
 SMART ARM-based Microcontrollers

 AT11481: ADC Configurations with Examples

 APPLICATION NOTE

Introduction

This application note describes the following features of the Analog to Digital
converter available on the Atmel® | SMART SAM D microcontrollers.

1. Differential mode.
2. Hardware Averaging.
3. Oversampling.
4. Window monitor.
5. Gain and Offset Correction.
6. Temperature sensor.

For detailed description of ADC module, refer respective SAM D Complete
datasheet. For demonstration purpose a SAM D21 Xplained pro kit is used.

This firmware project associated with this application note is available in the
ASF (Atmel® Software Framework). This firmware project contains the
configuration examples for the above features.

Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

http://www.atmel.com/tools/avrsoftwareframework.aspx

Table of Contents

Introduction..1

1. ADC Features..4

2. Abbreviations...5

3. Pre-requisties...6

4. Setup... 7
4.1. Hardware Setup..7
4.2. Software Setup...7

4.2.1. Terminal Configuration...8

5. ADC Module.. 9
5.1. Overview...9
5.2. ADC Example Project...10

6. ADC Feature Demonstration..11
6.1. ADC Driver..11

6.1.1. ADC Driver Functions used in this Application Note..11
6.1.2. ADC Driver Data Structures used in this Application Note...11

7. Differential Mode..12
7.1. Differential Mode Configuration..12

8. Hardware Averaging.. 14
8.1. Hardware Averaging Mode Configuration.. 14

9. Oversampling and Decimation...16
9.1. Oversampling Mode Configuration...16

10. Window Monitoring.. 18
10.1. Window Mode Configuration.. 18

11. Gain and Offset Correction using ADC Calibration..20
11.1. ADC Calibration Configuration... 20

12. Temperature Sensor.. 22
12.1. ADC Temperature Sensor Configuration..22

13. SAM D21 ADC Usage Notes...24
13.1. ADC Input Signal Range.. 24

13.1.1. Example in Differential Mode...24
13.2. Maximum Source Impedance...25

13.2.1. Source Impedance Calculation..25
13.3. Sampling Time..26

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

2

14. Best Practices to Improve Accuracy..28

15. Revision History...29

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

3

1. ADC Features
• 8-, 10-, or 12-bit resolution
• Up to 350,000 samples per second (350ksps)
• Differential and single-ended inputs

– Up to 32 analog inputs
– 25 positive and 10 negative, including internal and external

• Five internal inputs
– Band gap
– Temperature sensor
– DAC
– Scaled core supply
– Scaled I/O supply

• 1/2x to 16x gain
• Single, continuous, and pin-scan conversion options
• Windowing monitor with selectable channel
• Conversion range:

– VREF [1v to VDDANA - 0.6V]
– ADCx * GAIN [0V to -VREF]

• Built-in internal reference and external reference options
– Four bits for reference selection

• Event-triggered conversion for accurate timing (one event input)
• Optional DMA transfer of conversion result
• Hardware gain and offset compensation
• Averaging and oversampling with decimation to support, up to 16-bit result
• Selectable sampling time

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

4

2. Abbreviations
ADC Analog to Digital Converter

DMA Direct Memory Access

EDBG Embedded Debugger

SWD Serial Wire Debug

VDDANA Analog Supply

VDDIO I/O Supply

VIN Input Voltage

VPIN ADC pin voltage

VREF ADC reference voltage

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

5

3. Pre-requisties
The solutions discussed in this document requires:

• Atmel Studio 6.2 or later
• ASF version 3.27 or later
• Atmel Studio Project “SAMD21_ADC_Examples” (Available with ASF 3.27)
• SAM D21 Xplained Pro kit

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

6

4. Setup
The example code provided in this application note uses the SAM D21 Xplained Pro kit as the hardware
platform and Atmel Studio 6.2 IDP for application development.

4.1. Hardware Setup
The SAM D21 Xplained Pro kit is used to execute the example application.

There are two USB ports on the SAM D21 Xplained Pro board - DEBUG USB and TARGET USB. For
debugging/programming the device Embedded debugger EDBG on DEBUG USB port has to be
connected.

Figure 4-1. SAM D21 Xplained Pro

4.2. Software Setup
When the SAM D21 Xplained Pro kit is connected to the PC, Windows will enumerate the device and
install appropriate driver. If the driver is installed succesfully, EDBG will be listed in the Device Manager
under Atmel and EDBG Virtual COM port under Ports as shown in the following screenshot.

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

7

Figure 4-2. Successful EDBG Driver Installation

The example project in this application note uses the virtual com port functionality offered by the kit to
send the results to terminal at 115200 baud rate.

4.2.1. Terminal Configuration
SAM D21 Xplained pro provides virtual COM port functionality. This COM port is used to send the output
to terminal window. Any terminal window available for Windows® such as TeraTerm can be used. Hyper
Terminal for Windows is used in this application note to display the output.

Table 4-1. Terminal Window Configuration

Parameter Value

Data Bits 8

Baud 115200

Parity None

Stop Bits 1

Flow Control None

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

8

5. ADC Module

5.1. Overview
The ADC module has 12-bit resolution, and is capable of converting up to 350ksps. The input selection is
flexible, and both differential and single-ended measurements can be performed. An optional gain stage
is available to increase the dynamic range. In addition, several internal signal inputs are available. The
ADC can provide both signed and unsigned results.

ADC measurements can be started by either application software or an incoming event from another
peripheral in the device. ADC measurements can be started with predictable timing, and without software
intervention. Both internal and external reference voltages can be used.

An integrated temperature sensor is available for use with the ADC. The bandgap voltage as well as the
scaled I/O and core voltages can also be measured by the ADC. The ADC has a compare function for
accurate monitoring of user-defined thresholds with minimum software intervention.

The ADC may be configured for 8-, 10-, or 12-bit results. ADC conversion results are provided left- or
right-adjusted, which eases calculation when the result is represented as a signed value. It is possible to
use DMA to move ADC results directly to memory or peripherals when conversions are done.

Figure 5-1. ADC Block Diagram

The ADC has an oversampling with decimation option that can extend the resolution to 16-bits.

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

9

5.2. ADC Example Project
The SAMD21_ADC_Examples code associated with this application note is available in ASF (Section :
Pre-requisites) with Atmel Studio.

To load the SAMD21_ADC_Examples code in the Atmel Studio,

1. Go to File> New and click on Example Project…. The shortcut key is (CTRL + Shift + E):
Figure 5-2. Creating Example Project in Atmel Studio

2. New Example Project from ASF or Extensions dialog box will appear. Type D21 in the search
box. It will list the SAMD21_ADC_Examples project solution available in the ASF:

3. Select the project and click OK.
4. After clicking OK, the SAMD21_ADC_Examples project is loaded in the Atmel Studio as shown in

following figure .
Figure 5-3. Solution Explorer View of SAM D21_ADC_Examples Project

5. The conf_example.h in SAMD21_ADC_Examples project contains macros to enable/disable
specific ADC configuration. The example code supports only one configuration at a time and it is
mandatory to enable only one configuration at a time.
Enable/Disable ADC Configurations in conf_example.h

#define ENABLE 1
#define DISABLE 0

/* Macro Definitions for ADC Configuration */
/* Please define any one of the below ADC mode */
#define ADC_MODE_DIFFERENTIAL DISABLE
#define ADC_MODE_HW_AVERAGING DISABLE
#define ADC_MODE_OVERSAMPLING DISABLE
#define ADC_MODE_WINDOW DISABLE
#define ADC_MODE_CALIBRATION DISABLE
#define ADC_MODE_TEMP_SENSOR ENABLE

6. After enabling the required configuration in conf_example.h file, compile the project by selecting
Build solution option in the build menu.

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

10

6. ADC Feature Demonstration

6.1. ADC Driver
This application note uses (ASF) ADC driver’s functions and data structures. This driver contains all the
essential functions to configure, enable/disable, start, and read the ADC modules.

For more information on SAM D21 ADC driver functions and data structures, refer AT03243: SAM Analog
to Digital Converter Driver available at http://www.atmel.com/images/atmel-42109-sam-analog-to-digital-
converter-adc-driver_applicationnote_at03243.pdf.

6.1.1. ADC Driver Functions used in this Application Note

Function name Description

adc_get_config_defaults Reads ADC default configuration

adc_init Generic ADC initialization function used to configure the ADC in
required mode of operation by passing appropriate configuration
parameters using adc_config data structure

adc_enable Enables ADC module

adc_disable Disables ADC module

adc_start_conversion Starts a new ADC conversion

adc_get_status Read ADC status

adc_read Reads ADC results

adc_start_read_result Starts a new conversion and returns results upon conversion complete

6.1.2. ADC Driver Data Structures used in this Application Note

Data structure name Description

adc_config ADC configuration data structure which contains configurable ADC parameters

adc_module ADC module instance

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

11

http://www.atmel.com/images/atmel-42109-sam-analog-to-digital-converter-adc-driver_applicationnote_at03243.pdf
http://www.atmel.com/images/atmel-42109-sam-analog-to-digital-converter-adc-driver_applicationnote_at03243.pdf

7. Differential Mode
Differential mode of ADC will measure the voltage difference between ADC input pins (the plus and minus
input), differential mode should be used when the positive input may follow negative input creating
negative results.

Figure 7-1. Differential Mode

7.1. Differential Mode Configuration
Differential mode configuration requires setting DIFFMODE bit in ADC’s CTRLB register, selecting of
positive (PA02) and negative (PA04) inputs for the ADC, selecting voltage reference and clock source for
the ADC. The following code example shows all these configuration.

void configure_adc_differential(void)
{
 struct adc_config conf_adc;

 adc_get_config_defaults(&conf_adc);

 conf_adc.clock_source = GCLK_GENERATOR_1;
 conf_adc.reference = ADC_REFERENCE_INTVCC1;
 conf_adc.clock_prescaler = ADC_CTRLB_PRESCALER_DIV16;
 conf_adc.differential_mode = true;
 conf_adc.positive_input = ADC_POSITIVE_INPUT_PIN0;
 conf_adc.negative_input = ADC_NEGATIVE_INPUT_PIN4;

 adc_init(&adc_instance, ADC, &conf_adc);

 adc_enable(&adc_instance);
}

The following code configures the ADC in differential mode, starts ADC conversion and sends the ADC
result to terminal window.

void adc_differential(void)
{
 int16_t raw_result_signed;
 configure_adc_differential();
 raw_result = adc_start_read_result();
 raw_result_signed = (int16_t)raw_result;
 result = ((float)raw_result_signed * (float)ADC_REFERENCE_INTVCC1_VALUE)/
(float)ADC_11BIT_FULL_SCALE_VALUE;

 printf("\r\nDifferential Voltage on ADC Input = %f", result);
 adc_disable(&adc_instance);
}

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

12

Table 7-1. Connection Details for Differential Mode Example

Signal name Pin Extension header

Positive Input Pin3 (PA02 – AIN[0]) EXT3

Negative Input Pin17 (PA04 – AIN[4]) EXT1

Figure 7-2. Differential Mode Example Output

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

13

8. Hardware Averaging
Averaging is a feature that increases the sample accuracy, at the cost of reduced sample rate. This
feature is suitable while operating in noisy conditions. Generally, averaging is performed by accumulating
‘m’ samples and divide the result by ‘m’ in the software. The hardware averaging features performs the
averaging in hardware without intervention of CPU, reducing the CPU overhead.

Figure 8-1. Hardware Averaging

8.1. Hardware Averaging Mode Configuration
Average mode configuration requires setting of sample count and division coefficient in AVGCTRL
register, selecting of positive (PA02) and negative (GND) input pins for the ADC, selecting 16-bit
Resolution for averaging output, selecting voltage reference and clock source for the ADC.

The following code example performs all these configuration.

void configure_adc_averaging(void)
{
 struct adc_config conf_adc;

 adc_get_config_defaults(&conf_adc);

 conf_adc.clock_source = GCLK_GENERATOR_1;
 conf_adc.reference = ADC_REFERENCE_INTVCC1;
 conf_adc.clock_prescaler = ADC_CTRLB_PRESCALER_DIV16;
 conf_adc.positive_input = ADC_POSITIVE_INPUT_PIN0;
 conf_adc.negative_input = ADC_NEGATIVE_INPUT_GND;
 conf_adc.resolution = ADC_RESOLUTION_CUSTOM;
 conf_adc.accumulate_samples = ADC_ACCUMULATE_SAMPLES_1024;
 conf_adc.divide_result = ADC_DIVIDE_RESULT_16;

 adc_init(&adc_instance, ADC, &conf_adc);

 adc_enable(&adc_instance);
}

The following code configures the ADC in hardware averaging mode which will accumulate 1024 samples
before taking the average, starts ADC conversion and sends the ADC result to terminal window.

void adc_hardware_averaging(void)
{
 configure_adc_averaging();

 raw_result = adc_start_read_result();

 result = ((float)raw_result * (float)ADC_REFERENCE_INTVCC1_VALUE)/
(float)ADC_12BIT_FULL_SCALE_VALUE;

 printf("\n\rADC Input Voltage with Averaging = %f", result);

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

14

 adc_disable(&adc_instance);
}

Table 8-1. Connection Details for Hardware Averaging Mode Example

Signal name Pin Extension header

Positive Input Pin3 (PA02 – AIN[0]) EXT3

Negative Input Pin2 (GND) EXT1

Figure 8-2. Hardware Averaging Example Output

ADC input 0 = .96V

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

15

9. Oversampling and Decimation
The theory behind ‘Oversampling’ is rather complex, but using the method is fairly easy. The technique
requires a higher number of samples. These extra samples can be achieved by oversampling the signal.
For each additional bit of resolution ‘n’, the signal must be oversampled four times. Which frequency to
sample the input signal with is given by following equation. To derive the best possible representation of
analog input signal, it is necessary to oversample the signal. A larger amount of samples will provide a
better representation of the input signal, when averaged.����������� = 4� * ��������
By using oversampling, the ADC resolution can be increased from 12 bits to up to 16 bits. To increase the
resolution by n bits, 4 n samples must be accumulated. The result must then be shifted right by n bits.
This right shift is a combination of the automatic right shift and the value written to AVGCTRL.ADJRES.
To obtain the correct resolution, the ADJRES must be configured as described in the following table. This
method results in n bit extra LSB resolution.

Table 9-1. Configuration Required for Oversampling and Decimation

Result resolution Number of
samples to
average

AVGCTRL.SAMPL
ENUM[3:0]

Number of
automatic right
shifts

AVGCTRL.ADJRE
S[2:0]

13 bits 41=4 0x02 0 0x01

14 bits 42=16 0x04 0 0x02

15 bits 43=64 0x06 2 0x01

16 bits 44=256 0x08 4 0x0

9.1. Oversampling Mode Configuration
Oversampling mode configuration requires setting of sample count in AVGCTRL register and selecting
number of right shifts to adjust resolution to 16-bit in AVGCTRL register, selecting of positive (PA02) and
negative (GND) input pins for the ADC, selecting 16-bit resolution for averaging output , selecting voltage
reference and clock source for the ADC. The following code performs all the mentioned configuration.

In this mode, ADC is configured to resolution of 16-bits using oversampling to increase the accuracy. To
perform the same ADC accumulates 256 samples and then store the right shifted ADC value by 4
automatically into RESULT register.

void configure_adc_sampling(void)
{
 struct adc_config conf_adc;

 adc_get_config_defaults(&conf_adc);

 conf_adc.clock_source = GCLK_GENERATOR_1;
 conf_adc.reference = ADC_REFERENCE_INTVCC1;
 conf_adc.clock_prescaler = ADC_CTRLB_PRESCALER_DIV16;
 conf_adc.positive_input = ADC_POSITIVE_INPUT_PIN0;
 conf_adc.negative_input = ADC_NEGATIVE_INPUT_GND;
 conf_adc.resolution = ADC_RESOLUTION_16BIT;
 conf_adc.reference_compensation_enable = true;

 adc_init(&adc_instance, ADC, &conf_adc);

 adc_enable(&adc_instance);
}

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

16

The following code configures the ADC in Oversampling mode, starts ADC conversion, and sends the
ADC result to terminal window.

void adc_oversampling(void)
{
 configure_adc();

 raw_result = adc_start_read_result();

 result = ((float)raw_result * (float)ADC_REFERENCE_INTVCC1_VALUE)/
 (float)ADC_12BIT_FULL_SCALE_VALUE;

 printf("\n\rADC Input Voltage before Oversampling = %f", result);

 adc_disable(&adc_instance);

 configure_adc_sampling();

 raw_result = adc_start_read_result();

 result = ((float)raw_result * (float)ADC_REFERENCE_INTVCC1_VALUE)/
 (float)ADC_16BIT_FULL_SCALE_VALUE;

 printf("\n\rADC Input Voltage after Oversampling = %f", result);

 adc_disable(&adc_instance);
}

Table 9-2. Connection Details for Hardware Averaging Mode Example

Signal name Pin Extension header

Positive Input Pin3 (PA02 – AIN[0]) EXT3

Negative Input Pin2 (GND) EXT3

Figure 9-1. Oversampling Example Output

ADC input 0 = .96V

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

17

10. Window Monitoring
The window monitor allows the conversion result to be compared to some predefined threshold limits.

10.1. Window Mode Configuration
Supported modes are selected by writing the Window Monitor Mode bit group in the Window Monitor
Control register (WINCTRL.WINMODE[2:0]). Thresholds are given by writing the Window Monitor Lower
Threshold register (WINLT) and Window Monitor Upper Threshold register (WINUT).If differential input is
selected, the WINLT and WINUT are evaluated as signed values. Otherwise, they are evaluated as
unsigned values. Another important point is that the significant WINLT and WINUT bits are given by the
precision selected in the Conversion Result Resolution bit group in the Control B register
(CTRLB.RESSEL). If 8-bit mode is selected, only the eight lower bits is considered. In addition, in
differential mode, the eighth bit is considered as the sign bit even if the ninth bit is zero. The
INTFLAG.WINMON interrupt flag is set if the conversion result matches the window monitor condition.

void configure_adc_window_monitor(void)
{
 struct adc_config conf_adc;

 adc_get_config_defaults(&conf_adc);

 conf_adc.clock_source = GCLK_GENERATOR_1;
 conf_adc.reference = ADC_REFERENCE_INTVCC1;
 conf_adc.clock_prescaler = ADC_CTRLB_PRESCALER_DIV16;
 conf_adc.positive_input = ADC_POSITIVE_INPUT_PIN0;
 conf_adc.negative_input = ADC_NEGATIVE_INPUT_GND;
 conf_adc.window.window_mode = ADC_WINDOW_MODE_ABOVE_LOWER;
 conf_adc.window.window_lower_value = ADC_WINDOW_LOWER_THERSOLD_VALUE;

 adc_init(&adc_instance, ADC, &conf_adc);

 adc_enable(&adc_instance);
}

In this mode, ADC is configured in window monitor feature. To trigger the flag if the ADC input voltage is
higher than programmed threshold voltage (.75V), more than .75 voltage is applied on ADC input 0, the
LED0 available on the SAM D21 Xplained board will glow else it is in OFF condition, this status is sent to
console as well.

/* This function helps to configure window monitor mode of ADC */

void adc_window_monitor(void)
{
 configure_adc_window_monitor();
 adc_start_conversion(&adc_instance);
 while((adc_get_status(&adc_instance) & ADC_STATUS_RESULT_READY) != 1);
 status = adc_get_status(&adc_instance);
 adc_read(&adc_instance, &raw_result);
 if (status & ADC_STATUS_WINDOW){
 port_pin_set_output_level(LED0_PIN, LOW);
 printf("\n\rLED0 is ON");
 }
 else{
 port_pin_set_output_level(LED0_PIN, HIGH);
 printf("\n\rLED0 is OFF");
 }
}

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

18

Table 10-1. Connection Details for Window Monitor Mode Example

Signal name Pin Extension header

Positive Input Pin3 (PA02 – AIN[0]) EXT3

Negative Input Pin2 (GND) EXT3

Figure 10-1. Window Mode Example Output

ADC input 0 > .75

ADC input 0 < .75

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

19

11. Gain and Offset Correction using ADC Calibration
Gain and offset correction feature using ADC calibration improves the accuracy of the ADC results.

11.1. ADC Calibration Configuration
Inherent gain and offset errors affect the absolute accuracy of the ADC. The offset error is defined as the
deviation of the actual ADC’s transfer function from an ideal straight line at zero input voltage. The offset
error cancellation is handled by the Offset Correction register (OFFSETCORR). The offset correction
value is subtracted from the converted data before writing the Result register (RESULT). The gain error is
defined as the deviation of the last output step’s midpoint from the ideal straight line, after compensating
for offset error. The gain error cancellation is handled by the Gain Correction register (GAINCORR). To
correct these two errors, the Digital Correction Logic Enabled bit in the Control B register
(CTRLB.CORREN) must be written to one.

The offset and gain error compensation results are both calculated according to:Result = ���������� ����� − ���������� *��������
In this mode, ADC is calibrated to correct the Offset and Gain Errors by enabling Digital Correction Logic
bit in CTRLB register. In this example, the user has the option to enable/disable the correction through
serial console.

The offset calibration is done by applying 0V on ADC input PA02 and the result is offset error which is
loaded in the correction register. The gain calibration is done by measuring fixed voltage (1.55V) on ADC
input PA02 with 1.65V as ADC reference and load the gain error in the correction register.

void adc_calibration(void)
{
 uint8_t key;

 printf("\x0C\n\r-- Start of ADC Calibration Example --\n\r");

 configure_adc();

 printf("Commands:\n\r");
 printf("- key 'c' to enable correction\n\r");
 printf("- key 'd' to disable correction\n\r");

 key = getchar();

 if (key == 'c') {
 adc_correction_start();
 }
 if (key == 'd') {
 adc_correction_stop();
 }

 raw_result = adc_start_read_result();
 result = ((float)raw_result * (float)ADC_REFERENCE_INTVCC1_VALUE)/
(float)ADC_12BIT_FULL_SCALE_VALUE;

 printf("\n\rADC Input voltage is %f", result);
 printf("\n\r-- End of ADC Calibration Example --\n\r");

}

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

20

Figure 11-1. ADC Calibration Example Output

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

21

12. Temperature Sensor
The internal temperature sensor is used to measure the core temperature. The sensor will output a linear
voltage proportional to the temperature.

12.1. ADC Temperature Sensor Configuration
In this mode, ADC is configured to read internal sensor as positive ADC input and internal ground as
negative ADC input. The temperature calculation is performed by reading the Temperature Log Row
Content from NVM and current ADC measurement as explained in Equation 1 and Equation 1b in
Temperature Sensor Characteristics in the section Analog characteristics of SAM D21 Complete
datasheet.

void configure_adc_temp(void)
{
 struct adc_config conf_adc;

 adc_get_config_defaults(&conf_adc);

 conf_adc.clock_source = GCLK_GENERATOR_1;
 conf_adc.clock_prescaler = ADC_CLOCK_PRESCALER_DIV16;
 conf_adc.reference = ADC_REFERENCE_INT1V;
 conf_adc.positive_input = ADC_POSITIVE_INPUT_TEMP;
 conf_adc.negative_input = ADC_NEGATIVE_INPUT_GND;
 conf_adc.sample_length = ADC_TEMP_SAMPLE_LENGTH;

 adc_init(&adc_instance, ADC, &conf_adc);

 ADC->AVGCTRL.reg = ADC_AVGCTRL_ADJRES(2) | ADC_AVGCTRL_SAMPLENUM_4;

 adc_enable(&adc_instance);
}

/* This function return the Fine temperature value after done with
 calculation using Equation1 and Equation 1b as mentioned in data sheet
 on 36.9.8 Temperature Sensor Characteristics */

float calculate_temperature(uint16_t raw_code)
{
 float VADC; /* Voltage calculation using ADC result for Coarse Temp calculation */
 float VADCM; /* Voltage calculation using ADC result for Fine Temp calculation. */
 float INT1VM; /* Voltage calculation for reality INT1V value during the ADC conversion
*/

 VADC = ((float)raw_code * INT1V_VALUE_FLOAT)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;

 /* Coarse Temp Calculation by assume INT1V=1V for this ADC conversion */
 coarse_temp = tempR + (((tempH - tempR)/(VADCH - VADCR)) * (VADC - VADCR));

 /* Calculation to find the real INT1V value during the ADC conversion */
 INT1VM = INT1VR + (((INT1VH - INT1VR) * (coarse_temp - tempR))/(tempH - tempR));

 VADCM = ((float)raw_code * INT1VM)/ADC_12BIT_FULL_SCALE_VALUE_FLOAT;

 /* Fine Temp Calculation by replace INT1V=1V by INT1V = INT1Vm for ADC conversion */
 fine_temp = tempR + (((tempH - tempR)/(VADCH - VADCR)) * (VADCM - VADCR));

 return fine_temp;
}

The following example code will read internal temperature and send it to terminal

void adc_temp_sensor(void)
{
 float temp;

 system_voltage_reference_enable(SYSTEM_VOLTAGE_REFERENCE_TEMPSENSE);

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

22

 configure_adc_temp();

 load_calibration_data();

 raw_result = adc_start_read_result();

 temp = calculate_temperature(raw_result);

 printf("\nThe current temperature is = %f degree Celsius", temp);
}

Figure 12-1. Internal Temperature Sense Example Output

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

23

13. SAM D21 ADC Usage Notes

13.1. ADC Input Signal Range
This section explains how to calculate the range on ADC input signal due to electrical parameters.

Several parameters restrict the ADC input voltage scale:

• GND - 0.3V < VPIN < VDD + 0.3V
• 1V < VREF < VDD -0.6V
• Input common mode voltage in single ended mode:

– VREF/4 - 0.3 * VDDANA – 0.1V < VCM_IN < 0.7 * VDDANA + VREF/4 – 0.75V
• Input common mode voltage in differential mode:

– If |VIN| > VREF/4 then VREF/4 - 0.05 * VDDANA – 0.1V < VCM_IN < 0.95 * VDDANA +
VREF/4 – 0.75V

– If |VIN| < VREF/4 then 0.2 * VDDANA – 0.1V < VCM_IN < 1.2 * VDDANA – 0.75V

13.1.1. Example in Differential Mode
Example with VREF = 2V, gain = x2, VDDANA = VDDIO = VDD = 3V.

The pin supports without damage a voltage of: -0.3V < VPIN < 3.3V. But in differential mode, the ADC
does not support a negative voltage on input pins. Limits are: 0 < VPIN < VDD -0.6V.

The input common voltage is:

0.25V < VCM_IN < 2.6V if |VIN| > VREF/4

0.5V < VCM_IN < 2.31V if |VIN| < VREF/4

It corresponds to the maximum value of (VPOS + VNEG)/2.

The gain x2 acts on VREF and replaces the voltage reference by VREF/2. The gain does not have an
impact on the input voltage limits.

Figure 13-1. |VIN| > VREF/4 (0.5V)

In the preceding figure, when input is greater than VREF/4 (0.5V in preceding example), minimum
differential voltage should be VREF/4 (0.5V) and maximum is Vmax - Vmin (2.6V - 0.25V = 2.35V)

Figure 13-2. If |VIN| < VREF/4 (0.5V)

In the preceding figure, when input is lesser than VREF/4, minimum allowed differential voltage is 0 and
maximum is VREF/4.

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

24

13.2. Maximum Source Impedance
When a source is connected to the ADC input, it is important to check if the serial equivalent resistance is
in accordance with ADC specification. For example, if a temperature sensor is connected to ADC input,
the maximum throughput rate is linked to the temperature sensor resistor value.

Figure 13-3. Temperature Sensor Resistor (Rs = R)

13.2.1. Source Impedance Calculation
The equivalent circuit from the ADC input side is a generator with a serial output resistor Rs.

Figure 13-4. The Sample and Hold circuit of the ADC is composed of a RC

The capacitor charge follows the equation:

�� = ��� * 1− exp −���+ ������� *�������
Figure 13-5. VC Charge Characteristics

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

25

The minimum sampling and hold time corresponds to the charging time of Cin to reach Vin minus less

than one step. This step depends on the ADC accuracy. With 12-bit ADC, a step is
���212 . The datasheet

formula uses a step of
���213 to have more accuracy.

�� > ���− ���213
��� * 1− exp −���+ ������� *������� > ��� − ���213
��� * 1− exp −���+ ������� *������� > ��� * 1− 1213
1− exp −���+ ������� *������� > 1− 12131213 > exp −����+ ������� *���������������� > ��+ ������� * ln 213 ⋙ ��+ ������� < ��������� * ln 213

With:

Rs = external resistor (from application side)

Rsample (see datasheet)

Csample (see datasheet)

Ts = sampling time

13.3. Sampling Time
The SAM D21 ADC proposes SAMPLEN[5:0] bits to adjust the sampling time. The sampling time is equal
to ADC/2 frequency by default. SAMPLEN[5:0] contains the number of additional half cycles to add.

Using a high frequency for ADC reduces the conversion time. The drawback is reduction of the ADC
sampling time. The register allows to increase the sampling time without modifying conversion time

SAMPCTRL register

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

26

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

27

14. Best Practices to Improve Accuracy
The accuracy of ADC depends on the quality of the input signals and power supplies.

The following points should be considered to improve the accuracy of the ADC measurements:

• Understand the ADC, its features, and how they are intended to be used
• Understand the application requirements
• It is important to pay attention while designing the analog signal paths like analog reference and

analog power supply. The VDDANA is supply voltage to analog modules such as comparator, ADC.
• Filtering should be used if the analog power supply is connected to digital power supply
• The reference voltage can be more immune to noise by connecting a capacitor between reference

pin and ground
• Design shorter analog signal paths whenever possible. It is also important that the impedance on

the PCB tracks for the ADC channels are not high which will result in longer charge period of the
capacitor for an ADC measurement.

• Make sure analog tracks run over the analog ground plane
• Avoid analog signal path close to a digital signal path with high switching noise such as

communication lines and clock signals
• Consider decoupling of the analog signal between signal input and ground for single-ended inputs
• For differential signals the decoupling must be between the positive and negative input. The

decoupling capacitor value depends on the input signal. If the signals are switching fast, the
decoupling capacitor must be lower.

• Ensure that the source impedance is not very high compared to the sampling rate. If source
impedance is too high, the internal sampling capacitor will not be charged to the desired level and
the result will not be accurate.

• Try to toggle as few pins as possible while the ADC is converting, to avoid switching noise internally
and on the power supply. Especially, the ADC is more sensitive to switching the I/O pins that are
powered by the analog power supply.

• Switch off the unused peripherals to eliminate any noise from unused peripherals
• Apply offset and gain calibration to the measurement to improve the accuracy
• Wait until the ADC, reference or sources to stabilize before sampling, as some sources (for

example, band gap) need time to stabilize when they are selected as ADC input channel
• Use over-sampling to increase resolution and eliminate random noise
• In free running mode, select the channel before starting the first conversion
• Discard the first conversion result whenever there is a change in ADC configuration like voltage

reference / ADC channel change
• When switching to a differential channel (with gain settings), the first conversion result may have a

poor accuracy due to the required settling time for the automatic offset cancellation circuitry. It is
better to discard the first sample result.

• The linear interpolation methods such as one point (offset) calibration and two point (offset and
gain) calibration method can be used based on the application needs

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

28

15. Revision History
Doc Rev. Date Comments

42645B 08/2016 The first "Window Mode Example Output" image has been corrected

42645A 01/2016 Initial document release.

Atmel AT11481: ADC Configurations with Examples [APPLICATION NOTE]
Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

29

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42645B-ADC-Configurations-with-Examples_AT11481_Application Note-08/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. ADC Features
	2. Abbreviations
	3. Pre-requisties
	4. Setup
	4.1. Hardware Setup
	4.2. Software Setup
	4.2.1. Terminal Configuration

	5. ADC Module
	5.1. Overview
	5.2. ADC Example Project

	6. ADC Feature Demonstration
	6.1. ADC Driver
	6.1.1. ADC Driver Functions used in this Application Note
	6.1.2. ADC Driver Data Structures used in this Application Note

	7. Differential Mode
	7.1. Differential Mode Configuration

	8. Hardware Averaging
	8.1. Hardware Averaging Mode Configuration

	9. Oversampling and Decimation
	9.1. Oversampling Mode Configuration

	10. Window Monitoring
	10.1. Window Mode Configuration

	11. Gain and Offset Correction using ADC Calibration
	11.1. ADC Calibration Configuration

	12. Temperature Sensor
	12.1. ADC Temperature Sensor Configuration

	13. SAM D21 ADC Usage Notes
	13.1. ADC Input Signal Range
	13.1.1. Example in Differential Mode

	13.2. Maximum Source Impedance
	13.2.1. Source Impedance Calculation

	13.3. Sampling Time

	14. Best Practices to Improve Accuracy
	15. Revision History

