

Ultra-Precision 1:8 CML and LVPECL Fanout Buffer w/ Internal Termination

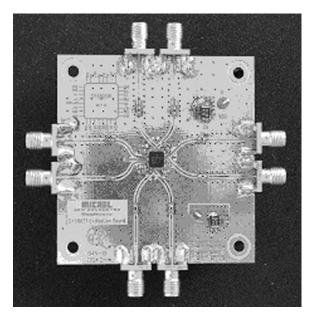
SY58031/2/3U Evaluation Board

General Description

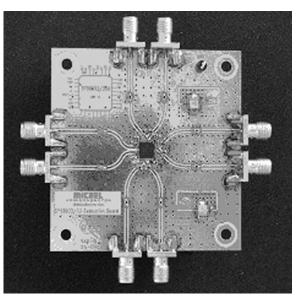
The SY58031U, SY58032U and SY58033U evaluation boards are designed for convenient setup and quick evaluation of the respective devices. The boards are optimized to interface directly to 50Ω oscilloscope.

For best AC performance, the boards are configured with AC-coupled inputs and DC-coupled outputs. For applications that require AC-coupled outputs configuration, step-by-step instructions for modifying the board are included.

All data sheets and support documentation can be found on Micrel's web site at: <u>www.micrel.com</u>.


Features

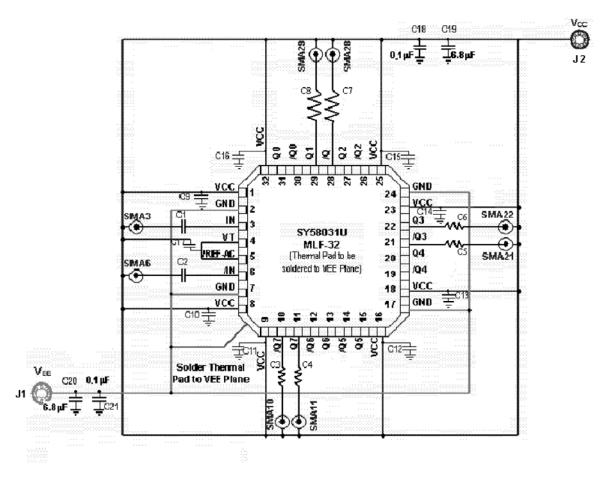
- SY58031U, SY58032U, SY58033U
- +2.5V or +3.3V power supply
- AC-coupled input and DC-coupled output configuration for performance
- Fully assembled and tested
- Outputs can be reconfigured for AC-coupled output operation


Related Documentation

- SY58031U, 3.3V/5V Ultra-Precision 1:8 CML Fanout Buffer w/Internal Termination Data sheet
- SY58032U, 3.3V/5V Ultra-Precision 1:8 LVPECL Fanout Buffer w/Internal Termination Data sheet
- SY58033U, 3.3V/5V Ultra-Precision 1:8 400mV LVPECL Fanout Buffer w/Internal Termination Data sheets

Evaluation Board

SY58031

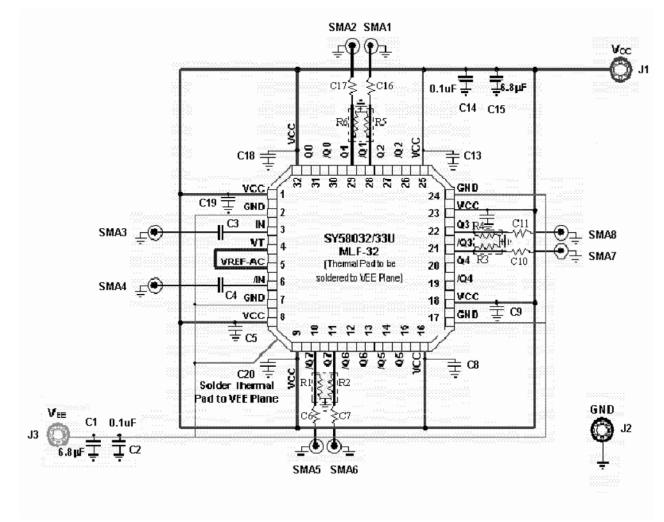

SY58032/3

Evaluation Board Description

The SY58031U is a CML evaluation board and the SY58032U and SY58033U are LVPECL and 400mV LVPECL evaluation boards sharing the same design.

The default configuration for these boards is ACcoupled Inputs and DC-coupled outputs. The outputs can be reconfigured for AC-coupled output operation; therefore, the choice between the two configurations offers flexibility for specific applications.

Evaluation Board



SY58031U CML Evaluation Board

I/O	Power Supply	V _{cc}	GND	V _{EE}	C3-C8
AC-In/DC-Out	2.5V	0V	0	–2.5V	0Ω
AC-In/DC-Out	3.3V	0V	0	-3.3V	0Ω
AC-In/AC-Out	2.5V	+2.5V	0	0	0.1µF
AC-In/AC-Out	3.3V	+3.3V	0	0	0.1µF

 Table 1. SY58031U Configuration

Note: The default configuration is AC-In/DC-Out.

SY58032/3U LVPECL Evaluation Board

I/O	Power Supply	V _{cc}	GND	V _{EE}	R1-R6	C6-C7, C10-C11, C16-C17
AC-In/DC-Out	2.5V	+2V	0	-0.5	None	0Ω
AC-In/DC-Out	3.3V	+2V	0	-1.3	None	0Ω
AC-In/AC-Out	2.5V	+2.5V	0	0	50Ω	0.1µF
AC-In/AC-Out	3.3V	+3.3V	0	0	100Ω	0.1µF

Note: The default configuration is AC-In/DC-Out.

DC-Coupled Evaluation Board Setup

The follow steps describe the procedure for setting up the evaluation board:

SY58031U

- GND = 2.5V or 3.3V
- V_{CC} = 0V

SY58032/3U

For 2.5V operation:

- V_{CC} = 2.0V
- V_{EE} = -0.5V
- GND = 0V

For 3.3V operation:

- V_{CC} = 2.0V
- V_{EE} = -1.3V
- GND = 0V
- 1. Signal Generator: Using a differential signal source, set the amplitude of each side of the differential pair to 400mV (800mV measured differentially). Set the offset to a positive value, the value of the offset is not critical, since the AC-coupled inputs will be automatically biased. Turn off or disable the outputs of the signal source.
- 2. I/O Cable Interface: Using equal length 50Ω impedance coaxial cables connect the signal source to the inputs on the evaluation board. Using equal length 50Ω impedance coaxial cables connect the outputs of the evaluation board to the oscilloscope or other measurement device that has an internal 50Ω termination. Unequal length cables are not recommended since they introduce duty cycle distortion and unwanted signal delays.
- 3. Connect the trigger input of the scope to the trigger output of the signal generator.
- 4. Enable the signal source and monitor the outputs.

Evaluation Board Layout

PC Board Layout

The evaluation boards are constructed with Rogers 4003 material, coplanar in design, fabricated to minimize noise, achieve high bandwidth and minimize crosstalk.

Layer	SY58031U	SY58032/3U
L1	V _{CC} and Signal	GND and Signal
L2	V _{CC}	GND
L3	GND	V _{CC}
L4	V _{CC}	GND

Table 3. Layer Stack

Modifying DC-Coupled Outputs for AC-Coupled Operation

SY58031U

- 1. Remove 0Ω resistors at C3, C4, C5, and C6.
- 2. Replace C3, C4, C5, and C6 with $0.1 \mu F$ low ESR, 0402 capacitors.

SY58032/3U

- 1. Remove 0Ω resistors at C6, C7, C10, C11, C16, and C17.
- 2. Replace at C6, C7, C10, C11, C16, and C17 with 0.1μ F low ESR, 0402 capacitors.
- 3. For 2.5V operation: Add 50 Ω 0402 pull-down resistors to R1-R6.
- 4. For 3.3V operation: Add 100 Ω 0402 pulldown resistors to R1-R6.

Bill of Materials

SY58031U Evaluation Board

Item	Part Number	Manufacturer	Description	Qty.
C1-C2,C9-C16, C18, C21	VJ0402Y104KXXAT	Vishay ⁽¹⁾	0.1μF, 25V, 10% Ceramic Capacitor, Size 0402, X7R, Dielectric	12
C3-C8	CRCW0402000Z	Vishay ⁽¹⁾	0Ω, 1/16W Resistor SMD, Size 0402	6
C19, C20	293D685X0025C2T	Vishay ⁽¹⁾	6.8μF, 20V, Tantalum Electrolytic Capacitor, Size C	2
J1	111-0703-001	Johnson Components ⁽²⁾	Black Banana Jack	1
J2	111-0702-001	Johnson Components ⁽²⁾	Red Banana Jack	1
SMA3, SMA6, SMA10, SMA11, SMA21, SMA22, SMA28,SMA29	142-0701-851	Johnson Components ⁽²⁾	Jack Assembly End Launch SMA	8
U1	SY58031U	Micrel, Inc. ⁽³⁾	1:8 CML/LVPECL Fanout Buffer	1

Additional Components for AC-Coupled Outputs

Item	Part Number	Manufacturer	Description	Qty.
C3-C8	VJ0402Y104KXXAT	Vishay ⁽¹⁾	0.1µF, 25V, 10% Ceramic Capacitor, Size 0402, X7R, Dielectric	6

Notes:

1. Vishay: <u>www.vishay.com</u>

2. Johnson Components: <u>www.johnsoncomponents.com</u>

3. Micrel, Inc.: <u>www.micrel.com</u>

SY58032/3U Evaluation Board

Item	Part Number	Manufacturer	Description	Qty.
C1, C15	293D685X0025C2T	Vishay ⁽¹⁾	6.8μF, 20V, Tantalum Electrolytic Capacitor, Size C	2
C2-C5,C8- C9,C12- C14,C18-C19	VJ0402Y104KXXAT	Vishay ⁽¹⁾	0.1μF, 25V, 10% Ceramic Capacitor, Size 0402, X7R, Dielectric	11
C6-C7,C10-C11, C16-C17	CRCW0402000Z	Vishay ⁽¹⁾	0Ω , 1/16W Resistor SMD, Size 0402	6
J1	111-0702-001	Johnson Components ⁽²⁾	Red Banana Jack	1
J2, J3	111-0703-001	Johnson Components ⁽²⁾	Black Banana Jack	2
SMA1-SMA8	142-0701-851	Johnson Components ⁽²⁾	Jack Assembly End Launch SMA	8
U1	SY58032/3U	Micrel, Inc. ⁽³⁾	1:8 CML/LVPECL Fanout Buffer	1

Additional Components for AC-Coupled Outputs

Item	Part Number	Manufacturer	Description	Qty.
C6-C7,C10-C11, C16-C17	VJ0402Y104KXXAT	Vishay ⁽¹⁾	0.1µF, 25V, 10% Ceramic Capacitor, Size 0402, X7R, Dielectric	6
R3-R6	CRCW040249R9F CRCW04021000F	Vishay ⁽¹⁾	10% 1/16W Resistor SMD, Size 0402 ⁽⁴⁾	4

Notes:

1. Vishay: <u>www.vishay.com</u>

2. Johnson Components: <u>www.johnsoncomponents.com</u>

3. Micrel, Inc.: <u>www.micrel.com</u>

4. For 2.5V operation: R1-R6 are 50Ω resistors: For 3.3V operation: R1-R6 are 100Ω resistors

Micrel Cross Reference

To find an equivalent Micrel part, go to Micrel's website at: <u>http://www.micrel.com</u> and follow the steps below:

- 1. Click on Dynamic Cross Reference.
- 2. Enter competitor's part number in the Dynamic Cross Reference field.
- 3. To download a PDF version of this information, click on the Cross Reference PDF tab.

HBW Support

Hotline: 408-955-1690 Email Support: <u>HBWHelp@micrel.com</u>

Application Hints and Notes

For application notes on high speed termination on PECL and LVPECL products, clock synthesizer products, SONET jitter measurement, and other High Bandwidth products go to Micrel Inc., website at: <u>http://www.micrel.com/</u>. Once in Micrel's website, follow the steps below:

- 1. Click on "Product Info".
- 2. In the Applications Information Box, choose "Application Hints and Application Notes.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.