

ARTESYN Open Rack V3 PMI

ORV3 Power Monitoring Interface (PMI) Module

Advanced Energy's Artesyn PMI is an extension module, which brings MODBUS of the PSU/BBUs directly out for upstream communication. PMI sits on Open Rack V3 Power and Battery Shelves. On one end, it has communication with the PSU or BBUs – through sliver straddle connector. On the other end, interacts with centralized system through the use of RJ45 connectors.

19.2-115kb/s Wedge Power Shelf RS485 RS485 RS485 GPIO RS485 GPIO 19.2-115kb/s **Battery Shelf** RS485 For multiple shelf parallel operation or external GPIO command

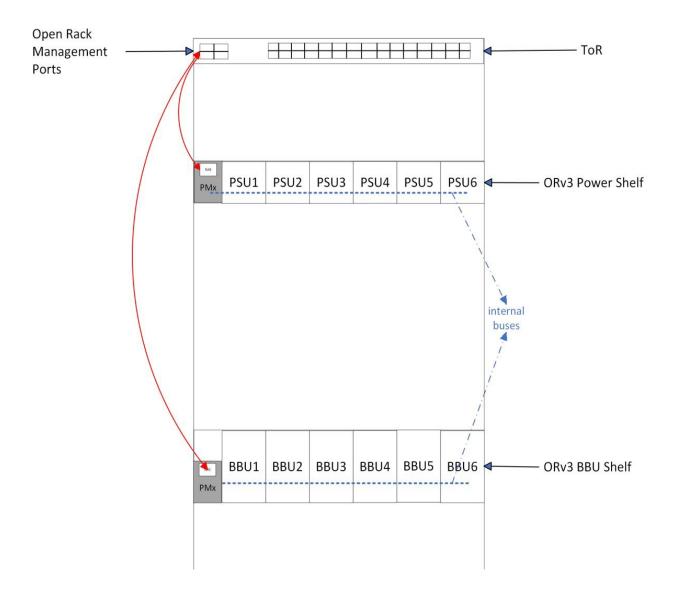
AT A GLANCE

Typical Application

Open Compute Project

Input Connector

Edge Connector


Output Connector

4 x RJ45 Connector

Communication Protocol

MODBUS

OVERVIEW

ELECTRICAL SPECIFICATIONS

4 x RJ45 Connectors

The PMI contains four RJ45 connectors located on the bulkhead of the assembly. The pinouts of the four connectors are shown below. The RJ45 locatio is defined in the mechanical section.

 $Looking from the front, Top \ left \ RJ45 \ is \ \#1, Top \ right \ is \ \#2, bottom \ left \ is \ \#3, bottom \ right \ is \ \#4.$

RJ45 #1		RJ45 #2			
Pin	Wire Color	Function	Pin	Wire Color	Function
1	White/Orange	GND	1	White/Orange	GND
2	Orange	PLS	2	Orange	PLS
3	White/Green	ВКР	3	White/Green	ВКР
4	Blue	RS485A	4	Blue	RS485A
5	White/Blue	RS485B	5	White/Blue	RS485B
6	Green	RS485_Addr2	6	Green	GND
7	White/Brown	RS485_Addr1	7	White/Brown	RS485_Addr1
8	Brown	RS485_Addr0	8	Brown	RS485_Addr0

RJ45 #3		RJ45 #4	RJ45 #4		
Pin	Wire Color	Function	Pin	Wire Color	Function
1	White/Orange	ISHARE	1	White/Orange	ISHARE
2	Orange	GND	2	Orange	GND
3	White/Green	SYNC_START_L	3	White/Green	SYNC_START_L
4	Blue	VOUT_SEL	4	Blue	VOUT_SEL
5	White/Blue	SYNC_STOP_L	5	White/Blue	SYNC_STOP_L
6	Green	RSVD	6	Green	RSVD
7	White/Brown	CAN_H	7	White/Brown	CAN_H
8	Brown	CAN_L	8	Brown	CAN_L

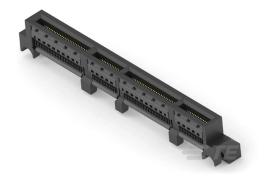
ELECTRICAL SPECIFICATIONS

Edge Connector

There are several signals on the edge connector. The following signals have no use-case currently, for future expansions - A6, B6, A7, B7, A8, B8, B12, A13, B13, A14, B14, A15, B26, A27, B27, A28, B28, A29, B29, B34, A35, B35, A36, B36, A37, B37, A38, A39, B39.

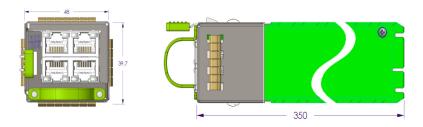
All other signals are routed in the power/battery shelf backplanes.

Pin#	Signal Name	I/O	Description
A1	ADDR_ID_0	I	Shelf ID:
B1	ADDR_ID_1	1	000 1U power shelf
A2	ADDR_ID_2	I	001 Battery shelf
B2	GND	1	Ground
АЗ	ALERT_0_N	1	PSU/BBU Alert
В3	ALERT_1_N	1	PSU/BBU Alert
A4	ALERT_2_N	I	PSU/BBU Alert
B4	ALERT_3_N	1	PSU/BBU Alert
A5	ALERT_4_N	1	PSU/BBU Alert
B5	ALERT_5_N	1	PSU/BBU Alert
A6	ALERT_6_N	I	PSU/BBU Alert
B6	ALERT_7_N	1	PSU/BBU Alert
A7	ALERT_8_N	I	PSU/BBU Alert
В7	ALERT_9_N	I	PSU/BBU Alert
A8	ALERT_10_N	I	PSU/BBU Alert
B8	ALERT_11_N	I	PSU/BBU Alert
A9	GND	1	Ground
В9	RESET_0	0	PSU/BBU Reset
A10	RESET_1	0	PSU/BBU Reset
B10	RESET_2	0	PSU/BBU Reset
A11	RESET_3	0	PSU/BBU Reset
B11	RESET_4	0	PSU/BBU Reset
A12	RESET_5	0	PSU/BBU Reset
B12	RESET_6	0	PSU/BBU Reset
A13	RESET_7	0	PSU/BBU Reset
B13	RESET_8	0	PSU/BBU Reset
A14	RESET_9	0	PSU/BBU Reset
B14	RESET_10	0	PSU/BBU Reset
A15	RESET_11	0	PSU/BBU Reset
B15	GND	1	Ground
A16	PLS	I	PSU/BBU Power Loss Siren
B16	ВКР	I	PSU/BBU BKP
A17	RS485_Addr0	0	PSU/BBU MODBUS address
B17	RS485_Addr1	0	PSU/BBU MODBUS address
A18	RS485_Addr2	0	PSU/BBU MODBUS address
B18	RS485A	1/0	Shared PSU/BBU MODBUS


D: #	0'INI	1/0	B du the
Pin #	Signal Name	1/0	Description
A19	RS485B	1/0	Shared PSU/BBU MODBUS
B19	I2C_SDA_0	1/0	PSU/BBU #0 PMBUS
A20	I2C_CLK_0	1/0	PSU/BBU #0 PMBUS
B20	I2C_SDA_1	1/0	PSU/BBU #1 PMBUS
A21	I2C_CLK_1	1/0	PSU/BBU #1 PMBUS
B21	I2C_SDA_2	I/O	PSU/BBU #2 PMBUS
A22	I2C_CLK_2	I/O	PSU/BBU #2 PMBUS
B22	I2C_SDA_3	I/O	PSU/BBU #3 PMBUS
A23	I2C_CLK_3	I/O	PSU/BBU #3 PMBUS
B23	I2C_SDA_4	I/O	PSU/BBU #4 PMBUS
A24	I2C_CLK_4	I/O	PSU/BBU #4 PMBUS
B24	I2C_SDA_5	I/O	PSU/BBU #5 PMBUS
A25	I2C_CLK_5	I/O	PSU/BBU #5 PMBUS
B25	I2C_SDA_shelf	I/O	I2C for Shelf Temp and FRU
A26	I2C_CLK_shelf	0	I2C for Shelf Temp and FRU
B26	GPIO2	1/0	
A27	GPIO3	I/O	
B27	GPIO4	I/O	
A28	GPIO5	I/O	
B28	GPIO6	1/0	
A29	GPIO7	I/O	
B29	GPIO8	1/0	
A30	CAN_H	I/O	
B30	CAN_L	1/0	
A31	SYNC_STOP_L	I/O	
B31	GND	0	Ground
A32	ISHARE	А	PSU/BBU Current Sharing
B32	SYNC_START_L	1/0	PSU/BBU Sync Start
A33	VOUT_SEL	0	PSU/BBU Vout Select
B33	P3V3_shelf	0	3.3V for shelf I2C
A34	GND	0	Ground
B34	ADC0	А	
A35	ADC1	А	
B35	ADC2	А	
A36	ADC3	А	
B36	ADC4	А	

ELECTRICAL SPECIFICATIONS

Edge Connector


Pin#	Signal Name	I/O	Description
A37	ADC5	А	
B37	ADC6	А	
A38	ADC7	А	
B38	Power_KILL	I	Power Kill, short pin Connected to GND on the shelf.
A39	RSVD	-	Reserved
B39	RSVD	-	Reserved
A40	P48V_RTN (GND)	1	Ground
B40	P48V_RTN (GND)	1	Ground
A41	NC (clearance)	-	No Connect
B41	NC (clearance)	-	No Connect
A42	P48V_IN	1	48V Power In
B42	P48V_IN	1	48V Power In

PMI Physical Dimensions

The PMI is 39.7mm x 48mm x 350mm [Width x Height x Depth].

Construction

The PMI base can be welded, riveted, or screwed together, consistent with meeting shock and vibration requirements. There are no sharp corners or edges.

The sheet metal material is pre-plated hot-dip zinc coated, with 0.8-1.0mm of thickness.

Latch and Handle Requirements

A latch and handle are required for PMI removal and installation. The latch is attached in the location shown on the mechanical drawing, to interface with the cutout in the chassis. The latch design may vary, but the finger interface of the latch must be Pantone 375C (Green).

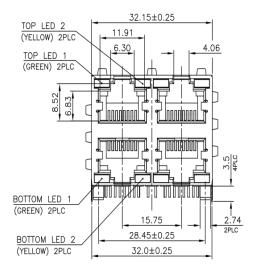
The handle is to be designed so it does not interfere with the removal and insertion of cables into the RJ45 connectors. Handle touch points are to be Pantone 375C (Green).

EMI Gaskets

EMI gaskets are to be placed on the left & right and/or top & bottom sides of the PMI. The main purpose of the gaskets is for PMI module to shelf grounding and secondary purpose is for EMI containment. Gaskets are to be placed towards the front of the PMI so they make full contact with the walls of the shelf.

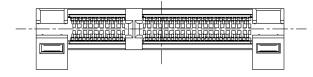
Labeling and Markings

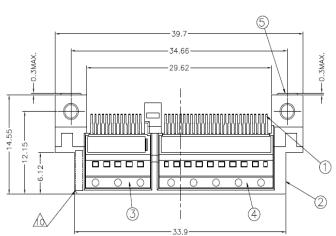
Markings are placed on the front of the PMI module to indicate RJ45 connector positions. Preferred method is silk screening / pad printing. Product Label is at the bottom of the casing, printed in orange background.

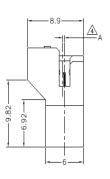


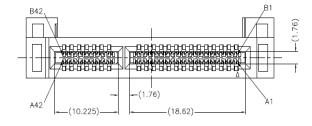
RJ45 Connector

In the front of the PMI, there is a single 4x RJ45 connector. This is a modular jack connector in a 2x2 configuration of RJ45s with LEDs. The MPN is TE 2041376-2, Amphenol RJSAE-J384-04 or equivalent. Note that this connector comes with spring fingers. These must contact the PMI chassis in order to provide sufficient EMI sealing.




Blind Mate Connector


The PCB (card edge) of the PMI module blind mates into a 2C connector on the shelf side. The location of this connector is fixed, but the connector itself may either be mounted on a PCB or a panel-mounted cable. There are no specific requirements for the interface of this blind mate connector to the main shelf PCB. Please refer to the ORV3 Power Shelf or ORV3 BBU Shelf specification for more details on this.


Approved connectors are:

- TE Sliver 2340326-01
- Amphenol Mini Cool Edge ME1008413401101
- Molex Edgeline Sliver 2086104157

Mechanical Drawings

All dimensions are in mm.

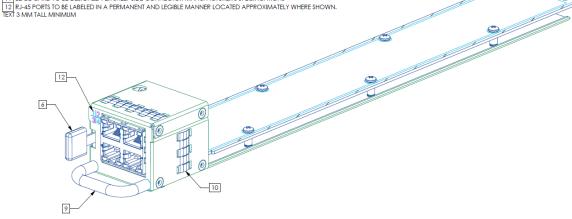
NOTES:

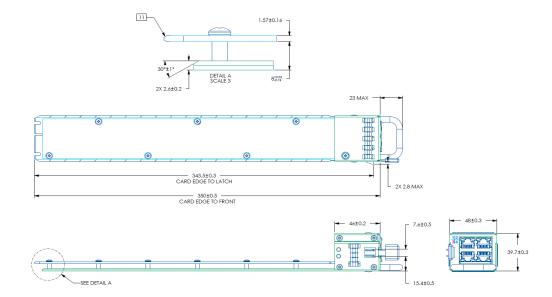
- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14,5M-2009.
 2. ALL DIMENSIONS ARE IN MM.
 3. ALL COMPONENTS SHALL BE U. 944-0 RECOGNIZED AND ROHS COMPUANT.
 4. CASE MATERIAL SHALL RESIST THE CREATION OF ZINC WHISKERS, SUCH AS ASTM A653 AND JISG3302 SGCC.
 5. ALL DIMENSIONS ARE CONSIDERED CRITICAL TO FUNCTION DIMENSIONS AND SHALL BE INCLUDED IN PART QUALIFICATION.

- QUALIFICATION.

 [8] LATCH TAB COLOR PANTONE 375C GREEN OR SIMILAR WITH WRITTEN APPROVAL FROM FACEBOOK ENGINEERING.

 LATCHES MUST HAVE A BACKSTOP TO PREVENT DAMAGE TO LATCH DURING ACTUATION.


 7. ALL EDGES SHALL BE CONDITIONED FOR HANDLING WITH INDUSTRY STANDARD BURR NO LARGER THAN 10% OF
 MATERIAL THICKNESS AND SHALL CONFORM TO UL SAFETY SPECIFICATION 1349.


 8. ALL COMPONENTS SHALL BE CLEAN AND FREE OF RUST AND FOREIGN MATERIAL SUCH AS DIRT, OIL, GREASE, OR
 ON]HER CONTAMINANTAIS.
- OTHER CONTAMINANTS.

 9) HANDLE DESIGN IS UP TO THE SUPPLIER. MAXIMUM PROTRUSION OF HANDLE PAST FRONT FACE IS 23MM, HANDLE TO BE DESIGNED SO IT DOES NOT INTERFERE WITH INSERTION AND REMOVAL OF CONNECTORS, HANDLE TO BE PANTONE 975C GREEN OR SIMILAR WITH WRITHS APPROVAL FROM FACEBOOK ENGINEERING.

 10) EMI GASKETS SHOULD BE INSTALLED ON AT LEAST 2 SIDES TO ENSURE PROPER PSY TO SHELF GROUNDING, UNLESS EMI TESTING RESULTS DEEM IT NECESSARY FOR EMI CONTAINMENT. LOCATION SHOWN IS APPROXIMATE AND CAN YARY, GASKET TO ALWAYS MAKE CONTACT WITH SHELF SHEET METAL.

 111 EDGE CARD TO BE DESIGNED PER SHELF SIDE CONNECTOR MANUFACTURERS SPECIFICATIONS.

ORV3 Power Monitoring Interface (PMI)

ENVIRONMENTAL SPECIFICATIONS

Safety Standards

Power/Battery Shelf Management Controller (PMI) is tested together in the OCP power shelf and comply with all safety requirements specified in OCP Open Rack V3 Power shelf and Battery shelf.

Any component or signal that controls charging and discharging battery is evaluated under single fault condition per UL62368-1 Annex M.

EMC Requirements

Power/Battery Shelf Management Controller (PMI) is tested together in the OCP power shelf and comply with all EMC requirements specified in OCP Open Rack V3 Power shelf document.

Environmental Compliance

Manufacturer of PMI provides full material disclosure, and technical documentations to demonstrate compliance to environmental compliance requirements such as ROHS, REACH, WEEE etc, depending on the end user's goals and business need.

Documentation

Power/Battery Shelf Management Controller (PMI) is covered under all documents specified in OCP Open Rack V3 Power shelf document.

Operating Temperature

Power/Battery Shelf Management Controller (PMI) will operate within stated specifications at cold inlet temperature from -5° C to 45° C.

Altitude

Power/Battery Shelf Management Controller (PMI) will operate within specifications at altitudes up to 3050m (10,000 ft) above sea level.

Humidty

Power/Battery Shelf Management Controller (PMI) will operate within specifications when subjected to a relative humidity from 10% to 90% non-condensing.

Acoustic Noise

If active cooling is required, target sound pressure should not exceed 85dBA when fan modules are running at full speed and operating within the defined environmental envelope.

Vibration and Shock (non-packaged)

The PMI/PMC Module meets vibration and shock test per EN 60068-2-6 and 60068-2-27 respectively and is to be performed at system shelf level (i.e. power shelf installed with PSUs and PMI/PMC module).

Package Vibration, Drop and Compression

PMI/PMC Modules units in their package meet the following requirements:

Package Vibration	1.146 G _{rms} , 2-200-2 Hz, all three axes, Random Vibe	ISTA 3E 06-06
Package Drop	8-inch drop	ISTA 3E 06-06
Package Compression	Maximum compression loading on a bulk pack	ASTM D 642-94

THERMAL SPECIFICATIONS

Operational Thermal Requirements

Reserving adequate margins on components is critical. These margins should be defined with respect to de-rated values, as appropriate.

Component thermal margin of \geq 7% or \geq 5°C up to 30°C inlet/ambient and 3050m (10,000ft) above sea-level. Target whichever value is larger. Component thermal margin of \geq 4% or \geq 3°C at greater than 30°C inlet/ambient and up to 3050m (10,000ft) above sea-level. Target whichever value is larger.

Margin to de-rated temperatures should account for associated differences in reading and measurement location. Impact to reliability should also be considered when determining required margin.

Thermal Kit

Sensor accuracy: For discrete and critical sensors (such as ambient temperature), an accuracy of $\leq \pm 2^{\circ}$ C is required ($\leq \pm 1^{\circ}$ C is preferred). If a component does not have an integrated temperature sensor, and uses a proxy, need to target an accuracy $\leq \pm 5^{\circ}$ C ($\leq \pm 2^{\circ}$ C is preferred). If this component is temperature sensitive, thermal margin requirements defined above should account for sensor inaccuracy.

System fan (if required): Should be sized to support operation across environmental and loading envelopes, with an adequate operating range (speed) to achieve requirements outlined in this document. The fan should also have adequate overhead to accommodate back-pressure resulting from shelf design, rack-level accessories and data center operation. In general, head room to overcome a back-pressure of \geq 0.3 inches of water is highly recommended. This does not take into account impedance created at the front of the shelf to entrain airflow in the PMI (if required). In addition, to ensure thermally-efficient operation, airflow greater than 5CFM should be avoided.

Surface temperature: To make the PMI safe for handling in-operation, accessible surfaces should not exceed a temperature of 70°C.

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2022 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832