Hurricane Disaster Infrastructure Resilience and Planning Workshop II

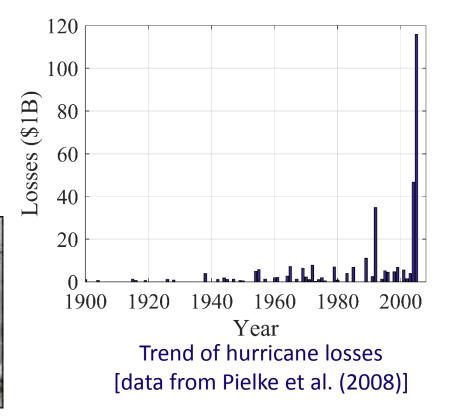
Predicting Wind Hurricane Hazard under Changing Climate Conditions

Michele Barbato

Department of Civil and Environmental Engineering, University of California Davis

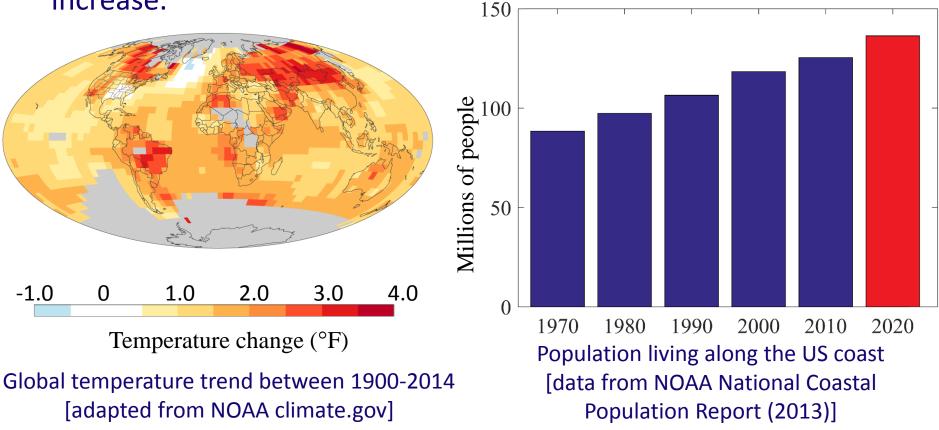
July 25, 2018 Sheraton Madison Hotel Madison, Wisconsin 53713

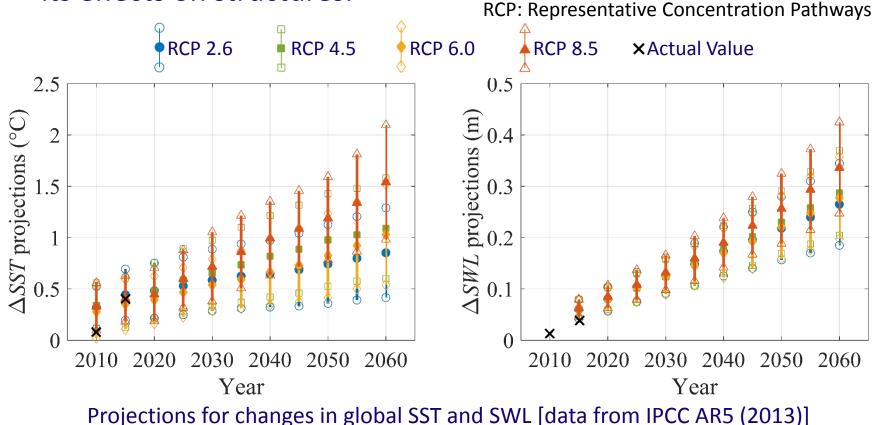
Outline


- Motivation and objective
- Changes in hurricane risk
- Wind speed under changing climate
- Validation of wind speed model
- Hurricane wind hazard predictions
- Case Studies
- Conclusions

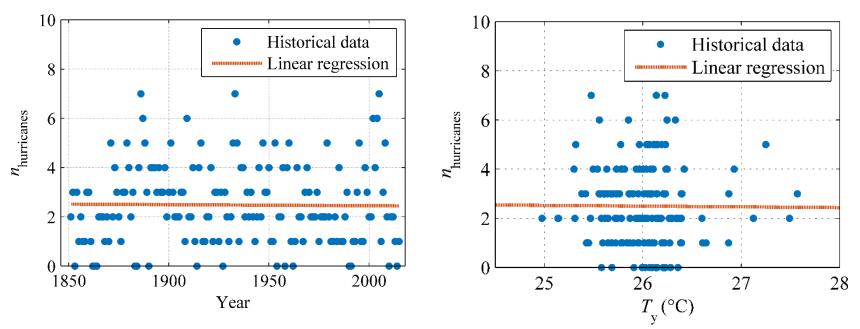
Motivation and Objective

- Hurricanes cause significant economic and societal losses.
- Climate change is believed to intensify hurricane actions and induced losses.
- The effects of climate change need to be quantified.
- **OBJECTIVE:** rational method to predict changes in hurricane hazard and their effects on expected losses for structures and infrastructure systems.




Changes in Hurricane Risk (1)

- Global sea surface temperature (SST) has increased significantly in the last 100 years.
- Hurricane intensities have increased in the same period.
- Risk and losses increase because both hazard and vulnerability increase.


Changes in Hurricane Risk (2)

- Scenarios for future climate from Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5).
- Changes in SST and sea water level (SWL) affect hurricane hazard.
- Need to predict probabilistically the hurricane intensification and its effects on structures.

Wind Speed under Changing Climate (1)

- Statistically-based projection models for intensity measures (IMs) developed using historical data.
- v_h : hurricane annual frequency
- V_{max} : peak hurricane wind speed
- R_{max} : radius at peak wind speed from eye
- Δp : central pressure deficit

Data from HURDAT2 and NOAA optimum interpolation (SST) V2

- " T_y " : annual average
- "*T*": at time of hurricane

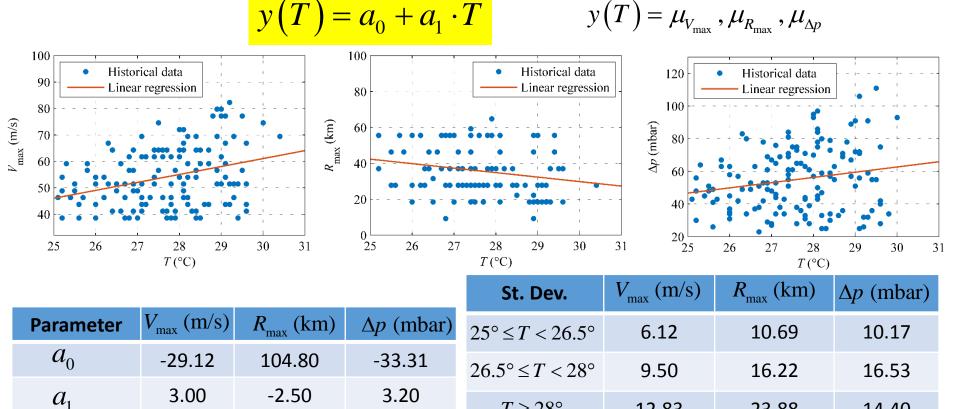
Wind Speed under Changing Climate (2)


Simulation of temperature *T* at time of hurricane

- Sample ΔT_y from a normal distribution based on the IPCC projection scenarios
- Obtain T_y at the year of interest as: $T_y = T_{2005} + \Delta T_y$
- Sample the number of hurricanes in a year
- Sample T from linear regression and historical data $T: N(\mu_T, \sigma_T)$
- σ_T is selected based on historical data for the location that is generated for V_{max} .

$$\mu_T = b_0 + b_1 \cdot T_y$$

 $\sigma_T = 1.22 \,^{\circ}\mathrm{C}$

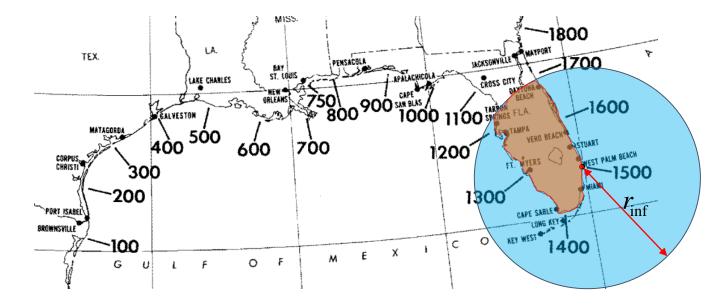

 $b_0 = -26.36(^{\circ}\text{C})$ $b_1 = 2.07$ $T_v \ge 25 ^{\circ}\text{C}$

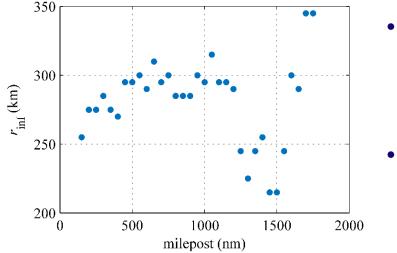
Wind Speed under Changing Climate (3)

Simulation of V_{max} , R_{max} , and Δp

- V_{max} , R_{max} , and Δp for each hurricane are simulated from a Weibull, truncated normal, and lognormal distribution, respectively.
- Mean values are derived using linear regression of historical data:

 $T > 28^{\circ}$


12.83


23.88

14.40

Wind Speed under Changing Climate (4)

Simulation of hurricane distance from site

- r_{inf} = radius of influence selected so that the hurricane frequency between 1871-1963 in the region within the radius coincides with v_{NIST} A generalized extreme value (GEV)
- distribution is fit to historical data to define the distribution of *r*.

Wind Speed under Changing Climate (5)

Simulation of wind speed at site

- Willoughby's model used to simulate hurricane wind speed at the site location
- Distributions for A, X_1 , and n are provided in Willoughby et al. (2005)

$$V_{1-\min}^{\text{rot}}(r) = V_{i} \qquad (0 \le r \le R_{1})$$

$$V_{1-\min}^{\text{rot}}(r) = V_{i} \cdot (1-w) + V_{o} \cdot w \qquad (R_{1} \le r \le R_{2})$$

$$V_{1-\min}^{\text{rot}}(r) = V_{o} \qquad (R_{2} \le r)$$

$$V_{i} = V_{\max} \cdot \left[(1-A) \cdot \exp\left(\frac{R_{\max} - r}{X_{1}}\right) + A \cdot \exp\left(\frac{R_{\max} - r}{X_{2}}\right) \right] \qquad (R_{2} \le r)$$

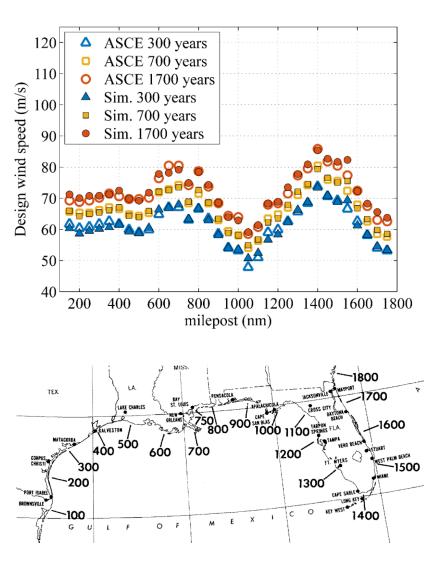

$$K_{i} = R_{\max} - (R_{2} - R_{1})\xi$$

$$\begin{cases} w(\xi) = \frac{n \cdot ((1-A) \cdot X_{1} + A \cdot X_{2})}{(n \cdot ((1-A) \cdot X_{1} + A \cdot X_{2})) + R_{\max}} \\ w(\xi) = 126\xi^{5} - 420\xi^{6} + 540\xi^{7} - 315\xi^{8} + 70\xi^{9} \end{cases}$$

$$K_{2} = 25 \text{ km} \qquad R_{2} - R_{1} = 10 \text{ km}$$
Willoughby et al. (2005)

Validation of Wind Speed Model (1)

Comparison with NIST data

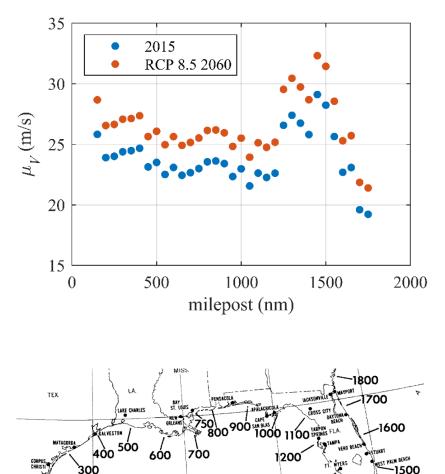

Milanast	$\mu_V(\mathbf{m/s})$			Milonost	σ_V (m/s)			
Milepost	NIST	Simulated	Error	Milepost	NIST	Simulated	Error	
200	22.82	22.36	-0.46	200	9.62	8.90	-0.72	
300	22.35	22.73	0.38	300	9.17	8.83	-0.34	
400	23.11	23.08	-0.03	400	9.46	8.89	-0.57	
500	21.55	21.96	0.41	500	8.44	8.63	0.19	
600	21.85	21.67	-0.18	600	8.11	8.70	0.59	
700	21.49	21.18	-0.31	700	8.56	8.65	0.09	
800	22.13	21.98	-0.15	800	9.16	8.71	-0.45	
900	22.23	21.83	-0.40	900	8.31	8.78	0.47	
1000	21.00	21.47	0.47	1000	7.15	8.77	1.62	
1100	21.74	21.57	-0.17	1100	7.78	8.75	0.97	
1200	21.54	21.28	-0.26	1200	8.74	8.75	0.01	
1300	25.99	25.56	-0.43	1300	8.90	9.12	0.22	
1400	23.84	23.83	-0.01	1400	10.08	9.45	-0.63	
1500	26.97	26.33	-0.64	1500	9.88	9.83	-0.05	
1600	21.06	21.12	0.06	1600	9.13	8.88	-0.25	
1700	18.71	18.26	-0.45	1700	8.57	8.58	0.01	

Average error (m/s)	-0.14	Average error (m/s)	0.07
Average error (%)	-0.60	Average error (%)	0.88
RMSE error (m/s)	0.32	RMSE error (m/s)	0.60

Time period: 1871-1963 Average annual temperature: 25.94 °C

Validation of Wind Speed Model (2)

Comparison with ASCE 7-16 design wind speeds


Milonost	ASC	CE 7-16	(m/s)	Sim	Simulated (m/s) Er		Error (%)		
Milepost	300 y	700 y	1700 y	300 y	700 y	1700 y	300 y	700 y	1700 y
200	60.35	65.27	68.84	58.69	64.25	70.05	-2.8	-1.6	1.8
300	61.69	66.16	70.19	60.18	65.41	70.82	-2.4	-1.1	0.9
400	61.69	66.61	70.63	61.59	67.05	72.46	-0.2	0.7	2.6
500	59.01	64.37	69.74	58.77	63.95	69.22	-0.4	-0.7	-0.7
600	64.82	71.97	76.44	66.34	72.05	77.81	2.3	0.1	1.8
700	67.06	74.21	80.47	67.95	73.48	79.17	1.3	-1.0	-1.6
800	66.61	71.53	78.68	66.66	72.61	78.50	0.1	1.5	-0.2
900	58.56	63.03	68.40	58.09	63.37	68.57	-0.8	0.5	0.2
1000	53.20	58.12	63.93	53.53	58.07	62.89	0.6	-0.1	-1.6
1100	50.96	56.33	60.80	52.44	56.79	61.38	2.9	0.8	1.0
1200	59.90	64.82	68.40	58.38	63.52	68.85	-2.5	-2.0	0.7
1300	65.71	71.08	77.34	66.31	72.10	77.78	0.9	1.4	0.6
1400	73.76	80.47	85.83	73.39	79.36	85.39	-0.5	-1.4	-0.5
1500	69.29	75.55	80.47	68.78	75.05	81.69	-0.7	-0.7	1.5
1600	62.59	67.95	72.42	61.27	66.73	72.30	-2.1	-1.8	-0.2
1700	54.09	58.56	63.03	54.56	59.82	65.57	0.9	2.2	4.0

Return periods	300 years	700 years	1700 years
Average error (m/s)	-0.15	-0.15	0.43
Average error (%)	-0.2	-0.2	0.6
RMSE error (m/s)	0.98	0.71	1.19

Time period: 1886-2010 Average annual temperature: 25.84 °C

Hurricane Wind Speed Predictions (1)

Projected changes in average wind speeds

1300

ε×

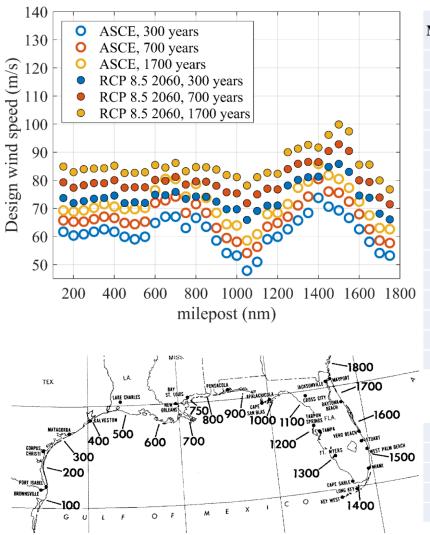
O F

CAPE SABI

14'00

200

00


GUL

FORT ISABEL

	Average wind speed (m/s)							
Milepost	2015	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5			
	2015	2060	2060	2060	2060			
200	23.90	24.76	25.48	25.32	26.55			
300	24.38	25.25	26.02	25.84	27.07			
400	24.67	25.56	26.29	26.13	27.36			
500	23.50	24.34	25.06	24.89	26.07			
600	23.09	23.93	24.63	24.47	25.63			
700	22.66	23.47	24.18	24.01	25.15			
800	23.55	24.40	25.12	24.97	26.14			
900	23.41	24.25	24.96	24.80	25.95			
1000	22.97	23.82	24.51	24.36	25.51			
1100	22.62	23.43	24.14	23.99	25.13			
1200	22.61	23.46	24.16	24.03	25.17			
1300	27.40	28.42	29.25	29.05	30.45			
1400	25.80	26.75	27.53	27.37	28.68			
1500	28.23	29.29	30.16	29.97	31.43			
1600	22.69	23.55	24.27	24.10	25.29			
1700	19.59	20.35	20.97	20.80	21.85			
Average incr from 2		3.65%	6.73%	6.04%	11.09%			

Hurricane Wind Speed Predictions (2)


Projected changes in design wind speeds

Milepost	ASCE 7-16 (m/s)			RCP 8.5 2060 (m/s)			Increase		
	300	700	1700	300	700	1700	300	700	1700
200	60.35	65.27	68.84	71.94	77.45	82.95	19%	19%	20%
300	61.69	66.16	70.19	73.2	78.52	84.02	19%	19%	20%
400	61.69	66.61	70.63	74.62	80.3	85.87	21%	20%	21%
500	59.01	64.37	69.74	72.19	77.39	82.7	22%	20%	19%
600	64.82	71.97	76.44	74.98	80.34	85.23	15%	11%	12%
700	67.06	74.21	80.47	75.69	80.95	86.18	13%	9%	7%
800	66.61	71.53	78.68	75.57	80.83	85.81	11%	11%	8%
900	58.56	63.03	68.40	72.29	77.91	83.27	24%	24%	23%
1000	53.20	58.12	63.93	69.81	75.85	82	31%	30%	27%
1100	50.96	56.33	60.80	68.78	74.81	81.21	36%	33%	33%
1200	59.90	64.82	68.40	71.25	76.44	81.85	19%	18%	20%
1300	65.71	71.08	77.34	80.22	86.07	91.59	22%	21%	18%
1400	73.76	80.47	85.83	82.35	87.79	92.93	10%	7%	7%
1500	69.29	75.55	80.47	85.63	92.6	99.69	24%	23%	24%
1600	62.59	67.95	72.42	74.5	80.26	85.8	19%	18%	18%
1700	54.09	58.56	63.03	68.2	74.13	79.91	26%	26%	27%

Return periods	300 years	700 years	1700 years
Average increase RCP 2.6 2060 (%)	14.6	14.5	14.8
Average increase RCP 4.5 2060 (%)	17.5	17.1	17.1
Average increase RCP 6.0 2060 (%)	17.0	16.6	16.7
Average increase RCP 8.5 2060 (%)	21.2	20.2	19.7

Case Study: Residential Housing

1000 1200 1400 1600 1800

0.5

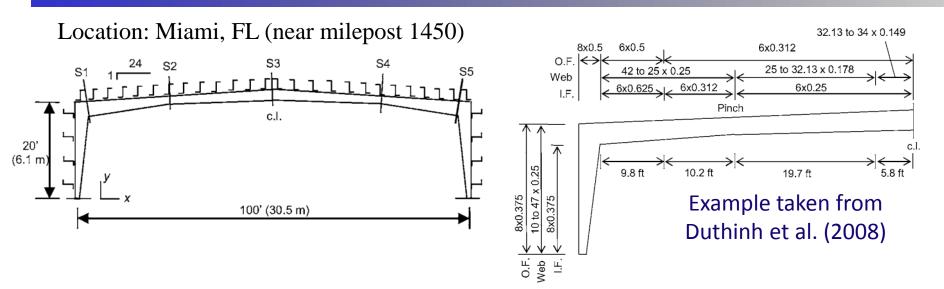
200

400

600

800

milepost (nm)



IPCC Scenario (2060)	Change in expected annual loss
RCP 2.6	+8.90 % (\$160)
RCP 4.5	+15.92 % (\$290)
RCP 6.0	+14.33 % (\$260)
RCP 8.5	+22.05 % (\$400)

10 ft

Unnikrishnan and Barbato (2016)

Case Study: Low-Rise Steel Building

Building Orientation	2006		RCP 8.5 2060		ASCE 7 - ductile failure		
Building Orientation	$P_f(1/yr)$	I _{r,50}	$P_f(1/yr)$	I _{r,50}	Risk	\mathbf{D} (1/m)	т
0°, 22.5°	1.50×10^{-5}	3.17	1.15×10^{-3}	1.59	category	$P_f(1/yr)$	I _{r,50}
45°, 67.5°	1.00×10^{-5}	3.29	7.20x10 ⁻⁴	1.81	Ι	1.25×10^{-4}	2.5
90°	5.00x10 ⁻⁶	3.48	3.43x10 ⁻⁴	2.12	II	3.00×10^{-5}	3.0
112.5°, 135°,157.5°, 180°	1.00×10^{-5}	3.29	7.20x10 ⁻⁴	1.81	III	1.25×10^{-5}	3.25
202.5°, 225°	1.50×10^{-5}	3.17	1.15×10^{-3}	1.59	IV	5.0x10 ⁻⁶	3.5
247.5°, 270°, 292.5°	2.00×10^{-5}	3.09	1.56×10^{-3}	1.43			
315°, 337.5°	1.50×10^{-5}	3.17	1.15×10^{-3}	1.59			

Conclusions

- A methodology is developed to predict hurricane wind speed distributions under changing climate conditions.
- This methodology is validated against NIST data and ASCE design wind speeds.
- A significant increment in average wind speeds, standard deviation of wind speeds, and design wind speeds is observed along the entire US Gulf Coast region.
- In the worst-case climate change scenario, hurricane windinduced losses on residential buildings are expected to increase by approximately 22% in the next 50 years.
- Under the worst-case scenario, low-rise steel buildings designed according to current ASCE 7 standards will be unsafe by 2060.

Acknowledgments

- National Science Foundation (NSF) CMMI #1537078
- Louisiana Department of Wildlife and Fisheries (LWLF) Award #724534

Thank you! Questions?