

Serialized G3-PLC Coordinator on Linux®

Summary

This application note implements an example of G3-PLC Coordinator making use of Microchip **usi_host** package on top of a device running as G3-PLC Modem. The example project is based on a Linux process running on a SAMA5D27-SOM1-EK board connected through a serial port to a PL360G55CF-EK board running the G3-PLC Modem. The final application schema is similar to the embedded G3-PLC DLMS Coordinator project except for the fact that DLMS cycling is not implemented on the current application.

Figure 1. Serialized G3-PLC Coordinator scheme

Table of Contents

Sun	mary	1				
1.	. Hardware Description					
2.	Software Description	5 5 7				
3.	Features of Microchip G3-PLC Linux Coordinator Application)				
4.	I. Start-up G3-PLC Linux as Coordinator11					
5.	. Abbreviations					
6.	Revision History	3 3 3				
The	The Microchip Website					
Pro	uct Change Notification Service1	7				
Cus	omer Support1	7				
Mic	Microchip Devices Code Protection Feature17					
Leg	I Notice	7				
Trac	emarks	3				
Qua	ity Management System	3				
Woi	Worldwide Sales and Service					

1. Hardware Description

The project is based on these evaluation boards:

- SAMA5D27-SOM1-EK1
 - https://www.microchip.com/developmenttools/ProductDetails/atsama5d27-som1-ek1
 - Figure 1-1. SAMA5D27-SOM1-EK1

- PL360G55CF-EK
 - https://www.microchip.com/developmenttools/ProductDetails/pl360g55cf-ek1
 Figure 1-2. PL360G55-CF EK

Both boards are already available as evaluation kits from Microchipdirect.com and distributors, containing software, hardware schematics, Bill of Materials and PCB designs.

SAMA5D27-SOM1-EK includes two mikroBUS[™] connectors where PL360G55CF-EK could be connected. MikroBUS 1 is used by default. Figure 1-3 and Figure 1-4 show the mikroBUS schematic on both evaluation kits.

Figure 1-3. SAMA5D27-SOM1-EK1 mikroBUS 1

Figure 1-4. PL360G55-CF EK mikroBUS

SAMA5D27-SOM1-EK1 is powered by USB and PL360G55CF-EK is powered by 5V pin in mikroBUS[™]. As the project is using mikroBUS 1 of SAMA5D27-SOM1-EK1, please, verify in the SAMA5D27-SOM1-EK1 board that the resistor R80 is soldered in order to enable the 5 Volts pin to supply power (in case of using mikroBUS 2, the resistor to check is R109).

A SD card is also required to run the Linux[™] image of the project. The SD card is connected in the SD connector of SAM5D27-SOM1-EK1 (J12)

2. Software Description

This walkthrough will allow users to build, on a Linux environment, a G3-PLC Linux Coordinator example with bootstrapping capabilities running on a SAMA5D27 microprocessor. The PL360G55CF-EK runs the application example "adp_mac_serialized" included in the Microchip G3-PLC stack release and the communication interface between both boards is handled by **usi_host** package.

Figure 2-1 shows the software and hardware relationships between the different elements.

Figure 2-1. Linux G3-PLC Coordinator Software Blocks

2.1 PL360G55CF-EK Embedded Project

PL360G55CF-EK is flashed with a modified version of the project adp_mac_serialized from the Firmware package G3_v1.4.0. The original project is the following path of the G3-PLC stack package:

\thirdparty\g3\apps\adp_mac_serialized_app\samg55j19_pl360g55cf_ek

The ADP and MAC serialization is an application example that brings access to the ADP, MAC and Coordinator API through a serial connection. This application is useful for users who want to make intensive test of the stack or want to run the upper layers in another CPU.

The application allows to control the G3-PLC Stack at different levels. The user can make use of the ADP API (standard access) or access MAC Wrapper API directly as a shortcut for some tests. Serialization is also available to the provided Coordinator module (BS) in case the user requires to control the Bootstrap phase on the Coordinator side. On the modification of the example used in this application note, the access to the stack will be done at ADP-MAC layers and the Coordinator module will be implemented on the host.

The Figure 2-2 shows the adp_mac_serialized project structure on PL360G55CF-EK, where PL360B PLC transceiver runs the G3-PLC MAC real time firmware in order to reduce timing restrictions on the SAMG55 MCU:

Figure 2-2. ADP MAC Serialized Project Stack

By default, in the adp_max_serialized project, the USI port is the USB of the PL360G55CF-EK board. In our case, mikroBUS UART is used, which requires some modifications in two header files.

In the header file conf_usi.h, to use mikroBUS UART and serialize PHY layer to use the sniffer capabilities in the example:

```
#ifndef CONF USI H INCLUDED
#define CONF_USI_H_INCLUDED
#define USI PORT 0
                            0
/* Port Communications configuration */
#define NUM PORTS
                                                        1
/* In case of use USB TYPE, refer to conf_usb.h in order to set baudrate by default */
/* #define PORT_0 CONF_PORT(USB_TYPE, 0, 230400, 1024, 1024) */
/* In case of USI on Mikro BUS, comment previous line, and uncomment next line and
conf busart if.h configurations */
#define PORT_0 CONF_PORT(USART_TYPE, 0, 230400, 2048, 2048)
/* Select PORT to serialize layers */
#define ADP_SERIAL_PORT
#define MAC_SERIAL_PORT
                                                USI PORT 0
                                               USI PORT 0
                                               USI_PORT_0
#define COORD SERIAL PORT
#define PHY SNIFFER SERIAL PORT
                                               USI PORT 0
```

#endif /* CONF_USI_H_INCLUDED */

In the header file conf busart if.h, to use USI port on the mikroBUS UART:

```
#ifndef CONF BUSART IF H INCLUDED
#define CONF BUSART IF H INCLUDED
/* Uncomment if USI port on mikro BUS */
#define ID TC USART
                             ID TC4
#define TC_USART
#define TC_USART_CHN
                             TC1
#define TC_USART_Handler
                             1
                             TC4 Handler
#define BUSART0
                             USART4
#define ID BUSART0
                             ID FLEXCOM4
#define BUSARTO_IRQn
                             FLEXCOM4_IRQn
#define BUSART0 Handler
                             FLEXCOM4 Handler
#define RX BUSARTO SIZE
                             2048
#define TX_BUSART0_SIZE
                             2048
#endif /* CONF BUSART IF H INCLUDED */
```

2.2 Setting up the Linux Environment

The Linux binaries that run in ATSAMA5D27-SOM1 are generated using Buildroot (https://buildroot.org/), a tool to generate embedded Linux systems through cross-compilation. Microchip provides its own version of Buildroot which includes kernel, cross compiler and rootfs for ATSAMA5D27-SOM1 Evaluation Kit. More information can be found at:

- http://www.at91.com/linux4sam/bin/view/Linux4SAM/BuildRootBuild#How_to_build_Buildroot_for_AT91
- https://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d27Som1EKMainPage
- ftp://www.at91.com/pub/demo/linux4sam_5.8/

To describe the building procedure of an SD image with the Linux binaries, we are using a PC running Ubuntu 19.10. In case of using a different version or distribution, the process may vary.

I. Install some packages not included in the Linux distribution (for more information about the system requirements, see http://buildroot.uclibc.org/downloads/manual/manual.html#requirement):

```
$ sudo apt-get install sed make binutils build-essential gcc g++ bash patch
$ sudo apt-get install gzip bzip2 perl tar cpio python unzip rsync file bc wget
$ sudo apt-get install libncurses5-dev libncursesw5-dev bzr cvs git mercurial rsync
$ sudo apt-get install subversion graphviz python-matplotlib
```

2. Download the sources of Microchip Buildroot (at this moment, the last released version is 6.2)

```
$ git clone https://github.com/linux4sam/buildroot-at91.git
```

\$ git clone https://github.com/linux4sam/buildroot-external-microchip.git

```
$ git checkout tags/linux4sam_6.2 -b buildroot-at91-linux4sam_6.2
```

- \$ git checkout tags/linux4sam_6.2 -b buildroot-ext-mchp_linux4sam_6.2
- 3. Build the Microchip Buildroot rootfs image

```
$ cd buildroot-at91
$ BR2_EXTERNAL=../buildroot-external-microchip/ make sama5d27_som1_ek_headless_defconfig
$ make
```

4. Customize the buildroot and save the configuration:

\$make menuconfig

Enable the following configurations/packages

- \Target Packages\Networking applications\iputils (**BR2_PACKAGE_IPUTILS=y**)
- \Target Packages\Networking applications\openssh (**BR2_PACKAGE_OPENSSH=y**)

To run the example bash file of the application note:

- \Target Packages\Shell and utilities\inotify-tools (**BR2_PACKAGE_INOTIFY_TOOLS=y**)
- 5. Run the Buildroot compilation:

\$make

Buildroot downloads and compile all the packages required, so it may take quite a long time. After this point, the kernel, cross-compiler and rootfs are ready to flash your system.

6. G3-PLC Coordinator requires TUN/TAP interfaces which must be part of the kernel, otherwise, the example will not work. To enable TUN/TAP interface in the kernel configuration:

\$make linux-menuconfig

Enable the TUN/TAP support as a module:

• \Device Drivers\Network Device Support\"Universal TUN/TAP device driver support"

\$make linux-build

7. Create the SD image:

\$make

8. After compiling all the binaries needed, update SD card image to be mounted on SAMA5D27-SOM1-EK with the correct binaries located in:

```
buildroot-at91/output/images/sdcard.img
```

The Linux binaries are ready to be used, follow these steps to verify proper operation of the kit:

- 1. Insert the SD card is the MMC/SD card connector (J12)
- 2. Connect the USB Micro-AB cable to connector J10 (JLINK-OB)
- 3. Connect the other end of the cable to a free port of your PC
- 4. Open a terminal (console 115200, N, 8, 1) on your Personal Computer
- 5. Reset the baseboard. A start-up message appears on the console.

In order to use the Ethernet connector and access easily to SAMA5D27-SOM1-EK1, configure a new IP address:

 $\$ ip address add 192.168.1.102/24 dev eth0 $\$ ifconfig eth0 up

So, in this case, <target-ip-address> is 192.168.1.102

3. Features of Microchip G3-PLC Linux Coordinator Application

The example developed in this application note uses the package usi-host-v2.0.0, but it requires some modifications. To start working on it, extract the contents of the package 010-usi-host-g3coord_linux.7z.

Figure 3-1. Linux G3-PLC Coordinator Structure

Figure 3-1 shows the structure of the G3-PLC coordinator daemon developed on this example.

Working with usi_host serialization requires the following points:

- USI Project Configuration (PrjCfg.h file): definitions required to enable PROTOCOL_ADP_G3 and serial port configuration to ttyS1 with speed 230400bps (mikroBUS-1 serial port propagated by Linux; in case of the mikroBUS-2 connection, ttyS2 should be used).
- USI user functions (userFnc.c file): Implement the functions addUsi_Open(), addUsi_TxMsg() and addUsi_RxChar() required for the USI implementation.
- Call USI host processing periodically (addUsi_Process() function). In this example an independent thread in the Linux operating system calls usi_process_thread() every 1 millisecond.
- Synchronous mechanism implementation for ADP/MAC Set/Get requests defining addUsi_WaitProcessing() function with a "while loop" with timeout. This is not a problem working in Linux running a multi process environment.

The ifaceG3Adp.c file includes the interface between adp_mac_serialized embedded project and the application; it contains the functions and callbacks available for the USI protocol PROTOCOL_ADP_G3. In the other hand, the bootstrapping (BS) part of G3-PLC coordinator application is not handled by the USI protocol PROTOCOL_COORD_G3 (available on adp_mac_serialized embedded project); but it is included in folder "g3\bootstrap", in this way, Linux g3coord application has more control of the status of the G3-PLC devices on the network reducing the overhead to request this information via USI.

The ADP and bootstrapping management applications are developed on app_adp_mng.c file:

- adp_init():
 - InitializeStack(): Sets ADP notification callbacks and initializes the ADP layer
 - InitializeModemParameters (): Sets ADP and MAC PIB attributes specific for the application
 - InitializeNetworkParameters(): Sets IPv6 Prefix Table Entry: Coordinator IPv6Addr
- adp_process():
 - StartCoordinator(): Initialize BS module, sets BS callbacks for events and starts the G3 Network
 - bs process(): Update status of BS module
- Boot Strapping (bs folder): implemented on Linux in order to have more control of the G3-PLC device registering process

Additional features implemented at application layer:

- tun/ipv6: a TUN interface is created in order to provide IPv6 access to the G3-PLC Network (tun.c)
- IPv6 Local Link addresses of joined devices are propagated to the defined temporary file G3_PLC_NODE_LIST (via ADP callback AppBsJoinIndication()) for user application
- G3-PLC Buffer overflow is propagated to the defined temporary file ADP_DATA_BLOCKING_FILE (via ADP callback AppAdpBufferIndication()). It could be used for flow control on applications over IP Layer
- Use of Linux SYS Filesystem to act over microprocessor GPIOs (gpio.c) and LEDs (led.c)

3.1 Building Microchip G3-PLC Linux Coordinator Application

1. The G3-PLC Linux Coordinator example is developed starting from usi_host package 2.0.0

\$ cd ~/010-usi-host/g3coord linux

2. Select cross-compiler configuring the environment variable CROSS COMPILE

\$ export CROSS_COMPILE=~/linux_coord/buildroot-at91/output/host/bin/arm-buildroot-linuxgnueabihf-

3. Clean and compile the code:

\$ make clean && make all

4. Copy the compiled application to the target

\$ scp g3coordd root@<target-ip-addr>:/usr/bin

4. Start-up G3-PLC Linux as Coordinator

The G3-PLC coordinator running in Linux can be evaluated using a fully compliant G3-PLC network composed of:

- PAN Coordinator which runs in the SAMA5D27-SOM1-EK Linux board connected to PL360G55CF-EK, it takes care of the network formation and management
- PAN Device which runs on a PL360G55CF-EK and joins the network.

Figure 4-1. PLC Linux Coordinator Demo Physical Configuration

The PAN Device runs one of the examples of device included in the Microchip G3-PLC stack (for example, dlms_app_dev for PL360G55CF-EK). The firmware can be updated to perform embed sniffer capabilities which, in combination with the Microchip PLC Sniffer Tool, allows to monitor the PLC traffic and the content of the frames. To enable the embedded sniffer in the device, USI port must be configured and define ENABLE_SNIFFER must be enabled. In conf_usi.h:

```
#ifndef CONF_USI_H_INCLUDED
#define CONF_USI_H_INCLUDED
/* Enable Embedded Sniffer */
#define ENABLE_SNIFFER
#define USI_PORT_0 0
/* Port Communications configuration */
#define NUM_PORTS 1
/* In case of use USB_TYPE, refer to conf_usb.h in order to set baudrate by default */
#define PORT 0 CONF PORT(USB TYPE, 0, 230400, 1024, 1024)
```

/* In case of USI on Mikro BUS, comment previous line, and uncomment next line and conf_busart_if.h configurations */ /* #define PORT_0 CONF_PORT(USART_TYPE, 0, 230400, 1024, 1024) */ /* Select PORT to sniffer phy iface */ #define PHY_SNIFFER_SERIAL_PORT USI_PORT_0 #endif /* CONF_USI_H_INCLUDED */

Regarding the G3-PLC coordinator, on the SAMA5D27-SOM1-EK board terminal or console, it is required to initialize TUN interface to run the G3-PLC coordinator application. The first time after creating the binary image:

\$ mkdir /dev/net \$ mknod /dev/net/tun c 10 200 \$ chmod 0666 /dev/net/tun

And everytime the board is rebooted, before launching the coordinator application:

\$ modprobe tun

Once the TUN interface is enabled, the g3coordd application can be launched:

```
# g3coordd -b CEN_A -d /dev/ttyS1 -s 230400
atmel usart fc00c\overline{0}00.serial: using dma0chan7 for rx DMA transfers
atmel_usart fc00c000.serial: using dma0chan8 for tx DMA transfers
[USI]:TTY port /dev/ttyS1 is open with speed 230400 and descriptor 3
00096075 INFO tun.c:123 Successfully created TUN device
000960D8 INFO app adp mng.c:587 Start modem initialization
000960D8 DBG app adp mng.c:589 Setting command 00: MAC WRP PIB MANUF EXTENDED ADDRESS / 0
                app_adp_mng.c:589 Setting command 01: MAC_WRP_PIB_SHORT_ADDRESS 7 0
app_adp_mng.c:589 Setting command 02: ADP_IB_CONTEXT_INFORMATION_TABLE / 0
000961EA DBG
000961FB DBG
0009620F DBG
               app_adp_mng.c:589 Setting command 03: ADP_IB_CONTEXT_INFORMATION_TABLE / 1
                app_adp_mng.c:589 Setting command 04: ADP_IB_ROUTING TABLE ENTRY TTL / 0
00096224 DBG
                app_adp_mng.c:589 Setting command 05: ADP IB MAX JOIN WAIT TIME 7 0
00096238 DBG
00096241 DBG
                app_adp_mng.c:589 Setting command 06: ADP_IB_MAX_HOPS / 0
0009626A INFO main.c:443 Microchip G3 Device version 0.0.3
0009626A INFO app adp mng.c:837 Show Versions:
0009627E INFO app_adp_mng.c:848 G3 STACK: 1.4.0 Date: 2019-2-4
                                            : 1.6.4 Date: 2019-2-4
: 02.04.02.36
00096288 INFO app_adp_mng.c:860 ADP
000962A6 INFO app_adp_mng.c:894 PHY : 02.04.02.36
000962CF INFO app_adp_mng.c:646 Starting coordinator..
000971D0 DBG main.c: 488 Read from TUN...1, len 52
000971D0 DBG main.c:496 ADP Send Message OK, wait confirm.
00099660 DBG main.c:488 Read from TUN...2, len 52
00099660 DBG main.c:496 ADP Send Message OK, wait confirm.
```

When the devices on the PLC network starts joining to the G3-PLC coordinator, some debug information appears on a3coord console:

0009A8A9 INFO app_adp_mng.c:508 Updating Node List with 1 devices 0009A8A9 INFO app_adp_mng.c:511 Registered Short Address -> 0x1

By default, the coordinator will configure itself as a gateway for the network FD00:0:2:781D::/64. Connect to a board terminal (SSH or telnet) and show the g3p1c IP interface configuration.

If G3-PLC Devices are configured correctly it is possible to ping them using the Link Local Address. Ping command may include IPv6 capabilities:

```
# ping -6 -I g3plc FE80:0:0:0:781D:FF:FE00:0001 -i 1
PING FE80:0:0:0:781D:FF:FE00:0001(fe80::781d:ff:fe00:1) from fe80::781d:ff:fe00:0 g3plc: 56
```

```
data bytes
64 bytes from fe80::781d:ff:fe00:1: icmp_seq=1 ttl=64 time=138 ms
64 bytes from fe80::781d:ff:fe00:1: icmp_seq=2 ttl=64 time=75.2 ms
....
```

Some debug information appears on g3coord console:

```
0009C463 DBG
              main.c:488 Read from TUN...3, len 108
0009C463 DBG
              main.c:496 ADP Send Message OK, wait confirm.
0009C4C3 DBG app adp mng.c:237 AppAdpDataIndication DATA: 104 LQI: 51
0009C84C DBG
              main.c:488 Read from TUN...4, len 108
0009C84D DBG
             main.c:496 ADP Send Message OK, wait confirm.
0009C935 DBG app_adp_mng.c:237 AppAdpDataIndication DATA: 104 LQI: 48
0009CC35 DBG
              main.c:488 Read from TUN...5, len 108
0009CC36 DBG main.c:496 ADP Send Message OK, wait confirm.
0009CCC1 DBG
             app adp mng.c:237 AppAdpDataIndication DATA: 104 LQI: 88
0009D01E DBG main.c:488 Read from TUN...6, len 108
0009D01E DBG main.c:496 ADP Send Message OK, wait confirm.
0009D0BD DBG
             app_adp_mng.c:237 AppAdpDataIndication DATA: 104 LQI: 106
```

The default band configuration for the G3-PLC coordinator daemon is CENELEC_A (same as the embedded adp_mac_serialized project). If your hardware targets a different band, you must set the band option at boot. For example:

g3coordd --band=FCC

Use the option -h (--help) for additional options.

A simple script could be written as application in order to ping all the G3-PLC devices present on the network. In this case, the package inotify-tools is required on the target to wait for changes on a temporary file defined on G3 PLC NODE LIST.

```
# cat /usr/bin/ping app.sh#!/bin/sh
file_nodes=/tmp/g3plc_node_list
file_active_nodes=/tmp/g3plc_node_list_active
echo -e "[PING APP] Configuring TUN interface"
if [ ! -c /dev/net/tun ]
then
    mkdir /dev/net
    mknod /dev/net/tun c 10 200
    chmod 0666 /dev/net/tun
fi
modprobe tun
echo -e "[PING APP] Runnning G3-PLC Coordinator"
g3coordd --silent -b CEN A &
sleep 5
echo -e "\r\n[PING_APP] Waiting for devices..."
while [ ! -f "$file nodes" ]
do
    /usr/bin/inotifywait -qqt 2 -e create "$(dirname $file nodes)"
done
sleep 5
echo -e "[PING APP] Node List created"
counter=1
while :
do
    echo -e "[PING APP] Round $counter"
    while IFS=\frac{1}{n}r' read -r line || [[ -n "$line" ]]
    do
        ping -c 1 "$line" >> /dev/null
        if [ $? = 0 ]
        then
            echo -e "[PING APP] Ping to $line OK"
            echo $line >> $file active_nodes
            sort $file_active_nodes | uniq >> /tmp/o
            mv /tmp/o $file active nodes
        else
            echo -e "[PING APP] Ping to $line failed. Waiting for a new route..."
```

The G3-PLC traffic can be traced from the embedded sniffer in the G3-PLC device as seen on Figure 4-2.

								_	_				_	_		1	
idFrame	Delta	TimeStamp	ModType	ModScheme	PduType	ToneMap	DT	LQI	Sym#	Duration	CmdType	Sec En	Sec Cnt	Seq #	Src Addr	Dest Addr	
4	4680,78	2018-09-18 14:55:54.954	BPSK_ROB	Differential	CMD	0x3F	SOF_NO_RESP	255	40	42,918	BREQ	false	÷	0xE7	-	0xFFFF	13
5	1653,51	2018-09-18 14:55:56.707	BPSK_ROB	Differential	BCN	0x3F	SOF_NO_RESP	127	48	48,475	-	false	÷	0x60	0x0000		18
6	10304,5	2018-09-18 14:56:07.030	BPSK_ROB	Differential	DAT	0x3F	SOF_RESP	255	76	67,938	LBP_JOINING	false	-	OxE8	0x0170530100410000	0x0000	34
7	5,556	2018-09-18 14:56:07.070	÷		-	-	ACK	255	0	15,115				-	•	•	18
8	25,023	2018-09-18 14:56:07.135	BPSK_ROB	Differential	CMD	0x3F	SOF_RESP	126	68	62,375	TM_RSP	false	÷	0x92	0x0000	0x0170530100410000	29
9	5,56	2018-09-18 14:56:07.155	÷	-	-	-	ACK	255	0	15,118	-	÷	÷	-	÷		9
10	25,016	2018-09-18 14:56:07.286	BPSK_ROB	Differential	DAT	0x3F	SOF_RESP	126	128	104,075	LBP_CHALLE	false	-	0x93	0x0000	0x0170530100410000	63
11	5,56	2018-09-18 14:56:07.346	-	-	-	-	ACK	255	0	15,118	-	-	-	-	-	-	9
12	16,68	2018-09-18 14:56:07.386	8PSK	Differential	DAT	0x3F	SOF_RESP	255	20	29,018	LBP_JOINING	false	-	OxE9	0x0170530100410000	0x0000	118
13	5,558	2018-09-18 14:56:07.386	-	-	-	-	ACK	255	0	15,115	-			-		•	63
14	22,243	2018-09-18 14:56:07.572	BPSK_ROB	Differential	DAT	0x3F	SOF_RESP	128	228	173,575	LBP_CHALLE	false		0x94	0x0000	0x0170530100410000	119
15	5,56	2018-09-18 14:56:07.632	-	-	-	-	ACK	255	0	15,118	-	-	-	-	-	-	9
16	19,46	2018-09-18 14:56:07.662	8PSK	Differential	DAT	0x3F	SOF_RESP	255	16	26,238	LBP_JOINING	false	-	0xEA	0x0170530100410000	0x0000	91
17	5,556	2018-09-18 14:56:07.662	-	-	-	-	ACK	255	0	15,115	-	-	-	-	-	-	119
18	16,683	2018-09-18 14:56:07.742	BPSK_ROB	Differential	DAT	0x3F	SOF_RESP	127	80	70,715	LBP_ACCEP	false		0x95	0x0000	0x0170530100410000	36
19	5,56	2018-09-18 14:56:07.777			-	-	ACK	255	0	15,118				-			9
20	20,85	2018-09-18 14:56:07.857	BPSK_ROB	Differential	DAT	0x3F	SOF_NO_RESP	255	84	73,498	LNG_RREQ	true	22846	OxEB	0x0001	OxFFFF	38
21	19,456	2018-09-18 14:56:07.952	BPSK_ROB	Differential	DAT	0x3F	SOF_NO_RESP	127	84	73,495	LNG_RREQ	true	97871	0x96	0x0000	OxFFFF	38
22	117,897	2018-09-18 14:56:08.153	BPSK_ROB	Differential	DAT	0x3F	SOF_NO_RESP	126	92	79,055		true	97872	0x97	0x0000	0xFFFF	43
23	777,074	2018-09-18 14:56:09.000	BPSK_ROB	Differential	DAT	0x3F	SOF_RESP	126	84	73,495	LNG_RREP	true	97873	0x98	0x0000	0x0001	38
24	5,56	2018-09-18 14:56:09.081			-	-	ACK	255	0	15,118							9
25	16,68	2018-09-18 14:56:09.125	BPSK_ROB	Differential	CMD	0x3F	SOF_RESP	255	56	54,038	TM_RSP	false		0xEC	0x0001	0x0000	22
26	5,559	2018-09-18 14:56:09.125			-	-	ACK	255	0	15,115				-		-	38
27	2899,95	2018-09-18 14:56:12.038	8PSK	Differential	DAT	0x3F	SOF_RESP	255	12	23,458	LNG_RREP	true	22847	0xED	0x0001	0x0000	64
28	5,559	2018-09-18 14:56:12.098	-	-	-	-	ACK	255	0	15,115	-		-	-	-	-	38
29	6257,23	2018-09-18 14:56:18.357	8PSK	Differential	DAT	0x3F	SOF_RESP	132	20	29,015	-	true	97874	0x99	0x0000	0x0001	118
30	5,56	2018-09-18 14:56:18.412			-	-	ACK	255	0	15,118				-		-	9
31	157,07	2018-09-18 14:56:18.547	8PSK	Differential	DAT	0x3F	SOF_RESP	255	16	26,238		true	22848	OxEE	0x0001	0x0000	91
32	5,559	2018-09-18 14:56:18.602	-		-	-	ACK	255	0	15,115				-			118
33	9745,63	2018-09-18 14:56:28.346	8PSK	Differential	DAT	0x3F	SOF_RESP	128	20	29,015	-	true	97875	0x9A	0x0000	0x0001	118
34	5,56	2018-09-18 14:56:28.486	-	-	-	-	ACK	255	0	15,118	-			-	-	-	9
35	61,16	2018-09-18 14:56:28.486	8PSK	Differential	DAT	0x3F	SOF_RESP	255	16	26,238		true	22849	OxEF	0x0001	0x0000	91
36	5,557	2018-09-18 14:56:28.486				-	ACK	255	0	15,115							118
37	9850,34	2018-09-18 14:56:38.352	8PSK	Differential	DAT	0x3F	SOF_RESP	124	20	29,015		true	97876	0x98	0x0000	0x0001	118
38	5,56	2018-09-18 14:56:38.467				-	ACK	255	0	15,118				-			9
39	164.02	2018-09-18 14:56:38.562	8PSK	Differential	DAT	0x3F	SOF RESP	255	16	26.238		true	22850	0xF0	0x0001	0x0000	91
40	5.559	2018-09-18 14:56:38.627		-		-	ACK	255	0	15,115			-	-	-		118
41	2771.53	2018-09-18 14:56:41.431	BPSK ROB	Differential	DAT	0x3F	SOF NO RESP	127	92	79.055		true	97877	0.90	0x0000	OVEFEE	43
42	6893 15	2018-09-18 14:56:48 361	RPSK	Differential	DAT	0x3E	SOF RESP	130	20	29.015		true	97878	0.90	0,000	0x0001	118
43	5 56	2018-09-18 14:56:48 495				-	ACK	255	0	15 118				-	-	-	9
44	50.20	2018-00-19 14:56:49 406	8DSK	Differential	DAT	0-25	SOE RESD	255	16	26,229		true	22851	0.61	0-0001	0-000	01
44	30,30	2010-09-10 14:30:48,490	AC NO	Unterential	UAI	UKDF	OUT_RESP	633	10	20,238	-	true	22031	UKC" I	000001	000000	31

Figure 4-2. G3-PLC Bootstrapping seen on Microchip Multiprotocol PLC Sniffer

5. Abbreviations

Adaptation
Device Language Message Specification
Medium Access Channel
Printed Circuit Board
Power Line Communications
Universal Serial Interface

6. Revision History

6.1 Rev A - 07/2019

Document Initial document release.	
------------------------------------	--

6.2 Rev B - 01/2020

1. Hardware Description	Updated Figure 1-2.Added SD card requirements.
3. Features of Microchip G3-PLC Linux Coordinator Application	Updated steps in section 3.1
4. Start-up G3-PLC Linux as Coordinator	Added configuration of embedded sniffer.Added initialization of TUN interface.New example script.

The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5563-9

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit http://www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
http://www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malavsia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough. MA	China - Naniing	Malavsia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca II	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 40-80-627-144-0
Fax: 630-285-0075	China - Shenyang	Taiwan - Hein Chu	Germany - Rosenheim
Dallas	Tel: 86-21-2334-2820	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison TY	China Shonzhon		Israel Ba'anana
Tal: 072 818 7423	Tol: 86 755 8864 2200	Tal: 886 7 213 7830	
Tel. 972-010-7423	China Suzbou	Teiwan Teinei	Itely Milen
Dotroit	Tol: 86 186 6233 1526		Tal: 30 0331 7/2611
Novi MI	China Wuhan	Theiland Bangkok	Env: 30 0331 466781
Tol: 249 949 4000		Tal: 66 2 604 1251	Italy Badaya
Heusten TY	China Vian	Vietnem He Chi Minh	Tal: 20.040.7625286
			Netherlanda Drupen
Indiananalia	Tel. 00-29-0033-7232	Tel. 04-20-3448-2100	
			Tel: 31-410-090399
	China Zhubai		Pax. 51-410-090340
Tel: 317-773-0323			Tol: 47 70004000
Fax. 317-773-3433	Tel: 00-750-3210040		Tel. 47-72004300
			Tol. 49.00.2005707
			Iel. 40-22-3325737
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			
Tel: 951-273-7800			Tel: 34-91-708-08-90
			Fax: 34-91-708-08-91
			Sweden - Gotnenberg
			1ei: 46-31-704-60-40
Iei: 631-435-6000			Sweden - Stockholm
San Jose, CA			1el: 46-8-5090-4654
Iel: 408-735-9110			UK - Wokingham
IeI: 408-436-4270			Iel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			