# MATHEMATICAL Surveys and Monographs 

## Volume 45

# Cogroups and Co-rings in Categories of Associative Rings 

George M. Bergman

Adam O. Hausknecht

## Other Titles in This Series

45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1993
38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
36 John B. Conway, The theory of subnormal operators, 1991
35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
34 Victor Isakov, Inverse source problems, 1990
33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
32 Howard Jacobowitz, An introduction to CR structures, 1990
31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
29 Alan L. T. Paterson, Amenability, 1988
28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
26 Hari Bercovici, Operator theory and arithmetic in $H^{\infty}, 1988$
25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988
24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
16 O. Timothy O'Meara, Symplectic groups, 1978
15 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
14 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
13 C. Pearcy, Editor, Topics in operator theory, 1974

# MATHEMATICAL Surveys and Monographs 

Volume 45

# Cogroups and Co-rings in Categories of Associative Rings 

George M. Bergman
Adam O. Hausknecht

## Editorial Board

Georgia Benkart, Chair<br>Robert Greene<br>Howard Masur<br>Tudor Ratiu

The first author was supported by National Science Foundation contracts MCS 77-03719, MCS 82-02632, DMS 85-02330, DMS 90-01234, DMS 92-41325, and DMS 93-03379.

1991 Mathematics Subject Classification. Primary 16B50, 17B99, 18A40, 18D35; Secondary 08B99, 13K05, 14L17, 16S10, 16N40, 16W10, 16W30, 17A99, 20J15, 20 M 50.

Abstract. This book studies representable functors among well-known varieties of algebras. All such functors from associative rings over a fixed ring $R$ to each of the categories of abelian groups, associative rings, Lie rings, and to several others are determined. Results are also obtained on representable functors on varieties of groups, semigroups, commutative rings, and Lie algebras.

## Library of Congress Cataloging-in-Publication Data

Bergman, George M., 1943-
Cogroups and co-rings in categories of associative rings / George M. Bergman, Adam O. Hausknecht.
p. cm. - (Mathematical surveys and monographs, ISSN 0076-5376; v. 45)

Includes bibliographical references (p. - ) and index.
ISBN 0-8218-0495-2 (alk. paper)

1. Associative rings. 2. Categories (Mathematics) 3. Functor theory. I. Hausknecht, Adam O. II. Title. III. Series: Mathematical surveys and monographs; no. 45.

QA251.5.B465 1996
$512^{\prime} .55-\mathrm{dc} 20$ 96-147 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
© Copyright 1996 by the American Mathematical Society. All rights reserved. Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

4 Printed on recycled paper.

## To

Sylvia and Lester Bergman
and to
Rita, Morrissa, and Elizabeth Hausknecht

## CONTENTS

## Chapter I. Introduction

0. General prerequisites ..... 1
1. Introductory sketch - what are coalgebras, and why? ..... 1
2. Overview of results ..... 4
3. Results in the literature ..... 6
4. Notes on this book; acknowledgements ..... 7
Chapter II. Review of coalgebras and representable functors
5. Category-theoretic formulations of universal properties, and some other matters ..... 9
6. Basic definitions and results of universal algebra ..... 18
7. Some conventions followed throughout this work ..... 19
8. Algebra and coalgebra objects in a category, and representable algebra-valued functors ..... 20
9. Digressions on representable functors ..... 30
Chapter III. Representable functors from rings to abelian groups
10. $k$-Rings ..... 35
11. Representable functors and pointed categories ..... 39
12. Plans and preparations ..... 41
13. Proof of the structure theorem for co-AbSemigp ${ }^{e}$ objects ..... 47
14. Some immediate consequences ..... 55
Chapter IV. Digressions on semigroups, etc.
15. Representable functors to AbBinar ${ }^{e}$ ..... 61
16. Representable functors to abelian semigroups without neutral element - easy results ..... 63
17. Symmetry conditions, and cocommutativity ..... 68
18. Application to AbSemigp-valued functors ..... 74
19. Some observations and questions on rings of symmetric elements ..... 78
20. Representable functors from Semigp ${ }^{e}$ to Semigp ${ }^{e}$ ..... 82
21. Representable functors among varieties of groups and semigroups ..... 89
22. Some related varieties: binars, heaps, and Mal'cev algebras ..... 95
Chapter V. Representable functors from algebras over a field to rings
23. Bilinear maps ..... 99
24. Review of linearly compact vector spaces ..... 104
25. Functors to associative rings, Lie rings, and Jordan rings ..... 114
26. Functors to other subvarieties of NARing ..... 128
27. A Galois connection ..... 136
Chapter VI. Representable functors from $k$-rings to rings
28. Element-chasing without elements ..... 146
29. $\otimes_{k}$-co-rings ..... 149
30. Subfunctors of forgetful functors, and a result of Sweedler ..... 154
31. Images of morphisms ..... 161
32. A non-locally-finite $\otimes_{k}$-coalgebra ..... 172
Chapter VII. Representable functors from rings to general groups and semigroups
33. Functors to Group ..... 175
34. Functors on connected graded rings ..... 179
35. Functors from $k$-algebras to semigroups: some examples ..... 190
36. Jacobson radicals, and a general construction ..... 194
37. Representable functors to semigroups: toward some conjectures ..... 200
38. Density of invertible elements ..... 202
39. An idempotentless example, and a question on subfunctors ..... 206
Chapter VIII. Representable functors on categories of commutative associative algebras
40. Some easy examples ..... 210
41. Identities and equational subfunctors ..... 214
42. Idempotents again ..... 224
43. Bialgebras and Hopf algebras ..... 230
44. The Witt vector construction ..... 237
45. The co-ring of integral polynomials ..... 240
46. Generalized integral polynomials ..... 243
47. Representative functions and linearly recursive sequences ..... 246
48. A last tantalizing observation on idempotents ..... 256
Chapter IX. Representable functors on categories of Lie algebras
49. Generalities and conventions ..... 259
50. Abelian-group-valued and ring-valued functors: positive results ..... 261
51. Counterexamples in characteristic $p$ ..... 269
52. Functors Lie ${ }_{k} \rightarrow$ Group ..... 274
Chapter X. Multilinear algebra of representable functors on $k$-Ring
53. Multilinear maps, and "tensor products" of representable functors ..... 277
54. Higher-degree maps of $\mathbf{A b}$-valued functors ..... 280
55. Higher-degree maps between modules ..... 285
56. Functors to generalized Jordan rings ..... 291
Chapter XI. Directions for further investigation
57. Other varieties of algebras ..... 295
58. Some miscellaneous remarks ..... 299
59. Prevarieties ..... 303
60. $\geqslant$-algebras and $\geqslant$-coalgebras ..... 309
61. Further observations on ..... 316
62. Analogs of ..... 319
63. Tall-Wraith monads and hermaphroditic functors ..... 326
64. Examples of TW-monads, and further remarks ..... 333
65. The Ehrenfeucht question for semigroups and associative algebras ..... 341
References ..... 348
Word and phrase index ..... 360
Symbol index ..... 380
end. ..... 388

## Dependence of sections

All parts of these notes assume the material of Chapter II; or more precisely, the first four sections thereof. The statement of the main result of Chapter III, Theorem 13.15, is also assumed in all subsequent Chapters except VIII. (Partial exceptions: the last three sections of Chapter IV do not require this result, though they assume familiarity with the notational approach of $\S 12$; nor, for the most part, do $\S 39$, §§59-63 or §65.)

The Chapters after III are mutually independent, except that Chapter V is assumed in Chapters VI and IX, and in $\S 57$ and §64; and its first section, $\S 23$, in Chapter X as well.

Within each Chapter, later sections generally assume the earlier ones. Notable exceptions are Chapter IV, where the last three sections are independent of the first five, Chapter VII, where the last section is selfcontained, and the final chapter, which breaks into largely self-contained sequences $\{57,58\},\{59,65\},\{60,61,62\}$ and $\{63,64\}$.

There are minor dependencies not noted above (for instance, some of the definitions, though not the results, of $\S \$ 28-29$ are called on at various places). Thus, the reader following a shortcut through the text based on the above notes will occasionally have to backtrack, using an internal crossreference or the index to locate the material required.

## REFERENCES

(Numbers in angle brackets at the end of each listing show pages on which the work is referred to.)

1. Jiǐí Adámek, How many variables does a quasivariety need? Algebra Universalis 27 (1990) 44-48. MR 90m :08008. <304, 306>
2. Abraham Adrian Albert, On the power-associativity of rings, Summa Brasiliensis Mathematicae 2 (1948) 21-32. MR 10, p.97. < 134 >
3. Abraham Adrian Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948) 552-593. MR 10, p. 349. < $134>$
4. M. H. Albert and John Lawrence, A proof of Ehrenfeucht's conjecture, Theoretical Comp. Sci. 41 (1985) 121-123. MR 87h:68083. < $342>$
5. M. H. Albert and John Lawrence, Test sets for finite substitutions, Theoretical Comp. Sci. 43 (1986) 117-122. MR 87k:68072. <342>
6. George E. Andrews, The Theory of Partitions, Addison-Wesley, Encyclopedia of Mathematics, vol. 2, 1976. MR 58\#27738. < 346>
7. Michael A. Arbib and Ernest G. Manes, Machines in a category: an expository introduction, SIAM Review 16 (1974) 163-192. MR 50\#16156. < $34>$
8. Michael A. Arbib and Ernest G. Manes, Machines in a category, J. Pure and Applied Algebra 19 (1980) 9-20. MR 82i:68037. < $34>$
9. Richard F. Arens and Irving Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948) 457-481. MR 10, p.7. <33, $213>$
10. Reinhold Baer, Zur Einführung des Scharbegriffs, J. reine und angew. Math. 160 (1929) 199-207. <96>
11. Yu. A. Bakhturin, A. M. Slin'ko and I. P. Shestakov, Nonassociative rings (Russian), Algebra, Topology, Geometry 18 (1981) 3-72. MR 83h:17002. < 135 >
12. George M. Bergman (shown as '"George W. Bergman’'), Skew fields of rational functions, after Amitsur, exposé 16 ( 18 pp ) in Séminaire M. P. Schützenberger, A. Lentin et M. Nivat, Problèmes mathématiques de la théorie des automates, année 1969/70, Secrétariat mathématique, 11 Rue Pierre et Marie Curie, 75 - Paris 5, 1970. MR 43 \#6260. < 213 >
13. George M. Bergman, Groups acting on hereditary rings, Proc. London Math. Soc. (3) 23 (1971) 70-82. (Corrigendum to Theorem 4.2 at (3) 24 (1972) 192.) MR 45\#293. < $63>$
14. George M. Bergman, Hereditary commutative rings, and centres of hereditary rings, Proc. London Math. Soc. (3) 23 (1971) 214-236. MR 46\#9022. < 222 >
15. George M. Bergman, Hereditarily and cohereditarily projective modules, pp. 29-62 of Ring Theory (proceedings of a conference held in Park City, UT, March 2-6 1971), Robert Gordon ed., Academic Press, 1972. MR 52 \#13934. <222>
16. George M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974) 1-32. MR 50\#9970. < $204>$
17. George M. Bergman, Element chasing and exact embedding, unpublished, 7 pp ., ca. 1974. < 153>
18. George M. Bergman, Some category-theoretic ideas in algebra, pp. 285-296 in Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol. 1, Ralph D. James, ed., Canadian Math. Society, 1975. MR 58 \#22222. <11, $31>$
19. George M. Bergman, The diamond lemma for ring theory, Advances in Mathematics 29 (1978) 178-218. MR 81b:16001. <38, 86, 122, $\left.317^{2}\right\rangle$
20. George M. Bergman, Hyperidentities in groups and semigroups, Aequationes Mathematicae 23 (1981) 50-65. MR 83b:08016. <95 ${ }^{2}$, 96>
21. George M. Bergman, Everybody knows what a Hopf algebra is, pp.25-48 in Group Actions on Rings (proceedings of a conference at Bowdoin College, Bowdoin, Maine, July 18-24, 1984), Susan Montgomery, ed., Contemporary Math. 43 (1985). MR 87e:16024. < 30, 236, $300>$
22. George M. Bergman, On the scarcity of contravariant left adjunctions, Algebra Universalis 24 (1987) 169-185. MR 88k :18003. < $34>$
23. George M. Bergman, Co-rectangular bands and cosheaves in categories of algebras, Algebra Universalis 28 (1991) 188-213. MR 92k:08004. < 7, $94>$
24. George M. Bergman, An Invitation to General Algebra and Universal Constructions, Berkeley Mathematics Lecture Notes, vol. 7, U. C. Berkeley. (References are correct for Summer 1995 version, and should remain accurate for the near future.) $\left\langle 7^{3}, 9,17,18^{2}, 29^{2}, 82,89,104,137,303,339>\right.$
25. George M. Bergman, On the growth of algebras with bialgebra action, to appear in Israel J. Math., volume in memory of S. Amitsur (preprint 6/95, 22 pp.). <346>
26. George M. Bergman, Colimits of representable functors, not yet written, title tentative. <119, 168, 257, 338 >
27. George M. Bergman, Algebra structures on pro-objects, not yet written, title tentative. < $127^{3}, 173>$
28. George M. Bergman and W. Edwin Clark, The automorphism class group of the category of rings, J. Algebra 24 (1973) 80-99. MR 47\#210. < $7>$
29. George M. Bergman and P. M. Cohn, Symmetric elements in free powers of rings, J. London Math. Soc. (2) 1 (1969) 525-534. MR 40\#4301. <63 ${ }^{3}$, 79>
30. George M. Bergman and Samuel M. Vovsi, Embedding rings in completed graded rings, 2. Algebras over a field, J. Algebra 84 (1983) 25-41. MR 85i:16001 b. <180>
31. Israel Berstein, On cogroups in the category of graded algebras, Trans. Amer. Math. Soc. 115 (1965) 257-269. MR 34 \#6757. <6, 175, 179, 182, 184, 186>
32. Garrett Birkhoff and John D. Lipson, Heterogeneous algebras, J. Combinatorial Theory 8 (1970) 115-133. MR 40\#4119. < $180>$
33. Nicolas Bourbaki, Éléments de Mathématique. Algèbre, Ch. 8, Modules et anneaux semi-simples, 1958. MR 20\#4576. < 172 >
34. Nicolas Bourbaki, Éléments de Mathématique. Topologie Générale, Ch. 1-2, Act. Sci. Ind., vol. 858, 1940; 3rd ed., Act. Sci. Ind., vol. 1142, 1960. MR 25 \#4480. < 105 >
35. Nicolas Bourbaki, Éléments de Mathématique. Algèbre Commutative, Ch. 5-7, Masson, 1985. MR 86k:13001b. <216, $221>$
36. Nicolas Bourbaki, Éléments de Mathématique. Algèbre Commutative, Ch. 8-9, Masson, 1985. MR 86j :13001. <240>
37. P. Cartier, Groupes formels associés aux anneaux de Witt generalisés, Comptes Rendus Ac. Sci., Sér. A-B 265 (1967) pp.A49-A52. MR $36 \# 1448 .<240$ >
38. Jeremiah Certaine, The ternary operation $(a b c)=a b^{-1} c$ of a group, Bull. Amer. Math. Soc. 49 (1943) 869-877. MR 5, p.227. <96>
39. Stephen U. Chase and Moss E. Sweedler, Hopf Algebras and Galois Theory, Lecture Notes in Math., vol.97, Springer-Verlag, 1969. MR 41 \#5348. <236>
40. T. Cheatham and E. Enochs, The epimorphic images of a Dedekind domain, Proc. Amer. Math. Soc. 35 (1972) 37-42. MR 46\#1784. < 223 >
41. O. Chein, H. O. Pflugfelder and J. D. H. Smith, eds., Quasigroups and Loops: Theory and Applications, Sigma Series in Pure and Applied Math., vol. 8, Heldermann Verlag, 1990. MR 93g:20133. < $63>$
42. Stephen D. Cohen, Functions and polynomials in vector spaces, Archiv der Math. 48 (1987) 409-419. MR 89f :11161. < $291>$
43. P. M. Cohn, A remark on the Birkhoff-Witt Theorem, J. London Math. Soc. 38 (1963) 197-203. MR 26\#6223. <259, $260>$
44. P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966) 215-228. MR 33\#5676. < 233>
45. P. M. Cohn, Free radical rings, pp.135-145 in Rings, Modules and Radicals (Proc. Colloq. Keszthely, 1971), Colloquia Mathematica Societatis János Bolyai, vol. 6, North-Holland, 1973. MR 50\#13113. $\left\langle 196^{5}, 197^{9}, 198^{2}\right\rangle$
46. P. M. Cohn, Universal Algebra, 2nd ed., Reidel, 1981. MR 82j :08001. $<17,18^{2}, 27,137^{2}, 138,308>$
47. P. M. Cohn, Free Rings and their Relations, 2nd ed., London Math. Soc. Monographs, vol. 19, Academic Press, 1985. (1st ed. MR 51\#8155) MR 87e:16006. <63, 196, $198^{5}>$
48. P. M. Cohn, Algebra, 2nd ed., vol. 2, Wiley \& Sons, 1989. (1st ed. MR 58\#26625) MR 91b:00001. < 1, 171, 172, $233>$
49. P. M. Cohn, Algebra, 2nd ed., vol. 3, Wiley \& Sons, 1991. MR 92c:00001. $<1,165,240>$
50. P. M. Cohn and Christophe Reutenauer, A normal form in free fields, Canadian
J. Math. 46 (1994) 517-531. MR 95j :16031. < $254>$
51. Gary Cornell and Joseph H. Silverman, eds., Arithmetic Geometry, Springer-

Verlag, 1986. MR 89b :14029. <209, 213 >
52. Karel Culik, II, and Juhani Karhumäki, Systems of equations over a free monoid, and Ehrenfeucht's Conjecture, Discrete Mathematics 43 (1983) 139-153. MR 85b:68025. < 343 >
53. B. A. Davey and Heinrich Werner, Dualities and equivalences for varieties of algebras, pp.101-275 in Contributions to Lattice Theory, (Szeged, 1980), A. P. Huhn and E.T. Schmitt, eds., Colloquia Mathematica Societatis János Bolyai, vol. 33, North Holland, 1983. MR 85c:08012. < 32, 33 >
54. Robert Davis, Universal coalgebra and categories of transition systems, Math. Systems Theory 4 (1970) 91-95. MR 42\#3142. < $34>$
55. Warren Dicks, Meyer-Vietoris presentations over coproducts of rings, Proc. London Math. Soc. (3) 34 (1977) 557-576. MR 56\#3059. < $321^{2}>$
56. J. Dieudonné, Linearly compact vector spaces and double vector spaces over sfields, Amer. J. Math. 73 (1951) 13-19. MR 9, p.325. < 105 >
57. G. V. Dorofeev, Varieties of generalized standard and generalized accessible algebras (Russian), Algebra i Logika 15 (1976) 143-167 (transl. in Algebra and Logic 15 (1976) 90-104). MR 58\#16811. < 135 >
58. Andreas W. M. Dress and Christian Siebeneicher, The Burnside ring of profinite groups and the Witt vector construction, Advances in Mathematics 70 (1988) 87-132. MR 89m :20025. < $256>$
59. Andreas W. M. Dress and Christian Siebeneicher, The Burnside ring of the infinite cyclic group and its relations to the necklace algebra, $\lambda$-rings, and the universal ring of Witt vectors, Advances in Mathematics 78 (1989) 1-41. MR 90k:18015. < 256>
60. B. Eckmann and P. J. Hilton, Structure maps in group theory, Fundamenta Máth. 50 (1961/1962) 207-221. MR 24 \#4897. < 95 >
61. B. Eckmann and P. J. Hilton, Group-like structures in general categories, I-III, Math. Ann., I: 145 (1962) 227-255, II: 151 (1963) 150-185, III: 150 (1963) 165-187. MR 25\#108, 27 \#3681, 27 \#3682. < $21>$
62. Edward G. Effros and Zhong-Jin Ruan, Discrete quantum groups, I. The Haar measure, International J. Math., 5 (1994) 681-723. MR 95j :46089. <237>
63. Solomon Feferman, Set theoretic foundations of category theory, with an appendix by G. Kreisel, pp. 201-224 in Reports of the Midwest Category Seminar, vol. III, Lecture Notes in Math., vol. 106, Springer-Verlag, 1969. MR 40 \#2727. < 17 >
64. Miguel Ferrero and Artibano Micali, Sur les m-applications, pp. 33-53 in Colloque sur les Formes Quadratiques, 2, Montpellier, 1977. Bull. Soc. Math. France, Mémoire, vol.9, 1979 (MR 80h:15016). MR 80j:10032. < 291 >
65. F. Foltz, C. Lair and G. M. Kelly, Algebraic categories with few monoidal biclosed structures or none, J. Pure and Applied Algebra 17 (1980) 171-177. MR 82f:18009. < $302^{2}>$
66. Thomas F. Fox, The coalgebra enrichment of algebraic categories,

Communications in Algebra 9 (1981) 223-234. MR 82g:18003. < 236>
67. Thomas F. Fox, The construction of cofree coalgebras, J. Pure and Applied Algebra 84 (1993) 191-198. MR 94e:16004. < $236>$
68. Thomas F. Fox, The tensor product of Hopf algebras, Rendiconti dell'Istituto di matematica dell'Università di Trieste, 24 (1994) 65-71. MR 95j :16044. < 280 >
69. Peter Freyd, Algebra-valued functors in general and tensor products in particular, Colloquium Mathematicum (Wrocław) 14 (1966) 89-106. MR 33\#4116. < 3, 26, $27>$
70. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Mathematical Journal 76 (1995) 203-272. (Erratum to appear, regarding §2.2.) < $143>$
71. A. M. W. Glass and W. Charles Holland eds., Lattice-Ordered Groups. Advances and Techniques, Series in Mathematics and its Applications, vol.48, Kluwer Academic Publishers, 1989. MR 91i:06017. < 301 >
72. Robert Gordon, ed., Problems collection, pp. 373-381 in Ring Theory (proceedings of a conference held in Park City, Utah, March 2-6, 1971), Academic Press, 1972. MR 48\#8467. <62>
73. George Grätzer, Universal Algebra, 1st ed., Van Nostrand, 1968, 2nd ed., Springer-Verlag, 1979. MR 40\#1320, 80g:08001. < 18, 137, $138>$
74. C. Greither and Bodo Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987) 239-258. MR 88i :12006. < $236>$
75. Luzius Grünenfelder and Robert Paré, Families parametrized by coalgebras, J. Algebra 107 (1987) 316-375. MR 88i : $16044<236>$
76. V. S. Guba, Equivalence of infinite systems of equations in free groups and semigroups to finite systems, Mat. Zametki 40 (1986) 321-324. MR 88d : 20060. < 342 >
77. Mark Haiman and William R. Schmitt, Incidence algebras, antipodes, and Lagrange inversion in one and several variables, J. Combinatorial Theory, Ser. A 50 (1989) 172-185. MR 90f:05005. < 256>
78. Philip Hall, The Edmonton Notes on Nilpotent Groups, Queen Mary College Mathematics Notes, 1969. MR44\#316. < 246>
79. Philip Hall, Collected Works, K. W. Gruenberg and J. E. Roseblade, eds., Clarendon Press, 1988. MR 90b:01008. < 246>
80. Adam O. Hausknecht, Coalgebras in categories of associative algebras, doctoral thesis, University of California at Berkeley, 1975. $<7^{2}>$
81. Adam O. Hausknecht, The automorphism class group of the category of rings over an arbitrary commutative base ring, unpublished. $<7>$
82. Adam O. Hausknecht, Cogroups in categories of associative rings, title tentative, in preparation. $<7,175,177,178>$
83. Michiel Hazewinkel, Formal Groups and Applications, Series in Pure and Applied Math., vol. 78, Academic Press, 1978. MR 82a:14020. <240, 276>
84. Michiel Hazewinkel, Twisted Lubin-Tate formal group laws, ramified Witt vectors and (ramified) Artin-Hasse exponentials, Trans. Amer. Math. Soc. 259 (1980) 47-63. MR 81m:14032. <240>
85. Irving Roy Hentzel and Giulia Maria Piacentini Cattaneo, Degree three identities, Communications in Algebra 12 (1984) 2349-2400. MR 86d :17002. <135>
86. Israel N. Herstein, Rings with Involution, Chicago Lectures in Mathematics, University of Chicago Press, 1976. MR 56\#406. <296>
87. Philip J. Higgins, Algebras with a scheme of operators, Math. Nachrichten 27 (1963) 115-132. MR 29\#1239. < 180>
88. Karl Heinrich Hofmann and Paul S. Mostert, Elements of Compact Semigroups, Merrill Research and Lecture Series, C. E. Merrill Books, Columbus, Ohio, 1966. MR 35 \#285. <229 >
89. Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, 1974. MR 50\#6693. < 237 >
90. Geun Bin Im and G. M. Kelly, A universal property of the convolution monoidal structure, J. Pure and Applied Algebra 43 (1986) 75-88.
MR 87m:18011. < 302>
91. John R. Isbell, Uniform Spaces, Amer. Math. Soc. Surveys, vol. 12, 1964. MR 30\#561. < 105 >
92. John R. Isbell, Epimorphisms and dominions, pp. 232-246 in Conference on Categorical Algebra (La Jolla, CA, 1965), S. Eilenberg et al., eds., SpringerVerlag, 1966. (Some errors in this paper concerning particular categories are corrected in [95].) MR $35 \# 105 \mathrm{a} .\left\langle 17,157^{2}\right\rangle$
93. John R. Isbell and J. M. Howie, Epimorphisms and dominions, II, J. Algebra 6 (1967) 7-21. MR 35 \#105b. <17, 157>
94. John R. Isbell, Epimorphisms and dominions, III, Amer. J. Math. 90 (1968) 1025-1030. MR 38\#5877. < 17, 157>
95. John R. Isbell, Epimorphisms and dominions, IV, J. London Math. Soc. (2) 1 (1969) 265-273. MR 41 \#1774. < 17, 157, 353>
96. John R. Isbell, Epimorphisms and dominions, V, Algebra Universalis 3 (1973) 318-320. MR 50\#2029. < 17, 157>
97. John R. Isbell, Compatibility and extensions of algebraic theories, Algebra Universalis 6 (1976) 37-51. MR 54 \#212. < $32>$
98. John R. Isbell, Polynomials in modules. I. Vector spaces, J. Algebra 112 (1988) 478-493. MR 89e:15040. < $291>$
99. Nathan Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub., vol. 37, 1956, revised 1964. MR 36\#5158. < 177, 194 >
100. Nathan Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Math., vol. 10, 1962. MR 26\#1345. < 121, 122, 269, 270, 273, 275 >
101. Nathan Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Pub., vol. 39, 1968. MR 40\#4330. < 121, 123 >
102. Nathan Jacobson, Lectures on Quadratic Jordan Algebras, Tata Institute for Fundamental Research Lectures on Mathematics and Physics, vol. 45, Bombay, 1969. MR 48\#4062. <287, $292>$
103. D. L. Johnson, The group of formal power series under substitution, J. Austral. Math. Soc. (A) 45 (1988) 296-302. (Note correction to this paper in MR review.) MR 89j:13021. < 240 >
104. Peter T. Johnstone, Stone Spaces, Cambridge Studies In Advanced Math., vol. 3, Cambridge University Press, 1982. MR 8:f:54002. < $33,107,127^{3}, 211>$
105. S. A. Joni and Gian-Carlo Rota, Coalgebras and bialgebras in combinatorics, Studies in Applied Mathematics 61 (1979) 93-139. MR 81c:05002. <255, 256 >
106. Daniel M. Kan, On monoids and their dual, Boletín de la Sociedad Matemática Mexicana (2) 3 (1958) 52-61. MR 22\#1900. <6, 33, $90>$
107. Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958) 294-329. MR 24\#A1301. < $11>$
108. Irving Kaplansky, Bialgebras, Lecture notes, University of Chicago, 1975. MR 55 \#8087. < 237 >
109. Elyahu Katz, Topological groups with co-monoid structures, Glasgow Math. J. 18 (1977) 145-152. MR 57 \#510. < $7>$
110. G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Note Series, vol. 64, Cambridge University Press, 1982. MR 84e :18001. <236>
111. G. M. Kelly and F. W. Lawvere, On the complete lattice of essential localizations, Bull. Soc. Math. de Belgique XLI (1989) 289-319. MR 91c:18001. <341>
112. Ellis R. Kolchin, Differential Algebra and Algebraic Groups, Series in Pure and Applied Math., vol.54, Academic Press, 1973. MR 58\#27929. < 346>
113. Aleksandr Gennadievich Kurosh, Theory of Groups, transl. by K. A. Hirsch, Chelsea Pub. Co., 1956, 1960. MR 15, p.501, 17, p.124, 18, p.188. <95>
114. Tsit-Yuen Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., vol. 131, Springer-Verlag, 1991. MR 92f:16001. < 171 >
115. Serge Lang, Algebra, Addison-Wesley, (1st ed. 1965, 2nd ed. 1984) 3rd ed. 1993. MR 33 \#5416 (1st ed.), 86j :00003 (2nd ed.). <1, 15, 233, $237>$
116. Richard G. Larson and Earl J. Taft, The algebraic structure of linearly recursive sequences under Hadamard product, Israel J. Math. 72 (1990) 118-132. MR 92g:16056. < 254, 257 >
117. Solomon Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Pub., vol. 27, 1942, reprinted 1963. MR 4, p.84. < 105 >
118. Jacques Lewin, Free modules over free algebras and free group algebras, Trans. Amer. Math. Soc. 145 (1969) 455-465. MR 40 \#2706. < $341>$
119. Ottmar Loos, Jordan Pairs, Lecture Notes in Math., vol. 460, Springer-Verlag, 1975. MR 56\#3071. <292>
120. Roger Lyndon and Paul Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik, vol. 89, Springer-Verlag, 1977. MR 58\#28182. <342>
121. Saunders Mac Lane, One universe as a foundation for category theory, pp.192-201, Reports of the Midwest Category Seminar, vol. III, Lecture Notes in Math., vol. 106, Springer-Verlag, 1969. MR 40\#2731. $\left\langle 17^{2}\right\rangle$
122. Saunders Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math., vol. 5, Springer-Verlag, 1971. MR 50\#7275. <1, 9, 11, 12, 15, $16^{2}, 17^{4}, 22,27,29,89,154,236,299,311^{2}, 319,327,329^{2}>$
123. Saunders Mac Lane and Robert Paré, Coherence for bicategories and indexed categories, J. Pure and Applied Algebra 37 (1985) 59-80. MR 86k:18003. <236>
124. Wilhelm Magnus, Abraham Karrass and Donald Solitar, Combinatorial Group Theory, Interscience Publishers, 1966, Dover Publications, 1976. MR 34\#7617, 54\#10423. < $95>$
125. Shahn Majid, Hopf algebras for physics at the Planck scale, Classical and Quantum Gravity 5 (1988) 1587-1606. MR 90f:81041. < $237>$
126. Anatoliy I. Mal'cev, Über die Einbettung von assoziativen Systemen in Gruppen (Russian, German summary), Mat. Sb. N.S. 6 (1939) 331-336. MR2, p.7. < 308>
127. Anatoliy I. Mal'cev, Über die Einbettung von assoziativen Systemen in Gruppen. II. (Russian, German summary), Mat. Sb. N.S. 8 (1940) 251-264. MR2, p.128. < 308>
128. Anatoliy I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. N.S. 35 (1954) 3-20. MR 16, p.440. <96>
129. Ernest Gene Manes, ed., Category Theory Applied to Computation and Control, Proceedings of the first International Symposium, San Francisco, California, Feb. 25-26, 1974, Lecture Notes in Comp. Sci., vol. 25, SpringerVerlag, 1975. MR 51 \#2816. < $34>$
130. Ernest Gene Manes, Algebraic Theories, Graduate Texts in Math., vol. 26, Springer-Verlag, 1976. MR 54 \#7578. < $34>$
131. Ralph McKenzie, George McNulty and Walter Taylor, Algebras, Lattices, Varieties, vol.1. Wadsworth and Brooks/Cole, 1987. MR 88e:08001. < 18, 96 >
132. N. Metropolis and Gian-Carlo Rota, Witt vectors and the algebra of necklaces, Advances in Mathematics 50 (1983) 95-125. MR 85d:05026. < 256>
133. Barry Mitchell, Rings with several objects, Advances in Mathematics 8 (1972) 1-161. MR 45\#3524. < 195 >
134. Susan Montgomery, Hopf Algebras and their Actions on Rings, Amer. Math. Soc. Regional Conference Series in Mathematics, vol. 82, 1993. MR 94i:16019. <236, 237>
135. Robert A. Morris and Bodo Pareigis, Formal groups and Hopf algebras over discrete rings, Trans. Amer. Math. Soc. 197 (1974) 113-129. MR 51 \#3181. <300>
136. David Mumford, Lectures on Curves on an Algebraic Surface, with a section by G. M. Bergman, Annals of Math. Studies, vol. 59, Princeton University Press, Princeton, 1966. MR 35\#187. <209, 240 >
137. David Mumford, Abelian Varieties, Oxford University Press, 1970, 1974. MR 44\#219. <213>
138. Kenneth Newman and David E. Radford, The cofree irreducible Hopf algebra on an algebra, Amer. J. Math. 101 (1979) 1024-1045. MR 80i:16017. <236>
139. Warren D. Nichols, Quotients of Hopf algebras, Communications in Algebra 6 (1978) 1789-1800. MR 80a:16017. < 234>
140. J. Marshall Osborn, Varieties of algebras, Advances in Mathematics 8 (1972) 163-369. MR 44\#6775. < 135>
141. J. Marshall Osborn, What are nonassociative algebras?, Algebras, Groups and Geometries 3 (1986) 264-285. MR 88b:17040. < 135 >
142. Freddy M. J. van Oystaeyen and Alain H. M. J. Verschoren, Non-commutative Algebraic Geometry: An Introduction, Lecture Notes in Math., vol. 887, SpringerVerlag, 1981. MR 85i:16006. < 213 >
143. Robert Paré and Dietmar Schumacher, Abstract families and the adjoint functor theorem, pp.1-125 in Indexed Categories and their Applications, R. T. Johnstone and R. Paré, eds., Lecture Notes in Math., vol. 661, SpringerVerlag, 1978. MR 80b:18004. < 236 >
144. Bodo Pareigis, Endomorphism bialgebras of diagrams and of noncommutative algebras and spaces, pp. 153-187 in Advances in Hopf Algebras, Jeffrey Bergen and Susan Montgomery, eds., Dekker Lecture Notes in Pure and Applied Algebra, vol. 158, 1994. MR 95i:18002. < 236 >
145. Inder Bir S. Passi, Polynomial maps on groups, J. Algebra 9 (1968) 121-151. MR 38\#241. < $281>$
146. Brian Peterson and Earl J. Taft, The Hopf algebra of linearly recursive sequences, Aequationes Mathematicae 20 (1980) 1-17. MR 81j:16012. <255>
147. Richard S. Pierce, Associative Algebras, Graduate Texts in Math., vol. 88, Springer-Verlag, 1982. MR 84c:16001. < 172, $298>$
148. A. J. van der Poorten, Some facts that should be better known, especially about rational functions, pp.497-528 in Number Theory and Applications, R. A. Mollin, ed., NATO ASI Series C: Mathematical and physical sciences, vol. 265, Kluwer Acad. Publishers, 1989. MR 92k :11011. <254>
149. Claudio Procesi, Rings with Polynomial Identities, Series in Pure and Applied Math., vol. 17, Marcel Dekker, 1973. MR 51 \#3214. < 298 >
150. Andrzej Prószyński, Forms and mappings. I. Generalities, Fundamenta Math. 122 (1984) 219-235. MR 86e:13016. <286, $291>$
151. Andrzej Prószyński, Odwzorowania wyższych stopni, (Higher Order

Mappings, Polish with English and French summaries), Wyższa Szkoła
Pedagogiczna, Bydgoszcz, Poland, 1987. MR 89b :15043. < $291>$
152. Andrzej Prószyński, Equationally definable functors and polynomial
mappings, J. Pure and Applied Algebra 56 (1989) 59-84. MR 90c:13007. <291>
153. Heinz Prüfer, Theorie der abelschen Gruppen. I, Math. Z. 20 (1924) 165-187. <96>
154. Mohan S. Putcha, On linear algebraic semigroups, I \& II, Trans. Amer. Math. Soc. 259 (1980) 457-469, 471-491. MR 81i :20087. < 209>
155. Mohan S. Putcha, On linear algebraic semigroups, III, Internat. J. Math. Math. Sci. 4 (1981) 667-690; correction at ibid. 5 (1982) 205-207.
MR 83k:20073a, b. <209>
156. Mohan S. Putcha, Linear Algebraic Monoids, London Math. Soc. Lecture Note Series, 133, Cambridge University Press, 1988. MR 90a:20003. < 209 >
157. Daniel Quillen, Rational homotopy theory, Annals of Math. (2) 90 (1969) 205-295. MR 41 \#2678. < 237 >
158. David E. Radford, When pro-affine monoid schemes are group schemes, J. Algebra 57 (1979) 497-501. MR 80d:14025. <209, $224^{2}$, 225, $234>$
159. Douglas C. Ravenel and W. Stephen Wilson, The Hopf ring for complex cobordism, J. Pure and Applied Algebra 9 (1976/77) 241-280. MR 56 \#6644. <243>
160. Michel Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Math., vol. 169, Springer-Verlag, 1970. MR $\left.43 \# 3252 .<227^{2}\right\rangle$
161. Michel Raynaud, Schémas en groupes de type ( $p, p, \ldots, p$ ), Bull. Soc. Math. Fr. 102 (1974) 241-280. MR 54\#7488. < 209 >
162. Irving Reiner, Maximal Orders, London Math. Soc. Monographs, vol. 5, Academic Press, 1975. MR 52\#13910. < 172 >
163. Joseph Fels Ritt, Differential Algebra, Amer. Math. Soc. Colloq. Pub., vol. 33, 1950. MR 12, p.7. <346>
164. Norbert Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Sci. École Normale Sup. (3) $\mathbf{8 0}$ (1963) 213-348. MR 28 \#5091. <287, 290, $299>$
165. R. Rosebrugh and R. J. Wood, An adjoint characterization of the category of sets, Proc. Amer. Math. Soc. 122 (1994) 409-413. MR 95a:18003. < 341 >
166. Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956) 401-443. MR 18, p.514. <213>
167. Louis H. Rowen, Ring Theory, vol. II, Series in Pure and Applied Math., vol. 128, Academic Press, 1988. MR 89h:16001. < 298 >
168. Walter Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Math., vol. 12, 1962. MR 27 \#2808. < 108 >
169. Richard D. Schafer, An introduction to nonassociative algebras, Series in Pure and Applied Math., vol. 22, Academic Press, 1966. MR 35\#1643. < 131, 135 >
170. Boris M. Schein, On the theory of inverse semigroups and generalized grouds, Amer. Math. Soc. Transl. (2) 113 (1979) 89-122. MR 35 \#283, 80m :00006. <96>
171. Norbert H. Schlomiuk, On co-H-objects in the category of augmented algebras, Bolletino dell'Unione Matematica Italiana (4) 5 (1972) 506-510. MR 47 \#4897. < 189 >
172. William R. Schmitt, Antipodes and incidence coalgebras, J. Combinatorial Theory, Ser. A 46 (1987) 264-290. MR 88m : 05006. <256>
173. William R. Schmitt, Incidence Hopf algebras, J. Pure and Applied Alg., 96 (1994) 299-330. < $256>$
174. Jean-Pierre Serre, Lie Algebras and Lie Groups, Benjamin, 1965.

MR 36\#1582. <61, 260, 275 >
175. L. Silver, Non-commutative localization and applications, J. Algebra 7 (1967) 44-76. MR 36 \#205. < 78, $158>$
176. L. A. Skornyakov, Unars, pp. 735-743 in Universal Algebra, B. Csákány, E. Fried, E. T. Schmidt, eds., Colloquia Mathematica Societatis János Bolyai, vol. 29, Budapest, 1982. MR 83f:08013. <61 >
177. S. P. Smith, Quantum groups: an introduction and survey for ring theorists, pp.131-178 in Noncommutative Rings, S. Montgomery and L. Small, eds., Math. Sci. Res. Inst. Publication, vol. 4, Springer-Verlag, 1992. MR 94g:17032. < 237 >
178. Edwin H. Spanier, Algebraic Topology, McGraw-Hill, 1966. MR 35 \#1007. <4>
179. John R. Stallings, Whitehead torsion of free products, Annals of Math. (2) 82 (1965) 354-363. MR 31 \#3518. < $41>$
180. John R. Stallings, Finiteness properties of matrix representations, Annals of Math. (2) 124 (1986) 337-386. MR 88b :20105. < $342>$
181. Hans H. Storrer, Epimorphic extensions of non-commutative rings, Commentarii Mathematici Helvetici 48 (1973) 72-86. MR 48 \#342. < $78>$
182. A. K. Suškevič, Theory of Generalized Groups, Gos. Naučno-Tehn. Izdat. Ukrainy, Kharkov, 1937. <96>
183. Moss E. Sweedler, Hopf Algebras, Math. Lecture Note Series, Benjamin, N.Y., 1969. MR 40 \#5705. <30, 126, 151, 164, 172, $231^{2}, 237^{2}, 246,247>$
184. Moss E. Sweedler, The predual theorem to the Jacobson-Bourbaki Theorem, Trans. Amer. Math. Soc. 213 (1975) 391-496. MR 52 \#8188. < 150, 154, $159,160>$
185. Mitsuhiro Takeuchi, Equivalences of categories of algebras, Communications in Algebra 13 (1985) 1931-1976. MR 86j :16038. <299>
186. Mitsuhiro Takeuchi, $\sqrt{\text { Morita }}$ Theory, J. Math. Soc. Japan 39 (1987) 301-336. MR 88k:16037. < 299 >
187. Mitsuhiro Takeuchi, A Hopf algebra approach to Picard-Vessiot theory, J. Algebra, 122 (1989) 481-509. MR 90j:12016. < $236>$
188. D. O. Tall and G. C. Wraith, Representable functors and operations on rings, Proc. London Math. Soc. (3) 20 (1970) 619-643. MR 42 \#258. $<326^{3}, 327^{3}, 333$, 334, $336>$
189. John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Normale Sup. (4) 3 (1970) 1-21. MR 42\#278. $\left\langle 213^{3}\right\rangle$
190. Walter Taylor, Varieties obeying homotopy laws, Canadian J. Math. 29 (1977) 498-527. MR 55\#7891. <63>
191. Walter Taylor, Laws obeyed by topological algebras - extending results of Hopf and Adams, J. Pure and Applied Algebra 21 (1981) 75-98. MR 82h :55010. <63>
192. A. I. Valitskas, Absence of a finite basis of quasiidentities for the quasivariety of rings imbeddable in radical rings, Algebra i Logika 21 (1982) 13-26 (Russian), Algebra and Logic 21 (1982) 8-24 (English translation). MR 84d:16014. < 198 >
193. Dan Voiculescu, Dual algebraic structures on operator algebras related to free products, J. Operator Theory 17 (1987) 85-98. MR 88c:46080. < $7>$
194. Dan V. Voiculescu, Kenneth J. Dykema, and Alexandru Nica, Free Random Variables: a Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras, and Harmonic Analysis on Free Groups, Amer. Math. Soc. CRM Monograph Series, vol. 1, 1992.
MR 94c:46133. < 7 >
195. Robert B. Warfield, Jr., Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer-Verlag, 1976. MR 53\#13413. <246>
196. William C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Math., vol. 66, Springer-Verlag, 1979. MR 82e:14003. < 209 >
197. Alan G. Waterman, General-valued Polarities, doctoral thesis, Harvard University, 1971. < $32>$
198. Niklaus Wirth, Algorithms + Data Structures $=$ Programs, Series in Automatic Computation, Prentice-Hall, 1976. MR 55\#13850. <96>
199. Robert Wisbauer, Homogene Polynomgesetze auf nichtassoziativen Algebren über Ringen, J. reine und angew. Math. 278/279 (1975) 195-204. MR 52 \#5753. <294>
200. Gavin C. Wraith, Hopf algebras over Hopf algebras, Annali di Mat. Pura ed Appl. (4) 76 (1967) 149-163. MR 37 \#1444. < $335>$
201. Gavin C. Wraith, Algebras over theories, Colloquium Mathematicum (Wrocław) 23 (1971) 181-190. MR $46 \# 231 .<28>$
202. Gavin C. Wraith, Algebraic Theories, Lecture Note Series, vol. 22, Aarhus Universitet, Matematisk Institut, Lectures Autumn 1969, revised version of notes, Feb. 1975. (MR 41 \#6943 reviews the original version; the revision has far fewer errors. But note re p. 49 , line 6 from bottom: it is not true that ' '.. every monad on $\mathrm{A}^{\mathrm{b}}$ arises in this way'.'.) <28, 326, 329, 334, $340^{3}, 341>$
203. Oscar Zariski and Pierre Samuel, Commutative Algebra, vol.I, van Nostrand, 1958 and Graduate Texts in Math., vol. 28, Springer-Verlag, 1975. MR 19, p.833, 52\#5641. < 172>
204. Dieter Ziplies, Abelianizing the divided powers algebra of an algebra,
J. Algebra 122 (1989) 261-274. MR 90j:16003. < 294 >

## Word and phrase index

The authors have long been frustrated with indexes to mathematical works that only note where a concept is defined, and give no information on where else it occurs. We have tried to make the indexes of this book more useful.

We quickly encountered a tangle of problems - When does a mention of a concept merit referencing? Should items be listed redundantly under various synonymous terms and permuted wordings ('‘adjunction', / 'adjoint functors'" / "functors, adjoint", etc.), or should this redundancy be replaced by crossreferencing, or eliminated altogether? Is the referencing of very common terms such as 'ring'" useful? If a concept is referred to on each of pages $m, m+1, \ldots, n$, should these be joined as " $m-n$ " even if some of the references are quite unrelated to others, and are separated by paragraphs not related to the concept?

We were not able to come up with general answers to these questions, but have tried to use good sense. We suspect that when we have erred, it has mostly been in the direction of including entries that we might have omitted. One negative rule we have stuck to is not to reference remarks of the form 'In this Chapter we shall show ...', but only the pages where the results in question actually occur - unless the initial remarks are combined with some nontrivial observations.

This index, and the symbol index which follows, were prepared by inserting, in the source-files for the text, codes signaling "at this point - is mentioned', '"at this point an extended discussion of - begins/ends", "at this point - is defined", etc.. Macro packages written by the first author collected, alphabetized and formatted the resulting information.

It is possible that occasionally, a term occurring in the top line of one page may be listed under the preceding page, because of the nature of the program troff, which may make the "decision" that a word, or in some cases a whole line, has to begin a new page only after our macros have recorded the current page number.

Boldface numbers indicate the pages where terms are defined, or conventions relating to them are set. We considered providing other information in similar ways: e.g., perhaps small type for brief tangential references, a raised dot after each page-number to signal the approximate height on the page at which the term occurs, etc.. We may experiment with some of these in the future, but we have preferred to keep this first trial simple.

Personal names are indexed here if results by the individuals in question are mentioned which are not contained in works cited. The pages where items in the References are cited are listed at the end of each bibliographic reference. (We have adopted this idea from [46].) Terms used by other authors for which we here use different wording are, if referenced, put in single quotes; e.g., 'natural transformation', for our 'morphism of functors'.

Our subject involves a number of hyphenated terms beginning " $\otimes-$-", which are alphabetized under "tensor". In $\S \S 60-62$ a few terms beginning " $\$$-" are introduced; we alphabetize this symbol as "wheel", for want of better inspiration. Other symbols with non-obvious alphabetical locations are restricted to the symbol index.

Ab-category, 55
abelian
category, 153, 299
group, see Ab in symbol index
Lie algebra, 126
semigroup, see AbSemigp ${ }^{e}$,
AbSemigp in symbol index
variety (in algebraic geometry), 213
abelianization, 3, 16
abuse of notation, see loose usage action
of a bialgebra on an algebra etc., 235, 295, 297, 299, 334, 335, 338, 346, see also coaction
of a group or semigroup on an algebra, 235, 295, 300, 333, 334, 335, 336
of a Lie algebra on an algebra, 235
of a monad on an object of a category, 329
of a TW-monad on an algebra, 327, 327-340
of a $\circledast$-algebra on a bimodule, 317-319
of an object with a "multiplication" on another object (general observations), 317, 327
'Adams operation', 334
adjoint functor(s), 3-4, 13, 11-16, 31, $37,43,77$, see also coalgebras, representable functors

- and limits, colimits, 15,16
chains of,- 340 , see also under TW-monads: and functors with adjoints on both sides
composition of $-, 13,326,329,332$, 337
contravariant, 13, 32-34
existence of,$- 26-29$
Freyd's - Theorem, 27, 29
partial, 27
- to inclusions of subcategories, see reflective and coreflective subcategories
unit and counit of, 13, 16, 259, 308, 329
adjoint linear operators, 13
adjunction, see adjoint functors
affine, see scheme, algebraic group, translations
-ly representative function, 250-253
algebra, 18, 19, 21, see also $k$-algebra
C-based, 21-23, 30, 32
empty, 20, 41, 67, 77
many-sorted, 180, 292, 302
topological, 114
two senses of, 19
algebraic
-ally closed field, 212, 234, 239, 248, 251, 256
closure operator, 137
geometry, 4, 146, 209-214, 236, 300
geometry, noncommutative, 213
groups, rings, semigroups etc., 4 , 209-257, see also cogroup (etc.) in categories of associative commutative rings
topology, 4, 180
alternating map, 122, 131, 260, 266, 267
alternative laws: right, left, proto-, 130-134, 137, 154
annihilator
ideal, 120, 121
subspaces in linear dual of a vector space, 105
antiautomorphism, see involution
anticommutative operations, see
alternating map above, and Lie in symbol index
antipode (see mainly coinverse), 231
approximation of a functor by a representable functor, 161,168 , 238
arity, 18
Artinian rings, semisimple, 161, 171-172, 173, 233
ascending chain condition, see Noetherian
associative bifunctor, 299, 311, 321, see also coherently associative bifunctor
associativity, 178, 230, 247, 264, 326,
see also coassociative law and *-algebra
by default, 66-67, 94, 120, 139, 163, 173, 265, 297
expressed by diagram, 22
fails for tensor products etc. of functors, 278, 279
for object with generalized sort of operation, 317, 327, see
also (TW-)monad
general - law, 312-314
- of codiagonal map, 316
partial, 123, 133, 134, see
also Ring ${ }^{(n)}$ in symbol index
prevalence of - in proto-identities, 125
proof of - for exotic semigroup construction, 193, 195-198
associator (in nonassociative rings), 123, 133
'attracting object, universal', 15
augmented object of a category, 37-40, see also coneutral element
conditions on a $k$-ring weaker than augmentability, 80
automaton, 34
automorphism, see also action of group
- class group of a category, 7
-s of free groups, 95
-s of heaps, 96
- s of tensor rings, etc., 62, 261
'balanced map', see bilinear maps: of bimodules
base point, topological space with, 40
basis of a vector space, $57,106,111$, $112,215,247,259,320$
bialgebras, 30, 232, 230-237, 245, 246-257, 299-300, 309, 334, 336, see also under action, coaction possible analogs and generalizations of, $319,334,335,336,338$
- regarded as cosemigroups, 231

Z/2Z-graded -, 297, 338
bifunctors, 30, 302, see also adjoint functors, associativity above, and $\Perp, \otimes$, in symbol index
bilinear -, 299
bilinear component of a tensor algebra, $5,101,116,263,296$
bilinear maps, 5, 55, 99, 147, 345, see also multilinear maps
alternating, 121, 260, 264
applied to generalized elements, 147
continuous, 114, 263
determining associative $\geqslant$-algebra, 312-319
induced by quadratic maps, 287-289
misunderstanding of - by students, 100, 103
of bimodules: required to be balanced, 149
of functors, 115-116, 148, 262-267, 295, 296, 297
of objects of $k$-Bimod ${ }^{\text {Op }}$, Mod $_{k}$, etc., 147, 263
bimodule, 41, see also -algebra below, and $k$-Bimod, $K$ - Bimod $_{k}$ in symbol index
as representing object for functor among module categories, 28, 339, 340
graded, see graded ring
underlying $k$ - of a coproduct of $k$-rings, 41, 69, 181, 309, 311, 322
with action of a bialgebra, 295
with action of a -algebra, 317-319
binar, 61, 131, 134, see also Binar ${ }^{e}$, AbBinar ${ }^{e}$ in symbol index
binomial
co---coefficient operations, 246
coefficients, 240-242, 246, 248, 252, 253, 255, 256, 283, 290, see also integral polynomials
domain, 246, 336
'bi-ring', see TW-monad
Birkhoff's Theorem, 18, 27, 138
Birkhoff-Witt Theorem, see Poincaré-Birkhoff-Witt Theorem
bookkeeping, coalgebras as - devices, 34
Boolean rings, see also Bool ${ }^{1}$ in symbol index
analog over any finite field, 335
duality with Stone spaces, 33, 211
nonunital, and "with neither 0 nor 1'', 212-213
representable functors from commutative rings to,$- 211-213$, 335
Boolean space, see Stone space box diagrams for $E$-systems, 87-91
brackets, see commutator brackets below, and $[x, y]$ (Lie brackets) in symbol index
Campbell-Hausdorff formula, 275-276
cancellation semigroup, 189
cardinals, $169,271,306$, see also small
inaccessible, 17
category, 18
abelian -, 299
diagram -, 14
empty -, 15
$k$-linear -, 319
large vs. small, see small
legitimate -, $\mathbf{1 7}$
notation, 9
*- - 319
Cayley numbers, 131
center of a ring, 165,171
centralizer subrings, 57, 157-160, 167, 207, 230
chain-multilinear morphisms and chain tensor products, 279-280, 283
characteristic
0 vs. prime, $126,137,210,233,237$, 239, 242, 246, 248, 252, 259, 261-276, 282-291, 335-336, 346, see also Frobenius endomorphism, perfect field below, and $\mathbf{L i e}_{k}^{(p)}$ in symbol index

2 vs. other, $6,123-125,128,132$, 265, 267, 283, 289, 291, 297
--changing functors, $210,212,226$, 268, 290, see also $W, W_{p}$ and Bi in symbol index
mixed - phenomena, 336
class (as opposed to set in some set theories), 17
clopen congruence, 127
closure operators, see also dominion

- arising from Galois connection, 137
dual concept to -, 138-139
coaction of a bialgebra on an algebra, 235, 300, 336
coaddition, 37-39, 42-54, 101, 151, 154, 254, 260-262, 270-271, 334
coalgebras, 2-7, 24-29, 150, see also cogroups, co-rings, representable functors, etc.; and Table of Contents
as bookkeeping devices, 34
in a subcategory, 56
in Hopf algebra sense, see $\otimes_{k}$-coalgebras
representing composites of representable functors, 27,326 , 337
representing functors to quasivarieties, 31
coassociative law, 45, 47-48, 83, 86, $92,117,150,153,186-187,230$, 246, 247, see also -coalgebra
cocommutative law, $46,49,92,230$, see also $\circledast$-coalgebra
cocycle (for group extensions), 272-273
codiagonal morphism, 316
co-doubling, 261
cogroups, 3, 213, 229
coabelian - in categories of associative rings, 44, 54-58, 99-103, 162-172, 277-285, 293-294, 295-300, 315, 341
general - in categories of associative rings, 175-190, 319
in categories of associative commutative rings, 209-213, 219-220, 223, 225, 236, see also Hopf algebras
in categories of groups and semigroups, 90-94
in categories of Lie algebras, 260-263, 269-276
in categories of radical rings, 298
in categories of rings with involution, 297
in other categories of nonassociative rings, 297-298
coherence of proto-identities in higher degrees, 132, 134
coherently associative bifunctor, 302, 311, 322
cohomology rings of topological spaces, 7, 180
coideal in a $\otimes_{k}$-co-ring, 156-167
coidentities, 3,25
coinverse, 2, 54, 91, 231, 236, 246, 247, 250, 260, 262, 270
as combinatorial inversion formula, 256
colimits, 14, 18-19, 26-31, see also direct limit
respected by left adjoints, 16, 328
combinatorics, Hopf algebras arising in, 255
commutative, see also abelian and $*$-algebra
- and anticommutative parts of a bilinear multiplication, 297-298
- associative nonunital rings, 266, 268, 325
- associative rings with derivation, 346-347
- associative unital rings, see integral domain (and terms listed there) and bialgebras in this index, and Comm ${ }^{1}$, Comm $_{k}^{1}$ in symbol index
- bifunctor, 311
codiagonal map as - operation, 316
- nonassociative rings, 121, see also Jordan in symbol index
commutator brackets
in groups, 324, 347
in rings, $3,6,28,122,179,259-273$, 276, 296, 321
of derivations, 346
commuting operations, 32
comodules, 58
in varieties of modules, 27, 339-341
comonad, see TW-monad
compactness theorem (of model theory), 137
complete topological vector space, 105-107, 112-114
completed tensor product, 6, 111-128, 130, 190, 199-204, 210, 232-233, 263-265, 275
identities in - of rings, 114
- of graded structures, 188-189
- of $\circledast$-algebras, 319
composition
of adjoint functors, 13
of representable functors, 27-28, 57, $64,88,90,225,259,326,332$, 337
order of - of maps (notation), 9
comultiplication, 82-87, 100-103, 145-173, 176-192, 230-237, 241, 246-256, 326, 334
in $\otimes_{k}$-coalgebra, 150-173
concrete category, 17
concretization, alternative technique to -, 153
cone, 15
coneutral element, $2,37-39,43,46,54$, 83, 86, 91, 95, 117-118, 181-186, 235-236, 241, 260, 262, see also $\geqslant$-coalgebra
adjunction of a -, 167-168, 173, 224
of $\otimes_{k}$-co-ring, 150-151, 156, 160, 230
congruence, see also permuting, clopen, lattice of -s, Noetherian condition
chains of -s in free groups and semigroups, 347
$\mathbf{P}--$, for $\mathbf{P}$ a prevariety, 343-344
connected, see graded ring
constant, see zeroary operation
- functor, see diagonal functor
continuous linear, bilinear, and
multilinear maps, 104, 108-110,
113-118, 122, 126, 147, 232, 263, 279, 284, 300
contravariant
left adjoint functors, 13, 34
right adjoint (representable) functors, 9, 13, 25, 32-33
convolution multiplication, 151-152, 177, 188, 236, 319
co-operation, 3, 24-25, 245, see also coaddition, comultiplication, coalgebra, cogroup, etc.
coordinates for representable functors, 182, 185
change of, 178-179, 192, 273
correspond to generators of representing object, 24,34
equations satisfied by - in
subfunctor, 54, 161-172, 202, 214
operations expressed in terms of, 1 , 3, 24
coproducts, $2,15-16,19-32,38$
category having finite,- 20
direct sums as,- 16
functors respecting - need not have right adjoints, 332
in general varieties, 328, 333
in prevarieties, 307, 343
in Set, 34
of commutative $k$-algebras, 30, 215, 309, 326, 339
of filtered algebras, 190
of graded rings and bimodules, 181, 190
of groups, semigroups, 82-93, 322-325
of $k$-rings, nonunital, 41, 309, 311, 339
of $k$-rings, unital, 69-74, 320-322, 338, 339
of linearly ordered groups: nonexistence, 301
of radical associative algebras, 299
of tensor rings and algebras, 16, 100
of the empty family, $15,20,37,328$, 339
respected by forgetful functors of TW-monads, 328-331
coprojection (into coproduct), 14, 25, 42, 44, 230, 323, 333, 344, see also $i^{\lambda}$ etc. in symbol index
coreflective subcategory, 16, 56, 89 , 331, 335
co-relations, 31-32
co-rings, see also $\otimes_{k}$-co-rings (alphabetized under tensor-k)
in categories of associative rings, 5 , 102-143, 148-168, 172-173, 296-298, 336-339
in categories of commutative associative rings, 210, 218, 237-243, 250-253, 326-327, 333-336, 338-339
in categories of Lie algebras, 262-268
in categories of topological rings, 300
cosemigroups
bialgebras and $\otimes_{k}$-co-rings regarded as $-, 154,231,309$
coabelian - in categories of associative rings, 37-58, 63-78, 311
general - in categories of associative rings, 176, 188-208
in categories of associative commutative rings, see mainly bialgebras
in categories of groups and semigroups, 82-95, 339
in categories of Lie algebras, 260-262
counit (used in two senses), see adjoint functors or coneutral element, and cf. $\varepsilon$ in symbol index
co-V object, see coalgebra
cube-zero multiplication, 120, 163, 173, 265-267, 297
cyclic module, 249
Dedekind domain, 217
degeneracy prevariety, $\mathbf{3 0 9}$
degree $n$ and $\leq n$ maps, see higherdegree maps
degree of an element of a cosemigroup, 43, 44, 83, 191-194
density
of image of a functor, 202-206
of invertible elements, 202-204
of subalgebra of a topological algebra, 114, 147
of subset of a functor (scheme), 215-216, 238
dependences among chapters and sections, p.iii
derivation, 126, 235, 256, 295
action of a Lie algebra by -s, 235
commutative rings with - , 346-347
derived operation, 19, 21-23, 34
in ordered groups, 302
determinant, 210
diagonal
co-- morphism, 316
'- co-operation of a $\otimes_{k}$-coalgebra', 231, see also comultiplication
- functor, 15
- map, 44, 53, 282
diagram
- category, 14
expressing identity, 22-25
diamond lemma, [19], 86, 317
difference kernel (equalizer), 20, 29, 157-158, 344, see also dominion
differential algebra, see derivation, commutative rings with -
direct limit, 14, 106, 221, 223, 304
formal, 107-108
direct sum
as coproduct, 16, 19
as submodule of direct product, 315
decomposition as, 92,117
rings whose f.g. proj. modules are not isomorphic to -mands of selves, see weakly finite
directly indecomposable commutative ring, 224, 227, 229
discrete
category, 15
topology, 104-114, 126, 211, 213, 232, 300, 301
valuation ring, 239, 257
distributive lattice(s)
duality with partially ordered sets, 33
non- - valued functors, 212
divided powers, 127, 255, 276, 299
divisible: abelian groups without completely - elements, 306
division rings, 53, 154-161, 171, 207, 251
dominion (in sense of Isbell), 157-158, 161, 169-170
--closed subalgebra, 157-158, 343-344
relative to a prevariety, 343-344
stable -, 169, 214
Doohovskoy, A., 342
doubling (derived operation of abelian semigroups), 261
duality, 13, 33-34
generalization of Stone -, 213
of Boolean rings and Stone spaces, 33, 211
of (co)algebras, bialgebras, 232-237, 246-255, 276
of distributive lattices and partially ordered sets, 33
of vector spaces, $5,33,105-115$, 153, 263, 315, 337
Pontrjagin -, 108
vector space - mimicked for bimodules, 145-154, 280, 284
Ehrenfeucht conjecture, 342-345
eigenvectors
of "co-doubling'" map, 261
of shift operator, 248, 249, 252
element chasing, 146, 153
e-mail addresses of authors, 8
embeddings (distinguished class of morphisms), 154
empty
algebra, 20, 41, 67, 77
category, 15
family, (co)product of, see products, coproducts
encoding of constructions by coalgebras, 2-3
endomorphism, see also action: of a group or semigroup above, and $B_{\text {end }}$ in symbol index
idempotent -, 62, 92
- ring of a functor, 58
enveloping algebra, see universal -
epimorphism, 17, 31-32, 67, 77-78, 80, 155-157, 168, 170, 202, 205, 214, 339, see also epimorphs nonsurjective, 17, 156, 205
epimorphs, 17, see also epimorphism of initial object, 67, 78, 220, 337
equalizer, see difference kernel
equational
subfunctor, 214-223, see also 'least ... subfunctor"'
theory, 137-143
equivalence of categories, 4, 9, 298, 302, 307, 329, 332, 335
errata, 8
E-system, see E-Syst in symbol index
exact functor, left,- 165
exercises, 7, 16, 29, 37, 40, 80, 88, 96, 97, 106, 107, 112, 114, 120, 167, 222, 223, 241, 267, 268, 307, 323, 340
existentially quantified predicates, 305
extension of scalars
for Lie algebras, 264
for quadratic and higher degree module maps, 286-292
exterior square of a module, 260, 263
faithful representable functor, 309
fibers of projections, in characterization of bilinear maps, 100-102, 103, 285
Fibonacci sequence, 248
field, see also separable, perfect, algebraically closed, prime, finite satisfies Idp -in-n.e.(Comm ${ }_{k}$, Semigp), 224
of fractions, 109, 197, 216-218, 229, 243-246, 248-249, 251, 257, 273, 318
filtration, 104-106, 184, 189-190, see also height
final object, 15, 20, 39-41, 338
finite
- dimensional algebras, see inverse limits of -
- extension of a field, 232
- fields, 243, 286-290, 291, 335, see also characteristic: 0 vs. prime
-ly generated algebra, 57, 209, 282, 341-346
map of - degree, see higher-degree maps
- presentability and similar conditions, 304-307, 341-346
- products or coproducts, category having, 20
- semigroups contain idempotents, 229
- V-algebras, 211, 213, 229
weakly - ring, 203-204
first-order predicate calculus
and rings mappable to $\mathbf{Z} / 2 \mathbf{Z}$ etc., 291
- with infinite conjunctions, 305
fixed point set, 15, 290, see also symmetric elements
flat modules, 165, 216-217, 220-221, 241, 244, 259
flexible laws, right, left, proto-, 130-134, 154
forgetful functors, see also underlying set functor
forgetting action of a group, semigroup, bialgebra, etc., 333
forgetting action of a (TW-)monad, 328, 330-333
forgetting group inverse, 54, 90, 308
forgetting $k$-structure, 154-161, 168 , 176, 264, 303
forgetting ring addition, 13, 206, 207, 238
forgetting ring multiplication, 4,13 , 16, 28, 43, 103, 176, 201, 259, 265, 293, 299, 340
forgetting unit, 36, see also unital vs. nonunital rings
other cases, and general, $1,39,118$, 269, 271, 325, 335
subfunctors of, 154-161, 207
formal direct and inverse limits, 107-108
formal element, see generalized element
formal group law, 276
formal power series algebra, 29, 126, 176, 177, 226, 255, 257, 276, 300
and (completed) tensor products, 112
and its field of fractions, 109, 111
and Witt vectors, 210, 237-239
as dual to space of formal coefficients, 106, 112-113
as inverse limit, 127
nonassociative, 268
noncommutative, 118, 196-198, 254, 315
over a Lie algebra, 275
rational elements in, 239, 253-254, 255
valuation topology on, 106
formal spectrum of a linearly compact algebra, 236, 276
foundations, set-theoretic, 17
fractional linear transformations, noncommutative, 200
free objects in -
Ab, 14
Comm $_{k}^{1}, 259,266,326,342$
Comm $_{k}^{1, D}, 346$
Group, 3, 11, 95, 97, 324, 342, 347
k-Bimod, 146, 155
$k$-Ring etc., 14, 62-63, 65, 69, 117, $155,176,185,261,264,268,270$, 308, 318, 341, 342, 345-346
Lie $_{k}$, 260-261, 264, 269, 270-271
$\mathbf{M o d}_{k}, 259,288$
NARing ${ }_{k}$ and general subvarieties, 267
quasivarieties, 30
Semigp ${ }^{e}$, 14, 323, 341-344, 347
$\mathrm{Set}^{\mathrm{C}}, 10$
varieties, general, 18, 26, 27, 28, 57, 307, 328, 329, 330, 333, 343
variety of proto-flexible algebras, 133
variety of radical rings, 196
'free product', see coproduct
Freyd's Adjoint Functor Theorem, 27, 29
Frobenius endomorphism, 211, 228, 282, 290, 335-336
full subcategory, see [122, p.15] for definition
function topology, 105
functor, see (non)representable, adjoint, trivial, etc.
functor categories, 9, see also Rep in symbol index
products in, 20
pullbacks and monomorphisms in, 155
pushouts and epimorphisms in, 205
fundamental group of a topological space, $4,6,7,33$
fundamental theorem on [ $\otimes_{k}$-]coalgebras, 126, 172, 246
Galois connection, 137, 136-143
Galois theory, 220, 236, 239
Gaussian integers, 242

Gauss's Lemma, 198
generalized element ( $U$-element etc.), 146-153
generating function, 253
generators and relations, see
presentation
generic matrices, 342
' germ'' of an algebraic group, curve, etc., 236, 275-276
graded bimodule, see graded ring graded ring, 53, 169
as many-sorted algebra, 179-181
as ring with action or coaction of a bialgebra, 235, 295, 299
connected, 7, 181, 179-190
degree-shifting morphisms of bimodules over -, 188
graded $k$-ring, 180-190
graded Lie ring, 260-262, 270
obtained from a filtered ring, 190
products, coproducts, tensor constructions, etc. of -s and their bimodules, 181
$\mathbf{Z} / 2 \mathbf{Z}$-graded bialgebra, 338
grouplike element (in a $\otimes_{k}$-co-ring), 159, 231, 232, 235
'groupoid', see binar
groups, see also Group, Ab in symbol index and action, cogroup, free objects above
algebraic, see algebraic group
coalgebras and coproducts in categories of,$- 82-98$
extensions of - , 272-273
group rings, $234,235,254$
in relation to semigroups, 57, 64-77, 308
kernels of maps among free -, 347
of exponent $n, 213$
ordered, orderable, lattice-ordered, etc., 301-302
profinite, 256
topological, 7
torsion free, 30
under ternary operation $x y^{-1} z$, see heap
growth rates of algebras, 345-346
$G$-sets, 344
Hadamard multiplication of power series, 255
Hausdorff, see topology, topological heap, 95-98, 213
height of element of coproduct, 42, 44, 83, 191
Henselian local ring, 227-230, 257
hermaphroditic functors, see under TW-monad
heuristics, 145, 153-154
higher-degree maps of abelian groups, modules, functors, 281-294
and extension of scalars, 286-292
universal, 284
homogeneous, see also graded ring
higher-degree maps, 282-291, 293
sub-Lie-algebra of graded associative algebra, 261
homomorphism, 18
of heaps vs. groups, 95
homotopy category, 4, 6, 33
Hopf algebra, 232, 230-237, 246-256, see also bialgebras
analog based on $* 319$
tensor products and internal hom's for $-\mathrm{s}, 280$
Horn sentence, universal, 30, 303, 308
generalized (i.e., infinite), 304-307, 308, 345
ideal
annihilator -, 120, 121
augmentation -, 37
$D$-invariant -s of a differential algebra, 346
homogeneous -, 53
maximal -, 207, 221-222
nilpotent -, 199
open -, 126-127, 300
-s in tensor products of algebras, 171
idempotent
central -s in a ring, 212

- endomorphism, 62, 92
- identity, 40
maximal - in a nonunital ring, 201
- ring, 120, 124
- $s$ in a commutative ring, 211-213, 230
-s in a ring, $160,308,335$
$-s$ in a semigroup, 64-78, 206-207, 224-230, 256-257, 332, see also Idp.-in-n.e. in symbol index
-s in group rings, 234,239
universal -, 77, 211
identities (holding in algebras), 18, 21-25, 30
and concept of homogeneous map of degree $n, 282,284,286,291,293$
as universal Horn sentences, 304
expressed by diagrams and by universal elements, 22-25, 153
homogeneous vs. non-, 128-130, 142, 260
in completed tensor products, 114
monomial -, 267
multilinear -, 117, 265
of nonassociative rings, 128-143
identity functor, 9
and monads etc., $310,312,339$
representing object for $-, 87,95$, $326,328,329,335,337$
subfunctors of $-, 88,155$
identity morphisms, 9
Idp.-in-n.e., see symbol index
images of functors and of their representing objects under morphisms, 161-172, 303-309, see
also equational subfunctor
inaccessible cardinals, 17
index-string, 45, 83, 322-323
$\{\lambda, \mu\}$ - etc. segments of $-, 47,70$
'inductive limit', see direct limit
inert ( $n$-inert, semiinert) extensions of rings, 197-198
infinite conjunctions, language with -, 305
initial object, 15, 20, 37-41
epimorphs of, see under epimorphs in a category of representable functors, $119,168,249-256,338$
in a category of TW-monad objects, 335
in a variety etc., 220, 222, 225-226, 229-230, 309, 328, 339
initial-final object, see pointed category
inseparability degree of a field extension, 239
integral
domain (commutative), 161, 207, 216, 220-224, 229, 235-239, 242, 273,318 , see also field, principal ideal d., unique factorization d., Prüfer d., Dedekind d., discrete valuation ring, prime ring
element of an extension ring (commutative), 249
- polynomials (and generalizations), 240-246, 286, see also binomial coefficients
internal hom for Hopf algebras, 280
internally homogeneous (higher-degree) map of functors, 283-285, 293
inverse limits, 14,228
formal, 107-108
Jacobson radicals of, 198-199
of discrete vector spaces, 105
of finite dimensional algebras, 126-128, 233, see
also fundamental theorem on coalgebras
of finite dimensional Lie algebras, 126
of finite groups, 127
of hom-sets, 112
topology on, 126
under iterated Frobenius maps, 335 inversely directed partially ordered set, 107
inverses
one-sided, $16,80,81,84-89,170$, 200-201, 203-204, 205, 233
two-sided -, uniqueness of, 2,87 , 158, 199, 205
invertible elements, see under semigroups, rings
invertible matrix, universal, 2
involution, rings with, 211, 296-297, 338
isomorphism, 9
heap structure on -s between two objects, 96
Jacobi identity, 121, 264
Jacobson radical, 188, 194-205, 206, 236
- algebras, made a variety, 298
linearly compact commutative algebra, 275
of inverse limits, linearly compact algebras, 198-199, 200
universal construction involving, 196-198
Jordan canonical form, 248, 254, 292
Jordan rings and algebras, see mainly Jordan, Jordan ${ }^{1}$ in symbol index
neutral elements for, 123, 292
noncommutative, 129
quadratic -, triple systems, etc., 125 , 292, 291-294
special and semispecial, $6, \mathbf{1 2 2}, 124$, 137, 269
$k$-algebra, 19, 145, see mainly Ring $_{k}$, $\mathbf{L i e}_{k}$, etc. in symbol index
linearly compact, 130 , see mainly LCpRing ${ }_{k}^{1}$ etc. in symbol index
$k$-bimodule, see bimodule above, and $k$-Bimod in symbol index
$k$-centralizing
$K$-rings, $K$-bimodules, etc., see $K$-Ring ${ }_{k}^{1}$ etc. in symbol index
$\otimes_{K}$-co-rings, 152
$k$-linear
category, 319
representable functors, 345-346
$k$-ring, see $k$-Ring, $k$-Ring ${ }^{1}$ in symbol index
assumed unital in Chapter V, 99
graded, 180-190
Krull Intersection Theorem, 228
$\lambda$ - and $\rho$-decompositions and -reducts of an index-string, 47
$\lambda$-rings, special, 336
large sets and categories, see small
lattice, 32, 67, 79, 212, 213
duality of distributive -s and partially ordered sets, 33
of congruences, 347
--ordered groups, 301-302
topological, 127
Laurent series, formal, 254
least ... subfunctor containing a set of values
equational, 214-221, 222-223, 242
representable, 214, 223
left, see adjoint functors, inverses: one-sided, etc.
legitimate category, 17
Lenstra, Hendrik W., Jr., 228
Lie algebras, see Lie rings and -
Lie groups
fundamental groups of, 33
gotten by "exponentiating' Lie algebras, 274
Lie algebras of, 179, 190, 237, 274
representative functions on, 247
Lie rings and algebras, see mainly $\mathbf{L i e}_{k}$, Lie in symbol index
abelian, 126
generalizations of $\mathbf{L i e}_{k}, 269$
linearly compact, 126
$p-$ (or 'restricted'), see $\mathbf{L i e}{ }_{k}{ }^{(p)}$ in symbol index
limit of a functor, 14, 18, 30, 157, see also pullback, inverse limit
respected by representable functors, 29
respected by right adjoint functors, 16
linear operations on representable functors, 115, 148
linear topology, see mainly linearly
compact below
on a commutative $k$-algebra, 300-301
on a vector space, 104-128, see also minimal -
on an associative algebra, 114
on tensor products, 108
linearly compact
associative algebras, see LCpRing ${ }_{k}^{1}$ etc. in symbol index
associative algebras, Jacobson radicals of, 198-199
coalgebras, bialgebras, Hopf
algebras, 232-233, 236, 246
Lie algebras, 126
modules, 106
nonassociative algebras, 130, 265
vector spaces, 106-114, 147, 149, 153, 263-265, 279, 284, 315, 319, 337
linearly ordered group, see ordered group
linearly recursive sequence, 247-257
local ring, commutative, 207, 221-222, 224, 227, see also Henselian
locally constant functions, algebra of on spectrum of a ring, 212
locally finite-dimensional coalgebra, see fundamental theorem on coalgebras
loop, 63, 186
loose usage, $4,20,39,44,65,103$, 136, 161, 181, 217, 235, 270, 287
Mal'cev term, 96-98
many-sorted algebras, 180, 292
representable functors to,- 302
' $m$-application', 291
matrices, 2-3, 118, 121, 176, 203, 233, 296, 298, 340, 342
generic, 342
representing elements of ( $\mathbf{Z} \times \mathbf{Z}$ )-rings, 160, 194-205
upper triangular, 160, 175, 177, 191, 192-194, 205, 242, 340
maximal, see also ideal, idempotent
- commutative subalgebra, 229

McKenzie, Ralph, 291
'm-form', 291
'middle-linear' map, see bilinear maps: of bimodules
Milnor-Moore Theorem, 7, 237
minimal linear topology, 107
module, see also Mod ${ }_{k}$ in symbol index, and flat -, projective -, bi-, co-, vector space, higher-degree maps, etc. here
bifunctors on categories of -s, 302
representable functors among varieties of $-\mathrm{s}, 27,294,303$
underlying $k$-- of coproduct in Comm $_{k}^{1}, 309$
with distinguished element, 320-322
Möbius inversion formula, 256
moment (power-sum) functions, 239
monad, 11, 327-332, see also TW-monad
-ic functor, $\mathbf{3 2 9}$
unit of, 329
'monoid', see semigroup
monoidal category, 299, 311
monomial identities, 267
monomorphism, 17, 154-155, 202, 205-206
non-one-to-one - of coalgebras, 206

- of representable functors, 155
morphism, 9
image of - of representable functors, 161-172, 303-309
of $\mathbf{C}$-based algebras, 21
of degree $\leq n$, see higher-degree maps
of functors, 9
of representable functors, $21,25,201$
multilinear maps, 277-289, 293, see also bilinear maps
$n$-ary operation, 18
'natural transformation', 9
neutral element, 35, 43, 61, 87, 223, $230,316,327$, see also coneutral element, $*$-algebra
adjunction of a - , 37, 65, 92, 195
for bifunctor $* 311$
for Jordan algebras, 123, 292
for TW-monad, 326
one-sided, 119
Newton, Sir Isaac, 239
nil radical, 308
nilpotent
algebra, 276
element or ideal of a ring, 171, 194, 199, 218-219, 222, 233, 237, 290, 308, 309, 346
group, 246, 276
pro- ring, 236, 275
ring, 191
Noetherian
commutative ring, 228, 248, 342, see also principal ideal domain, Dedekind domain
- condition for differential algebras, 346
locally - prevariety, 343, 344-346
non--ness of Int[x], 242
nonassociative
- rings, 99, see also NARing, Lie, etc. in symbol index
- rings, commutative, 121, see also Jordan in symbol index
set with - binary operation, see binar nonexactness
of $\mathbf{A b}(U,-), 153$
of tensor products, $54,164,165$
nonmultilinear identities, 123, 128, 153
nonrepresentable functors, $88,118,155$, 220, 280, 290, 300
criteria for identifying, 29
images of representable functors may be $-, 161,172$
- may be representable on larger category, 300
monads are generally,- 329
nonunital rings, $k$-rings, $k$-algebras, see Ring, $k$-Ring, etc. in symbol index relation with unital, see unital versus nonunital rings
norm functions as higher-degree maps, 294
normal form
in coproduct of abelian groups or semigroups, 91
in coproduct of nonabelian groups or semigroups, 82, 97
in cosemigroup constructed from E-system, 86
in embedding algebra for $\circledast$-algebra, 317
in free proto-flexible algebra, 133
in ring and group coproducts, using commutators, 321,324
one-element algebra, see trivial algebra
one-sided, see inverse, neutral element, etc.
open ideal in a topological algebra, 126-127
operad, 143
operations, 18, see also primitive, derived, zeroary, commuting, strongly commutative, bilinear, alternating
formally infinitary derived -, 19, 304
in many-sorted algebras, 180
on functors to $\mathbf{A b}$ : zeroary, linear, bilinear, 5, 115-117, 148, 263
on object of a category, $\mathbf{2 0}$
on representable functors, 2-3, 20, 72
operator algebras: cogroups in category of,- 7
opposite
category, $9,13,25,54,90,99$, see also contravariant functor; see [122, p.33] for definition
of bimodule category, 54, 146-154, 170, 280, 284, 293
ring, $5,103,118,119,124,171,190$, 192, 200, 210, 283
semigroup, 86, 87, 89, 202
ordered group, 301-302
ordinals, 347
orthogonal group, 210, 297
$p$-adic integers, 226, 239, 242, 256, 257
parametrized: family of algebra maps by a $\otimes_{k}$-coalgebra or bialgebra, 234-236
partially ordered sets, 187, see also ordered groups; cf. preordering
directed and inversely directed, 107
duality with distributive lattices, 33
partitions of $n$, growth rate of, 346
$\mathbf{P}$-congruence, $\mathbf{P}$-dominion, see under congruence and dominion
perfect field, $228,239,282,335$
periodic sequences, $248,251,253$
periodically polynomial sequences, 252
permutation, 268-269, 277, 279, 301, see also symmetric: elements in coproducts
permuting congruences, 96
$p$-Lie algebra, see $\mathbf{L i e}_{k}{ }^{(p)}$ in symbol index
Poincaré-Birkhoff-Witt Theorem, 122, 259
pointed
category, 39-41, 82, 116, 181, 229, 263
object of a category, 39-40
set, 90-91, 94, 322-325
polarization, 292, see also $h\left(a_{1}, \ldots, a_{n}\right)$ in symbol index
polynomial, see also symmetric -, integral -
- growth, 346
'- law', 290-291, 294
- maps, see higher-degree maps
- ring (commuting or noncommuting), see free objects in $\operatorname{Comm}_{k}^{1}, k$-Ring, etc.
ring with - identity, 298
- sequences, see linearly recursive sequences and binomial coefficients
skew - ring, 335
Pontrjagin duality, 108
power
--associative laws, 134-135
of an object, written $S^{n}, \mathbf{2 0}$
of identity or of other "basic", functor, 57, 90, 93
- series, see formal power series algebra
preordering of varieties by existence of functors, 303-309
prerequisites for this work, 1
presentation of an algebra by generators and relations, $1,5,18,23,24,26$, $27,86,108,172,196,288,304$
finite presentability, 304-307, 341-346
in a quasivariety or prevariety, 30, 343-346
prevarieties, 304-309
and the Ehrenfeucht conjecture, 343-345
degeneracy -, 309
prime field, 291, 337, 338
prime ring (noncommutative generalization of integral domain), 298
prime spectrum
formal - of a linearly compact commutative algebra, 236, 276
of a Boolean ring, 33
of a commutative ring, 212
primitive element (of a bialgebra), 236
primitive operation, 19, 330
principal ideal domain, $163,172-173$, 196, 197-198, 217, 244-245, 248-253, 256-257
problems, see questions (open) or exercises
product law, encoded by $\otimes_{k}$-coalgebra, 235, 297, 299
products, $15-16,19,23,30,39$
are respected by representable functors, 29, 89, 301, 305, 308
category having finite,$- \mathbf{2 0}$
classes of algebras closed under -, 18, 304
finite generation of $-, 343,344$
in a functor category, 20
of affine schemes, 215-216
of graded bimodules over graded rings, 181
of the empty family, $15,20,29$
profinite groups, 256
projections
of a graded ring to its homogeneous components, 299
of limit, product, or direct sum to the given objects, 14, 22, 69
projective
'- limit', see inverse limit
module, 221, 226, 227
object of a variety of algebras, 307
proto-
-identities, $117,122,123,130$, 128-142, 149, 152
-modules, -bimodules, -derivations etc., 136
procedure for finding --identities, 128-130
-V -algebra, 130
Prüfer domain, 216-225, 227
pseudoinverse, 164, 173
$p$ th power operation, 270, see also Frobenius endomorphism above, and $\mathbf{L i e}_{k}^{(p)}$ in symbol index
pullback, 15, 155
of functors, 155
pushout, 15, 78, 205
quadratic
Jordan algebras, 125, 292, 291-294
map of modules, 287-289, 292
quantum groups (and quantum mechanics), 237
quasigroup, 63
quasi-initial object, see epimorphs: of initial object
quasiinvertible element, see quasimultiplication and Jacobson radical
quasimultiplication, 176-179, 186-191, 194, 199, 203, 206, 210, 211, 233
quasitrivial functor, 67
quasivarieties, 30-31, 124, 204, 220, 301
and prevarieties, 303-309
and the Ehrenfeucht conjecture, 342-345, 346
questions (open), conjectures, etc.
formally stated, $63,80,81,94,141$, $142,161,189,200,204,207,212$, 213, 214, 223, 227, 229, 230, 234, 251, 257, 273, 276, 340, 345
mentioned in passing, 62-63, 81,95 , 97, 134, 185, 190, 198, 220, 221, 228, 229, 242, 255, 261, 269, 287, 290, 291, 293, 294, 295-300, 302, 306, 319-325, 332, 334-335, 336-337, 338-339, 341, 347
radical, see Jacobson -, nil -
rank of a module, 221
rational power series, 239, 253-254, 255
real part of a complex number, 281
rectangular band, 94
reflective subcategory, 16, 29, 30, 305, 331
regular ring, see von Neumann -
relational structure, 31-33
'repelling object, universal', 15
representable functors, $2-7,10-11,15$, 23, 25, 20-34, 295-309, 319, 326-341, 344-347, see also coalgebras, cogroups, corings, cosemigroups
bilinear operations on, 115-116, 148, 262-267, 295, 296, 297, 302
composites of, 27-28, 57, 64, 88, 90, $225,259,326,332,337$
contravariant, 2, 25, 32-33
faithful, 309
have left adjoints, 26, 302, 308, 326-332
$k$-linear, 345-346
linear operations on, 115,148
monomorphism of, 155
morphisms of, 21, 25
multilinear maps on, 277-285
non-, see nonrepresentable functors
on varieties of algebras, 23
operations on, 2-3, 20, 72
representation theory, 247
representative function, 247, 246-257
affinely -, 250-253
with values in a Noetherian ring, 248
representing objects, see mainly representable functors and coalgebras
finite presentability and similar
conditions on -, 5-6, 304-307
uniqueness of, 10
residual finiteness in Comm ${ }^{1}$, 307
restriction of scalars, 339-340
retracts, retractions, 62, 170, 307
of a category to a reflective or coreflective subcategory, 16, 90
of a semigroup to a subgroup, 75
of bialgebras, 256
of bimodules, 170
of free algebras, tensor rings, etc., 62, 185
right, see adjoint functors, inverses: one-sided, etc.
ring, see also Ring, Comm ${ }^{1}$,
$\mathbf{N A R i n g}_{k}, \mathbf{L i e}_{k}$, etc. in symbol
index, and here von Neumann
regular -, Boolean -, zero -, and
the items listed under integral domain
convention on associativity, 35
invertible elements in, 175-179, 200, 201, 210, 234
with polynomial identity, 298
roots of unity, 239, 251
scheme
affine, 'pro-affine', 209
closed sub-, see equational subfunctor
'finite', 211, 213
group -, ring - etc., see cogroup (etc.) : in categories of associative
commutative rings
nonaffine, 213
segments ( $\{\lambda, \mu\}-$ etc.) of an indexstring, 47, 70
semigroup(s), see also under action above, and Semigp, AbSemigp, etc. in symbol index
and TW-monads on Set, 341
congruences induced by maps among free -, 347
coproducts and coalgebras in categories of -, 82-98, 322-325
in relation to groups, 57, 64-77, 308
invertible elements in, $29,88,90,94$, 176-178, 190-191, 192, 200, 202-205, 208, 214
one-sided invertible elements in, 84-89
opposite, 86, 87, 89
- rings, 14, 28, 238-239, 254-257
$S$-semigroups, 94, 249
topological, 229
with zero, 35, 94, 204, 238
zero, left zero, right zero -, 93-94, 322-323
semihereditary commutative rings, 222
semilattice, 67
separable
algebra, 172
algebraic field extension, 171-172, 212
separating filter of subspaces, 104
sequences, see shift operator, linearly recursive, Fibonacci, periodic(ally polynomial)
set, large vs. small, see small
set-based algebra, 21
shift operator on sequences, 126, 248-254
skeleton of a category, 17
skew
polynomial ring, 335
symmetric and - symmetric elements in a ring with involution, 296
small
(in foundational sense:) set or category, 17, 18, 80, 306, 307
(meaning finite, finite-dimensional, etc.), 127
special linear group, 210
spectrum, see prime spectrum
stable varieties and $(*, *)$-theories, 138-143
Stone spaces, 127
duality with Boolean rings, 33, 211
with (one or two) basepoint(s), 212
strongly symmetric elements and strongly commutative operations, 68-82
subalgebras: classes of algebras closed under - , 18, 304-305
subcategories, see reflective, coreflective, variety, quasivariety, prevariety, skeleton
coalgebras and representable functors on -, 56
subfunctors, 154, see also equational, and under forgetful, identity, coordinates
subobject, 154
subspaces of topological vector spaces, 104
suppression of tensor product sign, 103, 148, 311
symmetric
algebra on a module, 236,334
- and skew-- elements in a ring with involution, 296
elements in coproducts of rings, 62 , $63,65-66,68-74,78-82$
elements in coproducts of semigroups and groups, 93
multilinear map, 283, 285
polynomials, 237, 239
strongly - elements in coproducts, 68-82
symplectic group, 211

Takeuchi, Mitsuhiro, 227, 299
Tall-Wraith monad, see TW-monad tangent space, see Lie groups: Lie algebras of
$\otimes_{k}$-coalgebras, $4,152,226,231-237$, 309 , see also $\otimes_{k}$-co-rings below
fundamental theorem on $-126,172$, 246
$\otimes_{k}$-co-rings, $150-173,177,315$, see also $\otimes_{k}$-coalgebras above, and $\otimes_{k}$-co-Ring in symbol index
graded, 186-190

- regarded as cosemigroups, 154
tensor product
'-' of coalgebra objects, 27
completed, 6, 111-128, 130, 279, 284, 319
conventions on suppression of - sign, 103, 148, 311
decomposable elements of, 117,128 , 147
failure of exactness, for general $k$, $54,164,165$
generalized by bifunctor on abelian category, 299
of commutative $k$-algebras, as coproduct, 215, 217, 230, 240, 244, 308, 309
of $(*, *)$-algebra with ordinary algebra, 140
of field extensions, 171
of graded bimodules, 181
of linear functionals on vector spaces, 215-216
of modules, see flat modules
of (noncommutative or nonassociative) $k$-algebras, 30 , $118,122,151,171-172,267-269$
of representable $\mathbf{A b}$-valued functors, 278-280
of topological vector spaces, $\mathbf{1 0 8}$
tensor rings and algebras, $4-5,14,28$, 43, 52, 99-103, 151, 153, 155, 236, 260-263, 270, 295, 315, 321, 337
analog of - in a monoidal abelian category, 299
bilinear component of, 5, 101, 116, 263, 296
completions of, 315
coproducts of, 16,100
on graded (bi)modules, 181-185
with involution, 296
$\hat{\otimes}$-coalgebra, $\hat{\otimes}$-bialgebra, etc., see under linearly compact
'terminal object', see final object
ternary operation, 73-74, 79, 95-98, see also heap, Mal'cev term
ternary addition in Boolean ring, 212
topological, see also topology, linear topology, linearly compact
algebra (in general sense), 33, 63, 239
commutative $k$-algebra, 300-301
group, 7, 301
group, profinite, 127
$k$-algebra, 114
lattice, 127
semigroup, 229
vector space, 104
topology, see also topological, and terms listed there
algebra with compact Hausdorff -, 229
function -, 105
inverse limit -, 126
totally disconnected compact
Hausdorff, see Stone space
torsion subgroup of an abelian group, 29, 155
torsion-free
group, 30, 303
$k$-algebras that are -as $k$-modules, 220
$k$-module, 216, 221-222
translations
affine - of functions on a ring, 250
of functions on a (semi)group, 247-249, 253
on a group, as heap automorphisms, 96
transpose map on matrices, 210, 296
triangular matrices, $160,175,177,191$, 192-194, 205, 242, 340
triple product (in generalized Jordan ring), 291-293
'triple, tripleable', see monad, monadic
trivial, see also empty
algebra, 67
functor, 41, 67, 115, 148, 159
ring, 137
TW-monads and comonads, 327-340
and functors with adjoints on both sides ('hermaphroditic functors''), 328-329, 331-332, 339
equivalence of algebras and coalgebras over -, 332
examples, 333-341
initial object of $\operatorname{Rep}(\mathbf{V}, \mathbf{V})$ as,- 338
on general categories, 332, 339
WT-monads and comonads, 332, 338, 339
type of an algebra, 18, 21
typesetting of this book, 8
$U$-element, see generalized element
ultraproducts, classes of algebras closed under -, 291, 304, 308
unar, 61
unary operations and co-operations, 162, 223, 296, 298, 328, 330-333, 341, see also coinverse and linear operations
undergrad linear algebra course, 248
underlying set functor, $3,11,13,23$, $25,26,28,39,61,202,205,281$, 320
functors respecting - , 28, 328-331, 332
uniform structure, 105
unique factorization domain, 218-220, 243
uniqueness, see also under inverses
- of representing objects, 10
unit (used in two senses), see adjunction or neutral element. ( $C f$. also under semigroups and rings: invertible elements in.)
unital, see also neutral element
-ity of codiagonal map, 316
modules and bimodules always assumed -, 36
- versus nonunital rings, 36-39, 61, 64, 99, 160, 176-177, 180, 190, 195, 263, 264, 265, see
also neutral element, adjunction of
unitary group, 297
universal algebra, 18-19
algebra in sense of,$- \mathbf{1 8}$
universal elements, 3 , see mainly representable functors
and Yoneda's Lemma, 10
for higher degree maps of functors, polynomial laws, 284, 291
for multilinear maps of functors, 277, 279
idempotent, 77
identities expressed using -, 22-25, 153, 282
invertible matrix, 2
universal enveloping algebra of a Lie algebra, 3, 28, 235, 237, 259-260, 263, 265, 271, 276
universal Lie algebra on a $k$-module, 259-263
universal property, 2, 14
weak, 32
universal radical $K$-algebra, 197
universally quantified predicates, 305, see also Horn sentence
universe, 17
updates, on-line, 8
V-algebra, 19
valuation ring, 221-222, 227
discrete, 239, 257
valuation topology on $k \llbracket t \rrbracket, 106$
Vandermonde determinant, 252, 289
variety of algebras, $17,18-19,22-34$, $39,154,157,195,202,340$
algebras with action of a TW-monad (q.v.) form a -327
many-sorted, 180
$\mathbf{V}$-object of a category, 22-23
von Neumann regular ring, 161, 164-167, 173
simple, 78
Vopěnka's principle, 306
weakly finite ring, 203-204
*-, 310-325
--algebra, --associativity, --commutativity, --unitality, 311-314, 316-319, 320
bimodule with action of a --algebra, 317-319
--category, 319
--coalgebra, --coassociativity,
--cocommutativity, --counitality, 311, 314-316, 319, 320
embedding --algebras in ordinary $k$-rings, 316
Witt vectors, ring of, see $W, W_{p}$ in symbol index
and formal power series, 210, 237-239
and the functor $\mathrm{Bi}, 242$
as TW-monad, 336
WT-monads, comonads, see under
TW-monads
Yoneda
- embedding, 10
-'s Lemma, 9, 20, 21
zero
- and one-sided - multiplication in semigroup, 93-94, 229, 322-323
- element of a semigroup, 35, 94, 204, 238
- multiplication ring, 163, 177, 185, 201, 262, 266
- (trivial) ring, 38, 181
zeroary operations and co-operations, 18, 20, 36, 39-41, 162, 181, 250, see also neutral element, idempotent
on functors, 115-118, 148, 263
( $\mathbf{Z} \times \mathbf{Z}$ )-ring, 194-205


## Symbol Index

This index has two functions: It is a glossary of symbols used, and it lists the pages where the topics so symbolized are treated. For instance, the entry for Semigp ${ }^{e}$ informs one that this denotes the category of semigroups with neutral element, and lists various pages, on which one may or may not find the symbol Semigp ${ }^{e}$, but where one will always find reference to such semigroups.

Under each letter of the alphabet, the lower-case letter is followed by the uppercase letter, then Greek and miscellaneous related symbols, in a somewhat arbitrary order. (For a particularly complicated example, the order we have set up under p is $p, P, \pi, \Pi, \Pi, ~ \Perp, \varphi, \Phi, \psi, \Psi$, though not all of these symbols actually occur.) Symbols that are not even approximately alphabetical are alphabetized by assigning them spellings; e.g., " 0 '" and " 1 '" are alphabetized as zero and one; " $=$ "' and related symbols such as $\cong$ are alphabetized, in an arbitrary order, under equal; $\otimes$ is alphabetized as tensor, and $\geqslant$ as wheel. Fortunately, the reader does not have to know all the details of this system, though some symbols will doubtless require somewhat more search than others. Font-differences, and 'punctuation" such as brackets, do not affect ordering unless everything else is equal.

Operator-symbols are often shown in combination with letters with which they are frequently used; e.g., $\circ$ is shown as $\hat{M} \circ N$, alphabetized under M ; similarly, the notation for a presentation of an object by generators and relations is shown as $\langle X \mid Y\rangle$, alphabetized under $X Y$.

We have not found it easy to decide which symbols to include. In general, if a symbol is defined in one place, and used again without explanation more than a page or so away, we have included it. For some very frequently used symbols, e.g., $\Pi$ and $\amalg$, only the locations of the definitions are given; the word-and-phrase index can be used to search for particular topics related to these concepts. Symbols of standard and uncontroversial usage which are not useful for locating topics are generally not included. A few symbols (such as $m$ ) have specialized uses in some places, and nonspecialized uses (e.g., as an arbitrary integer) elsewhere; only the specialized uses are recorded.

As in the word-and-phrase index, boldface page-numbers indicate pages where definitions are given.

$$
\begin{aligned}
\text { a } & \text { coaddition map } R \rightarrow R^{\lambda} \Perp R^{\rho}, 37,42-54,154,261-262, \\
& \text { 270-271,326,334. } \\
a \in_{U} \ldots & \text { " } a \text { is a } U \text {-element of } \ldots \text { ", 146-153. } \\
\mathbf{a}_{M} & \text { canonical coaddition on }[k]<M>, 44-45,53-54,62-63, \\
& 101-102,151,260,270,281,315 . \\
a \Perp b & \text { morphism } A \Perp B \rightarrow A^{\prime} \Perp B^{\prime} \text { induced by } a: A \rightarrow A^{\prime} \\
& \text { and } b: B \rightarrow B^{\prime}, \mathbf{1 9 .} .
\end{aligned}
$$

$$
\begin{aligned}
a s \in A \hat{\otimes} S & \text { abbreviation for } a \otimes s, 115 . \\
a^{*} b, \quad a_{*} b & \text { pair of bilinear operations on a module or bimodule, } \\
& \\
\mathbf{a}^{\sigma},(\mathbf{a a})^{\sigma} \sigma & \sigma \text {-part of } \mathbf{1 1 5} \text {, resp. aa, for an index-string } \sigma, 48-149,178-179,266-267, \mathbf{3 1 2}-319 . \\
\mathbf{A b} & \text { variety of abelian groups, 4, 13, 16, 35, 55, 91-94, 115, } \\
& 148,170,177,210,220,234,260-263,269-274, \\
& 277-294,302-303,305,307,309,325,332,340 .
\end{aligned}
$$

AbBinar $^{e} \quad$ variety of sets with an abelian not necessarily associative binary operation and a neutral element, 61-63, 91.
AbSemigp variety of (nonunital) abelian semigroups, 35, 63-78, 92, 94, 224-229.
AbSemigp ${ }^{e} \quad$ variety of abelian semigroups with neutral element, 35, 37-39, 42-56, 62, 94, 210, 224, 230-231, 260-262, 325.
AbSemigp ${ }^{i} \quad$ variety of abelian semigroups with distinguished idempotent, 64-65, 77-78.
b nonlinear part of a co-operation $\mathbf{a}$ or $\mathbf{m}, 43,50-52$, 182-190.

$B \odot-$
$B_{\text {end }}, B_{k-\text { lin }}$
certain sets of elements in a TW-monad object $B$, 333-335, 338.
Bi functor $\mathbf{C o m m}^{1} \rightarrow \mathbf{C o m m}^{1}$ represented by $\operatorname{Int}[x]$, 241-242, 246.
Binar ${ }^{e} \quad$ variety of sets with a not necessarily associative binary operation and a neutral element, 91, 182-186, 223.
Bool ${ }^{1}$, Bool varieties of unital and nonunital Boolean rings, 33, 211-213, 242, 243, 268, 307, 308, 335.
$\operatorname{Br}(S) \quad$ Lie ring formed from the associative ring $S$ using commutator brackets, 259-273, 276.
$B(S) \quad$ Boolean ring of idempotent elements of the commutative ring $S$, 211-213, 335.
$\mathbf{C}^{\text {aug }}$ category of augmented objects of $\mathbf{C}, 37-40$.
$\operatorname{Comm}_{k}^{1} \quad$ variety of commutative associative unital $k$-algebras, 4, 209-257, 297, 298, 300, 307, 309, 326-327, 333-336, 339, 345-346.
Comm ${ }^{1}$ variety of commutative associative unital rings, 119, 137, 300, 342.
$\mathbf{C}^{\mathrm{pt}} \quad$ category of pointed objects of $\mathbf{C}, 39-40,322-325$.
$\mathbf{C}(X, Y) \quad$ set or algebra of morphisms $X \rightarrow Y$ in $\mathbf{C}$ (see various definitions), 9, 21, 24.
d 'diagonal, modulo the radical', see $(\mathbf{Z} \times \mathbf{Z})$-Ring ${ }^{\mathbf{d}}$.
$\operatorname{deg}(x)=\operatorname{ht}(\mathbf{a}(x)), 43,51-53,83,191-194$.
$\Delta_{a} \quad$ difference operator: $\left(\Delta_{a} f\right)(x)=f(x+a)-f(x), \mathbf{2 8 1}$, 285-289.
$\simeq \quad$ equivalence of categories, 9 .
$\cong \quad$ isomorphism, 9 .
$E-S y s t \quad \simeq \operatorname{Rep}\left(\operatorname{Semigp}^{e}, \text { Semigp }^{e}\right)^{\text {Op }}$, 85-91, 93-94, 200, 339.
$\varepsilon \quad$ augmentation map (including coneutral element of a coalgebra), or counit of an adjunction, or nilpotent ring element, 13, 37, 37.
bimodule projection map $\forall_{\alpha \in A} M_{\alpha} \rightarrow M_{\beta}, \mathbf{3 1 0}, 311$, 320.
unit of adjunction, 13, 16, 230, 235, 308, 329.
$f \quad$ (in Chapters III-IV and §34) forgetful maps $R^{\alpha_{1}} \otimes_{k} \ldots \otimes_{k} R^{\alpha} \rightarrow R \otimes_{k} \ldots \otimes_{k} R$ etc., 46, 70, 187.
$(f, g)$ morphism out of coproduct, or into product, induced by two morphisms $f$ and $g, 19$.
$F_{1} \ominus \ldots \ominus F_{n} \quad$ chain tensor product of representable functors, 279-280.
$\mathrm{GL}_{n} \quad$ general linear group functor, 2-4, 29, 175, $210,272$.
Group $\quad$ variety of groups, $6,16,35,89,94-98,175-190,210-213$, 219-220, 223, 231, 247-256, 274-276, 297, 299, 302, 305, 323-325, 339, 343, 344, 347.
Gr... ${ }^{(>0)}$ categories of objects graded by the positive integers, 181-190.

$$
\begin{aligned}
h\left(a_{1}, \ldots, a_{n}\right)= & \left(\Delta_{a_{1}} \ldots \Delta_{a_{n}} f\right)(0), n \text {-linear function of } a_{1}, \ldots, a_{n} \\
& \text { obtained by polarization from } f, 285-289 .
\end{aligned}
$$

$[h],[h]^{\prime}$ the two $\{\lambda, \rho\}$-strings of length $h, 42-53,83-85$.
ht $(x) \quad$ height of an element $x$ of a coproduct, 42, 83.
$i$ (in Chapter IV) idempotent element of a semigroup (see also word index), 64-78.
$i^{\lambda}, i^{\mu}, i^{\rho}$, etc. coprojections $R \rightarrow R^{\lambda} \Perp R^{\rho}, R \rightarrow R^{\lambda} \Perp R^{\mu} \Perp R^{\rho}$, etc., 42, 150, 310, 320.
I often: trivial functor, or initial object (see word index), in addition to uses for index-set, ideal, etc..
$\mathrm{Id}_{\mathbf{C}} \quad$ identity functor of the category $\mathbf{C}, 9$.
Idp.-in-n.e. $(\mathbf{V}, \mathbf{S})$ condition on existence of idempotent elements, 64-78, 206-207, 225-230, 256-257, 309.
I, $\mathbf{I}^{1}$ arbitrary classes of identities for objects of NARing, NARing ${ }^{1}$, 136-142.
Int [...] rings of integral polynomials, 240-246, 249.
InvRing $_{k}^{1} \quad$ variety of $k$-algebras with involution, 211, 296-297, 338.
$J(A) \quad$ Jacobson radical of $A, 188,194-205,206,298$.
Jordan, Jordan ${ }^{1}$ varieties of nonunital and unital Jordan rings, 6, 103, 122-125, 127, 152, 153, 265-267, 269, 291-294, 296, 297.
$k \quad$ fixed associative unital ring (sometimes with additional restrictions); cf. $k$-Ring etc. and $K$ below, and characteristic, integral domain etc. in word index, 35, $37,51,61,63,104,146,152,175,181,188,190,206$, 259, 277, 310, 339.
$k$-Bimod
variety of $k$-bimodules, $4-5,16,36,41,43-59,99-104$, 146-172, 280, 284, 299, 309-319, 322, 339.
$(k \times k)-$ LCpRing $_{k}^{\mathbf{d}}$
category of linearly compact $k$-algebras in $(\mathbf{Z} \times \mathbf{Z})$-Ring ${ }^{\mathbf{d}}$ (q.v.), 199-204, 234.
$k$-GrRing ${ }^{(>0)} \quad$ variety of connected graded nonunital $k$-rings, $\quad 181-190$.
$[k][L] \quad$ (in Chapter IX) universal enveloping algebra of the Lie algebra $L$ (see also word index), 259-260, 263, 265, 271, 276.

$\mathbf{L i e}{ }_{k}{ }^{(p)} \quad$ variety of $p$-Lie ('restricted Lie') algebras, 269, 273-274, 276, 294, 341.
$\stackrel{\text { Lim }}{\rightleftarrows} \xrightarrow{\text { Lim }}$ limits and colimits (including inverse and direct limits), see mainly word index, 14.
LTopMod ${ }_{k} \quad$ category of linearly topologized $k$-vector spaces, 104-114.
$\lambda, \mu, \rho \quad$ superscripts used in indexing coproduct of two or three copies of $R, 2,42,45,150$.
$\Lambda^{2} M \quad$ exterior square of the module $M, 260,263$.
$m$ map $R \otimes_{k} \ldots \otimes_{k} R \rightarrow R$ induced by the multiplication of $R$, 51-53.
m comultiplication (see word index) in a co-ring or cosemigroup, 82.
$(-)^{p} \quad$ " $p$ th power" operation of $p$-Lie algebra; see $\mathbf{L i e}{ }_{k}^{(p)}$ above, 269.
$M^{\circ}$ see $R^{\circ}$.
$\hat{M} \quad$ object of $k$-Bimod ${ }^{\mathrm{op}}$ corresponding to $M \in k$-Bimod ( $c f$. $\hat{V}$ ), 146-154.
$\hat{M} \circ N \quad k-\operatorname{Bimod}(M, N), \quad 146-153,226,263,265$.
$M_{n}(R) \quad$ ring of $n \times n$ matrices over $R, 118,160,210,233$.
$\operatorname{Mod}_{k} \quad$ variety of $k$-modules ( $k$ commutative), 5, 28, 36, 55-59, 103-114, 152, 259-274, 285-291, 294.
$\widetilde{M}$ translation-invariant ring of functions on group, semigroup, or ring $M$, 247-248, 254.
NARing variety of not necessarily associative rings; see also Lie, Jordan, Ring ${ }^{(n)}$, etc. here, and bilinear maps in word index, 5, 102, 128-143, 149, 152, 168, 264-269, 297-298.
$1_{X}, 1_{R} \quad$ (through $\S 24$ ) identity morphism of an object $X$, (from $\S 25 \mathrm{on}$ ) identity (unit) element of a ring $R, \mathbf{9}, 115$.
( ) op opposite (category, ring, or semigroup) (see word index).
$\mathbf{P}, \mathbf{P}^{\varepsilon} \quad$ category of objects $\left(A,{ }^{*},{ }_{*}\right)$, respectively $\left(A,{ }^{*},{ }_{*}, \boldsymbol{\varepsilon}\right)$, 136-143.


| Semigp ${ }^{e}$ | $\begin{aligned} & \text { variety of semigroups with neutral element, } 6,13,35 \text {, } \\ & 82-98,176,188-208,213,214,231-234,299,305,307 \text {, } \\ & 309,322-323,333,339,341-344,347 \text {. } \end{aligned}$ |
| :---: | :---: |
| Set | category of sets, 9, 13, 34. |
| $S^{n}$ | $n$th power of an object or functor $S, 2 \mathbf{2 0}$ |
| $\operatorname{Spf}(A)$ | formal spectrum of a linearly compact commutative algebra $A, 236,276$. |
| Sum | functor carrying graded rings etc. (regarded as manysorted) to ungraded, 180, 190. |
| Sym, SSym | prefixes for subrings of symmetric and strongly symmetric elements in coproducts, 68-82. |
| $\otimes$ | tensor product (used without subscript in writing tensor products of elements, submodules of tensor product modules, tensor products of functors), 41, 51-53, 103, 278-280, 311. |
| $\hat{\otimes}$ | ```completed tensor product or analogous bimodule construction, 111, 146-147, 232-233, 263-265, 275, 279,284.``` |
| $\otimes_{k}$ | tensor product over $k$, |
| $\otimes_{k}$-co-Ring | category of noncounital $\otimes_{k}$-co-rings, 151-173. |
| $\otimes_{k}$-co-Ring ${ }^{1}$ | category of counital $\otimes_{k}$-co-rings, 151-152, 155-161, 166-173. |
| $\tau, \tau^{1}$ | relation '"- satisfies -'" on $\mathbf{P} \times \mathbf{I}$, respectively $\mathbf{P}^{\varepsilon} \times \mathbf{I}^{1}$, 136-138. |
| $U_{x}(y)$ | Jordan 'triple product', 291-293. |
| $\hat{V}$ | topological dual of discrete vector space ( $c f . \hat{M}$ ), 106, 226, 232-237, 246-255. |
| $\mathbf{V}^{M}, \mathbf{v}^{B \odot-}, \mathbf{V}^{G}$ | category of objects of $\mathbf{V}$ with action of monad $M$, of TW-monad $B \odot-$, or of semigroup $G$, 329-330, 333-335, 336, 338, 339, 341. |
| $*$ | functors on bimodules etc. mimicking behavior of coproduct of rings etc., 310-325. |
| $W, W_{p}$ | Witt ring construction, 210, 239, 237-240, 242, 256, 336. |


| $\left[\begin{array}{cc} W & X \\ Y & Z \end{array}\right]$ | element of twisted block-matrix semigroup, 195, 193-205, 234. |
| :---: | :---: |
| $x^{\lambda}$ etc. <br> $(x, y)$ <br> [ $x, y$ ] | $i^{\lambda}(x)$ etc., 42. <br> anticommutator operation, Jordan operation, 6, 122, 291. <br> Lie brackets; commutator brackets (for which see word index), 121, 259-275. |
| $\begin{gathered} X^{\#}, Y^{\#} \\ \langle X\| Y> \end{gathered}$ | sets arising under Galois connection, 136-139. <br> algebra presented by generating set $X$ and relations $Y$ <br> (see mainly presentation in word index), 24. |
| ${ }^{\text {d }}$ etc. | varieties of rings with formal $2 \times 2$ matrix decomposition, and off-diagonal entries in Jacobson radical, 195-205, 234. |

