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Abstract: The detection of neurological disorders and diseases is aided by automatically identifying 
brain tumors from brain magnetic resonance imaging (MRI) images. A brain tumor is a potentially 
fatal disease that affects humans. Convolutional neural networks (CNNs) are the most common and 
widely used deep learning techniques for brain tumor analysis and classification. In this study, we 
proposed a deep CNN model for automatically detecting brain tumor cells in MRI brain images. First, 
we preprocess the 2D brain image MRI image to generate convolutional features. The CNN network 
is trained on the training dataset using the GoogleNet and AlexNet architecture, and the data model’s 
performance is evaluated on the test data set. The model’s performance is measured in terms of 
accuracy, sensitivity, specificity, and AUC. The algorithm performance matrices of both AlexNet and 
GoogLeNet are compared, the accuracy of AlexNet is 98.95, GoogLeNet is 99.45 sensitivity of 
AlexNet is 98.4, and GoogLeNet is 99.75, so from these values, we can infer that the GooGleNet is 
highly accurate and parameters that GoogLeNet consumes is significantly less; that is, the depth of 
AlexNet is 8, and it takes 60 million parameters, and the image input size is 227 × 227. Because of its 
high specificity and speed, the proposed CNN model can be a competent alternative support tool for 
radiologists in clinical diagnosis. 
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1. Introduction  

According to the World Health Organization (WHO), cancer is the leading cause of death 
worldwide [1]. Although it is sometimes possible, early cancer detection does not permanently save 
lives. A tumor, as opposed to cancer, can be benign, pre-carcinoma, or cancerous. Friendly tumors 
differ from censures because they do not usually spread to other organs or tissues and can be accurately 
eradicated [2]. Clinical imaging encompasses a wide range of procedures that can be used as non-
invasive methods of peering inside the body [3]. Clinical imaging combines a number of imaging 
modalities and cycles to see the edge for therapeutic and diagnostic purposes, and it then plays an 
important and decisive role in directing actions that improve people’s welfare. Picture division may be 
used to achieve a higher level of image preparation, which could be a significant and critical 
breakthrough in image handling [4]. 

The main goals of image division in clinical image processing are to identify tumors or sores, use 
useful machine vision, and obtain reliable results. Improving the affectability and explicitness of 
tumors or injuries in clinical imaging has been a top priority with the use of computer aided diagnostic 
(CAD) frameworks. States that brain and other framework nervous cancer is the tenth leading cause 
of death and that the five-year survival rate for people with ruined brains is 34% for men and 36% for 
women. Furthermore, the WHO predicts that 400,000 people worldwide will be affected by brain 
tumors in the coming year, with 120,000 deaths. Furthermore, an additional 86,970 cases of 
nonthreatening brain and other central nervous system (CNS) malignancies are expected to be 
studied in the United States in 2019 [5]. A brain tumor develops when abnormal cells grow within 
the brain [6]. Tumors are classified as either malignant or benign. Brain tumors are dangerous because 
they start inside the brain, grow quickly, and wreak havoc on the surrounding tissues. It has the 
potential to spread to other areas of the brain and have an impact on the focal structure. There are two 
types of brain metastasis malignancies: those that develop within the brain and those that have spread 
from somewhere else. A benign neoplasm, on the other hand, could be a collection of cells that 
develops gradually within the brain. Early detection of brain cancer and a higher level of endurance 
plausibility will now be critical in improving treatment outcomes. However, because MRI images are 
produced in excess of daily clinical practice, manual division of tumors or sores may be laborious, 
demanding, and uncomfortable. Reverberation is another name for X-rays. The primary goals of 
imaging are to detect tumors or damage. Tumor division by MRI is one of the most essential steps in 
clinical image processing because it typically requires a large amount of data. Furthermore, cancers 
with delicate tissue restrictions were challenging to understand. As a result, determining the precise 
division of tumors in the human brain is a daunting task. We developed a competent approach, aided 
by a convolutional neural network, that aids in the division and identification of the neoplasm without 
the need for human intervention. 

1.1. Problem statement 

Brain Tumor division is one of the principal vital and challenging errands inside the landscape of 
the clinical picture; preparing as a human-helping manual characterization may bring about inaccurate 
forecasts and analysis. Moreover, it’s an exasperating errand when there’s a larger-than-usual measure 
of information present to be helped. Since brain tumors have a wide variety for all intents and purposes, 
and there is a similitude between tumors, and typical tissues, a productive and powerful framework is 
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required for extracting tumor districts from pictures. 

1.2. Motivations 

The primary point here is to carry out a method of programmed detection of neoplasm utilizing 
convolutional neural network (CNN) utilizing MRIs as tests. CNN is utilized to make the model and 
train it utilizing past tumor patients’ records and utilizing that model to anticipate a substitution picture 
if it’s infected or not. 

The significant Contribution of the paper is as follow:  
1) A pipeline based on ensemble DL is presented for efficient and cost-effective tumor 

identification in the brain. 
2) An ensemble method is proposed by using four distinct deep learning architectures (CNN, 

AlexNet, ResNet50, VGG19, to establish the optimal recognition system by selecting the best-
fitting Deep Learning architecture parameters.  

3) In this paper, we comprehensively analyze the effectiveness of key variables affecting pertained 
systems’ tuning. 

4) We have compared the proposed models utilizing several critical characteristics for Brain 
Tumor detection in our research.  

2. Related work 

This section reviews the research that different researchers in this area have already done. We also 
identify any gaps that have yet to be filled. Brain Tumor division is everything about chief, significant 
and exhausting assignments inside the landscape of clinical picture handling as a human-helped 
manual order may bring about incorrect forecasts and analysis. It’s also irritating when a large amount 
of data is to be sorted. Extraction of tumor areas from pictures becomes unassailable because brain 
tumors are varied for all intents and purposes and share similarities with normal tissues. We proposed 
a method using a Fuzzy C-Means bunching calculation followed by conventional classifiers and a 
convolutional neural architecture to detect malignancies using 2D reverberation brain images (MRI). 
The test research used a consistent dataset with various tumors, sizes, regions, forms, and picture 
capabilities. 

In this research, we this research, we examine deep convolutional neural networks (ConvNets) [7] 
for brain tumor classification. Using MRI patches, slices, and multi-planar volumetric slices, we show 
three ConvNets that were trained entirely from scratch. The findings show that ConvNet improves 
accuracy in all cases when the model is trained on multi-planar volumetric data. With no additional 
effort put into feature extraction and selection, as in conventional models, it achieves a testing accuracy 
of 97%. We contrast our results with cutting-edge systems that rely on human feature engineering to 
finish the job. It demonstrates that ConvNets may improve the grading accuracy by up to 12%. By 
observing the results of the intermediate layer, we also look at self-learning kernels and filters at 
different levels. 

The top-tier MRI-based brain tumor division procedures are described in detail in this study [8]. 
Because of the noninterfering and extremely sensitive tissue separation of MRI, a large number of 
frontal brains tumors division methods function on MRI images and employ a variety of attributes to 
gather and organize information, as well as consider spatial information in very near proximity. The 
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motivation behind these techniques is to allow for a critical decision on tumor detection, detection, and 
therapy. Furthermore, it allows for reliable outcomes within a reasonable estimated time. This research 
presents new methodologies for MRI images of a patient’s brain. Gaussian, which may be a direct 
route, completes the preprocessing here. GLCM highlights perform highlight extraction for the pictures 
at that point. Finally, the characterization was carried out using a calculation called convolutional 
neural organization, which can detect tumor regions. Brain tumor detection could be excellent 
assistance for doctors and help for clinical imaging and ventures performed on gathering CT output 
and MRI images. This paper [9] discusses tumor detection and extraction. The area is portioned, and 
therefore the evaluation of the tumor’s personality using the gadget indicated here aids the specialists 
in determining the treatment plan production and monitoring the tumor’s state. The advantages of this 
method are that it enhances the picture’s division level and spatial confinement, as well as its efficacy, 
compared to the alternative framework. It consumes less of an ideal chance for calculation and makes 
mentoring easier with fewer boundaries than other companies. The framework’s exactness will be 
relatively improved by utilizing an artificial neural organization given the classifier. The mechanized 
detection strategy created here was made out of principle with three stages: (1) Pre-preparing, (2) 
Classification using CNN, and (3) post-handling. 

We demonstrate a new CNN model for three different forms of brain tumors [10]. The built 
network has been thoroughly evaluated on T1-weighted differentiation-enhanced reverberation 
pictures and is less complex than successfully used pre-prepared networks. The organization's 
presentation was assessed using four procedures: two 10-overlay cross-approval processes and two 
information bases. Subject-wise cross-approval, one of the 10-overlay methods, was used to assess the 
organization's capacity for speculation, and a more extensive picture data set was used to test the 
improvement. The record-wise cross-approval for the raised informational index yielded the best result 
for the 10-overlay cross-approval methodology, with an exactness of 96.56%. Due to its high 
speculation capacity and speed, the recently developed CNN design may be an elective choice aid 
device for radiologists in clinical diagnostics. They presented a CNN model considering local and 
logical data [11]. A preplanning stage standardizes the photographs, and a post-preparing phase 
eliminates the fake positives. Another study for neoplasm diagnosis proposes a crossover strategy 
combining neutrosphere and CNN. The demonstration of the concept outperforms traditional CNN, 
SVM, and K-closest neighbor (KNN) methods by 95.62%. This study uses the speedier R-CNN 
approach to analyze malignancies inside MRI brain images to find and identify them. Additionally, the 
different tumors are broken down into one of three tumor classes, such as meningioma, glioma, or 
pituitary tumors. Characterization is performed by this approach more rapidly and precisely than by 
regular R-CNN, which is why it was chosen. 

Brain tumor detection is done utilizing MRI and dissecting it [12]. AI might be an incredible 
system for detecting malignancy tumors on MRI. They achieved a preparation accuracy of 99% and 
an approval accuracy of 98.6% in this location, with approval misfortune ranging from 0.704 to 0.000 
for more than 35 years. This model was made on the CPU-based tensor stream, and the GPU rendition 
of the tensor stream is far quicker to mentor, which can prompt a lot quicker model creation. Here, 
convolutional neural network (CNN) calculation is utilized. The following steps are information 
procurement, expansion, model creation, etc. The system that appeared during this paper could be an 
essential picture order strategy for Lenet architecture. The more unique methodologies are accessible.  

In this paper [13], we investigate deep convolutional neural networks (Con-vNets) for the 
structural organization of brain tumors using multisession MR images. For MRI patches, cuts, and 
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multi-planar volumetric cuts, we present three ConvNets that are constructed without any preparation. 
In scenarios when the model is created on a multi-planar volumetric dataset, the results show that 
ConvNet achieves greater precision all around. It achieves a testing precision of 97 percent with no 
additional effort put into highlight extraction and determination, depending on the circumstances in 
ordinary models. We also compare our results to cutting-edge approaches requiring manual component 
design. It indicates a dramatic improvement of 12 percent in ConvNets evaluating execution. Using a 
representation of the yields from the halfway layer, we further examine the characteristics of self-
learned parts and channels at different levels. 

In this study [14], we develop a system for classifying fresh brain MRI scans into those with and 
those without tumors. It should be done with no human intercession. To utilize a few assortments of 
classifiers, we preferred to preprocess a few parts of the photos like the shading, space of interest, 
picture record expansion, and different level. We utilized two mainstream devices to accomplish this, 
viz. ImageJ and MATLAB. We removed the preeminent significance and separated the highlights of 
the preprocessed pictures a short time later. During this stage, we remove ten distinct highlights. At 
last, we utilize an apparatus called WEKA 3.6 to utilize four distinctive grouping calculations on these 
highlights and ascertain the exactness/review, the F-measure, the portion of accurately arranged pictures, 
and the time taken to make each model. One of the basic techniques wanted to identify tumors [15] inside 
the brain is reverberation imaging (MRI). It gives essential data utilized in the technique for examining 
the internal design of the actual construction indeed. Because of the variety and complexity of brain 
tumors, clustering MR images is anything but straightforward. The suggested approach for detecting 
a tumor in MR images includes sigma filtering, flexible edge, and detection site. The suggested 
technique employs two classifiers that rely on controlled strategies: the first classifier was the C4.5 
decision tree calculation, followed by the multi-layer perceptron (MLP) calculation. The classifiers 
categorize the braincase as typical or uncommon; one benign tumor type and five different tumor types 
may be found in the bizarre brain. Considering 174 samples of brain MR images and using the MLP 
computation, the most extreme precision of nearly 95% is achieved. 

The author proposed a method [16] for automated brain tumor diagnosis that uses a computer-
assisted system to improve accuracy and efficiency compared to manual diagnosis. The process 
involves preprocessing the brain MRI image, obtaining tumor proposals using an agglomerative 
clustering-based method, and transferring the proposals to a backbone architecture for feature 
extraction. Refining the proposals through a refinement network, aligning the refined proposals to the 
same size, and finally, using a head network for classification. The method was tested on a publicly 
available brain tumor dataset and showed an overall classification accuracy of 98.04%, outperforming 
existing approaches. The model achieved high accuracy and sensitivity in the classification task. In 
this paper, the author[17] proposed a method for detecting brain tumors using an automated magnetic 
resonance imaging (MRI) technique. The process includes preprocessing the MRI images, using two 
different deep learning models to extract features, combining the features into a hybrid feature vector 
using the partial least squares (PLS) method, and revealing the top tumor locations via agglomerative 
clustering. Aligning the proposals to a predetermined size and finally using a head network for 
classification. The method showed a high classification accuracy of 98.95%, outperforming existing 
approaches. The proposed technique can potentially improve the accuracy and efficiency of brain 
tumor diagnosis. 
  



2905 

Electronic Research Archive  Volume 31, Issue 5, 2900-2924. 

3. Material & method  

The convolutional neural network is often used to preprocess medical image data. Many scientists 
spent a long time developing a model that might better detect tumors. We wanted to develop a reliable 
approach for appropriately categorizing tumors from 2D brain MRI scans. Although a wholly linked 
neural structure may identify tumors, we chose CNN for our model due to border sharing and 
association sparsity [18] shown in Figure 1. 

 

Figure 1. Flow diagram of proposed methodology for tumor detection. 

A 5-layer convolutional neural network is described and utilized for tumor localization. The 
model considers the hidden layers and provides the first tangible evidence of the tumor’s concern. 
Highlight extraction is usually carried out by several convolutional modules that make up a CNN. Each 
module starts with a convolutional layer and ends with a pooling layer [19]. The last convolutional 
module is followed by at least one thick layer that conducts characterization. To establish a value 
between 0 and 1 for each hub, one for each target class within the model (i.e., each of the conceivable 
classes the model may forecast), the last thick layer in a CNN has the SoftMax initiation ability (the 
amount of these SoftMax values is satisfactory to 1). One way to conceptualize the SoftMax [20] 
values for a given picture is as relative estimates of the chance that the image belongs to each target 
class shown in Figure 2. 
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Figure 2. Using a 5-Layer convolutional neural network, a method for tumor detection has 
been proposed. 

Using the convolutional layer in conjunction with the fledgling layer, an information state of the 
MRI images of 64 × 64 × 3 is created, converting each snapshot into a homogenous measurement. 
After assembling all images at the same angle, we used 32 convolutional channels, each measuring 3 
× 3, and three channel tensors to produce a convolutional component entangled with the information 
layer. ReLU does not need to prove the yield since it is utilized as an enactment task. Reduce the piece 
of bounds and computational season of the organization by logically abbreviating the spatial size of 
the representation in this ConvNet model [21]. The pollution of overfitting may also be costed to the 
Brain MRI image, and our Max Pooling layer flawlessly works for this distinction. We employ 
MaxPooling2D as the model for spatial information that proves our information picture. This 
convolutional layer uses measures of 31 × 31 × 32 [22]. The pool size is (2, 2) due to the separation of 
the information images in both spatial dimensions, which recommends a tuple of two integers to 
downscale in an upward direction and to a level plane. A pooled highlight map is acquired after the 
pooling layer. After pooling, one of the most critical layers is leveling. It is essential for planning since 
we must improve the framework by addressing the information photos in a single vector section. The 
Neural Network was then tasked with processing, as shown in Figure 3. 

We used two layers that were entirely intertwined. Dense-1 and Dense-2 addressed the thick layer. 
In Keras, the thick capacity is used to handle the Neural Network and the gotten vector functions as a 
contribution to this layer. Inside the hidden layer, there are 128 hubs. We kept it as low as possible 
since the number of measurements or hubs we need is proportional to the processing assets we need to 
match our model, and 128 hubs produce the most liberal outcome. Because the beginning job requires 
improved intermingling execution [23], ReLU is used. Following the first thick layer, the model's final 
layer was created using the second entirely associated layer. We used the sigmoid capacity as an 
enactment job where the total number of the hub is one because we wanted to reduce the number of 
processing assets used so that a more significant sum reduces the execution time. Even though the 
actuation work, we scale the sigmoid capacity, and the quantity of hubs is far fewer and easier to deal 
with for this profound organization [24], there is a probability that the preparation of profound 
organizations for using the sigmoid will be hampered. The suggested CNN model’s functional 
evolution is seen here.  
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Figure 3. Proposed model progressing in its level. 

3.1. Data augmentation 

Information expansion could be a methodology that grants professionals to fundamentally build 
the scope of data accessible for preparing models without gathering new information. Since this can 
be a small dataset, there were short guides to mentor the neural organization. Additionally, the 
information increase helped handle the data unevenness issue inside the information. Before the 
information increases, the dataset (RADHAMADHAB DALAI, July 1, 2021, “Brain Tumor Dataset”, 
https://dx.doi.org/10.21227/2qfw-bf10.) comprised of:  

i. 155 positive and 98 negative models, prompting 253 model pictures [25].  
ii. After the information increase, presently the dataset comprises of:  

iii. 1085 positive and 980 models, resulting in 2065 model images. 
iv. Note that these 2065 models also include 253 unique images. 

3.2. Data preprocessing 

The following image preprocessing techniques are used to enhance the image quality: 
1) Rescaling: Rescaling the image to a desired size is often one of the first steps in preprocessing. 

This step is essential to ensure that the image has a consistent size, which makes it easier to 
process. 

2) Denoising: Removing noise from the image can improve its visual quality and make it easier 
for the algorithm to process. There are various techniques for denoising an image, including 
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Gaussian and median filtering. 
3) Color Correction: Adjusting an image’s brightness, contrast, and saturation can improve its 

visual quality and make it easier for the algorithm to identify patterns and features. 
4) Rotations and translations: Images may need to be rotated or translated to align with a 

reference image. It is crucial in applications such as medical imaging, where the images must 
be registered accurately to obtain meaningful results. 

5) Image segmentation: Image segmentation is the process of dividing an image into multiple 
regions, or segments, based on the similarity of pixel values. It is an essential step in object 
recognition and classification tasks. 

The following preprocessing procedures were conducted for each image: 
Remove the area of the image that solely depicts the brain (which is the image’s most fundamental 

piece). Adjust the image’s size such that (240, 240, 3) = (picture width, picture height, and the number 
of channels) is the state: since the dataset's photos arrive in different sizes. As a result, all images 
should have an indistinguishable form to ensure that they are taken care of as a contribution to the 
neural network. Use standards to scale pixel values from 0 to 1. 

3.3. Data split 

The information was divided into the following categories: 
 Information for training = 70% 
 Information for validation = 15% 
 Information for testing =15%. 

CNNS contains different layers. Each layer has a different function.  
Convolution Layer: This is where the learning process occurs; it computes the complications 

between the neurons and the different patches in the input. Image data is stored in a 4D tensor [26] (A 
tensor is a multidimensional array of components that describe functions relevant to the coordinates of 
a space), usually processed by 2D convolutional layers. 

Pooling Layer: This layer decreases the network’s count of parameters (weights). A model that 
fits the training data too well is said to overfit. The model becomes so familiar with the details of the 
data and the noise in the training data that it performs poorly on the new data. This layer also increases 
the network’s dependability [27]. The pooling layer conserves the essential characteristics while 
reducing the size of the image and is mainly placed between two convolution layers.  

Flattening Layer: Neural networks can learn only 1D data; this layer converts the 2D data 
(tensor/array) into 1D data. 

Fully Connected Layer: Here, the input image from the previous layer is fed to the FC layer 
[28]. This is the last layer placed before the output layer, which comprises the weights along the 
network’s neurons. This layer provides help in connecting the neurons between two different layers. A 
nonlinear combination of these parameters can be learned by attaching a fully connected layer that is 
feasible and cost-effective. 

Activation Function: The activation function’s significant parameters of the convolutional 
neural network model. There are several activation functions, such as SoftMax, ReLU, Sigmoid 
functions, etc., and now we will discuss the two most adaptable activation functions for our 
complications. 
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3.4. ReLU (rectified linear unit) correction layer 

Applying any activation function to the output of the preceding layer is the duty of the ReLU 
Correction Layer. It adds nonlinearity to the network. These activation functions are used to learn and 
find the accuracy of the continuous and complex relationships between network variables. 
Usually defined as ReLU(i)=max (0, i). Visually represented in Figure 4. 

f(i)=max (0, j) 

 

Figure 4. ReLU function. 

SoftMax Layer: SoftMax extends ideas into a multiclass world related to cross-entropy 
functions. This layer intends to test the model's efficiency by employing a loss function and the cross-
entropy (used to measure the randomness in the information being processed) function to maximize 
the network’s performance.  
SoftMax function: 

𝒔𝒔𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆(𝒂𝒂𝒊𝒊) 
∑ 𝒆𝒆𝒆𝒆𝒆𝒆 (𝒃𝒃𝒊𝒊)𝒃𝒃=𝒏𝒏
𝒃𝒃=𝟏𝟏

                              (1) 

For i = 1, 2, 3……..., n. 
Any neural network’s final activation function, the SoftMax function, is often employed to 

normalize the output of a network. 

4. Proposed neural network architecture 

Architecture detail: Each × (picture) input is supplied into the neural network with a shape of 
(240, 240, 3). It then moves on to the next layer: 

1) A layer with no cushioning and a swimming pool size of (2, 2). 
2) A 32-filter convolutional layer with a stride of at least 1 and a filter size of (7, 7) [29]. 
3) A batch normalization layer that normalizes pixel data to speed up calculations. 
4) A ReLU-activating layer. 
5) A Max Pooling layer with f and s both equal to four. 
6) A Max Pooling layer with f = 4 and s = 4 is used as previously. 
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7) A layer that flattens the three-dimensional matrix so that it becomes a one-dimensional vector. 
8) A dense (output unit) layer that is entirely coupled and has one neuron with sigmoid activation 

(since this is often a binary classification task). 
The training process involves updating the model’s parameters to minimize the difference 

between the model’s predicted outputs and the actual outputs (i.e., the labels) in the training data. This 
process is known as supervised learning and is typically performed using a stochastic gradient descent 
(SGD) variant. The choice of hyperparameters, such as the learning rate, the number of layers in the 
model, the number of attention heads, and the model’s size, among others, can significantly impact the 
model’s performance. Finding the optimal hyperparameters is often performed through 
hyperparameter tuning, which involves training multiple models with different hyperparameters and 
comparing their performance on a validation set. The best-performing model is then selected and used 
for inference. The number of hyperparameters that can be adjusted and the optimal values for each can 
vary greatly depending on the specific task and dataset being used. Additionally, many other 
techniques can be used to improve the performance of language models, such as transfer learning, fine-
tuning, and data augmentation. 

 

Figure 5. Neural network architecture. 
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Table 1. The performance measure of AlexNet for our data set in percentage. 

Factor(s) Values 
Number of convolutional layers 32-filter convolutional layer with a stride of at least 1 

and a filter size of (7, 7) 

Number of cross-channel normalization 
 

1, 2, 3 
Number of drop out layers 1, 2, 3 
Maximum epochs 20,40,50,60,80,100 
Number of fully connected layers 1,2, 3 
Number of convolutional kernels 8, 16, 32, 64, 128, 256 
Kernel size 1,3, 5, 7, 9, 10, 11 
pooling layer Max pooling, average pooling 
pooling layer window size 2, 3,4, 5 
Optimizers GoogLeNet, Adam, VGG 
Mini-batch size 1, 4, 8, 16, 32, 64, 128 
Dropout rate 0.1, 0.15, 0.2, 0.25, 0.5 
Initial learning rate 0.01, 0.001, 0.0001 
Learning rate drop factor 0.1, 0.2, 0.3 

4.1. GOOGLENET 

Table 2. Configuration details for our GoogLeNet model. 

Type Patch  
Size/S
tride 

Depth #1x
1 

#3x3 
Red
uce 

#3x3 #5x5 
Red
uce 

#5x5 Pool 
Proj 

Pra
mas 

Output 
Size 

Ops 
  

CONVOLU
TION 

7x7/2 1       2.7K 112X112
X64 

34M 

MAXPOOL 
3x3/2 

 0        56X56X6
4 

 

CONVOLU
TION 

3x3/1 2  64 192    112
K 

56X56X1
92 

360M 

MAXPOOL 3x3/2 0        28X28X1
92 

 

INCEPTIO
N(3a) 

 2 64 96 128 16 32 32 159
K 

28X28X2
56 

128M 

INCEPTIO
N(3b) 

 2 128 128 192 32 96 64 380
K 

28X28X4
80 

304M 

MAXPOOL 3x3/2 0        14X14X4
80 

 

INCEPTIO
N(4a) 

 2 192 96 208 16 48 64 364
K 

14X14X5
12 

73M 

INCEPTIO
N(4b)1 

 2 160 112 224 24 64 64 437
K 

14X14X5
12 

88M 
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Table 2. Configuration details for our GoogLeNet model. 

INCEPTIO
N(4c) 1 

 2 128 128 256 24 64 64 463
K 

14 × 14 × 
512 

100M 

INCEPTIO
N(4d) 

 2 112 144 288 32 64 64 580
K 

14 × 14 × 
528 

119M 

MAXPOOL 3x3/2 0        7 × 7 × 
832 

 

INCEPTIO
N(5a) 

 2 256 160 320 32 128 128 1072
K 

7 × 7 × 
832 

54M 

INCEPTIO
N(5b) 

 2 384 192 384 48 128 128 1388
K 

7 × 7 × 
1024 

71M 

AVERAGE 
POOL 

7 × 
7/1 

0        1 × 1 × 
1024 

 

DROPOUT 
Rum 

 0        1 × 1 × 
1024 

 

LINEAR  1       1000
K 

1 × 1 × 
1000 

1M 

SOFTMAX  0        1 × 1 × 
1000 

 

The architecture we will proceed with further is GoogLeNet, also known as Inception v1. The 
GoogLeNet (Inception v1) has nine linearly fitted inception modules. It has 22 layers (including the 
pooling layers. It will be 27). Without sacrificing accuracy or speed, the Inception net eventually lowers 
the computing cost to a significant degree. Therefore, GoogleNet shows seven million parameters. 
Nine inception modules, three SoftMax layers for the main auxiliary classifiers, four max-pooling 
layers, four convolutional layers, three average-pooling five fully connected layers, and four max-
pooling layers make up this model. This architecture uses ReLU [30] operation in all convolutional 
layers and dropout regularization in the fully connected layer. 
1x1 Convolution: The 1 × 1 convolution is used in the conception architecture’s architecture. These 
convolutions are used to improve the depth of the architecture while reducing the number of parameters 
in the design. 
Global average pooling: This is used to lower the number of trainable parameters at the network's end 
to zero and increase the top-1 accuracy by 0.6%. 

Inception model: The inception model 3 × 3 max pooling and 1 × 1, 3 × 3, 5 × 5 convolution are 
performed similarly at the input, and the outputs are piled together to produce the final output. As 
shown in Figure 5. The first convolutional layer uses a patch of size 7 × 7, which is moderately massive 
compared to other patch sizes within the network. The main intention of this layer is to lessen the input 
image but not to lose the information and necessary details. The input image is decreased to a 
component of four at the second convolutional layer and a factor of eight before thrusting out to the 
first inception model. Still, the feature maps are generated in a vast amount. 

GoogLeNet requires a particular type of configuration to produce accurate results, and the 
configuration details are mentioned in Table 2. Using nine inception modules makes it unique from 
other architectures, and Figure 6 delineates a straightforward inception model for Google net 
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architecture Figure 7 Portrays the Google net. 
The algorithm mentioned below is used to get the input which is the preprocessed image set, and 

implements all inception modules upon the image set and gives the output, which is the percentage of 
accuracy or 1000 as specified by us. If it is 100% or 1000, the image is accurate. Then we can proceed 
with the further prediction of the image. Four convolutional layers, four max-pooling layers, nine 
inception modules, three SoftMax layers for the primary auxiliary classifiers, three average pooling 
layers, and five fully connected layers make up the class GoogLeNet [31]. 

Algorithm 2: Preprocessed image set and implements all inception modules. 

5. Results and analysis  

In this section, we analyze the result and compare the result with different parameters. 

5.1. Comparison of AlexNet and GoogLeNet based on performance 

We use six evaluation matrices to observe their performance: Time cost, area under the curve, 
Sensitivity, Specificity, Accuracy, and Loss. The five matrices, except the time cost, are calculated 

Input: preprocessed image 
Output: array (according to the batch size) #1000 as the output size 
Import torch and all neural network modules from the torch as nn 

begin 
Define Function googlenet(): 
    If the model is pretrained: 
        If the transform_input is not in kwargs: 
            set kwargs     true 
                  if aux_logits not in kwargs:  
                       set kwargs    false 
                        if kwargs is aux_logits: 
                             send a warning (model is not pretrained) 
                        if model is not original_aux_logits:  
                            set model.aux_logits     False 
                                       Set model. aux1   None  
                                       Set model. aux2   None  
                          return model 
              return GoogLeNet(**kwargs) 
#Create class GoogLeNet: 
Test model with attributes and member functions 
This class involves all the inception layers, as mentioned already. 
GoogLeNetOutputs: 
   if self.training and self.aux_logits: 
        return _GoogLeNetOutputs(x, aux2, aux1) 
   else: 
         return x   # type: ignore[return-value] 
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using the formula below: 
Sensitivity: The exactness of positive models is correlated with sensitivity. It alludes to how 

numerous positive classes were labeled effectively; this can be determined with the equation below. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 

False negatives are instances when positive cases are mistakenly classified as unfavorable, 
whereas real positives are instances where positive situations are appropriately identified. 

Specificity: The conditional probability of true negatives, which may be calculated using the 
method below, and specificity are correlated. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 

Where FP is the number of false positives, which are defined as the negative instances that are 
mistakenly categorized as positive cases, and TN is the number of true negatives or negative cases 
that are negative and classed as unfavorable. 

Accuracy: It is the number of correct assessments divided by the total assessments 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  (𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇)/ (𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹) 

Loss = -Σ, yj, log (ˆyi) 
(y is the actual value, and ˆyi is the predicted value)  
AUC: AUC corresponds to the area under the curve 
AUC = 0.5 (Sensitivity + Specificity) 

5.2. Performance of AlexNet in (%) 

1) The performance of AlexNet has been measured using the measures mentioned above and 
arranged in Table 3. 

Table 3. The performance measure of AlexNet for our data set in percentage. 

Performance measures Alex Net 
Accuracy 
Sensitivity 
Specificity 
The Area under the curve 
Time 

98.95 
98.4 
99.58 
99.05 
95.01 

2) Performance of GoogLeNet in (%): 
The performance of GoogLeNet has been measured using the measures mentioned earlier and 

arranged in Table 4. 

From the above two Tables 4 and 5, we can see the difference between the performance matrices 
of both AlexNet and GoogLeNet; that is, the accuracy measure of AlexNet is found to be 98.95. In 
contrast, the accuracy measure of GoogLeNet is found to be 99.45. Furthermore, the sensitivity of 
AlexNet is 98.4, and GoogLeNet is 99.75, so from these values, we can infer from the above table that 
the GooGleNet is highly accurate. 
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Table 4. The performance measure of GoogLeNet for our data set in percentage. 

Performance measures Google Net 
Accuracy 
Sensitivity 
Specificity 
The area under the curve 
Time  

99.45 
99.75 
99.91 
99.8 
135.40 

Table 5. The performance measure of GoogLeNet for our data set in percentage. 

Model FLOPS # Params fps Latency Accuracy 
CNN 83.811 32.464 1406.23 0.0465 76.37 
AlexNet 167.685 32.464 860.84 0.0764 77.85 
GoogleNet 85.685 60.369 1114.82 0.0564 76.14 

The number of parameters that GoogLeNet consumes is significantly less; that is, the depth of 
AlexNet is 8, it takes 60 million parameters, and the image input size is 22 × 227. At the same time, 
GoogLeNet has a depth of 22 while it takes 7 million parameters, and the input size is 244 × 24.  

Our model has been tested with three different learning rates, and when we compare it with the 
performance results of Alex Net, the GoogLeNet is proved to be more effective, and the results are 
shown in Tables 4 and 5. 

 

Figure 6. Comparative analysis of the performance of proposed work. 
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Table 6. Performance measure of Google Net after testing with three different learning rates. 

PERFORMANC
E MEASURES 

LR = 0.01 LR = 0.001 LR = 0.001 

TRAININ
G SET 

TESTI
NG 
SET 

TRAINING 
SET 

TESTIN
G SET 

TRAINING 
SET 

TESTING 
SET 

Accuracy 74.01% 77.10% 100% 98.10% 100% 100% 

Loss 2.81 2.25 0.021 0.001 1.0095 × 10–6 9.6568 × 
10–8 

Specificity 0 0 1 1 1 1 
Sensitivity 0.71 0.75 1 1 1 1 
AUC 0.50 0.50 1 0.9756 1 1 

Table 7. Performance measure of Alex Net after testing with three different Learning rates. 

PERFORMANC
E MEASURES 

LR = 0.01 LR = 0.001 LR = 0.001 
TRAININ
G SET 

TESTIN
G SET 

TRAININ
G SET 

TESTIN
G SET 

TRAININ
G SET 

TESTIN
G SET 

Accuracy 74.01% 77.10% 100% 100% 100% 100% 

Loss 1.09 3.65 3.67 × 10-8 9.1 × 10-8 
3.9714 × 
10–8 

3.1243 × 
10–8 

Specificity 0 0 1 1 1 1 
Sensitivity 0.71 0.75 1 1 1 1 
AUC 0.5 0.5 1 1 1 1 

 

Figure 7. Brain tumor NO-Class dataset. 
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Accuracy is a metric that measures the fraction of correct predictions made by the model over the 
total number of predictions. It is a value between 0 and 1, where 1 indicates that the model is making 
perfect predictions, and 0 indicates that the model is making no correct predictions. Accuracy is an 
excellent metric to use when the classes are balanced and have roughly equal numbers of samples. 

 

Figure 8. 3D-surface graph showing the accuracy comparison. 

 

Figure 9. 3D-surface graph showing the specificity comparison. 
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Figure 10. 3D-surface graph showing the sensitivity comparison. 

The above-given Figures 8–10 are the graphs depicting the accuracy comparison, specificity 
comparison, and sensitivity comparison, respectively. 

Both loss and accuracy must be relative to the problem being solved and the data being used. A 
model with a low loss and high accuracy on the training data does not necessarily mean that the model 
will perform well on new, unseen data. This is why it is common to split the data into training and 
validation sets, and to monitor both loss and accuracy on the validation set as the model is trained. 

Table 8. Performance evaluation of Exiting model with proposed work. 

Reference Dataset Approach Accuracy (%) 

W. Ayadi et al. (2021) [5] publicly available database CNN 92.98 

R. L. Kumar et.al. (2021) 
[15] 

Figshare  GoogLeNet, 
AlexNet and 
VGGNet 

98.69 

F. Abdolkarimzadeh et.al. 
(2021) [1] 

Harvard Medical School DL, K-NN, LDA 95.45–96.97 

S. N. Shivhare et.al. (2021) 
[27] 

Figshare, Brainweb, 
Radiopaedia 

LeNet 88 

V. V. S. Sasank et.al. 
(2021) [26] 

Kaggle CNN 96 

https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0025
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0075
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0005
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0125
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0115
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Table 8. Performance evaluation of Exiting model with proposed work. 

O. Polat and C. Gungen 
(2021) [20] 

figshare Fuzzy C Mean+ 
CNN 

97.5 

X. L. Lei, (2021) [18] Nanfang Hospital and General 
Hospital, Tianjin Medical 
University 

CapsNet 86.5 

V. V. S. Sasank and S. 
Venkateswarlu (2021) [25] 

Brats-2015 CNN 92.13 

P. Wang and A. C. S. 
Chung (2021) [29] 

Kaggle CNN 92.00 

M. M. Badža and M. Č. 
Barjaktarović (2022) [38]  

Radhamadhab Dalai, IEEE, 
FIGSHARE 

convolutional neural 
network (CNN) 

97.28% 

Y. Guan et al. (2021) [36] Radhamadhab Dalai, IEEE, 
FIGSHARE 

Capsule Networks 86.56% 

M. Aamir et al. (2022) [37] Radhamadhab Dalai, IEEE, 
FIGSHARE 

Capsulenet +SVM 92.60 

M. M. Badža and M. Č. 
Barjaktarović (2020) [38] 

Radhamadhab Dalai, IEEE, 
FIGSHARE 

GLCM and Wavelet 
Packets. 

93.30 

N. Zheng et al. (2023)[39] 
Radhamadhab Dalai, IEEE, 
FIGSHARE 

Arithmetic 
Optimization 
Algorithm 

96.8 

Q. Zhou (2023) [40] 

Radhamadhab Dalai, IEEE, 
FIGSHARE 

light-weight 
convolutional neural 
network CNN) with 
SCM-GL 

95.8 

S. Deepak and P. M. Ameer 
(2023) [41] 

Radhamadhab Dalai, IEEE, 
FIGSHARE 

KNN+SVM  98.2 

G. Xiao et al. (2023) [42] Radhamadhab Dalai, IEEE, 
FIGSHARE 

jigsaw puzzle 97.4 

Proposed Work  Radhamadhab Dalai, IEEE, 
FIGSHARE  

CNN, AlexNet & 
GoogLeNet 

99.45 

Table 8 shows that the proposed work outperformed in comparison to the existing method and 
active more accuracy. The runtime cost for the learning process of Alex Net for the learning rate (LR) 
0.0001 is 19:01 minutes, for LR 0.001 is 15 minutes, and for LR 0.01 is 8:95 minutes, while in the 
case of Google Net for LR 0.0001, the runtime cost is 34:45 minutes for LR 0.001 it is 35:25 minutes, 

https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0090
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0080
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0120
https://www.sciencedirect.com/science/article/pii/S0939388922001313#b0135
https://www.mdpi.com/2076-3417/10/6/1999#B32-applsci-10-01999
https://www.mdpi.com/2076-3417/10/6/1999#B33-applsci-10-01999
https://www.mdpi.com/2076-3417/10/6/1999#B34-applsci-10-01999
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and for LR 0.01 it is 33:21 minutes. Hence, we can conclude that our model is best for this disease. 

 

Figure 11. Training and validation performance of loss. 

Figure 11 shows the comparative analysis of loss during training and validation of the proposed 
model.  

 

Figure 12. Training and validation performance of accuracy. 
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Figure 12 shows the comparative analysis of accuracy during training and validation of the 
proposed model. 

A total of 70% of the dataset is used for training, 20% for validation, and 10% for testing. Python 
is used for developing the existing system. Figure 9 displays how the proposed approach improves 
validation accuracy for segmentation to 99.45% and validation loss to 0.01%. it suggested that the 
proposed model outperforms the state-of-the-art methods in classifying and segmenting images of 
brain tumors. 

6. Conclusions 

This study presented a new technique for detecting tumors at an early stage. We used an image 
edge identification strategy to locate the high-value region in MRI images. We then used the 
information expansion strategy to expand our preliminary data. We propose a direct CNN organization 
as a practical tumor clustering method as a second step. However, our experimental results show we 
can achieve full precision even on a minimal, low dataset. Our exactness rate is exceptionally high 
compared to the VGG-16, resnet-50, and Inception-v3 models. This is due to the neural organization 
requiring a greater-than-usual amount of information to mentor on for a la mode and precise results. 
Because of the initial investment, our model has less stringent computational requirements. The 
precision of our model is also significantly higher than that of VGG-16, ResNet-50, and Inception-v3. 
Our proposed framework could improve the prognosis of patients with brain tumors. Widespread 
hyper-boundary tuning and an improved pre-landing procedure are frequently considered potential 
methods for improving lift model proficiency. However, our proposed framework is for paired-order 
problems. In the future, proposed strategies can be used for apparent characterization problems, such 
as recognizable proof of tumor types like Glioma, meningioma, and pituitary or is also acclimated and 
distinguishes other mind anomalies. Cancers such as carcinoma and carcinoma are becoming 
increasingly common worldwide, and our proposed framework can aid in the early detection of these 
dangerous infections in other clinical areas related to clinical imaging. We will apply this methodology 
to other logical domains in addition to the current debate over the availability of massive data, or we 
can use alternative exchange learning strategies with the same proposed approach. 
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