High Voltage Power Cables

Technical Catalogue

www.alfanar.com

INDEX

1	General Power Circuit Design	Page 5
2	XLPE Cables	
	2.1 Introduction	Page 6
	2.2 Cable Design	Page 7
	2.3 Cable Structure	Page 8
	2.4 Different Types of Metallic Screen	Page 10
	2.5 Anti Corrosion Protective Jacket (outer jacket)	Page 11
3	Manufacturing	
	3.1 Processing of XLPE Insulation	Page 12
	3.2 Triple Extrusion Process	Page 13
	3.3 CDCC System	Page 14
	3.4 Advantage of CDCC System	Page 15
	3.5 Flowchart	Page 16
4	Testing	Page 17
5		
5	Quality Assurance	D 10
	5.1 Quality Management System	Page 18
	5.2 Health, Safety and Environment	Page 18
6	System Configuration	
	6.1 Choice of System Configuration	-
	6.2 Metallic Screen Earthing	Page 20
7	High Voltage XLPE Insulated Single Core Power Cables	
	7.1 Cables Designed Generally to IEC 60840 and IEC 62067	
	38/66 (72.5) kV Copper Conductor with Copper Wire Screen	Page 24
	38/66 (72.5) kV Copper Conductor with Lead Sheath	-
	64/110 (123) kV Copper Conductor with Copper Wire Screen	-
	64/110 (123) kV Copper Conductor with Lead Sheath	-
	76/132 (145) kV Copper Conductor with Copper Wire Screen	0
	76/132 (145) kV Copper Conductor with Lead Sheath	Page 34
	127/220 (245) kV Copper Conductor with Copper Wire Screen	-
	127/220 (245) kV Copper Conductor with Lead Sheath	Page 38
	7.2 Cables Designed Generally to National Grid Company Specifications (11–TMSS–01 and 11–TMSS–02)	
	40/69 (72.5) kV Copper Conductor with Copper Wire Screen	Page 40
	40/69 (72.5) kV Aluminum Conductor with Copper Wire Screen	Page 42
	64/110 (123) kV Copper Conductor with Copper Wire Screen	Page 44
	64/110 (123) kV Copper Conductor with Lead Sheath	
	76/132 (145) kV Copper Conductor with Copper Wire Screen	Page 48
	76/132 (145) kV Copper Conductor with Lead Sheath	Page 50
	133/230 (245) kV Copper Conductor with Copper Wire Screen	Page 52
8	Tecnical Data	
	Annex A : Continuous Current Ratings	Page 56
	Annex B : Short-circuit Capacity	Page 59
	Annex C : Cable Installation	Page 62
9	Product Range	Page 68
40		
10	Contact Us	Page 70

HIGH VOLTAGE Power Cables

1. General Power Circuit Design

This catalogue deals with underground power circuits featuring three-phase AC voltage insulated cable with a rated voltage between 66 and 230 kV. These lines are mainly used in the transmission lines between two units of an electricity distribution grid, a generator unit and a distribution unit or inside a station or sub-station. These insulated cable circuits may also be used in conjunction with overhead lines.

The voltage of a circuit is designated in accordance with the following principles:

Example: U₀ /U (U_m) : 127/220 (245)

Where $U_0 = 127 \text{ kV}$ phase-to-ground voltage, U = 220 kV rated phase-to-phase voltage, $U_m = 245 \text{ kV}$ highest permissible voltage of the grid

Phase-to-ground voltage, designated U_0 , is the effective value of the voltage between the conductor and the ground or the metallic screen.

Rated voltage, designated U, is the effective phase-to-phase voltage.

Maximum voltage, designated U_m, is the permissible highest voltage for which the equipment is specified.

A high voltage insulated cable circuit consists of three single-core cables with High Voltage sealing ends at each end. These sealing ends are also called (terminations) or terminals.

When the length of the circuit exceeds the capacity of a cable reel, joints are used to connect the unit lengths.

The circuit installation also includes grounding boxes, screen earthing connection boxes (link boxes) and the related earthing and bonding cables.

2. XLPE Cable

2.1 Introduction

Cross-linked polyethylene (XLPE) has become the globally preferred insulation for power cables, both for distribution and transmission system applications. This insulation system provides cost efficiency in operation and procurement, as well as lower environmental and maintenance requirements when compared to older impregnated paper systems. XLPE cables have many excellent characteristics, especially for use in higher operating temperature.

The basic advantages of XLPE insulated power tcables may be summarized as follows:

Higher Ampacity Rating: Higher continuous operating temperature of 90 °C for conductor permits XLPE Cables to withstand higher current ratings than PVC or HPFF Cables.

Higher Emergency Rating: XLPE cables can be operated at 105 °C during emergency. Operation at this temperature should be for no more than 72 hours duration on

average per year during the design life of the cable system, without exceeding 216 hours in any 12-month period and in any one event. Assuming a 40-year design life, this implies that the cable system should be able to withstand cumulative operation at 105 °C for a total of 2880 hours. Due to this, a higher current than the specific rating may be carried for this period.

Higher Short-Circuit Rating: Higher allowable temperature during short-circuit of 250 °C for conductor permits XLPE Cables to withstand higher short circuit ratings than PVC or PILC Cables.

Low Dielectric Losses: The dielectric loss angle of XLPE is much lower than conventional dielectric. The dielectric losses are quadratically dependent on the voltage. Hence use of XLPE Cables at higher voltages would generate considerable saving in costs.

Simple Accessories: The extruded insulation has excellent electrical properties which allow use of simplified solutions for joints and terminations compared to oil filled cables. Also, the ability to splice cables in discontinuous shifts permits cable splicing to occur during periods of low traffic.

Low Charging Currents: The charging currents are considerably lower than other dielectrics. This permits close setting of protection relays.

Ease of Installation: XLPE cable withstands smaller bending radius and is lighter in weight, allowing for easy and reliable installation. Furthermore, the splicing and terminating methods for XLPE cable are simpler in comparison with other kinds of cables.

Free from Height Limitation and Maintenance: XLPE cables can be installed anywhere without special consideration of the route profile (height limitations) since it does not contain oil and thus is free from failures due to oil migration in oil-filled cables.

These, along with better resistance to environmental stress cracking and low dielectric constant make XLPE Cables particularly suitable for power transmission in high and extra-high voltage systems.

2.2 Cable Design

High and extra-high voltage XLPE cables have common design features independent of the rated voltage and operating frequency. The components that essentially determine the electrical and thermal behavior of the cable are the conductor, the insulation with inner and outer field limitation layers and the metallic screen.

Insulation Thickness

The insulation thickness of high and extra-high voltage XLPE cables should be designed and calculated by the application of three independent design methods described by the following keywords:

- The mean ac field strength to be withstood for the duration of one hour (method A)
- The average lightning impulse field strength to be resisted (method B)
- The maximum impulse withstand field strength at the conductor (method C)

Methods A to C can be described by the following formulae. The largest value (derived from methods A to C) should be nominated as the minimum required nominal insulation thickness.

$$T_{Method A} = \frac{U_0}{E_{dac}} x k_T x k_o x k_t$$

Where,

T _{method A}	•	Insulation thickness derived from method A
U ₀	•	Nominal phase voltage (kV)
Edac	•	A.C withstand strength (1h) (kV/mm)
K _T	•	Temperature factor
Ko	•	Overvoltage factor
Kt	•	Ageing factor
	$U_{}$	

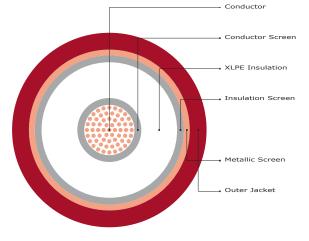
$$T_{Method B} = \frac{U_{BIL}}{E_{dimean}} x k_T x k_f x k_s$$

Where,

T _{method B}	•	Insulation thickness derived from method B
U _{BIL}	•	Basic impulse level (BIL) (kV)
Edimean	•	Mean impulse strength (kV/mm)
K _T	:	Temperature factor
K _f	:	Repetition factor
K _s	•	Safety factor

$$T_{Method C} = r x \left[e^{\left(\frac{U_{BIL}}{r x E_{dimax}} x k_T x k_f x k_s \right)} - 1 \right]$$
We are

Where,


•	Insulation thickness derived from method C
•	Basic impulse level (BIL) (kV)
•	Maximum impulse strength (kV/mm)
•	Radius of inner semi-conductive layer
•	Temperature factor
•	Repetition factor
•	Safety factor
	:

2.3 Cable Structure

The following structure applies to high and extra-high voltage cable with synthetic cross-linked polyethylene (XLPE) insulation of rated voltage from 66 kV grade up to and including 230 kV grade. This structure represents our standard models of high and extra-high voltage cables, however any other models as per customer's standard are also available.

The structure of high and extra-high voltage cable with synthetic cross-linked polyethylene insulation will always involve the following items:

Conductor

The task of the conductor is to transmit the current with the lowest possible losses. The decisive properties for this function result in the first place from the conductor *material and design*. The conductor also plays a decisive part in the mechanical tensile strength and bending ability of the cable.

The conductor material shall be either of plain annealed copper or plain aluminum. The most important properties of the two conductor materials are compared in table here below.

Property	Copper	Aluminum
Density (g/cm ³)	8.89	2.703
Spec. resistance (Ω.mm²/m)	0.017241	0.028264
Tensile strength (N/mm ²)	200 300	70 90

The conductor behavior is characterized by two particularly noteworthy phenomena: *the skin effect* and the *proximity effect*.

The *skin effect* is the concentration of electric current flow around the periphery of the conductors. It increases in proportion to the cross-section of conductor used.

The *proximity effect* is generated from the short distance separating the phases in the same circuit. When the conductor diameter is relatively large in relation to the distance separating the three phases, the electric current tends to concentrate on the surface facing the conductors. The wires of the facing surfaces indeed have a lower inductance than wires that are further away (the inductance of a circuit increases in proportion to the surface carried by the circuit). The current tends to circuite in the wires with the lowest inductance. In practice, the proximity effect is weaker than the skin effect and rapidly diminishes when the cables are moved away from each other.

The proximity effect is negligible when the distance between two single core cables in the same circuit or in two adjacent circuits is at least 8 times the outside diameter of the cable conductor.

There are two designs of conductor, compacted round stranded and segmental *"Milliken"* stranded.

Compacted round conductors composed of several layers of concentric spiral–wound wires. Due to the low resistance of electrical contact between the wires in the compacted round stranded conductors, the skin and proximity effects are virtually identical to those of solid plain conductor. This structure is reserved for cross-sections up to and including 800 mm², either for copper or aluminum.

Segmental conductors, also known as "Milliken" conductors are composed of several segment-shaped conductors assembled together to form a cylindrical core.

The large cross-section conductor is divided into several segment-shaped conductors. There are 5 of these conductors, which are known as segments or sectors. They are insulated from each other by means of nonconductive or insulating tapes.

The spiral assembly of the segments prevents the same conductor wires from constantly being opposite the other conductors in the circuit, thus reducing the proximity effect.

This structure is reserved for large cross-sections greater than 1200 mm² for aluminum and at least 1000 mm² for copper. The "Milliken" type structure reduces the highly unfavorable skin and proximity effects.

Conductor Screen

Conductor screen of an extruded super smooth semiconducting compound shall be applied over the conductor to prevent the electric field concentration in the interface between the XLPE insulation and the conductor.

Insulation

As its name suggests, the insulation insulates the conductor when working at a certain high voltage from the screen working at earthing potential. The insulation must be able to withstand the electric field under rated and transient operating conditions. The insulation material is extruded dry-cured, dry-cooled and extra-clean cross-linked polyethylene with excellent electrical and physical properties.

Insulation Screen

This layer has the same function as the conductor screen, where it is a progressive transition from an insulating medium, where the electric field is non-null, to a conductive medium (the cable metallic screen) in which the electric field is null. The insulation screen shall be applied direct upon the insulation and shall consist of an extruded semi-conducting compound. The insulation screen shall be firmly and totally bonded to the insulation.

The conductor screen, XLPE insulation and the insulation screen are extruded simultaneously in one process using triple extrusion method (Continuous Vulcanization Line). Triple extrusion method not only assures clean interfaces between the insulation and stress control layers, but also assures a construction free of Partial Discharge with high operational reliability.

Metallic Screen

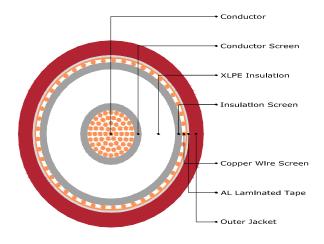
When the voltage reaches tens or even hundreds of kV, a metallic screen is necessary, and it is needed to connect it to earth at least at one point along the route.

Its main function is to nullify the electric field outside the cable. It acts as the second electrode of the capacitor formed by the cable.

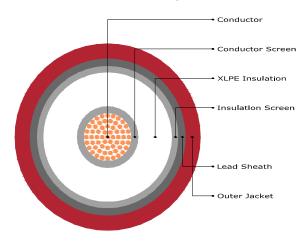
In addition to the task of electrostatic screening already mentioned, the metallic screen also has to fulfill the following functions:

1. Draining the capacitive current that passes through the insulation.

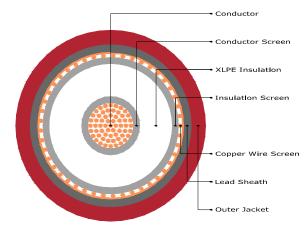
2. Draining the zero-sequence short-circuit currents, or part of them. This function is used to determine the size of the metallic screen.


3. The circulation of the currents induced by the magnetic fields from other cables in the vicinity.

4. Reduction of the electrical influence on the cable surroundings in the case of an earth fault.


5. Provision of protection against accidental contact.

2.4 Different Types of Metallic Screen


Copper Wire Screen

Extruded Lead or Lead-Alloy Sheath

Lead Sheath with Copper Wire Screen

Application

• Suitable for installation in tunnels, trenches or ducts

Advantages

- Light weight and cost effective design
- High short-circuit capacity
- Waterproofing guaranteed in radial direction by the aluminum laminated tape

Drawbacks

• Low resistance necessitating special screen connec tions in order to limit circulating current losses

Application

• Suitable for all installations in soil

Advantages

- Waterproofing guaranteed by the manufacturing process
- High resistance, therefore minimum energy loss in continuous earthing links
- Excellent corrosion resistance

Drawbacks

- · Heavy and expensive
- Lead is a toxic metal
- Limited short-circuit capacity

Application

• Suitable for all installations in soil

Advantages

- Waterproofing guaranteed by the manufacturing process
- High resistance, therefore minimum energy loss in continuous earthing links
- Excellent corrosion resistance
- Increased short-circuit capacity through additional copper wire screen

Drawbacks

- · Heavy and expensive
- Lead is a toxic metal

2.5 Anti-Corrosion Protective Jacket (Outer Jacket)

Metallic screen or other metal sheaths require additional protection against mechanical damage and, above all, against corrosion caused by water in conjunction with electrolytically active components in the soil. Hence, the jacket is a covering that provides the following functions:

Mechanical Protection: Jackets provide a certain amount of protection to the cable core from mechanical abuse such as abrasion, scoring and impact and sidewall bearing pressures that occur during handling and installation.

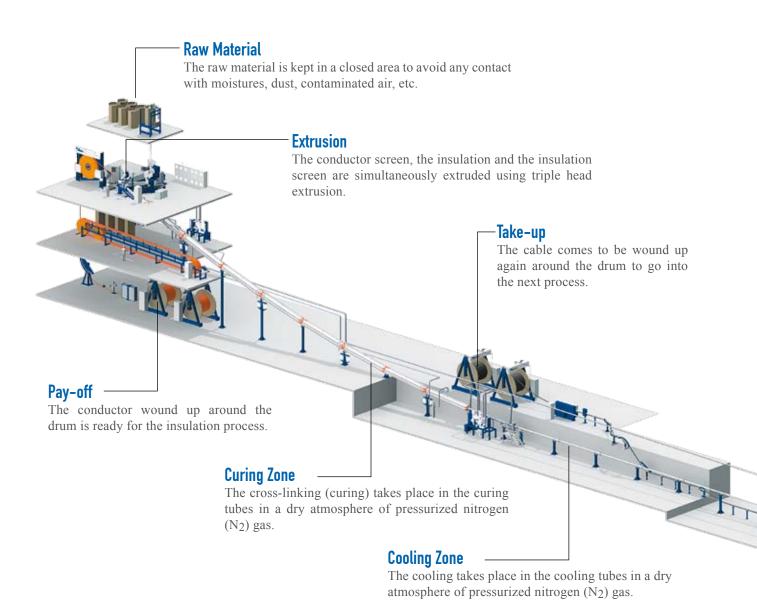
Chemical Protection: Jackets can provide protection from certain chemicals that might be detrimental to the cable core.

Ion Filtration: Research has shown that many of the contaminants found in cable insulations have migrated into the cable from the surrounding soil. Jackets, though not typically designed for this, do filter out some of these ions as moisture migrates into the cable. As a general rule, the ability of the jacket to filter ions will increase as the thickness of the jacket wall increases.

Corrosion Resistance: Experience has shown that the metallic shields of un-jacketed cables will corrode in many types of soil. The application of a jacket can greatly reduce this corrosion.

Moisture Migration: Moisture penetration is a major contributor to the deterioration of cable insulation. Jackets can reduce the rate at which moisture migrates into the cable core.

Electrical: The jacket serves a very important electrical function in bonded cable system such as single-point bonding and cross bonding. To work properly and avoid rapid corrosion phenomena, these bonding systems require that the metallic shield of the cable and joint are electrically isolated from earth potential.


The jacket shall consist of a non-conducting thermoplastic material which should be compatible either with all cable components it contacts or with the maximum operating temperature of conductor during normal, emergency and short-circuit conditions. The outer jacket shall consist of a black, Polyvinyl Chloride (PVC) or Polyethylene (LDPE, LLDPE, MDPE and HDPE) compound suitable for exposure to sunlight.

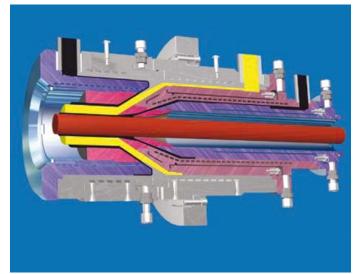
Polyethylene jackets are preferred over PVC jackets due to PVC jackets undergoing some degradation after prolonged thermal cycling. In addition, Polyethylene jackets have the following advantages over PVC jackets:

- Much lower water vapor transmission rate
- Much lower water absorption
- · Better physical, mechanical properties
- Improved toughness and abrasion resistance
- Wider use and installation temperature range
- Better environmental stress crack resistance
- · Lighter weight
- Extends cable life effectively, and thus lowers overall cable-life costs

Unless specifically excluded by the purchaser, to verify the integrity of the outer jacket, a continuous graphite coating or extruded semi-conducting layer will be applied over the jacket to form an electrode for Production Tests, dc testing during installation, and for periodic maintenance testing after commissioning.

3. Manufacturing

3.1 Processing of XLPE Insulation


Manufacturing of XLPE high and extra-high voltage cables basically comprises four fabrication stages: (1) Conductor manufacturing (wire drawing and stranding); (2) Core manufacturing (insulation layer extrusion and cross-linking); (3) Conditioning (degassing of gaseous reaction products); (4) Sheathing, with core screening taking place beforehand.

Without doubt, the most important manufacturing phase of these individual stages with regard to the electrical characteristics of the cable is core manufacturing. In other words, the key process in XLPE cable manufacture is the extrusion of the insulation system. This operation is carried out in a line which known as Continuous Vulcanizing Line (CV).

3.2 Triple Extrusion Process

Triple Extrusion Head

The interface between the insulation and the two screens is extremely important for the quality of the insulation system – the more so with increasing voltage levels. The interface must be smooth with a good bond between the layers. Even small protrusions may drastically reduce the electrical properties of the insulation system. The introduction of the triple extrusion tools together with optimal process control ensures smooth interface and thereby excellent electrical properties.

Material Handling

One of the most important quality criteria for XLPE insulation, when it is used in manufacturing of high and extrahigh Voltage cables, is cleanliness.

Special attention is given to material handling, particularly as regards cleanliness and temperature during storage. A special super clean grade of material which is used to ensure the highest degree of purity, is fed to the extruders in a completely closed system.

3.3 CDCC System

Completely Dry Curing and Cooling Vulcanizing Method

We adopt CDCC system for vulcanizing XLPE insulation. CDCC system is a continuous vulcanizing and dry curing system using nitrogen gas. This system has been developed to produce high voltage and extra-high voltage cables and it shows excellent function to reduce faults and imperfections in the insulation.

In this system, extruded thermoplastic compounds are cured in the curing tube by thermal radiation through inert nitrogen gas; therefore there is no opportunity that the compounds can absorb any moisture during the vulcanization process. The insulated core may be cooled by water in the lower part of the tube as in case of medium voltage cables, but to obtain better quality in the absence of moisture, it is cooled by convection and radiation in a nitrogen gas atmosphere.

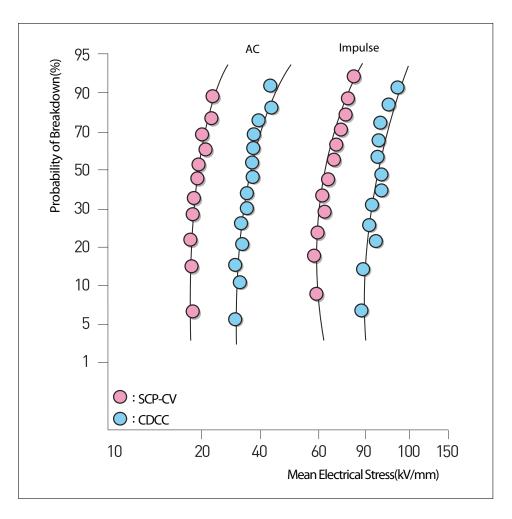
CDCC system is fully controlled by computer, so that manufacturing conditions and temperatures are controlled perfectly. This means that the quality of the insulation is uniform throughout the cross-section and the length of the manufactured cable. The whole process of this system is perfectly protected from outer atmosphere to prevent the insulation compounds and the insulated core from any contact with moistures, dust, contaminated air, etc.

3.4 Advantage of CDCC System

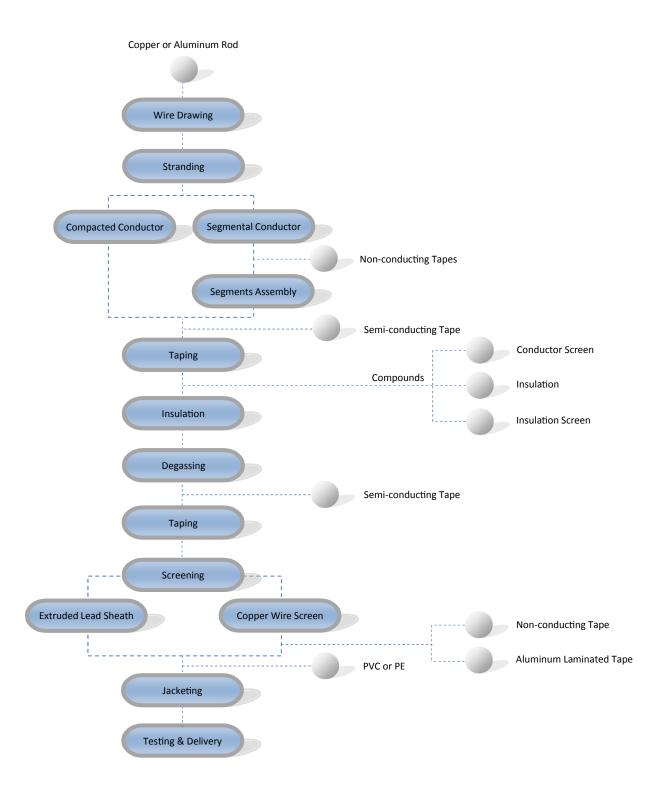
Water Content

Compared with the case of steam cured cables in which a large amount of water due to the saturated steam remains in the insulation, for CDCC cable, only 100 to 200 ppm moisture is detected in the insulation. Comparison of water Content in XLPE cable is shown in the below Table.

Sample	Dry	Steam
Wt (%)	0.018	0.29


Micro-voids

The extremely small amount of residual water in dry cured insulation minimizes micro-voids. Comparison of voids in XLPE cable during curing process is shown in the below Table.


Curing	Voids								
Method	1~3 µm	4~5 µm	5~10 µm	>10 µm					
Dry	120	3	0	0					
Steam	>2,000	≈ 300	77	4					

Electrical Strength

Both AC and impulse breakdown strengths have been remarkably improved for cables insulated using CDCC system when compared with that insulated using steam curing process. The facing figure shows the effect of different curing processes on the electrical behavior of the insulation under electrical stress.

3.5 Flow Chart

4. Testing

High voltage cable is one of the pillars of power transmission systems. Therefore, to ensure efficiency and reliability of the performance of high voltage cables is a fundamental requirement for ensuring the efficiency and reliability of the power transmission system as a whole.

To ensure the quality of our products of high voltage cables, we are not only focusing on the quality of the finished product, but it goes beyond that to include all the different manufacturing stages, starting from the inspection and selection of the finest raw materials, then through the different stages of the production of cable and ending with the performance of all tests required to ensure the conformity to all the requirements of international standards. All the materials and manufacturing processes are stringently controlled, tested and reported according to quality standards

At our plant the testing process of XLPE cables is subjected to the most stringent standards to ensure that our products meet the quality required for optimum problem free performance. In this respect our plant uses advanced state of the art testing equipment in a strict series of test processes to achieve the exacting quality standards.

5. Quality Assurance

5.1 Quality Management System

alfanar has established, documented and implemented the Quality Management System according to the ISO 9001:2008 standard. The management system covers the entire organizational structure of the Company, supporting the division of tasks, responsibilities and competences, and the breakdown of processes and resources, making it possible to maintain effective quality management. Our management system is certified by BASEC UK (British Approvals Services for Electric Cables), a specialist certification body in the cable industry.

alfanar strongly believes that the relentless pursuit of quality and continuous improvement are the only long-term route to success

Customer requirements are studied and care is taken to ensure that they are fulfilled through the provision of products that are in accordance with previously agreed specifications, of the highest quality, safe to use, reliable and delivered on time.

5.2 Health, Safety and Environment

Being a major manufacturer of power cables, alfanar recognizes the vital role it plays in the management of health and safety aspects in the workplace as well as protecting the environment. alfanar is therefore committed to the principles of risk reduction, pollution prevention and management of its operations as a responsible corporate member of society.

To achieve this policy, alfanar has developed an Environment, Health and Safety (EHS) management system certified to ISO14001 and OHSAS 18001 Standards. Through this system, alfanar endeavors to maintain comprehensive risk assessments, allowing it to evaluate health, safety and environmental (EHS) impacts and set clear objectives for improvements.

6. System Configuration

6.1 Choice of System Configuration

The term System Configuration refers to the arrangement of the three phases of a cable system relative to one another. The main distinction is between a flat formation and a trefoil layout; with both of these systems, the distance between the axes of the phases, the type of cable sheath and, above all, the grounding conditions are of the utmost importance. The system configuration has an effect both on the current-dependant losses of cables through the proximity effect and on sheath voltage induction, as well as on the so-called electromagnetic interference with other underground lines and possibly on people or animals in the vicinity of the cable system. To some extent the dissipation from the cable system also depend on its configuration.

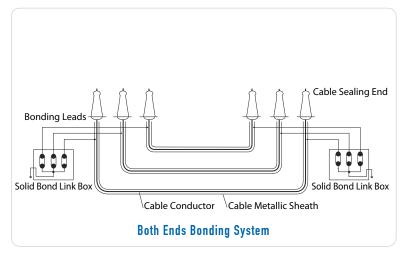
The effects operate to a certain extent in opposition to one another, i.e. a configuration that has a positive effect on the sheath losses or electromagnetic interference can prove to be unfavorable in terms of current displacement and/or heat dissipation, and vice versa. The below table shows the effect of different system configurations on the following four operational characteristics of a cable system:

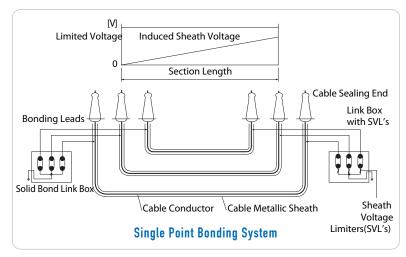
- Conductor losses through the proximity effect
- Sheath losses through induction current
- Heat dissipation into the surrounding soil
- · Electromagnetic interference of the surrounding environment

Con	figuration Ch	ange	Effect on proximity effect	Effect on sheath losses	Effect on heat dissipation	Effect on interference
	Instead of		Unfavorable	Favorable	Unfavorable	Favorable
•••	Instead of	•	Favorable	Unfavorable	Favorable	Favorable
••••	Instead of	••••	None	None	Indifferent	Favorable
Both end bonding	Instead of	Single point bonding	None	Unfavorable	None	Favorable
Cross bonding	Instead of		None	Favorable	None	None

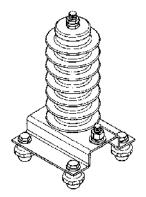
6.2 Metallic Screens Earthing

When an alternating current runs through the conductor of a cable, voltage that is proportional to the induction current, to the distance between phases and to the length of the line will be generated on the metallic screen. The end that is not earthed is subjected to an induced voltage that needs to be controlled.


Under normal operating conditions, this voltage may reach several tens of volts. Risks of electrocution can be prevented by using one of the following bonding methods.

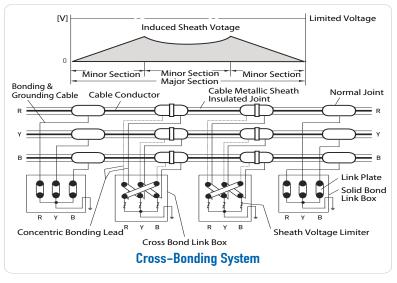

Both Ends Bonding Method

Both ends of the cable sheath are connected to the system earth. With this method no standing voltages occur at the cable ends, which makes it the most secure regarding safety aspects. On the other hand, circulating currents may flow in the sheath as the loop between the two earthing points is closed through the ground. These circulating currents are proportional to the conductor currents and therefore reduce the cable Ampacity significantly making it the most disadvantageous method regarding economic aspects.


Single Point Bonding Method

One end of the cable sheath is connected to the system earth, so that at the other end (open end) the standing voltage appears, which is induced linearily along the cable length. In order to ensure the relevant safety requirements, the open end of the cable sheath has to be protected with a surge arrester (sheath voltage limiter SVL). In order to avoid potential lifting in case of a failure, both earth points have to be connected additionally with an earth continuity conductor (ECC).

Sheath voltage limiters (SVL's) basically operate like non-linear electrical resistances. At low voltage (in the case of rated operating conditions), the sheath voltage limiters are extremely resistant and can be considered as non-conducting. In the event of lightening overvoltage or switching overvoltage, the sheath voltage limiters are subjected to extremely high voltage and become conducting and thus limit the voltage applied to the protective jacket. This limitation voltage is sometimes called flash-over voltage. It is important to ensure that, in the case of a short-circuit, the induction voltage in the screen is not higher than the flash-over voltage of the sheath voltage limiter. This final criteria determines the type of sheath voltage limiter to be used for a given power line.


Sheath Voltage

Limiter (SVL)

Cross Bonding Method

Cross bonding single-conductor cables attempts to neutralize the total induced voltage in the cable sheaths to minimize the circulating current and losses in the cable sheaths, while permitting increased cable spacing and longer runs of cable lengths. Increasing cable spacing increases the thermal independence of each cable, thereby increasing its current-carrying capacity.

The most basic form of cross bonding consists of sectionalizing the cable into three minor sections of equal length and cross-connecting the sheaths at each minor section. Three minor cable sections form a major section. The sheaths are then bonded and grounded at

the beginning and end of each major section. It is not possible to achieve a complete balance of induced voltages in the cable sheaths if the cables are not either transposed or laid in trefoil configuration. For this reason, cables laid in a flat configuration are transposed at each minor section. This neutralizes the induced sheath voltages, assuming the three minor sections are identical.

Longer cable circuits may consist of a number of major sections in series. When the number of minor sections is divisible by three, the cable circuit can be arranged to consist of more than one major section. In such a case, the cable circuit could consist of either sectionalized cross bonding or continuous cross bonding. In the case of sectionalized cross bonding, the cables are transposed at each minor section, and the sheaths are bonded together and grounded at the junction of two major sections and at the beginning and end of the cable circuit. In the case of continuous cross bonding, the cables are preferably transposed at each minor section and the sheaths are cross-bonded at the end of each minor section throughout the whole cable route. The three cable sheaths are bonded and grounded at the two ends of the route only.

7. High Voltage XLPE Insulated Single Core Power Cables

7.1 Cables Designed Generally to IEC 60840 and IEC 62067

38/66 (72.5) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, non-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 60 kV grade up to and including 69 kV grade.

	Constructional & Electrical Data											
Conductor				Insulation				Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 1	hickness of Layers	Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Diameter	Weight	
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m	
240 R	0.0754	0.0979	1.0	11.0	1.0	0.190	95	15.3	3.5	57.1	5.03	
300 R	0.0601	0.0789	1.0	11.0	1.0	0.205	95	15.3	3.5	59.5	5.71	
400 R	0.0470	0.0629	1.0	11.0	1.0	0.222	95	15.3	3.5	62.1	6.61	
500 R	0.0366	0.0505	1.0	11.0	1.0	0.245	95	15.3	4.0	66.5	7.94	
630 R	0.0283	0.0411	1.0	11.0	1.0	0.268	95	15.3	4.0	70.0	9.32	
800 R	0.0221	0.0343	1.0	11.0	1.0	0.293	95	15.3	4.0	74.0	11.22	
1000 S	0.0176	0.0241	1.5	11.0	1.2	0.355	95	15.3	4.0	84.1	13.67	
1200 S	0.0151	0.0212	1.5	11.0	1.2	0.381	95	15.3	4.5	89.1	15.86	
1400 S	0.0129	0.0187	1.5	11.0	1.2	0.393	95	15.3	4.5	91.1	17.83	
1600 S	0.0113	0.0170	1.5	11.0	1.2	0.419	95	15.3	4.5	95.1	19.51	
2000 S	0.0090	0.0145	1.5	11.0	1.2	0.451	95	15.3	4.5	100.1	23.14	

Voltage 38/66 (72.5) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)										
Type of Sheath	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)					
Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)				
	240 R	386	572		240 R	433	683				
Both end bond-	300 R	428	648	Cross or single	300 R	490	785				
ing ⁽⁴⁾	400 R	476	737		400 R	556	909				
	500 R	526	835		500 R	631	1054				
	630 R	664	1044		630 R	714	1218				
	800 R	734	1180	point	800 R	798	1392				
Cross or single	1000 S	896	1497	bond- ing ⁽⁵⁾	1000 S	960	1742				
point	1200 S	964	1637		1200 S	1039	1912				
bond- ing ⁽⁵⁾	1400 S	1030	1765		1400 S	1118	2073				
	1600 S	1091	1897		1600 S	1191	2245				
	2000 S	1190	2107		2000 S	1315	2525				

Metallic screen cross-sectional area may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

i.e. with induced current (circulating currents) in the metallic screen. 4.

5. *i.e. without induced current (circulating currents) in the metallic screen.*

38/66 (72.5) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead sheath with suitable thickness to withstand the required earth fault current, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 60 kV grade up to and including 69 kV grade.

	Constructional & Electrical Data											
Conductor				Insulation				Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Insulation Layers		Electro- static	Nominal Thickness	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall		
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	of Lead Sheath ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Diameter	Weight	
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m	
240 R	0.0754	0.0979	1.0	11.0	1.0	0.190	2.1	7.6	3.5	56.9	7.54	
300 R	0.0601	0.0789	1.0	11.0	1.0	0.205	2.2	8.4	3.5	59.5	8.58	
400 R	0.0470	0.0629	1.0	11.0	1.0	0.222	2.3	9.2	3.5	62.3	9.87	
500 R	0.0366	0.0505	1.0	11.0	1.0	0.245	2.3	9.8	4.0	66.7	11.47	
630 R	0.0283	0.0410	1.0	11.0	1.0	0.268	2.4	10.8	4.0	70.4	13.35	
800 R	0.0221	0.0343	1.0	11.0	1.0	0.293	2.5	12.0	4.0	74.6	15.82	
1000 S	0.0176	0.0241	1.5	11.0	1.2	0.355	2.7	14.9	4.0	85.0	19.74	
1200 S	0.0151	0.0212	1.5	11.0	1.2	0.381	2.8	16.3	4.5	90.2	22.61	
1400 S	0.0129	0.0187	1.5	11.0	1.2	0.393	2.9	17.3	4.5	92.4	25.07	
1600 S	0.0113	0.0169	1.5	11.0	1.2	0.419	3.0	18.7	4.5	96.6	27.47	
2000 S	0.0090	0.0145	1.5	11.0	1.2	0.451	3.1	20.5	4.5	101.8	31.96	

Voltage 38/66 (72.5) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)										
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)					
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)				
	240 R	405	595		240 R	433	687				
Both end	300 R	452	679		300 R	489	790				
bond- ing ⁽⁴⁾	400 R	508	777		400 R	555	914				
	500 R	566	888		500 R	629	1059				
	630 R	658	1043	Cross or single	630 R	711	1223				
	800 R	724	1176	point	800 R	793	1397				
Cross or single	1000 S	870	1476	bond- ing ⁽⁵⁾	1000 S	948	1740				
point	1200 S	930	1605		1200 S	1022	1905				
bond- ing ⁽⁵⁾	1400 S	983	1717		1400 S	1094	2061				
	1600 S	1030	1832		1600 S	1159	2224				
	2000 S	1104	2009		2000S	1267	2485				

Thickness of lead sheath may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. *i.e. with induced current (circulating currents) in the metallic screen.*

5. *i.e. without induced current (circulating currents) in the metallic screen.*

64/110 (123) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, non-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 110 kV grade up to and including 115 kV grade.

	Constructional & Electrical Data											
	Conductor			Insulation				Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Insulation Layers		Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx.	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Diameter	Overall Weight	
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m	
300 R	0.0601	0.0787	1.2	15.0	1.0	0.167	95	15.3	3.5	67.9	6.47	
400 R	0.0470	0.0627	1.2	15.0	1.0	0.180	95	15.3	3.5	70.5	7.41	
500 R	0.0366	0.0502	1.2	15.0	1.0	0.196	95	15.3	4.0	74.9	8.79	
630 R	0.0283	0.0407	1.2	15.0	1.0	0.213	95	15.3	4.0	78.4	10.21	
800 R	0.0221	0.0338	1.2	15.0	1.0	0.232	95	15.3	4.0	82.4	12.17	
1000 S	0.0176	0.0240	1.5	15.0	1.2	0.276	95	15.3	4.0	92.1	14.74	
1200 S	0.0151	0.0211	1.5	15.0	1.2	0.295	95	15.3	4.5	97.1	17.00	
1400 S	0.0129	0.0185	1.5	15.0	1.2	0.305	95	15.3	4.5	99.1	18.99	
1600 S	0.0113	0.0168	1.5	15.0	1.2	0.323	95	15.3	4.5	103.1	20.72	
2000 S	0.0090	0.0143	1.5	15.0	1.2	0.347	95	15.3	4.5	108.1	24.42	
2500 S	0.0072	0.0125	1.5	15.0	1.2	0.384	95	15.3	4.5	116.1	29.99	

Voltage 64/110 (123) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)											
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)						
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)					
Both end	300 R	432	653		300 R	490	771					
bond-	400 R	481	743		400 R	557	891					
ing ⁽⁴⁾	g ⁽⁴⁾ 500 R 533 843		500 R	633	1033							
	630 R 668 1042		630 R	716	1193							
	800 R	741	1178	Cross or single	800 R	801	1363					
Cross or	1000 S	900	1485	point	1000 S	964	1700					
single	1200 S	970	1624	bond- ing ⁽⁵⁾	1200 S	1043	1865					
point bond-	1400 S	1038	1751		1400 S	1122	2022					
ing ⁽⁵⁾	1600 S	1100	1883		1600 S	1196	2188					
	2000 S	1201	2094		2000 S	1320	2460					
	2500 S	1302	2329		2500 S	1451	2776					

Metallic screen cross-sectional area may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. *i.e. with induced current (circulating currents) in the metallic screen.*

5. *i.e. without induced current (circulating currents) in the metallic screen.*

64/110 (123) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead sheath with suitable thickness to withstand the required earth fault current, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 110 kV grade up to and including 115 kV grade.

				Con	structional a	& Electrical	Data				
	Conductor			Insul	ation		Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Insulation Layers		Electro- static	Nominal Thickness of Lead	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Sheath ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Diameter	Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m
300 R	0.0601	0.0787	1.2	15.0	1.0	0.167	2.4	10.6	3.5	68.3	10.40
400 R	0.0470	0.0627	1.2	15.0	1.0	0.180	2.5	11.5	3.5	71.1	11.78
500 R	0.0366	0.0502	1.2	15.0	1.0	0.196	2.6	12.6	4.0	75.7	13.70
630 R	0.0283	0.0406	1.2	15.0	1.0	0.213	2.7	13.8	4.0	79.4	15.70
800 R	0.0221	0.0338	1.2	15.0	1.0	0.232	2.8	15.1	4.0	83.6	18.29
1000 S	0.0176	0.0240	1.5	15.0	1.2	0.276	2.9	17.7	4.0	93.4	22.10
1200 S	0.0151	0.0210	1.5	15.0	1.2	0.295	3.0	19.2	4.5	98.6	25.09
1400 S	0.0129	0.0185	1.5	15.0	1.2	0.305	3.1	20.2	4.5	100.8	27.61
1600 S	0.0113	0.0168	1.5	15.0	1.2	0.323	3.2	21.8	4.5	105.0	30.12
2000 S	0.0090	0.0143	1.5	15.0	1.2	0.347	3.4	24.4	4.5	110.4	35.09
2500 S	0.0072	0.0125	1.5	15.0	1.2	0.384	3.6	27.8	4.5	118.8	42.39

Voltage 64/110 (123) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)											
Type of	Nominal Area	Trefoil For	Trefoil Formation			Flat Formation (2D Spaced)					
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)					
Both end	300 R	452	676		300 R	490	775					
bond-	400 R	506	773		400 R	556	896					
ing ⁽⁴⁾	g ⁽⁴⁾ 500 R 564 882		500 R	634	1037							
	630 R 660 1040	1040		630 R	713	1197						
	800 R	727	1172	Cross or single	800 R	795	1365					
Cross or	1000 S	866	1456	point	1000 S	948	1694					
single	1200 S	924	1582	bond- ing ⁽⁵⁾	1200 S	1021	1854					
point bond-	1400 S	980	1695		1400 S	1093	2005					
ing ⁽⁵⁾	1600 S	1026	1808		1600 S	1158	2162					
	2000 S	1097	1981		2000 S	1263	2414					
	2500 S	1157	2161		2500 S	1366	2697					

Thickness of lead sheath may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. *i.e. with induced current (circulating currents) in the metallic screen.*

5. *i.e. without induced current (circulating currents) in the metallic screen.*

76/132 (145) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, non-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 132 kV grade up to and including 138 kV grade.

				Con	structional	& Electrical	Data				
	Conductor			Insul	ation		Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Layers		Insulation	Insulation Electro-		Short Circuit	Nominal Thick-	Approx. Overall	Approx.
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Diameter	Overall Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m
300 R	0.0601	0.0786	1.2	18.0	1.2	0.148	95	15.3	4.0	75.3	7.23
400 R	0.0470	0.0625	1.2	18.0	1.2	0.159	95	15.3	4.0	77.9	8.20
500 R	0.0366	0.0501	1.2	18.0	1.2	0.173	95	15.3	4.0	81.3	9.51
630 R	0.0283	0.0404	1.2	18.0	1.2	0.187	95	15.3	4.0	84.8	10.96
800 R	0.0221	0.0336	1.2	18.0	1.2	0.203	95	15.3	4.0	88.8	12.95
1000 S	0.0176	0.0239	1.5	18.0	1.2	0.240	95	15.3	4.0	98.1	15.55
1200 S	0.0151	0.0210	1.5	18.0	1.2	0.256	95	15.3	4.5	103.1	17.86
1400 S	0.0129	0.0184	1.5	18.0	1.2	0.264	95	15.3	4.5	105.1	19.86
1600 S	0.0113	0.0167	1.5	18.0	1.2	0.280	95	15.3	4.5	109.1	21.63
2000 S	0.0090	0.0142	1.5	18.0	1.2	0.299	95	15.3	4.5	114.1	25.37
2500 S	0.0072	0.0124	1.5	18.0	1.2	0.331	95	15.3	4.5	122.1	31.01

Voltage 76/132 (145) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)											
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)						
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)					
Both end	300 R	434	653		300 R	491	760					
bond-	400 R	484	743		400 R	558	878					
ing ⁽⁴⁾	^{Ig⁽⁴⁾} 500 R 538 846		500 R	634	1018							
	630 R 672 1039		630 R	718	1176							
	800 R	746	1176	Cross or single	800 R	803	1342					
Cross or	1000 S	903	1477	point	1000 S	965	1673					
single	1200 S	973	1614	bond- ing ⁽⁵⁾	1200 S	1045	1835					
point bond-	1400 S	1043	1741		1400 S	1124	1989					
ing ⁽⁵⁾	1600 S	1105	1872		1600 S	1198	2152					
	2000 S	1208	2083		2000 S	1324	2419					
	2500 S	1311	2318		2500 S	1455	2728					

Metallic screen cross-sectional area may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. *i.e. with induced current (circulating currents) in the metallic screen.*

5. *i.e. without induced current (circulating currents) in the metallic screen.*

76/132 (145) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead sheath with suitable thickness to withstand the required earth fault current, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 132 kV grade up to and including 138 kV grade.

	Constructional & Electrical Data											
	Conductor			Insulation				Metallic Screen		Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Insulation Layers		Insulation	Electro- static	Nominal Thickness	Short Circuit	Nominal Thick-	Approx.	Approx.	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	of Lead Sheath ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	ness	Overall Diameter	Overall Weight	
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m	
300 R	0.0601	0.0786	1.2	18.0	1.2	0.148	2.6	12.7	4.0	76.1	12.18	
400 R	0.0470	0.0625	1.2	18.0	1.2	0.159	2.7	13.7	4.0	78.9	13.63	
500 R	0.0366	0.0500	1.2	18.0	1.2	0.173	2.8	14.9	4.0	82.5	15.52	
630 R	0.0283	0.0404	1.2	18.0	1.2	0.187	2.9	16.1	4.0	86.2	17.61	
800 R	0.0221	0.0335	1.2	18.0	1.2	0.203	3.0	17.5	4.0	90.4	20.29	
1000 S	0.0176	0.0239	1.5	18.0	1.2	0.240	3.1	20.2	4.0	99.8	24.17	
1200 S	0.0151	0.0210	1.5	18.0	1.2	0.256	3.2	21.8	4.5	105.0	27.26	
1400 S	0.0129	0.0184	1.5	18.0	1.2	0.264	3.3	22.9	4.5	107.2	29.83	
1600 S	0.0113	0.0166	1.5	18.0	1.2	0.280	3.4	24.6	4.5	111.4	32.43	
2000 S	0.0090	0.0142	1.5	18.0	1.2	0.299	3.6	27.3	4.5	116.8	37.53	
2500 S	0.0072	0.0123	1.5	18.0	1.2	0.331	3.7	30.2	4.5	125.0	44.58	

Voltage 76/132 (145) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)											
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)						
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)					
Both end	300 R	451	673		300 R	491	763					
bond-	400 R	505	768		400 R	557	882					
ing ⁽⁴⁾	g ⁽⁴⁾ 500 R 562 877		500 R	632	1022							
	630 R 661 1034		630 R	714	1179							
	800 R	728	1165	Cross or single	800 R	796	1344					
Cross or	1000 S	864	1443	point	1000 S	947	1666					
single	1200 S	921	1567	bond- ing ⁽⁵⁾	1200 S	1020	1822					
point bond-	1400 S	975	1679		1400 S	1091	1970					
ing ⁽⁵⁾	1600 S	1021	1791		1600 S	1155	2123					
	2000 S	1091	1961		2000 S	1259	2369					
	2500 S	1153	2142		2500 S	1363	2647					

Thickness of lead sheath may vary according to the required short-circuit current.
 Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{o}\!C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. *i.e. with induced current (circulating currents) in the metallic screen.*

5. *i.e. without induced current (circulating currents) in the metallic screen.*

127/220 (245) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, non-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar EHV Cables are designed and tested to meet or exceed the requirements of IEC 62067 standard.

alfanar EHV Cables are suitable for use in extra-high voltage transmission networks, in systems of rated voltages from 220 kV grade up to and including 230 kV grade.

	Constructional & Electrical Data											
	Conductor			Insu	lation		Metallic	Screen	Outer Jacket			
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal Thickness of Insulation Layers			Electro- static	Nominal Area of	Short Circuit	Nominal	Approx.	Approx.	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires ⁽¹⁾	Capacity (1 Sec.) ⁽²⁾	Thick- ness	Overall Diameter	Overall Weight	
mm ²	Ω / km	Ω / km	mm	mm	mm	µF / km	mm ²	kA	mm	mm	kg / m	
630 R	0.0283	0.0401	1.5	23.0	1.5	0.160	95	15.3	4.5	97.0	12.58	
800 R	0.0221	0.0332	1.5	23.0	1.5	0.173	95	15.3	4.5	101.0	14.64	
1000 S	0.0176	0.0238	1.5	23.0	1.5	0.200	95	15.3	4.5	109.7	17.30	
1200 S	0.0151	0.0209	1.5	23.0	1.5	0.213	95	15.3	5.0	114.7	19.69	
1400 S	0.0129	0.0183	1.5	23.0	1.5	0.219	95	15.3	5.0	116.7	21.73	
1600 S	0.0113	0.0165	1.5	23.0	1.5	0.231	95	15.3	5.0	120.7	23.57	
2000 S	0.0090	0.0140	1.5	23.0	1.5	0.247	95	15.3	5.0	125.7	27.40	
2500 S	0.0072	0.0122	1.5	23.0	1.5	0.272	95	15.3	5.0	133.7	33.17	

Voltage 127/220 (245) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)												
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)						
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)						
	630 R	660	1023		630 R	705	1140						
	800 R	733	1158		800 R	789	1300						
Cross or	1000 S	881	1446	Cross or	1000 S	944	1617						
single	1200 S	948	1580	single	1200 S	1021	1773						
point bond-	1400 S	1016	1705	point bond-	1400 S	1098	1921						
ing ⁽⁴⁾	1600 S	1076	1834	ing ⁽⁴⁾	1600 S	1169	2077						
	2000 S	1178	2041		2000 S	1290	2333						
	2500 S	1277		2500 S	1416	2628							

1. Metallic screen cross-sectional area may vary according to the required short-circuit current.

2. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 °C

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of 40 °C, Ambient ground temperature of 30 °C, Soil thermal resistivity of $1.5 \text{ K} \cdot \text{m/W}$ and Depth of laying of 1.5 m. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

127/220 (245) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead sheath with suitable thickness to withstand the required earth fault current, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar EHV Cables are designed and tested to meet or exceed the requirements of IEC 62067 standard.

alfanar EHV Cables are suitable for use in extra-high voltage transmission networks, in systems of rated voltages from 220 kV grade up to and including 230 kV grade.

				Con	structional	& Electrical	Data					
	Conductor			Insul	ation		Metallic Screen		Outer Jacket			
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal ⁻	Thickness of Layers	Insulation	Electro- static	Nominal Thickness	Short Circuit	Nominal	Approx.	Approx.	
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	nce Sheath ⁽¹⁾	of Lead Capacity Sheath ⁽¹⁾ (1 Sec.) ⁽²⁾		Thick- ness	Overall Diameter	Overall Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m	
630 R	0.0283	0.0401	1.5	23.0	1.5	0.160	3.2	20.4	4.5	99.0	21.31	
800 R	0.0221	0.0331	1.5	23.0	1.5	0.173	3.3	22.0	4.5	103.2	24.15	
1000 S	0.0176	0.0238	1.5	23.0	1.5	0.200	3.4	24.8	4.5	112.0	28.17	
1200 S	0.0151	0.0208	1.5	23.0	1.5	0.213	3.5	26.5	5.0	117.2	31.42	
1400 S	0.0129	0.0183	1.5	23.0	1.5	0.219	3.6	27.7	5.0	119.4	34.09	
1600 S	0.0113	0.0165	1.5	23.0	1.5	0.231	3.7	29.6	5.0	123.6	36.84	
2000 S	0.0090	0.0140	1.5	23.0	1.5	0.247	3.9	32.5	5.0	129.0	42.16	
2500 S	0.0072	0.0121	1.5	23.0	1.5	0.272	4.1	36.5	5.0	137.4	49.93	

Voltage 127/220 (245) kV

	Continuous Current Ratings ⁽³⁾ (Amperes)												
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)						
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)						
	630 R	645	1015		630 R	700	1141						
	800 R	710	1144		800 R	779	1299						
Cross or	1000 S	835	1408	Cross or	1000 S	923	1608						
single	1200 S	888	1528	single	1200 S	992	1757						
point bond-	1400 S	940	1636	point bond-	1400 S	1059	1898						
ing ⁽⁴⁾	1600 S	981	1744	ing ⁽⁴⁾	1600 S	1120	2044						
	2000 S	1046	1909		2000 S	1219	2279						
	2500 S	1099	1099 2081			1311	2541						

1. Thickness of lead sheath may vary according to the required short-circuit current.

2. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

3. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 °C

b) Ambient ground temperature of 30 $^{\circ}\!C$

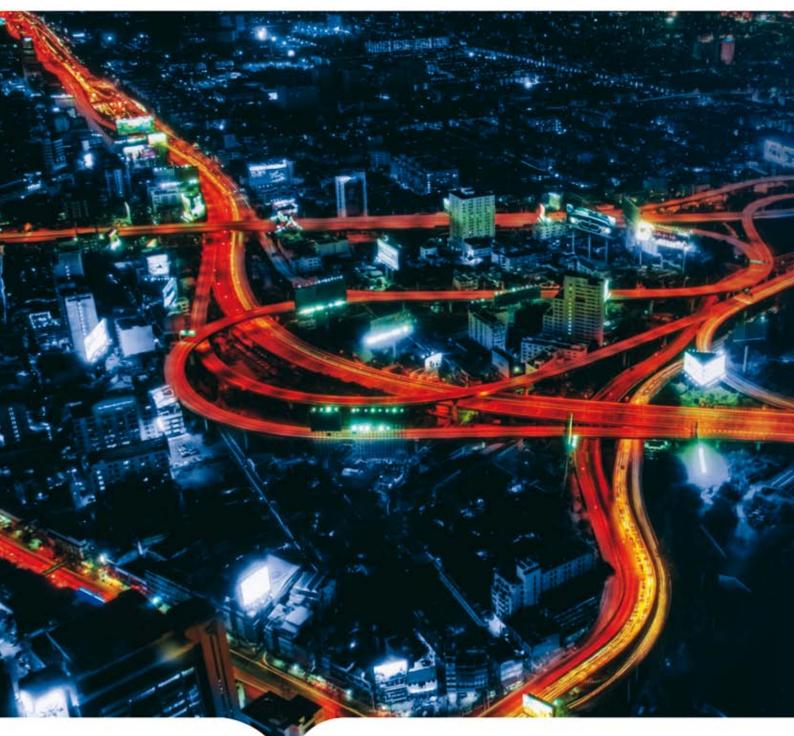
c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit


4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of 40 °C, Ambient ground temperature of 30 °C, Soil thermal resistivity of $1.5 \text{ K} \cdot \text{m/W}$ and Depth of laying of 1.5 m. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

7. High Voltage XLPE Insulated Single Core Power Cables

7.2 Cables Designed Generally to National Grid Company Specifications (11-TMSS-01 and 11-TMSS-02)

40/69 (72.5) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, semiconductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-01.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 60 kV grade up to and including 69 kV grade.

	Constructional & Electrical Data												
	Conductor			Insul	ation		Metallic	Screen	Outer Jacket				
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 7	Thickness of Layers	Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall		
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires	Capacity (1 Sec.) ⁽¹⁾	ness	Diameter	Weight		
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m		
240 R	0.0754	0.0977	1.0	16.5	1.75	0.144	305	40.0	3.95	72.7	8.30		
300 R	0.0601	0.0786	1.0	16.5	1.75	0.155	305	40.0	3.95	75.1	9.02		
400 R	0.0470	0.0625	1.0	16.5	1.75	0.167	305	40.0	3.95	77.7	9.98		
500 R	0.0366	0.0501	1.0	16.5	1.75	0.182	305	40.0	3.95	81.1	11.27		
630 R	0.0283	0.0404	1.0	16.5	1.75	0.197	305	40.0	3.95	84.6	12.72		
800 R	0.0221	0.0336	1.0	16.5	1.75	0.215	305	40.0	3.95	88.6	14.70		
1000 S	0.0176	0.0239	1.5	16.5	1.75	0.257	305	40.0	3.95	97.7	17.28		
1200 S	0.0151	0.0210	1.5	16.5	1.75	0.274	305	40.0	3.95	101.7	19.42		
1400 S	0.0129	0.0185	1.5	16.5	1.75	0.282	305	40.0	3.95	103.7	21.42		
1600 S	0.0113	0.0167	1.5	16.5	1.75	0.300	305	40.0	3.95	107.7	23.17		
2000 S	0.0090	0.0142	1.5	16.5	1.75	0.321	305	40.0	3.95	112.7	26.89		

Voltage 40/69 (72.5) kV

			Continuous Current F	tatings ⁽²⁾ (Amperes)		
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)
	240 R	371	560		240 R	437	668
Both end bond-	300 R	407	631		300 R	493	767
ing ⁽³⁾	400 R	447	710		400 R	560	887
	500 R	489	799		500 R	637	1029
	630 R	674	1048	Cross or single	630 R	720	1188
	800 R	748	1186	point	800 R	806	1357
Cross or single	1000 S	904	1486	bond- ing ⁽⁴⁾	1000 S	967	1688
point	1200 S	974	1626		1200 S	1046	1856
bond- ing ⁽⁴⁾	1400 S	1043	1754		1400 S	1125	2012
	1600 S	1105	1887		1600 S	1200	2177
	2000 S	1208	2099		2000 S	1325	2447

1. Maximum permissible short circuit current as per ICEA P-45-482.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit.

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of 40 °C, Ambient ground temperature of 30 °C, Soil thermal resistivity of 1.5 K·m/W and Depth of laying of 1.5 m. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

40/69 (72.5) kV Aluminum Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted aluminum conductor, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, semi-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-01.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 60 kV grade up to and including 69 kV grade.

	Constructional & Electrical Data												
	Conductor			Insul	ation		Metallic	Screen	Outer Jacket				
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 1	Thickness of Layers	Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall		
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires	Capacity (1 Sec.) ⁽¹⁾	ness	Diameter	Weight		
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m		
240 R	0.1250	0.1612	1.0	16.5	1.75	0.144	305	40.0	3.95	72.7	6.82		
300 R	0.1000	0.1294	1.0	16.5	1.75	0.155	305	40.0	3.95	75.1	7.16		
400 R	0.0778	0.1014	1.0	16.5	1.75	0.167	305	40.0	3.95	77.7	7.59		
500 R	0.0605	0.0797	1.0	16.5	1.75	0.182	305	40.0	3.95	81.1	8.14		
630 R	0.0469	0.0630	1.0	16.5	1.75	0.197	305	40.0	3.95	84.6	8.79		
800 R	0.0367	0.0508	1.0	16.5	1.75	0.215	305	40.0	3.95	88.6	9.60		
1000 S	0.0291	0.0382	1.5	16.5	1.75	0.257	305	40.0	3.95	97.7	10.97		
1200 S	0.0247	0.0328	1.5	16.5	1.75	0.274	305	40.0	3.95	101.7	11.82		
1400 S	0.0212	0.0285	1.5	16.5	1.75	0.282	305	40.0	3.95	103.7	12.52		
1600 S	0.0186	0.0254	1.5	16.5	1.75	0.300	305	40.0	3.95	107.7	13.36		
2000 S	0.0149	0.0210	1.5	16.5	1.75	0.321	305	40.0	3.95	112.7	14.86		

Voltage 40/69 (72.5) kV

			Continuous Current F	Ratings ⁽²⁾ (A	Amperes)				
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (Flat Formation (2D Spaced)		
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)		
	240 R	301	448		240 R	340	520		
Both end	300 R	334	508		300 R	384	597		
bond- ing ⁽³⁾	400 R	372	580		400 R	439	695		
	500 R	414	663		500 R	503	812		
	630 R	540	840	Cross or single	630 R	573	946		
	800 R	608	965	point	800 R	649	1094		
Cross or single	1000 S	719	1181	bond- ing ⁽⁴⁾	1000 S	765	1335		
point	1200 S	785	1310		1200 S	837	1485		
bond- ing ⁽⁴⁾	1400 S	847	1425		1400 S	906	1620		
	1600 S	907	1548		1600 S	974	1767		
	2000 S	1010	1755		2000 S	1093	2018		

1. Maximum permissible short circuit current as per ICEA P-45-482.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

64/110 (123) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, semi-conductive swelling tape, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, semi-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-02.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 110 kV grade up to and including 115 kV grade.

				Con	structional	& Electrical	Data				
	Conductor			Insul	ation		Metallic	Screen		Outer Jacket	:
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 1	Thickness of Layers	Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires	Capacity (1 Sec.) ⁽¹⁾	ness	Diameter	Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m
300 R	0.0601	0.0785	1.2	20.32	1.75	0.139	280	40.0	3.95	82.9	9.69
400 R	0.0470	0.0624	1.2	20.32	1.75	0.149	280	40.0	3.95	85.5	10.67
500 R	0.0366	0.0499	1.2	20.32	1.75	0.161	280	40.0	3.95	88.9	12.01
630 R	0.0283	0.0402	1.2	20.32	1.75	0.174	280	40.0	3.95	92.5	13.50
800 R	0.0221	0.0333	1.2	20.32	1.75	0.188	280	40.0	3.95	96.4	15.52
1000 S	0.0176	0.0239	1.5	20.32	1.75	0.219	280	40.0	3.95	105.1	18.15
1200 S	0.0151	0.0209	1.5	20.32	1.75	0.233	280	40.0	3.95	109.1	20.34
1400 S	0.0129	0.0184	1.5	20.32	1.75	0.240	280	40.0	3.95	111.1	22.36
1600 S	0.0113	0.0166	1.5	20.32	1.75	0.254	280	40.0	3.95	115.1	24.15
2000 S	0.0090	0.0141	1.5	20.32	1.75	0.272	280	40.0	3.95	120.1	27.93
2500 S	0.0072	0.0123	1.5	20.32	1.75	0.300	280	40.0	3.95	128.1	33.62

Voltage 64/110 (123) kV

			Continuous Current F	rent Ratings ⁽²⁾ (Amperes)						
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)			
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)			
Both end	300 R	411	632		300 R	493	754			
bond-	400 R	453	714		400 R	560	871			
ing ⁽³⁾	500 R	495	805		500 R	637	1010			
	630 R 675 1040	1040		630 R	721	1165				
	800 R	750	1177	Cross or single	800 R	807	1330			
Cross or	1000 S	907	1473	point	1000 S	969	1655			
single	1200 S	977	1611	bond- ing ⁽⁴⁾	1200 S	1048	1819			
point bond-	1400 S	1047	1739		1400 S	1128	1971			
ing ⁽⁴⁾	1600 S	1111	1871		1600 S	1203	2132			
	2000 S	1215	2082		2000 S	1329	2396			
	2500 S	1320	2318		2500 S	1461	2701			

1. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of **40** $^{\circ}$ C, Ambient ground temperature of **30** $^{\circ}$ C, Soil thermal resistivity of **1.5 K·m/W** and Depth of laying of **1.5 m**. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

64/110 (123) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, semi-conductive swelling tape, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead alloy sheath with suitable thickness to withstand the required earth fault current, semi-conductive swelling tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-02.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 110 kV grade up to and including 115 kV grade.

	Constructional & Electrical Data												
	Conductor			Insul	ation		Metallic	Screen	Outer Jacket				
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 7	Thickness of Layers	Insulation	Electro- static	Nominal Thickness	Short Circuit	Nominal	Approx.	Approx.		
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	of Lead Sheath	Capacity (1 Sec.) ⁽¹⁾	Thick- ness	Overall Diameter	Overall Weight		
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m		
300 R	0.0601	0.0785	1.2	20.32	1.75	0.139	6.8	40.0	3.95	91.6	25.29		
400 R	0.0470	0.0623	1.2	20.32	1.75	0.149	6.6	40.0	3.95	93.8	26.29		
500 R	0.0366	0.0498	1.2	20.32	1.75	0.161	6.3	40.0	3.95	96.6	27.47		
630 R	0.0283	0.0401	1.2	20.32	1.75	0.174	6.1	40.0	3.95	99.7	29.10		
800 R	0.0221	0.0331	1.2	20.32	1.75	0.188	5.8	40.0	3.95	103.1	30.96		
1000 S	0.0176	0.0238	1.5	20.32	1.75	0.219	5.3	40.0	3.95	110.8	33.54		
1200 S	0.0151	0.0209	1.5	20.32	1.75	0.233	5.1	40.0	3.95	114.4	35.71		
1400 S	0.0129	0.0183	1.5	20.32	1.75	0.240	5.0	40.0	3.95	116.2	37.70		
1600 S	0.0113	0.0165	1.5	20.32	1.75	0.254	4.8	40.0	3.95	119.8	39.41		
2000 S	0.0090	0.0140	1.5	20.32	1.75	0.272	4.6	40.0	3.95	124.4	43.20		
2500 S	0.0072	0.0122	1.5	20.32	1.75	0.300	4.3	40.0	3.95	131.8	48.87		

Voltage 64/110 (123) kV

			Continuous Current F	nt Ratings ⁽²⁾ (Amperes)					
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)			
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)		
Both end	300 R	433	664		300 R	495	763		
bond-	400 R	480	753		400 R	560	880		
ing ⁽³⁾	500 R	531	853		500 R	634	1017		
	630 R	652	1032		630 R	713	1170		
	800 R	718	1159	Cross or single	800 R	794	1330		
Cross or	1000 S	843	1420	point	1000 S	939	1639		
single	1200 S	897	1539	bond- ing ⁽⁴⁾	1200 S	1009	1793		
point bond-	1400 S	949	1647		1400 S	1078	1936		
ing ⁽⁴⁾	1600 S	995	1756		1600 S	1141	2084		
	2000 S	1066	1925		2000 S	1245	2324		
	2500 S	1134	2108		2500 S	1350	2596		

1. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of **40** $^{\circ}$ C, Ambient ground temperature of **30** $^{\circ}$ C, Soil thermal resistivity of **1.5 K·m/W** and Depth of laying of **1.5 m**. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

76/132 (145) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, semi-conductive swelling tape, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, semi-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-02.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 132 kV grade up to and including 138 kV grade

				Con	structional	& Electrical	Data				
	Conductor			Insul	ation		Metallic	Screen	Outer Jacket		
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 7	Thickness of Layers	Insulation	Electro- static	Nominal Area of	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires	Capacity (1 Sec.) ⁽¹⁾	ness	Diameter	Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m
300 R	0.0601	0.0785	1.2	21.6	1.75	0.134	280	40.0	3.95	85.5	9.99
400 R	0.0470	0.0624	1.2	21.6	1.75	0.143	280	40.0	3.95	88.1	10.99
500 R	0.0366	0.0499	1.2	21.6	1.75	0.155	280	40.0	3.95	91.5	12.33
630 R	0.0283	0.0402	1.2	21.6	1.75	0.167	280	40.0	3.95	95.0	13.84
800 R	0.0221	0.0333	1.2	21.6	1.75	0.180	280	40.0	3.95	99.0	15.88
1000 S	0.0176	0.0238	1.5	21.6	1.75	0.210	280	40.0	3.95	107.7	18.54
1200 S	0.0151	0.0209	1.5	21.6	1.75	0.223	280	40.0	3.95	111.7	20.74
1400 S	0.0129	0.0183	1.5	21.6	1.75	0.229	280	40.0	3.95	113.7	22.76
1600 S	0.0113	0.0166	1.5	21.6	1.75	0.243	280	40.0	3.95	117.7	24.58
2000 S	0.0090	0.0141	1.5	21.6	1.75	0.259	280	40.0	3.95	122.7	28.37
2500 S	0.0072	0.0122	1.5	21.6	1.75	0.285	280	40.0	3.95	130.7	34.10

Voltage 76/132 (145) kV

			Continuous Current F	Ratings ⁽²⁾ (A	Amperes)		
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)
Both end	300 R	412	633		300 R	493	751
bond-	400 R	454	715		400 R	561	867
ing ⁽³⁾	500 R	497	806		500 R	637	1004
	630 R 676 1038		630 R	722	1159		
	800 R	752	1175	Cross or single	800 R	808	1323
Cross or	1000 S	908	1469	point	1000 S	970	1645
single	1200 S	978	1607	bond- ing ⁽⁴⁾	1200 S	1049	1807
point bond-	1400 S	1049	1735		1400 S	1129	1959
ing ⁽⁴⁾	1600 S	1112	1866		1600 S	1204	2118
	2000 S	1218	2077		2000 S	1330	2380
	2500 S	1323	2312		2500 S	1463	2682

1. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of **40** $^{\circ}$ C, Ambient ground temperature of **30** $^{\circ}$ C, Soil thermal resistivity of **1.5 K·m/W** and Depth of laying of **1.5 m**. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

76/132 (145) kV Copper Conductor with Lead Sheath

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, semi-conductive swelling tape, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, extruded lead alloy sheath with suitable thickness to withstand the required earth fault current, semi-conductive swelling tape, extruded layer of PE compound as an outer jacket and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar HV Cables are designed and tested to meet or exceed the requirements of IEC 60840 standard and National Grid Company (NGC) Specification 11-TMSS-02.

alfanar HV Cables are suitable for use in high voltage transmission networks, in systems of rated voltages from 132 kV grade up to and including 138 kV grade.

				Con	structional a	& Electrical	Data				
	Conductor			Insul	ation		Metallic	Screen		Outer Jacket	
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal 1	Thickness of Layers	Insulation	Electro- static	Nominal Thickness	Short Circuit	Nominal Thick-	Approx. Overall	Approx. Overall
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	of Lead Sheath	Capacity (1 Sec.) ⁽¹⁾	ness	Diameter	Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm	kA	mm	mm	kg / m
300 R	0.0601	0.0785	1.2	21.6	1.75	0.134	6.6	40.0	3.95	93.7	25.60
400 R	0.0470	0.0623	1.2	21.6	1.75	0.143	6.4	40.0	3.95	95.9	26.58
500 R	0.0366	0.0497	1.2	21.6	1.75	0.155	6.1	40.0	3.95	98.7	27.72
630 R	0.0283	0.0400	1.2	21.6	1.75	0.167	5.9	40.0	3.95	101.9	29.32
800 R	0.0221	0.0331	1.2	21.6	1.75	0.180	5.6	40.0	3.95	105.2	31.14
1000 S	0.0176	0.0238	1.5	21.6	1.75	0.210	5.2	40.0	3.95	113.1	34.02
1200 S	0.0151	0.0208	1.5	21.6	1.75	0.223	5.0	40.0	3.95	116.7	36.18
1400 S	0.0129	0.0183	1.5	21.6	1.75	0.229	4.9	40.0	3.95	118.5	38.17
1600 S	0.0113	0.0165	1.5	21.6	1.75	0.243	4.7	40.0	3.95	122.1	39.86
2000 S	0.0090	0.0140	1.5	21.6	1.75	0.259	4.5	40.0	3.95	126.7	43.63
2500 S	0.0072	0.0122	1.5	21.6	1.75	0.285	4.2	40.0	3.95	134.1	49.27

Voltage 76/132 (145) kV

			Continuous Current F	Ratings ⁽²⁾ (A	Amperes)		
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)
Both end	300 R	433	662		300 R	495	759
bond-	400 R	481	751		400 R	560	874
ing ⁽³⁾	500 R	531	852		500 R	633	1010
	630 R 652 1028	1028		630 R	713	1162	
	800 R	718	1156	Cross or single	800 R		1321
Cross or	1000 S	842	1415	point	1000 S	968	1628
single	1200 S	896	1534	bond- ing ⁽⁴⁾	1200 S	1043	1781
point bond-	1400 S	949	1642		1400 S	1115	1923
ing ⁽⁴⁾	1600 S	995	1751		1600 S	1181	2071
	2000 S	1067	1920		2000 S	1289	2309
	2500 S	1135	2104		2500 S	1400	2580

1. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}C$

c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit

3. *i.e. with induced current (circulating currents) in the metallic screen.*

4. i.e. without induced current (circulating currents) in the metallic screen.

Laying Conditions: Ambient air temperature of **40** $^{\circ}$ C, Ambient ground temperature of **30** $^{\circ}$ C, Soil thermal resistivity of **1.5 K·m/W** and Depth of laying of **1.5 m**. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

133/230 (245) kV Copper Conductor with Copper Wire Screen

Cable Construction

Stranded circular or segmental (Milliken) compacted copper conductor, semi-conductive swelling tape, extruded semi-conducting layer as a conductor screen, XLPE insulation, extruded semi-conducting layer as an insulation screen, semi-conductive swelling tape, helically applied copper wires as a metallic screen, semi-conductive swelling tape, aluminum laminated tape, extruded layer of PE compound as an outer jacket and and graphite coating or extruded semi-conducting layer as electrode for DC voltage sheath testing.

alfanar EHV Cables are designed and tested to meet or exceed the requirements of IEC 62067 standard and National Grid Company (NGC) Specification 11-TMSS-02.

alfanar EHV Cables are suitable for use in extra-high voltage transmission networks, in systems of rated voltages from 220 kV grade up to and including 230 kV grade.

				Con	structional	& Electrical	Data				
	Conductor		Insulation				Metallio	: Screen		Outer Jacket	
Nominal	Max. DC Resis-	Max. AC Resis-	Nominal ⁻	Thickness of Layers	Insulation	Electro- static	static Area of	Short Circuit	Nominal	Approx.	Approx.
Area	tance at 20 °C	tance at 90 °C	Cond. Screen	XLPE	Ins. Screen	Capaci- tance	Copper Wires	Capacity (1 Sec.) ⁽¹⁾	Thick- ness	Overall Diameter	Overall Weight
mm ²	Ω / km	Ω / km	mm	mm	mm	μF / km	mm ²	kA	mm	mm	kg / m
630 R	0.0283	0.0400	1.5	24.0	2.0	0.157	448	63.0	3.95	102.1	16.29
800 R	0.0221	0.0331	1.5	24.0	2.0	0.169	448	63.0	3.95	106.1	18.36
1000 S	0.0176	0.0238	1.5	24.0	2.0	0.194	448	63.0	3.95	114.2	20.99
1200 S	0.0151	0.0208	1.5	24.0	2.0	0.206	448	63.0	3.95	118.2	23.23
1400 S	0.0129	0.0183	1.5	24.0	2.0	0.212	448	63.0	3.95	120.2	25.27
1600 S	0.0113	0.0165	1.5	24.0	2.0	0.224	448	63.0	3.95	124.2	27.11
2000 S	0.0090	0.0140	1.5	24.0	2.0	0.239	448	63.0	3.95	129.2	30.95
2500 S	0.0072	0.0121	1.5	24.0	2.0	0.263	448	63.0	3.95	137.2	36.73

Voltage 133/230 (245) kV

			Continuous Current F	tatings ⁽²⁾ (Amperes)		
Type of	Nominal Area	Trefoil For	mation	Type of	Nominal Area	Flat Formation (2D Spaced)
Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)	Sheath Bonding	mm ²	Buried Direct in Ground	In Free Air (Shaded)
	630 R	662	1027		630 R	708	1140
	800 R 735 1163		800 R	791	1301		
Cross or	1000 S	883	1451	Cross or	1000 S	947	1616
single	1200 S	951	1586	single	1200 S	1023	1776
point bond-	1400 S	1018	1713	point bond-	1400 S	1100	1924
ing ⁽³⁾	1600 S	1079	1842	ing ⁽³⁾	1600 S	1172	2080
	2000 S	1181	2051		2000 S	1293	2336
	2500 S	1281	2284		2500 S	1419	2632

1. Maximum permissible non-adiabatic short circuit current as per IEC 60949.

2. The continuous current ratings are calculated in accordance with IEC 60287 assuming the following laying conditions.

a) Ambient air temperature of 40 $^{\circ}C$

b) Ambient ground temperature of 30 $^{\circ}\!C$

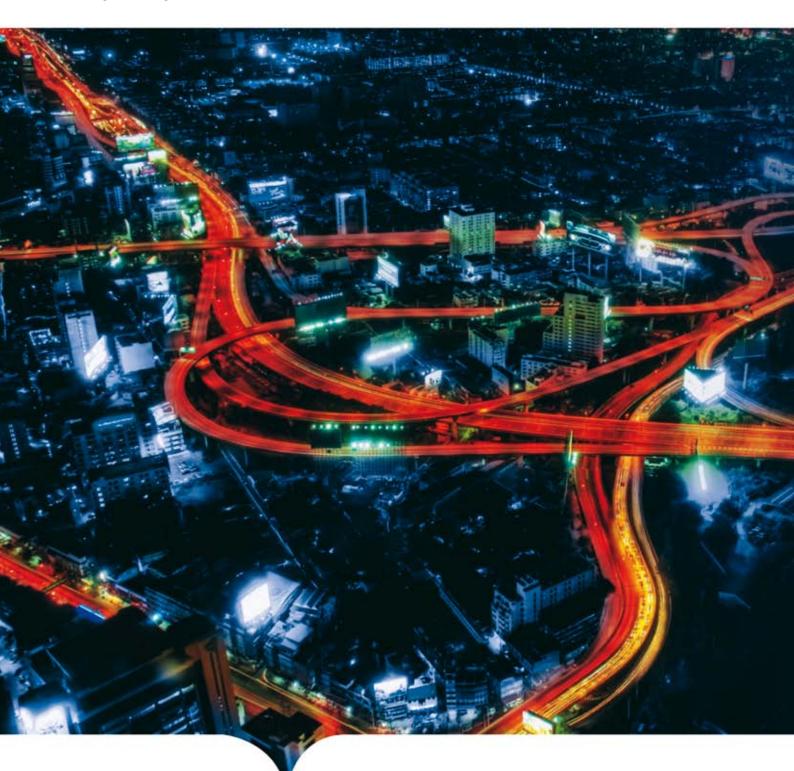
c) Soil thermal resistivity of 1.5 K.m/W

d) Depth of laying of 1.5 m

e) Frequency of 60 Hz

f) Load factor of 100%

g) Single circuit


3. *i.e. without induced current (circulating currents) in the metallic screen.*

Laying Conditions: Ambient air temperature of 40 °C, Ambient ground temperature of 30 °C, Soil thermal resistivity of 1.5 K·m/W and Depth of laying of 1.5 m. In case of different laying conditions, appropriate correction (derating) factors from *Annex A* have to be applied to cater for the actual installation conditions.

8. Technical Data

High Voltage Power Cables

Annex A : Continuous Current Ratings

A.1 General

This annex deals solely with the steady-state continuous current ratings of High and Extra-high voltage single-core cables having extruded insulation. The tabulated current ratings provided in this catalogue have been calculated assuming single circuit with 100% load factor for cables having rated voltages and constructions as detailed for each relevant cable type.

The tabulated current ratings in this catalogue have been calculated using the methods set out in IEC 60287.

A.2 Cable constructions

The cables constructions and dimensions for which current ratings have been tabulated in this catalogue are based on those given in the constructional data for each cable type.

A.3 Temperatures

The maximum conductor temperature for which the tabulated current ratings have been calculated is 90 °C.

The reference ambient temperatures assumed are as follows:

– For cables in free air:	40 °C
– For cables buried direct in the ground:	30 °C
Derating factors for other ambient temperatures are given below in Tables A.1 and A.2.	

The current ratings for cables in air do not take account of the increase, if any, due to solar or other infra-red radiation. Where the cables are subjected to such radiation, the current rating should be derived by the methods specified in IEC 60287.

Table A.1: Derating factors for ambient ground temperature

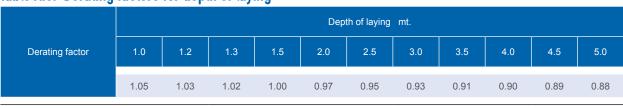

Max. Conductor temperature	Ambient ground temperature °C										
°C	10	15	20	25	30	35	40	45	50		
90 °C	1.15	1.12	1.08	1.03	1.00	0.96	0.91	0.86	0.82		

Table A.2: Derating factors for ambient air temperature

Max. Conductor temperature	Ambient air temperature °C										
°C	20	25	30	35	40	45	50	55	60		
90 °C	1.19	1.14	1.10	1.05	1.00	0.96	0.90	0.84	0.78		

A.4 Depth of laying

The tabulated current ratings in this catalogue for cables buried direct in the ground relate to a laying depth of 1.5 meter. Derating factors for other values of depth of laying are given below in Table A.3.

Table A.3: Derating factors for depth of laying

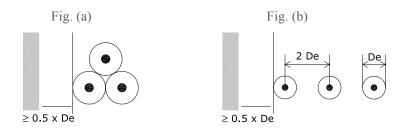
A.5 Soil thermal resistivity

The tabulated current ratings in this catalogue for cables laid direct in the ground relate to a soil thermal resistivity of 1.5 K.m/W. Information on the likely soil thermal resistivity in various countries is given in IEC 60287-3-1. Derating factors for other values of thermal resistivity are given below in Table A.4. It is assumed that the soil properties are uniform; no allowance has been made for the possibility of moisture migration, which can lead to a region of high thermal resistivity around the cable. If partial drying-out of the soil is foreseen, the permissible current rating should be derived by the methods specified in IEC 60287.

Table A.4: Derating factors for soil thermal resistivity

	Soil thermal resistivity K.m/W										
Derating factor	0.7	0.8	0.9	1.0	1.5	2.0	2.5	3.0			
	1.37	1.3	1.24	1.19	1.00	0.88	0.79	0.73			

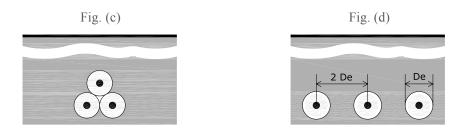
Annex A : Continuous Current Ratings


A.6 Methods of installation

Current ratings are tabulated in this catalogue for cables installed in the following conditions.

A.6.1 Cables in free air

The cables are assumed to be spaced at least 0.5 times the cable diameter De from any vertical surface and installed on brackets or ladder racks as follows:


- 1. Three cables in trefoil formation touching throughout their length Fig. (a).
- 2. Three cables in horizontal flat formation with axial spacing 2De Fig. (b).

A.6.2 Cables buried direct in ground

Current ratings are given for cables buried direct in the ground at a depth of 1.5 m under the following conditions:

- 1. Three cables in trefoil formation touching throughout their length Fig. (c).
- 2. Three cables in horizontal flat formation with axial spacing 2De Fig. (d).

The cable depth is measured to the cable axis or to the centre of the trefoil group.

A.7 Cable loading

The tabulated ratings relate to circuits carrying a balanced three-phase load at a rated frequency of 60 Hz. However, the tabulated ratings can be safely used with circuits carrying a balanced three-phase load at a rated frequency of 50 Hz, where the continuous current rating values are slightly higher in case of rated frequency of 50 Hz.

Annex B : Short-circuit Capacity

B.1 Permissible short-circuit current

Short-circuit currents in an electric network are a result of the accidental connecting of one or more phase conductors, either together, or with ground. It happens frequently that the conductor size necessary for an installation is dictated by its ability to carry short-circuit current rather than sustained current. There are two types of shortcircuit current:

- a. Symmetrical short-circuits: (3-phase short-circuits) where the currents in the three phases form a balanced system. These currents therefore only circulate in the main conductors (cores) of the cables.
- b. Asymmetrical short-circuits: (Zero-sequence short-circuits) result from an asymmetrical, i.e. unbalanced current system. Zero-sequence currents return via the ground and/or by the conductors that are electrically parallel to ground, i.e. ground conductors, metallic screens and the ground itself.

The short-circuit capacity of a current carrying component of a cable is determined by the following factors:

- The temperature prior to the short-circuit, generally taken to be that corresponding with the maximum conductor operating temperature under normal conditions
- The energy produced by the short-circuit, a function of both the magnitude and the duration of the current
- The limiting final temperature, generally determined by all materials in direct contact with the conducting component

In accordance with IEC 60949 standard, short-circuit ratings can be calculated using either:

- a. The adiabatic method, which assumes that all of the heat generated remains trapped within the current car rying component.
- b. The non-adiabatic method, which allows for heat transfer from the current carrying component to adjacent materials.

The short circuit-current ratings given below in Tables B.1 and B.2 are calculated in accordance with the following formula as given in IEC 60949, assuming adiabatic conditions (i.e. neglecting heat loss):

$$I_{AD} = \frac{K \times S}{\sqrt{t}} \sqrt{Ln\left(\frac{\theta_{f} + \beta}{\theta_{i} + \beta}\right)}$$

Where,

I_{AD}	:	Permissible adiabatic short circuit current (A)
t	:	Duration of short circuit (seconds)
S	•	Cross-sectional area of the current-carrying component (mm ²)
K	:	Constant depending on the material of the current-carrying component ($As^{1/2} / mm^2$)
θ_i	:	Initial temperature before short circuit in (°C)
θ_{f}	:	Final temperature at short circuit in (°C)
β	:	Reciprocal of temperature coefficient of resistance of the current carrying component at 0 $^\circ C$

Annex B : Short-circuit Capacity

Table B.1

Nominal area of conductor				S	Short-circuit d	uration Sec				
mm ²	0.1	0.2	0.3	0.4	0.5	1.0	2.0	3.0	4.0	5.0
25	11.3	8.0	6.5	5.7	5.1	3.6	2.5	2.1	1.8	1.6
35	15.8	11.2	9.1	7.9	7.1	5.0	3.5	2.9	2.5	2.2
50	22.6	16.0	13.1	11.3	10.1	7.2	5.1	4.1	3.6	3.2
70	31.7	22.4	18.3	15.8	14.2	10.0	7.1	5.8	5.0	4.5
95	43.0	30.4	24.8	21.5	19.2	13.6	9.6	7.8	6.8	6.1
120	54.3	38.4	31.3	27.1	24.3	17.2	12.1	9.9	8.6	7.7
150	67.9	48.0	39.2	33.9	30.4	21.5	15.2	12.4	10.7	9.6
185	83.7	59.2	48.3	41.9	37.4	26.5	18.7	15.3	13.2	11.8
240	108.6	76.8	62.7	54.3	48.6	34.3	24.3	19.8	17.2	15.4
300	135.7	96.0	78.4	67.9	60.7	42.9	30.4	24.8	21.5	19.2
400	181.0	128.0	104.5	90.5	80.9	57.2	40.5	33.0	28.6	25.6
500	226.2	160.0	130.6	113.1	101.2	71.5	50.6	41.3	35.8	32.0
630	285.1	201.6	164.6	142.5	127.5	90.1	63.7	52.0	45.1	40.3
800	362.0	256.0	209.0	181.0	161.9	114.5	80.9	66.1	57.2	51.2
1000	452.5	319.9	261.2	226.2	202.4	143.1	101.2	82.6	71.5	64.0
1200	543.0	383.9	313.5	271.5	242.8	171.7	121.4	99.1	85.9	76.8
1400	633.5	447.9	365.7	316.7	283.3	200.3	141.6	115.7	100.2	89.6
1600	724.0	511.9	418.0	362.0	323.8	228.9	161.9	132.2	114.5	102.4
1800	814.4	575.9	470.2	407.2	364.2	257.6	182.1	148.7	128.8	115.2
2000	904.9	639.9	522.5	452.5	404.7	286.2	202.4	165.2	143.1	128.0
2500	1131.2	799.9	653.1	565.6	505.9	357.7	252.9	206.5	178.9	160.0

Short-circuit current (kA) - Copper conductor - XLPE Insulated

Table B.2

Nominal area of conductor				S	Short-circuit d	luration Sec				
mm ²	0.1	0.2	0.3	0.4	0.5	1.0	2.0	3.0	4.0	5.0
25	7.5	5.3	4.3	3.7	3.3	2.4	1.7	1.4	1.2	1.1
35	10.5	7.4	6.0	5.2	4.7	3.3	2.3	1.9	1.7	1.5
50	14.9	10.6	8.6	7.5	6.7	4.7	3.3	2.7	2.4	2.1
70	20.9	14.8	12.1	10.5	9.4	6.6	4.7	3.8	3.3	3.0
95	28.4	20.1	16.4	14.2	12.7	9.0	6.3	5.2	4.5	4.0
120	35.9	25.4	20.7	17.9	16.0	11.3	8.0	6.5	5.7	5.1
150	44.8	31.7	25.9	22.4	20.0	14.2	10.0	8.2	7.1	6.3
185	55.3	39.1	31.9	27.6	24.7	17.5	12.4	10.1	8.7	7.8
240	71.7	50.7	41.4	35.9	32.1	22.7	16.0	13.1	11.3	10.1
300	89.6	63.4	51.8	44.8	40.1	28.3	20.0	16.4	14.2	12.7
400	119.5	84.5	69.0	59.8	53.4	37.8	26.7	21.8	18.9	16.9
500	149.4	105.6	86.3	74.7	66.8	47.2	33.4	27.3	23.6	21.1
630	188.2	133.1	108.7	94.1	84.2	59.5	42.1	34.4	29.8	26.6
800	239.0	169.0	138.0	119.5	106.9	75.6	53.4	43.6	37.8	33.8
1000	298.8	211.3	172.5	149.4	133.6	94.5	66.8	54.6	47.2	42.3
1200	358.5	253.5	207.0	179.3	160.3	113.4	80.2	65.5	56.7	50.7
1400	418.3	295.8	241.5	209.1	187.1	132.3	93.5	76.4	66.1	59.2
1600	478.1	338.0	276.0	239.0	213.8	151.2	106.9	87.3	75.6	67.6
1800	537.8	380.3	310.5	268.9	240.5	170.1	120.3	98.2	85.0	76.1
2000	597.6	422.5	345.0	298.8	267.2	189.0	133.6	109.1	94.5	84.5
2500	747.0	528.2	431.3	373.5	334.1	236.2	167.0	136.4	118.1	105.6

Short-circuit current (kA) - Aluminum conductor - XLPE Insulated

Note 1: The short-circuit current ratings given in Tables B.1 and B.2 are the symmetrical currents which will cause the conductor temperature to rise from the normal operating value of 90 °C to the maximum short circuit temperature of 250 °C in the time stated, assuming adiabatic conditions (i.e. neglecting heat loss).

Note 2: The metallic screens short-circuit current ratings are calculated in accordance with IEC 60949 or ICEA P-45-482 (when required), and they are the asymmetrical currents which will cause the screen temperature to rise from the normal operating value to the maximum short-circuit temperature. The final temperature used in the calculation varies depending upon the nature of the screen material itself and also on the other materials in direct contact with the screen.

The screen constructions detailed in this catalogue represent the nationalized standard but can be tailored in size to meet the specific fault requirements of any operating system.

Annex C : Cable Installation

C.1 General

The quality of the cable system at the site depends mainly on cable laying work, and jointing and terminating works. The installation of high voltage cable system requires a staff of experienced engineers and teams of qualified jointers with specialised tools and equipment for the job.

C.2 Protection of the cable

To ensure long service life of the installation, the cable protection is dependent on the cable laying conditions. In general, cables should be installed in such a way as to avoid any mechanical aggression, both on laying and during its service life.

Corrosion is another factor that affects cable service life. Corrosion may be of chemical or electrochemical origin, or from sulphate reducing bacteria. In direct current supply areas, the presence of stray-currents can give rise to extremely violent and rapid corrosion.

Some structures such as pipe lines and ducts require particular precautions when installed near to a high voltage line. The terrain (coastal area, water table, mining area, for example) and such natural obstacles as tree roots may also present further constraints.

C.3 Choice of cable route

The first step when installing a new cable system is to define the route. In order to minimize the cost it is desirable to link the start and end points of the cable system by the shortest possible route. However, in the usual environment for high voltage and extra-high voltage cable runs, i.e. in cities or other densely populated areas, compromises generally need to be made in the pursuit of this goal since the shortest possible link (a straight line from the start point to the end point of the route) is usually impossible because of the strucatural obstacle.

Another factor that generally excludes the shortest route when planning a cable connection is the legal aspect in terms of property ownership; planners therefore favor the courses of public roads and paths, which very rarely enable the link to follow a straight line. Other factors that affecting the choice of the cable route can be summerized as follows:

- Width of the available land,
- Sub-soil conditions,
- Particular features (drains, bridges, etc.),
- Proximity of heat sources (other cables, district heating systems).

In addition, the location of the joint chambers must take into consideration:

- The maximum production lengths of cable,
- The maximum pulling lengths,
- The grounding technique used (cross-bonding).

Proximity of telecommunications cables (other than those included in the cable installation, whose protection is integrated) and hydro-carbon pipes must be avoided owing to the problems caused by induction.

C.4 Recommendations

C.4.1 Minimum installation bending radius

None of high or extra-high voltage cables should be bent during installation to a radius smaller than 20 \emptyset , Where \emptyset is the overall diameter of the cable. Wherever possible, larger installation radius should be used, except that the minimum bending radius where the cables are placed in position adjacent to joints and terminations may be reduced to 15 \emptyset , provided that the bending is carefully controlled, e.g. by the use of a former.

C.4.2 Minimum temperature during installation

It is recommended that the cables should be installed only when both the cable and ambient temperature are above 0 °C and have been so for the previous 24 hours, or where special precautions have been taken to maintain the cable above this temperature.

C.4.3 Prevention of moisture ingress

Care should be exercised during installation to avoid any damage to cable coverings. This is important in wet or other aggressive environments. The protective end cap should not be removed from the ends of the cable until immediately prior to termination or jointing. When the caps have been removed, the unprotected ends of the cable should not be exposed to moisture.

C.4.4 Maximum pulling tension

The maximum pulling tension is depending on the cable design, the mechanical limitations, the conductor material, and the method of laying and pulling the cables. For pulling eye attached to the conductor, the maximum pulling tension for copper conductors (T_m) should not exceed 50 times the area of conductor (A). In case of aluminum conductors, the maximum pulling tension should not exceed 30 times the area of conductor (A). Or in other words

$T_m = 50 X A (mm^2)$	Newtons	(for copper conductors)
$T_m = 30 \ X \ A \ (mm^2)$	Newtons	(for aluminum conductors)

When the calculated pulling tension is close to (or within 10 % of) the maximum pulling tension, the use of a tension gauge during the pulling is recommended.

C.4.5 Sidewall pressure

One of the limitations to be considered in the installation of electrical cables is sidewall pressure. The sidewall pressure is the force exerted on the insulation and sheath of the cable at a bend point when the cable is under tension, and is normally the limiting factor in an installation where cable bends are involved. The sidewall pressure (P) in general is expressed as the tension out of a bend (T_o) expressed in newtons divided by the inside radius of the bend (r) expressed in meters.

$$\mathbf{P} = \frac{T_o}{r}$$

In order to minimize cable damage because of excessive sidewall pressure, the installer should check the proper recommendations for each type of cables to be installed.

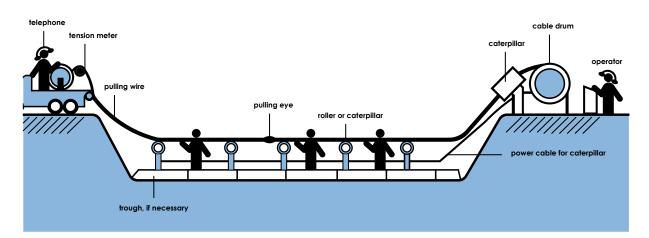
Annex C : Cable Installation

C.5 Laying methods

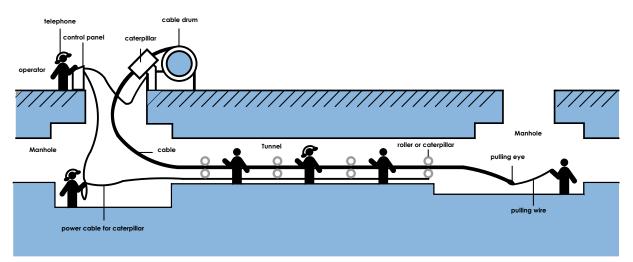
The best method of laying a cable depends on the type of cable and working conditions. The following methods are the most common cable laying methods.

C.5.1 Direct burial in the ground

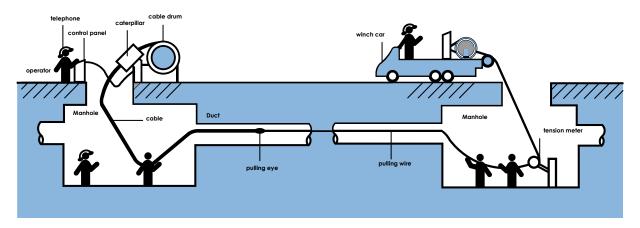
This method is shown in the figure below, and is employed in following cases;


- Where road is narrow so the construction of conduit under the road is not permitted,
- Where the number of cables is few and no future increase is expected,
- Where the road digging is easy.

C.5.2 Underground tunnels or ducts


This method is shown in the figures below, and is employed in following cases;

- The case of main underground transmission line where the number of cables is many or expected to be increased in near future,
- The case of hard pavement or where hard pavement will be constructed in future,
- Where digging is difficult due to heavy traffic.


Direct burial

Cable laying at tunnel

Cable laying at duct

alfanar manufactures a wide range of low, medium and high voltage electrical products under 50 categories. Listed below is **alfanar**'s comprehensive product classification:

POWER & CONTROL

Low Voltage Products

- Load Center
- Circuit Breaker Enclosures
- Busbar Chamber
- Breakers

Low Voltage Systems

- Switch Boards MF Type
- Distribution Boards MB Type
- Motor Control Centres
- Capacitor Banks Power Factor Correction Panels
- Automatic Transfer Switch (ATS Panels)
- Distribution Boards for Substations
- Synchronizing Panels
- Control & Automation Panels

Package & Unit Substations

- Indoor Package Substation
- Outdoor Package Substation
- Indoor Unit Substation
- Outdoor Unit Substation

Medium Voltage Systems

- Switchgear (Metal clad, Metal enclosed)
- Control gear
- Ring Main Unit (RMU)
- Retrofit solution

METAL ENCLOSURES

- Metal Enclosures IP65
- Modular Enclosures
- Extendable Cubicles
- Telephone Box

METAL ACCESSORIES

- Switch Boxes
- Junction Boxes

CABLES & WIRES

Building Wires

- American Standards (UL) Wires
- British Standards (BS) Wires
- International Electro-technical Commission Standards (IEC) Wires
- Low Smoke, Halogen Free Wires

Overhead conductors

- Bare Stranded Soft Drawn Copper Conductors (SDC)
- Bare Stranded Hard Drawn Copper Conductors (HDC)
- All Aluminum Conductors (AAC)
- All Aluminum Alloy Conductors (AAAC)
- Aluminum Conductors, Steel Reinforced (ACSR)
- Aluminum Conductors, Aluminum-Clad Steel Reinforced (ACSR / AW)
- Aluminum Conductors, Aluminum-Alloy Reinforced (ACAR)
- · Weather Resistant XLPE Insulated Service Drop Cables

Power Cables

- Low Voltage Power & Control Cables
- Medium Voltage Power Cables
- High Voltage Power Cables
- Low Smoke, Halogen Free Cables
- Cables for Special Applications

Signal, Communication & Data Cables

- Telephone Cables
- Coaxial Cables (RG6 / U)
- Local Area Network Cables (LAN)

LIGHTING

- 🚯 Halogen
- Fluorescent
- Energy Saving

WIRING ACCESSORIES (SWITCH & SOCKET)

- 🚯 Farah
- Omnia
- 🕲 alf
- Mira
- Sidra

COMMUNICATION SYSTEMS

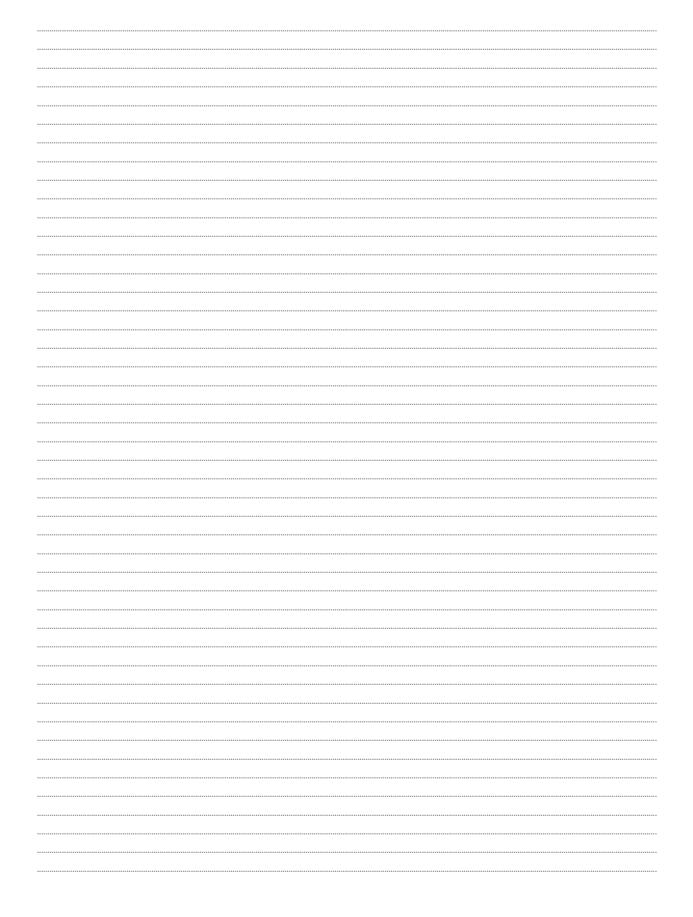
Audio Intercom

Contact Us

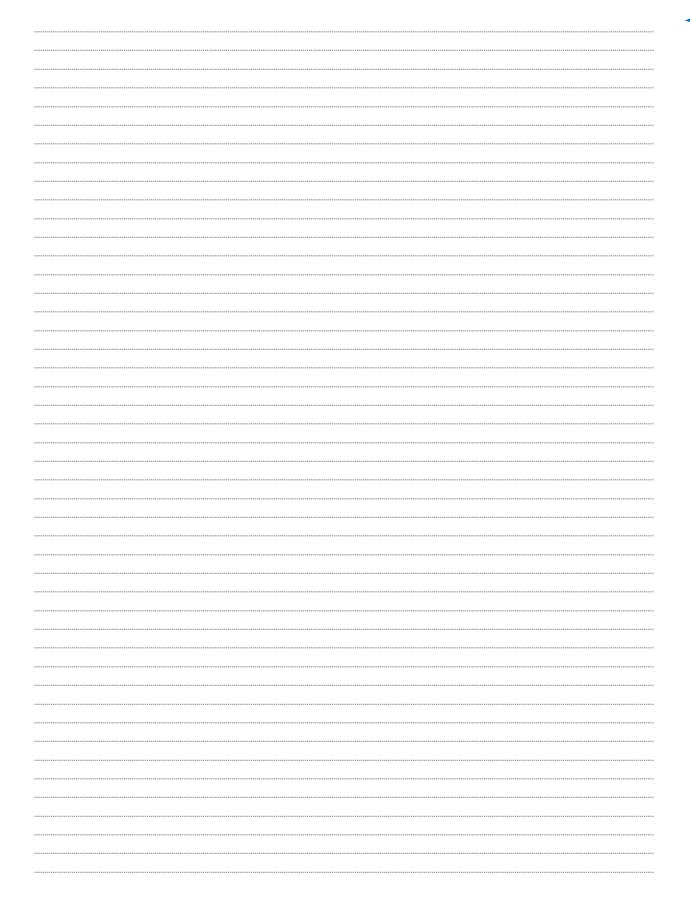
alfanar markets and sells over 800 electrical construction products in the Saudi Arabian markets and exports them to several countries in the Middle East, Europe, Asia and Africa.

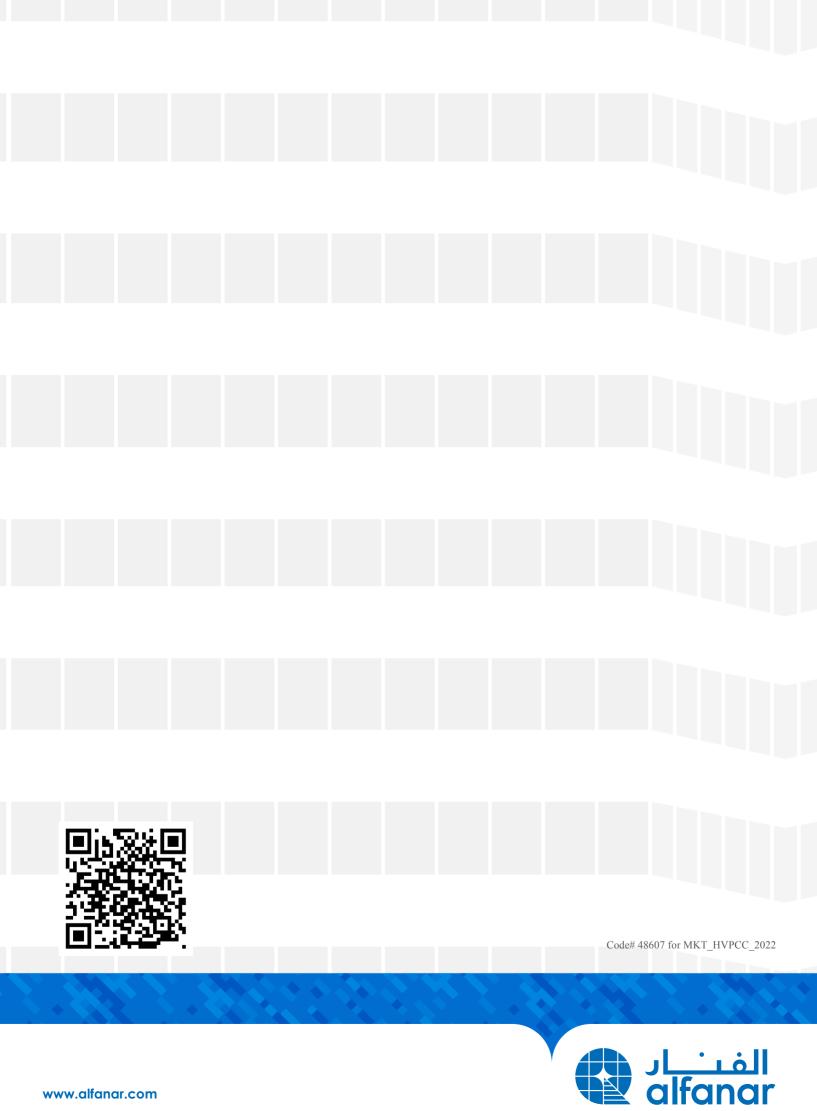
Through our several operational domains and a widespread network of distributors, we ensure uninterrupted supply of

alfanar products. We also provide solutions to our clients including end-users, project owners, engineering contractors and consultants.


alfanar's highly-qualified engineers, sales & marketing teams not only cater to its customers' requirements

Scan the QR code


and contact us



Notes

Notes

www.alfanar.com