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SUPERCUSPIDAL REPRESENTATIONS:
AN EXHAUSTION THEOREM

JU-LEE KIM

Introduction

Let k be a p-adic field of characteristic zero and residue characteristic p. Let
G be the group of k-points of a connected reductive group G defined over k. In
[38], Yu gives a fairly general construction of supercuspidal representations of G in
a certain tame situation. In this paper, subject to some hypotheses on G and k,
we prove that all supercuspidal representations arise through his construction.

While there have been numerous constructions of supercuspidal representations,
the question of whether they are exhaustive is resolved only for depth zero repre-
sentations [31, 28] and for groups of type An such as GLn [5, 22, 29], SLn [6, 7].
In [29], Moy proves the exhaustiveness for Howe’s construction of supercuspidal
representations via the generalized Jacquet-Langlands correspondence in the tame
case. In [22], Howe and Moy prove it by analyzing Hecke algebras when p > n. In
[5], Bushnell and Kutzko construct supercuspidal representations and prove their
exhaustiveness by analyzing simple types and split types with no assumption on k.
Recently, Stevens showed that any supercuspidal representation of classical groups
of positive depth contains a certain semisimple character [34]. However, since no
analogue of the Jacquet-Langlands correspondence for general groups has been de-
veloped yet, and since types, or Hecke algebras for general groups, are far less
understood than for GLn, it is not easy to extend their methods to other groups.

In this paper, we approach this problem via harmonic analysis on G. We now
briefly describe the main idea of the proof. From now on, we assume that the
residue characteristic p of k is sufficiently large (see §3.4 for the precise condition).
We first prove that any supercuspidal representation is either of depth zero or oth-
erwise contains a K-type constructed in [27]. This we do by relating the Plancherel
formulas on G and on its Lie algebra g and by using some results on asymptotic
expansions [27]. We relate the K-type further to a supercuspidal type constructed
in [38] by analyzing appropriate Hecke algebras and Jacquet modules. Before ex-
panding our account of the main strategy of the proof, we first recall some results
on Γ-asymptotic expansions.

0.1. Results on Γ-asymptotic expansions. Let E := E(G) denote the set of
all equivalence classes of irreducible admissible representations of G. We use the
same notation for a representation π and its equivalence class. For (π, Vπ) ∈ E, let
Θπ be the character of π. Let B(G, k) be the extended building of G over k. In
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[27], we found a certain character expansion of Θπ depending on K-types contained
in (π, Vπ). The construction of K-types is based on a (strongly) good positive
G-datum Σ which is a quadruple (see Definitions 5.1 and 5.3). However, if Σ is
strongly good, Σ can be alternatively described as a pair Σ = (Γ, y) of a semisimple
element Γ ∈ g and y ∈ B(CG(Γ), k) satisfying the following (see Definitions 5.1
and 5.3 and Remark 5.10):

(i) Γ = Γd + Γd−1 + · · · + Γ0 where Γi, 0 ≤ i ≤ d − 1, is a G-good element of
depth −ri and Γd is either zero or an element in the center of g of depth −rd. Set
rd := rd−1 if Γd = 0.

(ii) 0 < r0 < r1 < · · · < rd−1. If Γd �= 0, rd−1 < rd.
(iii) CG(Γ) = G0 � G1 � · · · � Gd−1 � G where Gi = CG(Γd +Γd−1 + · · ·Γi).

Set si := ri

2 and �s+ := (0+, s+
0 , s+

1 , · · · , s+
d−1). Then the associated K-type (which

we denote by (K+
Σ , φΣ) in the text) is ( �Gy,�s+ , χΓ), where �Gy,�s+ is an open compact

subgroup defined in [38] and χΓ is the character on �Gy,�s+ represented by Γ via a
logarithmic map. Any irreducible admissible representation containing χΓ when
restricted to �Gy,�s+ has depth � = rd > 0. Moreover, such a representation is not
supercuspidal in general; that is, ( �Gy,�s+ , χΓ) is not necessarily a supercuspidal type.

The main result of [27] states that if π contains ( �Gy,�s+ , χΓ), for any f ∈
C∞

c (gs+
d−1

), then Θπ(f ◦ log) =
∑

O∈O(Γ) cO(π)µ̂O(f). Here, gr+ =
⋃

x∈B(G,k) gx,r+ ,
r ∈ R, O(Γ) is the set of G-orbits whose closures contain Γ, and µ̂O is the Fourier
transform of the orbital integral µO. In [27], we also define a certain subspace JΓ

of the space of G-invariant distributions on g having the property that JΓ, when
restricted to the image of the Fourier transform of C∞

c (gs+
d−1

), coincides with the
finite-dimensional space spanned by µO, O ∈ O(Γ). An important property of this
expansion is that there are test functions fO in C∞

c (g) indexed by O ∈ O(Γ) such
that, for two G-invariant distributions T1 and T2 on g with their Fourier transforms
T̂1, T̂2 in JΓ, if T̂1(fO) = T̂2(fO) for all O ∈ O(Γ), then T1 ≡ T2 on C∞

c (gs+
d−1

)
(see Theorem 9.6).

0.2. First step. Let Et be the set of equivalence classes of irreducible tempered
representations. We first show that almost every irreducible tempered representation
(π, Vπ) is either of depth zero or otherwise contains ( �Gy,�s+ , χΓ) for some (Γ, y).

We begin by observing that, thanks to the Plancherel formulas on g and G ([13]),
we have the equality

(0.1)
∫

g

f̂(X) dX = f(0) =
∫

Et

Θπ(f ◦ log) dπ

for f ∈ C∞
c (g) supported in a small neighborhood of 0. Here, note that we have

identified g with the unitary dual ĝ of g. Now, refining this equality, we will find a
match between spectral decomposition factors of each side of (0.1), parameterized
by some equivalence classes on the union of {0} and semisimple elements satisfying
(i) − (iii).

Let Γ be a semisimple element as above or let Γ = 0. Then we define gΓ := G(Γ+
g0
0) where g0 is the Lie algebra of G0 = CG(Γ) (recall that g0

0 =
⋃

x∈B(G0,k) g0
x,0).

Each gΓ is a G-domain, an open and closed G-invariant subset of g. We say that
two such semisimple elements Γ and Γ′ are equivalent if gΓ = gΓ′ (see Definition
7.4). Let S be the set of equivalence classes of the Γ’s. Then, g is the disjoint union
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of G-domains gΓ, Γ ∈ S (see Proposition 7.6), and we have∫
g

f̂(X) dX =
∑
Γ∈S

∫
gΓ

f̂(X) dX .

On the other hand, each Γ ∈ S also parameterizes a subset EΓ of E. Roughly
speaking, EΓ is the subset of E which consists of (π, Vπ) ∈ E containing ( �Gy,�s+ , χΓ′)
for some Γ′ ∼ Γ and y ∈ B(CG(Γ′), k), and E0 is the set of depth zero represen-
tations (see Definition 8.5 and Remark 11.3 for details). Moreover, EΓ = EΓ′ if
Γ and Γ′ are equivalent, and EΓ ∩ EΓ′ = ∅ otherwise (see Lemma 8.6). Setting

Et
S :=

( ◦⋃
Γ∈S

Et
Γ

)
where Et

Γ = Et ∩ EΓ, we have∫
Et

Θπ(f ◦ log) dπ =
∑
Γ∈S

∫
Et

Γ

Θπ(f ◦ log) dπ +
∫

Et\Et
S

Θπ(f ◦ log) dπ.

It is obvious that Et
S ⊂ Et. Our claim above is that Et\Et

S has Plancherel measure
zero.

Now, we match terms parameterized by Γ ∈ S (see §10):

(0.2)
∫

gΓ

f̂(X) dX =
∫

Et
Γ

Θπ(f ◦ log) dπ

for f ∈ C∞
c (g0+) if Γ ∼ 0 and for f ∈ C∞

c (gs+
d−1

) if Γ �∼ 0. A similar equality
was considered in [19] when Γ is regular and in [25] when Γ is a good element. If
Γ ∼ 0, this is already proven in [25]. If Γ �∼ 0, we regard both sides of (0.2) as
distributions on C∞

c (gs+
d−1

), and we denote the distributions on the left and the

right side of (0.2) by T� and Tr, respectively. We first need to prove that the J−Γ

from [27] (see also the previous subsection) contain both distributions T̂� and T̂r.
Then, by matching T̂�(fO) = T̂r(fO) for each test function fO, O ∈ O(−Γ), found
in [27], we verify that they are equal on C∞

c (g+
sd−1

). Since we prove this equality
by matching them only on test functions, and since these test functions have the
property that {π ∈ Et | Θπ(f̂O) �= 0, for some O ∈ O(−Γ)} is a subset of Et

Γ, we do
not need any explicit knowledge of the Plancherel measure dπ.

Using this, we can also prove that the equality in (0.2) holds for any characteristic
function fx,s of a lattice gx,s with x ∈ B(G, k) and s > 0. Summing over all Γ ∈ S,
we have∫

g

f̂x,s(X) dX =
∑
Γ∈S

∫
gΓ

f̂x,s(X) dX

=
∑
Γ∈S

∫
Et

Γ

Θπ(fx,s ◦ log) dπ =
∫

Et

Θπ(fx,s ◦ log) dπ ,

which will lead to a proof that almost every irreducible tempered representation
(in particular, supercuspidal representation) is an element of Et

Γ for some Γ ∈ S

(Theorems 11.1 and 11.4).

0.3. Generic G-datum. The construction in [38] is based on a generic G-datum
which consists of a quintuple ΣY = (�G, y, �r, �φ, ρ) satisfying the following five con-
ditions (see [38, §3] or §12):

D1. �G = (G0,G1, · · · ,Gd = G) is a tamely ramified Levi sequence and ZG0/ZG

is k-anisotropic, where ZG0 (resp. ZG) is the center of G0 (resp. G).
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D2. y ∈ B(G0, k).
D3. �r = (r0, r1, · · · , rd−1, rd) is a sequence of positive real numbers with 0 <

r0 < · · · < rd−2 < rd−1 ≤ rd if d > 0, 0 ≤ r0 if d = 0.
D4. �φ = (φ0, φ1, · · · , φd) is a sequence of quasi-characters; φi, 0 ≤ i ≤ d − 1,

is a Gi+1-generic character of Gi of depth ri at y. If rd−1 < rd, φd is a generic
character of Gd of depth rd at y, and φd is trivial otherwise.

D5. ρ is an irreducible representation of G0
[y], the stabilizer in G0 of the image

[y] of y in the reduced building of G0, such that ρ | G0
y,0+ is a multiple of the trivial

representation and c-IndG0

G0
[y]

(ρ) is irreducible and supercuspidal.
Based on the above data, Yu constructs a pair (KΣY

, ρΣY
) of an open com-

pact modulo center subgroup KΣY
and its irreducible representation ρΣY

such that
c-IndG

KΣY
ρΣY

is supercuspidal. Denote the resulting supercuspidal representation

c-IndG
KΣY

ρΣY
by πΣY

.

0.4. Second step. Now, let (π, Vπ) be a supercuspidal representation of G. We
want to prove that there is a generic G-datum ΣY such that π 
 πΣY

. Since the
case of depth zero supercuspidal representations is already known (see [28], [31,
(6.6), (6.8)]), we may assume that π is of positive depth. Then from the first step,
π contains a K-type ( �Gy,�s+ , χΓ) for some (Γ, y). Let Γi, Gi and ri be as in (i)–(iii).
Let φi be a quasi-character of Gi extending the character χΓi

of Gi
y,s+

i

defined by Γi.

Under our hypothesis, χΓi
always extends to a quasi-character of Gi (see Lemma

5.5). Let ρ be an irreducible component of the G0
[y]-representation φ−1 ⊗ (π|V χΓ

π )
where φ =

∏
i(φi|G0

[y]) and V χΓ
π is the χΓ isotypic component in Vπ. To show that

(�G, y, �r, �φ, ρ) satisfies the desired properties D1–D5, we need to verify that
(a) ZG0/ZG is anisotropic,
(b) c-IndG0

G0
[y]

(ρ) is irreducible and supercuspidal.
We prove (a) by analyzing appropriate Hecke algebras (§13–§14) and (b) by

analyzing appropriate Jacquet modules (§15–§17).
Let ΣY be the generic G-datum ( �G, y, �r, �φ, ρ) associated to (π, Vπ) found as

above. Lastly, we show χΓ on �Gy,�s+ can be extended further to ρΣY
on KΣY

(§18) and (π, Vπ) still contains (KΣY
, ρΣY

). Then, by Frobenius reciprocity, we can
conclude that π is in fact the supercuspidal representation constructed from ΣY ,
that is, π 
 πΣY

.
Generally speaking, different generic G-datums can yield isomorphic supercusp-

idal representations (this is the case e.g. for G-conjugate generic G-datums). The
question of when exactly the resulting supercuspidal representations are isomorphic
is settled by recent work of Hakim and Murnaghan [14]; we will not discuss it here.

If G is one of the classical groups considered in [24], the corresponding datum in
[24] is (Γ, G0

[y], ρ). The result of this paper also implies that the K-types constructed
in [24] form a complete set for the classical groups considered in that paper.

In the first three sections, we review some facts about Moy-Prasad filtrations
and relevant results on buildings. Otherwise, reviews of many necessary results (in
particular from [27]) are spread throughout this paper before they are used. The
first step is carried out in §4–§11. We review Yu’s construction of supercuspidal
representations in §12. The second step is done in §13–§17. In §18, we compare
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( �Gy,s+ , χΓ) and (KΣY
, ρΣY

). Finally in §19, we conclude that all supercuspidal
representations arise through Yu’s construction (Theorem 19.1).

Most notation is used throughout the paper once it is defined. The table of some
selected notation is available at the end of this paper.

Notation and conventions

Let k be a p-adic field (a finite extension of Qp) with residue field Fpn . Let
ν = νk be the valuation on k such that ν(k×) = Z. Let k be an algebraic closure
of k. For an extension field E of k, let νE be the valuation on E extending ν. We
will just write ν for νE . Let OE be the ring of integers of E with prime ideal pE .

Let Λ be a fixed additive character of k such that Λ|Ok �= 1 and Λ|pk = 1.
Let G be a connected reductive group defined over k, and let g be the Lie algebra

of G. Denote the group of E-rational points of G by G(E) and the Lie algebra of
E-rational points of g by g(E). We denote G(k) and g(k) by G and g, respectively.
Similarly, the linear duals of g and g(E) are denoted by g∗ and g∗(E), respectively.
We write g∗ for g∗(k). Let ZG denote the center of G and zg the Lie algebra of
ZG. Let Gder denote the derived group of G and gder the Lie algebra of Gder.
In general, we use bold characters H, M, N, etc., to denote algebraic groups and
h, m, n to denote their Lie algebras. If they are defined over k, we will use the
corresponding Roman characters H, M and N to denote the groups of k-points and
h, m and n to denote the Lie algebras of H, M and N .

Let N denote the set of nilpotent elements in g. There are different notions of
nilpotency. However, since we assume that char(k) = 0, those notions are all the
same. We refer to [12, 30] for more discussion of this.

If X is a topological space with a Borel measure dx and if Y is a Borel subset of
X, volX(Y ) denotes the volume of Y with respect to dx.

For any given set W , let |W | denote the cardinality of W .
For any subset S in g or in G, we denote by [S] the characteristic function on S

and by −S the set {−s | s ∈ S}. For g ∈ G, gZ denotes gZg−1.
Let R̃ := R∪ {r+ | r ∈ R}. We define an ordering on R̃ extending the one on R:

let r, s ∈ R. Then, r < r+. If r < s, then r < s+, r+ < s+ and r+ < s. We define
an addition on R̃ extending the one on R: for r, s ∈ R, r+ +s = (r+s)+ = r+ +s+.
Set (r+)+ := r+.

Finally, we will not distinguish between representations and their isomorphism
classes.

1. Moy-Prasad filtrations

1.1. Apartments and buildings. For a finite extension E of k, let B(G, E)
denote the extended Bruhat-Tits building of G over E. Recall that B(G, E) =
B(DG, E)×(X∗(ZG, E) ⊗ R), where DG is the derived group of G and X∗(ZG, E)
is the abelian group of E-rational cocharacters of the center ZG of G. For a maximal
E-split torus T in G, let A(T, E) be the corresponding apartment over E. It is
known that for any tamely ramified finite Galois extension E′ of E, B(G, E) can
be embedded into B(G, E′) and its image is equal to the set of the Galois fixed
points in B(G, E′) (see [33, (5.11)] or [32]).

1.2. Moy-Prasad filtrations. Let (x, r) ∈ B(G, E) × R. Regarding G as a
group defined over E, Moy and Prasad define g(E)x,r and also G(E)x,r if r ≥ 0
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with respect to the valuation normalized as follows ([31]): let Eu be the maximal
unramified extension of E, and let L be the minimal extension of Eu over which G
splits. Then the valuation used by Moy and Prasad maps L× onto Z.

In a similar way, with respect to our normalized valuation ν, we can define
filtrations in g(E) and G(E). Then our g(E)x,r and G(E)x,r correspond to their
g(E)x,elr and G(E)x,elr, respectively, where e = e(E/k) is the ramification index
of E over k and � = [L : Eu]. Hence, if 	E is a uniformizing element of E,
our filtrations satisfy 	

E
g(E)x,r = g(E)x,r+ 1

e
while theirs satisfy 	

E
g(E)x,r =

g(E)x,r+�.
This normalization is chosen to have the following property (see also [1, (1.4.1)]):

for a tamely ramified Galois extension E′ of E and x ∈ B(G, E) ⊂ B(G, E′), we
have

g(E)x,r = g(E′)x,r ∩ g(E).

If r > 0, we also have
G(E)x,r = G(E′)x,r ∩G(E).

For simplicity, we put gx,r := g(k)x,r, etc., and B(G) := B(G, k). We will also
use the following notation. Let r ∈ R.

(1) gx,r+ =
⋃

s>r gx,s and Gx,|r|+ =
⋃

s>|r| Gx,s, x ∈ B(G).
(2) g∗x,r =

{
χ ∈ g∗ | χ(gx,(−r)+) ⊂ pk

}
, x ∈ B(G).

(3) gr =
⋃

x∈B(G) gx,r and gr+ =
⋃

s>r gs.
(4) Gr =

⋃
x∈B(G) Gx,r and Gr+ =

⋃
s>r Gs for r ≥ 0.

The hypothesis (HB) in §3.4 is concerned with identifying g∗x,r with gx,r via an
appropriate bilinear form B on g (see [4, (4.1)]).

1.3. Root decomposition. Let T be a maximal k-torus in G and E a finite
extension of k over which T splits. Let Φ(G,T, E) be the set of E-roots of T in G,
and let Ψ(G,T, E) be the corresponding set of affine roots in G. If ψ ∈ Ψ(G,T, E),
let ψ̇ ∈ Φ(G,T, E) be the gradient of ψ, and let g(E)ψ̇ ⊂ g(E) be the root
space corresponding to ψ̇. We denote the open compact abelian group in g(E)ψ̇

corresponding to ψ by g(E)ψ ([30, (3.2)]).
Let X∗(T, E) be the set of cocharacters of T, and let X∗(T, E) be the set of

characters of T. For r ∈ R̃, let

t(E)r = {Γ ∈ t(E) | ν(dχ(Γ)) ≥ r for all χ ∈ X∗(T, E)}.

Then, for x ∈ A(G,T, E), we have

g(E)x,r = t(E)r +
∑

ψ∈Ψ(G,T,E), ψ(x)≥r

g(E)ψ.

Let T be a maximal k-torus in G which splits over a tamely ramified finite
Galois extension E of k. Then, we write A(G,T, k) for A(G,T, E)∩B(G, k). This
definition is independent of the choice of E [38]. Moreover, A(G,T, k) is the set of
Galois fixed points in A(G,T, E).

2. Twisted Levi sequences

Definition 2.1 ([38]). Let G be a connected reductive k-group. Let �G := (G0, · · · ,
Gd = G) be a sequence of connected reductive k-groups with G0 � G1 � · · · � Gd.
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(1) If each Gi is a k-split Levi subgroup of G, �G is called a k-Levi sequence in
G.

(2) If there exists a (tamely ramified) finite extension E/k such that G0 ⊗ E

is split and if �G ⊗ E = (G0 ⊗ E, · · · ,Gd ⊗ E) is an E-Levi sequence in
Gd ⊗ E, then �G is called a (tamely ramified) twisted Levi sequence in G
and E is called a splitting field of �G.

Note that any subsequence of a tamely ramified twisted Levi sequence �G is also
a tamely ramified twisted Levi sequence.

2.2. Let (H,G) be a tamely ramified twisted Levi sequence and E a tamely ramified
Galois extension E of k over which (H,G) splits. Since H(E) is a Levi subgroup
of G(E), there is a Galois equivariant embedding of B(H, E) into B(G, E), which
in turn induces an embedding of B(H, k) into B(G, k) (see [1, §1.9] or [38, (2.11)]).
Such embeddings are unique modulo translation by X∗(ZH, k) ⊗ R. However, the
images remain the same.

Fix an embedding i : B(H, k) −→ B(G, k). Then we will regard B(H, k) as a
subset of B(G, k) and write simply x for i(x). For any x ∈ B(H, k), the associated
filtrations on H := H(k) and h := h(k) satisfy the following ([1, (1.9.1)]):

Hx,r = G(E)x,r ∩ H = Gx,r ∩ H for r > 0,

hx,r = g(E)x,r ∩ h = gx,r ∩ h for any r ∈ R̃.

For a k-torus T ⊂ H which splits over E, we have A(H,T, k) = A(G,T, E) ∩
B(H, k).

2.3. If �G = (G0, · · · ,Gd = G) is a tamely ramified twisted Levi sequence, we can
and will fix a sequence of embeddings

B(G0, k) ↪→ B(G1, k) ↪→ B(G2, k) ↪→ · · · ↪→ B(Gd, k).

We will identify B(Gi, k) with a subset of B(Gj , k) for i ≤ j. Moreover, for
x ∈ B(Gi, k) and r ∈ R̃, we have

g
i
x,r = gj(E)x,r ∩ g

i = g
j
x,r ∩ g

i,

Gi
x,r = Gj(E)x,r ∩ Gi = Gj

x,r ∩ Gi if r > 0.

From now on, we say that a semisimple element Γ ∈ g splits over a finite extension
E if Γ lies on a k-torus which splits over E.

Lemma 2.4. Let Γ ∈ g be a semisimple element which splits over a tamely ramified
finite extension E of k. Set H := CG(Γ), the centralizer of Γ in G. Then (H,G)
is an E-split tamely ramified twisted Levi sequence.

Proof. Without loss of generality, we may assume that Γ is in a k-split torus t. By
(7.1) and (7.2) of [38], H is connected and reductive. Since h is reductive, zh ⊂ t,
and thus zh is a k-split subtorus of t. Combining this with the fact that H is the
centralizer of zh in G, we conclude that H is a k-Levi subgroup of G. �
Remarks 2.5.

(1) Note that if Γ = 0, then H = G.
(2) The above lemma is not valid if Γ is replaced by a semisimple element of

G. For example, in Sp4, the centralizer of a semisimple group element can
be SL2 × SL2.



280 JU-LEE KIM

2.6. Let (H,G) be a tamely ramified twisted Levi sequence. For X ∈ g, denote
the H-orbit HX of X by OH

X . For simplicity, we write OX for OG
X . In general, we

use the notation OH to denote H-orbits. If X ∈ h, O(H, X) denotes the set of all
H-orbits whose closure in h contains X. We write O(X) := O(G, X).

When X ∈ g is semisimple, O(X) is described in [15, §2]. In the situation of
Lemma 2.4, write Γ = X and H = CG(Γ). Then

O(Γ) = {OΓ+n | n ∈ OH ∈ O(H, 0)}.
Note that Γ + n is already in the form of a Jordan decomposition. The map
OΓ+n → On, n ∈ O(H, 0), induces a bijection of O(Γ) with O(H, 0), the set of
nilpotent H-orbits in h.

3. Admissible sequences and lattices in g and g∗

We recall some definitions from [9] and [38].

Definition 3.1. Let E/k be a tamely ramified extension, and let T be an E-split
maximal k-torus in G. Let Φ = Φ(G,T, E) be the corresponding root system.
Then, a function f : Φ ∪ {0} −→ R̃ is concave if for every nonempty finite subset
{ai} ⊂ Φ ∪ {0} such that

∑
ai ∈ Φ ∪ {0}, we have

f(
∑

i

ai) ≤
∑

i

f(ai).

We keep the notation from the above definition. If x ∈ A(G,T, E) and f is
a concave function on Φ(G,T, E) ∪ {0}, there are a group G(E)x,f and a lattice
g(E)x,f associated to x and f (see [3, 38] for details). If f is Gal(E/k)-invariant
and x ∈ A(G,T, E)Gal(E/k), we can define

Gx,f := G(E)Gal(E/k)
x,f ∩ Gx,0,

gx,f := g(E)Gal(E/k)
x,f .

If f is positive and E/k is tame, then Gx,f = G(E)Gal(E/k)
x,f .

Definition 3.2. A sequence �u := (u0, · · · , ud) in R̃ is admissible if for some 0 ≤
c ≤ d, we have

0 ≤ u0 = u1 = · · · = uc and
1
2
uc ≤ uc+1 ≤ · · · ≤ ud.

3.3. Let E be a tamely ramified Galois extension of k. Let �G = (G0, · · · ,Gd = G)
be an E-split twisted Levi sequence, and let �u = (u0, · · · , ud) be an admissible
sequence. Then we can associate to �u a Gal(E/k)-invariant, concave function f�u

on Φ(G,T, E) as follows: for an E-split maximal k-torus T ⊆ G0, define

f�u(a) =
{

u0 if a ∈ Φ(G0,T, E) ∪ {0},
ui if a ∈ Φ(Gi,T, E) \ Φ(Gi−1,T, E) for i > 0.

For x ∈ A(G,T, k), let
�Gx,�u := Gx,f�u

, �gx,�u := gx,f�u
.

These are well defined independent of the choice of T with x ∈ A(G,T, k). More-
over, if �u is nondecreasing, we have

�Gx,�u = G0
x,u0

G1
x,u1

· · ·Gd
x,ud

, �gx,�u = g
0
x,u0

+ g
1
x,u1

+ · · · + g
d
x,ud

.
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3.4. Hypotheses. We list the hypotheses used in this paper. They are labeled
by (Hk), (HB), (HGT) and (HN), respectively. We will state explicitly whenever
these hypotheses are necessary.
(Hk) The residue characteristic p is large enough (depending on G and ν(p)) such
that the following hold.

(1) The exponential map (resp. the logarithmic map) is defined on the subset
g0+ of g (resp. G0+ of G), and for a tamely ramified finite Galois extension
E over k, an E-split maximal k-torus T of G, x ∈ A(G,T, k), and a
Gal(E/k)-invariant concave function f on Φ(G,T, E)∪ {0} with f(0) > 0,
we have exp(gx,f ) = Gx,f (resp. log(Gx,f ) = gx,f ).

(2) For any x ∈ B(G, k), X ∈ gx,0+ and Y ∈ gx,0, 1
p (adX)p−1(Y ) ∈ gx,0+ .

(HB) G satisfies the condition in Proposition 4.1 in [4].
(HGT) Every maximal k-torus T in G splits over a tamely ramified Galois exten-
sion, and for any r ∈ R, any nontrivial coset in tr modulo tr+ contains a good
element (as defined in Definition 4.2) of depth r.
(HN) For any tamely ramified twisted Levi subgroup H of G, the hypotheses in
[12, §4.2] are valid.

Remark 3.5. The condition in Proposition 4.1 of [4] requires that either G be a
form of GLn or the absolute Dynkin diagram of G have no bonds of order p and
that p not divide 2k(G)|π1(G′)| (see [4], Proposition 4.1 for notation). One sees
easily that this is satisfied if p is large enough.

One can use the Campbell-Hausdorff formula to determine a sufficient condition
on k for (Hk) to hold (see [24], Proposition 3.1.1).

In [12], under some hypotheses on G and k (see [12], §4.2), DeBacker gives a
parameterization of nilpotent orbits in g via Bruhat-Tits theory (see Theorem 5.6.1
of [12]). He uses this parameterization to get a homogeneity result in [11]. We need
the hypothesis (HN) to use the results of [11] and [12]. We refer the reader to [12]
for precise statements. Again, if p is large enough, (HN) is valid.

Remark 3.6. If (HB) is satisfied, there is a k-valued, nondegenerate, G(k)-invariant,
symmetric, bilinear form B on g satisfying the following (see the proof of [4, (4.1)]):
for any tamely ramified finite extension E of k, B induces an E-valued E-bilinear
form on g(E) such that

(1) we can identify g∗(E)x,r with g(E)x,r via the map Ω : g(E) → g∗(E)
defined by Ω(X)(Y ) = B(X, Y );

(2) if T is a maximal E-split torus and (T, {Xα}) is a Chevalley splitting, then
we have

(i) B(Xα, Xβ) = 0 unless α + β = 0,
(ii) B(Xα, X−α) �= 0 and has valuation 0,
(iii) g = zg ⊕ gder is an orthogonal decomposition with respect to B;

(3) for any Levi subgroup M of G which splits over a tamely ramified extension,
B|m × m satisfies (1) and (2).

The above (HB) implies the corresponding hypothesis (HB) (labeled in the same
way) in [27]. Whenever we assume (HB), we denote the associated bilinear form by
B. For more discussion on sufficient conditions for the above hypotheses, we refer
to [27].
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3.7. Let �u = (u0, · · · , ud) be a sequence of real numbers which is not necessarily
admissible. We can still define f�u and a subset �gx,�u = gx,f�u

of g in a similar fashion
as in §3.3. Suppose (HB) is valid.

For each i = 0, · · · , d − 1, let gi⊥ be the orthogonal complement of gi in gi+1

with respect to B, and let gi
⊥ be the orthogonal complement of gi in g with respect

to B. Then, we have

g
i+1 = g

i ⊕ g
i⊥, g = g

i ⊕ g
i
⊥,

and
g = g

0 ⊕ g
0⊥ ⊕ · · · ⊕ g

d−1⊥, g
i
⊥ = g

i⊥ ⊕ · · · ⊕ g
d−1⊥.

For x ∈ B(Gi, k) and r ∈ R̃, let gi⊥
x,r = gi+1

x,r ∩ gi⊥. Then, for x ∈ B(G0, k), we can
write �gx,�u more explicitly:

�gx,�u = gx,f�u
= g

0
x,u0

⊕ g
0⊥
x,u1

⊕ · · · ⊕ g
d−1⊥
x,ud

.

Definition 3.8.
(1) Define an involution ∗ on R̃ as follows: for r ∈ R, r∗ := (−r)+ and (r+)∗ :=

−r.
(2) For a sequence �r = (r1, · · · , rd) of real numbers, define �r∗ as (r∗1 , · · · , r∗d).
(3) Assume (HB) is valid. When we identify g and g∗ via B, the dual (gx,r)∗ ⊂

g of gx,r with respect to B is gx,r∗ . That is, (gx,r)∗ = {Y ∈ g | B(Y, gx,r) ⊂
pk} = gx,r∗ . Note that (gx,r)∗ ⊂ g while g∗x,r ⊂ g∗. Generalizing this, for
any subset L ⊂ g, we define the dual L∗ of L in g as

L∗ := {Y ∈ g | B(Y, L) ⊂ pk}.

Remark 3.9. Let �G := (G0, · · · ,Gd) be a tamely ramified twisted Levi sequence.
Let x ∈ B(G0, k), and let �u := (u0, · · · , ud) be an admissible sequence. Assume the
hypothesis (HB) is valid. Then, we have ([27])

(�gx,�u)∗ = �gx,�u∗ = g
0
x,u∗

0
⊕ g

0⊥
x,u∗

1
⊕ · · · ⊕ g

d−1⊥
x,u∗

d
.

Definition 3.10. Suppose (HB) is valid. Let L be an open compact subgroup of
G with L = exp(L) for some lattice L in g. Let χ be a character of L. If there is
a γ ∈ g such that χ(g) = Λ(B(γ, log(g))), we say that χ is represented by γ, and
we write χγ for χ. In this case, any element γ′ in the coset S = γ + L∗ ∈ g /L∗

represents χ. We call S the dual blob of (L, χ).

Remark 3.11. It is possible that γ ∈ g represents characters on different groups,
say L1 and L2. However, since those characters coincide on L1 ∩L2, we will use χγ

to denote both characters when there is no confusion.
For a sufficient condition for γ ∈ g to represent a character of �Gx,�u, we refer to

[27, (3.3.4)].

The proof of the following lemma is similar to that of Lemma 3.1 in [21, p. 17].

Lemma 3.12. Suppose (HB) and (Hk) are valid. For i = 1, 2, let Li be an open
compact subgroup with Li = exp(Li) for some Li ⊂ g. Let χi be a character of Li

with dual blob γi+L∗
i . Suppose χ1 = χ2 on L1∩L2. Then, (γ1+L∗

1)∩(γ2+L∗
2) �= ∅.

Proof. Since both γ1 and γ2 represent χ1|(L1 ∩ L2) = χ2|(L1 ∩ L2), we have γ1 +
(L1∩L2)∗ = γ2+(L1∩L2)∗. Now, the lemma follows from (L1∩L2)∗ = L∗

1+L∗
2. �
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4. Semisimple elements

4.1. Depth functions and good elements. Recall that the depth function
d : B(G) × g −→ R is defined as follows: for X ∈ g and x ∈ B(G), let d(x, X) = r
be the depth of X in the x-filtration, that is, r is the unique real number such that
X ∈ gx,r \ gx,r+ . We also define

d(X) = sup
x∈B(G)

d(x, X).

Note that if d(X) < ∞, then the depth d(X) of X is the unique r in R such that
X ∈ gr \ gr+ . Moreover, d is locally constant on g \ N, and it is ∞ on N (see [2,
(3.3.7)]). If E is a finite extension of k, we can also define a depth function dE

on B(G, E) × g(E). If E is tamely ramified over k, thanks to our normalization
of valuation, we observe that for any x ∈ B(G) and X ∈ g, d(x, X) = dE(x, X)
and d(X) = dE(X) (see [3, (2.2.5)]). Hence we may omit the superscript E in that
case. We remark that if X has Jordan decomposition Xs + Xn, with semisimple
part Xs, then d(X) = d(Xs) ([2, (3.3.8)]).

Let T be a maximal k-torus in G, and let t be its Lie algebra. Then T and t

have the following filtrations: for r ∈ R

tr = {Γ ∈ t | ν(dχ(Γ)) ≥ r for all χ ∈ X∗(T)}

and for r > 0,

Tr = {t ∈ T | ν(χ(t) − 1) ≥ r for all χ ∈ X∗(T)}.

Note that if T is k-split, the lattice tr coincides with the lattice t(k)r of §1.3. The
following definition is from [4, §5].

Definition 4.2. Let T be a maximal k-torus in G which splits over a tamely
ramified Galois extension of k, and let t be its Lie algebra.

(1) If Γ ∈ tr \ tr+ , we say that Γ is of depth r with respect to T, and we write
dT(Γ) = r.

(2) Let Γ ∈ t be of depth r. Then Γ is called good with respect to T if for every
root α of G with respect to T, dα(Γ) is either zero or has valuation r.

Note that 0 ∈ g is a good element of depth ∞. We remark that the depth and
the goodness of a semisimple element do not depend on the choice of T ([4, (5.1)]).

4.3. We recall some useful facts about degenerate cosets (see [2, (3.2.6)] and [30,
(6.3)]).

(1) Assume X ∈ gx,r ∩ gr+ . Then,
(i) X + gx,r+ contains a nilpotent element and
(ii) there is a y ∈ B(G, k) such that X + gx,r+ ⊂ gy,r+ .

(2) Let s ∈ R. Then, gs =
⋂

x∈B(G,k) (N + gx,s).
(3) If x ∈ B(G, k) and s ∈ R, then gx,s ∩ gs+ = (N ∩ gx,s) + gx,s+ .

4.4. Let T be a maximal k-torus in G which splits over a tamely ramified Galois
extension E. Then we observe the following:

(1) Let Φ := Φ(G,T, E). Then we have

g(E) = t(E) ⊕
∑
α∈Φ

gα(E).
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Let Γ ∈ t be a semisimple element. Let H := CG(Γ) be the centralizer of
Γ in G. The Lie algebra h(E) can be expressed as follows [38, (7.1)]:

h(E) = t(E) ⊕
∑

α∈Φ, dα(Γ)=0

gα(E).

(2) If Γ /∈ zg is a good element of depth r, then for any γ ∈ zg with d(γ) ≥ r,
Γ + γ is also a good element of depth r.

Lemma 4.5. Let T be a maximal k-torus in G which splits over a tamely ramified
Galois extension E. Let γ = γ1, · · · , γn ∈ t be good elements of depth b = b1, · · · , bn,
respectively. Let H0 := G and Hi := CHi−1(γi).

(1) Let X1, X2 ∈ γ + h1
b+ . If g ∈ G is such that gX1 = X2, then g ∈ H1.

(2) Let X ∈ γ + h1
b+ . Then CG(X) ⊂ H1.

(3) Suppose each γi is a good element in Hi−1, and suppose b1 < b2 < · · · < bn.
Fix i ∈ {0, 1, · · · , d} and let γi = γ1 + γ2 + · · ·+ γi. Let Y1, Y2 ∈ γi + hi

b+i
.

If gY1 = Y2 for some g ∈ G, then g ∈ Hi. Moreover, Hi = CG(γi)

Proof. (1) is [26, (2.3.6)], and (2) follows from (1). For the first statement of (3),
if i = 1, it is (1). Assume the statement is true for i. Let Y1, Y2 ∈ γi+1 + h

i+1

b+i+1
.

Suppose gY1 = Y2 for some g ∈ G. Since Y1, Y2 ∈ γi + hi
b+i

, we have g ∈ Hi by the

induction hypothesis and g(Y1−γi) = Y2−γi. Since Y1 −γi, Y2−γi ∈ γi+1 +h
i+1

b+i+1

and γi+1 is Hi-good, we have g ∈ Hi+1. For the second statement, Hi ⊂ CG(γi)
is obvious, and CG(γi) ⊂ Hi follows from the first with Y1 = Y2 = γ. �

Lemma 4.6. Let T be a maximal k-torus in G which splits over a tamely ramified
Galois extension E. Let γ1, γ2 ∈ t be good elements of depth b1, b2, respectively. Let
H := CG(γ1).

(1) Suppose b = b1 = b2 and γ1 ≡ γ2 (mod tb+). Then CG(γ1) = CG(γ2).
(2) Suppose b1 < b2 and γ1, γ2 ∈ zh. Then γ1 + γ2 is also a G-good element of

depth b1.

Proof. (1) Note that γ1, γ2 ∈ γ1 +hb+ . Applying Lemma 4.5(2), we have CG(γ1) ⊂
CG(γ2). Similarly, CG(γ2) ⊂ CG(γ1). Hence CG(γ1) = CG(γ2).

(2) Write Γ = γ1 + γ2. Let Φ = Φ(G,T, E) be the set of E-rational T-roots
in G. Let α ∈ Φ. Since H ⊂ CG(γ2), by §4.4, we see that if dα(γ1) = 0, then
dα(γ2) = 0. Combining this with ν(dα(γ2)) ≥ b2 > b1, we see that dα(γ1 + γ2) = 0
or ν(dα(γ1 + γ2)) = min(ν(dα(γ1)), ν(dα(γ2))) = ν(dα(γ1)) = b1. Hence γ1 + γ2

is a good element of depth b1. �

Proposition 4.7. Suppose (HGT) is valid. Let γ ∈ g be a semisimple element
which splits over a tamely ramified Galois extension E. Then, γ can be written as

γ = γb1 + γb2 + · · · + γbn
+ γ◦

such that
(1) each γbi

, i = 1, · · · , n , is a G-good element of depth bi, and γ◦ is a semisim-
ple element with d(γ◦) ≥ 0,

(2) b1 < b2 < · · · < bn < 0, and
(3) Hn � Hn−1 � · · · � H1 ⊆ G where H1 = CG(γb1) and Hi = CHi−1(γbi

).
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Moreover, if γ = γ′
b′1

+ γ′
b′2

+ · · ·+ γ′
b′

n′
+ γ′

◦ is another expression satisfying (1)–(3)

with H′1 = CG(γ′
b′1

) and H′i = CH′i−1(γ′
b′i

), then we have n = n′, bi = b′i and
Hi = H′i.

Proof. Let t be a maximal k-torus with γ ∈ t which splits over E. If d(γ) ≥ 0,
γ = γ◦ already satisfies (1)–(3). Suppose a1 = d(γ) < 0. By (HGT), γ + ta+

1

contains a good element, say γ̃a1 of depth a1. Then γ = γ̃a1 + (γ − γ̃a1) with
a2 = d(γ − γ̃a1) > d(γ). Applying the above process for γ − γ̃a1 , we find a G-
good element γ̃a2 ∈ γ − γ̃a1 + ta+

2
such that γ = γ̃a1 + γ̃a2 + (γ − γ̃a1 − γ̃a2) and

a3 = d(γ − γ̃a1 − γ̃a2) < d(γ − γ̃a1). Repeatedly, we have

γ = γ̃a1 + γ̃a2 + · · · + γ̃am
+ γ◦

where γ̃ai
is a G-good element of depth ai with a1 < a2 < · · · < am < 0 and

d(γ◦) ≥ 0. This procedure is finite because d(t) ⊂ 1
e(E/k)Z. Put am+1 = 0 and

γ̃am+1 = γ◦.
Set S := {a1, a2, · · · , am+1}, and for a, b ∈ R̃, set γ̃a,b :=

∑
a≤aj<b γ̃aj

. We find
a subsequence b1 = a1 < b2 < · · · < bn < bn+1 = am+1 = 0 of S as follows: let
b1 := a1 and H1 := CG(γ̃b1). Let b2 be the maximal element in {a2, · · · , am+1}
with the property that if aj < b2, γ̃aj

∈ zh1
. Note that H1 = CG(γ̃b1,b2). Let

H2 := CH1(γ̃b2). Then H1 � H2. Let γb1 := γ̃b1,b2 . Inductively, suppose bi, Hi and
γbi−1 are defined for i ≥ 2. Let bi+1 be the maximal element in {aj ∈ S | aj > bi}
with the property that for any aj < bi+1, γ̃aj

∈ zhi . Let Hi+1 := CHi(γ̃bi+1) and
γbi

= γ̃bi,bi+1 . We repeat the process until bn+1 = 0. Then each γbi
is also a G-good

element of depth bi by Lemma 4.6(2), and Hi = CHi−1(γ̃bi
) = CHi−1(γbi

). Now,
one can easily check

γ = γb1 + γb2 + · · · + γbn
+ γ◦

satisfies the required properties.
For the second statement, let γ = γ′

b′1
+γ′

b′2
+ · · ·+γ′

b′
n′

+γ′
◦ be another expression

satisfying (1)–(3). Then b1 = d(γ) = b′1. Since γb1 ≡ γ′
b′1

(mod tb+1
) and γb1 , γ′

b′1
are

good, H1 = H′1 by Lemma 4.6. By induction, we assume that bj = b′j and Hj = H′j

for 1 ≤ j ≤ i − 1. Write γb1,bi
:= γb1 + · · · + γbi−1 and γ′

b1,b′i
:= γ′

b1
+ · · · + γ′

bi−1
.

Suppose bi < b′i. Then, γ′
b1,b′i

− γb1,bi
≡ γbi

(mod tb+i
). Since γbi

is also Hi−1-good,
by Lemma 4.5(2), we have Hi−1 ⊆ Hi, which is a contradiction. Hence bi = b′i.
Now we have (i) γbi

≡ γ′
b1,bi

− γb1,bi
+ γ′

bi
(mod tb+i

), (ii) γ′
b1,bi

− γb1,bi
∈ zhi−1 , and

(iii) γbi
, γ′

b1,bi
− γb1,bi

+ γ′
bi

are good in Hi−1 by §4.4. From these, it follows that
CHi−1(γbi

) = CHi−1(γ′
bi

). Hence, Hi = H′i. �

Remark 4.8. By Lemma 4.5, we have Hj = CG(γb1 + · · ·+ γbj
) and CG(γ) ⊂ Hn.

5. K-types: Basic data and construction

In this section, we review the K-types constructed in [27]. We will prove later
that under some hypotheses, almost every irreducible tempered representation of
positive depth contains one of these types (see §11). The construction is based on
the following data:

Definition 5.1. A G-datum of positive depth is a quadruple Σ = (�G, y, �r, �φ) sat-
isfying the following conditions (D1)–(D4).
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(D1) �G = (G0 � G1 � · · · � Gd = G) is a tamely ramified twisted Levi sequence.
(D2) y ∈ B(G0, k).
(D3) �r = (r0, r1, · · · , rd−1, rd) is a sequence of positive real numbers with 0 < r0 <
· · · < rd−2 < rd−1 ≤ rd.
(D4) �φ = (φ0, · · · , φd) is a sequence of quasi-characters, where φi is a quasi-
character of Gi. We assume that φi is trivial on Gi

y,r+
i

but nontrivial on Gi
y,ri

for 0 ≤ i ≤ d − 1. If rd−1 < rd, we assume φd is nontrivial on Gd
y,rd

and trivial on
Gd

y,r+
d

. Otherwise, we assume that φd = 1.
We define the length �(Σ) of the above G-datum of positive depth Σ to be d.

Remark 5.2. As mentioned in the introduction, Yu defined a notion of G-datum for
supercuspidal types (on which the above definition of G-datum of positive depth
is based). However, the representations containing K-types constructed out of the
above data are not necessarily supercuspidal.

Notation and conventions.

(1) Let G−1 := G0, g−1 := g0, and let Gd+1 := Gd, gd+1 := gd.
(2) Let ZGi = Zi and zgi = zi denote the centers of Gi and gi, respectively.

Definition 5.3. Let Σ = (�G, y, �r, �φ) be a G-datum of positive depth.
(1) We say Σ is good if each φi, 0 ≤ i ≤ d− 1, is good and φd is either good or

trivial. That is, for 0 ≤ i ≤ d − 1, φi|Gi
y,ri

is represented by a Gi+1-good
element Γi ∈ zi of depth −ri such that CGi+1(Γi) = Gi, and for i = d,
either φd is trivial or φd|Gd

y,rd
is represented by Γd ∈ zd of depth −rd.

(2) We say φi is strongly good if φi|Gi
y,0+ is represented by a G-good element

Γi ∈ zi of depth −ri such that CGi+1(Γi) = Gi.
(3) We say Σ is strongly good if each φi, 0 ≤ i ≤ d− 1, is strongly good and φd

is either strongly good or trivial. Put Γd = 0 if φd is trivial, and define ΓΣ

(or simply Γ) and Γi as follows:

Γi := Γd + Γd−1 + · · · + Γi,

ΓΣ = Γ := Γ0 = Γd + Γd−1 + · · · + Γ0.

Remarks 5.4. Let Σ be a G-datum of positive depth.
(1) The expression of ΓΣ as Γd+Γd−1+Γ0 satisfies the condition in Proposition

4.7.
(2) In the above definition, Γi being G-good implies that Γi is Gi+1-good.

Hence, if Σ is strongly good, it is also good. Note also that our definition
of strongly good is stronger than the one in [27].

(3) If φi is good, it is also generic in the sense of [38]. Hence we can apply
most results in [38] to a (strongly) good G-datum of positive depth.

(4) Observe that each Γi ∈ zg0 . Hence the Γi’s commute with each other.

Lemma 5.5. Suppose (HB) and (Hk) are valid. Suppose γ ∈ zg and d(γ) <
0. Then there is a character φ of G such that for any x ∈ B(G, k), φ|Gx,0+ is
represented by γ.

Proof. Write Z = ZG for simplicity. Set Z0+ = exp(z0+) where z0+ = z∩t0+ with T
a maximal k-torus in G. Since Z is commutative, by (Hk), χγ defines a character
of Z0+ . Since the commutator (G, G) is a subgroup of Gder, G/Gder is abelian.
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Moreover, since we have an orthogonal decomposition gx,0+ = z0+ ⊕ gder
x,0+ with

respect to the bilinear form B by [4, (3.2)], we have Gx,0+ = exp(z0+ ⊕ gder
x,0+) =

Z0+Gder
x,0+ by (Hk). Hence Z0+ is embedded in G/Gder, and χγ defines a character

χγ of Z0+Gder/Gder. This character easily extends to a character of ZGder/Gder,
which we again denote by χγ . Now, since G/(ZGder) is finite, χγ again extends to
a character of G/Gder, which induces a character φ of G.

It remains to show that φ|Gx,0+ is represented by γ. For g ∈ Gx,0+ , we can
write g = exp(z) exp(z′) = exp(z + z′) for some z ∈ z0+ and z′ ∈ gder

x,0+ . Then, since
φ is trivial on Gder and g = z ⊕ gder is an orthogonal decomposition with respect
to B, we have φ(g) = φ(exp(z)) = χγ(exp(z)) = Λ(B(γ, z)) = Λ(B(γ, z + z′)) =
Λ(B(γ, log(g))). Hence φ|Gx,0+ is represented by γ. �
Remarks 5.6.

(1) Let φ be constructed as in the proof of Lemma 5.5. Then φ is trivial on
Gder and the depth of φ is r = −d(γ) independent of x ∈ B(G, k). That
is, for any x ∈ B(G, k), φ is trivial on Gx,r+ but nontrivial on Gx,r.

(2) Combining Lemma 5.5 and Proposition 4.7, for any semisimple element in
g of negative depth, one can associate a strongly good G-datum of positive
depth.

Fix a good G-datum of positive depth Σ = (�G, y, �r, �φ). We review the construc-
tion of the K-type (K+

Σ , φΣ) and some notation that we need in this paper.

5.7. Let the embeddings

B(G0, k) ↪→ B(G1, k) ↪→ B(G2, k) ↪→ · · · ↪→ B(Gd, k)

be fixed as in §2.3. Let si := ri

2 for i = 0, · · · , d−1. For any ε ∈ R̃ with 0 ≤ ε < s0,
define the following sequences �s and �s+ of length d:

�s(ε) := (ε, s0, · · · , sd−1), �s+(ε) := (ε, s+
0 , · · · , s+

d−1).

For simplicity, we write

�s := �s(0), �s+ := �s(0+).

5.8. Define some open compact subgroups associated to Σ as follows:

Ki+
Σ := G0

y,0+G1
y,s+

0
· · ·Gi

y,s+
i−1

⊂ Gi
y,0+ ,

Ki+1
Σ+ : = Gi+1

y,s+
i

· · ·Gd
y,s+

d−1
⊂ Gd

y,s+
i

,

K+
Σ := Ki+

Σ Ki+1
Σ+ = G0

y,0+G1
y,s+

0
· · ·Gd

y,s+
d−1

= �Gy,�s+ .

Via the isomorphism Gy,s+
i
/Gy,r+

i

 gy,s+

i
/gy,r+

i
, φi defines a character φ̂i of Gy,s+

i

such that φ̂i is trivial on (gy,s+
i
∩ gi

⊥)
/

(gy,r+
i
∩ gi

⊥) and φ̂i and φi coincide on

Gi
y,s+

i

(see [38, §4]). Since φi is already defined on Ki+
Σ ⊂ Gi

y,0+ , there is a unique

character of K+
Σ Gy,s+

i
extending φi and φ̂i. We use the same notation φ̂i for this

character of K+
Σ Gy,s+

i
and its restriction to K+

Σ . Now, define the character φΣ of

K+
Σ as

∏d
i=0 φ̂i:

φΣ :=
d∏

i=0

φ̂i .
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5.9. Suppose (Hk) is valid and Σ is a strongly good G-datum of positive depth.
Let Γi and Γ be as in Definition 5.3. We observe that φ̂i is represented by Γi

on Gi
y,0+Gy,s+

i
and hence on K+

Σ , that is, φ̂i = χΓi
on Gi

y,0+Gy,s+
i

and on K+
Σ .

Moreover, we have
φΣ = χΓ

on K+
Σ , and the dual blob of φΣ = χΓ is Γ + (�gy,�s+)∗ = Γ + �gy,−�s, where −�s =

(−s−1,−s0, · · · ,−sd−1). We also observe that

Γi := Γd + Γd−1 + · · · + Γi

defines a character χΓi of Ki+1
Σ+ . We also put Γ−1 := Γ0 = Γ.

Remarks 5.10. Let Σ = (�G, y, �r, �φ) be a strongly good G-datum of positive depth.
(1) Since the construction of (K+

Σ , φΣ) depends only on Γi representing φi on
Gi

y,0+ , replacing φi with the characters constructed in Lemma 5.5 with
γ = Γi produces the same open compact subgroup and its representa-
tion. Hence, without loss of generality, we may and will assume that for a
strongly good G-datum of positive depth Σ, each φi is represented by Γi on
Gi

x,0+ for any x ∈ B(Gi, k). In this case, for any x ∈ B(G0, k), (�G, x, �r, �φ)
is also a strongly good G-datum of positive depth. We will often denote
(�G, x, �r, �φ) by Σx.

(2) Since Γ determines �G, �r and φΣ, Σ can be replaced by (Γ, y) and they yield
the same K-type (K+

Σ = �Gy,�s+ , χΓ).

Remarks 5.11 (Some Properties of (K+
Σ , φΣ)).

(1) If an irreducible admissible representation (π, Vπ) contains (K+
Σ , χΓ), the

depth �(π) of π is rd.
(2) Let Σ = (�G, y, �r, �φ) be a good G-datum of positive depth. Suppose ZG0/ZG

is anisotropic. Let ρ be an irreducible representation of G0
[y], the stabilizer

in G0 of the image [y] of y in the reduced building of G0, such that c-IndG0

G0
[y]

ρ

is irreducible supercuspidal. Then (�G, y, �r, �φ, ρ) is a generic G-datum ([38];
see also §12). Moreover, if π is a supercuspidal representation constructed
from the above generic datum, φΣ occurs in the restriction π|K+

Σ of π to
K+

Σ .

For more details and properties of the above K-types, we refer to [27].

5.12. Let Σ = (�G, y, �r, �φ) be as before. We recall some lattices and open compact
subgroups associated to Σ from [27].

(1) Let ε ∈ R be such that gε = g0+ . For x ∈ B(G0, k), let

Lx,ε = Lx := �gx,�s+(ε), L

x,ε = L


x := �gx,(�s+(ε))∗ ,

and
Lx,ε = Lx := �Gx,�s+(ε).

Although these definitions Lx,ε, Lx,ε, etc., depend on �G, �r and the embed-
ding of buildings, since we would not need their roles explicitly, we omit
them from the subscripts for simplicity. If (HB) is valid, L


x,ε is just L∗
x,ε.

If there is no confusion, we will drop ε from the notation, that is, we will
write Lx, L


x, Lx for Lx,ε, L

x,ε, Lx,ε.
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(2) Assume (HB) is valid. For i = 1, · · · , d + 1 and x ∈ B(Gi, k), define Li
x

and Li 

x as follows:

Ld+1
x = Ld

x := g
d
x,s+

d−1
,

Li
x := g

i
x,s+

i−1
+ Li+1

x for i = 1, · · · , d − 1,

Li 

x := Li ∗

x , for i = 1, · · · , d + 1.

Set L0
x := Lx,ε, L0


x := L

x,ε and L0

x := Lx,ε.

For later use, we record the following, which is a corollary of [27, (5.3.2)]:

Lemma 5.13. Assume the hypothesis (Hk) is valid. Let x ∈ B(G0, k) and X ∈
g0

x,(−r0)+
. Then

Γ + X + L

x ⊂ G(Γ + X + g

0
0).

For our purpose, we also define a zero good G-datum.

Definition 5.14. A zero G-datum (or 0-datum) Σ is a G-datum of the form Σ =
(�G, y, �r, �φ) where d = 0, �G = (G0 = G), �r = (0), �φ = (1) and y ∈ B(G, k). Then
we associate the corresponding K-types and lattices as follows:

K+
Σ = Gy,0+ , φΣ = 1, ΓΣ = Γ = 0,

and for x ∈ B(G, k), independent of the choice of ε,

Lx = gx,0+ , L

x = gx,0.

We associate real numbers r0, r−1, s−1 and s0 as a zero datum as follows:

r0 = r−1 = s−1 = s0 = 0.

Definition and Remark 5.15. Let Σ be a zero datum. For an irreducible admissible
representation (π, Vπ), if (K+

Σ , φΣ) < π, π is a depth zero representation. By
convention, we will call a zero datum both good and strongly good. Hence, by a
(strongly) good G-datum, we mean either a zero or a (strongly) good G-datum of
positive depth.

Definition and Remark 5.16.

(1) Let E denote the set of all irreducible admissible representations. Let Eu

(resp. Et) denote the subset of E which consists of unitarizable (resp. tem-
pered) representations of G.

We remark that E carries a natural topology defined via approximation
of matrix cofficients. Moreover, Eu is a closed subset of E, and the subspace
topology on Eu coincides with the usual topology on the unitary dual. See
[35] for more details.

(2) Let J be an open compact subgroup of G and σ one of its irreducible repre-
sentations. For (π, Vπ) ∈ E, let V

(J,σ)
π (or simply V σ

π ) denote the σ-isotypic
component in Vπ. If V σ

π �= 0, that is, if σ occurs as a subrepresentation of
the restriction of π to J , we write (J, σ) < π.
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6. Review on Plancherel formulas on G and g

For (π, Vπ) ∈ Eu and F ∈ C∞
c (G), we define a function F̂ on Eu as

F̂ (π) := Tr(π(F )) = Θπ(F ).

Then the Plancherel formula on locally compact groups (see [13]) states that there
is a Borel measure dπ called Plancherel measure on Eu such that the first equality
in the following holds:

(6.1) F (1) =
∫

Eu

F̂ (π) dπ =
∫

Et

F̂ (π) dπ.

From Harish-Chandra’s explicit Plancherel formula ([17, 37]), we have the second
equality.

On the other hand, regarding g as a topological group with respect to addition,
we can formulate the Plancherel formula on g as follows: there is a Borel measure
on ĝ such that for f ∈ C∞

c (ĝ),

f(0) =
∫

ĝ

f̂(χ) dχ,

where f̂ ∈ C∞
c (ĝ) is the Fourier transformation of f given by

f̂(χ) =
∫

ĝ

f(Y ) χ(Y ) dY.

Recall that we have the following isomorphisms:

ĝ 
 g
∗ 
 g,

where ĝ denotes the unitary dual of g. The first isomorphism is from Pontrjagin
duality. We have the second isomorphism via an additive character and an appro-
priate bilinear form on g. When (HB) holds, we have ĝ 
 g via Λ and B, and we
can rewrite the above formula as

(6.2) f(0) =
∫

g

f̂(X) dX,

where f̂(X) =
∫

g
f(Y )Λ(B(X, Y )) dY . In the above equation (6.2), the G-invariant

measure dX on g should satisfy volg(gx,r)volg(gx,r∗) = 1 for all x ∈ B(G, k) and
r ∈ R.

To relate Plancherel formulas on g and G, let f ∈ C∞
c (g) be supported in a

sufficiently small neighborhood of 0. Then f ◦ log defines a function in C∞
c (G).

Combining the Plancherel formulas (6.1) and (6.2), we have

(6.3)
∫

g

f̂(X) dX = f(0) =
∫

Et

Θπ(f ◦ log) dπ.

6.1. Haar measures. From now on, when (HB) is valid, we fix a Haar measure
on g so that (6.2) is valid. When (Hk) is valid, we fix a Haar measure on G so that
volG(Gx,f ) = volg(gx,f ) for any x and f as in (Hk). Then, the Plancherel measure
dπ in (6.1) is uniquely determined with respect to this Haar measure on G.
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7. Decomposition of g

Throughout this section, we assume that (HGT) is valid. The main result in this
section is Proposition 7.6, where we find a spectral decomposition of (6.2). Each
spectral decomposition factor is parameterized by an equivalence class of semisimple
elements (see Definition 7.4).

7.1. We restate Proposition 4.7 to fit better for our purpose: let Γ ∈ g be a
semisimple element. Then Γ can be written as

Γ = Γd + Γd−1 + · · · + Γ0 + γ

satisfying the following:
(1) Γi, i = 0, 1, · · · , d−1, is a good element of depth −ri with −rd−1 < −rd−2 <

· · · < −r0 < 0, and d(γ) ≥ 0.
(2) Γd = 0 or Γd ∈ zd = zg is nonzero with d(Γd) < −rd−1.
(3) G0 � G1 � · · · � Gd = G where Gi = CGi+1(Γi) = CG(Γi) with

Γi = Γd + · · · + Γi−1 + Γi.
Let rd := rd−1 if Γd = 0, and let rd := −d(Γd) if Γd �= 0. Then, �r := (r0, · · · , rd)
and �G := (G0,G1, · · · ,Gd) are determined uniquely independent of the choice of
good elements Γi. Note that d(Γ) = −rd.

Definition and Remark 7.2. We keep the notation from §7.1. Write Γ = Γ0 + γ
where Γ0 = Γd + Γd−1 + · · · + Γ0. Define g0

Γ as follows:

g
0
Γ := g

0
0 =

⋃
x∈B(G0,k)

g
0
x,0.

Since G0 = CG(Γ0) is well defined independent of the choice of Γ0, so is g0
Γ.

Lemma 7.3. Let Γ and Γ′ be two semisimple elements in g.
(1) G(Γ0 + g0

Γ) is a G-domain, that is, an open and closed G-invariant subset
of g.

(2) G(Γ0 + g0
Γ) and G(Γ′0 + g0

Γ′) are either disjoint or identical.

Proof. (1) follows from [27, (5.1.4)]. To prove (2), suppose
G(Γ0 + g

0
Γ) ∩ G(Γ′0 + g

0
Γ′) �= ∅.

Without loss of generality, we may assume (Γ0 + g0
Γ) ∩ (Γ′0 + g0

Γ′) �= ∅. Then there
are X ∈ g0

Γ and X ′ ∈ g0
Γ′ such that Y := Γ0 + X = Γ′0 + X ′. Let X = Xs + Xn

be the Jordan decomposition of X in cg(Γ0). Similary, write X ′ = X ′
s + X ′

n. Then,
(Γ0+Xs)+Xn and (Γ′0+X ′

s)+X ′
n are two expressions of the Jordan decomposition

of Y . By the uniqueness of Jordan decomposition, we have Γ′′ := Γ0+Xs = Γ′0+X ′
s.

Note that d(Xs) = d(X) ≥ 0 and d(X ′
s) = d(X ′) ≥ 0. Applying Proposition 4.7

to Γ′′, we conclude CG(Γ′′0) = CG(Γ0) = CG(Γ′0). Hence, g0
Γ′′ = g0

Γ = g0
Γ′ ,

(Γ′′ + g0
Γ′′) = (Γ0 + g0

Γ) = (Γ′0 + g0
Γ′), and thus G(Γ0 + g0

Γ) = G(Γ′0 + g0
Γ′). �

Definition 7.4. Let Γ and Γ′ be semisimple elements in g.
(1) Define gΓ := G(Γ0 + g0

Γ).
(2) We say that Γ and Γ′ are equivalent if gΓ = gΓ′ . In that case, we write

Γ ∼ Γ′. Let S be the set of equivalence classes of semisimple elements.
(3) If Γ ∼ 0, we set d = 0 and the associated real numbers r0 = r−1 = s0 =

s−1 = 0.
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By Lemma 7.3, the above equivalence relation is well defined.

Examples. (1) Any two semisimple elements Γ and Γ′ with d(Γ) ≥ 0 and
d(Γ′) ≥ 0 are equivalent. In this case, we have gΓ = gΓ′ = g0.

(2) Let t be a k-torus in g which splits over a tamely ramified extension. Any
Γ, Γ′ ∈ t satisfying Γ ≡ Γ′ (mod t0) are equivalent.

Lemma 7.5. The Lie algebra g is a disjoint union of gΓ = G(Γ0 + g0
Γ), Γ ∈ S:

g =
◦⋃

Γ∈S

G(Γ0 + g
0
Γ) =

◦⋃
Γ∈S

gΓ.

Proof. ‘⊃’ is obvious. For ‘⊂’, let X ∈ g. Let X = Xs + Xn be the Jordan
decomposition of X and G′ := CG(Xs). Since Xn is nilpotent and Xn ∈ g′, we
have Xn ∈ g′x,0 for some x ∈ B(G′). Hence X ∈ gXs

, and ‘⊂’ follows. �

Proposition 7.6. For any f ∈ C∞
c (g), the integral

∫
g
f(X) dX is decomposed as

follows: ∫
g

f(X) dX =
∑
Γ∈S

∫
gΓ

f(X) dX.

Proof. This follows from Lemma 7.3(1) and Lemma 7.5. �

Corollary 7.7. Suppose (HB) is valid. Then, for any f ∈ C∞
c (g),

f(0) =
∫

g

f̂(X) dX =
∑
Γ∈S

∫
gΓ

f̂(X) dX.

8. Decomposition of E

8.1. From now on, we fix ε such that gε = g0+ . Since {r ∈ R | gr � gr+} is a
discrete subset of R, such an ε exists.

The choice of such an ε first appears in [11] to treat homogeneity in the depth
zero case. This setting is carried to [27]. Via this choice, we can find nice test
functions which are in a certain sense dual to the orbital integrals in which we are
interested (see [27, (9.1.6)] or §9.5).

8.2. Recall that for each twisted Levi sequence �G, we fixed embeddings of buildings
in §2.3. Except when Z0/Zd is k-anisotropic, most objects defined here might in
principle depend on the K-types constructed in §5, hence on the choice of embed-
dings. In the course of the proof of our main result, we show that if �G is associated
to a supercuspidal representation, then Z0/Zd is k-anisotropic (Proposition 14.5).
Hence, the ambiguity in the choice of embedding is irrelevant for the particular
argument pursued in this paper.

Throughout this section, we assume (Hk), (HB) and (HGT) are valid.
The main result in this section is Proposition 8.11, where we find a spectral

decomposition of (6.1). In §11, we will see that each decomposition factor is pa-
rameterized by an element of S.

Definition 8.3. Let Σ = (�G, y, �r, �φ) be a strongly good G-datum of positive
depth, and let ΓΣ be a semisimple element associated to Σ as in Definition 5.3. Let
Γ be a semisimple element in g.

(1) We say that Σ and Γ are associated if ΓΣ ∼ Γ.
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(2) EΣ(ε) := {(π, Vπ) ∈ E | π > (Lx,ε, χΓΣ+n), for some x ∈ B(G0, k), n ∈
g0

x,−ε ∩ N}.

Remarks 8.4.
(1) Note that any two semisimple elements associated to Σ as in Definition 5.3

are equivalent. Hence, (1) is well defined.
(2) The definition in (2) is set up to achieve the equality in Theorem 10.1. Note

that n ∈ g0
x,−ε defines a character on Gx,ε and Lx,ε because Gx,ε/Gx,ε+ is

abelian. Hence, ΓΣ + n also defines a character on Lx,ε.

Definition 8.5. Let Γ be a semisimple element in g.
(1) If d(Γ) < 0,

EΓ(ε) :=
⋃

ΓΣ∼Γ

EΣ(ε)

where the union runs over all strongly good G-datum Σ of positive depth
such that ΓΣ ∼ Γ.

(2) If Γ ∼ 0, define E0 = EΓ(ε) to be the set of all depth zero representations
(this is independent of the choice of ε).

Lemma 8.6. Let Γ and Γ′ be semisimple elements in g.
(1) EΓ(ε) = EΓ′(ε) if and only if Γ ∼ Γ′.
(2) EΓ(ε) and EΓ′(ε) are either disjoint or identical.

Proof. (1) ‘⇐’ is obvious. For ‘⇒’, if EΓ(ε) ∩ EΓ′(ε) �= ∅, then there is a strongly
good G-datum of positive depth Σ such that Γ ∼ ΓΣ ∼ Γ′. Hence Γ ∼ Γ′.

(2) Note that the depth of a representation in EΓ(ε) is either 0 or −d(Γ). Suppose
Γ ∼ 0. Then, EΓ(ε) = E0, and EΓ′(ε) intersects E0 if and only if Γ′ ∼ 0. Hence,
EΓ′(ε) = EΓ(ε).

Now, suppose d(Γ), d(Γ′) < 0. Suppose (π, Vπ) ∈ EΓ(ε) ∩ EΓ′(ε). Then
there are two strongly good G-datums of positive depth Σ = (�G, y, �r, �φ) and
Σ′ = (�G′, y′, �r′, �φ′) such that

(i) ΓΣ ∼ Γ and (π, Vπ) > (Lx,ε, χΓΣ+n) for some x ∈ B(G0, k) and n ∈ g0
x,−ε,

(ii) ΓΣ′ ∼ Γ′ and (π, Vπ) > (Lx′,ε, χΓΣ′+n′) for some x′ ∈ B(G′0, k) and n′ ∈
g′0x′,−ε.
Since (π, Vπ) is irreducible, an argument similar to the one in [30, (7.2)] shows that
there is g ∈ G such that gχΓΣ+n = χΓΣ′+n′ on gLx,ε ∩L′

x′,ε. Then, by Lemma 3.12,
g(ΓΣ + n + L


x,ε) ∩ (ΓΣ′ + n′ + L
′

x′,ε) �= ∅. Since n ∈ g0

ΓΣ
and n′ ∈ g0

ΓΣ′ , by Lemma
5.13, ΓΣ + n + L


x,ε ⊂ G(ΓΣ + g0
ΓΣ

) and ΓΣ′ + n′ + L

x,ε ⊂ G(ΓΣ′ + g0

ΓΣ′ ). Hence,
G(ΓΣ + g0

ΓΣ
) ∩ G(ΓΣ′ + g0

ΓΣ′ ) �= ∅, and ΓΣ ∼ ΓΣ′ by Lemma 7.3(2). Now, we have
EΓ(ε) = EΓ′(ε) by (1). �

Definition 8.7.
(1) Let Et

Γ(ε) := Et ∩ EΓ(ε).
(2) For any pair s = (J, σ) consisting of an open compact subgroup J and its

irreducible representation σ, we define subsets Es and Et
s of E as follows:

Es := {π ∈ E | s < π}, Et
s := Et ∩ Es.

8.8. The structure of Et. The following are some definitions and remarks regard-
ing the structure of Et. The definitions here are made in a parallel fashion to those
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in [8] regarding Bernstein center, and most facts here can be deduced from [17] or
[37].

(1) Let t = (M, τ )d be a pair of a Levi subgroup and a discrete series on M . We
will call such a pair a discrete pair. We say that two discrete pairs (M, τ )d

and (M ′, τ ′)d are equivalent if there is a g ∈ G and an unramified unitary
character on M such that M = gM ′ and τ ⊗ χ 
 gτ ′.

(2) Let Bd be the set of equivalence classes of discrete pairs. Then, for any
tempered representation π, there is a unique class (M, τ )d in Bd such that π
is a subquotient of a parabolically induced representation from (M, τ ⊗χ)d

for some unramified unitary character of M . In this case, we will say that
(M, τ )d is the discrete support of π.

(3) For t ∈ Bd, let Et(t) be the set of irreducible tempered representations
whose discrete supports are t. Then the result of [17] (see also [37, III.4.1])
says that Et is the disjoint union of Et(t), t ∈ Bd, and the Plancherel
formula can be written as follows: for F ∈ C∞

c (G),

F (1) =
∫

Et

F̂ (π) dπ =
∑

t∈Bd

∫
Et(t)

F̂ (π) dπ.

(4) Denote by Irrt the set of all irreducibly induced representations IndG
P τ from

some (M, τ )d in t. Then∫
Et(t)

F̂ (π) dπ =
∫

Irrt

F̂ (π) dπ

and the Plancherel measure of Et(t) \ Irrt is zero (see [37, IV.2.2, IV.3]).
(5) The representations in Et(t) have the same cuspidal support, that is, there is

a pair (M ′, σ)c of a Levi subgroup M ′ and its supercuspidal representation
σ such that each representation in Et(t) is a subquotient of the parabolically
induced representation from (M ′, σ ⊗ χ)d for some unramified character χ
of M ′. Moreover, representations in Et(t) have the same depth ([31]).

We also need the following lemma for the proof of Lemma 8.10. Here, by para-
bolic induction, we mean unitary parabolic induction.

Lemma 8.9. Let t ∈ Bd. Let (M1, τ1)d and (M2, τ2)d be in the class of t. Then,
any parabolically induced representations IndG

P1
τ1 and IndG

P2
τ2, where Pi, i = 1, 2,

is a parabolic subgroup with Levi factor Mi, are isomorphic when restricted to any
special maximal compact subgroup.

Proof. Let K be a special maximal compact subgroup and P0 a minimal parabolic
subgroup of G such that G = P0K = KP0. Without loss of generality, we may
assume that P1 and P2 contain P0.

Denote the set of unitary unramified characters of Mi by Xu(Mi), i = 1, 2. Let
g ∈ G be such that gM1 = M2 and gτ1 
 τ2 ⊗ χ2 for some χ2 ∈ Xu(M2).

Suppose τ1 is G-regular (that is, τ1 �
 hτ1 for any h normalizing M1). Then,
τ2 ⊗ χ2 is also regular and IndG

P1
τ1 
 IndG

gP1
τ2 ⊗ χ2 
 IndG

P2
τ2 ⊗ χ2. The second

isomorphism follows from Frobenius reciprocity and [37, III.7.3]. Since(
IndG

P2
τ2

)
| K 


(
IndG

P2
τ2 ⊗ χ2

)
| K

by [10, (3.1.1)], the lemma follows.
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In general, there is an unramified unitary character χ of M1 such that τ1 ⊗ χ is
G-regular This follows from the fact that {χ ∈ Xu(M1) | τ1 ⊗ χ 
 τ1} is a finite
set while Xu(M1) forms a complex manifold. Using [10, (3.1.1)], the general case
follows from the G-regular case. �

Lemma 8.10. Let Γ ∈ S and t ∈ Bd. Then, Et
Γ(ε) ∩ Et(t) either contains Irrt or

it has Plancherel measure zero.

Proof. Suppose Γ ∼ 0 and thus Et
Γ(ε) is the set of depth zero representations. By

(5) of §8.8, Et
Γ(ε) ∩ Et(t) is either Et(t) or empty.

Suppose Γ �∼ 0. Note that for any Σ, Lx,ε is contained in a special maxi-
mal compact subgroup. Then, by Lemma 8.9, if there is an irreducibly induced
representation IndG

P τ in Et
Γ(ε) ∩ Et(t) for some (M, τ )d in t, Irrt is contained in

Et
Γ(ε) ∩ Et(t). Otherwise, Et

Γ(ε) ∩ Et(t) is contained in Et(t) \ Irrt whose Plancherel
measure is zero. �

In the following proposition, we denote the union of Et(t), t ∈ Bd, with Irrt ⊂
Et

Γ(ε) ∩ Et(t) by Et
Γ(ε).

Proposition 8.11.
(1) For Γ ∈ S and F ∈ C∞

c (G), we have∫
Et

Γ(ε)

F̂ (π) dπ =
∫

Et
Γ(ε)

F̂ (π) dπ.

(2) For F ∈ C∞
c (G), we have

F (1) =
∫

Et

F̂ (π) dπ =
∫

Et\
(◦⋃

Γ∈S
Et

Γ(ε)

) F̂ (π) dπ +
∑
Γ∈S

∫
Et

Γ(ε)

F̂ (π) dπ.

(3) Each Et
Γ(ε) has a finite Plancherel volume, that is, volEu(Et

Γ(ε)) < ∞.

Remark 8.12. Note that S is a countable set. Moreover, for any F ∈ C∞
c (G),∫

Et
Γ(ε)

F̂ (π) dπ �= 0 for only finitely many Γ ∈ S. Hence, the
∑

in (2) is well
defined.

Proof. (1) This follows from Lemma 8.10 and (4) of §8.8.
(2) We have∫

Et F̂ (π) dπ
(i)
=

∫
Et\

(◦⋃
Γ∈S

Et
Γ(ε)

) F̂ (π) dπ +
∑

Γ∈S

∫
Et

Γ(ε)
F̂ (π) dπ

(ii)
=

∫
Et\

(◦⋃
Γ∈S

Et
Γ(ε)

) F̂ (π) dπ +
∑

Γ∈S

∫
Et

Γ(ε)
F̂ (π) dπ.

The equality (i) follows from (1) and the decomposition in (3) in 8.8. Since (Et
Γ(ε)∪

Et
Γ(ε))\(Et

Γ(ε)∩Et
Γ(ε)) has Plancherel measure zero by Lemma 8.10, combining this

with (1), the equality (ii) follows.
(3) Let x ∈ B(G). Since any (π, Vπ) ∈ Et

Γ(ε) is of depth rd, Et
Γ(ε) ⊂ Et

(Gx,rd+r′ ,1)

for a sufficiently large r′ ∈ R. Then, (3) is a result of the following lemma. �

Lemma 8.13. For any open compact subgroup J ⊂ G, let Et
(J,1) = {(π, Vπ) ∈ Et |

V
(J,1)
π �= 0}. Then, Et

(J,1) has a finite Plancherel volume.
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Proof. Let F ∈ C∞
c (G) be given by the characteristic function of J divided by

volG(J). Then, from the Plancherel formula on G, we have

volEu(Et
(J,1)) ≤

∫
Et

(J,1)

dimC(V J
π ) dπ

=
∫

Et

dimC(V J
π ) dπ =

∫
Et

F̂ (π) dπ = F (1) =
1

volG(J)
.

�

9. Review on Γ-asymptotic expansions

As a preparation for the proof of Theorem 10.1, we review Γ-asymptotic expan-
sions and related materials from [27].

Let ε ∈ R be as before. Fix a strongly good G-datum of positive depth Σ =
(�G, y, �r, �φ), and let Γ = ΓΣ. In this case, set r−1 := −ε. Associated to Γ, we have
a subspace JΓ of invariant distributions on g.

9.1. Recall that Γ−1 = Γ0. Let Ni := N ∩ gi, 0 ≤ i ≤ d, and let N−1 = N0. Then
Ni is the set of nilpotent elements in gi. Let ΥΣ be the set of all triples (i, x, s)
with i ∈ { 0, . . . , d }, x ∈ B(Gi, k), and ri−1 ≤ s < ri if i < d, rd−1 ≤ s < ∞ if
i = d:

ΥΣ := { (i, x, s) ∈ Z × B(G, k) × R̃ | i ∈ { 0, . . . , d }, x ∈ B(Gi, k),
ri−1 ≤ s < ri if i �= d, rd−1 ≤ s < ∞ if i = d }.

Let J(g) denote the set of G-invariant distributions on g. In the following, we define
a subspace JΓ of J(g).

Definition 9.2.
(1) Let (i, x, s) ∈ ΥΣ with s ≤ rd−1. Recall that Li

x is defined in §4.3(1), and
define J

i,Γ
x,−s as follows: If ri−1 < s < ri, let

J
i,Γ
x,−s :=

{
T ∈ J(g) | if f ∈ C

((
Γi + gi

x,−s + Li

x

) /
Li


x

)
and

Supp(f) ∩
(
Γi + gi

(−s)+

)
= ∅, then T(f) = 0

}
.

Let

J
i,Γ
x,−ri−1

:=
{

T ∈ J(g)
∣∣∣ if f ∈ C

((
Γi + gi

x,−ri−1
+ Li


x

) /
Li


x

)
and

Supp(f) ∩ Gi
(
Γi−1 + g

i−1
(−ri−1)+

)
= ∅, then T(f) = 0

}
.

(2) If (i, x, s) ∈ ΥΣ and s > rd−1, then i = d. In this case, let

J
d,Γ
x,−s :=

{
T ∈ J(g)

∣∣ if f ∈ C((Γd + gx,−s)/gx,−sd−1) and
Supp(f) ∩ (Γd + g(−s)+) = ∅, then T(f) = 0

}
.

(3) Set
JΓ :=

⋂
(i,x,s)∈ΥΣ

J
i,Γ
x,−s .

For any t ∈ R̃, define a subspace Dt of C∞
c (g) as follows:

Dt :=
∑

x∈B(G,k)

Cc(g/gx,t).
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Note that Dt is the space consisting of Fourier transforms of f ∈ C∞
c (gt∗) ([2,

(4.2.3)]).

Theorem 9.3 ([27, (8.1.1)]). Suppose (Hk) and (HN) are valid. Let Γ be as above.
Let JO(Γ) be the linear span of orbital integrals µO associated to O with O ∈ O(Γ).
Then, we have JΓ ≡ JO(Γ) on D−sd−1 .

For (π, Vπ) ∈ E, we define the Fourier transform Θ̂π ∈ J(g) of Θπ as follows: for
f ∈ C∞

c (g), let f0+ = f · [g0+ ] and

Θ̂π(f) = Θπ(f̂0+ ◦ log).

Theorem 9.4 ([27, (8.2.3)]). Let (π, Vπ) ∈ E. Let Σ = (�G, y, �r, �φ) be a strongly
good G-datum of positive depth. Assume the hypotheses (HB), (Hk) and (HN)
are valid. Let x ∈ B(G0, k) and Γ := ΓΣ. Let Lx and Lx be as in §5.12. Let
X ∈ g0

x,−ε∩g0
(−ε)+ , and let χΓ+X be the character of Lx with the dual blob Γ+X+L


x.
Suppose (π, Vπ) contains (Lx, χΓ+X). Then,

(1) Θ̂π ∈ J−Γ,
(2) Θ̂π is Γ-asymptotic on gs+

d−1
; that is, there are cO(π) ∈ C indexed by O(Γ)

such that Θπ(f ◦ log) =
∑

O∈O(Γ)

cO(π) · µ̂O(f) for all f ∈ C∞
c (gs+

d−1
), where

µO is the orbital integral associated to O ∈ O(Γ).

9.5. Recall that G0 = CG(Γ). Label the elements of O(G0, 0), the set of nilpotent
orbits in g0, as O0

1, . . . , O
0
m. Because Γ is semisimple, the Jordan decomposition

gives a bijection between O(Γ) and O(G0, 0) (see §2.6). If O0 ∈ O(G0, 0), the
corresponding element of O(Γ) is G(Γ + O0). Let Oi = G(Γ + O0

i ), 1 ≤ i ≤ m.
In [27], we also found some test functions fΓ

i , Oi ∈ O(Γ), such that (i) the obvious
pairing on 〈µOi

| Oi ∈ O(Γ) 〉×〈 fΓ
i | Oi ∈ O(Γ) 〉 is nondegenerate, and (ii) for each

Oi ∈ O(Γ), there are xi ∈ B(G0, x) and Xi ∈ Oi∩g0
xi,(−ε) with fΓ

i = [Γ+Xi +L

xi

].
This provides a way to compute the coefficients cO(π) in Theorem 9.4 by linear

algebra. Moreover, if T ∈ JΓ, then the restriction of T to D−sd−1 is completely
determined by T(fΓ

i ), i = 1, · · · , m, in the following sense.

Theorem 9.6 ([27, (9.1.6)]). Suppose (Hk) and (HN) are valid. Let T ∈ JΓ. Let
fΓ

i be as in §9.5. If T(fΓ
i ) = 0 for all i = 1, · · · , m, then T ≡ 0 on D−sd−1 .

Corollary 9.7. Suppose (Hk) and (HN) are valid. Let T1, T2 ∈ JΓ. If

T1([Γ + X + L

x]) = T2([Γ + X + L


x])

for each x ∈ B(G0, k) and X ∈ N0 ∩ g0
x,(−ε), then T1 ≡ T2 on D−sd−1 .

Proof. Since{
fΓ

i

}m

i=1
⊂

{
[Γ + X + L


x] | x ∈ B(G0, k), X ∈ N0 ∩ g
0
x,(−ε)

}
,

the corollary follows from the above theorem. �

10. Matching

In the following theorem, we match the spectral decomposition factors in Corol-
lary 7.7 and Proposition 8.11. This is a crucial step in proving Theorem 11.1.
Recall that if Γ ∼ 0, sd−1 = s−1 = 0.
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Theorem 10.1. Suppose (Hk), (HB), (HGT) and (HN) are valid. Let Γ ∈ S.
Then for any f ∈ C∞

c (gs+
d−1

), we have∫
gΓ

f̂(X) dX =
∫

Et
Γ(ε)

f̂ ◦ log(π) dπ.

Proof. Suppose Γ ∼ 0. Then gΓ = g0 and Et
Γ(ε) is the set of all tempered depth

zero representations. Hence the above equality follows from [25, (3.3.1)].
Now assume that d(Γ) < 0. Without loss of generality, we may assume Γ = Γ0.

Write Γ as in §7.1:
Γ = Γ0 = Γd + Γd−1 + · · · + Γ0.

Let Tg

Γ and TG
Γ be invariant distributions defined as follows: for f ∈ C∞

c (g), let
f0+ := f · [g0+ ]. Then,

Tg

Γ(f) :=
∫

gΓ

f̂0+(X) dX,

TG
Γ (f) :=

∫
Et

Γ(ε)

̂f0+ ◦ log(π) dπ =
∫

Et
Γ(ε)

Θπ(f0+ ◦ log) dπ.

Hence, to prove the theorem, it is enough to prove that

Tg

Γ(f̂) = TG
Γ (f̂)

for any f ∈ D−sd−1 , since D̂−sd−1 = C∞
c (gs+

d−1
). We first need the following lemma.

Lemma 10.2. T̂g

Γ and T̂G
Γ are elements of J−Γ.

Proof. By Theorem 9.4(1), we have T̂G
Γ ∈ J−Γ. To show T̂g

Γ ∈ J−Γ, note that for
any f ∈ C∞

c (g), we have

T̂g

Γ(f) =
∫

gΓ

f(−X) dX =
∫
−gΓ

f(X) dX

and
Supp(T̂g

Γ) = −gΓ = g−Γ.

If s > rd−1, then

Supp(T̂g

Γ) = −gΓ = G(−Γ + g
0
0) ⊂ G(−Γ + g

d
(−s)+) = G(−Γd + g

d
(−s)+)

= −Γd + g
d
(−s)+ .

Hence T̂g

Γ ∈ J
d,−Γ
x,−s . If ri−1 < s ≤ ri, i = 0, · · · , d, then

Supp(T̂g

Γ) = G(−Γ + g
0
0) ⊂ G(−Γ + g

i
(−s)+) = G(−Γi + g

i
(−s)+),

which implies that T̂g

Γ ∈ J
i,−Γ
x,−s. Therefore, T̂g

Γ ∈
⋂

(i,x,s)∈ΥΓ
J

i,−Γ
x,−s = J−Γ. �

Continuing with the proof of Theorem 10.1, by Lemma 10.2 and Corollary 9.7,
it is enough to check that for any x ∈ B(G0, k) and X ∈ N0 ∩ g0

x,−ε,

(E) T̂g

Γ

(
[−Γ + X + L


x]
)

= T̂G
Γ

(
[−Γ + X + L


x]
)
.

We first note that Supp
(
[−Γ + X + L


x]
)
⊂ G(−Γ+X +g0

0) ⊂ G(−Γ+g0
0) = g−Γ.

The first inclusion follows from Lemma 5.13, and the second inclusion follows from
X being nilpotent and thus X ∈ g0

0. Then we have

(a) T̂g

Γ

(
[−Γ + X + L


x]
)

= volg(L

x) = 1

volg(Lx) .
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Computing T̂G
Γ

(
[−Γ + X + L


x]
)
, write f for [−Γ + X + L


x]. Then,
f̂(Y ) = 1

volG(Lx) · Λ(B(−Γ + X, Y )) · [Lx](Y ).

Note that
(
volG(Lx) · f̂ ◦ log

)
is a character of Lx with dual blob −Γ + X + L


x,

that is,
(
volG(Lx) · f̂ ◦ log

)
= χ−Γ+X

on Lx. Then Θπ(f̂ ◦ log) = Θπ(χ−Γ+X
) is the

multiplicity m(χΓ−X
, Vπ) of χΓ−X

in Vπ. Since m(χΓ−X
, Vπ) = 0 unless π ∈ Et

Γ(ε),
we have

(b)

1
volg(Lx) = f̂(log(1)) =

∫
Et Θπ(f̂ ◦ log) dπ

=
∫

Et m(χΓ−X
, Vπ) dπ =

∫
Et

Γ(ε)
m(χΓ−X

, Vπ) dπ

=
∫

Et
Γ(ε)

Θπ(f̂ ◦ log) dπ = T̂G
Γ

(
[−Γ + X + L


x]
)
.

Now the equality (E) follows from (a) and (b), and Theorem 10.1 is proved. �

11. Tempered representations

Throughout this section, we assume (Hk), (HB), (HGT) and (HN) are valid.
We prove that for almost every tempered representation (π, Vπ), there is a

strongly good G-datum Σ such that (π, Vπ) contains the K-type (K+
Σ , φΣ). As

a corollary of the proof, we get a spectral decomposition of the delta distribution
on G, where each decomposition factor is parameterized by an element of S.

Theorem 11.1. Almost every tempered representation is an element of Et
Γ(ε) for

some Γ ∈ S. That is, Et \
◦⋃

Γ∈S
Et

Γ(ε) has Plancherel measure zero.

In the following, for A, A′ ⊂ Et, if (A∪A′) \ (A′ ∩A) has measure zero, we will
write A

µ
= A′.

Proof. We fix x ∈ B(G, k). For α ∈ Z>0, let Fα := [Gx,α+ ]. Then, for any

(π, Vπ) ∈ E, we have F̂α(π) = Θ̂π([Gx,α+ ]) = volG(Gx,α+) dimV
(Gx,α+ ,1)
π ≥ 0. Let

Etα := Et
(Gx,α+ ,1), and let Et

Γ(ε)α := EΓ(ε) ∩ Etα. Then we have

∫
g

̂Fα ◦ exp(X) dX =
∫

Et

F̂α(π) dπ =
∫

Etα

F̂α(π) dπ
(i)

≥
∑
Γ∈S

∫
Et

Γ(ε)α

F̂α(π) dπ

=
∑

Γ∈S, Et
Γ(ε)α 
=∅

∫
Et

Γ(ε)α

F̂α(π) dπ
(ii)
=

∑
Γ∈S, Et

Γ(ε)α 
=∅

∫
gΓ

̂Fα ◦ exp(X) dX

(iii)
=

∑
Γ∈S

∫
gΓ

̂Fα ◦ exp(X) dX
(iv)
=

∫
g

̂Fα ◦ exp(X) dX.

The relations (i), (iii) and (iv) are straightforward. We use Theorem 10.1 to verify
(ii).

The first inequality (i) follows from
◦⋃

Γ∈S
Et

Γ(ε)α ⊂ Etα and F̂α(π) ≥ 0.
To prove (ii), it is enough to verify that for Γ ∈ S, if Et

Γ(ε)α �= ∅,∫
Et

Γ(ε)α

F̂α(π) dπ =
∫

Et
Γ(ε)

F̂α(π) dπ =
∫

gΓ

̂Fα ◦ exp(X) dX.

Since for (π, Vπ) ∈ Et
Γ(ε), F̂α(π) �= 0 only if (π, Vπ) ∈ Et

Γ(ε)α, the first equality
follows. To prove the second one, we note that F̂α(π) �= 0 only if α ≥ �(π) = rd
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for π ∈ Et
Γ(ε). Hence Et

Γ(ε)α �= ∅ only if α ≥ rd. In that case, since Fα ◦ exp ∈
C∞

c (gr+
d
) ⊂ C∞

c (gs+
d−1

), the equality in Theorem 10.1 is valid for Fα. Hence the
above equalities are valid, and so is (ii).

To prove (iii), we note that ̂Fα ◦ exp is a scalar multiple of the characteristic
function of gx,−α. Then since Supp( ̂Fα ◦ exp)∩gΓ = gx,−α∩gΓ �= ∅ only if Et

Γ(ε)α �=
∅, the equality (iii) holds. The equality (iv) follows from Lemma 7.5.

Hence, ≥ in (i) is in fact an equality for all α ∈ Z>0. Therefore, Etα µ
=⋃

Γ∈S
Et

Γ(ε)α. Since Et =
⋃

α∈Z>0
Etα and Et

Γ(ε) =
⋃

α∈Z>0
Et

Γ(ε)α, we can now
conclude
(∗) Et µ

=
⋃

Γ∈S
Et

Γ(ε) .
Combining this with Lemma 8.6, we get that the above is a disjoint union. �

Corollary 11.2. For any f ∈ C∞
c (G), we have

f(1) =
∑
Γ∈S

∫
Et

Γ

Θπ(f) dπ.

Proof. This follows from Proposition 8.11(1) and Et µ
=

◦⋃
Γ∈S

Et
Γ. �

Remark 11.3. Note that Et µ
=

◦⋃
Γ∈S

Et
Γ(ε) independent of the choice of ε > 0 such

that gε = g0+ . Since Et
Γ(ε′) ⊂ Et

Γ(ε) for 0 < ε′ < ε and the above (∗) is a disjoint
union, Et

Γ(ε)
µ
= Et

Γ(ε′). By Lemma 8.10, we also have⋃
ε Et

Γ(ε)
µ
=

⋂
ε Et

Γ(ε)

where ε runs over real numbers such that gε = g0+ , and thus

Et µ
=

◦⋃
Γ∈S

(⋂
ε Et

Γ(ε)
)

.

Theorem 11.4. For (π, Vπ) ∈
◦⋃

Γ∈S
(
⋂

ε Et
Γ(ε)), there is a strongly good G-datum

Σ such that (π, Vπ) contains (K+
Σ , φΣ).

Proof. This is obvious if �(π) = 0. Now, suppose �(π) > 0. Let Γ �∼ 0 be such
that (π, Vπ) ∈

⋂
ε Et

Γ(ε) and it splits over a tamely ramified extension E. Let �G, �r

and �φ be the sequences associated to Γ. Fix a subset D in B(G0, k) such that D is
compact and G0 · D = B(G0, k). If G0 is semisimple, the closure of a chamber in
B(G0, k) is such a subset. Otherwise, since B(G0, k) is the product of B(G0der, k)
and X∗(ZG0 , k)⊗R, and since (X∗(ZG0 , k)⊗R)/ZG0 is compact, such a subset D
exists. In particular, we can choose D such that D ⊂ A(G0,T, k) for some E-split
maximal k-torus T in G0.

Fix ε > 0 such that gε = g0+ . Choose a decreasing sequence εj , j = 1, 2, · · · ,
such that ε > εj > 0 and εj → 0.

For each εj , there is a strongly good G-datum of positive depth Σxj
= (�G, xj , �r, �φ)

with xj ∈ D and nj ∈ g0
xj ,−εj

∩ N0 such that (Lxj ,εj
, χΓ+nj

) < (π, Vπ) (such an
xj exists by conjugation if necessary). Since D is compact, there is a cluster point
y ∈ D of xj ’s.

Let ε′ > 0 be such that gy,0+ = gy,α = gy,α+ and gy,s+
i

= gy,si+α for any α < ε′.
Let δ be such that for any affine root ψ in Ψ(G,T, E) and x, x′ ∈ A(G,T, E), if
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dist(x, x′) < δ, |ψ(x − x′)| < ε′/3. Then, in that case, for any r ∈ R,

g(E)x,r+ε′/3

(†)
⊂ g(E)x′,r ⊂ g(E)x,r−ε′/3.

Since y is a cluster point, there are εj and xj such that |y − xj | < δ and εj < ε′/3.
Fix such εj and xj . Then we have the following:

(i) With r = εj , x = y and x′ = xj in (†), gy,0+ = gy,εj+ε′/3 ⊂ gxj ,εj
.

(ii) With r = εj + ε′/3, gy,εj+2/3ε′ ⊂ gxj ,εj+ε′/3. Since gxj ,εj+ε′/3 ⊂ gxj ,ε+j
and

gy,εj+2/3ε′ = gy,0+ , we have gy,0+ ⊂ gxj ,ε+j
and gxj ,−εj

⊂ gy,0.
(iii) With r = si + ε′/3, gy,s+

i
= gy,si+2ε′/3 ⊂ gxj ,si+ε′/3 ⊂ gxj ,s+

i
.

From (i)–(iii), we see that K+
Σy

= �Gy,�s+ ⊂ Lxj ,εj
= �Gxj ,�s+(εj) and nj ∈ g0

xj ,−εj
⊂

g0
y,0. Hence,

χΓ+nj
|�Gy,�s+ = χΓ,

and (π, Vπ) contains (K+
Σy

, χΓ). �

Corollary 11.5. Let (π, Vπ) be an irreducible supercuspidal representation. Then,
there is a strongly good G-datum Σ such that (π, Vπ) contains (K+

Σ , φΣ).

Proof. Suppose (π, Vπ) is tempered. Then t := (G, π) ∈ Bt. For any Γ ∈ S and
ε > 0 such that g0+ = gε, we have either Et(t) ⊂ Et

Γ(ε) or Et(t) ∩ Et
Γ(ε) = ∅.

Now, since Et(t) has strictly positive Plancherel measure, the corollary follows from
Theorem 11.4. Now, any supercuspidal representation is tempered up to twisting by
an unramified character, and the general case follows from the tempered case. �

12. Review of Yu’s construction

The construction of supercuspidal representations by Yu is based on a generic
G-datum (see [38] for details and [3] for a summary).

Definition 12.1. A generic G-datum is a quintuple ΣY = (�G, y, �r, �φ, ρ) satisfying
the following:
D1. �G = (G0,G1, · · · ,Gd = G) is a tamely ramified twisted Levi sequence such
that ZG0/ZG is anisotropic.
D2. y ∈ B(G0, k).
D3. �r = (r0, r1, · · · , rd−1, rd) is a sequence of positive real numbers with 0 < r0 <
· · · < rd−2 < rd−1 ≤ rd if d > 0, 0 ≤ r0 if d = 0.
D4. �φ = (φ0, · · · , φd) is a sequence of quasi-characters, where φi is a generic quasi-
character of Gi; φi is trivial on Gi

y,r+
i

but nontrivial on Gi
y,ri

for 0 ≤ i ≤ d − 1. If

rd−1 < rd, φd is nontrivial on Gd
y,rd

and trivial on Gd
y,r+

d

. Otherwise, φd = 1.

D5. ρ is an irreducible representation of G0
[y], the stabilizer in G0 of the image [y]

of y in the reduced building of G0, such that ρ|G0
y,0+ is isotrivial and c-IndG0

G0
[y]

ρ is
irreducible and supercuspidal.

Remark 12.2. By (6.6) and (6.8) of [31], D5 is equivalent to the condition that G0
y,0

is a maximal parahoric subgroup in G0 and ρ|G0
y,0 induces a cuspidal representation

of G0
y,0/G0

y,0+ .

As remarked before, under our hypotheses, a generic quasi-character is also good.
Instead of reviewing the definition of genericity, we will briefly describe the con-
struction when φi is good.
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12.3. From now on, we fix a generic G-datum ΣY = (�G, y, �r, �φ, ρ). Associated to
ΣY , we have the following open compact subgroups. Note that their definitions
depend only on �G, y and �r.

(1) K0 := G0
[y] ; K0+ := G0

y,0+ .
(2) Ki := G0

[y]G
1
y,s0

· · ·Gi
y,si−1

; Ki+ := G0
y,0+G1

y,s+
0
· · ·Gi

y,s+
i−1

for 1 ≤ i ≤ d.

Then note that Ki+ = Ki+
Σ (see §5.8).

(3) J i := (Gi−1,Gi)(k)y,(ri−1,si−1) ; J i
+ := (Gi−1,Gi)(k)y,(ri−1,s+

i−1)
.

(4) For i > 0, we have Ki−1J i = Ki and Ki−1 +J i
+ = Ki+.

12.4. Construction. Let φ̂i denote a character of K0Gi
y,0Gy,s+

i
defined similarly as

in §5.8 (replacing G0
y,0+ with K0Gi

y,0). For 0 ≤ i < d, there exists a representation
φ̃i of Ki � J i+1 such that φ̃i|J i+1 is φ̂i|J i+1

+ -isotypical and φ̃i|Ki+ is isotrivial.
Let inf(φi) denote the inflation of φi|Ki to Ki � J i+1. Then inf(φi)⊗ φ̃i factors

through a map
Ki � J i+1 −→ KiJ i+1 = Ki+1.

Let κi denote the corresponding representation of Ki+1. Then it can be extended
trivially to Kd, and we denote the extended representation again by κi. We also
extend ρ trivially to a representation of Kd and denote this extended representation
again by ρ. Define a representation κ and ρΣY

of Kd as follows:

κ := κ0 ⊗ · · · ⊗ κd−1 ⊗ (φd|Kd),
ρΣY

:= ρ ⊗ κ.

Note that κ is defined only from (�G, y, �r, �φ) independent of ρ.

Theorem 12.5 ([38]). πΣY
= c-IndG

KdρΣY
is an irreducible supercuspidal repre-

sentation.

Remark 12.6. In ΣY , if d = 0 and r0 = 0, πΣY
= c-IndG

G[y]
ρ is a depth zero

supercuspial representation. Moreover, by [28] or [31, (6.6), (6.8)], any depth zero
supercuspidal representation is of this form. Hence, Yu’s construction includes all
depth zero supercuspidal representations.

Remark 12.7. Suppose (Hk), (HB), (HGT) and (HN) are valid. Let (π, Vπ) be a
supercuspidal representation of positive depth. Then by Corollary 11.5, there is a
strongly good G-datum Σ of positive depth so that (K+

Σ , φΣ) < (π, Vπ). Comparing
Σ and ΣY , we note that Yu imposed certain sufficient conditions on ΣY to get
supercuspidal representations such as (i) ZG0/ZG is anisotropic, (ii) G0

y,0 is a
maximal parahoric subgroup in G0, and (iii) ρ is irreducible and induces a cuspidal
representation of G0

y,0/G0
y,0+ . Now, we will prove that those are also necessary

conditions (§§13–17). We start with some preparation.

13. Preparation

To prove that the condition (i) in Remark 12.7 is also a necessary condition for
supercuspidality (see Proposition 14.5), we will use some basic properties of Hecke
algebras. In this section, we review Hecke algebras and deduce various results
regarding them (in particular, Corollary 13.12 and Proposition 13.14).
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13.1. Hecke algebras. Let J be an open compact subgroup of G and let (σ, Vσ)
be an irreducible representation of J . Denote the contragredient of σ by σ̃. Then,
we can associate a Hecke algebra H(G//J, σ) to (J, σ) as follows:

H(G//J, σ)={f ∈C∞
c (G, EndC(Vσ̃)) | f(jgj′)= σ̃(j)f(g)σ̃(j′), for j, j′ ∈J, g ∈ G}.

This is an algebra under convolution with the identity 1
vol(J)1σ̃ · [J ]. Here, 1σ̃ is

the identity map on Vσ̃. It is well known that there is a one-to-one correspondence
between the set of simple nondegenerate modules of H(G//J, σ) and E(J,σ). For
more details, see for example [5, 8, 22].

We say g ∈ G is in the support of H(G//J, σ) if there is an f ∈ H(G//J, σ) such
that g is in the support of f . Denote the set of all such g as Supp(H(G//J, σ)).

The case �G = (G′,G)

13.2. Let �G = (G′,G) be a tamely ramified twisted Levi sequence, and let y ∈
B(G′, k). Let φ be a G-good character of G′ such that on G′

y,r, it is represented by
a G-good element γ ∈ zg′ of depth −r < 0 with CG(γ) = G′. Set s := r

2 .
Let T ⊂ G′ be an E-split maximal k-torus such that y ∈ A(G,T, k). Let

S be a k-split subtorus in T. Let M be the k-Levi subgroup of G defined as
CG(S). Since T ⊂ M, y ∈ B(M, k). Let P be a k-parabolic subgroup with Levi
decomposition P = MU, and let U be the unipotent subgroup opposite to U.
Define ft : Φ(G,T, E) ∪ {0} −→ R̃ and f ′

t : Φ(G′,T, E) ∪ {0} −→ R̃ as

ft(a) =

⎧⎨
⎩

t+ if a ∈ Φ(M,T, E) ∪ {0},
t+ if a ∈ Φ(U,T, E),
t if a ∈ Φ(U,T, E)

and

f ′
t(a) =

⎧⎨
⎩

t+ if a ∈ Φ(M ∩ G′,T, E) ∪ {0},
t+ if a ∈ Φ(U ∩G′,T, E),
t if a ∈ Φ(U ∩G′,T, E)

and

f̃t(a) =

⎧⎨
⎩

t if a ∈ Φ(M,T, E) ∪ {0},
t+ if a ∈ Φ(U,T, E),
t if a ∈ Φ(U,T, E).

Here and later, Φ(?,T, E) denotes the set of E-roots of T in ?. To avoid any
confusion, it should be pointed out that the above f̃t is totally unrelated to σ̃ in
§13.1.

Note that f∗
t = f̃−t. We write

Uy,t = U ∩ Gy,t, uy,t = u ∩ gy,t, U
′
y,t = U ∩ G′

y,t, u
′
y,t = u ∩ g

′
y,t.

Recall that we have an orthogonal decomposition g = g′ ⊕ g′⊥ with respect
to B when (HB) is valid. Otherwise, we can take g′⊥ = [γ, g] to have a linear
decomposition of g. In both case, g′⊥ is invariant under ad(γ). Let g′⊥

y,f̃t
:= gy,f̃t

∩
g′⊥.

Lemma 13.3. Let Y ′ ∈ g′y,(−r)+ , and let t ∈ R̃.

(1) Let t ∈ R. Then, ad(γ + Y ′) : g′⊥
y,f̃t

/g′⊥
y,f̃t+1

−→ g′⊥
y,f̃t−r

/g′⊥
y,f̃t−r+1

is an
isomorphism.

(2) Let t ∈ R with t > −r. Then, Gy,f̃r+t (γ + gy,f̃t
∩ g′) = γ + gy,f̃t

.
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(3) If Y ′ ∈ g′y,(−r)+ ∩ u, then ad(γ + Y ′) : (g′⊥y,t ∩ u)/(g′⊥y,t+1 ∩ u) −→
(g′⊥y,t−r ∩ u)/(g′⊥y,t−r+1 ∩ u) is an isomorphism.

(4) Let Y ′ ∈ g′y,(−r)+ ∩ u. Suppose t > −r. Then Uy,r+t(γ + Y ′ + u
′
y,t) =

γ + Y ′ + uy,t.

(5) Let u ∈ Uy,s. Then, u(γ + uy,(−s)+) = (γ + uy,(−s)+) if and only if u ∈
Uy,s+U

′
y,s = U

′
y,sUy,s+ .

Proof. (1) Suppose Y ′ = 0. Since f̃t is Galois invariant, we have g(E)y,f̃t
∩ g =

gy,f̃t
([3]). Moreover, from the definition of f̃t and the properties of B, we have

g(E)y,f̃t
∩g′(E)⊥∩g = g′⊥

y,f̃t
where g(E) = g′(E)⊕g′(E)⊥. Hence we may assume

that γ is k-split. Then (1) results from γ being good. If Y ′ �= 0, since ad(γ) is
an isomorphism and ad(Y ′) acts pronilpotently, ad(γ + Y ′) is also an isomorphism
(see also [26, (2.3.4)]).

(2) Having (1), (2) follows from the usual approximation argument (see [4, (6.3)]
or [38, (8.5)–(8.6)]). We omit the details.

(3) Since ad(γ + Y ′)(u) ⊂ u, (3) follows from (1).
(4) Using (3), one can use an approximation argument.
(5) Since uuy,(−s)+ = uy,(−s)+ , u(γ + uy,(−s)+) = (γ + uy,(−s)+) if and only if

uγ − γ ∈ uy,(−s)+ . We claim uγ − γ ∈ uy,(−s)+ if and only if u ∈ Uy,s+U
′
y,s.

Suppose u ∈ Uy,s+U
′
y,s. Then, uγ ∈ Uy,s+ (γ + u

′
y,(−s)+) = γ + uy,(−s)+ by (4),

and ‘⇐’ follows. Conversely, suppose uγ ∈ γ + uy,(−s)+ . Then by (4), there are
u1 ∈ Uy,s+ and X ′ ∈ u

′
y,(−s)+ such that uγ = u1(γ + X ′). Since γ is good and

X ′ ∈ g′y,(−r)+ , u−1u1 ∈ (G′ ∩Uy,s) by Lemma 4.5(1). Hence, u ∈ Uy,s+U
′
y,s. Now,

(5) follows from the claim. �
13.4. Define

K0
� := G′

y,f ′
0
, K1

� := Gy,fs
, K� := K0

�K1
� and K̃� := Gy,f̃s

.

Suppose φ is represented on Gy,s+ again by γ. Then, by [9, (6.4.44)], we have
[K1

�, K1
�] ⊂ �Gy,(r+,s+) ⊂ ker(φ). Hence, there is a unique character of K1

� with dual
blob γ + gy,f∗

s
= γ + gy,f̃−s

. As before, we denote this character by χγ .

Lemma 13.5. Assume (HB) is valid. Suppose Y ′ ∈ g′y,(−r)+ and γ+Y ′+gy,f∗
s

rep-
resent a character of K1

�. Then, the support of H = H(G//K1
�, χγ+Y ′) is contained

in K̃�G′K̃�.

Proof. Note that χ̃γ+Y ′ = χ−γ−Y ′ . Suppose g ∈ G is in the support of H. Then,
gχ−γ−Y ′ = χ−γ−Y ′ on gK1

� ∩ K1
�. By Lemma 3.12, we have g(−γ − Y ′ + gy,f∗

s
) ∩

(−γ−Y ′ +gy,f∗
s
) �= ∅, and thus g(γ +Y ′ +gy,f∗

s
)∩ (γ +Y ′ +gy,f∗

s
) �= ∅. By Lemma

13.3(2), there are j, j′ ∈ K̃� and X ′
1, X ′

2 ∈ g′ ∩ gy,f∗
s

such that gj′
(γ + Y ′ + X ′

1) =
j(γ + Y ′ + X ′

2). Since γ + Y ′ + X ′
1, γ + Y ′ + X ′

2 ∈ γ + g′(−r)+ , we have j−1gj′ ∈ G′

by Lemma 4.5(1). Hence g ∈ K̃�G′K̃�. �
Remark 13.6. All the statements in Lemmas 13.3 and 13.5 are also valid when we
replace γ with γ + Z for Z ∈ zg.

13.7. Now, suppose that φ′ is a character of G′ so that φ′|G′
y,0+ is represented

by a G-good element γ′ ∈ zg′ of depth −r. However, we do not assume that
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CG(γ′) = G′. Note that γ′ still defines a character χγ′ on K� such that χγ′ |U ′
y,0 and

χγ′ |U ′
y,0+ are trivial. The following lemma will be used for the proof of Proposition

13.11.

Lemma 13.8. Suppose (HB) and (Hk) are valid. Let �s = (0, s) and �s+ = (0+, s+).
Let u ∈ Uy,s. Let γ′ and χγ′ be as above. Then uχγ′ ≡ χγ′ on �Gy,�s+ and
uχγ′ |U ′

y,0 = 1.

Proof. Note that Uy,s normalizes K�. Write log(u) = (X ′ +X⊥) for X ′ ∈ u
′
y,s and

X⊥ ∈ uy,s ∩ g′⊥. Then, by (Hk), we have

Ad(u)(γ′) =
∞∑

n=1

1
n!

(ad(X ′ + X⊥))n(γ′).

Since [γ′, g′] = 0, [γ′, g′⊥ ∩ u] ⊂ g′⊥ ∩ u, [g′⊥ ∩ u, g′⊥ ∩ u] ⊂ g′⊥ ∩ u and [g′ ∩
u, g′⊥ ∩ u] ⊂ g′⊥ ∩ u, from the above formula and (Hk), we conclude uγ′ − γ′ ∈
(uy,−s ∩ g′⊥) ⊂ (�gy,−�s ∩ g′⊥) = (�gy,−�s ∩ g′⊥). Then uγ′ − γ′ ∈ g′⊥ implies that
1 = χγ′ |U ′

y,0 = uχγ′ |U ′
y,0, and uγ′−γ′ ∈ �gy,−�s = (�gy,�s+)∗ implies that uχγ′ |�Gy,�s+ =

χγ′ |�Gy,�s+ . Hence the lemma follows. �

General cases

13.9. Let Σy = (�G, y, �r, �φ) be a good G-datum of positive depth. Let T ⊂ G0 be
an E-split maximal k-torus such that y ∈ A(G,T, k). Let S be a k-split subtorus
in T. Let M be the k-Levi subgroup of G defined by CG(S). Then, y ∈ B(M, k).
Fix a k-parabolic subgroup P with Levi decomposition P = MU, and let U be the
unipotent subgroup opposite to U. Let

Mi := M ∩Gi = CGi(S), Ui := U ∩ Gi, U
i
= U ∩ Gi

for i = 0, 1, · · · , d. Note that each Mi is a k-Levi subgroup of Gi.
Define f i : Φ(Gi,T, E) ∪ {0} −→ R̃ as follows: if i ≥ 1,

f i(a) =

⎧⎨
⎩

s+
i−1 if a ∈ Φ(Mi,T, E) ∪ {0},

s+
i−1 if a ∈ Φ(U

i
,T, E),

si−1 if a ∈ Φ(Ui,T, E)

and

f0(a) =

⎧⎨
⎩

0+ if a ∈ Φ(M0,T, E) ∪ {0},
0+ if a ∈ Φ(U

0
,T, E),

0 if a ∈ Φ(U0,T, E).

For i = 1, · · · , d, define f̃ i : Φ(Gi,T, E) ∪ {0} −→ R̃ as

f̃ i(a) =

⎧⎨
⎩

si−1 if a ∈ Φ(Mi,T, E) ∪ {0},
s+

i−1 if a ∈ Φ(U
i
,T, E),

si−1 if a ∈ Φ(Ui,T, E).

We also define corresponding open compact subgroups of Gi as follows: for i =
0, 1, · · · , d,

Ki
y� := Gi

y,f i ⊂ Gi

and
K̃0

y� := 1, K̃i
y� := Gi

y,f̃i ⊂ Gi.
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If there is no confusion, we omit y from the above notation and simply write Ki
�

and K̃i
�. Note that we have K0

� ⊂ G0 and K0
� = G0

y,0+ if G0 ⊂ M. Define

Ky� = K� := K0
�K1

� · · ·Kd
� and K̃y� = K̃� := K̃0

�K̃1
� · · · K̃d

�.

Note that the above open compact subgroups depend also on the choice of M and
U.

If Σy is strongly good, each φi defines a character of K� represented by Γi and
�φ defines a character of K� represented by Γ. We again denote these characters by
χΓi

and χΓ, respectively.
For i = 0, · · · , d and t ∈ R̃≥0, we have M i

y,t = Gi
y,t ∩ M . Write

U
i

y,t := Gi
y,t ∩ U, U i

y,t := Gi
y,t ∩ U.

For any admissible sequence �t of length �(Σ), we also write

Uy,�t := �Gy,�t ∩ U, My,�t := �Gy,�t ∩ M, Uy,�t := �Gy,�t ∩ U.

Then note that Uy,�s = K� ∩ U = K̃� ∩ U , Uy,�s+ = K� ∩ U = K̃� ∩ U , My,�s+ =
K� ∩ M , etc.

Lemma 13.10. For (2) and (3), we assume (Hk) and (HB) are valid.
(1) For i = 0, · · · , d − 1, the following is an isomorphism:

ad(Γi) : (uy,�s ∩ g
i⊥)/(uy,�s+ ∩ g

i⊥) −→ (uy,−�s ∩ g
i⊥)/(uy,(−�s)+ ∩ g

i⊥).

(2) |uy,�s/uy,�s+ | = |uy,−�s/uy,(−�s)+ | =
∣∣Uy,�s/Uy,�s+

∣∣ =
∣∣K�/K+

Σ

∣∣.
(3) |uy,�s(0+)/uy,�s+ | =

∣∣Uy,�s(0+)/Uy,�s+

∣∣ =
∣∣K�/(U0

y,0K
+
Σ )

∣∣ where �s(0+) =
(0+, s0, · · · , sd−1).

Proof. (1) Since Γi is a Gi+1-good element of depth −ri and ad(Γi)(u) ⊂ (u), the
above ad(Γi) is an isomorphism by [1, (2.3.1)].

(2) Since g = g0 ⊕ g0⊥ ⊕ · · · gd−1⊥, we have

|uy,�s/uy,�s+ | = |u0
y,0/u

0
y,0+ | ·

d−1∏
i=0

|(uy,�s ∩ g
i⊥)/(uy,�s+ ∩ g

i⊥)|

= |u0
y,0/u

0
y,0+ | ·

d−1∏
i=0

|(uy,−�s ∩ g
i⊥)/(uy,(−�s)+ ∩ g

i⊥)| = |uy,−�s/uy,(−�s)+ |.

The second equality follows from (1). By duality,∣∣uy,−�s/uy,(−�s)+
∣∣ =

∣∣∣(u∗y,�s+ ∩ u)/(u∗y,�s ∩ u)
∣∣∣ =

∣∣uy,�s/uy,�s+

∣∣ .

Since log(K�)∩ u = uy,�s, log(K+
Σ )∩ u = uy,�s+ , and log(K�)∩ (u⊕m) = log(K+

Σ )∩
(u ⊕ m), we have

∣∣Uy,�s/Uy,�s+

∣∣ =
∣∣uy,�s/uy,�s+

∣∣ =
∣∣log(K�)/ log(K+

Σ )
∣∣ =

∣∣K�/K+
Σ

∣∣.
(3) By duality, we have |u0

y,0/u
0
y,0+ | = |u0

y,0/u0
y,0+ |. Denote this number by m.

Dividing each term in (2) by m, we get the equalities in (3). �

Proposition 13.11. Suppose Σ = Σy is a strongly good G-datum of positive depth.
Suppose (HB) and (Hk) are valid. Let χ be an irreducible representation of K�
such that χ|K+

Σ contains χΓ and χ|U0
y,0 ≡ 1. Then there is a u ∈ Uy,�s(0+) such that

χ ≡ uχΓ on K�.
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Proof. Let u ∈ Uy,�s(0+). Then, we can write u = ud · · ·u1u0 for some u0 ∈ U
0

y,0+

and ui ∈ U
i

y,si−1
, i = 1, · · · , d.

For the character χΓj
of K�, if j ≥ i, we have uiχΓj

≡ χΓj
on K� since ui ∈ Gj .

Then
udud−1···u0χΓi−1 = udud−2···uiχΓi−1 = uiu

−1
i (udud−2···ui+1)uiχΓi−1 = uiχΓi−1 .

The last equality follows from u−1
i (udud−2 · · ·ui+1)ui ∈ Uy,si

⊂ ker(χΓi−1 |Gy,s+
i−1

).
Hence

udud−1···u0χΓ = u1χΓ0
u2χΓ1 · · · udχΓd−1χΓd

on K�.

Since K+
Σ ⊂ (Gi−1,G)(k)y,(0+,s+

i−1)
and U0

y,0 ⊂ U i−1
y,0 , from Lemma 13.8, we deduce

that uiχΓi−1 ≡ χΓi−1 on K+
Σ and uiχΓi−1 |U0

y,0 ≡ 1. Hence, for any u ∈ Uy,�s(0+), we
have uχΓ|K+

Σ = χΓ|K+
Σ and uχΓ|U0

y,0 = 1.
We claim that uχΓ ≡ χΓ on K� if and only if u ∈ Uy,�s+ . Since u ∈ Uy,�s+ ⊂ K�,

‘⇐’ is obvious. To prove ‘⇒’, we first observe that uχΓ = χΓ0χΓ1 · · · uiχΓi−1 · · ·χΓd

on Gi−1

y,s+
i−2

Ki
�. Hence, uχΓ ≡ χΓ on K� implies uiχΓi−1 = χΓi−1 on Gi−1

y,s+
i−2

Ki
�.

Then, ui ∈ U
i

y,s+
i−1

U
i−1

y,si−1
by Lemma 13.3(5). Hence, u = ud · · ·u0 ∈ U

d

y,s+
d−1

· · ·
U

1

y,s+
0
U

0

y,0+ . The claim is now proved.
From the claim and Lemma 13.10, |{ uχΓ | u ∈ Uy,�s(0+)}| = |Uy,�s(0+)/Uy,�s+ | =∣∣K�/(U0

y,0K
+
Σ )

∣∣. Hence, by counting, any irreducible extension of χΓ of K+
Σ to K�

which is trivial on U0
y,0 is of the form uχΓ for some u ∈ Uy,�s(0+). �

For later use, we record the following corollary:

Corollary 13.12. Suppose Σ = Σy is a strongly good G-datum of positive depth.
Assume (HB) and (Hk) are valid. Let (π, Vπ) ∈ E. Suppose (π, Vπ) contains
(K+

Σ , χΓ). Then (π, Vπ) also contains (K�, χΓ) if
(1) U0

y,0 = U0
y,0+ or

(2) there is a nonzero vector in the (K+
Σ , χΓ)-isotypic component of Vπ which

is invariant under U0
y,0.

The following lemma is a preparation for Proposition 13.14 and Proposition 14.5.
For any open compact subgroup J ⊂ G, we write J� := J ∩ U , JM := J ∩ M and
Ju := J ∩ U .

Lemma 13.13.
(1) K̃d

� = K̃d
��K̃

d
�M K̃d

�u = K̃d
�MKd

��K
d
�u = Kd

��K
d
�uK̃d

�M .
(2) K̃� = K̃��K̃�M K̃�u.
(3) Suppose G0 ⊂ M. Then, K� = K��K�MK�u.

Proof. Proving (3), we first note that each f i, i = 1, · · · , d, is concave and positive.
From [9, (6.4.9)] and the concavity of f i, we deduce that Gi(E)y,f i is decomposable
with respect to P(E) = M(E)U(E). That is,

Gi(E)y,f i = (Gi(E)y,f i ∩ U(E)) · (Gi(E)y,f i ∩ M(E)) · (Gi(E)y,f i ∩U(E)).

From the positivity of f i, we have Ki
� = Gi

y,f = Gi(E)Gal(E/k)
y,f i . Since M, U, and

U are Gal(E/k)-stable, Ki
� = Gi

y,f is also decomposable with respect to P = MU ,
that is, Ki

� = Ki
��K

i
�MKi

�u. If i = 0, since G0 ⊂ M, K0
� = K0

�M .
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Now, let K�(i) = Ki
� · · ·Kd

�. We claim that each K�(i) is decomposable with
respect to P = MU . If i = d, it follows from the previous paragraph. Sup-
pose K�(i + 1) is decomposable. Note that K�(i + 1) is normalized by Ki

� and
K�(i) = Ki

�K�(i + 1). Let g ∈ K�(i). Then g = ab for some a ∈ Ki
� and

b ∈ K�(i + 1). Write a = a�aMau compatible with the decomposition of Ki
�.

Since b′ := auba−1
u ∈ K�(i + 1), we can also write b′ = b′�b

′
Mb′u. Then, ab =

a�aMauba−1
u au = (a�aMb′�a

−1
M )(aMb′M )(b′uau), where a�aMb′�a

−1
M ∈ K�(i)�, aMb′M ∈

K�(i)M and b′uau ∈ K�(i)u. Hence, K�(i) is decomposable. Since K� = K�(0),
K� is also decomposable.

The second and the third equalities in (1) follow from K̃d
�� = Kd

�� and K̃d
�u =

Kd
�u. The other equalities are proved similarly as in (3). �

Proposition 13.14. Let Σ = Σy be a strongly good G-datum of positive depth.
Suppose (HB) is valid. The support of H(G//K�, χΓ) is contained in K̃�G0K̃�.

The following is a modification of the proof of [38, (4.1)].

Proof. We prove the proposition by induction. If d = 0, it is obvious. Now,
assume d ≥ 1. Let Σ′ = (�G′, y, �r ′, �φ′) be such that �G′ = (G0, · · · ,Gd−1), �φ′ =
(φ0, · · · , φd−1), and �r ′ = (r0, · · · , rd−1). Then note that �(Σ′) = d − 1. Let

K ′
� := K0

�K1
� · · ·Kd−1

� and K̃ ′
� := K̃0

�K̃1
� · · · K̃d−1

� .

Suppose g ∈ G is in the support of H(G//K�, χΓ). Since φd|K� is the restriction
of φd which is defined on the whole of G, g also intertwines θ′ = (χΓφ−1

d )|K� =∏d−1
j=0 χΓj

|K�. Therefore, g also intertwines θ′|Kd
�. Note that if rj ≤ s, χΓj

is
trivial on Kd

� and θ′|Kd
� = χΓd−1+Y for Y =

∑
rj>sd−1

Γj . By Lemma 13.5 and
Lemma 13.13, there are j1, j2 ∈ K̃d

�M = Md
y,sd−1

, h1, h2 ∈ Kd
��K

d
�u and g′ ∈

Gd−1 such that g = h1j1g
′j2h2. Since h1, h2 ∈ K�, j1g

′j2 intertwines θ′. Now,
from Lemma 13.15(1), we may further assume j1, j2 ∈ Jd

M , where Jd
M is as in

that lemma. Then, by Lemma 13.15(2), g′ also intertwines θ′|K ′
� = χΓ′ where

Γ′ = Γd−1 + Γd−2 + · · · + Γ0. By the induction hypothesis, g′ ∈ K̃ ′
�G0K̃ ′

�. Hence
g ∈ K̃d

�K̃ ′
�G0K̃ ′

�K̃d
� = K̃�G0K̃�. �

Lemma 13.15. We keep the notation from the proof of Proposition 13.14. Let

Jd
M = (Md−1,Md)(k)y,(rd−1,sd−1).

(1) Md
y,sd−1

Gd−1Md
y,sd−1

⊂ Jd
MGd−1Jd

M .
(2) If g ∈ Gd−1 intertwines θ′, j ∈ Jd

M , then gj and jg also intertwines θ′.

Proof. (1) follows from

Md
y,sd−1

= Md−1
x,sd−1

Jd
M = Jd

MMd−1
x,sd−1

⊂ Jd
MGd−1 ⊂ Jd

MGd−1Jd
M .

(2) can be proved as in [38, (4.3)]. �

14. Supercuspidality I

Let Σ = Σy be a strongly good G-datum of positive depth, and let M, P = MU
and K� be as in §13.9. In this section, we prove that if there is a supercuspidal
representation (π, Vπ) such that (K+

Σ , χΓ) < (π, Vπ), Z0/Zd is k-anisotropic (see
Proposition 14.5).
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We first recall the following from [8]. For any open compact subgroup J ⊂ G,
J�, JM and Ju are defined as before (see Lemma 13.13).

Definition 14.1 ([8, (6.16)]). Let P = MU be as above. Suppose J is an open
compact subgroup decomposable with respect to P = MU , that is, J = J�JMJu.
Then ζ ∈ ZM is strongly positive relative to (P, J) if

(1) ζJuζ−1 ⊂ Ju, ζ−1J�ζ ⊂ J�;
(2) for any compact open subgroups H1, H2 of U , there exists an integer m ≥ 0

such that ζmH1ζ
−m ⊂ H2;

(3) for any compact open subgroups K1, K2 of U , there exists an integer m ≥ 0
such that ζ−mK1ζ

m ⊂ K2.

Combining [8, (6.14)] and the remark after [8, (6.16)], a strongly positive element
always exists relative to (P, J) such that J = J�JMJu.

The following can be regarded as a corollary of the proof of [8, (6.10)].

Lemma 14.2. Let J , U and P = MU be as in Definition 14.1. Then, JMJ ∩U =
J�.

Proof. ⊃ is obvious. To prove ⊂, suppose u ∈ JMJ ∩ U . Let t ∈ M be so that
u ∈ JtJ . Then, there are j, h ∈ J so that uj = ht. Write j = j�jM ju and
h = h�hMhu compatible with the decomposition J = J�JMJu. Then, (uj�)jM ju =
h�(hM t)(t−1hut). Hence, by the uniqueness of Iwahori decomposition, we have
u = h�j

−1
� ∈ J�, and ⊂ follows. �

Proposition 14.3. Assume (HB) is valid. Suppose G0 ⊂ M � G. Then there
is a strongly positive element ζ relative to (P, K�) such that an element fζ ∈
H(G//K�, χΓ) supported on K�ζK� is invertible.

Proof. We fix a Haar measure on G so that vol(K�) = 1. From G0 ⊂ M and
Proposition 13.14, the support of H := H(G//K�, χΓ) is contained in K�MK�.
Let ζ ∈ ZM ⊂ G0 be a strongly positive element such that U =

⋃
n≥0 ζnK��ζ

−n.
For j = j�jMju ∈ K� ∩ (ζK�ζ−1), since

ζχΓ(j) = χΓ(ζ−1jζ) = χΓ(ζ−1j�ζ) χΓ(ζ−1jMζ) χΓ(ζ−1juζ) = χΓ(jM ) = χΓ(j),

we have ζ ∈ Supp(H). Here, the third equality follows from K��, K�u ⊂ ker(χΓ)
and ζ−1jMζ = jM . Similarly, ζ−1 ∈ Supp(H). Let fζ (resp. fζ−1) be an element
of H which is the function supported on K�ζK� (resp. K�ζ−1K�) with fζ(ζ) = 1
(resp. fζ−1(ζ−1) = 1). We claim

fζ ∗ fζ−1 = fζ−1 ∗ fζ = vol(K�ζK�)f1

where f1 is the identity in H given by the function supported on K� with f1(1) = 1.
Note that Supp(fζ ∗ fζ−1) ⊂ (K�ζK�ζ−1K�) ∩ (K̃�G0K̃�). From Lemma 14.4,
Supp(fζ ∗fζ−1) ⊂ K�. Hence fζ ∗fζ−1 = c ·f1 for some constant c. Evaluating both
sides at the identity, c = vol(K�ζK�). Similar computation shows that fζ−1 ∗ fζ =
vol(K�ζK�)f1. Hence, the inverse of fζ is 1

vol(K�ζK�)fζ−1 . �

Lemma 14.4. We keep the notation and the situation from the proof of Proposition
14.3.

(K�ζK�ζ−1K�) ∩ (K̃�G0K̃�) = K� = (K�ζ−1K�ζK�) ∩ (K̃�G0K̃�).
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Proof. It is obvious that K� ⊂ (K�ζK�ζ−1K�) ∩ (K̃�G0K̃�). Suppose g ∈
(K�ζK�ζ−1K�) ∩ (K̃�G0K̃�). Since ζK�Mζ−1 = K�M and ζK�uζ−1 ⊂ K�u,
we can write g = j1ζj�ζ

−1j2 for some j1, j2 ∈ K� and j� ∈ K��. Since ζj�ζ
−1 ∈

K̃�G0K̃� ∩ U , by Lemma 14.2, ζj�ζ
−1 ∈ K̃�� = K��. Hence, g ∈ K�. The other

equality can be proved in a similar way. �
Proposition 14.5. Assume (HB) and (Hk) are valid. Let (π, Vπ) be a supercuspidal
representation. Let Σ = (�G, y, �r, �φ) be a strongly good G-datum of positive depth.
Suppose that (K+

Σ , φΣ) is contained in (π, Vπ). Then, Z0/Zd is k-anisotropic.

Proof. Suppose Z0/Zd is not anisotropic. Then, there is a k-split subtorus S of Z0

such that M = CG(S) is a proper k-Levi subgroup of G. Note that G0 ⊂ M. Hence
y ∈ B(M, k). Fix a k-parabolic subgroup P with Levi decomposition P = MU,
and let U be the unipotent subgroup opposite to U. Since G0 ⊂ M, U0

y,0 = 1 and
(π, Vπ) contains (K�, χΓ) by Corollary 13.12. Now, consider H := H(G//K�, χΓ).
By Proposition 14.3, there is a strongly positive element ζ relative to (P, K�) such
that fζ , an element of H(G//K�, χΓ) supported on K�ζK�, is invertible. This
implies that the Jacquet map restricted to V χΓ

π , the (K�, χΓ)-isotypic component
in Vπ, is injectively mapped into V χΓ

πU , the (K� ∩M, χΓ)-isotypic component in the
Jacquet module VπU ([8]). Since V χΓ

π �= 0, this implies that the Jacquet module
VπU of Vπ with respect to U is nontrivial, which contradicts the supercuspidality
of (π, Vπ). Hence, Z0/Zd is k-anisotropic. �

15. Depth zero types

In this section and the following one, we deduce some facts that we need for §17
(Proposition 17.2). Most results here are from [31].

15.1. Let (G′,G) be a tamely ramified twisted Levi sequence, which splits over a
tamely ramfied extension E. For any y ∈ B(G′, k), let M′

y be the quotient of the
reduction mod pk of the Ok-group scheme P′

y associated to G′
y,0 by its unipotent

radical. Then, G′
y,0/G′

y,0+ 
 M′
y(Fq).

Let T ⊂ G′ be an E-split maximal k-torus such that y ∈ A(G′,T, k) and
A(G′,T, k) is of maximal dimension. Let S be a maximal k-split subtorus in T.
We attach a k-Levi subgroup M of G to G′

y,0 (see also [31, (6.3)]): first note that
S gives rise to a maximal Fq-torus S of M′

y. Let C be the maximal Fq-split torus
contained in the center of M′

y. Lift C to S to get a subtorus C of S. Let M be the
centralizer of C in G. Note that since T ⊂ M, y ∈ B(M, k). Moreover, if G′

y,0 is
not a maximal parahoric subgroup of G′, M is a proper k-Levi subgroup.

For a given G′
y,0, if M is chosen in the above manner, we will say that M is

adapted for G′
y,0. In [31, (6.3)], the case G′ = G is considered.

Remark 15.2. We keep the situation from §15.1. Let M′ := M ∩ G′ = CG′(C).
Then, M′ is a k-Levi subgroup of G′ associated to G′

y,0 as in [31, (6.3)]. Set
M ′

y,r := M ∩ G′
y,r for r ∈ R̃ as before. Then, by [31, (6.4)], we have the following:

(1) M ′
y,0 is a maximal parahoric subgroup of M ′.

(2) G′
y,0/G′

y,0+ 
 M ′
y,0/M

′
y,0+ 
 M′

y(Fq).

15.3. Let (π, Vπ) be a smooth representation of G. Let x, y, y′ ∈ B(G, k) be such
that Gy,0 and Gy′,0 are proper parahoric subgroups in Gx,0. Let M be the Levi
subgroup adapted for Gy,0 with x, y, y′ ∈ B(M, k). Suppose My,0 = My′,0, and
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suppose Gy,0 and Gy′,0 project onto opposite parabolic subgroups in Gx,0/Gx,0+

with common Levi factor (Gy,0 ∩ Gy′,0)/Gx,0+ 
 My,0/My,0+ = My′,0/My′,0+ .
Suppose P = MU and P = MU are two opposite parabolic subgroups in G so that
Gy,0 ∩P = My,0Uy,0 projects onto Gy,0/Gx,0+ and Gy′,0 ∩P = My′,0Uy′,0 projects
onto Gy′,0/Gx,0+ .

The following is a corollary of the proof of [31, (6.7)], which in turn results from
[31, (6.1)]. Note that Gy,0 ∩ U = Gy,0+ ∩ U .

Lemma 15.4. We keep the notation and situation from §15.3. If a nonzero vector
v ∈ Vπ is fixed under Gy′,0+ , then the following integral does not vanish:∫

U∩Gy,0

π(n)v dn �= 0.

Let χ be a quasi character of G and let πχ := χ⊗ π. Suppose χ is trivial on U and

U . Then, if v is a nonzero vector in V
(Gy′,0+ ,χ)
πχ ,∫

U∩Gy,0

πχ(n)v dn =
∫

U∩Gy,0

π(n)v dn �= 0.

16. Heisenberg representation

16.1. The case (G′,G). Let (G′,G) be a tamely ramified twisted Levi sequence,
and let y ∈ B(G′, k). Let T, M, U, U and φ be as in §13.2, and let M′ = G ∩M.
Define concave functions h+, h : Φ(G,T, E) ∪ {0} −→ R̃ as

h+(a) =

⎧⎨
⎩

r if a ∈ Φ(M,T, E) ∪ {0},
s if a ∈ Φ(G′,T, E) \ Φ(M,T, E),
s+ otherwise

and

h(a) =

⎧⎨
⎩

r if a ∈ Φ(M,T, E) ∪ {0},
s if a ∈ Φ(G′,T, E) \ Φ(M,T, E),
s otherwise.

Let J̃+ := Gy,h+ and J̃ := Gy,h. Note that J̃ ∩U = Gy,s ∩U . Then since φ defines
a character φ̂ on G′

y,0+Gy,s+ (see §5.8), φ̂ can be restricted to J̃+ ⊂ G′
y,0+Gy,s+ .

Let N := ker(φ̂).

Lemma 16.2.
(1) The pairing 〈a, b〉 = φ̂(aba−1b−1) defined on J̃/J̃+×J̃/J̃+ is nondegenerate.
(2) J̃/N is a Heisenberg p-group with center J̃+/N .

The proof is similar to that of [38, (11.1)]. We will not repeat it here.

Lemma 16.3. Let (φh, Vφh) be a representation of the Heisenberg group J̃/N . We
use the same notation φh for the inflated representation of J̃ . Let v ∈ Vφh . If v �= 0
and it is fixed by J̃ ∩ U , then the following integral does not vanish:∫

J̃∩U

φh(u)v du �= 0.

Proof. Note that (J̃∩U)
/

(J̃+ ∩ U) and (J̃∩U)
/

(J̃+ ∩ U) are isotropic subspaces

of J̃/J̃+ such that their sum form a complete polarization of J̃/J̃+. Then the above
lemma is a result of the following general fact on Heisenberg representations. �
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Lemma 16.4. Let H = W ⊕ Fq be a Heisenberg group where W is a symplectic
space over Fq. Let W = W1 ⊕ W2 be a complete polarization of W. Let (ρ, Vρ) be
a finite-dimensional representation of H. If a nonzero vector v ∈ Vρ is fixed under
W1, then ∫

W2

ρ(w2)v dw2 �= 0.

Proof. Without loss of generality, we may assume that ρ is irreducible. If ρ is the
trivial representation, the lemma is trivial. Otherwise, there is a nontrivial character
χ of the center Fq such that ρ is isomorphic to the Heisenberg representation χh

of H with the central character χ. Then, we can realize χh on the function space
C(W1) as follows: for f ∈ C(W1),

χh(w1)f(w) = f(w + w1), for w1 ∈ W1,
χh(w2)f(w) = χ( 1

2 〈w, w2〉)f(w), for w2 ∈ W2,
χh(z)f(w) = χ(z)f(w), for z ∈ Fq.

Denote the characteristic function supported at w ∈ W1 by fw. Suppose f ∈ C(W1)
is a nonzero function invariant by W1. Then from the above formula, f is a nonzero
constant function, that is, f = c

∑
w∈W1

fw for some constant c �= 0. Now, we have∫
W2

χh(w2) f dw2 =
∫

W2
χh(w2)(

∑
w c fw) dw2

=
∫

W2

∑
w c (χ( 1

2 〈w, w2〉)fw) dw2

=
∫

W2
c f0 dw2 = vol(W2) · c · f0 �= 0.

Corollary 16.5. We keep the notation from Lemma 16.3. Let χ be a character
of J̃ such that χ is trivial on J̃ ∩U and J̃ ∩U . Let v ∈ Vχ⊗φh . If v �= 0 and if it is
fixed by J̃ ∩ U , then ∫

J̃∩U

(χ ⊗ φh)(u)v du �= 0.

16.6. The general case. Let Σy := (�G, y, �r, �φ) be a good G-datum of positive
depth. Let T, M, U and U be as in §13.9. Recall Mi = M∩Gi, Ui = U∩Gi and
U

i
= U ∩ Gi. For i = 1, · · · , d, define concave functions hi

+, hi : Φ(Gi,T, E) ∪
{0} −→ R̃ as

hi
+(a) =

⎧⎨
⎩

ri−1 if a ∈ Φ(Mi,T, E) ∪ {0},
si−1 if a ∈ Φ(Gi−1,T, E) \ Φ(Mi,T, E),
s+

i−1 otherwise

and

hi(a) =

⎧⎨
⎩

ri−1 if a ∈ Φ(Mi,T, E) ∪ {0},
si−1 if a ∈ Φ(Gi−1,T, E) \ Φ(Mi,T, E),
si−1 otherwise.

We also define corresponding open compact subgroups of Gi as follows: for i =
1, · · · , d,

J̃ i
y+ =: Gi

y,hi
+
⊂ Gi, J̃ i

y =: Gi
y,hi ⊂ Gi.

Note that J̃ i ∩ U = Gi
y,si−1

∩ U . Then, φi−1 defines a character φ̂i−1 of J̃ i
y+ as in

§5.8, and each J̃ i
y/ ker(φ̂i−1) is a Heisenberg p-group with center J̃ i

y+/ ker(φ̂i−1).
When Σ is strongly good, φ̂i−1 coincides with χΓi−1 .
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17. Supercuspidality II

In this section, let (π, Vπ) be a fixed supercuspidal representation of positive
depth. Suppose Σ = (�G, y, �r, �φ) is a strongly good G-datum of positive depth such
that (K+

Σ , φΣ = χΓ) is contained in (π, Vπ). Then, by Proposition 14.5, Z0/Zd is
k-anisotropic.

17.1. Consider the (K+
Σ , χΓ) isotypic component V χΓ

π of Vπ. It can be found as the
image of the projection

v −→ 1
vol(K+

Σ )

∫
K+

Σ

χΓ(g−1)π(g)v dg.

Recall that G0
[y] denotes the stabilizer in G0 of the image [y] of y in the reduced

building of G0. Since G0
[y] stabilizes (K+

Σ , χΓ), V χΓ
π is a finite-dimensional repre-

sentation of G0
[y]. Let ρ be an irreducible subrepresentation of G0

[y] in V χΓ
π . Denote

the character of G0
[y] given by

∏
i(φi|G0

[y]) again by φΣ. Then, ρ = φ−1
Σ ⊗ ρ is an

irreducible representation of G0
[y] which factors through G0

y,0+ .
Let τ be an irreducible subrepresentation of ρ|G0

y,0. Then τ induces an irreducible
representation of G0

y,0/G0
y,0+ , which we again denote by τ .

Proposition 17.2. Suppose (Hk) and (HB) are valid. We keep the notation from
above.

(1) G0
y,0 is a maximal parahoric subgroup of G0.

(2) τ is a cuspidal representation of G0
y,0/G0

y,0+ .

17.3. Proof of Proposition 17.2(1). We generalize the proof of [31, (6.7)].
Let M be a k-Levi subgroup of G adapted for G0

y,0. Suppose G0
y,0 is not maximal.

Then, M is a proper Levi subgroup of G. Let C be the center of M. Let P be a
k-parabolic subgroup with P = MU and let U be the unipotent subgroup opposite
to U. Then, U ∩G0

y,0 = U ∩G0
y,0+ and U ∩G0

y,0 = U ∩G0
y,0+ . By Corollary 13.12(2),

(π, Vπ) contains (Ky�, χΓ).
For any x ∈ B(G0, k) ∩ B(M, k), let Σx = (�G, x, �r, �φ). As in §13.9, for Σx and

MU, we can define Kx�, and �φ defines a character χΓ of Kx� realized by Γ.
Let β : GL1 → C be a one-parameter subgroup of C such that 〈α, β〉 > 0 for

every root α of C in the Lie algebra u of U . Consider the ray y(t) = y + tβ, t ≥ 0,
contained in the apartment A(G,T, k), emanating from the point y in the direction
of β. Then, one can verify the following (see also [31, (6.7)]):

(1) M∩Ky(t)� = My(t),�s+ = My,�s+ ; U∩Ky(t)� = Uy(t),�s; U∩Ky(t)� = Uy(t),�s+ .
(2) If t′ ≥ t, then Uy(t′),�s ⊃ Uy(t),�s and Uy(t′),�s+ ⊂ Uy(t),�s+ .
(3) U i

y(t),si−1
= J̃ i

y(t) ∩ U and Uy(t),�s = U0
y(t),0U

1
y(t),s0

· · ·Ud
y(t),sd−1

.
(4) Any compact subgroup of U is contained in Uy(t),�s for t sufficiently large.
(5) There is a sequence 0 = t0 < t1 < t2 < · · · tending to ∞ so that

Uy(t),�s, Uy(t),�s+ , Uy(t),�s and Uy(t),�s+ are constant on the open intervals
ti−1 < t < ti (i ≥ 1). Then, in fact, we have that Uy(t),�s, Uy(t),�s+ are con-
stant for ti−1 ≤ t < ti, and Uy(t),�s+ , Uy(t),�s are constant for ti−1 < t ≤ ti.

Let xi = y + tiβ. Fix t′i ∈ R such that ti−1 < t′i < ti. Let y0 = x0 and
yi = y+ t′iβ. We observe that Ux0,�s = Uy0,�s = Uy1,�s, Ux0,�s = Uy0,�s ⊃ Uy1,�s,
and Uxj ,�s = Uyj+1,�s.
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(6) Uyi,�s+ = Uyi,�s and Uyi,�s+ = Uyi,�s, when i ≥ 1.
Proving the first equality, ⊂ is obvious. We may assume that Γ is k-split

without loss of generality. Let ψ ∈ Ψ(G,T, k) such that the gradient ψ̇ of ψ
is in Φ(Uj ,T, k), j = 0, · · · , d. Let Uψ be the root subgroup associated to
ψ. Suppose Uψ ⊂ Uyi,�s. Then, by the definition of yi in (5), Uψ ⊂ Uyi−εβ,�s

for sufficiently small ε > 0. Hence, ψ(yi − εβ) = ψ(yi) − ε〈ψ̇, β〉 ≥ sj−1.
Since 〈ψ̇, β〉 > 0, ψ(yi) > sj−1. Hence Uψ ⊂ Uyi,�s+ , and ⊃ follows. The
second equality is similarly proved.

(7) J̃�
xi

∩ U = J̃�
yi+1

∩ U = U �
yi+1,s�−1

and J̃�
xi

∩ U = J̃�
yi
∩ U = U

�

yi,s�−1
;

J̃�
xi+ ∩U = U �

xi,s
+
�−1

U �−1
xi,s�−1

and J̃�
xi+ ∩U = U

�

xi,s
+
�−1

U
�−1

xi,s�−1
, � = 1, · · · , d.

(8) G0
yi,0

= U
0

yi,0M
0
y,0U

0
yi,0

, G0
yi,0+ = U

0

yi,0M
0
y,0+U0

yi,0
and G0

xi,0+ =

U
0

yi+1,0M
0
y,0+U0

yi,0.
(9) G0

xi,0 contains both G0
yi,0 and G0

yi+1,0. Suppose G0
yi,0 �= G0

yi+1,0. Then
the images of G0

yi,0 and G0
yi+1,0 form the opposite parabolic subgroups in

G0
xi,0/G0

xi,0+ with the common Levi factor given by the image of M0
y,0 =

M0
yi,0 = M0

yi+1,0.

Let v = v0 ∈ V χΓ
π be a nonzero element. Note that Uxj ,�s = Uyj+1,�s by (5). For

i = 1, 2, · · · , define

vj =
∫

Uxj,�s

π(n)vj−1 dn =
∫

Uyj+1,�s

π(n)vj−1 dn.

Inductively, we will show
(i) vj �= 0;
(ii) vj is a nonzero multiple of

∫
Uxj,�s

π(n)v dn;

(iii) My,�s+ acts on vj as a character represented by Γ;
(iv) for j ≥ 0, we have Stab(vj) ⊃ Uxj+1,�s = Uyj+1,�s+ and Stab(vj) ⊃ Uxj+1,�s+ =

Uyj+1,�s+ ;
(v) G0

xj ,0+ acts on vj as a character represented by Γ;
(vi) vj =

∫
U0

xj,0

∫
U1

xj,s0
· · ·

∫
Ud

xj ,sd−1
π(u0u1 · · ·ud)vj−1 dud · · · du0.

The equality in (ii) follows from Fubini’s theorem and the bi-invariance of the
Haar measure on the unipotent subgroup U .

Since the compact group My,�s+ = Myj+1,�s+ normalizes Uyj+1,�s and acts on v as
a character χΓ, (iii) follows from (ii).

Proving (iv), the second inclusion is obvious. To prove the first, since v0 ∈ V χΓ
π ,

we note that Uy0,�s ∪ Uy0,�s+ ⊂ ker(χΓ|Ky0�) = Stab(v0). Since Uy1,�s+ ⊂ Uy1,�s =
Uy0,�s and Uy1,�s+ ⊂ Uy0,�s+ , the case j = 0 follows. Now, suppose j ≥ 1. We ob-
serve that Uxj+1,�s = Uyj+1,�s+ ⊂ Uyj ,�s+ ⊂ Stab(vj−1) by the induction hypothesis.
Consider the character χΓ realized by Γ on Kyj+1�. Denote the kernel of χΓ in
Kyj+1� by A. Then since Uyj+1,�s, Uyj+1,�s+ ⊂ A and Kyj+1� is decomposable with
respect to P = MU , A is also decomposable with respect to P = MU . Let AM :=
A ∩ M . Then we have AM ⊂ Stab(vj−1) by (iii), and A = Uyj+1,�sAMUyj+1,�s+ =
Uyj+1,�s+AMUyj+1,�s. Since Uyj+1,�s+AM = AMUyj+1,�s+ ⊂ Stab(vj−1), for a proper
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normalization, we have

vj =
∫

Uyj+1,�s

π(n)vj−1 dn

=
∫

Uyj+1,�s

∫
AM

∫
Uyj+1,�s+

π(nmn)vj−1 dn dm dn =
∫

A

π(a) da.

Hence Uyj+1,�s+ ⊂ A ⊂ Stab(vj) and (iv) follows.
For (v), if j = 0, it is obvious from the choice of v0. If j ≥ 1, since G0

xj ,0+ =

U
0

yj+1,0M
0
y,0+U0

yj ,0, and since vj is fixed by U0
yj ,0 and U

0

yj+1,0 = U
0

yj+1,0+ , combining
these with (iii), (v) follows.

The equalities in (vi) result from the decomposition Uxj ,�s = U0
xj ,0U

1
xj ,s0

· · ·
Ud

xj ,sd−1
.

To prove (i), let wd+1 := vj−1 and wi :=
∫

Ui
xj,si−1

π(ui)wi+1 dui. Then vj = w0.

As in the case of (iii) and (iv), we have for � ≤ i, M �
y,s+

�−1
acts on wi via χΓ

and each wi is fixed by U
�

xj ,s�−1
. By the induction hypothesis, vj−1 = wd+1 �= 0.

Suppose wi+1 �= 0 with i �= 0. Then consider the J̃ i
xj

stable vector space Wi

generated by {π(g)wi+1 | g ∈ J̃ i
xj
}. Note that wi+1 is fixed by U

i

xj ,si−1
and U i

xj ,s+
i−1

.

Moreover, from U i−1
xj ,si−1

⊂ U i−1

xj ,s+
i−2

⊂ Uxj ,�s+ ⊂ Stab(vj−1), we have that U i−1
xj ,si−1

fixes wi+1. Hence, the representation of J̃ i
xj

on Wi is a Heisenberg representation
of J̃ i

xj
twisted by a character χγ of J̃ i

xj
represented by γ = Γi + Γi+1 + · · · + Γd

(recall that each Γi, Γi+1, · · · , Γd defines a character of Gi). Then by Corollary 16.5,
wi �= 0. Inductively, w1 �= 0. Since w1 is fixed under U

0

xj ,0 and U0
xj ,0+ and since

U
0

xj ,0 and U0
xj ,0 project to the unipotent radicals of opposite parabolic subgroups

in G0
xj ,0/G0

xj ,0+ , by Lemma 15.4, w0 = vj =
∫

U0
xj,0

π(u0)w1 du0 is not zero.

Since any open compact subgroup of U is contained in Uxj ,�s for sufficiently large
j, by (i) and (ii), we conclude that the image of v under the Jacquet module map
with respect to U is nonzero. This is a contradiction to the supercuspidality of
(π, Vπ). Hence, we conclude that G0

y,0 is maximal.

17.4. Proof of Proposition 17.2(2). Suppose τ is not cuspidal. Then there is z ∈
B(G0, k) such that G0

z,0 � G0
y,0 and φ−1

Σ ⊗ V χΓ
π has G0

z,0+ invariants. Let T ⊂ G0

be an E-split maximal k-torus such that A(G0,T, k) is of maximal dimension and
y, z ∈ A(G0,T, k). Let M be a k-Levi subgroup of G with T ⊂ M adapted for
G0

z,0. Let C be the center of M. Fix a k-parabolic subgroup P with P = MU.
Since φ−1

Σ ⊗V χΓ
π has G0

z,0+ invariants, and since M0
y,0U

0
y,0 projects to a parabolic

subgroup in G0
y,0/G0

y,0+ sharing the Levi factor with the image of G0
z,0, we can

deduce from [16] (see also [23, (1.1)]) that φ−1
Σ ⊗ V χΓ

π also has U0
y,0 invariants.

Then, by Corollary 13.12(2), (π, Vπ) also contains (Ky�, χΓ) where Ky� is defined
with respect to MU as in §13.9.

Let β : GL1 → C be a one-parameter subgroup of C such that 〈α, β〉 > 0 for
every root α of C in the Lie algebra u of U . Take the ray y(t) = y + tβ, t ≥ 0,
contained in the apartment A(G,T, k), emanating from the point y in the direction
of β. Now, the rest of the proof is similar to that of Proposition 17.2(1).
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18. Extending φΣ of K+
Σ to Kd

Let (π, Vπ) be a fixed irreducible supercuspidal representation of positive depth.
Suppose Σ = (�G, y, �r, �φ) is a good G-datum of positive depth such that (K+

Σ , φΣ)
is contained in (π, Vπ). Define

K := �G(k)(0+,s0,s1,··· ,sd−1) = G0
y,0+G1

y,s0
· · ·Gd

y,sd−1
.

Note that Kd = G0
[y]K where Kd is defined in §12.3. To simplify notation, we

denote K+
Σ by K+. Let N := ker(φΣ).

Proposition 18.1. K/N is a Heisenberg p-group with center K+/N .

To prove the above proposition, recall from §12.3 that

J i
+ = (Gi−1,Gi)(k)y,(ri−1,s+

i−1)
, J i = (Gi−1,Gi)(k)y,(ri−1,si−1).

Define a pairing on J i/J i
+ given by 〈a, b〉i = φΣ(aba−1b−1).

Note that K = G0
y,0+J1 · · ·Jd and K+ = G0

y,0+J1
+ · · ·Jd

+.

Lemma 18.2.

(1) The pairing 〈 , 〉i is nondegenerate on J i/J i
+.

(2) J i/(N ∩ J i
+) is a Heisenberg p-group with center J i

+/(N ∩ J i
+).

Proof. Let φ̂j be as in §5.8 or §12.4. For j > i − 1, since aba−1b−1 ∈ (Gj , Gj),
φ̂j(aba−1b−1) = 1. For j < i − 1, since aba−1b−1 ∈ Gi

y,ri−1
⊂ Gy,r+

j
⊂ ker(φ̂j),

φ̂j(aba−1b−1) = 1. Hence 〈a, b〉 = φΣ(aba−1b−1) = φ̂j−1(aba−1b−1). Then this
pairing coincides with the one in Lemma 11.1 of [38], and the above follows from
that lemma.

Proof. Proof of Proposition 18.1 Define a pairing on K/K+ given by 〈a, b〉 =
φΣ(aba−1b−1). Note that 〈 , 〉 on J i/J i

+ ⊂ K/K+ coincides with 〈 , 〉i. We
claim that if i �= j, 〈 , 〉 is trivial on J i/J i

+ ×Jj/Jj
+. Without loss of generality, we

may assume i < j. Let a ∈ J i and b ∈ Jj . If � < j, since (J i, Jj) ⊂ Jj
+ ⊂ ker(φ̂�),

φ̂�(aba−1b−1) = 1. If � ≥ j, aba−1b−1 ∈ (Gj , Gj) ⊂ (G�, G�) and φ̂�(aba−1b−1) = 1.
Hence, we have 〈 , 〉 = 〈 , 〉1⊕· · ·⊕〈 , 〉d, and the pairing 〈 , 〉 is nondegenerate.

Now, we can conclude K/N is a Heisenberg p-group with center K+/N .

18.3. By Proposition 18.1 and the theory of Heisenberg groups, there is a unique
representation of K extending the character φΣ. Let φh

Σ be the unique irreducible
representation of K extending the character φΣ, and let Vφh

Σ
⊂ V φΣ

π be the space
of φh

Σ.
Let ωπ be the central character of (π, Vπ). Then, ZG acts via ωπ on Vφh

Σ
. Let

φhπ
Σ denote the irreducible representation of ZGK such that φhπ

Σ = φh
Σ on K and

φhπ
Σ = ωπ · 1 on ZG. Note that (π, Vπ) also contains (ZGK, φhπ

Σ ). Moreover, G0
[y]

stabilizes the representation (φh
Σ, Vφh

Σ
) = (φhπ

Σ , Vφhπ
Σ

). We fix an extension of φhπ
Σ of

ZGK to G0
[y]K on Vφh

Σ
, which we denote by φ̃hπ

Σ .

Remark 18.4. Let κ be as in §12.4 associated to Σ. Then since κ|K+ is φΣ-isotypic,
κ|K 
 φh

Σ. Hence we can choose the extension φ̃hπ
Σ to be κ.
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Proposition 18.5. Any irreducible representation of G0
[y]K extending (ZGK, φh π

Σ )

is of the form ρ ⊗ φ̃hπ
Σ where ρ is an irreducible representation of G0

[y]K factoring
through ZGK.

Proof. Note that ρ in the above induces an irreducible representation of G0
[y]/G0

y,0+ .

Then, since φ̃hπ
Σ |K is already irreducible, the representation of the form ρ ⊗ φ̃hπ

Σ is
also irreducible.

Let Θ1 (resp. Θ2) be the character of
(

Ind
G0

[y]K

ZGK 1
)

⊗ φ̃hπ
Σ (resp. Ind

G0
[y]K

ZGK φhπ
Σ ).

Now, since [G0
[y] : G0

y,0+ZG] is finite, we can explicitly compute Θ1 and Θ2. Since
G0

[y]K normalizes ZGK, for g, h ∈ G0
[y]K, hg ∈ ZGK if and only if g ∈ ZGK.

Hence,

Θ1(g) = Θ2(g) =
{

φhπ
Σ (g) if g ∈ ZGK,

0 otherwise.

Therefore,
(

Ind
G0

[y]K

ZGK 1
)
⊗φ̃hπ

Σ and Ind
G0

[y]K

ZGK φhπ
Σ are isomorphic, and the proposition

follows from this.

Corollary 18.6. We keep the notation from Proposition 18.5. Let (π, Vπ) be as
before. Then there is a strongly good G-datum of positive depth Σ = (�G, y, �r, �φ) and
an irreducible representation ρ of G0

[y]K factoring through ZGK such that (π, Vπ)

contains (G0
[y]K, ρ⊗κ), where κ is as in §12.4. Moreover, c-IndG0

G0
[y]

ρ is an irreducible

supercuspidal representation of G0

Proof. The first statement follows from Corollary 11.5, §18.3, Remark 18.4, and
Proposition 18.5. The second follows from Proposition 17.2 and [31, (6.6)].

19. Conclusion: Exhaustion of supercuspidal representations

Theorem 19.1. Suppose (Hk), (HB), (HGT) and (HN) are valid. Then any irre-
ducible supercuspidal representation (π, Vπ) of G arises through Yu’s construction.

Proof. Let (π, Vπ) be a given irreducible supercuspidal representation. If the depth
�(π) of (π, Vπ) is zero, this follows from Remark 12.6. Hence, we may assume �(π) >
0. Then by Corollary 18.6, there is a strongly good G-datum of positive depth
Σ = (�G, y, �r, �φ) and an irreducible representation ρ of G0

[y]K factoring through
ZGK such that (π, Vπ) contains (G0

[y]K, ρ⊗κ). Moreover, ZG0/ZG is k-anisotropic

by Proposition 14.5, and c-IndG0

G0
[y]

ρ is an irreducible supercuspidal representation

of G0 from Corollary 18.6. Hence, ΣY = ( �G, y, �r, �φ, ρ) is a generic G-datum. Let
πΣY

:= c-IndG
G0

[y]K
(ρ ⊗ κ), the supercuspidal representation constructed in [38].

Since ρ ⊗ κ < π, from the Frobenius reciprocity and the irreducibility of (π, Vπ),
we conclude π 
 πΣY

.

Corollary 19.2. Suppose (Hk), (HB), (HGT) and (HN) are valid. Then, all
supercuspidal representations of G are compactly induced from an irreducible rep-
resentation of an open compact mod center group.
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Selected notation

1.1 Gder

B(G, E)
A(G,T, E)

1.2 B(G)
gr

1.3 Φ(G,T, E), Ψ(G,T, E)
X∗(T, E), X∗(T, E)

2.1 �G
2.2 A(H,T, k)
2.5 OH

X , OX

O(H, X), O(X)
3.1 Gy,f , gy,f

f�u

�Gy,�u, �gy,�u

gi⊥, gi
⊥, gi⊥

x,r

3.4 (HB), (HGT), (Hk), (HN)
B(X, Y )

3.7 gi⊥, gi
⊥

3.8 r∗, �r∗

�gy,�u∗

L ∗

3.10 χγ

4.1 d(X)
5.1 Σ = (�G, y, �r, �φ)

�(Σ)
G−1, Gd+1, Zi,

5.3 Γi, ΓΣ = Γ
5.8 si

�s(ε), �s+(ε), �s(0), �s(0+)
�s, �s+

Ki+
Σ , Ki

Σ+, K+
Σ

φ̂i

5.9 φΣ, χΓ

Γ−1

5.10 Σx

5.11 G0
[y]

5.12 Lx,ε = Lx, Lx,ε = Lx

L

x,ε = L


x

Li
x, Li


x

5.16 E, Eu, Et

V
(J,σ)
π = V σ

π

6 Θπ

F̂ (π), f̂(X)
7.2 g0

Γ

7.4 gΓ

S

8.5 EΓ(ε), E0

8.7 Et
Γ(ε)

Es, Et
s

8.8 Bd

Et(t), t ∈ Bd

8.11 Ēt
Γ(ε)

9.1 J(g)
9.2 J

i,Γ
x,−s, JΓ

Θ̂π

Dt, D−sd−1

11.1 A
µ
= A′

12.1 ΣY = (�G, y, �r, �φ, ρ)
G0

[y]

12.3 Ki, Ki+

J i, J i
+

12.4 κ, ρΣY

13.1 H(G//J, σ),
Supp(H(G//J, σ))

13.2 Φ(?,T, E)
13.9 Ki

y�, K̃i
y�

K� = Ky�
K̃� = K̃y�
Uy,�t, My,�t, Uy,�t

U
i

y,�t, M i
y,�t

, U i
y,�t

13.13 J�, JM , Ju

16.6 J̃ i
y+, J̃ i

y

17.1 V φΣ
π

18 K, K+

18.3 φh
Σ, φhπ

Σ , φ̃hπ
Σ
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Added in proof

This paper was originally submitted for publication in 2004. Very recently (July
2006), a preprint appeared (Shaun Stevens, The supercuspidal representations of
p-adic classical groups, math.RT/0607622) whose results have a substantial overlap
with the ones here. Stevens’ approach is based on the strategy of Bushnell and
Kutzko [5], which is completely different from the one here. It is limited to classical
groups but allows for more general residue characteristics (any odd residue char-
acteristic p is allowed). For small p, tame supercuspidal representations are not
enough, and Stevens actually constructs some new supercuspidal representations
which complement the tame ones.
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