Ej = αjI, 1 ≤ j ≤ r, it follows that

el+rl = Bl+rlel+rl−1,
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where Bl+rl ∈ CnK×nK is defined as

Bl+rl =


(1 − αjl)I O . . . O O

I O . . . O O
...

...
...

...
O O . . . I O

+


αjl(F

−1
jl

Gjl)
q(l,jl)Sl

O
...
O

 .(4.5)

Then el+K = Bl+KBl+K−1 · · ·Bl+1el.
Let µ be an arbitrary nonzero nK-dimensional vector partitioned as in (4.3),

that is, µ = (µi)Ki=1 ∈ CnK , with µi ∈ Cn. We define a vector norm on CnK by

‖µ‖ = max
1≤i≤K

‖µi‖A,

and its induced matrix norm on CnK×nK . We show that there exists a real constant
0 ≤ γ < 1, such that ‖Bl+KBl+K−1 · · ·Bl+1‖ ≤ γ < 1, l = 0, 1, 2, . . . , and
therefore lim

l→∞
el = 0.

Since A = Fj−Gj, 1 ≤ j ≤ r, are P–regular splittings, reasoning as in Theorem

3.3 it follows that there exists a real constant 0 ≤ θ < 1 such that ‖F−1
j Gj‖A ≤ θ,

and then ‖(F−1
j Gj)

s‖A ≤ θ < 1, for all s ≥ 1, 1 ≤ j ≤ r. Let

vν = Bl+νBl+ν−1 · · ·Bl+1µ :=


v1
ν

v2
ν
...
vKν

 , viν ∈ Cn, i = 1, 2, . . . , K, ν ≥ 1.

(4.6)

From (4.4) and (4.5), v1
1 = (1− αjl)µ1 + αjl(F

−1
jl

Gjl)
q(l,jl)µi, 1 ≤ i ≤ K. Then

‖v1
1‖A ≤ (1 − αjl)‖µ1‖A + αjl‖(F−1

jl
Gjl)

q(l,jl)‖A‖µi‖A
≤ [(1 − αjl) + αjlθ] ‖µ‖ ≤ γ‖µ‖,(4.7)

where γ = max
1≤j≤r

[(1− αj) + αjθ] < 1. Then, from (4.5)

‖vi1‖A = ‖µi−1‖A ≤ ‖µ‖, i = 2, 3, . . . , K.(4.8)

Now, from expression (4.6), v1+i
ν = viν−1, i = 1, 2, . . . , K − 1. Then, using the

bounds (4.7) and (4.8) it follows that

‖viν‖A ≤
{

γ‖µ‖, i = 1, 2, . . . , ν,
‖µ‖, i = ν + 1, . . . , K.

Hence, ‖vK‖ ≤ γ‖µ‖, for all nonzero vectors µ ∈ CnK . Therefore, we have that
‖Bl+KBl+K−1 · · ·Bl+1‖ ≤ γ < 1, l = 0, 1, 2, . . . . Thus, the proof is complete.

From now on, we assume, as is customary in the description of asynchronous
algorithms (see e.g., [3] and [9]), that the sequence of integers {jl}∞l=0, 1 ≤ jl ≤ r,
is a regulated sequence. This means that there exists a positive integer K, such
that each of the integers 1, 2, . . . , r, appears at least once in every K consecutive
elements of the sequence. That actually implies 0 ≤ rl− 1 < K. We point out that
in Theorem 4.1 we have only needed the latter bounds; this is due to the fact that
the weighting matrices are of the form Ej = αjI, 1 ≤ j ≤ r. Another similar way of
describing asynchronous iterations has been considered by Frommer [10] and other
authors, e.g., Bru, Migallón, Penadés and Szyld [7] and the authors cited therein.
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Now, we study the convergence of the asynchronous scheme (4.1) (or Algorithm
4) under hypotheses similar to those of Theorem 3.4 and Corollary 3.5.

Theorem 4.2. Let A be a hermitian positive definite matrix. Let A = Fj−Gj, 1 ≤
j ≤ r, be P–regular splittings. Assume further that lim

l→∞
q(l, j) = ∞, 1 ≤ j ≤ r.

Given a regulated sequence of integers {jl}∞l=0, 1 ≤ jl ≤ r, the Asynchronous Non-
stationary Multisplitting Algorithm 4 converges to the solution of the linear system
(1.1), for any initial vector x(0).

Proof. Reasoning as in Theorem 3.4 there exists an l0 and a real constant θ, such
that ‖(F−1

j Gj)
q(l,j)‖∞ ≤ θ < 1, for all l ≥ l0. Thus, setting z = (1, 1, . . . , 1)T ,

|(F−1
j Gj)

q(l,j)|z ≤ θz, l ≥ l0.

By using error analysis as in Theorem 4.1 and reasoning in a similar way as in the
proof of [20, Theorem 3.2], which in turn is based on [3, Theorem 2.2], it follows
that

|Bl+2K−1Bl+2K−2 · · ·Bl+1|z ≤ θz, l ≥ l0,

where the matrices Bl are obtained by replacing (1 − αjl)I in (4.5) with I − Ejl .
Then,

‖Bl+2K−1Bl+2K−2 · · ·Bl+1‖∞ ≤ θ < 1, l ≥ l0.

Thus, the proof is completed.

Corollary 4.3. Let A = Fj − Gj , 1 ≤ j ≤ r, be splittings of the matrix A ∈
Cn×n such that ‖(F−1

j Gj)‖∞ < 1, 1 ≤ j ≤ r. Assume q(l, j) ≥ 1, 1 ≤ j ≤
r, l = 0, 1, 2, . . . . Given a regulated sequence of integers {jl}∞l=0, 1 ≤ jl ≤ r, the
Asynchronous Non-stationary Multisplitting Algorithm 4 converges to the solution
of the linear system (1.1), for any initial vector x(0).

Proof. The proof follows in a similar way as in the proof of Theorem 4.2.

Analogously, setting ω as at the end of Section 3, the convergence of Algorithm
5 is done under the same hypotheses as in the above results.

References

[1] Michele Benzi and Daniel B. Szyld, Existence and uniqueness of splittings for stationary it-
erative methods with applications to alternating methods, Tech. Report 95-81, Department of
Mathematics, Temple University, Philadelphia, Pa., August 1995. Also available via anony-
mous ftp at ftp.math.temple.edu in directory pub/szyld. To appear in Numer. Math.

[2] Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sci-
ences, third ed., Academic Press, New York, 1979, Reprinted by SIAM, Philadelphia, 1994.
MR 95e:15013

[3] Rafael Bru, Ludwing Elsner, and Michael Neumann, Models of parallel chaotic iteration
methods, Linear Algebra Appl. 103 (1988), 175–192. MR 90b:65255

[4] Rafael Bru and Robert Fuster, Parallel chaotic extrapolated Jacobi method, Appl. Math. Lett.
3 (1990), no. 4, 65–69. CMP 91:04
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[14] Robert Fuster, Violeta Migallón, and José Penadés, Non-stationary parallel multisplit-

ting AOR methods, Electronic Transactions on Numerical Analysis 4 (1996), 1–13. MR
96m:65038

[15] , Parallel chaotic extrapolated Jacobi–like methods, Linear Algebra Appl. 247 (1966),
237–250. CMP 97:02

[16] Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell, Waltham,
Mass. 1964, Reprinted by Dover, New York, 1975. MR 51:14539

[17] Charles R. Johnson and Rafael Bru, The spectral radius of a product of nonnegative matrices,
Linear Algebra Appl. 141 (1990), 227–240. MR 91i:15011

[18] Paul J. Lanzkron, Donald J. Rose, and Daniel B. Szyld, Convergence of nested iterative
methods for linear systems, Numer. Math. 58 (1991), 685–702. MR 92e:65045

[19] Guri I. Marchuk, Splitting and alternating direction methods, Handbook of Numerical Anal-
ysis, Vol. I (P.G. Ciarlet and J.L. Lions, eds.), North Holland, New York, 1990, pp. 197–462.
CMP 90:08
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