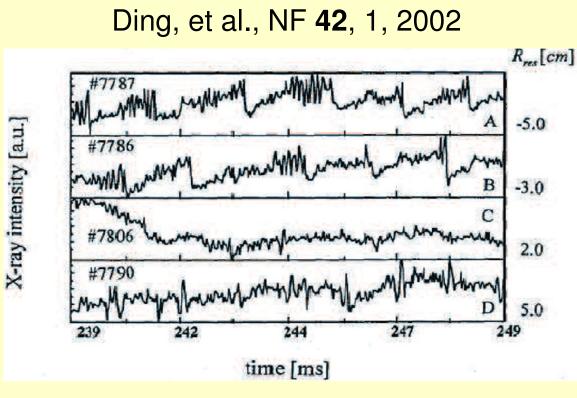
Electron Fishbones: theory and experimental evidence

F. Zonca 1), P. Buratti 1), A. Cardinali 1), L. Chen 2), J.-Q. Dong 3), Y.-X. Long 3), A. Milovanov 1)-5)-6), F. Romanelli 1), P. Smeulders 1), L. Wang 4) and Z.-T. Wang 3)

- 1) Associazione Euratom-ENEA sulla Fusione, C.P. 65 I-00044 Frascati, Rome, Italy
- 2) Dept. of Physics and Astronomy, Univ. of California, Irvine CA 92697-4575, U.S.A.
- 3) Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, P.R.C.
- 4) Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P.R.C.
- 5) Department of Physics and Technology, University of Tromsø, N-9037 Tromsø, Norway
- 6) Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Acknowledgments: J.P. Graves, R.J. Hastie and X. Garbet

- Experimental observations of electron fishbones: some historic background
- Experimental measurements on FTU and HL-1M: possibility of exciting electron fishbones in extremely different conditions
- Analytic theory of electron fishbones
 - Classic fishbone theory: drive mechanism
 - Kinetic layer equations: importance of ion compressibility
 - Optimal conditions for high-frequency e-fishbones
- Relevance for burning plasmas: nonlinear evolution equations for the fishbone cycle
- Discussions and Conclusions

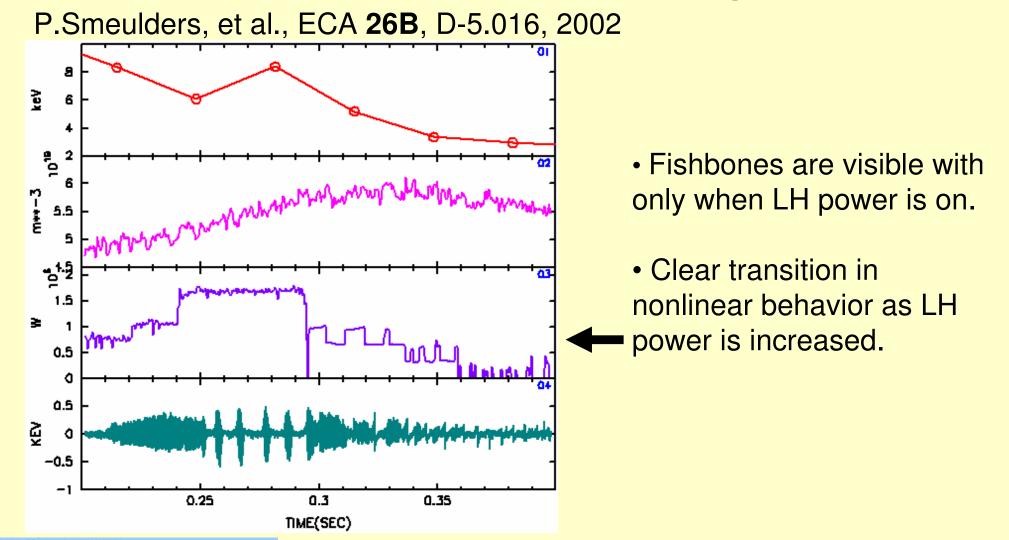


Experimental Observations I: historic background

- Fishbone like internal kink instabilities have been observed on DIII-D in conjunction with ECRH on the high field side. (Wong et al, PRL 85, 996, 2000). Excitation by barely trapped suprathermal electrons, characterized by drift-reversal and destabilizing a mode propagating in the ion diamagnetic direction for inverted tail spatial gradient.
- Similar but higher frequency modes were observed in Compass-D (Valovic et al, NF 40, 1569, 2000). There ω ≤ ω_{TAE} and the mode characterized by chirping frequency was observed with ECRH and LH.
- Observations of electron fishbones with ECRH only HL-1M; (J. Li et al., IAEA 2002; Ding, et al., NF 42, 1, 2002) and LH only FTU; (F. Romanelli et al., IAEA 2002; P.Smeulders, et al., ECA 26B, D-5.016, 2002)
- Recent observations of electron fishbone activity on Tore Supra with inverted q profiles $q_{min} \gtrsim 2$ (P. Maget, et al., NF **46**, 797, 2006).

Experimental Observations II: HL-1M with ECRH only

Courtesy of SWIP


•Excitation of the (1,1) mode was observed only when the ECR location is on the high field side near the q = 1surface.

•This feature is similar to the previous result from the DIII-D tokamak.

C.R. Frascati

Experimental Observations III: FTU with LH only

Analytic theory of electron fishbones I

Generalized fishbone-like dispersion relation (L. Chen, et al., PRL **52**, 1122, 1984) $i\Lambda |s| = \delta \hat{W} = \delta \hat{W}_f + \delta \hat{W}_k$

 $\delta \hat{W}_f = 3\pi \Delta q_0 \left(\frac{13}{144} - \beta_{ps}^2 \right) \left(\frac{r_s^2}{R_0^2} \right)$

Ideal MHD response (M.N. Bussac, et al., PRL **35**, 1638, 1975)

$$\delta \hat{W}_k = 4 \frac{\pi^2}{B_0^2} m \omega_c^2 \frac{R_0}{r_s^2} \int_0^{r_s} \frac{r^3}{q} dr \int \mathcal{E} d\mathcal{E} d\lambda \sum_{v_{\parallel}/|v_{\parallel}=\pm 1} \tau_b \bar{\omega}_d^2 \frac{QF_0}{\bar{\omega}_d - \omega}$$

Fast electron kinetic response (L. Chen, et al., PRL **52**, 1122, 1984)

Analytic theory of electron fishbones II

Generalized fishbone-like dispersion relation (L. Chen, et al., PRL 52, 1122, 1984) $i\Lambda|s| = \delta\hat{W} = \delta\hat{W}_f + \delta\hat{W}_k$ Banana regime $|\omega| \ll \omega_{bi} \ll \omega_{ti}$ $\Lambda^2 = \left(\omega^2 / \omega_A^2\right) \left(1 - \omega_{*pi} / \omega\right) \left[1 + \left(1.6(R_0 / r)^{1/2} + 0.5\right) q^2\right]$ High frequency regime $|\omega| \gg \omega_{ti}$ Inertial layer response (J.P. Graves, et al., PPCF 42, 1049, 2000) is asymmetric $\Lambda^2 = \frac{\omega^2}{\omega_A^2} - \frac{\omega_{BAE}^2}{\omega_A^2} \left[1 + \frac{\omega_{BAE}^2}{q^2 \omega^2} \frac{(46/49) + (32/49)(T_e/T_i) + (8/49)(T_e/T_i)^2}{(1 + (4/7)(T_e/T_i))^2} \right]$ Inertial layer response (F. Zonca, et al., PPCF 38, 2011, 1996) is symmetric $\omega_{BAE} = q \omega_{ti} (7/4 + T_e/T_i)^{1/2}$ IAEA FEC 2006 F. Zonca et al. C.R. Frascati

Analytic theory of electron fishbones III: ECRH

- Asymmetry of Alfvén continuum favors the excitation of modes propagating in the ion diamagnetic direction.
- High field side ECRH fulfills this requirement and guarantees both driftreversal of the barely trapped supra-thermal electrons as well as the inverted spatial gradient of the supra-thermal tail (K.L. Wong, et al., PRL **85**, 996, 2000).
- Consistent with experimental observations (DIII-D, HL-1M).

Analytic theory of electron fishbones IV: LH

- Asymmetry of Alfvén continuum favors the excitation of modes propagating in the ion diamagnetic direction.
- Trapped and barely circulating supra-thermal electrons produced by LH give less selective mode drive than ECRH.
- Well circulating supra-thermal electrons modify the current profile, eventually reversing the magnetic shear and broadening the fraction of trapped particles characterized by drift reversal.

$$\bar{\omega}_d = \frac{\mathcal{E}}{\omega_c R_0} \frac{q}{r} \left[\frac{2\mathbb{E}(1/\kappa)}{\mathbb{K}(1/\kappa)} - 1 + 4s \left(\frac{\mathbb{E}(1/\kappa)}{\mathbb{K}(1/\kappa)} + \frac{1}{\kappa^2} - 1 \right) - \frac{\alpha}{2q^2} - \frac{4\alpha}{3} \left(1 - 1/\kappa^2 + (2/\kappa^2 - 1) \frac{\mathbb{E}(1/\kappa)}{\mathbb{K}(1/\kappa)} \right) \right]$$

 With s=0 but S=(r/q)√q">0, fishbone dispersion relation is modified (R.J. Hastie, et al., PF 30, 1756, 1987). Δq=q-1

$$-S\left(\Delta q^2 - \Lambda^2\right)^{3/4} \left[1 + \Delta q/\sqrt{\Delta q^2 - \Lambda^2}\right]^{1/2} = \delta \hat{W}_f + \delta \hat{W}_k$$

Critical threshold for electron fishbones on FTU with LH

Real frequency

 $\delta \hat{W}_f + \mathbb{R}e \delta \hat{W}_k = (S/\sqrt{2})\Lambda^{3/2} \simeq 0$

Growth rate
$$r = \Gamma \left[\int_{0}^{r_{s}} (r/r_{s}) \left(\partial \beta_{h,res} / \partial r \right) dr - \beta_{h,c} \right]$$

 $\Gamma = -(R_0/r_s)(\partial \mathbb{R}e\delta \hat{W}_k/\partial \omega)^{-1} \quad \mathbb{I}m\delta \hat{W}_k \equiv (R_0/r_s^2) \int_0^{r_s} r dr \partial_r \beta_{h,res}$

Critical threshold for electron fishbones on FTU with LH only

 $\beta_{h,c} = (r_s/R_0)(S/2^{1/2})\Lambda^{3/2} \simeq 1.43(r_s/R_0)^{1/4}S(\omega/\omega_A)^{3/2}(1-\omega_{*pi}/\omega)^{3/4}$

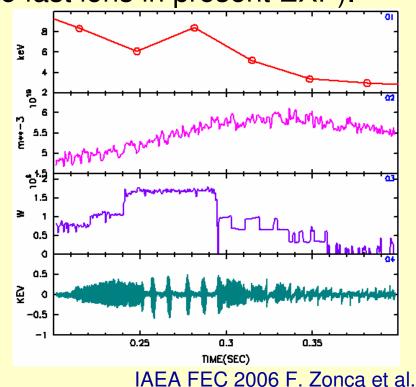
- Typical values: $\beta_{h,c}/\bar{S} \approx 3 \times 10^{-4}$
- Consistent with FTU observations: $\beta_{h,res} \gtrsim 0.7 \times 10^{-4}$ for 1MW and $\beta_{h,res} \gtrsim 1.2 \times 10^{-4}$ for 1.7MW, with S=0.1÷0.2.

Optimal condition for high frequency (electron) fishbones

 Symmetry of Alfvén continuum favors the excitation of modes propagating in both ion and electron diamagnetic direction.

$$\Lambda^{2} = \frac{\omega^{2}}{\omega_{A}^{2}} - \frac{\omega_{BAE}^{2}}{\omega_{A}^{2}} \left[1 + \frac{\omega_{BAE}^{2}}{q^{2}\omega^{2}} \frac{(46/49) + (32/49)(T_{e}/T_{i}) + (8/49)(T_{e}/T_{i})^{2}}{(1 + (4/7)(T_{e}/T_{i}))^{2}} \right]$$

$$|\omega| \gg \omega_{ti}$$


- Formation of the Beta induced Alfvén Eigenmode gap (W.W. Heidbrink, et al., PRL **71**, 855, 1993) at frequencies degenerate with Geodesic Acoustic Modes (GAM).
- Effective mode excitation would require high power ECRH (ICRH) on axis and $T_h \gtrsim 200 keV$ on FTU (typical $T_h \simeq 30 keV$)
- For consistency requirements $T_e \gg T_i$ and/or $q \gtrsim 2$
- Theory predicts possible observation of fishbone-like MHD modes near (below) the GAM frequency.

Relevance for burning plasmas

- The bounce averaged dynamics of both trapped as well as barely circulating electrons depends on energy (not mass).
- Their effect on low frequency MHD modes can be used to simulate/analyze the analogous effect of charged fusion products in the small dimensionless orbit limit (unlike fast ions in present EXP).
- The combined use of ECRH and LH provide extremely flexible tools to investigate various nonlinear behaviors, of which FTU experimental results provide a clear example.
- Possibility of validating models for Integrated Modeling of fishbone NL dynamics and induced transports.

Nonlinear evolution equations for the fishbone cycle (i)

• Nonlinear suprathermal response due to wave-particle resonances is computed from nonlinear GKE $\delta \xi_0 = \delta \xi_{r0}/r_s$

$$\frac{\partial}{\partial t}\delta H_{NL} = -\frac{2}{r}\omega_c\omega^2 \frac{\partial}{\partial r} \left[\left(1 - \frac{(q-1)\bar{v}_{\parallel}}{\omega qR_0} \right) \operatorname{IIm} \left(\frac{\bar{\omega}_d}{\bar{\omega}_d - \omega} \right) \left(\frac{QF_0}{\omega} \right) r^2 r_s^2 \left| \delta\xi_0 \right|^2 \right]$$

• Fast electron density relaxes according to diffusion processes due to fisbone fluctuations.

$$\frac{\partial}{\partial t}n_h = \dot{N}_h - \frac{2}{r}\omega_c\omega^2 \frac{\partial}{\partial r} \left[r^2 r_s^2 \left| \delta\xi_0 \right|^2 f_{eff,h} \left(\frac{Q_{res}n_h}{\omega} \right) \right]$$

Same spirit of B.N. Breizman, et al., POP 5, 2326, 1998 and J. Candy, et al., POP 6, 1822, 1999. Here, nonlinear equations are derived in explicit form.

Nonlinear evolution equations for the fishbone cycle (ii)

Mode frequency chirps downward according to

$$\delta \hat{W}_f + \mathbb{R}e \delta \hat{W}_k + \mathbb{R}e \delta \hat{W}_{k,NL} = (S/\sqrt{2})\Lambda^{3/2} \simeq 0$$

$$\frac{\partial}{\partial t} \delta \operatorname{I\!Re} \hat{W}_{k,NL} \simeq -2 \frac{\pi^2}{B_0^2} m \omega_c^3 \frac{R_0}{r_s^2} \int_0^{r_s} \frac{r^2}{q} dr \int d\mathcal{E} d\lambda \sum_{v_{\parallel}/|v_{\parallel}=\pm 1} \bar{\omega}_d^2 \operatorname{I\!Im} \left(\frac{Q}{\bar{\omega}_d - \omega} \right) \frac{1}{\mathcal{E}} \frac{\partial}{\partial \mathcal{E}} \left\{ \tau_b \bar{\omega}_d \mathcal{E}^3 \frac{\partial}{\partial r} \left[r^2 r_s^2 Q F_0 \left(1 - \frac{(q-1)\bar{v}_{\parallel}}{\omega q R_0} \right) |\delta\xi_0|^2 \right] \right\}$$

- Characteristic time scale for frequency chirping $\propto |\delta\xi_0|^{-2}$
- Nonlinear evolution equations for fishbone amplitude and resonant particles $(d/dt) |\delta t|^2 = 2\Gamma \left[\int_{-\infty}^{r_s} (n/n) (\partial t) (\partial t$

$$(d/dt) \left|\delta\xi_{0}\right|^{2} = 2\Gamma \left[\int_{0}^{\infty} (r/r_{s}) \left(\partial\beta_{h,res}/\partial r\right) dr - \beta_{h,c}\right] \left|\delta\xi_{0}\right|^{2}$$

$$\frac{\partial}{\partial t} \left[|\delta\xi_0|^2 \left(\frac{\partial}{\partial t} - \nu_{ext} \right) \frac{\partial}{\partial r} \beta_{h,res} \right] = 2C\omega^2 \frac{r_s^2}{r^2} |\delta\xi_0|^4 \frac{\partial^2}{\partial r^2} \left(r^2 \frac{\partial}{\partial r} \beta_{h,res} \right)$$

• Fishbone amplitude and resonant electron transport time scale $\approx |\delta\xi_0|^{-1}$ [AEA FEC 2006 F. Zonca et al.

Discussions and Conclusions

- Fishbone like mode excitations by suprathermal electrons is possible in extremely different conditions: ECRH, LH, combinations.
- Analytic theory is succesful in explaining these behaviors: theory also predicts optimal conditions for (electron/ion) fishbones at frequencies comparable with GAM/BAE.
- Relevance of these studies for burning plasmas stability and transport of both fast electrons and fusion products.
- ECRH+LH (as in FTU) provide very flexible tools for these studies and a testbed for verifying prediction of nonlinear theories.
- Presented a simple (yet relevant) nonlinear first-principle based model for the fishbone cycle and fast particle transport.
- NEXT: integrated modeling of the fishbone cycle and induced transport

