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1. INTRODUCTION 

In this paper, we examine the relationship between the topology of a manifold 
M , specifically the finite dimensional representation theory of the fundamental 
group 7t, (M), and the Lie groups that can act on M. More precisely, let G 
be a connected semisimple Lie group of higher real rank, and suppose G acts 
continuously on a (topological) manifold M, preserving a finite measure. The 
main theme of this paper is that the representation theory of 7t, (M) in low 
dimensions is to a large extent controlled by that of G (the latter of course 
being well understood). In particular, under natural hypotheses (e.g., that the 
action of G on M is engaging, i.e., there is no loss of ergodicity in passing to 
finite covers; see Definition 3.1 below), we prove that if G has no nontrivial 
representations below dimension d, then every representation of 1t, (M) below 
dimension d is finite; that is, it factors through a finite quotient group. Under 
different but related hypotheses (namely that the action is topologically engag-
ing, that is, roughly speaking, that the action is proper on the universal cover; 
see Definition 3.2), we show that 7t, (M) admits no faithful representation over 
Q below dimension d. These results of course impose severe restrictions on 
the manifolds on which G can act. The hypotheses of engaging or topologi-
cal engaging are quite mild, and one or the other is satisfied in every known 
nontrivial example. We also remark that Gromov has shown [5] that every real 
analytic connection preserving action of G is tOpologically engaging. 

Rather than considering representations, one can consider, more generally, 
homomorphisms into a general algebraic group, and the above results become 
special cases of the following theorems. (These results, as well as most of the 
others in this paper, hold for spaces much more general than the class of topo-
logical manifolds. See the beginning of §2.) 

Theorem 5.1. Let G be a connected semisimple Lie group, each oJwhose simple 
Jactors has real rank at least 2. Suppose G acts continuously on a manifold 
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M, preserving afmite measure, and that the action is engaging. Assume 7r) (M) 
is finitely generated. Let H be an algebraic group (over C), and suppose every 
Lie algebra homomorphism gc --+ ~ is trivial. Then every homomorphism h: 
7r)(M) --+ H is finite. 

Theorem 5.2. Let G be a connected semisimple Lie group, each of whose simple 
factors has real rank at least 2. Suppose G acts continuously on a manifold 
M, preserving a finite measure, and that the action is topologically engaging. 
Assume 7r) (M) is finitely generated and infinite. Let H be an algebraic group 
(over Q), and suppose every Lie algebra homomorphism gc --+ ~ is trivial. Then 
there is no faithful homomorphism h: 7r) (M) --+ HQ . 

Via similar techniques, we can prove a variety of related results under varying 
hypotheses. For example, if H is defined over R, it is natural to suppose only 
that there is no nontrivial Lie algebra homomorphism 9 --+ ~R' It is also natural 
to consider the case of homomorphisms of 7r) (M) into p-adic groups. We 
obtain satisfactory results in these cases as well, and these are spelled out in §5. 
We also consider the case of actions of a lattice subgroup reG. The situation 
here is more complex, and even the definitions of engaging and topologically 
engaging actions require more care (cf. §8). For many such r, we have the 
following cohomological condition (C): H2(A, R) = 0 for every finite index 
subgroup A cr. Then we show 

Theorem 8.5. Let G be as above, and let reG be a lattice subgroup, satisfying 
cohomological condition (C). Let d be the minimal dimension of a nontrivial 
real representation of the Lie algebra g. Then there is no engaging or topolog-
ically engaging action of r on any compact manifold with an infinite abelian 
fundamental group of rank strictly less than d. 

The action of G on G /r is both engaging and topologically engaging. In this 
case, Theorems 5.1 and 5.2 follow from Margulis' superrigidity theorem. We 
can thus view Theorems 5.1 and 5.2 as showing that certain features of lattices 
in higher real rank semisimple groups are still present in the fundamental group 
of any manifold on which G acts in an engaging, volume preserving way. 

In [14], we examined the holonomy group of a Lie foliation with symmetric 
spaces as leaves. We can describe this roughly in our present context by saying 
that under suitable geometric hypotheses on a G-action (i.e., the existence of a 
transverse Lie structure) that the fundamental group of the ambient manifold 
must have an arithmetic quotient group of a very precise type. Thus, in [14] 
we assert the existence of a certain type of representation of 7r) (M), while, of 
course, in the present paper, we show nonexistence of certain types of repre-
sentations. Gromov has also considered these issues in [5], obtaining, under 
geometric hypotheses, "lower bounds" on 7r) (M). Gromov's paper makes very 
clear the importance of the role of properness on the universal cover of M, 
and motivated our definition of topological engaging. 
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2. PRELIMINARIES OF ERGODIC THEORY 

Our results will hold for actions on any space that has a good theory of cov-
ering spaces and good measure theory. Hence, throughout we shall assume M 
is a connected, locally path-connected, semilocally I-connected, locally compact, 
separable, metrizable space, with a finitely generated fundamental group. For 
brevity, we shall simply call such a space "standard." 

We can view the universal covering space of M as a principal 1l( (M)-bundle. 
Any action of a connected group G on M lifts to Xi in such a way as to com-
mute with 1l( (M). In other words, G acts by principal bundle automorphisms 
of Xi. For any homomorphism of 1l( (~) into a group H, we obtain an 
associated principal H -bundle on which G will also act by principal bundle 
automorphisms. If G is semisimple and H is algebraic, there is a great deal 
known about the measure theoretic structure of such actions [12, 13]. Our ap-
proach to proving Theorems 5.1 and 5.2 and related results will be to exploit this 
information. An interesting feature of the argument is the necessity to consider 
such bundles where the structure group is p-adic, even if one is only interested 
in real or complex representations. The reader familiar with the general the-
ory of representations of finitely generated groups will not find this surprising. 
Since we· will be dealing with the measure theoretic aspects of such bundles, it 
is convenient to view them as products, which can always be done measurably. 
The action of G "is then described via a cocycle. We now review some of the 
basic notions concerning measurable cocycles for group actions. See [13] for a 
leisurely account with an eye toward geometric applications. 

Suppose G and L are locally compact groups and that M is a measure 
space on which G acts measurably on the right, leaving the measure quasi-
invariant. A Borel function a: M x G -+ L is called a cocycle if for all g, 
h E G, a(m, gh) = a(m, g)a(mg. h) for (almost) all m EM. Two such 
cocycles a, p are called equivalent or cohomologous (and we write a ~ P) 
if there is a measurable rp: M -+ L such that for each g E G we have 
rp(m)a(m. g)rp(mg)-( = p(m, g) a.e. If P -+ M is a principal L-bundle 
on which G acts by principal bundle automorphisms, then under any mea-
surable trivialization P :::= M xL, the action of G on P will be given by 
(m . l)g = (mg. a(m . g)-( l) for some cocycle a. Choosing a different measur-
able trivialization is equivalent to choosing an equivalent cocycle. If H c L is 
a closed subgroup, it is of interest to know when a is cohomologous to a cocycle 
taking all values in H. This is equivalent to the assertion that there is a mea-
surable G-invariant reduction of P to the group H . If Y is a right L-space, 
a measurable rp: M -+ Y is called a-invariant if rp(m)a(m . g) = rp(mg). We 
then have the following simple proposition. 
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Proposition 2.1. The following are equivalent. 
(i) a is equivalent to a cocyc/e taking all values in H. 

(ii) There is an a-invariant rp: M -+ H\L . 

The basic information we shall use regarding cocycles for semisimple group 
actions is given in the following theorem. It is a part of a general superrigidity 
theorem for cocycles, proved in [10, 11, 12]. 

Theorem 2.2. Suppose G is a connected semisimple Lie group of higher real 
rank, i.e., the R-rank of every simple factor of G is at least 2. Suppose the 
action of G on M preserves a finite measure, and let a: M x G -+ H be a 
cocye/e. Then a is equivalent to a cocyc/e into a compact subgroup of H under 
any of the following assumptions. 

(i) H is a real or complex algebraic group and there is no Lie algebra 
homomorphism 9 -+ ~ . 

(ii) H is the set of p-adic points of a p-adic algebraic group. 
(iii) H is amenable, and the G-action on M is ergodic. 

A useful device in the study of cocycles is the notion of the Mackey range of 
a cocycle [9, 12], which we now recall. Given a cocycle a: M x G -+ H, we 
let P = M x H and consider the action of G on P defined by the cocycle, as 
given above. We let X be the space of ergodic components of the G-action. 
The action of H on P by right translation on the second factor commutes 
with G, and hence we have an action of H on X, which will preserve the 
natural measure class. This H -action on X is called the Mackey range of a, 
and it will be ergodic if the G-action on M is ergodic. A useful feature of 
this construction is that a is equivalent to a cocycle taking values in a closed 
subgroup HI c H if and only if there is a measurable H-map X -+ HjHI . 
(See [9] for a proof.) Here is a related fact we shall need. 

Lemma 2.3. Suppose a: M x G -+ H is a cocyc/e and that n: H -+ L is 
a homomorphism. Suppose Y is a right L-space and that there is a n 0 a-
invariant function rp: M -+ Y. Let X be the Mackey range of a. Then there 
is a measurable H -map X -+ Y . 
Proof. We have the equation rp(m)n(a(m, g)) = rp(mg) for all g, m. Define 
0: M x H -+ Y by O(m, h) = rp(m)n(h). This is clearly an H-map, and so it 
suffices to see it factors to X; i.e., it suffices to see 0 is G-invariant. However, 

O((m, h)g) = O(mg, a(m, g)-I h) 

= rp(mg)n(a(m, g)-I)n(h) = rp(m)n(h) = O(m, h) . 

Suppose now that N is a locally compact separable space on which G acts 
continuously. We recall that the action is called proper iffor any pair of compact 
subsets A, BeN, we have {g E GIAg n B nonempty} has compact closure. 
An action on a standard Borel space is called tame (or "smooth in the sense of 
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ergodic theory") if the quotient space has a countably generated Borel structure 
[12, 13]. For N locally compact and separable, this is equivalent to all orbits 
being locally closed, or equivalently [12] the quotient space is To. Any proper 
action is tame. If Il is any quasi-invariant measure on N, we call the action 
Il-tame if there is a G-invariant Borel conull set on which the action is tame, 
Il-proper if it is Il-tame and almost every stabilizer is compact. Thus, a proper 
action satisfies all these conditions for any Il. For a Il-tame action, the ergodic 
components are precisely the orbits [12]. For ease of reference, we record a 
special case. 

Lemma 2.4. If 0:: M x G -+ H is a cocycle, and the G-action on P = M x H 
is tame, then the Mackey range of 0: is the action of H on PjG. 

Proposition 2.5. (a) Suppose (N, v) -+ M is a measurable H-map where the 
action of H on M is proper. Then the action on N is v-proper. 

(b) Suppose G x H acts on N, and that G and H each act tamely. Let 
Il be a G x H quasi-invariant measure on N, and III '1l2 the projections onto 
NjG, Nj H , respectively. Then the G-action on Nj H is 1l2-tame if and only if 
the H -action on Nj G is III -tame. 
Proof. (a) follows easily from [12, Chapter 2] and (b) from the definitions. 

3. ENGAGEMENT 

Suppose G is a connected Lie group acting on a standard space (e.g., a 
topological manifold with finitely generated fundamental group) M. The action 
lifts to a unique action of a on Xi commuting with 1C l (M). We also have an 
action of a (in fact, of some finite covering of G) on any finite cover M' of 
M. 

Definition 3.1. Suppose Il is a quasi-invariant measure for the G-action on 
M. The action of G on M is called Il-engaging (or simply engaging if Il 
is understood) if there is no loss of ergodicity in passing to finite covers of 
M; more precisely, if for every finite cover M' , every measurable a-invariant 
function on M' is lifted from a function on M. 

In particular, if G acts ergodically on M, the condition that the action be 
engaging is simply that a is ergodic on every finite cover of M. 

Definition 3.2. The action of G on M is called topologically engaging if there 
is some g E a that acts tamely on Xi (i.e., has locally closed orbits, e.g., acts 
properly) and that projects to an element g E G that does not lie in a compact 
subgroup. 

Example 3.3. Suppose that G is a semisimple Lie group without compact fac-
tors and that we have an embedding G -+ H where H is another semisimple 
Lie group without compact factors. Suppose r cHis a cocompact discrete 
irreducible subgroup. Then G acts on Hjr and the action is both engaging 
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and topologically engaging. Variants of this construction provide most of the 
known ergodic volume preserving actions of G on a compact manifold. 
Example 3.4. Gromov [5] proves that if G is a semisimple Lie group with no 
compact factors and finite fundamental group and that if G acts real analytically 
on M preserving a pseudo-Riemannian metric, then a acts properly on M. 
In particular, the action is topologically engaging. 

Now let r = 1t I (M). Since G acts by automorphisms of the principal r-
bundle M -+ M , we obtain a cocycle 0:: M x a -+ r. We now consider the 
relationship of the conditions in Definitions 3.1 and 3.2 with properties of the 
Mackey range of 0:. 

Proposition 3.5. Suppose the action of G on M is engaging. Then 0: is not 
equivalent to a cocycle taking values in a subgroup A c r with the following 
properties: 

(a) riA is infinite; 
(b) there is a subgroup Ao C A of finite index that is normal in r and with 

r I Ao residually finite. 
Equivalently (by (2.1) the Mackey range X does not admit a measurable r-map 
X -+ riA, where A satisfies (a) and (b). 
Proof. Since r I Ao is infinite and residually finite, we can choose a finite quo-
tient riAl' Al ::> Ao ' whose cardinality is greater than that of AI Ao. Let 
p: r -+ riA I be the quotient map. Then the Galois covering of M corre-
sponding to Al is measurably isomorphic to M x riAl with the a-action given 
by the cocycle po 0:. If 0: takes values in A, then M x (AAI I AI) c M x riAl 
will be a a-invariant measurable set. Since the cardinality of AAI I AI is less 
than that of riAl' the characteristic function of this set does not lift from M . 

Proposition 3.6. Suppose the action of G on M is topologically engaging (and 
faithful) where G is semisimple without compact factors. Suppose there is a 
finite G-invariant ergodic measure f.1, on M. Then the r action on the Mackey 
range of 0: is not of the form r IF where F is a finite subgroup. 
Proof. Let H c a be the group generated by g. Then H is closed and projects 
to a subgroup of noncom pact closure in G. By Moore's theorem [12], H cannot 
have almost all orbits be periodic, and hence the action of H on M is not f.1,-
tame. (In fact, if G is simple, H will act properly ergodi~lly.) Let i be 
the Mackey range of Ii = o:lM x H. The action of H on M is tame by the 
definition of topological engaging, so i = M I H. The action of r on M is 
clearly tame with quotient M, and hence by Proposition 2.5(b) the action of 
r on i cannot be v-tame, where v is the natural measure on i. However, 
by the definition of the Mackey range, we have a measurable r-map i -+ X. 
If X = rlF, this would then contradict Proposition 2.5(a). 

The first assertion of the following proposition is obvious, and the second 
follows by routine measure theoretic arguments. 



FUNDAMENTAL GROUPS OF MANIFOLDS 207 

Proposition 3.7. (a) Suppose M' -+ M is afinite cover. If the action of G on M 
is engaging, so is the action on M'. The action on M is topologically engaging 
if and only if the action on M' is as well. 

(b) Suppose the action on M is J.l-engaging. Let J.l = JfB J.l t be the decompo-
sition of J.l into ergodic measures on M. Then for almost all t, the G-action is 
J.l t engaging. 

4. REDUCTION TO HOMOMORPHISMS OVER Q 

We give a criterion for every homomorphism from a finitely generated group 
into an algebraic group to be finite. Although one can prove sharper statements, 
we content ourselves here with one that is easily established and which will 
suffice for our present purposes. 

Theorem 4.1. Let G be a connected algebraic group (over C) and r a finitely 
generated group. Suppose that for every algebraic group L, which is a subquotient 
of G, every Q-structure on L and every finite index subgroup A c r, we have 
that every homomorphism A -+ LQ is finite. Then every homomorphism r -+ G 
is finite. 
Proof. Fix n:: r -+ G, and let H be the connected component of the algebraic 
hull of the image. By passing to a subgroup of finite index in r, we may assume 
H is connected and that the image of n: is Zariski dense in H. Let R be the 
radical of H, and L = HI R. We first claim that it suffices to see that the 
image of r in L is finite. For if this is so, then on a subgroup A of finite 
index, we have n:(A) CR. Since R is solvable and n:(A) is finitely generated, 
if n:(A) is not finite it will have a subgroup of a finite index that maps onto 
Z . This would obviously contradict the hypotheses. Thus, we shall assume 
n:: r -+ L and that the image is Zariski dense. Since L is semisimple, we 
may fix a realization of L C GL(n, C) as an algebraic group defined over Q. 
Since the space of homomorphisms r -+ L is then a variety over Q, we can 
approximate any n:: r -+ L by a sequence n: j: r -+ L Q. Since n: j (r) is finite, 
we have I tr(n:iA))I :::; n for all A E r, and hence I tr(n:(A)) I :::; n as well. It 
follows that tr(n:(A)) E Q for all A. If not, we can choose a E Gal(C/Q) such 
that la(tr(n:(A)))1 > n, i.e., I tr«aon:)(A))1 > n, where, as usual, we let a act on 
complex matrices. Since L is defined over Q, a 0 O!: r -+ L as well, showing 
that this is impossible. It follows by a result of Vinberg [12, Lemma 6.1. 7] that 
there is a realization of L as a linear group defined over Q in such a way that 
n:(A) E LQ for all A E r. By hypothesis, this shows that n: is finite. 

5. PROOF OF THE MAIN THEOREMS 

Theorem 5.1. Suppose G is a connected semisimple Lie group each of whose 
simple factors has real rank at least 2 . Let H be a complex algebraic group 
such that every homomorphism of Lie algebras gc -+ I) is trivial. Assume there 
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is an action of G on M that preserves a finite measure and is engaging. Then 
every homomorphism 1C I (M) -+ H is finite. 

We remark that the conclusion implies that there are only finitely many con-
jugacy classes of homomorphisms into a given H, and hence that all such 
homomorphisms factor through a fixed (for a given H) finite quotient of r. 

Proof. By Proposition 3.7(b), we can assume the measure on M is ergodic 
under G. Let r = 1C I (M). By Theorem 4.1, it suffices to assume that H is 
defined over Q and to see that any 1C: r -+ H(j is finite for then this would 
apply to any finite index subgroup of r and any subquotient of H. We may 
clearly further assume that 1C(r) is Zariski dense in H. Since 1C(r) C H(j 
and r is finitely generated, there is a number field k ([ k: Q] < 00) such that 
1C(r) C Hk . In particular, H is defined over k. Let L = Hk/Q' the algebraic 
Q-group obtained from H by restriction of scalars [12]. Every simple factor 
of L is isomorphic to a simple factor of H (cf. [6]), and hence every local 
homomorphism G -+ L is trivial as well. We have a natural identification 
of Hk with L Q , and hence we can view 1C as a homomorphism into L Q . 

Since r is finitely generated, there is a finite set of rational primes such that all 
denominators of all 1C(r) have all prime factors in S. By diagonally embedding 
L Q , we obtain a representation a: r -+ i = LR X I1pES LQp . By construction, 
ker(a) = ker(1C), and it is standard that a(r) is discrete. Let a: M x G -+ r be 
the cocycle given by the action on the universal cover. By Theorem 2.2, a 0 a 
is equivalent to a cocycle taking all values in a compact subgroup K c i , and 
this implies by Lemma 2.3 that the Mackey range X of a admits a measurable 
r-map (): X -+ ilK. Since a(r) is discrete and K is compact, the action of 
r on ilK is tame. Since the action of r on X is ergodic, it follows that the 
image of () lies in a single r-orbit; i.e., we can view () as a measurable r-map 
X -+ a(r) I F where F is the intersection of a(r) with some conjugate of K. 
In particular, F is finite. Letting A = a-I(F) and Ao = ker(a), we observe 
that if 1C(r) is not finite, then r lAo is infinite, linear (and therefore residually 
finite [8]), and AI Ao is finite. Since the action is engaging, this contradicts 
Proposition 3.5. 

Theorem S.2. Suppose G is a connected semisimple Lie group each of whose 
simple factors has real rank at least 2. Let H be an algebraic Q-group such 
that every homomorphism of Lie algebras 9c -+ I) is trivial. Assume there is an 
action of G on M that preserves a finite measure and is topologically engaging. 
If 1C I (M) is infinite. then there is no injective homomorphism 1C I (M) -+ H(j. 
Proof. The proof of Theorem 5.1 applies, and we will now have in addition 
that Ao is trivial since we have an injective homomorphism. This contradicts 
the assumption of topological engaging by Proposition 3.6. 

We now consider the situation in which H is an algebraic group defined 
over R, and we only assume there is nontrivial homomorphism 9 -+ I)R. To 
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see the meaning of the distinction of this hypothesis from that of nonexistence 
of homomorphisms 9 -+ ~ , let H R be the Lorentz group O( 1 , n). Then for any 
simple Lie group G with R- rank( G) ~ 2 , there is no nontrivial homomorphism 
9 -+ ~R ' but, of course, there may well be a nontrivial homomorphism 9 -+ ~ = 
o(n + 1 ,C) . Thus, for example, the following theorems will give us much more 
information on actions on spaces with a fundamental group that embeds in a 
Lorentz group. 

The following three theorems can be proven by a routine modification of the 
argument given in the proofs of Theorems 5.1 and 5.2. 

Theorem 5.3. Suppose G is a connected semisimple Lie group each of whose 
simple factors has real rank at least 2 . Let H be an algebraic R-group such 
that every homomorphism of Lie algebras 9 -+ ~R is trivial. Assume there is an 
action of G on M that preserves a finite measure. 

(a) Suppose the action is engaging. Then every homomorphism i'r l (M) -+ 

HR with discrete image is finite. 
(b) Suppose the action is topologically engaging and i'r I (M) is infinite. Then 

there is no injective homomorphism i'r l (M) -+ HR with discrete image. 

Theorem 5.4. Suppose G is a connected semisimple Lie group each of whose 
simple factors has real rank at least 2. Let H be an algebraic Q-group such 
that every homomorphism of Lie algebras 9 -+ ~R is trivial. Assume there is an 
action of G on M that preserves a finite measure. 

(a) Suppose the action is engaging. Then every homomorphism i'r1(M) -+ 

HQ is finite. 
(b) Suppose the action is topologically engaging and i'r I (M) is infinite. Then 

there is no injective homomorphism i'r l (M) -+ HQ . 

Theorem 5.5. Suppose G is a connected semisimple Lie group each of whose 
simple factors has real rank at least 2 . Assume there is an action of G on M 
that preserves a finite measure. 

(a) Suppose the action is engaging. Then every homomorphism of i'r l (M) 
into a product of finitely many p-adic groups with discrete image has 
finite image. 

(b) Suppose the action is topologically engaging and i'r I (M) is infinite. Then 
i'r l (M) is not isomorphic to a discrete subgroup of a product of finitely 
many p-adic groups (where p may vary). 

For future reference, we also state a purely ergodic theoretic result, which 
follows by the same argument. 

Theorem 5.6. Let G be as in Theorem 5.1, and suppose that S is an ergodic 
G-space with afinite invariant measure. Let d(G) be the minimal dimension of 
a nontrivial (complex) representation of g. Suppose A c GL(n ,Q) is a finitely 
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generated subgroup, where n < d (G). If a: S x G --> A is a cocyc/e, then a is 
equivalent to a cocyc/e into a finite subgroup of A. 

6. ON THE UNITARY DUAL OF 711 (M) 

It is not necessarily true that if there is an engaging or topologically engaging 
action of G (which we assume to be as above, and, in particular, to satisfy 
Kazhdan's property (T)) on M then 711 (M) is also Kazhdan. Namely, suppose 
reG x H is an irreducible lattice where G is Kazhdan but H is not. Such 
examples are easily constructed in SO(p, q) x SOC 1 , P + q - 1) for instance. 
Then the action of G on M = (G x H) /r is both engaging and topologically 
engaging, but as r has a dense image homomorphism into a non-Kazhdan 
group, r is not Kazhdan. On the other hand, the following remark shows that 
the identity is isolated in the space of finite unitary representations, i.e., those 
that factor through a finite quotient of r. These and related properties of a 
group have been discussed in a number of places, and we refer to [7] as an 
example and indication of other references. 

Proposition 6.1. Suppose G is a connected semisimple Kazhdan Lie group and 
that there is an engaging finite measure preserving action of G on M. Then the 
identity representation of 711 (M) is isolated in the space offinite representations 
of 7l 1(M). 

Proof. If not, we can choose finite quotients Pn: r --> Fn and nontrivial ~rre­
ducible representations (71 n ' Vn) of F n such that 7l nO p n --> I . Let a: M x G --> 

711 (M) be the cocycle defined by the action on the universal cover. We can sup-
pose the measure on M is ergodic. Form the unitary representation un of 
~ 2 
G on L (M; Vn) by (un(g)f)(m) = 7ln(Pn(a(m, g)))f(mg). Then {un} is 
readily seen to weakly contain I (cf. [12, proof of 9.1.1 D, and since a is 
Kazhdan, there is some n for which un has a nonzero invariant vector. Since 
(71n , Vn) is contained in the regular representation of Fn , it is easy to see that 
this implies there is a nonconstant a-invariant function in L 2(M X Fn ), where 
the action of a on M x Fn is defined by the cocycle a. This means the action 
on the finite cover of M corresponding to Fn is not ergodic, so that the action 
is not engaging. 

7. AMALGAMATED PRODUCTS 

Using a result of Adams and Spatzier [1], we can obtain further restrictions 
on fundamental groups of G-spaces. Namely, suppose G is a Kazhdan group 
acting ergodically with a finite invariant measure on S . Let H = HI * K H2 be 
an amalgamated product of discrete groups. Then one of the main results of 
[1] asserts that any cocycle a: S x G --> H is equivalent to a cocycle into HI 
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or H 2 • We therefore can deduce 

Theorem 7.1. Suppose G is as in Theorem 5.1. Suppose, for i = 1,2, that rj 
is a discrete group that is either amenable or isomorphic to an infinite finitely 
generated subgroup of GL(n, Q), where n < d(G) (and the latter is as in The-
orem 5.6). Then there is no engaging or topologically engaging action of G on 
M with a finite invariant measure for any M with 1t1 (M) = r l *K r 2 , where 
K is some common subgroup. 

We leave the other variants of this theorem to the reader. (Cf. [8] for some 
useful relevant information on amalgamated products.) 

8. ACTIONS OF DISCRETE GROUPS 

There are a number of problems that arise when one tries to extend some of 
the above results to the case in which we assume only that there is an action of 
a lattice subgroup of G rather than an action of G itself. The first problem is 
considered in the following. 

Definition 8.1. Suppose r is a discrete group acting on M. We call the action 
admissible if there is a finite index subgroup A c r so that the action of A 
lifts to an action on M, commuting with the action of 1t I (M) . 

Example 8.2. (a) The action of SL(n, Z) on Tn by group automorphisms is 
not admissible, even though the action lifts. 

(b) If the r action extends to an action of a connected simply connected 
group, the action is admissible. 

We shall also need some information on H2(r, R). Let us say that r satisfies 
cohomology condition (C) if H 2(A, R) = 0 for every finite index subgroup A c 
r. If the symmetric space associated to the semisimple group G is Hermitian, 
then this will not be true, but in most other situations this will be the case. For 
example, it will be true for any cocompact lattice in SL(n, R) if n > 4, and 
there are strong positive results for noncocompact lattices as well. In particular, 
this is true for SL(n. Z) for n ~ 6. See Borel's papers [2, 3], and Borel and 
Wallach [4] for an extensive discussion. 

Proposition 8.3. Suppose G is as in Theorem 5.1 and reG is a lattice satisfying 
condition (C). Let d be the smallest dimension of a nontrivial representation of 
the Lie algebra of G. If r acts on M and 1t I (M) = zn for n < d , then the r 
action is admissible. 
Proof. Letting D be the group of homeomorphisms of M obtained by taking 
all possible lifts of all elements of r acting on M, we obtain an extension 0-+ 
Zn -+ D -+ r -+ o. In particular, we have a homomorphism r -+ Aut(Zn) = 
SL(n. Z). By Margulis superrigidity [12], since n < d this homomorphism 
is trivial on a subgroup A c r of finite index, and hence 0 -+ Zn -+ D' -+ 
A -+ 0 is a central extension, where D' is the inverse image of A. This is 
defined by an element of H 2(A, Zn). Since H 2(A, R) = 0, we have a surjection 
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HI (A, Tn) -+ H2(A, Zn). Since A is Kazhdan, every element of HI (A, Tn) 
is trivial on a subgroup of finite index, and hence this central extension is trivial 
on a subgroup of finite index. 

We remark that we actually need assume only that XI (M) is finitely generated 
and abelian for this proof to work. 

Definition 8.4. (a) Suppose the action of r on M is admissible. The action is 
called engaging if there is a lift of a finite index subgroup A to Xi (commuting 
with the fundamental group) so that on every finite cover M' -+ M , all A-
invariant measurable functions are lifted from M. 

(b) Call the action on M topologically engaging if there is some A. E A 
such that A. acts tamely on Xi and has almost all ergodic components on M 
properly ergodic. (That is, the ergodic components are not orbits. This will 
be the case, for example, if the r action on M is mixing; i.e., the matrix 
coefficients of the unitary representation on L2(M) vanish at 00.) 

Theorem 8.5. Let G, r. and d be as in Proposition 8.3. Then there is no 
engaging or topologically engaging finite measure preserving action of r on M 
if X I (M) is an infinitely generated abelian group of rank less than d. 
Proof. Every cocycle a: M x r -+ XI (M) is equivalent to one into a finite 
subgroup, using Kazhdan's property [12, 9.1.1J. This is ipcompatible with either 
engagement assumption. 

In particular, Theorem 8.5 applies to actions of lattices in SL(n, Z) on tori 
of smaller rank, at least for n sufficiently large. In this context this result has 
been independently established by D. Witte (private communication). 
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