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GROUP-TYPE SUBFACTORS AND HADAMARD MATRICES

RICHARD D. BURSTEIN

Abstract. A hyperfinite II1 subfactor may be obtained from a symmetric
commuting square via iteration of the basic construction. For certain commut-
ing squares constructed from Hadamard matrices, we describe this subfactor
as a group-type inclusion RH ⊂ R�K, where H and K are finite groups with
outer actions on the hyperfinite II1 factor R. We find the group of outer auto-
morphisms generated by H and K and use the method of Bisch and Haagerup
to determine the principal and dual principal graphs. In some cases a com-
plete classification is obtained by examining the element of H3(H ∗ K/IntR)
associated with the action.

1. Introduction

In [15], Jones described the basic construction on a finite index subfactor M0 ⊂
M1 of type II1. Iterating this construction gives the tower of factors

M0 ⊂ M1 ⊂ M2 ⊂ M3 ⊂ · · · .
Taking relative commutants yields two towers of finite-dimensional algebras

C = M ′
0 ∩M0 ⊂ M ′

0 ∩M1 ⊂ M ′
0 ∩M2 ⊂ · · ·

∪ ∪
C = M ′

1 ∩M1 ⊂ M ′
1 ∩M2 ⊂ · · · .

This is the standard invariant of the subfactor. The principal graph and dual
principal graph are obtained from the Bratteli diagrams of these inclusions. While
usually not a complete invariant, these graphs summarize much important data
about the subfactor. The standard invariant is a complete invariant for amenable
subfactors [23].

The classification problem is fundamental in the study of subfactors. In this
paper we address this problem for a family of hyperfinite II1 subfactors constructed
from finite data. We will provide principal graphs and, in some cases, a full classi-
fication up to subfactor isomorphism.

We recall the definition of commuting squares from [22]. Let

C ⊂ D
∪ ∪
A ⊂ B

be a quadrilateral of von Neumann algebras, with trace. We may construct the
Hilbert space L2(D) and the conditional expectations EB, EC onto L2(B), L2(C),
respectively. This quadrilateral is a commuting square if EB and EC commute and
EBEC = EA.
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A commuting square is specified by its four constituent algebras, the various
inclusions, and certain additional data indicating how the towers A ⊂ B ⊂ D and
A ⊂ C ⊂ D are related. This data can be summarized as the biunitary connection.

A hyperfinite II1 subfactor may be obtained from a commuting square of finite-
dimensional C∗-algebras, via iteration of the basic construction (see e.g [11]).

As described in [17], the standard invariant of a commuting square subfactor
is computable to any number of levels in finite time. However, the time required
grows exponentially with the level, so this method cannot be used to find the full
principal graph except in the simplest examples.

If the commuting square is flat, then the principal graph of the corresponding
subfactor may be found by inspection (see [22]). Likewise, the standard invariant
may be easily computed if the subfactor is depth 2. For a general commuting
square, however, even determining finite depth or amenability of its subfactor is an
intractible problem.

A Hadamard matrix H is a real n-by-n matrix all of whose entries are ±1, with
HHT = n1. n must be 1, 2, or a multiple of 4, but it is not known if Hadamard
matrices exist for all such n. These matrices have been studied for over a century,
with connections to areas as diverse as signals processing, cryptography, and group
cohomology. A complex Hadamard matrix may be defined similarly as a unitary
matrix all of whose entries have the same complex modulus [12].

For any complex Hadamard matrix, the quadrilateral

Cn ⊂ Mn(C)
∪ ∪
C ⊂ HC

nH∗

commutes and induces a commuting square subfactor. For n ≥ 6 many families of
such matrices exist, giving a wide variety of examples of these Hadamard subfactors.
Their planar algebras (or equivalently, their standard invariants) are described by
spin models, which makes computing the first few levels of the standard invariant
relatively straightforward. For example, the first relative commutant of a Hadamard
subfactor is always abelian [16].

Since Jones’ 1999 paper [16], only a few Hadamard subfactors have been com-
puted explicitly. The n × n Fourier matrix is defined by Fij = ξij , where ξ is a
primitive nth root of unity. It may be easily computed using the profile matrix
of [16] that Fourier matrices and their tensor products give depth-2 subfactors.
Some other examples of small index were studied by Nicoara in [9], with full com-
putations of the principal graph for a few index-4 examples. For practically all
Hadamard subfactors, nothing is known about the standard invariant beyond the
first few levels.

In this paper we will partially classify a family of Hadamard subfactors obtained
from certain twisted tensor products of Fourier matrices (and slight generalizations
thereof). As well as all previously known examples, this family includes a wide
variety of subfactors at every composite integer index, of both finite and infinite
depth. The twisted tensor product construction was suggested to the author by
Jones. As we will show, these subfactors may be described as group-type subfactors
of the form RH ⊂ R�K, for appropriate actions of finite abelian groups H and K
on the hyperfinite II1 factor R.
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These group-type subfactors were studied by Bisch and Haagerup in [3]. In this
paper, the authors give a method for finding the principal graph of any such subfac-
tor from the image of the free product of H and K in OutR. We will show how to
explicitly compute this image for the twisted tensor product Hadamard subfactors.
We obtain the first known examples of infinite depth Hadamard subfactors with
index greater than 4, thereby solving a long-standing question of Jones [16].

To analyze our Hadamard examples, we will first (section 2) discuss automor-
phisms of the hyperfinite II1 factor which are compatible with the structure of the
Jones tower in a particular way. For such automorphisms, determining outerness
reduces to a problem in finite-dimensional linear algebra.

In section 3 we will discuss those Hadamard matrices which produce depth-2
subfactors. Taking the twisted tensor product of two such matrices gives a new
Hadamard matrix, whose subfactor is of Bisch-Haagerup type. We will show that
in this case the group actions have the compatibility property mentioned above,
and so the principal and dual principal graphs may be readily computed.

The principal graph is not a complete invariant even for finite depth subfactors.
To classify the Bisch-Haagerup subfactors up to isomorphism, it is also necessary to
consider a certain scalar 3-cocycle ω ∈ H3(H ∗K/IntR) associated with the group
action. We will discuss this cohomological data in section 4, using the conjugacy
invariants of [14].

In section 5 we will use these methods to describe several examples. As well
as examining certain finite depth cases, we will provide infinite depth Hadamard
subfactors of every composite index. We will use the results of section 4 to show that
all index-4 Hadamard subfactors are of the type described in [13], with principal

graph D
(1)
2n .

Throughout this paper, if A is a von Neumann algebra acting on a Hilbert space
H, we will take A′ to be the commutant of A in the set B(H) of bounded linear
operators on H. A′ ∩A = Z(A) is the center of A.

2. Compatible automorphisms of the hyperfinite II1 factor

Let B0 ⊂ B1 be a unital inclusion of finite-dimensional C∗-algebras with con-
nected Bratteli diagram, along with its Markov trace. Iterating the basic construc-
tion gives a tower of algebras

B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂
⋃
n≥0

Bn

w

= B∞,

where B∞ is the hyperfinite II1 factor. We examine automorphisms of B∞ which
are compatible with the structure of the tower.

We recall some basic properties of the iterated basic construction on finite-
dimensional von Neumann algebras. This discussion is largely taken from [15];
cf. [17].

Let B0 ⊂ B1 be a connected inclusion of finite-dimensional von Neumann alge-
bras. An inclusion is connected if the commutant B0 ∩B′

1 is equal to C. Defining
a trace tr on B1 makes L2(B1) into a Hilbert space with inner product 〈x, y〉 =
tr(y∗x), on which B1 acts by left multiplication. We may then define the conditional
expectation e = EB0

, which is the orthogonal projection onto the closed subspace
L2(B0) ⊂ L2(B1). This allows us to perform the basic construction on B0 ⊂ B1,
obtaining B2 = {B1, e}′′ ⊂ B(L2(B1)). If we extend tr to a trace on B2, we may
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then iterate this procedure, obtaining the Jones tower

B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ · · · .
There is a unique trace on the original B1 (the Markov trace, of some modulus τ )
which extends to a trace on the entire tower. With this choice of trace, we may
apply the GNS construction and take the closure of

⋃
i Bi to obtain the hyperfinite

II1 factor B∞. We label the Jones projections by Bi = {Bi−1, ei}′′ for i ≥ 2. Then
tr(ei) = τ for all i, and the ei’s obey the relations

• eiej = ejei for |i− j| > 1,
• eiei±1ei = τei.

We also have eixei = eiEBi−2
(x) for x ∈ Bi−1.

Now we discuss automorphisms of Jones towers. We will require all of our auto-
morphisms to be trace preserving and to respect the adjoint operation.

The following result may be obtained from [11] (cf. [20]) and is well known.

Theorem 2.1. Let the tower of Bi’s be as above. Let a be an automorphism
of B1 which leaves B0 invariant. Then there is a unique (trace preserving, ∗-)
automorphism α of B∞ such that α(ei) = ei, α(Bi) = Bi for all i, and α|B1

= a.

Alternatively, if α is an automorphism of B∞ which leaves the Bi’s invariant and
fixes the ei’s, then it is equal to the extension of α|B1

to B∞ as above.
These conditions are stronger than necessary. If α fixes the ei’s and leaves B1

invariant, then it also leaves {e2}′ ∩B1 = B0 and {B1, e2, . . . , ei}′′ = Bi invariant.
Maps of this form may be said to be compatible with the tower.

Definition 2.1. If α ∈ Aut(B∞) fixes ei and leaves Bi invariant for all i, then α
is a compatible automorphism.

These may be thought of as a finite-dimensional version of the automorphisms
discussed in [20], which are compatible with a Jones tower of II1 factors. Some
specific automorphisms compatible with a tower of finite-dimensional algebras were
described in [24]. In this paper, Svendsen constructed a factor as the closure of
the tower and used limit arguments to show that these particular automorphisms
were outer on this factor. We will use similar methods to determine when an
arbitrary compatible automorphism is outer by considering the relationship between
compatible automorphisms and the canonical shift.

The Bratteli diagram of an inclusion of finite-dimensional von Neumann algebras
is a graphical depiction of the inclusion matrix (see [17], [6]). For 0 ≤ i ≤ j, both
B′

i∩Bj and B′
i+2∩Bj+2 may be implemented as the algebra of length (j− i) paths

on the Bratteli diagram of B0 ⊂ B1 [17]. It follows that these two algebras are
isomorphic. The isomorphism is the canonical shift, which we denote Θij .

We now recall some results from [17] and [11], based on Perron-Frobenius theory.
Let s(i) be the size vector for Bi, i.e., the xth minimal central projection px ∈ Bi

has pxBi = M
s
(i)
x
(C). Then as n goes to infinity, τ2ns(i+2n) converges to some vector

v, which is a Perron-Frobenius eigenvector for the inclusion matrix of Bi ⊂ Bi+2.
Every component of each s(k) is positive, and this is true of v as well, so for all x
labeling a central projection of Bi, the set {τn(s(i+2n))x|n ∈ N)} is bounded and
bounded away from zero. Since Z(Bi) is finite-dimensional, there is some constant
c > 0 with c < τn(s(i+2n))x < c−1 for all n ∈ N, 1 ≤ x ≤ dimZ(Bi).

Likewise, let t(j) be the trace vector for Bj , with t
(j)
y equal to the trace of a

minimal projection in pyBj . From the Markov property of the trace on Bj ⊂ Bj+1,
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we have t(j+2n) = τnt(j) [11]. Again, finite-dimensionality of Z(Bj) implies that

there is d > 0 with d < τ−nt
(j)
y < d−1 for all n ∈ N, 1 ≤ y ≤ dimZ(Bj).

This implies that the traces of certain projections in the tower of relative com-
mutants are bounded away from zero.

Lemma 2.1. Choose 0 ≤ i ≤ j. There exists ε > 0 such that for all n ≥ 0 and
p > 0 a projection in B′

i+2n ∩Bj+2n, tr(p) ≥ ε.

Proof. Let p be a minimal projection in B′
i+2n ∩Bj+2n.

From the path algebra model of [17], the trace of p is equal to s
(i+2n)
x t

(j+2n)
y for

some 1 ≤ x ≤ dimZ(Bi), 1 ≤ y ≤ dimZ(Bj).
The above Perron-Frobenius argument implies that there are constants c > 0,

d > 0 such that c < τ−ns
(i+2n)
x , d < τnt

(i+2n)
y for all x, y, n. This means that

ε = cd < tr(p). �

The iterated shift Θn
ij is defined as

Θn
ij = Θi+2(n−1),j+2(n−1)Θi+2(n−2),j+2(n−2) · · ·Θi+2,j+2Θij .

This is a ∗-isomorphism from B′
i ∩Bj to B′

i+2n ∩Bj+2n.

Theorem 2.2. For all i, j there exists c > 0 such that for all x ∈ B′
i ∩ Bj and all

n > 0 we have

c||x||2 ≤ ||Θn
ij(x)||2 ≤ c−1||x||2.

Proof. Let p be a minimal projection in B′
i ∩ Bj . By the previous lemma we have

ε > 0 such that ε ≤ tr(p) ≤ 1, ε ≤ tr(Θn
ij(p)) ≤ 1 for all n. It follows that

ε2tr(p) ≤ tr(Θn
ij(p)) ≤ ε−2tr(p).

Any positive element is a linear combination of minimal projections, so this
inequality holds for all a > 0 in B′

i ∩Bj . Applying this to x∗x, we get

ε2tr(x∗x) ≤ tr(Θn
ij(x)

∗Θn
ij(x)) ≤ ε−2tr(x∗x)

since Θn
ij is a ∗-isomorphism. This gives

ε||x||2 ≤ ||Θn
ij(x)||2 ≤ ε−1||x||2. �

Let ω be a free ultrafilter of the natural numbers. If R is the hyperfinite II1
factor, we define the ultrapower Rω as the algebra of bounded functions from
the natural numbers to R, modulo those which approach zero strongly along the
ultrafilter. Convergence along the ultrafilter is defined using the ultralimit (see for
instance [10]): for a sequence of points (xi) in some topological space, we say that
limi→ω(xi) = L if for any neighborhood N of L there is a set S ⊂ N in the ultrafilter
such that xi ∈ N for all i ∈ S.

R embeds in Rω as constant sequences. The central sequence algebra Rω is then
defined as the subalgebra R′∩Rω, and both Rω and Rω are nonseparable II1 factors
(see e.g. [10]). If x = (xi) is an element of Rω, then tr(x) is defined as limi→ω tr(xi).

Take 0 ≤ i ≤ j. Theorem 2.2 gives a map from B′
i∩Bj into the central sequence

algebra (B∞)ω.

Lemma 2.2. Let Θ̃ be a map from B′
i ∩ Bj to l∞(N, B∞) defined by Θ̃(x) =

(Θn
ij(x)). Then Θ̃ is an injective homomorphism from B′

i ∩Bj into (B∞)ω.
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Proof. From Theorem 2.2, the sequence Θ̃(x) is bounded in ∞-norm, so it defines
an element of Bω

∞.
From the definition of the iterated shift Θn

ij , this element asymptotically com-
mutes with all the Bi’s, i.e., limn→ω ||[Θn

ij(x), y]||2 = 0 for y in any Bi. Since

the union of the Bi’s are dense in B∞, Θ̃(x) asymptotically commutes with every
element of B∞ and is contained in (B∞)ω.

Θ̃ is a homomorphism, since each Θn
ij is. From Lemma 2.1, the iterated shift is

bounded away from zero in 2-norm. So if x �= 0, the sequence Θ̃(x) does not ap-
proach zero in 2-norm and gives a nonzero element of the central sequence algebra.
In other words, Θ̃ is injective. �

Let α be a compatible automorphism. Take 0 < i < j, x ∈ B′
i+2 ∩ Bj+2. Then

since α fixes the Jones projections, we have

ej+2α(ρij(x)) = α(ej+2ρij(x))

= α(TijxT
∗
ij) = α(Tij)α(x)α(T

∗
ij) = Tijα(x)T

∗
ij .

This is the same as ej+2ρij(α(x)). So α commutes with ρij for all i, j. It follows
that α commutes with each Θij as well. Since inner automorphisms act trivially on
central sequences, this gives us a test for outerness of compatible automorphisms.

Lemma 2.3. Let the tower of Bi’s be as above. If α is a compatible automorphism
of B∞ and α does not act trivially on B′

0 ∩Bi for all i, then α is outer.

Proof. Let x be an element of B′
0 ∩ Bi, for some i ≥ 0. Suppose that α(x) �= x.

Then α(x)− x is a nonzero element of B′
0 ∩Bi, and so by Lemma 2.2 Θ̃(α(x)− x)

is a nonzero element of the central sequence algebra (B∞)ω.
α has a pointwise action on (B∞)ω which restricts to (B∞)ω. Since α commutes

with Θ and Θn, its pointwise action commutes with Θ̃. This means that α(Θ̃(x))−
Θ̃(x) = Θ̃(α(x)) − Θ̃(x) �= 0. So the induced action of α on central sequences
is nontrivial. Inner automorphisms act trivially on central sequences, so with the
above assumption, α is outer. �

We may conclude that if α is not outer, i.e., α = Adu for some unitary u ∈ B∞,
it must fix B′

0 ∩ Bi for all i. This means that u commutes with B′
0 ∩ Bi for all i,

and hence with the strong closure
⋃∞

i=0 B
′
0 ∩Bi

w
.

Lemma 2.4. Let the tower of Bi’s be as above. Then
⋃∞

i=0 B
′
0 ∩Bi

w
= B′

0 ∩B∞.

Proof. The following square commutes:

Bi ⊂ B∞
∪ ∪

B′
0 ∩Bi ⊂ B′

0 ∩B∞

The Bi’s are dense in B∞, so ||x − EBi
(x)||2 goes to zero as i goes to infinity.

EBi
(x) = EB′

0∩Bi
(x), so x is in the 2-norm closure of

⋃
i B

′
0 ∩ Bi. A sequence of

elements in B∞ converges strongly if it converges in 2-norm, implying that x is in
the strong closure of

⋃
i B

′
0 ∩Bi. �

These results imply that if Adu is compatible inner, then u must commute with
B′

0∩B∞. Finite-dimensional algebras in a II1 factor have the bicommutant property,
so u must be in B0 if Adu is compatible. Since compatible automorphisms are
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determined by their restriction to B1, we may make a slightly stronger statement,
as follows:

Theorem 2.3. Let the tower of Bi’s be as above. If α is a compatible automorphism
of B∞, then α is inner if and only if α|B1

= Adu|B1
for some unitary u ∈ B0.

Proof. First suppose that α is compatible and α|B1
= Adu|B1

for some unitary
u ∈ B0. Then α agrees with Adu on B1, and both automorphisms fix the ei’s. B1

and the ei’s generate B∞, so in this case α = Adu and is inner.
Conversely, let α be inner and compatible. Then α = Adu for some unitary

u ∈ B0, and α|B1
= Adu|B1

. �

This theorem reduces determining outerness of a compatible automorphism to a
purely computational problem.

3. Commuting square subfactors and group actions

In [3], Bisch and Haagerup introduce and investigate group-type subfactors of
the form MH ⊂ M �K, where H and K are finite groups with outer actions on a
II1 factor M . The principal and dual principal graphs of such subfactors may be
computed by finding the quotient G = H ∗ K/IntM . This requires being able to
determine whether a specified word w ∈ H ∗K produces an outer automorphism.
In general this may be difficult, even if M is hyperfinite.

We will apply this technique to the commuting square subfactors mentioned
in the introduction. We will give conditions for a commuting square subfactor
to be of fixed point or crossed product type, and describe how to compose two
such subfactors to obtain a Bisch-Haagerup subfactor. As we will see, in this case
the action of H and K is compatible with the Jones tower of the intermediate
subfactor. This will allow us to use the results of the previous section to classify
many previously intractable examples.

Definition 3.1. A commuting square

B0 ⊂ B1

∪ ∪
A0 ⊂ A1

of finite-dimensional von Neumann algebras A0, A1, B0, B1 with connected Bratteli
diagrams for the individual inclusions is symmetric if 1 ∈ A1EB0

A1 as operators
on L2(B1).

The Markov trace on B0 ⊂ B1 extends to B∞, and then restricts to A∞ ⊂ B∞
with no additional assumptions, producing a hyperfinite II1 subfactor. The index
[B∞ : A∞] of this inclusion is the squared norm of the inclusion matrix for the
algebras A0 ⊂ B0. Every symmetric connected commuting square admits a unique
Markov trace, so from now on we will assume that this is the trace we use for any
such commuting square.

In order for B∞ and A∞ to be factors, the horizontal inclusions in the above
square must be connected. However, we will not require the vertical inclusions to
be connected, since we are not concerned here with the vertical basic construction.

The following result is known to experts (cf. [19]); we include a proof for the
convenience of the reader.
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Theorem 3.1. Consider the symmetric, horizontally connected commuting square

A01 ⊂ A11

∪ ∪
A00 ⊂ A10

generating a subfactor N ⊂ M via horizontal iteration of the basic construction,
with Jones projections {ei}. Suppose that there exist intermediate algebras B0, B1,
as follows:

A01 ⊂ A11

∪ ∪
B0 ⊂ B1

∪ ∪
A00 ⊂ A10.

Assume B0 ⊂ B1 is connected, and the quadrilateral

A01 ⊂ A11

∪ ∪
B0 ⊂ B1

commutes. Then there is an intermediate subfactor P obtained by iterating the
basic construction on the Bi’s, and P ⊂ M and N ⊂ P arise from the upper and
lower commuting squares, respectively, of the original diagram.

Proof. The ideal B1EA10
B1 necessarily contains the identity, since the original com-

muting square is symmetric and A10 ⊂ B1. Therefore the upper commuting square

A01 ⊂ A11

∪ ∪
B0 ⊂ B1

is symmetric, and is Markov by hypothesis. Let Bi+1 = {Bi, ei+1}′′; then by the
symmetric property all inclusions Bi ⊂ Bi+1 ⊂ Bi+2 are standard. The Markov
trace on the Ai1’s restricts to one on the Bi’s [17], and we obtain an intermediate

subfactor N ⊂ P =
⋃

i Bi
w ⊂ M .

The lower quadrilateral
B0 ⊂ B1

∪ ∪
A00 ⊂ A10

automatically commutes, since EA10
(B0) ⊂ EA10

(A01) = A00. To compute
A10EB0

A10 as operators on L2(B1), we note that 1 ∈ A10EA01
A10 as operators on

L2(A11). Multiplying both sides by EB1
, we find that EB1

∈ A10EB1
EA01

A10, since
EB1

commutes with A10. Since the upper quadrilateral commutes by assumption,
we have EB1

EA01
= EB0

. Therefore EB1
∈ A10EB0

A10, as operators on L2(A11).
If we restrict to L2(B1), then EB1

is the identity, showing that 1 ∈ A10EB0
A10 on

L2(B1). Also we have already shown that the trace on B1 is the Markov trace for
the inclusion B0 ⊂ B1. So the lower quadrilateral is symmetric Markov, and we
can obtain the subfactor N ⊂ P by iterating the basic construction on it.

We conclude that N ⊂ P and P ⊂ M are both commuting square subfactors,
generated by

B0 ⊂ B1

∪ ∪
A00 ⊂ A10
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and
A01 ⊂ A11

∪ ∪
B0 ⊂ B1,

respectively. �

In [19] Landau showed that if a commuting square subfactor N ⊂ M has an
intermediate subfactor P , then intermediate algebras B0 ⊂ B1 exist, with upper
and lower symmetric commuting squares as above. The above theorem may be
thought of as an almost trivial converse of this result.

As we will see later in this section, certain assumptions on the small commuting
squares will allow us to describe the subfactor N ⊂ M as a composition of depth-
2 subfactors PH ⊂ P � K. From [3], in order to find the principal and dual
principal graphs of these group-type subfactors, it is sufficient to find the group
generated by H and K in OutP . While this task can be complicated in general, it
is relatively simple when the actions of H and K on a factor B∞ (defined as above)
are compatible with the tower of the Bi’s.

Theorem 3.2. Let P be the II1 factor obtained by iterating the basic construction
on an inclusion of finite-dimensional von Neumann algebras B0 ⊂ B1. Let H and
K be finite groups with outer actions on P , with both actions compatible with the
tower of the Bi’s. Let ρ be the representation of H ∗K obtained by combining these
actions. Then G = H ∗K/IntP may be computed by considering only ρ|B1

.

Proof. To find G = H ∗K/IntP , it is sufficient to be able to determine whether ρw
is outer for an arbitary word w ∈ H ∗K. But since H and K map into the group
of compatible automorphisms, ρw is compatible as well. It follows that ρw is inner
if and only if ρw|B1

= Adu|B1
for some unitary u ∈ B0 by Theorem 2.3. �

This can be computed rapidly for any particular w, assuming that B1 is a rea-
sonable size. If we have more information about the structure of G, it may only be
necessary to evaluate a few thousand words, or even fewer. In some cases further
simplifications occur, and this computation can be done by hand. Note that this
result does not require H and K to have trivial intersection in OutP .

For our purposes, Hadamard matrices are incorrectly scaled: we take a complex
Hadamard matrix to be an n × n unitary matrix whose entries all have the same
complex modulus, namely n−1/2. If H is an n×n complex Hadamard matrix, then
from [16] it is the biunitary connection for a commuting square of the form

Cn ⊂ Mn(C)
∪ ∪
C ⊂ HC

nH∗.

Likewise, if such a quadrilateral commutes, with H an n× n matrix, then H must
be a Hadamard matrix.

These are so-called Hadamard (or spin model) commuting squares [16]. They
are symmetric and connected, and so with their Markov trace they give subfactors
via iteration of the basic construction [17].

Definition 3.2. A Hadamard subfactor is a subfactor obtained by iterating the
basic construction on the commuting square coming from a complex Hadamard
matrix.
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Two Hadamard commuting squares are isomorphic if their matrices are Hada-
mard equivalent, i.e., if the matrices can be obtained from each other by the op-
erations of permuting rows and columns, and by multiplying rows and columns by
scalars of modulus 1 [16]. In this case the corresponding Hadamard subfactors are
the same. The index of a Hadamard subfactor is equal to the size of the matrix.

If G is a finite abelian group with |G| = n, then its left regular representation
on l2(G) = l∞(G) gives rise to the commuting square

C[G] ⊂ Mn(C)
∪ ∪
C ⊂ l∞(G)

by taking Mn(C) = l∞(G)�G.
Any two maximal abelian subalgebras of Mn(C) are unitarily equivalent, so there

exists HG ∈ Mn(C) with AdHG(C[G]) = l∞(G). Since the above square commutes,
HG must be a complex Hadamard matrix. We construct HG as follows.

For an abelian group G, Hom(G,C) is isomorphic to G. Specifically, G has n
one-dimensional representations {ρg}, with ρg(x)ρh(x) = ρgh(x) for g, h, x ∈ G.
Indexing the rows and columns by elements of G, we then let (HG)ij = ρj(i)
(different indexing of the representations does not change the Hadamard equivalence
class). This is the discrete Fourier transform of the group G [12] and is known as
the Fourier matrix when G is cyclic.

The following result is well known; see e.g. [16].

Proposition 3.1. The discrete Fourier transform HG of a finite abelian group G
gives the commuting square

C[G] ⊂ Mn(C)
∪ ∪
C ⊂ l∞(G).

and the corresponding Hadamard subfactor is R ⊂ R �G.

Let H1 and H2 be complex Hadamard matrices, of sizes m and n, respectively.
Then their tensor product H = H1 ⊗ H2 is unitary. If we take i, k ∈ {1, . . . ,m},
j, l ∈ {1, . . . , n}, then the matrix entry Hij,kl is equal to (H1)ik(H2)jl. Since H1

and H2 are Hadamard, the complex modulus of this entry does not depend on i,
j, k, l, and H is Hadamard as well. The twisted tensor product is defined as the
matrix Hij,kl = (H1)ik(H2)jlλil, where each λil is an arbitrary complex number of
modulus 1. Each matrix entry of this twisted tensor product has the same complex
modulus, namely (nm)−

1
2 . To see that H is still unitary, we take T to be the

unitary element of the diagonal algebra Δm ⊗Δn with components Tgh,gh = λgh.
Then H is equal to the matrix product (1⊗H2)T (H1 ⊗ 1), which is unitary.

Theorem 3.3. Let H1 = H∗
H and H2 = HK , for finite abelian groups H and K.

Let T ∈ T
|H||K| be a twist. Then the twisted tensor product H = (1⊗H2)T (H1⊗1)

induces a Hadamard subfactor of Bisch-Haagerup type.

Proof. Applying the Hadamard matrix H to the tower of algebras

C ⊂ Δm ⊗ 1 ⊂ Δm ⊗Δn ⊂ Mm(C)⊗Δn ⊂ Mm(C)⊗Mn(C)
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gives the following diagram:

Δm ⊗Δn ⊂ Mm(C)⊗Δn ⊂ Mm(C)⊗Mn(C)
∪

∪ ∪
⊂ Mm(C)⊗ 1 ⊂

Δm ⊗ 1 H(Mm(C)⊗Δn)H
∗

⊂ H(Mm(C)⊗ 1)H∗ ⊂
∪ ∪

∪
C ⊂ H(Δm ⊗ 1)H∗ ⊂ H(Δm ⊗Δn)H

∗.

Every inclusion in the above diagram is immediate except for two of them,
namely Δm ⊗ 1 ⊂ H(Mm(C) ⊗ 1)H∗ and Mm(C) ⊗ 1 ⊂ H(Mm(C) ⊗ Δn)H

∗.
We will show that both of these inclusions are correct.

Note first that H1 ⊗ 1 normalizes Mm(C) ⊗ 1 so H(Mm(C) ⊗ 1)H∗ =
(1⊗H2)T (Mm(C⊗1)T ∗(1⊗H2)

∗. Δm⊗1 is contained in Mm(C)⊗1 and commutes
with both T and 1⊗H2, so Δm ⊗ 1 ⊂ H(Mm(C)⊗ 1)H∗.

Now we considerH(Mm(C)⊗Δn)H
∗. Mm(C)⊗Δn is the commutant inMm(C)⊗

Mn(C) of 1⊗Δn, so H(Mm(C)⊗Δn)H
∗ = (H(1⊗Δn)H

∗)′ as well. But H1 ⊗ 1
and T commute with 1⊗Δn, so this is the commutant of (1⊗H2)(1⊗Δn)(1⊗H∗

2 ).
We conclude that

H(Mm(C)⊗Δn)H
∗ = Mm(C)⊗ (H2ΔnH

∗
2 ),

which includes Mm(C)⊗ 1.
So all inclusions in the above diagram are correct.
Next we compute the conditional expectation

EMm(C)⊗Δn
(Δm ⊗Δn) = Δm ⊗ EH2ΔnH∗

2
(Δn).

Since
Cn ⊂ Mn(C)
∪ ∪
C ⊂ H2C

nH∗
2

commutes, the above conditional expectation is Δm ⊗ 1, implying that

Δm ⊗Δn ⊂ Mm(C)⊗Mn(C)
∪ ∪

Δm ⊗ 1 ⊂ H(Mm(C)⊗Δn)H
∗

commutes as well. Furthermore, Δm ⊗ 1 ⊂ H(Mm(C) ⊗ Δn)H
∗ is a connected

inclusion, since (Δm ⊗ 1) ∩ (Mm(C) ⊗ 1)′ = C. From Theorem 3.1, we then have
an intermediate subfactor P , obtained by iterating the basic construction on

Δm ⊗ 1 ⊂ H(Mm(C)⊗Δn)H
∗.

From the definition of the group Hadamard matrix, we have {vh} ⊂ Δm such that
H1vhH

∗
1 acts via the left regular representation of H on Δm = l∞(H). Let uh =

H(vh ⊗ 1)H∗. By the definition of H this acts via the left regular representation
on (1⊗H2)T (Δm ⊗ 1)T ∗(1⊗H2)

∗ = Δm ⊗ 1.
So uh is an element of H(Mm(C) ⊗ ΔN )H∗ which normalizes Δm ⊗ 1. Aduh

therefore induces a compatible action on P . This action is outer for h �= 1, since
any element of Δm ⊗ 1 acts trivially by conjugation on Δm ⊗ 1, while uh acts on
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this algebra by nontrivial permutation of the minimal projections. We therefore
obtain an outer compatible action of H on P , induced by Ad(uh).

Since uh ∈ H(Δm ⊗ Δn)H
∗, and this algebra is abelian, PH contains

H(Δm ⊗ Δn)H
∗. The action of H is compatible, so ei ∈ PH as well, implying

that N ⊂ PH . The index [P : PH ] = m = [P : N ], so in fact N = PH with the
action of H induced by Aduh.

Likewise, we have vk ∈ Δn acting via the left regular representation of K on
H2ΔnH

∗
2 . Taking uk = 1⊗vk, this gives {uk} as elements of Δm⊗Δn, which act via

conjugation on Mm(C)⊗ (H2ΔnH
∗
2 ) = H(Mm(C)⊗Δn)H

∗ and normalize (in fact
act trivially on) Δm ⊗ 1. uk commutes with the horizontal Jones projections {ei},
so Aduk fixes these projections and acts compatibly on P . Aduk acts nontrivially
on the center of H(Mm(C) ⊗ Δn)H

∗: this center is 1 ⊗ H2ΔnH
∗
2 (see above), so

uk acts on it according to the left regular representation. Therefore the induced
action is outer. This means that we have the factor P � K embedded in M as
the algebra generated by P and {uk}, with the action given by Ad(uk). Since
[M : P ] = n = [P �K : P ], in fact M = P �K.

Therefore the subfactor is PH ⊂ P �K, and it may be analyzed using [3]. �

We now give more detail on the role of the twist in producing the actions of
H and K for a twisted tensor product Hadamard subfactor, with all notation as
above.

Let T̃ = (1 ⊗ H2)T (1 ⊗ H∗
2 ). Then T̃ ∈ B′

0 ∩ B1. Since H1 ⊗ 1 and 1 ⊗ H2

normalize Mm(C)⊗ 1,

Ad(T̃ )(Mm(C)⊗ 1) = Ad(T̃ (H1 ⊗H2))(Mm(C)⊗ 1) = AdH(Mm(C)⊗ 1).

So conjugating by T̃ sends one of these two matrix algebras to the other.
We have uh ∈ H(Mm(C)⊗1)H∗, while 1⊗uk commutes with Mm⊗1. It follows

that if T̃ normalizes Mm ⊗ 1, then the two group actions commute with each other
and we are again in the depth-2 case. Conversely, for general T , the two algebras
Mm ⊗ 1 and AdT (Mm ⊗ 1) are different, and we will not expect the actions to
commute.

As before, let a(h) = (H1vhH
∗
1 ) ⊗ 1, a(k) = 1 ⊗ vk. This still provides an

induced action α of H ⊕ K on P , but a(h) does not commute with N , so this
direct sum no longer describes the structure of the subfactor. Instead, note that
uh = H(vh⊗1)H∗ = AdT̃ (a(h)), since 1⊗H2 commutes with a(h). T̃ itself induces

a compatible automorphism τ on P , since AdT̃ normalizes B1 and B0. It follows
from the properties of compatible automorphisms that uh induces the compatible
automorphism ταhτ

−1.
This allows us to describe the correct action β of the free product H ∗K. Let

b(h) = T̃ a(h)T̃ ∗, b(k) = a(k). b induces the compatible action β, defined by
βh = ταhτ

−1, βk = αk. We have N = PH , M = P � K for this action, so the
properties of the subfactor N ⊂ M may be determined by examining b(H ∗ K).
For general T , ταhτ

−1 will not commute with αk, even as elements of OutP . This
construction will therefore provide Hadamard subfactors of depth greater than 2.

Theorem 3.4. Take β a representation of H ∗ K as above. Let N1 be the first
commutator subgroup of H ∗K, N2 the second commutator subgroup. Let S̃ = kerβ,
S = {g|β(g) ∈ IntR}. Then N2 ⊂ S̃ ⊂ S ⊂ N1.

Proof. We have S̃ ⊂ S by definition.
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Adb(h) acts on B0 = Δm ⊗ 1 via permutation but acts trivially on the center of
B1, i.e., 1⊗ (H2ΔnH

∗
2 ); Adb(k) does the opposite. If x ∈ H ∗K but x �∈ N1, then

b(x) must nontrivially permute the minimal projections of B′
0∩B1. Therefore such

b(x) are outer, since Adu acts trivially on this set for u ∈ B0. This gives S ⊂ N1.
Now let x be in N1. Adb(x) fixes B′

0 ∩B1, since the induced permutations of B0

and Z(B1) are trivial. This means that b(x) commutes with this algebra.
But Δm ⊗ (H2ΔnH

∗
2 ) is maximal abelian in Mm(C)⊗Mn(C), so b(x) must be

contained in B′
0∩B1. Since this algebra is abelian, b(x) must commute with b(n) for

every other element n of N1. This means that the induced actions on P commute
as well, and b(N1) is abelian. So b(x) is the identity for all x ∈ N2, and N2 ⊂ S̃. �

Each element of any group with the above properties may be written uniquely
as hkn, h ∈ H, k ∈ K, n ∈ N1. We therefore write

G = H ∗K/IntP ∩H ∗K = HKN.

N is an abelian group generated by the (|H| − 1)(|K| − 1) elements of the form
hkh−1k−1, h �= 1 ∈ H, k �= 1 ∈ K, and is a normal subgroup of H ∗K. We may
determine N = N1/IntP , and therefore G itself, by determining which elements n
of N1 have βn outer.

From Theorem 2.3, βn is inner if and only if Adb(n)|B1
= Adu|B1

for some
unitary u ∈ B0, with B0 and B1 as above. This will be true if and only if b(n) = uv,
where u and v are unitary elements of B0, Z(B1), respectively. This allows us
to readily determine the order in OutP of each generator of N1, and hence the
structure of the group N1/Int.

To find H ∗ K/Int, we must also know how H and K act on N ; i.e., hnh−1

and knk−1 for h ∈ H, k ∈ K, n ∈ N . To find these, we consider B′
0 ∩ B1 =

l∞(H) ⊗ l∞(K) = l∞(H ⊕ K). In this representation, two elements of B′
0 ∩ B1

induce the same compatible automorphism up to inner perturbation if they differ by
a unitary u with coordinates u(h, k) = f(h)g(k), where f and g are functions from
H and K, respectively, to the complex scalars of modulus 1. We may therefore put
each element of N in a unique standard form, with nstd(1, k) = 1 = nstd(h, 1). With
this description of N , Adb(H) and Adb(K) act via the left regular representation ρ
on the appropriate component. We know that hnh−1 must be equivalent to some
n′ ∈ N , and we can readily determine which one by putting hnh−1 in standard
form. The same holds true for the action of K.

The above description of N provides a particularly good way of writing the
generators. For x = b(hkh−1k−1) ∈ b(N), we know that

x = T̃ a(h)T̃ ∗a(h)T̃ a(g−1)T̃ ∗a(h−1).

T̃ is itself an element of B′
0∩B1 = l∞(H⊕K). Ada(h) and Ada(k) act on l∞(H⊕K)

via the left regular representation ρ, so we have

x = T̃ ρh(T̃
∗)ρhk(T̃ )ρhkh−1(T̃ ∗)a(h)a(k)a(h−1)a(k−1).

[ρh, ρk] = 0 = [a(h), a(k)], so we have

(1) b(hkh−1k−1) = Tρh(T∗)ρk(T ∗)ρhk(T ).

This gives us x = b(hkh−1k−1) as an element of B′
0 ∩B1.

This allows the complete computation of G = H ∗K/Int = HKN for any twisted
tensor product Hadamard subfactor. Using the methods of [3], we may then obtain
the principal graphs.
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Since B0 is fixed by K, multiplying T̃ by an inner z ∈ B0 will not affect any of
the generators of N : the change to b(hkh−1k−1) will be multiplication by

zρh(z
∗)ρk(z

∗)ρhk(z) = zρh(z
∗)z∗ρh(z) = 1

for any h ∈ H, k ∈ K. The same is true of any perturbation coming from Z(B1).

We may therefore put T̃ itself in standard form without affecting the action of
β(N). The size of the group G is determined by β|N ; as we will see in section 5, the
3-cocycle obstruction associated with the action of G is as well. The group G and
its 3-cocycle determine the standard invariant of a Bisch-Haagerup subfactor for
groups with the above characteristics (see [2]) so we only need to consider twists in
standard form. This will give us a better idea of the size of the space of examples
obtained from this construction.

4. Classification of Bisch-Haagerup subfactors

Before giving specific examples, we will discuss the classification up to subfactor
isomorphism of the subfactors obtained from this twisted tensor product in the
finite depth case.

In this section we summarize some results from [14], which we will use to classify
our group actions.

Let G̃ be a finite group acting via ρ on the hyperfinite II1 factor R, with inner
subgroup S. Let S be implemented by unitaries us, i.e., ρs = Adus for s ∈ S. For
g ∈ G̃, s, s′ ∈ S, we have ρg(ug−1sg) = λ(g, s)us, usus′ = μ(s, s′)uss′ . Here λ is

a function from G̃ × N to the complex scalars of modulus 1, and μ is a similar
function on N ×N .

Jones defines the characteristic invariant ΛG̃,S as the set of all such pairs (λ, μ)
which are allowable, in the sense that they can actually arise from some action of
G̃ on R.

Jones also defines the inner invariant, which is determined from the restriction
of the trace to C[S].

Two actions of G̃ (fixing the inner subgroup S) are conjugate if and only if their
characteristic invariants and inner invariants are the same.

An action of G̃ on R provides a representation of the kernel G = G̃/S in OutR.
This representation lifts to an action of G on R if and only if the associated ob-
struction ω ∈ H3(G) is zero. ω may be computed from the characteristic invariant.

In fact, from [14] there is an exact sequence H2(G̃) → Λ(G̃, S) → H3(G).
Now we will show that outer conjugacy of two actions of H ∗ K gives isomor-

phism of the corresponding Bisch-Haagerup subfactors, with some conditions on
the action.

Definition 4.1. A triplet isomorphism of Bisch-Haagerup subfactorsMH ⊂ M�K
and PH ⊂ P �K is a subfactor isomorphism which additionally sends M to P .

Lemma 4.1. Suppose ρ and σ are conjugate actions of H ∗K on the hyperfinite
II1 factor R. Then they induce triplet isomorphic Bisch-Haagerup subfactors.

Proof. Let α be an automorphism of R with αρα−1 = σ. Then α(Rρ(H)) = Rσ(H).
Moreover, α extends to an isomorphism from R �ρ K to R �σ K, by sending the
uk’s in the first crossed product to the uk’s in the second. This provides a triplet
isomorphism. �
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Lemma 4.2. Let ρ be an action of H ∗ K on the hyperfinite II1 factor R. Let
uH , uK be unitaries in R. Let σ be an action of H ∗ K on R, defined by σh,k =
AdvH,Kρh,kAdv∗H,K for h ∈ H, k ∈ K, respectively. Then ρ and σ induce triplet
isomorphic Bisch-Haagerup subfactors.

Proof. By the previous lemma, conjugating σ by Adv∗H induces a triplet isomor-
phism. So we may take vH = 1 without loss of generality. Then we define
α : R �σ K → R �ρ K by αR = id, α(uk) = vKukv

∗
K for k ∈ K. This is a

triplet isomorphism. �

Theorem 4.1. Let G̃ be a finite group, generated by two subgroups H and K. Let
ρ and σ be outer conjugate representations of G̃ on the hyperfinite II1 factor R,
with inner subgroup ρ(G̃∩ IntR) = σ(G̃∩ IntR) = N . Let there be homomorphisms
θH , θK from G to H and K, respectively, with θH |H and θK |K equal to the identity
and θH,K |N trivial. Then the Bisch-Haagerup subfactors induced by ρ and σ are
isomorphic.

Proof. We consider the representation of G̃ on R⊗B(L2(H))⊗B(L2(K)) given by

ρ ⊗ 1 ⊗ 1. This representation of G̃ has the same inner subgroup, inner invariant
and characteristic invariant as ρ, so these two representations are conjugate by [14],
and induce the same Bisch-Haagerup subfactor by Lemma 4.1. The same is true of
σ and σ ⊗ 1⊗ 1.

Since ρ and σ are outer conjugate, they differ by at most a unitary 1-cocycle,
possibly with scalar 2-cohomology. That is, there exist unitaries {ug} for each

g ∈ G̃ such that σ(g) = Adugρ(g), with some scalar 2-cocycle μ : G×G → C such
that ug1g2 = μ(g1, g2)ug1ρg1(ug2).

Now let {vh} be unitaries in B(L2(H)) such that vh1h2
= μ(h1, h2)vh1

vh2
for

h1,2 ∈ H, and {vk} ⊂ B(L2(K)) likewise obeying vk1k2
= μ(k1, k2)vk1

vk2
for

k1,2 ∈ K. Define a represention α of G̃ by α(g) = σ(g)⊗AdvθH(g) ⊗AdvθK(g).
This is an inner perturbation of σ⊗1⊗1, so it has the same inner subgroup. Since

θH and θK are trivial on N , α(n) = σ(n)⊗ 1⊗ 1 for n ∈ N and the representations
have the same inner invariant. The unitaries implementing the inner subgroup of
G̃ for the representation α may be taken to be of the form u ⊗ 1 ⊗ 1, and α and
σ⊗1⊗1 agree on all such elements, so the characteristic invariants of α and σ⊗1⊗1
are also the same. Therefore σ ⊗ 1 ⊗ 1 and α are conjugate, and induce the same
Bisch-Haagerup subfactor by Lemma 4.1.

From the definition of the vH ’s, {uh ⊗ vh ⊗ 1} is a unitary 1-cocycle without
cohomology for the representation ρ⊗ 1⊗ 1 restricted to H. That is, for h1,2 ∈ H
we have uh1h2

⊗ 1 ⊗ vh1h2
= uh1

ρ(uh2
) ⊗ 1 ⊗ vh1

vh2
, with no additional scalars.

By stability of finite group actions on R, this means there is some unitary xH in
R⊗B(L2(H))⊗B(L2(K)) with uh⊗vh⊗1 = xH(ρh⊗1⊗1)(x∗

H). The same argument
gives us xK ∈ R⊗B(L2(H))⊗B(L2(K)) with uh ⊗ 1⊗ vk = xK(ρh ⊗ 1⊗ 1)(x∗

H)
for k ∈ K.

This means that

α|H = AdxH(ρ⊗ 1⊗ 1)Adx∗
H

and

α|K = AdxK(ρ⊗ 1⊗ 1)Adx∗
K .

So by Lemma 4.2, α and ρ ⊗ 1 ⊗ 1 induce the same Bisch-Haagerup subfactor.
Therefore ρ and σ do so as well. �
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Additionally, we may freely apply automorphisms to H and K separately (or
their group algebras) without affecting the triplet isomorphism class.

We will now give a converse of Theorem 4.1. As before, let H and K be finite
groups, ρ and σ actions of H ∗K on M , P , respectively, with outer restrictions to
H and K.

Theorem 4.2. Let MH ⊂ M � K be triplet isomorphic to PH ⊂ P � K via
α : P � K → M � K, i.e., α(P ) = M , α(PH) = MH . Then ρ and σ are outer
conjugate.

Proof. Take σ̃ = ασα−1. This gives actions of H and K on α(P ) = M . Since
α(PH) = MH , σ̃|H commutes with left and right multiplication by MH . Any such
linear operator on B(L2(M)) is contained in the relative commutant (MH)′∩M�H;
this is equal to C[H], where the action of H is implemented by ρ. So σ̃ and ρ give
the same H-action, up to group algebra automorphism of H.

Let N be the fixed-point algebra of M under the action of σ̃|K . Since α(P ) = M
and α(P � K) = M � K, we have N ⊂ M ⊂ M � K isomorphic to the basic
construction on N ⊂ M . Therefore N differs from MH by an inner automorphism,
i.e., N = uMKu∗ for some unitary u ∈ M . It follows as above that σ̃k = uρku

∗ for
k ∈ K, up to group algebra automorphism of K.

We conclude that up to inner perturbation, σ̃ and ρ agree on H and K, and
hence on the free product. So triplet isomorphism of the corresponding subfactors
implies that ρ and σ are outer conjugate, up to separate automorphisms of the
individual group algebras. �

Summarizing the results of this section, let ρ be an action of H ∗ K on the
hyperfinite II1 factor R, with inner subgroup S and with S̃ = ρ−1(id) ⊂ S. Assume

G = H ∗ K/S̃ is a finite group, and that S is contained in the first commutator
subgroup N1 ofH∗K. For such actions, there is a homomorphism from G toH⊕K,
namely the quotient of G by the normal subgroup N1/S̃, and the two components
of this homomorphism satisfy the condition of Theorem 4.1.

Therefore in such cases, outer conjugacy of the action is equivalent to triplet
subfactor isomorphism MH ⊂ M ⊂ M �K ∼= PH ⊂ P ⊂ P �K.

In [7], Bisch, Nicoara and Popa considered subfactors MH ⊂ M � K where
H is abelian and K is cyclic of prime order. They showed that the normalizer
of MH in M � K is equal to M for any such subfactors. Since normalizers are
preserved by isomorphism, this again means that subfactor isomorphism implies
triplet isomorphism in all such cases, and is equivalent to outer conjugacy (up to
automorphism of the group algebras of H and K) given the above restriction on
the action.

5. Applications to Hadamard subfactors

We now take the outer actions ofH andK on the hyperfinite II1 factor P to come
from the twisted tensor product of two group Hadamard matrices, as described in
section 3.

In this case, the condition in Theorem 4.1 on the action of H ∗K is always true.
From Theorem 3.4, the inner subgroup of H∗K is contained in the first commutator
subgroup N1. Therefore the quotient map H ∗ K → H ∗ K/N1 = H ⊕ K factors
through H ∗K/IntP , and may be defined on H ∗K/IntP = G. This quotient map
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(pH , pK) has the properties in the assumption of the theorem. It follows that outer
conjugacy of actions implies subfactor isomorphism in the Hadamard case.

Furthermore, H and K must be abelian, so the result of [7] will frequently
apply; if H or K is prime order cyclic, then subfactor isomorphism implies triplet
isomorphism, and is therefore equivalent to outer conjugacy.

Let G = H ∗K/IntP be finite. Let G̃ ⊂ AutP be a finite group with G̃/IntP = G

and G̃ ∩ IntP = S. From [14], such a finite G̃ always exists. We will take G̃ to act
on P via the representation ρ. The inner subgroup S is in general nontrivial. As
above, we know that S must be contained in the first commutator subgroup Ñ of
G̃. Since G̃ has a compatible action, from Theorem 2.3 each element of S may be
implemented by some us ∈ B0 = Δm = l∞(H), where the tower of Bi’s is as in
section 3.

We now compute the characteristic invariant of G̃. B0 = l∞(H), so we may
consider us to be a vector with components labeled by elements of H. Since the
us’s are only determined up to scalars, we may require (us)1 = 1. It follows that if
usu

′
s = μuss′ for some scalar μ, then μ = 1. Therefore μ is trivial for these actions.

Each element g of G̃ may be written as g = hkn, h ∈ H, k ∈ K, n ∈ Ñ =
N1/ ker(ρ). Since, for the Hadamard action, K and Ñ act trivially on B0, ρkn(us) =
us for k, n as above and s ∈ S. This means we have λ(kn, s) = 1 and λ(hkn, s) =
λ(h, s) for k, n, s as above and h ∈ H. Therefore the characteristic invariant is
determined by λ|H×S.

From the definition of λ we have ρh(uh−1sh) = λ(h, s)us. We may determine this
scalar by examining the first component. Since (λ(h, s)us)1 = 1 from our choice
of us, and ρh acts via the left regular representation on the minimal projections of
B0, we may compute λ(h, s) = ρh(uh−1sh)1 = (uh−1sh)h−1 . So the coordinates of
the us’s determine the characteristic invariant, and vice versa.

It follows that the existence of any nontrivial inner subgroup implies a nonzero
characteristic invariant, although the induced element of H3(G) may sometimes

still be a coboundary. In addition, if ρ and σ give actions of the same group G̃
on P , with the same inner subgroup S ⊂ G̃ and the inner elements {us} have the
same coordinates, then their characteristic invariants are the same. In such a case
the 3-cocycle obstructions are the same, the actions are outer conjugate, and the
subfactors are isomorphic.

Applying [3] to find the principal graph for these Hadamard group actions is
in some ways easier than in the general case. The local freeness condition of [3]
(hgk = x for h ∈ H, k ∈ K, g ∈ G only if h = k = 1) will always apply, so
the odd vertices of the principal graph correspond to the H − K double cosets
{HnK|n ∈ N}. Even vertices in the principal graph correspond to H −H double
cosets HgH. We find the edges of the graph by decomposing HnKH into such
double cosets. From the above description of G, if k �= k′, then HnkH and Hnk′H
are disjoint, so there is always one such double coset for each element of K. Finding
the number of single H-cosets in each HnkH (taking advantage of the relatively
simple multiplication table of G) then allows us to complete the principal graph.
The dual principal graph is computed similarly.

First we consider Hadamard subfactors of index-4. Note that some of what
follows is well known (see e.g. [9], [16]). Let H = K = Z2. In this case H1 and

H2 are both 1√
2

(
1 1
1 −1

)
, and their tensor product is the unique real 4-by-4
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Hadamard matrix

1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ .

Wemay write the twist as (α, β, γ, δ) ∈ l∞(Z2⊕Z2). Putting the twist into standard
form sends all the parameters to 1 except δ. Applying a twist of T = (1, 1, 1, δ)
gives the twisted tensor product

H =
1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 δ −1 −δ
1 −δ −1 δ

⎞
⎟⎟⎠ .

All size 4 complex Hadamard matrices are contained in a single one-parameter
family [12]. As δ takes on values in the torus, H varies over this entire family. In
other words, all 4× 4 Hadamard matrices are twisted tensor products.

We know that the group G = H ∗ K/Int is of the form HKN , N a normal
subgroup of G, from Theorem 3.4. H and K are each generated by a single order-2
element, respectively, h and k.

N has a single generator n = hkhk. From equation (1) in section 3, this com-
patible automorphism is induced by Adb(n), where

b(n) = T̃ ρh(T̃
∗)ρk(T̃

∗)ρhk(T̃ ) ∈ B′
0 ∩N1.

For convenience we write elements of N ⊂ B′
0∩B1 in array form, since this abelian

algebra has one minimal projection for each pair (h, k), h ∈ H, k ∈ K. These are
not matrices—multiplication is still pointwise. We will consider rows to be labeled
by elements of H, columns by elements of K. So

b(n) =

[
δ δ

δ δ

]
.

This element of B′
0 ∩B1 will induce an inner automorphism when it is constant

along each row. This occurs when δ2l = δ2l, i.e., when δ2l = ±1.
Suppose that δ is a rational rotation. Then let l be the smallest natural number

such that δ4l = 1. This means that δ2l = ±1, and N = Zl, generated by n = hkhk.
hnh = knk = n−1, implying that G = H ∗K/Int = HKN/Int is the dihedral group
D2l. Generators are s = h and t = hk, with t2k = s2 = stst = 1.

If δ is an irrational rotation, this group is D∞.
Now we consider cohomology. If δ is rational, we take the two cases δ2l = 1 and

δ2l = −1.
If δ2l = 1, then (hkhk)n is the identity, and we have a true outer action of

H ∗K = D2l. Any two outer actions of a finite group are conjugate [14], so for any
choice of δ with δ2l = 1, the corresponding Hadamard subfactors are isomorphic
(see section 4).

Now suppose δ2l = −1. In this case (hkhk)n is a nontrivial inner u = (1,−1) ∈
B0 = Δm⊗ 1, with u2 = 1. This allows us to extend the representation of H ∗K =
D2l in OutP to an action of D4l on P with inner subgroup {1, u} = Z2. u does
not depend on the particular choice of root, so the characteristic invariant and
associated 3-cocycle of G = D2n are the same for any such δ. It follows that the
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group actions are outer conjugate and all such subfactors are again isomorphic
(again, see section 4).

This means that there are at most two nonisomorphic Hadamard subfactors with

each graph D
(1)
2l+1 at index-4. In [13] Izumi and Kawahigashi found that there are

n − 2 subfactors with principal graph D
(1)
n for any n. This means that many of

these subfactors cannot be constructed from Hadamard commuting squares.
It remains to show that the case δ2l = ±1 gives distinct subfactors. To do this

we show that the associated 3-cocycles are different.
We consider the cyclic subgroup of D4l generated by a = hk in the case δ2l = −1.

a has order 2l in OutP , with al = Adu. Now, λ(a, al) = −1, since hk(u) = −u. This
is a nontrivial characteristic invariant, but cyclic groups have trivial 2-cohomology,
so it does not come from a 2-cocycle on the subgroup. Therefore from the exact
sequence of [14], the kernel in OutR of this subgroup has nontrivial associated 3-
cocycle, implying the kernel of the full group does as well. Since the cocycle is
trivial in the case δ2l = 1, the two corresponding Hadamard subfactors are not
isomorphic.

This completes the classification of the index-4 Hadamard subfactors.
Now we will describe some index-6 examples. Let H = Z2, K = Z3. Both of

these groups are cyclic of prime order, so from section 4 and [7] outer conjugacy of
group actions is equivalent to subfactor isomorphism, up to automorphism of the
two small groups. H has one nontrivial automorphism, so this will be relevant. We
construct twisted tensor products of the depth-2 Hadamard matrices corresponding
to H and K.

The first commutator subgroup of the resulting quotient of H ∗K is an abelian
group with two generators, namely x = hkhk2 and y = hk2hk. Each one of these
generators may be represented as a unitary in C[H ⊕K] as above.

Let the twist be (1, 1, 1, 1, χ, ξ) in standard form. In this case we compute from
equation (1) in section 3

b(x) =

[
ξ χ ξχ

ξ χ ξχ

]
, b(y) =

[
χ χξ ξ

χ χξ ξ

]
.

Multiplying a column by a scalar is trivial, so x and y are, respectively, induced
by [

1 1 1

ξ
2

χ2 ξ2χ2

]
,

[
1 1 1

χ2 χ2ξ
2

ξ2

]
.

We first find the principal graph. To do this, we may freely perturb x and y by
inners, since this will not affect the coset structure of the group they generate in
OutR. Specifically we multiply the second row of the above elements of l∞(H) ⊗
l∞(K) by ξ2, χ2, respectively. This gives the first commutator subgroup N of

G∗H/Int = K as the subgroup of (S1)2 generated by (χ2ξ2, χ2ξ4) and (χ4ξ
2
, χ2ξ2).

We may describe these elements in additive notation, taking χ = e2πa, ξ = e2πb.
Then in R/Z, these generators are (s, s + t) and (s + t, t) in for s = 4a − 2b,
t = 4b − 2a. The group will be finite if and only if s and t are both rational or,
equivalently, if a and b are.

In this finite case, N will be some finite subgroup of Z ⊕ Z, which may be
directly computed without difficulty for any particular χ and ξ. Computations
with the generators give hxh = x−1, hyh = y−1, kxk2 = x−1y, kyk2 = x−1. These
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relations provide a complete multiplication table for the group G = HKN , and so
we can use [3] to find the principal graph.

Since we have local freeness, odd vertices will be indexed by double cosets HnK.
Each double coset HgH containing p single cosets gH will correspond to a cluster
of |H|/p even vertices, all connecting to the same odd vertices. Connections on the
graph are determined by breaking up HnKH as a sum of double cosets HgH; the
vertex HnKH connects to every vertex or cluster represented in this sum, with
multiplicities determined by the number of times each HgH appears.

To compare two different twists, we pick some l sufficiently large so that all
components of both twists are lth roots of unity. We then have two actions of G̃,
with subfactor isomorphism being equivalent to conjugacy of G-kernels (up to the
automorphism of K = Z3). We can compute the characteristic invariant, which will
sometimes allow us to assert that certain subfactors with a given principal graph
are isomorphic.

Since (hk)6 and (hk2)6 act trivially for any choice of twist (i.e., not via an inner
automorphism), restriction to cyclic subgroups does not usually provide nontrivial
3-cohomology. We will not in general be able to assert that two of these subfactors
with the same G are different—even if the characteristic invariants are different,
the 3-cocycles might be the same.

We now give principal graphs for a few simple twists of HZ2
⊗HZ3

.
H = Z3, K = Z2, T = (1, 1, 1, 1, 1,−1): G = Z6 and the subfactor is depth-

2 (necessarily R ⊂ R � Z6), so the associated 3-cocycle is trivial. However, the

characteristic invariant is nontrivial. The constraints on the action of G̃ could
imply that every nontrivial characteristic invariant induces a nontrivial 3-cocycle;
this example shows that this is not the case.

H = Z2, K = Z3, T = (1, 1, 1, 1, 1, e2πi/3): We put x and y in standard form as

elements of (S1)2 to find H ∗K/Int. Then x = (e
2
3 2πi, e

1
32πi/3), y = (e

1
32πi, e

2
32πi/3).

We conclude that x2 = y in Out, so N = Z3. G is a non-abelian group of order 18.
We obtain the following principal graphs:

Principal graph Dual principal graph

� �

�

��
�� ��

��

�� ��

��

����

*

� �

�

��
��
��

��
�� ��

�� ����

��

*

Figure 1

H = Z2, K = Z3, T = (1, 1, 1, 1, 1, i): |G| = 24. Here we find N = Z2 ⊕ Z2,
where x and y are the two generators. We obtain the following principal graphs:

Principal graph Dual principal graph
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��
��

��
��
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Figure 2
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Now let ξ be a primitive 15th root of unity, and consider T = (1, 1, 1, 1, 1, ξ). We
wish to consider cohomology in this case, so we do not perturb the generators by
inner automorphisms (multiplying a row by a scalar). However multiplying columns
by scalars is still trivial.

We then have

b(x) =

[
1 1 1

ξ−2 1 ξ2

]
, b(y) =

[
1 1 1
1 ξ−2 ξ2

]
.

We have x15 = y15 = 1, but there is an additional relation:

b(x5y5) =

[
1 1 1

ξ−10 ξ−10 ξ20

]
.

Since ξ20 = ξ−10, this element of l∞(H)⊗ l∞(K) induces the inner automorphism
Adu, u = (1, ξ−10) ∈ Δm. It follows that N = Z5 ⊕Z15, with generators x+ y and
x, and |G| = 450. The principal graph may be computed using the same methods
as above.

In this case G̃ is an order-1350 group with inner subgroup Z3, since u3 is the
identity. The characteristic invariant is completely determined by u, as discussed
above. If we let ξ = e

a
152πi, then for ξ to be a primitive 15th root of unity, we

must have a ∈ {1, 2, 4, 7, 8, 11, 13, 14}. Choosing a ∈ {1, 4, 7, 13} gives the same
value for ξ−10. It follows that the corresponding four group actions have the same
characteristic invariant, and therefore the same 3-cocycle. This means that the
subfactors are isomorphic. Likewise choosing a from {2, 8, 11, 14} gives isomorphic
subfactors. Applying the automorphism of K sending k to k2 does not change the
characteristic invariant in either case.

These two kinds of roots give different characteristic invariants, but unlike the
index-4 case it is not possible to detect 3-cohomology on cyclic subgroups. Some
appropriate abelian subgroups might allow us to detect 3-cohomology, but for now
it is not clear if these two types of subfactor are isomorphic.

There are five real 16-by-16 Hadamard matrices. Numerical computations give
the dimensions of the first relative commutants as 16, 7, 4, 3, 3. The first one is
depth-2, and the last three have excessively sparse intermediate subfactor lattices
to be Bisch-Haagerup. Hadamard 16-7, however, may be obtained as the twisted
tensor product of the unique real 4×4 Hadamard matrix with itself, using the twist
T = (1, 1, 1, . . . , 1,−1).

In this case we have H = K = Z2 ⊕ Z2. The first commutator subgroup N is
induced by unitaries in B′

0∩B1. However, all coefficients are real (i.e., ±1) so every
element in N must be order-2.

We will show that N is in fact Z4
2, and that H ∗K/Int is therefore a non-abelian

group of order 256. We will be able to compute the principal graph for the subfactor
as well.

N is generated by the nine elements of the form hkhk, for h and k nontrivial
elements of H, K, respectively. Each such element n is induced by b(n) ∈ l∞(H)⊗
l∞(k). We write these unitaries in array form, as in the previous section. We take
H = {1, w, x, wx} and K = {1, y, z, yz}, with the rows and columns numbered in
that order. All coefficients will be ±1, and we label them by sign. Again rows are
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indexed by H, columns by K.

b(1) =

⎡
⎢⎢⎣

+ + + +
+ + + +
+ + + +
+ + + +

⎤
⎥⎥⎦ , b(wywy) =

⎡
⎢⎢⎣

+ + + +
+ + + +
+ + − −
+ + − −

⎤
⎥⎥⎦ ,

b(wzwz) =

⎡
⎢⎢⎣

+ + + +
+ + + +
+ − + −
+ − + −

⎤
⎥⎥⎦ , b(wyzwyz) =

⎡
⎢⎢⎣

+ + + +
+ + + +
− + + −
− + + −

⎤
⎥⎥⎦ ,

b(xyxy) =

⎡
⎢⎢⎣

+ + + +
+ + − −
+ + + +
+ + − −

⎤
⎥⎥⎦ , b(xzxz) =

⎡
⎢⎢⎣

+ + + +
+ − + −
+ + + +
+ − + −

⎤
⎥⎥⎦ ,

b(xyzxyz) =

⎡
⎢⎢⎣

+ + + +
− + + −
+ + + +
− + + −

⎤
⎥⎥⎦ , b(wxywxy) =

⎡
⎢⎢⎣

+ + − −
+ + + +
+ + + +
+ + − −

⎤
⎥⎥⎦ ,

b(wxzwxz) =

⎡
⎢⎢⎣

+ − + −
+ + + +
+ + + +
+ − + −

⎤
⎥⎥⎦ , b(wxyzwxyz) =

⎡
⎢⎢⎣

− + + −
+ + + +
+ + + +
− + + −

⎤
⎥⎥⎦ .

Clearly every element of N is order-2.
Multiplying a row of some b(n) by −1 corresponds to an inner automorphism,

while multiplying a column by −1 is trivial. We can rewrite the above generators
in standard form, and ignore the first row and column (since these are always 1’s).
This gives us each generator as having four minus signs, with an even number in
each row and column. This parity condition gives five relations, and any product of
generators will still have this property, so these elements span a subspace of at most
dimension 4 in Z9

2. In fact {wywy, wzwz, xyxy, xzxz} is a minimal generating set
for N , with the other elements obeying the relations

(wywy)(wzwz) = wyzwyz, (xyxy)(xzxz) = xyzxyz,
(wywy)(xyxy) = wxywxy, (wzwz)(xzxz) = wxzwxz,
and (wywy)(wzwz)(xyxy)(xzxz) = wxyzwxyz.
All of these relations are valid in OutP , but some require nontrivial inner ad-

justment.
Next we note that (in Out) N is central. We compute

yhkhky = (yhyh)(hykhyk)

for h ∈ H, k ∈ K. This will be (hyhy)(hyhy)(hkhk) = hkhk for any h and k.
So hkhk commutes with y. It may be simililarly shown that hkhk commutes with
every other element of H and K, and hence with their entire free product.
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We know that G = H ∗ K/Int for Hadamard subfactors will be of the form
HKN . N is order 16, so |G| = |H||K||N | = 4 · 4 · 16 = 256. We have enough
data to determine the multiplication table for G. Let h1, h2 ∈ H, k1, k2 ∈ K, and
n1, n2, h2k1h2k1 ∈ N .

(h1k1n1)(h2k2n2)

= (h1k1)(h2k2)(n1n2)

= (h2h2)(h2k1h2k1)(k1k2)(n1n2)

= (h1h2)(k1k2)(n1n2)(h2k1h2k1)

The above relations will always allow us to express h2k1h2k1 in terms of our four
generators of N , providing the multiplication table for the group. We can identify
this group as number 8935 of its order in the MAGMA small-group catalog.

We may now use the methods of [3] to find the principal graph. Let h ∈ H,
k ∈ K.

For g ∈ G, hgk = g only if h = k = 1, so the group is locally free. This means
that the odd vertices of the graph correspond to the 16 elements of N , i.e., to the
H −K double cosets HnK.

Even vertices are divided into classes according to the double coset structure
HGH. A double coset HgH will contain four elements if g is in HN (and hence
commutes with H). If g = kn for k �= 1, then HgH contains the 16 distinct
elements of the form hkh′kh′kn for h, h′ ∈ H. A 4-element double coset corresponds
to a cluster of four even vertices, each representing an irreducible bimodule of H-
dimension 1. A 16-element double coset corresponds to a single bimodule of size
42 = 16. We have 12 single vertices and 16 clusters, for a total of 64+12 = 76 even
vertices.

An odd vertex HnK is connected to an even vertex HgH once for each time
that the bimodule HgH occurs in the product HnKH. Every even vertex in a
cluster is connected to the same odd vertices.

Since n ∈ N is central, HnKH = HKHn. HKH decomposes as HyH ∪
HzH ∪ HyzH ∪ H1H. So for any n ∈ N , HnK is connected to the vertices
HyHn = HynH, HznH, HyznH and the four-vertex cluster Hn. The cluster
Hn connects only to HnK, and the vertex HknH connects to the four vertices
H(hkhk)nH, h ∈ H. This fully describes the principal graph.

We now obtain a new infinite depth Hadamard subfactor. Let H = Z2, K = Z3.
If the two twist parameters are mutually irrational, then N is equal to Z2

2, and the
group is G2,3,6 of [3]. The corresponding Hadamard subfactor is of infinite depth.
The principal graph for this subfactor is given in [3].

The same construction gives a family of infinite depth Hadamard subfactors.
For any two finite abelian groups H, K, we may take a generic twist with all
entries mutually irrational. We will likewise obtain N = Z

(|H|−1)(|K|−1), and find
an infinite depth Hadamard subfactor of index |H||K|.

For all of these subfactors, G = H ∗K/IntP has a finite index abelian subgroup,
namely N . Therefore G is always amenable, and from [3] these subfactors are
amenable as well. In fact G displays polynomial growth in its generators, so the
entropy conditions of [3] apply, and the subfactors are strongly amenable. No
examples of nonamenable Hadamard subfactors are currently known.
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