PENCOYD IRON WORKS A.& P. ROBERTS&CO. PHILADELPHIA, PA.

WROUGHT IRON AND STEEL IN CONSTRUCTION

WILEY AND SONS.

Holabird Moche. any 28/91, 1891

Wrought Iron and Steel

IN CONSTRUCTION.

CONVENIENT RULES, FORMULÆ, AND TABLES FOR THE STRENGTH OF WROUGHT IRON AND STEEL SHAPES USED AS BEAMS, STRUTS, SHAFTS, ETC.

A. & P. ROBERTS & CO.,

MANUFACTURERS OF OPEN HEARTH STEEL AND WROUGHT IRON, SHAPES, BARS, SHAFTING, HAMMERED AXLES AND STRUCTURAL MATERIAL.

PENCOYD BRIDGE AND CONSTRUCTION CO.,

SEVENTH EDITION CALLE ROOKERY

1891. CHO THE RANGER

MAIN OFFICE,

UTH FOURTH STD DESIGNERS AND MANUFACTURERS OF RAILROAD BRIDGES. VIADUCIS, TURN-TABLES, AND ALL CLASSES OF STRUCTURES OF IRON OR STEEL.

261 SOUTH FOURTH STREET.

WORKS, PENCOYD, PA. 192 BROADWAY.

NEW YORK: IOHN WILEY AND SONS, 53 EAST TENTH STREET.

PREFACE.

To Engineers and Builders in Iron and Steel this volume is presented, with the hope that it may be of assistance to them in their daily labors, and afford information upon some points which have not heretofore been put in published form. It has been the aim of the author to eliminate as far as possible matters of theory from statements of facts, that, where conflict of opinion may arise, each one may draw his own conclusions. It was considered advisable to treat only of subjects relating to Iron and Steel, referring to any of the numerous engineers' pocket-books for information upon outside matters.

As far as possible, doubtful points were corroborated by experiments; and especially the article upon "Struts" is based upon the results of several hundred carefully conducted experiments at Pencoyd, for more detailed information concerning which we would refer to two papers by Mr. Jas. Christie, published in the Transactions of the American Society of Civil Engineers, entitled "Experiments on the Strength of Wrought Iron Struts," and "The Strength and Elasticity of Structural Steel," wherein the above experiments are fully described. Hereafter, should errors be detected by a more perfect knowledge of the physical properties of the materials treated of, we shall be glad to acknowledge the same, but now offer the following pages as the best results we are able to obtain from present practice.

A. & P. ROBERTS & CO

PENCOYD, May, 1884.

PREFACE TO SECOND EDITION.

In preparing the Second Edition for the press we have corrected some small errors occurring in various places in the first edition, which were discovered after its publication. A few new tables of weights of separators for beams, of bolts, nuts and rivets, which were deemed useful in architectural calculations, have been added. Some additional shapes are described, and several old sections of beams and channels changed to more efficient forms, by better distribution of material in the flanges. At the present writing we have no alterations to make in our conclusions in regard to steel, our experiments up to date seeming to confirm our results as then announced.

A. & P. ROBERTS & CO.

Pencoyd, January, 1885.

PREFACE TO THIRD EDITION.

More than a year has elapsed since the publication of the first edition of this little volume, and we are now preparing a third for the press. A few new sections have been added and several errors overlooked in the earlier editions corrected, so that we believe very few, if any, now exist. Our conclusions in regard to struts, based upon Mr. Christie's experiments, have stood the test of publication and criticism, and we think at this day can be said to have more fully the stamp of authority than when first issued. We trust this Hand-Book has and will continue to be of value to all who daily use wrought iron and steel in construction.

A. & P. ROBERTS & CO.

PREFACE TO FOURTH EDITION.

No changes have been made in the contents of the body of the book since the third edition. A supplement has been added, however, containing a number of new shapes and sections not in previous editions; also a series of tables for strength of riveted girders of various forms, which are especially intended for the use of architects and builders. During the past year a Bridge and Construction Department has been added to the Pencoyd Iron Works, for the design and manufacture of railroad bridges and all classes of structures composed of wrought iron or steel. Believing that for the future steel as well as wrought iron will be an important factor in large structural works, an Open Hearth Steel Plant has also been added to the Works, and we trust that its product will meet such requirements as engineers may specify for their material.

A. & P. ROBERTS & CO.

PENCOYD, April, 1887.

NOTE.

WE publish this edition as a temporary expedient, until an entirely new and revised book can be prepared.

The tables and other data in Part I have been carefully revised and are correct to date. Wherever discrepancies occur between Parts I and II, preference should be given to Part I.

Part II is reprinted from the last edition of our Hand-Book. Since that edition was published a number of sections have been changed, and some of the old sections of iron beams and channels have been abandoned.

We are now preparing, and expect to publish during 1891, a new edition which will contain data in regard to all sizes of steel beams and channels, and considerable other new matter.

A. & P. ROBERTS & CO.

June 1st, 1891.

SECTIONS OF

IRON AND STEEL

ROLLED AT

PENCOYD.

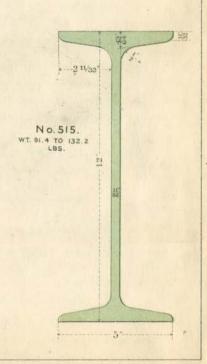
Plates 4,5,6,25 and 26 are $\frac{1}{4}$ size.

All others are $\frac{1}{3}$ size.

For Sections rolled of either IRON or Steel the weights given are for IRON.

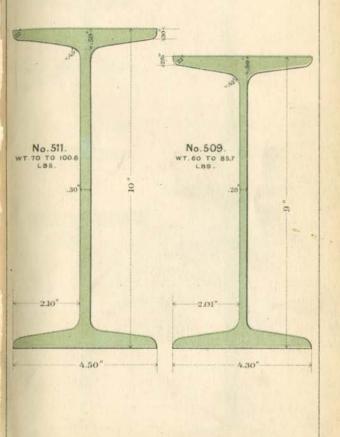
If rolled of Steel the weights are two per cent greater than for Iron.

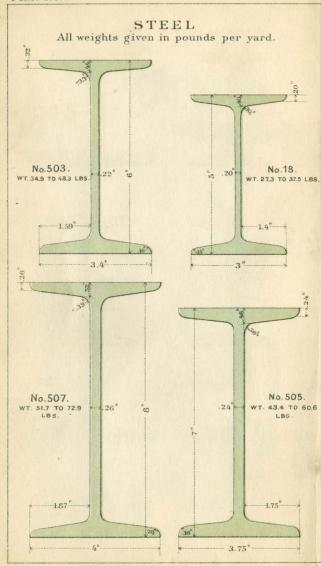
For shapes rolled of Steel only the weights are for Steel.

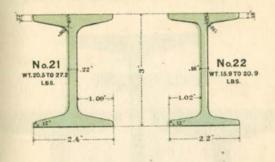

NOTICE.

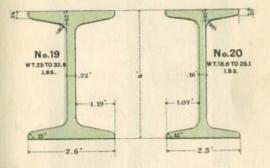
Several sections marked Steel or Iron may be rolled in either metal subject to special arrangement.

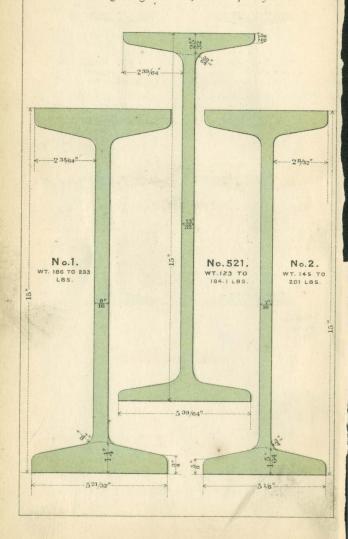
ALL WEIGHTS ARE GIVEN IN POUNDS PER YARD.
MINIMUM SIZES OF EACH SECTION GIVEN.


STEEL

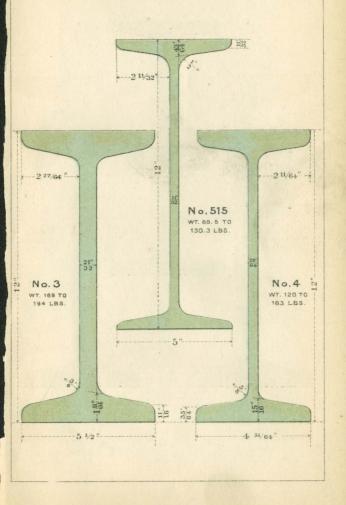

All weights given in pounds per yard.

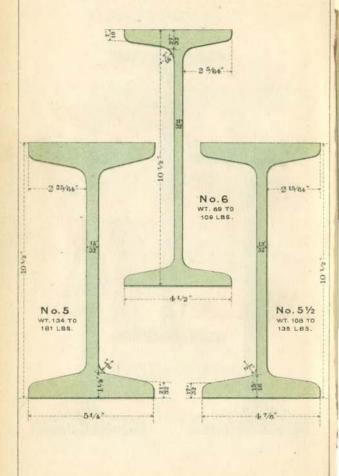

STEEL


All weights given in pounds per yard.

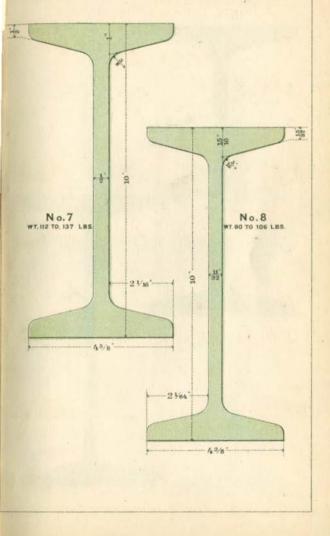


STEEL All weights given in pounds per yard

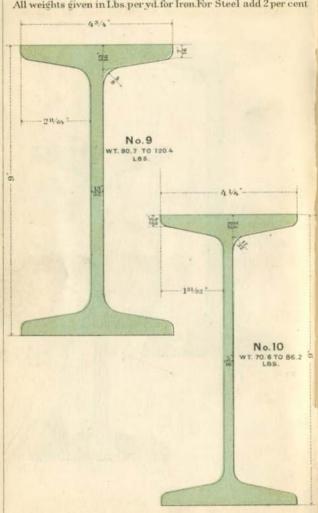



 $\begin{array}{c} I \; R \; O \; N \\ \text{All weights given in pounds per yard.} \end{array}$

IRON
All weights given in pounds per yard.



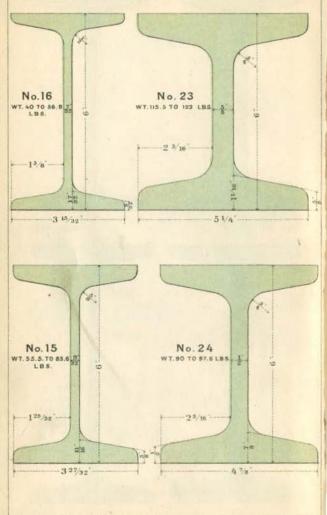
IRON
All weights given in pounds per yard.



IRON OR STEEL

All weights given in Lbs.per yd for Iron. For Steel add 2 per cent

All weights given in Lbs.per yd.for Iron.For Steel add 2 per cent



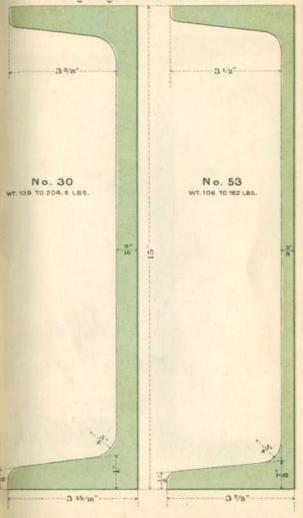
IRON OR STEEL All weights given in Lbs.per yd.for Iron. For Steel add 2 per cent 20 Sc No.13 No. 14 WT. 65.8 TO 87.7 76 WT.51.4 TO 87.7 LBS. 111/16 111/16 3 15/16 339/64 TES 22 Tes/64 -135/64 No. 11 No. 12 WT. 79.6 TO 106.8 752 LBS.

4

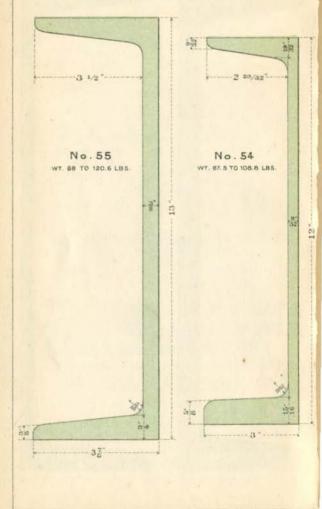
43/8

All weights given in Lbs.per yd.for Iron.For Steel add 2 per cent

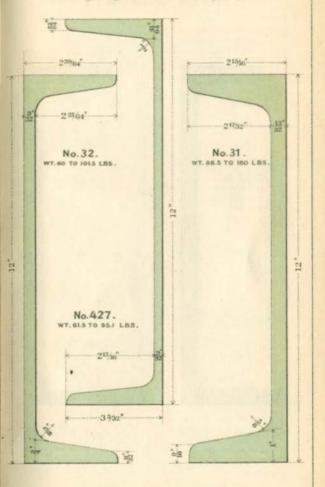
IRON OR STEEL All weights given in lbs. per yd, for Iron. For Steel add 2 per cent. 227 22" No. 22 No. 21 WT. 20.1 TO 26.7 LBS WT. 18.6 TO 20.4 LBS. -1.09" ×-1.02* 2.4" 1 16" No. 20 No. 19 22 WT. 24.5 TO 33.3 LBS. WT. 18 2 TO 24.6 LBS. 1.19" 1.07" 2.6" Sein No. 17 WT. 30 TO 40 LBS. -- 26" -1.40*--

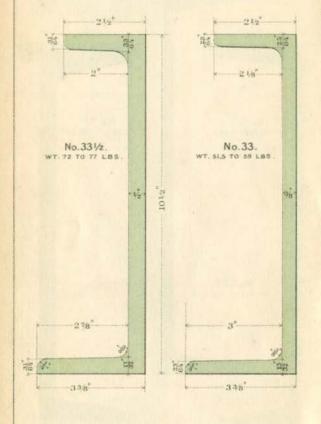

-3.06"-

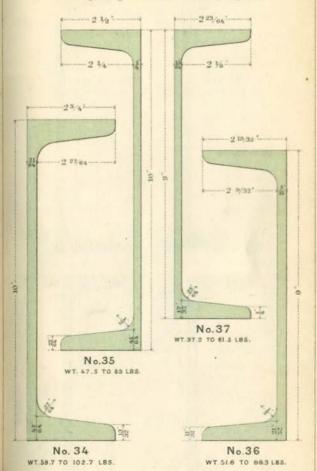
STEEL All weights given in pounds per yard. No. 411 WT. 14 7 TO 22 LBS. 118" No.413 WT. 18.2 TO 27.8 LBS. -19 No. 415 WT. 22.2 TO 34.4 LBS. 6" -20" No. 417 WT. 26.6 TO 41.8 LBS. 21-No. 419 WT. 31.3 TO 49.3 LBS.

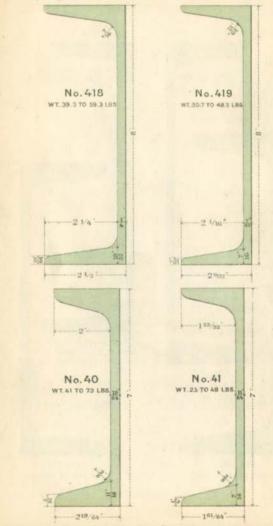

8

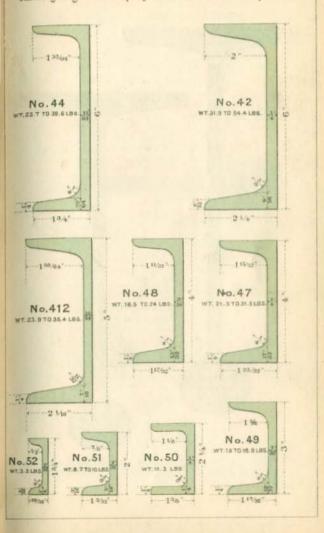
45

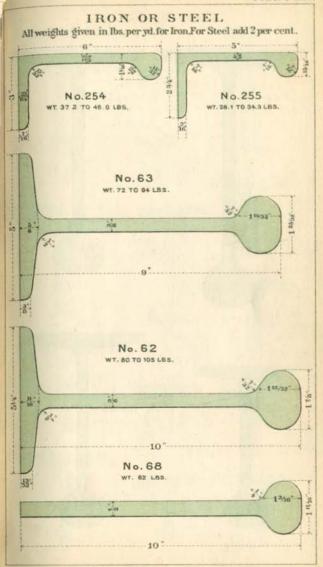

IRON All weights given in pounds per yard.

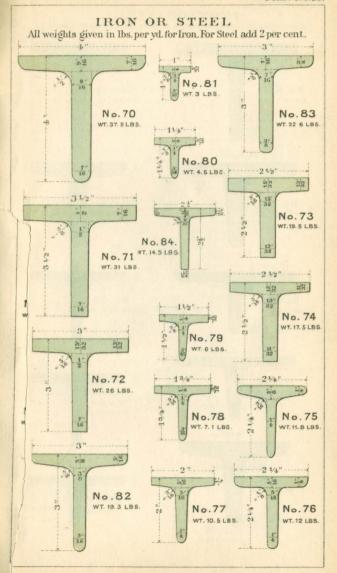

IRON All weights given in pounds per yard,

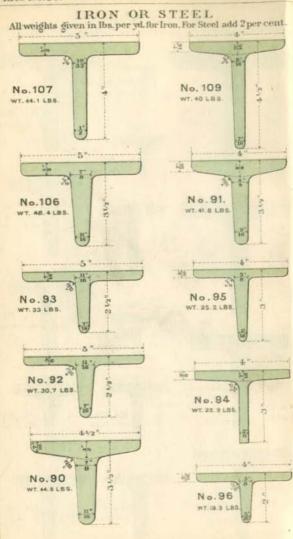

IRON All weights given in pounds per yard.

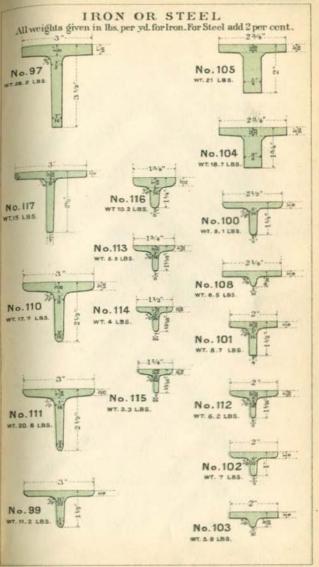

IRON All weights given in pounds per yard.

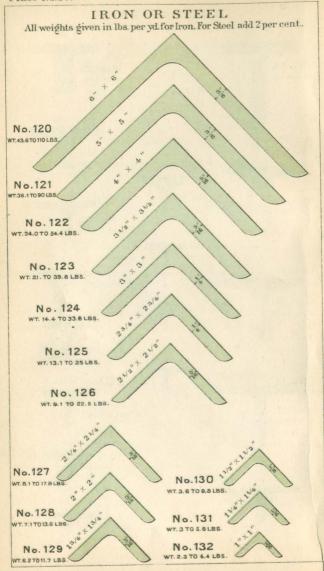

IRON OR STEEL All weights given in pounds per yard

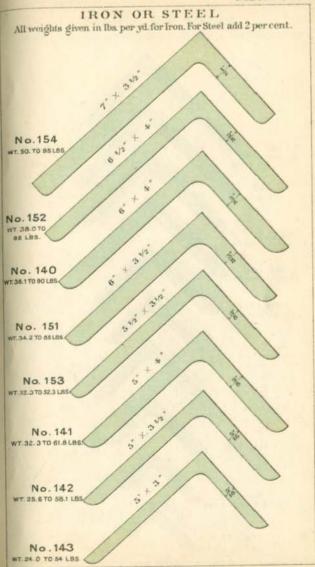

Allweights given in Lbs.per yd for Iron. For Steel add 2 per cent

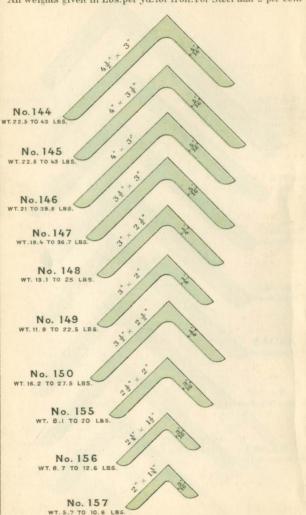

All weights given in Ibs.per yd.for Iron. For Steel add 2 per cent.

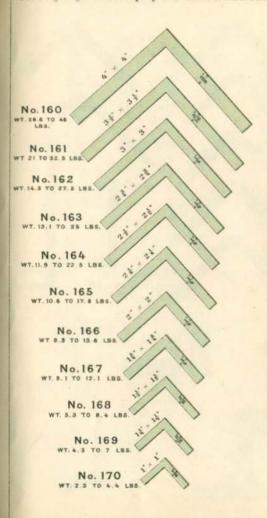


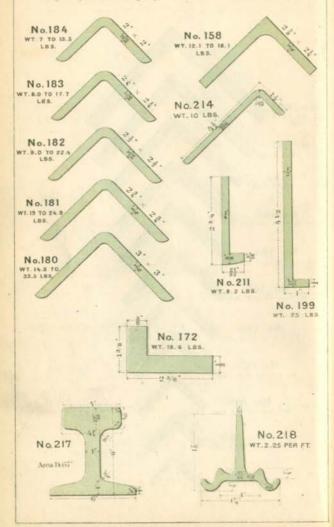

IRON All weights given in pounds per yard. 53/4" 32 16 5 1/32" 202 No. 60 WT. 104 TO 138 LBS. No. 69 WT. 105.4 TO 134.1 LBS. 2 1/6 2 3/32 ---



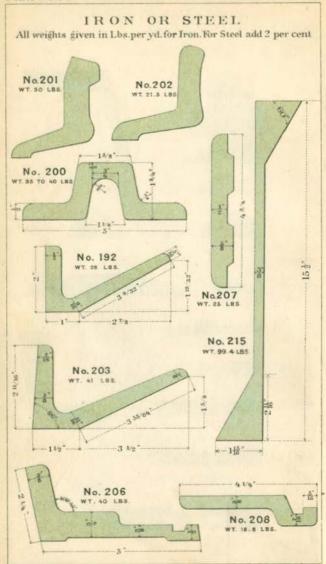

IRON OR STEEL All weights given in Ibs. per yd. for Iron. For Steel add 2 per cent. 414" No.64 No.65 WT. 61 TO 84 LBS WT.52TO 72 LBS. 19/16" 111/16 44) No. 67 No.66 WT. 34 TO 46 LBS. WT. 42 TO 57 LBS. 20 17/16-1 5/16



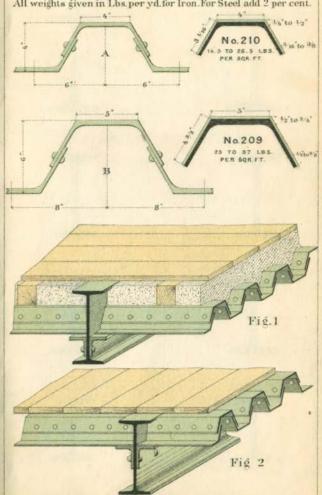


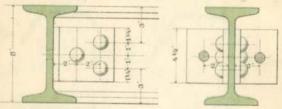

All weights given in Lbs.per yd.for Iron. For Steel add 2 per cent

All weights given in Lbs.per yd.for Iron.For Steel add 2 per cent

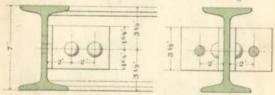

All weights given in Lbs. per yd. for Iron. For Steel add 2 per cent.

IRON OR STEEL All weights given in lbs.peryd.for Iron. For Steel add 2 per cent. 3/2 3 % No 230 No.229 No. 228 WT. 45.4 TO 61.9 LBS. WT. 86.4 TO 101.6 LBS. WT. 66.6 TO 81.7 LBS. 314 3% No.227 No.226 No.225 WT. 52.4 TO 65.8 LBS. WT.69.3 TO 76.7 LBS WT.33.6 TO 47.1 LBS. -23/5 No.224 No.223 No.222 WT. 55.3 LBS. WT. 39.2 TO 51.6 LBS. WT. 23.2 TO 34.8 LBS. No. 221 No. 220 WT. 33.1 TO 38.5 LBS. WT. 19. 4 TO 29.2 LBS.

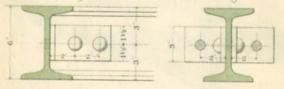

All weights given in Lbs.per yd.for Iron.For Steel add 2 per cent

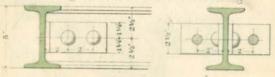

Trough Shaped Sections for Corrugated Flooring IRON OR STEEL

All weights given in Lbs.per yd.for Iron.For Steel add 2 per cent.

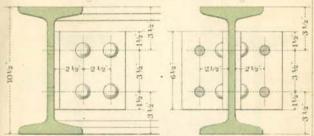


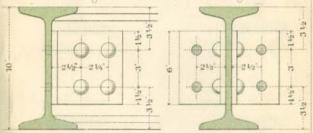
Standard Framing of Pencoyd Beams


2 Angles 5 × 31/2 × 3/8 4 1/2 long

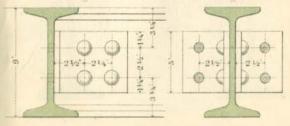

2 Angles 5' x 31/2' x 3/8' 31/2' long

2 Angles 5"x 31/2" x 3/8" 3" long

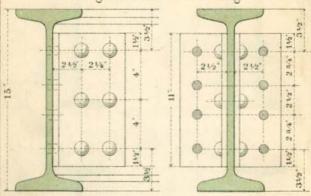

2 Angles 5'x 31/2' x 3/8' 21/2' long

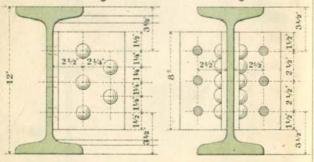

Ul holes 13/16'All rivets 3/4'

Standard Framing of Pencovd Beams


2 Angles 6 x 4 x 7/16 61/2 long

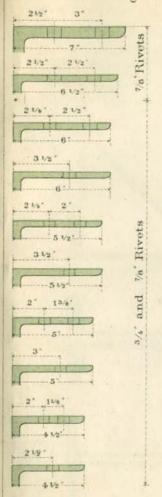
2 Angles 6 x 4 x 7/16 6 long

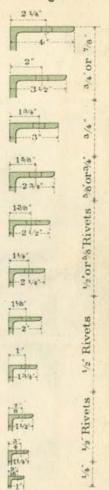

2 Angles 6'x 4' x 7/16' 5' long


All holes 13/16 All rivets 3/4

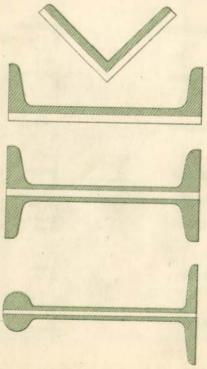
Standard Framing of Pencoyd Beams

2 Angles 6"x 4" x 1/2" 11" long




2 Angles 6"x 4"x 1/2" 8" long

All holes 13/16' All rivets 34'


Rivet Spacing in Pencoyd Angles

METHOD OF INCREASING SECTIONAL AREAS.

Cross hatched portions represent the minimum sections and the blank portions the added areas.

All weights given in pounds per yard.

Wrought Iron and Steel in Construction.

PART I.

TABLES OF DIMENSIONS.

The lithographs and following tables give the principal dimensions of the standard shapes of structural iron and steel rolled at Pencoyd.

Beams and channels can be rolled of any intermediate sections between the minimum and maximum. The web is thickened, which increases the width of the flange, but does not change any other dimension of the flange. The position of the added area is shown on Plate No. 38.

Angles can be rolled of any thickness between minimum and maximum. Weights corresponding to the principal intermediate thicknesses are given in table on page 6. The legs of angles increase slightly in length as the thickness increases. This sometimes causes angles of heavy sections to exceed the calculated weights. Therefore orders should specify either the desired thickness or weight per yard, but never both.

Tee sections cannot be altered from the standards as given in tables and lithographs.

Bars and Miscellaneous Shapes can be rolled in either steel or iron.

Sections which cannot be rolled of either iron or steel are so noted on the lithograph plates. The weights given for sections which can be rolled of either iron or steel, are for iron unless otherwise stated, and when these sections are rolled in steel the weight will be about 2 per cent, heavier.

PENCOYD STEEL I BEAMS.

WEIGHTS FOR STEEL.

				44 747				Br Br Let	11			and the latest
Chart Number	in Inches.	Minimum ange Width.	Minimum 5 Thickness.	Minimum ight per Yard.	in	Appr Los. Thi	oxim per Y cknes.	ate W. 'ard j	eight for each	ch	t per Yard.	Maximum b Thickness.
Char	Depth	Minis Flange	Web	Min Weight	1	To l	ą.	re re	à	18	Weight	Web
2:		2,2	.16	159	18.6	20.5					20.9	-32
21		2.4	.22	20.5	21.4	23.3	25.2	27.1			27.2	+44
20		2.3	.16	18.6	22,2	24.6		1000000			25.1	.32
10	4	2,6	.22	25.0	26.2	28.7	31.2	33-7			33-9	-44
		3.00	.20	27.3	29.9	33.1	36 3	.0.			37.5	.40
503		3.40		34.9	36.7	40.5	44.4	48.2			48.3 60.6	-44
503		3.75		43.4	44.1	48.6	53.0	57-5				
507		4,00		51.7		56.0	61.1	66.2	71.3		72.9	-52
5 9		4.30		60.0		63.1	66.8	74.6	80.3		85.7	.56
511		4.50		70.0		1	77-7	84.0			100.6	,60
515	1 12	5.00	-34	91.4			95.0	102.4	109.7	117.0	132,2	.68

PENCOYD IRON I BEAMS.

WEIGHTS FOR IRON

				WE	GHI	SFC	K IK	ON.				
t Number.	i in Inches.	Minimum Flange Width	Minimum Web Thickness.	Minimum Veight per Yard.	in	Lbs.	oxima per Y icknes.	ard)	or ear	ch	Maximum eight per Yard.	Maximum eb Thickness.
Chart	Depth	Flan	Web	Weigh	1	à .	ł	4	3	ī	Weigh	M. Web
501 1 2 515	15 15 15 12 12 12	511 511 511 511 511 511 511	TO A STANDARD	123.0 186.0 145.0 09.5 169.0 120.0	CALLE.	93-7	154-5	173.0	214 0 192.0	233.0	184 1 233.0 VOI.0 130.3 194.0 163.0	100
5 51 6	10	5 1 4 2 4 2 4 2	100000	134.4 108.0 89.0		92.6	137.7 118.1 105.7	150.8			16t o 135.0 109.0	弱
*7 *6 *9 *10	10 10 9 9	45 41 42 44 44	10	90.0 90.7 70.6		93.6 75.4	106.0	109.6			137.0 106.0 120.4 86.2	
*11 *12 *13 *14	8 8 7 7	48 4 348 388	10	79.6 61.0 65.8 51.4		67.0	87.6 77.8 70.0 70.0	THE REAL PROPERTY.	87.7		77.8 87.7 87.7	Distriction of the last of the
*23 *24 *15 *16	6666	51 4# 325 330	W. Charles	90.0 55.5 40.0	41.9	61.1	90.1 68.6 56.9	97.6 76.1	123.0 83.6		97.6 83.6 56.9	19-4/1/20
*17 *19 *20 *21 *22	5 4 4 3 3	3.0 2.6 2.3 2.4 2.2	.26 .22 .16 .22	29.7 24.5 18.2 20.1 15.6	29-7 25-7 21-8 21-0 18-3	35.2 30.7 24.8					40.7 33-3 24.6 26.7 20.4	.32

The beams marked * can be rolled of steel, when their weight will be increased a per cent, over the weights given in tables for iron.

PENCOYD STEEL CHANNELS.

WEIGHTS FOR STEEL.

Chart Number.	h in Inches.	Minimum ange Width.	Inimum Thickness.	inimum it per Yard.	in	Appr Lbs. Thi	oxim per l cknes	ate W Vard) is of U	eight for each	ch	aximum it per Yard.	Thickness.
Chan	Depth	Mini	Web	Weigh	1	1	+	1	2	I	Weigh	Web
419 417 415 413 411		2.27 2.11 1.95 1.79 1.6 (.19	31.3 26.6 22.2 18 2 14.7	33-7 29-4 25-3 21-2 17-5	43.9 38.2 32.9 27.6					49.3 41.6 34.4 27.8 22.0	-42 -40 -38

PENCOYD IRON CHANNELS.

WEIGHTS FOR IRON.

Chart Number.	Depth in Inches.	Minimum Flange Width.	Minemum Web Thickness.	Minimum Teight per Yard.	in	Appr Lbs. Thi	oxima per Y ckness	ate Ward f	eight or eac	c/a	Maximum Weight per Yard.	Maximum Web Thickness.
Char	Depth	Flan	Web	Weigh	1	A	1	1	1	7	Weigh	Web
30 53 31 32 427 34 437 418 419 40 41 44 44 47 48 49 51 51	15 15 12 12 12 12 10 10 9 9 9 8 8 7 7 6 6 5 4 4 4 4 4 4 7 7 7 7 6 6 7 7 7 7 7 7 7 7	THE RESIDENCE OF THE RE	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	139.0 106.0 88.5 60.0 61.5 59.7 47.5 52.4 37.2 39.3 30.7 41.0 25.0 31.9 22.7 23.9 21.5 16.5 15.0 11.3 8.7 3.5		106.0 71.5 73.0 65.2 60.0 56.5 50.2 49.3 43.0 46.5 39.3 39.4 32.1 31.2 26.5 23.7	100.0 86.5 88.0 77.7 72.5 67.8 61.5 59.3	115.0 101.5 90.2 85.0 79.1 64.0	162.0	145.0	162.0	The se with the state of the second s

Channels marked * can be rolled in steel, when the weights will be increased a per cent.

PENCOYD DECK BEAMS.

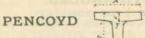
WEIGHTS FOR IRON.

Chart Number.	Depth in Inches.	Minimum Jange Width.	Inimum Thickness.	linimum it per Yara.	Weig	het in	xima Lbs for ea s of W	te . per ch Veb.	eximum t per Yard.	Thickness.	Bulb Depth.	himum 5 Width.
	Dept	Flan	Web	Weigh	15 16	00 00	1 1	5/8	Weigh	Web.	Bu	Bul
60 61 662 863	11 10 9	57 57 5	Same and	104.0 91.0 80.0 72.0		80.0	92.0	118.0	138.0 118.0 105.0 94.0	-	100 100 100 100 100 100 100 100 100 100	2 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*64 *65 *66 *67	8 7 6 5	4 fi 4 fi 3 fi 3 fi 3 fi	44 44 44 44 44 44 44 44 44 44 44 44 44	61,0 52.0 42.0 34.0	42.0 34.0	64.0 54.0 46.0 37.0	63.0			To all	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BULB PLATE.

*68	10 1	1 3	6201	1111	1	60 al 1	1 1/2 11/2
0.00			1 4100 1			00000	一 五五位 一 天生政

BULB ANGLES.


-			Assertance of	-				
254	6	3"	22"	37.2	45.7	1 48.61	23/1	15" 11"
254 255	5	22"	10"	28.1	31.2 45-7	34.3	3.4	711 1611

CAR BUILDERS' CHANNELS.

WEIGHTS FOR IRON.

t Number.	in Inches.	inimum ge Width.	Thickness.	inimum t per Yard	jn.	Appr Los. Thi	oximi per } cknes.	ate W Yard s of W	eight for e	nch	t per Yard.	Thickness.
Chart	Depti	Flan	W.e6	Weigh	5 10	200	7 10	1 2	18	5 8	Weigh	Web Web
55 54 33½ 33	13 12 10 10	36 3 3 1 2 1 2	Mary Street	18.0 67.5 72.0 51.5	71.3	88.2 78.8 59.0	96 3 86.3	93 8 77-0	101.3	120.6	120.6 108.8 77.0 59.0	arren-ents

Sections marked # can be rolled in steel, when the weights will be increased a per cent.

TEES.

WEIGHTS

FOR IRON.

These	sections	can	be	rolled	in steel,	when	the	weights	will	be ir	acreased	2 per	cent.
- 1	150	3	72		655	653		. 57		553	4	ht crd	6

Chart Number.	Width of Base.	Height of Stem.	Thickness of Base.	Thickness of Base.	Thickness. of Stem.	Thicknes.	Weight per Yara in Lbs.
	A	В			C		

EVEN LEGS.

70	4	4	19	16	10	10	37.5
71	31	4 31 3	Ye		16	1	31.0
72	3	3	12	0	15		20.0
83	3 3	3	2	TO	- 2	10	22.6
82	3	3	16	-	16	1	19.3
73	3	7 8 8 8 8 8 7 8 8 8 8 8	10	29	25	59	19.5
74	24	24	31	33	33	33	17.5
75	2]	22	I	-	1	2	11.8
76	21	21	1	16	1	Ye	12,0
77	2		1	16	1	Ya	10.5
78	20 20 21 21 10 10	12	10	1	10	4	7.1
70	16	14	10	1	200	1	6.0
80	1	11	73	1	10	1	37.5 31.0 26.0 22.6 19.3 19.5 17.5 11.8 12.0 10.5 7.1 6.0 4.5 3.0
70 71 72 83 82 73 74 75 76 77 78 80 81	T	T	10 10 10 10 10 10	1	112	1	3.0

UNEVEN LEGS.

			-			10	
107	5	4.	9.	2	2	39	44.1
100	5	3	- 1	8	11	1	48.4
93	5	2	Ye	16	14	14	33.0
92	5	25	- 2	- 4	10	14	30.7
92 90	5 5 5 41	34	20	1	14	T.	44.5
109	4	44	Ya	1's	Ya	To .	40,0
91	4	3.	to to	2	14	7	41.8
94	4	3	1	100	1		25.9
05	4	39 49 31 3	Vis.	14	. 10		25.2
95 96	4	2	14	10	8	16	20.4
07	3	3½ 2Å	10	9:	Ya	1	28.2
97	3	24	9	16	Te l	2	20.8
110	3 3 3 3 2 2	24	10	1	10	-	17.7
99	3	10	13	1	1	11	11.2
105	22	2	16	34	2	2	21.0
104	23	1 m 2 1 m	16	11	2	2	18.7
100	26		1	1	1	10	9.1
108	22	10	1	1	Yo	10	6.5
IOI	2	1.6	1	379	1	10 10 10	8.7 6
112	2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2	33	4	10	21.0 18.7 9.1 6.5 8.7 6.2
102	2	I	1	1	1	22	7.0
	2	0,0	1	2	Yes	Ya	5.9
103	13	11	- 2	1/4	2	100	10.2
113	17	176	20	20	1	Ya	5.5
114	10	10	10	37	No.	11	4.0
115	11	10	11	10 10 10 10 10 10 10 10 10 10 10 10 10 1	de	44	3-3

PENCOYD ANGLES.

WEIGHTS FOR IRON.

The sections can be rolled in steel, when the weights will be increased a per cent.

-		20 9	12 50	****	*			20270-04	en en		10000	
Chart Number.	Size in Inches.	Minimum Thickness	Minimum Weight ber Yard.	Weig	this p	er Ya	rd for	27/27/2	ous 1.	hickne	sses.	
Chart	24	in.	Tre Pa									
Ch	Str	in	122	1	1/4	3	1	5	34	7 8	I	
2	-,-	M	Min W				2	0		0		
120	6 x6	8	43.6			43.6	57-5	71.1	84.4	97-3	110.0	
121	5 X5	To strate	36.1			36.I	47.5	58.6	69.4	79.8	90.0	
122	4 ×4	16	24.0	3.13		28.6	37-5	46.1	54 4			
123	34×34	3.0	21.0			24.8	32.5	39.8	TO A STATE OF			
124	3 X3 24X24	4	14.4		14.4	21.1	27.5	33.6				
125	24X24	To To	13.1		13.1	19.2	25.0					
126	21X21	36	9.I 8.I		11 9	17.3	22.5					
127	24X24	36			10.6	15.5						
128	2 X2	1,9	7.1		9.4 8 I	13.6						
129	14X14	75-10-12-10	6.2	20	6.1	9 8						
130	IdXId	1	3.6	3.6	5.6	90					9	
131	I XI	7	2.3	2.3	4.4						TT.	
130	1 14	В	4.3				-		-		-	
UNEVEN LEGS.												
754	7 X3½ 6½X4	4	50.0			0	50.0	61.7	73.I	84.2	95.0	
152		- Andrews of the state of the s	38.0	110		38.0	50.0	61.7	73.I 69.4	84.2	95.0	
140	6 x4	-	36.1			36.1	47-5	58.6	65.4	79.8	90.0 85.0	
151	6 x31	1	34.2			34-5	45.0	55.5	65.6	75-5	05.0	
153	54x34	11	32.3			32.3	42.5	52.3	61.8		110	
141	5 X4	2	32.3 25.6		1 1 0	32.3	42.5	52.3	58.1			
142	5 X3 2 5 X3	16	24.0			28.6	37.5	46.0	54.0			
143	41x3	10	22.5			26.7	35.0	43.0	34.0		2	
145	4 x31	16	22.5			26.7	35.0	43.0				
146	4 X3	18	21.0			24,8	32.5	39.8				
147	3 x3		19.4			23.0	30.0	36.7				
150	3½x2½	4	16.2		16.2	21.1	27.5					
148	3 X24	1	13.1		13.1	19.2	25.0					
149	3 X2	2	11.9		11.9	17.3	22.5					
155	24X2	36	8.1		10.6	15.4	20.0					
156	21XI1	16	6.7		8.7	12.6						
157	2 XI	16	5.1		7.5	8,01						
				ANG	LE C	COVE	RS.					
180	3 ×3	1	14-3		14.3	21.0	27.4	33-5	1	1	10	
181	24X24	10 16	13.0		13.0	19.1	24.9	-				
182	24X24	73	9.0		11.8	17.2	22.4		12		15	
183	24X24	18	8.0		10.5	15.4				1	1	
184	2 X2	16	7.0		9.3	13.5					1	
			SQU	ARE	ROO	T A	NGLI	ES.				
160	4 X4	1	28.6			28.6	37.6	46.0	1 30			
161	34×34	10	21.0			24.8	32.5				10.	
162	3 X3	1	14.3		14.4	21.2	27.5		10			
163	24X24	1	13.1		13.1	19.2	25.0					
164	24X24	1	11.9		11.9	17.3	22.5		11			
165	21X21	4	10.6		10.6	15.5						
166	2 X2	1	9.3		9.4 8.1	13.6					1	
167	14X14	1			6.9	11.7				R Park	100	
	INI	75	5.3		5.6							
169	I XI	70	2.3	2.3	4.4						1	
170	28X18	100	18.6	3	4.4		18.6				12.00	
1/4												
-	SQUARE LEG ANGLES.											
158	27X21	1	12.1		12 1	18.1						

SIZES OF PENCOYD BAR IRON.

		1 51 x 2 inches to 21 inches.
	FLATS.	Sh X h " 2h "
1 × 1	inches to 4 inches.	6 x 1 " 1 "
1 X	a 1 a	
15 X 5	a 1 a	
IYO X	" I "	8 x 1 " 21 "
II X	" " "	9 x 1 " 21 "
INX	" I "	10 X 1 " 21 "
130 X	44 E 44	11 X 1 " 21 "
11 x 1	44 ¥ 44	12 X 1 " 2 "
IYAX I	11 x 11	
Il x	" II "	SQUARES.
110 X	# x #	1, 10, 8, 16, 2, 18, 6, 18, 1,
110 X 1	1 " 11 "	176, 16, 176, 12, 18, 18, 18, 18, 17,
10 X 1	" 11 "	14, 2, 24, 24, 28, 24, 28, 28, 28, 24,
110 x	" 17 "	3, 34, 34, 34, 34, 34, 34, 34, 4,
10 X	11 11 11	4½, 4½ inches.
1) X	" 1 "	ROUNDS.
IN X	" 1) "	1, th, 0, th, 1, th, 1, th, 1,
2 X 1	" 10 "	118, 11, 176, 11, 176, 11, 176, 11, 176, 12,
	" 2 "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 X X 1	" " "	28, 24, 24, 3, 34, 34, 38, 36, 38,
319 X 1	" 2 "	32, 34, 4, 41, 42, 48, 48, 48, 48, 42,
20 X 0	44	44, 5, 51, 51, 51, 6, 61, 7.
24 X 4		BOLT SIZES ath. Full.
23 X 1	75 48 10	2, 10, 0, td, 0, t0, 0, 10, 1, 10, 1,
218 X 17		116, 18, 176, 11 inches.
3, × 1	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	RIVET SIZES.
34 X 14	6 3	83, 84, 81, 81, 81, 82, 83, 81, 82,
31 × 1	24	47 49 63 64 65 61 61 62 63
34 × 4	24	1, 41, 81, 81, 81, 81, 81, 81, 81, 82, 81, 82, 81, 181, 1
31 x 1	×9	*64, *64, *64, *61, 164 menes.
4, × 4	39	HALF ROUNDS.
40 × 4	3	1, 16, 1, 11, 2, 11, 2, 18, x, 11,
42 X 1	**	14, 17, 14, 16, 17, 2, 24, 24, 3, 34
5 x 1	" 3 "	inches.

MISCELLANEOUS SHAPES.

Chart No.	Section.	Sizez.	Weight per Yard for Iron
196 197 198 204 205	Grooved Bars	2	8.4 to 14.7 13.5 " 21.0 20.9 " 34.5 12.5 " 21.3 25.4
194	Half Ovals	1 X X Y	4.8
190	Miners' Track Rail		25 0 5.2
	Slot Rails. Nos. 192, 203, 206.		26 to 41
	Splice Bars. Nos. 201, 202, 207, 216.		21.5 to 30
200	Bridge Rail		35 10 40
195	Channel Rail	14 × 1	3.5 18.8
172	Half Tee	28 X 13 X 4	18.6
199	" "	4 X 1 X 1	25.0
211	" "	24 x 34 x 4	8.2
213	Slot Rail Guard	53 X 57 X 5 X 8	26.0
212	Spoke Bar	5 x 4 to 2"	24 to 31 lbs. p. yd

Those sections can be rolled in steel, when the weights will be increased a per cent.

PENCOYD I BEAMS.

FOR STEEL.

rt Number.	e in Inches.	ht per Yard in Lbs.	Area in are Inches.	efficient for afe Lond istributed.	fi	icients or ection.	Resistance.	ximum Load in Tour.	kness in Ins. for ease in Weight te Lb. per foot.
Chart	Size	Weight in Ar Squar		Dog.	Load in Centre.	Load Dist'd.	R	Max	Inicky Thicky Increa
22	3	15.9	1.56	8.69	.0011133	.0006783	1.58	1 2.72	100
21	3	20.5	2,01	10.74	.0009005	.0005487	1.95	3.77	.100
50	4	18.6	1.82	13.50	.0005352	1925000	2 47	3.16	.075
19	- 4	25.0	2,45	17.68	.0004103	,0002500	3 22	3.05	.075
18	5	27-3	2,68	24.95	.0002327	.0001418	4.89	4.94	.059
503	6	34-9	3.42	38.08	.0001270	0000774	6.92	6.18	:049
505	7 8	43-4	4.20	54.42	.0000762	.0000405	9.89	7.50	.042
507		51.7	5.07	71.18	.0000491	.0000302	13.31	8 93	.037
509	9	60.1	5.89	96 52	.0000334	.0000204	17.55	10.44	.033
511	10	70.1	6.87	121.13	.0000233		22.02	13.00	.029
515	12	91.4	8.96	188.21	,0000125	.0000078	34.22	15.93	,010

FOR IRON.

521	15	124.1	12.40	270.99	.00000063	,0000039	58.05	18.59	.020
I	15	190,0	19.00	422.28	.0000041	,00000025	90.49	39-57	,020
2	15	145.0	14.50	324.30	.0000053	,0000033	69.40	22.10	.0:0
3	IZ	168.0	16.80	289.32	.0000074	.00000046	62.00	38.63	.025
4	12	120.0	12.00	212,22	10100001	.00000063	45.48	22.22	.015
515	12	89-5	8.95	158.72	.00000135	,0000084	34.01	13.60	,025
5	rol	134.4	T3:44	214.78	,0000115	.0000072	46.02	22.13	.029
54	10		10.83	173.71	.0000142	.0000089	37.22	17-71	-020
6	rol	89.3	5.93	144.23	.0000171	.0000107	30.91	13-35	.029
7 8	10	111.7	11.17	162,02	.0000159	.00000000	34.72	23.68	.030
8	TO	90.4	9.04	138.43	.00000166	.00000110	29.66	13.18	.030
9	9	90.0	9,00	123.21	.0030232	.0000345	20.40	10.53	.033
10	9	70.6	7.06	97-94	.00.0292	.0000183	20.99	9-94	.033
11	8	80.0	8.00	04.41	.0000341	.0000215	21.73	13.83	.038
12	8	61.0	6.10	80.70	.00000399	.0000240	17.29	10.46	.038
13	7	65.8	6.58	66.38	.0000546	.0000346	14.22	15.69	.043
1.4	7	51.4	5.14	57.44	.0000040	.0000400	12.31	6.17	.043
23	6	115.5	11.55	98.37	.0000432	.0000272	21.08	21.10	.050
24	6	1,00	0.01	80,00	.0000421	.00000263	17.14	16.42	.050
15	6	35.5	5.55	51.74	.00000830	.0000590	11.00	7.75	.050
10	6	40.0	4.00	38.25	.0001121	10000000	8,20	5.25	+050
17	5	29.7	2.97	23,28	.0002215	20001383	4.09	4.91	.060
10	4.	24.6	2.40	15.00	.0004296	.0002681	3.22	4.33	1075
20	.4	18.2	1,82	11.50	.0005603	.0.03497	2.47	2.71	.075
21	3	20.1	2,01	9.12	.0009428	.0005885	1.95	3.23	.100
22	3	15.6	1.56	7-37	.0011656	.0007275	1.58	2.33	.100

PENCOYD CHANNELS.

FOR STEEL.

rt Number.	e in Inches.	ht per Yard in Lbs.	Area in are Inches.	Gicient for afe Load istributed.	Co-efficients for Deflection.		anced from e to Neutral Axis.	imum Load	rease of Web ness in Ins. for ase in Weight	
Chart	Size	Weig	Squ	Pad	Load in Centre.	Load Dist d.	Dist	Mas	Thick. Increa	
419	8	31.3	3.07	39.51	.0000895	.0000559	-54	6.55	.037	
417	7	26.6	2.61	29.54	.0000137	.0000855	-52	5.91	,042	
415	6	22.2	2.18	21.30	.0002214	,0001387	-49	5.25	.049	
413	5	18.1	1.78	14.63	.0003866	,0002416	-47	4.55	.059	
411	4	14.7	T.44	9.65	,0007328	,0004580	.46	3.79	.074	

PENCOYD CHANNELS.

FOR IRON.

30	15	139.0	13.90	269.97	,60000063	,0000040	1.01	34-34	.020
53	15	100.0	10.60	218.75	,0000079	,00000049	1.00	16,33	.020
31	12	88.5	8.85	142.11	,0000151	.0000094	.71	18.49	.025
32	12	60.0	6.00	96.22	.0000223	.00000123	.62	9.14	.025
427	12	61.5	6.15	103.23	,0000208	.00000130	-77	9.06	.025
-									
34	10	59.7	5 97	82.37	.0000313	.0000196	-74	13.57	.030
35	10	47.5	4-75	66.83	;0000386	.0000241	,66	8.46	.030
36	9	52.4	5.24	62.87	,0000456	,00000285	,68	13.20	+033
37	9	37.2	3.72	46.27	,0000650	,0000387	,58	7.17	.033
		-							
418	8	32.5	3-95	40.40	,0000700	.0000499	.68	7.65	.038
410	8	30.7	3.07	29.12	.0001105	.00000693	.56	4.65	.038
40	7	41.0	4.10	39-35	,0000035	.0000584	,65	9.07	.043
41	7	25.0	2.50	24.01	,0001495	,00000934	.48	3.42	:043
42	6	31.0	3.19	28.58	,0001501	.0000938	.66	6.50	.050
44	6	22.7	2.27	18.16	,0002363	.0001477	-46	5.24	.050
412	5	23.9	2.39	17.06	,0003022	.0001886	.60	5.24	.060
	. 0								
47	4	21.5	2.15	12.03	.0005349	,0003343	-53	5,12	.075
48	4	10.5	1.65	9.65	,0000007	.0004167	-45	4.29	.075
42	3	15.2	1452	6.32	.001 3584	.0008490	-51	3:49	.100
50	21	11.3	1,13	3-33	.0034350	.0021470	.46	3.20	.133
51	2	8.8	.88	2,25	.0057230	.0035770	-37	2.49	.150
52	32	3.5	+35	.80	.0184144	.0116100	.18	.80	.171

Ses page 88 et seq.

PENCOYD IRON I BEAMS

Greatest safe load in net tons, evenly distributed, including beam itself. For a concentrated load in middle of beam, allow one-half of that given in table below.

7.5	ize Seam Ins.	eight Yard Lbs.			Lengt	h of s	Span i	n Feet		
Chart Number.	Size of Beam in Ins.	Weig per Y	4	5	6	8	10	12	14	16
I	15	190.0					42.44	35.37	30.31	26.53
2	15	145.0					22,10	.15	22.10	20.27
521	15	124.1					18.59	18.59	18.59	16.93
3	12	168.0					28.93	.19	20.67	18.08
4	12	120.0					.13	17.60	15.16	13.26
515	12	89.5					13.06	13.22	.26	9 92
5	IO	134.4					.15	17.91	15.35	13.43
51	101	108.3				17	17:37	14 48	12.41	10.86
6	IO	89.3					13.35	12.02	10.30	
*7	10	111.7		25,000	-	-	16.20	13.50	11.57	10.13
*8	10	90.0		mi	100.7		13.84	11.54	9.89	8.65
*9	9	90.0			16.53	15.40		10.26	8 80	7.70
*10	9	70.6			9.94	9.94	9.79	8 16	7.00	6.12
*11	8	80.0			15.49	12.24	9.79	8.16	6.99	6.12
*12	8	61.0		-	10.46	10.08	8 07	6 72	5.76	5.04
*13	7	65.8		13.44	13.44	8.30	6.64	5.53	4.74	4.15
*14	7	51.4		6.17	6.17	6.17	.23 5.74 .23	.33 4.79 .33	4.10	3.59 58
Team or other Desires.	6	115.5	24.59	19.67	16.40	12.30	0.84	8.20	7.02	6.15
*23	6	90.1	16.42	16,00	13.33	10,00	8.00		5.71	5.00
-	6	-	7.75	7-75	7:75	6.47	5.17	4.31 .40	and the same	3.23
*15	6	55.5	5.25	5.25	5.25	4.78	3.82	3.19	2.73	.70
*16		40.0	4.91	4.66	3.88	2.91	.27	.40		
*17	5	29.7	.05	3.00	.12	1.87	.32			
*19	4	24.6	3.75	.10 2.30	.14	.26 1.44	.40	.58	.79	
*20	4	18.2	.06	.10	.14	.26	.40	.58	.79	
*2 I	3	20. I	.09		1.52 .19	.34	.53	.77		
*22	3	15.6	.09		.19	.34	.53	.77		

PENCOYD IRON I BEAMS.

The figures in hold type represent the deflections in inches corresponding to the safe loads above. For deflections corresponding to greatest safe load in middle, take four-fifths (4-5) of the tabular figures.

Length of Span in Feet.											
Leng	th of S	pan in	Feet.			veight Vard Lbs.	Size Beam 1 Ins.	Chart Number,			
18 20 21	2 24	26	28	30	32	Ti Det	Si Si	Num			
23.58 21.22 19.	1 .61	.72	15.15	14.15 •95	1.09	190.0	15	I			
18.02 16.21 14.	1 .61	12.47	.83	.95	1.09	145.0	15	2			
15.04 13 54 12. .34 .42 .5	1 .61	10.41	9.67	9.02	1.09	124.1	15	521			
16.07 14.47 13. .43 .53 .6	4 .77	.90	1.05	9.64	9.04 1,36	168.0	12	3			
.43 .53 .6	4 .77	8.16	7.58 1.05	1,20	6.63 1.36	120.0	12	4			
8.81 7.93 7.4 .43 .53 .6	4 .77	6.10	5.66 1.05	5.29 1.20	1.36	89.5	12	515			
.49 .61 .7	6 8,95 4 .88	8.26 1.03	7.66	1.37	6.71 1.57	134.4	IO	5			
9.65 8.69 7.6	7.24	6.68	6.20	1.37	5-43 1.57	108.3	101	51			
8.01 7.21 6. 49 .61 .7	55 6.01	5.54 1.03	1.19	1.37	1.57	89.3	IOI	6			
9.00 8.10 7. .52 .64 .7		1.08	5.78 1.26	1,44	5.06 1.64	111.7	10	7*			
7.69 6.92 6.1			1.26	4.61 1.44	1.64	90.4	10	8*			
6.84 6 16 5 6			1.40	1.61		90.0	9	9*			
5.44 4.90 4 .58 .71 .8			3.50 1.40	3.26 1.61		70.6	9	10*			
5.44 4.89 4 .65 .80 .9	7 1.16	1.36	3.50			80.0	8	11*			
4.48 4.03 3.4 .65 .80 .9	3.36 7 1.16	1.36			nei	61.0	8	12*			
3.60 3.32 3.6 .74 .90 1.0						65.8	7	13*			
3.19 2.87 2.1 .74 .90 1.0	51 2.39					51.4	7	14*			
5-47 4-92 4- -87 1.08 1.2						115.5	6	23*			
.87 1.08 1.2		1				90.1	6	24*			
2.87						55.5	6	15*			
2.12				= 1		40.0	6	16*			
1.30						29.7	5	17*			
	1	=	NI II	W.G.	Plan	24.6	4	19*			
			111			18.2	4	20*			
STEEL BY	101	1			1	20. I	3	21*			
						15.6	3	22*			

Beams marked * can be rolled in steel, when the weights will be increased 2 per cent.—safe load about so per cent. Deflection practically the same as for iron with equal loads.

106

PENCOYD STEEL I BEAMS.

Greatest safe load in net tons, evenly distributed, including beam itself. For a concentrated load in middle of beam, allow one-half of that given in table below.

Chart Number.	Size in Inc.	Weight ber Yard in Lôs.			Lengt	h of S	pan in	Feet.		
Nu	12.55	We per	4	5	6	8	10	12	14	16
22	3	15.9	.09	.14	.21	1.08	.58	.79		
21	3	20.5	2.68	.14	1.79	.37	.58	.79		
20	4	18.6	3.16	.10	2.26			.63	.97	
19	4	25.0	4.42	3.53	.16		1.76	.63	.86	
18	5	27.3	4.94	4.94	4.10	3,12	2,50	2.08	1.78	
503	6	34.9	6.18	6,18	6,18	4.76	3.81	3.17	2.72 .58	2.38
505	7	43.4			7.50	6.80	5-44	4.54 .36		3.40
507	8	51.7			8.93	8.93	7.32	6.10	5.23	
509	9	60.1			.07	.13	9.65	8.04	6.89	6.03 .50
511	10	70.1					12.06	10.00	8 65 .34	7.57
515	12	91.4					15.93	15.68	13.44	11.76

PENCOYD STEEL CHANNELS.

Greatest safe load in net tons, evenly distributed, including beam itself. For a concentrated load in middle of beam, allow one-half of that given in table below.

Chart Number.	Size in lux.	ight Fard Lbs.	Length of Span in Feet.									
Nu	Sim	Per the	4	5	6	8	IO	12	14	16		
419	8	31.3			6.28	4.92	3.93	3.28	2.81	2,46		
417	7	26.6		5.74	4.89	3.66	2.93	2.44	.49			
415	6	22.2	5.10	4.09	3.40	2.56	2.04	1.70	1.46	1,28		
413	5	18.1	3.91	3.13	2.60	1.95	1.56	1.30	.68	.90		
411	4	14.6	2.39	.10	1.50		.43	.63	.68	1.13		

LIMIT OF DEPLECTION.—It is considered good practice in case of plastered celllags, or in other circumstances where usdue deflection may be prejudicial, to proportion beams so that their deflection will not exceed r-goin part of an inch per foot, or r-3coth part of the span.—All beams to the right of the heavy black line will deflect in excess of this limit 'those to left of the line are safe to use.

PENCOYD STEEL I BEAMS.

The figures in hold type represent the deflections in inches corresponding to the safe loads above. For deflections corresponding to greatest safe load in middle, take four-fifths (4-5) of the tabular figures.

100		Lengt	h of S		Weight or Yard in Lbs.	Size in Ins.	Chart Number.			
18	20	22	24	26	28	30	32	Wer per	Sin	Nu
					300			15.9	3	22
		En.		8	8			20.5	3	21
		3.14						18.6	4	20
		C. Ser						25.0	4	19
1.39	1.41	1.71		2.39				27.3	5	18
2,12	1.18	1.43	1.70	1.46				34.9	6	503
3.02	1.01	2.47 1.22	2.27	1.71	1.94 1.98			43.4	7	505
4.07	3,66	3.32 1.06	3.05	2.81	2.61 1.73	$\frac{2.44}{1.99}$		51.7	8	507
5.36	4.83	4-30	1.12	1.32	3.45 1.54	3.22	3,01	60.1	9	509
6.72		5.50	5.04 1.00	1.19	$\frac{432}{1.38}$	1.59	1.80	70.1	10	511
10 45	9.41	8.55	7.84	7 24		6.27	5.88	OLA	12	515

PENCOYD STEEL CHANNELS.

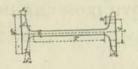
The figures in bold type represent the deflections in inches corresponding to the safe loads above. For deflections corresponding to greatest safe load in middle, take four-fifths (4-5) of the tabular figures.

	Length of Span in Feet.							Veight r Yard n Lbs.	Sine u Ins.	nart mber.
18	20	22	24	26	28	30	32	We per	S. str	Nun
2.18				1.51				31.3	8	419
	1.46			1.12				26.6	7	417
1.13	1.02	1.39						22.2	6	415
1.14			9-1					18.1	5	413
	To.							14.6	4	411

PENCOYD IRON CHANNELS.

Greatest safe load in net tons, evenly distributed, including beam itself. For a concentrated load in middle of beam, allow one-half of that given in table below.

-		1 74		-	Laure	14 -6	Span i	t. 17.		
ber ber	M.S.	gran ar			Lengt	n of	span 1	n ree		
Chart Number.	Size in Inc.	Weight per Yard in Lös.	4	5	6	8	10	12	14	16
30	15	139.0					27.00	22.50	.21	.27
53	15	106.0					.11	18.23	15.63	13.67
31	12	88.5					.13	.19	10.15	8.88
32	12	60.0					9.14	8.02 .19	6.87	6.01
427	12	61.5				Mar.	9.06	8,60	7:37 .26	6.45
*34	10	59.7					8.07	6.73	5.77	5.04
*35	10	47.5					6.36	5.30	4.54	3.97
*36	9	52.4			10 11	7.70	6.16	5.13	4.40	3 85
*37	9	37.2			7.57	5.67	4.54	3.78	3.24	2.83
*418	8	39.5			7.65	5.90	4.72	3.94	3.37	2.95
*419	8	30.7			4.65	4.25 .13	3.40	2.84	2.43 .39	.51
*40	7	41.0		7.87 .06	6.55	4.01 .15	3.93	3.27	2.81	
*41	7	25.0		3.42	3.42	3.07	2.46	2.05	1.76	1.54 59
°42	6	31.9	6.50	5.72	4.76 .10	3.57	2.86	2.38	2.04 .52	1.79
*43	6	27.6	5.63	4.50	3.75	2.82	2.25	1.88	1.61	.69
*44	6	22.7	4.54 .04	3.63	3.02	2,26	1.81	.38	1.29	.69
*45	5	27.3	4.8o .05	3.84	3.20	2.40	1.92	1,60 .46	1.37 .63	1.20
*46	5	18.8	.05	.08	.12	.21	.32	.46	.63	.82
*47	4	21.5	3.02 .06	.10	.14	.26	.40	.58	.86	1.03
*48	_ 4	17.5	.06	.10	1.60 .14	.26	.40	.58	.79	1.03
*49	3	15.2	.09	.14	1.05	.79	.53	.77	.91	1.21


PENCOYD IRON CHANNELS.

The figures in bold type represent the deflections in Inches corresponding to the safe loads above. For deflections corresponding to greatest safe load in middle, take four-fifths (4-5) of the tabular figures.

	1	Length	of Si	ban in	Feet.			eight Pard Lbs.	. 1	rt for.
18	20	22	24	26	28	30	32	Wei per P	Size in Ins.	Chart Number.
.34	13.50	.52	11.25 .62	.73	.84	9.00	1.10	139.0	15	30
.34	.43	9.94	9.12	8.41	7.81 84	7.29 .96	7.15 1.10	106.0	15	53
7.89	7.10	6.46	5.92		1.05	1.20	1.36	88.5	12	31
5.34	4.81	4-37 -64	4.01	3.70	3.44 1.05	1.20	1.36	60.0	12	32
5.74	5.16	4.60	4.30	3.97 .90	3.69 1.05	1.20	1.36	61.5	12	427
4.48	4.03	3.67	3.36	3.10	1.22	1.40	1.59	59.7	10	34
3.53	3.18	2.89	2.65	1.05	1.22	1.40	1.59	47.5	10	35
3.42	3.08	2.80	2.56 1.02	2.37 1.21	1,40		1.83	52.4	9	36
2.52		2 06	1.89	1.74 1.21	1.62			37.2	9	37
2 62	2.36	97	1.97	1.36	1.69			39.5	8	418
1,89		1.55	1.42	1.31	1.21			30.7	8	419
2.18	1.96	1.79	1.64	1.51				41.0	7	40*
1.37		1.12	1.02	1.57				25.0	7	41*
1.58		1.30	1.19					31.9	6	42*
1.25		1.02	-94					27.6	6	43*
1.01	.90		1.54					22.7	6	44*
1.07			Tall	1				27.3	5	45*
1 04								18.8	5	46*
-								21.5	4	47*
								17.5	4	48*
								15.2	3	49*

Channels marked * can be rolled in steel, when the weights will be increased 2 per cent., and the safe loads about 20 per cent. Deflection practically the same as for iron with equal loads.

PENCOYD BEAMS.

	41.5									-	
Beam. Int.	Chart Number.	Chart Number. Minimum Weight per Yard. Minimum Web Thickness.		Minimum Flange.			Flange Taper in 12 Inches. Ins.	Distance between Holes O. Ins.	Rivets R. Ins.	Depth M.	Tangent T.
	27	Wed	17.	F	C	E	File	Dis			
15 15 12	1 2 3 4	186.0 145.0 169.0 120.0	Special Control of the Control of th	555-min	10 10 10 10 10 10 10	The state of the s	2 1 1 2 1 2 1 2 1 2 1 2 1 4 2 1 4 1 1 1 1	31 31 31 31 31 31 31 31 31 31 31 31 31 3	20 A A 75 A	Appet Charles	11 11 11 8 8 9
101 101 10	5 56 78	134-4 108.3 89.3 111.7 90-4	A CONTRACTOR OF THE	5) 4-destroya 4-destroya 4-destroya	1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	2 1 2 2 2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2	33 2 2 2 2 2	meneneners	HEALTH OF LIBERTS	718 718 718 718
9 9 8 8	9 10 11 12	90.7 70.6 79.6 61.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	400 400 400 400 4	Mentinessessing	100 H	2 0 0 0 0 -0 -0 -0	N St	niedensen+	- 10000 to	63 611 58 58 58
7 7 6 6	13 14 23 24	65.8 51.4 115.52 90.14	Participation of the Participa	3 73 53 48	45 64 64 110 110	and the state of t	200000	2 3 3 3 4	enst-media	-D-et-lines	4-27-27-23 3
6 5 5	15 16 17 18	55.5 40.0 29.7 27.3	13 13 13 20 ,20	357 359 3.06 3.0	######################################	,20 ,20 ,22 ,23	2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 1.62 1.50	specificates specificates	32 30	3 5 4 5 3.68 3.68
4 4 3 3 3	20 21 22	24.6 18.2 20.1 15.6	.22 .16 .22 .16	2.6 2.3 2.4 2.2	.42 .36 .40 .35	.24 .20 .22 .18	1.81 1.68 1.98 2.00	1.50 1.25 1.38 1.25	zintentrui:	.32 .27 .31 .26	2.64 2.88 1.70 1.90

PENCOYD CHANNELS.

-					1						
Channel. Ins.	Chart Number.	Minimum ght per Yard.	Minimum Web Thickness. Ins.	M			Inch Ins.	O of Hole Back of Fig.	Ripets R.	Depth M.	Tangent T.
	Cha	Weight	Web	*	C	E	102/	Dist. from	K	7	
15 15 12	30 53 31 32	139.0 106.0 88.5 60.0		District and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44-00-00 11-12 22	1200	100	# STATE OF STATE OF	To annual to	11g 12 91
10 10 9	34 3- 36 37	59-7 47-5 52-4 37-2	11 × 12 × 12 × 12 × 12 × 12 × 12 × 12 ×	State Branch	40-40-40-40-40-40-40-40-40-40-40-40-40-4	子子	1 10 1 10 1 10 1 10 1 10 1 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Porture de la constante de la	27 - D - D - D - D - D - D - D - D - D -	7 10 10 10 10 10 10 10 10 10 10 10 10 10
8 8 7 7	418 419 40 41	39.3 30.7 41.0 25.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	10 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120	in-matter	70 mm	61 62 5
6 5	42 44 412	31.9 92.7 93.9	100	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the same of	100 500 111 111 111 111	41 414 32
4 4 3	47 48 49	21.5 16.5 15.2	100	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17-15-15-15-15-15-15-15-15-15-15-15-15-15-	- Andrews	1 Description 1	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-townse	報	22 22 22 E

PART II.

The preceding pages contain the latest data in regard to Pencoyd sections. Owing to changes which have been made in some of the sections, the information given in the tables in this Part does not exactly agree with that in Part I. Where such discrepancies occur the tables in Part I. should be used.

The information given on pages 88, 89 and 90, under heads of columns XI., XII., XIII. and XIV., as to methods of using coefficients for safe loads and deflections, applies also to corresponding columns in table on pages 8 and 9, Part I.

STRENGTH OF WROUGHT IRON.

The tensile strength of rolled iron varies according to the quality of the material, the mode of manufacture, and the sectional area of the bar. In general terms the ordinary sizes of bars of good material may be accepted as having an ultimate tensile strength of 50,000 lbs. per square inch of section, an elastic limit of 30,000 lbs., and will stretch 20 per cent. in a length of 8 inches when tested up to rupture.

It is, however, as easy to produce the smaller sizes yielding results 10 per cent. higher than the above, as it is difficult to make the largest sections with a limit 10 per cent, below the

same figures.

Dividing rolled iron into three classes according to its sectional area, we have:

I.—Bars not exceeding 11 square inches area.

II.-Bars from 11 to 4 square inches area.

III.—Brs from 4 to 8 square inches area.

For which experiments give the following figures as average results.

CLASS.	TENSILE STRENGTH PER SQ. INCH.	PER SQ. INCH.	8 inches.
1.	53,000 lbs.	33,000 lbs.	25 per cent.
II.	50,000 "	30,000 "	20 " "
III.	48,000 "	28,000 "	18 " "

These, however, are only general conclusions, as much depends on the shape of the section, the method of rolling, and the reduction of area from the pile to the finished bar.

The following tensile tests are actual averages taken from our records, and were made on specimens cut from bars of the sizes and shapes given, and intended for use in bridges, and to conform to the specifications of the leading railroad companies.

Size and Shape of Bar.	Ultimate strength in ibs. Per Square Inch.	Elastic Limit m 1bs. Per Square Inch.	Per Cent, of Elongation in 8 inches.	Per Cent. of Reduction of Fractured Area.	
One-inch rounds, Two-inch rounds, Four-inch flats, Four-inch flats, Eight-inch flats, Twelve-inch flats, Three-inch angles, Six-inch angles, Flanges of beams, Webs of beams.	50,935 48,220 51,000 49,500 49,080 49,000 49,160	32,150 31,800 26,640 30,000 31,500 31,560 30,150 31,560 30,150 30,150	19.8 18 20.7 16 15.5 17 18.1	30 30	to 1½ in. thick. inches thick. inches thick.

COMPRESSION.

The power of wrought iron to resist compression is usually

taken as equal to its tensile strength. In the form of flanges for solid beams, this property is exerted to its full capacity, as the adjacent portion of the material in tension sustains the portions in compression from buckling, even when the length of the boam becomes very considerable. But in the form of struts and columns, when the piece becomes of considerable length in proportion to its cross-section, failure occurs by bending, or combined bending and crushing. (See article on Struts.) Judging from many experiments we have made on bars secured from bending under compressive stress, the elastic limit in compression is a little lower than in tension, but the former not so clearly defined as the latter; practically they may be considered as equal.

These results were derived from small sections; in large sections there may be more equality, as some experiments hereafter described would denote.

With pressures varying from 25,000 to 35,000 lbs. per square inch, the elastic limit is attained. With 50,000 lbs. per square inch a permanent reduction of 2½ per cent. of the length is produced; with 75,000 lbs. a reduction of 6 per cent, and with 100,000 lbs. per square inch the permanent reduction of length is about 8 per cent. These results have a wide range of variation, but the figures are the averages of several experiments.

ELASTICITY OF ROLLED IRON.

The elasticity of wrought iron, or its ratio of change of length under stress below the elastic limit, varies more extensively than any other property of rolled iron. Experiment shows a variation of over 100 per cent. in extreme cases.

The modulus of elasticity is an imaginary load, which, supposing the material to be perfectly elastic, would cause the iron to double its length under tension, or to shorten its length one-half under compression, and return to its original length when released from stress. This modulus is usually assumed at 29,000,000 lbs. In large sections of properly prepared material the tensile elasticity probably averages a little over this, and the compressive elasticity a little below it.

The following results of the tests for comparative elasticity in tension and compression, will serve to illustrate the irregularity of the elasticity; also, see tests of iron and steel cut from beams, given hereafter. Two pieces of 4-inch square iron cut from same bar. Measured length of each specimen = 12 inches. Area of each specimen = .556 square inch. Pressures in lbs.; change of length in inches.

T	ENSILE TEST	r.	Сом	PRESSIVE TI	est.
	Elong	ations.		Reduction	of length.
Pressure per sq. inch.	Load on.	Load off.	Pressure per sq. inch.	Load on.	Load off.
5,000	.002	.000	5,000	.002	.000
10,000	.0045	.000	10,000	.0035	.000
15,000	.0065	.000	15,000	.005	.000
20,000	.0085	.000	20,000	.006	.000
22,000	.010	.000	22,000	.007	.000
24,000	.0105	.000	24,000	.008	.000
26,000	.0115	.000	26,000	.009	.000
28,000	.012	.000	28,000	.0095	.000
30,000	.013	.000	30,000	.010	.000
32,000	.0135	.000	32,000	.011	.000
34,000	.0145	.000	34,000	.020	.0038
36,000	.0155	.001	36,000	.023	.0043
38,000	.1715	.1495	38,000	.027	.010
40,000	.3835	.3605	40,000	.107	.089
50,000	1.326	1.2945	50,000	.272	.246
53,820	3.093		60,000	.464	.435
222			70,000	.671	.639
Specimer	n broke w	ith 53,820	80,000	.845	.814
lbs. per squ	nare inch.		90,000	1.074	1.042
Stretched 8	3.093 in 12	in.	1		1
44 5	2.187 in 8	in.	Modulus o	of elasticit	v
11 2	7.3 per cer	nt. in 8 in.		=35,3	00,000 lb
	1 3 1		The state of the s		-
Fractured	area = .3	364	777		
			1 - 5 - 5		
Modulus o					
	= 27,4	20,000 lbs.			

Two pieces of 1-inch round iron cut from same bar. Measured length of each specimen = 12 inches. Area of each specimen = .449 square inch. Pressure in lbs.; change of length in inches.

5,000 10,000 15,000 20,000 22,000 24,000 26,000	Elonge ad on. .002 .004 .056 .008 .009 .010 .0105	Load off. .000 .000 .000 .000 .000 .000 .000	Pressure per sq. inch. 5,000 10,000 15,000 20,000 22,000 24,000	Load on. .002 .005 .007 .010 .011	.000 .000 .000 .000 .000
5,000 10,000 15,000 20,000 22,000 24,000 26,000	.002 .004 .056 .008 .009 .010	.000 .000 .000 .000 .000	5,000 10,000 15,000 20,000 22,000	.002 .005 .007 .010	.000 .000 .000 .000
10,000 15,000 20,000 22,000 24,000 26,000	.004 .056 .008 .009 .010	.000 .000 .000 .000	10,000 15,000 20,000 22,000	.005 .007 .010 .011	.000
10,000 15,000 20,000 22,000 24,000 26,000	.004 .056 .008 .009 .010	.000 .000 .000	15,000 20,000 22,000	.007 .010 .011	.000
15,000 20,000 22,000 24,000 26,000	.008 .009 .010 .0105	.000	20,000 22,000	.010	.000
20,000 22,000 24,000 26,000	.009 .010 .0105	.000	22,000	.011	
22,000 24,000 26,000	.010 .0105	.000			001
26,000	.0105		24.000	0.40	*001
26,000		000		.012	.002
	22.2	.000	26,000	.013	.003
	.011	.000	28,000	.015	.0045
30,000	.013	.000	30,000	.0215	.0065
32,000	.014	.000	32,000	.0225	.007
	.015	.002	34.000	.0275	.009
	.022	.007	36,000	.040	.019
	.416	.399	38,000	.052	.036
	.544	.523	40,000	.133	.114
	.740	1.707	50,000	.304	.283
	.468		60,000	.427	.402
SEASON IN			70,000	.546	.521
Specimen br	oke wi	th 51.600	80,000	.663	.635
bs. per square		Maria Contraction	90,000	.773	.742
Stretched 2.46	8 in 12	in.	100,000	.896	.862
" 1.81	in 8 in	1.	CONTRACTOR OF		
" 22.61	oer cen	t. in 8 in.	Modulus o	of elasticity	
				=24,4	90,000 lb
Fractured area	= .29	7 sq. in.			
La Maria II.			to No April		
Modulus of ela		0,000 lbs.			

A series of tests was made on the United States Government testing machine at Watertown Arsenal, on the full-sized bars, of which the following is a condensed average.

TENSILE TESTS.

Mode of Manu-	Section of bars.	Ultimate tenacity in lbs. per sq. in.	Elastic limit in lbs. per sq. in.	Reduced area at fracture, per cent.	Modulus of Elas- ticity.
Single rolled	3×1	50,600	28,600	29	28,200,000
Double rolled	3×1	52,500	30,100	82	27,885,000
Single rolled	$5 \times 1\frac{1}{4}$	49,800	26,100	21	27,930,000
Double rolled	$5\times 1^{\frac{1}{4}}$	51,000	27,200	28	28,920,000

The "single and double rolled" means the number of workings from the puddled bar.

A number of experiments on large columns with the same machine gave the following results,—also the tensile results, for the iron used in the construction of the columns.

	ELASTIC LIMIT.	MODULUS OF ELASTICITY.
Wrought iron in compression	27,500	29,000,000
Wrought iron in tension	31,600	29,100,000

The modulus of transverse elasticity as applied to our tables of deflections is taken at 26,000,000 ibs. It is a hypothetical quantity, derived by means of formulæ, which are given elsewhere, and which assume that the resistances to tension and compression are equal, and that the successive fibres of iron, from the new-

tral axis outward act independently of each other, neither of which statements are correct in fact.

It is probable that this modulus, with the same material, will vary with each change of section, and possibly also with changes of length, and conditions of load.

SHEARING.

Under the conditions that shearing stresses are usually applied in structures, the shearing strength of wrought iron is about eight-tenths of the tensile, viz., 40,000 lbs. per square inch of section. But when subjected to the action of properly prepared cutting knives, the resistance to shearing is much less than this.

TORSION.

The resistance to twisting is proportional to the cube of the diameter. When the shearing strength is known, the torsional strength of any round shaft can be determined as follows: $T = 1.57 \, sr^3$. r = radius of shaft in inches. s = shearing strength in lbs. per square inch. T = the torsional moment in inch lbs., or the force in lbs. multiplied by the leverage in inches with which it acts.

In practice, however, torsion is usually accompanied by bending stresses, which must be always considered when determining the proportions of shafts. See article on Shafting, page 170.

STRUCTURAL STEEL.

The various grades of steel used in structures possess such an extended range of physical properties that it is impossible to present as definite a basis for strength, stiffness, etc., as can be given for wrought iron.

The character of the material is largely determined by its combination, in minute proportions, with various substances, the most important of which is carbon.

As a general rule the greater the percentage of carbon in the steel, the higher will be its tensile strength and the lower its ductility. The following list exhibits the average tensile resistances for steels having given proportions of carbon:

PERCENTAGE OP CARBON.	TENSILE STRENG SQUA	DUCTILITY.		
	ULTIMATE TENACITY.	ELASTIC LIMIT.	ULTIMATE TION IN 8	
.10	60000	36000	26 per	cent.
.15	66000	40000	24	44
.20	74000	45000	22	**
.25	82000	50000	20	ž s
.30	90000	55000	18	66
.35	100000	60000	16	44
.40	110000	65000	14	44

These figures, however, are only approximate, as much depends on the quality of the steel, and also the extent to which it has been worked in the rolling process.

The grades below .15 per cent. carbon are known conventionally as "mild steels," owing to their high ductility and to their possessing but very moderate hardening properties when chilled in water from a red heat.

The mild steel has also superior welding properties, as compared with hard steel, and will endure higher heat without injury.

Steel whose carbon ratio does not exceed .10 per cent. should be capable of doubling flat without fracture, when chilled in the coldest water from a red heat.

Steel of .12 carbon should endure similar treatment when chilled in water of 80° F.

When the carbon percentage is .15 the steel should be capable of bending at least 90°, over a curve whose radius is three or four times the thickness of the specimen operated upon, and after being chilled from a red heat in water of 80° F.

Steel having .35 to .40 per cent, carbon, will usually harden sufficiently to cut soft iron, and maintain an edge.

There is much variation from the aforesaid hardening properties in different qualities of steel, as much depends on the influence of other hardening agents besides carbon.

The modern tendency is to limit the use of steel for structural purposes to the milder grades of the material. For steel in steamships the United States Government specifies as follows: "Steel to have an ultimate tensile strength of not less than 60,000 lbs. per square inch, and a ductility of not less than 25 per cent. in 8 inches. The test piece to be heated to a cherry-red and chilled in water at a temperature of 82° F. After this it must be capable of bending double flat under the hammer without cracking." It requires about .11 to .12 carbon steel to endure this test.

"Lloyd's" rules require the steel to have an ultimate tenacity of not less than 60,000, or not over 70,000 lbs. per square inch, with an elongation of at least 16 per cent. in 8 inches. This steel, when heated to redness and chilled in water of 82° F., must bend double without fracture around a curve of which the diameter is not more than three times the thickness of the piece tested. For a cold test without hardening, the material must be capable of doubling flat and bending backward without fracture.

Angles and beams for ship-frames may have a tenacity of 74,000 lbs., providing the bending tests are satisfactory, and the welding property is unimpaired. It requires about .12 to .14 carbon steel to meet these specifications.

We have made numerous experiments on steel of several grades and in various forms, but the resistance under stress is so uncertain that a fair statement of its physical properties cannot be satisfactorily given until an exhaustive series of experiments has been made on material of definite composition.

We present the average results of experiments on the strength and elasticity of "mild" and "hard" steel, also the comparative resistance of these materials in the form of struts. The "mild steel" had an average carbon ratio of .12 per cent., and the "hard steel" an average carbon ratio of .36 per cent. The average strength and elasticity of wrought iron is inserted for the purpose of exhibiting the characteristics of the steel and iron. As in the case of the steel, the several values given for iron are the results of a few special experiments.

MATERIAL	TENSILE ST LBS. PER SQ		Duca	TILITY.	Modulus of Elasticity in	
Матениам	ULTIMATE TENACITY.	ELASTIC LIMIT.	ELONGATION IN 8 INCHES.		Les.	
Iron	51000	31000	19 p	er cent.	28400000	
Mind steel	64000	39000	24	16	29300000	
Hard steel	100000	56700	18		29280000	

From the same material the following results for compression were obtained.

COMPRESSIVE RESISTANCE.

MATERIAL.	ELASTIC LIMIT IN LBS. PER SQUARE INCH.	Modulus of Elasticity.
Iron	29500	27090000
Mild steel	37400	24760000
Hard steel	55700	24570000

TRANSVERSE STRENGTH.

A series of experiments was made on the transverse strength and elasticity of round bars from 3 to 4 inches in diameter, and flanged beams varying from 3 to 12 inches deep, and from 3 feet to 20 feet in length. For the purpose of making a compact exhibit of the resistance of beams of various lengths and cross sections, the results of the experiments were condensed to the method of the ensuing table, in which

R = the modulus of maximum resistance,

 R_1 = the modulus of resistance at the elastic limit.

E = the modulus of transverse elasticity.

$$R \text{ or } R_i = rac{ ext{bending moment } imes ext{depth of beam}}{2 imes ext{Inertia}}.$$

$$E = \frac{\text{Weight} \times \text{cube of length}}{48 \times \text{Inertia} \times \text{deflection}}$$

The ultimate resistance was taken at that stage of the experiment where increase of deflection occurred without increase of load.

MATERIAL.	R	R_1	E		
Iron	44700 lbs,	31000 lbs.	27600000 lbs.		
Mild steel	52800 "	39500 "	29700000 ''		
Hard steel	80200 "	54500 "	27200000 "		

As is well known, the elasticity of iron is so variable and uncertain, that no definite value can be assigned to it except by taking the averages of numerous experiments. Steel possesses the same uncertain elasticity, especially under transverse and compressive stresses.

The elastic moduli in tension varied from 27 to 33 millions of

pounds, in compression from 21 to 33 millions, and transversely the modulus of elasticity varied from 23 to 33 millions of pounds.

It is probable that there is not much difference on the whole between the transverse elasticity of iron and either grade of steel; if any difference at all exists, the steel probably has the advantage in stiffness, and the experiments indicate that the mild steel, if anything, is stiffer than the hard steel, the reverse of what is popularly supposed to be the case.

STEEL BEAMS.

The experiments demonstrate that the transverse resistance of steel of different grades maintains a ratio practically uniform with the tenacities of the different steels. Consequently when steel of known tensile strength is used in beams, the absolute strength of the beam may be obtained from our rules and tables for iron by increasing the results in the proportion of the increased tenacity of the particular steel used over that of iron. The percentage of increase for good qualities of steel, will be about as follows:

CARBON PERCENTAGE.	INCREASED STRENGTH OF STEEL OVER WROUGHT IRON BEAMS.					
.10	20 per	cent.				
.15	85	"				
.20	50					
.25	65	a contract designation				
.30	80	or the second second				

The experiments do not show that steel of any grade is stiffer under working loads than wrought iron. Therefore beams of either steel or wrought iron having uniform lengths and cross sections will deflect uniformly under equal loads, below the elastic limit of wrought iron, and our tables of deflections for iron beams as given hereafter, will apply also to steel.

STEEL SHAFTING.

When absolute strength irrespective of stiffness is alone considered, steel probably possesses a torsional strength exceeding that of iron about in the ratio of the respective tenacities of the two metals. Therefore, when designing shafting under such conditions, our formulæ for iron shafting can be used, substituting a shearing resistance equal to ‡ of the tensile strength of the steel, in place of that given for iron in the article on Shafting. But in the large majority of cases the usefulness of shafting is determined by its transverse stiffness, irrespective of its ultimate torsional strength.

As in this respect the advantage of steel over iron is very questionable, it will be found necessary to use the same dimensions of steel shafts as determined by our rules for wrought iron.

STEEL STRUTS.

The experiments on direct compression prove that the elastic limits of steel, as of iron, under stresses of tension and compression, are about equal.

Consequently for the shortest struts, where failure results from the effects of direct compression, the tensile resistances of steel and iron serve as a comparative measure of the strut resistance of the two materials.

But as the strut is increased in length, and failure results from lateral flexure before the compressive limit of elasticity is attained, then the transverse elasticity of the material becomes a factor of increasing importance in determining the strut resistance.

As in this respect the steel possesses little advantage, if any, over iron, the tendency will be for struts of steel and iron as the length is increased to approximate toward equality of resistance. This equality with iron will be attained, first by the mildest steel, and latest by the hardest steel.

The results of many experiments we have made seem to demonstrate that this equality of strut resistance is practically attained between iron and mild steel, when the ratio of length to least radius of gyration of cross section is about 200 to 1. In

the case of the harder steels, practical equality of resistence would probably be reached at some higher but unknown ratio of length to section.

We give a table exhibiting the comparative resistances per square inch of section for flat-ended struts of iron, mild steel, and hard steel, and for further particulars of the subject refer to the article on Struts, given hereafter.

It is quite probable that grades of steel intermediate between those denoted in the table will offer intermediate resistance as struts, in the ratio of their percentage of carbon, other elements remaining the same.

SPECIFIC GRAVITY.

The specific gravity of steel and iron varies according to the purity of the metal, and also to the degree of condensation imparted by the rolling process.

As a rule the mild steel has a higher specific gravity than hard steel, and both are denser than iron. A number of tests we have made for specific gravity show rolled bars of mild steel to vary from 7.84 to 7.85, and hard steel from 7.81 to 7.85 specific gravity. Ordinary iron bars will vary from 7.6 to 7.8.

In the form of beams and large rolled sections generally, the following figures may be accepted as a fair average.

Material.	Weight per cubic foot,	Weight per cubic inch.
Mild Steel	489.0 lbs.	.283 lb.
Hard Steel	486.6 **	.2815 "
Iron	478.3 "	.2768 "

Or for the same sectional areas, the excess in weight over iron will be, for mild steel 2.24 per cent. and for hard steel 1.7 per per cent.

FLAT-ENDED STRUTS.

ULTIMATE RESISTANCE IN POUNDS PER SQUARE INCH OF SECTION.

LENGTH DIVIDED OF LEAST RADIUS OF GYRATION.	Iron.	MILD STEEL.	HARD STEEL
20	46000	70000	100000
30	43000	51000	74000
40	40000	46000	62000
50	38000	44000	60000
60	36000	42000	58000
70	34000	40000	55500
80	32000	38000	53000
90	30900	36000	49700
100	29800	34000	46500
110	28000	32000	43200
120	26300	30000	40000
130	24900	23000	36700
140	23500	26000	33500
150	21750	24000	30700
160	20000	22000	28000
170	18400	20000	25500
180	16800	18000	23000
190	15650	10200	21000
200	14500	14800	19000
210	13600	13600	17200
220	12700	12700	15500
230	11950	11950	14400
240	11200	11200	13400
250	10500	10500	12400
260	9800	9800	11500
270	9150	9150	10600
280	8500	8500	9700
290	7850	7850	9000
300	7200	7200	8500

RESISTANCE TO BENDING.

When wrought-iron beams are subjected to bending stresses. the resulting deflections increase nearly in direct proportion to the increase of load, up to the limit of elasticity of the iron. Slight permanent sets can be observed in the beam before the elastic limit is reached, just as similar sets are obtained in longitudinal tests. After the elastic limit is passed, the deflections increase in a greater ratio than the loads, and clearly defined permanent sets occur, until another stage in the experiment is reached, when the beam shows increasing deflection without any increase of load. At this point the element of time becomes an important factor. The load can be very slowly increased, without the record of stress showing increase, but if the load is freely applied, the recorded stress may be very considerably augmented. It is probable that if the load was left long enough on the beam at this stage of the experiment entire failure would ensue.

We call this point, which can generally be very clearly observed, the "ultimate resistance" of the beams, and whenever such terms as "ultimate load," "breaking load," etc., are used in connection with bending stresses, this is the load referred to. The stress at the elastic limit bears no such fixed relation to the ultimate stress as can generally be observed in tensile tests. The length of the beam, and probably other conditions, such as position of load, etc., become factors in determining the ratio, which in the absence of complete experiments cannot be decided.

MODULUS OF RUPTURE.

If the material of a beam offered equal resistances to tension and compression, and if the fibres acted independently of each other in effecting this resistance, then the maximum fibre stresses, which occur at the top and bottom of the beam, could be readily calculated as follows:

For any rectangular section loaded in the middle $S = \frac{3 w l}{2 b d^2}$; for a beam 1 inch square and 12 inches long, S = 18 W, or in general terms for any symmetrical beam, under any condition of load, $S = \frac{M d}{2 l}$.

S = maximum fibre stress. w = load.

b = breadth of beam. l = length of beam. d = depth of beam. M = bending moment.

I = moment of inertia about the neutral axis at right angles to the direction of pressure.

But, as previously stated, neither of these usually assumed conditions exist.

It seems probable that the fibres nearer the axis, by means of interal adhesion, relieve the outer fibres from a portion of the stress which the usually accepted theory indicates, and consequently have their own portion of the theoretical stress correspondingly increased. It is therefore necessary to abandon the deceptive term of "maximum fibre stress," and substitute a "modulus" determined by means of the foregoing formulæ.

This modulus will vary for varying cross-sections, and recent experiments make it seem probable that it will vary with the length of beam, etc.

The average of a large number of experiments on standard flanged beams give an ultimate modulus of 42,000 lbs. On solid rectangular sections the modulus will run higher, or from 45,000 to 50,000 lbs.

We adopt 42,000 as the modulus for ultimate transverse strength of I beams. All our tables are calculated by taking S = 14,000, or one-third of the ultimate strength of the beam.

LIMITS FOR THE SAFE LOAD.

Inasmuch as there is a great diversity in published tables of safe loads for beams, every one must judge for himself what proportion of the elastic strength of the beam will best suit his purpose.

The character of the load must be considered, and the mode of application of the same. If the load is suddenly applied, especially if accompanied by impact, the dynamic stresses resulting therefrom will not be expressed by fermulæ which are derived from static considerations alone. Freedom from vibration or excessive deflection have usually to be provided for, or the beam may be of considerable length without lateral support. In many such cases it may be necessary to take one-fourth or one-fifth of the ultimate strength of the beam as the working basis, instead of

one-third, as given in our tables, which we give as the "greatest safe loads."

We have every confidence in the accuracy of the tables, as the results of a number of careful tests we have recently made show that very rarely does the ultimate strength of the beam fall below the limits we have given, and in some instances it considerably exceeds those limits.

We have in our own service beams that are continually subjected to much higher bending stresses than would be assigned to them by our tables without any evidence of a want of stability.

FACTOR OF SAFETY.

For factors of safety the following table will give results in harmony with good practice.

Quiescent load, subject to little or no vibration as in light roofs, etc.	mate.
Fluctuating loads causing vibration, but no sudden application of the maximum load. Such as lateral bracing of bridges, roofs carrying shafting, etc.	mate.
When maximum loads are suddenly ap-	mate.
When maximum stresses are suddenly reversed in direction.	mate.

UNSYMMETRICAL BEAMS,

When beams have not an identical cross-section above and below the neutral axis, as in Deck Beams, Tees, Augles, etc., experiment shows no substantial difference in either the strength or stiffness of the beams, whether the greatest flange is in tension or compression, up to or nearly to the elastic limit. When the least flange is in compression the elastic limit ranges a little higher than when it is in tension, and in the former case, after the elastic limit is passed, the beam generally exhibits much less deflection and higher ultimate resistance than when loaded with

the least flange in tension. This is probably due to the high resistance of wrought iron to crushing after the elastic limit is passed.

There are some exceptions to this, as in the case of very long beams that present no adequate resistance to lateral flexure, but as such cases are outside the bounds of good practice they require no further notice. The authoritative formulæ most generally accepted are based upon a maximum fibre stress obtained as

follows: $S = \frac{M d}{I}$. M =bending moment. d =distance from

neutral axis to farthest edge of section. I= moment of inertia about the axis passing through the centre of gravity at right angles to direction of pressure. This does not give results in harmony with experiments, except by taking S as a modulus, whose value would not agree with that used for symmetrical beams, and whose value would have to be derived by experiments for differing cross-sections. By taking the moments of inertia above and below an axis so located that the forces producing tension and compression are in equilibrium, and using the modulus, S=42,000, as in symmetrical beams, results harmonizing with experiments are obtained.

But, for simplicity, we have adopted the following methods for calculating the safe load, which, though incorrect in principle, yet give correct results for the particular sections referred to.

Deck Beams
$$\frac{M d}{2 I} = S = 42,000.$$

Tees and Angles of equal legs and $\frac{M\ d}{2\ I} = S = 45,000$. uniform thickness.

Notation as for equal flanged beams.

PENCOYD BEAMS.

GREATEST SAFE LOADS.

The following tables for I beams, channels, and deck beams give the greatest safe loads in net tons, evenly distributed over the beams, and including the weight of beam itself.

These loads are one-third (1) of the ultimate strength of the beams, and are correct for the corresponding sectional areas

given. The several values are obtained by the methods described on page 88, and have been confirmed by numerous experiments. The beams, if of considerable length, are supposed to be braced horizontally, and it is safest to limit the application of the tabular loads to beams whose length between lateral supports does not exceed twenty times the flange width.

Our experience has been that a beam without lateral support is much more stable than is commonly supposed. In an open webbed beam, the top flange acts as a simple strut, and is liable to lateral flexure when the unsupported length is considerable, But in a solid beam the parts in tension sustain the parts in compression rigidly, and prevent the buckling which would otherwise occur.

A number of careful experiments have shown a reduction of about one-third of the normal modulus of rupture when the length of the beam becomes 80 times its flange width. But as the long beam may suffer if exposed to accidental cross strains, we recommend the greatest safe load to be reduced in such a ratio for long beams that when the length is seventy times the flange width the greatest safe loads will be reduced one-half. This will give safe loads, corresponding to given lengths as follows:

BEAMS WITHOUT LATERAL SUPPORT.

LENGTH OF BEAM.			PROPORTION OF TABULAR LOAD FORMI GREATEST SAFE LOAD.						
20 1	times	flange	width.	Whole	tabula	r load.	BRITING		
30	a	"	"	70	**	11			
40	141	1964		780	44	"			
50	166	**	**	70	11	146			
60	40	-	u	6	**				
70	166	44	24	10	**	16			

The safe loads for any other length, not given in the tables

can readily be found by simple proportion, remembering if the span is very short to limit the load to that given in col. xiv, pages 93-97, headed "Maximum load in tons." If beams of any sectional area not given in the tables are used, the strength can be found as described on page 106, or a close approximation to the same by the rule on page 69.

DEFLECTION.

Inasmuch as the elasticity of iron and steel is very variable and uncertain, the tabular deflections are given as the nearest probable, and are obtained as described on page 89.

The tabular deflections correspond to the given loads evenly distributed, and apply to any sectional area for each size of beams respectively, when the corresponding loads bear a uniform ratio to the strength of the beam.

The greatest safe load in the middle of the beam is exactly one-half $(\frac{1}{2})$ of the distributed load, and the deflection for the former will be eight-tenths (s^3) of the deflection corresponding to the distributed load as given in the tables. If the load is placed out of centre on the beam, it will bear the same ratio to the load at the centre that the square of half the span bears to the product of the segments of the beam formed by the position of the load.

Example.—A 15-inch 200 lb. I beam, 16 feet between supports, will safely carry an evenly distributed load (by the tables) of 26.5 tons, and deflect under same .27 inches. The greatest safe load in the middle will be one-half the above, viz., 13.25 tons, and the resulting deflection 180 of the former, or .22 inches.

If the weight is concentrated 3 feet out of centre, or 5 feet and 11 feet from the ends, then the square of half the span being 64, and the product of the segments being 55, the greatest safe load will be $\frac{13.25 \times 64}{55} = 15.4$ tons.

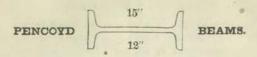
If a beam of above size and length is used without any lateral support, reduce the safe load in the ratio aforesaid. Thus the flange is 5½ inches wide, and the length 33 times this; therefore the greatest safe load will be a little less than ½ of the results in the example.

If the beam is exposed to much vibration, or the action of moving loads, etc., reduce the tabular loads, as previously described on page 34.

For beams of other character than described, the greatest safe loads and corresponding deflections will bear the following ratios to the tabulated loads, for the same lengths of beams:

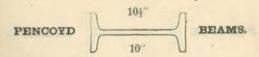
CHARACTER OF BEAM.	GREATEST SAFE LOAD.	DEFLECTION.
Fixed at one end, with the load concentrated at the other end.	One-eighth (‡) part of the tabular load.	Three and one- fifth (3½) times the tabular de- flection.
Fixed at one end, with the load uniformly distributed.	One-fourth (4) part of the tabular load.	Two and two- fifths(2)times the tabular de- flection.
Rigidly fixed at both ends, with a load in the mid- dle of beam,		
Rigidly fixed at both ends, with the load uniformly distributed.	One and one-half (1½) times the tabular load.	One-sixth (1/6) of the tabular de- flection.
Continuous beam loaded in middle.	Same as the tabu- lar load.	Four-tenths (1.0) of the tabular deflection.
Continuous beam load uniformly distributed.	One and one-half (1½) times the tabular load.	One-sixth (1) of the tabular de- flection.

BEAMS WITH FIXED ENDS.


It is necessary to bear in mind the distinction between ends "rigidly fixed" and ends simply "supported," the latter being the class contemplated in all our tables of safe loads. By "rigidly fixed," as denoted in the previous table, we mean that the beam must be so securely fastened at both ends, by being built into solid masonry, or so firmly attached to an adjacent structure, that the connection would not be severed if the beam was exposed to its ultimate load. In this case, the beam is of the same character as if continuous over several supports, or as if consisting of two cantilevers, the space between whose ends was spanned by a separate beam.

CONTINUOUS BEAMS.

If a beam is continuous over several supports, and is equally loaded on each span, the greatest safe loads and the resulting deflections on any intermediate span will be as given in the preceding table. But the end spans of such a beam, being only semi-continuous, must be either of a shorter span than the intermediates, or if of the same length, the load must be diminished. See "Continuous Beams," page 75.

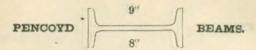

LIMIT FOR DEFLECTION.

It is considered good practice in the case of plastered ceilings, or in other circumstances where undue deflection may be prejudicial, to proportion beams so that their deflection will not exceed $\frac{1}{30}$ of an inch per foot of span, or $\frac{1}{300}$ part of the span. A heavy black line is marked across, or partly across, each page. All beams below these lines will deflect in excess of this limit; those above the line are safe to use.

Maximum and Minimum sections of each shape. Greatest safe load in Net Tons evenly distributed, including beam itself. Deflections in inches corresponding to given loads for each size of beam. For a load in middle of beam, allow one-half the tabular figures. Deflection for latter load will be γ^8_0 of the tabular deflection.

NUMB		1	1	2	2	AMS.	3	3	4	4	AMG
SIZE OF IN INC.		15"	15"	15''	15"	15" BEAMS.	12"	12"	12"	12"	19"/ BE
WT. PEI		233	200	201	145	FOR	194	168	163	120	NOR S
MOMEN	T OF	743.6	682.1	626,6	521,2	DEFLECTIONS	403.5	372.0	324.6	272.9	DEFLECTIONS FOR 12" BEAMS.
		GREA	TEST S	SAFE I	OAD.	DEFLE	GREA	TEST S	SAFE I	OAD.	DEFL
	10 11 12 13	46,29 42,08 38,57 35,61	42,44 38,58 35,37 32,65	38.96 35.42 32.47 29.97	22,10 22,10 22,10 22,10	.11 .13 .15 .18	31.36 28,51 26,13 24,12	28,93 26,30 24,11 22,25	25,24 22,95 21,03 19,42	21,22 19,29 17,69 16,32	Trinis.
FEET.	14 15 16 17	33,06 30,86 28,93 27,23	30,31 28,29 26,53 24,96	27.83 25.97 21.35 22.92	22,10 21,62 20,27 19,08	.21 .24 .27 .30	22,40 20,91 19,60 18,45	20,67 19,29 18,08 17,02	18.03 16.83 15.76 14.85	15.16 14.15 13.26 12.48	A. L. L. L. L.
K	18 19 20 21	25,72 24,36 23,14 22,04	23.58 22.34 21.22 20.21	21.64 20,51 19.48 18,55	18.02 17.07 16.21 15,44	.34 .38 .42 .45	17.42 16.51 15.68 14.93	16.07 15.23 14.47 13.78	14.02 13.28 12.62 12.02	11.79 11.17 10.61 10.11	A WALL
OF SPAN	22 23 24 25	21,04 20,13 19,29 18,52	19.29 18.45 17.68 16.98	17.71 16.94 16.23 15.58	14.74 14.10 13.51 12.97	.51 .56 .61 .66	14.25 13.63 13.07 12.54	13.15 12.58 12.05 11.57	11.47 10.97 10.52 10.10	9.65 9.23 8.84 8.49	A 44.44
LENGTH	26 27 28 29	17,80 17,14 16,58 15,96	15.72 15.16		12.01 11.58	.72 .77 .83 .89	12.06 11.61 11.20 10.81	11.13 10.72 10.33 9.98	9.71 9.35 9.01 8.70	8.16 7.86 7.58 7.32	
	30 31 32 33	15,43 14,98 14,47 14,03	14.15 13.69 13.26 12.86	12.99 12.57 12.17 11.81	10,81 10,46 10,13 9,83	1 09	10.45 10.12 9.80 9.50	9.64 9.83 9.04 8.76	8.41 8.14 7.89 7.65	7.07 6.85 6.63 6.43	1.

Maximum and Minimum sections of each shape.


Greatest safe load in Net Tons evenly distributed, including beam itself.

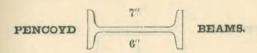
Deflections in inches corresponding to given loads for each size of beam.

For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be $\gamma^{\rm S}_{\rm U}$ of the tabular deflection.

												-
CHART NUMBER.	5	5	T-	51	6	6	BEAMS.	7	7	8	8	TAMS.
SIZE OF BEAM IN INCHES.	101"	101"	101"	101''	10‡′′	101"	10½" B	10"	10"	10"	10′′	DEPLECTIONS FOR 10" BEAMS.
WT. PER YARD IN LBS.	161	134	185	108	109	89	POR	137	112	106	90	NS FOR
MOMENT OF INERTIA.	265.7	:41.6	219.5	195.4	180.3	162,3	DEFLECTIONS	194.4	178.6	161.3	148.3	LECTION
		GREA	TEST !	SAFE I	OAD.	ŭ pi	DEFL	GREA	TEST	SAFE	LOAD	DEF
10 11 12 13	23.62 21.47 19.63 18.17	19,54 17,91		15.79 14.48	16,08 14,57 13,36 12,33	13.35 13.11 12.02 11.09	.18	18.14 16.49 15.12 13.95	14.73 18.50	18.71 12.57	12.58 11.54	.16 .19 .23 .27
14 15 16 17 17	16.87 15.75 14.76 13.90		13.94 13.01 12.19 11.48	12,41 11,58 10,86 10,22	11.45 10.69 10.02 9.43	10.30 9.61 9.01 8.48	.34	12.09	10,80 10,13	10.05 9.42	9.23 8.65	.31 .36 .41 .46
8 PAN IN F	13.12 12.43 11.81 11.25		10,84 10,27 9,75 9,29	9.65 9.14 8.69 8.27	8.91 8.44 8.01 7.68	8.01 7.59 7.21 6.87	.49 .55 .61	10.08 9.55 9.07 8.64	8,58 8,10	7,94	7.29 6.92	.52 .58 .64
40 St	10.74 10.27 9.84 9.45	9.77 9.34 8.95 8.60		7.90 7.55 7.24 6.95	7.28 6.97 6.68 6.41	6.55 6.27 6.01 5.77	.74 .81 .83 .95	8.25 7.89 7.56 7.26	7.04 6.75	6.56	5.77	.92
LENGTH BESS B	9.09 8.75 8.43 8.14	7.96 7.67	7.51 7.23 6.97 6.73	6,68 6,43 6,20 5,99	6,16 5,94 5,72 5,58	5.54 5.34 5.15 4.97	1.11	6.98 .6.72 6.48 6.26	5.79	5.59	5.13 4.94	1.17
30 31 32 33	7.87 7.62 7.38 7.19	6.98	6.51 6.29 6.09 5.91	5.79 5.60 5.43 5.26	5.34 5.16 5.01 4.86	4.50	1.46	6,05 5,85 5,67 5,50	5,23			1.54

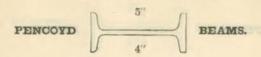
Maximum and Minimum sections of each shape.


Greatest safe load in Net Tons evenly distributed, including beam itself.

Deflection in inches corresponding to given loads for each size of beam.

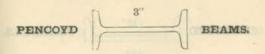
For load in middle allow one-half the tabular figures.

Deflection for latter load will be 180 of the tabular deflection.


CHART NUMBER,	9	9	10	10	BEAMS.	11	11	12	12	AMS.
SIZE OF BEAM IN INCHES.	9"	9"	9"	9"	8	8"	8"	8"	8"	8" BEAMS.
WT. PER YD. IN LBS.	122	90	88	70	S FOR	109	81	75	65	S FOR
MOMENT OF INERTIA.	143.7	118.8	106.8	94.4	DEPLECTIONS	98.6	83,9	74.5	69,2	DEPLECTIONS
	GREA	TEST S	AFE L	OAD.	DEFL	GREA	TEST S	SAFE L	OAD.	DEFL
6 7 8 9	24.27 20.80 18.20 16.18	16.53 16.53 15.40 13.69	18.42 15.79 13.81 12.27	9.94 9.94 9.94 9.94	.06 .08 .11 .14	19,22 16,47 14,41 12,81	15,49 13,99 12,24 10,88	14,48 12,41 10,86 9,66	10,46 10,46 10,08 8,96	.07 .10 .13 .16
10 11 12 12 13	14,56 13,24 12,13 11,20	12.32 11.20 10.26 9.48	11.05 10.04 9.21 8.50	9.79 8.90 8.16 7.53	.18 .22 .26 .30	11,58 10,48 9,61 8,87	9.79 8.90 8.16 7.53	8.69 7.90 7.24 6.68	8.07 7.33 6.72 6.21	.20 .24 .29 .34
Z 14 15 16	10.40 9.71 9.10 8.56	8.80 8.21 7.70 7.25	7.89 7.37 6.91 6.50	7.00 6.53 6.12 5,76	.35 .40 .46	8.24 7.69 7.21 6.78	6,99 6,53 6,12 5,76	6.21 5.79 5.43 5.12	5.76 5.38 5.04 4.74	.39 .45 .51
VdS 18 19 20	8,09 7,66 7,28	6.84 6.48 6.16	6.14 5.82 5.52 5.25	5,44 5,15 4,90 4,66	.59 .64 .71 .78	6.41 6.07 5.76 5.49	5,44 5,15 4,89 4,66	4,83 4,57 4,34	4.48 4.24 4.03 3.84	.65 .72 .80 .88
ILENGTH	6.93 6.62 6.33 6.07 5.82	5.86 5.60 5.35 5.13 4.93	5.02 4.80 4.61 4.42	4.45 4.25 4.08 3.92	.86 .94 1.02	5.24 5.01 4.80 4.61	4.45 4.25 4.08 3.91	3.95 3.78 3.62 3.48	3.67 3.50 3.36	.97
26 27 28 29	5.60 5.39 5.20 5.02	4.74 4.56 4.40 4.25	4.25 4.09	3.77 3.63 3.50 3.38	1.21 1.30 1.40	4.43 4.27 4.12 3.98	3,77 3,62 3,50 3,87	3.34 3.22 3.10 3.00	3.10 2.98 2.88	1.36 1.46 1.57 1.68

Greatest safe load in Net Tons evenly distributed, including beam itself. Deflections in inches corresponding to given loads for each size of beam. For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be 180 of the tabular deflection.

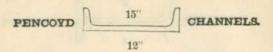

									-
13	13	14	14	SAMS.	15	15	16	16	ZAMS.
7"	7''	7"	7"	112	6"	6"	6"	6"	6" BEAMS.
88	75	63	51		63	55	48	40	IS FOR
58.6	53.3	48.0	43.1	ECTION.	30.8	27.5	26.3	24,1	DEFLECTIONS
GREA	TEST S	Safe 1	OAD.	DEFL	GREA	TEST S	SAPE I	OAD.	DEFL
12,93 11,09 9,70 8,62	11.75 10.07 8.81 7.83	10.65 9.13 7.99 7.10	6.17 6.17 6.17 6.17	.08 .11 .15	8.03 6.89 6.02 5.36	7,42 6,36 5,56 4,94	6.87 5.89 5.15 4.58	6.25 5.36 4.69 4.17	.10 .13 .17 .22
7.76 7.05 6.47	7.05 6.41 5.87	6.39 5.81 5.32	5.74 5.92 4.79	.23 .28 .33	4.82 4.38 4.02	4.45 4.05 3.71	4,12 3,75 3,43	3.74 3.41 3.12	.27 .32 .38
5.54 5.17 4.85	5.04 4.70 4.41	4,56 4,26 3,99	4.10 3.83 3.59	.44 .51 .58	3.44 3.21 3.01	3.18 2.97 2.78	2.94 2.75 2.57	2.68 2.50 2.34	.52
4,31 4,08 3,88	3.92 3.71 3.52	3.55 3.36 3.19	3,19 3,02 2,87	.74 .82 .90	2.68 2.54 2.41	2.47 2.84 2.22	2,29 2,17 2,06	2.08 1.97 1.87	.78 .87 .97 1.07
8,53 3,37 3,23 3,10	3.20 3.07 2.94 2.82	2,90 2,77 2,66 2,56	2.61 2.49 2.39	1.09 1.20 1.32	2.19 2.10 2.01 1.93	2.02 1.93 1.85 1.78	1,87 1,79 1,72 1,65	1.70 1.63 1.56 1.50	1.29 1.41 1.54
2.98 2.87 2.77 2.68	2.71 2.61 2.52 2.48	2.46 2.37 2.28 2.20	2.12 2.05	1.67	1.85 1.78 1.72 1.66	1,71 1,65 1,59 1,53	1,58 1,53 1,47 1,42	1.44 1.89 1.34 1.29	1.95 2.10
	88 58.6 GREA 11.093 11.099 9.70 9.70 5.51 5.17 4.85 3.88 3.88 3.88 3.37 3.37 3.37 3.37 3.37	7" 7" 88 75 58.6 53.3 GREATEST 11.09 10.07 9.70 8.81 8.62 7.83 7.76 7.05 6.41 5.17 4.70 4.85 4.11 4.31 3.92 4.08 3.71 3.88 3.52 3.70 3.35 3.70 3.35 3.71 3.70 3.23 2.98 2.98 2.71 2.87 2.63	7" 7" 7" 7" 88 75 63 58.6 53.3 48.0 GREATEST SAPE 1 12.93 11.75 10.65 11.09 10.07 9.13 9.70 8.81 7.99 9.70 8.81 7.99 7.05 6.41 5.81 6.47 5.87 5.32 5.97 5.42 4.92 5.51 5.04 4.56 5.17 4.70 4.26 4.85 4.41 3.99 4.56 4.15 3.76 4.31 3.92 3.55 4.08 3.71 3.39 3.88 3.52 3.93 3.70 3.35 3.01 3.53 3.90 2.90 3.37 3.07 2.77 3.23 2.94 2.63 3.10 2.82 2.56 2.98 2.71 2.46 2.87 2.61 2.37 2.77 2.52 2.28	7" 7" 7" 7" 7" 88 75 63 51 58.6 53.3 48.0 43.1 GREATEST SAPE LOAD. 12.93 11.75 10.65 6.17 11.09 10.07 9.13 6.17 9.70 8.81 7.99 6.17 9.70 8.82 7.83 7.10 6.17 7.76 7.05 6.41 5.81 5.22 6.47 5.87 5.32 4.79 5.97 5.42 4.92 4.41 5.51 5.04 4.56 4.10 5.17 4.70 4.25 3.83 4.85 4.41 3.99 3.59 4.56 4.15 3.76 3.38 4.31 3.92 3.55 3.19 4.08 3.71 3.36 3.02 3.88 3.52 3.19 2.87 3.70 3.35 3.01 2.73 3.53 3.20 2.90 2.61 3.37 3.07 2.77 2.49 3.23 2.94 2.66 2.39 3.10 2.82 2.56 2.30 2.98 2.71 2.46 2.21 2.87 2.61 2.37 2.12	T' 7" 7" 7" 7" 88 75 63 51 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7" 7" 7" 7" 5" 63 51 8 63 53 88 75 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 63 51 8 64 7 1.55 6.02 8 8.62 7.83 7.10 6.17 1.15 6.02 8 6.27 8.81 7.99 6.17 1.15 6.02 8 6.27 7.05 6.41 5.81 5.22 28 4.38 6.47 5.87 5.32 4.79 33 4.02 5.97 5.42 4.92 4.41 38 3.71 5.51 5.92 2.34 4.38 3.71 3.36 3.02 32 3.53 3.21 4.85 4.15 3.76 3.38 3.66 2.84 4.31 3.92 3.55 3.19 74 2.68 4.31 3.92 3.55 3.19 74 2.68 4.31 3.92 3.53 3.02 3.22 2.54 3.88 3.52 3.19 2.87 90 2.41 3.70 3.38 3.52 3.19 2.87 90 2.41 3.70 3.38 3.52 3.19 2.87 90 2.41 3.70 3.38 3.52 3.19 2.87 90 2.41 3.70 3.38 3.52 3.19 2.87 90 2.41 3.70 3.38 3.04 2.73 3.99 2.30 3.53 3.20 2.90 2.61 1.09 2.19 3.37 3.70 3.23 2.90 2.60 2.30 1.32 2.01 3.10 2.82 2.56 2.30 1.43 1.93 2.98 2.71 2.46 2.21 1.55 1.85 2.87 2.61 2.37 2.12 1.67 1.78 2.87 2.61 2.37 2.12 1.67 1.78 2.87 2.61 2.37 2.12 1.67 1.78 2.87 2.61 2.37 2.12 1.67 1.78 2.77 2.52 2.22 2.05 1.80 1.72	88 75 63 51	7' 7' 7' 7' 7' 8 6 6' 6' 6' 6' 8 8 8 75 63 51 \$ 2 63 55 48 \$ 58.6 53.3 48.0 43.1 \$ 2 8 63 55 48 \$ 68 62 5.3 \$ 1.75 10.65 6.17 .15 6.02 5.36 5.15 8.62 7.83 7.10 6.17 .15 6.02 5.36 5.15 8.62 7.83 7.10 6.17 .15 6.02 5.36 5.15 7.05 6.41 5.81 5.22 2.86 4.38 4.05 3.75 6.47 5.87 5.32 4.79 .33 4.02 3.71 3.43 5.97 5.42 4.92 4.41 3.83 3.71 3.43 3.71 3.43 5.97 5.42 4.92 4.41 3.83 3.71 3.43 3.71 3.43 5.97 5.42 4.92 4.41 3.83 3.71 3.43 3.71 3.43 3.71 3.43 3.71 3.35 3.20 2.90 2.61 0.9 2.41 2.22 2.66 3.83 3.01 2.78 2.77 2.49 1.20 2.10 1.93 1.79 3.23 3.23 2.94 2.66 2.30 1.43 1.93 1.78 1.65 1.53 2.98 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.88 2.71 2.46 2.30 1.43 1.93 1.78 1.65 2.87 2.61 2.37 2.12 1.67 1.78 1.65 1.53 2.77 2.62 2.82 2.05 1.80 1.72 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5	7' 7' 7' 7' 7' 8 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6' 6'

Greatest safe load in Net Tons evenly distributed, including beam itself. Deflections in inches corresponding to given loads for each size of beam. For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be 16 of the tabular deflection.

NUM		17	17	18	18	AMS.	19	19	20.	20.	VME,
SIZE OF IN INC		5"	5"	5"	5"	5" BEAMS.	4"	4"	4"	4"	4" BE
WT. PE		40	36	33	30	S FOR	38	28	21,5	18.5	S POR
MOMEN INER		14.7	13.7	13.1	12.5	DEFLECTIONS	9.0	7.7	5.5	5.1	DEFLECTIONS FOR 4" BEAM!",
	nel l	GREA	TEST :	SAFE I	OAD.	DEFL	GREA	TEST :	SAFE I	OAD.	DEFL
	4 5 6 7	6.80 5.44 4.53 3.89	6,42 5,14 4,28 3,67	6.12 4.90 4.08 3,50	4.86 4.67 3.89 3.33	.05 .08 .12	5,25 4,25 3,50 3,00	4.47 3.58 2.98 2.56	3.27 2.62 2.18 1.86	3.00 2.40 2.00 1.71	.06 .10 .14 .20
FEET.	8 9 10	3,40 3,02 2,79 2,47	3.21 2.86 2.57 2.34	3.06 2.72 2.45 2.23	2,92 2,59 2,33 2,12	.21 .26 .32	2,62 2,33 2,10 1,91	2,24 1,99 1,79 1,63	1,64 1,46 1,31 1,19	1.50 1.33 1,20 1.09	
SPAN IN I	12 13 14 15	2,27 2,09 1,94 1,81	2.14 1.98 1.84 1.71	2.64 1.88 1.75 1.63	1.94 1.79 1.67 1.55	.46 .54 .63 .72	1.75 1.62 1.50 1.40	1,49 1,38 1,28 1,19	1.09 1.01 .94 .87	1,00 ,92 86 .80	.58 .68 .79
OF	16 17 18, 19	1.70 1.60 1.51 1.43	1,61 1,51 1,43 1,35	1.53 1.44 1.36 1.29	1.46 1.37 1.30 1.23	.82 .93 1.04 1.16	1.31 1.23 1.17 1.11	1,12 1,05 ,99 ,94	.82 .77 .73 .69	.67	1.03 1.17 1.31 1.45
LENGTH	20 21 22 23	1,36 1,29 1,24 1,18	1,28 1,22 1,17 1,12	1.22 1.17 1.11 1.07	1,17 1,11 1,06 1,01	1.42	1,05 1,00 .95 .91	.89 .85 .81 .78	.65 .62 .60 .57	.57	1.61 1.77 1.93 2.12
	24 25 26 27	1.13 1.09 1.04 1.01	1,07 1,03 ,99	1.02 .98 .94 .91	.93	1.85 2.01 2.18 2.36	.87 .84 .81	.75 .72 .69	,55 ,52 ,50 ,48	.48	2.32 2.51 2.71 2.91

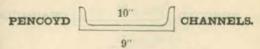
Maximum and Minimum sections of each shape.


Greatest safe load in Net Tons evenly distributed including beam itself.

Deflections in inches corresponding to given loads for each size of beam.

For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be 7 is of the tabular deflection.


	-			WINT NAME	· Mile Open		CALCON CO.	1000000			
CHART NUMBE		21	21	22	22	WAY.					8
SIZE OF B		3"	3"	3"	3"	3" BEAMS.				1	
WT. PER Y	YD.	28.6	23	21.7	17	B FOR		la		1	
MOMENT INERTL		4.0	8.8	3.0	2.7	DEFLECTIONS	le L	1112		M	
-		GREA	rest S	AFE L	OAD.	DEFL					
	4 5 6	2.87 2.30 1.92	2,56 2,05 1,71	2.34 1.87 1.56	2.07 1.66 1.38	.09		1			
E.	7	1.64	1,46	1.34	1.18	.26				4	4
	8 9 10 11	1.44 1.28 1.15 1.04	1,28 1,14 1,02 ,93	1.17 1.04 .94 .85	1.03 .92 .82 .75	.34 .43 .53 .65					Name .
	12	.96	.85	.78	69	.77					3
Sp	13 14 15	.88 .83	.79 .78 .68	.72 .67 .62	50	.91 1.05 1.21					
	16 17	.72 .68	.64	.58	.49	1.37		16			1
GILH	18 19	64	.57 ,54	.52 .49	.46	1.74		1993		1	
- 14	20 21	,58 ,55	.51	.47 .45	.39	2.13		153		1	1
	23	.50	.47 .44	.43 .41	.38	2.62 2.88		1 3		-	3
		100	-	199						*	1
		31		100		-		- 5	1	1	
				H							

Maximum and Minimum sections of each shape.

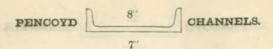
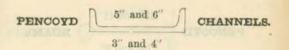

Greatest safe load in Net Tons evenly distributed, including beam itself. Deflections in inches corresponding to given loads for each size of channel. For a load in middle of beam, allow one-half the tabular figures. Deflection for latter load will be 180 of the tabular deflection.

CHART NUMBER.	30	30			NELS	31	31	32	32	NELS
SIZE OF CHAN- NEL IN INS.	15"	15"			CHANNELS.	12"	12''	12"	19"	CHAN
WT. PER YD. IN LBS.	204.5	148			FOR 15"	160	88.5	101.5	60	OR 12"
MOMENT OF INERTIA-	557.4	451,5				268.5	182,7	173.5	123.7	DEFLECT'S FOR 12" CHANNELS
	GREA	TEST SA	FE I	LOAD.	DEFLECT'S	GREA	TEST !	SAFE I	OAD.	DEFLI
10 11 12 13	34,68 31,53 28,90 26,65	25.54 23.41			.11 .13 .15 .18	20,88 18,98 17,40 16,06	14.21 12.92 11.84 10.93	13,49 12,26 11,24 10,38	9.14 8.75 8.02 7.40	.1 .1 .1 .2
14 15 16 17	24.77 23.12 21.68 20.40	20.06 18.73 17.56 16.52			.21 .24 .27 .30	14,91 13,92 13,05 12,28	10.15 9.47 8.88 8.36	9.64 8.99 8.43 7.94		2333
Z 18 19 20	19,27 18,25 17,34 16,52	15.61 11.78 14.04 13.38			.34 .38 .43 .47	11.60 10.99 10.44 9.94	7.89 7.48 7.10 6.77	7.49 7.10 6.74 6.42	5.06 4.81	.4
OF SPAN	15.76 15.08 14.45 13.87	12.21		B	-52 -57 -62 -67	9.49 9.08 8.70 8.35	6.46 6.18 5.92 5.68	5.87	4.37 4.18 4.01 3.85	.7
LENGTH EEE 25	13,34 12,85 12,89 11,96	10.03			.73 .78 .84 .90	8,03 7,73 7,46 7,20	5.47 5.26 5.07 4.90	4.82	3.70 3.56 3.44	.9
30 31 32	11,56 11,19 10,84				.96 1.03 1 10	6.96 6.74 6.52	4.74 4.58 4.44	4.35	3.10	1.2

Maximum and Minimum sections of each shape,
Greatest safe load in Net Tons evenly distributed, including beam itself.
Deflections in inches corresponding to given loads for each size of channel.
For a load in middle of beam allow one-half the tabular figures.

Dene	ection 1	or latte	rload	will be	To or	the to	ibular d	leffection	on.		
NUM	BER-	34	34	35	35	NELS.	36	36	37	37	ELS.
SIZE OF NEL IN	CHAN-	10"	10"	10"	10′′	CHANNELS.	9"	9"	9"	9//	CHANNELS.
WT. PI		106	60	86,5	49	ron 10"	93	54	61	87	on 9"
MOMEN INER		i31.0	92.7	105.2	73.9	DEFLECT'S P	90.7	64,8	59.8	43.6	DEFLECT'S FOR 9"
. 1	·nr.	GREA	TEST !	SAFE I	OAD.	DEFL	GREA	TEST S	SAFE L	OAD.	DEFL
	10 11 12 18	12,23 11,12 10,19 9,41	8,65 7,86 7,21 6,65	8,92 8,17	6.89 6.26 5.74 5.30	.16 .19 .23 .27	9,41 8,55 7,84 7,24	6.67 6.66 5.56 5.13	5.17	4.52 4.11 8.77 3.48	.18 .22 .26 .30
FEET.	14 15 16 17	8.74 8.15 7.64 7.19	6,18 5,77 5,41 5,09	7.01 6.54 6.13	4.92 4.59 4.31 4.05	.31 .36 .41 .46	6.72 6.27 5.88 5.53	4.76 4.45 4.17 3.92	4.44 4.14 3.88	3,23 3,01 2,82 2,66	.35 .40 .46
SPAN IN F	18 19 20 21	6.79 6.44 6.11 5.82	4.81 4.55 4.32 4.12	5,45 5,16 4,90 4,67	3.83 3.63 3.44 3.28	.52 .58 .64	5,23 4,95 4,70 4,48	3,51 3,51 3,34 3,18	3,45 3,27 3,10 2,96	2,51 2,38 2,26 2,15	.58 .64 .71
OF	22 23 24 25	5.56 5.32 5.10 4.89	3.93 3.76 3.60 3.46	100000	3.13 2.99 2.87 2.76	.78 .85 .92	4.28 4.09 3.92 3.76	3,03 2,90 2,78 2,67	2.82 2.70 2.59 2.48	2.05 1.97 1.88 1.81	.86 .94 1.02
LENGTH	26 27 28 29	4.70 4.53 4.87 4.22	3,33 3,20 3,09 2,98	3.63 3.50	2.65 2.55 2.46 -2.38	1.08 1.17 1.26	3.62 3.49 3.36 3.24	2.57 2.47 2.38 2.30	2,39 2,30 2,92 2,14	1.74 1.67 1.61 1.56	1.30
-	30 31 32 33	4.08 3.94 3.82 3.71	2.88 2.79 2.70 2.62		2,30 2,22 2,15 2,09	1.55	3.14 3.03 2.94 2.85	2,22 2,15 2,08 2,02	2.07 2.00 1.94 1.88	1,51 1,46 1,41 1,37	1.72

Maximum and Minimum sections of each shape.

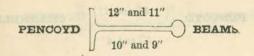

Greatest safe load in Net Tons evenly distributed, including beam itself.

Deflection in inches corresponding to given loads for each size of channel.

For load in middle of beam allow one-half the tabular figures.

Deflection for letter load will be 28; of the tabular deflection

CHAI	- I	1	2000	1	00	3	40	1000	10 F		Of
NUMB		38	38	39	39	NNE	40	40	41	41	0000
ZE OF		8"	80	8"	8"	" CHANNELS	7"	7"	7"	7"	" Current
VT. PER IN LE		80.5	43	54	30	FOR 8"	73	41	49	26	g ava s
MOMEN INERT		60.0	40,0	41.0	28.2	DEFLECTIONS	42.6	29.5	27.9	18.5	112 and suctions read
		GREA	TEST S	SAFE I	OAD,	DEFLE	GREAT	rest S	AFE L	OAD.	Door
	6 7	11.67	7.77 6,66	7.93 6.83	4.79 4.70	.07	9.45 8,10	6.55 5.61	6.18 5.30	3.42 3.42	* * *
	6 7 8 9	8.75 7.78	5.83 5.18	5.97 5.31	4.11 3.66	.13	7.09 6.30	4.91	4.64 4.12	3.07 2.73	
	10 11	7.00 6.36	4,66 4,24	4.78 4.35	3.29	.20	5.67 5.15	3,93	3.71	2.46 2.24	
FEET.	12 13	5.83	3.88 3.58	3.98	2.74 2.53	.29	4.72	3.27	3.09 2.85	2.05 1.89	
	14	5.00		3,41	2.35	.39	4.05	2.81	2.65	1.76	
IN	15 16	4.67 4.37	3.11	3.19	2.19 2.06	.45	3,78	2.62	2.47	1.64 1.54	
SPAN	17	4.12	2.74	2.81	1,94	.58	3.34	2.31	2.18	1.45	
	18	3,89	2.59 2.45	2,66 2,52	1.83	.65	3.15	2.18	2.06	1,37 1,29	
OF	19 20	3.68 3.50	2.33	2,39	1.64	.80	2,98 2,83	2.07 1.96	1.95 1.85	1.23	
	21	3,33	2.22	2.18	1,57	.88	2.70	1.87	1.77	1.17	
GT	23	3.18	2.12 2.03	2.17	1.50	.97 1.06	2.58	1.79	1.69	1.12	
LENGTH	24 25	2.92	1.94 1.86	1,99 1,91	1.37	1.16	2,36	1,64	1,55	1.02	1.
The same	26	2.69	1.79	1,84		1.36	2,18	1,51	1.43	.95	
	27	2,59	1.73	1,77	1.22	1.46	2.10	1,46	1.37	.91	1.
	28 29	2.50 2.41	1.66 1.61	1,71	1.13	1.57	2.02	1,40	1,28	.85	

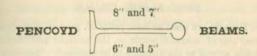

Maximum and Minimum sections of each shape.

Greatest safe load in Nct Tons evenly distributed including beam itself.

Deflections in inches corresponding to given loads for each size of chann in order or load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be in of the tabular deflection.

	ART IBER.	E1.8.	42	44	45	46	TELS.	EL8.	47	48	49	49	NELS.
OHA!	NNEL INS.	CHANNELS.	6''	6"	5′′	5"	CHANNELS.	CHANNELS.	4"	4"	3"	8"	CHANNELS.
YD	PER D. IN BS.	FOR 6"	83.0	23	27	18.8	FOR 5"	FOR 4"	21,5	17.5	18.9	15,2	FOR 3"
	L OF	DEFLECT'S 1	18,4	11.7	10.3	6.7	DEFLECT'S 1	DEFLECT'S 1	5.2	4.1	2.3	2.0	DEFLECT'S
		DEFL	GREA	TEST S	AFE I	OAD.	DEFL	DEFL	GREA	TEST !	SAPE I	OAD.	DEF
P.	4 5 6	.02 .04 .07	6.50 6.50 5.70 4.75	5.24 4.54 3.63 3,02	5,92 4,80 3,84 3,20	4.13 3.10 2.48 2.07	.05	.03 .06 .10 .14	4.08 8.09 2.42 2.09	3.20 2.40 1.92 1.60	2,40 1,80 1,44 1,20	2.10 1.57 1.26 1.05	.05
IN FEET.	7 8 9 10	.13 .17 .22 .27	4.07 3,56 3.17 2,85	2,59 2,26 2,01 1,81	2.74 2.40 2.13 1.92	1.77 1.55 1.38 1.24		.20 .26 .33 .40	1.78 1.51 1.34 1.21	1,37 1,20 1,07	1.03 .90 .80	.90 .79 .70 .63	.26 .34 .43
F SPAN	11 12 13 14	.32 .38 .45	2,59 2,37 2,19 2,04	1.64 1.51 1.39 1.29	1.74 1.60 1.48 1.87	1.18 1.08 .95		.49 .58 .68	1.10 1.01 .93	.87 .80 .74	.65 .60 .55	.57 .52 .48	.65 .77 .91
LENGTH OF	15 16 17 18	.60 .69 .78 .87	1,90 1,78 1,68 1,58	1,21 1,13 1,06 1,01	1.28 1.20 1.13 1.07	.83 .77	.72 .82 .93 1.04	.91 1.03 1.17 1.31	.81 .76 .71	.64 .60 .56 .53	.48 .45 .42 .40	.42 .39	1.21 1.37 1.55 1.74
LE	19 20 21 23	.97 1.07 1.18 1.29	1,50 1,42 1,36 1,30	.95 .90 .86 .82	1,01 .96 .91 .87	.62	1.16 1.29 1.42 1.56	1.46 1.61 1.77 1.93	.64 .60 .58 .55	.51 .48 .46 .44	,38 ,36 ,34 ,33	.31	1.93 2.13 2.37 2.62
	23 24 25 26	1.41 1.54 1.67 1.81	1,24 1,19 1,14 1,10	.79 .75 .72 .70	.83 .80 .77 .74	.52	1.70 1.85 2.01 2.18	2.12 2.32 2.51 2.71	.58 .50 .48 .47	.42 .40 .38 .87	.31 .30 .29 .28	26 .25	2.88 3.11 3.34 3.50



Maximum and minimum sections of each shape.

Greatest safe load in Net Tons evenly distributed, including beam itself, Deflections in inches corresponding to given loads for each size of beam. For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be 10 of the tabular deflection.

	ART MBER.	AMS.	60	60	61	61	BEAMS.	ВЕАМS,	62	62	63	63	SAMS.
BEA	E OF M IN HES.	2" BE.	12"	12"	11"	11"	11" B	10" B	10"	10"	9"	9"	9" BE
YD	PER D. IN BS.	S FOR 1	138	104	118	91	FOR	FOR	105	80	94	72	is FOR
	M OF.	DEPLECTIONS FOR 12" BEAMS.	264.9	222.0	193.1	164.1	DEFLECTIONS	DEFLECTIONS	140.4	118.2	99.5	84.8	DEPLECTIONS FOR 9" BEAMS.
181	ere-	DEFLI	GREA	TEST S	SAFE I	OAD.	DEFL	DEFL	GREA	TEST S	SAFE I	OAD.	DEFL
	10 11 12 13	.13 .16 .19 .22	20,59 18,72 17,16 15,84	17,26 15,69 14,38 13,28	16.41 14.92 13.67 12.62	13.95 12.68 11.62 10.73	.15 .18 .21 .25	.16 .19 .23 .27	13,11 11,92 10,92 10,08	11.03 10.03 9.19 8.48	10 32 9.38 8.60 7.94	8.79 7.99 7.32 6.76	.18 .22 .26 .30
FEET.	14 15 16 17	.26 .30 .34 .39	14.71 13.73 12.87 12.11	12,33 11,51 10,79 10,15	11.72 10.94 10.26 9.65	9.96 9.30 8.72 8.21	.29 .34 .39 .44	.31 .36 .41 .46	9.36 8.74 8.19 7.71	7.88 7.35 6.89 6.49	7.37 6.88 6.45 6.07	6.28 5.86 5.49 5.17	.35 .40 .47 .53
N	18 19 20 21	.44 .49 .54	11,44 10,84 10,29 9,80	9.59 9.08 8.63 8.22	9,12 8,64 8,20 7,81	7.75 7.34 6.97 6.64	.49 .54 .59	.52 .58 .64	7.28 6.90 6.55 6.24	6.18 5.81 5.51 5.25	5.73 5.43 5.16 4.91	4.88 4.63 4.39 4.19	.59 .65 .72
OF SPAN	22 23 24 25	.65 .71 .78	9,36 8,95 8,58 8,24	7.85 7.50 7.19 6.90	7.46 7.15 6.84 6.56	6.34 6.07 5.81 5.58	.71 .77 .84	.78 .86 .93	5.96 5.70 5.46 5.24	5.01 4.80 4.60 4.41	4,69 4,49 4,30 4,13	4.00 3.82 3.66 3.52	.87 .95 1.04
LENGTH	26 27 28 29	.92 .93 1.07 1.14	7.92 7.63 7.35 7.10	6.64 6.39 6.16 5.95	6,31 6,08 5,86 5,66	5.37 5.17 4.98	.99	1.09 1.18 1.27 1.38	5.04 4.86 4.68 4.52	4.24 4.09 3.94 3.80	3.97 3.82 3.69 3.56	3.38 3.26 3.14 3.03	1.23 1.32 1.42
	30 31 32 33	1.22 1.30 1.33 1.46	6,86 6,64 6,43 6,24	5.75 5.57 5.89 5.23	5.47 5.29 5.13 4.97	4.50	1.41	1.45 1.55 1.65 1.76	4.37 4.23 4.10 3.97	3.67 3.56 3.45 3.34	3.44 3.33 3.22 3.13	2.93 2.84 2.75 2.66	1.77

Maximum and minimum sections of each shape.

Greatest safe load in Net Tons evenly distributed, including beam itself.

Deflections in inches corresponding to given loads for each size of beam.

For a load in middle of beam allow one-half the tabular figures.

Deflection for latter load will be 10 of the tabular deflection,

CHART NUMBER.	BEAMS.	64	64	65	65	BEAMS.	BEAMS.	66	66	67	67	YMS.
BEAM IN INS.	8" BE.	8"	8"	7"	7"	1-	6" BE.	6"	6"	5"	5"	DEFLECTIONS FOR 5" BEAMS
WT. PER YD. IN LBS.	S FOR	84	61	72	52	S FOR	S FOR	57	42	46	34	S FOR
Mom. of INERTIA.	DEFLECTIONS	70.5	57.7	42.6	34.4	DEPLECTIONS	DEFLECTIONS	26.5	22,0	14.5	12.0	ECTION
	DEFL	GREA	TEST !	SAFE I	OAD.	DEFL	DEFE	GREA	TEST :	SAFE I	OAD.	DEFL
6 7 8	.07 .10 .13	19,53 16,74 14,65 13,02	11.22 9.61 -8.41 7.48	9,43 8,00 -7,07 6,29	7,63 6,54 5,73 5,09	.15	.10 .13 .17 .22	6.87 5.89 5.15 4.58	5.70 4.89 4.27 3.80	3.89	3,73 3,20 2,80 2,49	
IN FEET.	.20 24 .29	11,72 10.65 9,77 9,01	6.73 6.12 5.61 5.18	5.66 5.15 4.72 4.35	4.58 4.16 3.82 3.52	.28	.32 .38	4.19 3.75 3.43 3.17	3.42 3.11 2.85 2.63	2,79 2,47 2,27 2,09	2.24 2.04 1.87 1.72	.32 .39 .46
NV 14 15 16	.39 .45 .51	8.37 7.81 7.32 6.89	4.81 4.49 4.21	4.04 3.77 3.54 3.33	3,27 3,05 2,86 2,69	.45	.52 .60 .69	2.94 2.75 2.57 2.42	2.44 2.28 2.14 2.01	1,94 1.81 1.70 1,60	1,60 1,49 1,40 1,32	
LENGTH OF 12 12 12 12 12 12 12 12 12 12 12 12 12	.65 .72 .80 .88	6.51 6.17 5.86 5.58	3.74 3.54 3.36 3.20	3.14 2.98 2.83 2.69	2.54 2.41 2.29	.75	.87 .97 1.07	2.29 2.17 2.06 1.96	1,90 1,80 1,71 1,63	1.51 1.43 1.36 1.30	1.24 1.18 1.12 1.07	1.16
NT 22 23 24 25	.97 1.06 1.16 1.26	5.33 5.10 4.88 4.69	3,06 2,93 2,80 2,69	2,57 2,46 2,36 2,26	1.99	1.11 1.22 1.34 1.45	1.29 1.41 1.54 1.67	1.87 1.79 1.72 1.65	1,55 1,49 1,42 1,37	1,24 1,18 1,13 1,09	.93	1.56 1.76 1.85 2.01
26 27 28 29	1.36 1.46 1.57 1.68	4,51 4.34 4.19 4.04	2.59 2.49 2.40 2.32	2.18 2.16 2.02 1.95	1.64	1.57 1.69 1.82 1.95	1.81 1.95 2.10 2.25	1.58 1.53 1.47 1.42	1.32 1.27 1.22 1.18	1,05 1,01 .97 .94	.83	2.18 2.36 2.54 2.73

IRON FLOOR BEAMS.

When I beams are used as floor joists or girders, the spacing and proper size of beams depends on the amount and character of the loads, as well as the distance to be spanned. Not only the positive strength, but the elasticity or amount of deflection permissible must be considered.

A heavy load per unit of area may not require as strong a floor as that necessary for a lighter one, if the latter be liable to sudden application, especially if accompanied with impact, while the normal state of the heavier load is quiescence, or slow and even change. It would require a special treatise to describe the subject, and those lacking experience are referred to the published literature which is now very ample and complete. It has been demonstrated that the greatest mass of men that can be packed on any floor will not exceed in weight 80 lbs. per square foot. The weight of the iron beams will depend on the span, for which see a general rule farther on. If brick arches are laid between the beams, the weight of a 4" course of brick, including the concrete filling, will be about 50 lbs. per square foot.

Within the limits of length of span in which rolled I beams can be used, it may be assumed that a floor is safe to sustain the greatest possible load of men, when the following loading does not exhibit a greater bending stress on the beam than that denoted in the tables, under the head of "Greatest Safe Load Distributed," pages 40-51.

I Beam joists with wooden floor = 100 lbs, per square foot. Wooden floor and plastered ceilings = 110 " " " " 4" brick arches and concrete filling = 150 " " " "

These figures represent the total weight of floor itself and the imposed load.

When the floor beams are subject to the action of moving loads, it is necessary to make allowance for a greater nominal weight than actually may occur, especially if the span is long in proportion to the depth of the beam. If the beams are too light, the resulting tremor and vibration will be a source of discomfort to the user, if not of weakness to the structure. The same results are obtained by assuming either a higher nominal load per unit of area than actually can occur, or adopting a higher factor of safety, than given in our tables, for the actual

loads. Floors proportioned as follows for given purposes will be found satisfactory. The weight of the material may be included in the figures.

CHARACTER OF FLOOR.	LOAD PER SQ. FT.
Very lightest floors, plank covering	200 " 200 " 250 " 250 "

GENERAL RULE FOR THE WEIGHT OF IRON IN FLOOR BEAMS.

When the standard section of any size of beam is used, the weight of iron obtained by the following rule will be found to approximate closely to the actual amount required: "Square of span in feet divided by 5 times the depth of the beam in inches, equals the pounds of iron in the beams per square

foot of floor "
$$\left(\frac{\mathrm{span}^2}{5 \times \mathrm{depth}} = \mathrm{lbs.}\right)$$

This is for a load of 150 lbs. per square foot, and the beams strained up to the maximum safe limit as given in the tables.

With the same space the weight of the beams will vary directly as the load varies, consequently the weight of iron for any other required loading per square foot can be obtained by proportion from above rule. Example. - A floor of 20 feet span is subject to a load of 150 lbs, per square foot. The weight of the iron

beams will be
$$\frac{20^2}{5 \times 15} = 5.33$$
 lbs. per square foot of floor, if 15"

Beams are used, or if 12" Beams are used $\frac{20^2}{5 \times 12} = 6.66$ lbs. per

square foot. To these figures add the weight of ends built into the wall, which should be from 6" to 12" at each end, according to the span, etc. If the load to be sustained is 250 lbs, per sq. foot, on 15" I beams the necessary weight becomes as 150: 250:: 5.33 lbs.: 8.88 lbs. per square foot.

This rule applies only to the minimum section of any I beam. If the section is increased, the weight of iron required will also increase. By the above it will be observed that the deeper the beam used the less the amount of iron required, and such is the case as a general rule. But for short spans the use of the deepest beams might require too wide a spacing to suit the covering of the floor. Then the best economy requires the adoption of a shallower and lighter beam. For brick arches for fire-proof floors it is usual to limit the rise or spring from 3 to 6 inches, in order to build in and conceal the tie rods, which should not be much if any above the center of the beam. For such flat arches the spacing of the beams should not exceed 6 feet, and if a single 4" course of brick is used, it is safest not to exceed 5 feet separation. Of course for arches of more rise and for other special purposes than indicated above, no such limitation is necessary.

SPACING OF FLOOR BEAMS.

The following rule gives the greatest distance apart that floorbeams can be placed to support safely any given load per square foot. Multiply the length of span in feet by the load in lbs. per square foot. Find in the table, page 40, the safe load in lbs. for a beam of the size and length desirable to use. Divide this safe load by the product first found, and the quotient is the greatest distance in feet that the beams ought to be placed, center to

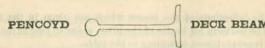
center. Or Distance = $\frac{\text{Safe Load}}{w L}$, w = lbs. per square foot.

L = length of span in feet.

Example.—A floor of 20 feet span with its full load will weigh 150 lbs. per square foot. Different sizes of beams may be safely spaced as far apart as follows: For 15"—145 lb. I Beams 32430

 $\frac{32430}{20 \times 150} = 10.8$ feet center to center. For 12" 120 lb, **I** beams

 $\frac{21220}{20 \times 150} = 7.07$ feet, etc., etc.

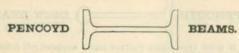

The tables on pages 56-62 show the greatest distance apart, center to center, that beams should be placed for a loading (including the weight of the floor itself) of 100, 150, 200, or 250 lbs per square foot.

The deflections of the beams which are given in the tables will be uniform for beams of the given spans so long as the spacing is proportioned according to the table.

In the case of plastered ceilings or other circumstances where undue deflection might be injurious, it is considered good practice to limit the deflection to about $\frac{1}{460}$ of the span. When the deflections exceed this amount, the corresponding loads in the table are printed in small figures. When the deflection is below this amount, the figures for the loads are in larger print. The proper spacing of beams for any load is inversely proportioned to the loads. Consequently the proper distance apart for beams for any load per square foot can be easily obtained directly from the table as well as by the rule previously given.

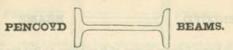
Rule.—Multiply the distance given in the table by 150 and divide by the number of lbs. per square foot required to be sustained. The quotient will be the greatest distance apart for the beams.

Example.—What is the greatest distance apart 8' 65 lbs, I beams can be placed to support safely a load of 220 lbs, per square foot, the beams having a clear span of 18 feet? By the table the spacing for 150 lbs, per foot is 3.3 feet $\frac{3.3 \times 150}{220} = 2.25$ feet, the distance required.


Greatest distance between floor beams so that the bending stress on the beam will not exceed its maximum safe load.

IER.	70	ARD,	FT.		LENGT	H OF S	PAN D	FEET	Level Level
CHART NUMBER.	SIZE OF BEAM IN INCHES.	r per y	FER SQ. FLOOR LBS.	10	12	14	16	18	20
CHAR	SIZE	Weight per les.	LOAD PER SQ. 1 OF FLOOR, LBS.	Dis		BETW EAMS			OF
60	12	104	100 150 200 250			17.6 11.7 8.8 7.0	13.5 9.0 6.7 5.4	10.7 7.1 5.3 4.3	8.6 5.8 4.3 3.5
	Deflection	in Inches.		•••••		.23	.34	.44	.54
61	11	91	100 150 201 250		19.3 12.9 9.7 7.7	14.2 9.5 7.1 5.7	10.9 7.2 5.4 4.3	8.6 5.7 4.3 3.4	7.0 4.6 3.5 2.8
	Deflection	in Inches.			.21	.29	.37	.46	.58
62	10 Deflection	80 in Inches.	100 150 200 250	22.1 14.7 11.0 8.8 .18	15.8 10.2 7.7 6.1 .23	11.3 7.5 5.6 4.5 .32	8.6 5.7 4.3 8.4 .41	6.8 4.5 3.4 2.7 .52	5.5 3.7 2.8 2.2 .64
63	9 Deflection	72 in Inches.	100 150 200 250	17.6 11.7 8.8 7.0 .18	12.2 8.1 6.1 4.9 .26	9.0 6.0 4.5 3.6 .35	6.9 4.6 3.4 2.7 .46	5.4 3.6 2.7 2.2 .58	4-4 2-9 2-2 1-8 -71
64	8 Deflection	61 in Inches.	100 159 200 250	13.4 9.0 6.7 5.4 .20	9.3 6.2 4.7 3.7 .29	6.9 4.6 3.4 2.7	5.2 3.5 2.6 2.1 .51	4·1 2·8 2·1 1·7 ·65	3·4 2·2 1·7 1·3 ·80
	- Annual Printer		100	9.2	6.4	4.7	8.6	2.8	2 3
65	7	52	150 200 250	6.1 4.6 3.7	4.2 3.2 2.5	3.1 2.3 1.9	2 · 4 1 · 8 1 · 4	1 · 9 1 · 4 1 · 1	1+1
	Deflection	in Inches.	*****	.23	.33	.45	*59	+7.5	-92
66	6 Deflection	42 in Inches.	100 150 200 250	6.8 4.5 3.4 2.7 .27	4.7 3.2 2.4 1.9 .39	3 · 5 2 · 3 1 · 7 1 · 4 • 52	2.7 1.8 1.3 1.1	2+1 1+4 1+1 +8 +87	1 · 7 1 · 1 · 9 · 7 1 · 07
67	5 Deflection	34 in Inches.	100 150 200 250	4.5 3.0 2.2 1.8 .32	3·1 2·1 1·6 1·2 -40	2·3 1·5 1·1 (9 -62	1 · 8 1 · 2		

PENCOYD DECK BEAMS.


Figures in small type denote that the beams so placed will deflect more than $\frac{1}{L_0}$ of an inch for each foot of span.

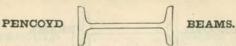
LENGTH OF SPAN IN FEET.						Ė	YARD,	S. S.	BER.
22	24	26	28	30	32	LOAD PER SQ. OF FLOOR, LBS.	Weight per yard les.	SIZE OF BEAM IN INCHES.	CHART NUMBER.
DISTANCE BETWEEN CENTRES OF BEAMS IN FEET.							WEIGH	Size	CHAR
7.1	6.0	5-1	4-4	1-8	2-4	100			
4.8	4.0 3.0	2 0	2-9	2 - 6	2 - 2	150 200	104	12	60
2.9	2.4	2-0	1.8	1-5	1-3	250	104	14	.00
.65	.78	-91	1.06	1:21	1-35	*****	Deflection	in Inches.	
5.8	4-8	4-1	3-6	3-1	2-7	100			
3.8	3-2	2.7	2-4	2-1	1.6	150			
2.9	2-4	2-1	1.8	1.5	1-4	200	91	11	61
2.3	1-9	1.0	1.4	1.2	1-1	250			
.71	-84	+99	1-15	1.32	1.50		Deflection	in Inches.	
4+6	3-8	3-3	2+8	2.0	DI N	100			
2.0	2-6	2-2	1.0	1 - 6		150			
213	1-9	1-0	1-4	1.2		200	80	10	62
3-9	1-5	1+3	1.1	1-0		250		A 7	
+28	-93	1-00	1-26	1-45		*****	Deflection	in Inches.	
3-6	3-1	2-6	2-2			100		-	
2-4	2-9	1.7	1-5	80		150			
1.8	1+5	1-3	1-1			200	72	9	63
1.0	1.03	1 - 0	1-40			250	Def. ection	in Inches.	
-	1-04	10000		*****		1904	Der Scrion	in fucues.	
2+8	2-3	2+0		-	Anna	100		-	
1.9	1-6	1.3				150			
1-4	1-2	1.0				200	61	8	64
1:1	-9	1-26				250	m. d	in Inches.	
HRT	3.16	1.30		******	*****		Defection	in inches.	
2.0						100			
1+3	No.		1	track of		150			
-0	1000	ga-	10/11/1	15.2		200	52	7	65
**	100	200				250		de Tracker	
1-10	*****		*****				Deflection	in Inches.	
		-	200	200		100			
		100	14.4			150			-
		25				200	42	6	66
(com		-	R. De			250	Deflection	in Inches,	
	100		1						
						100			
						200	34	5	67
						250	04	0	OI.
*****			12. 14			*****	Deflection	in Inches.	

Greatest distances between centres of floor beams, so that the bending stress on the beam will not exceed its maximum safe load.

SER.	NI NI	YARD,	FT.	LENGTH OF SPAN IN FEET.							
Снакт Момвев.	SIZE OF BEAM INCHES.	EIGHT PER YARD LBS.	PER SQ. FLOOR, LBS.	10	12	14	16	18	20		
CHAR	Size	WEIGH	Load	DISTANCE BETWEEN CENTRES OF BEAMS IN FRET.							
1	15 Deflection	200 in Inches.	100 150 200 250				33.1 22.1 16.6 13.3 .27	26.2 17.5 13.1 10.5 ,34	21.2 14.1 10.6 8.5 .42		
2	15 Deflection	145 in Inches.	100 150 200 250				25.3 16.9 12.7 10.1 .27	20.0 13.3 10.0 8.0 .34	16.2 10.8 8.1 6.5 .42		
8	12 Deflection	168 in Inches.	100 150 200 250			29.5 19.7 14.8 11.8 .26	22.6 15.1 11.3 9.0 .34	17.9 11.9 8.9 7.1 .43	14.5 9.6 7.2 5.8.		
4	12 Deflection	120 fn Inches.	100 150 200 250			21.7 14.4 10.8 8.7 .26	16.6 11.1 8.3 6.6 .34	13.1 8.7 6.5 5.2 .43	10.6 7.1 5.3 4.2 .53		
5	10‡ Deflection	134 in Inches.	100 150 200 250		29.8 19.9 14.9 11.9 .22	21.9 14.6 11.0 8.8 .30	16.8 11.2 8.4 6.7 .39	13.3 8.9 6.6 5.3 .49	10.7 7.1 5.4 4.3 .61		
54	101 Deflection	108 in Inches.	100 150 200 250		24.1 16.1 12.1 9.7 .22	17.7 11.8 8.9 7.1 .30	13.6 9,1 6.8 5.4 .39	10.7 7.1 5.4 4.3 .49	8.7 5.8 4.3 3.4 .61		
6	10‡ Deflection	89 in Inches.	100 150 200 250		20.0 13.3 10.0 8.0 .22	14.7 9.8 7.4 5.9 .30	11.8 7.5 5.6 4.5 .39	8.9 5.9 4.4 8.5 .49	7.2 4.8 3.6 2.9 .61		

Figures in small type denote that the beams so placed will deflect more than $\frac{1}{3U}$ of an inch for each foot of span.

LENGTH OF SPAN IN FEET.						FT.	YARD,	влж 8.	BER.
22	24	26	28	30	82	Froon LBs.	RIGHT PER LBS.	or Bram Inches.	
DISTANCE BETWEEN CENTRES OF BEAMS IN FEET.						LOAD PER SQ. 1 OF FLOOR, LBS.	WEIGH	Size	CHART NUMBER
17.5 11.7 8.8 7.0	14.7 9.8 7.4 5.9 .61	12.5 8.4 6.3 5.0 .72	10.8 7.2 5.4 4.8	9.4 6.3 4.7 3.8	8-3 5-5 4-1 3-3 1-09	100 150 200 250	200 Deflection	15 in Inches.	1
13.4 8.9 6.7 5.4	11.3 7.5 5.6 4.5 .61	9.6 6.4 4.8 3.9	8.3 5.5 4.1 3.4	7.2 4.8 3.6 2.9	6-3 4-2 3-2 2-5	100 150 200 250	145	15 in Inches.	2
.51 12.0 8.0 6.0 4.8 .64	10.0 6.7 5.0 4.0	8 · 6 5 · 7 4 · 3 3 · 4 · 90	.83 7·4 4·9 3·7 3·0	6·4 4·3 3·2 2·6 1·28	5-7 3-8 2-8 2-3 1-36	100 150 200 250	168	12 in Inches.	3
8.8 5.8 4.4 8.5 .64	7.4 4.9 3.7 2.9	6-3 4-2 3-1 2-5	5-4 2-6 2-7 2-2 1-05	4·7 3·1 2·4 1·9 1·20	4-1 2-8 2-1 1-7 1-36	100 150 200 250	120	12 in Inches.	4
8-9 6-9 4-4 3-6	7-5 5-0 3-7 3-0	6+4 4+3 3+2 2+6 1-03	5-5 3-7 2-7 2-2 1-19	4·8 3·2 2·4 1·9 1·37	4-2 2-8 2-1 1-7 1-57	100 150 200 250	134 Deflection	10‡	5
7 · 2 4 · 8 3 · 6 2 · 9 - 74	6.0 4.0 3.0 2.4 .85	5-1 3-4 2-6 2-1 1-03	4-4 2-9 2-2 1-8 1-19	3-9 2-6 1-9 1-5	3-4 2-3 1-7 1-4 1-57	100 150 200 250	108 Deflection	104	杨
6 · 0 4 · 0 3 · 0 2 · 4 -74	5+0 3+3 2+5 2+0 +88	4·3 2·9 2·1 1·7 1·02	3·7 2·5 1·8 1·4 1·19	3-2 2-1 1-6 1-3 1-27	2-8 1-9 1-4 1-1 1-57	100 150 200 250	89 Deflection	101	6


Greatest distances between centres of floor beams, so that the bending stress on the beam will not exceed its maximum safe load.

ER.	M IN	YARD,	FT.	LENGTH OF SPAN IN FEET.						
CHART NUMBER.	SIZE OF BEAM INCHES.	EIGHT PER YARD, LBS.	LOAD PER SQ. OF FLOOR, LBS.	10	12	14	16	18	20	
CHART	SIZE	Wелен	WEIGH LOAD OF		DISTANCE BETWEEN CENTRES OF BEAMS IN FEET.					
7	10 Deflection	112 in Inches.	100 150 200 250	32.4 21.6 16.2 13.0 .16	22.5 15.0 11.3 9.0 .23	16.5 11.0 8.3 6.6 .31	12.7 8.4 6.3 5.1 .41	10.0 6.7 5.0 4.0 .52	8.1 5.4 4.1 3.2 .64	
8	10 Deflection	90 in Inches.	100 150 200 250	27.7 18.4 13.8 11.1 .16	19.2 12.8 9.6 7.7 .23	14.1 9.4 7.1 5.6 .31	10.8 7.2 5.4 4.3 .41	8.5 5.7 4.3 3.4 .52	6.9 4.6 3.5 2.8 .64	
9	9 Deflection	90 in Inches.	100 150 200 250	24.6 16.4 12.3 9.9 .18	17.1 11.4 8.6 6.8 .26	12.6 8.4 6.3 5.0 .35	9.6 6.4 4.8 3.8 .46	7.6 5.1 3.8 3.0 .58	6-2 4-1 3-1 2-5 -71	
10	9 Deflection	70 in Inches.	100 150 200 250	19.6 13.1 9.8 7.8 .18	13.6 9.1 6.8 5.4 .26	10.0 6.7 5.0 4.0 .35	7.7 5.1 3.8 3.1 .46	6.1 4.0 3.0 2.4 .58	4·9 3·3 2·4 2·0 ·71	
11	8 Deflection	81 in Inches.	100 150 200 250	19.6 13.1 9.8 7.8 .20	13.6 9.1 6.8 5.4 .29	10.0 6.7 5.0 4.0 .39	7.7 5.1 3.8 3.1 .51	6+1 4+0 3+0 2+4 +65	4·9 3·3 2·4 2·0 ·80	
12	8 Deflection	65 in Inches.	100 150 200 250	16.1 10.7 8.1 6.5 .20	11.2 7.5 5.6 4.5 .29	8.2 5.5 4.1 3.3 .39	6.3 4.2 3.2 2.5 .51	5-0 3-3 2-5 2-0 -65	4·0 2·7 2·0 1·6 ·80	
18	7 Deflection	65 in Inches.	100 150 200 250	13.3 8.8 6.6 5.3 .23	9.2 6.1 4.6 3.7 .33	6.8 4.5 3.4 2.7 .44	5-2 3-5 2-6 2-1 -58	4 · 1 2 · 7 2 · 0 1 · 6 • 74	3·3 2·2 1·7 1·3 ·90	
14	7 Deflection	52 in Inches.	100 150 200 250	11.5 7.7 5.7 4.6 .23	8.0 5.3 4.0 3.2 .33	5.9 3.9 2.9 2.3 .44	4.5 3.0 2.2 1.8 .58	3·5 2·4 1·8 1·4 ·74	2 · 9 1 · 9 1 · 4 1 · 1 · 90	

PENCOYD BEAMS.

Figures in small type denote that the beams so placed will deflect more than $\frac{1}{3^{1}J}$ of an inch for each foot of span.

1	LENGTI	H OF S	SPAN I	n Fee	T.	PT.	YARD,	XX.	ER.
22	24	26	28	30	32	ER SQ. FLOOR, LRS.	T PER LBS.	Size of Beam in Incires,	NUMB
Dis	TANCE	BETW	EEN C	ENTRES	oF.	LOAD PER 8Q. 1 OF FLOOR, LRS.	Wенент рек тапр Глв.	Size	Силит Лумиви
6-7	5-6	4.8	1 4-1	1 3-6	To a	100			-
4+5	3-7	3.2	2.8	2-4	1182	150			
3-1	3+8	2+4	2.1	1.8		200	112	10	7
2.7	2.3	1-08	1-6	1-4		250	2110	200	
	100	1-08	1+26	1-44	*****		Deflection	in Inches.	
8-7	4-8	4-1	3-5	3-1		100			
2-9	2.2	2.7	2-4	2.0		150			
2-9	2-4	2-0	1.8	1-8		200	90	10	8
21-3	1.9	1-6	1.4	1-2		250			
5.8.0	-82	1:08	1-26	1-44			Deflection	in Inches.	
6-1	4-8	3.5	3.1		1	100			
2 - 4	2.8	2-4	2.1	1 - 10 /	100	150			4
2.5	2-1	1.8	1.6			200	90	9	9
2.0	1-7	1.5	1-3			250			
*00	1.02	1.21	1+40			*****	Deflection	in Inches.	
4-0	2-4	2.9	2.5			100	11111111111	3 - 242 - 37 - 37	
2:7	2-3	2-0	1.7			100 150			
2.0	1+7	1-4	2.2			200	70	9	10
1.0	1-4	1.2	1.0			250	10		10
*86	1:02	1-21	1-40			*****	Deflection	in Inches.	
4-0	9+4	2.9					District State of the last	· · · · · · · · · · · · · · · · · · ·	
2.7	2.3	1-9				100			
2.0	1 - 7	1-4				150 200	0.0	100	100
1.6	1:4	1:2				250	81	8	11
+97	1-16	1-36				400	Deflection	in Inches.	
		-					a chicotron	an anches.	
2-3	2-8	2 - 4	100			100			
1.7	214	1-2	100			150	200		1990
1+3	1:1	1-0	YES			200 250	65	8	12
197	1-16	1-36	100000	Lacross.	e Str	200	Deflection	in Inches	
22	1620		CAPPE .		110000	.,	200000000000000000000000000000000000000	in inches,	
2 - 7	2 - 3					100			
1.4	1.0	100				150	200	434	
1:1	-9	97	FE			200	65	7	13
1+00	1-02					250	Deflection	in Inches	
		100000	100000	1.7.7.8.8.8			Deliconon	in inches,	
2-4	2.0		1	57	75	100			
1.0	1-3	30	200	1	38	150			
-9	-8	1000	2.	4		200	58	7	14
1-09	1+32	Colon .	1000	23200	24200	250	Deflection	to Took or	
	-						Denection	in inches.	
-	-	_	-	-					

Greatest distance between centres of floor beams so that the bending stress on beam will not exceed its maximum safe load. Figures in small type denote that the beams so placed will deflect more than $\frac{1}{3\cdot 0}$ of an inch for each foot of span.

BER.	жу	ARD,	FT.	3	LENGT	H OF S	PAN I	N FEET	. 1
Снакт Мумвев.	SIZE OF BEAM IN INCHES.	r PER Y	LOAD PER SQ. OF FLOOR, LBS.	10	12	14	16	18	20
Сная	SIZE	Wеюнт Рев танр, двя.	LOAD	Dis		BETW.			OF
-			100	8.4	5.8	4.3	3 - 3	2.6	2.1
221	20	-	150	5.6	3.9	2.8	2 . 2	1-7	1:4
15	6	50	200	4.2	2.9	2 - 1	1 - 6	1.3	1.0
	Doffortion	in Inches.	250	3.3	2.3	1.7	1.3	1.0	1 - 07
	Denection	in inches,	*****	.27	.38	02	7.60	201	1:07
			100	7.5	5.2	3-8	2 . 9	2:3	1.9
			150	5.0	3.5	2+5	1.9	1 - 5	1-2
16	6	40	200	3.7	2.6	1.9	1.5	1-2	• 9
	The state of the		250	3.0	2.1	1.5	1-2	. 9	.7
	Deflection	in Inches.	*****	.27	.38	-52	- 69	*87	1.07
			100	5.0	3-5	2-6	1+9	1-5	1.3
		No.	150	3.3	2.3	1.7	1.3	1.0	.0
17	5	34	200	2.5	1.7	1-3	1.0	1.8	. 6
	-		250	2.0	1-4	1.0	+8	-6	*5
	Deflection	in Inches.		.32	+46	+63	+89	1+04	1:29
			100		3 - 2	2:4	1+8	1+4	1.2
			150	4.7 3.1	2 - 1	1.6	1+2		0.8
18	5	30	200	2.3	1 - 6	1 - 2	-0	-7	+4
100	200	322	250	1.9	1-3	1-0	7	- 6	*5
	Deflection	in Inches.		.32	•46	:63	*82	1:04	1-29
		1		-	200	200	1	1000	K.
1.			100	3-6	2.5	1.8	1.4	1.1	- Ann
19	4	28	150 200	1.8	1.2	-9	-7	-6	1
4.07	3.60	640	250	1.4	1:0	+7	- 6	*4	1.25
	Deflection	in Inches.		•40	-50	+19	1.03	1-31	100
				2.5					
			100	2-4	1.7	1.2	-9	-7	j. Irra
20	130	40 F	150	1.6	1-1	*8	-6	-5	1
20	4	18.5	250	1.2	-7	* 0	-6	-3	1773
	Deflection	in Inches.	200	•40	-58	-70	1-03	1.31	1
	Democratic	All Allondo.	****	000		10000			100
			100	2.0	1.4	1.0	*8	24.8	Tion.
Total .			150	1.3	- 9	•7	• 5	200	13-2
21	3	23	200	1.0	-7	*5	*4	307	377
	Deflection	in Inches.	250	+53	-77	1+05	1-37	31	3.75
	Denection	in Inches.		100	- 124	4100	4.44	Ship	10111
	15		100	1-6	1+1	0-8	-6	100	2000
	1	3000000	150	1-1	.7	+5	+4	207	1
22	3	17	200	*8	- 6	-4	- 3	900	100
			250	-6	14	-3	-2	1633	E 375
	Deflection	in Inches.		. 98	•77	1.05	1+37	3272	1
-								1 3	

TIE RODS FOR BEAMS SUPPORTING BRICK ARCHES.

The horizontal thrust of Brick arches is found as follows:

 $\frac{1.5 WL^2}{R}$ = pressure in lbs. per lineal foot of arch.

W = Load in lbs. per square foot.

L =Span of arch in feet

R =Rise in inches.

Place the tie rods as low through the webs of the beams as possible, and spaced so that the pressure of arches as obtained above will not produce a greater stress than 15,000 lbs. per square inch of the least section of the bolt.

Example.—The beams supporting an arched brick floor are five feet apart, and the rise of the arches is six inches. The total weight of floor and load equals 150 lbs, per square foot.

Then $\frac{1.5 \times 150 \times 25}{6} = 937.5$ lbs. pressure per lineal foot of

arch. If one-inch screw bolts are used which have an effective section of t_0^6 square inches. Then $0.6 \times 15,000 = 9,000$ lbs. which is the greatest load the bolt should be allowed to sustain, and $\frac{9,000}{937.5} = 9.6$ feet = greatest distance apart of the bolts, or in

same manner we would find 5.3 feet, if 7 inch tie rods are used.

Ordinarily it will be found necessary to limit the spacing of the tie rods to avoid excessive bending stress on the outer beams of the floor, or to prevent this bending stress being transferred to the walls of the building.

The ability of the outer beams to resist the horizontal bending action caused by the pressure of the arches is determined as follows:

LATERAL STRENGTH OF FLOOR BEAMS.

The resistance to bending of any I Beam or Channel bar, for a force acting at right angles to the web, or in the direction of the flanges,

$$W = \frac{10 \, I}{LF}$$
 for I Beams.

$$W = \frac{81}{LF}$$
 for Channels.

W = Safe distributed load in net tons.

L =Length in feet between supports.

F = Width of flange in inches.

I = Moment of inertia, axis coincident with web, see col. viii., pages 92-101.

The above gives results which have been proved by experiment not to exceed one-third the ultimate strength of the beams. The formulæ given properly apply to beams secured at each end only. If the beam is of considerable length requiring supports at several points, it can be considered as continuous (see page 75), and the formulæ become,

$$W = \frac{15I}{LF}$$
, for I Beams.

$$W = \frac{12I}{LF}$$
 for Channels.

Example.—A 9-inch 70 lb. I Beam forming the outer support for an arched brick floor has the tie rods at intervals of 6 feet. What evenly distributed horizontal pressure will it safely resist? I=5.6 (see col. viii., page 92), $F=4\frac{1}{8}$ inches (see col. C, page 2). Then $W=\frac{15\times5.6}{6\times4\frac{1}{8}}=3.4$ tons or 1,130 lbs. per lin-

eal foot of arch.

Knowing the amount of the load W and requiring the distance L. Above equation becomes $L^2 = \frac{15I}{W^1E^1}$ in which $W^1 = \text{pressure}$

sure or load on beam per lineal foot.

Example.—An 8" 43 lb. channel bar forms the end support for a system of brick arches having a span of 4 feet and 4 inches rise. How closely ought tie rods to be placed so that the channels will not be overstrained? The horizontal thrust per lineal

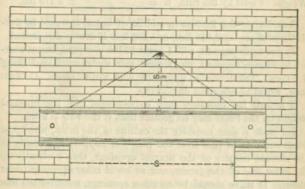
foot of arch = $\frac{1.5 \times 150 \times 16}{4}$ = 900 lbs. or .45 tons. I = 2.17. $F = 2\frac{9}{15}$.

$$L^2 = \frac{12 \times 2.17}{.45 \times 2.22}$$
 or $L = 5$ feet.

It will generally be found that an angle bar makes a better and more economical support for the arches on the side walls than either an I beam or channel,

The resistance to bending of an angle is readily found by the rule given on page 69.

 $W = \frac{.93AD}{L} = ext{safe}$ distributed load for a non-continuous beam.


 $W = \frac{1.4 AD}{L} =$ safe distributed load for a continuous beam.

And as before $L^2 = \frac{1.4AD}{W^1}$. A being the sectional area in square inches, and D the width or size of the angle in inches,

Applying this rule to the last example, and considering the 8" channel replaced by a $4" \times 4" \times \frac{1}{2}"$ angle whose area = 3.75 square inches.

$$L^2=rac{1.4 imes3.75 imes4}{.45}=46.6$$
 or $L=6.8$ feet between centers

of bolts. Stress on bolts $900 \times 6.8 = 6{,}120$ lbs. To resist this ξ'' would be the proper diameter of the screw.

BEAMS SUPPORTING BRICK WALLS.

If the wall has no openings and the bricks are laid with the usual bond, the prism of wall that the beam sustains will be of a triangular shape, the height being one-fourth of the span. Owing to frequent irregularities in the bonding, it is best to consider the height as one-third of the span.

The weight of brick work for each inch of thickness, is about 10 lbs. per square foot. Therefore the weight of the triangular mass of brick that the beam supports is found as follows:

$$span \times \frac{span}{3}$$
 in feet

 $span \times \frac{span}{3}$ in feet \times 10 times the thickness of the wall in inches

= weight in lbs.; or reducing above to its more concise form, $W = \frac{10ts^2}{6}.$

W = Weight in lbs. supported by the beam.

t = Thickness of wall in inches

s = Span of beam in feet.

The greatest bending stress at the center of the beam, resulting from a brick wall of above shape, is the same as that caused by a load one-sixth less concentrated at the center of the beam.

Example.—What beam will be required to span an opening of 16 feet, and carry a solid brick wall 8 inches thick, the beam not to be strained more than one-third of its ultimate strength?

Weight of wall by the rule.
$$W = \frac{10 \times 8 \times 256}{6} = 3{,}413 \text{ lbs.}$$

Considering the load as in middle of beam, it would be fivesixths of above = 2,845 lbs., or 5,690 lbs. if evenly distributed.

By our table page 43, a 7" I beam 52 lbs. per yard, comes nearest to what is required, its greatest safe distributed load being 3.5 tons. The deflection under this load will be about .45 of an inch, found as described on page 89.

If a wall has openings such as windows, etc., the imposed weight on the beam may be greater than if the wall is solid.

For such a case consider the outline of the brick, which the beam sustains, to pass from the points of support diagonally to the outside corners of the nearest openings, then vertically up the outer line of the jambs, and so on if other openings occur above. If there should be no other openings, consider the line of imposed brick work to extend diagonally up from each upper corner of the jambs, the intersection forming a triangle whose height is one-third of its base, as described at beginning.

APPROXIMATE FORMULÆ FOR ROLLED IRON BEAMS.

The following rules for the strength and stiffness of rolled iron beams of various sections are intended for convenient application in cases where strict accuracy is not required.

The rules have been derived from the authoritative formulæ. Those for rectangular and circular sections are correct, while those for the flanged sections are limited in their application to the standard shapes as given in our tables. They will be found to give results which have been proved by experiment to be sufficiently accurate for practical purposes. When the section of any beam is increased above the standard minimum dimensions, the flanges remaining unaltered, and the web alone being thickened, the tendency will be for the ultimate load as found by the rules to be in excess of the actual, but within the limits that it is possible to vary any section in the rolling, the rules will apply without any serious inaccuracy.

IN THE TABLES OF FORMULÆ

Column I, indicates the cross section of the beam.

Column II. gives the ultimate load applied at the center of a beam supported at each end.

Column III. gives the ultimate load uniformly distributed over a beam supported at each end.

Column IV. indicates the deflection under any load, w (not exceeding one-half the ultimate load) at the middle of the beam.

Column V. gives the deflection for a load uniformly distributed.

SAFE LOADS.

The ultimate load given in the tables is defined on page 32. One-third of this should be accepted as the greatest safe stationary load, and from one-fourth to one-sixth of the same when a moving or fluctuating load is imposed, according to the way it is applied, or the degree of stiffness required. See table, page 34.

10 A = Weight per yard in lbs.

The area, A, of any cross section of wrought iron may be obtained by dividing its weight per yard by 10; and vice versa, its weight per yard may be found by multiplying its area in square inches by 10; e.g. the area of a beam weighing 50 lbs. per yard is five square inches.

TABLE OF FORMULÆ FOR WROUGHT IRON BEAMS.

how.	A DEPLECTION IN INCHES.	DISTRIBUTED LOAD.	V.	4	$\triangle = \frac{wL^*}{48 \ AD^*}$	oč	$W = \frac{1.3 (AD - ad)}{L} W = \frac{2.6 (AD - ad)}{L} \triangle = \frac{wL^3}{(30 AD^p - ad^p)} \triangle = \frac{wL^3}{48 (AD^s - ad^p)}$	12.	$\triangle = \frac{wL^3}{37 \ AD^3}$	$\Delta = \frac{15.}{vL^{s}} \qquad \Delta = \frac{16.}{37 (AD^{s} - ad^{s})}$
nate as obtained be	A DEPLECT	LOAD IN MIDDLE.	IV.	39.	$\triangle = \frac{voL^3}{30 \ AD^2}.$	7.	$\triangle = \frac{voL^3}{(30\ AD^2 - ad^2)}$	т.	$\triangle = \frac{wL^3}{28AD^4}$	$\Delta = \frac{15}{23 \left(AD^s - ud^2\right)}$
e-third of the ultir	AD IN NET TONS.	DISTRIBUTED.	III.	6	$W = \frac{3.6 AD}{L}$	6.	$W = \frac{2.6(AD-ad)}{L}$	10.	$W = \frac{1.9 \ AD}{L}$	$W = \frac{14.}{L}$
or greatest safe load take one-third of the ultimate as obtained below.	W-ULTIMATE LOAD IN NET TONS.	IN MIDDLE.	II.	1.	$W = \frac{1.8 AD}{L}$	5.	$W = \frac{1.8 \left(AD - ad \right)}{L}$	9.	$W = \frac{0.95 AD}{L}$	$W = \frac{13.}{L} W = \frac{14.}{L} \frac{14.}{L}$
or greates	SHAPE OF SPORTON		COLUMN I.	Solid Rectangle.	- a	Hollow Rectangle.	- p - - a -	Sold Cylinder		Hollow Cylinder.

$\Delta = \frac{20}{54 \ AD^3}$	$\Delta = \frac{wL^{p}}{80 \ AD^{p}}$	$\Delta = \frac{vL^3}{88 \ AD^3}$	$\Delta = \frac{wL^3}{90 \ AD^2}$	hes.
$\Delta = \frac{19.}{84 \ AD^2}$	$28.$ wL^{2} $\Delta = 50 \ AD^{2}$	$\Delta = \frac{v L^3}{59 \ A L^4}$	$\Delta = \frac{wL^3}{56 \ AD^2}$	a = Interior area in square inches, $d = $ Interior depth in inches. $w = $ Working load in net tons,
$W = \frac{18}{L}$	$\Psi = \frac{22.}{L}$	$W = \frac{26}{L}$	$W = \frac{4.2 AD}{L}$	a = Interior d = Interior d = Interior w = Worki
$W = \frac{17.}{L}$	$W = \frac{21.}{L}$	$W = \frac{2AD}{L}$	$W = \frac{29}{L}$	n supports. n in square inches. hes.
EVEN-LEGORD ANGLE OR TEE.	CHANNEL BAR.	реск Веам. О	T BEAK.	L = Length in feet between supports. $A = Sectional area of beam in square inches.$ $D = Depth of beam in inches.$

EXAMPLES CALCULATED FROM PRECEDING TABLES,

SOLID RECTANGULAR SECTIONS.

Example 1.—To find the breaking load for any solid rectangular beam loaded in the middle,

C = Solid rectangular bar, 2 inches wide, 4 inches deep and 10 feet between supports. Then, from Formula No. 1, we have $\frac{1.3 \times 8 \times 4}{10} = 4.16$ tons breaking load in middle of beam.

Example 2.—To find the uniformly-distributed breaking load for same beam.

Formula No. 2. $\frac{2.6 \times 8 \times 4}{10} = 8.32$ tons breaking load uniformly distributed.

Example 3.—To find the deflections for above beam under the greatest safe loads; viz., one-third breaking loads.

Formula No. 3. $\frac{1.39 \times 1000}{30 \times 8 \times 16} = 0.36$ inches, for a load of 1.39 tons in middle.

Formula No. 4. $\frac{2.77 \times 1000}{48 \times 8 \times 16} = 0.45$ inches, for a load of 2.77 tons distributed.

HOLLOW RECTANGULAR SECTIONS.

Example 4.—To find the breaking loads for any hollow rectangular beam supported at both ends.

Let C be a hollow rectangular section, 4 inches wide, 8 inches deep, external dimensions; 3 inches wide, 6 inches deep, internal dimensions; 15 feet between supports.

Formula No. 5. $\frac{1.3[(32 \times 8) - (18 \times 6)]}{15} = 12.83 \text{ tons, break-}$

ing load in middle; and multiplying this result by 2, we have 25.66 tons for the breaking load uniformly distributed.

Example 5. To find the deflection of this beam with three tons in middle; also with six tons distributed.

Formula No. 7. $\frac{3 \times 3375}{30 \left[(32 \times 64) - (18 \times 36) \right]} = 0.24$ inches deflection with three tons in middle,

Formula No. 8. $\frac{6 \times 3375}{48 \left[(32 \times 64) - (18 \times 36) \right]} = 0.3$ inches deflection with six tons distributed.

SOLID AND HOLLOW CYLINDERS.

The preceding examples for rectangles will apply to the circular sections by merely substituting the proper co-efficients as given in Formulæ 9 to 16 inclusive.

EVEN-LEGGED ANGLES AND TEES.

Example 6.—To find the breaking loads for an even-legged angle or tee, used as a beam supported at both ends.

Weight, 37 lbs. per yard or 3.7 square inches section; 12 ft. between supports. Formula No. 18.
$$\frac{2.8 \times 3.7 \times 4}{12} = 3.45$$

tons breaking load uniformly distributed, or 1.78 tons breaking load in the middle.

Example 7.—To find the deflection of the above beam under a load suspended from the middle of the beam.

Load = 1500 lbs. = .75 tons.

Formula No. 19. $\frac{.75 \times 1728}{34 \times 3.7 \times 16} = .64$ inches deflection.

Theoretically an angle has the same transverse strength as a tee of the same dimensions. But owing to the difficulty of disposing the load as symmetrically on the angle as on the tee, the latter shape generally yields better results by experiment.

CHANNEL BARS.

Example 8.—To find the breaking loads for a channel bar used as a beam supported at both ends.

Channel bar 9 inches deep, 70 pounds per yard; 7 square inches section, 14 feet between supports.

Formula No. 22. $\frac{3.8 \times 7 \times 9}{14} = 17.1$ tons distributed

breaking load, or half this weight will be the breaking load in the middle.

Example 9.—To find the deflection of above beam under greatest safe distributed load.

 $\frac{17.1}{3} = 5.7$ tons greatest safe distributed load,

Formula No. 24. $\frac{5.7 \times 2744}{80 \times 7 \times 81} = 3.5$ inches deflection.

I BEAMS.

Example 10.—To find the breaking loads for an I beam, loaded in the middle and supported at both ends.

A 15" I beam, 200 lbs. per yard, 20 square inches area, 20 feet between supports. Formula No. 29. $\frac{2.1 \times 20 \times 15}{20}$ = 31.5 tons middle breaking load; one-third of which (10.5 tons) will be greatest safe load in middle, or twice this (21 tons) equals greatest safe load distributed.

Example 11.—To find the deflections for the same I beam under the above greatest safe loads.

Formula No. 31. $\frac{10.5 \times 8000}{56 \times 20 \times 225} = .33$ inches under a load of 10.5 tons in the middle.

Formula No. 32. $\frac{21 \times 8000}{90 \times 20 \times 225}$ = .41 inches under a load of 21 tons uniformly distributed.

Although the preceding rules for I beams and channels give results which are substantially correct for all the standard sec tions as ordinarily rolled, yet they are not strictly accurate, and not applicable to the heavier-built beams, whose flanges are much larger, relatively to the web, than is the case in the average rolled beams. For such cases, the following formula is

correct.
$$\frac{6.6 \ A' \ D' + 1.2 \ a' d'}{L}$$
 = breaking load in middle of beam.

A' = Area of one flange.

D' =Depth between centres of flanges.

a' =Area of web.

d' = Depth of web.

For example, a beam 20 inches deep, flanges 8" x 1", web \(\frac{1}{2}\)"

thick, 20 feet between supports,
$$\frac{6.6\times8\times19^{\prime\prime}+1.2\times4.5\times18}{20}=55 \text{ tons}$$

breaking load in middle of beam; whereas the Rule in Table for Rolled Beams would give a similarly placed load of

$$\frac{2.1 \times 20.5 \times 20}{20} = 43 \text{ tons.}$$

When the load is concentrated away from the centre of beam, the ultimate load will be to the load at centre as the square of half the span is to the product of the segments formed by position of load.

Example.—A beam 20 feet between supports has its load placed 5 and 15 feet respectively from each end; the breaking load at that point is to the calculated breaking centre load as 100 is to 75.

BEAMS HAVING NO LATERAL SUPPORT BETWEEN BEARINGS.

If beams are used without any support sideways, the tendency to fail, by lateral bending of the top flange, will increase with the length of the beam; and, in such cases, it is better to limit the application of the preceding rules to beams whose lengths do not exceed 20 times the width of the flange, gradually increasing the factor of safety for longer beams; so that, when

the beam reaches a length equal to 70 times the width of the flange, the greatest safe load would be about one-sixth of the calculated breaking load, or the proper factor of safety for the latter beam would be double that for the former. (See page 36.)

CANTILEVER BEAMS.

The application of the preceding rules to overhanging beams fixed at one end and free at the other, is best indicated by supposing a beam with both ends supported to be inverted, and the reaction of the supports considered as the positive load.

It is then evident that a beam, A C (see above illustration), both ends supported, will be strained with a middle load, W, in an equal manner to a cantilever, A B or B C, of half the length of A C and having a similar section, and bearing one-half the load $\left(\operatorname{or} \frac{W}{2}\right)$ at its end.

EXAMPLES FOR CANTILEVER BEAMS.

A rectangular bar, $6'' \times 2''$, built into a wall and projecting eight feet. For load concentrated at its end, take one-fourth the co-efficient in Table for Beams with both ends supported and load in middle. $\frac{1.3 \times 12 \times 6}{4 \times 8} = 2.9 \text{ tons}$

ultimate load. Deflection under one-third of above, or say ninetenths of a ton; substituting one-sixteenth of the co-efficient for

deflection when load is in middle. $\frac{9 \times 512}{1\frac{3}{8} \times 12 \times 36} = 0.56$ inches

deflection at end.

A 12-inch I beam, 15 square inches section, extends 10 feet beyond a rigid support. For a load evenly distributed, take one-fourth the co-efficient for a beam supported at both ends, bearing a distributed load.

 $\frac{1.05 \times 15 \times 12}{10}$ = 18.9 tons breaking load distributed.

For deflection under five tons distributed, substitute one-sixth of the co-efficient for deflection in Rule for Beams supported at both ends with load in middle. $\frac{5\times1000}{9.33\times15\times144}=0.25\,\mathrm{inches}$ deflection at end of beam.

CONTINUOUS BEAMS.

When a beam is continuous over several supports, or when both ends are as rigidly secured as is necessary at the fixed ends of a cantilever, the beam is practically in the same condition as a non-continuous beam of shorter span.

When the load is applied at the middle of the span, the ultimate breaking load of a continuous beam is equal to twice that for a non-continuous beam similarly loaded and of the same length and section.

When the load is evenly distributed, the ultimate load for a continuous beam is 1.5 times greater than the ultimate load for a non-continuous beam under the same conditions and of the same length and section.

The deflection of a continuous beam is one-fourth that of a non-continuous beam when similarly loaded.

To find the strength and stiffness of continuous beams, take the rules given for non-continuous beams and alter the co-efficients in the proportions stated.

EXAMPLES FOR CONTINUOUS BEAMS.

A 4-inch I beam of three square inches section is continuous over supports twenty feet apart. To find the greatest safe load uniformly distributed, and corresponding deflection, take 1.5 times the co-efficient for a similar non-continuous beam. $\frac{6.3\times3\times4}{20}=3.78 \text{ tons breaking load, or } 1.26 \text{ tons safe distributed load.}$ For deflection, take four times the co-efficient for the same class of non-continuous beam. $\frac{1.26\times8000}{360\times3\times16}=0.58 \text{ of an inch deflection.}$

For a continuous beam bearing load in middle, take twice the

co-efficient given for the strength of a similarly loaded non-continuous beam, and, for deflection of the former, take four times the co-efficient given for the latter beam.

It will be observed that these rules apply only to the intermediate spans of continuous beams, as, owing to the failure of continuity at one end of each outer span, the conditions are altered. If, however, the outer ends of a continuous beam overhang the end-supports from one-fifth to one-fourth of a span, and bear the same proportion of load as the parts between supports, then the outer spans may be of same length as the intermediate spans, subject to the same load, and the strength and stiffness are determined by the same rules; otherwise, the outer spans ought to be only four-fifths of the length of the intermediate spans when the load is distributed, or three-fourths of the same when the load is concentrated in the middle; or, if the lengths of spans are all alike, the loads on outer spans ought to be reduced in the same proportion.

The following table exhibits the relative proportions of strength and stiffness existing between the various classes of beams when they have the same lengths and uniform cross sections; the deflections being comparative figures for the same loads.

KIND OF BEAM.	Breaking load as	Deflection as
Fixed at one end—loaded at the other	4	16
Fixed at one end—load evenly distributed	1/2	6
Supported at both ends—load in middle	1	1
Supported at both ends—load evenly distributed	2	5/8
Continuous beam—load in middle	2	1/4
Continuous beam—load evenly distributed	3	35

The breaking load and deflection of a beam supported at both ends and loaded in the middle have been taken as the units in the preceding table, and—the proportional strength and stiffness of similar beams under different conditions given—to find the proper co-efficient for estimating the strength and stiffness of the beam required, it is necessary to alter, in the given proportions, the co-efficient for the same beam when supported at both ends and loaded in the middle.

CHANGES OF CO-EFFICIENTS FOR SPECIAL FORMS OF BEAMS.

For beams of the character denoted in list below, change the co-efficients in table of formulæ, pages 68-69, in the ratio given. For concentrated loads and distributed loads respectively, change the co-efficients given for the same kinds of loads in the table.

KIND OF BEAM.	CO-EFFICIENT FOR ULTIMATE LOAD.	CO-EFFICIENT FOR DEFLECTION.
Fixed at one end, loaded at the other.	One-fourth (\frac{1}{4}) of the co-efficient of table.	One - sixteenth $\binom{1}{16}$ of the coefficient of table.
Fixed at one end, load evely distributed.	One-fourth (1) of the co-efficient of table.	
Both ends rigidly fixed, or a continuous beam, with load in middle.	Twice the co-effi- cient of table.	Four times the co-efficient of table.
Both ends rigidly fixed, or a continuous beam, with load evenly distributed.	(1½) times the co-	co-efficient of

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

L =Length of beam.

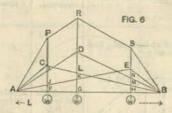
W = Total load, E = Modulus of elasticity. I = Moment of inertia.

FORM OF BEAM AND POSITION OF LOAD.	Maximum bending moment,	Maximum shearing stress.	Deflection.
Beam fixed at one end loaded at the other: FIG. 1 Draw triangle having $A = WL$. Vertical lines give bending moments at corresponding points on the beam.	at point of support = WL.	at point of support = W.	at end of beam $=\frac{WL^3}{3EI}$.
Beam fixed at one end, load uniformly distributed: FIG. 2 Draw parabola having $A = \frac{WL}{2}$ Ordinates give bending moments at corresponding points on the beam.	at point of support $= \frac{WL}{2}.$	at point of support = W.	at end of beam $\frac{WL^2}{8EI}$.
Beam supported at both ends, loaded in the middle : FIG. 3 FIG. 3 Draw triangle having $A = \frac{WL}{4}$. Vertical lines give bending moments at corresponding points on the beam.	at middle of beam $= \frac{WL}{4}.$	at point of support $= \frac{W}{2}.$	at middle of beam $WL^3 = 48EI$

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

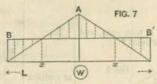
W = Total load. L = Length of beam.

E = Modulus of elasticity.I = Moment of inertia,


FORM OF HEAM AND POSITION OF LOAD.	Maximum bending moment.	Maximum shearing stress.	Deflection.
Beam supported at both ends, load aniformly distributed:	at middle of beam $= \frac{WL}{8}.$	at point of support $= \frac{W}{2}$.	at middle of beam $\frac{WL^3}{76.8EI}$.
Beam supported at both ends, load concentrated at any point: FIG. 5 Draw triangle having $A = \frac{Wab}{L}$.	at position of load $= \frac{Wab}{L}.$	at point of support next to $a = \frac{Wb}{L}$. at point of support next to $b = \frac{Wa}{L}$.	at position of load $= \frac{a^2b^2W}{3EIL}.$
Vertical lines give bending moments at corresponding points on the beam.	and tiologi	OF THE	

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

W = Total load. L = Length of beam.


E = Modulus of elasticity. I = Moment of inertia.

Beam supported at both ends, with concentrated load at various points:

Draw (by 5) the triangles having vertices at C, D and E, the verticals representing bending moments for loads w^1 , w^2 and w^3 , respectively. Extend FC to P, GD to R, and HE to S, making each long vertical equal to the sum of the bending moments corresponding to its position. That is, FP = FC + FI + FJ. GR = GD + GL + GK. And HS = HE + HN + HM. Verticals drawn from any point on the polygon, APRSB to AB, will represent the bending moments at the corresponding points on the beam.

Beam rigidly secured at each end, and loaded in the middle. Or the intermediate spans of a continuous beam, equally loaded in the middle of each span:

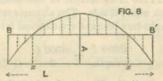
Points of contraflexure at x, x, where Moment = θ . Distance of x from either support = $\frac{L}{4}$. Equal moments at middle and ends = $\frac{WL}{8}$. Deflection WL^3

$$=\frac{WL^3}{192EI}$$

Draw a triangle having $A = \frac{WL}{4}$, and at ends draw verticals BB', each $= \frac{WL}{8}$, join BB'. The vertical distances between BB' and the sides of the triangle, represent the moments for corresponding points on the beam.

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTIONS.

W = Total load.


E = Modulus of elasticity.

L = Length of beam.

I = Moment of inertia.

Beam rigidly secured at each end with load uniformly distributed.

Or the intermediate spans of a continuous beam bearing a uniformly distributed load on each span:

Points of contraflexare x, x, where moment = 0. Distance of x from either support = .21L.

Draw parabola having $A=\frac{WL}{8}$. Draw verticals B, B', each equal to $\frac{WL}{12}$, join BB'. The vertical distances between BB' and the curve of the parabola represent the moments for corresponding points on the beam.

Maximum moment at points of support = $\frac{WL}{10}$.

Moment at middle of beam = $\frac{WL}{24}$.

Maximum deflection at middle of beam = $\frac{WL^2}{307.2EI}$

BEAMS FOR SUPPORTING IRREGULAR LOADS.

When a beam has its load unequally distributed over it, the proper size of the beam can be determined by finding the maximum bending moment and proportioning the beam accordingly. Equilibrium is obtained when the bending moment is equal to the moment of resistance. That is, when the external force multiplied by the leverage with which it acts is equal to the strength of the material in the cross section of the beam multiplied by the leverage with which it acts. The ultimate moment of resistance for a wrought-iron beam of symmetrical form is

$$\frac{42000 I}{\frac{1}{2} \text{ depth}}$$
 or $\frac{84000 I}{d}$.

d = depth of beam in the direction in which the force acts.
 I = the moment of inertia about the axis at right angles to the direction of the force.

The greatest safe moment of resistance as adopted in our tables is one-third (4) of above,

$$M = \frac{28000 \ I}{d}$$
 or $\frac{M}{28000} = \frac{I}{d}$.

The co-efficient to be changed according to the factor of safety desired. The rule would thus be $\frac{\text{Moment}}{\text{Co-efficient}} = \frac{I}{d}$.

RULE FOR BEAMS BEARING IRREGULAR LOADS.

Find by the methods described in preceding article the maximum bending moment in inch-lbs, for the loads. Divide the moment by the proper co-efficient as described above. Find in the tables, pages 92-96, a beam whose inertia divided by its depth is not less than this quotient; which will be the beam required.

In some instances the maximum bending moment can be most readily found by the use of diagrams, as described in the succeeding article.

When this is done use any convenient scale, making all loads

and all distances respectively of the same denominations. The maximum bending moment can then be measured to scale.

Example.—An I beam 8 feet long is to be fixed at one end and loaded at the other with 5,000 lbs. and carrying also an evenly distributed load of 8,000 lbs. What size of beam should be used so as not to be strained over one-third of its ultimate capacity?

Moment for end load
$$= 5,000 \times 96 = 480,000$$
 inch-lbs.

" " distributed load $= \frac{8,000 \times 96}{2} = 384,000$ "

Total $= 864,000$ "

For one-third (4) of ultimate the co-efficient will be

$$\frac{84,000}{3} = 28,000.$$

$$\frac{864,000}{28,000} = 30.84 = \frac{I}{d}.$$

By Column VII., page 92, for a 12" 168 lb. I beam, I= 371.98, which divided by 12 = 30.99; or a 15" 145 lb. I beam, I= 34.7. The latter beam would be stronger and lighter.

In the following example the maximum bending moment can be very readily obtained by a diagram as described in Fig. 6 of the preceding article.

Example.—A beam 20 feet long between supports, will carry three loads, which we will call A, B, and C.

A = 4,000 lbs. and is 4 feet from one end of the beam. C = 6,000 lbs. and is 3 feet from the other end of the beam. B = 5,000 lbs, and is 5 feet from C and 8 feet from A.

What beam is best to use for above, not strained over one-fourth of the ultimate? Describe the diagram as per Fig. 6, when the following bending moments in ft.-lbs. will be obtained.

At point A	At point B	At point C		
For load A., 12,800 " B., 8,000 " C., 3,600	For load B 24,000 A 10,800 C 6,400	For load C 15,300 " B 8,900 " A 2,400		
Total24,400	Total 41,200	Total 26,600		

The maximum moment at B = 41,200 ft.-lbs, or 494,400 inchlbs. For one-fourth of ultimate strength co-efficient = 21,000.

$$\frac{494,400}{21,000} = 23.5 = \frac{I}{d}.$$

By table on page 92, for a 12" 120 lb. I beam $\frac{I}{d} = 22.74$, being slightly deficient. A 12" 125 lb. I beam will be ample.

If more lateral stiffness is required than a single beam affords, use a pair of channels separated and braced horizontally. Two 12" 75 lb. channels $\frac{I}{d} = 23.6$, would suit above purposes.

Note.—The tables of elements, except where otherwise speci-

NOTE.—The tables of elements, except where otherwise specified, are calculated for dimensions in inches and weights in lbs., consequently in examples of above character it is necessary to obtain bending moments in inch-lbs.

BEAMS SUBJECT TO BOTH BENDING AND COM-PRESSION.

When a beam is subjected to bending action and simultaneously has to act as a strut by resisting compression, the stress of the fibres of the beam in tension will be relieved and those in compression correspondingly augmented.

No general rules can be given for such conditions, as every particular case requires its own proper determination. The following methods, though not strictly correct, will give safe results for some simple forms of trussed girders, etc.

(1.) When the beam is subject to compression but is so confined laterally that it cannot fail by bending like a strut.

Rule.—Find the section of beam required to resist bending. then allowing from 10,000 to 15,000 lbs. per square inch of section for the compression, according to the factor of safety used, add the area so found to the first area, which will give the section of required beam.

Example.—What I beam is required to span an opening of 30 feet, to be trussed 3 feet deep between centres in the manner illustrated in Fig. 6, page 165? (this trussed beam carries a brick wall which weighs 500 lbs. per lineal foot, but which braces the beam from yielding sideways), the beam to be proportioned for a safety factor of four ?

Here the beam can be considered as composed of two separate beams, reaching from the centre to each end, each being 15 feet long, carrying a distributed load of $15 \times 500 = 7,500$ lbs., and subject to a compression resulting from the trussing of 18,750 lbs. Our approximate tables for beams, on page 69, will be found most convenient for such calculations as the above, and are sufficiently accurate for practical purposes. For I beam,

div ling co-efficient by 4 we have $\frac{1.05 AD}{L}$ = safe distributed loaa = 3.75 tons.

By trial we find for an 8" 65 lb, I beam $\frac{1.05 \times 6.5 \times 8}{15} = 3.64$, or nearly correct.

For the compression, allowing 12,500 lbs. per square inch, we require 11 square inches. Therefore an 8" I beam, 8 square inches section, will be safe.

If desirable to use a deeper, lighter beam, try a 9-inch beam 75 lbs. per yard; allowing 11 square inches for the compression, we

have a section of 6 square inches remaining; $\frac{105 \times 6 \times 9}{15} = 3.78$.

The latter beam being both stronger and lighter than the 8inch.

(2.) When the beam is subject to compression and is liable to fail like a horizontal strut by lateral flexure.

Rule.—Consider first the resistance as a strut and then make the necessary increment of section to resist the bending stress, remembering that if the addition is made to the flanges then only flange stresses have to be considered, but if the increased

area is obtained by thickening the web of I beam or channel sections, then the additional area so obtained should be treated as a rectangular section whose thickness is the amount added to the web, and whose depth is the depth of the beam.

Example.—A trussed girder of the form exhibited in Fig. 8, page 165, is a box section made up of two channels separated with flanges outward, and plated top and bottom. The whole girder is 30 feet long and is loaded 1,000 lbs. per lineal foot. The compression resulting from the trussing is 25,000 lbs. The structure has no lateral bracing. What will be safe proportions for it, the stresses not to exceed \(\frac{1}{2} \) of the ultimate ?

It is evident that we have to consider it as a flat-ended strut 30 feet long liable to fail horizontally, and also as a series of 3 beams each 10 feet long and loaded with 10,000 lbs, evenly distributed. Trying 2 lightest 5" channels, each 2.27 square inches section, separated 5\frac{1}{2}" so as to be covered by 9" plates, we have (omitting the plates in this calculation,) the radius of gyration around vertical axis (see page 110) = 3,25 inch-

es, $\frac{b}{r} = 110$, one-fifth of ultimate (by Table I, page 118) = 5,600 lbs. per square inch, or 5,600 \times 4½ = 25,200 lbs. safe resistance, which is ample. Now proportioning the plates to resist the bending strain we have maximum bend-

ing moments (see page 78), $\frac{120 \times 10,000}{8} = 150,000$ inch-lbs.

The plates act with a leverage equal to the depth of the channel, viz., 5"; $\frac{150,000}{5} = 30,000$ lbs. tension on top or compression on bottom plate, which, allowing for 10,000 lbs. per square inch, and allowing for loss by rivets, will require a plate $\frac{3}{5}$ " thick.

(3.) Taking the last example, if it was desired to form the section out of a pair of channels latticed top and bottom with no cover plates, we would have to consider the section added to the channels (being on the web alone), as a simple rectangular section. By the formula on page 69, approximate rules, we find that such a section only 5" deep would require a thickness of 3.8 inches, which is impracticable; we have therefore to use deep-

er and heavier channels. Trying 8" channels separated as before 54 inches, with flanges outward, and having radius of gyration for the pair around vertical axis = 3.4, $\frac{l}{r}$ = 106. Safe load

 $\frac{29,000}{5}$ = 5,800 lbs. per square inch. As the compression is 25,006 lbs., there is required 4.3 square inches for this purpose. formula 2, page 68, $\frac{.52 \times \text{area} \times 8}{10} = 5$ tons, from which is

found the area required to resist bending = 12 square inches. 12 + 4.3 = 16.3 square inches for 2 channels, or the heaviest 8

channels 80 lbs. per yard would be required.

By the same method we find 10" channels 68 lbs. per yard, will answer the purpose, or our lightest 12" channels 60 lbs. per yard, will exactly meet the requirements and be the lightest channel that can be used in the manner proposed for the purpose.

In cases where the load is concentrated at the truss points, there being no bending stress, the resistance as a strut has only to be considered, and when braced laterally the strut length is reduced to the distances between bracing.

ELEMENTS OF PENCOYD STRUCTURAL SHAPES.

In the following tables, pages 88, 91, various properties of rolled structural iron are given, whereby the strength or stiffness of any shape can be readily determined.

SYMBOLS.

I = Moment of inertia.

E = Modulus of elasticity.

W =Load on beam in net tons.

w = Load on beam in pounds.

R = Radius of gyration.

A = Total area of cross section.

L - Length between supports in feet.

l = Length between supports in inches.

Column I.—Chart number.

Columns III. to VI.-Details of the sectional areas in square inches. The flanges being taken the entire width of section, and the web considered between the flanges.

Columns VII, and VIII.—The moments of inertia, respectively, at right angles to and parallel with web of beam. In all cases the axes referred to pass through the centre of gravity of the cross-section, as illustrated at the head of each table.

Columns IX. and X.—The radii of gyration in inches = $\sqrt{\frac{I}{A}}$.

When R^2 is required, simply divide the moment of inertia by the area of the section. The values of I and R have all been carefully calculated by the formulæ given on pages 102-111. The tables give the value of I for the minimum section of each particular shape, but the section can be increased in area up to the maximum limit given in the descriptive tables, pages 2-12, and the value of I can be readily obtained for any enlarged section as described on pages 106-108.

Column XI.-Co-efficient for the greatest safe load evenly distributed over the beam. This is the calculated load in net tons for a beam of the given size and section, one foot long, and is derived from the formula $\frac{Wl}{8} = \frac{7I}{\frac{1}{2} \text{ depth of beam}}$, which gives re-

> sults averaging one-third of the ultimate strength of the beam. The safe distributed load for any beam of the size and section given in Columns II. to VI, can be found by dividing the corresponding co-efficient in column XI. by the length of the beam between supports, in feet.

Example.—The greatest safe load that can be evenly distributed on a beam 10 inches deep having a sectional area of 9.04

square inches and spanning 12 feet is $\frac{138.4}{12}$ = 11.5 tons.

If the load is concentrated in the middle of the beam, onehalf this result, or 5.75 tons, is the greatest safe load.

If the sectional area of the beam is increased, find the moment of inertia for the increased section as described on page 106, and

the co-efficient for a distributed safe load = $\frac{9_3^1I}{\text{depth of beam}}$.

Example.—The 10" beam taken in last example, 9.04 square inches area, is increased to 10.6 square inches section. The inertia of enlarged section is found as per formulæ on page 106, $1.56 = (\text{increase of area}) \times 100 = (\text{square of depth}) = 13. + 148.3$

(inertia, col. vii., page 92,) = 161.3 or moment of inertia desired. Co-efficient for safe load = $\frac{161.3 \times 9\frac{1}{5}}{10}$ = 150.5. Dividing this

co-efficient by the span in feet (12), gives $\frac{150.5}{12} = 12.54$ tons as the maximum safe load distributed, or 6.27 tons in the middle of the beam.

Lateral Flexure,—It will be noted that when subjected to such loads as above obtained, the beams are presumed to be secured from bending sideways, and it will be safest to limit the application to beams secured laterally at intervals, in length not exceeding twenty times the width of flange. See preface to tables of safe loads for beams, page 36.

Columns XII. and XIII.—Deflections.

The figures in the tables are the calculated deflections for beauts of the sizes and sections given, one foot long between bearings and supporting a load of one ton. They are derived by means of the formula $\frac{wl^3}{48EI}$ = deflection for load in middle of

beam. $\frac{vol^3}{76.8EI}$ = deflection for load evenly distributed.

The modulus of transverse elasticity is assumed as 26,000,000 lbs. The elasticity of rolled iron is somewhat uncertain, it is frequently quoted as high as 29,000,000 lbs., and experiments on bars of exceptionally stiff iron will often give results much in excess of this. But recent experiments on rolled beams show that 26,000,000 lbs. is a fair average for this form of wrought iron. See page 19.

The deflection of any beam of the sectional area given in cols. IV. to VI., and loaded within the elastic limit, is found by multiplying the corresponding co-efficient in cols. XII., XIII., by the weight in tons and the cube of the length in feet.

Example.—A 13" I beam, 11.95 square inches section, 13 feet between supports, carries an evenly distributed load of 15 tons. Deflection = $.0000063 \times 15 \times 13^3 = .207$ inches.

If the sectional area of this shape is increased, the value of 1 for the enlarged section must be found as described in previous example. By reducing the formulæ for deflection to their simplest forms we obtain:

 $\frac{WL^{3}}{362I}$ = deflection in inches for load in middle.

 $\frac{WL^z}{580I}$ = deflection in inches for distributed load.

Example.—The 12" beam in previous example 11.95 square inches area, is increased to 13.8 square inches. The inertia of enlarged section is found as per formula, page 106.

 $\frac{1.85 \text{ (increase of area)} \times 144 \text{ (square of depth)}}{12} = 22.2 + 272.86$

inertia, col. vii., page 92, = 295.06, or moment of inertia desired.

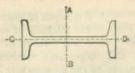
Deflection = $\frac{15 \times 13^3}{580 \times 295.06}$ = .19 inches.

For beams of the same depth, but of any sectional area, the deflection remains uniform so long as the loads bear a uniform ratio to the strength of the beam. For this reason, the single column of deflections applies to any section of the same size of beam, in the tables of safe loads.

Column XIV .- Maximum load in tons.

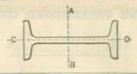
There is a limit in the length of beams at which the rule for safe loading ceases to apply. This point is reached when the load attains the safe limit of resistance offered by the web of the beam against crippling.

The maximum load can be placed on any beam shorter than the length indicated, but must not be exceeded. It is obtained by Gordon's formula, taking 6 tons per square inch as the safe resistance of wrought iron to crushing.


$$W = \frac{6dt}{1 + \frac{l^2}{3000t^2}}$$
 $d = \text{depth of beam.}$ $t = \text{thickness of web.}$ $t = d \times \text{secant } 45^\circ (l^2 = 2d^2).$ which corresponds to the greatest safe load on a boundary of the second state.

Example.—An 8" 65 lb. beam has a maximum load of 10.46 tons, which corresponds to the greatest safe load on a beam of this section, 7.7 feet between supports, if the load is distributed, or 3.85 feet if the load is at middle of beam. If this shape is increased to 7½ square inches area, having a web ½" thick, then maximum safe load becomes

$$W = \frac{6'' \times 8'' \times 7_6''}{1 + \frac{128}{(3000 \times \frac{7}{16})^2}} = 17.2 \text{ tons.}$$


THE RESERVE AND DESCRIPTION OF REAL PROPERTY.

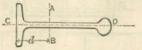
ELEMENTS OF PENCOYD BEAMS.

L	II.	III.	IV.	v.	VI.	VII.	VIII.	
CHART NUM-	Size	WEIG'T PER	AREAS	IN SQUAI	RE INS.	MOMENT OF INERTIA.		
BER.	INCHES.	YARD.	Flanges	Web.	Total.	Axis A. B.	Axis C, D,	
1	15	200	11.86	8.04	19.90	682.08	28.50	
2	15	145	8.97	5.58	14.55	521.19	16.91	
3	12	168	10.66	6.23	16.89	371.98	28.19	
4	12	120	7.42	4.53	11.95	272.86	12.22	
5	105	134	9.57	3.87	13 44	241.63	19.00	
51	101	108	7.33	3.50	10.88	195.42	12.45	
6	101	89	5.91	3.03	8.94	162.26	8.34	
7	10	112	7,23	3.94	11.17	173.58	10.64	
8	10	90	6.29	2.75	9.04	148.31	8.09	
9	9	90	6.15	2.92	9.07	118.81	8.44	
10	9	70	4.77	2.21	6.98	94.44	5.59	
11	8	81	5.58	2.56	8.14	83.93	7.23	
12	8	65	4.50	2.03	6.58	69.17	5.02	
13	7	65	4.17	2.41	6.58	49.78	4.15	
14	7	52	3.84	1.30	5.14	43.08	3.43	
15	6	55.50	4.19	1.28	5.47	33.26	4.32	
15	6	83.62	4.81	3.42	8.24	41.74	6.43	
16	6	40.00	2.90	1.06	3.96	24.59	2.42	
16	6	56.87	8.22	2.43	5.65	29.63	3.15	
23	6	115.50	9.21	2.34	11.55	63.24	19.14	
23	6	123.00	9.49	2.81	12 30	65.51	14.70	
24	6	90.00	6.89	2.06	9.00	51.43	11.79	
24	6	98.00	7.19	2.57	9.76	51.77	11.79	

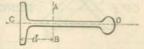
ELEMENTS OF PENCOYD BEAMS.

IX.	X.	XI.	XII.	XIII.	· XIV.	II.	I.
RADII OF C	SYRATION.	Co-efficient for Deplection. Load in Load Discourse Over Centre, tributed.			AXIMUM LOAD IN TONS,	Size in Inches.	CHART NUMBER.
Axis A. B.	Axis C. D.	SAF DISTI	Load in Centre.	Load Dis- tributed.	MAXIN	Size	NG
5.86	1.20	424.41	.0000041	.0000025	43.20	15	1
5.98	1.08	324.30	.0000058	.0000033	22.10	15	2
4.69	1.17	289.32	.0000074	.0000046	38.63	12	3
4.78	1.01	213.22	.0000101	.0000063	22.22	12	4
4.24	1.19	214.78	.0000115	.0000072	22.18	104	5
4.25	1.07	173.71	.0000142	.0000089	17.71	101	51
4.26	.97	144.23	.0000171	.0000107	13.35	101	6
3.94	.98	162.02	.0000159	.0000099	23.68	10	7
4.05	.95	138.43	.0000186	.0000116	13.18	10	8
8.62	.96	123.21	.0000232	.0000145	16.53	9	9
8.68	.89	97.94	.0000292	.0000183	9.94	9	10
2.21	.94	97.92	.0000329	.0000205	15.49	8	11
3.25	.88	80.70	.0000299	.0000249	10.46	8	12
2.75	.79	66.38	.0000546	.0000341	15.69	7	13
2.89	.82	57.44	.0000640	.0000400	6.17	7	14
2.89	.82	57.44	.0000640	.0000400	6.17	7	14
2.46	.88	51.74	.0000830	.0000520	7.75	6	15
2.25	.88	64.94	.0000661	.0000413	25 39	6	15
2.47	.77	38.25	.0001121	.0009701	5.25	6	16
2.28	.74	46.09	.0000932	.0000581	16.62	6	16
2.34	1.28	98.37	.0000432	.0000272	28.08	6	23
2.30	1.09	101.91	.0000421	.0000263	25.82	6	23
2.38	1.40	80.00	.0000537	.0000335	16.42	6	24
2.80	1.09	80.54	.0000533	.0000332	21.19	6	24

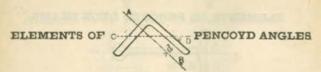
ELEMENTS OF PENCOYD CHANNELS.


-								
I.	и.	ш	IV.	v.	VI.	VII.	VIII.	
CHART NUM- BER.	Size IN Inches.	WEIG'T PER YARD.	AREAS	IN SQUA	RE INS.	MOMENTS OF INERTIA		
			Flanges	Web.	Total.	Axis A. B.	Axis C. D.	
30	15	148	6.50	8.36	14.86	451.51	19.05	
31	12	88.5	4.59	4.24	8.83	182.71	7.42	
32	12	60	2.87	3.07	5.94	123.71	3.22	
31	10	60	3.56	2.48	5.99	92.08	4.20	
85	10	49	2.67	2.22	4.89	73.91	2.33	
36	9	54	2.97	2.43	5.40	64.84	2.47	
37	9	37	1.81	1.91	3.73	43.65	1.31	
38	8	43	2.28	1.97	4.25	40.00	2.17	
89	8	30	1.34	1.62	2.96	28.23	1.06	
40	7	41	2.30	1.80	4.10	29.51	1.71	
41	7	26	1.38	1.26	2.64	18.46	.90	
42	6	88	2.04	1.25	3.29	18.37	1.46	
44	6	28	1.09	1.18	2.27	11.67	.59	
45	5	27.8	1.69	1.04	2.78	10.29	.86	
46	5	19	.91	.97	1.88	6.67	.37	
47	4	21.5	1.34	.81	2.15	5.16	.54	
48	4	17.5	1.02	.78	1.75	4.14	.41	
49	3	15	.86	.66	1.52	2.03	.39	
50	21	11.3	.69	.44	1.18	.80	.21	
51	2	8.75	.55	.33	.88	.48	.08	
58	15	106.0	5.63	4.81	10.44	351.56	13.08	
58	15	162.9	11.25	4.81	16.01	457.03	18.39	

ELEMENTS OF PENCOYD CHANNELS.


IX.	X.	XI.	XII.	XIII.	XIV.	XV.	п.	I.
		312		91-9				
RADII OF		TED,	CO-EFFICIENTS FOR		OAD	d, To XIS.	urs.	
GYRATION.		57.5	DEFLECTION.		MAXIMUM LOAD IN TONS.	DISTANCE, OF PROM BASE T	SIZE IN INCHES	CHART NUMBER
Axis Axis		SAPE DISTRID	Load in Load dis-		NIX IN T	OM P	NI S	Nos
A. B.		03.0	centre.	tributed.	MA	O.E.	Siz	
	1 10	280.94	0000004	.0000038	40.64	.95	15	30
4.55		142.11		.0000038	18.49	.93	12	81
4.56	.74	96.22		.0000034	9.14	.62	12	32
3.92	.84	85.94		.0000186	9.10	.75	10	34
3.89	.69	68.98		.0000234	7.25	.64	10	35
3.45	.68	66.78		.0000268	10.87	.67	9	86
3.43	.59	45.27		.0000395	6.38	.55	9	37
8.06	.71	46.66	.0000690	.0000431	8.77	.60	8	38
3.09	.60	82.94	.0000977	.0000611	4.79	.50	8	39
2.68	.65	89.35	.0000935	.0000584	9.07	.65	7	40
2.64	.58	24.61	.0001495	.0000934	8.42	.48	7	41
2.36	.67	28.58	.0001501	.0000938	6.50	.66	6	42
2.27	.51	18.16	.0002363	.0001477	5.24	.46	6	44
1.93	.56	19.21	.0002680	.0001675	5.92	.61	5	45
1.88	.45	12.45	.0004136	.0002585	4.86	.42	5	46
1.55	.50	12.03	.0005349	.0003343	5.12	.58	4	47
1.54	.48	9.65	.0006667		4.29	.45	4	48
1.16	.46	6.32	.0013584		3.49	,51	3	49
.85	.43	8.88		.0021470	3.20	.46	24	50
.74	.31	2.25		.0035770	2.49	.37	2	51
5.79		218 75		.0000049	16.33	1.00	15	53
5.82	1.07	283.37	.0000061	.0000038	53.29	.84	15	53

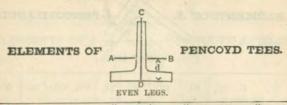
ELEMENTS OF PENCOYD DECK BEAMS.



-			1	I			1 112	TO THE
I.	П.	III.	Т	v.	v.	VI.	VII.	VIII.
CHART NUM-	Size	WEIG'T PER	Ani	EAS IN	SQUA	MOMENTS OF INERTIA		
BER.	Inches.	YARD.	Fi'ge	Bulb.	Web.	Total.	Axis A. B.	Axis C. D.
60	12	104	3.59	2.89	3.90	10.38	221.98	9.33
61	11	91	3.26	2.52	3.28	9.06	164.09	7.64
62	10	80	2.87	2.19	2.96	8.02	118.22	6.13
63	9	72	2.50	2.06	2.61	7.17	84.77	4.92
64	8	61	2.17	1.85	2.09	6.11	57.66	3.63
65	7	52	1.86	1.55	1.80	5.21	34.40	2.59
66	6	42	1.52	1.28	1.38	4.18	21.95	1.64
67	5	34	1.22	1.04	1.11	3.37	12.04	.98

ELEMENTS OF PENCOYD DECK BEAMS.

-								
IX.	x.	XI.	XII.	XIII.	XIV.	xv.	II.	I.
RAD	II OF	Co-eppicient Safe Load Distributed.	Co-effici Defle		MAXIMUM LOAD IN TONS.	CNCE, d, BASE TO AL AXIS.	SIZE IN INCHES.	Силит
Axis A. B.		CO-EP SAFI DISTIR	Load in centre.	Load dis- tributed.	MAXIM	DISTANCE, PHON BASE NEUTRAL AN	SIZE IN	ON
4.62	.95	172.6	.0000122	.0000078	18.50	5.24	12	60
4.25	.92	139.5	.0000168	.0000105	15.72	4.68	11	61
3.84	.87	110.3	.0000233	.0000146	15.26	4.27	10	62
3.44	.83	87.9	.0000325	.0000203	14.63	4.00	9	63
3.07	.77	67.3	.0000478	.0000299	12.12	3.50	8	64
2.57	.71	45.8	.0000802	.0000501	11.30	3.20	7	65
2.29	.63	34.2	.0001257	.0000785	9.03	2.65	6	66
1.89	.54	22.4	.0002291	.0001432	8.01	2,22	5	67



EVEN LEGS.

I.	II.	III.	IV.	v.	VI.	VII.	VIII.
VUNBER		MOMENTS OF INERTIA. LOW Axis Axis Axis Axis Ax B. C. D.			RAD	ASE TO	
CHART NUMBER	Size in Inches.	WEIGH	Axis A. B.	Axis C. D.	Axis A. B.	Axis C. D.	DISTANCE, d, FROM BASE TO NEUTRAL AXIS.
120 121 122 123 124 125 126 127 128 129 130 131	6 × 6 × 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.6 110.0 41.8 90.0 28.6 54.4 24.8 39.8 14.4 33.6 13.1 25.0 11.9 22.5 10.6 6.2 11.7 5.3 9.8 39.8 7.1 13.6 6.2 11.7 5.3 9.8 39.8 39.8 7.1 14.8 15.8 16.6 16.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	17.68 35.46 10.02 19.64 4.36 7.67 2.87 4.33 1.24 2.62 95 1.67 .70 1.23 .50 .79 .27 .50 .18 .31 .11 .19 .05 .08	7.16 15.00 4.16 8.67 1.86 3.45 1.20 1.85 .51 1.15 .30 .72 .29 .54 .21 .34 .11 .21 .08 .09 .02 .04 .05	1.87 1.80 1.55 1.48 1.24 1.19 1.07 1.04 .63 .88 .85 .82 .77 .74 .69 .67 .62 .61 .53 .46 .44 .41 .41 .41 .41 .42 .43 .44 .44 .44 .44 .44 .44 .44 .44 .44	1.19 1.17 1.00 .98 .81 .80 .70 .69 .60 .55 .54 .50 .49 .45 .44 .40 .39 .36 .31 .31 .26 .26 .20 .20	1.66 1.86 1.41 1.61 1.14 1.27 1.01 1.10 84 98 .87 .72 .81 .57 .65 .72 .57 .64 .51 .51 .44 .51 .86 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80

L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 × 3 × 4 39.8 6.03 2.871.69 1.23 .85 .65 1.37 .87
147 8 × 8 × 14 21.2 2.53 1.72 86 1.09 .00 .64 1.07 82 84 8 8 8 8 8 7 4.11 2.81 1.49 1.06 87 64 1.17 92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
149 3 × 2 × 4 11.9 1.09 .39 .25 .96 .58 .46 .69 .49 3 × 2 × 4 22.5 1.92 .67 .47 .92 .55 .46 1.08 .58
150 $3\frac{1}{2} \times 2\frac{1}{2} \times \frac{7}{10}$ 17.8 2.19 .94 .56 1.11 .73 .56 1.14 .64 $3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{2}$ 27.5 3.24 1.86 .87 1.08 .70 .56 1.20 .70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1.	п.	ш.	IV.	v.	νī.	VII.	VIII.
UMBER		PER D.	Mones		RADI		CE, d,
CHART NUMBER	SIZE IN INCHES.	WEIGHT FEB YARD,	Axis A. B.	Axis C. D.	Axis A. B.	Axis C. D.	DISTANCE, C FROM BASE NEUTRAL AX
70	4 × 4 × ½	86.5	5.26	2.55	1.20	.84	1.14
71	3½ × 3½ × ½	31,	3.47	1.70	1.06	.74	1.00
72	3 × 3 × ½5	26.	2.10	1.01	.90	.62	.90
73	$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{7}{16}$	19.5	1.12	.58	.78	.55	.75
74	2½ × 2½ × ¾	17.52	.97	.49	.75	.53	.75
75	21 × 21 × 1	11.75	.52	.30	.65	.50	.61
76	$2\frac{1}{4} \times 2\frac{1}{4} \times \frac{9}{32}$	12.	.54	.27	.67	.47	.65
77	2 × 2 × #	10.5	.38	.19	.60	.43	.60
78	$1^3_4\times1^3_4\times\tfrac{7}{32}$	7.1	.21	.10	.54	.37	.50
79	$1\tfrac{1}{2}\times1\tfrac{1}{2}\times\tfrac{7}{32}$	6.	.13	.06	.46	.32	.45
80	$1^1_4 \times 1^1_4 \times 1^3_6$	4.5	.07	.04	.37	.27	.37
81	1 × 1 × 16	3.0	.03	.02	.30	.26	80
82	$3 \times 3 \times \frac{11}{32}$	19.3	1.59	.75	91	.62	.84
83	$3 \times 3 \times \frac{13}{32}$	22.6	1.88	.89	.90	.63	.86
					THE .		

ELEMENTS OF UNEVEN LEGS.

_							-
I.	II.	III.	IV.	V.	VI.	VII.	VIII.
CHART NUMBER	Size in Inches.	Wенент реп Уакр.	MOMEN INER	NTS OF	RADI		DISTANCE, d, FROM BASE TO NEUTRAL AXIS.
Снаят		WEIG	Axis A. B.	Axis C. D.	Axis A. B.	Axis C. D.	PROM PROM NEUTH
90	$4\frac{1}{2} \times 3\frac{1}{2}$	44.5	5.27	3.66	1.09	.91	1.16
91	4 × 3½	41.8	4.65	3.23	1.05	.88	1.09
92	5 × 2½	30.7	1.61	4.01	.72	1.14	.67
93	5 × 2½	33.0	1.63	4.58	.70	1.17	.64
94	4 × 3	25.9	1.94	2.18	.86	.92	.77
95	4 × 3	25.25	2.09	1.69	.91	.82	.84
96	4 × 2	20.4	.68	1 68	.58	.91	.54
97	3 × 3½	28.25	3.12	1.06	1.05	.61	1.10
98	3 × 2½	23.8	1.38	.94	.76	.63	.82
99	3 × 1½	11.2	.19	.56	.41	.71	.37
100	$2\frac{1}{2} \times 1\frac{1}{4}$	9.1	.10	.33	.33	.60	.32
101	2 × 1½	8.75	.16	.18	.43	.45	43
102	2 × 1	7.	.05	.17	.26	.49	.27
103	2 × 4 16	5.88	.01	.17	.13	.54	.17
104	2ª × 1³	18.75	.56	. 62	.55	.58	.66
105	23 × 2	21.	.83	. 63	. 63	.55	.75
106	$5 \times 3\frac{1}{2}$	48.44	5.37	5.31	1.05	1.04	1.05
107	5 × 4	44.1	6.24	5.25	1.19	1.09	1.08
108	$2\frac{1}{4} \times \frac{9}{16}$	6.5	.01	.24	.12	.61	.18
109	4 × 4½	38.5	7.26	2.70	1.37	.84	1.32
110	3 × 2½	17.6	.94	.74	.78	.65	. 69
111	3 × 2½	20.6	1.08	.89	.72	.66	.70
	King to the last						

MOMENTS OF INERTIA.

The following formulæ were used in calculating the moments of inertia and radii of gyration of the various sections given in the tables, pages 92–101.

When not otherwise specified the axis referred to passes through the centre of gravity of the section, in a horizontal position to the figure as shown.

I signifies moment of inertia.

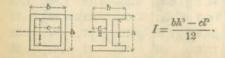
A " total area of section.

R " radius of gyration.

d "distance from base to centre of gravity.

In all cases the radius of gyration $=\sqrt{\frac{I}{A}}$, and the moment of

 $\label{eq:resistance} \text{resistance} = \frac{I \times \text{co-efficient for strength of material}}{\text{distance from neutral axis to farthest edge of section}}$


SOLID RECTANGLE.

$$I = \frac{bh^3}{12} = \frac{Ah^3}{12}.$$

 $I, \text{ axis } xy = \frac{bh^3}{3}.$

HOLLOW RECTANGLE OR I BEAM WITH PARALLEL FLANGES.

SOLID TRIANGLE.

$$I = \frac{bh^{3}}{36}$$

$$I, axis $xy = \frac{bh^{3}}{12}$

$$I, axis $uv = \frac{bh^{3}}{4}$

$$d = \frac{h}{3}$$$$$$

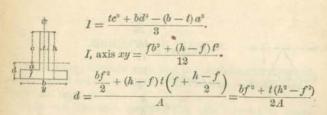
SOLID CIRCLE.

$$I = .7854 \ r^4 = \frac{A D^2}{16}.$$

HOLLOW CIRCLE.

 $I = (\text{outer radius}^4 - \text{inner radius}^4)$.7854.

SOLID SEMICIRCLE.


$$I = .11r^4$$
.
 I , axis $xy = .3927r^4 = \frac{AD^2}{16}$.
 $d = .4244r$.

SOLID ELLIPSE.

 $I = .7854bd^{9}$.

TEE SECTION.

ANGLE SECTION.

$$I = \frac{tc^{s} + bd^{s} - (b-t)(d-t)^{s}}{3}.$$
 For even or

uneven angles.

I, axis
$$uv = \frac{t(b-d_1)^3 + hd_1^3 - (h-t)(d_1-t)^3}{3}$$
. For uneven angles.

xy passes through centre of gravity parallel to ee.

$$I \text{ axis } xy = \frac{2d^4 - 2(d-t)^4 + t\left[b - \left(2d - \frac{t}{2}\right)\right]^3}{3}. \text{ For even}$$
 angles,

A close approximation for the latter is the following:

I, axis
$$xy = \frac{Ab^2}{25}$$
. For even angles.

I, axis
$$xy = \frac{Ah^2b^2}{13(h^2+b^2)}$$
 For uneven angles.

$$d = \frac{bt^2 + t(h^2 - t^2)}{2A}$$
. For even and uneven and

$$d^{1} = \frac{ht^{2} + t(b^{2} - t^{2})}{2A}$$
. For uneven angles.

In even angles radius of gyration around $xy = \text{two-thirds } (\frac{x}{2})$ of the radius of gyration around horizontal axis.

In uneven angles the distance from centre of gravity in direction of the long leg exceeds that in the direction of the short leg by half the difference in the length of the two legs.

I BEAM SECTION.

s =taper of flange,

$$t = k - \frac{2s}{3}.$$

$$I = \frac{bh^{2} - ck^{2}}{12} + \frac{cs^{2}}{18} + \frac{cst^{2}}{4}.$$

$$I, \text{ axis } xy = \frac{mb^{3}}{6} + \frac{kt^{3}}{12} + \frac{s\left(\frac{b-t}{2}\right)^{3}}{9} + \frac{2s\left(\frac{b-t}{2}\right)\left(\frac{b}{6} + \frac{t}{3}\right)^{2}.$$

CHANNEL SECTION.

s = taper of flange.

$$T = \frac{s}{b - t}.$$

$$I = \frac{bh^{3} - \frac{1}{8r}(k^{4} - l^{4})}{12}.$$

$$I = \frac{2mb^{3} + lt^{9} + \frac{r}{2}(b^{4} - t^{4})}{3} - Ad^{2}.$$

$$d = \frac{mb^{2} + \frac{kt^{2}}{2} + \frac{s}{3}(b - t)(b + 2t)}{A}.$$

DECK BEAM SECTION.

$$s = \text{taper of flange.} \qquad a = \text{area of bulb.}$$

$$o = m - \frac{s}{3}.$$

$$I = \frac{aw^3}{15} + al^2 + \frac{tc^2}{3} + \frac{bd^3}{3} - \frac{m^3(b-t)}{3} + \frac{(b-t)s^3}{36} + \frac{s(b-t)s^3}{2}.$$

$$I, \text{ axis } xy = \frac{ak^2}{12.4} + \frac{nt^3}{12} + \frac{\left(p + \frac{s}{4}\right)b^3}{12}$$

$$a (2h-k) + t(h-k)^2 + (b-t)p^2 + s(b-t)\left(p + \frac{s}{3}\right)$$

$$d = \frac{2A}{2A}$$

In the table of elements, pages 92-101, the moments of inertia and radii of gyration are given for the minimum section of each shape but the moment of inertia for any increased section can readily be ascertained as follows, without recalculating the whole.

FOR ANY I BEAM, CHANNEL BAR OR DECK BEAM.

AXIS PERPENDICULAR TO WEB.

Let a = increase of area in square inches over minimum section given in the table. Let d = depth (size) of beam, then $\frac{ad^2}{12}$ is the moment of inertia for increase of area, which added to tabular figures gives the correct result for the enlarged section.

Example.—A 12" I Beam, No. 4, area 12 square inches, is increased to 14 square inches. $\frac{2 \times 12^2}{12} = 24$, which added to the moment given in col. 7—272.86 + 24 = 296.86, the moment of inertia desired.

Radius of gyration of the former
$$\sqrt{\frac{272.86}{12}} = 4.78$$
 inches.

Radius of gyration of the latter
$$\sqrt{\frac{296.86}{14}} = 4.60$$
 inches.

The radius of gyration will be found to alter very little, and for all practical purposes, the tabular figures may be accepted within the range of section possible for each shape.

The above is only a close approximation for deck beams.

FOR ANY I BEAM OR DECK BEAM.

AXIS PARALLEL WITH WEB.

The following rule gives a close approximation for the moment of inertia.

Multiply the increase of area in square inches by the total thickness of web in the enlarged section. This product added to the tabular number in col. 8, will give the moment of inertia for the enlarged section.

Example.—A 10" I Beam, No. 8, area 9 square inches is increased to $10\frac{1}{2}$ square inches, having a web thickness of .525 inches. $.525 \times 1\frac{1}{2} = .7875$, which added to the amount in col. VIII., 8.09 + .78 = 8.87, the moment of inertia required.

Radius of gyration of least section =
$$\sqrt{\frac{8.09}{9}}$$
 = .95 inches.

Radius of gyration of enlarged section =
$$\sqrt{\frac{8.87}{10.5}}$$
=.92 inches

The radius of gyration alters but very little, and may be accepted as practically unchanged within the limits that any shape can be increased.

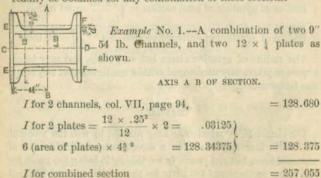
CHANNELS.

For channels, in relation to axis parallel to web the moment of inertia increases nearly in a direct ratio to the increase of sectional area, but not precisely so, this ratio being too great for the larger sections and too little for the smaller sizes of channel bars.

The radius of gyration alters but little as the sectional area is

changed, and practically may be accepted as unchanged within the range of variation possible for any particular size.

The distance d will not vary sufficiently in any section between the limits of minimum and maximum to make any practical difference in ordinary calculations where it may be used.


ANGLES.

For angles referring to any axis passing through the centre of gravity, the inertia increases nearly in the same ratio as the area increases. Our table gives values of I for the minimum and maximum sections; any intermediate section can be obtained by proportion unless great accuracy is required. Our tables exhibit the change in values of R between the least and greatest sections, which in the case of small angles remain practically unaltered within the range of possible variation of area.

INERTIA OF COMPOUND SHAPES.

"The moment of inertia of any section about any axis is equal to the I about a parallel axis passing through its centre of gravity + the area of the section multiplied by the square of the distance between the axes."

By use of this rule the moments of inertia or radii of gyration of any single sections being known, corresponding values can readily be obtained for any combination of these sections.

which divided by area (14) gives $18.3611 = R^2$ or 4.285 radius of combined section.

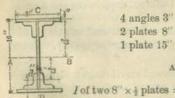
AXIS C D.

Find distance d = (.67) from col. XV., page 95, then obtaining the distance (4.2325) between axes CD and EF.

I for 2 channels around axis EF from col. VIII., = 4.94 Area of channels × square of distance = $10.8 \times 4.2325^{\circ} = 193.471$

$$I \text{ for 2 plates} = \frac{.5 \times 12^{\text{a}}}{12} = 72.$$

I for combined section


=270.411

480.667

Radius of gyration =
$$\sqrt{\frac{270.411}{14}} = 4.395$$
.

By similar methods, inertia or radius of gyration for any combination of shapes can readily be obtained.

Example No. 2 .- A "built-up beam" composed of :

4 angles
$$3'' \times 3'' \times \frac{1}{4}''$$
.
2 plates $8'' \times \frac{1}{2}''$.
1 plate $15'' \times \frac{3}{8}''$.

AXIS A B.

$$I \text{ of two 8}' \times \frac{1}{2} \text{ plates} = \frac{8 \times \frac{1}{4}^3}{12} \times 2 = .167$$

+ 8 (area) × 742 (sq. of distance d) =480.5

I of one 15"
$$\times \frac{3}{8}$$
" plate = $\frac{15^3 \times \frac{3}{8}}{12}$ = 105.469

I of four
$$3 \times 3 \times \frac{1}{4}$$
 angles = 4×1.24 (see col. 1V, page 98), = 4.96 + 5.77 (area) $\times 6.66^{\circ}$ (sq. of distance d°) = 255.045 260.005

Inertia of combined section around AB = 846.14J

Radius of gyration =
$$\sqrt{\frac{846.141}{19.875}}$$
 = 6.61.

AXIS C. D.

I of two 8 × ½ plates =
$$\frac{8^3 \times \frac{1}{2}}{12} \times 2 = 42.667$$

I of one
$$15 \times 3$$
 plate $= \frac{15 \times \frac{3}{3}}{12}$ = .066

Inertia of combined section around CD = 53.764

Radius of gyration =
$$\sqrt{\frac{53.764}{19.375}}$$
 = 1.66.

RADIUS OF GYRATION OF COMPOUND SHAPES.

In the case of a pair of any shape without a web the value of R can always be readily found without considering the moment of inertia.

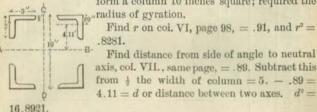
The radius of gyration for any section around an axis parallel to another axis passing through its centre of gravity, is found as follows:

Let r = radius of gyration around axis through centre of gravity. R = radius of gyration around another axis parallel to above. d = distance between axes.

$$R = \sqrt{d^2 + r^2}.$$

When r is small, R may be taken as equal to d without material error. Thus in the case of a pair of channels latticed together, or a similar construction.

Example No. 1.—Two 9" 54 lb. channels placed 4.66" apart, Example Property of the required the radius of gyration around axis CD for combined section.


Find r on col. X., page 95, = .68 and r^2 = .4624. Find distance from base of channel to neutral axis col. XV., same page, = .67, this added to $\frac{1}{2}$ distance between the two bars, 2.33" = 3" = d, and d^2 = 9.

Radius of gyration of the pair as placed equals,

$$\sqrt{9 + .4624} = 3.076$$

The value of R for the whole section in relation to the axis A B is the same as for the single channel, to be found in the tables.

Example No 2.—Four 3" × 3" × 3" angles placed as shown; form a column 10 inches square; required the

Radius of gyration of 4 angles as placed =

$$\sqrt{16.8921 + .8281} = 4.21.$$

When the angles are large as compared with the outer dimensions of the combined section, the radius of gyration can be taken without serious error from the table of radii of gyration for square columns, on page 155.

RADIUS OF GYRATION.

The table below exhibits values for the least radius of gyration and the square of the same, in terms of the sides or diameter of the cross section. In most cases the values given are only approximate, and those for flanged beams only apply to standard minimum sections. Those marked with an *are theoretically correct.	LEAST RADIUS OF GYRATION.	Least side * 8.46	$a+d_1 = 4.89$	Diameter *	$\frac{d+d_1}{5.64}$	Diameter 2.75
	SQUARE OF LEAST RADIUS OF GYRATION.	(Least side) ² * 12	$\frac{A+a}{12}$ or $\frac{a^{p}+a^{p}}{12}$ *	(Diameter) ² & 16	$\frac{A+a}{12.566} \text{ or } \frac{d^2+d^2}{16} =$	(Diameter) ³
The table below exhibits values for sides or diameter of the cross sect flanged beams only apply to stand	SHAPE OF SECTION.	SOLID RECTANGLE.	Thin Hollow Square. a = area finer square. A = area outer square.	Solid Chell.	Thin Hollow Circle. a - area inner circle. A - area outer circle.	PROBRIX COLUMN.

length of leg	$\frac{l\times l_i}{2.6\left(l+l_i\right)}$	Greatest Width 4.74	Width of Flange 4.74	Width of Flange 4.58	Width of Flange 3.54	Width of Flange
(Length of leg)?	$\frac{(l\times l_1)^2}{13(l^2+l_1^2)}$	(Greatest Width) ² 22.5	(Width of Flange) ²	(Width of Flange) ²	(Width of Flange) ² 12.5	(Width of Flange)2
gles, Equal Legs,	Uneven Angles.	088, Equal Legs.	EES, EQUAL LEGS.	ENCOYD I BEAMS.	NCOYD CHANNELS.	COYD DECK BEAMS.

ROLLED IRON STRUTS.

In the following consideration of rolled struts of various shapes, the least radius of gyration of the cross section taken around an axis through the centre of gravity is assumed as the effective radius of the strut. The resistance of any section perunit of area will in general terms vary directly as the square of the least radius of gyration, and inversely as the square of the length of the strut,* The shape of the section and the distribution of the metal to resist local crippling strains must also be considered. As a rule, that shape will be strongest which presents the least extent of flat unbraced surface. For instance, two - sections of unequal web widths may have the same web thickness, the same flange area, and the same least radius of gyration, but the wider webbed section will be the weaker per unit of area, on account of the greater extent of unbraced web surface it contains. For the same reason a hollow rectangular section, composed of thin plates will be to some extent weaker than a circular section of the same length having the same area and radius of gyration.

END CONNECTIONS.

As is well known, the method of securing the ends of the struts exercises an important influence on their resistance to bending, as the member is held more or less rigidly in the direct line of thrust.

In the tables, struts are classified in four divisions, viz.: "Fixed Ended," "Flat Ended," "Hinged Ended," and "Round Ended."

In the class of "fixed ends" the struts are supposed to be so rigidly attached at both ends to the contiguous parts of the structure that the attachment would not be severed if the member was subjected to the ultimate load. "Flat ended" struts are supposed to have their ends flat and square with the axis of length but not rigidly attached to the adjoining parts. "Hinged

^{*} This applies only to long struts with free ends.

ends" embrace the class which have both ends properly fitted with pins, or ball and socket joints, of substantial dimensions as compared with the section of the strut; the centres of these end joints being practically coincident with an axis passing through the centre of gravity of the section of the strut. "Round ended" struts are those which have only central points of contact, such as balls or pins resting on flat plates, but still the centres of the balls or pins coincident with the proper axis of the strut.

If in hinged-ended struts the balls or pins are of comparatively insignificant diameter, it will be safest in such cases to consider the struts as round ended.

If there should be any serious deviation of the centres of round or hinged ends from the proper axis of the strut, there will be a reduction of resistance that cannot be estimated without knowing the exact conditions. No formula has been written which expresses with accuracy the resistance to compression for various sections and for an extended range of lengths. It is doubtful if any simple formula admitting of ready practical application can be devised; in fact none is required, as the results of experiments can be embodied in tables and diagrams in such a compact form that their application to any length or section can be readily made.

When the pins of hinged-end struts are of substantial diameter, well fitted, and exactly centred, experiment shows that the hinged ended will be equally as strong as flat ended struts.

But a very slight inaccuracy of the centring rapidly reduces the resistance to lateral bending, and as it is almost impossible in practice to uniformly maintain the rigid accuracy required, it is considered best to allow for such inaccuracies to the extent given in the tables, which are the average of many experiments.

TABLES OF STRUTS.

In table No. 1, the first column gives the effective length of the strut divided by the least radius of gyration of its cross section, and the successive columns give the ultimate load per square inch of sectional area for each of the four classes aforesaid. We mean by "ultimate load" that pressure under which the strut fails.

These ultimate loads are the averages of a number of experiments which we have recently made on carefully prepared specimens, and are believed to be trustworthy.

For hinged-ended struts the figures apply to those cases in which the axis of the pin is at right angles to the least radius of gyration, or in which the strut is free to rotate on the pin in its weakest direction. If the pin should be placed in another direction, or if the strut should be secured from failure in its weakest direction, there will be a correction for determining the resistance as hereafter described.

FACTORS OF SAFETY.

It is considered good practice to increase the factors of safety as the length of the strut is increased, owing to the greater inability of the long struts to resist cross strains, etc. For similar reasons we consider it advisable to increase the factor of safety for hinged and round ends in a greater ratio than for fixed or flat ends.

Presuming that one-third of the ultimate load would constitute the greatest safe load for the shortest struts, the following progressive factors of safety are adopted for the increasing lengths.

3. + $.01\frac{l}{r}$ for flat and fixed ends.

 $3 + .015 \frac{l}{r}$ for hinged and round ends.

l = length of strut.

r =least radius of gyration.

From the above we derive the following table:

FACTORS OF SAFETY.

$\frac{l}{r}$	FIXED AND FLAT ENDS.	HINGED AND ROUND ENDS.	$\frac{l}{r}$	FIXED AND FLAT ENDS.	HINGED AND ROUND ENDS.	$\frac{l}{r}$	FIXED AND FLAT ENDS,	HINGED AND ROUND ENDS.
		Timple			100000			
20	3.2	3.3	150	4.5	5.25	280	5.8	7.2
30	3.3	3.45	160	4.6	5.4	290	5.9	7.35
40 50	3.4	3.6	170	4.7	5.55	300	6.0	7.5
60	3.5	3.75 3.9	180 190	4.8	5.7 5.85	310 320	6.1	7.65
70	3.7	4.05	200	5.0	6.0	930	6.3	7.9
80	3.8	4.2	210	5.1	6.15	340	6.4	8.1
90	3.9	4.35	220	5.2	6.3	850	6.5	8.2
100	4.0	4.5	280	5.8	6.45	360	6.6	8.4
110	4.0	4.65	240	5.4	6.6	370	6.7	8.50
120	4.2	4.8	250	5.5	6.75	880	6.8	8.7
130	4.8	4.95	260	5.6	6.9	390	6.9	8.8
140	4.4	5.1	270	5.7	7.05	400	7.0	9.0

Table No. 2 represents the greatest safe load per square inch of section for each of the four classes of struts and is derived from the results in Table No. 1 by means of the foregoing factors of safety.

The remarks on page 33 for safe loads on beams, apply also to struts. The loads in Table No. 2 ought to be applied only under the most favorable circumstances, such as an invariable condition of the load, little or no vibration, etc. Under certain conditions, such as for buildings, bridges, etc., the least factor of safety ought to be four (4), which would increase each factor in the above table by unity. The safe load will then be found by dividing the results given in Table No. 1 by the corrected factor of safety.

No. 1.

WROUGHT IRON STRUTS.

ULTIMATE PRESSURE IN LBS. PER SQUARE INCH.

LENGTH	FLAT	FIXED	HINGED	ROUNI
OF GYRATION.	ENDS.	ENDS.	ENDS.	Ends.
20	46.000	46,000	46,000	44.00
80	43,000	43,000	43,000	40,25
40	40,000	40,000	40,000	36,50
50	38,000	38,000	38,000	33,50
60	36,000	36,000	36,000	30,50
70	84,900	34,000	83,750	27,75
80	32,000	32,000	31,500	25,00
90	30,900	31,000	29,750	22,75
100	29,800 28,050	30,000 29,000	28,000	20,50
120	26,300	28,000	26,150 24,300	18,50 16.50
130	24,900	26,750	22,650	14.65
140	23,500	25,500	21,000	12,80
150	21,750	24,250	18,750	11,15
160	20,000	23,000	16,500	9,50
170	18,400	21,500	14,650	8,50
180	16,800	20,000	12,800	7,50
190	15,650	18,750	11,800	6,75
200	14,500	17,500	10,800	6,00
210 220	13,600	16,250	9,800	5,50
230	12,700	15,000	8,800	5,00
240	11,950 11,200	14,000	8,100	4,65
250	10,500	13,000 12,000	7,500 7,000	4,30
200	9,800	11,000	6,500	3,80
270	9,150	10,500	6,100	8,50
280	8,500	10,000	5,700	3,20
290	7,850	9,500	5,350	3,00
300	7,200	9,000	5,000	2,80
310	6,600	8,500	4,750	2,65
320	6,000	8,000	4,500	2,50
330	5,550	7,500	4,250	2,30
340	5,100	7,000	4,000	2,10
350	4,700	6,750	8,750	2,00
360 370	4,300	6,500	3.500	1,90
380	3,900 3,500	6,150 5,800	3,250	1,80 1,70
390				1,60
400	3,250	5,510	2,750 2,500	1,50
410	2,750	5,000	2,400	1,40
420	2.500	4,800	2,800	1,30
430	2,350	4,550	2,200	1
440	2,200	4,300	2,100	
450	2,100	4,050	2,000	
460	2,000	3,810	1,900	
470	1,950		1,850	
480	1,900		1,800	

No. 2.

GREATEST SAFE LOADS ON STRUTS.

Greatest safe load in lbs. per square inch of cross section for vertical struts, Both ends are supposed to be secured as indicated at the head of each column. If both ends are not secured alike, take a mean proportional between the values given for the classes to which each end belongs. If the strut is hinged by any uncertain method so that the centres of pins and axis of strut may not coincide, or the pins may be relatively small and loosely fitted, it is best in such cases to consider the strut as "round ended."

LENGTH	FLAT	FIXED	HINGED	ROUND
LEAST RADIUS	PHAT	FLABI	HIMOLD	ROUND
OF GYRATION.	ENDS.	ENDS.	ENDS.	ENDS.
1 dayling live		0 - 0 - 00	BUTTER	1201116
20	44.000	14,380	18,940	inne
30	14,380 13,030	13,030	12,460	13,380
40	11,760	11,760	11.110	10.140
50	10,860	10,860	10,130	8,930
60-	10,000	10,000	9,230	7,82
70	9,190	9,190	8,330	6.85
80	8.420	8,420	7,500	5,95
90	7,920	7,950	6,840	5,230
100	7,450	7,500	6,220	4,560
110	6,840	7,070	5.620	3,98
120	6,260	6,670	5,060	3.44
130	5,590	6,220	4,580	2,90
140	5,840	5,800	4,120	2,510
150	4,830	5,890	3.570	2,12
160	4,350	5,000	3,060	1,76
170	3,990	4,570	2,640	1,59
180	3,500	4.170	2,250	1,31
190	3,190	3,890	2,020	1,15
200	2,900	3,500	1,800	1,00
210	2,670	3,190	1,590	89
220	2,440	2,880	1,400	79
230	2,250	2,640	1,260	72
240 250	2,070	2,410 2,180	1,140	65
260	1,910 1,750	1,960	940	80 55
270	1,610	1,840	870	50
280	1,460	1,720	790	44
290	1,330	1,610	730	41
300	1,200	1.500	670	37
310	1,080	1,390	620	25
320	970	1,290	580	32
330	890	1,190	540	29
340	800	1,000	490	26
850	720	1.040	450	24
860	650	980	420	23
370	580	920	380	21
380	510	850	840	20
390	470	800	310	8
400	430	740	280	77

ROLLED STRUCTURAL SHAPES AS STRUTS.

The following tables for the working values of various rolled structural shapes as struts are derived directly from Table No. 2. The radii of gyration are taken from Tables of Elements, pages 92–101. In all cases the strut is supposed to stand vertical. In short struts this distinction is immaterial, but when the length becomes considerable, the deflection resulting from its own weight, if horizontal, would seriously affect the stability of the strut.

The tables are calculated for the minimum section of each shape. For sections increased above the minimum the resistance per square inch will diminish. This amount can be accurately determined by finding the correct radius of gyration for the enlarged section as heretofore described. But within the range of variation of section possible for any shape, the tables may be accepted as practically correct. The head notes to the tables indicate the condition assumed for each class of struts. If the pins should be placed otherwise than as described in the tables, the strut may be either weaker or stronger, according to circumstances, which have to be determined for any particular case. This results from the fact that a pin-connected strut if properly designed should be considered hinged ended, only in the direction in which it is free to rotate on the pin.

In the direction of the axis of the pin it can be treated as a "flat ended" strut. An I beam strut of the character described in Tables 3, 4, and 5, braced laterally in the direction of its flanges should be considered also by Tables 6, 7, and 8, as a series of short struts whose lengths are the distances between points of bracing, and liable to fail in the direction of the flanges.

Example.—An 8" 65 lb. I beam, 18 feet long is used as a strut having pins at both ends at right angles to web. It would then be flat ended in the direction of the flanges, and by Table No. 7 the greatest safe load = 1,990 lbs. per square inch of section. If braced in the direction of the flanges at two points 6 feet apart it should then be considered as a series of flat ended struts 6 feet long, whose safe load by Table No. 7, would be 8,320 lbs per square inch.

1

In the direction of its web it remains a hinged-ended strut 18 feet long, and safe load by Table No. 4 = 8,690 lbs. per square inch.

CHANNEL STRUTS.

The foregoing remarks apply also to channels, which are seldom used individually as struts, but frequently in pairs. When so used, if the methods of connection are not of such a nature as to insure the unity of action of the pair, they should be treated as an assemblage of separate struts. But if connected by a proper system of triangular latticing, the pair can be considered as a unit, and each channel treated as a series of short struts whose length is the distance between centres of latticing.

Example.—A pair of 9" 54 lb. channels, separated, etc., as described on page 110, are connected by triangular latticing, forming a hinged-ended strut 10 feet between pin centres. What is the greatest safe load, and how far can latticing be spaced?

As described on page 95, radius of gyration around axis across the web of channel, or in the direction of the pin = 3.45 inches. Radius of gyration in opposite direction = 3.07 inches. Least radius of gyration for a single channel = .68 inch.

 $\frac{l}{r}$ for hinged-ended direction = 35, and by Table No. 2 Safe

Load=11,800 lbs. $\frac{l}{r}$ for flat-ended direction = 39, and by same table greatest safe load = 11,900 lbs.

For each single channel the greatest length between latticing = radius of gyration $\times 39 = 26\frac{1}{2}$ inches.

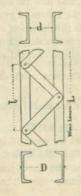
It is customary and is also good practice to reduce the distance between lattice centres below what the above calculation would require.

Tables Nos. 12-14, give the greatest safe loads per square inch of sectional areas, for struts composed of a pair of channels properly connected together, so as to insure unity of action. The figures are derived from Table No. 2.

The distances D or d, for channels placed flanges inward or flanges outward respectively, make the radii of gyration equal for either direction of axis.

These distances should not be diminished, and may be advan-

tageously increased especially for hinged-ended struts, if the pin is placed parallel to the webs of the channels. These tables are calculated for the standard minimum section of each channel. The distance d may be slightly diminished for sections heavier than the minimum, but the diminution can be so little that it is practically unnecessary to notice it. Under each length of struts in the table l represents the greatest distance apart in feet that centres of lateral bracing can be spaced, without allowing weakness in the individual channels. The distance l is obtained as


shown in last example, that is, by making $\frac{l}{r} = \frac{L}{R}$.

l = length between bracing.

L =total length of strut.

r = least radius of gyration for a single channel

R = least radius of gyration for the whole section.

STEEL STRUTS.

A table for the ultimate resistance of flat-ended struts of two grades of steel will be found on page 31. These grades probably embrace the extremes of the material, that is, the hardest and softest steels that are likely to be used in struts.

Experiments on this material are not sufficiently complete to warrant a full statement of resistances of the various grades, and for the various conditions of the strut, such as the methods

of connecting the ends, etc.

It is probable, however, that the relations existing between the four classes of wrought-iron struts, as given in the following tables, will also prevail in the same ratios for steel. The safe loads for steel struts of any section or length, can therefore be obtained by increasing the figures in the following tables, for

any ratio of $\frac{l}{r}$, in the proportions given on page 31, as existing between flat-ended struts of iron and steel.

When a grade of steel is used, intermediate in hardness between the mild and hard heretofore described, it is probable that the strut resistance for such material may be safely approximated by simple proportion.

For instance, the steels referred to had carbon ratios of .12 and .36 per cent, respectively. A mean proportion of these

would be .24 per cent.

It is probable that steel of latter grade would possess intermediate compressive resistance between the two grades described from our experiments. No. 3.

PENCOYD I BEAMS AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

When the struts are secure from failure in the direction of the flanges, and can bend only in the direction of the web C D. Using factors of safety given in previous tables.

Size	CONDITION			,	LENGT	H IN	FEET			
BEAM.	ENDS.	8	10	12	14	16	18	20	22	94
15" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends		14240 13790	13700 13200	13160 12610	12650 12050	12140 11510	11670 11670 11010 10020	11310 10620	10950 10230
15" Light	Fixed Ends Flat Ends Hinged Ends Round Ends		14380 13940	1384) 13350	18800 12760	12780 12190	12270 11650	11760 11760 11110 10140	11400 10720	11040 10330
12" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940	13570 13050	12900 12320	12270 11650	11670 11010	11920 10520	10770 10770 10040 8820	10340 9590	9920 9920 9140 7720
12" Light r = 4.78	Fixed Ends Flat Ends Hirged Ends Round Ends	14380 13940	13700 13200	13030 12460	12400 11780	11760 11110	11310 10620	10860	10430 9680	10000 9230
101" Heavy. r = 4.24	Fixed Ends Flat Ends Hinged Ends Round Ends	13910 13500	$\frac{13160}{12610}$	$\frac{12400}{11780}$	11760 11760 11110 10140	11220 10520	10690 9950	10170 9410	9760 9760 8960 7530	9270 9270 8420 6950
101" Light r = 4-26	Fixed Ends Flat Ends Hinged Ends Round Ends	13970 13500	13160 12610	12400 11780	11760 11760 11110 10140	11220 10520	10690 9950	10170 9410	9760 9760 8960 7530	8420
10" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13840 13350	12030 12460	12140 11510	11490 11490 10820 9780	10950 10230	10430 9680	9920 9140	9430 9430 8600 7140	8960 8080

No. 3.

PENCOYD I BEAMS AS STRUTS.

In the marginal columns r indicates the radius of gyration taken around axis A B. When strut is hinged the pins are supposed to lie in the direction A B. Under the conditions stated the strut may be considered flat ended in direction A B:

			LENG	CONDITION	Size					
26	28	30	32	34	36	38	40	42	ENDS.	BEAM.
10600 9860	10260 10260 9500 8150	9920 9920 9140 7720	9510 9510 8690 7240	9190 9190 8330 6850	8880 8880 8000 6490	8580 8580 7670 6130	8330 8320 7370 5810	8120 7100	Fixed Ends Flat Ends Hinged Ends Round Ends	15" Heavy:
10690 9950	10340 10340 9590 8260	10000 9230	9680 9680 8870 743L	9350 9350 8510 7040	9040 9040 8160 6670	8730 7830	8420 8420 7500 5950	8220 7240	Fixed Ends Flat Ends Hinged Ends Round Ends	15" Light.
9430 9430 8600 7140	9040 8160	8650 7750	8320 8320 7370 5810	8090 8070 7040 5850	7860 7830 6720 5100	7630 7590 6410 4760	7410 7330 6100 4440	7020 5800	Fixed Ends Flat Ends Hinged Ends Round Ends	12" Heavy.
9590 9590 8780 7880	9190 9190 8330 6850	8800 8800 7910 6400	8420 8420 7500 5950	8180 8170 7170 5490	7950 7920 6840 5280	7720 7680 6530 4890	7500 7450 6220 4560	7140 5920	Fixed Ends Flat Ends Hinged Ends Round Ends	12" Light.
8800 8800 7910 6400	8420 8420 7500 5950	8140 8120 7100 5420	7860 7830 6720 5100	7590 7540 6340 4690	7320 7210 5980 4320	7070 6840 5620 3980	6870 6550 5340 3710	6210 5010	Fixed Ends Flat Ends Hinged Ends Round Ends	10½" Heavy.
8800 8800 7910 6400	8420 8420 7500 5950	8090 8070 7040 5850	7810 7780 6650 5030	7540 7500 6280 4680	7820 7210 5980 4320	7070 6840 5620 8980	6870 6550 5340 3710	6210 5010	Fixed Ends Flat Ends Hinged Ends Round Ends	10½" Light.
8500 8500 7580 6040	8180 8170 7170 5490	7900 7870 6780 5160	7630 7590 6410 4760	7320 7210 5980 4320	7070 6810 5620 3990	6830 6490 5280 3650	6580 6160 4960 3340	5880 4670	Fixed Fnds Flat Ends Hinged Ends Round Ends	10" Heavy.

No. 4.

PENCOYD I BEAMS AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

When the struts are secure from failure in the direction of the flanges and can bend only in the direction of the web CD. Using factors of safety given in previous tables.

Size	Condition	LENGTH IN FEET.										
BEAM.	ENDS.	6	8	10	12	14	16	18	20	22		
10" Light	Fixed Ends Flat Ends Hinged Ends Round Ends		13840 13350	13030 12460	19270 11650	11670 11010	11130 10420	10600 9860	10090 9320	9590 9590 8780 7330		
9'' Heavy r = 3.62	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940	13430 13430 12900 12170	12650 12650	11760 11110	11130 10420	10600 9860	10000 9230	9510 9510 8610 7240	8960 8960 8080 6580		
9" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940	13570 13576 13050 12330	12650 12050	11890 11240	11220 10520	10690	10090 9320	9590 9590 8780 7330	9040 9040 8160 6670		
8" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	14110	13030 13030 12460 11670	12140 11510	11310	10690	9230	9430 8600	8800 7910	8330 8330 7370 5810		
8'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends	13640	13160 13160 12610 11840	12140 11510	11400 10720	10690 9950	10k 90 9320	1510 8690	8850 8000	8370 8370 7430 5880		
7'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13570 13050	12400 12400 11780 10900	11400 10720	10690 9950	9920 9920 9140 7720	9190 8330	8500 7580	8070 7040	7680 7640 6470 4830		
7'' Light	Hinged Ends	13700	12650 12050	11580 10910	10860 10130	9410	9510 8690	8800 7910	8270 7300	7900 7870 6780 5166		

No. 4.

PENCOYD I BEAMS AS STRUTS.

In the marginal columns r indicates the radius of gyration taken around axis A B. When strut is hinged the pins are supposed to lie in the direction A B. Under the conditions stated the strut may be considered flat ended in direction A B.

	LENGTH IN FEET.								CONDITION	Size	
24	26	28	30	32	34	33	38	40	ENDS.	BEAM.	
9110 9110 8250 6760	8650 8650 7750 6220	8280 8270 7800 5730	8000 7970 6910 5200	7720 7680 6530 4890	7450 7390 6160 4500	7190 7020 5800 4150	6990 6720 5500 3870	6370 5170	Fixed Ends Flat Ends Hinged Ends Round Ends	10" Light.	
8420 8420 7500 5950	8140 8120 7100 5420	7810 7780 6650 5030	7540 7500 6280 4630	7240 7080 5860 4210	6950 6660 5450 3810	6710 6310 5110 3490	6400 5970 4770 3150	5650 4440	Fixed Ends Flat Ends Hinged Ends Round Ends	9'' Heavy.	
8580 8580 7670 6130	8180 8170 7170 5490	7900 7870 6780 5160	7590 7540 6340 4690	7320 7210 5980 4320	7030 6780 5560 3920	6790 6430 5230 3600	6490 6070 4860 3240	5740 4530	Fixed Ends Flat Ends Hinged Ends Round Ends	9" Light.	
7950 7930 6840 5230	7630 7590 6410 4760	7280 7140 5920 4270	6990 6720 5500 3870	6670 6260 5030 3440	6350 5930 4720 3100	6010 5560 4350 2730	5710 5230 4010 2430	4880 3620	Fixed Ends Flat Ends Hinged Ends Round Ends	8" Heavy.	
8000 1970 6910 5200	7680 7640 6470 4830	7320 7210 5980 4320	7030 6780 5560 3930	6759 6370 5170 3540	6400 5970 4770 3150	6090 5650 4440 2820	5500 5340 4120 2510	4980 3730	Fixed Ends Flat Ends Hinged Ends Round Ends	8", Light.	
7280 7140 5920 4270	6950 6660 5450 3810	6580 6160 4960 3340	6170 5740 4530 2910	5800 5340 4120 2510	5470 4930 3680 2190	5110 4490 3210 1860	4740 4090 2800 1620	3710 2440	Fixed Ends Flat Ends Hinged Ends Round Ends	7" Heavy.	
7500 7450 6230 4560	7150 6960 5740 4090	6830 6490 5280 3650	6440 6020 4820 3200	6090 5650 4440 2820	5750 5280 4060 2470	5430 4880 3620 2150	5070 4440 3160 1830	4090	Fixed Ends Flat Ends Hinged Ends Round Ends	7" Light.	

No. 5.

PENCOYD I BEAMS AS STRUTS.

GREATEST SAFE LOAD IN LBS, PER SQUARE INCH OF SECTION.

When the struts are secure from failure in the direction of the flanges, and can bend only in the direction of the web C. D. Using factors of safety given in previous tables,

Size	Condition	LENGTH IN FEET.										
BEAM.	ENDS.	2	4	6	8	10	12	14	16	18		
6'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends		14240 13790	12900 12320	11580 10910	10690	9840 9050	8960 8080	8280 8270 7300 5730			
6'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends		14380 13940	13030 12460	11760 11110	10959 10239	10090 9320	9270	8500 8500 7580 6040	8000 7970 6910 5230		
5'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends		13340 13350	12270 11650	11040 10330	9230	9040 9040 8160 6670	8230 8220 7240 5660	7680 7640 6470 4830	7110 6900 5680 4030		
5" Light	Fixed Ends Flat Ends Hinged Ends Round Ends		14110 13640	12650 12050	11400 10720	10349 9590	9430 9430 8600 7140	8580 8580 7670 6130	8000 7970 6910 5200	7500 7450 6220 4560		
4'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends		13160 12610	11490 10720	10090	8880 8880 8000 6490	8040 8020 6970 5270	7370 7270 6040 4380				
4'' Light	Fixed Ends Flat Ends Hinged Ends. Round Ends		13160 13160 12610 11840	11400 10720	10170 9410	8960 8960 8080 6580	8090 8070 7040 5350	7410 7830 6100 4140	6839 6490 5289 3650	6170 5740 4530 2910		
3" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940	11760 11760 11110 10140	10000 9230	8500	7540 7500 6280 4630	6310 5110		5030 4390 3110 1790	4210 3540 2280 1350		
3'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends	14520	11380	10170 9410	8650 7750	7680 7640 6470 4830	6550 5340	5610 4390	5230 4630 3360 1970	2520		

No. 5.

PENCOYD I BEAMS AS STRUTS.

In the marginal columns r indicates the radius of gyration taken around axis A, B. When strat is hinged the pins are supposed to lie in the direction A, B. Under the conditions stated the strut may be considered flat ended in direction A, B,

LENOTH IN FEET.									Condition	Size	
20	22	24	26	28	30	32	34	36	ENDS,	BEAM.	
7390 7210	6910 6600	6440	6010 5560	5590 5680	5150 4540	4740 4090	4290 3620	3930	Fixed Ends	6''	
5980 4320	5390 3760	4820 3200	4350 2780	3840 2310	3260 1900	2800 1620	2860 1870	2080	Hinged Ends Round Ends	Heavy.	
7540 7500	7110 6900	6710 6310	6310 5880	5880 5430	5470 4930	5070 4440	4650 4000	4250 3580	Fixed Ends	6"	
6280 4630	5680 4030	5110 3490	4670 8050	4210 2600	3680 2190	3160 1830	2720 1570	2320	Hinged Ends Round Ends	Light.	
6620 6210	6090 5650	5590 5080	5110 4490	4610 3960	4130 3460	3730 3100	3340 2780	2970 2500	Fixed Ends	5"	
5010 3390	4440 2820	3840 2310	8210 1860	2680 1550	2220 1290	1950 1100	1690 940	1450	Hinged Ends Round Ends	Heavy.	
7030 6780	6590 6160	6090 5650	5630 5180	5150 4540	4690 4040	4250 3580	3860 3220	2900	Fixed Ends	5"	
5560 3920	4960 3340	4440 2820	3900 2350	3260 1900	2760 1590	2320 1850	2040 1160	1800 1000	Hinged Ends Round Ends	Light.	
5510 4980	4910 4260	4290 3620	3790 3160	3310 2760	2850 2420	2500 2140	2180 1910	1680	Fixed Ends	4''	
8730 2230	2970 1710	2360 1370	1990 1180	1670 930	1380 780	1180 670	1040	900 520	Hinged Ends Round Ends	Heavy.	
5590 5080	5000 4350	4410 3750	3860 3220	3400 2830	2940 2480	2570 2190	2240 1950	1790	Fixed Ends	4"	
3840 2310	3060 1760	2480 1440	2040 1160	1780 960	1430 810	1220	610	920 540	Hinged Ends Round Ends	Light.	
3560 2950	2940 2480	2450 2100	2000 1780	1740 1490	1520 1220	1320 1000	1120 820	670	Fixed Ends	3"	
1840 1030	1430 810	1160 660	960 560	800 450	680 370	590 320	500 260	230	Hinged Ends Round Ends	Heavy.	
3760 3130	3150 2640	2610 2230	2180 1910	1850 1620	1630 1350	1420 1110	1220 900	750	Fixed Ends	3"	
1970 1120	1570 880	1240 710	1040	870 500	740 410	630	550 290	240	Hinged Ends Round Ends	Light.	

No 6.

PENCOYD I BEAMS AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

When the strats are free to bend at right angles to the web; or in the weakest direction C. D. Using factors of safety given in previous tables.

Size	Condition	LENGTH IN FEET,										
BEAM.	ENDS.	2	4	6	8	10	12	14	16	18		
15" Aeavy	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940			8420 8420 7500 5950	7500 7450 6220 4560	6670 6260 5060 3440	5800 5340 4120 2510	4350	4170 3500 2250 1310		
15" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	14110 13640	11400 11400 10720 9660	9430 9430 8600 7140	8000 7970 6910 5200	7030 6780 5560 3930	6090 5650 4440 2820	5150 4540 3260 1900	4250 3580 2320 1350	3500 2900 1800 1000		
12" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	14240 13790	11670 11670 11010 10020	9840 9840 9050 7680	8339 8320 7370 5810	7370 7270 6040 4380	6530 6110 4910 3290	5630 5130 3900 2850	4890 4170 2890 1660	4000 3340 2130 1230		
12" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	13840 13350	11040 11040 10330 9170	9110 9110 8250 6760	7790 7680 6530 4890	6710 6310 5110 3490	5670 5180 3950 2390	4740 4090 2800 1620	3830 3190 2020 1150	3060 2570 1510 850		
10½" Heavy,	Fixed Ends Flat Ends Hinged Ends Round Ends	14340 18940	11760 11760 11110 10140	10000 9230	8370 8370 7430 5880	7450 7390 6160 4500	6620 6210 5010 3390	5750 5280 4060 2470	4950 4300 3010 1730	4130 3460 2220 1290		
10½" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	13840 13350	10950 10950 10230 9050	8960 8960 8090 6580	7590 7540 6340 4690	6580 6160 4960 3340	5510 4980 3730 2230	4530 3870 2600 1500	3630 3010 1880 1060	2880 2440 1400 790		
10" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13840 13350	10950 10950 10230 9050	8960 8960 8080 6580	7590 7540 6340 4690	6580 6160 4960 3340	5510 4980 3730 2230	4530 3870 2600 1500	3630 3010 1880 1060	2880 2440 1400 796		

No. 6.

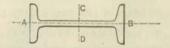
PENCOYD I BEAMS AS STRUTS.

In the marginal columns r indicates the radius of gyration taken around axis A. B. When the strut is hinged the pins are supposed to lie in the direction A. B. If the pins lie in the direction C. D, consider the strut flat ended by this table.

			Leng	Condition	Size					
20	22	24	26	28	30	32	34	36	ENDS.	BEAM.
3500 2900 1800 1000	2880 2440 1400 790	2410 2070 1140 650	1960 1750 940 550	1720 1460 790 440	1500 1200 670 370	1290 970 580 320	1090 800 490 260	650 420	Fixed Ends Flat Ends Hinged Ends Round Ends	15" Heavy.
2830 2400 1370 770	2310 2000 1100 630	1870 1650 890 510	1620 1340 730 410	1380 1060 610 340	1160 850 520 280	1000 670 430 230	860 520 340 200	430 280	Fixed Ends Flat Ends Hinged Ends Round Ends	15" Light.
3340 2780 1690 940	2730 2320 1310 740	2270 1970 1080 620	1870 1650 890 510	1640 1360 740 410	1410 1100 630 350	1210 890 540 290	1040 720 450 240	580 380	Fixed Ends Flat Ends Hinged Ends Round Ends	12" Heavy.
\$450 \$100 1160 660	1940 1730 930 540	1660 1390 760 420	1400 1090 620 850	1160 850 520 280	1000 670 430 230	850 510 340 200	410 270		Fixed Ends Flat Ends Hinged Ends Round Ends	12" Light.
3430 2850 1750 970	2880 2400 1370 770	2360 2030 1120 640	1930 1720 920 540	1690 1430 770 430	1470 1170 660 360	1260 940 560 310	1070 770 470 250	620	Fixed Ends Flat Ends Hinged Ends Round Ends	10½" Heavy.
2290 1990 1090 620	1850 1620 870 500	1560 1270 700 390	1310 990 580 320	1070 770 470 250	930 600 390 210	780 460 300 170	380 240	:::::	Fixed Ends Fiat Ends Hinged Ends Round Ends	10½" Light.
2290 1990 1090 620	1850 1630 870 500	1560 1270 700 390	1310 990 580 320	1070 770 470 250	930 600 390 210	780 460 300 170	380 240		Fixed Ends Flat Ends Hinged Ends Round Ends	10" Heavy.

No. 7.

PENCOYD I BEAMS AS STRUTS.


GREATEST SAFE LOAD IN LES. PER SQUARE INCH OF SECTION.

The strut is supposed to be free to bend in the weakest direction C. D. The radius of gyration is taken around A. B.

]	LENGT	H IN	FEET		-	
SIZE OF BEAM.	CONDITION OF ENDS.	9	4	6	8	10	12	14	16	18
10" Light	Fixed Ends Fiat Ends Hinged Ends Round Ends	13700	10770 10770 10040 8820	8780 8780 7830 6810	7450 7890 6160 4500	6400 5970 4770 8150	5310 4730 3460 2040	4290 3620 2360 1370	3430 2850 1750 970	2710 2300 1300 740
9" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13700 13200	10860 10860 10130 8930	8800 8800 7910 6400	7500 7450 6220 4560	6440 6020 4820 3200	5390 4830 3570 2120	4970 8710 9440 1420	3500 2900 1800 1000	2760 2340 1330 750
9" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	13430	10520 10520 9770 8490	8370 8370 7430 5880	7150 6960 5740 4090	6010 5560 4850 2780	4910 4960 2970 1710	3860 3220 2040 1160	3000 2530 1470 830	2340 2020 1110 630
8" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	1857) 1805)	10770 10770 10040 8820	8650 8650 7750 6220	7410 7330 6100 4440	6310 5880 4670 3050	5270 4680 3410 2010	4210 3540 2280 1330	3370 2800 1710 950	2640 2250 1260 720
8" Light	Fixed Ends Flat Ends Hinged Ends Round Ends			8330 8320 7370 5810	7110 6900 5680 4030	5960 5520 4300 2690	4820 4170 2890 1660	3790 3160 1990 1130	2940 2480 1430 810	2290 1990 1090 620
7'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13030 13030 12460 11670	9920 9920 9140 7720	7900 7870 6780 5160	6620 6210 5010 3390	5310 4730 3460 2040	4100 3430 2200 1270	3090 2600 1530 860	2340 2020 1110 630	1800 1560 840 480
7'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends			8040 8020 6970 5270	6790 6430 5220 3600	5550 5080 8790 2270	4330 3660 2400 1890	3340 2780 1690 940	2540 2170 1210 690	1920 1700 910 580

No. 7.

PENCOYD I BEAMS AS STRUTS.

 $A.\ B.$ indicates the direction of pins for hinged struts in this table. If the pins are placed in the direction $C.\ D.$ consider the strut as flat ended. r in marginal columns indicates radius of gyration around $A.\ B.$

		1	ENGT	H IN	FEET				Condition	Size
20	22	24	26	28	30	82	34	36	ENDS.	OF BEAM.
2110 1860 1010 580	1740 1490 800 450	1160 650	1210 890 540 290	1020 690 440 230	850 510 840 200	410 270			Fixed Ends Flat Ends Hinged Ends Round Ends	10" Light,
2180 1910 1040 600	1780 1530 830 470	1500 1200 670 870	1240 920 560 300	1040 720 450 240	880 540 860 200	430 280			Fixed Ends Flat Ends Hinged Ends Round Ends	9" Heavy.
1840 1610 870 500	1530 1230 680 380	1250 930 560 300	1030 710 440 230	860 520 340 200	270				Hinged Ends	9" Light
2070 1830 990 570	1700 1440 780 430	1430 1120 640 850	1170 860 530 280	990 670 420 230	830 490 830 190	400 250				8" Heavy.
1800 1560 840 480	1500 1200 670 870	1220 900 550 290	1010 680 430 280	840 500 830 190	250				Fixed Ends Flat Ends Hinged Ends Round Ends	8" Light.
1450 1150 650 860	1150 840 220 270	950 610 400 220	450 290						Fixed Ends Flat Ends Hinged Ends Round Ends	7'' Heavy.
1570 1290 710 890	1270 950 570 310	1080 710 440 230	850 510 340 200	400 250					Fixed Ends Flat Ends Hinged Ends Round Ends	7'' Light.

No. 8.

PENCOYD I BEAMS AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

(See remarks at head of Tables No. 6 and 7.)

Size	CONDITION			1	LENGT	H IN	FRET.			
BEAM	ENDS.	2	4	6	8	10	12	14	16	18
6" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	12140 11510	8880 8880 8000 6490	7030 6780 5560 3920	5470 4930 3680 2190	4000 3340 2130 12.0	2830 2400 1370 770	2000 1780 960 560	1550 1260 700 390	1170 860 530 250
6'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends	19270 11650	8960 8960 8080 6580	7110 6900 5680 4030	5590 5080 3840 2310	4100 3430 2200 1270	2940 2480 1430 810	2090 1840 1000 580	1590 1310 720 400	1220 900 550 290
5'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	11760 11110	8420 8420 7500 5950	6670 6260 5000 3440	5000 4850 3060 1760	3500 2900 1800 1000	2410 2070 1140 650	1720 1460 790 440	1290 970 580 320	980 650 420 230
5" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	11110	8420 8420 7500 5950	6670 6260 5060 3440	5000 4350 3060 1760	3500 2900 1800 1000	2410 2070 1140 650	1790 1460 790 440	1290 970 580 330	980 650 420 230
4'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	12010 11380	8730 8730 7830 6310	6910 6600 5390 3760	5310 4730 2460 2040	3830 3190 9020 1150	2660 2260 1270 720	1870 1650 890 510	1440 1140 640 360	1070 770 470 250
4'' Light	Fixed Ends Flat Ends Hinged Ends Round Ends	11130 10420	7770 7730 6590 4960	5750 5280 4060 2470	3890 3250 2060 1180	2520 2160 1200 680	1690 1430 770 430	1200 880 540 290	870 530 350 200	
3'' Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	11670	8370 8370 7430 5880	6620 6210 5010 3390	4910 4260 2970 1710	8400 2830 1730 960	2310 2000 1100 680	1660 1390 760 420	1240 920 560 300	940 600 390 210
3" Light	Fixed Ends Flat Ends Hinged Ends Round Ends	11310	7900 7870 6780 5160	5960 5590 4300 2690	4130 3460 2220 1290	2780 2890 1810 740	1810 1580 850 480	1320 1000 590 320	960 630 410 220	710 400 £60 160

ROLLED ANGLES AS STRUTS.

Tables Nos. 9 and 10 apply to even-legged angles acting as struts. As described in the head notes, the angle is considered free to yield in its weakest direction, that is in the direction of the least radius of gyration.

If the angle is prevented from failing in this direction, by bracing or otherwise, its resistance will be increased to some extent, and a correction can be made by taking the greatest instead of the least radius of gyration into the calculation.

Example.—An angle strut with flat ends, whose dimensions are $4 \times 4 \times \frac{\pi}{4}$ inches, and 12 feet long, has a least radius of gyration of .81 inch, and greatest radius of gyration 1.24. When the strut has no lateral support the value of $\frac{l}{r}$ would be $\frac{144}{.81}$

178. (See table on page 98.) By Table No. 2 the safe load would be 3,580 lbs. per square inch.

If this strut is now braced so that it cannot fail in the weakest direction, that is in the line of a diagonal from the corner of the angle, but is free to fail in the direction of its legs, then the value of $\frac{l}{r}$ becomes $\frac{144}{1.24} = 116$, and the safe load by the tables

STRUTS COMPOSED OF SEVERAL ANGLES.

If a strut is composed of several angles, properly braced together, so that the angles cannot fail individually, find the least radius of gyration of the section in the manner described on page 111, and thus the working resistance of the strut from Table No. 2, as described before.

becomes 6,500 lbs. per square inch.

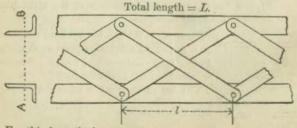
Example.—What is the working resistance of a flat-ended strut 10" square outside, and 18 feet long, composed of four 3 × 3 angles connected by triangular bracing?

The radius of gyration as found on page

111, is 4.21 inches. $\frac{l}{r} = 51$.

Safe load per square inch by Table No. 2 = 10,800 lbs.

But the angles will fail individually if the bracing is not sufficient. To determine the greatest distance apart for centres of bracing, consider each angle as a strut bearing 10,800 lbs. per square inch of section. The least radius of gyration for a single


angle is .60 inch. By Table No. 2, the value of $\frac{l}{r}$ correspond-

frg to the pressure of 10,800 is 51, as found above. Therefore $.60 \times 51 = 30$ inches, which is the greatest distance apart for centres of bracing. For properly designed struts of the foregoing section, the resistance per square inch may be ascertained approximately by means of table No. 18, page 158, although the former kind of column should be somewhat stronger than the latter per unit of section.

STRUTS OF UNEVEN ANGLES.

When uneven angles are used as struts, find the value of $\frac{l}{r}$ by means of the least radius of gyration as found on page 99, and the corresponding resistance per square inch of section by table No. 2 as before. If the angle is braced in such a manner that failure cannot occur diagonally, it will then fail in the direction of the shortest leg, and if braced in this direction also, it will be forced to fail in the direction of the longest leg. The resistance in either direction can readily be found by means of the respective radii of gyration, as given in columns VII, VIII, IX, page 99.

It is frequently desirable to use a pair of uneven angles, braced together in the direction of the shortest legs.

For this form the least radius of gyration for the combined

sections will be the same as the greatest radius of gyration for a single angle. Therefore take in the tables of elements of uneven angles, the greatest radius, or that corresponding to axis A B, when estimating the strength of the combined sections, and the least radius when determining the distance between centres of bracing.

Example.—A flat-ended strut, 16 feet long, is composed of two uneven angles, each $6 \times 4 \times \frac{1}{2}$ inches, and 4.75 square inches sectional area. The angles are braced together in the direction of the short legs. What is the greatest safe load for the strut, and what the greatest distance between centres of bracing measured on the leg of the angle?

By the tables on page 99, the greatest radius of gyration = 1.9 inches, therefore $\frac{l}{r} = 101$.

By Table No. 2 we have for this 7,450 lbs. per square inch, or 70,700 lbs. for the whole strut. The least radius of gyration is .93 inch, which multiplied by 101 gives 92.9 inches as the greatest distance between centres of bracing.

To find the greatest distance apart centres of bracing (l) should be it is only necessary to remember that $\frac{l}{s}$ should not exceed $\frac{L}{R}$.

l = distance between bracing centres.

r =least radius of gyration of single angle.

L = total length of strut.

R =least radius of gyration of combined section.

When struts of any section are hinged, in order to utilize the maximum efficiency of the strut it is of the utmost importance to keep the centre of pin in line with the centre of gravity of cross section of the strut. In the tables of elements 94–101, the positions of centres of gravity are accurately defined.

No. 9.

PENCOYD ANGLES AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION USING THE FACTORS OF SAFETY OF PREVIOUS TABLES.

	Condition of			LES	KGTH	IN .	FEET			
Size of Angle.	Ends.	2	4	6	8	10	12	14	16	18
6"× 6" r=1.18	Fixed Ends Flat Ends Hinged Ends Round Ends	14380 13940	11670 11010	9920 9140	8370 7430	7830 6100	6160 4960	5230 4010	4870 4220 2930 1690	3400 2180
5"×5"	Fixed Ends Flat Ends Hinged Ends Round Ends	13840 13350	11040 10330	8960 8080	7590 6410	6210 5010	5080 8840	3920 2640	3690 3070 1930 1090	2480
4"× 4" r - ·so	Fixed Ends Flat Ends Hinged Ends Round Ends	13030 12460	10090 9330	7970 6910	6370 5170	4930 3680	3580 2320	2730 1650	2470 2120 1170 670	1650
3½"× 3½" **	Fixed Ends Flat Ends Hinged Ends Round Ends	12520 11920	9270 8420	7970 6040	5470 4250	3870 2600	2760 1670	2070 1140	1790 1550 830 470	1090 620
3"×3"	Fixed Ends Flat Ends Hinged Ends Round Ends	11760 11110	8420 8420 7500 5950	6260 5060	4350 3060	2900 1800	2070 1140	1720 1460 790 440	580	650 420
23''× 23''	Fixed Ends Flat Ends Hinged Ends Round Ends	11400 10720	8070 7040	5740 4530	3710 2440		1730 930	1140 640	450	460 300
2½"×2½"	Fixed Ends Fiat Ends Hinged Ends Round Ends	11040 10330	7640 6470	5130 3900	3130 1970	2410 2070 1140 650	1350 740	510	490 320	

No. 9. PENCOYD ANGLES AS STRUTS.

The radius of gyration is taken about the axis A B, which also indicates the direction of pin if the strut is hinged.

r in marginal columns indicates radius of gyration around axis A B.

-			LEN	TH :	IN F	EET.			CONDITION OF	Common Amount
20	22	24	26	28	30	32	34	36	Ends.	Size of Angle.
2830 1730	2780 2360 1340 760	2000 1100	1690 910	1390 760	1140 640	920 560	750 460	390	Fixed Ends Flat Ends Hinged Ends Round Ends	6"× 6"
2030 1120	1870 1650 890 510	1310 720	1020 600	800 490	620 400	470 310	390 250		Fixed Ends Flat Ends Hinged Ends Round Ends	5"×5"
1250	1230 910 550 300	670 430	490 320	380 240					Fixed Ends Flat Ends Hinged Ends Round Ends	4"×4"
1070 770 470 250	350 350	390 250		****		****			Fixed Ends Flat Ends Hinged Ends Round Ends	3½"× 3½"
430 280									Fixed Ends Flat Ends Hinged Ends Round Ends	3"×3"
									Fixed Ends Flat Ends Hinged Ends Round Ends	$2\frac{3}{4}^{"}\times2\frac{3}{4}^{"}$
									Fixed Ends Flat Ends Hinged Ends Round Ends	2½"×2½"

No. 10.

PENCOYD ANGLES AS STRUTS.

GREATEST SAFE LOADS IN LBS. PER SQUARE INCH OF SECTION.

(See remarks at head of Table No. 9.)

	CONDITION OF			LE	NGTII	IN	FEET			
Size of Angle.	Ends.	2	4	6	8	10	12	14	16	18
2¼"× 2¼" 44	Fixed Ends Flat Ends Hinged Ends Round Ends	10600 10600 9860 8600	7190 7020 5800 4150	4350 3060	3090 2600 1530 860	1650 890	970 580	890 550 360 200	640 840 230 140	
2"× 2"	Fixed Ends Flat Ends Hinged Ends Round Ends	10000 10000 9230 7820	6670 6260 5060 3440	3500 2250	2410 2070 1140 650	1200 670	650 420	660 870 230 150		***
14 ~ 14	Fixed Ends Flat Ends Hinged Ends Round Ends	9430 9430 8600 7140	5659 4440	2900 1800	1870 1650 890 510	850 520	430		••••	
	Fixed Ends Flat Ends Hinged Ends Round Ends	8650 8650 7750 6220	5190 4590 3310 1940			480 310			***	
14 ~ 14	Fixed Ends Flat Ends Hinged Ends Round Ends	7860 7830 6730 5100	4000 3340 2130 1230	1750 1500 810 450	380				****	***
	Fixed Ends Flat Ends Hinged Ends	6870 6260 5060 3440	2410 2070 1140 650	980 650 420 230			****			

TEE STRUTS.

The following tables are for even tees. For single uneven tees, find the least radius of gyration from the table of elements, page 101, and proceed as described for angle struts, on page 135.

When a pair of uneven tees are braced together in the direction of the shortest leg, they form a single strut, whose least radius of gyration is the same as the greatest radius of gyration for a single tee.

Therefore, when determining the resistance of the combined strut, take the greatest radius of gyration from the table on page 101, and the least radius of gyration, when determining the distance between centres of lateral bracing.

Example.—A pair of uneven tees $5 \times 2\frac{1}{2}$ inches, whose total area is 6.1 square inches, are braced together in the direction of the shortest leg, forming a single hinged-ended strut 15 feet long. What is the greatest safe load, and what the greatest distance between centres of lateral bracing?

By table on page 101, greatest radius of gyration = 1.14 inches, $\frac{l}{r}$ = 158, which by Table No. 2 gives 3,100 lbs. per square inch,

or 18,900 lbs. total greatest safe load.

Least radius of gyration = .72, which multiplied by 158 gives 113 inches as the greatest distance between centres of lateral bracing.

No. 11.

PENCOYD TEES AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION,

When the strut is free to fail in the direction C. D. Using factors of safety given in previous table,

Crem on Man	Condition		1	LENGTI	I IN F	EET.		
Size of Tee.	ENDS.	2	4	6	8	10	12	14
4"×4"	Fixed Ends	13160	10260	8140	6910	5670	4530	350
TOT	Flat Ends	13160	10260	8120	6600	5180	3870	290
F 000 + 04	Hinged Ends	12610	9500	7100	5390	8950	2600	180
	Round Ends	11840	8150	5420	3760	2390	1500	100
3½"× 3½"	Fixed Ends	12780	9590	7680	6220	4910	3660	271
77 ~ 07		12780	9590	7590	5790	4260	3040	230
r74	Hinged Ends	12190	8780	6410	4580	2970	1910	130
£ 1.4	Round Ends	11360	7330	4760	2960	1710	1070	74
3"×3"	Fixed Ends	11890	8650	6830	5190	3690	2590	189
0 40	Flat Ends	11890	8650	6490	4590	3070	2210	159
r62	Hinged Ends	11240	7750	5280	3310	1930	1230	86
L 0.5	Round Ends	10290	6220	3650	1940	1090	700	45
111 - 0111	Fixed Ends	11400	8090	6170	4370	2940	1930	144
$2\frac{1}{2}'' \times 2\frac{1}{2}''$	Flat Ends	11400	8070	5740	3710	2480	1720	114
	Hinged Ends	10720	7040	4530	2440	1430	920	64
7 3.5	Round Ends	9660	5350	2910	1420	810	540	36
1111 0 0111	Fixed Ends	10770	7410	5270	3370	9070	1430	90
$2\frac{1}{4}$ " × $2\frac{1}{4}$ "	Flat Ends	10770	7330	4680	2800	1830	1120	6
	Hinged Ends	10040	6100	3410	1710	990	640	45
r47	Round Ends	8820	4440	2010	950	570	350	25
011 4 011	Fixed Ends	10340	6990	4690	2800	1730	1140	75
2"×2"	Flat Ends	10340	6720	4040	2380	1470	840	46
	Hinged Ends	9590	5500	2760	1850	790	510	3
g == +43	Round Ends	8260	3870	1590	760	440	270	13
311 - 1311	Fixed Ends	9590	6220	3660	1980	1250	800	
[¾"×1¾"	Flat Ends	9590	5790	3040	1760	930	470	
72	Hinged Ends	8780	4580	1910	950	560	310	
r == -27	Round Ends	7830	2960	1070	550	300	180	
WV 1111	Fixed Ends	8800	5390	2760	1500	880		
× 1½"	Flat Ends	8800	4830	2340	1200	540		
STATE OF THE PARTY	Hingred Ends	7910	3570	1330	670	360		
The same of	Round Ends	6400	2120	750	370	200		

No. 11.

PENCOYD TEES AS STRUTS.

Radius of gyration taken around axis $A.\,B.$ which also indicates the direction of pin when strut is hinged. r in marginal columns indicates radius of gyration around axis $A.\,B.$

		LENGT	H IN F	PEET.			Condition	Size of Tee.
16	18	20	22	94	26	28	ENDS.	SIZE OF THE
2660 2260 1270 720	1790 970	1650 1380 750 420	1350 1030 600 320	1070 770 470 250	910 570 870 200	430 280	Fixed Ends Flat Ends Hinged Ends Round Ends	4"×4"
1980 1760 950 550	1300 710	1250 930 560 800	990 670 420 230	470 310			Fixed Ends Flat Ends Hinged Ends Round Ends	3½"× 3½" ·14
1400 1090 620 850	730 450	480 310;					Fixed Ends Flat Ends Hinged Ends Round Ends	3"×3"
1040 720 450 240	450 - 300						Fixed Ends Flat Ends Hinged Ends Round Ends	$2\frac{1}{2}^{"}\times2\frac{1}{2}^{"}$ $r=\cdot ss$
400 260							Fixed Ends Flat Ends Hinged Ends Round Ends	2¼"× 2¼"

-	CONDITION	LENGTH IN FEET.									
SIZE OF TEE.	OF ENDS.	2	4	6	8	10	12	14			
11"×11"	Fixed Ends	8000	4250	1870	1000						
14 ~ 14	L'HING EMILT.	7970	8580	1650	670						
r = -27	Round Ends	6910	2320	890 510	230						
	Round Luds	0000	1000	010	200						
1"×1"	Fixed Ends	7860	4000	1750	920		10	ght.			
1 × 1	Flat Ends	7830	3340	1500							
	Hinged Ends	6720	2130	810	380		D-				
r == -26	Round Ends	5100	1230	450	210	1000 I	4- 1	1.0			

No. 12.

LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES. C.

For a pair of braced channels or for a single channel secured from flexure in the direction of the flanges and liable to fail only in the direction of the we

r in the margin A B, or for either scription, page 121

ction of the fleb C D.	anges and liable to fail only in the lives the radius of gyration for axis ombined pair of channels. See de-	В
	LENGTH IN FEET.	

Size	CONDITION				LIENGS	TH IN	FEET			
CHANNEL	ENDS.	6	8	10	12	14	16	18	20	22
_		_	-			-	_		-	-
15"	Fixed Ends									
r 8-51	Flat Ends			14110	13570	12900	12400	11890	11400	11040
D = 12.7	Hinged Ends			13640	13050	12320	11780	11240	10720	10330
4 9-9	Round Ends	*****	*****	2.05	2.46	2.87	3.28	3.69	4.10	4.51
12"Hy	Fixed Ends		14940	13570	12780	12140	11580	11130	10600	10170
1 - 4-55	Flat Ends	185-03	14240	13570	12780	12140	11580	11130	10600	10170
D = 10.9	Hinged Ends		13790	13050	12190	11510	10910	10420	9860	9410
4-7-5	Round Ends	****	13160	12330	11360	10600	9900	3.64	8600	8040
	The second		T.OT	6.06	6.20	6,00	0,00	3.02	2.02	2.22
12"L't	Fixed Ends	Contract of	14240	13570	12780	12140	11580	11130	10600	10170
r = 4-00	Flat Ends									
D 10-2	Hinged Ends		13790	13050	12190	11510	10910	10420	9860	
d 7-7	Round Ends.v.							2.92		
			1.30	1.62	1.5%	4.21	2.59	2.92	3.24	3.56
10"Hy	Fixed Ends	1000	13840	19900	12140	11490	10950	10430	9920	9430
1 - 3-92	Flat Ends		13840	12900	12140	11490	10950	10430		9430
D = 9-0	Hinged Ends		13350	12320	11510	10820	10230	9680	9140	
4-6-8	Round Ends								7720	
	The second second		1.71	2.14	2.57	2.99	3.42	3.85	4.28	4.71
10"L't	Fixed Ends		13700	19000	19140	11490	10950	10340	9840	9350
1 - 3-89	Fint Ends		13700	12900	12140	11490	10950	10340		9350
D - 8.9	Hinged Ends									8510
d 6-8	Round Ends									7040
		200	1.42	1.77	2.13	2.48	2,84	3.19	. 3.55	3.90
9"He'vy	Fixed Ends	14240	13300	12400	11580	10950	10340	9760	9190	8650
1 - 3-40	Fint Ends	14240	13300	12400	11580	10950	10340	1/2/00		
D - 8-1	Hinged Ends	13790	12760	11780	10910	10230	9590			7750
u - 0-4	Round Ends							7580		6220
The same of the sa		100000			2.36		OF STREET	3.55	3.94	4.33
" ight	Fixed Ends	14240	13300	19400	11580	10950	10340	9760	9190	8650
THE RESERVE OF THE PARTY OF THE	PER ERRIS	14440	CARGGE	1234001	111000	FERRICIA	10000	9760		
	Vinged Ends									
	d Ends									6220
The same		1.03	1.38	1.72	2.08	2.21	2.75	3.10	3.44	3.78
			-				1	-		

No. 12.

LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES.

The channels must be connected so as to insure unity of action and separated not less than the distances D or d respectively, given in inches in the marginal columns. Figures in heavy type under each length represent the greatest distances apart in feet on each channel that centres of lateral bracing should be placed.

		1	LENGT	III IN	FEET				CONDITION	SIZE
24	26	28	30	32	84	36	38	40	OF ENDS,	OF CHANNEL.
										4-110
	10260	9920	9590	9190	8880	8580 8580	8280 8270		Fixed Ends	15"
	10960 9500	9920	9590 8780	9190 8330	8880	7670	7300		Hinged Ends	7 - 5-51
8710		7720	7830	6850	6490	6130	5780		Round Ends	D=12.7
4.92	5.33	5.74	6.15	6.56	6.97	7.38	7.79	8.20		
9760	9270	8880	8500	8230	7950	7720	7500	7940	Fixed Ends	12"my
9760		8880	8500	8220	7920	7680	7450	7.080	Flat Ends	1 = 4.50
8960	8420	8000	7580	7240	6840	6530	6220	5860	Hinged Ends	D=10-3
7530		6490	6040	5660	5230	4890	4560		Round Ends	d== 7 - 8
4.85	5.25	5.66	6.06	6,47	6.87	7.28	7.68	8.09		
9760	9270	8880	8500	8230	7950	7720	7500	7280	Fixed Ends	12"L't
9760		8880	8500	8220	7920	7680	7450	7140	Flat Ends	1 4-50
8960		8000	7580	7240	6840	6530	6220		Hinged Ends	D=10+2
7530		6490	6040	5660	5230	4890 5.84	4560 6.16	6,49	Round Ends	d== 1-7
3.89	4.21	4,54	4.86	5.19	0.01	0.02	0.10	0.30		40000
8960	8420	8140	7860	7590	7820	7070	6830		Fixed Ends	10"Hy
8960	8420	8120	7830	7540	7210	6840	6490	6160	Flat Ends	
8080	7500	7100	67.20	6340	5080	5620	5280 3650		Hinged Ends	The same
5.13	5950	5420	5100	4690 6,85	4320	7.71	8.14	8.57	Round Ends	4-,6-3
					100			****		10"L't
8980		8140	7810	7540	7280	7030 6780	6790 6430	6530	Fixed Ends	
8880	8420 7500	8120 7100	7780 6650	7500 6280	7140 5920	5560	5220		Hinged Ends	
6490	5950	5420	5030	4630	4270	3920	2600	3290	Round Ends	D= 6.3
4.26	4.61	4.97	5.32	5.68	6.03	0.39	6.74	7.10		
8280	7950	7630	7320	7030	6750	6440	6130	5840	Fixed Ends	9"He'vy
8270	7920	7590	7210	6780	6370	6020	5700		Flat Ends	7 - 3-45
7300	6840	6410	5980	5560	5170	4820	4480	4160	Hinged Ends	D- 8-1
5730		4760	4320	3920	3540	3200	2870		Round Ends	4-6-4
4.73	5.12	5.52	5.91	6.30	6.70	7.09	7.49	7.88		
8230	7900	7590	7280	6990	6710	6400	6090	5800	Fixed Ends	9"134
8220	7870	7540	7140.	6720	6310	5970	5650			
7240	6780	6340	5900	5500	5110	4770	4440			
5660		4690	4370	3870 5.50	3490	3150	2820 6.54	6,88	Round End End	s Ligi
4.13	4.47	4.82	5.16	0.50	5.85	6.19	0.52	0.00	and Ends	ran ran

No. 13.

LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION. USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES.

For a pair of braced channels or for a single channel secured from flexure in the direction of the flanges and liable to fall only in the direction of the web *U.D.*r in the marginal columns gives the radius of gyration for axis *A.B.*, or for either axis of the combined pair of channels. See de-

scription, page 121.

-									-	D
Size	CONDITION			- 1	LENG	TH IN	FEET	r.		
CHANNEL	ENDS.	4	6	8	10	12	14	16	18	20
011,			Total S				1000			
9 He'vy	Fixed Ends		13840	12900	11890	11130	10430	9760 9760	9190 9190	8580 8580
D = 7:2	Hinged Ends		13350	12320	11240	10420	9680	8960	8330	7670
6.00-418	Round Ends				10290 2.32	9290 2.78		7530 3.71	6850 4.18	6130 4.64
8"Light	Fixed Ends		13970	12900	11890	11130	10520	9846	9190	8580
r 3-09	Flat Ends Hinged Ends							9840 9050	9190 8330	8580 7670
D = 7.1 $d = 8.0$	Round Ends						8490	7630	6850	6130
ATT TOTAL					1.94		2.72	3.10	3.49	3.88
7"He'vy	Fixed Ends		13430	12270	11310	10520	9760	9040	8370	7950
F.mm 2+65	Flat Ends Hinged Ends		13430	122240	1:1310	10320	9760	9040	8870	7920
D = 4.5	Round Ends		12170	10750	9530	9770 8490	8960 7530	8160	7430 5880	6840 5230
			1.46		2.43	2.91	3.40	3.88	4.37	4.85
7"Light	Fixed Ends		13430	12270	11310	10430	9680	8960	8330	7900
7 - 2-64	Flat Ends Hinged Ends					10430 9680	9680 8870	8960	8820 7370	7870
D = 4.1	Round Ends		12170	10750	9530	8870		6580	5810	6780 5160
			1.32	1.76	2.20	2,64	3.03	3.52	3.96	4.40
G"He'vy	Fixed Ends	14380	12900	11670	10770	9920	9110	8370	7860	7410
r - 2-30	Flat Ends	14380	12900	11670	10770	9920	9110	8870	7830	7330
D = 5.8	Hinged Ends Round Ends	13330	11520	10020	10040	9140	8250 6760	7430 5880	6720 5100	6100
13000 3190	Control of the second s		1.70			3,41	3.98	4.54	5.11	5.68
6"Light	Fixed Ends	14240	12900	11580	10690	9760	8880	8180	77:20	7240
r - 9-97	Flat Ends	14240	12900	11580	10690	9760	8880	8170	7680	7080
D = 5.3	Hinged Ends	13790	12320	10910	9950 8710	8960 7530	8000 6490	7170 5490	6530 4890	5860 4210
		.90	1.35	1.80	2.25		3.15	3.60	4.05	4.50
He'vy	Fixed Ends	13700	12140	10860	9840	8800	8090	7500	6990	6490
					9840	8800	8070	7450	6720	6070
The same of	Hinged Ends	19500	10600	10130 8930	9050 7630	7910 6400	7040 5350	6220 4560	5500 3870	4860 8240
Account to			1.74		2.90	3.48	4.06	4.64	5.22	5.80
							T-A			

No. 13.

LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES.

The channels must be connected so as to insure unity of action and separated not less than the distances D or d respectively, given in inches in the marginal columns. Figures in heavy type under each length represent the greatest distances apart in feet on each channel that centres of lateral bracing should be placed.

		3	LENG	TH IN	FEET	r.			CONDITION	Size
	1	1		1		1	1	1	OF	OF
20	24	26	28	30	32	34	36	38	ENDS.	CHANNEL
										8"He'vy
814 812		7410							Fixed Ends	
710									Hinged Ends	
549									Round Ends	D = 7.2
5.1		6.03	6.50		7.42					
814		7450	7110	6790	6490	6130	5800		Fixed Ends	8"Light.
812			6900	6430	6070			4980	Flat Ends	r = 3.00
710			5680	5220				3730	Hinged Ends	
542			4030 5.43	3600 5.82	3240 6.21				Round Ends	d 5 · 0
2.0	2.00	0,01	0.20	0.00	0.22	0.00	0.00	1.00		
754			6440		5670			4570	Fixed Ends	7 He'vy
7500					5180			8920	Flat Ends	r == 2 - 68
628 463			4820					1590	Hinged Ends Round Ends	D = 6.5
5.3				7.28	7.76					4 - 3.8
7500	7110	6750	6950	5960	5590	5190	4820	4450	Fixed Ends	7"Light.
7456			5930	5520	5080			3790	Flat Ends	r = 2.64
623		5170	4720	4300	3840		2890	2520	Hinged Ends	D - 4+1
4560			3100	2690	2310				Round Ends	d = 4-2
4.8	5.28	5.72	6.16	6.59	7.03	7.47	7.91	8.35		
6996	6580	6130	5710	5270	4870	4450	4060	8730	Fixed Ends	6"He'vy
672	6160	5700	5230	4680	4220	8790	3400	3100	Flat Ends	r = 2+36
5500			4010	3410					Hinged Ends	D = 5.8
8870		2870 7.38	2480	2010 8,52	1690		10.22		Round Ends	a == 3 · 3
0.20	0.00	1,00	1.80	0.02	9.09	8.00	10.00	10.10		
6830	6350	5920.	5470	5030	4610	4170	3880	3460	Fixed Ends	6"Light.
6490		5470	4930		3960	3500			Flat Ends	1 == 2 - 27
5280 3650			3680	3110	2680	2250			Hinged Ends	
4.98			6.30	1790 6.75	1550 7,20	1310 7.65	1150 8.10	8.55	Round Ends	4-2-3
00	0.20	0.00	0,00	2110	1000	1.00	0120			-11
5920			4410	3930	3530	3150		2500	Fixed Ends	5 5.
5470			3750		2920		2360	2140	Flat Ends	
4250 2640		2970 1710	2480 1440	2080	1820	1570	760	670	Hinged Ends Round Ends	Light.
6,38			8.12	8.70	9.28		10.44	11.02	Bids	*40
2000	Contract of	MACHE !	20000	08025	3000 Marie	5000	1			

No. 14.

LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES. C.

For a pair of braced channels or for a single channel secured from flexure in the direction of the flanges and liable to fail only in the direction of the web $\mathcal{C}(D, T)$

r in the marginal columns gives the radius of gyration for axis A-B, or for either axis of the combined pair of channels. See description, page 121.

the		
axis A-	ï	-B
e de-	U	5
	1)

Size	CONDITION	LENGTH IN FEET.										
CHANNEL.	ENDS.	2	4	6	8	10	12	14	16	18		
5" Light, r = 1.88 D = 4.8 d = 2.8	Fixed Ends Flat Ends Hinged Ends Round Ends		13570 13050 12330	12010 12010 11380 10440 1.43	10770 10040	9680 9680 8870 7430 2.39	8650 8650 7750 6220 2.87	8000 7970 6910 5200 3.35	7410 7335 6100 4440 3.83	6870 6550 5340 3710 4.31		
$\begin{array}{c} 4'' \\ \text{Heavy} \\ r = 1.55 \\ D = \frac{4.0}{4} \\ 1.9 \end{array}$	Fixed Ends Flat Ends Hinged Ends Round Ends		12900 12320	10520	9840 9840 9050 7630 2.58	8650 8650 7750 6220 3.23	7810 7780 6650 5030 3.88	7150 6960 5740 4090 4.52	6490 6070 4860 3240 5.17	5840 5880 4160 2550 5.81		
4'' Light p = 3.8 d = 2.0	Fixed Ends Flat Ends Hinged Ends Round Ends		12320	11130 10420	9840 9840 9050 7630 2.50	8580 8580 7670 6130 3.12	7810 7780 6650 5030 3.74	7110 6900 5680 4030 4.37	6440 6020 4820 3200 4.99	5800 5340 4120 2510 5.62		
3" r = 1-16 D = 3-1 4 = 1-1	Fixed Ends Flat Ends Hinged Ends Round Ends	14340 13790 13160	11670 11010	9840	8270	7370 7270 6040 4380 3.97	6490 6070 4860 3240 4,36	5590 5080 3840 2310 4.76	4780 4130 2850 1640 5.15	3960 3310 2110 1210 5.55		
21" f = -85 D = 2-4 4 = -54	Fixed Ends Flat Ends Hinged Ends Round Ends	13300 12760	10340 9590 8260	8170 7170	6660	5750 5280 4060 2470 5,06	4610 8960 2680 1550 6.07	3560 2950 1840 1030 7.08	2730 2320 1310 740 8.10	2090 1840 1000 580 9.11		
	Fixed Ends Flat Ends Hinged Ends Tagind Ends	12780 12190	9590 8780	7590 6410	5790 4580	4910 4260 2970 1710 4.19	3690 3070 1980 1090 5.03	2710 2800 1300 740 5.87	1980 1760 950 550 6.70	1580 1300 710 400 7.54		

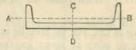
No. 14. LATTICED CHANNEL STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES,

The channels must be connected so as to insure unity of action and separated not less than the distances D or d'respectively, given in inches in the marginal columns. Figures in heavy type under each length represent the greatest distances apart in feet on each channel that catres of lateral bracing should be placed.

		- 1	LENGT	H IN	FEET				CONDITION	Size
20	22	24	26	28	30	32	34	36	ENDS.	OP CHANNEL
-				22.	Name of					5"
6810 5880									Fixed Ends	Light.
4670									Hinged Ends	r = 1.88
2050	2510	2010	1620	1330	1130	950	820	720	Round Ends	D = 4-5
4.78	5.26	5.74	6.22	6.70	7.18	7.66	8.14	8,61		9 - 3 - 8
	1								7	AIT
5190	4570	3960	3460	2970	2590	2240	1920	1740	Fixed Ends	4''
4590		3310		2500					Flat Ends	Heavy.
3310 1940		2110 1210		1450 820					Hinged Ends	T = 1.55 D = 4.0
6.46	7.10	7.75	8.39	9.04		10.32			Round Ends	q = 1-9
			0.00	-	0.00	-	20.01			
F1F()	4400	0000	9400	00.40	0740	70000	rnoo	+000	TH	4"
5150 4540		3930		2940 2480					Fixed Ends	Light.
8260				1430			900		Hinged Ends	1 - 1-54
1900	1480	1190		810	690	600		430	Round Ends	D = 3.8
6.24	6.86	7.48	8.11	8.73	9.35	9,97	10.60	11.22		4 2-0
										3"
3280				1610	1390	1180			Fixed Ends	0
2730				1330			700	560	Flat Ends	
1650 920		1060		730			440 230		Hinged Ends	D = 3-1
7.94	8.33	8.72	9,12			12.29			Round Ends	4 = 1-1
	0.00	0.18		0.02	22.00	20.00	20.00	40,00		
1690	1380	1100	930	mm.	100				Direct Production	21"
1430		800							Fixed Ends	-4
770	610	490							Hinged Ends	1 = +85
430	340	260		170					Round Ends	D = 2.4
10.12	11.13	12.14	13,15	14.17			****	****		d = -54
										2"
1250									Fixed Ends	4
930	670.					*****			Flat Ends	48
560 300	420 230								Hinged Ends	9"
8.38		10.05			*****		1	*****	Atoming Elites	
	1	- 6	1210	1000	100	10000	(0.570)	0.000	a Ends	Light.
-		-							and Ends	140

No. 15.


PENCOYD CHANNELS AS STRUTS.

GREATEST SAFE LOADS IN LBS. PER SQ. INCH OF SECTION, WHEN THE STRUTS ARE FREE TO BEND AT RIGHT ANGLES TO THE WEB OR IN THE WEAKEST DIRECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES.

			-							_
Size	Condition		N.	1	ENGT	H IN	FEET.			Y.
CHANNEL	ENDS.	2	4	6	8	10	12	14	16	18
15"	Fixed Ends Flat Ends Hinged Ends Round Ends	14240 13790	11580 10910	9680 9680 8870 7430	8180 8170 7170 5490	7240 7080 5860 4210	6350 5930 4720 3100	5430 4880 3620 2150	4570 3920 2640 1530	3790 3160 1990 1130
12" Henvy	Fixed Ends Flat Ends Hinged Ends Round Ends	13570 13050	10690 9950	8580 8580 7670 6130	7320 7210 5980 4320	6220 5790 4580 2960	5110 4490 3210 1860	4060 3400 2180 1260	3220 2690 1610 900	2520 2160 1200 680
12" Light	Fixed Ends Fiat Ends Hinged Ends Round Ends	12780 12190	9590 8780	7630 7590 6410 4760	6220 5790 4580 2960	4910 4260 2970 1710	3660 3040 1910 1070	2710 2300 1300 740	1980 1760 950 550	1580 1300 710 400
10" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	13160 12610	10260 9500	8140 8120 7100 5420	6910 6600 5390 3760	5670 5180 3950 2390	4530 3870 2600 1500	3500 2900 1800 1000	2660 2260 1270 720	2020 1790 970 560
10" Light.	Fixed Ends Flat Ends Hinged Ends Round Ends,	$\frac{12400}{11780}$	9190 9190 8330 6850	7830 7210 5980 4320	5840 5380 4160 2550	4410 3750 2480 1440	3220 2690 1610 900	2340 2020 1110 630	1740 1490 800 450	1360 1040 600 340
9" Heavy	Fixed Ends Flat Ends Hinged Ends Round Ends	12400 11780	9110 9110 8250 6760	7240 7080 5860 4210	5750 5280 4060 2470	4330 3660 2400 1390	3120 2620 1550 870	2240 1950 1070 610	1690 1430 710 430	1320 1000 590 320
1	Fixed Ends	11010	7430	6620 621. 5010 3390	4910 4260 2970 1710	3400 9830 1730 960	2310 2000 1100 630	1660 1390 760 420	1240 930 560 300	940 600 390 210

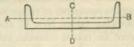
No. 15.

PENCOYD CHANNELS AS STRUTS.

r in marginal columns is the radius of gyration taken around axis A B. When strut is hinged the pins are supposed to lie in the direction A B. When the pins are in the direction C D, consider the strut flat ended by this table.

		LENG			H IN	FEET.				CONDITION	Size
1	20	22	24	26	28	30	32	34	86	ENDS.	CHANNEL
		2540						970		Fixed Ends	15"
	2620				1220	980	800	640		Flat Ends	10
13	870				680 370		490 260	410 220		Hinged Ends Round Ends	r == 1 · 13
	510	000	5.0	400	040	040	200	200	1100	Round Ends	
		1640			950					Fixed Ends	12"
	930				610	460				Flat Ends	
	540				220	120	****	*****	****	Hinged Ends	Heavy.
	010	410	030	200	220	110	*****	*****	*****	Montha Bilds	
	1250	990	800			4				Fixed Ends	12"
	930	670								Flat Ends	
	560	420 230								Hinged Ends	Light.
	300	230	180		*****	****	THE .	*****	****	Round Ends	
	1650			910	740					Fixed Ends	10"
	750	1030		570	430		*****			Flat Ends	3.7
	420	330	470 250	376 200						Hinged Ends Round Ends	Heavy.
	240	GOO	400	200	210	*****				Toruna Islander,	
	050	830								Fixed Ends	10"
	730 450	490								Flat Ends	-
	240	190	150							Hinged Ends	Light.
	~ 10		-	attant.	1,111.11	*****	-03		****	Mountainte	
1	021	810			NORTH A		500.00 H	desires!	4	Fixed Ende	9"
	690	470								Flat Ends	
	440	310	*****							Hinged Ends	Heavy.
	230	180	20000	100 14	194.0	****			F440 +	Round Ends	- 00
	710								Lucy !	Fixed Ends	9"
	400						-		1	Flat Ends	
	260		300.0	Second			Sec.		dunis	Minged Ends	Light.
	160		****	v					Alie	Round Ends	480

No. 16.


PENCOYD CHANNELS AS STRUTS.

GREATEST SAFE LOAD IN LBS. PER SQ. INCH OF SECTION WHEN THE STRUTS ARE FREE TO BEND AT RIGHT ANGLES TO THE WEB OR IN THE WEAKEST DIRECTION, USING FACTORS OF SAFETY GIVEN IN PREVIOUS TABLES.

Size	CONDITION			1	LENGT	TH IN	FEET			
OF CHANNEL,	ENDS.	2	4	6	8	10	12	14	16	18
8"	Fixed Ends				6010			2470	1840	
Heavy.	Flat Ends Hinged Ends	11920	9350 8510		5560 4350	3960 2680	2830 1730	2120 1170	1610 870	1150 650
1-11	Round Ends	11060	7040	4500	2730	1550	900	670	500	360
8"	Fixed Ends		8420	6670			2410		1290	980
Light	Flat Ends Hinged Ends,		8420 7500	6260 5060	4350 3060	2900	2070	1460 790	970 580	650 420
7 60	Round Ends	10140	5950	3440	1760	1000	650	.440	320	230
7"	Fixed Ends			7030		4000	2830		1550	1170
Heavy	Flat Ends Hinged Ends		8880	6780 5560	4930 3680	3349 2139	2400 1370	1780	1260	860 530
F 163	Round Ends			3920	2190	1230	270	560	390	280
7"	Fixed Ends		8280	6490	4780	3280	2220		1180	900
Light.	Flat Ends Hinged Ends		8270 7300	6070 4860	4139 2850	2730 1650	1940	1330 730	870 530	566
7 08	Round Ends		5730	3240	1640	920	610	410	280	200
6"	Fixed Ends		9040	7190	5670	4210			1640	
Heavy	Flat Ends Hinged Ends		9040 8160	7020	5180 3350	3540 2280	2550 1490	1890	1360 740	950
r = -07	Round Ends		6670	4150	2390	1330	840		410	310
6"	Fixed Ends.			5750	3890	2520	1690	1200	870	
Light	Fint Ends	1F130	7780 6500	5280 4060	3250 2060	2169	1430 770	880 540	530 350	155
100	Round Ends	9290	4960	2470	1180	680	430	290	200	222
5"	Fixed Mods		8140	6260	4530	3060	2020	1500	1070	820
	Flat Ends	11490	S120 7100	5830	3870 2600	2570 1510	1790 970	1200	770 470	480
	Round Ends		5420	3000	1500	850	560	370	250	180

No. 16.

PENCOYD CHANNELS AS STRUTS.

r, in marginal columns, is the radius of gyration taken around axis A B. When strut is hinged, the pins are supposed to lie in the direction A B. When the pins are in the direction C D, consider the strut flat ended by this table.

Size	CONDITION	315		I	ENGT	H IN	LENGTH IN FEET.										
OF	OP				0	10	40	4.4	16	18							
HANNEL	ENDS.	2	4	6	8	10	12	14	10	10							
5"		10600	7190	5000	3090	1870	1290	890									
	Flat Ends		7020	4350	2600	1650	970	550		2.2.23							
ight	Hinged Ends		5800	3060	1580	890	580	360		+++							
140	Round Ends	8600	4150	1760	860	510	320	200	*****	***							
4"	Fixed Ends	11040	7680	5630	3760	2410	1630	1130	830								
10.73	Flat Ends	11040	7640	5130	3130	2070	1350	830	490								
leavy	Hinged Ends	10330	6470	3990	1970	1140	740 410	510 270	320 190	***							
1 50	Round Ends	9170	4830	2350	1120	650	410	210	130	***							
4"	Fixed Ends	10860	7500	5390	3500	2180	1500	1040	740								
The state of the s	Flat Ends	10860	7450	4830	2900	1910	1200	720	430 280	***							
ight	Hinged Ends	10130 8930	6220 4560	3570 2120	1800	1040	670 370	450 240	170								
	Round Ends	0000	4000	2120	4000	0.00	910		210	201							
3"	Fixed Ends	10690	7320	5110	3220	1940	1360	950	670 370								
0	Flat Ends	10690	7210	4490	2690	1730	1040	610	240	***							
r == +40	Round Ends	9950 8710	5980 4320	3210 1860	900	540	340	220	150								
	Round Ends	0110	3000	4000	500	-	-										
9111	Fixed Ends	10340	6990	4690	2800	1730	1140										
24"	Flat Ends	10340	6720	4040	2380	1470	840										
r == -43	Hinged Ends	9590	5500 3870	2760 1590	1850 760	790 440	510 270	120									
	Round Ends	0400	9910	1000	100	3640	210	110	*****	*:5:5							
2"	Fixed Ends	8650	5190	2390													
4	Flat Ends	8650		2210													
r == -31	Round Ends	7750 6220	3310 1940	1230	620 350												
	Rodna Ends	0440	1040	100	400	AGO				-							
	The second second	12 11															
	a little military	16															
	U. STATE OF THE REAL PROPERTY.	and a						100	-								

WROUGHT IRON COLUMNS OR PILLARS OF ROUND AND SQUARE CROSS SECTION.

Experiments on columns of this class are not very complete, especially as denoting the comparative values for the various end conditions. The following tables, Nos. 17 and 18, are derived partly from experiment on actual columns, extended and completed by comparison with the experiments on rolled struts from which all our previous tables of strut resistances are derived.

Table No. 2 is taken as the basis for the working values. On account of the more perfect symmetry of form possessed by round and square sections than the shapes for which table No. 2 was especially calculated, the safe loads per square inch of section are increased ten (10) per cent. for round columns, and five (5) per cent. for square columns. That is, the factors of safety previously given remaining the same, the ultimate strength is supposed to be 10 and 5 per cent. respectively greater than the rolled strats.

The tables are calculated for certain thicknesses of iron varying from $\frac{1}{2}$ " for $\frac{2}{2}$ " diameter up to $\frac{5}{2}$ " for $\frac{12}{2}$ " diameter, as marked in the margins. At the same place R represents the radius of gyration for the diameter and thickness given. When the thickness varies but a little from that given, the strength per square inch of section can be accepted as practically unchanged. But when the variation becomes of importance, the radius of gyration corresponding to the altered thickness will have to be obtained, and the strength of the column then ascertained from table No. 2, as heretofore described.

The following table gives the values of the radius of gyration for round and square columns from 2 to 12 inches diameter, and from $\frac{1}{10}$ of an inch to 1 inch thick.

Example for Round Column:

What is the greatest safe load for a flat-ended round column 6 inches outer diameter, \(\frac{1}{3} \) thick, 8.64 sq. in. area, and 18 feet

long. r=1.95 $\frac{l}{r}=111$. By table No. 2 the corresponding safe load = 6780 lbs. + 10 per cent. = 7460 lbs. per sq. inch of section, or 64,440 lbs. for the column.

For a square column add 5 per cent, to table No. 2, instead of 10 per cent, as above.

RADII OF GYRATION FOR ROUND COLUMNS.

with the said	THICKNESS IN INCHES VARYING BY TENTHS.											
OUTSIDE DIAMETER OF COLUMN IN INCHES.	.1	.2	.3	.4	.5	.6	.7	.8	.9 1.			
		CORRE	SPONDI	NG RA	DIUS 0	or Gyn	ATION	IN IN	CHES.			
2	.67	.64	.61	.58	.56	.54	.52	.51	.50 .5			
2 3 4 5 6 7 8 9 10 11 12	1.03	1.35	1.31	.93 1,28	1.25	1.22	1.19	1.16	1,14 1.1			
5	1.73	1.70	1.66	1.63	1.60	1.57	1.54	1.51	1.48 1.4			
0 7	2.08	2.05	2.02	1.98	1.95 2.30	1.92	1.89	1.86	1.83 1.8 2.18 2.1			
8	2.79	2.76	2,72	2,69	2.66	2.62	2.59	2.56	2.53 2.5			
9	3,15	3.11	3.08	3.04	3.01	2.97	2.94	2.91	2.88 2.8			
10	3,51	8.47	3.44	3.40	3,37	3,33	3,30	3,27	3.23 3.2			
11	3.86	3.82	3.79	3.75	3.72 4.08	3.68	3,65	3.62	3.58 3.5			

RADII OF GYRATION FOR SQUARE COLUMNS.

DIAMETER ACROSS FLATS IN INCHES.	.1	.2														
	-		.3	.4	.5	.6	.7	.8	.9 1.							
	(CORRES	SPONDI	NG RA	DIUS O	F GYR	ATION	IN INC	HES.							
2 3 4 5 6 7 8	.78 1.18	1.14	1.11	1.08	1.04	1.01	.61	.59	.58 .5							
4 5	1.59	1,55	1.51	1.47	1.44	1 41 1 81	1.38	1.35	1.32 1.2							
6	2.41	2.37	2.33	2.29	2.25	2.21	2.18	2.15	2.11 2.0							
8	2.82	2.78	2.74 3.15	2.70	2.66	3.03	2,58	2,55	2.51 2.4 2.92 2.8							
9	3.63	3.59	3,55	3.51	3,48	3.44	3.40	3.36	3.32 3.2							
	4.04	4.00	3.96 4.37	3.92 4.33	3.88	3.84 4.25	3,80	3.77 4.17	3.73 3.7							

No. 17.

ROUND COLUMNS.

GREATEST SAFE LOADS IN LBS. PER SQ. IN. OF SECTION.

By this table for the same ratios of $\frac{l}{r}$ the safe loads are increased 10 per cent, over the results obtained for previous tables, as given in table No. 2.

SIZE	Condition	LENGTH IN FEET.										
DIAME- TER.	ENDS.	\$	4	6	8	10	12	14	16	18		
12"			11						S. A			
	Fixed Ends				15220	14330	13350	12640	12040	11470		
Diameter.	Flat Ends Hinged Ends	****			15220	14330	13350	12640	12040	10840		
R = 3-94	Round Ends		****		19080	12840	11660	10890	9950	9200		
10"	200000000000000000000000000000000000000				AGUTO	14010	11000	40000	ound,			
	Fixed Ends			15660	14630	13490	12640	11940	11280	10640		
	Flat Ends			15660	14630	13490	12640	11940	11280	10640		
#"thick R = 3 - 37	Hinged Ends			15160	14030	12810	12000	11140	10450	9750		
IL = a.a.	Round Ends		*****	14470	13300	11820	10900	19950	8900	8170		
8"	Fixed Ends	1		14770	13490	19440	11520	10230	9940	9200		
Diameter.									9940	9200		
₽" thick	Hinged Ends			14190	12810	11680	10740	9850	8970			
R = 2 . 64	Round Ends			13380	11820	10480	9330	8280	7339	6460		
6"	TH	120		+0.400	****	*****	****	makes	W. 1. 100	-		
the later was	Fixed Ends							9050				
1" thick.	Hinged Ends						8970	7960				
R = 2.00	Round Ends											
5"		111000	2000			100	10000		100000	10		
	Fixed Ends					9850		8150				
Diameter.			14470	12540	11090	9850		8060	7260	6520		
R = 1.04	Huged Ends		13870	11790	10250	8880 7230	7660 5790	6710 4880	5920 4130	4920 3150		
4"	Round Ends	****	13020	100:20	8120	7230	9,90	4880	4130	3150		
4	Fixed Ends	-04	13490	11520	9940	8740	7860	7040	6190	5400		
Diameter.	Flat Ends		13490	11570	9940	8710		6560	5640	4680		
1" thick	Hinged Ends		12810	10740	8970	7520	6310	5240	4290	3260		
R = 1 33	Round Ends		11820	9330	7330	5750	4490	3460	2580	1880		
3"	TM . 1 TM . 2			mn 40		Total Control	-			20000		
	Fixed Ends			9940	8440	7330 6880	6190		4130	3300 2780		
Diameter,	Hinged Ends			9940 8970	8400 7110	5560	5640 4290		3440 2160	1610		
R = 1.00	Round Ends			7330	5310	3780	2580	1720	1230	910		
A = 100			1		1	100	7-1-5	- Della	100	12		
2"	Fixed Ends		9850	7820	6140	4510			1760	1340		
Diameter.	Flat Ends		9850	7590	5580	3770	2720	2020	1440	990		
¿"tlnck	Hinged Ends	12810	8880	6240	4220	2420	1570 890	-1100 630	790	600 330		
R = .00	Round Ends	11950	7230	4430	2540	1390	500	000	440	000		

No. 17.

ROUND COLUMNS.

GREATEST SAFE LOADS IN LBS. PER SQ. IN. OF SECTION.

The calculations are based on the thicknesses and radii of gyration marked under the diameters on marginal columns. See description.

LENGTH IN FEET.						CONDITION	SIZE OUTER DIAME-			
20	22	24	26	28	30	32	34	36	Ends.	TER.
									and the A	12"
10910	10370	9850	9350	8990	8640	8340	8050		Fixed Ends	
10910	10370	9850	9350	8980	8610	8290	7930		Flat Ends	Diameter.
10050	9460	8880	8330	7880	7890	6970	6570		Hinged Ends	1" thick.
8490	7850	7230	6640	6030	5610	5150	4750	4370	Round Ends	R = 3.94
200	-	anna i	10000	Direc	2010	renn	mann	60.40	Fixed Ends	10"
10020	9430	8990	8620	8250	7910	7600 7260	7280 6830		Flat Ends	Diameter.
10020		8980	8610	8190	7720 6380		5510		Hinged Ends	1" thick.
9070	8430	7880	7890 5610	6840 5010	4560		3730		Round Ends	R = 3-37
7430	6740	6030	2010	9010	4000	4100	0100	9900	Atomit Amider	8"
8740	8290	7860	7460	7040	6610	6190	5790	5400	Fixed Ends	0
8710		7650	7070	6560	6110	- 20 DOM:	5140		Flat Ends	Diameter
7520		6310	5920	5240	4780		3750		Hinged Ends	
5750		4490	3960	3460	3000	2580	2210	1880	Round Ends	R = 2-66
			PROVIDE L						TO COMMISSION OF THE PARTY OF T	6"
7830	6740	6190	5660	5110	4580		3700		Fixed Ends	
6880	6370	5640	4990	4400	3850				Flat Ends	Diameter
5560	4920	4290	3580	2990	2470				Hinged Ends	4" thick.
3780	3150	2580	2090	1720	1440	1230	1040	910	Round Ends	
		Com.	1000	name.	****	2500	0.400	0110	Fixed Ends	5"
6100		4760	4210	3670	3160		2420 2110		Flat Ends	Diameter
5530		4020	3500	3050 1850	2680 1540		1150		Hinged Ends	
4160		2640 1520	1260	1030	260		660	P. CELL	Round Ends	
2490	1900	1950	1200	1030	500	150	000	500	Atomini aministra	4"
4580	3880	3260	2770	2220	2000	1780	1560	12860	Fixed Ends	4
3850		2750	2370	2040	1740		1220		Flat Ends	
2470		1590	1320	1110	940		690		Hinged Ends	1" thick
1440		900	740	630	530		380	330	Round Ends	R = 1.33
23.00	5.559	400	1,000	17.00			1000	1333		3"
2650	2100	1790	1500	1240	1070	910	770		Fixed Ends	A STATE OF THE STA
2270			1150	910	710	530	440		Flat Ends	
1250		810	670	560			280		Hinged Ends	
710		450	370	290	250	200	170		Round Ends	R = 1-00
23.00					1000					911
1040	810				****	5555.5	****	05555	Fixed Ends	2
680		vere.						****	Flat Ends	
440									Hinged Ends	
240	180		****				* * 4		Round Ends	R= -66

No. 18.

SQUARE COLUMNS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

By this table for the sanfe ratios of $\frac{l}{r}$, the safe loads are increased 5 per cent, over the results obtained in table No. 2.

Size	Condition			1	LENGT	H IN	FEET			
COLUMN.	ENDS.	2	4	6	8	10	12	14	16	18
2" thick	Fixed Ends Flat Ends Hinged Ends Round Ends				6760 6320 5060 3360	4770 3420	3440	2600 1500	2020 1100	1790 1510 820 450
3" Ta" thick R = 1.15	Fixed Ends Flat Ends Hinged Ends Round Ends	14950 14480	12160 12160 11460 10400	10330 9500	8690 8680 7660 6030	7690 7570 6280 4540	6320	5830 5280 3980 2380	4920 4240 2900 1680	4080 3410 2160 1240
4" thick	Fixed Ends Flat Ends Hinged Ends Round Ends		13540 12940	11690 10940	10330 9500	9010 9010 8050 6440	8150 8110 6920 5210	7180	6720 6220 5010 3310	6040 5540 4260 2590
5" thick R = 1-89	Fixed Ends Flat Ends Hinged Ends Round Ends		14390 13860	12610 11950	11310 10540	10250 9410	9170 9170 8220 6630		7700 6400	7260 6930 5660 3950
6" thick R = 2-30	Fixed Ends Flat Ends Hinged Ends Round Ends		14950 14480	13540 12940	12160 11460	11220 10450	10330 9500	9410 8480	8680 7660	8120 6920
8" thick R = 3.07	Fixed Ends Flat Ends Hinged Ends Round Ends	*****		$\frac{14670}{14170}$	13540 12940	12480 11800	11690 10940	10950 10160	10250 9410	9650 9650 8750 7190
10" thick R = 3.87	Fixed Ends Flat Ends Hinged Ends Round Ends				14380 13860	13540 12940	12750 12090	12060 11360	11400 10640	10860 10070
12" thick R = 4-88	Fixed Ends Flat Ends Hinged Ends Round Ends				14950	14250 13700	13420 12800	12750 12090	12140 11460	11650

No. 18. SQUARE COLUMNS.

GREATEST SAFE LOAD IN LBS. PER SQUARE INCH OF SECTION.

The calculations are based on the thicknesses and radii of gyration, marked under the diameters in marginal columns. See preceding description.

	LENGTH IN FEET.						Condition	Size		
20	23	24	26	28	30	32	34	36	Ends.	COLUMN.
1440 1100 640 360	1120 810 490 260	930 580 380 210	430 270		1944		11111	37756	Fixed Ends Flat Ends Hinged Ends Round Ends,	2" *"thick. R = '77
3380 2820 1690 950	2770 2360 1320 760	2290 2010 1090 630	1910 1670 900 510	1660 1370 750 420	1430 1090 630 360	1210 880 550 290	1060 710 450 240	- Kn	Fixed Ends	3" 1 1.16
5370 4710 3370 1950	4670 3980 2650 1530	\$689 3410 2160 1240	3540 2940 1800 1000	\$500 \$560 1470 830	2650 2270 1260 710	1980 1980 1080 620	1960 1730 930 540	1500 810	Fixed Ends Flat Ends Hinged Ends Round Ends	4" thick. R = 1.43
6230 6230 4960 3460	5650 4370			4500 3800 2480 1440	4020 3350 2120 1210	3570 2970 1820 1010	3150 2669 1540 870	2370 1330	Fixed Ends Flat Ends Hinged Ends Round Ends	5" thick. R = 1.59
7690 7570 6280 4540	7210 6880 5610 3900	6760 6320 5060 3360	6310 5840 4570 2870	5830 5280 3980 2380	5410 4770 3420 2000	4920 4240 2900 2390	4500 3800 2480 1440	3410 2160	Fixed Ends Flat Ends Hinged Ends Round Ends	6" thick. R = 2-30
9010 9010 8050 6430	8550 8530 7450 5690	8160 8120 6920 5210	7820 7760 6470 4730	7470 7950 5960 4230	7130 6750 5480 3780	6760 6320 -5060 3360	6390 5930 4660 2960	5540 4260	Fixed Ends Flat Ends Hinged Ends Round Ends	8" thick. R = 3.07
10330 10330 9500 8010	9850	9320 9320 8400 6810	8790 8790 7800 6170	8490 8470 7390 5620	8200 8170 6980 5280	7920 7870 6590 4860	7640 7500 6220 4480	7060 5780	Fixed Ends Flat Ends Hinged Ends Round Ends	10" #"thick, R = 3.81
11130	10680 9880	9410	9730 9730 8840 7300	9320 9320 8400 6810	8920 8920 7960 6340	8630 7600	8350 8320 7180 5490	8060 6860	Fixed Ends Flat Ends Hinged Ends Round Ends	12" 4"thick. R - 4.55

RIVETS AND PINS.

Rivets must be proportioned with sufficient bearing surface to resist crushing, and sufficient sectional area to resist shearing. Pins must be proportioned likewise, and also to safely resist the bending action which usually exists, owing to the centres of pressure being some distance from the centres of supports.

The effective bearing area of a rivet or pin is equal to its diameter multiplied by the thickness of the surface it bears on.

The shearing area is the area of the cross section of the pin or rivet for single shear, or double that section for double shear. For pins, the pressure on the pins multiplied by the leverage with which it acts on the pin supports is the bending moment. (See bending moment rigge 78.)

equal to as tensile swength, viz., 50,000 lbs. per square inch, the shearing strength at of same iz., 40,000 lbs. per square inch. The ultimate modulus of rupture is taken at 50,000, which is a fair estimate for cylindrical sections, as the average of many experiments we have made on that shape gives nearly that amount. The annexed table gives the ultimate resistance for single shear, or the area of the pin multiplied by 40,000, and the ultimate resistance to crushing, for each inch in thickness of bearing surface, or the diameter of the pin multiplied by 50,000.

The ultimate bending moments in inch lbs. correspond to the given diameter of pins, and are derived from the formula

$$M = \frac{50,000 I}{\text{radius}}$$

which can be reduced to this form,

 $M = 6250 \times \text{area} \times \text{diameter}$, all in inches,

To obtain the working resistances, these ultimate values must be divided by the factor of safety desirable to use.

The following proportions of the ultimate strength are commonly used for the purposes named.

For R. R. bridges,	1 of	ultimate	strength.
For light highway bridges,	i of	**	44
For roof trusses, etc.,	1/3 of	44	"

Example.—A pin has its supports located three inches apart, and bears a load of 100,000 lbs. in the middle. What should the diameter of the pin be for a safety factor of five?

Bending moment =
$$\frac{100,000 \text{ lbs.} \times 3^{"}}{4}$$
 = 75,000 inch lbs.

The nearest diameter corresponding to this and taking \(\frac{1}{3} \) of the tabular moments, is \(\frac{1}{4} \) inches.

The bearing value of this pin is (\frac{1}{2}\) of table) 42,500 lbs. per inch of length, consequently the thickness of the metal which forms the pin bearings should be \frac{1000000}{425000}\), or not less than 2.3 inches. For shear the pin has a large excess of strength, which will usually be found the case if properly proportioned otherwise,

11

ULTIMATE STRENGTH OF RIVETS AND PINS OF WROUGHT IRON.

For the working strength divide the tabular figures by the desired factor of safety.

DIAMETER IN INCHES OF RIVET OR PIN.	AREA IN SQUARE INCHES.	ULTIMATE STRENGTH FOR SINGLE SHEAR IN LBS.	ULTIMATE CRUSHING STRENGTH PER INCH THICKNESS OF BEARING SURFACE.	ULTIMATE BENDING MO MENT IN INCH LBS.
36 10 56 116	.196 .248	7840 9920	25000 28125	614 873
16	.807	12280	81250	1199
0	.371	14840	34375	1595
34	.442	17680	37500	2073
18	.518	20720	40625	2632
36	.601	24040	43750	3287
1 inch.	.785	31400	50000	4906
% %	.994	39760 49680	56250 62500	6993 9586
3%	1,227 1,485	59400	68750	12762
36	1.767	70680	75000	16566
%	2.074	82960	81250	21065
% % %	2.405	96200	87500	26305
3%	2.761	110440	93750	32357
2 inches.	3,141	125660	100000	39263
36	3.547	141880	106250	47109
*	3,976	159040	112500	55913
36	4.430	177200	118750 125000	65757 76688
36	4.908	196320 216480	181250	88792
70	5.412 5.940	237600	137500	102094
3%	6.492	259680	143750	116825
3 inches.	7,068	282720	150000	132426
36	7.670	306800	156250	149694
36	8.296	331840	162500	168514
36	8.946	857840	168750	188705
18	9.621	384840 412840	175000 181250	210459 233835
78	10.321 11.045	441800	187500	258909
% % %	11.793	471720	198750	285613
4 inches.	12,566	502640	200000	314150
	13.364	534560	206250	344540
36 36	14.186	567440	212500	376816
3/4	15.033	601320	218750	411057
%	15,904	636160	225000	447800
26	16.800	672000	231250 237500	485623 526092
% % %	17.721 18.665	708840 746600	243750	568700
manage I		205.400	250000	613600
5 inches.	19.635 20.629	785400 825160	256000 256250	660773
1/4	21,648	865920	262500	710326
36	22,691	907640	268750	762266
36 .	23,758	950320	275000	816667
%	24.850	994000	281250	873627
X	25.967	1038680 1084360	287500 293750	933189 995410
6 inches.	27.109 28.274	1130960	300000	1060277

fron shaft to safely resist a force of 1,000 lbs, acting through a lever 30 inches long?

(e)
$$d = \sqrt[4]{\frac{1000 \times 30}{1760}} = 2.6$$
 inches diameter.

These formulæ apply to shafts subject to twisting strains alone. In practice, however, such cases seldom occur, as shafts are generally subjected to combined bending and twisting strains. As there are no experimental data for such a combination of forces, we have to rely on analysis, which gives the following:

$$T^{1} = M + \sqrt{M^{2} + T^{2}} \tag{g}$$

M =bending moments in inch-lbs. (See page 78.) T =twisting " "

 T^{1} = a new twisting moment which, substituted for T in equations (e) and (f), will give the desired proportions for

the shaft.

In revolving shafts the longitudinal stress resulting from the bending action is continually changing from tension to compression, and vice versa.

It is therefore advisable, for reasons given on page 34, to increase the factor of safety as the bending stress increases comparatively to the torsional stress.

The following changes in factors of safety are recommended:

RATIO OF M TO T .	FACTOR OF SAFETY.	DIVISOR IN FORMULA (e)
M = .3T or less,	41	1760
M = .6T "	5	1570
M = T "	51	1430
M = greater than T ,	6	1810

Example 2.—What should be the diameter of the journals of a wrought-iron shaft of a steam engine. The piston being 12 inches diam., crank 12 inches long, and the leverage from centre of crank to journal in the direction of the shaft being 6 inches, steam pressure 80 lbs. per sq. inch, making pressure on crank = 9050 lbs.?

$$T = 9050 \times 12 = 108600$$
 inch-lbs.
 $M = 9050 \times 6 = 54300$ "

(g)
$$T^1 = 54300 + \sqrt{54300^2 + 108600^2} = 175720$$
 inch-lbs.

Substituting the above in equation (e), with the factor of safety as explained above,

$$d = \sqrt[3]{\frac{175720}{1570}} = 4.82$$
 inches diameter.

The following illustrates a case where the bending moment is greater than the twisting moment:

Example 3.—A non-continuous shaft is so located that it must have its bearings 84 inches apart, and carry in the middle a 60-inch pulley driven by a 12-inch belt, the effective weight at centre of shaft = 600 lbs., and the belt exercises a vertical pull of 1000 lbs. What is the proper diameter of the shaft?

$$M = \frac{(1000 + 600) \times 84}{4} = 33600$$
 inch-lbs. (see page 78).

$$T = 1000 \times 30 = 30000$$
 inch-lbs.

(g)
$$T^3 = 33600 + \sqrt{33600^2 + 30000^2} = 78640$$
 inch-lbs.

As M is greater than T, use a factor of safety of 6, which becomes by equation (e),

$$d = \sqrt[3]{\frac{78640}{1310}} = 4.12$$
 inches diam.

If above shaft was continuous and uniformly loaded, the

bending moment would be less. (See Table of Bending Moments, page 80.)

HORSE POWER.

If it is desired to find the relations between horse power and diameters of shafts, the elements of time and velocity have to be considered. Taking the horse power HP at 396000 inch-lbs. per minute, we have $HP = \frac{6.28 \times T \times V}{396000}$, where V = revolutions per minute.

$$(h) T = \frac{63057 \, HP}{V},$$

or in terms of the diameter by equation (c) we get,

$$d = \sqrt[3]{\frac{36 \, HP}{V}} \cdot \tag{i}$$

The above will give the proper diameter of a shaft for transmitting any desired *HP* when the shaft is subjected to twisting stress alone, but, as previously stated, such a case seldom occurs, we must combine the bending and twisting stresses, for which a general rule will be given at the close of the subject.

DEFLECTION OF SHAFTING.

For continuous line shafting used for transmitting power in shops, factories, etc., it is considered good practice to limit the deflection to a maximum of $_{1\bar{1}00}$ of an inch per foot of length. The weight of bare shafting in lbs. = $2.6\,d^3l=W$, or when as fully loaded with pulleys as is customary in practice, and allowing 40 lbs. per inch of width for the vertical pull of the belts, experience shows the load in lbs. to be about $13\,d^3l=W$. Taking the modulus of transverse elasticity at 26,000,000 lbs., we can derive from the authoritative formulæ the following:

$$l = \sqrt[3]{878d^2}$$
 for bare shafts, (j)

$$l = \sqrt[3]{175d^2}$$
 for shafts carrying pulleys, etc., (k)

which would be the maximum distance in feet between bearings for continuous shafting subjected to bending stress alone.

If the length is fixed, and we desire the diameter of the shaft, we have,

$$d = \sqrt{\frac{l^2}{878}}$$
 for bare shafting, (l)

$$d=\sqrt{\frac{l^5}{175}}$$
 for shafting carrying pulleys, etc. (m)

To apply the above to revolving shafting subjected to both twisting and bending stress, it is necessary to combine equations (j) and (k) with equation (k).

But in shafting, with the same transmission of power, the torsional stress is inversely proportional to the velocity of rotation, while the bending stress will not be reduced in the same ratio. It is, therefore, impossible to write a formula covering the whole problem and sufficiently simple for practical application, but the following rules are correct within the range of velocities usual in practice.

WORKING FORMULÆ FOR CONTINUOUS SHAFTING.

For the diameter (d) in inches, and the maximum length (l) in feet between bearings of wrought-iron shafting so proportioned as to deflect not more than $\tau_{\bar{b}\bar{u}}$ of an inch per foot of length, allowance being made for the weakening effect of key seats,

$$d = \sqrt[3]{\frac{50 \, HP}{V}} \text{ for bare shafts,} \tag{n}$$

$$d = \sqrt[3]{\frac{70\ HP}{V}}$$
 for shafts carrying pulleys, etc., (o)

$$l = \sqrt[3]{720 \, d^2}$$
 for bare shafts, (p)

$$l = \sqrt[8]{140 \, d^2}$$
 for shafts carrying pulleys, etc., (q)

In the event of the whole power being received on a principal shaft, the proper size of the shaft can be estimated direct by formula (g).

Example 4.—A principal shaft receiving 150 HP from the engine, revolves 150 R. P. M., and is continuous over bearings located 6 feet apart, the centre of main pulley being 24 inches from one bearing and 48 inches from the other. The effective load at the centre of the pulley resulting from weight of pulley and shaft, and tension of belt, is 1500 lbs. What should be the diameter of the shaft?

Note. - Excepting special cases which rarely occur in practice, it is best to treat such shafts as non-continuous.

By rule 5, page 79, we have,

$$M = \frac{1500 \times 24 \times 48}{72} = 24000 \text{ inch-lbs},$$

and by formula (h) we have,

$$T = \frac{63000 \times 150}{150} = 63000$$
 inch-lbs.,

then, by formula (g) we have

$$T^{i} = 24000 + \sqrt{24000^{2} + 63000^{2}} = 92290$$
 inch-lbs.

and by formula (e),

$$d = \sqrt[3]{\frac{92290}{1760}} = 3.74$$
 inches.

BELTING.

When designing shafting, allow for the tension of belting, 50 lbs, per inch of width for single leather belt or its equivalent, or 80 lbs, per inch of width for double leather belt, or its equivalent of other material.

WORKING PROPORTIONS FOR CONTINUOUS SHAFTING.

TRANSMITTING POWER, BUT SUBJECT TO NO BENDING ACTION EXCEPT ITS OWN WEIGHT.

DIAMETER	Max. Sape Ton-	Revolu	TIONS PER	MINUTE.	Max. Dis-
OF SHAFT IN INCHES.	SIONAL MOMENT IN INCH-POUNDS.	100	150	200	TANCE IN FEET BETWEEN
Chicken (19)	Messagaille and	HP	HP	HP	PEARINGS,
111	5940	6	10	14	11.7
15	7552	9	13	17	12.4
134	9482	11	16	21	13.0
178	11602	13	20	26	13.6
2	14080	16	24	32	14.2
21	16892	19	29	38	14.8
21	20048	23	34	46	15.4
23	23580	27	40	54	16.0
24	27500	31	47	63	16.5
23	36603	42	62	83	17.6
3	47520	54	81	108	18.6
31	60417	69	103	137	19.7
31	75460	86	129	172	20.7
33	92812	105	158	211	21.6
4	112640	128	192	256	22.6

WORKING PROPORTIONS FOR CONTINUOUS SHAFTING.

TRANSMITTING POWER, AND SUBJECT TO BENDING ACTION OF PULLEYS, BELTING, ETC.

	THE PARTY OF	Revolu	REVOLUTIONS PER MINUTE.					
DIAMETER OF SHAFT IN INCHES.	MAX. SAFE TOR- SIONAL MOMENT IN INCH-POUNDS.	100	150	200	FEET BETWEEN			
INCHES.	IN INCH DUMPS	HP	HP	HP	Bearings.			
11	5940	5	7	10	6.8			
18	7552	6	9	12	7.2			
13	9432	8	11	15	7.5			
17	11602	9	14	19	7.9			
2	14080	11	17	23	8.2			
21	16892	14	21	27	8.6			
21	20048	16	24	33	8.9			
22	23580	19	29	38	9.2			
21	27500	22	33	45	9 6			
21	36603	24	36	48	10.2			
3	47520	39	58	77	10.8			
81	60417	49	74	98	11.4			
31	75460	61	92	123	12.0			
33	92812	75	113	151	12.5			
4	112640	91	137	183	13.1			

TABLE OF CIRCLES.

Circumferences or areas intermediate of those in the table, may be found by simple arithmetical proportion. The diameters, etc., are in inches; but it is plain that if the diameters are taken as feet, yards, etc., the other parts will also be in those same measures.

DIAM. INS.	CIR- CUMF. INS.	AREA. SQ. INS.	DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins.	DIAM. INS.	CIR- CUMF. INS.	AREA SQ. IN
1.64	.049087	.00019	1 15-16	6.08684	2,9483	4 15-16	15,5116	19.147
1-32	.098175	.00077	2.	6,28319	3,1416	5.	15.7080	19,635
3-64	147262	.00173	1-16	6.47953	3,3410	1-16	15,9043	20,129
1-16	.196350	.00307	1-8	6.67588	3,5466	1-8	16,1007	20.629
3-32	.294524	.00690	3-16	6,87223	3.7583	3-16	16.2970	21,135
1-8	.392699	.01227	1-4	7.06858	3,9761	1-4	16,4934	21.648
5-32	490874	.01917	5-16	7,26493	4,2000	5-16	16,6897	22,166
3-16	.589049	.02761	3-8	7.46128	4,4301	3-8	16.8861	22.691
7-32	.687223	.03758	7-16	7.65763	4,6664	7-16	17.0824	-23, 221
1-4	.785398	.04909	1-2	7.85398	4.9087	1-2	17,2788	23.758
9-32	.883573	.06213	9-16	8,05033	5.1572	9-16	17.4751	24,301
5-16	.981748	.07670	5-8	8.24668	5,4119	5-8	17,6715	24.850
11-32	1.07992	.09281	11-16	8,44303	5.6727	11-16	17,8678	25,406
3-8	1.17810	.11045	3-4	8.63938	5,9396	3-4	18.0642	25,967
13-32	1.27627	.12962	13-16	8,83573	6,2126	13-16	18,2605	26,535
7-16	1.87445	.15033	7-8	9,03208	6,4918	7-8	18,4569	27,109
15-32	1.47262	.17257	15-16	9,22843	6,7771	15-16	18,6532	27,688
1-2	1.57080	.19635	3.	9,42478	7.0686	6.	18,8496	28.274
17-32	1,66897	.22166	1-16	9,62113	7.3662	1-8	19.2423	29,465
9-16	1.76715	.24850	1-8	9.81748	7,6699	1-1	19,6350	30,680
19-32	1,86532	.27688	3-16	10.0138	7.9798	3-8	20.0277	31,919
5-8	1,96350	.30680	1-4	10,2102	8,2958	1-2	20,4204	33,183
21-32	2.06167	.33824	5-16	10.4065	8.6179	5-8	20.8131	34,472
11-16	2.15984	.37122	3-8	10,6029	8,9462	3-4	21,2058	35.785
23-32	2.25802	.40574	7-16	10,7992	9,2806	7-8	21,5984	37,122
3-4	2,35619	.44179	1-2	10,9956	9,6211	7.	21,9911	38,485
25-32	2.45437	.47937	9-16	11,1919	9,9678	1-8	22,3838	39,871
13-16	2,55254	.51849	5-8	11.3883	10,321	1-4	22,7765	41,282
27-32	2.65072	.55914		11,5846	10,680	3-8	23,1692	42,718
7-8	2.74889	.60132	3-4	11,7810	11,045	1-2	23,5619	44,179
29-32	2.84707	.64504	13-16	11.9773	11,416	5-8	23,9546	45,664
15-16	2.94524	.69029	7-8	12,1737	11,793	3-4	24,3478	47,178
31-32	3.04342	.73708	15-16	12.3700	12,177	7-8	24.7400	48,707
	3.14159	.78540	4.	12,5664	12,566	8.	25,1327	50,265
1-16	3.33794	.88664	1-16	12,7627	12,962	1-8	25,5254	51,849
1-8	3.53429	.99402	1-8	12,9591	13,364	1-4	25,9181	53,456
3-16	3.73064	1,1075	3-16	13,1554	13,772	3-8	26,3108	55,088
1-4	3.92699	1,2272	1-4	13.3518	14,186	1-2	26.7035	56,745
5-16	4.12334	1.3530	5-16	13,5481	14,607	5-8	27,0962	58,426
3-8	4.31969	1,4849	3-8	13.7445	15,033	3-4	27,4889	60,132
7-16	4.51604	1,6230	7-16	13,9408	15,466	7-8	27,8816	61,862
1-2	4.71239	1.7671	1-2	14.1372	15,904	9.	28,2743	63,617
9-16	4.90874	1,9175	9-16	14.3335	16,349	1-8	28,6670	65.397
5-8	5.10509	2.0739	5-8	14,5299	16,800	1-4	29.0597	67,201
11-16	5,30144	2.2365	11-16	14,7262	17,257	3-8	29,4524	69,029
3-4	5.49779	2.4053	8-4	14.9226	17,721	1-2	29.8451	70.882
13-16	5.69414	2,5802	13-16	15,1189	18.190	5-8	30,2378	72,760
7-8	5,89049	2,7612	7-8	15,3153	18,665	3-4	30.6305	74,662

TABLE OF CIRCLES-Continued.

DIAM.	CIR-	AREA.	DIAM.	Cir-	AREA.	DIAM.	CIR-	AREA
Ins.	CUMF, INH.	Sq. Ins.	Ins.	INS.	Sq. Ins.	Ins.	INS.	Sq. Ins
9 7-8	31,0232	76,589	16 3-4	52,6217	220.35	23 5-8	74,2201	438.36
10.	31,4159	78.540	7-8	53,0144	223.65	3-4	74,6128	443.01
1-8	31.8086	80,516	17.	53,4071 53,7998	226,98 230,33	24.	75,0055 75,3982	447.69
1-4 3-8	32,2013 32,5940	82,516 84,541	1-4	54,1925	233.71	1-8	75,7909	457,11
1-2	32,9867	86,590	3-8	54.5852	237.10	1-4	76, 1886	461,86
5-8	33,3794	88,664	1-2	54,9779	240.53	3-8	76,5768	466,64
3-4	88.7721	90.763	5.8	55,3706	243,98	1-2	76,9690	471.44
7-8	34.1648	92,886	3-4	55.7633	247.45	5-8	77.3617	476.26
11.	34,5575	95,083 97,205	7-8	56,1560 56,5487	250,95 254,47	8-4 7-8	77,7544 78,1471	485,98
1-4	34,9502	99,402	1-8	56,9414	258.02	25.	78,5398	490.87
3-8	35,7356	101,62	1-4	57,3341	261,59	1-8	78,9325	495.79
1-2	36,1283	103,87	3-8	57.7268	265.18	1-4	79,8252	500.74
5-8	36,5210	106,14	1-2	58,1195	268,80	3-8	.79.7179	505.71
3-4	36,9137	108,48	5-8	58,5122	272,45 276,12	5-8	80,1106 80,5083	510.71 515.72
12.	37,3064	110,75 113,10	7-8	58,9049 59,2976	279.81	3-4	80,8960	
1-8	37,6991 38,0918	115,47	19.	59.6903	283,53	7-8	81,2887	525,84
1-4	38.4845	117.86	1-8	60,0830	287.27	26.	81,6814	530.93
3-8	38,8772	120,28	1-4	60,4757	291.04	1-8	82,0741	586.00
1-2	89,2699	122.72	3-8	60,8684	294,83	1-4	82,4668	541.19
5-8	39,6626	125.19	1-2	61.2611	298,65	3-8	82,8595	546.35
8-4	40,0558	127.68	5-8 3-4	61.6588	309,49 306,35	1-2 5-8	83,2522	551.55 556.76
7-8	40,4480	130,19 132,73	7-8	62,0465 62,4392	310,24	3-4	83,6449 84,0376	562.00
1-8	41,2334	135,30	20.	62,8319	314.16	7-8	84,4303	
1-4	41,6261	137,89	1-8	63.2246	318.10	27.	84,8230	572.56
3-8	42,0188	140,50	1-4	63,6173	322,06	1-8	85,2157	577.87
1.2	42,4115	143,14	3-8	64,0100	826.05	1-4	85,6084	588,21
5-8	42,8042	145,80	1-2	64.4026	330,06	3-8	86,0011	588,57
3-4	43,1969	148,49	5-8 3-4	64,7953 65,1880	334,10	1-2 5-8	86,3938 86,7865	593,96 599,37
7-8	43,5896 43,9823	151,20 153,94	7-8	65,5807	338,16 342,25	3-4	87,1792	604.81
1-8	44,3750	156,70	21.	65,9734	346,36	7-8	87,5719	610,27
1-4	44,7677	159,48	1-8	66,3661	350,50	28.	87,9646	615.75
3-8	45,1604	162,30	1-4	66,7588	354,66	1-8	88,3573	621.26
1-2	45,5581	165.13	3-8	67,1515	358,84	1-4	88,7500	626,80
5-8	45,9458	167.99	1-2	67.5442	363.05	3-8 1-2	89,1427	632,36
3-4 7-8	46,3385	170,87	5-8 3-4	67,9369 68,3296	367.28 371.54	5-8	89,5354 89,9281	643.55
15.	46,7312 47,1239	173.78 176.71	7-8	68,7223	375.83	3-4	90,3208	649.18
1-8	47,5166	179.67	22.	69,1150	380.13	7.8	90,7135	654.84
1-4	47,9093	182,65	1-8	69,5077	384,46	29.	91,1062	660.52
3-8	48,8020	185,66	1-4	69.9004	388.82	1-8	91,4989	666.22
1.2	48,6947	188,69	3-8	70,2931	393,20	1-4	91,8916	671.96
5-8	49,0874	191,75	1-9	70,6858	397.61	3-8 1-2	92,2843 92,6770	677.71 683.49
3-4 7-8	49,4801 49,8728	194,83 197,93	5-8 3-4	71,4712	402,04	5-8	93,0697	689,30
16.	50,2655	201,06	7-8	71.8689	410.97	3-4	93,4624	695, 18
1-8	50,6582	204,22	23.	72,2566	415.48	7-8	93,8551	700.98
1-4	51,0509	207,39	1-8	72,6493	420,00	30.	94,2178	706,86
3-8	51,4436	210,60	14	73,0420	424,56	18	94,6405	712.76
1.2	51,8363	213,82	3-8	78,4347	429.13	3-8	95,0332 95,4259	718,66
5-8	52,2290	217.08	1-2	73.8274	433.74	0.0	003, 25000	144.04

180 AREAS AND CIRCUMFERENCES OF CIRCLES.

TABLE OF CIRCLES—Continued.

DIAM. INS.	CIR- CUMP. INS.	AREA. Sq. Ins.	DIAM. INS.	CIR- CUMP. INS.	AREA. SQ. INS.	DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins
30 1-2	95,8186	730,62	37 3-8	117,417	1097.1	44 1-4	139.015	1537.9
5-8	96,2113	736,62	1-2	117.810		3-8	139,468	1546.6
3-4	96,6040	742.64	5-8			1-2	139,801	1555.3
7-8	96,9967	748.69	3-4	118,202 118,596	1119.2	5-8	140,194	1564.0
31.	97,3894	754.77	7-8	118,988	1126.7	3-4	140,586	1572.8
1-8	97.7821	760.87	38.	119.381	1184.1	7-8	140,979	1581.6
1-4	98.1748	766.99	1.8	119.773		45.	141.372	1590.4
3-8	98,5675	778.14	1-4	120.166	1149.1	1-8	141.764	1599.3
1-2	98,9602	779.31	8-8	120.559		1-4	142,157	1608.2
5-8	99,3529	785.51	1-2	120,951	1164.2	8-8	142.550	1617.0
3-4	99.7456	791.73	5-8	121.344	1171.7	1-2	142,942	1626.0
7-8	100,138	797,98	3-4	121.737	1179.3	5-8	143,335	1634.9
32.	100,531	804.25	7-8	122.129	1186,9	8-4	143.728	1643.9
1-8	100,924	810.54	39.	122,522	1194.6	7-8	144,121	1652.9
1-4	101.316	816.86	1-8	122.915	1202.3	46.	144.513	1661.9
3-8	101,709	823,21	1-4	123,308	1210.0	1-8	144,906	1670.9
1-2	102,102	829.58	3-8	123.700		1-4	145,299	1680.0
5-8	102,494	835,97	1-2	124.093	1225.4	3-8	145,691	1689.1
3-4	102.887	842,39	5-8	124.486	1283.2	1-2	146,084	1698.2
7-8	103,280	848,83	3-4	124.878		5-8	146,477	1707.4
33.	103,673	855.30	7-8	125.271	1248.8	3-4	146.869	1716.5
1-8	104.065	861,79	40.	125,664		7-8	147,262	1725.7
1-4	104,458	868.31	1-8	126,056		47.	147,655	1784.9
3-8	104,851	874.85	1-4	126,449		1-8	148.048	1744.2
1-2	105,243	881.41	3-8	126.842		1-4	148,440	
5-8	105.636	888,00	1-2	127,235		3-8	148,833	
3-4	106,029	894,62	5-8	127.627		1-2	149,226	
7-8	106,421	901.26	€-4	128.020		5-8	149,618	1781.4
34.	106,814	907.92	7-8	128,413		3-4	150.011	1790.8
1-8	107.207	914.61	41.	128,805		7-8	150.404	1800.1
1-4	107.600	921,32	1-8	129,198		48.	150.796	
3-8	107.992	928,06	1-4	129,591	1336.4	1-8	151.189	1819.0
1.2	108.385	934,82	3-8	129,993		1-4	151,582	1828.5
5-8	108.778	941.61	1-2	180,376		3-8	151.975	1887.9
3-4	109.170	948.42	5-8	130,769		1-2	152.367	1847.5
7-8	109.563	955.25	3-4	131.161	1869.0	5-8	152.760	1857.0
35.	109.956	962.11	7-8	131.554	1377.2	3-4	153,153	1866.5
1-8	110,348	969.00	42.	131.947	1385.4	7.8	153,545	1876.1
1-4	110.741	975.91	1-8	132,340	1393.7	49.	153.938	1885.7
3-8	111.134	982.84	1-4	132,732	1402.0	1-8	154.331	1895.4
1-2	111.527	989.80	3-8	133,125	1410.3	1-4	154,723	1905.0
5-8	111.919	996.78	1.2	133,518	1418.6	3-8	155,116	1914.7
3-4	112.312	1003.8	5-8	133,910	1427.0	1-2	155,509	1924.4
7-8	112.705	1010.8	3-4	134,303	1435.4	5-8	155,902	1984.2
36.	113.097	1017.9	7-8	134,696	1448.8	3-4	156,294	1943.9
1-8	113.490	1025.0	43.	135,088	1452.2	7-8	156,687	1953.7
1-4	113.883	1032.1	1-8	135,481	1460.7	50.	157.080	1968.5
3-8	114.275	1039.2	1-4	185,874	1469.1	1-8	157.472	1973.3
1-2	114.668	1046.3	3-8	136,267	1477.6	1-4	157.865	1983.2
5-8	115.061	1053.5	1-2	186,659	1486.2	3-8	158.258	1993.1
3-4	115,454	1060.7	5-8	137.052	1494.7	1-2	158.650	2003.0
7-8	115.434	1068.0	3-4	137.445	1503.3	5-8	159.043	2012.9
37.	116.239	1075.2	7-8	137.837	1511.9	3-4	159,436	2022.8
1-8	116,632	1082.5	44.	138,230	1520.5	7.8	159,829	2032.8
1-4	117.024	1089.8	1-8	138.623	1529.2	51.	160.221	2042.8

TABLE OF CIRCLES-Continued.

DIAM. INS.	CIR- CUMF. INS.	AREA. SQ. INS.	DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins.	DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins.
51 1-8	160,614	2052.8	58.	182,212	2642.1	64 7-8	203.811	3305.6
1-4	161,007	2062.9	1-8	182,605	2653.5	65.	204,204	3318.3
3-8	161.399	2073.0	1-4	182,998	2664.9	1-8	204,596	3331.1
1-2	161.792	2083.1	3-8	183.390	2676.4	1-4	204.989	3343.9
5-8	162,185	2093.2	1-2	183.783	2687.8	3-8	205,382	3356.7
3-4	162.577	2103.3	5-8	184.176	2699.3	1-2	205.774	3369.6
7-8	162,970	2113.5	3-4	184.569	2710.9	5-8	206.167	3382.4
52.	163,363	2123.7	7-8	184,961	2722.4	3-4	206,560	3395.3
1-8	163.756	2133.9	59.	185.354	2734.0	7-8	206.952	3408.2
1-4	164.148	2144,2	1-8	185.747	2745.6	66.	207.345	3421.2 3434.2
3-8	164.541	2154.5	1-4	186.139	2757.2	1-6	207.738 208.131	3447.2
1-2	164.934	2164.8	3-8	186,532	2768.8 2780.5	3-8	208,523	3460.2
5-8 3-4	165,326	2175.1	1-2 5-8	186,925	2792.2	1-2	208,916	3473.2
	165.719	2185.4 2195.8	3-4	187.317 187.710	2803.9	5-8	209.309	3486.3
53. 7-8	166,112 166,504	2206.2	7-8	188,103	2815.7	3-4	209,701	3499.4
1-8	166.897	2216.6	60.	188.496	2827.4	7-8	210.094	3512.5
1-4	167,290	2227.0	1-8	188.888	2839.2	67.	210.487	3525.7
3-8	167,683	2237.5	1-4	189,281	2851.0	1-8	210.879	5538.8
1-2	168,075	2248.0	3-8	189 674	2862.9	1-4	211.272	3552.0
5-8	168,468	2258.5	1-2	190,066	2874.8	3-8	211,665	3565.2
3-4	168,861	2269.1	5-8	190,459	2886.6	1.2	212.058	3578.5
7-8	169,253	2279.6	3-4	190.852	2898.6	5-8	212,450	3591.7
54.	169,646	2290 2	7-8	191.244	2910.5	3-4	212.843	3605.0
1-8	170.039	2300.8	61.	191,637	2922.5	7-8	213.236	3618.3
1-4	170.431	2311.5	1-8	192.030	2934.5	68.	213,628	3631.7
3-8	170.824	2322.1	1-4	192.423	2946.5	1-8	214.021	3645.0
1-2	171,217	2332.8	3-8	192.815	2958.5	1.4	214.414	3658.4
5-8	171.609	2343.5	1-2	193,208	2970.6	3-8	214.806	3671.8
3-4	172.002	2354.3	5-8	193.601	2982.7	1-2	215,199	3685.3
7-8	172.395	2365.0	3-4 7-8	193.993	2994.8 3006.9	5-8 3-4	215,592 215,984	3698.7 3712.2
55.	172,788 173,180	2375.8 2386.6	62.	194,386 194,779	3019.1	7-8	216.377	3725.7
1-4	178.573	2397.5	1-8	195.171	3031,3	69.	216.770	3789.3
3-8	178,966	2108.3	1-4	195.564	3043.5	1-8	217,163	3752.8
1-2	174.358	2419.2	3-8	195.957	3055.7	1-4	217,555	3766.4
5-8	174.751	2430.1	1-2	196,350	3068.0	3-8	217,948	3780.0
3-4	175.144	2441.1	5-8	196,742	3080.3	1-2	218.341	3793.7
7-8	175,536	2452.0	3-4	197.135	3092.6	5-8	218,733	3807.3
56.	175.929	2463.0	7-8	197.528	3104.9	3-4	219.126	3821.0
1-8	176,322	2474.0	63.	197.528 197.920	3117.2	7-8	219.519	3834.7
1-4	176,715	2485.0	1-8	198.313	3129.6	70.	219,911	3848.5
3-8	177,107	2496.1	1-4	198.706	3142.0	1-8	220,304	3862.2
1-2	177,500	2507.2	3-8	199.098	3154.5	1-4	220,697	3876.0
5-S	177.893	2518.3	1-2	199,491	3166.9	3-8	221,090	3889.8
3-4	178.285	2529.4	5-8	199.884	3179.4	1-2	221,482	3903.6
7-8	178,678	2540.6	3-4	200.277	3191.9	5-8	221.875	3917.5
57.	179.071	2551.8	7-8	200.669	3204.4	3-4	222.268	3931.4
1-8	179.463	2563.0	64.	201,062	3217.0	7-8	222.660	3945.3 3959.2
1-4	179,856	2574.2	1-8	201.455	3229.6 3242.2	71.	223,053 223,446	3973.1
3-8	180.249	2585.4	1-4	201.847 202.240	3254.8	1-8	223,838	3987.1
1-2	180.642	2596.7	3-8 1-2	202,240	3267.5	3-8	224,231	4001.1
5-8 3-4	181.034	2608.0 2619.4	5-8	203.025	3280.1	1.2	224,624	4015.2
7-8	181,427 181,820		3-4	203.418	3292.8	5-8	225,017	4029.2

182 AREAS AND CIRCUMFERENCES OF CIRCLES.

TABLE OF CIRCLES-Continued.

DIAM. INS.	CIR- CUMP. INS.	AREA. SQ. INS.	DIAM. Ins.	CIR- CUMP. INS.	AREA. SQ. INS.	DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins
71 3-4	225,409	4043.3	78 5-8	247.008	4855.2	85 1-2	268,606	5741.5
7-8	225,802	4057.4	3-4	247,400	4870.7	5-8	268,999	5758.3
72.	226,195	4071.5	7-8	247.793 248.186	4886.2	3-4	269.392	5775.1
1-8	226.587	4085.7	79.	248.186	4901.7	7-8	269.784	5791.9
1-4	226.980	4099.8	1-8	248.579	4917.2	86.	270.177	5808.8
3-8	227.373	4114.0	1-4	248.971	4982.7	1-8	270.570	5825.7
1-2	227,765	4128.2	3-8 1-2	249.364	4948.3	1-4	270.962	5842.6
5-8	228,158	4142.5	5-8	249.757 250.149	4963.9 4979.5	3-8 1-2	271.355	5859.6 5876.5
3-4 7-8	228,551 228,944	4156.8 4171.1	3-4	250.542	4995.2	5-8	271.748 272.140	5893.5
73.	229,336	4185.4	7-8	250.935	5010.9	3-4	272.533	5910.6
1-8	229,729	4199.7	80.	251.327	5026.5	7-8	272,926	5927.6
1-4	230,122	4214.1	1-8	251.720	5042.3	87.	273.319	5944.7
3-8	230,514	4228.5	1-4	252.118	5058.0	1-8	273.711	5961.8
1-2	230,907	4242.9	3-8	252,506	5078.8	1-4	274.104	5978.9
5-8	231,300	4257.4	1-2	252.898	5089.6	3-8	274.497	5996.0
3-4	231,692	4271.8	5-8	253.291	5105.4	1-2	274.889	6013.2
7-8	232,085	4286.3	8-4	253.684	5121.2	5-8	275.282	6030.4
74.	232,478	4300.8	7-8	254.076	5187.1	3-4	275.675	6047.6
1-8	232,871	4315.4	81.	254.469	5153.0	7-8	276.067	6064.9
1-4	233,263	4329.9	1-8	254.862	5168.9	88.	276.460	6082.1
3-8	283,656	4844.5	1-4	255,254	5184.9	1-8	276.858	
1.2	234,049	4359.2	3-8	255.647	5200.8	1-4	277.246	6116.7
5-8	234,441	4373.8	1-2	256.040	5216.8	3-8	277.638	6134.1
3-4	234,834	4388.5	5-8 3-4	256.433	5232.8	1-2 5-8	278.031 278.424	6151.4 6168.8
7-8	235,227	4403.1	7-8	256.825	5248.9 5264.9	3-4	278.816	6186.2
1-8	285,619 286,012	4417.9 4432.6	82.	257.218 257.611	5281.0	7-8	279,209	6203.7
1-4	236,405	4447 4	1-8	258.003	5297.1	89.	279.602	6221.1
3-8	236,798	4447.4 4462.2	1-4	258.396	5313.3	1-8	279,994	6238.6
1-2	237, 190	4477.0	3-8	258.789	5329.4	1-4	280.387	6256.1
5-8	237.583	4491.8	1.2	259.181	5345.6	3-8	280.780	6273.7
3-4	237,976	4506.7	5-8	259.574	5361.8	1-2	281,173	6291.2
7-8	238,368	4521.5	3-4	259.967	5878.1	5-8	281,565	6308.8
76.	238.761	4536.5	7-8	260.359	5894.8	3-4	281.958	6326.4
1-8	239,154	4551.4	83.	260.752	5410,6	7-8	289,351	6344.1
1-4	289.546	4566.4	1-8	261.145	5426,9	90.	282.743	6361.7
3-8	239,939	4581.3	1-4	261.538	5448.3	1-8	283,186	6379.4
1-2	240.332	4596.3	3-8	261.930	5459.6	1-4	283.529	6397.1
5-8	240.725	4611.4	1-2	262.323	5476.0	3-8	283.921	6414.9
3-4	241.117	4626.4	5-8	262.716	5492.4	1-2 5-8	284.314 284.707	6432.6 6450.4
7-8	241.510 241.903	4641.5 4656.6	3-4 7-8	263,108 263,501	5508.8 5525.3	3-4	285,100	6468.2
1-8	242,295	4671.8	84.	263.894	5541.8	7-8	285,492	6486.0
1-4	242,688	4686.9	1-8	264.286	5558.3	91.	285.885	6503.9
3-8	243.081	4702.1	1-4	264.679	5574.8	1-8	286.278	6521.8
1-2	243.473	4717.3	3-8	265.072	5591.4	1-4	286,670	6539.7
5-8	243,866	4732.5	1-2	265,465	5607.9	3-8	287,063	6557.6
3-4	244.259	4747.8	5-8	265.857	5624.5	1-2	287,456	6575.5
7-8	244.652	4763.1	3-4	266,250	5641.2	5-8	287.848	6593.5
78.	245.044	4778.4	7-8	266.643	5657.8	3-4	288,241	6611.5
1-8	245.437	4793.7	85.	267.035	5674.5	7-8	288.634	6629,6
1-4	245.830	4809.0	1-8	267.428	5691.2	92.	289.027	6647.6
3-8	246.222	4824.4	14	267.821	5707.9	1-8	289,419	6665.7
1-2	246.615	4839.8	3-8	268,213	5724.7	1-4	289,812	6683,8

TABLE OF CIRCLES-Continued.

DIAM. INS.	CIR- CUMF. INS.	AREA. Sq. Ins.	DIAM. Ins.	CIR- CUMP. INS.	AREA. SQ. INS.	DIAM. INS.	CIR- CUMP. INS.	ADEA. Sq. Ins.
92 3-8 1-2 5-8 3-4 7-8 93. 1-8 1-4 3-8	290,205 290,597 290,990 291,383 291,775 292,168 202,561 292,954 293,346	6701.9 6720.1 6738.2 6756.4 6774.7 6792.9 6811.2 6829.5 6847.8	95. 1-8 1-4 3-8 1-2 5-8 3-4 7-8 96.	298, 451 298, 844 299, 337 299, 629 300, 022 300, 415 300, 807 301, 200 301, 593	7088,2 7106,9 7125,6 7144,3 7163,0 7181,8 7200,6 7219,4 7238,2	97 5-8 8-4 7-8 98. 1-8 1-4 3-8 1-2 5-8	306,698 307,091 307,483 307,876 308,369 308,661 309,054 309,447 309,840	7485,3 7504,5 7523,7 7543,0 7562,2 7581,5 7600,8 7620,1 7639,5
1-2 5-8 3-4 7-8 94. 1-8 1-4 3-8 1-2 5-8 3-4 7-8	293, 789 294, 132 294, 524 294, 917 295, 702 296, 095 296, 488 296, 881 297, 273 297, 666 298, 059	6866.1 6884.5 6902.9 6921.3 6939.8 6938.2 6976.7 6995.3 7013.8 7052.4 7051.0 7069.6	1-8 1-4 3-8 1-2 5-8 3-4 7-8 97. 1-8 1-4 3-8 1-2	301,986 302,378 302,771 303,164 303,556 303,949 304,342 304,734 305,127 305,520 305,913 306,305	7257,1 7276.0 7294.9 7313.8 7332.8 7351.8 7370.8 7389.8 7408.9 7428.0 7447.1 7466.2	3-4 7-8 99. 1-8 1-4 3-8 1-2 5-8 3-4 7-8 100.	310, 232 310, 625 311, 018 311, 410 311, 803 312, 196 312, 588 312, 981 313, 374 318, 767 314, 159	7658.9 7678.3 7697.7 7717.1 7736.6 7756.1 7775.6 7795.2 7814.8 7834.4 7854.0

RIVETED GIRDERS.

The plates Nos. I. to X. represent a few of the sections of riveted girders, most frequently used in structures. The single webbed girders are the most economical in material, and most accessible for painting and inspection. But where great width and lateral stiffness is required, the double web or box girder is the best. If the length of the girder exceeds twenty times the width of the flange, the girder should either be given some lateral support, or else the section of the top flange should be increased. It is usual to allow flange strains of 12,000 lbs. per square inch in girders for buildings. The safe loads for the girders in the accompanying tables are calculated on this assumption, the entire sectional area of the girder being considered. The web of the girder should be made of such thickness that the vertical shearing strain will not exceed three-fourths of the horizontal strains, or 9,000 lbs. per square inch of section in the case of girders for buildings. The shearing strain is greatest at the supports, and is found by dividing half the load on the girder by the web section.

If the thickness of the web is less than one-sixtieth of its depth, it should be stiffened to resist buckling, by the addition of vertical angle irons riveted to the web at intervals of not more than the depth of the girder. These stiffeners should always be used at the supports and at points where concentrated loading occurs.

The rivets should be from \(^4\) to \(^5\) inches diameter, spaced not closer than three diameters, nor farther apart than sixteen times the thickness of plate connected.

It is good practice to limit the depth of the girder to \(\frac{1}{20} \)th of the span, on account of deflection.

The following tables are calculated by the moments of inertia of the girder sections, for a fibre strain of 12,000 lbs. per square inch, and for a uniformly distributed load. Coefficient =

Inertia × 8
extreme depth of girder. The numbers in the first columns of the tables correspond with those of the various sections of girders on the plates.

It will be observed that each section, as designated by a num-

ber, has been calculated for various thicknesses of cover plates of the same width.

The tables give the coefficient of strength and the approximate weight per lineal foot for each section.

The weights include the requisite stiffeners.

IN ORDER TO FIND THE SAFE UNIFORMLY DISTRIBUTED LOAD A

Divide the coefficient of strength by the length of span in feet between centres of supports. The quotient will be the load in tons of 2,000 lbs.

TO FIND THE COEFFICIENT OF STRENGTH NECESSARY TO CARRY A CERTAIN LOAD ON A GIVEN SPAN.

Multiply the load in tons of 2,000 lbs. by the length of span in feet between centres of supports. If the load is concentrated at the centre of the girder, it must not exceed one-half the weight of the permissible uniformly distributed load. If the load is concentrated at some point not in the middle of the girder, it may exceed in weight the permissible middle load, in the ratio of the square of half the span, to the product of the segments formed by the position of the load.

EXAMPLES FOR APPLICATION OF TABLES.

I. What is the carrying capacity of the single web plate girder No. 16, with \(^4\) inch cover or flange plates, the girder being 20 feet long between centres of supports?

In the column of coefficients, and opposite the girder referred to, find the proper coefficient for strength, which in this case is 2.143.

Answer. $\frac{2148}{20} = 107.15$ tons equally distributed,

or 53.57 tons in middle of girder.

II. A box-girder is required 24 feet long between supports, to carry a 20-inch brick wall weighing 66 tons. What is the requisite coefficient of strength?

Answer. 66 × 24 = 1584.

Referring to the table of box-girders 20 inches wide, we find that girder No. 15, 21 inches deep, with a ½ inch cover-plate, has a coefficient of strength of 1610, or a little in excess of that required. For some information on the distribution of load of brick walls, see page 65.

STRENGTH AND WEIGHT OF RIVETED PLATE GIRDERS WITH SINGLE WEB.

See Plates I, and II.

The weights per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs, uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly dis-

tributed, by span in feet between centres of supports.

	in l		Т	HICKNES	s of Cov	TER PLAT	es in In	CHES.			
ection.	f girder in		70	1934	+				1		
No. of Section.	Depth of ; inches.	Coef. of strength.	Wt.in lbs. per lin.ft.	Coef. of strength,	Wt.in lbs. per lin. ft.	Coef. of strength.	Wt.in lbs. per lin. ft.	Coef. of strength.	Wt.in lbs. per lin. ft.		
1 2 3	18 18 18	752	102	845 1046	112 132	957 1146 1220	122 142 163	1061 1247 1819	132 152 172		
4 5 6	21 21 21	906	106	1026 1186	116 137	1146 1304 1477	126 147 168	1267 1224 1594	136 157 178		
7 8 9	24 24 24	1064	134	1202 1396	144 142	1340 1532 1743	154 152 175	1479 1669 1877	164 162 185		
10 11 12	27 27 27	1228	137	1384 1612	147 147	1540 1766 2018	157 157 181	1696 1920 2170	167 167 191		
13 14 15	30 30 30	1397	141	1570 1835	151 178	1744 2006 2301	161 188 187	1917 2178 2470	171 198 197		
16 17 18	33 33 33	1570	145	1761 2064	155 183	1952 2253 2591	165 193 193	2143 2442 2778	175 203 203		
19 20 21	36 36 36	1748	149	1956 2303	159 188	2165 2507 2890	169 198 200	2396 2714 3094	179 208 210		

STRENGTH AND WEIGHT OF RIVETED PLATE GIRDERS WITH SINGLE WEB.

See Plates I. and II.

The weight per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs. uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly

distributed, by span in feet between centres of support.

	THICK	NESS OF	COVER P	LATES IN	INCHES			girder in	0.
		1	ı	1	1 0	1	1	f gird	Section
Coef. of strength.	Wt.in lbs. per lin.ft.	Coef. of strength.	Wt.in lbs. per lin.ft.	Coef. of strength.	Wt.in lbs. per lin.ft.	Coef. of strength.	Wt.in lbs. per lin.ft,	Depth of inches.	No. of Section.
1164	142	1268	152	1872	162	1476	172	18	1 2 3
1348	162	1450	172	1552	182	1654	192	18	
1420	182	1520	192	1621	202	1721	212	18	
1388	146	1509	156	1630	166	1751	176	21	4
1543	167	1663	177	1783	187	1963	197	21	5
1707	188	1829	198	1948	208	2068	218	21	6
1618	174	1757	184	1887	194	2026	204	24	7 8 9
1805	172	1943	182	2079	192	2216	202	24	
2012	195	2147	205	2283	215	2417	225	24	
1851	177	2007	187	2163	197	2319	207	27	10
2078	177	2229	187	2384	197	2540	207	27	11
2322	201	2474	211	2627	221	2778	231	27	12
2090	181	2263	191	2436	201	2609	211	30	13
2350	208	2522	218	2694	228	2866	238	30	14
2640	207	2809	217	2980	227	3150	237	30	15
2835	185	2527	195	2719	205	2911	215	33	16
2631	213	2821	223	3011	233	3201	243	33	17
2965	213	3152	223	3340	233	3527	243	33	18
2584	189	2793	199	3002	209	3211	219	36	19
2921	218	3128	228	3335	238	3542	248	36	20
3299	220	3504	230	3708	240	3918	250	36	21

See Plates III. to V.

The weights per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs. uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly

distributed, by span in feet between centres of supports.

		92	1	TH	LATES I	N INCHES.				
	er in	r plate		9		4	1	1		1
No. of section.	Depth of girder inches.	Width of cover plates in inches.	Coef. of strength.	Wt. in lbs. per lin. ft.	Coef of strength.	Wt. in lbs. per lin. ft.	Coef, of strength.	Wt. in lbs. per lin. ft.	Coef. of strength.	Wt. in lbs. per lin, ft.
1 2	18 18	16 16	863	130	1002 1132	143 169	1141 1270	157 182	1280 1408	170 196
3 4	21 21	16 16	1050	138	1212 1380	151 179	1375 1540	165 192	1538 1701	178 206
_6 _6	24 24	16 16	1247	166	1432 1640	179 189	1618 1824	198 202	1886 2008	206 216
×7	27 27	16 16	1453	174	1662 1912	187 199	1871 2119	201 212	2081 2327	214 226
×10	30 30	16 16	1668	181	1901 2197	194 232	2133 2427	208 245	2366 2658	221 259
11 12	33 33	16 16	1942	190	2148 2494	203 242	2405 2748	217 255	2650 3002	230 269
13 14	36 36	16 16	2128	197	2428 2803	210 253	2708 3080	224 266	2988 3358	237 280
15 16	21 21	20 20	1206	150	1406 1579	167 195	1610 1788	183 212	1815 1586	200 228
17 18	24 24	20 20	1425	180	1690 1876	197 205	1892 2108	213 222	2126 2340	230 238

See Plates III. to V.

The weights per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs. uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly

distributed, by span in feet between centres of supports.

-		1		1	1.	1	1	plate	ų.	
Coef. of	Wt. in lbs.	Coef. of	Wt. in lbs.	Coef. of	Wt. in Ibs.	Coef. of	Wt. in lbs.	Width of cover plates	Depth of girder in	No. of section.
strength.	per lin, ft.	strength.	per lin. ft.	strength.	per lin. ft.	strength.	per lin. ft.	in inches.	inches.	
1420	183	1560	197	1701	210	1841	223	16	18	1 2
1546	209	1684	222	1824	236	1962	249	16	18	
1701	191	1864	205	2029	218	2192	231	16	21	3 4
1862	219	2024	232	2186	246	2348	259	16	21	
1995.	219	2178	233	2366	246	2552	259	16	24	5 6
2192	229	2377	242	2562	256	2747	269	16	24	
2284	227	2501	241	2712	254	2923	267	16	27	7 8
2534	239	2742	252	2951	266	3160	279	16	27	
2600	284	2834	248	3068	261	3304	274	16	30	10
2889	272	3120	285	3352	299	3583	312	16	30	
2918	243	3175	257	3435	270	3694	283	16	33	11
3256	282	3511	295	3766	309	4020	322	16	33	
3268	250	3548	264	3807	277	4088	290	16	36	12
3634	293	3916	306	4192	320	4468	333	16	36	
2020	217	2225	233	2435	250	2640	267	20	21	17
2194	245	2398	262	2602	278	2806	295	20	21	
2360	247	2592	263	2830	280	3064	297	20	24	17
2572	255	2804	272	3038	288	3272	305	20	24	

See Plates V. to VIII.

The weights per lineal foot include stiffeners. To find safe load in tons of 2,000 lbs. uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly

distributed, by span in feet between centres of supports.

	H	plates			CARAGO		LA HATON	DALBS LN	Inches.	
d	girder i					1		1		
No. of section.	Depth of girr inches.	Width of cover in inches.	Coefficient of strength.	Weight in lbs. per lineal ft.	Coefficient of strength.	Weight in 1bs. per lineal ft.	Contract Con	Wt. in lbs. per line'l ft.	Coeffi- cient of stren'h.	2000
19 20	27 27	20 20	1653	187	1914 2179	204 215	2179 2439	220 232	2442 2700	237 248
21 22	30 30	20 20	1890	195	2183 2493	212 249	2476 2783	228 266	2768 3074	245 282
28 24	33 33	20 20	2185	203	2508 2820	220 260	2830 3140	286 277	3158 3459	253 · 293
25 26	36 36	20 20	2393	212	2745 3159	228 270	3096 3508	244 287	3448 3857	261 303
27 28	24 24	24 24			2064 2156	235 229	2344 2435	255 249	2624 2714	275 269
29 30	27 27	24 24			2410 2527	243 239	2721 2840	263 259	3040 3154	283 279
31 32	30 30	24 24			2733 2878	250 275	3082 3227	270 295	3434 3376	290 315
33 84	33 33	24 24			3071 3247	259 286	3456 3631	279 306	3842 4016	299 326
35 36	36 36	24 24			3584 3790	266 296	4004 4208	286 316	4424 4627	306 336

See Plates V. to VIII.

The weights per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs., uniformly distributed, divide the coefficient of strength by span in feet between centres

To find coefficient of strength required for a given load and span multiply the total load in tons of 2,000 lbs., uniformly distributed, by span in feet between centres of supports.

1	THICKNE	ss of Co	OVER PL	ATES I	N INC	HES.		tes		
1			1	1	k	1	4	er plates	girder in	-
Coeffi- cient of stren'h.	CO MICE	THE PERSON NAMED IN	Wt, in lbs, per line'l ft,	Coefficient of strength.	Weight in lbs. per lineal ft.	Coefficient of strength.	Weight in lbs. per lineal ft.	Width of cover in inches.	Depth of gird inches.	No. of section.
2706 2961	254 265	2970 3224	270 283	3235 3486	287 298	3500 3748	304 315	20 20	27 27	19 20
3062 3364	262 299	3355 3656	278 316	3649 3947	295 332	3944 4240	312 349	20 20	30 30	21 22
3474 3779	270 310	3797 4100	286 327	4120 4421	303 343	4444 4742	320 360	20 20	33 33	23 24
3800 4206	278 320	4156 4560	294 887	4506 4906	311 353	4859 5257	328 370	20 20	36 36	25 26
2904 2994	295 289	3188 3274	315 309	8467 8555	335 319	3750 3836	355 329	24 24	24 24	27 28
3355 3469	303 299	3671 3784	323 319	3988 4100	343	4305 4416 4838	363 359 370	24 24 24	27 27 30	29 30 31
3785 3926 4228	310 335 319	4136 4277 4596	330 855 339	4488 4628 5002	350 375 359	4979 5108	395 379	24 24	30	32
4228 4401 4834	346 326	4767 5270	366 346	5172 5688	386	5559 6111	406	24 24	33	34
5046	356	5470	376	5885	396	6309	416	24	36	36

See Plates VIII. to X.

The weights per lineal foot include stiffeners.

To find safe load in tons of 2,000 lbs., uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs., uniformly distributed, by span in feet between centres of supports.

		-		Ти	CKNES	e or	COVER P	LATES IN	INCHES	4	
	u tu	plates	1	1	1	1	14		4		
No. of section.	Depth of girder inches.	Width of cover plates in inches.	Coefficient of strength.	Weight in lbs.	Coefficient of strength.	Weight in lbs. per lineal ft.		Wt. in lbs. per line'l ft.	I DOCT WHEN A	Wt. in lbs. per line'l ft.	
37 38	30 30	30 30			3093 3238	270 298	3534 3678	295 823	3974 4117	320 348	
39 40	33 33	30 30	u is		3466 3643	279 309	3951 4126	304 334	4436 4610	329 359	
41 42	36 36	30 30	mai :		4038 4222	286 319	4543 4748	311 344	5072 5275	336 369	
43 44	39 39	30 30			4241 4488	294 329	4815 5060	319 354	5389 5633	344 379	
45 46	42 42	30 30			4642 4929	301 339	5260 5546	326 364	5879 6123	351 389	
47 48	36 36	36 36	BD.	100	4448 4654	306 336	5084 5288	336 366	5721 5924	366 396	
49 50	39 39	36 36		NAME OF	4709 4956	10.000	5400 5646	344 376	6091 6335	374 406	
51 52	42 42	36 36	M.		5165 5434	321 356	5890 6176	351 886	6635 6917	381 416	

See Plates VIII. to X.

The weights per lineal foot include stiffeners,

To find safe load in tons of 2,000 lbs, uniformly distributed, divide the coefficient of strength by span in feet between centres of supports.

To find coefficient of strength required for a given load and span, multiply the total load in tons of 2,000 lbs. uniformly distributed, by span in feet between centres of supports.

THICKNESS OF COVER PLATES IN INCHES.										
1			1	1	1 1	1	ŧ	plates	r in	
	Wt, in lbs. per line'l ft.	100	Wt. in lbs. per line'l ft.	Coefficient of strength,	Weight in lbs. per lines! ft.	Coefficient of strength.	Weight in Ibs. per lineal ft.	Width of cover in inches.	Depth of girder inches,	No. of section.
4415	345	4857	370	5300	895	5782	420	30	30	37
4556	373	4998	398	5439	423	5881	448	30	30	38
4922	354	5408	379	5895	404	6382	429	30	33	39
5094	384	5579	409	6065	434	6551	459	30	33	40
5601	361	6136	386	6661	411	7191	436	30	36	41
5803	394	6336	419	6860	444	7389	469	30	36	42
5963	369	6538	894	7114	419	7689	444	30	: 9	43
6206	404	6779	429	7353	454	7687	479	30	39	44
6681	376	7117	401	7737	426	8357	451	30	42	45
6780	414	7438	439	8016	464	8635	489	30	42	46
6358	396	7002	426	7634	456	8273	486	36	36	47
6560	426	7202	456	7833	486	8470	516	36	36	48
6783	404	7475	434	8168	464	8861	494	36	39	49
7025	436	7716	466	8408	496	8999	526	36	39	50
7380	411	8121	441	8872	471	9627	501	36	42	51
7662	446	8406	476	9151	506	9896	536	36	42	52

PENCOYD CORRUGATED FLOORING FOR BRIDGES AND BUILDINGS.

The trough-shaped sections shown on plate 33, as manufactured by the Pencoyd Iron Works, have been successfully used for bridge floering, and and for the floors of fire-proof buildings. The smaller section, No. 210, is generally applied to buildings, while the larger section, No. 200, is better adapted for bridge floors.

The following table gives the weights of iron per square foot of floor surface, and weights per running yard for different thicknesses of the section; also the moments of resistance for one foot of width.

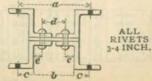
WEIGHTS FOR IRON-For Steel add a per cent.

rt Number. Ith of Baxe. Ithickness. Minimum	App App	Proximate Running I	Weig ard) ess of	or ear	ch Th	ds pe ick-	r .	Maximum Weight.	Thickness.
Width Mr. Bare 2		1 Te	1	y's	ā.	11	2	Lbs. peryd.	Base
210 4 22 48.	0	31.0 35.5		53.0	58.0	63.0	68.0	40,0 68.0	-E118-
Lb. per ft	sq. Appros	imateWe	right i	n Pou	nds f	er Sq Base.	nare	Lbs. per sq. ft.	
210 4 2 14.		20.5 23.5		27.6	30.7	33 8	37.0	26.5 37.0	- Anna
	Mom Wi	ent of Res	sistan ch T	ce for	One ss of	Foot Base	in		
210 4 1	4.41 5.5	6.61 7.74	8,89	13.06	14-57	16.12	17.67		-Britis

PENCOYD Z BARS.

WEIGHTS FOR IRON-For Steel add 2 per cent,

Chart Number. Depth in Inches. Minimum Flange Widths.	Minimum Web Thickness.	Minimum eight per Foot.	App	roxim	ate Wei each Ti	ight in hicknes	Pound: s of W	per	Maximum ight per Foot.	Maximum of Thickness.
File De	W	We	1	3	1	0	1	T T	Wei	We
220 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3		6.5 11.0 7.7 13.1 18.4 11.2 17.5 23.1 15.1 22.0 28.8	6.5	9.7 11.6 13.5	12.8 15.3 17.5 20.6	18.4 21.9	22.4	22.0	9 7 12,8 11.6 17.2 22.4 15.7 21 9 25 6 20 6 27.2 33.9	The state of the s


Z bars for each chart number are of exact depth given; but owing to method in which Z bars must be rolled, the depth of the bar and the width of the hanges increase directly with increase in thickness of web; i. c., Section 200 is 3 inches deep with ½ inch eb; but when weo is increased to ¾ inch, the depth is ¾ inches and the flanges =¾ inches each. This applies to each section and is illustrated on Plate 20%.

PROPERTIES OF PENCOYD Z BARS.

Size		WEI	GHTS		CABLI	E ARE	FOR	IRON.	
220 28 X 3 X 22	2		ot.		Mome	nts Mo	ment of istance	Gyra	tion.
220 2\$\frac{1}{2} \times \frac{1}{2} \times 1	Shap	Flange x	er Fo	Sectio	Neutr	al Axis	Throu,		a train
221 283 X 3 X 28 1 10.8 3.25 4.71 4.37 2.13 1.74 1.13 1.16 0.55 222 28 X 4 X 28 1 13.2 3.96 9.40 6.09 4.70 2.21 1.54 1.24 0.65 2.23 28 X 4 X 28 1 13.2 3.96 9.40 6.09 4.70 2.21 1.54 1.24 0.65 2.23 28 X 4 X 28 1 13.2 3.96 1.20 6.09 4.70 2.21 1.54 1.24 0.65 2.23 28 X 4 X 28 1 13.2 3.96 1.20 6.09 4.70 2.21 1.54 1.24 0.65 2.23 28 3 X 5 X 38 1 12.2 3.36 12.21 8.73 0.06 3.17 1.48 1.25 0.67 2.25 3.07 2.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	No. of	dopth x	Weight p	Area of	dicular to	Coincident with Web, Perpen-	Web. Coincident with Web.	Perpen- dicular to Web.	with Web. Least Ra. Neutral 2 Diagon
224 3 to X 4 X 3 to 18.5 5.55 12.11 8.73 6.06 3.17 1.48 1.25 0.67 2.25 3.26 X 5 X 3 to 11.2 3 5.05 12.11 8.73 6.06 3.17 1.48 1.25 0.67 2.25 3.26 X 5 X 3 to 11.2 3 5.05 12.11 8.73 6.06 3.25 X 5 X 3 to 12.25 2.25 3.26 X 5 X 3 to 12.25 2.25 3.25 2.25 2.25 2.25 2.25 2.25	221	23 X 3 X 23 1 21 X 4 X 2	7-7	3.25	4.71 5.95	4·37 3 3·47 2 6.09 4	.13 1.74 .98 1.26	1.20 I. 1.13 I. 1.61 I.	16 0.53 16 0.55 22 0.64 24 0.65
1.750 2.75	224 225 226 227	3 to X 4 X 3 to 3 to X 5 X 3 to 3 to X 5 X 3 to 3 to X 5 X 3 to	17.4 23.2	5.55 3.36 5.29 6.96	13.14 19.03 23.68	5.81 5 8.77 7 11.37 9	.26 1.92 .61 2.95	1.98 1. 1.91 1. 1.84 1.	31 0.73 30 0.74 28 0.73
Size.	229	31 x 6 x 31	22.3	6.68 8.63	34.64	12.59 11	·55 3.91	2,28 1.	37 0.85 34 0.81
220 28 X 3 X 28 125 .037 1.94 10.285 1.185 8.730 .991 221 28 3 X 3 X 28 1 .44 .037 3.25 17.215 14.610 222 28 28 X 4 X 28 1 .45 .031 2.31 16.390 12.391 23.31 23.31 23.30 28.233 28 X 4 X 28 1 .44 .027 3.30 28.30 28.030 2.062 24.547 1.750 226 338 X 5 X 33 1.50 .027 3.30 28.030 2.062 24.547 1.750 226 338 X 5 X 38 .50 .027 5.22 41.855 35.110 227 31 X 5 X 31 .00 .027 6.06 52.085 35.110 44.190 228 34 X 6 X 31 .37 .023 4.59 4.64 20 2.475 30.490 2.100	f Shape.	Flange x	ickness.	of Thickness 16. Increase the ber foot	f Section.	f of Strength Fibre Strain 6,500.		of Strength Fibre Strain 4,000.	oeficient for und Increase it of Section,
221 2 2 3 3 4 4 2 2 4 4 2 2 4 4 2 2 4 7 3 4 5 9 4 4 4 9 9 2 2 8 2 4 5 4 5 3 2 5 9 6 2 2 4 5 5 3 3 5 1 6 3 9 0 1 3 9 1	No. o	flange.	Th	Increase	Area o	Coefficients for Steel,	add to C	Coefficient for Iron,	A VA
223 25 X 4 X 25 1 .44 .031 3.96 25.850 21.930 22.4 315 X 4 X 316 .62 .031 3.96 25.850 21.930 22.4 315 X 5 X 316 .31 .07 3.30 88.930 2.062 24.547 1.750 226 34 X 5 X 31 .00 .027 5.22 41.855 35.110 227 31 X 5 X 31 .00 .027 6.06 52.085 35.110 44.190 228 34 X 5 X 31 .37 .023 4.50 4.620 2.475 30.420 2.100	221	251 X3 X2	55 -44	.037	3.25	17.215		14.010	
225 3 3	223	315 X 4 X 3	144 162	1031	3.96	25.850		21.030	
228 34 X 6 X 34 .37 .023 4.59 46.420 2.475 30.420 2.100	226	309 × 5 × 3	32 .50	.027	5.22	41,855	2,062	35.110	1.750
230 34 X 6 X 34 .75 .023 8.63 77.220 65.520	228	3t x6x3	37	.023	4.59 6.68	46.420 63.525	2.475	39.420 53.900	2,100

STANDARD SPACING OF RIVETS THROUGH FLANGES OF 7 BAR COLUMNS.

Size of Z Bar	a	8	c	d	0
inch.	111 10 85	71 61 51	2 11 11	41 4 3	II II

STANDARD SEPARATORS FOR PENCOYD I BEAMS.

Chart No. of Beam.	Size of Beam.	right of Separator.	Weight of Separator. Weight of water additional inch of width.		Bolts, A.		Weight of Bolts per additional inch of length.
0		W	each	No.	Sine.		per
1 2 3 4	15" Heavy. Light. 12" Heavy. Light.	22 21 16 141	3.84 3.13 2.95 2.76	2 2 2 2	7777	1.75 1.62 1.69 1.58	.123 .123 .123 .123
5 5t	iol" Heavy. " Medium. " Light.	11 11 11 11 11 11 11 11 11 11 11 11 11	2.10 2.06 2.03	ı	1"	1.64 1.53 1.28	.123 .123 .123
7 8 9 10	" Heavy. " Light. 9" Heavy. " Light.	10 10 91 9	1.93 1.93 1.63 1.63	I I	****	1.56 1.52 1.52 1.48	.123 .123 .123 .123
11 12 13 14	8" Heavy. " Light. " Heavy. Light.	61 61 4 4	1.36 1.36 1.26 1.26	I I I	\$"," \$"," \$","	1.50 1.46 0.96 0.91	.123 .123 .085 .085
15 16 17 18	6" Heavy. " Light. 5" Heavy. Light.	3 3 21 21 21	1.24 1.24 1.10 1.10	I I I	***	0.90 0.87 0.43 0.42	.085 .085 .055
10) 20 21 22	4" Heavy. Light. 3" Heavy. Light.	2 2 11 11 11	0.85 0.85 0.69 0.69	i i i	***	0.42 0.30 0.38 0.31	.055 .055 .055 .055

The figures in the third column are the weights in lbs. for cast iron separators, suitable for beams with flanges placed in contact.

DECIMAL EQUIVALENTS FOR FRAC-TIONS OF AN INCH.

	.015625 .03125 .0625 .09375 .1250 .1563	から	.1875 .2187 .2500 .28125	十個祖籍	-3750 -40625 -4375 -46875	BESS - 1811	.5625 .59375 .6250 65625	TOTAL STREET	.7500 .78125 .8125 .84375	1000	-9375 -96875
1	.1563	110	•34375	17	.53125	10	.71875	20	.90025		

BOLTS AND NUTS.

Manufacturer's Standard.

Diameter of Bolt.	S	iize of Nu	t.	Weight of Nut or T	Weight of Head and Nut or Two Nuts.			
Dian	Width,	Trick.	Hole.	Square.	Hexg'n.	Bodies per Inch of Length.		
10 10 10 10	at other section of	18 18 18 18 18 18 18 18 18 18 18 18 18 1	Englanding	.034 .067 .110 .181	.031 .055 .105	.014 .021 .031 .042		
- Paris	1 11/1 14/1 14/1	Pleating of the control of the contr	7 to 100	.280 .369 -545 .776	.233 -335 -475 .673	.055 .069 .085		
1 1 11 11 11	1 to 1 to 2 to 2 to 2 to 2 to 2 to 2 to	7 X X 1 11 X 12 X 14	TTG STREET	1.34 1.75 2.47 3.74	1.14	.167 .218 .276 .341		
T 22 1 22 1 23 1 23 1 24	24 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 16 1 16 1 16 1 16	5.85 7.59 9.48 11.9		.412 .491 .576 .668		
1 tu 2 2 tu 2 tu 2 tu 2 tu 2 tu 2 tu 2 t	3 ² / ₄ 4 4 4	1 TH 2 TH	111 1110 1110 178 18	14.1 18.6 18.9 19.3		.767 .872 .985 1.104		

WEIGHT OF BRIDGE RIVETS.

Diameter of Rivet.	Weight of Two Heads.	Weight of Body per Inch of Length.
1	.036	,031
70	.058	.042
*	.080	054
16	.120	069
, 0	,160	.085
0	.210	.103
1	,260	.123
tit .	,350	.144
1	.440	.167
10	.540	.192
1	.640	.218
110	.714	.246
11	.788	.276
1 t t t t t t t t t t t t t t t t t t t	1.07	-341

U. S. STANDARD SCREW THREADS.

#1S	9	21=1	a for	216	1 46	860.Ez	175.85	5550	8.423	1 10	1 9
119 119 119 119	\$5 55 W	11001 11001 11001 11001 11001 11001 11001	\$501 \$16 \$18 \$18	5100 00 LL	18	192.61	827.Ez 827.Ez 796.22	osso.	\$1503 \$1503 \$1503	State of the state	STATE OF STATE OF
		# Pot	188		1 S	£94.51		cogo.	ogt-+	42	5
316	######################################	\$6 \$16 \$16	1500 Per 1	왕4 원왕9 후9	学4 学9 学9	0.963 11.329 14.226	081.41 081.41 15.904 157.71	9240° \$540° \$540°	\$25.E 820.4 820.4 820.4	No or or or	****
15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 22 23	150 150 150 150 150 150 150 150 150 150		115 115 114 114	# N 10 10 10 10 10 10 10 10 10 10 10 10 10	848.7 848.7 148.8	200.7 200.8 200.11	Esto.	958.2 978.2 978.2 973.3	39	100000
21 21 21 21 21 21 21 21 21 21 21 21 21 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	\$150 \$150 \$150 \$150 \$150 \$150 \$150 \$150	25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25+	100 E	1 中田田田	2.50.5 2.7.5 2.7.5 2.7.5	240.8 606.4 676.8	TTSO. TTSO. SIEO. SIEO.	206.1 206.1 206.1 206.1	* * *	* C C C C
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-distinction in	200 200 200 200 200 200 200 200 200 200	100 E	P. S. S. S. S.	State of the	202.1 212.1 347.1 120.2	2.761 2.074 2.074 2.767	\$050. 0250. 0250.	685.1 685.1 104.1 616.1	55 45 9	T I I I
다. 한다 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i	THE STATE OF THE S	To a series	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sin Sin Sin	\$69. \$60.1 \$7.00.1	287. 400. 722.1 284.1	8710. 8710. 8020.	7£8. 040. 031.1	024	in in it
British Park	AND PRINTED OF STREET	TE STATE OF THE ST	P. I.	PROPERTY IN THE PERSON IN IT IS NOT THE PERSON IN IT IN IT IN IT IS NOT THE PERSON IN IT IN IT IN IT I	STATE TO A STATE OF THE PARTY O	021, 201, 202, 205, 024,	961. 642. 70E. 244.	\$010. \$110. \$210. \$510.	127. 050. 127.	6 01 11 21 £1	- Designation in
STUTE STORY	Harry March	70.7 VIII. 10.00 C. 1	記録計算	Series of the se	- Branchatter	550° 990° 560°	051. 070. 051.	\$700. \$700. \$600.	102. 102. 102.	81 81 16 14	Diameter.
Thickness, Finish.	Thickness, Rough,	Long Diameter, Rough,	Long Diameter, Rough,	Short Diameter, Finish.	Short Diameter, Rough,	Area at Root of Thread in Square Inches.	Area of Bolt Body in Square Inches.	Width of Flat.	Diameter of Root of Thread.	Threads per Inch.	Diameter.

WEIGHT of SQUARE and ROUND IRON

PER LINEAL FOOT.

For Steel add a per cent,

5300.1	rel add a por	- Contra	2 1	G .			à.
Thickness or Diam.	0	0	Circum.	Thickness or Diam.	0	0	Circum, of O Ban in Ins.
ole la	.013 .052 .117 .208	,010 ,041 ,092 ,164	.1963 .3927 .5890 .7854	211 15 16 3	26.37 27.55 28.76 30.00	20.71 21.64 22.59 23.56	8.8357 9.0321 9.2284 9.4248
Zg district	.326 .469 .638 .833	,256 ,368 ,501 ,654	.9817 1.1781 1.3744 1.5708	100000	31.26 32.55 33.87 35.21	24-55 25-57 26-60 27-65	9.6211 9.8175 10.014 10.210
78 10 10 10	1.055 1.302 1.576 1.875	,828 1.023 1.237 1.473	1.7671 1.9635 2.1598 2.3562	7-4 1-4 1-5	36.58 37.97 39.39 40.83	28.73 29.82 30.94 32.07	10,407 10,603 10,799 10,996
18 18 18 18	2.201 2.552 2.930 3.333	1,728 2,004 2,301 2,618	2.5525 2.7489 2.9452 3.1416	90 10 10 10 10	42.30 43.80 45.33 46.88	33.23 34.40 35.60 36.82	11.192 11.388 11.585 11.781
10 10 10 10 10 10 10 10 10 10 10 10 10 1	3.763 4.919 4.701 5.208	2.955 3.313 3.692 4.091	3-3379 3-5343 3-7306 3-9270	18 18 18 4	48.45 50.05 51.68 53-33	38.05 39.31 40.59 41.89	11.977 12.174 12.370 12.566
of the state of th	5.742 6.302 6.888 7.500	4:510 4:950 5:410 5:890	4.1233 4.3197 4.5160 4.7124	M-Sheb-si-	56.72 60.21 63.80 67.50	44-55 47-29 50-11 53-01	12.959 13.352 13.744 14.137
of descriptions	8.138 8.802 9.492 10.21	6.392 6.913 7.455 8.018	4.9087 5.1051 5.3014 5.4978	Cr. proslamo	71.30 75.21 79.22 83.33	56.00 59.07 62.22 65.45	14.530 14.923 15.315 15.708
18 18 18 2	10.95 11.72 12.51 13.33	8.601 9.204 9.828 10.47	5.6941 5.8905 6.0868 6.2832	ni-strafe-str	87.55 91.88 96.30 100.8	68.76 72.16 75.64 79.19	16.101 16.493 16.886 17.279
10 10 10 10 10 10 10 10 10 10 10 10 10 1	14.18 15.05 15.95 16.88	11.14 11.82 12.53 13.25	6.4795 6.6759 6.8722 7.0686	6 special	105.5 110.2 115.1 120.0	82,83 86,56 90,36 94,25	17.671 18.064 18.457 18.850
Tel Tel	17.83 18.80 19.80 20.83	14.00 14.77 15.55 16.36	7.2649 7.4613 7.6576 7.8540	sales de la section de la sect	125.1 130.2 135.5 140.8	98.22 102.3 106.4 110.6	19.242 19.635 20.028 20.420
10	21.89 22.97 24.08 25.21	17.19 18.04 18.91 19.80	8.0503 8.2467 8.4430 8.6394	Electronia 7	146.3 151.9 157.6 163.3	114.9 119.3 123.7 128.3	20.813 21.205 21.598 21.991

WEIGHT OF FLAT BAR IRON

PER LINEAL FOOT.

For Steel add 2 per cent.

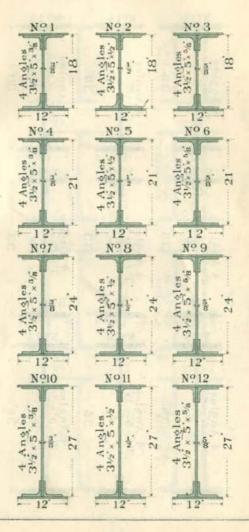
144			Th	ickness	in Fra	ections	of Inc	hes.		
Width in ins.	10	1 8	3	1	16	3 8	170	1/2	5 8	3 4
T	,208	-417	.625	.833	1.04	1,25	1.46	1.67	2.08	2.50
X I	-234	.469	.703	.938	1.17	1.41	1.64	2.08	2,34	2.81
1	,250 ,286	.521 .573	.781	1.04	1.30	1.56	2.01	2,29	2.86	3.13
13	-313	.625	.938	1.25	1.56	1.88	2.10	2.50	3.13	3-75
I H	+339	.677	1.02	1.36	1,69	2,03	2,37	2.71	3-39	4.00
12	.365	.729	1.09	1.46	1.82	2 19	2.55	2.92	3.65	4.38
17	.391	.781	1.17	1.56	1.95	2.34	2.73	3.12	3.91	4.69
2	-417	.833	1.25	1.67	2,08	2 50 2.65	2.92	3-33	4.17	5,00
21	·443	.938	1.33	1.77	2,21	2.05	3.10	3-54	4.43	5.31
21	.495	.990	1.48	1.98	2.47	2.97	3.46	3.96	4.95	5.94
24	.521	1.04	1.56	2.08	2.60	3.13	3.65	4.17	5.21	6.25
28	-547	1.09	1.64	2.19	2,73	3.28	3.83	4.38	5 47	6.56
24 21	+573	1.15	1.72	2.29	2 86	3.44	4.01	4.58	5.73	6.88
24	-599	1,20	1,80	2,40	3.00	3.60	4.20	4 79	5.99	7.19
3	.625	1.25	1,88	2.50	3.13	3.75	4.38	5.00	6.25	7.50
31	.677	1.35	2.03	2.71	3.39	4.06	4.74	5.42	7.29	8.75
31 31	.729 .781	1.56	2.34	3.13	3.91	4.69	5.47	6.25	7.81	9.38
4	.833	1.67	2.50	3-33	4.17	5.00	5.83	6.67	8.33	10.00
41	.885	1.77	2.66	3-54	4.43	5 31	6.20	7.08	8 85	10.63
42 42 42	.938		2.81	3.75	4.69	5.63	6.56	7.50	9.38	11,25
42	.990	1.98	2.97	3.96	4.95	5.94	6.93	7.92	9.90	11,00
5.	1.04	2.08	3.13	4.17	5.21	6.25	7.29	8.33	10,42	12.50
51	1.09	2.19	3.28	4 38 4.58	5-47	6.56	7,66 8,02	8.75	10.94	13 13
59	1.20	2.40	3.59	4-79	5.99	7.19	8.39	9.58	11.98	14 38
6	1.25	2,50	3-75	5.00	6.25	7.50	8.75	10,00	12.50	15.00
61	1.30	2,60	3.91	5.21	6.51	7.81	9.11	10.42	13.02	15.63
61	1.35	2.71	4 06	5.42	6.77	8.13	9.48	10.83	13 54	16.88
64	1.41	2,81	4.22	5.63	7.03	8.44	9.84	11.25	14.06	10.00
7.	1.46	2.92	4.38	5.83	7.29	8.75	10.21	11.67	14 58	17.50
74	1.51	3.02	4.53	6.04	7-55	9.06	10.57	12.50	15.10	18.13
74	1.50	3.13	4.84	6.46	7.81	9.69	11.30	12.92	16.15	19.38
8	1.67	3.33	5.00	6.67	8.33	10.00	11.67	13.33	16.67	20,00
84	1.77	3-54	5.31	7.08	8.85	10.63	12.40	14.17	17.71	21.25
9		3.75	5.63	7.50	9.38	11.25	13.13	15.00	18.75	22.50
9章	1.98	3.96	5.94	7.92	9.90	11.88	13.85	15.83	19.79	23.75
10	2.08	4.17	6.25	8.33	10,42	12,50	14.58	16.67	20.83	25.00
IO I	2.19	4.38	6.56	8.75	10.94	13.13	15.31	17.50	21.88	26.25
111	2.40	4.79	7.19	9.58	11.98	14.38	16.77	19.17	23.96	28.75
	Thursday	STATE OF		Contraction of the Contraction o	YO. 50		10.00	20.00	05.00	20.00
12	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20,00	25.00	30.00

WEIGHT OF FLAT BAR IRON

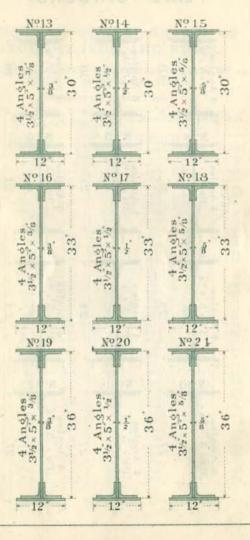
PER LINEAL FOOT.

For Steel add 2 per cent.

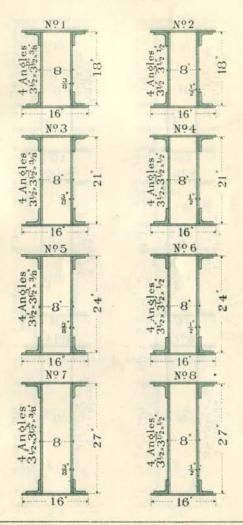
Por So	cel add :		-	in Fr	actions	of Inc	hes.		1	Ith HE.
7 8	1	11	11	13	11/2	15	13	17	2	Width in ins.
2.92	3-33	3.75	4.17	4.58	5.00	5.42	5.83	6.25	6.67	I.
3,28	3.75	4.22	4.69	5.16	5.63	6.00	6.56	7.03	7.50	24
3.65	4.17	4.69	5.21	5.73	6.25	6.77	7.29	7.81 8.59	8.33	14
4.01	4.58	5.16	5-73	6.30	0.00	7-45	0,02	0.59	9.17	48
4.38	5,00	5.63	6.25	6.88	7.50	8,13	8.75	9.38	10.00	14
4-74	5.42	6.09	6.77	7.45	8.13	9.48	9.48	10.16	10.83	10
5.10	5.83	7.03	7.29	8.50	8.75 9.38	10.16	10.94	11.72	12.50	12
-	1000	20	Sec. III				- 3			
5.83	6.67	7.50	8,33	9.17	10.00	10.83	11.67	12.50	13.33	2 21
6,20	7.08	7-97 8.44	8,85	9-74	10,63	11.51	12.40	13.28	14.17	21
6.56	7.50	8.91	9.90	10.89	11.88	12.86	13.85	14.84	15.83	23
					120.00					
7.29	8.33	9.38	10,42	11.46	12.50	13.54	14.58	15.63	16.67	24
7.66	8.75	9.84	10,94	12.03	13.13	14.90	15.31	17.10	17.50	23
8.39	9.17	10.78	11,98	13.18	14.38	15.57	15.77	17.97	19.17	24
	1000				1		-			100
8.75	10,00	11.25	12.50	13-75	15.00	16.25	17.50	18.75	20.00	31
9.48	10.83	12.19	13.54	16.04	16.25	17.60	20,42	20.31	23.33	34
10.04	12.50	14.06	15.63	17.19	18.75	20.31	21,88	23.44	25.00	32
20.94	12195	Bearing 1			and the same of					-
11.67	13-33	15.00	16,67	18.33	20.00	21.67	23.33	25.00	26.67	4,
12,40	14.17	15.94	17.71	19.48	21.25	23.02	24.79	26,56	28.33	4
13.13	15.00	17.81	18.75	21.77	22.50	25.73	27.71	29.69	31.67	4± 4±
			-5 5561		-					
14.58	16.07	18.75	20.83	22.92	25.00	27.08	30.63	31.25	33-33	5
15.31	17.50	20.63	22.92	25.21	27.50	29.79	31.25	34-38	36.67	52
16.77	19.17	21.56	23.96	26.35	28.75	31.15	33-54	35-94	38.33	54
111-011-0	-	San Can	-	-	20.00	32.50	55.00	aw ro	40.00	6
17.50	20.00	22.50	25.00	27.50	30.00	33.85	35.00	37.50	40.00	61
18 96	21.67	24.38	27.08	29.79	32.50	35.21	37.92	40.63	43.33	61
19.69	22.50	25.31	28.13	30.94	33-75	36.56	39.38	42.19	45.00	63
20.42	23.33	26.25	29.17	32.08	35.00	37.92	40.83	43-75	46.67	7
21.15	24.17	27.19	30.21	33.23	36.25	39.27	42.29	45.31	48.33	74
21.88	25.00	28.13	31.25	34.28	37.50	40,63	43.75	46.88	50.00	72
99.60	25.83	29.06	32.29	35.52	38.75	41.98	45.21	48.44	51.67	77
23.33	26,67	30.00	33-33	36.67	40.00	43-33	46.67	50.00	53-33	8
24.79	28.33	31.88	35.42	38.96	42.50	46,04	49.58	53.13	56.67	81
26,25	30.00	33 75	37.50	41.25	45.00	48.75	52.50	56.25	60,00	9
27.71	31.67	35.63	39.58	43-54	47-50	51.46	55.42	59.38	63.33	91
29.17	33-33	37-50	41.67	45.83	50.00	54-17	58.33	62.50	66.67	10
30.63	35.00	39.38	43.75	48.13	52.50	56.88	61.25	65.63	70.00	101
32.08	36.67	41.25	45.83	50.42	55.00	59.58	64.17	68.75 71.88	73-33	11
33-54	38.33	43.13	47.92	52.71	57-50	62.29	67.08	71.88	76.67	114
35.00	40,00	45.00	50.00	55.00	60.00	65,00	70.00	75.00	80.00	12
-	-			-						

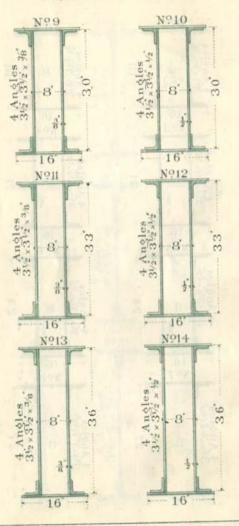

WEIGHT OF ROLLED SHEETS OF WROUGHT IRON AND STEEL.

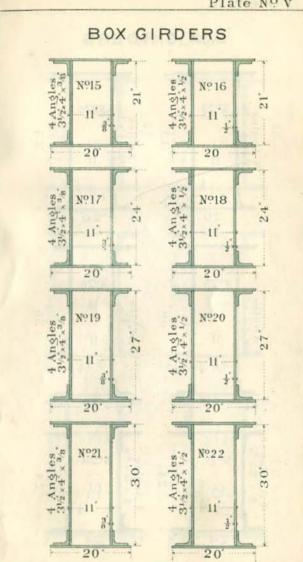
CALCULATIONS BASED ON SPECIFIC GRAVITY OF 7.70 FOR IRON AND 7.85 FOR STEEL.


Weights per Square Foot.

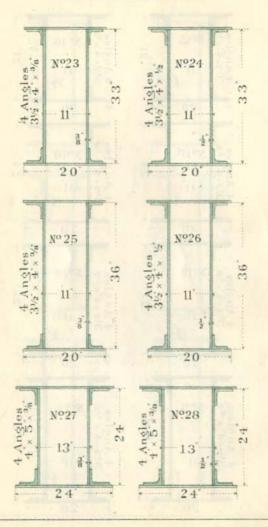
No. of	Birming	rham Wir	e Gauge.	American (B. & S.) Wire Gauge.			
Gauge.	Thickness in Inches.	IRON.	STEEL.	Thickness in Inches.	IRON.	STEEL	
0000	-454	18.16	18.52	1 46	18 40	18.76	
000	-425	17.00	17.34	-4096	16.39	16.72	
00	-38	15.20	15.50	.3648	14.59	14.88	
0	-34	13.60	13.87	-3249	13.00	13.26	
1	-3	12.00	12.24	.2893	11.57	11.80	
2	.284	11.36	11.59	.2576	10.31	10.52	
3	.259	10.35	10.56	.2294	9.18	9.36	
4	.238	9.52 8.80	9.71	-2043	8.17	8.33	
5	.22		8.98	.1819	7.27	7.42 6.61	
	.203	8.12		.1620	6.48	5.88	
7 8	.165	7.19 6.60	7.34	.1443	5.77	5.24	
9	.148	5.92	6.73	.1144	4-57	4.66	
10	.134	5.36	5.47	.1010	4.07	4.15	
11	,12	4.80	4.80	-0007	3.63	3.70	
12	,100	4.35	4-44	.0808	3.23	3.29	
13	.095	3.80	3.87	.0720	2.88	2.93	
14	.083	3.32	3.38	.0641	2.56	2,61	
15	.072	2.88	2.94	.0571	2.28	2.32	
16	.065	2.60	2.65	.0508	2.03	2.07	
17	.058	2.32	2,37	.0453	1.81	1.84	
18	.049	1.96	1.00	.0403	1.61	1.64	
19	.042	1,68	1.71	.0359	1.43	1.46	
20	.035	1.39	1,42	.0320	1.27	1.30	
21	.032	1.27	1.30	.0285	1.13	1.16	
22	.028	1.11	1.14	,0253	1.01	1.03	
23	.025	-997	1.02	.0226	-903	.921	
24	.022	.880	.898	10201	.805	.821	
25	.02	.800	.816	.0179	.715	-729	
26	.018	-719	-734	.0159	.638	.651	
27	.016	-640	.653	,0142	-570	,581	
28	.014	-560	-571	.0126	.505	-515	
29	.013	-520	-531	,0113	.450	-459	
30	.012	,480	-480	.0100	.400	.400	
31	IO.	-399	.408	.0089	-357	.364	
32	,000	-359	-367		.318	+324	
33	.008	,320	.326	,0071			
34	.007	,200	,204	,0056	.252	.257	
35 36	.005	.159	.162	.0050	,200	.204	


PLATE GIRDERS

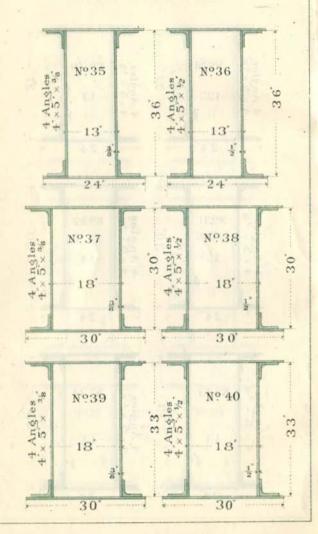

PLATE GIRDERS

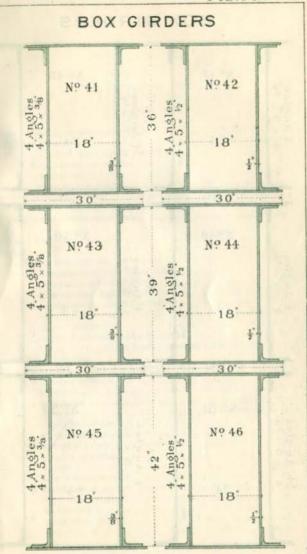


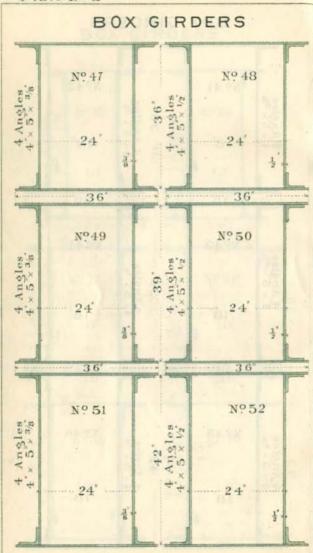
BOX GIRDERS



BOXGIRDERS





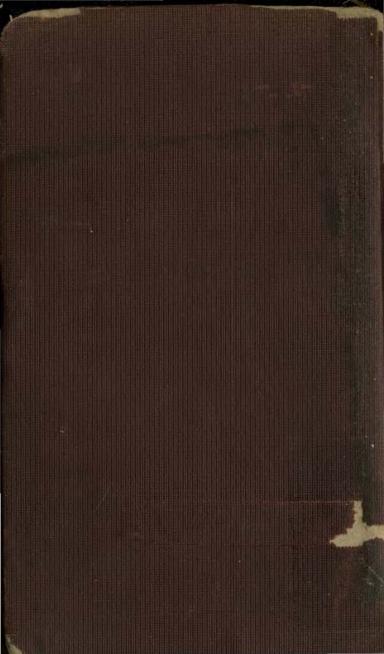

BOX GIRDERS

BOX GIRDERS

INDEX.

PAGE
Angle covers, dimensions and weights 6
ANGLES, as struts
as beams, approximate rule for
dimensions and weights 6
elements of
moments of inertia98, 99, 104
radii of gyration
square root, dimensions and weights 6
Areas and circumferences of circles
Bar iron sizes
BEAMS.
Bulb or deck sections.
approximate rule for strength of
dimensions and weights of 4
elements and properties of
formula for resistance to bending
moments of inertia96, 97, 106
radii of gyration
tables of safe loads and deflections 50, 51
" and spacing when used as floor beams 56, 57
Iron I Sections.
approximate rules for strength of various sections67-69
bending moments
cantilever
continuous
deflection of 10a, 10b, 37, 40, 45
dimensions and weights of
elements and properties of8, 92, 93
factors of safety 34
greatest safe loads
iron floor52-55
lateral strength of 63
limits of deflection
* safe load 33
maximum load in tons
moments of inertia
properties of 8, 92, 93

	PAGI
Iron I Sections.	
radii of gyration92, 93	3, 105, 106, 11
safe loads and deflections	oa, 10b, 40, 4
spacing of	58, 6:
subject to both bending and compression	8
supporting brick walls	65, 6
" irregular loads	82, 8
unsymmetrical sections	3
weights of	
with fixed ends	38, 30
without lateral supports	36, 7
Steel I Sections.	
dimensions and weights of	1
elements and properties of	1
safe loads and deflections	II, I
Beams as struts	124-134
Belting	17
Bending moments for Beams	78, 81
resistance of fron to	3
Bolts and nuts, weights of	19
Brick arches for floors	54
arches, tie rods for	6
walls, beams for supporting	65, 66
Bulb angles	******** 4
	4
** beams	(See Beams.)
Carallianas bassas	
Cantilever beams.	38, 74-77
Carbuilders' channels	4
CHANNELS. Iron.	
approximate rule for	69
as struts	144-153
elements and properties of	3, 10
moments of inertia	9, 94, 95
radii of curation	94, 95) 105
radii of gyrationsafe loads and deflections	94, 95, 105
sate toads and denections	.13, 14, 40-49
struts	121, 122
dimensions and weights of	
elements and properties of	3
safe loads and deflections	9
Circles, areas and circumferences	
Columns of wrought from	178-183
Columns of wrought iron safe loads for round	154-150, 105


PAGE
Columns, safe loads for square
Compression, wrought iron in18-22
Continuous beams38, 39, 75-77
Corrugated flooring 194
Cover angles, sizes and weights 6
Crane stresses
Decimal equivalents for fractions of an inch 196
Deck beams(See Beams.)
Deflection of iron beams
of steel beams
limits of, for beams 39
tables of, for I beams 10a, 10b, 40-45
" " channel bars46-49
" " deck beams50, 51
for beams
of shafting
Elasticity of wrought iron
Elements of structural shapes87-91
tablesg2-101
Factors of safety for beams 34
struts116-117
shafting
Flat bar iron, approximate rule for beams of
Flexure(See Deflection.)
Floor Beams52-55
rule for weights of 53
spacing of 54
lateral strength
Flooring, trough-shaped sections for bridges and buildings 194
Formulæ for unsymmetrical beams
approximate, for rolled beams 67
tables of, for beams of various sections
Fractions of an inch expressed in decimals 186
Girders, riveted
strength and safe loads
Girder stresses
Gyration, radius of 87-88 for various sections 92-101
for various sections
tables
tables,112-113
for round columns
" square " 155

NA AREA CONTRACTOR OF THE PROPERTY OF THE PROP	PAGE
Half-round bar iron, sizes	. 7
Horse-power of shafting	173
I beams(See Bea	
Inertia, moments of	7, 88
tables for various sections	101
formulæ for various sections	-111
for combined sections	
Iron, strength of wrought	
ductility of	
resistance to compression.	
elasticity of rolled	
tensile and compressive tests	
resistance to shearing	
" torsion	
" " bending	
columns15	-159
shafting	-175
strutsir.	-159
sizes of hars	
weight per lineal foot of bars	-201
Lateral strength of floor beams	62
" support, beams without	
Latticing for channel struts121, 141	
Loads	
Audus III.	aus.
M. A. L. Calendalia Carllada	
Modulus of elasticity of rolled iron	
elasticity of rolled steel	
resistance for steel	
rupture for rolled iron	32
Pins and rivets 160	o−1б2
Riveted girders	-
Riveted girders	104
Rivets, weights of	
Roof stresses16	
Round bar iron, sizes	
approximate rule for beams of	
Rule for weight of rolled iron	
weight of iron in floor beams	
thrust of brick arches	. 63
lateral strength of I beams	53, 64
" " channel bars	3, 64
beams bearing irregular loads	

INDEX,	207
	PAGE
Rules, approximate for moments of inertia	107
for shafting	
	100
Safe load, coefficient for	88
" loads, limits of, for beams	
greatest, for beams	100
" " Fbeams	
" deck beams	and the same of the same of
" " channel bars	
for iron struts of any section	
" " tables of, for beams, channels, any	
and tee sections	
for columns	
	Section 1
Screw-threads, table of standard	198
Shafting, sizes rolled	
table of diameters and lengths	176, 177
wrought iron	
Shapes, miscellaneous, dimensions and weights	7
Shearing strength of wrought iron	23
Spacing of floor beams	54
tables of, for eyebeam sections	
" " deck beam sections	56, 57
Specific gravity-iron and steel	30
Square bar iron, sizes	
" root angles, weights per yard of various thicknesses	6
STEEL.	
beams, 8, 11, 1	
beams, deflection of	27
channels3,	
modulus of elasticity	27
shafting	
strength of, in compression	24-26
" " in tension	24-26
" transverse	
struts20	
Strength of wrought iron in compression	18, 22
tension	
shearing	23
Stresses in framed structures	
Structural steel	24
Struts of rolled iron	
rolled steel29	
factors of safety for	
table of ultimate resistance for iron	118
greatest safe loads for iron of any section,	

INDEX.

PAGE
Struts of tables of safe loads for beam sections
" " " angle "138-140
" " " tee "
" " " channel sections,144-153
flat ended steel or iron
Tees, dimensions and weights of 5
elements of even-legged 100
" uneven-legged ror
moments of inertia
radii of gyration100, 101, 104
as struts and tables of safe loads
approximate rule for beams of
Tension in wrought iron
Tie rods for brick arches. 63
Torsional strength of wrought iron
Ultimate loads for iron struts
loads for steel struts31
resistance of iron to bending stress
resistance of fronto beating acress
Weight of angles 6
bar iron 199-201
beams
bolts and nuts
bulb angles 4
channels3, 16
deck beams 4
flooring, corrugated
rivets 197
separators, cast iron
sheets, iron and steel 202
Z bars
Z bars, dimensions and weights
elements and properties of

