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Preface to Part II

This monograph is the second part in a series of two books which present the
new theory of Asymptotic Geometric Analysis. In the preface to the first part we
provided some historical connections, and described the main goals and research
problems of the field. We explained a change of intuition which led to the creation
of this new area, and is developing alongside the theory. We advise the readers to
read the preface to the first part before reading this preface.

The subject of Asymptotic Geometric Analysis originated in Functional Anal-
ysis, mainly infinite dimensional. After a few transformations it became mostly
a finite dimensional theory, but with the dimension typically very high. It is an
asymptotic theory, asymptotic by the increasing to infinity of the dimensions of
the objects of our study, say normed spaces, convex bodies or convex functions.
The asymptotic approach reveals many very novel phenomena which also influence
other fields in mathematics, especially where a large data set is of main concern,
or a number of parameters which becomes uncontrollably large. One of the impor-
tant features of this new field of mathematics is in developing tools which allow to
study high parametric families. The tools then become immediately also central
for a number of adjacent fields, such as complexity theory in computer science,
“high dimensional” combinatorics, probability theory, analysis of large biological
or medical data, and so on.

In this stage already the connection with infinite dimensional functional analysis
was lost. However, at the same time these connections and the corresponding
results are very beautiful, and profound, and we expect, and hope, that their role
in asymptotic geometric analysis will be found, and their glory, and importance,
will return. This is the reason we chose to devote a significant portion of the second
volume to return to some of these results, the originality and beauty of which we
see as especially high, as beauty in mathematics is never lost and will pay off some
day.

Chapters 1-4 in this volume are thus a continuation and extension of Part I
(but may be read independently), whereas starting from Chapter 5 we describe
some older parts of the theory. Let us therefore give here the description of the
chapters in a non-linear order.

In Chapter 5 we present the beautiful theory of type and cotype, which was
invented and developed by B. Maurey and by G. Pisier, although some initial
definitions appeared earlier and some important results were proved by others. In
the first two sections we introduce the notions of type p and cotype q as well as some
classical operator norms. We discuss absolutely summing operators and nuclear
operators, introduced by Grothendieck, trace duality, the notions of Gaussian type
and cotype, and the �-norm. There are several classical references on the subject,

ix
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and we only discuss the concepts and results that are necessary for some of the
main theorems that we would like to present in this and in the next chapter.

We continue with a discussion of the duality of entropy problem for spaces
with type p and of two classical results for spaces with bounded cotype constant.
The first is a remarkable theorem of Maurey and Pisier, called “the Maurey-Pisier
lemma”, comparing Rademacher and Gaussian averages for spaces with bounded
cotype q constant, and the second is a theorem, originally proved by Bourgain and
V. Milman, answering a question of Pe�lczynski, which asserts that the volume ratio
of the unit ball of an n-dimensional normed space is bounded by a function of the
cotype 2 constant of the space. Then, we briefly discuss Grothendieck’s inequal-
ity. We provide a proof and show that it can also be deduced from Khintchine’s
inequality. We also present a proof of Kwapien’s theorem stating in a quantitative
way that if a Banach space has type 2 and cotype 2 then it is isomorphic to Hilbert
space. We deduce Kwapien’s theorem from a more general extension theorem of
Maurey; its proof is based on a characterization of L2-factorable extensions of op-
erators which is described in the further reading section. We devote a section to
the Lindenstrauss and Tzafriri affirmative answer to the complemented subspace
problem. We also present related finite dimensional results of Figiel, Lindenstrauss
and V. Milman which may be viewed as applications of Kwapien’s theorem.

In the last part of Chapter 5 we first provide a proof of the remarkable theorem
of Krivine which states that, for every basic (or non-degenerate in some sense)
sequence {xn}∞n=1 in a Banach space X, some �p, 1 � p <∞, or c0 is block finitely
representable in {xn}∞n=1. The first part of the proof is based on the work of
Brunel and Sucheston, and shows that the original sequence may be replaced by an
unconditional and invariant under spreading one. For the second part of the proof
we follow Lemberg’s presentation. We also discuss finite dimensional variants of
the results of Brunel and Sucheston. Then, we present the Maurey-Pisier theorem
which complements Krivine’s theorem: if we define pX = sup{p � 2 : has type p}
and qX = inf{q � 2 : has cotype q} then the Maurey-Pisier theorem says that
for every k � 1 and any ε > 0 there exist k-dimensional subspaces of X which
are (1 + ε)-isomorphic to �kpX

and �kqX . For the proof of the cotype part of the
theorem we follow a simplification of the original Maurey-Pisier proof, which is
due to V. Milman and Sharir. We close the chapter with an important theorem of
Pisier which implies the type part of the Maurey-Pisier theorem as well as a result
of Johnson and Schechtman about embedding �mp into �n1 .

In Chapter 6 we investigate geometric properties of the Banach Mazur com-
pactum, the family of all n-dimensional normed spaces equipped with the Banach-
Mazur distance. Of course, in the spirit of Asymptotic Geometric Analysis, we are
interested in the asymptotic behavior of the estimated quantities as the dimension
n tends to infinity. The geometry of the Banach Mazur compactum was of high
interest already in the time of Banach, but the progress in understanding it was
very slow. Every step was difficult, and the accumulated progress small. Only
from the 1970s did the knowledge on this subject start to grow significantly, and
the present theory is very rich. This chapter stands exactly between Functional
Analysis and Asymptotic Geometric Analysis and serves as a nice bridge between
these two related fields.

We discuss the question to compute the diameter of the compactum and present
a proof of Gluskin’s theorem that there exists an absolute constant c > 0 such that,
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for any n ∈ N, one may find two n-dimensional normed spaces Xn, Yn with distance
greater than cn. The proof is probabilistic and establishes only the existence of
such a pair; moreover, it introduces a class of random spaces that later found many
applications in the theory. Then we introduce the method of random orthogonal
factorizations, a fruitful idea, based on an inequality of Chevet, which produces
a class of isomorphisms between two n-dimensional normed spaces for which one
can give reasonable, and sometimes useful, estimates for their norms. We provide
a number of applications in order to illustrate the power of the method; among
them, an estimate of the Banach-Mazur distance between two arbitrary spaces in
terms of the type 2 constants of the spaces or their dual spaces, an estimate of the
distance between a space and its dual, and, in the further reading section, a general
estimate of the volume ratio of an arbitrary pair of n-dimensional convex bodies.
One more application of the method of random orthogonal factorizations is given
for the problem to estimate the diameter of the Banach-Mazur compactum in the
non-symmetric case. We discuss in detail the best known upper bound, which is
due to Rudelson.

Then, we present the circle of ideas that were developed for the study of
Pe�lcynski’s question to determine the asymptotic growth of the radius Rn

∞ of
Banach-Mazur compactum with respect to �n∞. We present a proof of the best
known upper bound O(n5/6), which was obtained by Giannopoulos, following works
of Bourgain, Szarek and Talagrand that combine combinatorial and factorization
arguments related to Grothendieck’s inequality. The problem remains open; one
should mention Tikhomirov’s recent striking lower bound Rn

∞ � n5/9 up to a
power of lnn, which shows that the “exponent” of n in Rn

∞ is strictly between
1/2 and 1. An important result which is related to the above discussion, first ob-
tained by Bourgain and Szarek, is the proportional Dvoretzky-Rogers factorization
theorem. We give here two interesting applications, the strong negative answer of
Bourgain and Szarek to the question of (isomorphic) uniqueness of the center of the
Banach-Mazur compactum and the isomorphic Dvoretzky theorem of V. Milman
and Schechtman.

The last three sections of Chapter 6 present beautiful results from the local
theory of normed spaces, which exploit combinatorial and probabilistic tools and
are in the spirit of our previous discussion. We describe the proof of a theorem
of V. Milman and Wolfson about spaces with maximal Banach-Mazur distance
to Euclidean space, whose proof exploits a beautiful result of Elton. We also
present the Alon-V. Milman theorem, which implies the following dichotomy: given
ε ∈ (0, 1), every n-dimensional normed space X contains a subspace F of dimension

k � exp(c(ε)
√
lnn) such that either d(F, �k2) � 1 + ε or d(F, �k∞) � 1 + ε. Finally,

we discuss a theorem of Schechtman on the dependence on ε of the critical dimen-
sion in Dvoretzky theorem. The proof exploits the proportional Dvoretzky-Rogers
factorization theorem and the Alon-V. Milman theorem.

Chapter 7 plays in some sense a very special role. It gives an application of
the Asymptotic Theory we developed, to old and classical problems of convexity
theory, asking for the minimal number of symmetrization steps needed to get from
an arbitrary convex body to an approximate Euclidean ball. We consider two kinds
of symmetrizations. One is Minkowski symmetrization, averaging the body and a
reflected copy, and the other one is Steiner symmetrization, defined and studied
in [1, Chapter 1], where it was used to derive proofs for classical theorems such
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as the Brunn-Minkowski, Blaschke-Santaló and the isoperimetric inequalities. The
results we present in this chapter are striking, and use a whole range of tools
and achievements of Asymptotic Geometric Analysis. In classical convex geometry
theory it was expected that the number of, say, Steiner symmetrizations needed to
get ε close to a Euclidean ball starting from an arbitrary convex body would be of
the order of (n/ε)n/2 but, surprisingly, the methods of asymptotic convex geometry
show that a linear in the dimension number of steps is enough. First we present
the work of Bourgain, Lindenstrauss and V. Milman, who proved that for every
ε ∈ (0, 1) and every convex body K, if we perform N = Cn lnn+c(ε)n independent
random Minkowski symmetrizations on K, then with probability greater than 1−
exp(−c1(ε)n) we receive a convex body K ′ such that dG(K

′, Bn
2 ) � 1 + ε, where

dG is the geometric distance. We call theorems of this type “almost isometric
symmetrization” results. Bourgain, Lindenstrauss and V. Milman also proved an
“isomorphic symmetrization” theorem about Steiner symmetrization.

The main part of the chapter is devoted to the work of Klartag. Through
his works, and his joint work with V. Milman, we now know that, starting from
an arbitrary convex body, 3n symmetrizations suffice to get a body which is C-
isomorphic to the Euclidean ball, for some absolute constant C and that for every
ε > 0 an ε-approximation is possible using n4(log(1/ε))2 steps only. Klartag’s
results regarding Minkowski symmetrizations are even better (they are linear in
n) and are essentially used in the analysis of the Steiner symmetrizations case. A
remarkable feature of the works that we present in this chapter is that they combine
and use a variety of tools that we developed in [1]. We also emphasize, and the
reader will notice, the fact that in the procedure that we describe every new step
depends in a very essential way to the previous ones.

Chapter 8 is devoted to the method of interlacing families of polynomials,
introduced by Marcus, Spielman and Srivastava. We focus on its applications to
geometric functional analysis and convex geometry. Our starting point is a theorem
of Batson, Spielman and Srivastava motivated by the question of approximating,
in terms of its Laplacian matrix, a given graph by a sparse one: If d > 1 and
v1, . . . , vm ∈ Rn are such that

Idn =
m∑
j=1

vj ⊗ vj

then there exist non-negative reals {sj}mj=1, with |{j : sj �= 0}| � dn, such that

Idn 	
m∑
j=1

sjvj ⊗ vj 	
(√d+ 1√

d− 1

)2
Idn.

In the language of convex geometry, this theorem asserts that a given John decom-
position of the identity can be approximated by a John sub-decomposition, with
suitable weights, which involves a linear in the dimension number of terms. Im-
portant applications of this fact to convex geometry are discussed in the further
reading section of the chapter.

Interlacing polynomials are then introduced and used for a new proof of the
restricted invertibility principle. The original version, proved by Bourgain and
Tzafriri, established that any n × n matrix B that has small operator norm and
columns of unit length contains a large column submatrix Bσ, where σ ⊂ [n],
which is well-invertible on its span. Generalizations were obtained by Vershynin and
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Spielman-Srivastava. We present a more recent sharp form of the theorem, obtained
by Marcus, Spielman and Srivastava: If B is a n × m matrix and k � srank(B)
then there exists σ ⊂ [m] with |σ| = k such that

σmin(Bσ)
2 �
(
1−
√
k/srank(B)

)2 ‖B‖2HS

m
,

where srank(B) := ‖B‖2HS/‖B‖2op is the stable rank of B and ‖B‖HS is its Hilbert-
Schmidt norm. We also discuss work of Youssef, who obtained another restricted
invertibility theorem for rectangular matrices and used it to get an alternative
proof of the proportional Dvoretzky-Rogers factorization theorem with the same,
currently best known, estimate as that obtained by Giannopoulos.

Chapter 8 is concluded with the history and the solution to the Kadison-Singer
problem. We start with a brief description of the problem, its equivalence with
Anderson’s paving conjecture which concerns finite dimensional matrices, and re-
ductions to other finite dimensional combinatorial problems. Using the method
of interlacing polynomials, Marcus, Spielman and Srivastava succeeded to confirm
one of these. Their main result states that if ε > 0 and v1, . . . , vm are independent
random vectors in Cn with finite support, such that

m∑
i=1

E(viv
∗
i ) = Idn and E(v∗i vi) � ε

for all 1 � i � m, then with positive probability one has∣∣∣ m∑
i=1

viv
∗
i

∣∣∣ � (1 +
√
ε)2.

This implies Weaver’s conjecture, one of the equivalent formulations of the paving
conjecture, and answers the Kadison-Singer problem in the affirmative.

Let us go back and describe the first four chapters of this volume, which are in
a sense an extension of the first volume but may be read essentially independently.
The material that is presented in these chapters complements and develops the
methods and results of Part I. In Part I we tried not to overload some chapters
with directions that were based on very technical results. Thus we presented only
ideas and techniques which were absolutely necessary for the presentation of the
first line of results. Here we complement and extend this material. We would still
like to emphasize that extremely important, needed and also beautiful results fill
these four chapters.

Chapter 1 may be seen as a continuation of [1, Chapter 3] and focuses on
the functional aspects of the subject. Our first goal is to explain the role of the
Poincaré inequality in concentration of measure. We start with the Gaussian case,
and provide a proof for the Gaussian Poincaré inequality introducing the Ornstein-
Uhlenbeck semigroup. We then discuss the general semigroup method, the spectral
approach to the Poincaré inequality, and its discrete version. We end this first part
with a technical tool which is sometimes useful, the Laplace functional of a measure,
and show how it can be used to get concentration on the discrete cube as well.
Then, we discuss cost-induced transforms, which have their origin in the theorem
of optimal transportation and present various inequalities inducing concentration.
These include a cost-Santaló inequality, a weak cost-Santaló inequality, and an
equivalent inequality connecting entropy with transportation cost. To this end we
define and analyse the concept of entropy and relative entropy. We also discuss the
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logarithmic Sobolev inequality and in particular the relation of hypercontractivity
with concentration. We show a hierarchy between the various inequalities. In the
further reading section and in the notes and remarks the reader may find further
related extensions, in particular Talagrand’s L1 − L2 inequality, a self-contained
proof of the Kantorovich duality theorem which plays a key role in the inequalities
connected to concentration, and a historical overview of tensorizable inequalities,
written by S. G. Bobkov at our request.

Chapter 2 is a direct continuation of [1, Chapter 10], although we present it
in a way suitable for independent reading. Our aim in this chapter is to present
a number of challenging problems and deep results about isotropic log-concave
probability measures. This part of the theory is very quickly developing in recent
years, and many new facts and some breakthroughs were achieved in the short
period between Part I was published and this book was completed. Moreover,
between the acceptance of this manuscript, and the last polish before publication,
a huge step forward in the understanding was obtained by Chen. We present in
this chapter some of these new ideas and results, starting with the Kannan-Lovász-
Simonovits (KLS) conjecture. It concerns the Cheeger constant χμ of an isotropic
log-concave measure μ, defined as the least constant χ � 0 such that

μ+(A) � χ min{μ(A), 1− μ(A)}
for every Borel subset A of Rn, where μ+(A) is the Minkowski content of A. For
notational convenience we set ψμ = 1/χμ. The question is if there exists an absolute
constant C > 0 such that

ψn := sup{ψμ : μ is isotropic log-concave measure on Rn} � C.

We present a first approach to the problem, due to Kannan, Lovász and Simonovits,
which is based on the localization lemma and leads to the estimate ψn � C

√
n. We

also describe a second proof, due to Bobkov, which provides the same general es-
timate. Then, we explain that an equivalent way to formulate the KLS conjecture
is to ask that Poincaré inequality holds for every isotropic log-concave probability
measure μ on Rn with a constant that is independent of the measure or the dimen-
sion n. We also describe important work of E. Milman who introduced a variety
of isoperimetric constants for a Borel probability measure μ on Rn, including the
exponential concentration constant ημ and the first moment concentration constant
ζμ, and showed that for every log-concave probability measure μ on Rn one has

ψμ ≈ ϑμ ≈ ημ ≈ ζμ.

We introduce the central limit problem, that asks if the 1-dimensional marginals
of high-dimensional isotropic log-concave measures μ are approximately Gaussian
with high probability and explain the fact, that goes back to Sudakov, that if μ
is an isotropic probability measure on Rn that the problem can be reduced to the
validity of the “thin shell condition”

μ
(
| |x| −

√
n | � εn

√
n
)

� εn

with ε = εn tending to 0 as n tends to infinity. An affirmative answer to the problem
was given by Klartag who, in a series of breakthrough works, obtained power-type
estimates verifying the thin-shell condition. However, it is an open problem to
decide if there exists an absolute constant C > 0 such that, for any n � 1,

σn := sup{σμ : μ is an isotropic log-concave measure on Rn} � C,
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where

σ2
μ :=

∫
Rn

(
|x| −

√
n
)2
dμ(x).

We present a theorem of Eldan and Klartag showing that a positive answer to this
“variance problem” implies the hyperplane conjecture. Finally, we describe the
currently best known results on the family of problems of this chapter. They are
due to Y. Chen and imply that in the case where μ is isotropic one has

ψμ � nc
√

ln lnn
lnn � nε

for any ε > 0 provided that n is large enough. This also implies that for any
ε > 0 there exists n0 = n0(ε) such that, for all n � n0(ε), σn � nε and Ln � nε.
The approach of Chen, as well as previous work of Lee and Vempala in the same
direction, is based on Eldan’s stochastic localization.

Chapter 3 presents the proofs of some fundamental and very useful isoperimetric
inequalities about the n-dimensional Gaussian measure γn, and extends [1, Chap-
ter 9]. The Gaussian distribution plays a central role in probability theory and our
theory gives a deep and important addition to the understanding of Gaussian ran-
dom variables. The first main result of the chapter is the isoperimetric inequality
in Gauss space stating that if A is a Borel set in Rn and H is a half-space such that
γn(A) = γn(H) then γn(At) � γn(Ht) for every t > 0, where At is the t-extension
of A. This shows that half-spaces are extremal sets for the isoperimetric problem.
We outline a proof due to Sudakov and Tsirelson, and idependently to Borell, which
is based on the Maxwell/Poincaré observation. In the notes and remarks section
we describe a second proof, based on a Gaussian symmetrization, which was given
by Ehrhard. We present in detail Bobkov’s proof which employs a functional in-
equality which in some sense avoids geometry completely, and allows tensorization.
The next topic in this chapter is the Ehrhard-Borell inequality. Originally, using
Gaussian symmetrization, Ehrhard obtained the inequality

Φ−1(γn(λA+ (1− λ)B)) � λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B))

for any pair of convex subsets A,B of Rn and any λ ∈ (0, 1). We describe the
work of Borell who removed the convexity assumption and proved a more general
functional inequality which implies Ehrhard’s inequality for any pair of Borel sets
A and B.

In the next two sections we discuss beautiful results that verify a conjecture of
Shepp on the behavior of the Gaussian measure of dilates of centrally symmetric
convex bodies, the Gaussian correlation conjecture and the B-conjecture. The first
result is due to Lata�la and Oleszkiewicz and states that if A is a centrally symmetric,
closed and convex set in Rn and P is a centrally symmetric strip in Rn such that
γn(A) = γn(P ) then γn(tA) � γn(tP ) for all t � 1 and γn(tA) � γn(tP ) for all
0 � t � 1. The proof employs Ehrhard’s inequality to reduce the problem to a
two-dimensional one. Next, we present Royen’s proof of the Gaussian correlation
conjecture for Gaussian measure: If K,T are two centrally symmetric, closed and
convex sets in Rn then

γn(K ∩ T ) � γn(K) γn(T ).

Finally, the B-theorem of Cordero-Erausquin, Fradelizi and Maurey confirms a
conjecture of Banaszczyk: If K is a centrally symmetric convex body in Rn then
the function t �→ γn(e

tK) is log-concave on R.
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In the final section of Chapter 3 we present applications of geometric inequalities
for the Gaussian measure to discrepancy problems. In particular, we present a proof
of the Spencer/Gluskin theorem as well as the proof of the currently best known
estimate for a well-known question of Komlós, which is due to Banaszczyk.

In [1, Chapter 2 and Chapter 10] we saw very non-trivial volume inequali-
ties related to the classical positions of convex bodies and to the isotropic posi-
tion. We extend and continue the study of different volume-type inequalities in
Chapter 4 of this volume. We present the rearrangement approach, the classi-
cal Brascamp-Lieb-Luttinger inequality, and the multidimensional versions of the
Brascamp-Lieb inequality and Barthe’s inequality. Then we present a sample of ap-
plications of these deep inequalities to classical problems in convex geometry. We
also discuss a geometric inequality of Gluskin and V. Milman and apply it to show
that every n-dimensional normed space has the random cotype-2 property, and
a Brunn-Minkowski-type inequality for restricted Minkowski sums, due to Szarek
and Voiculescu, which is then applied to give an elegant proof of Shannon’s entropy
power inequality.

A second part of Chapter 4 is devoted to volume estimates for convex bodies
with few vertices or facets. We describe the proof of Vaaler’s inequality giving
a lower bound for the volume of the intersection of a finite number of centrally
symmetric strips, which introduces a useful partial order on the class of log-concave
probability measures. We also describe another lower bound that was obtained
independently by Carl-Pajor and by Gluskin, and by duality we obtain an upper
bound for the volume of the convex hull of a finite number of points, proved by
Barány and Füredi with a different method. In the further reading section we also
discuss work of Meyer and Pajor who, using ideas from Vaaler’s work, determined
the maximal sections of the �p-balls in the case 1 � p � 2 and their minimal sections
in the case p � 2. We close this part with a discussion of Shephard’s problem and
its negative answer by Petty and Schneider, as well as the strongly negative answer
to the problem which was given, much later, by K. Ball.

In the last part of Chapter 4 we explain the main ideas of a theory developed in
a series of works of Paouris and Pivovarov who, using the Brascamp-Lieb-Luttinger
inequality, stochastic dominance and the notion of “weak” convexity, provided a
unified way of proving well-known inequalities from geometric probability and ob-
tained a variety of randomized isoperimetric inequalities. Finally, we give a brief
account of Blaschke-Petkantschin formulas and their geometric applications, includ-
ing the Busemann-Straus/Grinberg inequality on the dual-affine quermassintegrals
of a convex body, as well as some “correction” to the Busemann-Petty problem, by
Giannopoulos and Koldobsky, which leads to a positive solution.

Finally, let us discuss Chapter 9, on “functionalization of geometry”, the last
chapter of this book and of the project. In some sense, this chapter is an appendix
for our books, but we consider it to be of high importance, as it is in some sense
a “glance to the future”. In this chapter we study some classes of functions on
Rn from a purely geometric point of view. We show that the family of convex
functions, or log-concave functions, or, more generally, α-concave functions and
even quasi-concave functions, may be viewed as an extension of geometric objects,
namely closed convex sets. Because some of these classes often appear as densi-
ties of probability measures, this direction was originally called “geometrization of



PREFACE TO PART II xvii

probability”. However, we realized later that this point of view has a much broader
perspective, and changed the name to the present one.

Before describing this direction in a more understandable (and more mathe-
matical) way, let us recall some notation. Consider the class Cvx(Rn) of all lower
semi continuous convex functions ϕ : Rn → R∪{∞} which are not identically +∞.
The Legendre transform is the map

(Lϕ) (y) = sup
x

(〈x, y〉 − ϕ(x)) .

We discuss in Chapter 9 the following theorem: Assume T : Cvx(Rn) → Cvx(Rn)
satisfies that T ◦ T = Id and that (ϕ � ψ) ⇐⇒ (Tϕ � Tψ). Then T is, up
to linear variants, the Legendre transform. So, these two elementary properties,
essentially uniquely define the Legendre transform. Now, consider some funda-
mental constructions of convex geometry which we often met in Part I: Polarity
K �→ K◦, Support functions K �→ hK , Minkowski functional K �→ ‖ · ‖K . It turns
out that these geometric constructions, central to convex geometry, may be essen-
tially uniquely determined by some elementary analytic properties. For example,
the map K �→ K◦ is (essentially, up to linear variants) the unique map on compact
convex sets with 0 in the interior which is an involution, and which reverses the
partial order given by inclusion, (A ⊆ B) ⇐⇒ (TA ⊇ TB). This was proved
by Böröczky-Schneider, and parts traced back to Gruber. The result for the class
of closed convex sets which include the origin is due to Artstein-V. Milman. Simi-
larly, this led to the understanding that the support map K �→ hK is essentially the
unique bijection from convex bodies to 1-homogeneous convex functions which is
order preserving, and the Minkowski gauge map, the only order reversing one. We
then see that these very geometric in nature constructions are characterized in the
purely analytic language of inequalities. This enables us to understand their exten-
sion to the world of functions. It is useful to consider not only Cvx(Rn) but also
its subclass of non-negative functions which vanish at the origin, Cvx0(Rn), which
we call “geometric convex functions”. We shall see in Chapter 9 that the Legendre
transform is the natural (and only, in some sense) analogue of the support map for
bodies, in the worlds of Cvx(Rn), and we have natural extensions of the polarity
transform and of the Minkowski functional (Minkowski functional is actually just
the composition of polarity and support) .

Let us interrupt here the discussion of how far we may bring purely geometric
results from convex geometry to analysis and compare then with another series of
recent deep results in convexity on “characterization type” facts. As an example of
such results we may consider a result of Ludwig and Reitzner on valuations from
[1], Theorem B.6.3. Clearly, the results we mentioned above also have such “char-
acterization type” flavor, although on a very basic and elementary operation. This
allows us to “leaving” geometry and to consider them in analysis instead, namely
“functional extensions”, and this is the main point we would like to emphasize.

Returning back to the contents of Chapter 9, let us note that we did not
yet explain here the deep penetration of geometry into the analytic setting. The
deepest part of convex geometry is in geometric inequalities, in the study of volumes,
relation and inequalities between them. Of course, to be able to discuss inequalities
we must first restrict to a class of integrable functions, which is why we are “re-
norming” the class of convex functions and consider log-concave functions, exp(−ϕ)
where ϕ is convex, or other classes of functions more suitable for integration.
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However, we should also discover the correct summation approach which, like
Minkowski summation applied to volume of linear combinations of convex bodies
(with non-negative coefficients) will create polynomiality for integrals of the cor-
responding linear combinations of the functions. In this way we derve notions of
mixed integrals and quermassintegrals in the functional setting, and this leads the
way to deep geometric inequalities such as Alexandrov-type, Urysohn-type, and
Alexandrov-Fenchel-type. The interested reader may see more general information
on the contents of Chapter 9 in the introduction of the chapter itself.
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Preface to Part I

In this book we present the theory of asymptotic geometric analysis, a theory
which stands at the midpoint between geometry and functional analysis. The the-
ory originated from functional analysis, where one studied Banach spaces, usually
of infinite dimensions. In the first few decades of its development it was called
“local theory of normed spaces”, which stood for investigating infinite dimensional
Banach spaces via their finite dimensional features, for example subspaces or quo-
tients. Soon, geometry started to become central. However, as we shall explain
below in more detail, the study of “isometric” problems, a point of view typical
for geometry, had to be substituted by an “isomorphic” point of view. This be-
came possible with the introduction of an asymptotic approach to the study of high
dimensional spaces (asymptotic with respect to dimensions increasing to infinity).
Finally, these finite but very high dimensional questions and results became inter-
esting in their own right, influential on other mathematical fields of mathematics,
and independent of their original connection with infinite dimensional theory. Thus
the name asymptotic geometric analysis nowadays describes an essentially new field.

Our primary object of study will be a finite dimensional normed space X; we
may assume that X is Rn equipped with a norm ‖ · ‖. Such a space is determined
by its unit ball KX = {x ∈ Rn : ‖x‖ � 1}, which is a compact convex set with
non-empty interior (we call this type of set “a convex body”). Conversely, if K is a
centrally symmetric convex body in Rn, then it is the unit ball of a normed space
XK = (Rn, ‖ · ‖K). Thus, the study of finite dimensional normed spaces is in fact
a study of centrally symmetric convex bodies, but again, the low-dimensional type
questions and the corresponding intuition are very different from what is needed
when the emphasis is on high dimensional asymptotic behaviour. An example that
clarifies this difference is given by the following question: does there exist a universal
constant c > 0 such that every convex body of volume one has a hyperplane section
of volume more than c? In any fixed dimension n, simple compactness arguments
show that the answer is affirmative (although the question to determine the optimal
value of the corresponding constant cn may remain interesting and challenging).
However, this is certainly not enough to conclude that a constant c > 0 exists
which applies to any body of volume one in any dimension. This is already an
asymptotic type question. In fact, it is unresolved to this day and will be discussed
in Chapter 10.

Classical geometry (in a fixed dimension) is usually an isometric theory. In the
field of asymptotic geometric analysis one naturally studies isomorphic geometric
objects and derives isomorphic geometric results. By an “isomorphic” geometric
object we mean a family of objects in different spaces of increasing dimension and
by an “isomorphic” geometric property of such an “isomorphic” object we mean a
property shared by the high-dimensional elements of this family. One is interested

xix
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in the asymptotic behaviour with respect to some parameter (most often it is the
dimension n) and in the control of how the geometric quantities involved depend
on this parameter. The appearance of such an isomorphic geometric object is a
new feature of asymptotic high dimensional theory. Geometry and analysis meet
here in a non-trivial way. We will encounter throughout the book many geometric
inequalities in isomorphic form. Basic examples of such inequalities are the “iso-
morphic isoperimetric inequalities” that led to the discovery of the “concentration
phenomenon”, one of the most powerful tools of the theory, responsible for many
counterintuitive results. Let us briefly describe it here, through the primary exam-
ple of the sphere. A detailed account is given in Chapter 3. Consider the Euclidean
unit sphere in Rn, denoted Sn−1, equipped with the Lebesgue measure, normalized
to have total measure 1. Let A be a subset of the sphere of measure 1/2. Take
an ε-extension of this set, with respect to Euclidean or geodesic distance, for some
fixed but small ε; this is the set of all points which are at distance at most ε from
the original set (usually denoted by Aε). It turns out that the remaining set (that
is, the set Sn−1 \ Aε of all points in the sphere which are at distance more than
ε from A) has, in high dimensions, a very small measure, decreasing to zero expo-
nentially fast as the dimension n grows. This type of statement has meaning only
in asymptotic language, since in fact we are considering a sequence of spheres of
increasing dimensions, and a sequence of subsets of these spheres, each of measure
one half of its corresponding sphere, and the sequence of the measures of the ε-
extensions (where ε is fixed for all n) is a sequence tending to 1 exponentially fast
with dimension. We shall see how the above statement, which is proved very easily
using the isoperimetric inequality on the sphere, plays a key role in some of the
very basic theorems in this field.

We return to the question of changing intuition. The above paragraph shows
that, for example, an ε-neighbourhood of the equator x1 = 0 on Sn−1 already
contains an exponentially close to 1 part of the total measure of the sphere (since
the sets x1 � 0 and x1 � 0 are both of measure 1/2, and this set is the intersection
of their ε-neighbourhoods). While this is again easy to prove (say, by integration)
once it is observed, it does not correspond to our three-dimensional intuition. In
particular, the far reaching consequences of these observations are hard to anticipate
in advance. So, we see that in high dimension some of the intuition which we built
for ourselves from what we know about three-dimensional space fails, and this
“break” in intuition is the source of what one may call “surprising phenomena” in
high dimensions. Of course, the surprise is there until intuition corrects itself, and
the next surprise occurs only with the next break of intuition.

Here is a very simple example: The volume of the Euclidean ball Bn
2 of radius

one seems to be increasing with dimension. Indeed, denote this by κn and compute:

κ1 = 2 < κ2 = π < κ3 =
4π

3
< κ4 < κ5 < κ6.

However, a simple computation which is usually performed in Calculus III classes
shows that

Voln(B
n
2 ) = κn =

πn/2

Γ(n2 + 1)
=
(
cn/
√
n
)n

where cn →
√
2πe. We thus see that in fact the volume of the Euclidean unit

ball decreases like n−n/2 with dimension (and one has the recursion formula κn =
2π
n κn−2). So, for example, if one throws a point into the cube circumscribing the



PREFACE TO PART I xxi

ball, at random, the chance that it will fall inside the ball, even in dimension 20,
say, is practically zero. One cannot find this ball inside the cube.

Let us try to develop an intuition of high dimensional spaces. We illustrate,
with another example, how changing the intuition can help us understand, and
anticipate, results. To begin, we should understand how to draw “high dimensional”
pictures, or, in other words, to try and imagine what do high dimensional convex
bodies “look like”. The first non intuitive fact is that the volume of parallel hyper-
sections of a convex body decays exponentially after passing the median level (this
is a consequence of the Brunn-Minkowski inequality, see Section 3.5). If we want to
capture this property, it means that our two or three dimensional pictures of a high
dimensional convex body should have a “hyperbolic” form! Thus, K is a convex
set but, as the rate of volume decay has a crucial influence on the geometry, we
should find a way to visualize it in our pictures. For example, one may draw the
convex set K as follows:

The convexity is no longer seen in the picture, but the volumetric properties
are apparent. Next, with such a picture in mind, we may intuitively understand
the following fact (it is a special case of Theorem 5.5.4 in Section 5.5): Consider the
convex body K =

√
nBn

1 := conv(±√nei) (also called the unit ball of Ln
1 ). Take a

random rotation UK of K and intersect it with the original body.

The resulting body, K∩UK is, with high probability over the choice of the ran-
dom rotation U , contained in a Euclidean ball of radius C, where C is a universal
constant independent of the dimension. Note that the original body, which con-
tains a Euclidean ball of radius 1 (as does the intersection), has points in distance√
n from the origin. That is, the smallest Euclidean ball containing K is

√
nBn

2 .
However, the simple (random) procedure of rotation and intersection, with high
probability cuts out all these “remote regions” and regularizes the body completely
so that it becomes an isomorphic Euclidean ball.



xxii PREFACE TO PART I

This was an example of a very concrete body, but it turns out the same property
holds for a large class of bodies (called “finite volume ratio” bodies, see Section 5.5).
Actually, if one allows slightly more rotations, log n of them in dimension n, one may
always regularize any body by the same process to become an isomorphic Euclidean
ball. This last claim needs a small correction to be completely true: we have not
explained how one chooses a random rotation. To this end one considers the Haar
probability measure on the space of orthogonal rotations. To consider orthogonal
rotations one must first fix a Euclidean structure, and the above statement is true
after fixing the “right” structure corresponding to the body in question. The story
of choosing a Euclidean structure, which is the same as choosing a “position” for
the body, is an important topic, and for different goals different structures should
be chosen. This topic is covered in Chapter 2.

Let us emphasize that while the geometric picture is what helps us understand
which phenomena may occur, the picture is of course not a proof, and in each case
a proof should be developed and is usually non trivial.

This last example brings us to another important point which will be a cen-
tral theme in this book, and this is the way in which, in this theory, randomness
and patterns appear together. A perceived random nature of high dimensions is
at the root of the reasons for the patterns produced and the unusual phenomena
observed in high dimensions. In the dictionary, “randomness” is the exact opposite
of “pattern”. Randomness means “no pattern”. But, in fact, objects created by
independent identically distributed random processes, while being different from
one another, are many times indistinguishable and similar in the statistical sense.
Consider for example the unit cube, [0, 1]n. Choosing a random point inside it with
respect to the uniform distribution means simply picking the n coordinates inde-
pendently and uniformly at random in [0, 1]. We know that such a point has some
very special statistical properties (the simplest of which is the law of large numbers
and the central limit theorem regarding the behaviour of the sum of these coordi-
nates). It turns out that similar phenomena occur when the unit cube is replaced
by a general convex body (again, a position should be specified). It is a challenge
to uncover these similarities, a pattern, in very different looking objects. When
we discover very similar patterns in arbitrary, and apparently very diverse convex
bodies or normed spaces, we interpret them as a manifestation of the randomness
principle mentioned above.

On the one hand, high dimension means many variables and many “possibili-
ties”, so one may expect an increase in the diversity and complexity as dimension
increases. However, the concentration of measure and similar effects caused by the
convexity assumption imply in fact a reduction of the diversity with increasing di-
mension, and the collapse of many different possibilities into one, or, in some cases,
a few possibilities only. We quote yet another simple example which is a version of
the “global Dvoretzky-type theorem”. For details see Section 5.6. (The Minkowski
sum of two sets is defined by A+B = {a+ b : a ∈ A, b ∈ B}.)

Let n ∈ N and let K ⊂ Rn be a convex body such that the
Euclidean ball Bn

2 is the ellipsoid of maximal volume inside K.
Then, for N = Cn/ logn random orthogonal transformations
Ui ∈ O(n), with probability at least 1− e−cn we have that

Bn
2 ⊂

1

N

(
U1K + U2K + · · ·+ UNK

)
⊂ C ′Bn

2 ,
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where 0 < c,C,C ′ < ∞ are universal constants (independent
of K and of n).

One way in which diversity is compensated and order is created in the mixture
caused by high dimensionality, is the concentration of measure phenomenon. As
the dimension n increases, the covering numbers of a generic body of the same
volume as the unit Euclidean ball, say, by the Euclidean ball itself (this means the
number of translates of the ball needed to cover the body, see Sections 4.1 and
4.2) become large, usually exponentially so, meaning ecn for some constant c > 0,
and so seem impossible to handle. The concentration of measure is, however, of
exponential order too (this time e−c′n for some constant c′ > 0), so that in the
end proofs become a matter of comparison of different constants in the various
exponents (this is, of course, a very simplistic description of what is going on).

Let us quote from the preface of P. Lévy to the second edition of his book
“Problèmes Concrets d’Analyse Fonctionelle” of 1951:

“It is quite paradoxical, that an increase in the number of
variables might cause simplifications. In reality, any law of
large numbers presupposes the existence of some rule governing
the influence of sequential variables; starting with such a rule,
we often obtain simple asymptotic results. Without such a rule,
complete chaos ensues, and since we are unable to describe, for
instance, an infinite sequence of numbers, without resorting to
an exact rule, we are unable to find order in the chaos, where, as
we know, one can find mysterious non measurable sets, which
we can never truly comprehend, but which nevertheless will
not cease to exist.”

As we shall see below, the above facts reflect the probabilistic nature of high
dimensions. We mean by this more than just the fact that we are using probabilistic
techniques in many steps of the proofs. Let us mention one more very concrete
example to illustrate this “probabilistic nature”: Assume you are given a body
K ⊂ Rn, and you know that there exist 3 orthogonal transformations U1, U2, U3 ∈
O(n) such that the intersection of U1K, U2K and U3K is, up to constant 2, say, a
Euclidean ball. Then, for a random choice of 10 rotations, {Vi}10i=1 ⊂ O(n), with
high probability on their choice, one has that ∩10

i=1ViK is up to constant C (which
depends on the numbers 3 and 10, not on the dimension n, and may be computed)
a Euclidean ball. This is a manifestation of a principle which is sometimes called
“random is the best”, namely that in various situations the results obtained by a
random method cannot be substantially improved if the random choice is replaced
by the best choice for the specific goal.

There are a number of reasons for this observed ordered behaviour. One may
mention “repetition”, which creates order, as statistics demonstrates. What we
explain here and shall see throughout the book is that very high dimensions, or
more generally, high parametric families, are another source of order.

We mention at this point that historically we observe the study of finite, but
very high dimensional spaces and their asymptotic properties as dimension increases
already in Minkowski’s work, who for the purposes of analytic number theory con-
sidered n-dimensional space from a geometric point of view. Before him, as well as
long after him, geometry had to be two or three dimensional, see, e.g., the works of
Blaschke. A paper of von Neumann from 1942 also portrays the same asymptotic



xxiv PREFACE TO PART I

point of view. We quote below from Sections 4 and 5 of the introduction of his ar-
ticle “Approximative properties of matrices of high finite order”. Here En denotes
n dimensional Euclidean space and Mn denotes the space of all n × n matrices.
Whatever is in brackets is the present authors’ addition.

“Our interest will be concentrated in this note on the condi-
tions in En and Mn - mainly Mn - when n is finite, but very
great. This is an approach to the study of the infinite dimen-
sional, which differs essentially from the usual one. The usual
approach consists in studying an actually infinite dimensional
unitary space, i.e. the Hilbert space E∞. We wish to investi-
gate instead the asymptotic behaviour of En and Mn for finite
n, when n→∞.

We think that the latter approach has been unjustifiably
neglected, as compared with the former one. It is certainly
not contained in it, since it permits the use of the notions ‖A‖
and t(A) (normalized Hilbert Schmidt norm, and trace) which,
owing to the factors 1/n appearing in (their definitions) possess
no analogues in E∞.

Since Hilbert space E∞ was conceived as a limiting case
of the En for n → ∞, we feel that such a study is necessary
in order to clarify to what extent E∞ is or is not the only
possible limiting case. Indeed we think that it is not, and that
investigations on operator rings by F. J. Murray and the author
show that other limiting cases exist, which under many aspects
are more natural ones.

Our present investigations originated in fact mainly from
the desire to solve certain questions... We hope, however, that
the reader will find that they also have an interest of their
own, mainly in the sense indicated above: as a study of the
asymptotic behaviour of En and Mn for finite n, when n→∞.

From the point of view described (above) it seems natu-
ral to ask this question: How much does the character of En

and Mn change when n increases - especially if n has already
assumed very great values?”

Let us turn to a short description of the various chapters of the book; this will
give us the opportunity to comment on additional fundamental ideas of the theory.

In Chapter 1 we recall basic notions from classical convexity. In fact, a rel-
atively large portion of this book is dedicated to convexity theory, since a large
part of the development of asymptotic geometric analysis is connected strongly
with the classical theory. We present several proofs of the Brunn-Minkowski in-
equality and some of its fundamental applications. We have chosen to discuss in
detail those proofs as they allow us to introduce fruitful ideas which that we shall
revisit throughtout the book. In the appendices we provide a more detailed expo-
sition of basic facts from elementary convexity, convex analysis and the theory of
mixed volumes. In particular, we describe the proof of Minkowski’s theorem on
the polynomiality of the volume of the sum of compact convex sets, and of the
Alexandrov-Fenchel inequality, one of the most beautiful, non-trivial and profound
theorems in convexity, which is linked with algebraic geometry and number theory.
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We emphasize the functional analytic point of view into classical convexity. This
point of view opened a new field which is sometimes called “functionalization of
geometry” or “geometrization of probability”: It turns out that almost any notion
or inequality connected with convex bodies has an analogous notion or inequality
in the world of convex functions. This analogy between bodies and functions is
fruitful in many different ways. On the one hand, it allows to predict functional
inequalities which then are interesting in their own right. On the other hand, the
generalization into the larger world of convex functions enables one to see the bigger
picture and better understand what is going on. Finally, the results for functions
may sometimes have implications back in the convex bodies world. This general
idea is considered in parallel with the classical theory throughout the book.

In Chapter 2 we introduce the most basic and classical positions of convex
bodies: Given a convex body K in Rn, the family of its positions is the family
of its affine images {x0 + T (K)} where x0 ∈ Rn and T ∈ GLn. In the context
of functional analysis, one is given a norm (whose unit ball is K) and the choice
of a position reflects a choice of a Euclidean structure for the linear space Rn.
Note that the choice of a Euclidean structure specifies a unit ball of the Euclidean
norm, which is an ellipsoid. Thus, we may equivalently see a “position” as a choice
of a special ellipsoid. The different ellipsoids connected with a convex body (or
the different positions, corresponding to different choices of a Euclidean structure)
that we consider in this chapter reflect different traces of symmetries which the
convex body has. We introduce John position (also called maximal volume ellipsoid
position), minimal surface area position and minimal mean width position. It turns
out that when a position is extremal then some differential must vanish, and its
vanishing is connected with isotropicity of some connected measure.

We also discuss some applications, mainly of John position, and introduce a
main tool, which is useful in many other results in the theory, called the Brascamp-
Lieb inequality. We state and prove one of its most useful forms, which is the
so-called “normalized form” put forward by K. Ball, together with its reverse form,
using F. Barthe’s transportation of measure argument. In the second volume of
this book we shall discuss the general form of the Brascamp-Lieb inequality, its
various versions, proofs, and reverse form, as well as further applications to convex
geometric analysis.

In Chapter 3 we discuss the concentration of measure phenomenon, first put
forward in V. Milman’s version of Dvoretzky theorem. Concentration is the central
phenomenon that is responsible for the main results in this book. We present a
number of approaches, all leading to the same type of behaviour: in high parametric
families, under very weak assumptions of various types, a function tends to con-
centrate around its mean or median. Classical isoperimetric inequalities for metric
probability spaces, such as the sphere, Gauss space and the discrete cube, are at the
origin of measure concentration, and we start our exposition with these examples.
Once the extremal sets (the solutions of the isoperimetric problem) are known, con-
centration inequalities come as a consequence of a simple computation. However,
in very few examples are the exteremal sets known. We therefore do not focus on
extremal sets but mainly on different ways to get concentration inequalities. We
explore various such ways, and determine the different sources for concentration.
In the second volume of this book we shall come back to this subject and study
its functional aspects: Sobolev and logarithmic Sobolev inequalities, tensorization
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techniques, semi-group approaches, Laplace transform and infimum convolutions,
and more on transportation of measure.

In Chapter 4 we introduce the covering numbers N(A,B) and the entropy
numbers ek(A,B) as a way of measuring the “size” of a set A in terms of another
set B. As we will see in the next chapters, they are a very useful tool and play
an important role in the theory. Here, we explain some of their properties, derive
relations and duality between these numbers, and estimate them in terms of other
parameters of the sets involved - estimates which shall be useful in the sequel.

Chapter 5 is the starting point for our exposition of the asymptotic theory of
convex bodies. It is devoted to the Dvoretzky-Milman theorem and to the main
developments around it. In geometric language the theorem states that every high-
dimensional centrally symmetric convex body has central sections of high dimension
which are almost ellipsoidal. The dependence of the dimension k of these sections
on the dimension n of the body is as follows: for every n-dimensional normed space
X = (Rn, ‖ · ‖) and every ε ∈ (0, 1) there exist an integer k � cε2 log n and a k-
dimensional subspace F ofX which satisfies dBM (F, �k2) � 1+ε, where dBM denotes
Banach-Mazur distance, a natural geometric distance between two normed spaces,
and c is some absolute constant. The proof of the Dvoretzky-Milman theorem
exploits the concentration of measure phenomenon for the Euclidean sphere Sn−1,
in the form of a deviation inequality for Lipschitz functions f : Sn−1 → R, which
implies that the values of ‖ · ‖ on Sn−1 concentrate near their average

M =

∫
Sn−1

‖x‖ dσ(x).

A remarkable fact is that in Milman’s proof, a formula for such a k is given in
terms of n, M and the Lipschitz constant (usually called b) of the norm, and that
this formula turns out to be sharp (up to a universal constant) in full generality.
This gives us the opportunity to introduce one more new idea of the theory, which
is universality. In different fields, and also in the origins of asymptotic geometric
analysis, for a long time one knew how to write very precise estimates reflecting
different asymptotic behaviour of certain specific high dimensional (or high para-
metric) objects (say, for the spaces �np ). Usually, one could show that these estimates
are sharp, in an isomorphic sense at least. However, an accumulation of results in-
dicates that, in fact, available estimates are exact for every sequence of spaces in
increasing dimension (and thus one is tempted to say “for every space”). These
kinds of estimates are called “asymptotic formulae”. Let us demonstrate another
such formula, concerning the diameter of a random projection of a convex body.
All constants appearing in the statement below (C, c1, C2, c

′) are universal and do
not depend on the body or the dimension. Let K ⊂ Rn be a centrally symmetric
convex body. One denotes by hK(u) the support function of K in direction u,
defined as half the width of the minimal slab orthogonal to u which includes K,
that is,

hK(u) = max{〈x, u〉 : x ∈ K}.
Denote by d = d(K) the smallest constant such that K ⊂ dBn

2 , that is, half of the
diameter of K, and actually d = maxu∈Sn−1 hK(u). Denote by M∗ = M∗(K) the
average of hK over Sn−1, that is,

M∗(K) =

∫
Sn−1

hK(u)dσ(u)
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where σ is the Haar probability measure on Sn−1. It turns out that for dimensions
larger than k∗ = C(M∗/d)2n, the diameter of the projection of K onto a random

k-dimensional subspace is, with high probability, approximately d
√
k/n. That is,

between c1d
√

k/n and C2d
√

k/n. Around the critical dimension k∗ = k∗(K), the
projection becomes already (with high probability on the choice of a subspace) a
Euclidean ball of radius approximately M∗(K), and this will be, again up to con-
stants, the diameter (and the inner-radius) of a random projection onto dimension
c′k∗ and less. In this result the isomorphic nature of the result is very apparent.
Indeed, the diameter need not be ε-isometrically close to d

√
k/n for k in the range

between k∗ and n, but only isomorphically. Isometric results are known in the
regime k � c′k∗ when the projection is already with high probability a Euclidean
ball (this is actually the Dvoretzky-Milman theorem). We describe this result in de-
tail in Section 5.7.1. Another property of this last example is a threshold behaviour
of the function f(t) giving the average diameter of a projection into dimension tn.
The function, which is monotone, attains its maximum, d, at t = 1, behaves like
d
√
t in the range [C(M∗/d)2, 1], and like a constant, close to M∗, in the range

[0, c′(M∗/d)2]. Threshold phenomena have been known for a long time in many
areas of mathematics, for example in mathematical physics. Here we see that these
occur in complete generality (for any convex body, the same type of threshold).
More examples of threshold behaviour in asymptotic geometric analysis shall be
demonstrated in the book.

Before moving to the description of Chapters 6–10 we mention another point of
view one should keep in mind when reading the book: the comparison between local
and global type results. The careful readers may have already noted the similarity
of two of the statements given so far in this preface: a part of the statement about
decrease of diameter in fact said that after some critical dimension, a random
projection of a convex body is with high probability close to a Euclidean ball
(this also follows from the Dvoretzky-Milman theorem by duality of prjections and
sections). This is called a “local” statement. Two other theorems quoted above
regarded what happens when one intersects random rotations of a convex body (for
example, Bn

1 ), or when one takes the Minkowski sum (average) of random rotations
of a convex body(for example, the cube). Again the results were that after a suitable
(and not very large) number of such rotations, the resulting body is an isomorphic
Euclidean ball. These type of results, pertaining to the body as a whole and not its
sections or projections, are called “global” results. At the heart of the global results
presented in this book, which have convex geometric flavor, stand methods which
come from functional analysis (considering norms, their averages, etc). Again, by
global properties we refer to properties of the original body or norm in question,
while the local properties pertain to the structure of lower dimensional sections
and projections of the body or normed space. From the beginning of the 1970’s
the needs of geometric functional analysis led to a deep investigation of the linear
structure of finite dimensional normed spaces (starting with Dvoretzky theorem).
However, it had to develop a long way before this structure was understood well
enough to be used for the study of the global properties of a space. The culmination
of this study was an understanding of the fact that subspaces (and quotient spaces)
of proportional dimension behave very predictably. An example is the theorem
quoted above regarding the decay of diameter. This understanding formed a bridge
between the problems of functional analysis and the global asymptotic properties of
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convex sets, and is the reason the two fields of convexity and of functional analysis
work together nowadays.

In Chapter 6 we discuss upper bounds for the parameter M(K)M∗(K), or
equivalently, the product of the mean width of K and the mean width of its polar,
the main goal being to minimize this parameter over all positions of the convex
body. (The polar of a convex body K is the closedconvex set generating the norm
given by hK , and is denoted K◦.) We will see that the quantity MM∗ can be
bounded from above by a parameter of the space (X, ‖ · ‖K) which is called its
K-convexity constant, and which in turn can be bounded from above, for X of
dimension n, by c[log(dBM (X, �n2 )) + 1] � c′ log n for universal c, c′. This estimate
for the K-convexity constant is due to G. Pisier and as we will see it is one of
the fundamental facts in the asymptotic theory. The estimate for M(K)M∗(K)
brings us to one more main point, which concerns duality, or polarity. In many
situations two dual operations performed one after the other already imply complete
regularization. That is, one operation cancels a certain type of “bad behaviour”,
and the dual operation cancels the “opposite” bad behaviour. Other examples
include the quotient of a subspace theorem (see Chapter 7) or its corresponding
global theorem: if one takes the sum of a body and a random (in the right coordinate
system) rotation of it, then considers the polar of this set, to which again one
applies a random rotation and takes the sum, the resulting body will be with high
probability on the choice of rotations, an isomorphic Euclidean ball. If one uses
just one of these two operations, there may be a need for n/ log n such operations.

Chapter 7 is devoted to results about proportional subspaces and quotients
of an n-dimensional normed space, i.e. of dimension λn, where the “proportion”
λ ∈ (0, 1) can sometimes be very close to 1. The first step in this direction is
Milman’s M∗-estimate. In a geometric language, it says that there exists a function
f : (0, 1)→ R+ such that, for every centrally symmetric convex body K in Rn and
every λ ∈ (0, 1), a random �λn�-dimensional section K ∩ F of K satisfies the
inclusion

K ∩ F ⊆ M∗(K)

f(λ)
Bn

2 ∩ F.

In other words, the diameter of a random “proportional section” of a high dimen-
sional centrally symmetric convex body K is controlled by the mean width M∗(K)
of the body. We present several proofs of the M∗-estimate; based on these, we will
be able to say more about the best possible function f for which the theorem holds
true and about the corresponding estimate for the probability of subspaces in which
this occurs. As an application of the M∗ estimate we obtain Milman’s quotient of
a subspace theorem. We also complement the M∗ estimate by a lower bound for
the outer-radius of sections of K, which holds for all subspaces, we compare “best”
sections with “random” ones of slightly lower dimension, and we provide a linear
relation between the outer-radius of a section of K and the outer-radius of a section
of K◦.

In Chapter 8 we present one of the deepest results in asymptotic geometric
analysis: the existence of an M -position for every convex body K. This position
can be described “isometrically” (if, say, K has volume 1) as minimizing the vol-
ume of T (K) + Bn

2 over all T ∈ SLn. However, such a characterization hides its
main properties and advantages that are in fact of an “isomorphic” nature. The
isomorphic formulation of the result states that there exists an ellipsoid of the same
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volume as the body K, which can replace K, in many computations, up to universal
constants. This result, which was discovered by V. Milman, leads to the reverse
Santaló inequality and the reverse Brunn-Minkowski inequality. The reverse San-
taló inequality concerns the volume product, sometimes called the Mahler product,
of K which is defined by

s(K) := Voln(K)Voln(K
◦).

The classical Blaschke-Santaló inequality states that, given a centrally symmetric
convex body K in Rn, the volume product s(K) is less than or equal to the volume
product s(Bn

2 ) = κ2
n, and that equality holds if and only if K is an ellipsoid. In

the opposite direction, a well-known conjecture of Mahler states that s(K) � 4n/n!
for every centrally symmetric convex body K (i.e., the cube is a minimizer for
s(K) among centrally symmetric convex bodies) and that s(K) � (n+1)n+1/(n!)2

in the not necessarily symmetric case, meaning that in this case the simplex is a
minimizer. The reverse Santaló inequality of Bourgain and Milman verifies this
conjecture in the asymptotic sense: there exists an absolute constant c > 0 such
that (

s(K)

s(Bn
2 )

)1/n

� c

for every centrally symmetric convex body K in Rn. Milman’s reverse Brunn-
Minkowski inequality states that for any pair of convex bodies K and T that are
in M -position, one has

Voln(K + T )1/n � C
[
Voln(K)1/n +Voln(T )

1/n
]
.

(The reverse inequality, with constant 1, is simply the Brunn-Minkowski inequality
of Chapter 1.)

Another way to define the M -position of a convex body is through covering
numbers, as was presented in Milman’s proof. Pisier has proposed a different ap-
proach to these results, which allows one to find a whole family of special M -
ellipsoids satisfying stronger entropy estimates. We describe his approach in the
last part of Chapter 8.

In Chapter 9 we introduce a “Gaussian approach” to some of the main re-
sults which were presented in previous chapters, including sharp versions of the
Dvoretzky-Milman theorem and of the M∗-estimate. The proof of these results is
based on comparison principles for Gaussian processes, due to Gordon, which ex-
tend a theorem of Slepian. The geometric study of random processes, and especially
of Gaussian processes, has strong connections with asymptotic geometric analysis.
The tools presented in this chapter will appear again in the second volume of the
book.

In the last Chapter of this volume, Chapter 10, we discuss more recent discov-
eries on the distribution of volume in high dimensional convex bodies, together with
the unresolved “slicing problem” which was mentioned briefly at the beginning of
this preface, with some of its equivalemt formulations. A natural framework for this
study is the isotropic position of a convex body: a convex body K ⊂ Rn is called
isotropic if Voln(K) = 1, its barycenter (center of mass) is at the origin and its
inertia matrix is a multiple of the identity, that is, there exists a constant LK > 0
such that ∫

K

〈x, θ〉2dx = L2
K
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for every θ in the Euclidean unit sphere Sn−1. The number LK is then called the
isotropic constant of K. The isotropic position arose from classical mechanics back
in the 19th century. It has a useful characterization as a solution of an extremal
problem: the isotropic position K̃ = T (K) of K minimizes the quantity∫

K̃

|x|2dx

over all T ∈ GLn such that Voln(K̃) = 1 and
∫
K̃
xdx = 0.

The central theme in Chapter 10 is the hyperplane conjecture (or slicing prob-
lem): it asks whether there exists an absolute constant c > 0 such that

max
θ∈Sn−1

Voln−1(K ∩ θ⊥) � c

for every n and every convex body K of volume 1 in Rn with barycenter at the
origin. We will see that an affirmative answer to this question is equivalent to the
fact that there exists an absolute constant C > 0 such that

Ln := max{LK : K is an isotropic convex body in Rn} � C.

We shall work in the more general setting of a finite log-concave measure μ, where
a corresponding notion of isortopicity is defined via the covariance matrix Cov(μ)
of μ. We present the best known upper bounds for Ln. Around 1985-6, Bourgain
obtained the upper bound Ln � c 4

√
n log n and, in 2006, this estimate was improved

by Klartag to Ln � c 4
√
n. In fact, Klartag obtained a solution to an isomorphic

version of the hyperplane conjecture, the “isomoprphic slicing problem”, by showing
that, for every convex body K in Rn and any ε ∈ (0, 1), one can find a centered
convex body T ⊂ Rn and a point x ∈ Rn such that (1 + ε)−1T ⊆ K + x ⊆
(1+ε)T and LT � C/

√
ε for some absolute constant C > 0. An additional essential

ingredient in Klartag’s proof of the bound Ln � c 4
√
n, which is a beautiful and

important result on its own right, is the following very useful deviation inequality
of Paouris: if μ is an isotropic log-concave probability measure on Rn then

μ({x ∈ Rn : |x| � ct
√
n}) � exp

(
−t
√
n
)

for every t � 1, where c > 0 is an absolute constant. The proof is presented in
Section 10.4 along with the basic theory of the Lq-centroid bodies of an isotropic
log-concave measure. Another important result regarding isotropic log-concave
measures is the central limit theorem of Klartag, which states that the 1-dimensional
marginals of high-dimensional isotropic log-concave measures μ are approximately
Gaussian with high probability. We will come back to this result and related ones
in the second volume of the book and we will see that precise quantitative relations
exist between the hyperplane conjecture, the optimal answer to the central limit
problem, and other conjectures regarding volume distribution in high dimensions.
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Notation and background from asymptotic
geometric analysis

For the reader’s convenience in this short section we recall basic notation and
terminology that was introduced in the first volume of this book. We also recall
some important results that were discussed in detail in the first volume, and will
be often encountered and used in this second volume.

A set K ⊆ Rn is called convex if (1− λ)x+ λy ∈ K for any x, y ∈ K and any
λ ∈ [0, 1]. A function ϕ : Rn → (−∞,+∞] is called convex if ϕ((1− λ)x + λy) �
(1− λ)ϕ(x) + ϕ(y) for any x, y ∈ Rn and any λ ∈ [0, 1]. We say that ϕ is concave
if −ϕ is convex.

A convex body in Rn is a compact convex subset K of Rn with non-empty
interior. We say that K is centrally symmetric if K = −K, and that K has
barycenter at the origin if

bar(K) :=

∫
K

x dx = 0.

The radial function ρK : Rn \ {0} → R+ of a convex body K with 0 ∈ int(K) is
defined by ρK(x) = max{t > 0 : tx ∈ K}. The support function of K is defined for
every y ∈ Rn by

hK(y) = max{〈x, y〉 : x ∈ K}.
The mean width of K is the quantity

w(K) =

∫
Sn−1

hK(θ) dσ(θ)

where σ is the rotationally invariant probability measure on the Euclidean unit
sphere Sn−1.

The Minkowski sum of two sets A,B ⊆ Rn is the set A+B := {a+b : a ∈ A, b ∈
B}. We denote the n-dimensional Lebesgue measure of a measurable set A ⊆ Rn

by Voln(A). A fundamental theorem of Minkowski establishes polynomiality of
volume with respect to Minkowski addition. If K1, . . . ,Km are non-empty compact
convex subsets of Rn then there exist non-negative coefficients V (Ki1 , . . . ,Kin),
1 � i1, . . . , in � m, that are symmetric with respect to the indices i1, . . . , in, such
that

Voln(t1K1 + · · ·+ tmKm) =

m∑
i1,...,in=1

V (Ki1 , . . . ,Kin) ti1 · · · tin

for all t1, . . . , tn � 0. The coefficient V (Ki1 , . . . ,Kin) is the mixed volume of
Ki1 , . . . ,Kin and depends only on these bodies. As a consequence of Minkowski’s
theorem we see that for any non-empty compact convex setsK,D ⊆ Rn, the volume
of K+sD is a polynomial of degree n in s > 0. The particular case where D = Bn

2 ,
the Euclidean unit ball, is called Steiner’s formula.

xxxiii
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The Brunn-Minkowski inequality provides a fundamental relation between vol-
ume and Minkowski addition. If K and D are two non-empty compact subsets of
Rn then

Voln(K +D)1/n � Voln(K)1/n +Voln(D)1/n.

A functional form of the Brunn-Minkowski inequality is the integral inequality of
Prékopa and Leindler. If f, g, h : Rn → R+ are measurable functions and, for some
λ ∈ (0, 1), we have that h((1− λ)x+ λy) � f(x)1−λg(y)λ for all x, y ∈ Rn, then∫

Rn

h �
(∫

Rn

f
)1−λ(∫

Rn

g
)λ

.

The Prékopa-Leindler inequality reduces to the Brunn-Minkowski inequality by
appropriate choice of the functions involved.

We will often use a number of basic geometric inequalities for convex bod-
ies, that are consequences of the Brunn-Minkowski inequality. Urysohn inequality
asserts that if K is a convex body in Rn then

w(K) � vrad(K),

where vrad(K) = (Voln(K)/Voln(B
n
2 ))

1/n is the volume radius of K.
The polar body K◦ of a convex body K with 0 ∈ int(K) is defined as follows:

K◦ = {x ∈ Rn : 〈x, y〉 � 1 for all y ∈ K}.
The Blaschke-Santaló inequality states that if K is a centrally symmetric convex
body in Rn, and more generally if bar(K) = 0, then

Voln(K) Voln(K
◦) � Voln(B

n
2 )

2.

Conversely, the Bourgain-Milman inequality (also called “reverse Santaló inequal-
ity”), a central and very useful result in asymptotic geometric analysis, shows that
there exists an absolute constant 0 < c < 1 with the following property: for every
n � 1 and any convex body K in Rn with 0 ∈ int(K),

Voln(K) Voln(K
◦) � cnVoln(B

n
2 )

2.

The Rogers-Shephard inequality compares the volume of a convex body K in Rn

to the volume of its difference body K −K := {x− y : x, y ∈ K}. One has

Voln(K −K) �
(
2n

n

)
Voln(K).

In particular, every convex body has a translate contained in a centrally symmetric
convex body of the same more or less volume radius.

For every convex body K in Rn there is a unique ellipsoid E of maximal volume
that is contained in K. John’s theorem states that the Euclidean unit ball Bn

2 is
the ellipsoid of maximal volume of K if and only if Bn

2 ⊆ K and there exist contact
points x1, . . . , xm of Bn

2 and bd(K) and positive numbers c1, . . . , cm such that

m∑
j=1

cjxj = 0 and Idn =

m∑
j=1

cjxj ⊗ xj .

We then say that K is in John position. We say that K is in Löwner position if Bn
2

is the ellipsoid of minimal volume that contains K. By duality, Löwner position
is also characterized by the fact that K ⊆ Bn

2 and the above decomposition of the
identity using contact points.
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Let K and D be two convex bodies in Rn. The covering number N(K,D) of
K by D is the least integer N for which there exist N translates of D whose union
covers K. Two basic inequalities for covering numbers are Sudakov’s inequality
and its dual. Sudakov’s inequality asserts that if K is a convex body in Rn then
for every t > 0 one has

N(K, tBn
2 ) � 2 exp

(
cn (w(K)/t)

2 )
where c > 0 is an absolute constant. Pajor and Tomczak-Jaegermann proved the
dual Sudakov inequality, which provides an upper bound for the covering numbers
N(Bn

2 , tK). If K is a centrally symmetric convex body in Rn then, for every t > 0,

N(Bn
2 , tK) � 2 exp

(
cn (w(K◦)/t)2

)
where c > 0 is an absolute constant. The duality of entropy theorem is due to
Artstein-Avidan, V. Milman and Szarek: There exist absolute positive constants α
and β such that, for any n � 1 and any centrally symmetric convex body K in Rn,

N(Bn
2 , α

−1K◦)
1
β � N(K,Bn

2 ) � N(Bn
2 , αK

◦)
β
.

We will also need some basic definitions and facts from the theory of finite
dimensional normed spaces. For any centrally symmetric convex body K in Rn the
function

‖x‖K = inf{t > 0 : x ∈ tK}
is a norm on Rn. We denote the space (Rn, ‖ · ‖K) by XK . Conversely, if X =
(Rn, ‖ · ‖) is a normed space, then the unit ball KX = {x ∈ Rn : ‖x‖ � 1} of X is a
centrally symmetric convex body. Note that K◦

X is the unit ball of the dual space
X∗

K of XK .
Let X,Y be two n-dimensional normed spaces. The Banach-Mazur distance

from X to Y is the quantity

d(X,Y ) = inf{‖T‖ · ‖T−1‖ | T : X → Y linear isomorphism}.
In a geometric language, the Banach-Mazur distance has the following description:
if X = XK and Y = XD (i.e. the unit balls of X,Y are the convex bodies K,D
respectively) then the distance d(X,Y ) is the smallest d > 0 such that K ⊆ T (D) ⊆
dK for some T ∈ GLn. A consequence of John’s theorem is that d(X, �n2 ) � √n for
every n-dimensional normed space. Besides the Banach-Mazur distance, we often
use the geometric distance dG(K,D) of two centrally symmetric convex bodies K
and D in Rn, or more generally two convex bodies having the origin as an interior
point, which is the smallest d > 0 for which there exist a, b > 0 with ab � d such
that (1/a)K ⊆ D ⊆ bK.

We define

M(K) :=

∫
Sn−1

‖θ‖Kdσ(θ) and M∗(K) :=

∫
Sn−1

‖θ‖K◦dσ(θ).

Note that M∗(K) = w(K), M(K) = w(K◦), and that

M(K)−1 � vrad(K) � w(K) = M∗(K).

The left hand side inequality is easily checked if we express the volume of K as an
integral in polar coordinates and use the inequalities of Hölder and Jensen, while
the right hand side inequality is an immediate consequence of Urysohn inequality.

The Dvoretzky-Milman theorem on the dimension of almost Euclidean sub-
spaces of finite dimensional normed spaces states that if X = (Rn, ‖ · ‖) is an
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n-dimensional normed space and b is the least positive constant with the property
that ‖x‖ � b|x| for all x ∈ Rn, where |·| is the Euclidean norm, then for any ε ∈ (0, 1)
there exists a subspace F of Rn with dimension dim(F ) = k � c(ε)n(M(KX)/b)2

such that

(1 + ε)−1M(KX) |x| � ‖x‖ � (1 + ε)M(KX) |x|
for all x ∈ F (i.e. d(F, �k2) � (1 + ε)2), where c(ε) ≈ ε−2. We write k(K) for the
largest integer k � n which satisfies

μn,k

({
F ∈ Gn,k :

1

2
M(K)|x| � ‖x‖ � 2M(K)|x|, x ∈ F

})
� 1

2
,

where μn,k is the Haar probability measure on the Grassmann manifold Gn,k of
k-dimensional subspaces of Rn. The parameter k(K) is the “critical dimension” of
K and the following asymptotic formula holds true: for every centrally symmetric
convex body K in Rn one has k(K) ≈ n(M(K)/b)2.

The MM∗-estimate is a deep result that follows from work of Lewis, Figiel
and Tomczak-Jaegermann combined with a crucial inequality of Pisier: If K is a
centrally symmetric convex body in Rn then there exists a symmetric and positive
definite T ∈ GLn such that

M(TK)M∗(TK) � c1 ln(1 + d(XK , �n2 )) � c ln(1 + n)

where c > 0 is an absolute constant. One of the applications of the MM∗-estimate
is the reverse Urysohn inequality: Every convex body K in Rn with bar(K) = 0

has a position K̃ = T (K), where T ∈ GLn, that satisfies

w(K̃) � c
√
n lnnVoln(K̃)1/n

for an absolute constant c > 0.
Another fundamental result, the proof of which employs the MM∗-estimate, is

V. Milman’s M∗-estimate: If K is a centrally symmetric convex body in Rn then,
for every 1 � k � n, a random subspace F ∈ Gn,k satisfies

R(K ∩ F ) � c

√
n

n− k
w(K)

with probability greater than 1−exp(−c2(n−k)), where R(K) = max{|x| : x ∈ K}
is the circum-radius of K and c1, c2 > 0 are absolute constants.

We close this introductory section with two other important positions of convex
bodies. V. Milman proved that there exists an absolute constant β > 0 such that
every convex body K in Rn with bar(K) = 0 has a linear image K̃ which satisfies

Voln(K̃) = Voln(B
n
2 ) and

max
{
N(K̃, Bn

2 ), N(Bn
2 , K̃), N(K̃◦, Bn

2 ), N(Bn
2 , K̃

◦)
}

� exp(βn).

We say that a convex body K which satisfies this estimate is in M -position with
constant β. In the centrally symmetric case, Pisier has proposed a different ap-
proach to this result, which allows one to find a whole family of M -positions and
to give more detailed information on the behavior of the corresponding covering
numbers. The precise statement is as follows: For every 0 < α < 2 and every
centrally symmetric convex body K in Rn there exists a linear image K̃ of K such
that

max
{
N(K̃, tBn

2 ), N(Bn
2 , tK̃), N(K̃◦, tBn

2 ), N(Bn
2 , tK̃

◦)
}

� exp

(
c(α)n

tα

)
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for every t � 1, where c(α) depends only on α, and c(α) = O
(
(2 − α)−α/2

)
as

α→ 2. Then we say that K̃ is an α-regular M -position of K.
A convex body K ⊆ Rn is called isotropic if Voln(K) = 1, bar(K) = 0 and

the inertia matrix of K is a multiple of the identity, that is, there exists a constant
LK > 0 such that ∫

K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. The number LK is then called the isotropic constant of K.
One can check that the affine class of any convex body K contains a unique, up to
orthogonal transformations, isotropic convex body; this is the isotropic position of
K. The isotropic position arises as a solution of a minimization problem. Given a
convex body K of volume 1 in Rn with bar(K) = 0, define

p(K) = inf
{∫

TK

|x|2dx : T ∈ SLn

}
.

Then, a position K1 of K, of volume 1, is isotropic if and only if∫
K1

|x|2dx = p(K).

The slicing problem asks if there exists an absolute constant c > 0 such that
maxθ∈Sn−1 Voln−1(K ∩ θ⊥) � c for every convex body K of volume 1 in Rn with
bar(K) = 0. An affirmative answer to this question is equivalent to the following
statement, known as the hyperplane conjecture: There exists an absolute constant
C > 0 such that for all n it holds that

Ln := max{LK : K is an isotropic convex body in Rn} � C.
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[80] I. Bárány and V. S. Grinberg, On some combinatorial questions in finite-dimensional spaces,
Linear Algebra Appl. 41 (1981), 1–9, DOI 10.1016/0024-3795(81)90085-9. MR649713
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Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1–134,
DOI 10.1007/978-3-540-36107-7 1. MR1971582

[356] V. E. Gurarii, M. I. Kadets, and V. E. Macaev, On the distance between isomorphic Lp

spaces of finite dimension, Math. Sb. 70 (1966), 481-489.
[357] L. Gurvits, Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic)

homogeneous polynomials: one theorem for all, Electron. J. Combin. 15 (2008), no. 1, Re-
search Paper 66, 26 pp. With a corrigendum. MR2411443

[358] U. Haagerup, A new upper bound for the complex Grothendieck constant, Israel J. Math.
60 (1987), no. 2, 199–224, DOI 10.1007/BF02790792. MR931877

[359] H. Hadwiger, Einfache Herleitung der isoperimetrischen Ungleichung für abgeschlossene
Punktmengen (German), Math. Ann. 124 (1952), 158–160, DOI 10.1007/BF01343557.
MR49587
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[611] G. Pisier, De nouvelles caractérisations des ensembles de Sidon (French, with English sum-

mary), Mathematical analysis and applications, Part B, Adv. in Math. Suppl. Stud., vol. 7,
Academic Press, New York-London, 1981, pp. 685–726. MR634264

[612] G. Pisier, On the dimension of the lnp -subspaces of Banach spaces, for 1 ≤ p < 2, Trans.

Amer. Math. Soc. 276 (1983), no. 1, 201–211, DOI 10.2307/1999427. MR684503
[613] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional

Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Math-
ematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,
1986, DOI 10.1090/cbms/060. MR829919

[614] G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis
(Varenna, 1985), Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167–241,
DOI 10.1007/BFb0076302. MR864714

[615] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge
Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989, DOI
10.1017/CBO9780511662454. MR1036275

[616] G. Pisier, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. (N.S.) 49
(2012), no. 2, 237–323, DOI 10.1090/S0273-0979-2011-01348-9. MR2888168

[617] L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann. Probability

5 (1977), no. 3, 470–474, DOI 10.1214/aop/1176995808. MR448705
[618] P. Pivovarov, On determinants and the volume of random polytopes in isotropic convex

bodies, Geom. Dedicata 149 (2010), 45–58, DOI 10.1007/s10711-010-9462-2. MR2737677
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[642] L. Rüschendorf and S. T. Rachev, A characterization of random variables with minimum L2-
distance, J. Multivariate Anal. 32 (1990), no. 1, 48–54, DOI 10.1016/0047-259X(90)90070-X.
MR1035606

[643] L. Russo, An approximate zero-one law, Z. Wahrsch. Verw. Gebiete 61 (1982), no. 1, 129–
139, DOI 10.1007/BF00537230. MR671248
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Steklov. (LOMI) 45 (1974), 75–82, 119. MR0367811

[697] S. J. Szarek, The finite-dimensional basis problem with an appendix on nets of Grassmann
manifolds, Acta Math. 151 (1983), no. 3-4, 153–179, DOI 10.1007/BF02393205. MR723008

[698] S. J. Szarek, On the existence and uniqueness of complex structure and spaces with “few”
operators, Trans. Amer. Math. Soc. 293 (1986), no. 1, 339–353, DOI 10.2307/2000285.
MR814926

[699] S. J. Szarek, A Banach space without a basis which has the bounded approximation property,
Acta Math. 159 (1987), no. 1-2, 81–98, DOI 10.1007/BF02392555. MR906526

[700] S. J. Szarek, Spaces with large distance to ln∞ and random matrices, Amer. J. Math. 112
(1990), no. 6, 899–942, DOI 10.2307/2374731. MR1081810

[701] S. J. Szarek, Condition numbers of random matrices, J. Complexity 7 (1991), no. 2, 131–149,
DOI 10.1016/0885-064X(91)90002-F. MR1108773

[702] S. J. Szarek,On the geometry of the Banach-Mazur compactum, Functional analysis (Austin,
TX, 1987/1989), Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 48–59, DOI
10.1007/BFb0090211. MR1126736

[703] S. J. Szarek, Computing summing norms and type constants on few vectors, Studia Math.
98 (1991), no. 2, 147–156, DOI 10.4064/sm-98-2-147-156. MR1100919

[704] S. J. Szarek and M. Talagrand, An “isomorphic” version of the Sauer-Shelah lemma
and the Banach-Mazur distance to the cube, Geometric aspects of functional analysis
(1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 105–112, DOI
10.1007/BFb0090050. MR1008718

[705] S. J. Szarek and M. Talagrand, On the convexified Sauer-Shelah theorem, J. Combin. Theory
Ser. B 69 (1997), no. 2, 183–192, DOI 10.1006/jctb.1996.1736. MR1438618

[706] S. J. Szarek and N. Tomczak-Jaegermann, Saturating constructions for normed spaces,
Geom. Funct. Anal. 14 (2004), no. 6, 1352–1375, DOI 10.1007/s00039-004-0495-2.
MR2135171

[707] S. J. Szarek and N. Tomczak-Jaegermann, Saturating constructions for normed spaces. II,
J. Funct. Anal. 221 (2005), no. 2, 407–438, DOI 10.1016/j.jfa.2004.09.005. MR2124870

[708] S. J. Szarek and D. Voiculescu, Volumes of restricted Minkowski sums and the free analogue
of the entropy power inequality, Comm. Math. Phys. 178 (1996), no. 3, 563–570. MR1395205

[709] S. J. Szarek and D. Voiculescu, Shannon’s entropy power inequality via restricted Minkowski
sums, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer,
Berlin, 2000, pp. 257–262, DOI 10.1007/BFb0107219. MR1796724

[710] S. J. Szarek and E. Werner, A nonsymmetric correlation inequality for Gaussian measure,
J. Multivariate Anal. 68 (1999), no. 2, 193–211, DOI 10.1006/jmva.1998.1784. MR1677442

[711] M. Talagrand, An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities,
Proc. Amer. Math. Soc. 104 (1988), no. 3, 905–909, DOI 10.2307/2046814. MR964871

[712] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenome-
non, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469,
Springer, Berlin, 1991, pp. 94–124, DOI 10.1007/BFb0089217. MR1122615

[713] M. Talagrand, A new isoperimetric inequality for product measure and the tails of sums
of independent random variables, Geom. Funct. Anal. 1 (1991), no. 2, 211–223, DOI
10.1007/BF01896379. MR1097260

[714] M. Talagrand, Type, infratype and the Elton-Pajor theorem, Invent. Math. 107 (1992), no. 1,
41–59, DOI 10.1007/BF01231880. MR1135463

[715] M. Talagrand, Regularity of infinitely divisible processes, Ann. Probab. 21 (1993), no. 1,
362–432. MR1207231

https://www.ams.org/mathscinet-getitem?mr=1267569
https://www.ams.org/mathscinet-getitem?mr=517198
https://www.ams.org/mathscinet-getitem?mr=0367811
https://www.ams.org/mathscinet-getitem?mr=723008
https://www.ams.org/mathscinet-getitem?mr=814926
https://www.ams.org/mathscinet-getitem?mr=906526
https://www.ams.org/mathscinet-getitem?mr=1081810
https://www.ams.org/mathscinet-getitem?mr=1108773
https://www.ams.org/mathscinet-getitem?mr=1126736
https://www.ams.org/mathscinet-getitem?mr=1100919
https://www.ams.org/mathscinet-getitem?mr=1008718
https://www.ams.org/mathscinet-getitem?mr=1438618
https://www.ams.org/mathscinet-getitem?mr=2135171
https://www.ams.org/mathscinet-getitem?mr=2124870
https://www.ams.org/mathscinet-getitem?mr=1395205
https://www.ams.org/mathscinet-getitem?mr=1796724
https://www.ams.org/mathscinet-getitem?mr=1677442
https://www.ams.org/mathscinet-getitem?mr=964871
https://www.ams.org/mathscinet-getitem?mr=1122615
https://www.ams.org/mathscinet-getitem?mr=1097260
https://www.ams.org/mathscinet-getitem?mr=1135463
https://www.ams.org/mathscinet-getitem?mr=1207231


626 BIBLIOGRAPHY

[716] M. Talagrand, Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and
Margulis’ graph connectivity theorem, Geom. Funct. Anal. 3 (1993), no. 3, 295–314, DOI
10.1007/BF01895691. MR1215783

[717] M. Talagrand, On Russo’s approximate zero-one law, Ann. Probab. 22 (1994), no. 3, 1576–
1587. MR1303654

[718] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces,

Inst. Hautes Études Sci. Publ. Math. 81 (1995), 73–205. MR1361756
[719] M. Talagrand, Embedding of l∞k and a theorem of Alon and Milman, Geometric aspects

of functional analysis (Israel, 1992), Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel,
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cost Santaló inequality, 29
cost-entropy inequality, 33
cotype, 260
Gaussian, 278

cotype-2, 211
random, 211

coupling, 25
covering
M -position, 576
measure, 576
numbers, functional, 576

covering number, xxxv

decomposition lemma, 104
difference body, xxxiv, 414
dilation, 546
Dirichlet form, 11
discrepancy, 157
discrete

Dirichlet form, 17
gradient, 17
Laplacian, 17
Lipschitz constant, 19
Poincaré inequality, 18

distance
Banach-Mazur, xxxv, 365
geometric, xxxv
Kantorovich-Rubinstein, 93
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von Weizsäcker, H., 91, 116

Wang, L., 246
Weaver, N., 513, 534

Wei, F., 394
Weil, W., 251, 589
Weinberger, H. F., 115
Weiss, G., 465
Werner, E., 182, 592
Whitney, H., 236, 252
Wojtaszczyk, J. O., 115, 117
Wolfson, H., xi, 344, 360, 367, 400,

426
Woodroofe, M., 364

Xiao, J., 592

Yamabe, H., 427
Yang, D., 182, 247, 478
Yaskin, V., 250
Yau, S. T., 115, 116
Yehudayoff, A., 255
Youssef, P., xiii, 366, 390, 424, 482,

504, 527, 528, 533, 534, 536
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Asymptotic geometric analysis studies properties of geometric objects, such as 

normed spaces, convex bodies, or convex functions, when the dimensions of these 

objects increase to infinity. The asymptotic approach reveals many very novel 

phenomena which influence other fields in mathematics, especially where a large 

data set is of main concern, or a number of parameters which becomes uncontrol-

lably large. One of the important features of this new theory is in developing tools 

which allow studying high parametric families.
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constants of log-concave measures, thin-shell estimates, stochastic localiza-

tion, the geometry of Gaussian measures, volume inequalities for convex bodies, 

local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, 

symmetrizations, restricted invertibility, and functional versions of geometric 

notions and inequalities.
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