Academia.eduAcademia.edu
organic compounds Acta Crystallographica Section E Z=4 Cu K radiation  = 0.79 mm1 Structure Reports Online ISSN 1600-5368 T = 173 K 0.42  0.38  0.26 mm Data collection Flunarizinium hydrogen maleate Channappa N. Kavitha,a Jerry P. Jasinski,b* Somer M. Matar,b H. S. Yathirajana and A. R. Rameshac a Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cR. L. Fine Chem., Bangalore 560 064, India Correspondence e-mail: jjasinski@keene.edu 17207 measured reflections 5260 independent reflections 4484 reflections with I > 2(I) Rint = 0.040 Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) Tmin = 0.871, Tmax = 1.000 Refinement R[F 2 > 2(F 2)] = 0.048 wR(F 2) = 0.136 S = 1.03 5260 reflections 344 parameters H-atom parameters constrained max = 0.52 e Å3 min = 0.22 e Å3 Received 16 July 2013; accepted 22 July 2013 Key indicators: single-crystal X-ray study; T = 173 K; mean (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.136; data-to-parameter ratio = 15.3. In the cation of the title salt {systematic name: 4-[bis(4fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium hydrogen maleate}, C26H27F2N2+C4H3O4, the protonated piperazine ring is in a chair conformation. The dihedral angle between the 4-fluorophenyl rings is 68.2 (2) . An intramolecular O—H  O hydrogen bond occurs in the anion. In the crystal, N—H  O, C—H  O and C—H  F interactions are observed, which link the ions into [001] chains. Related literature For backgorund to flunarizine, see: Amery (1983); Holmes et al. (1984). For related structures, see: Jasinski, Butcher et al. (2010); Jasinski, Pek et al. (2010); Kavitha et al. (2013). For standard bond lengths, see: Allen et al. (1987). Table 1 Hydrogen-bond geometry (Å,  ). D—H  A D—H H  A D  A D—H  A O1S—H1S  O4S N1—H1  O3S C1—H1B  O2Si C26—H26  O3Sii C2S—H2S  O4Siii C23—H23  F1iv 0.82 0.91 0.97 0.93 0.93 0.93 1.63 1.83 2.51 2.53 2.46 2.53 2.451 (2) 2.7190 (18) 3.354 (2) 3.278 (2) 3.386 (2) 3.342 (2) 177 165 146 138 171 145 Symmetry codes: (i) x; y þ 32; z þ 12; (ii) x; y þ 12; z þ 12; (iii) x; y þ 32; z  12; (iv) x þ 2; y þ 12; z þ 32. Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2. CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7110). References Experimental Crystal data C26H27F2N2+C4H3O4 Mr = 520.56 Monoclinic, P21 =c a = 22.1215 (5) Å o1344 Kavitha et al. b = 10.8620 (2) Å c = 11.3215 (2) Å = 98.879 (2) V = 2687.77 (9) Å3 Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Amery, W. K. (1983). Headache, 23, 70–74. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs. 27, 6–44. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366–o367. Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012–o2013. Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260–o261. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. doi:10.1107/S1600536813020291 Acta Cryst. (2013). E69, o1344 supplementary materials supplementary materials Acta Cryst. (2013). E69, o1344 [doi:10.1107/S1600536813020291] Flunarizinium hydrogen maleate Channappa N. Kavitha, Jerry P. Jasinski, Somer M. Matar, H. S. Yathirajan and A. R. Ramesha Comment Flunarizine (chemically, 1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenyl prop-2-en-1-yl]piperazine), a piperazine derivative is a non-selective calcium antagonist (Amery, 1983). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use is published (Holmes et al., 1984). In addition to the structures of trimipraminium maleate (Jasinski, Butcher et al., 2010) and 4-(4-chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate (Jasinski, Pek et al., 2010), we have recently reported the crystal structure of 4-[bis(4-fluorophenyl) methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium 3-carboxy propanoate (Kavitha et al., 2013). As part of our ongoing studies of molecular salts of bioactvive molecules, the paper reports the crystal and molecular structure of the title salt, (I). The title compound, [systematic name: 1-[bis(4-fluorophenyl)methyl]-4- [(2E)-3-phenylprop-2-en-1-yl]piperazinium maleate], a maleate salt of Flunarizine crystallizes with one independent cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the protonated piperazine ring is in a chair conformation (puckering parameters Q, θ, and φ = 0.5997 (16)Å, 179.21 (15)° and 65 (10)°, respectively). The dihedral angle between the mean planes of the 4-fluorophenyl rings is 68.2 (2)°. The extended phenyl ring is twisted by 15.8 (9)° and 59.8 (5)°, respectively, from these two rings. Bond lengths are in normal ranges (Allen et al., 1987). Strong intramolecular O—H···O and intermolecular N—H···O hydrogen bonds and weak N—H···O, C—H···O, C—H···F intermolecular interactions (Table 1) are observed which link the ions into chains along [001] (Fig. 2). Experimental Flunarizine (4.05 g, 0.01 mol) and maleic acid (1.16 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide solution and stirred over a heating magnetic stirrer for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Colourless irregular crystals of the title compound (m. p.: 428– 433 K) appeared after a few days. Refinement H1 and H1S were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å, 0.98Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (OH) times Ueq of the parent atom. Computing details Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009). Acta Cryst. (2013). E69, o1344 sup-1 supplementary materials Figure 1 View of the asymmetric unit of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate N1— H1···O3S intermolecular and O1S—H1S···O4S intramolecular hydrogen bond interactions. Figure 2 Molecular packing for (I) viewed along the b axis. Dashed lines indicate inter and intra molecular hydrogen bonds and weak C—H···O interactions linking the ions into [100] chains. Acta Cryst. (2013). E69, o1344 sup-2 supplementary materials 4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium hydrogen maleate Crystal data F(000) = 1096 Dx = 1.286 Mg m−3 Cu Kα radiation, λ = 1.5418 Å Cell parameters from 6479 reflections θ = 4.0–72.3° µ = 0.79 mm−1 T = 173 K Irregular, colourless 0.42 × 0.38 × 0.26 mm C26H27F2N2+·C4H3O4− Mr = 520.56 Monoclinic, P21/c a = 22.1215 (5) Å b = 10.8620 (2) Å c = 11.3215 (2) Å β = 98.879 (2)° V = 2687.77 (9) Å3 Z=4 Data collection Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) Tmin = 0.871, Tmax = 1.000 17207 measured reflections 5260 independent reflections 4484 reflections with I > 2σ(I) Rint = 0.040 θmax = 72.5°, θmin = 4.1° h = −24→27 k = −12→13 l = −13→8 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.136 S = 1.03 5260 reflections 344 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0702P)2 + 0.7817P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.52 e Å−3 Δρmin = −0.22 e Å−3 Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0021 (2) Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) F1 F2 N1 H1 N2 C1 H1A H1B x y z Uiso*/Ueq 0.87928 (7) 0.98166 (6) 0.68788 (6) 0.7039 0.79790 (5) 0.72463 (8) 0.7093 0.7211 −0.24891 (14) 0.06251 (14) 0.32014 (12) 0.3791 0.17520 (11) 0.31929 (15) 0.2563 0.3983 0.47740 (13) 1.26090 (10) 0.73573 (11) 0.6926 0.79037 (10) 0.85715 (13) 0.9055 0.8954 0.0848 (5) 0.0727 (4) 0.0319 (3) 0.038* 0.0280 (3) 0.0363 (4) 0.044* 0.044* Acta Cryst. (2013). E69, o1344 sup-3 supplementary materials C2 H2A H2B C3 H3A H3B C4 H4A H4B C5 H5A H5B C6 H6 C7 H7 C8 C9 H9 C10 H10 C11 H11 C12 H12 C13 H13 C14 H14 C15 C16 H16 C17 H17 C18 C19 H19 C20 H20 C21 C22 H22 C23 H23 C24 C25 H25 C26 H26 0.79108 (7) 0.8066 0.8150 0.76221 (7) 0.7669 0.7773 0.69533 (7) 0.6720 0.6799 0.62138 (8) 0.5996 0.6185 0.59335 (8) 0.6034 0.55601 (8) 0.5435 0.53185 (8) 0.47868 (9) 0.4588 0.45461 (9) 0.4186 0.48338 (10) 0.4669 0.53710 (10) 0.5573 0.56108 (9) 0.5971 0.86369 (7) 0.8825 0.87072 (6) 0.84983 (8) 0.8335 0.85290 (9) 0.8386 0.87752 (9) 0.90001 (9) 0.9173 0.89645 (7) 0.9115 0.89532 (7) 0.95568 (7) 0.9765 0.98534 (8) 1.0258 0.95369 (9) 0.89418 (8) 0.8738 0.86487 (7) 0.8244 Acta Cryst. (2013). E69, o1344 0.29391 (14) 0.3588 0.2938 0.17749 (14) 0.0997 0.2425 0.19923 (14) 0.1992 0.1336 0.35276 (17) 0.2815 0.4179 0.39422 (18) 0.4726 0.32949 (17) 0.2535 0.36771 (17) 0.31385 (18) 0.2557 0.3450 (2) 0.3083 0.4293 (2) 0.4505 0.48277 (19) 0.5392 0.45259 (18) 0.4896 0.14809 (13) 0.2201 0.03898 (14) −0.07710 (15) −0.0896 −0.17466 (17) −0.2523 −0.15360 (19) −0.0420 (2) −0.0313 0.05539 (16) 0.1323 0.12623 (13) 0.16234 (15) 0.2017 0.14033 (19) 0.1644 0.08262 (18) 0.04536 (16) 0.0058 0.06801 (15) 0.0439 0.84796 (13) 0.8021 0.9274 0.67002 (12) 0.6303 0.6236 0.67663 (13) 0.5967 0.7218 0.73677 (15) 0.7601 0.7942 0.61479 (16) 0.5911 0.53891 (18) 0.5645 0.41482 (16) 0.35792 (19) 0.3984 0.2417 (2) 0.2051 0.18018 (18) 0.1023 0.23452 (19) 0.1927 0.35134 (18) 0.3876 0.79043 (13) 0.7587 0.70972 (13) 0.73468 (15) 0.8046 0.65714 (18) 0.6738 0.55528 (18) 0.52802 (16) 0.4589 0.60644 (14) 0.5895 0.91779 (13) 0.95284 (15) 0.8983 1.06856 (17) 1.0919 1.14703 (15) 1.11636 (15) 1.1716 1.00075 (13) 0.9786 0.0332 (3) 0.040* 0.040* 0.0306 (3) 0.037* 0.037* 0.0330 (3) 0.040* 0.040* 0.0411 (4) 0.049* 0.049* 0.0445 (4) 0.053* 0.0470 (4) 0.056* 0.0433 (4) 0.0496 (4) 0.059* 0.0579 (5) 0.069* 0.0564 (5) 0.068* 0.0565 (5) 0.068* 0.0501 (4) 0.060* 0.0287 (3) 0.034* 0.0292 (3) 0.0378 (4) 0.045* 0.0486 (4) 0.058* 0.0528 (5) 0.0502 (5) 0.060* 0.0377 (4) 0.045* 0.0298 (3) 0.0384 (4) 0.046* 0.0490 (5) 0.059* 0.0468 (4) 0.0419 (4) 0.050* 0.0345 (3) 0.041* sup-4 supplementary materials O1S H1S O2S O3S O4S C1S C2S H2S C3S H3S C4S 0.67312 (8) 0.6848 0.65899 (8) 0.72834 (6) 0.70541 (8) 0.67577 (8) 0.70000 (8) 0.7043 0.71654 (8) 0.7298 0.71709 (8) 0.83923 (13) 0.7679 0.97228 (12) 0.47153 (13) 0.62367 (13) 0.87144 (16) 0.78300 (16) 0.8161 0.66586 (16) 0.6303 0.58175 (17) 0.66302 (12) 0.6735 0.51543 (12) 0.57335 (13) 0.68757 (11) 0.55309 (15) 0.47107 (14) 0.3971 0.48435 (15) 0.4182 0.58972 (16) 0.0604 (4) 0.091* 0.0589 (4) 0.0561 (4) 0.0600 (4) 0.0411 (4) 0.0400 (4) 0.048* 0.0406 (4) 0.049* 0.0410 (4) Atomic displacement parameters (Å2) F1 F2 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 O1S O2S O3S O4S C1S U11 U22 U33 U12 U13 U23 0.0965 (11) 0.0663 (8) 0.0355 (7) 0.0315 (6) 0.0445 (9) 0.0402 (8) 0.0352 (8) 0.0351 (8) 0.0374 (9) 0.0380 (9) 0.0431 (10) 0.0402 (9) 0.0452 (10) 0.0440 (10) 0.0629 (13) 0.0714 (14) 0.0463 (10) 0.0313 (7) 0.0284 (7) 0.0425 (9) 0.0504 (10) 0.0516 (11) 0.0497 (10) 0.0370 (8) 0.0318 (7) 0.0319 (8) 0.0321 (8) 0.0474 (10) 0.0505 (10) 0.0358 (8) 0.0998 (12) 0.0891 (11) 0.0599 (8) 0.0962 (12) 0.0502 (10) 0.0745 (9) 0.1044 (11) 0.0320 (7) 0.0274 (6) 0.0383 (8) 0.0310 (8) 0.0316 (7) 0.0330 (8) 0.0461 (9) 0.0456 (10) 0.0419 (10) 0.0437 (9) 0.0438 (10) 0.0640 (13) 0.0612 (13) 0.0420 (10) 0.0471 (10) 0.0256 (7) 0.0304 (7) 0.0316 (8) 0.0337 (9) 0.0530 (11) 0.0682 (13) 0.0439 (9) 0.0256 (7) 0.0391 (9) 0.0586 (11) 0.0564 (11) 0.0432 (9) 0.0350 (8) 0.0472 (8) 0.0335 (7) 0.0490 (8) 0.0536 (8) 0.0368 (9) 0.0831 (10) 0.0390 (6) 0.0284 (6) 0.0241 (6) 0.0256 (7) 0.0271 (7) 0.0241 (7) 0.0297 (8) 0.0414 (9) 0.0499 (10) 0.0575 (11) 0.0462 (10) 0.0606 (12) 0.0622 (12) 0.0429 (10) 0.0583 (12) 0.0557 (11) 0.0296 (7) 0.0276 (7) 0.0394 (8) 0.0591 (11) 0.0509 (11) 0.0337 (9) 0.0324 (8) 0.0311 (7) 0.0434 (9) 0.0520 (10) 0.0319 (8) 0.0310 (8) 0.0313 (8) 0.0383 (7) 0.0551 (8) 0.0651 (9) 0.0317 (6) 0.0362 (8) 0.0137 (8) 0.0294 (7) 0.0097 (5) 0.0060 (5) 0.0111 (7) 0.0067 (6) 0.0072 (6) 0.0076 (6) 0.0136 (7) 0.0139 (7) 0.0018 (7) 0.0112 (7) 0.0033 (8) 0.0092 (9) 0.0279 (10) 0.0101 (9) −0.0010 (8) 0.0016 (5) 0.0068 (6) 0.0040 (7) 0.0052 (7) 0.0156 (9) 0.0147 (9) 0.0065 (7) 0.0045 (6) 0.0023 (6) 0.0084 (8) 0.0223 (8) 0.0126 (7) 0.0020 (6) −0.0015 (7) −0.0014 (7) 0.0202 (6) 0.0022 (8) −0.0123 (7) 0.0126 (8) −0.0186 (5) 0.0059 (5) 0.0014 (5) 0.0034 (6) 0.0008 (6) 0.0020 (6) 0.0010 (6) 0.0108 (7) 0.0062 (8) 0.0128 (8) 0.0071 (7) 0.0110 (9) −0.0027 (9) 0.0016 (9) 0.0170 (10) 0.0040 (8) 0.0058 (6) 0.0003 (5) 0.0070 (7) 0.0007 (9) −0.0015 (8) 0.0092 (7) 0.0054 (6) 0.0018 (6) 0.0040 (7) −0.0072 (8) −0.0090 (7) 0.0034 (7) 0.0003 (6) 0.0241 (7) 0.0143 (7) 0.0275 (7) 0.0142 (7) 0.0061 (7) −0.0504 (8) −0.0032 (6) 0.0009 (5) −0.0013 (5) −0.0052 (6) −0.0050 (6) −0.0041 (5) −0.0045 (6) −0.0006 (7) −0.0011 (8) 0.0039 (8) −0.0011 (7) −0.0039 (8) −0.0222 (10) −0.0051 (9) 0.0076 (9) −0.0049 (8) 0.0018 (5) 0.0003 (6) −0.0025 (6) −0.0101 (8) −0.0254 (9) −0.0096 (8) 0.0021 (7) −0.0035 (6) −0.0071 (7) −0.0149 (9) −0.0075 (7) 0.0023 (7) 0.0007 (6) −0.0015 (6) 0.0013 (6) 0.0206 (6) 0.0111 (6) −0.0007 (7) Acta Cryst. (2013). E69, o1344 sup-5 supplementary materials C2S C3S C4S 0.0497 (10) 0.0455 (9) 0.0361 (8) 0.0432 (9) 0.0461 (10) 0.0469 (10) 0.0278 (8) 0.0323 (8) 0.0411 (9) −0.0045 (7) 0.0034 (7) 0.0041 (7) 0.0084 (7) 0.0122 (7) 0.0092 (7) 0.0065 (7) 0.0056 (7) 0.0126 (7) Geometric parameters (Å, º) F1—C18 F2—C24 N1—H1 N1—C1 N1—C4 N1—C5 N2—C2 N2—C3 N2—C14 C1—H1A C1—H1B C1—C2 C2—H2A C2—H2B C3—H3A C3—H3B C3—C4 C4—H4A C4—H4B C5—H5A C5—H5B C5—C6 C6—H6 C6—C7 C7—H7 C7—C8 C8—C9 C8—C13 C9—H9 C9—C10 C10—H10 C10—C11 C11—H11 C11—C12 C12—H12 1.364 (2) 1.3589 (19) 0.9101 1.4851 (19) 1.4945 (18) 1.5150 (19) 1.4632 (18) 1.4657 (17) 1.4848 (18) 0.9700 0.9700 1.515 (2) 0.9700 0.9700 0.9700 0.9700 1.512 (2) 0.9700 0.9700 0.9700 0.9700 1.493 (2) 0.9300 1.302 (3) 0.9300 1.483 (3) 1.381 (3) 1.389 (3) 0.9300 1.383 (3) 0.9300 1.366 (3) 0.9300 1.379 (3) 0.9300 C12—C13 C13—H13 C14—H14 C14—C15 C14—C21 C15—C16 C15—C20 C16—H16 C16—C17 C17—H17 C17—C18 C18—C19 C19—H19 C19—C20 C20—H20 C21—C22 C21—C26 C22—H22 C22—C23 C23—H23 C23—C24 C24—C25 C25—H25 C25—C26 C26—H26 O1S—H1S O1S—C1S O2S—C1S O3S—C4S O4S—C4S C1S—C2S C2S—H2S C2S—C3S C3S—H3S C3S—C4S 1.386 (3) 0.9300 0.9800 1.519 (2) 1.521 (2) 1.387 (2) 1.389 (2) 0.9300 1.384 (2) 0.9300 1.368 (3) 1.364 (3) 0.9300 1.391 (2) 0.9300 1.390 (2) 1.390 (2) 0.9300 1.392 (2) 0.9300 1.365 (3) 1.370 (3) 0.9300 1.390 (2) 0.9300 0.8199 1.303 (2) 1.213 (2) 1.243 (2) 1.261 (2) 1.492 (2) 0.9300 1.326 (2) 0.9300 1.501 (2) C1—N1—H1 C1—N1—C4 C1—N1—C5 C4—N1—H1 C4—N1—C5 C5—N1—H1 C2—N2—C3 C2—N2—C14 107.4 109.06 (11) 112.81 (12) 107.4 112.53 (13) 107.4 108.75 (11) 110.06 (12) C13—C12—H12 C8—C13—H13 C12—C13—C8 C12—C13—H13 N2—C14—H14 N2—C14—C15 N2—C14—C21 C15—C14—H14 119.9 119.6 120.71 (19) 119.6 108.3 110.23 (12) 109.81 (11) 108.3 Acta Cryst. (2013). E69, o1344 sup-6 supplementary materials C3—N2—C14 N1—C1—H1A N1—C1—H1B N1—C1—C2 H1A—C1—H1B C2—C1—H1A C2—C1—H1B N2—C2—C1 N2—C2—H2A N2—C2—H2B C1—C2—H2A C1—C2—H2B H2A—C2—H2B N2—C3—H3A N2—C3—H3B N2—C3—C4 H3A—C3—H3B C4—C3—H3A C4—C3—H3B N1—C4—C3 N1—C4—H4A N1—C4—H4B C3—C4—H4A C3—C4—H4B H4A—C4—H4B N1—C5—H5A N1—C5—H5B H5A—C5—H5B C6—C5—N1 C6—C5—H5A C6—C5—H5B C5—C6—H6 C7—C6—C5 C7—C6—H6 C6—C7—H7 C6—C7—C8 C8—C7—H7 C9—C8—C7 C9—C8—C13 C13—C8—C7 C8—C9—H9 C8—C9—C10 C10—C9—H9 C9—C10—H10 C11—C10—C9 C11—C10—H10 C10—C11—H11 C10—C11—C12 C12—C11—H11 Acta Cryst. (2013). E69, o1344 113.02 (11) 109.7 109.7 109.63 (12) 108.2 109.7 109.7 111.03 (13) 109.4 109.4 109.4 109.4 108.0 109.6 109.6 110.34 (11) 108.1 109.6 109.6 109.62 (12) 109.7 109.7 109.7 109.7 108.2 109.8 109.8 108.3 109.17 (13) 109.8 109.8 117.4 125.30 (19) 117.4 117.5 124.96 (18) 117.5 118.67 (18) 118.10 (18) 123.21 (17) 119.5 121.01 (19) 119.5 119.7 120.5 (2) 119.7 120.3 119.48 (19) 120.3 C15—C14—C21 C21—C14—H14 C16—C15—C14 C16—C15—C20 C20—C15—C14 C15—C16—H16 C17—C16—C15 C17—C16—H16 C16—C17—H17 C18—C17—C16 C18—C17—H17 F1—C18—C17 C19—C18—F1 C19—C18—C17 C18—C19—H19 C18—C19—C20 C20—C19—H19 C15—C20—C19 C15—C20—H20 C19—C20—H20 C22—C21—C14 C26—C21—C14 C26—C21—C22 C21—C22—H22 C21—C22—C23 C23—C22—H22 C22—C23—H23 C24—C23—C22 C24—C23—H23 F2—C24—C23 F2—C24—C25 C23—C24—C25 C24—C25—H25 C24—C25—C26 C26—C25—H25 C21—C26—C25 C21—C26—H26 C25—C26—H26 C1S—O1S—H1S O1S—C1S—C2S O2S—C1S—O1S O2S—C1S—C2S C1S—C2S—H2S C3S—C2S—C1S C3S—C2S—H2S C2S—C3S—H3S C2S—C3S—C4S C4S—C3S—H3S O3S—C4S—O4S 111.94 (11) 108.3 121.22 (13) 118.75 (14) 119.98 (14) 119.5 121.07 (16) 119.5 120.9 118.12 (18) 120.9 118.2 (2) 118.71 (19) 123.09 (16) 120.9 118.22 (17) 120.9 120.71 (17) 119.6 119.6 120.52 (14) 120.78 (13) 118.69 (14) 119.6 120.84 (16) 119.6 120.8 118.47 (16) 120.8 119.13 (17) 118.18 (18) 122.68 (16) 120.8 118.47 (17) 120.8 120.85 (15) 119.6 119.6 109.4 119.68 (16) 121.46 (17) 118.86 (16) 114.1 131.80 (15) 114.1 115.0 129.96 (16) 115.0 123.50 (16) sup-7 supplementary materials C11—C12—H12 C11—C12—C13 119.9 120.2 (2) O3S—C4S—C3S O4S—C4S—C3S 116.43 (16) 120.06 (16) F1—C18—C19—C20 F2—C24—C25—C26 N1—C1—C2—N2 N1—C5—C6—C7 N2—C3—C4—N1 N2—C14—C15—C16 N2—C14—C15—C20 N2—C14—C21—C22 N2—C14—C21—C26 C1—N1—C4—C3 C1—N1—C5—C6 C2—N2—C3—C4 C2—N2—C14—C15 C2—N2—C14—C21 C3—N2—C2—C1 C3—N2—C14—C15 C3—N2—C14—C21 C4—N1—C1—C2 C4—N1—C5—C6 C5—N1—C1—C2 C5—N1—C4—C3 C5—C6—C7—C8 C6—C7—C8—C9 C6—C7—C8—C13 C7—C8—C9—C10 C7—C8—C13—C12 C8—C9—C10—C11 C9—C8—C13—C12 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C8 178.26 (17) 178.65 (15) −59.35 (16) 104.8 (2) 60.33 (16) −63.63 (17) 113.99 (15) −145.85 (14) 35.24 (18) −58.52 (16) 160.42 (14) −60.26 (16) −168.65 (11) 67.58 (14) 59.86 (15) −46.84 (15) −170.62 (12) 57.71 (16) −75.65 (17) −176.47 (13) 175.51 (12) −175.39 (15) −158.61 (19) 23.4 (3) −179.18 (17) 178.51 (17) 0.6 (3) 0.5 (3) 0.5 (3) −1.1 (3) 0.6 (3) C13—C8—C9—C10 C14—N2—C2—C1 C14—N2—C3—C4 C14—C15—C16—C17 C14—C15—C20—C19 C14—C21—C22—C23 C14—C21—C26—C25 C15—C14—C21—C22 C15—C14—C21—C26 C15—C16—C17—C18 C16—C15—C20—C19 C16—C17—C18—F1 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C15 C20—C15—C16—C17 C21—C14—C15—C16 C21—C14—C15—C20 C21—C22—C23—C24 C22—C21—C26—C25 C22—C23—C24—F2 C22—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C21 C26—C21—C22—C23 O1S—C1S—C2S—C3S O2S—C1S—C2S—C3S C1S—C2S—C3S—C4S C2S—C3S—C4S—O3S C2S—C3S—C4S—O4S −1.1 (3) −175.83 (12) 177.21 (12) 175.99 (15) −176.28 (15) −178.65 (14) 178.47 (14) 91.37 (16) −87.53 (17) 0.4 (3) 1.4 (2) −178.50 (17) 1.2 (3) −1.4 (3) 0.1 (3) −1.7 (2) 58.90 (18) −123.48 (15) −0.1 (3) −0.5 (2) −178.81 (15) 0.2 (3) −0.4 (3) 0.5 (2) 0.3 (2) 6.3 (3) −173.7 (2) −0.9 (3) 172.11 (19) −6.6 (3) Hydrogen-bond geometry (Å, º) D—H···A D—H H···A D···A D—H···A O1S—H1S···O4S N1—H1···O3S C1—H1B···O2Si C26—H26···O3Sii C2S—H2S···O4Siii C23—H23···F1iv 0.82 0.91 0.97 0.93 0.93 0.93 1.63 1.83 2.51 2.53 2.46 2.53 2.451 (2) 2.7190 (18) 3.354 (2) 3.278 (2) 3.386 (2) 3.342 (2) 177 165 146 138 171 145 Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2. Acta Cryst. (2013). E69, o1344 sup-8