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THE FIVE EXCEPTIONAL SIMPLE LIE
SUPERALGEBRAS OF VECTOR FIELDS
AND THEIR FOURTEEN REGRADINGS

IRINA SHCHEPOCHKINA

Abstract. The five simple exceptional complex Lie superalgebras of vector
fields are described. One of them, kas, is new; the other four are explicitly
described for the first time. All nonisomorphic maximal subalgebras of finite
codimension of these Lie superalgebras, i.e., all other realizations of these Lie
superalgebras as Lie superalgebras of vector fields, are also described; there are
14 of them altogether. All of the exceptional Lie superalgebras are obtained
with the help of the Cartan prolongation or a generalized prolongation.

Introduction

V. Kac conjectured [K1] (Theorem 10 and Conjecture 1) that infinite dimensional
simple Lie superalgebras of vector fields with polynomial or formal coefficients are
only straightforward analogs of the four well-known Cartan series vect(n), svect(n),
h(2n) and k(2n + 1) (of all, divergence-free, hamiltonian and contact vector fields,
respectively, realized on the space of dimension indicated). Since superdimension
is a pair of numbers, Kac’s examples of simple vectorial Lie superalgebras “double”
Cartan’s list of simple vectorial Lie algebras.

It soon became clear ([L1], [ALSh]) that the actual list of simple vectorial Lie
superalgebras “doubles” that of Cartan twice, not once (the nondirect “super”
counterparts m and sm of k as well as le and sle — the counterparts of h — were
discovered).

Moreover, even the Lie superalgebras of the four well-known series (vect, svect,
h and k) have, in addition to the dimension of the superspace on which they are
usually realized, one more discrete parameter governing their other, nonstandard,
realizations ([ALSh]). In other words, one Lie superalgebra of vector fields has
several (but not too many!) different nonisomorphic realizations as a filtered Lie
superalgebra.

Furthermore, several of these Lie superalgebras have deformations (see [L2],
[Ko1], [Ko2], [L3], [LSh2]). Some of these deformed Lie superalgebras are very
interesting due to their applications to physics.
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Next, three exceptional vectorial algebras were discovered [Sh1], followed by a
fourth exception [Sh2]. The purpose of this note is to give a more lucid description
of these exceptions, and introduce the most remarkable fifth exception (kas). (For
a related construction of Lie superalgebras of string theories cf. [GLS] and [CK].)

In this note the ground field is C. First, we recall the background from Lin-
ear Algebra in Superspaces. Then we recall the definition of the main tool in the
construction of our examples: the notion of Cartan prolongation and its general-
izations (cf. [Sh1]). We also recall some facts from the classification of simple Lie
superalgebras of vector fields, cf. [L2] and [L3].

The main result of this paper is the discovery and a description of the five ex-
ceptional simple Lie superalgebras of vector fields and their fourteen W-regradings.

Here are the names of the exceptional simple Lie superalgebras, the description
in terms of (generalized) Cartan prolongation (for definitions see sec. 0.5), a natural
minimal simple ambient and the values r of the regradings (K stands for a grading
consistent with parity); these regradings are described in §7; the indeterminates,
whose degrees are fixed below, are introduced, respectively: in §5 for vle, in §3 for
kas, in Appendix 3 for mb and ksle:

1) vle(4|3; r) = (Π(Λ(3)/C · 1), cvect(0|3))∗ ⊂ vect(4|3), r = 0, 1, K

r = 0 : deg y = deg ui = deg ξi = 1

r = 1 : deg y = deg ξ1 = 0, deg u2 = deg u3 = deg ξ2 = deg ξ3 = 1, deg u1 = 2

r = K : deg y = 0, degui = 2; deg ξi = 1

2) vas(4|4) = (spin, as)∗ ⊂ vect(4|4)

3) kas ⊂ k(1|6; r), r = 0(K), 1, 3ξ, 3η

r = 0(K) : deg t = 2, deg ηi = 1; deg ξi = 1; degLie = deg−2

r = 1 : deg ξ1 = 0, deg η1 = deg t = 2,

deg ξ2 = deg ξ3 = deg η2 = deg η3 = 1; degLie = deg−2

r = 3ξ : deg ξi = 0, deg ηi = deg t = 1; degLie = deg−1

r = 3η : deg ηi = 0, deg ξi = deg t = 1; degLie = deg−1

4) mb(4|5; r) = (ab(4), cvect(0|3))m∗ ⊂ m(4), r = 0, 1, K

r = 0 : deg τ = 2, deg ui = deg ξi = 1 for i = 0, 1, 2, 3; degLie = deg−2

r = 1 : deg τ = deg ξ0 = deg u1 = 2, deg u2 = deg u3 = deg ξ2 = deg ξ3 = 1;

deg ξ1 = deg u0 = 0; degLie = deg−2

r = K : deg τ = deg ξ0 = 3, deg u0 = 0, deg ui = 2; deg ξi = 1 for i > 0;

degLie = deg−3

5) ksle(9|6; r) = (hei(8|6), svect3,4(4))k∗ ⊂ k(9|6), r = 0, 2, K

r = 0 : deg t = 2, deg pi = deg qi = deg ξi = deg ηi = 1; degLie = deg−2

r = 2 : deg t = deg q3 = deg q4 = deg η1 = 2,

deg q1 = deg q2 = deg p1 = deg p2 = deg η2 = deg η3 = deg ζ2 = deg ζ3 = 1;

deg p3 = deg p4 = deg ζ1 = 0; degLie = deg−2

r = K : deg t = deg qi = 2, deg pi = 0; deg ζi = deg ηi = 1; degLie = deg−2.

These names reflect the method of construction of these algebras, rather than their
own properties. To name and understand these superalgebras adequately, their
further interpretation is required. In parentheses stands the superdimension of the
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superspace of indeterminates on which the algebra is realized by vector fields; this
realization is considered as a point of reference for regradings r. Since superdimen-
sions of g are distinct for the thirteen exceptional simple vectorial Lie superalgebras
g, it is natural to call them briefly e(5|4), . . . , e(5|10) (see the table below) except
for the first, sle(4|3).

More exactly, we consider simple filtered Lie superalgebras L with decreasing
filtration of the form

L = L−d ⊃ L−d+1 ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . .(WF)

of finite depth d. The very term “filtered algebra” implies that [Li,Lj ] ⊂ Li+j and
we additionally require that

1) L0 is a maximal subalgebra of finite codimension;
2) the filtration is transitive: for any non-zero x ∈ Lk for k ≥ 0, where Lk =

Lk/Lk+1, there is y ∈ L−1 such that [x, y] 6= 0.
Conditions 1) and 2) manifestly imply that dimLk < ∞ for all k and the Z-

graded Lie superalgebra L =
⊕

k≥−d Lk associated with L grows polynomially,
i.e., dim

⊕
k≤n Lk grows as a polynomial in n. Such filtrations are called, after

[W], Weisfeiler filtrations; we will shortly write W-filtrations and call the gradings
associated with W-filtrations W-gradings. Since such filtered Lie superalgebras L
(and associated with them graded ones, L) can be realized by vector fields with
formal or polynomial coefficients, we refer to these Lie superalgebras as vectorial
ones.

Any W-filtration can be considered as a basis of neighborhoods of zero in a
topology, so the result can be read as the list of the exceptional simple complete
vectorial Lie superalgebras. Thus, from the point of view of classification of the W-
filtered complete Lie superalgebras, there are five families of exceptional algebras
consisting of 14 individual algebras. The algebras inside each family are isomorphic
as abstract ones, but are distinct as filtered ones. Here are the corresponding first
terms of the graded algebras (cf. sec. 0.8), where the sign ⊃+ (resp. ⊂+) denotes the
semidirect sum with the subspace or ideal on the left (right) of it:

g g−2 g−1 g0 dim g−

vle(4|3) − Π(Λ(3)/C1) c(vect(0|3)) 4|3
vle(4|3; 1) C · 1 id⊗ Λ(2) c(sl(2) ⊗ Λ(2)⊃+ T 1/2(vect(0|2)) 5|4
vle(4|3; K) id(sl(3)) id(sl(3)) ⊗ id(sl(2)) ⊗ 1 sl(3) ⊕ sl(2) ⊕ Cz 3|6
vas(4|4) − spin as 4|4

kas C · 1 id co(6) 1|6
kas(; 1) Λ(1) id(sl(2)) ⊗ id(gl(2)) ⊗ Λ(1) (sl(2)⊕ gl(2))⊃+ vect(0|1) 5|5
kas(; 3ξ) − Λ(3) Λ(3) ⊕ sl(1|3) 4|4
kas(; 3η) − Vol0(0|3) c(vect(0|3)) 4|3
mb(4|5) Π(C · 1) Vol(0|3) c(vect(0|3)) 4|5

mb(4|5; 1) Λ(2)/C · 1 id⊗ Λ(2) c(sl(2) ⊗ Λ(2)⊃+ T 1/2(vect(0|2)) 5|6
mb(4|5; K) id(sl(3)) id(sl(3)) ⊗ id(sl(2)) ⊗ 1 sl(3) ⊕ sl(2) ⊕ Cz 3|8
ksle(9|6) C · 1 Π(T 0

0 (~0)) svect(0|4)3,4 9|6
ksle(9|6; 2) id(sl(3|1)) id(sl(2)) ⊗ Λ(3) (sl(2) ⊗ Λ(3))⊃+ sl(1|3) 11|9
ksle(9|6; K) id Λ2(id) sl(5) 5|10
Observe that mb(4|5;K)−3

∼= Π(id(sl(2))), whereas in all the other cases g−3 = 0.
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Observe that unlike the regradings of the series (see sec. 0.4) where the minimal
realization is attained at r = 0, some of the exceptional algebras have several
minimal realizations.

The word “exceptional” implies that a classification is handy; indeed, for the de-
tailed proof announced in [LSh1] and during a conference in honor of D. Buchsbaum
(November 1997, Boston); see [LSh4], [LSh2].

The article is divided into several sections, according to the method of con-
struction. Boring calculations are gathered in the appendices. The statements on
simplicity are proved via Kac’s criteria; cf. [K1].

Open problems. (1) Give more explicit geometric realizations of the exceptional
Lie superalgebras (what structures do they preserve?).

(2) Certain exceptional Lie superalgebra are deformations of (nonsimple) Lie
superalgebras whose brackets are easy to describe. In this paper the cocycle is
described clumsily, in components of the generating functions. Describe the co-
cycle (i.e., the bracket itself) in terms of generating functions rather than their
components. (An attempt is made in [ShP].)

(3) Find out what our exceptional Lie superalgebras add to the list of simple
finite dimensional Lie algebras over an algebraically closed field of characteristic
2 via Leites’ conjecture, either directly (cf. [L2], [KL]) or via Volichenko algebras
([LSe]).

Remark. The results of this paper and the related contribution to classification of
the stringy superalgebras [GLS] (hep-th 9702120) were obtained in Stockholm in
June 1996 and delivered at the seminar of E. Ivanov, JINR, Dubna (July, 1996),
Voronezh winter school (Jan. 12–18, 1997). This paper was preprinted as hep-th
9702121, new §7 is added to it now; a brief description is also to appear in Russian
in Functionalnyj Analiz i Prilozheniya.

0. Background

0.1. Linear algebra in superspaces. Generalities. Superization has certain
subtleties, often disregarded or expressed as in [L], [L3] or [M]; too briefly. We will
dwell on them a bit.

A superspace is a Z/2-graded space; for a superspace V = V0̄ ⊕ V1̄ denote by
Π(V ) another copy of the same superspace: with the shifted parity, i.e., (Π(V ))̄i =
Vī+1̄. The superdimension of V is dimV = p + qε, where ε2 = 1 and p = dim V0̄,
q = dimV1̄. (Usually dimV is expressed as a pair (p, q) or p|q; this obscures the
fact that dimV ⊗W = dim V · dimW which is clear with the use of ε.)

A superspace structure in V induces the superspace structure in the space
End(V ). A basis of a superspace is always a basis consisting of homogeneous vec-
tors; let Par = (p1, . . . , pdimV ) be an ordered collection of their parities. We call
Par the format of the basis of V . A square supermatrix of format (size) Par is a
dimV ×dimV matrix whose ith row and ith column are of the same parity pi. The
matrix unit Eij is supposed to be of parity pi+pj and the bracket of supermatrices
(of the same format) is defined via Sign Rule:

if something of parity p moves past something of parity q the sign (−1)pq accrues;
the formulas defined on homogeneous elements are extended to arbitrary ones via
linearity.
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Examples of application of Sign Rule: setting [X,Y ] = XY − (−1)p(X)p(Y )Y X
we get the notion of the supercommutator and the ensuing notions of the super-
commutative superalgebra and the Lie superalgebra (that in addition to superskew-
commutativity satisfies the super Jacobi identity, i.e., the Jacobi identity amended
with the Sign Rule). The derivation of a superalgebra A is a linear mapD : A −→ A
such that it satisfies the Leibniz rule (and Sign rule)

D(ab) = D(a)b+ (−1)p(D)p(a)aD(b).

In particular, let A = K[x] be the free supercommutative polynomial superalgebra
in x = (x1, . . . , xn), where the superstructure is determined by the parities of the
indeterminates: p(xi) = pi. Partial derivatives are defined (with the help of super
Leibniz Rule) by the formulas

∂xi
∂xj

= δi,j .

Clearly, the collection derA of all superdifferentiations of A is a Lie superalgebra
whose elements are of the form ∑

fi(x)
∂

∂xi
.

(We do not usually use the sign ∧ for the wedge product of differential forms
on supermanifolds: in what follows we assume that the exterior differential is odd
and the differential forms constitute a supercommutative superalgebra; however,
we sometimes keep using the sign ∧ while working on manifolds in order not to
deviate too far from conventional notations.)

Usually, Par is of the form (0̄, . . . , 0̄, 1̄, . . . , 1̄). Such a format is called standard.
In this paper we can do without nonstandard formats. But they are vital in the
study of systems of simple roots that the reader might be interested in; besides,
they are direct analogs of the nonstandard gradings we consider.

The general linear Lie superalgebra of all supermatrices of size Par is denoted
by gl(Par); usually, gl(0̄, . . . , 0̄, 1̄, . . . , 1̄) is abbreviated to gl(dim V0̄| dim V1̄). Any
matrix from gl(Par) can be expressed as the sum of its even and odd parts; in the
standard format this is the block expression:(

A B
C D

)
=
(
A 0
0 D

)
+
(

0 B
C 0

)
, p

((
A 0
0 D

))
= 0̄, p

((
0 B
C 0

))
= 1̄.

The supertrace is the map gl(Par) −→ C, (Aij) 7→
∑

(−1)piAii. Since str[x, y] =
0, the space of supertraceless matrices constitutes the special linear Lie subsuper-
algebra sl(Par).

Lie superalgebras that preserve bilinear forms: two types. To the linear
map F of superspaces there corresponds the dual map F ∗ between the dual super-
spaces; if A is the supermatrix corresponding to F in a basis of the format Par,
then to F ∗ the supertransposed matrix Ast corresponds:

(Ast)ij = (−1)(pi+pj)(pi+p(A))Aji.

The supermatrices X ∈ gl(Par) such that

XstB + (−1)p(X)p(B)BX = 0 for a homogeneous matrix B ∈ gl(Par)

constitute the Lie superalgebra aut(B) that preserves the bilinear form on V with
matrix B.
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Recall that the supersymmetry of the homogeneous form ω means that its matrix

B satisfies the condition Bu = B, where Bu =
(

Rt (−1)p(B)T t

(−1)p(B)St −U t
)

for the

matrix B =
(
R S
T U

)
. Similarly, skew-supersymmetry of B means that Bu = −B.

Most popular canonical forms of the nondegenerate supersymmetric form are the
ones whose supermatrices in the standard format are the following canonical ones,
Bev or B′

ev:

Bev(m|2n) =
(

1m 0
0 J2n

)
, where J2n =

(
0 1n
−1n 0

)
,

or

B′
ev(m|2n) =

(
antidiag(1, . . . , 1) 0

0 J2n

)
.

The usual notation for aut(Bev(m|2n)) is osp(m|2n) or ospsy(m|2n).
Recall that the “upsetting” of forms u : Bil(V,W ) −→ Bil(W,V ) becomes for

V = W an involution u : B 7→ Bu. This involution separates symmetric and
skew-symmetric forms. The passage from V to Π(V ) sends the supersymmetric
forms to superskew-symmetric ones, preserved by the “symplectico-orthogonal” Lie
superalgebra ospsk(m|2n) which is isomorphic to ospsy(m|2n) but has a different
matrix realization. We never use notation sp′o(2n|m) in order not to confuse with
the special Poisson superalgebra.

In the standard format the matrix realizations of these algebras are:

osp(m|2n) =


 E Y X t

X A B
−Y t C −At

 ; ospsk(m|2n) =


A B X
C −At Y t

Y −Xt E

 ,

where
(
A B
C −At

)
∈ sp(2n), E ∈ o(m) and t is the usual transposition.

A nondegenerate supersymmetric odd bilinear form Bodd(n|n) can be reduced to
the canonical form whose matrix in the standard format is J2n. A canonical form of

the superskew odd nondegenerate form in the standard format is Π2n =
(

0 1n
1n 0

)
.

The usual notation for aut(Bodd(Par)) is pe(Par). The passage from V to Π(V )
sends the supersymmetric forms to superskew-symmetric ones and establishes an
isomorphism pesy(Par) ∼= pesk(Par). This Lie superalgebra is called, as A. Weil
suggested, periplectic. In the standard format these superalgebras are shorthanded
as in the following formula, where their matrix realizations are also given:

pesy(n) =
{(

A B
C −At

)
, where B = −Bt, C = Ct

}
;

pesk(n) =
{(

A B
C −At

)
, where B = Bt, C = −Ct

}
.

The special periplectic superalgebra is spe(n) = {X ∈ pe(n) : strX = 0}.
Observe that though the Lie superalgebras ospsy(m|2n) and pesk(2n|m), as well

as pesy(n) and pesk(n), are isomorphic, the difference between them is sometimes
crucial, see Remark 0.6 below.
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0.2. Vectorial Lie superalgebras. The standard realization. The elements
of L = der C[[u]] are considered as vector fields. The Lie algebra L has only one
maximal subalgebra L0 of finite codimension (consisting of the fields that vanish
at the origin). The subalgebra L0 determines a filtration of L: set

L−1 = L and Li = {D ∈ Li−1 : [D,L] ⊂ Li−1} for i ≥ 1.(0.2.1)

The associated graded Lie algebra L =
⊕

i≥−1 Li, where Li = Li/Li+1, consists of
the vector fields with polynomial coefficients.

Suppose L0 ⊂ L is a maximal subalgebra of finite codimension and L0 con-
tains no ideals of L. For the Lie algebra L = der C[u] the minimal nontrivial L0-
submodule of L containing L0 coincides with L. This is not so for superalgebras;
not all subalgebras L of der C[u, ξ] have this property. Let L−1 be a minimal sub-
space of L containing L0, different from L0 and L0-invariant. Construct a filtration
of L by setting for i ≥ 1:

L−i−1 = [L−1,L−i] + L−i and Li = {D ∈ Li−1 : [D,L−1] ⊂ Li−1}.(0.2.2)

Since the codimension of L0 is finite, the filtration takes the form

L = L−d ⊃ . . .L0 ⊃ . . .(0.2.3)

for some d. This d is called the depth of L or of the associated graded Lie superal-
gebra L.

Considering the subspaces (0.2.3) as the basis of a topology, we can complete the
graded or filtered Lie superalgebras L or L; the elements of the completion are the
vector fields with formal power series as coefficients. Though the structure of the
graded algebras is easier to describe, in applications the completed Lie superalgebras
are usually needed.

Unlike Lie algebras, simple vectorial superalgebras possess several maximal sub-
algebras of finite codimension. We will describe them, together with the corre-
sponding gradings, in sec. 0.4.

1) General algebras. Let x = (u1, . . . , un, θ1, . . . , θm), where the ui are even
indeterminates and the θj are odd ones. The Lie superalgebra vect(n|m) consists
of superdifferentiations of der C[x]; it is called the general vectorial superalgebra.

2) Special algebras. The divergence of the field D =
∑
i

fi
∂
∂ui

+
∑
j

gj
∂
∂θj

is the

function (in our case: a polynomial, or a series)

divD =
∑
i

∂fi
∂ui

+
∑
j

(−1)p(gj) ∂gi
∂θj

.

• The Lie superalgebra svect(n|m) = {D ∈ vect(n|m) : divD = 0} is called the
special or divergence-free vectorial superalgebra. The notion of divergence depends
on coordinates. Another description of svect is as follows:

svect(n|m) = {D ∈ vect(n|m) : LDvolx = 0},
where volx is the volume form with constant coefficients in coordinates x and LD
the Lie derivative with respect to D.
• The Lie superalgebra svectλ(0|m)={D∈vect(0|m) : div(1+λθ1 · · · · · θm)D=0}

— the deform of svect(0|m) — has no particular name and is also called the deformed
special or deformed divergence-free vectorial superalgebra. Clearly, svectλ(0|m) ∼=
svectµ(0|m) for λµ 6= 0.
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Observe that p(λ) ≡ m (mod 2), i.e., for odd m the parameter of deformation λ
is odd.

Remark. Sometimes we write vect(x) or even vect(V ) if V = Span(x) and use
similar notations for the subalgebras of vect introduced below. Some algebraists
sometimes abbreviate vect(n) and svect(n) to Wn (in honor of Witt) and Sn, re-
spectively.

3) The algebras that preserve Pfaff equations and differential 2-forms.
• Set u = (t, p1, . . . , pn, q1, . . . , qn); let

α̃1 = dt+
∑

1≤i≤n
(pidqi − qidpi) +

∑
1≤j≤m

θjdθj and ω̃0 = dα̃1 .

The form α̃1 is called contact, the form ω̃0 is called symplectic.
Sometimes it is more convenient to redenote the θ’s and set

ξj =
1√
2
(θj − iθr+j); ηj =

1√
2
(θj + iθr+j) (here i2 = −1)

for j ≤ r = [m/2], θ = θ2r+1

and in place of ω̃0 or α̃1 take α and ω0 = dα1, respectively, where

α1 = dt+
∑

1≤i≤n
(pidqi − qidpi) +

∑
1≤j≤r

(ξjdηj + ηjdξj) if m = 2r

α1 = dt+
∑

1≤i≤n
(pidqi − qidpi) +

∑
1≤j≤r

(ξjdηj + ηjdξj) + θdθ if m = 2r + 1.

The Lie superalgebra that preserves the Pfaff equation α1 = 0, i.e., the superal-
gebra

k(2n+ 1|m) = {D ∈ vect(2n+ 1|m) :LDα1 = fDα1}
for a polynomial fD ∈ C[t, p, q, θ]

is called the contact superalgebra.
The Lie superalgebra po(2n|m) that preserves not just the Pfaff equation deter-

mined by α1 but the form itself, i.e.,

po(2n|m) = {D ∈ k(2n+ 1|m) : LDα1 = 0}
is called the Poisson superalgebra. (A geometric interpretation of the Poisson
superalgebra: it is the Lie superalgebra that preserves the connection with form α1

in the line bundle over a symplectic supermanifold with the symplectic form dα1.)
• Similarly, set u = q = (q1, . . . , qn), let θ = (ξ1, . . . , ξn; τ) be odd. Set

α0 = dτ +
∑
i

(ξidqi + qidξi), ω1 = dα0

and call these forms the odd-contact and, as A. Weil suggested, periplectic, respec-
tively.

The Lie superalgebra that preserves the Pfaff equation α0 = 0, i.e., the superal-
gebra

m(n) = {D ∈ vect(n|n+ 1) : LDα0 = fD · α0 for a polynomial fD ∈ C[q, ξ, τ ]}
is called the odd-contact superalgebra.

The Lie superalgebra

b(n) = {D ∈ m(n) : LDα0 = 0}
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is called the Buttin superalgebra ([L3]). (A geometric interpretation of the Buttin
superalgebra: it is the Lie superalgebra that preserves the connection with form α1

in the line bundle of rank ε over a periplectic supermanifold, i.e., the supermanifold
with the periplectic form dα0.)

The Lie superalgebras

sm(n) = {D ∈ m(n) : div D = 0} , sb(n) = {D ∈ b(n) : div D = 0}
are called the divergence-free (or special) odd-contact and special Buttin superalge-
bras, respectively.

Remark. A relation with finite dimensional geometry is as follows. Clearly, kerα1 =
ker α̃1. The restriction of ω0 to kerα1 is the orthosymplectic form Bev(m|2n); the
restriction of ω0 to ker α̃1 is B′

ev(m|2n). Similarly, the restriction of ω1 to kerα0 is
the periplectic form Bodd(n|n).

0.3. Generating functions. A laconic way to describe the elements of k, m and
their subalgebras is via generating functions.
• Odd form α1 or α̃1. For f ∈ C[t, p, q, θ] set:

Kf = (2− E)(f)
∂

∂t
−Hf +

∂f

∂t
E,

where E =
∑
i

yi
∂
∂yi

(here the y are all the coordinates except t) is the Euler operator

(which counts the degree with respect to the y), and Hf is the hamiltonian field
with Hamiltonian f that preserves dα̃1:

Hf =
∑
i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
)− (−1)p(f)

∑
j≤m

∂f

∂θj

∂

∂θj

 .

The choice of the form α1 instead of α̃1 only affects the form of Hf that we give
for m = 2k + 1:

Hf =
∑
i≤n

( ∂f∂pi

∂
∂qi
− ∂f

∂qi

∂
∂pi

)− (−1)p(f)

(∑
j≤k

( ∂f∂ξj

∂
∂ηj

+ ∂f
∂ηj

∂
∂ξj

) + ∂f
∂θ

∂
∂θ

)
.

• Even form α0. For f ∈ C[q, ξ, τ ] set:

Mf = (2− E)(f)
∂

∂τ
− Lef − (−1)p(f) ∂f

∂τ
E,

where E =
∑
i

yi
∂
∂yi

(here the y are all the coordinates except τ) is the Euler

operator, and

Lef =
∑
i≤n

(
∂f

∂qi

∂

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂

∂qi
).

Since

LKf
(α1) = 2

∂f

∂t
α1, LMf

(α0) = −(−1)p(f)2
∂f

∂τ
α0,

it follows that Kf ∈ k(2n+ 1|m) and Mf ∈ m(n). Observe that

p(Lef) = p(Mf ) = p(f) + 1̄.
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• To the supercommutators [Kf , Kg] or [Mf ,Mg] there correspond contact brack-
ets of the generating functions:

[Kf , Kg] = K{f,g}k.b.
; [Mf ,Mg] = M{f,g}m.b.

.

The explicit formulas for the contact brackets are as follows. Let us first define the
brackets on functions that do not depend on t (resp. τ).

The Poisson bracket {·, ·}P.b. (in the realization with the form ω̃0) is given by
the formula

{f, g}P.b. =
∑
i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
)− (−1)p(f)

∑
j≤m

∂f

∂θj

∂g

∂θj
for f, g ∈ C[p, q, θ]

and in the realization with the form ω0 for m = 2k + 1 it is given by the formula

{f, g}P.b. =
∑
i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
)

− (−1)p(f)

∑
j≤k

(
∂f

∂ξj

∂g

∂ηj
+
∂f

∂ηj

∂g

∂ξj
) +

∂f

∂θ

∂g

∂θ

 for f, g ∈ C[p, q, ξ, η, θ].

The Buttin bracket {·, ·}B.b. is given by the formula

{f, g}B.b. =
∑
i≤n

(
∂f

∂qi

∂g

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂g

∂qi
) for f, g ∈ C[q, ξ].

Remark. What we call here the Buttin bracket was discovered in pre-super era by
Schouten. Buttin was the first to observe that the Schouten bracket determines
a Lie superalgebra; Leites interpreted it in terms of mechanic ([L1]) and Batalin
with Vilkovisky later rediscovered this mechanic with much success, see [GPS].
The Schouten bracket was originally defined on the superspace of multivector fields
on a manifold, i.e., on the superspace Γ(Λ.(T (M))) ∼= Λ.

F(V ect(M)) of sections
of the exterior algebra (over the algebra F of functions) of the tangent bundle.
The explicit formula (in which the hatted slot should be ignored, as usual) of the
Schouten bracket is

[X1 ∧ · · · ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl]
=
∑

i,j(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.
(∗)

With the help of Sign Rule we easily superize formula (∗) for the case when manifold
M is replaced with supermanifoldM. Let x and ξ be the even and odd coordinates
on M. Setting θi = Π(∂xi) = x̌i, qj = Π(∂ξj) = ξ̌j we get an identification of
the Schouten bracket of vector fields onM with the Buttin bracket of functions on
the supermanifold M̌ whose coordinates are x, ξ and x̌, ξ̌; the transformation of
x, ξ induces that of the checked coordinates. (Physicists call the checked variables
ghosts; cf. [GPS].)

In terms of the Poisson and Buttin brackets, respectively, the contact brackets
take the form

{f, g}k.b. = (2− E)(f)
∂g

∂t
− ∂f

∂t
(2− E)(g)− {f, g}P.b.

and, respectively,

{f, g}m.b. = (2− E)(f)
∂g

∂τ
+ (−1)p(f) ∂f

∂τ
(2 − E)(g)− {f, g}B.b..
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The Lie superalgebras of Hamiltonian fields (or Hamiltonian superalgebra) and
its special subalgebra (defined only if n = 0) are

h(2n|m) = {D ∈ vect(2n|m) : LDω0 = 0}
and

sh(m) = {Hf ∈ h(0|m) :
∫
fvolθ = 0}.

Its odd analogues are the Lie superalgebra of Leitesian fields introduced in [L1] and
its special subalgebra:

le(n) = {D ∈ vect(n|n) : LDω1 = 0} and sle(n) = {D ∈ le(n) : divD = 0}.
It is not difficult to prove the following isomorphisms (as superspaces):

k(2n+ 1|m) ∼= Span(Kf : f ∈ C[t, p, q, ξ]);

h(2n|m) ∼= Span(Hf : f ∈ C[p, q, θ]);

m(n) ∼= Span(Mf : f ∈ C[τ, q, ξ]);

le(n) ∼= Span(Lef : f ∈ C[q, ξ]).

Remark. 1) It is obvious that the Lie superalgebras of the series vect, svect, h and
po for n = 0 are finite dimensional.

2) A Lie superalgebra of the series h is the quotient of the Lie superalgebra po
modulo the one-dimensional center z generated by constant functions.

Similarly, le and sle are the quotients of b and sb, respectively, modulo the
one-dimensional (odd) center z generated by constant functions.

Set spo(m) = {Kf ∈ po(0|m) :
∫
fvolξ = 0} and sh(m) = spo(m)/C ·K1.

Since, as is easy to see ([GLS]), divKf = (2n+2−m)∂f∂t for Kf ∈ k(2n+1|m), the
divergence-free subalgebra of k(2n+1|m) is either the algebra itself (for m = 2n+2)
or its Poisson subalgebra. Nothing new.

The “odd” counterpart is more interesting. Since

divMf = (−1)p(f)2

(1− E)
∂f

∂τ
−
∑
i≤n

∂2f

∂qi∂ξi

 ,

we can define the divergence-free subalgebra of m(n):

sm(n) = Span

Mf ∈ m(n) : (1− E)
∂f

∂τ
=
∑
i≤n

∂2f

∂qi∂ξi

 .

In particular,

divLef = (−1)p(f)2
∑
i≤n

∂2f

∂qi∂ξi
.

(The odd analog of the Laplacian, namely, the operator

∆ =
∑
i≤n

∂2

∂qi∂ξi

on a periplectic supermanifold appeared in physics under the name of BRST op-
erator ; cf. [GPS]. The divergence-free vector fields from sle(n) are generated by
harmonic functions, i.e., such that ∆(f) = 0.)
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Lie superalgebras sle(n), sb(n) and svect(1|n) have ideals sle◦(n), sb◦(n) and
svect◦(n) of codimension 1 (more exactly, εn−1) defined from the exact sequences

0 −→ sle◦(n) −→ sle(n) −→ C · Leξ1...ξn −→ 0,

0 −→ sb◦(n) −→ sb(n) −→ C ·Mξ1...ξn −→ 0,

0 −→ svect◦(1|n) −→ svect(1|n) −→ C · ξ1 . . . ξn ∂
∂t −→ 0.

0.4. Nonstandard realizations. In [LSh4] we classified the nonstandard gradings
of the simple vectorial Lie superalgebras. Here are the main points. Clearly, the
gradings in the series vect induce the gradings in the series svect, and svect◦; the
gradings in m induce the gradings in sm, le, sle, sle◦, b, sb, sb◦; the gradings in k
induce the gradings in po, h. In what follows we consider k(2n+1|m) as preserving
the Pfaff equation α = 0, where

α = dt+
∑
i≤n

(pidqi − qidpi) +
∑
j≤r

(ξjdηj + ηjdξj) +
∑

k≥m−2r

θkdθk.

The standard realizations are marked by (∗) and in this case indication to r =
0 is omitted; note that (bar several exceptions for small m,n) it corresponds to
the case of the minimal codimension of L0. Observe that the Lie superalgebras
corresponding to different values of r are isomorphic as abstract Lie superalgebras,
but as filtered ones they are distinct.

Lie superalgebra its Z-grading

vect(n|m; r), deg ui = deg ξj = 1 for any i, j (∗)
0 ≤ r ≤ m deg ξj = 0 for 1 ≤ j ≤ r;

deg ui = deg ξr+s = 1 for any i, s

deg τ = 2, deg qi = deg ξi = 1 for any i (∗)
m(n; r), deg τ = deg qi = 1, deg ξi = 0 for any i

0 ≤ r ≤ n deg τ = deg qi = 2, deg ξi = 0 for 1 ≤ i ≤ r < n;

deg ur+j = deg ξr+j = 1 for any j

k(2n + 1|m; r), deg t = 2,

deg pi = deg qi = deg ξj = deg ηj = deg θk = 1 for any i, j, k (∗)
0 ≤ r ≤ [ m

2
] deg t = deg ξi = 2, deg ηi = 0 for 1 ≤ i ≤ r ≤ [ m

2
];

deg pi = deg qi = deg θj = 1 for j ≥ 1 and all i

k(1|2m; m) deg t = deg ξi = 1, deg ηi = 0 for 1 ≤ i ≤ m

Observe that k(1|2; 1) ∼= vect(1|1) and m(1; 1) ∼= vect(1|1) as filtered Lie superal-
gebras.

The exceptional nonstandard gradings. Observe immediately that though
these regradings are not Weisfeiler ones they are used all the time in string theories.

Denote the indeterminates and their respective exceptional degrees as follows
(here k(1|2) is considered in the realization that preserves the Pfaff equation α1 = 0):

vect(1|1) k(1|2) m(1)
vect(1|1) t, ξ 1, 1 2, 1 1,−1

k(1|2) t, ξ, η 1, 1, 0 2, 1, 1 1, 2,−1
m(1) τ, q, ξ 1, 1, 0 1, 2,−1 2, 1, 1
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Denote the nonstandard exceptional realizations by indicating the above degrees
after a semicolon. In addition to the isomorphisms indicated above we get the
following isomorphisms of the filtered Lie superalgebras:

vect(1|1; 2, 1) ∼= k(1|2); k(1|2; 1, 2,−1) ∼= m(1);

vect(1|1; 1,−1) ∼= m(1); m(1; 1, 2,−1) ∼= k(1|2).

0.5. Cartan prolongs. We will repeatedly make use of Cartan’s prolongation;
see [St]. So let me recall the definition and generalize it somewhat. Let g be a Lie
algebra, V a g-module, Si the operator of the ith symmetric power. Set g−1 = V ,
g0 = g and define the ith Cartan prolong for i > 0 as

gi = {X ∈ Hom(g−1, gi−1) : X(v0)(v1, v2, . . . vi)

= X(v1)(v0, v2, . . . , vi) for any vi ∈ g−1}.
Equivalently, let i : Sk+1(g−1)∗ ⊗ g−1 −→ Sk(g−1)∗ ⊗ g∗−1 ⊗ g−1 be a natural
embedding and j : Sk(g−1)∗ ⊗ g0 −→ Sk(g−1)∗ ⊗ g∗−1 ⊗ g−1 a natural map. Then
gk = i(Sk+1(g−1)∗ ⊗ g−1) ∩ j(Sk(g−1)∗ ⊗ g0).

The sum (g−1, g0)∗ =
⊕

i≥−1 gi is called the Cartan prolong (the result of Car-
tan’s prolongation) of the pair (V, g). (In what follows . in superscript denotes, as
is now customary, the collection of all degrees, while ∗ is reserved for dualization; in
the subscripts we retain the old fashioned ∗ instead of . to avoid too close a contact
with the punctuation marks.)

Suppose that the g0-module g−1 is faithful. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = der C[x1, . . . , xn], where n = dim g−1 and

gi = {D ∈ vect(n) : degD = i, [D,X ] ∈ gi−1 for any X ∈ g−1}.
It is subject to an easy verification that the Lie algebra structure on vect(n)

induces same on (g−1, g0)∗.
Of the four simple vectorial Lie algebras, three are Cartan prolongs:

vect(n) = (id, gl(n))∗, svect(n) = (id, sl(n))∗ and h(2n) = (id, sp(n))∗.

The fourth one — k(2n + 1) — is also the prolong under a trifle more general
construction described as follows.

1) The generalized Cartan prolong. Let g− =
⊕

−d≤i≤−1 gi be a nilpotent
Z-graded Lie algebra and g0 ⊂ der0g a Lie subalgebra of the Z-grading-preserving
derivations. For k > 0 define the kth prolong of the pair (g−, g0) to be

gk = (j(S.(g−)∗ ⊗ g0) ∩ i(S.(g−)∗ ⊗ g−))k,

where the subscript k in the right hand side singles out the component of degree k.
Set (g−, g0)∗ =

⊕
i≥−d gi; then, as is easy to verify, (g−, g0)∗ is a Lie algebra.

What is the Lie algebra of contact vector fields in these terms? Denote by hei(2n)
the Heisenberg Lie algebra: its space isW⊕C·z, whereW is a 2n-dimensional space
endowed with a nondegenerate skew-symmetric bilinear form B and the bracket in
hei(2n) is given by the following conditions:

z is in the center and [v, w] = B(v, w) · z for any v, w ∈W .

Clearly, k(2n + 1) is (hei(2n), csp(2n))∗, where for any g we write cg = g ⊕ C · z
or c(g) to denote the trivial central extension with the 1-dimensional even center
generated by z.
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2) The partial Cartan prolong. The Cartan prolongation (g−1, g0)∗ starts
with nonpositive elements and is completely determined by them. Define the partial
Cartan prolongation with a part of g1. Over C, this construction is a purely super
phenomenon but in the study of Lie algebras over fields of prime characteristic it
was independently observed.

Take a g0-submodule h1 in g1. Suppose [g−1, h1] = g0, not a proper subalgebra of
g0. Define the second prolongation of (

⊕
i≤0 gi, h1) to be h2 = {D ∈ g2 : [D, g−1] ⊂

h1}. The terms hi for i > 2 are similarly defined: hi = {D ∈ gi : [D, g−1] ⊂ hi−1}.
Set hi = gi for i ≤ 0 and h∗ =

∑
hi.

Example. vect(1|n;n) is a subalgebra of k(1|2n;n). The former is obtained as
Cartan’s prolong of the same nonpositive part as k(1|2n;n) and a submodule of
k(1|2n;n)1. The simple exceptional superalgebra kas introduced in §3 is another
example.

To see the difference with the conventional Lie algebra case, consider vect(m)1.
As vect(m)0 = gl(m)-module, it has two components, one, g′1, is isomorphic to
vect(m|n)∗−1, the other one, g′′1 , consists of divergence-free fields and is isomorphic
to svect(m)1. If we take g′1, then its partial Cartan prolongation terminates at once
(vect(m)− ⊕ g′1 ∼= sl(m+ 1)); whereas [vect(m)−1, g

′′
1 ] = sl(m), a proper subalgebra

of vect(m)0. Clearly, the situation is the same for vect(m|n).

0.6. Lie superalgebras of vector fields as the Cartan prolongs. The super-
ization of the constructions from sec. 0.5 are straightforward: via Sign Rule. We
thus get:

vect(m|n) = (id, gl(m|n))∗; svect(m|n) = (id, sl(m|n))∗;

h(2m|n) = (id, ospsk(m|2n))∗; le(n) = (id, pesk(n))∗; sle(n) = (id, spesk(n))∗.

Remark. Observe that the Cartan prolongs (id, ospsy(m|2n))∗ and (id, pesy(n))∗
are finite dimensional.

The generalized Cartan prolong of the pair (hei(2n), sp(2n)) described in sec.
0.5 has, after superization, two analogs associated with the contact series k and m,
respectively.
• First, we define hei(2n|m) on the direct sum of a (2n,m)-dimensional su-

perspace W endowed with a nondegenerate skew-symmetric bilinear form and a
(1, 0)-dimensional space spanned by z.

Clearly, we have k(2n+1|m) = (hei(2n|m), c(ospsk(m|2n)))∗ and, given hei(2n|m)
and a subalgebra g of c(ospsk(m|2n)), we call (hei(2n|m), g)∗ the k-prolong of (W, g),
where W is the identity c(ospsk(m|2n))-module.
• The odd analog of k is associated with the following odd analog of hei(2n|m).

Denote by ab(n) the antibracket Lie superalgebra: its space is W ⊕C · z, where W
is an n|n-dimensional superspace endowed with a nondegenerate skew-symmetric
odd bilinear form B; the bracket in ab(n) is given by the following formulas:

z is odd and lies in the center; [v, w] = B(v, w) · z for v, w ∈ W .

Set m(n) = (ab(n), c(pesk(n)))∗ and, given ab(n) and a subalgebra g of c(pesk(n)),
we call (ab(n), g)∗ the m-prolong of (W, g), where W is the identity c(pesk(n))-
module.
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Generally, given a nondegenerate form B on a superspace W and a superalgebra
g that preserves B, we refer to the above generalized prolongations as to mk-
prolongation of the pair (W, g).

0.7. Deformations of the Buttin superalgebras and vect(m|n)-modules.
Here we reproduce a result of Kotchetkoff [Ko1] with some corrections (cf. [Ko2],
[L3] and [LSh2]).

To consider the deformations, recall the definition of the vect(m|n)-module of
tensor fields of type V ; see [BL]. Let V be the gl(m|n) = vect0(m|n)-module
with the lowest weight λ. Make V into a g≥-module, where g = vect(m|n) and
g≥ =

⊕
i≥0 gi, setting g+ · V = 0 for g+ =

⊕
i>0 gi. Let us realize g by vector

fields on the m|n-dimensional linear complex supermanifold Cm|n with coordinates
x. The superspace T (V ) = HomU(g+)(U(g), V ) is isomorphic, due to the Poincaré–
Birkhoff–Witt theorem, to C[[x]] ⊗ V . Its elements have a natural interpretation
as formal tensor fields of type V . When λ = (a, . . . , a) we will simply write T (~a)
instead of T (λ).

Example. T (~0) is the superspace of functions; Vol(m|n) = T (1, . . . , 1;−1, . . . ,−1)
(the semicolon separates the first m coordinates of the weight with respect to the
matrix units Eii of gl(m|n)) is the superspace of densities or volume forms. We
denote the generator of Vol(m|n) corresponding to the ordered set of coordinates x
by vol(x) or volx. The space of λ-densities is Volλ(m|n) = T (λ, . . . , λ;−λ, . . . ,−λ).
In particular, Volλ(m|0) = T (~λ) but Volλ(0|n) = T (−→−λ). Over vect(0|n), we further
set Vol0 = {v ∈ T (−→−1) :

∫
v = 0} and T0(~0) = T0(~0)/C ·1; by definition, Vol ∼= T (~0)

over svect(0|n), so we can set T 0
0 (~0) = Vol0/C · 1.

As is clear from the definition of the Buttin bracket, there is a regrading (namely,
b(n;n) given by deg ξi = 0, deg qi = 1 for all i) under which b(n), initially of depth
2, takes the form g =

⊕
i≥−1 gi with g0 = vect(0|n) and g−1

∼= Π(C[ξ]).
Let us replace the vect(0|n)-module g−1 of functions (with inverted parity) with

the module of λ-densities, i.e., set g−1
∼= C[ξ](volξ)λ, where

LD(volξ)λ = λdivD · volλξ and p(volξ)λ = 1̄.

Then bλ(n;n) — the Cartan’s prolong (g−1, g0)∗ = (Π(Vol(0|n)λ), vect(0|n))∗ — is
a deform of b(n;n). The collection of these deforms for various λ ∈ C constitutes
a deformation of b(n;n); we called it the main deformation; see [ALSh]. (Though
main, this deformation is not the quantization of the Buttin bracket; for the latter
see [Ko1] or [L3].) The deform bλ(n) of b(n) is the regrading of bλ(n;n) inverse to
the regrading of b(n) into b(n;n).

Another description of the main deformation is as follows. Set

ba,b(n) = {Mf ∈ m(n) : a divMf = (−1)p(f)2(a− bn)
∂f

∂τ
}.(0.7)

It is subject to a direct check that ba,b(n;n) ∼= bλ(n;n) for λ = 2a
n(a−b) . This

isomorphism shows that λ actually runs over CP1, not C. Observe that for a = nb,
i.e., for λ = 2

n−1 , we have bnb,b(n) ∼= sm(n).
As follows from the description of vect(m|n)-modules ([BL]) and the criteria for

simplicity of Z-graded Lie superalgebras ([K1]), the Lie superalgebras bλ(n) are
simple for n > 1 and λ 6= 0, −1. The same criteria also make it clear that the
bλ(n) are nonisomorphic for distinct λ’s. (Notice, that at some values of λ the Lie
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superalgebras bλ(n) have additional deformations distinct from the above. These
deformations are partly described in [Ko1], [L3].)

The geometric interpretation of ba,b(n) follows from (0.7): this is the Lie super-
algebra that preserves volaq,ξ,τα

a−bn
0 . The meaning of parameters a and b is clear

from column g0 in row ba,b(n) in Table 0.8.

0.8. Several first terms that determine the Cartan and mk-prolongations.
To facilitate the comparison of various vectorial superalgebras, consider the follow-
ing table. The central element z ∈ g0 is supposed to be chosen so that it acts on
gk as k · id|gk

. As in Introduction, the sign ⊃+ (resp. ⊂+) denotes the semidirect
sum with the subspace or ideal on the left (right) of it; Λ(r) = C[ξ1, . . . , ξr] is the
Grassmann superalgebra.

g g−2 g−1 g0

vect(n|m; r) − id⊗ Λ(r) gl(n|m− r)⊗ Λ(r)⊃+ vect(0|r)
vect(1|m;m) − Λ(m) Λ(m)⊃+ vect(0|m)

svect(n|m; r) − id⊗ Λ(r) sl(n|m− r) ⊗ Λ(r)⊃+ vect(0|r)
svect(1|m;m) − Vol(0|m) vect(0|m)

svect◦(1|m;m) − Vol0(0|m) vect(0|m)

svect◦(1|2) − T0(~0) vect(0|2) ∼= sl(1|2)

svect(2|1) − Π(T0(~0)) vect(0|2) ∼= sl(2|1)

k(2n+ 1|m; r) Λ(r) id⊗ Λ(r) cosp(m− 2r|2n)⊗ Λ(r)⊃+ vect(0|r)
h(2n|m; r) Λ(r)/C · 1 id⊗ Λ(r) osp(m− 2r|2n)⊗ Λ(r)⊃+ vect(0|r)
k(1|2m;m) − Λ(m) Λ(m)⊃+ vect(0|m)

k(1|2m+ 1;m) Λ(m) Π(Λ(m)) Λ(m)⊃+ vect(0|m)

Recall that ba,b(n) ∼= bλ(n) for λ = 2a
n(a−b) ; z is the center (unit matrix) in g0, d is

an outer derivation — the grading operator — of g0.

g g−2 g−1 g0

ba,b(n; r) Π(Λ(r)) id⊗ Λ(r) (spe(n− r)⊃+ C(az + bd)) ⊗ Λ(r)⊃+ vect(0|r)
bλ(n; n) − Π(Volλ(0|n)) vect(0|n)

m(n; r) Π(Λ(r)) id⊗ Λ(r) cpe(n− r)⊗ Λ(r)⊃+ vect(0|r)
m(n; n) − Π(Λ(n)) Λ(n)⊃+ vect(0|n)

le(n; r) Π(Λ(r))/C · 1 id⊗ Λ(r) pe(n− r)⊗ Λ(r)⊃+ vect(0|r)
le(n; n) − Π(T0(~0)) vect(0|n)

sle◦(n; r) Π(Λ(r))/C · 1 id⊗ Λ(r) spe(n− r)⊗ Λ(r)⊃+ vect(0|r)
sle◦(n; n) − Π(T0(~0)) svect(0|n)
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1. The exceptional Lie superalgebra vas(4|4) = (spin, as)∗

1.1. A. Sergeev’s extension. Let ω be a nondegenerate superskew-symmetric
odd bilinear form on an (n, n)-dimensional superspace V . In the standard basis of

V (all the even vectors come first) the canonical matrix of the form ω is
(

0 1n
1n 0

)
and the elements of pe(n) = aut(ω) can be represented by supermatrices of the form(
a b
c −at

)
, where b = bt, c = −ct. The Lie superalgebra spe(n) is singled out by

the requirement that tra = 0. Setting

deg
((

0 0
c 0

))
= −1, deg

((
a 0
0 −at

))
= 0, deg

((
0 b
0 0

))
= 1,(1.1)

we endow pe(n) with a Z-grading. It is known ([K1]) that spe(n) = pe(n) ∩ sl(n|n)
is a simple Lie superalgebra for n ≥ 3.

A. Sergeev proved (1977, unpublished) that there exists just one nontrivial cen-
tral extension of spe(n). It exists for n = 4 and is denoted by as. Let us represent
an arbitrary element A ∈ as as a pair A = x+ d · z, where x ∈ spe(4), d ∈ C and z
is the central element. In the matrix form the bracket in as is[(

a b
c −at

)
+ d · z,

(
a′ b′

c′ −a′t
)

+ d′ · z
]

=
[(
a b
c −at

)
,

(
a′ b′

c′ −a′t
)]
− 1

2
tr cc̃′ · z,

(1.2)

where for the skew-symmetric matrix cij = Eij − Eji we set c̃ij = ckl for the even
permutation (1234) 7→ (ijkl). Clearly, deg z = −2 with respect to the grading (1.1).

1.2. The Lie superalgebra as can also be described with the help of the spinor
representation. Consider po(0|6), the Lie superalgebra whose superspace is the
Grassmann superalgebra Λ(ξ, η) generated by ξ1, ξ2, ξ3, η1, η2, η3 and the bracket is
the Poisson bracket. Recall that h(0|6) = Span(Hf : f ∈ Λ(ξ, η)).

Now, observe that spe(4) can be embedded into h(0|6). Indeed, setting deg ξi =
deg ηi = 1 for all i we introduce a Z-grading on Λ(ξ, η) which, in turn, induces a
Z-grading on h(0|6) of the form h(0|6) =

⊕
i≥−1 h(0|6)i. Since sl(4) ∼= o(6), we can

identify spe(4)0 with h(0|6)0.
It is not difficult to see that the elements of degree −1 in spe(4) and h(0|6)

constitute isomorphic sl(4) ∼= o(6)-modules. It is subject to a direct verification
that it is possible to embed spe(4)1 into h(0|6)1.

Sergeev’s extension as is the result of the restriction on spe(4) ⊂ h(0|6) of the co-
cycle that turns h(0|6) into po(0|6). The quantization deforms po(0|6) into gl(Λ(ξ));
the through maps Tλ : as −→ po(0|6) −→ gl(Λ(ξ)) are representations of as in the
4|4-dimensional modules spinλ distinct for distinct values λ of the central element
z. (Here λ ∈ C plays the role of Planck’s constant.) The explicit form of Tλ is as
follows:

Tλ :
(
a b
c −at

)
+ d · z 7→

(
a b− λc̃
c −at

)
+ λd · 14|4,(1.3)

where 14|4 is the unit matrix and c̃ is defined after formula (1.2). Clearly, Tλ is an
irreducible representation.
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1.3. Theorem. 1) The Cartan prolong fλ = (spinλ, as)∗ is infinite dimensional
and simple for λ 6= 0.

2) fλ ∼= fµ if λ · µ 6= 0.

Observe that though the representations Tλ are distinct for λ 6= 0, the corre-
sponding Cartan prolongs are isomorphic.

Convention. For brevity, we denote the isomorphic superalgebras fλ = (spinλ, as)∗
for any λ 6= 0 by vas(4|4) = (spin, as)∗.

Proof. Heading 1) consists of two statements: a) (spin, as)k 6= 0 for all k > 0; b)
the Lie superalgebra (spinλ, as)∗ has no nontrivial Z-graded ideals.

a) This follows from the fact that the elements uk+1
i ∂ξi belong to (spin, as)k for

any k > 0 and any i (to prove the statement it suffices to consider only one i).
b) Assume the contrary: let i =

⊕
k≥−1 ik be a nonzero ideal of h = (spin, as)∗.

Let x ∈ ik be a nonzero homogeneous element. Since g = vect(4|4) ⊃ (spin, as)∗ is
transitive, then the superspace (k + 1 brackets)

[h−1, [h−1, . . . , [h−1, x] . . . ] = [g−1, [g−1, . . . , [g−1, x] . . . ] ⊂ i−1

is a nonzero subspace of h−1. Since Tλ is irreducible, i−1 = h−1. The Jacobi identity
implies that [i−1, h1] ⊂ i0 is an ideal of h0.

But h0 = as has only one nontrivial ideal, the center. Since [i−1, h1] = [h−1, h1]
contains elements of the form ui

∂
∂ξi

for any i, which do not belong to the center, it
follows that i0 = h0. In particular, i0 contains the element

Tλ(z) = −λ
∑

(ui
∂

∂ui
+ ξi

∂

∂ξi
).

But [Tλ(z), h] = −λ · k · h for any h ∈ hk. Hence, i = h and h is simple.
2) follows from the fact that the nonpositive parts of fλ and fµ are isomorphic.

1.4. A problem. For λ = 0 the representation T0 is not faithful and T0(as) =
spe(4). The Cartan prolong of the pair (id, spe(4)) is well-known: this is sle(4).
Recall that we can realize le(n) by the generating functions — the elements of
C[u, ξ] — with the Buttin bracket. The subalgebra sle(n) is generated by harmonic
functions, i.e., by functions that satisfy ∆(f) = 0, where ∆ =

∑n
i=1

∂2

∂ui∂ξi
. The

exceptional Lie superalgebra (spin, as)∗ is a deform of sle(4)⊃+ C ·∑(ui ∂
∂ui

+ ξi
∂
∂ξi

).
An explicit expression of the corresponding cocycle is desirable: it will enable us
to express the bracket in (spin, as)∗ in terms of harmonic functions (plus one more
element).

2. An explicit form of the vector fields from

vas(4|4) = (spin, as)∗ ⊂ svect(4|4)

Every element D ∈ vect(4|4) is of the form D =
∑
i≤4(Pi

∂
∂ξi

+ Qi
∂
∂ui

), where
Pi, Qi ∈ C[u, ξ].

2.1. Lemma. The homogeneous (with respect to parity) vector field D ∈ vect(4|4)
belongs to (spin, as)∗ if and only if it satisfies the following system of equations:

∂Qi
∂uj

+ (−1)p(D) ∂Pj
∂ξi

= 0 for any i 6= j;(2.1)
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∂Qi
∂ui

+ (−1)p(D) ∂Pi
∂ξi

=
1
2

∑
1≤j≤4

∂Qj
∂uj

for i = 1, 2, 3, 4;(2.2)

∂Qi
∂ξj

+
∂Qj
∂ξi

= 0 for any i, j;(2.3)

∂Pi
∂uj
− ∂Pj
∂ui

= (−1)p(D) · λ · (∂Qk
∂ξl
− ∂Ql
∂ξk

)
(2.4)

for any even permutation
(

1 2 3 4
i j k l

)
.

2.1.1. Remark. 1) Observe that the sum of the 4 equations (2.2) yields that divD =
0, i.e., (spin, as)∗ ⊂ svect(4|4).

2) For λ = 0 the system (2.1)–(2.4) singles out the superalgebra

(sle◦(4)⊃+ C ·
∑

(ui
∂

∂ui
+ ξi

∂

∂ξi
))⊃+ C · Leξ1ξ2ξ3ξ4 .

2.1.2. Remark. Actually, any Cartan prolongation is obtained as a solution of some
system of differential equations with constant coefficients. For Lie algebras this fact
is lucidly explained in [St]. The supercase is absolutely analogous.

Let g−1 = V = Span( ∂
∂xi

, i = 1, . . . , n). Then any vector field D =
∑
fi(x)∂xi

generates a linear operator LD : V −→ vect(V ) — the Lie derivative — LD( ∂
∂xi

) =
[D, ∂

∂xi
]. This operator is a tensor object determined by the matrix P (D) = (Pi,j),

where Pi,j = (−1)p(D)p(xj) ∂fi

∂xj
. If D ∈ vect(V )0, then the matrix P (D) is a nu-

merical one and can be singled out from gl(V ) by a homogeneous linear system.
The fact that any operator of the left adjoint action adl( ∂

∂xi
) commutes with its

right twin adr( ∂
∂xi

) means that any vector field D ∈ vect(V ) belongs to the Cartan
prolongation (V, g)∗ if and only if the matrix P (D) is a g-valued function on V .

Proof. Denote by gλ =
⊕

i≥−1 gλi for λ 6= 0 the space of solutions of the system
(2.1)–(2.4). Clearly, gλ−1

∼= vect(4|4)−1. Let D ∈ gλ0 . Then the matrix of the
operator D in its action on gλ−1 is of the form(

a b
c d

)
, where aij =

∂Qi
∂uj

, bij =
∂Pi
∂uj

,

cij = (−1)p(D) ∂Qi
∂ξj

, dij = (−1)p(D) ∂Pi
∂ξj

.

Therefore, equations (2.1) and (2.2) mean that a+ dt = (1
2 tra) · 14, equations (2.3)

that c+ ct = 0, equations (2.4) that b− bt = λ(c̃− c̃t). Set

a0 = a− (
1
4
tra) · 14, d0 = d− (

1
4
tra) · 14.

Then

a0 + dt0 = a+ dt − (
1
2
tra) · 14 = 0; c+ ct = 0; b− bt = λ(c̃− c̃t).(2.5)

Comparing formulas (2.5) with (1.3) we see that gλ0 coincides with the image of as
under Tλ, i.e., with (spin, as)0.
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Set

Duj (D) =
∑
i≤4

(
∂Pi
∂uj

∂

∂ξi
+
∂Qi
∂uj

∂

∂ui
)

and

D̃ξj (D) = (−1)p(D)
∑
i≤4

(
∂Pi
∂ξj

∂

∂ξi
+
∂Qi
∂ξj

∂

∂ui
).

The operators Duj and D̃ξj , clearly, commute with the gλ−1-action. Observe that
the operators commute, not supercommute.

Since equations (2.1)–(2.4) is a linear combination of only these operators, the
definition of Cartan prolongation itself ensures an isomorphism of (gλ)n with (fλ)n.

2.2. The right inverse of ∆ on sle◦. Let f be an arbitrary homogeneous with
respect to the degree in u and ξ harmonic function, distinct from ξ1 . . . ξn, i.e., an
arbitrary generating function for sle◦(n). Then f = ∆(F ) for some function F (as
follows from the computation of the homology of ∆ which is an easy exersise; the
answer: the homology spaceH(∆) is spanned by ξ1 . . . ξn). Clearly, F is determined
up to an arbitrary harmonic summand. Set Φ =

∑
uiξi. Then

∆(Φf) = (∆Φ)f − Φ∆f − {Φ, f} =
(
n+ degu f − degξ f

)
f.(2.6)

Define the right inverse of ∆ by the formula

∆−1f =
1

ν(f)
(Φf), where ν(f) = n+ degu f − degξ f.(2.7)

Since the kernel of ∆ is nonzero, ∆ has no inverse. Still, ∆−1 maps sle◦(n) into
le(n) without kernel and on sle◦(n) the following formula holds:

∆(∆−1f) = f for Lef ∈ sle◦(n).

2.3. Theorem. Any vector field D ∈ gλ can be represented in the form

D = Df + cZ, where c ∈ C and Z =
∑
i≤4

(ui
∂

∂ui
+ ξi

∂

∂ξi
),

where Lef ∈ sle◦(4) and where (recall that An ⊂ Sn denotes the subgroup of even
permutations):

Df = Lef + λ

(
−Lef̂ + 2

∑
1≤i≤4; (i,j,k,l)∈A4

∂3(∆−1(f))
∂ξj∂ξk∂ξl

∂
∂ξi

)
for f̂ = 4∆−1

(
∂4(∆−1(f))
∂ξ1∂ξ2∂ξ3∂ξ4

)
.

(2.8)

For the proof see Appendix 1.

Corollary. 1) The Lie superalgebra gλ is a deformation of sle◦(4)⊃+ C · Z.
2) If degξ f ≤ 1, then Df = Lef , hence, h = {c · Z + Df : degξ f ≤ 1, c ∈ C}

remains rigid under this deformation.
3) Let Ω = du1∧du2∧du3∧du4 be the volume element on the underlying manifold

of the C4|4. Observe that the volume element vol(u, ξ) on the whole C4|4 is invariant
with respect to the gλ-action, but Ω is not invariant. It is invariant, however, with
respect to the nondeformed subalgebra h.
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4) Let D ∈ gλ; let LD be the Lie derivative. Denote by ∇ =
∑

∂
∂ui

∂
∂ξi

the bivector
dual to ω. Observe that the left hand sides of equations (2.1)–(2.4) determine the
coefficients of the 2-form LD(ω):

equations (2.1) determine the coefficients of dujdξi;
equations (2.2) determine the coefficients of duidξi;
equations (2.3) determine the coefficients of dξjdξi;
equations (2.4) determine the coefficients of dujdui.
The right hand sides of (2.2) determine the nonzero coefficients of the form

1
2 (
∑ ∂Qi

∂ui
)ω, while the right hand sides of (2.4) determine the nonzero coefficients

of the form λ(LDΩ) ∗ ∇, where ∗ is the convolution of tensors.

Therefore, (2.1)–(2.4) can be rewritten in the form

LDω =
1
2
(
∑ ∂Qi

∂ui
)ω + λ(LDΩ) ∗ ∇.(2.9)

If we replace coefficient of ω in the right hand side of (2.9) with an arbitrary function
Ψ(u, ξ) and add the constraint

div(D) =
∑

(
∂Qi
∂ui
− (−1)p(D) ∂Pi

∂ξi
) = 0,(2.10)

then the sum of the four equations (2.2) with (2.10) automatically yields

Ψ(u, ξ) =
1
2

∑ ∂Qi
∂ui

.

Thus, we can distinguish the Lie superalgebra gλ by{
LDω = Ψ · ω +λ(LDΩ) ∗ ∇,

div(D) = 0.(2.11)

3. The exceptional Lie subsuperalgebra kas of k(1|6)

If the operator d that determines a Z-grading of the Lie superalgebra g does not
belong to g, we denote the Lie superalgebra g⊃+ C · d by dg. Recall also that c(g) or
just cg denotes the trivial 1-dimensional central extension of g with the even center.

3.1. The Lie superalgebra g = k(1|2n) is generated by the functions from C[t, ξ, η],
where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn). The standard Z-grading of g is induced
by the Z-grading of C[t, ξ, η] given by deg t = 2, deg ξi = deg ηi = 1; namely,
degKf = deg f − 2. Clearly, in this grading g is of depth 2. Let us consider the
functions that generate several first homogeneous components of g =

⊕
i≥−2 gi:

component g−2 g−1 g0 g1

its generators 1 Λ1(ξ, η) Λ2(ξ, η) ⊕ C · t Λ3(ξ, η)⊕ tΛ1(ξ, η)

As one can prove directly, the component g1 generates the whole subalgebra g+ ⊂ g
of the elements of positive degree. The component g1 splits into two g0-modules
g11 = Λ3 and g12 = tΛ1. It is obvious that g12 is always irreducible and the
component g11 is trivial for n = 1.

The Cartan prolongations of these components are well-known:

(g− ⊕ g0, g11)mk∗ ∼= po(0|2n)⊕ C ·Kt
∼= d(po(0|2n));

(g− ⊕ g0, g12)mk∗ = g−2 ⊕ g−1 ⊕ g0 ⊕ g12 ⊕ C ·Kt2
∼= osp(2n|2).
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Observe a remarkable property of k(1|6). For n > 1 and n 6= 3 the component g11 of
k(1|2n) is irreducible. For n = 3 the component splits into the two irreducible dual
modules that we will denote by gξ11 and gη11. Observe further, that g0 = o(6) ∼= sl(4).
As sl(4)-modules, gξ11 and gη11 are the symmetric squares S2(id) and S2(id∗) of the
identity 4-dimensional representation and its dual, respectively. Explicitly,

gξ11 = Span (ξ1ξ2ξ3, ξ1(ξ2η2 + ξ3η3), ξ2(ξ1η1 + ξ3η3), η3(ξ1η1 − ξ2η2), ξ1η2η3,
ξ3(ξ1η1 + ξ2η2), η2(ξ1η1 − ξ3η3), ξ2η1η3, η1(ξ2η2 − ξ3η3), ξ3η1η2)

and gη11 is obtained from gξ11 after the replacement ξ ←→ η.

3.2. Theorem. 1) The Cartan prolong (g− ⊕ g0, g
ξ
11 ⊕ g12)mk∗ is infinite dimen-

sional and simple. It is isomorphic to (g− ⊕ g0, g
η
11 ⊕ g12)mk∗ .

2) (g− ⊕ g0, g
ξ
11)

mk
∗ ∼= (g− ⊕ g0, g

η
11)

mk
∗ ∼= as⊃+ CKt

∼= d(as).

Proof. Heading 2) is straightforward; the simplicity in heading 1) follows from
Kac’s criterion [K1]. To see that the Cartan prolong (g− ⊕ g0, g

ξ
11 ⊕ g12)mk∗ is

infinite dimensional we need the following lemma which clinches the proof.

Lemma. Denote h = (g− ⊕ g0, g
ξ
11 ⊕ g12)mk∗ . Consider the Z-grading of h induced

by the standard grading of k(1|6).
For k > 1 the operator Tk = (ad Kt2)|hk

determines an isomorphism of sl(4)-
modules hk and hk+2. The operator T1 = (ad Kt2)|gξ

11
determines an isomorphism

of gξ11 with its image.

Proof. We easily check that Kt2 ∈ h and

ad Kt2 = 2t(t∂t+ E − 2), where E =
∑

(ξi
∂

∂ξi
+ ηi

∂

∂ηi
).

Therefore, Ker(ad Kt2) in k(1|6) consists of the fields generated by the functions f
such that degt f + degξ f + degη f − 2 = 0, i.e., Ker(ad Kt2) ∼= sl(4)⊕ g12 ⊕CKt2 .

This makes it clear that, first, ad Kt2 is sl(4)-invariant; second, the operators Tk
have no kernel for k > 0.

We will denote the simple exceptional Lie superalgebra described in heading 1)
of Theorem 3.2 by kas.

4. Prolongs of the Lie superalgebras cg.

The exceptional Cartan prolong vle(4|3) = (Π(T0(~0)), cvect(0|3))∗

In order to construct this exceptional example we have to recall (see sec. 0.7)
that on the supermanifold of purely odd dimension the space of volume forms is
T (−→−1) and the space of half-densities is T (

−−−→−1/2) (not T (−→1 ) and T (
−→
1/2) as on

manifolds).

4.1. Let us now describe a construction of several exceptional simple Lie super-
algebras. Let u = vect(m|n), let g = (u−1, g0)∗ be a simple Lie subsuperalgebra
of u. Moreover, let there exist an element D ∈ u0 that determines an exterior
derivation of g and has no kernel on u+ =

⊕
i>0 ui. Let us study the prolong

g̃ = (g−1, g0 ⊕ CD)∗.

Lemma. Either g̃ is simple or g̃ = g⊃+ CD, where g = (u−1, g0)∗.
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Proof. Let I be a nonzero graded ideal of g̃. The subsuperspace (ad u−1)k+1a of
u−1 is nonzero for any nonzero homogeneous element a ∈ uk and k ≥ 0. Since
g−1 = u−1, the ideal I contains nonzero elements from g−1; by simplicity of g the
ideal I contains the whole g. If, moreover, [g−1, g̃1] = g0, then by definition of the
Cartan prolongation g̃ = g⊃+ CD.

If, instead, [g−1, g̃1] = g0 ⊕ CD, then D ∈ I and since [D, u+] = u+, we derive
that I = g. In other words, g is simple.

4.2. Example 1. Take u = vect(2n−1|2n−1 − 1). Consider u−1 as Π(T0(~0)) and
set g−1 = u−1, g0 = vect(0|n). Clearly, g−1 is a g0-module. Then (g−1, g0)∗ is a
simple Lie superalgebra isomorphic to le(n;n). The isomorphism is established with
the help of a regrading. For the operator D of the exterior derivation of le(n;n) we
take the grading operator d ∈ m(n;n)0 ⊂ u0, i.e., g0 ⊕ CD ∼= cvect(0|n).

In particular, for n = 2 we have g−1 = Π(ξ1, ξ2, ξ1ξ2); g0 = vect(0|2) ∼= sl(2|1).
Then c(g0) = gl(2|1) and (Π(T0(~0)), cvect(0|2))∗ ∼= vect(2|1).

Theorem. 1) vle(4|3) = (Π(T0(~0)), cvect(0|3))∗ is a simple Lie superalgebra.
2) (Π(T0(~0)), cvect(0|n))∗ ∼= d(le(n;n)) for n > 3.

Proof. Thanks to Lemma 4.1 heading 1) follows from the fact that the Cartan
prolong (Π(T0(~0)), cvect(0|3))∗ is bigger than sle◦(3; 3)⊃+ CD; we will prove this
fact in §5. Heading 2) is proved in Appendix 2.

4.3. To clarify the structure of vle(4|3) = (Π(T0(~0)), cvect(0|3))∗, consider one
more construction. Let us describe one wonderful property of sle◦(3) that singles
it out among the sle◦(n).

In the standard grading of g = sle◦(3) we have dim g−1 = (3, 3), g0
∼= spe(3).

For the regraded superalgebra Rg = sle◦(3; 3) we have dimRg−1 = (3, 3), Rg0 =
svect(0|3) ∼= spe(3). Therefore, for sle◦(3) and only for it among the sle◦(n), the re-
grading R determines a nontrivial automorphism. In terms of generating functions
the regrading R is given by the formulas:

1) if degξ(f) = 0, then R(f) = ∆(fξ1ξ2ξ3);
2) if degξ(f) = 1, then R(f) = f ;

3) if degξ(f) = 2, then R(f) = ∂3(∆−1f)
∂ξ1∂ξ2∂ξ3

(see (2.6)).
We see that R2 = SIGN , where the operator SIGN is defined by the formulas

SIGN(D) = (−1)p(D)D on the vector fields

and

SIGN(f) = (−1)p(f)+1f on the generating functions.

Let now g = le(3; 3) and i1 : g −→ u = vect(4|3) be the embedding that preserves
the standard Z-grading of g. Let h = le(3) and h̃ = sle◦(3) ⊂ h. Then the map

i2 = SIGN ◦ i1R : h̃ −→ u

is an embedding that preserves the grading of h̃.
Observe that h̃0 = spe(3) and h0 = pe(3) ∼= h̃0 ⊕ C(

∑
qiξi). On the space

i2(h−1), the action of z = −2i1(
∑
qiξi) + 3d coincides with the action of

∑
qiξi on

h−1. Therefore, setting i2(
∑
qiξi) = z we get an embedding i2(h−1 ⊕ h0) −→ u

that can be extended to an embedding of h to u. Under this embedding

i1(g−1 ⊕ g0) + i2(h−1 ⊕ h0) = u−1 ⊕ (g0 ⊕ Cd),
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i.e., the nondirect sum of the images of i1 and i2 covers the whole nonpositive part
of vle(4|3).

Thus, there are two distinct embeddings of le(3) ∼= le(3; 3) into (Π(T0(~0)),
cvect(0|3))∗:

i1 : le(3; 3) −→ vle(4|3)(4.1.1)

and

i2 : le(3) −→ vle(4|3)(4.1.2)

such that

i1(le(3; 3)) + i2(le(3)) = vle(4|3)

(the sum in the left hand side is not a direct one!). As a linear space, vle(4|3) is
the quotient of le(3; 3))⊕ le(3) modulo the subspace V = {(SIGN ◦Rg⊕−g) : g ∈
sle◦(3)}. The map ϕ defined by the formula

ϕ|i1(le(3;3)) = SIGN ◦ i2i−1
1 ; ϕ|i2(le(3)) = i1i

−1
2

determines a nontrivial automorphism of vle(4|3).

5. An explicit form of the vector fields from

vle(4|3) = (Π(T0(~0)), cvect(0|3))∗ ⊂ vect(4|3)

Here we consider vle(4|3)0 = cvect(0|3) and the module vle(4|3)−1 = Π(T0(~0))
over it. Let us identify this module with the quotient of Π(Λ(η1, η2, η3)) modulo
constants and redenote the basis in Π(Λ(η1, η2, η3)) so that this quotient becomes
spanned by the partial derivatives with respect to the certain new indeterminates.
Namely, we set

Π(η1η2η3) 7→ − ∂

∂y
; Π(ηi) 7→ − ∂

∂ui
; Π(

∂η1η2η3
∂ηi

) 7→ − ∂

∂ξi
.

Every element D ∈ vect(4|3) is of the form D =
∑
i≤3

(Pi ∂
∂ξi

+Qi ∂
∂ui

)+R ∂
∂y , where

Pi, Qi, R ∈ C[y, u, ξ].

5.1. Lemma. Set g−1 = Span( ∂∂y ; ∂
∂ui

, ∂
∂ξi

for i ≤ 3), g0 = cvect(0|3). The homo-
geneous (with respect to parity) vector field D ∈ vect(4|3) belongs to (g−1, g0)∗ if
and only if it satisfies the following system of equations:

∂Qi
∂uj

+ (−1)p(D) ∂Pj
∂ξi

= 0 for any i 6= j;(5.1)

∂Qi
∂ui

+ (−1)p(D) ∂Pi
∂ξi

=
1
2

 ∑
1≤j≤3

∂Qj
∂uj

+
∂R

∂y

 for i = 1, 2, 3;(5.2)

∂Qi
∂ξj

+
∂Qj
∂ξi

= 0 for any i, j; in particular
∂Qi
∂ξi

= 0;(5.3)

∂Pi
∂uj
− ∂Pj
∂ui

= −(−1)p(D) ∂R

∂ξk
for any even permutation

(
1 2 3
i j k

)
;(5.4)

∂Qi
∂y

= 0 for i = 1, 2, 3;(5.5)
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∂Pk
∂y

= (−1)p(D) 1
2
(∂Qi
∂ξj
− ∂Qj

∂ξi

)
for any even permutation

(
1 2 3
i j k

)
.(5.6)

Proof is similar to that of Lemma 2.1.

Remark. The left hand sides of (5.1)–(5.6) determine the coefficients of the 2-form
LDω, where LD is the Lie derivative and ω =

∑
1≤i≤3

duidξi. It is interesting to

interpret the right hand sides of these equations.

5.2. Theorem. Every solution of the system (5.1)–(5.6) is of the form:

D = Lef + yBf − (−1)p(f)

(
y∆(f) + y2 ∂3f

∂ξ1∂ξ2∂ξ3

)
∂

∂y

+Bg − (−1)p(g)
(

∆(g) + 2y
∂3g

∂ξ1∂ξ2∂ξ3

)
∂

∂y
,

(5.7)

where f, g ∈ C[u, ξ] are arbitrary and the operator Bf is given by the formula:

Bf =
∂2f

∂ξ2∂ξ3

∂

∂ξ1
+

∂2f

∂ξ3∂ξ1

∂

∂ξ2
+

∂2f

∂ξ1∂ξ2

∂

∂ξ3
.(5.8)

Proof is similar to that of Theorem 2.3; see Appendix 1 and [ShP].
Formula (5.7) makes it possible to explicitly express the two embeddings (4.1.1)

i1, i2 : le(3) −→ vle(4|3).

The first embedding i1 preserves the grading of le(3; 3), cf. 0.4. I do not know any
compact general formula for i1 and can only determine it component-wise (mind
that A3 in the first line of the following displayed formula is the group of even
permutations):

i1(Lef(u)) = Le∑ ∂f
∂ui

ξjξk−yf , where y is treated as a parameter

and (i, j, k) ∈ A3;

i1(Le∑ fi(u)ξi
) = Lef − ϕ(u)

∑
ξi
∂

∂ξi
+ (−ϕ(u)y + ∆(ϕ(u)ξ1ξ2ξ3))

∂

∂y
,

where ϕ(u) = ∆(f);

i1

(
Le ∑

1≤i≤3; (i,j,k)∈A3

ψi(u)ξkξl

)
= Bf −∆(f)

∂

∂y
, where Bf is given by (5.8);

i1(Leψ(u)ξ1ξ2ξ3) = −ψ(u)
∂

∂y
.

(5.9)

The second embedding i2 preserves the standard grading of le(3). It is given by
the formulas

i2(Lef ) = Lef + yBf − (−1)p(f)

(
y∆(f) + y2 ∂3f

∂ξ1∂ξ2∂ξ3

)
∂

∂y
.(5.10)

6. The exceptional simple Lie superalgebras of depth 2:

mb(4|5) = (ab(4), cvect(0|3))m∗ and ksle(9|6) = (hei(8|6), svect(4)3,4)k∗

Two more examples of exceptional simple Lie superalgebras are obtained with
the help of a construction that generalizes the constructions from §4 to Lie superal-
gebras of depth 2. Let u =

⊕
i≥−2 ui be either m(n) or k(2m+1|n); let g = (u−, g0)∗
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be a subalgebra of u such that the subspace u−2 belongs to the center of g and the
quotient g/u−2 is simple. Moreover, let D ∈ u0 determine an exterior derivation of
g without kernel on u−2 ⊕ u+, where u+ =

⊕
i>0 ui.

Let us study the mk-prolong g̃ = (g−, g0 ⊕ CD)mk∗ . The main result of this
section: a description of two simple exceptional Lie superalgebras mb(4|5) = (ab(4),
cvect(0|3))m∗ (Theorem 6.2) and ksle(9|6) = (hei(8|6), svect3,4(4))k∗ (Theorem 6.5).

6.1. Lemma. Either g̃ is simple or g̃ ∼= g⊃+ CD, where g = (u−, g0)∗.

Proof. First, let us prove that if g̃ 6∼= g⊃+ CD , then u−2 is not an ideal in g̃. Indeed,
in this case there exist g−1 ∈ g−1, g0 ∈ g0 and g1 ∈ g̃1 such that [g1, g−1] = D+ g0.

Let u−2 = Cz. Then [g−1, z] = [g0, z] = 0 and we have

[g−1, [z, g1]] = [[g−1, z], g1] + (−1)p(g−1)p(z)[z, [g−1, g1]]
+(−1)p(g−1)p(z)[z,D + g0] = (−1)p(g−1)p(z)[z,D] 6= 0.

(We have taken into account that D has no kernel on u−2.) Hence, [z, g1] is a
nonzero element of g−1. The rest of the proof mimics that of Lemma 4.1

6.2. Consider ĝ = b1/2(n;n). We have

ĝ−1 = Π(T (
−−−→−1/2)); ĝ0 = cvect(0|n)

and the ĝ0-action on ĝ−1 preserves the nondegenerate superskew-symmetric form

B(ϕ
√
vol, ψ

√
vol) =

∫
ϕψ · vol; p(B) ≡ n (mod 2).(6.1)

Now, let g = c̃(b1/2(3; 3)) be the corresponding to (6.1) nontrivial central exten-
sion (we indicate this fact by tilde over c) of ĝ. The depth of c̃(b1/2(3; 3)) is equal
to 2. This central extension is naturally embedded into

u =
{

m(2n−1) for n odd,
k(1 + 2n−1|2n−1) for n even.

As the operator D described in sec. 6.1 we take the grading operator d ∈ u0, i.e.,
g0 ⊕ CD ∼= c(g0).

Example. Let n = 2. Then g−1 = Π(T (
−−−→−1/2)) and g− = hei(2|2). We also have

c(g0) = cvect(0|2) ∼= cosp(2|2) and (hei(2|2), cvect(0|2))k∗ ∼= k(3|2); see sec. 0.6.

Theorem. 1) (ab(4), cvect(0|3))m∗ is a simple Lie superalgebra.
2) (ab(2n−1), cvect(0|n))mk∗ ∼= d((ab(2n−1), vect(0|n))mk∗ ) ∼= d(b(n;n)) for n > 3.

Proof. Thanks to Lemma 6.1 heading 1) follows from the fact that the m-prolonga-
tion of (ab(4), cvect(0|3)) is bigger than (ab(4), vect(0|3))m∗ . We give explicit formu-
las in Appendix 3. Heading 2) is proved in Appendix 2.

6.3. The exceptional extension esle◦(3). Let us clarify the structure of the ex-
ceptional Lie superalgebra (ab(4), cvect(0|3))mk∗ with the help of a construction sim-
ilar to that from §4. To this end, we describe another remarkable property of sle◦(3)
that singles it out among the sle◦(n).

The Lie superalgebra g = sle◦(3) has a 2ε-dimensional nontrivial central exten-
sion esle◦(3): the element M1 of degree −2 with respect to the standard grading of
sle◦(3) extends sle◦(3) to sb◦(3) while z of degree −2 with respect to the grading
of sle◦(3; 3) is associated with the form B on the space g−1 of half-densities with
shifted parity (see (6.1)) in the realization g = sle◦(3; 3).
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The regrading R interchanges these central elements and establishes a nontrivial
automorphism of esle◦(3).

Now let g = c̃(b1/2(3; 3)) be the described in sec. 6.2 nontrivial central extension
of depth 2 of b1/2(3; 3); clearly, g−2 = Cz. The inverse regrading R−1 sends g
into the nontrivial central extension h = c̃(b−3,1(3)) of b−3,1(3) (see sec. 0.7) and
degR−1z = −1.

From the very beginning we have an embedding i1 : g −→ u = m(4). Let
h̃ = esle◦(3) ⊂ h.

Then the map i2 = SIGN ◦ i1R determines an embedding of h̃ to u preserving
the grading of h̃.

Observe that h̃0 = spe(3) and h0 = pe(3) ∼= h̃0 ⊕ C · M∑
qiξi−3τ . On h−1,

z = M∑
qiξi−3τ acts by the formula:

z : Mq 7→ 4Mq, Mξ 7→ 2Mξ.

This action of z coincides with the action of −3d+ 1
2 i1(z).

Therefore, the embedding i2 of h− can be extended to an embedding of the whole
h. We have

i1(g− ⊕ g0) + i2(h− ⊕ h0) = u− ⊕ (g0 ⊕ Cd),

i.e., the nondirect sum of the images of i1 and i2 covers the whole nonpositive part
of (ab(4), cvect(0|3))mk∗ .

Thus, we have two distinct embeddings of c̃(b−3,1(3)), isomorphic to c̃(b1/2(3; 3))
as abstract, but not as graded, Lie superalgebras, into (ab(4), cvect(0|3))mk∗ :

i1 : c̃(b1/2(3; 3)) −→(ab(4), cvect(0|3))mk∗
with the grading of c̃(b1/2(3; 3)) preserved

and

i2 : c̃(b−3,1(3)) −→(ab(4), cvect(0|3))mk∗
with the grading of c̃(b−3,1(3)) preserved

such that

i1(̃c(b1/2(3; 3))) + i2(̃c(b−3,1(3))) = (ab(4), cvect(0|3))mk∗

(the sum here is not a direct one!). As a linear space, (cvect(0|3))mk∗ is the quotient
of c̃(b1/2(3; 3)) ⊕ c̃(b−3,1(3)) modulo the subspace V = {(SIGN ◦ Rg ⊕ −g) : g ∈
esle◦(3)}. The map ϕ defined by the formulas

ϕ|i1(c̃(b1/2(3;3))) = SIGN ◦ i2i−1
1 ; ϕ|i2(c̃(b−3,1(3))) = i1i

−1
2

determines a nontrivial automorphism of (ab(4), cvect(0|3))mk∗ .

6.4. Description of (hei(8|6), svect(0|4)3,4)mk∗ . Consider the nontrivial central ex-
tension g = c̃(sle◦(n;n)) of sle◦(n;n) defined as follows. We have: g0 = svect(0|n);
g−1 = Π(T 0(~0)/C·1), where T 0(~0) = {f ∈ T (~0) :

∫
fvol(ξ) = 0}. Define the central

extension with the help of the form ω on g−1 given by the formula:

ω(f, g) =
∫
fg · vol(ξ).

The same arguments as in 6.2, show that (g−1, g0)mk∗ can be embedded into
k(1 + 2n−1|2n−1 − 2) for n even and into m(2n−1 − 1) for n odd.
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Let x be the operator determining the standard Z-grading of svect(0|n) and let z
commute with svect(0|n); let a, b ∈ C. For any a, b the element ax+ bz determines
an outer derivation of g0. Set

svecta,b(n) = svect(0|n)⊃+ C(ax+ bz);

set also

(g−, svecta,b(n))mk∗ = (g−, g0⊃+ C(ax+ bz))mk∗ ,

where g− =

{
ab(2n−1 − 1) for n odd,
hei(2n−1|2n−1 − 2) for n even.

Example. Let n = 3. Then g−1 = Π(ξ1, ξ2, ξ3, ξ1ξ2, ξ1ξ3, ξ2ξ3) and g− ∼=
(bλ(3))− = ab(3) for any a, b, while g0 = svect(0|3) ∼= spe(3). The operator x
becomes

∑
ξi∂ξi and

g0⊃+ C(ax+ bz) ∼= spe(3)⊃+ C(a
∑

ξi∂ξi + bz) ∼= (bλ(3))0 for λ = − b

3a
.

Therefore, (ab(3), svecta,b(3))mk∗ ∼= bλ(3) for λ = − b
3a . In particular,

(ab(3), svect1,3(3))mk∗ ∼= sm(3) and (ab(3), svect1,0(3))mk∗ ∼= b(3).

6.5. Theorem. 1) (hei(8|6), svect3,4(4))mk∗ is a simple Lie superalgebra.

2) Let g− =


ab(2n−1 − 1) for n odd
Then
hei(2n−1|2n−1 − 2) for n even.

(g−, svecta,b(n))mk∗ ∼= (g−, svect(0|n))mk∗
⊃+ C(ax+ bz) if n > 4 or if (a, b) 6∈ C(3, 4) and n = 4.

Proof. As in Theorem 6.1, heading 1) follows from a direct calculation based on
Lemma 6.1; for the explicit formulas see Appendix 3. Heading 2) is proved in
Appendix 2.

Let us clarify the structure of (hei(8|6), svect3,4(4))k∗ . This Lie superalgebra is
contained in u = k(9|6). In sec. 6.3 we have already described the Lie superalgebra
g = c̃(sle◦(4; 4)) and its embedding i1 : g→ u.

Observe that g ⊃ as and this embedding preserves the Z-grading described in
sec. 2.1:

as−2 = g−2; as−1 = g−1 = Π(Λ2(ξ1, ξ2, ξ3, ξ4))
as0 = sl(4) ⊂ g0 = svect(0|4); as1 = Π(S2(q1, q2, q3, q4)) ⊂ g1.

For the role of h (see 4.3 and 6.3) take kas. It follows from Theorem 3.2 that
as ⊂ kas; set h̃ = as. Let R : h̃ −→ g be the embedding that executes the
isomorphism of two copies of as. (Notice that R preserves the Z-grading (1.1) of
as.) The map i2 = i1R determines an embedding of h̃ into k(9|6).

But h0 = h̃0 ⊕ CKt. It turns out that i2 can be extended to an embedding
i2 : kas −→ u and i1(̃c(sle◦(4; 4))) ∩ i2(kas) = as.

As in the above examples, we have: i1(g−⊕ g0)+ i2(h−⊕ h0) ∼= u−⊃+ C(3x+4z)
(the sum in the left hand side here is not a direct one!). But, unlike the cases
vle(4|3) and mb(4|5), the nondirect sum of g = c̃(sle◦(4; 4)) with h = kas does not
span the whole of ksle(9|6). A description similar to the cases vle(4|3) and mb(4|5)
will be given in §7.
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7. The Weisfeiler regradings

7.1. Weisfeiler regradings. Let g =
⊕

j≥−d gj be a Z-graded vectorial super-
algebra. By a Weisfeiler regrading or W-regrading of g we understand a second
structure of Z-graded superalgebra g =

⊕
i≥−D hi (with D <∞) such that

1) the two gradings determine a bigrading: hi =
⊕

j gj ∩ hi;
2) h0 =

⊕
j≥0 hj is a maximal Lie subalgebra of finite codimension; and

3) the grading h is transitive: for any non-zero x ∈ hk for k ≥ 0 there is y ∈ h−1

such that [x, y] 6= 0.
In what follows in this section h denotes a Lie superalgebra obtained from g by

a regrading. We will describe all the W-regradings of the exceptional Lie superal-
gebras.

7.1.1. Lemma. Let h =
⊕

i≥−D hi be a W-regrading of the Lie superalgebra g =⊕
j≥−d gj. It determines a bigrading:

hi =
M(i)⊕
j≥m(i)

hi,j , where hi,j = hi ∩ gj.(7.1.1)

Suppose dim(h0 ∩ g−) = 0|k. Then the number M = M(−1) −m(−1) + 1 of the
summands h−1,j in the decomposition (7.1.1) of h−1 does not exceed the number of
homogeneous components with respect to the Z-grading of Λ(h0 ∩ g−).

In particular, if h0 ∩ g− is homogeneous with respect to the Z-grading in g, i.e.,
h0 ∩ g− ⊂ gj for some j, then M ≤ k + 1.

Proof. The component V = h−1,M(−1) of the maximal degree is invariant with
respect to the subalgebra h0,≥0 =

⊕
j≥0 h0,j . Since the h0-module h−1 is irreducible,

it must be a quotient of the induced module: as spaces, indh0
h0,≥0

V ∼= Λ(h0 ∩ g−)⊗
V .

7.1.2. Lemma. If h0 ∩ g− = 0, then h0 ⊂ g0 and h−1 is homogeneous.

Proof. Clearly, h0 =
⊕

k≥0 h0,k and h−1 =
⊕

j h−1,j .
The Lie superalgebra h0,0 transforms h−1,j into itself and the operators from h0,k

send h−1,j into h−1,j+k. Therefore, if the representation of h0 on h−1 is irreducible,
then h−1 is homogeneous with respect to the grading of g, i.e., h−1 = h−1,j0 for
some j0. But then h0,k for k > 0 sends h−1 to 0. Since h is transitive, h0,k = 0 for
all k > 0, i.e., h0 = h0,0.

7.1.3. Lemma. If h0 ∩ g− = 0 and there exists a nonzero x ∈ g−1 ∩ h−, then the
gradings of h and g coincide.

Proof. h−1 = h−1,j0 ⊂ gj0 and, therefore, h−k ⊂ gk·j0 . If x ∈ h−k, then −1 = k · j0,
implying k = 1 and j0 = −1, i.e., h−1 ⊂ g−1, and, therefore, h−1 = g−1 and hi = gi
for all i.

7.2. How to describe all the W-regradings. 1) Determine h0 ∩ g−1.
2) Construct a “minimal” (i.e., most tightly compressed) regrading with the

given intersection, i.e., such that it preserves in h−1 all the elements of g−1 except
for those that have to go away in view of the condition on the intersection.

3) If the “minimal” regrading is a Weisfeiler one, then with the help of Lemmas
7.1.2 and 7.1.3 we prove that any other W-regrading with the given intersection
coincides with the minimal one.
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4) If the “minimal” regrading is not a Weisfeiler one, then with the help of
Lemma 7.1.1 we prove that there are no W-regradings with the given intersection.

7.3. W-regradings of g = vle(4|3). We consider a realization of g by a nondirect
sum i1(le(3; 3)) + i2(le(3)); cf. sec. 4.3.

Notations: ξ′i = i1(ξi), u′i = i1(ui); ξi = i2(ξi), ui = i2(ui) for i = 1, 2, 3.
Then

g−1 = Span(ξi = ξ′i; uk = ξ′iξ
′
j for even permutations (i, j, k); ξ′1ξ

′
2ξ

′
3).

For any regrading we have:

deg ξi + deg ui = N for any i = 1, 2, 3;
deg ξ′i + deg u′i = N ′ for any i = 1, 2, 3;
degLie(f) = deg(f)−N ; degLie(f ′) = deg(f ′)−N ′.

(7.3.1)

The conditions ξi = ξ′i imply that

deg u′i = deg ui,(7.3.2)

whereas the conditions uk = ξ′iξ
′
j imply that

deg uk −N = deg ξ′i + deg ξ′j −N ′ ⇐⇒ deg ξ′i = u′j − deg ξk = deg u′j − deg ξ′k.
(7.3.3)

3a) h = vle(4|3; 1). Set

deg ξ1 = 0, deg u1 = 2; N = 2;
deg ξ2 = deg ξ3 = deg u2 = deg u3 = 1.(7.3.4)

Formulas (7.3.2) and (7.3.3) imply that

deg ξ′1 = 0, deg u′1 = 2; N ′ = 2;
deg ξ′2 = deg ξ′3 = deg u′2 = deg u′3 = 1.(7.3.4)

Hence, h =
⊕

i≥−2 hi, where

h−2 = C · ξ1 = C · ξ′1
h−1 = Span(ξ2, ξ3, u2, u3)⊗ Λ(ξ1) = Span(ξ′2, ξ

′
3, u

′
2, u

′
3)⊗ Λ(ξ′1)

h0 =
(
Λ2(ξ2, ξ3)

⊕
Λ1(ξ2, ξ3)⊗ S1(u2, u3)

⊕
S2(u2, u3)

)⊗ Λ(ξ1)⊃+ vect(ξ1)

+ (NOT ⊕!) the same with ′

(7.3.5)

Observe that since id(sl(2)) ∼= id∗(sl(2)), we have

Λ2(ξ2, ξ3)
⊕

Λ1(ξ2, ξ3)⊗ S1(u2, u3)
⊕

S2(u2, u3)
∼= pe(2) ∼= sl(2)⊗ Λ(ξ1)⊃+ vect(ξ1).

(7.3.6)

Introduce a formal odd indeterminate η. Set

V = Span(ξ2, ξ3); ηV = Span(−u3, u2).

Then ξ1V = Span(ξ1ξ2, ξ1ξ3) and ξ1ηV = Span(−ξ1u3, ξ1u2); the action of ξ1ξ2 is
identical with that of ∂

∂η .
In these notations, g−1 = V ⊗ Λ(ξ1, η) = V ⊗ Λ(2) and the bracket on g−1 is

given by the formula:

[v1 ⊗ ϕ1(ξ1, η), v2 ⊗ ϕ2(ξ2, η)] = (−1)p(ϕ1)p(v2)ξ1ωv(v1, v2)
∫
ϕ1ϕ2vol,(7.3.7)
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where ωv is a 2-form on V preserved by sl(2) ∼= sp(2).
The direct calculations show that h0

∼= c (sl(2)⊗ Λ(2)⊃+ vect(0|2)), where the
subalgebra vect(0|2) ⊂ g0 acts on h−1 = V ⊗ Λ(2) as id ⊗ T 1/2, where T 1/2 is the
representation of vect(0|2) in the space of half-densities, T (

−−−→−1/2).
Thus,

vle(4|3; 1) = (hei(4|4), c (sl(2)⊗ Λ(2)⊃+ vect(0|2)))mk ⊂ k(5|4).(7.3.8)

3b) h = vle(4|3; 2). Set

deg ξ1 = deg ξ2 = 0, deg u1 = deg u2 = 2;N = 2;
deg ξ3 = deg u3 = 1(7.3.9)

Formulas (7.3.2) and (7.3.3) imply then that

deg u′1 = deg u′2 = 2; N ′ = 3;
deg ξ′1 = deg ξ′2 = 1; deg ξ′3 = 2; deg u′3 = 1.(7.3.9′)

Hence, h =
⊕

i≥−2 hi, where

h−2 = Span(ξ1 = ξ′1, ξ2 = ξ′2, ξ1ξ2 = u′3) ∼= Π(Λ(2)/C · 1);

h−1 = Span(ξ3, u3)⊗ Λ(ξ1, ξ2) = V ⊗ Λ(2), dimV = 1|1;

h0 = c
(
pe(1)⊗ Λ(2)⊃+ vect(0|2)

)
.

The action of h0 in h−1 is not irreducible; hence, vle(4|3; 2) is not a W-regrading.
3c) h = vle(4|3; 3). Set

deg ui = 2; deg ξi = 0; deg u′i = deg ξ′i = 1; N = N ′ = 2.(7.3.10)

By sec. 4.3, h = vle(4|3; 3) ∼= vle(4|3).
3d) g = vle(4|3;K). Set

deg ui = deg u′i = 2; deg ξi = deg ξ′i = 1; N = N ′ = 3.(7.3.11)

Hence, h =
⊕

i≥−2 hi, where

h−2 = Π(Span(ξi = ξ′i : i = 1, 2, 3))

h−1 = Π
(
Span(ui = ξ′jξ

′
k, ξiξj = u′k for all even permutations (i, j, k)

)
h0 = Π

(
Span(uiξj = u′iξ

′
j) ∩ sle(3)⊕

Span(ξ1ξ2ξ3, ξ′1ξ
′
2ξ

′
3,
∑

uiξi −
∑

u′iξ
′
i)
⊕

C(
∑

uiξi +
∑

u′iξ
′
i)
)

∼= sl(3)⊕ sl(2)⊕ C · z.

(7.3.12)

The h0-action in h−1 is id(sl(3))⊗ id(sl(2))⊗ 1.

7.3.1. Statement. Any W-regrading of g = vle(4|3) is either vle(4|3; 1) or
vle(4|3;K).

Proof. Let h =
⊕

i≥−d hi be a W-regrading of g. Since the elements ξi = ξ′i act in g

as ∂
∂ui

, all of them must lie in h−. Set U = Span(u1, u2, u3) and let dimU∩h0 = m,
where 0 ≤ m ≤ 3.

If m = 0, then by Lemma 7.1.2 the gradings in g and h can differ only if ξ′1ξ′2ξ′3 ∈
h0. But then, since h0 63 uk = ξ′iξ

′
j = [u′k, ξ

′
1ξ

′
2ξ

′
3], it follows that u′k = ξiξj 6∈ h0.

But then h and g = vle(4|3;K) satisfy the conditions of Lemma 7.1.3; hence,
their gradings coincide.
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If m = 1, then, up to linear automorphisms, we may assume that U ∩h0 = C ·u1.
Since ad u1 acts as ∂

∂ξ1
, we deduce that ξ1ξ2, ξ2ξ3, ξ1u2, ξ1u3 6∈ h0. So we can apply

Lemma 7.1.2 to h and g = vle(4|3; 1).
If m = 2, then, up to linear automorphisms, we may assume that U ∩ h0 =

C ·Span(u1, u2). As ξi ∈ h− for all i, we have Λ(ξ)/C ·1 ⊂ h−. Hence, ξ′1ξ
′
2ξ

′
3 /∈ h−,

as an element dual to ξ1ξ2ξ3 ∈ h−.
If h 6= vle(4|3; 2), then h− 6= vle(4|3; 2)−. Hence, either h = Λ(ξ)/C · 1, or

g ⊗ Λ(ξ1, ξ2) ∈ h− for some g ∈ g≥0.
In the first case, the subspases Λ(ξ1, ξ2)/C ·1 and ξ3⊗Λ(ξ1, ξ2) cannot belong to

the same component h−k because of u3 /∈ h0. But none of these subspaces generates
the other. Thus, h is not a W-regrading.

In the second case, either h−1 does not generate h−, or h−1 contradicts Lemma
7.1.1. In both cases, h is not a W-regrading.

If m = 3, then ξi 6∈ h0. Hence, Λ(ξ1, ξ2, ξ3)/C · 1 ∩ h0 = 0. So we can apply
Lemma 7.1.3 to h and g = vle(4|3; 3) = vle(4|3).

7.4. W-regradings of g = mb(4|5). We consider a realization of g by a nondirect
sum (i1(b1/2(3; 3)) + i2(b−3,1(3)); cf. sec. 6.3.

Recall that if u1, u2, u3, ξ1, ξ2, ξ3 and τ are the standard indeterminates in
m(3), then each generating function of b1/2(3; 3) is of the form

F = f +
1

deg(∆(f)) + 1
τ∆(f), where f ∈ C[u, ξ].

Therefore, we may use f instead of F and f ′ instead of F ′. Thus, g− = g−2⊕ g−1,
where

g−2 = Π(C · 1),
g−1 = Π(Span(1′, ξi = ξi, ui = ξ′jξ

′
k, ξ

′
1ξ

′
2ξ

′
3)).

(7.4.1)

4a) h = mb(4|5; 1). Then h is described by (7.3.4)–(7.3.4). Moreover, the super-
spaces h−1 and h0 are the same as for vle(4|3; 1) whereas our component h−2 is
spanned by vle(4|3; 1)−2 = Span(ξ1) together with 1 and 1′.

To visualize the result better, redenote the elements of h−2:

1 7→ η, 1′ 7→ ξ1, ξ1 7→ ξ1η.

Then the bracket in h−1 is of the form

[v1 ⊗ ϕ1(ξ1, η), v2 ⊗ ϕ2(ξ1, η)] = (−1)p(ϕ1)p(ϕ2)ωv(v1, v2) · ϕ1ϕ2.

Thus, with the natural action of vector fields on the functions, we have

h− ∼= (hei(2|0)⊗ Λ(2))/C · z ⊗ 1 and h0
∼= c (sl(2)⊗ Λ(2)⊃+ vect(0|2)) .(7.4.2)

Observe that the only difference of nonpositive parts of mb(4|5; 1) and h(2|4; 2) is
that the former has one element more — the center — in the component of degree
0.

4b) g = mb(4|5; 2). Relations (7.3.9)–(7.3.9′) mean that 1 ∈ h−2 while 1′ ∈ h−3.
Thus,

h−3 = C · 1′; h−2 = Π(Λ(2)); h−1 = V ⊗ Λ(2).

Observe that dimV = 1|1, so V ∼= Λ(1); hence, V ⊗ Λ(2) ∼= Λ(1) ⊗ Λ(2) ∼= Λ(3)
with the action of pe(1) ∼= T 1/2(vect(0|1)) on V .
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The bracket [h−1, h−2] is given by the formula

[ϕ1(ξ3; ξ1, ξ2), ϕ2(ξ1, ξ2)] = c ·
∫
ϕ1ϕ2vol(ξ1, ξ2, ξ3).

Thus,

h0
∼= c

(
T 1/2(vect(0|1))⊗ Λ(2)⊃+ vect(0|2)

)
.

Since the h0-action on h−1 is reducible, this is not a W-filtration.
4c) mb(4|5; 3). The regrading is determined by (7.3.10). By sec. 6.3 mb(4|5; 3) ∼=

mb(4|5).
4d) mb(4|5;K). Relations (7.3.11) mean that h−3 = Span(1, 1′). The other

nonpositive components are the same as for vle(4|3;K).

Statement. Any W-regrading of mb(4|5) is isomorphic to mb(4|5; 1) or to
mb(4|5;K).

Proof is similar to that of Statement 7.3.1.

7.5. Statement. g = vas(4|4) has no W-regradings.

Proof. As in Theorem 2.3, realize the elements of g = vas(4|4) in the form

Df + c · Z, where f ∈ sle◦(4).

Suppose h =
⊕

i≥−d hi is a W-regrading of g distinct from the initial one. By
Lemmas 7.1.2 and 7.1.3 we see that h0 ∩ g−1 6= 0. Observe that if degξ f ≤ 1, then
Df = Lef . In particular, [Df(u), Dξi ] = ∂f

∂ui
. Hence, Dξi ∈ h− for all i = 1, . . . , 4;

hence, V = Span(Dqi : i = 1, . . . , 4) ∩ h0 6= 0.

Lemma. dim V ≤ 1.

Proof. If dimV > 1, then, up to linear transformations, we may assume that at
least Du1 , Du2 ∈ h0. But [Dui , Dξiξj ] = Duj and, therefore, Dξ1ξi , Dξ2ξj ∈ h−
for any i = 2, 3, 4 and j = 1, 3, 4. In particular, Dξ1ξ4 , Dξ2ξ3 ∈ h−. But
[Dξ1ξ4 , Dξ2ξ3 ] = λZ ∈ h−.

Since adZ determines the Z-grading of h, the element Z belongs to h0. The
contradiction obtained completes the proof of Lemma.

Let us continue with the proof of Statement. It remains to consider the case
dimV = 1. Let, for definiteness, Du1 ∈ h0, whereas Dui 6∈ h0 for i 6= 1.

In principle, such regradings are possible: for example, for vas(4|4; 1) we set
deg ξ1 = 0, deg u1 = 3; deg ξi = 2, deg ui = 1 for i > 1. We see that h−3 = CDξ1 ;
h−2 = Span(Dξ1qi , Dui ; i > 1); and h−1 = vas(4|4; 1)−1 contains three components
of the bidegree:

h−1,−1 = Span(Dξi ; i > 1), h−1,0 = Span(Dξ1ξi ; i > 1), h−1,1

= Span(DS2(ui; i>1)⊗Λ(ξ1));

by Lemma 7.1.1 vas(4|4; 1) is not a W-grading.
Let h =

⊕
i≥−d hi be a W-regrading of g = vas(4|4) distinct from vas(4|4; 1) but

such that Du1 ∈ h0. Let Dξi ∈ h−ni for ni ≥ 1. Then Dξ1ξi ∈ h−ni but

Dξ1ξi = ξ1
∂

∂ui
− ξi ∂

∂u1
+ λ(uj

∂

∂ξk
− uk ∂

∂ξj
)
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implying Duj ∈ h−ni−nk
. Similarly, Duiuj ∈ h−nk

. Thus, all the elements of the
form Dξ1 , Dξi , and Dui , Dξ1ξi , as well as Duiuj and Dξ1uiuj with i > 1 belong to
h−.

Observe that neither Dξ1 nor Dui can belong to h−1. But h−1 generates the
whole of h−. Hence,

1) Dξi ∈ g−1 for at least one i (and then Dξ1ξi ∈ h−1 and Dξ1ξi ∈ g0); and
2) h−1 contains at least one element from g>0 =

⊕
i>0 gi: otherwise we cannot

obtain Dξ1uiuj ∈ g1 ∩ h−.
By Lemma 7.1.1 h is not a W-regrading.

7.6. W-regradings of g = kas ⊂ k(1|6). Clearly, the regradings of k(1|6) induce
the regradings of kas. However, due to nonsymmetry of kas inside of k(1|6) isomor-
phic regradings of k(1|6) obtained by the replacement ξ ←→ η may produce distinct
regradins of kas. For definiteness, fix a realization: kas = kasξ.

6a) k(1|6; 1) induces two regradings of kas that we will shorthand as 1ξ and 1η:
with the degree of one of the ξ’s (resp. η’s) set equal to zero, e.g.:

kas(; 1ξ) : deg ξ1 = 0, deg η1 = deg t = 2,
deg ξi = deg ηi = 1 for i > 1.(7.6.1)

Set degKf = deg f − 2. We see that k(1|6; 1)− ⊂ kas(; 1ξ)− which means that
k(1|6; 1)− = kas(; 1ξ)−. Moreover,

k(1|6; 1)0 ⊂ k(1|6)−1 ⊕ k(1|6)0 ⊕ k(1|6)1;
k(1|6; 1)0 ∩ k(1|6)1 =

(
Ct⊕ Λ2(ξ2, η2, ξ3, η3)

)⊗ ξ1.(7.6.2)

From the explicit description of kas1 (see (3.3.1)) we derive that Ktξ1 ∈ kas and
of the 6 elements of Λ2(ξ2, η2, ξ3, η3) ⊗ ξ1 only 3 belong to kas; on the space they
span, o(4) ∼= sl(2)⊕ sl(2) acts as ad⊗χ0, where χ0 is the trivial character. Finally,

kas(; 1ξ)−1 = id(sl(2))⊗ id(gl(2))⊗ Λ(1);
kas(; 1ξ)0 = sl(2)⊕ gl(2)⊃+ vect(0|1).(7.6.3)

Similarly, we prove that

kas(; 1ξ) ∼= kas(; 1η).(7.6.4)

Under this isomorphism the two copies of sl(2) constituting o(4) change places. We
denote these Lie superalgebras uniformly: kas(; 1).

6b) g = k(1|6; 2) induces three regradings of kas that we will shorthand as 2ξ,
1ξ+1η and 2η. To describe them, consider, first, the nonpositive terms of k(1|6; 2):

−2 −1 0
Λ(2) V2 ⊗ Λ(2) co(2)⊗ Λ(2)⊃+ vect(0|2)

Here dimV2 = 0|2 and the g0-action in g−1 is reducible.
In each of the cases h = kas(; 2ξ) and kas(; 2η) and kas(; 1ξ + 1η) their h−2 are

identical with g−2 and h0 is the subalgebra of g0 preserving h−1. So let us describe
h−1. It is obtained from g−1 by deleting one element:

Case 2ξ. h−2 = Λ(ξ1, ξ2),

h−1 = ξ3 ⊗ Λ(ξ1, ξ2)
⊕

η3 ⊗ (1⊗ Λ(ξ1, ξ2)) ∼= Π(Λ(ξ1, ξ2))
⊕

C2|1;

h0 = (t+ Φ)⊗ Λ(ξ1, ξ2)⊃+ Span(η1, η2, ξiηj , tξ1, tξ2)
∼= (t+ Φ)⊗ Λ(ξ1, ξ2)⊃+ gl(2|1),
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where Φ =
∑
ξiηi. Recall that gl(2|1) ∼= c(vect(0|2)). So the h0-action in h−1 is

as follows: (t + Φ) ⊗ Λ(ξ1, ξ2) commutes with C2|1 and acts by multiplication on
Π(Λ(ξ1, ξ2)) while gl(2|1) ∼= c(vect(0|2)) acts as T 1/2⊗χ0 in the vectorial realization
in Π(Λ(ξ1, ξ2)) and as id(gl(2|1)) in C2|1. So h−1, as h0-module, is reducible and
the regrading is not a W- regrading.

Cases 1ξ + 1η and 2η are similar to case 2ξ with the same outcome; they are not
W- regradings.

6c) g = k(1|6; 3) induces four regradings of kas: 3ξ, 2ξ + 1η, 1ξ + 2η and 3η. To
describe them, consider the nonpositive terms of k(1|6; 3):

−1 0
Λ(3) Λ(3)⊃+ vect(0|3)

Consider two cases:
(i) h = kas(; 2ξ + 1η) or kas(; 3ξ). Then h−1 = Λ(3), h0 = Λ(3)⊃+ sl(1|3); here

sl(1|3) is considered as the subalgebra of vect(0|3).
(ii) h = kas(; 1ξ + 2η) or kas(; 3η). Then h−1 = Vol0(0|3), h0 = c(vect(0|3)).

Statement. All the W-regradings of kas are isomorphic to one of the following:
kas(; 1), kas(; 3ξ) or kas(; 3η).

Proof is similar to that of Statement 7.3.1.

7.7. W-regradings of g = ksle(9|6). Let ξi, qi be the standard indeterminates of
sle◦(4); g−2 = C · c.

7a) g = ksle(9|6; 1) is determined by the formulas

deg ξ1 = 0; deg q1 = 2; deg ξi = deg qi = 1 for i > 1.

Then h−2 = C · ξ1 and h−1 = Span(ξi, ξ1qi, qi, ξ1ξi for i > 1; c, (ξ2ξ3ξ4)∗), where
(ξ2ξ3ξ4)∗ is the dual to ξ2ξ3ξ4 ∈ g1.

It is not difficult to see that the bracket determines a nondegenerate even skew
2-form on h−1; clearly, dim h−1 = 8|6. This means that ksle(9|6; 1) ∼= ksle(9|6) as
Z-graded Lie superalgebras.

Denote this isomorphism by RG. Let h = c̃(sle◦(4; 4)) ⊂ ksle(9|6); sec. 6.5.
Then RG(h) ⊂ ksle(9|6) is isomorphic to h as an abstract superalgebra, but not as
Z-graded one. We have

h ∩RG(h) = C · c+ (sb◦(ξ2, ξ3, ξ4)⊗ Λ(ξ1))/C · 1⊃+ C · ∂ξ1
∼= c̃(sb◦(3)⊗ Λ(1))/C · 1)⊃+ svect(1).

(7.7.1)

The regrading RG determines a nontrivial automorphism of h ∩RG(h), generated
by the automorphism R of sle◦(3) (sec. 4.3) and permuting the central elements c
and ξ1.

The nondirect sum of the linear spaces h and RG(h) spans the whole of ksle(9|6):

h +RG(h) = ksle(9|6).

7b) h = ksle(9|6; 2) is determined by the formulas

deg ξ1 = deg ξ2 = deg q1 = deg q2 = 1; deg ξ3 = deg ξ4 = 0; deg q3 = deg q4 = 2.

Then h−2 = Span(c, ξ3, ξ4, ξ3ξ4) and dim h−2 = 3|1.

h−1 = Span(ξ1, ξ2, q1, q2)⊗ Λ(ξ3, ξ4) ∼= V2 ⊗ Λ(3);
h0
∼= (sl(2)⊗ Λ(3))⊃+ sl(3|1),(7.7.2)
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where sl(3|1) ⊂ vect(0|3). The h0-action in h−1 is the natural one.
7c) g = ksle(9|6;K). Set

deg qi = 2; deg ξi = 1 for all i.

Then we obtain the compatible grading

h−2 = id, h−2 = Λ2(id), h0 = sl(5).(7.7.3)

Statement. Any W-regrading of ksle(9|6) is isomorphic to ksle(9|6; 2) or to
ksle(9|6;K)

Proof is similar to that of Statement 7.3.1.

Appendix 1. The solution of the system (2.1)–(2.4)

Let D =
∑

1≤i≤4(Pi
∂
∂ξi

+ Qi
∂
∂ui

) ∈ gλ be an homogeneous (with respect to
parity) vector field. Then by Lemma 2.1 it satisfies the system (2.1)–(2.4).

Equations (2.3) imply that there exists a function f = f(u, ξ) such that Qi =
−(−1)p(D) ∂f

∂ξi
. Equations (2.1) imply further that

Pi =
∂f

∂ui
+ ϕi(u; ξi) =

∂f

∂ui
+ ϕi

◦(u) + ϕ1
i (u) · ξi

or, in other words, D = Lef +
∑

(ϕi◦(u) +ϕ1
i (u)ξi)

∂
∂ξi

. Equations (2.2) now imply
that

ϕ1
i (u) =

∂ϕi
∂ξi

=
1
2
(−1)p(D)

∑ ∂Qj
∂uj

= −1
2
∆(f), where ∆ =

∑ ∂2

∂ui∂ξi
;(2.2′)

whereas equations (2.4) imply that

∂ϕi
∂uj
− ∂ϕj
∂ui

= −2λ
∂2f

∂ξl∂ξk
.(2.4′)

Remark. Let ψi = ψi(u), where i = 1, . . . , 4, be a set of functions such that ∂ψi

∂uj
−

∂ψj

∂ui
= 0. Then there exists a function ψ(u) for which ψi = ∂ψ

∂ui
and

∑
ψi(u) ∂

∂ξi
=

Leψ = Dψ (see heading 2) from the corollary in Theorem 2.3). Thus, for any
function f it suffices to find any collection of functions ϕi◦.

With the help of the differential forms

α =
∑
i≤4

ϕidui and ω0(f) =
∑

(i,j,k,l)∈A4

∂2f

∂ξl∂ξk
duj ∧ dui

equations (2.2′) and (2.4′) can be expressed in the form

dα =
1
2
∆(f) · ω − 2λ · ω0(f).(A.1)

Equation (A.1) is solvable if and only if the form in the right hand side is exact
or, since our considerations are local, equivalently, if and only if it is closed.

Direct calculations show that the condition that the form in the right hand side
is closed is equivalent to the system

{
∂f
∂ξi

= 0 for all i = 1, 2, 3, 4 (A.1.1)
1
2
∂∆f
∂ui
− 2λ ∂3f

∂ξj∂ξk∂ξl
= 0 for all i = 1, 2, 3, 4 and (i, j, k, l) ∈ A4 (A.1.2)
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Equations (A.1.1) imply that ∆(f) only depends on u; equations (A.1.2) imply
that degξ f ≤ 3.

First, suppose that degξ f ≤ 2. Then equations (A.1.2) imply that

∆(f) = const.(A.2)

Denote − 1
4∆(f) by c. Thus, f = −c∑i≤4 uiξi + f0, where ∆(f0) = 0. By (2.2′)

then, ϕ1
i (u) = 2c and D = Le−c∑uiξi+f0 +

∑
ϕi

◦ ∂
∂ξi

+ 2c
∑
ξi

∂
∂ξi

= Lef0 +∑
ϕi

◦ ∂
∂ξi

+ cZ. Replace f with f0. Then ∆(f) = 0 and we have

∂ϕi
◦

∂uj
− ∂ϕj

◦

∂ui
= −2λ

∂2f

∂ξl∂ξk
.(2.4′′)

If degξ f < 2, then the right hand side of (2.4′′) is equal to 0. So due to Remark
we can take ϕi◦ = 0. In this case

D = Lef + cZ = Df + cZ.(A.3)

Let degξ f = 2. As ∆(f) = 0, we can set g = ∆−1(f). Then degξ g = 3 and
f = ∆(g). For the role of functions ϕi◦ satisfying equation (2.4′′) we can take

ϕi
◦ = 2λ

∂3g

∂ξj∂ξk∂ξl
, where (i, j, k, l) ∈ A4.

We get

Df = Lef + 2λ
∑

(i,j,k,l)∈A4; 1≤i≤4

∂3g

∂ξj∂ξk∂ξl
· ∂
∂ξi

+ cZ = Df + cZ.(A.4)

Let degξ f = 3. Let us represent f in the form f = f3 + f<3, where f3 is a
homogeneous (with respect to the degree in ξ) polynomial of degree 3, while f<3 is
a polynomial of lesser degree.

Since ∆(f) only depends on u, we see that ∆(f3) = 0 and, therefore, we can
introduce H = ∆−1(f3) = F (u)ξ1ξ2ξ3ξ4 for some function F (u).

From (2.4′′) we deduce that

∂ϕ1
i

∂uj
= 2λ

∂F

∂uj
or, with (2.2′), ϕ1

i = 2λF = −1
2
∆(f).

Therefore, ∆(f) = ∆(f<3) = −4λF . Set

f̂ = 4∆−1(F ).

We see that f = ∆(H) − λf̂ + g for some function g such that ∆(g) = 0 and
degξ g < 3. But we have already described the solutions for all such g. So now we
assume g = 0. In this case we can take ϕi◦ = 0 (due to Remark). We get

D = Lef + λ(−Lef̂ + 2F
∑

ξi
∂

∂ξi
)

= Lef + λ

−Lef̂ + 2
∑

(i,j,k,l)∈A4; 1≤i≤4

∂3H

∂ξj∂ξk∂ξl
· ∂
∂ξi

 = Df .

(A.5)

Formulas (A.3)–(A.5) prove Theorem 2.3.
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Appendix 2. Proof of headings 2 of Theorems 4.2, 6.2 and 6.5

A.2.1. Lemma. Let (g−1, g0)∗ be simple; let the g0-module g−1 be irreducible. If
h = (g−1, cg0)∗ is also simple, then for every v ∈ g−1 there exists an F ∈ g1 such
that [v, F ] 6∈ g0.

The same applies to (g−, g0)mk∗ and h = (g−, cg0)mk∗ .

Proof. By simplicity of (cg0)∗ (due to Lemma 4.1) we have [h−1, h1] = cg0, i.e.,
there exists v0 ∈ g−1, F0 ∈ g1 such that [v0, F0] 6∈ g0.

Let

V1 = {v1 ∈ g−1 : [g, v1] = v0 for some g ∈ g0}.
Then for any v1 ∈ V1 we have

g0 63 [[g, v1], F0] = ±[[g, F0], v1]± [g, [v1, F0]],

where the signs are governed by Sign Rule. Therefore, one of the two cases holds:
1) [v1, F0] 6∈ g0, hence, F = F0;
2) [v1, F0] ∈ g0.
In case 2) we have [g, [v1, F0]] ∈ g0; hence,

[F, v1] 6∈ g0 for F = [g, F0].

Similarly, introduce the sequence of spaces

V2 = {v2 ∈ g−1 : [g, v2] ∈ V1+ < Span(v0) for some g ∈ g0}, etc.

By irreducibility of g0-action on g−1 for every v ∈ g−1 there exists an n such that
v ∈ Vn and, therefore, F = Fn, where [v, Fn] 6∈ g0.

The arguments for depth 2 are literally the same.

A.2.2. Corollary. Let g−1 = Π(Λ(n)/C1), g0 = vect(0|n), i.e., g∗ = (g−1, g0)∗ =
le(n;n). Then (g−1, c(g0))∗ is not simple for n > 3.

Hereafter in this appendix we often abuse the notations and denote the elements
by their generating functions.

Proof. By Lemma A.2.1 the simplicity of g∗ implies that for any v ∈ g−1 there
exists F ∈ g−1 such that [v, F ] 6∈ g0.

Take v = ξ1 . . . ξn; let d be the central element of c(g0) normalized so that
ad d|g−1 = − id. Let F ∈ g1 be such that

[v, F ] = d+ g, for g ∈ g0.

Then

±[v, [F, v1]]
by Jacobi id.

= [[v, F ], v1] = (d+ g)v1 = −v1 + gv1.(A.2.0)

In other words, g1 = [F, v1] maps v to −v1 +gv1 up to a sign. But in the g0-module
considered, the image of v can only be a function of degree ≥ n− 1.

Hence, gv1 = v1 + ϕ(v1), where degϕ ≥ n − 1, for any v1 of degree < n − 1.
Consequently, the projection g0 of g on the zeroth component of vect(0|n) with
respect to the standard Z-grading, i.e., on gl(n), satisfies the condition

g0|Span(v1: deg v1<n−1) = id.

But in vect(0|n) the dimension of the maximal torus Span(εi∂i : 1 ≤ i ≤ n) is equal
to n and there is no operator whose restrictions to the spaces of homogenuous
functions in ξ of at least two distinct degrees are scalar operators.
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Since n− 2 ≥ 2 for n > 3, the Lie superalgebra (g−1, cg0)∗ is not simple.

A.2.3. Corollary. Let

g− =
{

ab(2n−1) for n odd,
hei(2n−1|2n−1) for n even.

The Lie superalgebra (g−, cvect(0|n))mk∗ is not simple for n > 3.

Proof follows the lines of the proof of Corollary A.2.1 with the correction that
(A.2.0) is now true not for all v1 ∈ g−1 but only for those which satisfy [v1, v] = 0.
Such elements v1 are represented by functions f ∈ Λ(n) such that 0 < deg f ≤ n−1.
There are ≥ 2 distinct degrees which satisfy this inequality for n > 3.

A.2.4. Corollary. Let

g− =
{

ab(2n−1 − 1) for n odd,
hei(2n−1|2n−1 − 2) for n even.

Then g = (g−, svecta,b(0|n))mk∗ is not a simple Lie superalgebra if either n > 4 or
n = 4 and (a, b) 6∈ C(3, 4).

Proof is obtained by a slight modification of the proof of Corollary A.2.2. As
v we now take ξ1 . . . ξn−1 ∈ g−1; let F be such that [v, F ] = ax + bd + g, where
g ∈ svect(0|n). Then

[[F, v1], v] = ±[[v, F ], v1] = (ak − b)v1 + gv1(A.2.1)

for any monomial v1 ∈ g−1 of degree k and distinct from ξn. Since every element
from g0 lowers the degree of any monomial not more than by 1, we see that the
projection g0 of g on svect(0|n)0 satisfies the relation

g0v1 = (b− ak)v1(A.2.2)

for any monomial v1 ∈ g−1 of degree k < n− 2 and distinct from ξn. In particular,
for n > 4 this means that g0 acts on Span(ξ1, . . . , ξn−1) by multiplication by b− a
and on Λ2(ξ) by multiplication by b− 2a. Hence, g0 = 0, i.e., a = b = 0.

In A.2.2 k < n − 2. So if n = 4, then k = 1. The component g0 is defined by
its action on ξ1, ... , ξn. But A.2.2 gives the action of g0 only on ξ1, ... , ξn−1. Its
action on ξn can be arbitrary with only one condition: g0 ∈ svect(0|4); this is what
A.2.3 means:

g0(ξ1ξ4) = −2(b− a)ξ1ξ4 + c1ξ1ξ2 + c2ξ1ξ3.(A.2.3)

Look at formula (A.2.1) with v = ξ1ξ2ξ3 and v1 = ξ1ξ4. It means that ad[F, v1]
(which is an element from svect(0|4)⊃+ C(ax + bd)) sends ξ1ξ2ξ3 to (2a − b)ξ1ξ4 +
g(ξ1ξ4). Since no vector field can send v to v1, we deduce that g0(v1) must com-
pensate (2a− b)ξ1ξ4. But from formula (A.2.3) we derive that b− 2a = −2b+ 2a,
implying 3b = 4a.

Due to Lemmas 4.1, 6.1, Corollaries A.2.2–A.2.4 are equivalent to the headings
2) of Theorems 4.2, 6.2 and 6.5, respectively.

Appendix 3. Proof of simplicity of the Lie superalgebras

mb(4|5) = (ab(4), cvect(0|3))m∗ and ksle(9|6) = (hei(8|6), svect(4)3,4)k∗

In this appendix g is either mb(4|5) or ksle(9|6). Due to Lemma 6.1, to prove
the simplicity of g it suffices to exibit an element F̂ ∈ g1 such that

[g−1, F̂ ] is not entirely contained in vect(0|3) and svect(0|3), respectively.(A.3.1)
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A.3.1. Simplicity of (ab(4), cvect(0|3))m∗ . First, let us show how to embed g =
cvect(0|3)m∗ into m(4). We consider m(4) as preserving the Pfaff equation given
by the form α0 = dτ +

∑3
i=0(ηidui + uidηi). Denote the basis elements of g as

follows:

g−2 A basis of g−1 = Π(Vol
1
2 ) notations of the corres. functions

that generate g−1 ⊂ m(4)

ξ1ξ2ξ3 η0

M1 ξ2ξ3, ξ3ξ1, ξ1ξ2 u1, u2, u3

ξ1, ξ2, ξ3 η1, η2, η3

1 u0

The following is an explicit realization of the embedding i : g0 = vect(0|3) −→
le(3). We only indicate the generating functions of the image:

degD D ∈ vect(0|3)

−1 ∂1, ∂2, ∂3

0 ξi∂j for i 6= j

0 ξ1∂1, ξ2∂2, ξ3∂3

1 ξ2ξ3∂1, ξ3ξ1∂2, ξ1ξ2∂3

1 ξ1(ξ2∂2 − ξ3∂3), ξ2(ξ3∂3 − ξ1∂1), ξ3(ξ1∂1 − ξ2∂2)

1 ξ1(ξ2∂2 + ξ3∂3), ξ2(ξ3∂3 + ξ1∂1), ξ3(ξ1∂1 + ξ2∂2)

2 ξ1ξ2ξ3∂i

The respective images i(D) are as follows:

−u0u1 + η2η3, −u0u2 + η3η1, −u0u3 + η1η2

−uiηj for i 6= j; i, j > 0
1
2 (−u0η0 − u1η1 + u2η2 + u3η3)
1
2 (−u0η0 + u1η1 − u2η2 + u3η3)
1
2 (−u0η0 + u1η1 + u2η2 − u3η3)

− 1
2u

2
1, − 1

2u
2
2, − 1

2u
2
3

−u2u3, −u1u3, −u1u2

η0η1, η0η2, η0η3

− 1
2uiη0

To check condition (A.3.1), take

F̂ = MF , where F = 2τu1 − 2η0η2η3 + u2
0η1.

Then the brackets with g−1 are

{F, u0}m.b. = −2u0u1 + 2η2η3;

{F, u1}m.b. = −3u2
1;

{F, u2}m.b. = −2u1u2 − 2η0η3;

{F, η1}m.b. = 2τ ;

{F, ηi}m.b. = −2u1ηi (i = 0, 2, 3);

{F, u3}m.b. = −2u1u3 + 2η0η2.
(A.3.2)
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We get Mτ , while the remaining elements in the right hand sides of (A.3.2) lie in
vect(0|3).

A.3.2. Simplicity of (hei(8|6), svect(0|4)3,4)k∗ . We first embed (hei(8|6), svect(0|4))k∗
into k(9|6). We realize k(9|6) as preserving the Pfaff equation given by the form

α1 = dt−
∑
i≤4

(pidqi − dqipi)−
∑
j≤3

(ηjdξj + ξjdηj).

Let us redenote the basis elements of g−1:

A basis of g−1 notations of the corresp. functions

= Π(T 0
0 (~0)) that generate g−1 ⊂ k(9|6)

ξ1, ξ2, ξ3, ξ4 p1, p2, p3, p4

ξ1ξ2, ξ1ξ3, ξ1ξ4 η1, η2, η3

−ξ3ξ4, ξ2ξ4, −ξ2ξ3 ζ1, ζ2, ζ3

ξ2ξ3ξ4, −ξ1ξ3ξ4, ξ1ξ2ξ4, −ξ1ξ2ξ3 q1, q2, q3, q4

The following is an explicit realization of the embedding i : g0 = svect(0|4) −→
h(8|6)0. We only indicate the generating functions of the image. For D ∈ svect(0|4)
we have

degD = −1 :

∂ξ1 7→ ζ1p2 + ζ2p3 + ζ3p4

∂ξ2 7→ −ζ1p1 + η2p4 − η3p3

∂ξ3 7→ −ζ2p1 + η3p2 − η1p4

∂ξ4 7→ −ζ3p1 − η2p2 + η1p3

degD = 0 :

ξ1∂2 7→ −p1q2 − η2η3
ξ2∂1 7→ −p2q1 + ζ2ζ3
ξ1∂3 7→ −p1q3 + η1η3
ξ3∂1 7→ −p3q1 − ζ1ζ3
ξ1∂4 7→ −p1q4 − η1η2
ξ4∂1 7→ −p4q1 + ζ1ζ2

ξ2∂3 7→ −p2q3 + η1ζ2
ξ3∂2 7→ −p3q2 + η2ζ1
ξ2∂4 7→ −p2q4 + η1ζ3
ξ4∂2 7→ −p4q2 + η3ζ1
ξ3∂4 7→ −p3q4 + η2ζ3
ξ4∂3 7→ −p4q3 + η3ζ2

ξ1∂1 − ξ2∂2 7→ −p1q1 + p2q2 + η2ζ2 + η3ζ3
ξ2∂2 − ξ3∂3 7→ −p2q2 + p3q3 + η1ζ1 − η2ζ2
ξ3∂3 − ξ4∂4 7→ −p3q3 + p4q4 + η2ζ2 − η3ζ3∑

ξi∂i 7→ −∑piqi − 2t

(A.3.3)

degD = 1 :

ξ1ξ2∂3 7→ −η1q3, ξ2ξ3∂1 7→ −η3q1, ξ3ξ1∂2 7→ −η2q2
ξ1ξ2∂1 + ξ2ξ3∂3 7→ −q1η1 + q3ζ3
ξ1ξ2∂1 + ξ2ξ4∂4 7→ −q1η1 − q4ζ2
ξ1ξ3∂1 + ξ3ξ2∂2 7→ −q1η2 − q2ζ3
ξ1ξ3∂1 + ξ3ξ4∂4 7→ −q1η2 + q4ζ1

ξ1ξ4∂1 + ξ4ξ2∂2 7→ −q1η3 + q2ζ2
ξ1ξ4∂1 + ξ4ξ3∂3 7→ −q1η3 − q3ζ1
ξ1ξ2∂2 − ξ1ξ3∂3 7→ −q2η1 + q3η2
ξ1ξ2∂2 − ξ1ξ4∂4 7→ −q2η1 + q4η3

degD = 2 : The image under i is generated by qiqj for any 1 ≤ i, j ≤ 4; it is
inessential to us since svect(0|4)2 is generated by svect(0|4)1.
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Now, set

x0 = K−∑ piqi−2t, x1 = K−p1q1+p2q2+η2ζ2+η3ζ3 ,

x2 = K−p2q2+p3q3+η1ζ1−η2ζ2 , x3 = K−p3q3+p4q4+η2ζ2−η3ζ3 ;

see (A.3.3). Set

f = t+
∑
i≤3

piqi + 3p4q4 + η1ζ1 + η2ζ2 − η3ζ3.

Then

Kf =
1
2
x1 + x2 +

3
2
x3 − 3

2
x0 − 2Kt ∈ svect(0|4)⊃+ C(3x0 + 4Kt).

To check the condition (A.3), take F̂ = KF , where

F = tp4 + p4(
∑
i≤4

piqi + η1ζ1 + η2ζ2 − η3ζ3)− 2ζ1ζ2p1 + 2ζ1η3p2 + 2ζ2η3p3.

The commutators of F with k−1(9|6) are of the form:

{qi, F}k.b. = qi
∂F
∂t + ∂F

∂pi
; {ηi, F}k.b. = ηi

∂F
∂t − ∂F

∂ζi
;

{pi, F}k.b. = pi
∂F
∂t − ∂F

∂qi
; {ζi, F}k.b. = ζi

∂F
∂t − ∂F

∂ηi
.

Hence,

{q4, F}k.b. = f ;

{η1, F}k.b. = 2(η1p4 + ζ2p1 − η3p2) 7→ −2∂3;

{η2, F}k.b. = 2(η2p4 − ζ1p1 − η3p3) 7→ 2∂2;

{η3, F}k.b. = {ζ1, F}k.b. = {ζ2, F}k.b. = 0;

{ζ3, F}k.b. = 2(ζ3p4 + ζ1p2 + ζ2p3) 7→ 2∂1;

{q1, F}k.b. = 2(q1p4 − ζ1ζ2) 7→ −2ξ4∂1;

{q2, F}k.b. = 2(q2p4 + ζ1η3) 7→ −2ξ4∂2;

{q3, F}k.b. = 2(q3p4 + ζ2η3) 7→ −2ξ4∂3;

{pi, F}k.b. = 0 for i = 1, 2, 3, 4.

So we get Kf , while the remaining brackets lie in svect(0|3).
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