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ABSTRACT. A hyperbolic reflection group is a discrete group generated by
reflections in the faces of an n-dimensional hyperbolic polyhedron. This survey
article is dedicated to the study of arithmetic hyperbolic reflection groups with
an emphasis on the results that were obtained in the last ten years and on the
open problems.
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1. INTRODUCTION

Consider a finite volume polyhedron P in the n-dimensional hyperbolic space
H"™. It may occur that if we act on P by the hyperbolic reflections in its sides, the
images would cover the whole space H™ and would not overlap with each other.
In this case we say that the transformations form a hyperbolic reflection group T’
and that P is its fundamental polyhedron, also known as the Cozxeter polyhedron
of I". We can give an analogous definition of the spherical and euclidean reflection
groups, the classes of which are well understood after the work of Coxeter [Cox34].
What kind of properties characterize hyperbolic Coxeter polyhedra? For example,
we have to assume that all the dihedral angles of P are of the form - for some
m € {2,3,...,00} because otherwise some images of P over I' would overlap. It
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appears that under some natural assumptions one can prove a general finiteness
theorem for the possible types of hyperbolic Coxeter polyhedra in all dimensions.
In this paper we shall give an overview of the related methods, results, and open
problems.

Reflection groups are ubiquitous in mathematics: they appear in group theory,
Riemannian geometry, number theory, algebraic geometry, representation theory,
singularity theory, low-dimensional topology, and other fields. A vivid descrip-
tion of the history of spherical and euclidean reflection groups can be found in the
Note Historique of Bourbaki’s volume [Bou6§|]. The study of the spherical ones
goes back to the mid-nineteenth century geometrical investigations of Mobius and
Schlafli. It then continued in the work of Killing, Cartan, and Weyl on Lie the-
ory. In a remarkable paper published in 1934 [Cox34], Coxeter gave a complete
classification of irreducible spherical and euclidean reflection groups. Hyperbolic
reflection groups in dimension 2 were described by Poincaré and Dyck already in
the 1880s [Poi82L[Dyc82]; they then played a prominent role in the work of Klein
and Poincaré on discrete groups of isometries of the hyperbolic plane. Much later,
in 1970, Andreev proved an analogous result for the hyperbolic three-space giving a
classification of convex finite volume polyhedra in H® [And70al[And70b]. Later on
Andreev’s theorem played a fundamental role in Thurston’s work on geometrization
of three-dimensional manifolds. The history and results about reflection groups in
algebraic geometry are thoroughly discussed in Dolgachev’s survey paper [Dol08]
and his lecture notes [Dol15], the latter giving more details and being more focused
on hyperbolic groups. Concluding this very brief overview, let us mention that
many connections between reflection groups and group theory, combinatorics, and
geometry can be found in the book by Conway and Sloane [CS99].

Let us recall some well known examples of hyperbolic reflection groups. Let the
dimension n = 2, and consider geodesic triangles Py and P in the hyperbolic plane

with the angles 7, &, % and 7, 5, 0 = 2, respectively. The corresponding reflection

) Y

groups I'; and 'y are discret?z sgbgrougs) of the group of isometries of the hyperbolic
plane. The first of them is known as the Hurwitz triangle group. It is ultimately
related with the Klein quartic surface X, the corresponding tiling of the funda-
mental domain of X on the hyperbolic plane which is shown in Figure [Tl appeared
in Klein’s 1879 paper [Kle79]. This group has many remarkable properties, and a
fascinating discussion of the related topics can be found in a book [Lev99]. The
second group has an unbounded fundamental polyhedron whose hyperbolic area is
finite (and = %), and it is isomorphic to the ertended modular group PGL(2,Z).
Changing to the dimension n = 3, we encounter the right-angled dodecahedron
whose corresponding tiling of the hyperbolic three-space as seen from within is rep-
resented in Figure @l This image was produced by the Geometry Center at the
University of Minnesota in the late 1990s, and among other places it appeared in
the video “Not Knot” available at the Geometry Center homepage [GC| and on
the cover of the published edition of Thurston’s celebrated lecture notes [Thu97].
The theories of Klein-Poincaré and Thurston were developed for studying much
more general classes of discrete groups of isometries, but in both cases hyperbolic
reflection groups provided a source of important motivating examples.

Similar to the way that the polygon in Figure[is tiled by triangles, the higher-

dimensional hyperbolic polyhedra may admit decompositions into smaller parts. A
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FicURE 1. A tiling of a do- FIGURE 2. A tiling of the
main on the hyperbolic plane hyperbolic  three-space by
by the (2,3, 7)-triangles (im- the right-angled dodecahedra
age taken from Klein’s orig- (image courtesy of Geom-
inal article [KIe79] and used etry Center, University of
with permission). Minnesota).

nice computer visualization of some three-dimensional tilings of this kind includ-
ing two different decompositions of the right-angled dodecahedron is presented in
[ACMRO09]. In dimensions higher than 3 it is much harder to draw polyhedra and
tilings but we can still study them using different methods. Moreover, the combi-
natorial and geometrical structure of the fundamental polyhedron of a hyperbolic
reflection group in dimension n > 3 is uniquely determined by its Coxeter diagram
(see Section [2). Throughout this paper we shall study the groups acting in spaces
of arbitrary dimensions.

In what follows we are going to restrict our attention to arithmetic hyperbolic
reflection groups. The definition of arithmeticity will be given in the next section;
here we just note that all the examples considered above are arithmetic. Some
results about the general class of hyperbolic reflection groups were discussed in the
survey paper by Vinberg [Vin85]. For the methods that will feature in the present
survey, arithmeticity plays an essential role.

We now recall a fundamental theorem of Vinberg [Vin81l[Vin84al, which is well
known and at the same time remains surprising:

Theorem 1.1. There are no arithmetic hyperbolic reflection groups in dimensions
n > 30.

One may suspect that the yet to be defined notion of arithmeticity is crucial
here but the conjecture is that it is not the case:

Conjecture 1.2. Theorem [I1] is true without the arithmeticity assumption.

In fact, in his paper Vinberg proved two different theorems, one of which says
that there are no cocompact hyperbolic reflection groups in dimensions n > 30, and
the other that there are no non-cocompact arithmetic hyperbolic reflection groups
in these dimensions. The coincidence of the dimensions in the two theorems is
accidental. Later on Prokhorov proved that there are no non-cocompact reflection
groups in dimensions n > 996 thus confirming the conjecture for sufficiently large
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n [Pro86]. There is no reason to expect any of these bounds for the dimension
to be sharp. In [Ess96], Esselmann was able to show that the dimensions of non-
cocompact arithmetic reflection groups satisfy n < 21, n £ 20. This result is sharp
because of the known examples due to Vinberg and Borcherds (see Section [T]).
Non-arithmetic hyperbolic reflection groups in dimensions larger than two were
first constructed by Makarov and Vinberg in the 1960s. The examples of such
groups are currently known for dimensions n < 12, n = 14, 18 [Vinl4].

In connection with Theorem [[.T]let us mention the following more general ques-
tion communicated to me by Anton Petrunin:

Question. Do there exist hyperbolic lattices (i.e., discrete cofinite isometry groups)
generated by elements of finite order in spaces of large dimension?

The expected answer to this question is “No”, but it is far from settled. A related
discussion can be found on the MathOverflow page [MOv12]. There is a hope that
the methods considered in this survey may be applied for attacking this problem
for arithmetic lattices, but up to now our attempts to do it were not successful. We
shall come back to this question in Section [I0] which is dedicated to open problems.

Another principal question is what happens in the dimensions for which there
do exist arithmetic reflection groups—how do we construct the examples of such
groups and is it possible to classify all of them? These questions will be in the focus
of the discussion in our survey.

The content of the paper is as follows. In Section 2] we recall the definition of
arithmetic hyperbolic reflection groups and some well known results about them.
Section Bl contains a brief discussion of the work of Nikulin on finiteness results
for hyperbolic reflection groups. In the next section we introduce what we call
the spectral method and discuss the finiteness theorems obtained by this method.
Some effective results that are obtained by the spectral method are discussed in
Section Bl The following Section [6] is dedicated to what is currently known about
classification of arithmetic hyperbolic reflection groups. Section [7] presents a col-
lection of examples with an emphasis on those that were discovered after Vinberg’s
1985 survey paper was published. Some particularly interesting examples were ob-
tained by Borcherds using modular forms, and we dedicate the next section to a
discussion of the reflective modular forms. In Section [0 we consider the reflective
quotients, in particular, the so-called quasi-reflective groups and also non-reflective
groups. Finally, in the last section we discuss open problems.

Before starting the paper, let us cite three important articles that provide an
overview of the subject from different perspectives. These are the papers by Nikulin
[Nik8Ta], Vinberg [Vin85], and Dolgachev [Dol08]. The related results were also pre-
sented in ICM talks by Vinberg [Vin84b] and Nikulin [Nik87]. When it is possible,
we shall try to minimize the overlap with these papers and focus our attention on
the results that were obtained in the last ten years.

2. QUADRATIC FORMS AND ARITHMETIC REFLECTION GROUPS

Consider an (n+1)-dimensional vector space E™! with the inner product defined
by a quadratic form f of signature (n,1). Let
{v € E™}|(v,v) < 0} = €U (—€),
where € is an open convex cone. In the wector model, the hyperbolic space H"
is identified with the set of rays through the origin in €, or €/R™, so that the
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isometries of H" are the orthogonal transformations of E™1. We refer to [AVS93]
and [Rat06] for a detailed study of the properties of the vector model.

Let k be a totally real number field with the ring of integers oy, and let f be a
quadratic form of signature (n, 1) defined over k and such that for every non-identity
embedding o : k — R, the form f¢ is positive definite. The group I' = Og(f, 0x)
of the integral automorphisms of f is a discrete subgroup of H = Og(n, 1), which
is the full group of isometries of the hyperbolic n-space H" (the group Og(n,1)
is the subgroup of the orthogonal group O(n, 1) that preserves the cone €). The
discreteness of ' follows from the discreteness of oy in R¥@ and compactness of
Oo(f7) for o # 044. Using reduction theory, it can be shown that the covolume of T’
in H is finite—this is a special case of the fundamental theorem of Borel and Harish-
Chandra [BHC62] (we refer to the book [VGS8§]| for an accessible exposition of the
main ideas of the proof). Discrete subgroups of finite covolume are called lattices.
The groups I' obtained in this way and subgroups of H which are commensurable
with them are called arithmetic lattices of the simplest type. The field k is called
the field of definition of ' (and subgroups commensurable with it). We shall also
apply this terminology to the corresponding quotient orbifolds H™ /T.

There are compact and finite volume non-compact arithmetic quotient spaces.
A theorem known as the Godement’s compactness criterion implies that I' is non-
cocompact if and only if Og(f, k) has a non-trivial unipotent element [BHC62] (see
also [VGS88, Chapter 3, Section 3.3]). This is equivalent to the condition that
k = Q and the form f is isotropic. The Hasse-Minkowski theorem implies that for
k = Q and n > 4 the latter condition automatically holds. Therefore, for n > 4 the
quotient H"/T" is non-compact if and only if T" is defined over the rationals. For
n = 2 and 3, the non-cocompact subgroups are still defined over Q but there also
exist cocompact arithmetic subgroups with the same field of definition.

In general, arithmetic subgroups of semisimple Lie groups are defined using al-
gebraic groups. This way the classification of semisimple algebraic groups [Tit66]
implies a classification of the possible types of arithmetic subgroups. It follows from
the classification that for hyperbolic spaces of even dimension all arithmetically de-
fined subgroups are arithmetic subgroups of the simplest type. For odd n there is
another family of arithmetic subgroups given as the groups of units of appropriate
Hermitian forms over quaternion algebras. Moreover, if n = 7, there is also the
third type of arithmetic subgroups of H which are associated to the Cayley alge-
bra. The following lemma of Vinberg shows that for our purpose it will be always
sufficient to consider only arithmetic subgroups of the simplest type:

Lemma 2.1 ([Vin67, Lemma 7]). Any arithmetic lattice T C H generated by
reflections is an arithmetic lattice of the simplest type.

A discrete subgroup of a Lie group H is called maximal if it is not properly
contained in any other discrete subgroup of H. It is well known that in semisimple
Lie groups any lattice is contained in a maximal lattice. Let I' be an arithmetic
subgroup which is commensurable with G(ox) = O(f, 0x) for some quadratic form
f defined over k. There exists an oj-lattice L in k"' such that I' N G(k) c GF =
{9 € G(k) | g(L) = L} (cf. [VinT7I]). If oy is a principal ideal domain in an
appropriate basis, the transformations from G% can be written down by matrices
with elements in 0. By Theorem 5 from [Vin71], if A < I'is an arithmetic subgroup
generated by reflections, then A is definable over o). We refer to [Vin71] for more
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information about the rings of definition of arithmetic subgroups. Note that the
term “field of definition” is used by Vinberg in a more restricted sense.

A certain subclass of arithmetic subgroups will play a special role in our study.
An arithmetic subgroup I' < Og(f) is called a congruence subgroup if there exists a
non-zero ideal a C oy such that I' D Og(f, a), where Og(f,a) = {g € Oo(f,01) | g =
Id (mod a)} is the principal congruence subgroup of Og(f, 0x) of level a. Congruence
subgroups possess a remarkable set of special geometric and algebraic properties.
In particular, the first non-zero eigenvalue of the Laplacian on H" /T is bounded
away from zero by a constant which depends only on n but not on I'. This spectral
gap property will play a key role in the methods that we are going to discuss in
Sections F] and

We have the following fact connecting maximal and congruence arithmetic sub-
groups:

Lemma 2.2. Mazimal arithmetic subgroups are congruence.

For the arithmetic subgroups defined by quadratic forms, the proof of the lemma
can be found in [ABSW08, Lemma 4.7], where it is based on a material from [PR94].

An interested reader can find much more information about arithmetic groups
and their properties in the books [PR94] and [Wit15].

Let us now come back to the reflection groups—the objects of our primary in-
terest. A reflection group I' is called a mazimal reflection group if there is no other
discrete subgroup IV < Isom(H™) such that I' < IV and I" is generated by reflec-
tions. Maximal reflection groups are not necessarily maximal lattices but there is a
relation between the two, and it is captured by the following lemma due to Vinberg:

Lemma 2.3. A mazimal reflection group T' is a normal subgroup of a mazximal
lattice T'y. Moreover, there is a finite subgroup © < I'g such that © — I'y/I" is an
isomorphism, and © is the group of symmetries of the Coxeter polyhedron of T'.

This lemma was proved in [Vin67], the argument is also reproduced in [ABSWO0S].

Given an admissible quadratic form f as above, we would like to know when the
arithmetic subgroup I' = Og(f, 0x) is, up to finite index, generated by hyperbolic
reflections. If this is the case, the form f and the group I' are called reflective. The
main practical tool for deciding reflectivity is Vinberg’s algorithm [Vin72], which
we are going to review now.

In the vector model of H", a hyperplane is given by the set of rays in € which are
orthogonal to a vector e of positive square in E™!. A hyperplane II. defines two
half-spaces, II} and II, where '+’ is the sign of (e, x) for z in the corresponding

e

half-space, and a reflection

(e.2)
(e.e)
where the inner product (u,v) = 2(f(u+v) — f(u) — f(v)) is induced by f.

We shall assume that oy is a principal ideal domain (PID). The vector e cor-
responding to the reflection R, is defined up to scaling, so if e has k-rational
coordinates, we can normalize it so that the coordinates are coprime integers in
0. With this normalization we can assign to R. a parameter s = (e,e) € o0,
and call R, an s-reflection. The reflection R, belongs to the group Og(f,0x) if
%(e, v;) € ok, for the standard basis vectors v;, i = 0,...,n. Following [Vin72], we
call this the crystallographic condition.

R.:x—x—2
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We begin by considering the stabilizer subgroup of a vector ug with integral
coordinates which corresponds to a point zo € H". (When dealing with non-
cocompact lattices it may be convenient to choose an ideal point xy € OH" as a
starting node.) Consider the (finite) group generated by all reflections in I" whose
mirrors pass through zy. Let

Py = ﬁ I,
=1

be a fundamental chamber of this group. All the half-spaces Il are essential
(i.e., not containing the intersection of the other half-spaces). The corresponding
vectors e; satisfy (e;,e;) > 0, (e;,u9) = 0 for all 4, and the reflections R, generate
the stabilizer of x¢ in Og(f;0x). There is a unique fundamental polyhedron P of
the reflection subgroup which sits inside Py and contains xy. The point x( is not
necessarily a vertex of P but it is usually convenient to choose ug in such a way
that x( is a vertex.
The algorithm continues by picking up further II.; so that

P C (I,

This is done by choosing e; satisfying the crystallographic condition such that
(€i,ei) >0, (e;,u0) <0, (e5,e5) <0 for all j <4, and the distance between zo and
IL., is the smallest possible, i.e., minimizing the value

(e5,u0)?

sinh? (dist(zo, II,,)) = ————2 2
(dist(zo, ILe.)) (e, ei)(uo, uo)

The latter condition implies that all the hyperplanes 1l., are essential. Note that
if k£ # Q, its integers do not form a discrete subset of R. Bugaenko showed that
regardless of this, the arithmeticity assumption implies that the set of distances
considered above is discrete and hence we can always choose the smallest one (see
[Bug84], [Bug90], [Bug92], or [Marl5h]).

The algorithm terminates if it generates a configuration P = [, IIZ that has
finite volume, in which case the form f is reflective. The finite volume condition
can be effectively checked from the Coxeter diagram of P—it is equivalent to each
edge of the polyhedron having two vertices, either one or both of which may be at
the ideal boundary of the hyperbolic space.

Let us recall that the fundamental polyhedra of the reflection groups are usually
described using Cozxeter diagrams. These are the graphs with vertices corresponding
to the vectors e; (equivalently, the faces of P). Two different vertices e;, e; are
connected by a thin edge of integer weight m;; > 3 or by m;; — 2 edges if the

™

corresponding faces intersect with the dihedral angle ——, by a thick edge if they
ij

intersect at infinity (dihedral angle zero), and by a dashed edge if they are divergent.
In particular, two vertices are not joined by an edge if and only if the corresponding
faces of P are orthogonal. Note that there are some differences between the Coxeter
diagrams and the Dynkin diagrams which are used in Lie theory. In particular, the
triple edge in our labeling convention means the angle ¥, while on the Dynkin
diagram of a Weyl chamber it corresponds to the angle .
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In order to produce the Coxeter diagram of the polyhedron P, we can compute
the dihedral angles between the intersecting hyperplanes from the standard formula

cos (L> = _ o) .
mij (€:,€i)(ej,€5)
Example 2.4. Let us consider the quadratic form

1
f=2 (x% + 25 4+ 25 + 25 — 2120 — 5(1 +V5)xoxs — x3x4) .

It is an admissible even quadratic form of the discriminant 3 — 2+/5 defined over
the field & = Q(V/5).

We can start running the algorithm with ug = (%,3,2¢,¢), where ¢ = %
is the fundamental unit of k, so that the stabilizer subgroup of the corresponding
point zo € H? is generated by reflections corresponding to the vectors

e1 = (1,0,0,0), e2 = (0,0,1,0), and e3 = (0,0,0,1).

The algorithm finds the fourth vector ey = (=1, -1, —¢, —¢) and terminates.
The Coxeter diagram of the resulting configuration is

Or
o

The polyhedron P is a bounded simplex in H?, and the group I' is generated
by reflections in its sides is a well known arithmetic lattice. A difficult theorem
of Gehring, Martin, and Marshall [GM09,[MM12] shows that the order 2 extension
of T is the minimal covolume lattice in Isom(H?); hence, we can think of it as the
three-dimensional analogue of the (2,3, 7)-Hurwitz group.

Note that the form f is not diagonalizable over oy, and it can be verified that
the group I' cannot be obtained as a reflection subgroup of the group of units of
some diagonal quadratic form.

We refer to [VinT2l[VK78|Bug84,[Bug90,[Sha90lBug92l[SWI2INik00[ATIT12/[BM13]
Mcl13|[Mar15alMar15b] for many other examples of the Coxeter polyhedra and their
diagrams produced by the algorithm. In most of these papers the form f is defined
over Q which implies (for n > 4) that the resulting Coxeter polyhedra have cusps.
The exceptions are the Bugaenko papers where the algorithm was first applied
to the forms with coefficients in the real quadratic fields leading to examples of
cocompact arithmetic hyperbolic reflection groups in dimensions n < 8. We shall
come back to the discussion of the known examples in Section [7l

Let us point out that Vinberg’s algorithm has an unfortunate property that it
never halts if the form is not reflective. Fortunately, in practice this problem can be
often bypassed: if a computer implementation of the algorithm produces, say, more
than 102 generators for the reflection subgroup, we can expect that it is not a lattice.
The latter condition can be rigorously checked by the group theoretic methods in
each particular case, for example, by detecting an infinite order symmetry of the
reflection polyhedron, it then implies that the group was not reflective. Many
concrete examples and some general methods for this verification can be found in
the papers cited above.
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3. THE WORK OF NIKULIN

In a series of papers beginning with the 1980 article [Nik80], Nikulin established
finiteness of the number of commensurability classes of arithmetic hyperbolic re-
flection groups and obtained upper bounds for degrees of their fields of definition.
In this section, we shall briefly review Nikulin’s method.

Let P be a convex polyhedron in H™. It is an intersection of finitely many half-
spaces I, where the vectors e; orthogonal to the faces of P can be chosen to have
square 2 and directed outward. The matrix

A(P) = (ai;) = (ei, €5)
is called the Gram matriz of P. It uniquely determines P up to motions of the
ambient space H™.
The polyhedron P is a fundamental polyhedron of a discrete reflection group
in H" if and only if a;; < 0 and a;; = —2 COS(mL”)’ where m;; > 2 is an integer
whenever a;; > —2 for all { # j. Symmetric real matrices A satisfying these condi-

tions and having all their diagonal elements equal to 2 are called the fundamental
matrices.

Note. In his papers, Nikulin uses the opposite sign convention which is more com-
mon in algebraic geometry. Here we keep the notation that was introduced in the
previous section, which is also consistent with the one used by Vinberg.

Given a real t > 0, we say that the fundamental Gram matrix A = (a;;) and
the corresponding polyhedron P have minimality ¢ if |a;;| < t for all a;;. We can
analogously define the minimality of a face F of P by considering the Gram matrix
A(F) formed by the inner products of the vectors associated to the faces of P that
have non-trivial intersections with F in H". The notion of minimality is central for
Nikulin’s method.

Suppose that P is a fundamental polyhedron of an arithmetic reflection group
I' =T'(P) in H". Vinberg [Vin67] proved that for a finite volume polyhedron P it
is equivalent to the conditions that all the cyclic products

bil"'im = Qiyig Qigig " " Qi 1, Ry iy

are algebraic integers, the field K = Q({a;;}) is totally real, and the matrices
A? = (af;) are non-negative definite for every embedding o : K — R not equal to
identity on the field of definition & = Q({b;,...;,, }), which is generated by the cyclic
products.

A fundamental matrix A(P) and the corresponding reflection group I'(P) is called
V -arithmetic if it satisfies the conditions of Vinberg’s arithmeticity criterion except
that P is not required to have finite volume. The property of V-arithmeticity
is much easier to check than arithmeticity and, moreover, it is inherited by sub-
polyhedra: if P’ is an intersection of a subset of the half-spaces II_ defining the
polyhedron P and its Gram matrix A(P’) is indefinite, then P’ is also V-arithmetic
with the same field of definition (also called ground field) as P.

The hereditary property of V-arithmeticity allows us to reduce some questions
to the analysis of simple configurations. The basic case is called an edge polyhedron
(chamber). Tt refers to a fundamental matrix A(P) such that all the corresponding
hyperplanes II, contain at least one of the two distinct vertices vy, vo of a one-
dimensional edge vive of P. If the vertices vi, vy are finite, the edge chamber
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is called finite. In this part we are mainly interested in bounding the degree of
the fields of definition of arithmetic reflection groups, thus we can restrict to the
finite case. With the necessary modifications, Nikulin’s method also applies to the
unbounded Coxeter polyhedra. Any finite edge chamber has precisely n + 1 sides
corresponding to the vectors eq, e2 and n — 1 vectors {e;};ec; whose hyperplanes
contain the full edge v1vo. The Gram matrix A(P) is hyperbolic but its submatrices
corresponding to e; U {e;};cs and es U {e;};cs are positive definite. The only
element of A(P) that can have absolute value bigger than 2 is u = (e1, e3). It follows
that an edge polyhedron has minimality ¢ > 2 if and only if |u| = |(e1, €2)| < . The
Coxeter diagram G of an edge chamber P has exactly one connected component
G(P"P) corresponding to a hyperbolic submatrix of A(P) and containing e; and
e2, and possibly several positive definite connected components. The Gram matrix
A(P™P) corresponds to an edge chamber of dimension #G(P™P) — 1. If P is V-
arithmetic, then P and the hyperbolic connected component P™P are defined over
the same field k.
We now can state a principal technical theorem of Nikulin:

Theorem 3.1 ([Nik81a, Theorem 2.3.1]). Given any t > 0, there is an effective
constant N (t) such that for every V -arithmetic edge chamber of minimality t with
the ground field k of degree more than N(t) over Q, the number of vertices in the
hyperbolic connected component of the Coxeter graph is less than 4.

The proof of Theorem B.1]in [Nik81a] uses a variant of Fekete’s theorem (1923)
on the existence of non-zero integer polynomials of bounded degree with small
deviation from zero on appropriate intervals (see also [Nik11l Section 6] for a review
of the proof and some corrections).

The minimality ¢ = 14 is especially important for Nikulin’s method. This is
because a fundamental polyhedron of an arithmetic hyperbolic reflection group (not
assumed to be cocompact here) always has a face with minimality 14—a result that
was proved in Nikulin’s early papers (see [Nik80, Lemma 3.2.1] and [Nik81al, proof of
Theorem 4.1.1]). This fact allows one to reduce various finiteness and classification
problems to the estimation of the value of the transition constant N(14). This way
in [Nik07], Nikulin showed that his previous work together with the finiteness results
for dimensions n = 2 and 3 obtained by the spectral method (to be discussed in the
next section) can be applied to prove a general finiteness theorem for the number of
commensurability classes of arithmetic hyperbolic reflection groups. He also proved
that the degrees of the fields of definition of arithmetic hyperbolic reflection groups
are bounded above by the maximum of N(14) and the maximal possible degree
in dimensions 2 and 3. In the subsequent papers Nikulin gave explicit bounds for
the constant N(14), for example, in [Nik09] (see also Remark 5.1 in [Nik11] for a
correction) he showed that N(14) < 120. The best result of this kind is obtained
in [Nik11], where it is shown that N(14) < 25. It is worth mentioning that most of
these results make use of Theorem [B.1] and its proof. The main difference between
the latest improvement and the previous papers is that there, instead of relying
only on estimates for the Fekete’s existence theorem, Nikulin constructed certain
explicit polynomials with the required properties.

The result of [Nik11], together with [Macll] and [BL14], which we shall discuss
later on in Section [B] implies:
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Theorem 3.2 (cf. [BL14, Corollary 5.1]). The degree of the fields of definition of
arithmetic hyperbolic reflection groups in all dimensions is at most 25.

This is currently the best known general bound.

4. SPECTRAL METHOD AND FINITENESS THEOREMS

Given a lattice I' < Isom(H™), we have an associated quotient Riemannian orb-
ifold © = H"/T. If T is generated by reflections, we call O a reflection orbifold.
The main idea of the method discussed in this section is that the global geometric
properties of the reflection orbifolds can provide important information about the
hyperbolic reflection groups.

The spectral method that we are going to review is based on some properties
of the spectrum of the Laplacian on orbifolds. It was first applied for proving
finiteness results for arithmetic hyperbolic reflection groups by Long, Maclachlan,
and Reid [LMRO6] and by Agol [Ago06] in dimensions n = 2 and 3, respectively.
The first paper makes use of the Zograf’s spectral proof of Rademacher’s conjecture
for congruence subgroups of the modular group [Zog91]. In his work [Ago06], Agol
found that one can employ the Li—Yau inequality for conformal volume instead of
Zograf’s spectral inequality for surfaces. This allows us to extend the domain of
applicability of the method to a much wider class of spaces. Agol completed the
proof of the finiteness theorem for n = 3; a later joint work with Agol, Belolipetsky,
Storm, and Whyte showed how to extend the argument to an arbitrary dimension
[ABSWO08]. We shall now review this approach.

Conformal volume was introduced by Li and Yau in [LY82], partially motivated
by generalizing results on surfaces due to Yang and Yau [YY80], Hersch [Her70],
and Szegd [Szeb4]. In [ABSWOS], we generalized this notion to orbifolds. Let (O, g)
be a complete Riemannian orbifold, possibly with boundary, and let |O| denote the
underlying topological space. Denote the volume form by dvy, and the volume by
Vol(O, g). Let Mob(S™) denote the group of conformal transformations of S™. It
is well known that Mob(S") = Isom(H"*!). The topological space |O| has a dense
open subset which is a Riemannian manifold. We call a map ¢ : |O1] — |O2| a PC
map if it is a continuous map which is piecewise a conformal immersion. Clearly, if
v : |0 = S™is PC, and p € Mob(S"), then po ¢ is also a PC map.

Let (S™, can) be the m-dimensional sphere with the canonical round metric. For
a plecewise smooth map ¢ : |O| = (S™, can), define

Vpc(m,p) = sup  Vol(O, (nop)*(can)).
pnEMob(S™)

If there exists a PC map ¢ : |O] — S™, then we also define

Vec(m,O) = Vec(m, ¢).

inf
p:|O|—=Sm™PC
We call Vpe(m, O) the m-dimensional piecewise conformal volume of O.
Using the Nash embedding theorem, it can be shown that the m-dimensional
conformal volume is always well defined for a sufficiently large m. It is clear that
Vpc(m,O) > Vpe(m+1,0), hence we can define the (piecewise) conformal volume

VOlC(O) = l;m Vpc(n, O)

We refer to [ABSWOS] for further discussion and basic properties of the conformal
volume. One of the immediate corollaries of the definitions allows us to compute
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the conformal volume of the reflective orbifolds (cf. Facts 3, 4 in [ABSWO0S8|, Section
2]):
Let T, < Isom(H™) be a lattice generated by reflections in hyper-
planes in H", and let O, = H"/T,.. Then we have Vol.(0,) =
Vol(S™, can).
Now the Li—Yau inequality generalized to n-dimensional orbifolds says [ABSWO0S]:

(1) A (0) - Vol(O)= < n- Vol (O)*.

Here A1(O) denotes the first non-zero eigenvalue of the Laplacian on O (called
the spectral gap), Vol is the hyperbolic volume, and Vol. is the conformal volume
defined above.

Equation () shows that information about the spectral gap and hyperbolic vol-
ume of a reflection orbifold can be played against the upper bound given by the
value of its conformal volume. The information that we need here can be deduced
from arithmeticity. Indeed, if I" is a congruence subgroup of Isom(H") (cf. Section[2]
for the terminology), then the well known conjectures of Ramanujan and Selberg
imply that

A (H™/T) > A (H™).
These conjectures are still open, but less precise low bounds are known, and for our
purpose they can serve almost as well as the conjectures. We have

AL (H™/T) > 6(n),

where §(2) = 2 by Vigneras [Vig83] and if n > 3, §(n) = 222 by Burger and
Sarnak [BS91]. Moreover, if T' is defined by a quadratic form (which is always
the case for the arithmetic hyperbolic reflection groups by Lemma 2T]), then more
recent work of Luo, Rudnick, and Sarnak implies that we can take 6(2) = 0.21 and
§(n) = 5324 for n > 3 [LRS99]. The proofs of these bounds are based on deep
results about automorphic representations.

Now let us assume that I' is at the same time a congruence subgroup and a
reflection group, and let @ = H"/T. Following the argument in [Bellll], we can
then quickly prove the two principal finiteness theorems. We have:

§(n) - Vol(O)* < n - Vol(S")*;

n \2
2 Vol(O) < | — 1(S™).
@) 01(0) = (55 )  Vol(s")

By the theorems of Wang [Wan72| for n > 4 and Borel [Bor81] for n = 2, 3,
there are only finitely many (up to conjugacy) arithmetic subgroups of Isom(H") of
bounded covolume. As the right-hand side of (2 depends only on the dimension,
we immediately obtain our first finiteness theorem:

w3

(3)

congruence reflection subgroups of Isom(H").
25\ %
< | —= .
Vol(Sn) = \15m —24) — ( 7 )

Theorem 4.1. For every n > 2 there are only finitely many conjugacy classes of
Let n > 3. We have §(n) > 12224
Vol(O) ( 25n )
<
At this place we need to recall some recent results about volumes of arithmetic
hyperbolic n-orbifolds. By [Bel04], [Bel07], and [BE12], Vol(H"/T') is bounded
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below by a function which grows super-exponentially with n. These results are
discussed in some detail the survey article [Bell4]; the required corollary in a more
precise form can be found as Corollary 3.3 there. As Vol(S™) — 0 when n — oo, the
super-exponential lower bound holds true also for the quotient Vol(H"/T")/Vol(S™).
Hence the left-hand side of (3) grows super-exponentially with n while the right-
hand side is only exponential. This gives our second finiteness theorem:

Theorem 4.2. If n is sufficiently large, then Isom(H"™) does not contain any con-
gruence reflection subgroups.

The main problem with this argument is that we cannot expect that all maximal
arithmetic reflection groups are congruence—the counterexamples are known in
dimensions 2 and 3 by the work of Lakeland [Lakl12al[Lak12b], and it is not clear
what happens in higher dimensions. The goal of [ABSW0§| was to show how finer
arithmetic techniques can be applied in order to partially bypass this difficulty and
prove an analogue of Theorem [Tl for all maximal arithmetic reflection groups. We
cannot yet prove an analogue of Theorem using the spectral method, but we
know that it is true thanks to the previous work of Vinberg (cf. Theorem [[T] in
the Introduction). Thus we have:

Theorem 4.3. There are only finitely many conjugacy classes of arithmetic max-
1mal hyperbolic reflection groups.

This result was proved independently in [ABSWO08] and [Nik07]. It implies that
in principle it is possible to give a complete classification of the arithmetic hyper-
bolic reflection groups.

Let us note that neither arithmeticity nor maximality assumptions in Theo-
rem 4.3 can be dropped. Examples of infinite families of arithmetic reflection groups
up to dimension 19 have been given by Allcock [AII06]. These examples are ob-
tained using the idea of doubling: if a fundamental polyhedron P of a reflection
group I' has a face I whose all dihedral angles with the other faces are equal to 7,
then we can double P along F to obtain a new polyhedron such that the reflections
in its faces generate an index 2 subgroup of T' (see Section [1 for a precise descrip-
tion of Allcock’s redoubling procedure and a related discussion). It is clear that the
groups which are obtained by this procedure and its variations are non-maximal
reflection groups. The necessity of the arithmeticity assumption is also well known.
For example, consider the groups generated by reflections of the hyperbolic plane
in the sides of a hyperbolic triangle with angles 7, %, = (m > 7). These groups
are known to be maximal discrete subgroups of Isom(H?), but all except finitely
many of them are non-arithmetic. A similar construction is available for hyperbolic
three-space with triangular prisms replacing triangles (see [MRO3], Section 10.4.3]).

Finally, let us mention that the spectral method we described in this section has
other interesting variations and applications. We refer to Peter Sarnak’s lecture
notes [Sarl4] for an enlightening discussion of some related topics.

5. EFFECTIVE RESULTS OBTAINED BY THE SPECTRAL METHOD

The proofs from the previous section can be made effective, meaning that we
can essentially enumerate all the possible candidates for the reflection groups in
Theorems [£.1] and In order to do so, we need to look at the quantitative side
of the finiteness theorems of Borel and Wang. The key ingredient for quantitative
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analysis is provided by the results on minimal volume arithmetic hyperbolic n-
orbifolds [Bel04Bel07BE12] (see also [Bell4]) and the methods from these papers.
In particular, all these results were obtained using the volume formula of G. Prasad
[Pra89], which will also play a prominent role in our discussion.

More precisely, the quantitative analogue of Theorem is:

Proposition 5.1 (cf. [Bellll Prop. 4.1]). There are no cocompact congruence
reflection subgroups in Isom(H™) forn > 13, and no congruence reflection subgroups
in Isom(H™) for n > 28.

It is proved by substituting in (@) the precise lower bounds for the minimal
volume. With some case-by-case considerations it should not be hard to bring the
second bound down to 22, so that it would agree with the Esselmann’s result [Ess90]
bounding the dimension of non-cocompact arithmetic reflection groups.

A finer analysis based on volume computations leads to the quantitative version
of Theorem

Proposition 5.2 (cf. [Bellll Prop. 4.2]). The degrees of the fields of definition of
cocompact congruence reflection subgroups of PO(n, 1) are bounded by 6 and their
discriminants satisfy the conditions in Table [Il

TABLE 1. The bounds for Dy depending on the dimension n and the degree
of the field d = [k : Q).

d=2 3 4 5 6
n=4|<2:2 <2244 <19210 <164442 <1407650
5| <214 <1928 <17302 <155272 <1393406
6| <28 49, 81
7| <39 <205 <1062
8,9 <13
10,11 | 5, 8
12| 5

Similar methods can be employed to look at the other invariants (the Hasse—
Witt symbol and the determinant of the quadratic form f defining I') with an
objective to give a list containing all the congruence-reflective quadratic forms.
However, this has not been done yet. In small dimensions the list will be very
large, but for higher n its size will reduce quickly—compare with the possible fields
of definition in Proposition Producing the list of the quadratic forms is a
feasible task which would provide important data for the potential classification of
arithmetic hyperbolic reflection groups. We shall come back to this discussion later
in Section

The main issue about the results of the propositions is that they depend on an
extra assumption—the maximal reflection groups have to be congruence. We do
not know yet how much, if any, information we loose by imposing this condition in
dimensions n > 4 but for n = 2 and 3, we do have Lakeland’s examples showing that
not all arithmetic maximal reflection groups have this property [Lakl2alTak12Db].
Fortunately, there is a way to prove effective results in small dimensions without
restricting to the congruence subgroups. Let us now review this method.
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The idea goes back to [LMRO6] and [Ago06]. From the point of view based on
conformal volume, we can explain it as Agol’s trick:

Let Ty < Isom(H™) be a maximal arithmetic subgroup containing a maximal
reflection group I'. Since a conjugation of a reflection in Isom(H") is again a
reflection, the subgroup T is normal in I'y. By Vinberg’s lemma (cf. Lemma [2.3))
we have that the quotient group I'g/T" is isomorphic to a finite subgroup © < I'y
which is the group of symmetries of the Coxeter polyhedron P of I'. Consider
H™ C S™ embedded conformally as the upper half-space of S”, so that Isom(H")
acts conformally on S™. Normalize so that © acts isometrically on S™. Clearly,
Vpce(m,O) = Vpe(m,P/©), where O = H" /Ty, and so |O| = |P/B|. The orbifold
embedding P/© C S"/© is a conformal embedding; hence, by one of the basic
properties of the conformal volume, we have Vpc(n,P/0) < Vpco(n,S"/0O). The
key observation is that we can give a good upper bound for Vpe(n,S™/0) if we
manage to embed O in a finite reflection group ©’. Indeed, in this case we have

Vpc(n,S"/0) < [0 : 0] Vpe(n,S"/0') and Vpe(n,S"/O") = Vol(S™),
which leads to
() Vol,(0) < [6' : O] - Vol(S™).

The required embedding © <« O’ is easy to obtain for n = 2 with the index
[© : ©] < 2. Agol checked in his paper that for finite subgroups of O(3) we have
[© : ©] < 4, and this resolves the case n = 3. It is also possible to extend this
result to a more general class of quasi-reflective groups in dimension n = 3, which
allowed their classification in [BMI3]. In all other cases the classification of finite
subgroups of O(n) is either not known or much more involved, and we do not know
how to bound the conformal volume of their quotients. Hence so far we can apply
this trick for bounding the conformal volume only in dimensions 2 and 3.

We now can substitute (@) in () and use the bounds for the minimal volume and
the spectral gap of the congruence quotients—recall that according to Lemma
the maximal arithmetic subgroups are always congruence.

In the last section of his paper, Agol indicated the possible quantitative impli-
cations of the method, but he was missing some non-trivial technical ingredients
required to make it work. It was observed later in [Bel09] that one can combine
Agol’s method with the important technical results of Chinburg and Friedman
[CF86) in order to obtain the quantitative bounds. It was shown there, in par-
ticular, that the degree of the field of definition of arithmetic reflection groups in
dimension 3 is bounded above by 35. In a joint work Belolipetsky and Linowitz
[BL14] improved this bound to 9, which essentially allows us to give a list of all
possible fields of definition (see [BL14] for the details). The case of n = 2 was
considered by Maclachlan in [Macll]. Summarizing the results we have:

Theorem 5.3 ([MaclllBL14]). The fields of definition of arithmetic hyperbolic
reflection groups in dimension 2 have degree at most 11, and in dimension 3 at
most 9.

This theorem complements Proposition in a stronger form, as it does not
impose any additional congruence hypothesis. The cited papers also provide explicit
upper bounds for the discriminants of the fields of definition.
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6. CLASSIFICATION RESULTS IN SMALL DIMENSIONS

Consider a quadratic space (V, f), where V is a finite-dimensional vector space
over a totally real number field £ and f is a non-degenerate quadratic form on V.
An og-module L is called a quadratic lattice if L is a full rank og-lattice in (V, f).
A quadratic lattice is called even if for the inner product associated with f we have
(v,v) € 20k for all v € L, and odd otherwise. The dual L* of a quadratic lattice L
is the set of all vectors in V' having integer inner product with all vectors in L. A
lattice is called unimodular if L = L*, in general, if the inner product is integral
on L, we have L C L*, and A(L) = L*/L is a finite abelian group. It is called
the discriminant group of L, and its order is the determinant det(L). A quadratic
lattice L is called strongly square-free if the cardinality of the smallest generating
set of A(L) as an op-module is at most rank(L) and every invariant factor of
A(L) is square-free. If k = Q and the inner product associated with f is Z-valued
on L, we shall call L integral. The level of an integral lattice L is defined to be
the minimal positive integer N such that N(v,v)/2 € Z for all v € L*. Integral
quadratic lattices of signature (n, 1) or (1,n) (and rank n+1) are called Lorentzian.
We refer to [CS99] for more material about quadratic lattices and related structures.

The group I', = Aut(L) of the automorphisms of an integral Lorentzian lattice
is by definition an arithmetic subgroup of the orthogonal group O(n,1). It can be
shown that the automorphism group of a non-strongly square-free lattice is always
contained in the automorphism group of a strongly square-free one (cf. [AIl12]).

Lorentzian lattices and their groups of automorphisms arise naturally in K3
surface theory, structure theory of hyperbolic Kac-Moody algebras, and many other
fields. The question of their reflectivity was studied by Vinberg, Nikulin, Scharlau,
Allcock, and others. There are also some related investigations about reflectivity of
lattices defined over quadratic fields. In this section we shall review the classification
results which come from this study. Except for an important work of Nikulin on
2-reflective lattices discussed at the end, the other papers deal only with the lattices
of small rank.

Nikulin, Allcock, Mark. The case n = 2 is the first towards the general classi-
fication program. Although this case is easier than higher dimensions, the spectral
method indicates that it is here that we can expect to encounter the largest number
of examples of reflective lattices. In an important paper published in 2000 [Nik00],
Nikulin classified the rank 3 reflective strongly square-free Lorentzian lattices. He
obtained a list of 1097 lattices which fall into 160 duality classes (a p-dual of an
integral lattice L is the sublattice of L* corresponding to the p-power part of A(L);
it can be seen that L and its p-dual have the same automorphism group). Note
that since every lattice canonically determines a strongly square-free lattice, this
classification does contain all integral Lorentzian lattices whose reflection groups
are maximal under inclusion. The project was continued more recently by Allcock,
who classified all reflective integral Lorentzian lattices of signature (2,1) [AIl12].
He showed, in particular, that there are 8595 such lattices which correspond to
374 different reflection groups that fall into 39 commensurability classes. He also
checked that the 1097 strongly square-free lattices previously obtained by Nikulin
are contained in his list. The method is based on an analysis of the shape of the
Coxeter polygons, which allows us to reduce the list of candidates for the reflective
lattices to a manageable size, and a subsequent application of Vinberg’s algorithm.
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It is worth mentioning that the TeX source file for the Allcock’s paper (available
from the mathematics e-prints arxiv, see arXiv:1111.1264) can be run as a Perl
script that prints out all 8595 lattices with their Gram matrices and other related
data in computer-readable format. This brings the results to a form that is suitable
for potential applications.

In her PhD thesis [Mar15b], Mark studied the classification of rank 3 reflec-
tive lattices over quadratic extensions of Q. To this end she adapted the method
of Allcock to the real quadratic setting and used a different algorithm for check-
ing reflectivity of a quadratic form termed the walking algorithm. Mark’s mod-
ifications to Allcock’s method are inspired by the previous work of Bugaenko
[Bug84![Bug90,Bug92]. The key difference between the walking and Vinberg’s al-
gorithms is the search space: whereas Vinberg’s algorithm searches for the new
vectors inside an n-dimensional polygonal cone, walking has a much more restricted
searching area. The main result of [Marl5b] is a complete classification of the rank
3 strongly square-free reflective arithmetic hyperbolic lattices defined over Z[\/ﬁ]
Mark showed that there are 432 such lattices and provided their detailed descrip-
tion, including the structure of the reflection groups. The methods developed in
[Mar15b] can be applied to the classification problem over other fields, which would
be a natural next step of the classification project.

Scharlau—Walhorn. In [SW92], the authors gave two explicit lists of maximal
non-cocompact arithmetic reflection groups in dimensions n = 3 and 4. The groups
are defined by the reflective integral quadratic lattices that are strongly square-free
and isotropic. The lists in [SW92] contain 49 and 42 lattices, respectively. Later
Walhorn found that one example was missing from the list for n = 4, so there are
in total 43 such lattices [Wal93]. In the notation of [SW92|, the 43rd lattice has
the shape

H L (1,7,7), where H is the even unimodular lattice of signature
(1,1) and (a, b, ¢) denotes the lattice of the diagonal quadratic form
ax® + by? + cz?. It has the determinant D = —49 and r = 48
fundamental roots.

The lattices are shown to be reflective by Vinberg’s algorithm, and as a bi-
product of the algorithm application the authors also obtained various geometric
invariants of the corresponding Coxeter polyhedra, such as the number of faces,
the number of cusps, etc. (see also [Sch89,[Wal93|] for more data). The papers do
not provide Coxeter diagrams although they could have been produced from the
algorithm output.

The authors indicate how to prove the completeness of the lists (we remark that
for n = 3 they restrict to the isotropic quadratic forms and hence obtain only non-
cocompact arithmetic reflection groups defined over Q); the details of the proof for
n = 4 are given in the dissertation of the second author [Wal93].

Belolipetsky—Mcleod. The previous enumeration for n = 3 is closely related to
the study of reflective Bianchi groups. For a square-free positive integer m denote
by O,, the ring of integers of the imaginary quadratic field Q(v/—m). The Bianchi
group Bi(m) is defined by Bi(m) = PGL(2, O,,) x (1), where 7 acts on PGL(2, O,,)
as complex conjugation. The groups Bi(m) can be regarded in a natural way as
discrete subgroups of the group of isometries of the hyperbolic three-space H?.
They are non-cocompact arithmetic subgroups of Isom(H?). One can also define
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the maximal discrete extension of Bi(m) in Isom(H?), which is called the extended
Bianchi group and denoted ]§1(m) Reflectiveness of the Bianchi groups and their
extensions was studied by many authors starting from the classical paper of Bianchi
[Bia91]. A trio of papers by Vinberg, Shaiheev, and Shvartsman published all in the
same volume [Oni87] made an important contribution to the topic by approaching
it from the more general perspective of Vinberg’s program [Vin90.Sha90lShv90].
In a related paper [Ruz90], Ruzmanoz considered an extended notion of reflectivity
called quasi-reflectiveness and gave the first examples of quasi-reflective Bianchi
groups. We shall discuss this extension more carefully in Section[@ The research on
these topics was concluded in [BM13], where we proved the following classification
result:

Theorem 6.1. We have

(i) The Bianchi group Bi(m) is reflective if and only if m <19, m # 14, 17.
(i) The extended Bianchi group Bi(m) is reflective if and only if m < 21, m = 30,
33, 39.
(i4i) The Bianchi group Bi(m) is quasi-reflective if and only if m = 14, 17, 23, 31
and 39. R N
(iv) The only quasi-reflective extended Bianchi groups are Bi(23) and Bi(31).

In the proof, the finite list of candidates was produced using the spectral method
and the final step of detecting the reflection groups was again performed by means
of Vinberg’s algorithm. The paper also provides the Coxeter diagrams and other
data for the reflection subgroups. Let us note that the list of reflection groups in
[BM13] is contained in the Scharlau-Walhorn classification for n = 3 but does not
coincide with it because some integral quadratic forms give rise to non-cocompact
arithmetic subgroups commensurable but not contained in Bianchi groups. It is
not hard to identify precisely the reflective groups from Theorem in the table
for n = 3 in [SW92].

In his paper [Sha90], Shaiheev has drawn the schematic pictures of the funda-
mental polyhedra of the reflection groups that he obtained (we note that there
are some small mistakes in [Sha90] and refer to [BM13] for the corrections). Now,
with a complete classification available, it would be good to have a set of computer
generated images of the Coxeter polyhedra of these reflection groups. Some nice ex-
amples of this type of polyhedra in the upper half-space model of H? are presented
in [JJKT15]. Another possible approach is to extend to the non-compact finite
volume polyhedra the computer implementation of Andreev’s theorem developed
by Roeder [Roe(7].

Scharlau—Blaschke, Esselmann, Turkalj. In all of the above classification re-
sults, the crucial step of determining the reflection subgroup is carried out by means
of Vinberg’s algorithm. Another approach to classification of the reflective integral
lattices is based on the following lemma, which is also due to Vinberg:

Lemma 6.2 (cf. [SW92| Lemma 1.3]). Consider an integral lattice L = H L M,
where H is the even unimodular lattice of signature (1,1) and M is positive definite
of rank at least 2. If L is reflective, then the genus G(M) (which depends only on
L) is totally reflective in the sense that every lattice M' € G(M) is reflective.
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We recall that in the positive definite case a lattice M is called reflective if the
reflection subgroup of its automorphisms group has no non-zero fixed vectors in
M ®R.

It is well known that under quite general conditions an integral lattice L of signa-
ture (n, 1) does admit a decomposition of the form H L M. In particular, this holds
when n > 4 and L is strongly square-free. Therefore, Lemma [6.2] can be applied for
the classification of non-cocompact reflection groups and allows us to reduce the
problem to the much better understood positive definite case. Esselmann proved
in [Ess96] that 20 is the largest dimension for which there exist totally reflective
genera. In [SB96], Scharlau and Blaschke used gluing technique to classify positive
definite integral reflective lattices in dimensions < 6. Gluing theory mentioned
here provides a method for constructing general integral lattices that contain as a
sublattice a direct sum of integral lattices of smaller dimension (see [CS99, Chap-
ter 4.3] for the details). In a recent preprint of Turkalj [Tur], the work of Scharlau
and Blaschke is combined with other results to give a complete classification of
the totally reflective primitive genera in dimensions 3 and 4, which correspond to
the Lorentzian lattices for the hyperbolic dimensions n = 4 and 5, respectively.
An explicit classification of the square-free totally positive genera for n = 4 that
appeared before in Walhorn’s dissertation [Wal93] is reproduced by Turkalj as a
subset of the n = 4 case. The list in [Tur] contains 1234 genera, of which 289 are
square-free and 52 strongly square-free, in dimension 3; and 930 genera, of which
230 are square-free and 88 strongly square-free in dimension 4. As is expected, the
total number of reflective lattices decreases for bigger dimensions.

Nikulin, Vinberg. The case of 2-reflective integral lattices is of a special interest
because of its close connection with the theory of K3-surfaces. In particular, the
classification of such lattices allows one to describe all algebraic complex surfaces
of type K3 whose group of automorphisms is finite. Such a classification is now
available thanks to the work of Nikulin and Vinberg.

Recall that an integral lattice L is called 2-reflective if the subgroup of its group
of automorphisms generated by 2-reflections, i.e., the reflections whose primitive
vectors have square 2, is of finite index. Classification results for the 2-reflective
lattices go back to the first papers of Nikulin on the subject; see [Nik79], [Nik81b],
and [Nik84]. These papers cover all the cases except when the rank r(L) is equal
to 4. The classification for the latter case was published by Vinberg only in 2007,
although he obtained it as early as 1981 [Vin07]. The methods that are used in
Nikulin’s papers add algebraic geometry of K 3-surfaces to the set of tools that we
encountered before.

A complete list of 2-reflective lattices can be found in the above cited papers,
here we only reproduce the statistics; see Table 2l The 26 lattices of rank 3 are
obtained in [Nik84] (note that the lattices S, , and Sg 1,1 in the list there are
isomorphic), the 14 rank 4 lattices are in [Vin07], and the higher dimensions are
treated in [Nik81Db]. For r > 20 the 2-reflective integral lattices do not exist.

TABLE 2. 2-reflective lattices.

r(L) |3 4 5 6 7 8 9 10 11 12 13 14 15,...,19
# of lattices [ 26 14 9 10 9 12 10 9 4 4 3 3 1
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7. EXAMPLES

Vinberg, Kaplinskaja. Hyperbolic reflection groups in dimensions n < 19 were
found by Vinberg [Vin72], and Vinberg and Kaplinskaja [VK78]. They considered
reflection subgroups of the groups of integral automorphisms of the quadratic forms

f(xo,xl,...,xn):—:zrg—i-xf—i-n-—b—xi.

For n = 2 the form was investigated by Lagrange, Gauss, and later by Fricke. In
his paper, Fricke showed that the form —x3 + 2% + 23 is reflective and described
its Coxeter triangle fundamental domain [Eri91l pp. 64768] The case n = 3
first appeared, among other things, in the paper by Coxeter and Whitrow [CW50].
For n < 17 the form was investigated in [Vin72|, and the remaining n = 18 and
19 were considered in [VK78]. The Coxeter polyhedron in dimension 19 is the
most complicated one: it has 50 faces and its symmetry group is isomorphic to
the symmetric group S;. More details can be read from the Coxeter diagrams
that are presented in [Vin72] and [VKT8| for each of the cases (see also [CS99,
Chaper 28]). In [Vin75], Vinberg showed that the form f is not reflective for n > 25
and indicated that the same should hold for n > 20 (see also [VKT8]). The proof of
reflectivity in each of the cases is obtained by means of Vinberg’s algorithm, while
non-reflectivity is shown by detecting infinite-order elements in the quotient I'/T,.
of the automorphism group by its reflection subgroup.

In [Vin72], Vinberg also investigated the reflection groups of the quadratic forms

fo(zos 21y ey n) = =202 + i+ + a2,

He found that the form is reflective for n < 14; non-reflectiveness of fo for bigger
n is confirmed in Mcleod’s thesis [Mcl13| Section 3.1.4]. The Coxeter diagrams for
the reflection subgroups in the reflective case are given in Vinberg’s paper.

Bugaenko. By the Godement’s compactness criterion, for n > 4 arithmetic groups
defined by quadratic forms over Q are all non-cocompact. Thus in order to see co-
compact higher-dimensional examples we have to consider quadratic forms defined
over the fields of degree at least 2. This was first done by Bugaenko in 1980s, and
his examples still remain essentially the only ones of this type.

In [Bug84], Bugaenko investigated the reflection groups of the quadratic forms

1++/5
B pattal

f\/g(Io,Il,...7l‘n) = —

He proved that the form is reflective if and only if n < 7. For n = 8 he found another
admissible quadratic form over the field Q(v/5) with discriminant — (1 ++/5) which
is reflective [Bug92]. This is the highest dimension for which we know examples of
cocompact hyperbolic reflection groups. The Coxeter diagrams for the reflection
polyhedra are presented in [Bug84] and [Bug92].

In another article [Bug90], Bugaenko considered the quadratic from

fos(@o,x1,. . @) = —(1+V2)a2 + 22 4 -+ 22,
V2

which are shown to be reflective if and only if n < 6. The Coxeter diagrams for
n < 5 are given in the paper (note that while there are some minor typographical
errors in the node-labeling for n = 4 and 5, the vectors computed by the algorithm

I'We thank John Ratcliffe for suggesting this reference.
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are correct), and the data related to n = 6 provided by Bugaenko can be found in
[AIIOG, Tabels 2.1, 2.2].

Reflectivity of the quadratic forms in each of the cases is checked by a variant of
Vinberg’s algorithm, with the modifications that make it work over the algebraic
integers. To show non-reflectivity, Bugaenko systematically used a criterion of
detecting an infinite-order symmetry of the Coxeter polyhedron associated to a
loxodromic isometry of H"™.

Several other examples of cocompact arithmetic hyperbolic reflection groups sim-
ilar to the ones that were considered by Bugaenko were found in Mcleod’s thesis
[McI13]. The case n = 2 over Q(v/2) was thoroughly studied by Mark (see the pre-
vious section). In [AII13] Section 4], Allcock obtained an example of a cocompact
reflection group in H” from the reflection centralizer in Bugaenko’s example in HS.
This trick can be repeated to get an even more complicated example in H°. It would
be interesting to know whether or not the resulting groups are commensurable with
Bugaenko’s examples.

Allcock, Potyagailo—Vinberg. In [AII06], Allcock proved that there exist in-
finitely many finite-covolume (resp. cocompact) arithmetic hyperbolic reflection
groups acting on hyperbolic space H" for every n < 19 (resp. n < 6). This im-
plies, in particular, that the maximality assumption in the finiteness Theorem 3]
cannot be dropped. The construction is based on examples of Vinberg, Vinberg—
Kaplinskaja, and Bugaenko described above and a simple redoubling trick:

Call a wall of a Coxeter polyhedron P a doubling wall if the angles it makes with
the walls it meets are all even submultiples of 7. By the double of P across one
of its walls we mean the union of P and its image under reflection across the wall.
A polyhedron is called redoublable if it is a Coxeter polyhedron with two doubling
walls that do not meet each other in H"™. It is easy to show that the double
of a Coxeter polyhedron P across a doubling wall is itself a Coxeter polyhedron.
Moreover, if the doubling wall is disjoint from another doubling wall so that P is
redoublable, then the double is also redoublable. This allows one to iterate the
procedure and produce an infinite series of finite volume Coxeter polyhedra.

The simplest redoublable polyhedra are the right-angled polyhedra, they have all
the dihedral angles equal to /2. These polyhedra were studied by Potyagailo and
Vinberg in [PV05], who showed that they may exist only for n < 4 in the compact
case and for n < 14 in the general finite-volume case. Using a similar method,
the second bound was later improved by Dufour to n < 12 [Dufl0]. Examples of
compact right-angled polyhedra in H™ are known for all n < 4 and finite-volume
ones only for n < 8 (see [PV05]). For the other dimensions Allcock showed that
many of the arithmetic examples discussed above are redoublable. It is worth
mentioning that there also exist non-redoublable Coxeter polyhedra, the simplest
example shown to the author by Daniel Allcock is the hyperbolic triangle with all
angles equal Z—it is easy to check that the group generated by reflections in its
sides does not have any finite index reflection subgroups except itself. It would be
interesting to check if the same phenomenon occurs for the Borcherds polyhedron
in H?', which is discussed below.

Allcock mentions that his method resembles Ruzmanov’s construction of non-
arithmetic Coxeter polyhedra from [Ruz89]. The latter was recently further elab-
orated by Vinberg to produce some new examples of non-arithmetic hyperbolic
reflection groups [Vinl4].
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Mcleod, Mark. The spectral method indicates that we should look for examples of
arithmetic reflection subgroups in arithmetic lattices of small covolume. Recall that
for every dimension the covolume of lattices in Isom(H") is uniformly bounded from
below (by the Kazhdan-Margulis theorem [KMG8]), and the precise minimal value
in the arithmetic case is known [Bel04,Bel07|[BE12|. For most of the dimensions the
minimum is attained on the arithmetic subgroups associated to the quadratic form
f considered by Vinberg, but quite surprisingly, for n = 4k — 1 > 7, it corresponds
to
fa(zo, @1, .., xn) = =323 + 27 + -+ 22,
Reflection groups of these quadratic forms were investigated by Mcleod in [MclI11].
He showed that f3 is reflective for n < 13 and non-reflective for bigger n. The proofs
use Vinberg’s algorithm and some results of Bugaenko. Similar to the previous
cases, arguably the most interesting example appears in the highest dimension n =
13—its Coxeter polyhedron has 22 faces and the group of symmetries isomorphic
to Zso X Zo. The Coxeter diagrams are given in Mcleod’s paper.
The next natural step in this direction is to investigate the quadratic forms

fm(zo, @1, .. 2n) = —mad + 23 4+ + 22,

This was done by Mark for the case m = p, a prime number [Marl5a]. She showed
that:

f5 is reflective for 2 <n < 8;
fr and fi17 are reflective for n = 2 and 3;
f11 is reflective for n = 2, 3, and 4.

She also proved that for other p and in higher dimensions f, is non-reflective.
Together with some Nikulin’s results for n = 2 this gives a complete list of the
reflective forms of this type. Related results were also obtained by Mcleod in his
thesis [Mcl13]; in particular, he gave a complete list of the reflective quadratic forms
fm for all natural m in all dimensions (see [Mcl13] Table 3.1, page 37]).

Borcherds. In [Bor87], Borcherds found an example of a non-cocompact arith-
metic reflection group in H?!, which was later shown by Esselmann [Ess96] to have
the largest possible dimension. Borcherds started from Conway’s description of the
group of automorphisms of the even unimodular Lorentzian lattice of rank 26 in
[Con83|: it is a semidirect product of the reflection subgroup (of infinite index)
and the group of affine automorphisms of the famous Leech lattice. We shall come
back to this group in the next section. The finite-volume Coxeter polyhedron P2
in H?! comes out as a face corresponding to the spherical diagram of type Dy of
the infinite-volume 25-dimensional Conway’s polyhedron. A general method of de-
termining the shape of a face of a Coxeter polyhedron motivated by this and other
examples is described in [AII0G].

The polyhedron P?! can also be obtained using Vinberg’s algorithm. Following
Borcherds, its group is the reflection subgroup of Og(g,Z), where g is a quadratic
form of signature (21, 1) associated to the even sublattice L of Z?1! (i.e., L consists
of the integral vectors with the even sum of the coordinates). We can take the
controlling vector ug = v, the first basis vector (assuming (vg,vg) = —1). Its
stabilizer is generated by reflections corresponding to the remaining 21 basis vectors,
and it is a finite Coxeter group of type Do;. The next vector produced by the
algorithm is ess = vg 4+ v1 + v2 + v3, etc. The polyhedron P?! has 210 sides with 42
of them corresponding to the 2-reflections, and the remaining 168 to the 4-refections
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in Og(g,Z). It has a very large symmetry group isomorphic to PSL(3,F,) - Dg of
order 241920 (here Dg denotes the dihedral group of order 12). It would interesting
to try to draw its Coxeter diagram in a maximally symmetric way.

Daniel Allcock showed me a nice way to view the diagram of P2! on the projective
plane F,P? over the field F; with four elements: One can index the faces of P!
by the 21 points, 21 lines, and 168 hyperconics in F4P2. The edges of the diagram
are determined by the incidence relations. The resulting structure is invariant
under the full group of automorphisms of F4P? (including Galois conjugation and
the point-line interchange), altogether producing the full group of symmetries of
P2L. A cute algebraic geometric application of the Borcherds group related to this
viewpoint was found by Dolgachev and Kondo [DKO03]. They constructed a unique
super-singular K3 surface in characteristic 2 satisfying a set of equivalent properties
whose automorphism group is the symmetry group of an infinite treelike polyhedron
obtained by gluing together the copies of P21,

The 21-dimensional polyhedron considered above is a very special and quite
complicated object, but the most complicated currently known finite-volume ex-
ample lives a few dimensions below. It was also discovered by Borcherds, but in a
different paper [BorO(] and using a very different method. The idea of [Bor00] is
that many interesting reflection groups (in particular, most of the known examples
in dimensions at least 5) can be obtained from reflective singularities at cusps of
modular forms of SL(2,Z). This way Borcherds found new examples of arithmetic
reflection groups without a priori writing down any roots and reflections! We shall
review this method in the next section. The most complicated new example in H™
is described in [Bor00, p. 346]: it is a 17-dimensional non-compact finite-volume
polyhedron with 960 sides. Very little is currently known about geometry of this
polyhedron.

Other examples. We conclude the discussion of classification and examples by
mentioning briefly some other results. There is another natural approach to the
classification problem for hyperbolic reflection groups that, rather than looking at
the admissible quadratic forms and lattices in Isom(H"), begins with analyzing the
possible shapes of the Coxeter polyhedra in H™. The first class of polyhedra that
comes out here consists of hyperbolic Coxeter simplices. Their study goes back to
the work of Coxeter and Lannér in the first half of the twentieth century. In 1950,
Lannér enumerated bounded hyperbolic Coxeter simplices and showed that they
exist only in dimensions n < 4 [Lan50]. Later the enumeration was extended to the
unbounded Coxeter simpleces of finite volume that exist in dimensions n < 9. More
recently, Johnson, Kellerhals, Ratcliffe, and Tschantz described the commensurabil-
ity classes of the hyperbolic Coxeter simplex reflection groups in all the dimensions
9 > n > 3 [JKRT02]. They also showed that for n > 4, all of these groups except
for one five-dimensional example are arithmetic. In a series of papers Felikson and
Tumarkin studied other types of the hyperbolic Coxeter polyhedra (without con-
nection to arithmeticity). We refer to [ET14] and the references therein for related
results.

8. REFLECTIVE MODULAR FORMS

Let T" be a lattice in SL(2,R). A modular form of weight k with respect to I is
a complex-valued function f on the hyperbolic plane H = {z € C | Im(z) > 0} in



460 MIKHAIL BELOLIPETSKY

the upper half-plane model which is holomorphic on H, holomorphic at the cusps
of ', and satisfies the equation

bi (Zjig) = (cz+ d)*f(2), for all z € H and <(cl Z) el.
A modular form is called a cusp form if it vanishes at the cusps of I'. For example,
if I' = SL(2,Z), this condition means that f(z) — 0 when z — ico.

The theta (or Howe) correspondence assigns to a cusp form f a cuspidal au-
tomorphic form ¢y on the bounded symmetric domain associated with a group
O(m,n). We are interested in the singular theta correspondence, which allows f to
have poles at the cusps and as the output produces a meromorphic modular form
¢¢. It can be shown then that under certain conditions on f the singularities of
¢y are reflection hyperplanes of an arithmetic reflection group or a quasi-reflection
group. We shall proceed with a more precise description of the correspondence.

Let L be an integral lattice of signature (m,n) and Gr(L) denote the Grassman-
nian of the maximal (m-dimensional) positive definite subspaces of L @ R. Tt is a
symmetric space of dimension mn acted upon by the orthogonal group O(m,n). We
note that in this section the Lorentzian lattices have signature (1,n), which gives
opposite signs of inner products compared to the rest of the paper. We decided not
to change the notation in order to comply with the literature. Given an element
v € Gr(L) and A € L ® R, we denote by A+ and \,- the projections of A onto the
positive definite space represented by v and the negative definite space orthogonal
to v.

Suppose the lattice L is even. The Siegel theta function of a coset L+ of L in
L* is

Ori~(T5v) = Z exp(miTAZ, + miTA]),
AEL+y

where 7 € H and v € Gr(L). Combining these for all elements of L*/L gives a
C[L*/L)-valued function called the Siegel theta function of L,

Or(r;v) = Z erOr1y(T50),

veL/L*

where e, denotes the elements of the standard basis of the group ring C[L*/L].

When dealing with theta functions of lattices, half-integral weight vector-valued
modular forms naturally occur. They can be defined using the metaplectic double
cover SAI:(Q,]R). We refer to [Bor98] for the details of this construction. The Siegel
theta function ©r(7;v) is a vector-valued modular form of weight (m/2,n/2) and
type pr, where pr is the Weil representation of the group ﬁ(Z,Z) on the vector
space C[L*/L].

Let F be another vector-valued modular form which has weight (—m/2, —n/2)
and type pr. Then the product F(7)O(7;v) is a modular form of weight 0. If this
product is of sufficiently rapid decay at ioco (which occurs if F is a cusp form), we
can take the integral

/ F(o

where F = {r e H| |7| > 1, |Re(7)] < 1/2|} is the usual fundamental domain
for SL(2,Z). This gives us a functlon & on Gr(L) invariant under a congruence

dwdy
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subgroup of Aut(L). The map F(r) — Op(v) is essentially the original theta
correspondence.

Suppose now that we allow F(7) to have singularities at the cusps but require
it to be holomorphic on H. The integral above diverges wildly. Harvey and Moore
used ideas from quantum field theory to show that it is still possible to make sense
of the integral by regularization [HM96]. Their construction was further generalized
by Borcherds in [Bor98]. The idea of regularization is to truncate the integration
domain in such a way that most of the wildly non-convergent terms vanish. The
remaining non-convergent terms are of polynomial growth and can be dealt with
easily. The truncated domains are

Fo={reH]| |r| >1, Re(r)] <1/2|, Im(7) < t}.

The regularized value of the integral is defined as the value at r = 0 of the analytic
continuation of

) ———dzxdy
tlggo . F(m)O(r; U)W

This defines a more general map F (1) — ®r(v), which is called the singular theta
correspondence. It is easy to check that the singularities of ®p(v) occur on sub-
Grassmannians of the form vt for v € L*, (v.v) < 0, where there is a non-zero
coefficient corresponding to v in the Fourier expansion of F' at the cusp. If the
singularities occur along the reflection hyperplanes of the underlying lattice L, we
shall call the modular form F(7) a reflective modular form. Not all reflective lattices
correspond to reflective modular forms, but many particularly interesting examples
do have this property.

The construction can be generalized to modular forms of the groups I' different
from SL(2,Z); moreover, it is often possible to use scalar-valued modular forms of
level N instead of the vector-valued modular forms. We refer to [Bor00] for the
details. A useful sufficient condition for a modular form to be reflective is given in
[Bor00, Lemma 11.2]. For example, if N is a square-free integer and I' = T'x(N) =
{(2%) €SL(2,Z) | ¢=0mod N} is a congruence subgroup, a modular form F(r)
for T of weight ™= is reflective for an even lattice L of signature (m,n) and level
N if the poles of F(7) at all cusps of " are simple.

We conclude this section with some examples of reflective modular forms from
[Bor00).

Example 8.1. The first case to consider is N = 1, I' = SL(2,Z) and L is an
even integral lattice of signature (m,n) and level 1. It is well known that the
modular forms of I' form a polynomial ring generated by the Eisenstein series
Ey(7) = 1+ 240q + 2160¢> + --- and Eg(7) = 1 — 504q — 16632¢® — - - -, with
g = 2™, of weights 4 and 6, respectively. The dimensions of the spaces of mod-
ular forms of different weights are given by the coefficients of the Hilbert function
1/(1 — 2*)(1 — 2%). We refer to [Miy89] for these and other related facts from the
classical theory of modular forms. The first weight in which we have a non-trivial
modular form is k = 12, and the critical form is A(7) = n(7)** = ¢[],-o(1 —¢")**.
The forms f = E,(7)¥/A(7) have simple poles at the cusp of T' at ico. It fol-
lows that they are reflective modular forms for even lattices L of level N = 1 and
signature m —n > —24, m —n = 0 mod 8.
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Here are some concrete cases:

For m—n = —24, we can take f = 1/A(7) = ¢~ 1 +24+324q+- - - of weight —12
and a simple pole at the cusp. Two examples arising here are of a special interest:
in the Lorentzian case we have a lattice L = I1; 25, which is a quasi-reflective lattice
first discovered by Conway [Con83|; in signature (2,26) the reflective lattice I 26
plays an important role in the arithmetic mirror symmetry studied by Gritsenko
and Nikulin.

For m —n = —16, we take f = Ey(7)/A(T) = ¢~ + 264 + 8244 + - - - of weight
—8 and find the reflective Lorentzian lattice I1; 7. Similarly, for m —n = —8 with
f=Ey7)?/A(1) = ¢~ +504+73764q + - - - of weight —4, we obtain the reflective
lattice I1; 9. The arithmetic reflection groups associated with these lattices were
first described by Vinberg in [Vin75].

Example 8.2. Suppose the level N = 2. The group I' = I'o(N) has two cusps
which can be taken as ico and 0. The ring of modular forms for I is a polynomial
ring on generators —FEo(7) + 2E2(27) = 1+ 24q + 24¢® + - - - of weight 2 and E,(7)
of weight 4. The Hilbert function is 1/(1 — 22)(1 — z*).

As N is square-free, all poles of order at most 1 are reflective by Lemma 11.2
of [Bor0(Q]. There are also other possible reflective singularities but we will not
consider them here. By looking at the form Agy (7)7! = n(7)8n(27) "% of weight
—8 with simple poles at the cusps, we see that all level 2 even lattices of signature
at least —16 have reflective modular forms. The Lorentzian lattices 117 17(2%%)
and II1717(2+10) are quasi-reflective as was the case for the lattice II; 25 in the
previous example (we refer to [CS99] for the notation used here). The next example
L = IT 17(2%5) gives us the 17-dimensional arithmetic reflection group discovered
by Borcherds in [Bor00]. This example was mentioned at the end of the previous
section.

9. MORE ABOUT THE STRUCTURE OF THE REFLECTIVE QUOTIENT

Let T'y < Isom(H™) be an arithmetic subgroup, let I' < T'y be its maximal
subgroup generated by reflections in hyperplanes, and let © = I'g /T be the reflective
quotient. We have the following possibilities for the group ©:

(a) finite group;
(b) affine crystallographic group;
(¢) non-amenable group.

In case (a) the group I' is an arithmetic reflection group, while in (b) and (c) it
has infinite covolume and hence is not a lattice. Case (b) is known as quasi-reflective
or parabolic-reflective. The second term refers to the fact that in this case the group
O is virtually isomorphic to an affine group generated by parabolic transformations
of H". Recall that a discrete group is called amenable if it has a finitely additive
left-invariant probability measure. Finite groups and affine crystallographic groups
are amenable; hence the first two cases can be joined together into the amenable
type. This type is relatively rare, and the known results imply that generically the
reflective quotients are non-amenable.

Note that by the Tits alternative these are the only possible cases. Indeed, the
group O is a finitely generated linear group, hence by [Tit72] it is either virtually
solvable or contains a non-abelian free subgroup. A virtually solvable group acting
discretely on hyperbolic space (recall that by Lemma[23] the group © is isomorphic
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to the group of symmetries of the Coxeter polyhedron of I') is virtually free abelian,
which brings us to a one of the first two cases. On the other hand, it is well known
that the groups that contain non-abelian free subgroups are non-amenable. It is
worth pointing out that case (b) can happen only if T’y is not cocompact, since in
cocompact case we have a simple alternative that either the reflective quotient ©
is finite or it is non-amenable.

Most of this survey is dedicated to the reflective groups (a). The first and
arguably the most interesting example of a quasi-reflective group was discovered
by Conway in [Con83|. He showed that for the group of automorphisms of the 26-
dimensional even unimodular Lorentzian lattice its reflective quotient is isomorphic
to the group of affine automorphisms of the Leech lattice. Therefore, we have
an example of a quasi-reflective arithmetic group in hyperbolic dimension n =
25. The proof in Conway’s paper is very short but it relies on many results from
the previous study of the Leech lattice by Conway and others. It is conjectured
that n = 25 is the largest dimension where there exists a quasi-reflective group.
This conjecture can be possibly resolved by Esselmann’s method [Ess96], which he
applied to find the maximal dimension of isotropic reflective lattices, but such a
proof is not available so far. In his doctoral dissertation [Bar03|, Barnard showed
that the conjecture can be deduced from an open conjecture of Burger, Li and
Sarnak about the automorphic spectra of orthogonal groups [BS91), BLSQQJE It
is interesting to note that another conjecture considered in [BS91] has already
appeared in this survey while we were discussing the spectral method, and Barnard’s
approach is based on reflective modular forms and it highlights yet another relation
between arithmetic reflection groups and the spectrum of the Laplacian.

In [Nik96], Nikulin proved using his method that in any dimension n there ex-
ists only finitely many maximal arithmetic hyperbolic quasi-reflective groups (see
Theorem 1.1.3 ibid.). He mentions that it is not difficult to show that there are not
any such groups for n > 43, and he also conjectures that the sharp bound should
be given by the Conway’s example. It would be interesting to find a spectral proof
for the finiteness theorem, which may potentially give better quantitative bounds
for these groups in a fixed dimension. The only result of this kind available so far
can be found in [BM13, Section 5], where we used Agol’s trick (cf. Section [l and
the classification of the plane crystallographic groups to obtain a good quantita-
tive bound for the maximal quasi-reflective groups in dimension n = 3. Note that
similar to the reflective case, the maximality assumption is essential: an example
of an infinite sequence of arithmetic quasi-reflective groups in dimension 2 is given
in [Nik96, Example 1.3.4].

Following Conway, quasi-reflective groups related to the Leech lattice were stud-
ied by Borcherds who, in particular, found several other examples in smaller di-
mensions (see [Bor90, Theorem 3.3]). Later examples of quasi-reflective groups
were constructed using quasi-reflective modular forms [Bor00,Bar03]. In [Ruz90l,
Ruzmanov considered quasi-reflective groups in dimension 3 from the geometric
viewpoint. He introduced the notion of a quasi-bounded Coxeter polyhedron and
found examples of quasi-reflective Bianchi groups. This research was concluded in
[BM13], where all the quasi-reflective Bianchi groups and extended Bianchi groups
are classified (cf. Theorem [61(iii, iv)).

2We thank Richard Borcherds for mentioning this important result.
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By the classification of the possible types of the reflective quotients, the upper
bounds for the dimension of the reflective and quasi-reflective groups imply the
lower bound for the dimension in which the quotient is necessarily non-amenable. A
different approach to the problem was undertaken by Meiri in [Meil4], who directly
constructed non-abelian free subgroups of the reflective quotients in sufficiently
large dimension for the forms defined over Q. A part of Meiri’s argument is closely
related to the proof of non-reflectivity of the high-dimensional quadratic forms in
[Vin84a). Unfortunately, the quantitative bounds on the dimension obtained in
[Meild] are far from sharp.

It would be interesting to know what we can say about the reflective quotient
group when it is non-amenable: Is it (relatively) hyperbolic? CAT(0)? Does it have
a uniformly bounded spectral gap?, etc.

10. OPEN PROBLEMS

Generalizations. In the very beginning of the paper we discussed Petrunin’s ques-
tion [MOv12], and we recall it again here:

Problem 10.1. Do there exist any hyperbolic lattices in the spaces of large di-
mension which are generated by elements of finite order?

As before, the question can be restricted to the arithmetic hyperbolic lattices.
The answer is unknown in both cases, but we can expect it to be negative.

A related problem appears in a recent paper by Fuchs, Meiri, and Sarnak (cf.
[EMS14] page 1621]):

Problem 10.2. Are there any hyperbolic lattices generated by reflections and
Cartan involutions (also called “reflections in points”) in the hyperbolic spaces of
sufficiently large dimension?

A negative answer to this question would allow us to settle Conjecture 2 in
[FMS14]. An example of a lattice generated by Cartan involutions in H® can be
found in [AIl99, Theorem 5.3]. This problem is, of course, a very special case of
Problem I0.11

The groups of isometries of the hyperbolic n-space has real rank 1. It is worth
mentioning that for the irreducible lattices in higher real rank semisimple Lie groups
H the situation is very different. We can consider a lattice Iy in such a group H
which has a non-central element g of finite order. Let I' be the normal subgroup of
I'g generated by all the conjugates of g. By the Margulis normal subgroup theorem
(see [Mar91l Chapter IV]), the group I is then itself a lattice in H. We can leave
it as an exercise for the reader to check that it is generated by a finite set of g-
conjugates. Hence we can easily produce various examples of lattices in such groups
H which are generated by elements of finite order.

Basic examples of this kind of lattices in higher rank groups come from the
orthogonal groups O(n,m), n,m > 2. Similar to the case of the hyperbolic n-space
(corresponding to m = 1), we can consider here lattices generated by reflections.
For instance, for the quadratic form

2 2 2 2
fn,m(l'l;an'"aanrm) =Ty — T Ty +xm+l 4 +xm+n?

the group generated by reflections will be an arithmetic lattice in O(n, m) according
to the arithmeticity and normal subgroup theorems of Margulis [Mar91]. These
lattices, however, will never be Coxeter groups because as lattices in a higher rank
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Lie group, they have Kazhdan’s property (T) [Kaz67], while on the other hand
the infinite Coxeter groups are known not to have Kazhdan’s property [BJS8S]. It
would be good to know more about the algebraic structure of these groups:

Problem 10.3. Obtain examples of presentations for lattices in O(n, m), n,m > 2,
generated by reflections or, more generally, for irreducible lattices in higher rank
semisimple Lie groups generated by elements of finite order.

Considering the infiniteness of the family of higher rank reflection groups, the
natural question is which of them are really interesting. In [Bor00], Borcherds sug-
gested that interesting reflective lattices should be associated to reflective modular
forms and gave examples of such lattices (cf. Section®]). In a recent preprint [Mal5],
Ma studied the basic class of 2-reflective modular forms proving that there are only
finitely many 2-reflective lattices of signature (2,n) with n > 7 and there are no
such lattices when n > 30. Here a lattice L is called 2-refiective if the subgroup of
its group of automorphisms generated by —2-reflections is of finite index and L is
associated with a reflective modular form. Clearly, the second condition is crucial
for the finiteness result. The largest n for which we know an example of this kind is
n = 26 [Bor00, p. 344] with the corresponding lattice L = Il o6 (cf. Example B]).

Towards classification. There are two main problems that appear on the way
towards classification of arithmetic hyperbolic reflection groups:

Problem 10.4. Find good bounds for the arithmetic invariants of the reflective
quadratic forms in arbitrary dimension.

Problem 10.5. Check reflectivity of a given quadratic form.

The quantitative bounds that can be extracted from the proofs of the finiteness
theorems in [ABSWOS] or [Nik07] are huge and have no practical value. In Section[dl
we explained how Problem [[0.4] can be solved under a certain additional arithmetic
assumption (requiring that the maximal reflection groups are congruence) or for
dimensions 7 < 3. One can try to push the technique from the low dimensions
to higher n, or try to investigate what kind of limitations are in fact implied by
the congruence assumption. We can also produce the conditional list and use it
as a heuristic for generating all the compatible examples. It is plausible that this
list would actually cover all higher-dimensional examples. For sufficiently large n,
say n > 10, the conditional list of the candidates would be quite small. Another
interesting direction is to try to find all lattices that are associated to reflective
modular forms. Is there any connection between these lattices and the congruence
reflection groups?

The main tool for checking reflectivity of a quadratic form is Vinberg’s algorithm
discussed above. There are several computer implementations of this algorithm but
none of them is publicly available or standard. The case when the ring of integers
0 of the defining field is not a PID requires a special attention as in this case the
transformations from I' are not necessarily given by the matrices with og-entries.
We do not know any examples of arithmetic reflection groups that would highlight
this issue, but they may exist, in particular, in the spaces of small dimension.

About examples. Geometry of the high-dimensional hyperbolic Coxeter polyhe-
dra remains mysterious in many ways. This refers also to the known examples of
such polyhedra. Here we can state the following problem:
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Problem 10.6. Investigate geometrical properties and the combinatorial structure
of high-dimensional hyperbolic Coxeter polyhedra.

In this statement the high dimension may refer to n > 6 in the compact case
and to n > 10 for the finite-volume non-compact hyperbolic polyhedra. There are
only a handful of known examples in these dimensions (cf. Section [f). Which of
them are redoublable or mixable in the sense of [All06] and [Vinl4], respectively?
What are the covering/comensurability relations between the higher-dimensional
examples? How many faces, vertices, and cusps do these polyhedra have? These
numbers are known for most of the examples, but are there any interesting relations
between them beyond the ones that we already know?

A hyperbolic version of the Cartan—Killing classification. Daniel Allcock
raised this problem. A fundamentally important feature of the finite and affine Cox-
eter groups is their connection to Lie theory. This connection extends to hyperbolic
Coxeter groups and Kac-Moody theory. In a series of papers Gritsenko and Nikulin
isolated the key properties of Borcherds’ fake monster Lie algebra and stated the
corresponding classification problem for the class of the generalized Kac-Moody
algebras which they call the Lorentzian Kac—Moody algebras (see [GN02]).

The classification problem can be stated in terms of root systems. Let us call a
set II of spacelike (positive-norm) vectors in E™! a simple root system if (v,v') is
non-positive and lies in %(v, v)Z, for all v,v" € II. The integral span L of the simple
roots is called the root lattice. The Weyl group W means the group generated by
the reflections in the roots.

A simple root system II spanning E™! satisfies the Gritsenko—Nikulin conditions
if:

(i) there exists a Weyl vector p € E™! such that (v,p) = —(v,v)/2 for all
v eIl
(ii) the normalizer of W has a finite index in the orthogonal group O(L);
(iii) the group W has the arithmetic type (cf. [Nik96, Section 1.4] or [AIlL5] p.
326-327] for several equivalent definitions of this notion).

In the terminology of [Nik96] such root systems are said to have restricted arithmetic
type. Under these conditions, it turns out that the Weyl vector p is unique and must
be timelike or lightlike (i.e., (p,p) < 0 or = 0, respectively). In the timelike case,
the (projectivized) Weyl chamber is a finite-volume polyhedron in hyperbolic space,
while in the lightlike case, the Weyl chamber has infinite volume and infinitely many
sides.

Problem 10.7. Classify the simple root systems of rank at least 3 that satisfy the
Gritsenko—Nikulin conditions and corresponding Lorentzian Kac—-Moody algebras.

This problem is closely related to the classification problem for the Lorentzian
reflective and quasi-reflective lattices. The main difference is the existence of the
Weyl vector p which is related to the automorphic features of the Lorentzian al-
gebras (recall, in particular, the Borcherds reflective modular form mentioned in
Section [7]). The known results about hyperbolic reflection groups allowed Nikulin
to prove finiteness theorems for the Lorentzian Kac-Moody algebras (see [Nik96]).
Nikulin and Gritsenko constructed families of examples of such algebras and gave
a partial classification of them in rank 3 (see [GN02] and the references therein). A
complete classification of the rank 3 root systems with a timelike Weyl vector that
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satisfy the Gritsenko—Nikulin conditions was obtained recently by Allcock [AIIL5].
The special features of the Gritsenko—Nikulin root systems make the classification
problem more accessible, while their relation to Lie theory makes it particularly
interesting.

Complex reflection groups. A complex reflection is an automorphism of a finite-
dimensional complex vector space that fixes a complex hyperplane. In contrast
with the real case, complex reflections do not necessarily have order 2. Finite lin-
ear groups generated by complex reflections were classified by Shephard and Todd
[ST54]. They are distinguished from all other finite linear groups by the property
that their algebras of invariants are free. Realizing Hermitian symmetric spaces as
bounded symmetric domains in a complex vector space allows us to define com-
plex reflections in such spaces. It is well known that the only bounded symmetric
domains which admit totally geodesic complex hypersurfaces are the complex hy-
perbolic spaces CH" (corresponding to the groups U(n, 1)) and the domains of
type IV (of the groups O(n,2)). It follows that only these spaces admit complex
reflections.

The study of lattices in the complex hyperbolic space CH™ goes back to the
nineteenth century. In the 1883 paper [Pic83], Picard investigated the lattices
SU(2,1;04), where Oy is the ring of integers of the imaginary quadratic field
Q(v/—d), acting on CH?2. These groups are called the Picard modular groups. In
a recent article [PW13], Paupert and Will showed that for d = 1, 2, 3, 7, 11 the
Picard modular groups are up to a finite index generated by real reflections (i.e.,
antiholomorphic involutions that have a real totally geodesic plane fixed). It is
not known which of the Picard groups are complex reflective. In an influential pa-
per [Mos80], Mostow constructed Dirichlet fundamental domains for certain groups
generated by complex reflections in CH?, both arithmetic and non-arithmetic. The
only other complex hyperbolic space in which a non-arithmetic lattice is known
is CH® [DMS86]. Higher-dimensional examples of arithmetic complex hyperbolic
reflection groups were constructed by Allcock in [AIIOODL[AIIOOa]. His method is
close to the constructions in the real hyperbolic spaces considered in this survey. In
[AII00D], Allcock obtained examples of lattices generated by complex reflections in
CH®, CH", and CH'3 by considering the automorphism groups of Lorentzian lat-
tices over the Eisenstein integers Os. In [All00a], he used a related construction to
give several other examples of lattices, including examples in CH* and CH” which
do not appear on the list of Deligne and Mostow [DM86]. The Allcock group in
a record high dimension 13 is again related to the Leech lattice. Some interesting
examples of complex hyperbolic reflection groups are considered in [Der06], [StoI4],
and [DPP15]. A survey of the known constructions of complex hyperbolic lattices
by Parker can be found in [Par09].

Currently available results about complex hyperbolic reflection groups and lat-
tices essentially fall into several types of the known constructions. There are no
general finiteness theorems or classification attempts. Most of the questions that
were discussed in this survey about real hyperbolic reflection groups can also be
asked in the complex case, but here the results will turn into conjectures or open
problems. It is not even clear, for instance, if we should expect that the dimension
of arithmetic reflection complex hyperbolic lattices is bounded from above.

The case of domains D, of type IV is different. Here the group O(n,2) has real
rank 2, so we can obtain many examples of lattices generated by complex reflections
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for any n using the construction for higher rank groups described in the beginning
of this section. The natural question that comes out again is how to narrow this
class. Vinberg suggested using as a criterion freeness of the algebra of automor-
phic forms on D,, invariant under I'; thus generalizing the free polynomial invariant
algebras of the finite complex reflection groups. There are some particularly in-
teresting examples of lattices generated by complex reflections arising in this way.
Igusa’s paper [[gu62] provides such an example for n = 3. His results were largely
extended by Vinberg in [Vinl0], whose construction provides this type of examples
of arithmetic complex reflection groups in the domains of type IV for n = 4, 5, 6,
7.

In view of Borcherds” work [Bor00] discussed in Section 8 one can ask if arith-
metic complex reflection groups can be related to modular forms in a similar way
as is done for the real reflective lattices. There are some known examples of this
kind (see, e.g., [AIIOOb]) but the general picture remains mysterious.
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