

GRUNDIG OSCILLOSCOPES

M020: 20MHz DUAL-CHANNEL OSCILLOSCOPE

-20 MHz Dual channel oscilloscope

- $2 \mathrm{mV} / \mathrm{cm}$ with full bandwidth
- Automatic peak-value trigger
- TV line and field triggering
- Add and invert (Both channels invertable)
- Internal graticule and X - Y operation

This 20 MHz dual-channel oscilloscope has advanced facilities, making it easy-to-use, with all the ruggedness and reliability to meet your go-anywhere testing needs. Included is a peak-value trigger to ensure stationary displays. Triggering facilities allow clear display of even complex signal shapes.

£299

VIDEO GENERATCR VG 1000

- Professional video generator
- Comprehensive range of test patterns
- Includes VTR head adjustment signal
- Excellent signas quality
- External sync. facility
- RGB output

A professional broadcast-quality pattern generator to meet the highest professional standards. Its special test card allows full visual assessment of the video system, including a special output for
precision testing of VTRs. $\& 1850$

M022: 20MHz DUAL-CHANNEL OSCILLOSCOPE WITH AUTOMATIC TIME
 RANGE

- 20 MHz Dual channel oscilloscope
- Automatic time base selection
- Soft tuning for fast manual adjustment
- Triggerable 2nd time-base, guarantees error free 'zooming-in'
- Hold-off control and Z modulation
- Plus all the advanced engineering of the M020

Now, the world's first low cost 'scope with automatic time-base selection. Dual-range 20 MHz capabilities also include'soft tuning' in manual mode, so the 'scope leaves you free to carry out the measurement.
£425 GRUNDIG TV/VIDEO TEST EQUIPMENT

COLOUR GENERATOR FG 7

- PAL pattern generator
- 15 test patterns
- Multiburst facility to measure frequency response
- 8 memories for rapid station store/recall
- Suitable for TV sets, monitors or VTRs
- Compact and versatile for field or laboratory use

Versatile enough to check-out TV receivers, monitors and VTRs, this compact generator is at home in the field as it is in the lab or workshop. In addition to 15 monochrome and colour image signals, further picture patterns can be achieved bysuperimposition. Eight station frequencies can be recalled from memory for rapid test capability - even for special bands and the IF output.

For further information and a colour brochure contact our Sales Office.
All prices exclusive of carriage and Vat. Prices correct at time of going to press. A copy of our trading conditions is available on request.

FIELD STRENGTH METER ME90

- Fully automated field strength measurement - LF radio to UHF TV in a single unit
- Versatile test result selection
- Storage of received signal frequencies, for rapid testing
- Alpha numeric display for station checks
- Unattended monitoring with built-in results printer
- Stereo decoding
- Fully portable: integral battery and charger Microprocessor controlled for push-button operation in all transmitter checks. The ME90 allows fast and accurate measurements in radio and TV bands, long wave to UHF. Versatile print capabilities provide hard-copy confidence, whether routine or continuous monitoring
£2950

Wirelessworld over 70 years in independent electronics publishing

August 1986
Volume 92 Number 1606

FEATURES

Developments in radio receivers

Whistlers, twitterings, noise and a diversity of radio systems, from the IERE's recent conference

Microcontroller includes peripherals

by Mike.Catherwood
Built-in peripherals give versatility, illustrated by a limited-issue maskprogrammed microcomputer.

Subcodes explained

by J.R. Watkinson
How control signals are combined with and separated from audio samples.

Solid state tv logo Player 33 by I.G. Brown

Thames TV is about to switch its familiar logo from film to silicon.

Designing with dynamic 36 memory- 2

by Alan Clements
Dynamic ram is not as complicated as
timing diagrams suggest.

How to design good oscillators

By K. Lewis
Parameters to consider when designing these taken-for-granted circuits.

Linescan camera
 by Les Hayward

Considering their simplicity it is surprising these cameras are not more widely used.

8085 development for the BBC Micro

by J. L. Gordon
Simple system introduces 6502 users to another processor family.

The 1986 satellite and cable tv show

Our roving reporter focuses on
opportunities in d.b.s. - as seen at Cable '86

REGULARS

Editor
PHILIP DARRINGTON
Deputy Editor
GEOFFREY SHORTER, B.Sc
01-6618639
Technical Editor
MARTIN ECCLES
01-661 86:38
Projects Editor
RICHARD LAMBLEY 01-6613039 or 8637 (lab.)
News Editor DAVID SCOBIE
01-661 8632
Art Editor
ALAN KERR
Drawing Office Manager ROGER GOODMAN
01-661 8690
BETTY PALMER
Advertisement Manager
ASHLEY WALLIS
01-661 3130
MICHAEL DOWNING
01-6618640
Classified Executive
SUSAN PLATTS
01-661 3033
Ad. Production Controllers
BRIAN BANNISTER
01-6618648
JACKIE PERRY
01-6618649
Electronics de Wireless World
is published monthly USPS 687-540
Current issue price $£ 1.25$, back issues (if available) $£ 1.06$ at Retail and Trade Counter, Units 1\&2. Bankside Industrial Centre, Hopton Street, London SE1 Telephone: 01-928 3567.
By post, current issue £ 1.30 , back issues (if available) $£ 1.40$. Order and payments to 301 Electronics and Wireless World. Quadrant House, The Quadrant, Sutton. Surrey SM12 5AS. Cheques should be payable to Business Press International Ltd.
Editorial \& Advertising offices: Quadrant House. The Quadrant, Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-6613614 Advertising 01-661 3130 01-661 8469 Telex: 892084 13ISPRS C (EEP) Facsimile: 01-661 2071 (Groups II \& III) Beeline: 01-6618978 or 01-6618986. 300 baud 7 data bits, even parity. one stop-bit. Send ctrl-Q, then EWW to start; NNNN to sign off.
Subscription rates: 1 year $£ 18 \mathrm{UK}$ and £23 outside UK
Student rates: 1 year £11.40 UK and \$14.10 outside UK.
Distribution: Quadrant House. The Quadrant. Sutton. Surrey SM2 5AS. Telephone 01-661 3248.
Subscriptions: Oakfield House, Perrymount Road. Haywards Heath. Sussex RH16 3DH. Telephone 04444 59188. Please notify a change of address. USA: $\$ 49.40$ surface mail, £102.60 airmail. Business Press International (USA) Subscriptions Office, 205 E. 42 nd Street. NY 10117.
Overseas advertising agents: France and Belgium: Pierre Mussard. 18-20 Place de la Madeleine. Paris 75008 United States of America: Jay Feinman, Business Press International L.td, 205 East 42 nd Street. New York. NY 10017. Telephone (212) 867-2080 Telex 23827 .
USA mailing agents: Expediters of the Printed World Ltd. 515 Madison Avenue, Suite 917, New York. NY 1002%. 2nd class postage paid at New York,
Postmaster-send address to the athove. (C) Business Press International Ltd 1986. ISBN 00436062

EOR ROBOTICS. ENVIRONENENTAL CONTROL.. RROCESS CONTROI..

For further information on the CA 7000 Series Controller contact:
Cavendish Automation Limited. 45 High Street,St Neots,Cambs, PEI9 1BN. Tele(0480) 219457 Telex 32681 CAVCOM G

You can't close your eyes to our Summer

HUNDREDS OF EXCITING SUMMER SALE OFFERS FROM ELECTRONIC BROKERS, THE LARGEST STOCKHOLDER OF SECOND USER TEST \& MEASUREMENT EQUIPMENT IN EUROPE

SOME EXAMPLES FROM OUR HUGE SALE LIST

TEKTRONIX 308	
FLUKE 7220A	

Data Analyser $20 \mathrm{MHz}, 8$ Channels MLP E3500

SUMMER SALE

TEKTRONIX 4041 SYSTEM

Instrumentation Controller MLP ET3500
$\underset{\text { SALE }}{\text { SUMMER }} \mathrm{E8800}$

1.3 GHz

Comms Counter
9 Digit L.E.D. Display, 30 day warranty MLP 1 E1380 SUMMER SALE

MARCONI TF2702

 Inductor AnalyserOne of the most comprehensive inductance bridges available for use at low frequencies. SUMMER SALE

TEKTRONIX 475A 250 MHz
Oscilloscope
Dual-trace, portable with Dual timebase SUMMER
SALE
$£ 1950$
FARNELL SSG/TTS
520 Transmission
Test Set
10 to 520 MHz coverage, offers testing of transmitters with upto 100 W capabbility.
SUMMER
SALE
Upto

Electronic Brokers
Electronic Brokers
140/146 Camden Street, London NW1 9PB
Tel: 01-267 7070. Telex: 298694. Fax: 01-267 7363

To: Electronic Brokers Ltd., 140-146 Camden Street, London NWI 9PB
\square Please send me your Summer Test \& Measurement Sale brochure by return.
NAME:
COMPANY:
ADDRESS:

Quartzlock OFF AIR FREQUENCY STANDARD

Provides high accuracy 1 MHz \& 10 MHz for frequency calibration If you use Counters \square Timers \square Frequency Meters Signal Sources \& Generators or Radiotelephone Test Systems
 Medium term accuracy 1:10 ${ }^{10}$ Long term 2:1011 without additional drift ageing or temperature coefficient \square This new design on CAD PCB accommodates present \& 1988 standard signals
 DARTINGTON FREQUENCY STANDARDS
 MOOR ROAD, STAVERTON, DEVON TQ9 6PB ENGLAND Telex 42928 A/B WETRAV G (Quartzlock)
 FIRST CLASSINEXT POST DATA SERVICE 080426524

NEWS COMMENTARY

Dull start for new broadcast exhibition

"Broadcast 86 " was held at Frankfurt's Trade Fair centre June 24-27. Europe already has a major international broadcast show each year (IBC in Brighton and the Montreux TV symposium in Switzerland are held in alternate years). "Broadcast" is a newcomer to the European professional broadcastexhibition calendar and Frankfurt Trade Fair say they want it to become the number one show in Europe, on a par with NAB in the US

However, the first
"Broadcast" was more like a local German show than a major international event. Many major broadcast manufacturers were conspicuous by their absence. Ampex, Bosch, Philips, Rohde and Schwarz and Thomson were all absent as exhibitors.
The show's organisers put the poor turn-out down to the short notice at which the show was launched.
The low-level international
support for "Broadcast" can also be accounted for by the view held by many major broadcast equipment manufacturers that Europe already has enough broadcast exhibitions with IBC and Montreux.

There are also an increasing number of smaller national broadcast exhibitions. France now has 'Antenne' in October, Italy has a new broadcast and telecommunications show in Milan this September.
"Broadcast 86" on its first showing was a dull show for the international visitor, but the excellent exhibition facilities available at Frankfurt may attract larger international support if the planned "Broadcast 88 " ever goes ahead.

Radar probes ground

Hidden plastics objects can now be located underground through radar technology developed by ERA Technology The new system uses a pulsed radar to 'illuminate' the ground through dispersionless antenna elements. A sampling receiver has been designed to detect the signals. Digitizing the return signals enables advanced signal processing algorithms to produce accurate pictures of the buried objects.

A detection map can be produced, showing the position in a searched area both in plan view and in cross section if depth information is needed. Developed for and funded by the MoD, the technology can be applied to a variety of civil and military tasks. Civil applications include structural inspection of reinforced concrete or other building applications and detection of pipes, including plastics pipes.

Memory telephone

 diallerNumber storgae and dialler i.c. UM91610 from UMC used in T. Segaran's March article, is available through Manhattan Skyline, Katakana Ltd, Manhattan House. Bridge Road, Maidenhead, Berkshire SL6 7DB at $£ 1.85$.
We are told that the 91610 is pin compatible with the obsolescent MM53143/44 and the AM125610. The AMI chip has no confidence-tone output.

Satcom 87

A new Satellite Communications exhibition is to be included in the British Eelctronics Week 1987, the continuously expanding successor to the All-Electronics Show organised by Evan Steadman. The exhibition will be held alongside the other events at 'The Week' in London's Olympia from 28 to 30 April 1987, now comprising seven concurrent exhibitions: AllElectronics/ECIF Show, Circuit Technology, Fibre Optics, Electronic Product Design, Automatic Test Equipment, Power Sources and Supplies and now Satellite Communications.

At a presentation to potential exhibitors and the press at The Cafe Royal in July, Evan Steadman said that Satellite Communications was 'a natural' to add to the list. "We've done our homework and it's quite apparent that what the satellite industry needs is a professional show" said Steadman "right here in the middle of London."Situated on the top floor served directly by lift, the 75 -stand show will cover professional sateliite equipment, including receiving dishes and associated tech nology, up and dowi-link communication equipment and signal processors as well as domestic receivers programme services, marketing problems, and commercial exploitation of data
communication and video conference services. A conference is planned for 1988 when Olympia will have its own conference facility. Next year's show is expected to attract European exhibitors as well as visitors, and the event will be supported by the journal that carried that pioneering article - Wearing two hats enabled one editor present to complain bitterly of the timing. Claiming to be chairman-designate of a newly formed 14-member European Satellite TV Association he revealed that Cable \& Satellite 87 would be held a month earlier, also in London. As space runs out we have no room to tell you of the mud that was thrown.

Design award

A tape-slide programme, with a booklet and teaching notes, to enable students to produce a simple microcomputer has been granted a design award from the Design Council. The award for £16,000 to Selwyn Houghton, Lecturer in Engineering at Wakefield District College is sufficient to complete the project.

Digital tv standard now...

A universal standard has been recommended by the CCIR (International Radio Consultative Committee) for digital video interfaces and for recording digital tv signals onto tape. The standard is based on that selected by the CCIR for video encoding which stipulates the use of digital component signals, sampled at

...h.d.tv standard later

The CCIR also decided at their recent meeting in Dubrovnik to tackle the standardization of h.d. tv. But this is unlikely to follow such a smooth path as the digital standards; there are a number of national factions, each rooting for its own system. Main contenders are
a rate of 13.5 MHz for luminance and 6.75 MHz for the two colour difference signals. Digital coding of the component signals, rather than conventional composite signals, offer great benefits to broadcasters and programme producers, says the report of the committee, since it allows almost unimpaired postprocessing capability; special effects, electronic tricks and picture manipulation can be performed on recorded signals with the same level of quality that would be achieved if they were performed 'live' on the studio output signal.
the Japanese system which is concentrating on the studio production standard; the Europeans would Iike to see an integrated production, transmission and receiver standard based on the MAC family developed by the IBA. The CCIR does however recognise the need for a single international set of parameters and a working party is planning to offer recommendations to a meeting of a study group in 1988. Those recommendations should be adopted by the plenary assembly of CCIR in 1990.

This flat antenna array comprising 64 interconnected elements on an etched circuit board is claimed to have extremely high gain. No performance figures were available for this 'optimum' d.b.s. antenna, shown at Cable '86 by DX Antennas of Japan. Report on page 30.

New transmitters for IBA television

As part of a $£ 40 \mathrm{M}$ scheme to replace its u.h.f. transmitters, the IBA has signed a contract with Marconi worth $£ 7.5 \mathrm{M}$ for the first 14 of them. The transmitters have powers of 15,25 and 40 kW and use pulse operation for the externalcavity klystrons to give peak sync efficiencies of about 70%. This means that they use about half the electricity of the transmitters being replaced and can pay for themselves in terms of saved electricity bills.
Using the same transmitters at all the IBA sites will also save on maintenance costs as the number of different spare parts needed will be greatly reduced.

The transmitters have the capability of sending two sound channels. Although
there is no short-term plan for the IBA to introduced stereo tv services, the possibility is available and future competition from cable, satellite or other services might precipitate stereo sound

Despite the future advent of d.b.s. services, John Whitney, IBA director-general, believes that there will be a continuing need for terrestial tv, particularly in the regional services which could not be offered by satellite for a long time to come. Meanwhile the existing terrestrial u.h.f. transmitters, at 20 years old are reaching the end of their useful life and need to be replaced anyway. The new transmitters are expected to have a similar lifespan.

Automation for social security computers

Five hundred local security offices are to be computerized and linked through a network to each other and to the central offices in Newcastle-uponTyne and North Fylde. This will eventually enable any claimant to discuss and obtain benefits and entitlements from any DHSS local office or unemployment benefit office in Britain.

The contract to provide the complete, integrated terminal system has gone to British Telecom, and will include the supply up to 1000
minicomputers and 28000 terminals. It will also involve development, implementation and maintenance of sof ${ }^{\text {f }}$ ware to last well into the next century. The first installation, at the Newcastle main office, will be used for accessing the retirement pension records. It is due to be brought into regular use by the end of the year.
Three main subcontractors are Information Technology

Ltd, who supply 32 -bit minicomputers adapted to BT's design from its Momentum 9000 family, Newbury data, who supply displays to BT design and three designs of printer, and Real Time Developments whose flexible lan will be used to link terminal and computers within a site. BT themselves plan a full OSI network to link all the offices together and to various mainframe computer centres which process benefit claims and enquiries.

In Brief

Amateur, CB radio, and tv licence fees are unaffected by the new scale of fees announced by the DTI. Most other fees have been increased by an average of about 18%, varying depending on the service. The full list is published by the DTI. Wireless Telegraphy (Licence Charges) Regulations 19865 (SI 1986 1039, HMSO £1.90).

The complete "Target System" with:-

Built in 20 character display, RS232 Port, Battery Backed RAM, three 16 bit countertimers, $42 \mathrm{I} / \mathrm{O}$ lines and an expansion Port. The Zero-One-Q features the R6501AQ Extended 6502 microcomputer operating at 2 MHz and can be programmed in Assembly language or FORTH.

R.C.S. MICROSYSTEMS LTD,

THE KINGS ARMS
141, UXBRIDGE ROAD,
HAMPTON HILL,
MIDDLESEX.
TW12 1BL
Tel No. 01-979-2204
Telex: 8951470 RCS MIC
RCS Microsystems is a Rockwell distributor

Happy Memories

Part type	1 off	25-99	100 up
4164 150ns Not Texas	. 95	. 85	. 80
41256150 ns .	. 2.40	2.15	2.05
2114 200ns Low Power	. 1.75	1.60	1.55
6116 150ns	. 1.40	1.25	1.20
6264 150ns Low Power	. 2.40	2.15	2.05
2716450 ns 5 volt.	. 2.90	2.60	2.45
2732 450ns Intel type	2.70	2.40	2.25
2764 250ns Suit BBC.	2.15	1.90	1.75
$27128250 n s$ Suit BBC	. 2.45	2.20	2.10
27256 250ns	. 3.85	3.45	3.30
Low profile IC sockets: Pins	814	1820	2840
Pence	59	1112	1724

Please ask for quote on higher quantities or items not shown.

All memory products Japanese or American manufacture.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

HAPPY MEMORIES (WW), Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618
CIRCLE 30 FOR FURTHER DETAILS

3^{n} HITACHI DISK DRIVES

Suitable for use on the Amstrad 6128, 664, Tatung Einstein, BBC with DFS. 40 track, double density. 3 ms track access time. Unformatted capacity - single sided 250 k ; double sided 500 k . Shuggart interface. Plug compatible with $51 / 4$ inch drives.

Cables avaliable for connection Aristrad - $\mathbf{£ 7 . 5 0}$ plus VAT. BBC - $\mathbf{£ 1 0 . 0 0}$ plus VAT. Tatung - $£ 10.00$ plus VAT.

FOR FURTHER DETALLS SEND S.AE. TO:

MATMOS Ltd., Unit 11, Lindfied Enterprise
Park, Lewes Foad, LINDFIELD,
West Sussex RH16 2LX Tel 0444-73830

R68K PERSONAL ROBOT

Mobile robot with optional arm controller includes 68000 processor, up to 128 K rom, 16 K ram, 16 Ch . ADC, SPO256.
Uses: Security, Education, Industrial, Promotional,
Home.
Built-in software makes it the first really useful personal robot, future extensions include improved speech recognition and vision.
Robot (inc. Controller) $£ 795$
Arm ..£595
Controller. £195

COMMUNICATIONS COMMENTARY

Two conferences, held within days of each other in July, provided a good opportunity to catch up on current trends in radio communications research and development in commercial applications, military communications, university and Rutherford Appleton Laboratory projects, broadcasting and the world of amateur radio. The IERE Radio Receivers conference at Bangor, with 130plus delegates, allotted some 25-35 minutes to each of over 30 papers. The URSI National Colloquium at Birmingham with about 65 delegates skipped through 26 papers at a rate of three or four an hour in a range that varied from far-out fundamental physics to the workaday world of measuring h.f. radio noise levels in ships (worryingly high!).

VLF errors

An excellent example of how a project that starts out primarily to confirm other people's work can develop into a discovery of considerable practical significance was the account at the URSI colloquium by Dr R Barr (New Zealand DSIR, currently at Kings College, London) of his investigation of v.l.f radio propagation over the Antarctica icescape. Initially his object was to confirm earlier work in Greenland and North America of the greatly increased attentuation of Omega navigational signals when they pass over thick layers of ice. However by making a synthetic aperture directional analysis of signals received during some routine flights to the New Zealand base in Antarctica he has shown that not only are the Omega signals greatly attenuated but they are in effect diffracted around the ice with the result that any signals with paths crossing or skirting large ice layers are "bent" out of their great circle paths, the arrival angle changed and resulting in false Omega readings. He points out that while Omega is seldom used as a radio-navigational aid above
the Antarctic icescape, the effects could apply over significantly large areas of the Pacific.

Hazards

Dr P.S. Excel (Bradford University) who is examining probabilistic factors in the spark and ignition hazards arising from electromagnetic radiation is clearly convinced that the present British standards (BS6656 and BS6657) do not take enough account of the unlikelihood of a number of theoretically possible hazards arising at the same time. He questions, for example, "Why are not petrol stations blowing up willy-nilly around highpower m.f. transmitters?" and points out that most other industries accept some small level of "statistical" risk in their operations. I suppose he is right, although it does appear to some of us that his probabilistic theories fly in the face of Murphy's Law that if anything can possibly go wrong it will do so at the most inopportune moment. Perhaps of equal concern was his open admission of what has long been evident: that BSI committees are being leaned upon by Government, including the Health and Safety Executive as well as industry representatives, to accept compromises rather than to stick rigidly to "worst case" solutions.

Cross-polar puzzle

At Birmingham, J.E. Doble of British Telecom Research showed how even the relatively stable microwave spectrum can still spring curious surprises that can cause unexpected outages of digital links.

An experimental 6 GHz link over a 51 km hop is designed to pass $140 \mathrm{Mbit} / \mathrm{s}$ data in a crosspolarization mode. Initially problems were experienced during cross-polar interference due to the lack of off-axis cross-polar isolation of the dish antennas. These were redesigned to provide some 48 dB isolation reducing to not less than about 38 dB off-axis, and
it was expected that this would solve all the problems. A nasty shock came in April 1984 when cross-polar degradation occurred not only in the form of short frequency selective spikes but closely correlated to the slow fades that commonly denote tropospheric propagation, resulting in outages extending over five hours on circuits intended not to show outages not exceeding 28 seconds in any month.
Nor did this prove to be a one-off event. Similar effects were observed in February 1985 and enquiries showed that this unusual effect has been observed from time to time in West Germany, though this had not been reported internationally. It is now believed that such conditions can occur perhaps once or twice a year although difficult if not impossible to predict.

Present thinking suggests that in certain weather conditions a temperature inversion can occur about 200 metres above ground level and superrefraction conditions tends to be forced down even below the height of the microwave towers.
British Telecom are being forced to undertake an extensive monitoring programme to determine whether such conditions occur only in the coastal areas of East Anglia or, as seems likely, over the whole country. It is leading to the conclusion that if communicators are to use spectralefficient systems operationally somebody will have to do a lot more work on cancellation techniques.

Communicating

A major part of British communications R\&D is directly linked to defence applications. There were times, particlularly at Bangor, when one felt that engineers are endlessly involved in chasing their own tails. First you develop a system. Then you develop electronic countermeasures against your own system. Then you change your own system to provide electronic counter
countermeasures... and then knowing the weaknesses of your own system you once again set out to destroy its capability. Gradually the systems become more and more complex, more and more under software control (despite the difficulty of finding and correcting software errors under field conditions). Then you start a programme to reduce size and cost and based on the assumption that the Services are morons led by donkeys, and already leading to a confusion of the role of, for example, the Royal Signals with that of the Platoon signallers.
In the second of two 'key note' addresses at Bangor, Professor William Gosling of Plessey spoke eloquently of the danger of explosive growth of communications traffic but warned that we are taking too little account of the need for spectrum conservation. He bitterly attacked the use in the sections of Band III released to land mobile of "Armstrong's nightmare child" (i.e. frequency modulation) and the widespread use of excessive transmission powers. He regretted that the study of transmitters is not a fashionable subject, with only one university group engaged in such work. More should be done to develop digital vocoders which, combined with voice synthesizers, could result in voice channels narrower than that of 100 -baud teleprinter circuits, he suggested.

Listening to the many new ideas for real-time channel evaluation, the wonders of spread spectrum and the like, it at times seemed that it might be more sensible to investigate not how much more information we can cram into the finite radio spectrum but whether users really need to be given an open-ended facility. Traffic expands to fill the channels available. But do we, civilian or military, really need to be able to speak to anyone at any time? Tell someone that they are limited to a few short telegraphic signals per day and it can concentrate the mind wonderfully.

Tel 021－4746000
Telex No 312242
SERVING THE COMMUNICATIONS AND ELECTRONICS INDUSTRIES
MIDTLX G．
102 PRIORY ROAD，SCRIBERS LANE，HALL GREEN，BIRMINGHAM，B28 OTB．ENGLAND．

VALVES：																		
TYPE	LIST																	
2N3375	f 1090		${ }_{6} 6$		13750		200		E		f		¢					
2N3553	1090 160	$2 S C 1978$ $2 S C 2053$	－ 080	AH2 11A	13750 9000	EF94 EF95	200 +160	OA3	250	GAUbG1	370	813	3000					
2N3632	1295	2 SC 2237	6.00	AH2532	3150	EF183	190	O83	250	${ }_{6 A C 8}^{6 B A l i}$	380	934	1800					
2N3733	1295	2SC2287	9.60	BT5	5250	EF184	－ 80	OC3	250	6BAO	150	935	4120					
2N3866	120	2SC2290	20.00	BT5B	5250	EK90	140	2 C 39 A	3990	$6 \mathrm{BH6}$	$\bigcirc 15$	20551 A	480					
2N4416	075	MRF240	2070	BT17	14200	EL34	390	2C39WA	4200	6 J 6	8 （x）	5544	480					
2N4427	140	MRF245	3300	BT17A	13000	El36	230	2021	200	bekkar	4 bl	5.545	\％ 500					
2N5090	1090	MRF247	33.30	BT95	12500	EL8a	160	2 E 26	750	bunce	3 b	प5ヶ\％	2450					
2N5109	195	MRF433	9.00	C3J	3000	EL86	210	2 K 25	11400	（，BH2\％，	2 bl	ちちら＇s	5250					
2N5160	3.00	MRF449A	1015	E55L	3000	EL519	770	34002	7800	bea	1 ＇s，	51\％1	295					
2N5589	760	MRF450	11.50	E80CC	1400	${ }^{\text {EL803S }}$	995 1375	35002 3828	8504	1f．BEA	1\％	3e6，$/ 6$	14000					
2N5590	790	MRF450A	13.80	E80L	2100	EN32	1625	3 C 28	1501	br．j3	2 sf	为的＂	$6_{2} 15$					
2N5591	9.50	MRF454	17.25	E88CC	390	EN91	200	$3 \mathrm{C} \times 100 \mathrm{Ab}$	24500	i，	\％	\％${ }^{\text {a }}$	220					
2N5641	6.95	MRF454A	1725	E90CC	750	EZ80	160	465 A	5250	6， 5	420	${ }^{2} 189$	3200					
2N5642	9.30	MRF455	16.50	E130L	2125	E281	150	4125 A	60， 90	4， $8: 8$	225	E，14Ei	－ 900					
2N5643	1185	MRF458	17.20	EB91	135	E290	150	4250 A	16 （1）	\because \％	\％${ }^{\text {\％}}$	\％14i，区	9900					
2N5913	250	MRF475	2.30	EBC91	119	FG17	2450	4400 A	80 2，	－ 415	425	5，3604	495					
2N5944	785	MRF476	215	EBF89	135	FG105	6000	4400 H		E，MSt，	$3{ }^{5}$	¢，5504	725					
2N5945	1010	MRF644	2250	ECC32	＋325	GXU1	1500	44000		3，1， 4 trin	－ 20	58838	870					
2N5946	1080	MRF646	27.00	ECC81	160	G234	4500 210	4．332	1305			6973	395					
2N6080	665	MRF648	3270	ECC82	160	K166	900	$\begin{aligned} & 4.35 A \\ & 4<2508 \end{aligned}$	1－91）	\cdots	473	70274	650					
2N6081	840	MRF901	275	ECC83	160	KT77	875	EIM 4 MP	50\％	selt	250	7199	420					
2 N 6082	10.50	SD1013	975	ECC85	185	KT88	2495	4c．$\times 2$ bob	O\％	\％00，	＋ 295	7262 A						
2N6083	1120	SDIO19 STUD	2310	ECC88	200	ML8536	27500	NAT	$\Delta_{\text {－}} \mathrm{E}_{2} \mathrm{f}$	2）Lie	200	7362 A	2600					
2N6084	1200	SD1019－5	2280	ECC91	200	ML8741	26500	$4 \mathrm{x} \times 350 \mathrm{sm}$		\therefore i，b，G？	${ }_{3} 90$	7586	1220 1150 15					
2SC1729	12.50	SD1127	3.10	ECC189	200	NL SERIES		4×150 ma	3375		625	7587	3500					
2SC1945	3.45	SD1134 1	2.25	ECF80	150 +165	QOV02．6	2200	$54 \mathrm{R4}$	21%	3， 11	225	7591 A	465					
2SC1946A	1600	SO1136	1190	ECF86	165	QOVO3 10	530	54544	21%	＂S．7GT	225	7815 AL GE	4800					
2SC1947	850	SO1143	9.40	ECH81	180	Qvo3 12	700	SR4Gra e	35	SSATHTE	305	7815R	5300					
2SC1969	1.80	SO1219	1470	ECL82	190	OY3 125	5750 6300	5u4Ge	215	¢くご	200	8122	10100					
2SC1970	1.40	SD1272	10.95	ECL86	160	OY4 250	6980	${ }_{6}^{5 / 4 \mathrm{HEH}}$	23		＋ 50	8906AL	5500					
2SC1971	350	SD1278	13.75	EF80	170	RG1 240 A	1000		$2{ }_{2}{ }^{2}$	12 L	170	${ }^{15082}$	650					
2SC1972	950			EF85	300	RG4 3000	9000	6ムk ${ }^{\text {¢ }}$	195	12 Baf	180	5728 807	5200					
INDUCTION AND DIELECTRIC HEATING SPARES				EF86	230 230	XG1 2500	5250	64L5V．	120	12847	235	810	7500					
INCL				EF91	295220	XR1 3200 X H 16400	725012000	6AO5W 6456	180	$\begin{aligned} & 128 Y 7 \mathrm{~A} \\ & 12 \mathrm{BZ6} \end{aligned}$	$\begin{aligned} & 270 \\ & 370 \\ & 375 \end{aligned}$	812A	3685					
				WE ALSO SUPPLY EIMAC TUBES AND ACCESSORIES														
CERAMIC CAPACITORS		SOLID STATE RECTIFIERS					EF93	150	$\begin{aligned} & x H_{1} 6400 \\ & O A_{2} \end{aligned}$	200		6AS7G	430	120W7				
VACUUM CAPACITORS		RECTIFIER VALVESOSCILLATOR VALVES		1000＇s Of VALVES／TRANSISTORS，IC＇S IN STOCK．PLEASE ENQUIRE ON TYPES NOT LISTEC														
GRID LAMPS CARBON FREE HOSE				SERVICE AIDS			ATSINK COMP 100g 150				PRICES							
		OSCILLATOR VALVESCOOLING FANS／FILTERS		CONTACT CLEANER－ 1.00FREEZE IT AEROSOL -1.25							F GOING TOPRESS							
WATER FLOW SWITCHES		etc etc					SILICONE GREASE ${ }^{\text {a }}$／50				TERMS－PLEASE ADD E 1.00 P\＆PANDVAT＠ 15% to orders．							

CIRCLE 22 FOR FURTHER DETAILS

LOW COST C．A．D． ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS！

I．B．M．PC（and compatibles）：BBC MODEL B，B＋and MASTER：AMSTRAD CPC and SPECTRUM 48K
ANALYSER I and II compute the A．C．FREQUENCY RESPONSE of linear （analogue）circuits．GAIN and PHASE，INPUT IMPEDANCE，OUTPUT IMPEDANCE and GROUP DELAY（except Spectrum version）are calculated over any frequency range required．The programs are in use regularly for over any frequency range required．The programs are in use regularly for
frequencies between 0.1 Hz to 12 GHz ．The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated
Circuits containing any combination of RESISTORS，CAPACITORS， INDUCTORS，TRANSFORMERS，BIPOLAR and FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated－up to 60 nodes and 180 components（IBM version）．
Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS，AUDIO AMPLIFIERS，LOUDSPEAKER CROSS－OVER NETWORKS，WIDE－BAND AMPLIFIERS，TUNED R．F．AMPLIFIERS，AERIAL MATCHING NETWORKS， TV I．F．and CHROMA FILTER CIRCUITS，LINEAR INTEGRATED CIRCUITS etc．
STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by ＂breaking the loop
Tabular output on Analyser I．Full graphical output，increased circuit size and active component library facilities on Analyser II．
Check out your new designs in minutes rather than days．
ANALYSER can greatly reduce or even eliminate the need to breadboard new designs．
Full after sales service with telephone query hot line and FREE update service
Used by INDUSTRIAL，GOVERNMENT and UNIVERSITY R\＆D DEPARTMENTS worldwide．IDEAL FOR TRANING COURSES．VERY EASY DEPARTMENTS worldwide．IDE
TO USE．Prices from $£ 20-£ 195$ ．

For further details and example computation or for details on our New DRAUGHTING program，please write or phone
NUTEABOR ODOS SUSEBEDS［\｛Q］］
Dept WW，Crown Street，
St Ives，Huntingdon，Cambs．PE17 4EB．
Tel：（0480） 61778

Lifelong morse

The Department of Trade and Industry has agreed to a significant change in respect of Class A licences. For many years new licences have been issued only to applicants who have passed the official morse test within the past twelve months. This has meant that almost invariably candidates seek to obtain a pass in the Radio Amateurs' Examination (RAE) before attempting the morse test, otherwise there is always the possibility that the time may have expired before the RAE is passed with the result that the candidate has to retake the morse test.

It has also had the effect that those holding Class A licences are reluctant, even if inactive over a considerable period, to give up their licences since they have had to retake the morse test if they later reapply. Another result tends to be prompt payment of licence fees to avoid the risk of having the licence cancelled and then having to retake the morse test to get it reactivated.

However the DTI has now ruled that the validity of the morse test, like that of the RAE certificate is unlimited in time. Onced passed it need never be retaken.

The RSGB, following dissatisfaction expressed by would-be candidates for morse tests, has been able to announced the setting up of test centres in a number of counties, apart from the facilities being provided at mobile rallies.

It would appear that the establishment of the test centres, each able to call upon two approved volunteer examiners, received a set-back when British Telecom unexpectely ordered its employees to take no part in the running of the RSGB tests, whether or not morse is involved in their work for BT. This followed the change when BT suddenly decided it would like to continue administering the tests after having formally given notice that it wished to hand this over to some other body.

The DTI is prepared to permit amateur operation from oil rigs and platforms, granting them the status of off-shore islands. However DTI stipulates that permission must al-
ways be obtained from the owners or lessees of the rig, the safety officer and the radio officer and that any restrictions imposed by them must be followed.

Space

Although this year's series of launch vehicle disasters has thrown the West's space programme into near disarray, planning for various scientific and experimental projects is still continuing in the hope that, come the day, launchers and funding will be AOK.

Dr D.L. Croom (SERC/RAL) described the ambitious plans for a NASA international space station programme to establish a multi-element, multi-user manned or serviced space facility by the mid1990s. The European Space Agency contribution ("Columbus") includes one of the manned modules of the main core station plus one of the 'Polar Platforms' for Earth observation and other payloads.
Dr J.R. Norbury (SECR/ RAL) described the feasibility studies for a mobile radio payload for T-Sat which has picked up some of the ideas of the CERS project that was abandoned in 1984.

The plan is based on the idea that communications satellites are still based on the geostationary concepts of the mid1960s. It is hoped that T-Sat will carry time-divisionmultiplex transponders into an elliptic Molinya-type 12 hour orbit in which the satellite would hover directly above the UK for eight hours, with an operational system comprising three orbiting satellites but each requiring only half the launch-energy of a comparable geostationary satellite. This would radiate L-band signals down to the UK for reception on flat 50 cm square antennas mounted on the horizontal roof of vehicles.

It is argued that there would be much less signal variation than with the low elevation of geostationary satellites (only about 2 dB fade margin) and little or no screening from building or vegetation. Mobile transmitters of 10 to 20 watts power with the simple flat antennas would suffice. But so far only the study work has been funded. Early in 1987 the

Government will have to decided whether to fund at least the next phase of the work or whether, like CERS, the projects will be abandoned.

RAE courses

As usual a number of courses for the RAE are due to start in September or October at local adult education or further education centres.

There are also a gradually increasing number of courses in practical electronics construction; for example the one at Paddington Green aims to provide an elementary grounding in electronics, using the college facilties, as well as preparing candidates for RAE.
John Lawrence, GW3JGA, who provided the RAE course at the Prestatyn Evening Institute has for several years run instead a "Practical Amateur Radio Class".
The students - all from previous RAE classes - have had to choose from several constructional projects of varing complexity such as morse oscillator, v.h.f. reflectometer h.f. directional power meter, 100watt dummy load, f.e.t. dip oscillator etc. Some projects were designed by GW3JGA from scratch, others based on existing designs, but in each case all the information together with a built and working sample was available on the first evening so that the level of constructional work and performance of the unit could be judged by students.

Then the first 20 minutes each week were spent on some aspect of construction or practical setting up of amateur radio station equipment, including soldering, fitting coaxial plugs, simple metal work, antenna construction, tuning up of transmitters, testing for television interference, safety aspects etc. The rest of the evening was spent with John Lawrence assisting students with constructional projects.
At first there was a great lack of confidence-some in the class, although holding amateur licences, had never used a soldering iron. Many had difficulty in equating the circuit diagram with physical components and wiring. The physical wiring of switches was regarded as difficult.

The subsequent de-bugging of projects that did not work first time needed to be covered in easy stages: visual examination, point-to-point checking; voltage measurements. In future John Lawrence intends to cover simple fault-finding at an earlier stage so that the students can make checks as the work proceeds.

In practice, all students completed their projects successfully. Several entered equipment in the constructional competition at the local club.

The general use nowadays by newcomers to amateur radio of entirely factory-built equipment has clearly left a gap that needs to be filled.

In brief

Oxfam are seeking volunteers with a good knowledge of the safety aspects etc of electrical appliances to help sort out and check electrical goods donated for sale at their 750 shops throughout the UK (offers to Faye Wark, Oxfam, Freepost, London N12 9BR)...Shozo Hara, JA1AN, president of the Japanese Amateur Radio League has been awarded a "Ranjuhosho" blue ribbon medal by the Japanese Ministry of Posts and Telecommunications, regarded as a high honour in Japan ... JAS-1 the first Japanese amateur radio satellite is due to have been launched on a Japanese $\mathrm{H}-1$ vehicle by the time these notes appear... A new amateur radio emergency service has been established in Denmark. BARTG has its own rally at Sandown Park Racecourse, Esher, Surrey on Sunday, August $24 \ldots$ The rtty group is concerned that about 1000 of its members have failed to renew their subscriptions this year... Problems which arose on Oscar 10 during May which locked the satellite into Mode B still persisted in early July but there are hopes that they can be overcome. Uosat has also experienced some operational problems. The Uosat radiation detector (Channel 3) had been proving unreliable and had been switched off during the week following the Chernobyl disaster but during the following week recorded high radiation readings in the course of orbits that passed close to the Chernobyl area. -

((0) AGHTH) DESIGN, DEVELOPMENT AND MANUFACTURE OF RF COMMUNICATIONS EQUIPMENT

RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP
TELEPHONE: CANTERBURY (0227) 456489

TYPE 9006

3 $\sqrt{5}$
TYPE 9002

GASFET RF PREAMPLIFIERS. Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$ Masthead or local use.
 TYPE 9006 FM As above. Band It $88-108 \mathrm{MHz}$. N. 9002 Two Gain 25 dB adjustable.... $£ 65+£ 3 \mathrm{p} \& \mathrm{p}$ TYPE 9002 Two stage Gaslet preamplifier, N.F. 0.7 dB . Gain 25 dB adjustable. High Q filter
Tuned to your specified channels in bands IV or V. TYPE 9004 UHF two stage Gasfet preamplifier. N.F. O.7dB Gain 25 dB adjustable. High Q fiter Aligned 10 your specified frequency in the range $250-950 \mathrm{MHz}$....................................55 $+£ 3 \mathrm{p} \mathrm{\& p}$
TYPE 9035 Mains power supply unit for above units TYPE 9035 Mains power supply unit for above units
TYPE 9010 Masthead weatherproof unit for above amplifiers

TYPE $9+13$ PHASE LOCKED LOOP FREQUENCY CONVERTER. Provides the performance required for television retransmission systems. Converts your specified input channet in the range $30-1000 \mathrm{MHz}$ to your specilied output channel in the range $30-1000 \mathrm{MHz}$. 1 mV input,
10 mw output $(+10 \mathrm{dBm}$. Gain 60 cB adjustable -30 dB . Will drive transmitting 10 mW output $(+10 \mathrm{dBm})$. Gain 60 dB adjustable -30 dB . Will drive transmitting amplifiers
directly TYPE-9114 RECEIVING PHASE LOCKED LOOP FREQUENCY CONVERTER. Simila to above but operating at lower input and output signal levels, suitable for receiving systems. Gain 25 dB
 TYPE 9115 As type 9114 with integral mains power supply................................. $245+£ 10 \mathrm{p} \& \mathrm{p}$
 TYPE 8036 As above but operating directly in the range $600-1000 \mathrm{MHz}$. Output 1 mW $299.50+23$ pap TYPE 9182 FM EXCITER $88-108 \mathrm{MHz}$ deviation $\pm 75 \mathrm{KHz}, 10-600 \mathrm{MHz}$ deviation $\begin{array}{r}〔 149+\varepsilon 4 \mathrm{~K} \% \mathrm{pz} \text {. Output }\end{array}$ TYPE 0086 FM TRANSMITTER $89-108 \mathrm{MHz} 50$ wats RF TYPE 9086 FM TRANSMITTER $88-108 \mathrm{MHz} 50$ watts RF output. $24 \mathrm{~V}+\underset{\varepsilon}{ }$ supply. Complete
modular system TYPE 9087 As above with integral mains power supply unit . PLEASE ADD 15% V.A.T. ON TOTAL
£ $900+£ 40$ p\&p

CIRCLE 41 FOR FURTHER DETAILS

PRINTERS - MONITORS - TERMINALS - PERIPHERALS

Burroughs MT710: Intelligent Green $12^{\prime \prime}$ VDU with 3 micros and 64 K store. RS232. Programmable. Only $£ 149$ new + \&15 P\&P
$12^{\prime \prime}$ Open Chassis Video Monitor: by Hitachi standard composite Video and 12 V input. Green screen, wide bandwidth. $£ 40.00+£ 7.00 \mathrm{P}$.

Cased Video Monitors: $12^{\prime \prime}$ or $15^{\prime \prime}$ Green Screens standard composite video \& mains $£ 60.00+£ 7.00 \mathrm{P} \& \mathrm{P}$
Centronics 306 Line Printers: Professional fast (120 cps), superb quality 80 column printer. Parallel i/f. ONLY $£ 99$ $+£ 15.00$ P\&P
Texas Silent 700 Printers: Whisper quiet 80 col matrix printer with RS232 interface. ONLY $£ 50.00+£ 7.00 \mathrm{P} \& \mathrm{P}$
Diablo 630 Daisywheel printer; OEM i/f NEW $£ 599+£ 15$ P\&P
Calcomp 565 Drum Plotter: OEF $£ 450+£ 10$ P\&P.
Many more bargains. Phone for your requirements. WE ALSO BUY

Callers welcome Cailers welcome oy appointment

BECKENHAM PERIPHERALSLTD 01-466 5582
Rodway Road, Bromley
Kent BR1 3JL
CIRCLE 32 FOR FURTHER DETAILS

Reduce Designer Fatigue

Linc-Ace System
1 Linc-Ace (10f 18)
2 Linc-Lug
3 Linc-Sink
Also: Feet
Gaskets
24 items
Catalogue
from:

PO Box 110, Haywards Heath, West Sussex RH175YU. Tel: (0444) 451418

RELATIVITY

Michael Dobson in the August issue, claims that I neglect the force accelerating the clock balance wheel round'. I am careful that this is not so. For this reason I used a freely rotating dise as my clock. I specifically say in the section on Time and Relative Motion that to quantify the motion of a spring and balance wheel requires relativist ic knowledge which we do not have at this stage of the argument'.

If one accepts that mechanical force as we experience or measure it is given by
force $=$ rate of change of linear momentum $=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{mv})_{\text {, }}$
then it is casy to show that
torque $=$ rate of change of angular momentum $=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{I}(1))$
follows irrespective of how I is changed. My freely rotating disc experiences zero torque; hence its angular momentum is constant and it slows down (ω reduces) as its moment of inertia I increases and, conversely, speeds up as I reduces.

This phenomena is commonly observed, for example, in skating. When a skater is spinning we have all seen his (her) speed of rotation increase as he (or she) pulls in legs and arms. In this case the moment of inertia, I, is reduced and ω increases to keep I ω constant.

This answers the rest of the letter; for example, I do not need to argue about table recoil and no ambiguous equations are used to describe experimental affects.
A.H. Winterflood clearly understands why I reverse the usual argument but regards the hypothesis that 'energy has inertia mass' as equally crazy as the usual one about the speed of light.

It is generally accepted that
force $=$ rate of change of
momentum $=\frac{d}{d t}(m v)$
provides a recognition of mechanical force and a basis for measuring it. When force is zero we get Newton's first law and momentum, mv, is what Newton meant by 'quantity of motion' in his second law.

Accepting this definition of force and also that

Mechanical work $=$ force \times distance
there is shoals of evidence that energy and mass go together in the way I express it. This evidence lies in particle accelerators, radiation

May I thank all those readers who, as well as taking the trouble to fill in the recent questionnaire, wrote to offer criticism and to express their views on content and presentation. These opinions are helpful to the editorial team and are not treated lightly. In the very near future, readers will see many of their suggestions implemented.
 EDITOR
 effects, interactions between particles, nuclear energy etc, etc. If you insist that the concept 'energy has inertial mass' is crazy
 MATHEMATICAL RAKE'SPROGRESS

 then in order to explain what is consistently observed. you have to reconstruct the whole system of measurement and definition of energy. You will, for example, need to say that what is felt as a severe bang is not erergy and/or. propose complex laus such as in Michael Dobson's letter according to which the action of force in some unexplained way depends on velocity with a factor $\left(1-v^{2} / c^{2}\right)^{12}$. You end up with far more 'mind boggling' rules than the one simple rule I propose, and aiso arequirement to explain them.
The task may be beyond human wit so far but it is not ímpossible. As commented in my article I am convinced that nature is essentially simple and that the basic laws are virtually self evident propositions. Newton's laws of motion and conservation of energy can be seen in this way. James MacHarg in his letter perhaps gives a basis for thinking that 'energy has inertial mass is also a self-evident proposition.
James MacHarg describes the concept of inertial mass very clearly as requiring acceleration and therefore preventing instantaneous change. He implies an objection to the proposition that energy has inertial mass but does not explain why. On the contrary his own idea makes it very reasonable. Since a packet of energy should not be instantaneously movable from A to B as we see it, then it must have inertial mass! The only other step that he needs to make to agree my line of argument is that the packet of energy sees itself as one event.

He makes another important point that we only see what we see and not what actually happens. This is why it is essential to base any positive theory on experimental procedures, i.e. measurements and definition of time, distance, energy, mass etc.

Albert was, of course, swallowed by the lion. When the savage understood he swallowed his ego and re-instated Albert.
M.H. Butterfield

Wimborne
Dorset.

Wireless World is to be congratulated for providing a forum for discussion of various 'non-establishment' views I Iam thinking particularly of those of Ivor Catt, but there have been others in the past. Unfortunately, a subject (whether it he maths, physics or ice-skating) is easy when you cannot do it, but very difficult when you can do it - or in other words a little knowledge is a dangerous thing. It is apparent that many of your correspondents fall into this trap, though I must qualify this with the thought that I may be falling into it too.
C. F. Coleman (Letters, July 1986) seems to doubt the "wellknown' phenomenon that the output of a low pass filter happens before the input pulse arrives. Well it does. If a perfectly square pulse or edge is fed to a perfect low-pass filter (by which we mean one that passes all frequencies below the cut-off with zero attenuation, and that slops all frequencies above the cutoff with infiniteattenuation) the calculated out put starts to happen before the input. This is, of course, impossible, so we deduce that either the maths is wrong, or that it will be impossible to make such a filter in the real world. The maths is quite a simple application of a Fourier transform and I can supply Mr Coleman with a derivation if he requires one. I am surprised that Mr Coleman has apparently not heard of this phenomenon, since he seems to be a firm heliever in Fourier transforms. There are times however. I for example when a voltage step travels downa transmission line), whentodress the problem up in Fourier transform theory would make it needlessly and horribly complicated.
The situation as it relates to the 'low-pass filter' problem is that Fourier transforms are an abstract tool (one of a family of integral transforms) which bear no relat ion to the physical world. When we try and use them, we can only do so if they are a good model for observed phenomena. The ideal low-pass
filter is outside our experience, and it is a difficult thing tosay whether the maths is right or wrong. It it is wrong then the theory needs modifyingjust ins Newtonian dynamics needs modifying to take into account certain conditions.
Mathematics can be studied in itsown right, but when it is used to help solve physical problems we must remember that it is a tool, and one does not use a sledgehammer to crack a nut. We must choose the right tool for the job, and this means a level of understanding to which people are not alwaystrained.
David Gibson
Broadstone
Dorsel.

S5/8

While I would endorse one of Mr Hardie's objections to RS232, i.e. the lack of connector standardization, I must take issue with almost every aspect of the proposed S5/8.
What is the use of introducing this standard in Britain without first reaching agreement with other countries; in particular America and Japan? The use of S5/8 in this country alone will result in even more of the "break out boxes" and adaptors rightly despised by Mr Hardie.

Having slated the industry standard D type connectors, Mr Hardie proposes to use one of the worst connectors on the market? The DIN connector is on ly just suitable for the domestic audio equipment, for which it was introduced. It is certainly not robust enough for office use, and beyond consideration in an industrial environment.

The high-voltage bipolar signalling of RS232 is criticized, and a low-voltage groundreference system proposed. This is surely retrograde. Where mains powered equipment is used, ground potentials can easily exceed the logic margins. This is the very reason for which RS232 was designed!

With good design it is quite possible to incorporate RS232 into battery equipment. Epson, for example. produce a small portable computer with RS232 and disc drive-all battery powered.

If a new standard is to be introduced, I would prefer to see a differential, line-matched system, based upon RS422. Suitable interfaces for this such as the MC3486/7 have been with us for years, and are inexpensive. This would have the added advantage of much longer lead lengths than presently practicable.

Finally. I think it is foolish to specify signalling rate and data structure. There will always be differing requirements and to tightly specify these will lead to problems.

Much as I would like to see Britain in the forefront of standardization. such standards must have international agreement to be successful. and I doubt very much that $\mathrm{S} 5 / 8$ would find such agreement
L. Hayward

Technical Director
Eastpoint Lid
Wareham
Dorset

SIMPLE PULSE GENERATOR

Having had no end of trouble with 4528 monostables myself. I was not surprised to find in Brian Frost's article in August 1986 familiar phrases like"...between 15 V and 9 V a change in pulse width of around 15% can be expected" and "Due to the nature of the 4528... an accuracy of around 20% will be quite good." I suspect also that the two pulse width controls interact to some extent, because the 4528's pulse width varies with repetition frequency as well as just about everything else!

If Mr Frost were to throw away his 4528 and replace it with a 4538 , he would find that these problems have gone away. Accuracy would still depend on the capacitor tolerance and potentiometer calibration, of course, but at least the results would be repeatable, making it worthwhile to trim the capacitors.
Peter A. Ferris
Acton
London W3

SEEING REDDER

One may perhaps quote without permission from private communications when what is quoted is non-personal, confidentiality is not requested, and the sender, at odds with one, talks of his own genius, What follows may be found helpful by some readers of Alex Jones's letter in the April issue.

In one letter to me, he uses the expression 'sources of' monochromatic light (clocks)', agrees that

$\sqrt{1-v^{2} / c^{2}}$

is involved in red-shifting, but then states: '. . . the rate of clocks themselves remains invariant.'As in the published letter, he very much seems to think that the

```
\sqrt{1-\mp@subsup{v}{}{2}\mp@subsup{c}{}{2}}{}
```

effect is somehow a part of the

Doppler shifting per se, for light, as distinct from any clock-slowing Why though, then. should he bother to stress that sources of light are clocks? He also says that 'we are forbidden to know' which of t wo relatively-moving observers was subjected to acceleration, that 'perhaps both were but it does not matter', that 'the situation is one of pure symmetry'. This, from a professed anti-Einsteinian. Whilst overt Einsteinians negate absolute motion but imply it, he attacks relativity but implicitly upholds the relativity principle.

Subsequently, I pointed out that an observational pure-symmetry could, indeed must, result from counterbalancing asymmetries but not merely equal-and-opposite ones. Any relativist will imply this when showing how application of

$\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}$

to both moving-source and moving-observer situations results in equivalent formulae, i.e. eliminates the classical difference which could betray absolute motion. This application of a real factor, given that it is real, implies something real applied-to, and must itself be done somehow asymmetrically in order to obtain the symmetry. There is equality of extent of the

$\sqrt{1-v^{2} / c^{2}}$

effect in the two cases, but these equal extents must of course be in opposite (quantitative) directions the moving observer's real clockslowedness causing an illusory violet-shift effect for incoming light, so as to bring what he observes down to midway between the two classical extents of redshift; his own light, of course, brought up to that median redshiftedness, for resting observers receded from. (It can be readily shown that observational symmetry will be preserved also when both observers have significant absolute speeds.) Mr Jones's response, essentially, was to restress that the symmetry was a fact (italics his), in a manner suggesting that there was simply no question of any more complex reality inferably underlying a fact. An evasive, simplistic concentration on what may be sheerly observed is characteristic also of relativists.
In stressing 'pure symmetry', he says that it 'has nothing to do with whether there is an aether or absolute frame of reference': but of course if there is a light medium, then ipsofacto there cannot be such a (real) symmetry except in the case of equal and opposite velocities. And consider: the shifting can occur only at emission and/or reception (for it to occur in transit would of course mean c violation); but if it is meaningless to ask whether either observer is
really in motion or at rest, then the situation (a) surely requires that the shift ing occurseither all at emission or all at reception, and (b) affords no imaginable
determinant of which. Since there must be some such determinant, it must in some sense be meaningful to envisage the motional state of each observer independently, and so their situation cannot be reall. symmetrical except in the equal opposite case (in which they would be equally physically deluded).

As to increase of mass with increased velocity. Mr Jones's denial of this is associable with his denying that there is any limit to velocity. It seems odd that one elsewhere so fundamentalist about facts should ignore the evident fact of such a limit; his reason for doing so would seem to be the unlimitedness of the scale of integers. Numbers determining Nature: something else appropriate to an unwitting crypto-relativism.

Finally, as to: 'It is central to the teaching of electromagnetism that for all observers the product of frequency and wavelength shall be the constant c.' This is a most oddly roundabout way of saying that all electromagnetic waves have the same speed c; the fact that a wave's speed is given by the product of frequency and wavelength is hardly a specifically
electromagnetic one.
Stephen Grieve,

Reigate,

Surrey

Sample calculation

Consider two observers A and B, receding from each other at relative speed of 1.4 C (as inferred by an observer between them, who, observing no deviation from

$\sqrt{1-v^{2} / c^{2}}$

is able to regard himself as having negligible absolute motion) - A having an absolute speed of 0.6 c and B one of 0.8 c . Each beams to the other with an identicallymanufactured light source, whose normal frequency is n. What frequency of light received will each measure?

(i) For light from B measured by

 A:(a) real frequency for
$0.8 \mathrm{c}=\mathrm{n} \times \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}=0.6 \mathrm{n}$
(b) real Doppler shift:

$$
\frac{0.6 \mathrm{n}}{1+\mathrm{v} / \mathrm{c}}=\frac{0.6 \mathrm{n}}{18}
$$

(c) illusory Doppler shift due to A's own 'absolute recession' (illusory in the sense that the light per se retains its proper, absolute, frequency):

$$
\frac{0.6 \mathrm{n} \times(1-\mathrm{v} / \mathrm{c})}{1.8}=\frac{0.6 \mathrm{n} \times 0.4}{1.8}
$$

(d) illusory violet-shift effect
according to $\sqrt{I-v^{2} / c^{2} \text { for } A}$
$\left(\sqrt{\mathrm{I}}-v^{2} / c^{2}\right.$ for $\left.0.6 \mathrm{c}=0.8\right)$:

$$
\begin{aligned}
\frac{0.6 \mathrm{n} \times 0.4}{1.8 \times 0.8} & =\frac{0.24 \mathrm{n}}{1.44} \\
& =1 / 6 \mathrm{n}
\end{aligned}
$$

(ii) For light from A measured by B:
(a) 0.8 n
(b) $\frac{0.8 n}{1.6}$
(c) $\frac{0.8 \mathrm{n} \times 0.2}{1.6}$
(c) 1.6
(d) $\frac{0.8 \mathrm{n} \times 0.2}{1.6 \times 0.6}=\frac{0.16 \mathrm{n}}{0.96}=1 / 6 \mathrm{n}$
(N.b. Symmetry is also preserved when both observers are moving in the same 'absolute direction.)

MOISTURE
 MEASUREMENT

In Mr Linsley Hood's article in your.July 1986 issue, on a moist ure meter, he shows as Fig. 3 a "modified Schering bridge" Surely this is modified beyond all reasonable claim to the name, for all four arms are capacitances, whereas in the Schering bridge one arm is a stan dard resistance in terms of which the unknown capacitance and its loss are compared. The bridge used seems to be most like the Fleming $\&$ Dyke's four-capacitance type.
M.G. Scroggie

Bexhill
Sussex.
Having read 'An engineers logmoisture measurement', by J.L.Linsley Hood, July 86, I am left wondering, where are all these "electronics engineers with industrial or manufacturing experience" who are "no longer young"? Have they all faded away?

I have tried, and failed, on many occasions to find just such people, both for our electronics services and for various research groups. Other departments and colleges throughout London University are in the same position.

For many young engineers and technicians our salary scales are poor compared with outside industry and we are unable to keep the people we train. However, for those in, say, their early fifties to whom money is not everything, a great deal of interesting and varied work goes on in universities, much of it pioneering new techniques. This is now in danger of drying up for lack of experienced staff.
In a country committed to hightechnology advancement, I believe this would be disastrous; so please, if there's anybody interested spare us a thought.
D.R.Stone

Physics Department
Superintendent
Queen Mary College London E1

Developments in radio receivers

Whistlers, twitterings, noise and a diversity of radio systems, from the IERE's recent conference

The IERE's fourth international conference on radio receivers and associated systems was held in July at the University College of North Wales, Bangor. A set of conference papers is available as publication no. 68 from the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, for $£ 32$ including postage ($£ 37$ outside Europe).

Fig. 1. Digital detector for frequency-shift-keyed data transmissions such as radiopaging signals.

Sessions began with a tutorial day featuring presentations on various fields of current interest, including frequency synthesis and phase-locked loops, digital signal processing, cryptography, spread-spectrum techniques and applications for gallium arsenide. Many of these topics were to be raised again in the conference itself, which opened the following day with a keynote address by Dr Geoffrey Phillips, former head of the radio frequency group at the BBC research department.

Digital processing was now replacing analogue techniques in many areas of receiver design, though Dr Phillips recognized that manufacturers would adopt a cautious approach because of the high cost of very large scale integration, essential for some of the developments he spoke of.

Technical advances in terrestrial tv broadcasting were on the way: in two years' time, the BBC planned to offer a full digital sound service on its existing tv services. The new transmissions, which had undergone extensive field trial, would be compatible with the present f.m. subcarrier but would offer a marked inprovement in sound quality, with stereophony besides. The system was based on a p.s.k. sub-

carrier at 6.55 MHz with a data rate of $730 \mathrm{kbit} / \mathrm{s}$.

Digital processing

The theme of digital signal processing was taken up by John Masterton of STC Technology, who reviewed some of the options for integrating digital receivers. Digital techniques had been applied predominantly in control circuits and frequency synthesizers, but it was becoming increasing practical to consider their use in the signal path. Attractive prospects were offered by the zero-i.f. or direct-conversion receiver, which enabled digital signal processing to be carried out at the lowest frequency possible.
In a zero-i.f. receiver the incoming signal is mixed with a local oscillator at the same nominal centre frequency and the input is so translated to a band centred on zero frequency . But 'negative' frequencies are folded over on to the positive frequencies, producing an ambiguity. Masterton explained the method of resolving it using a quadrature local oscillator with two i.f. channels.
STC had applied digital techniques to the demodulator stage. In an experimental zeroi.f. receiver for f.s.k. signals such as those used in radiopaging, the quadrature i.f. channels are filtered, limited and applied to a D-type flip-flop, Fig. 1. One limiting amplifier provides the clock for the flipflop, the other the D input. This arrangement can demodulate the signal because the output changes state whenever the relative phase of the two inputs is reversed: that is, when the carrier deviation changes from positive to negative.

Improvements in performance could be obtained by using more complex decoding logic. By increasing the number of pulse edges to be examined, the edge jitter (or distortion) could be reduced, Fig. 2.
Both types of receiver had been realized in integrated form by STC using a bipolar process. A photograph of the i.c. showed the outward simplicity of the design: the antenna connected to one pin and received data èmerging from another. Receiver sensitivity at 150 MHz was said to be good and power consumption low

Masterton also described a two-i.c. design for f.m. speech and an h.f./v.h.f. programmable receiver using digital signal processing. This unit covered a.m., f.m. and s.s.b. plus commercial n.b.f.m., with software control of mode. The digital filter card, implemented in 5-6 micron c-mos, featured a d.s.p. chip said to be one of the largest ever produced in the UK -1 cm square

Microwave integrated circuits

Monolithic integrated circuits for microwaves were the subject of an interesting survey by Andrew Hughes of GEC's Hirst Research Centre. These devices, he said, offered attractive alternatives to conventional microwave construction techniques in many areas of receiver design: examples of these were satellite tv receivers, collision avoidance systems and mobile radio.
Microwave i.cs had been demonstrated at frequencies up to 100 GHz and transistors existed with gain as high as 13 dB at 35 GHz or 6 dB at 60 GHz . Among devices which could be integrated easily were mesfets, p-n, Schottky and p-i-
n diodes. Capacitors could be fabricated in values up to 10 pF , transmission lines were possible with characteristic impedances in the range 25 to 95 ohms for stubs and interconnections, and spiral inductors could be contrived in the range 0.5 to 10 nH . These last were awkward to produce and their Q was relatively low. The difficult part was making the socalled air-bridges for completing the spiral.

Navaids for the motorist

An interesting i.c. from another source formed part of a low-frequency receiver system for the Loran-C and Omega radionavigation systems. Presenting it, Dr Durk van Willigen of the Delft University of Technology explained that although military users of these systems were now switching to satellite navigation, there existed a vast potential market for privately-owned navigational receivers.

In Europe alone, there were some 300000 small aircraft, and 40 million cars were being built every year. All were possible users of route-planning systems based on Loran-C.

Each vehicle would have on board a map stored in CD-rom. The driver would simply tell the system where he wanted to go and it would respond by giving directions from moment to moment as necessary. By sending traffic via the best route, such a system could yield real savings in time and fuel. It could be cheap to implement and would be usable worldwide.
Answering questions, Dr van Willegen said that the CD maps could be highly detailed: they would show one-way streets and the whereabouts of police stations. They would even mark varieties of restaurant: Indian ones, for example.
Loran-C was being phasedout for military purposes outside the US, though it would remain in operation beyond the year 2000. And European countries were being offered the opportunity to take over the system.
The accuracy of a Loran-C fix was about 200 m and so the navigational system would have to rely on dead-reckoning for keeping track of a vehicle's exact position. But radio fixes would be needed to find its
starting point and subsequently to forestall any blunders due to ambiguities in the map.

Dr van Willegen said his i.c. could provide all the r.f. gain for the receiver and so would reduce the hardware complexity considerably. Limiter gain was better than 100 dB at 100 kHz and the receiver had perfect zero-crossing tracking ability at inputs as low as 0.75 microvolts r.m.s.

Whistlers

Another low-frequency project was described by Hal Strangeways of Leeds University, who with Neil Thomson of the University of Otago in New Zealand has built a v.l.f. receiver for the British Antarctic Survey's Faraday Base on Galindez Island, and went there last January to install it. This location, by an accident of geography, is at the far end of lines of the Earth's magnetic force which emerge in Maine, USA, where the US Navy has a 1MW transmitter on 24 kHz . As such it is an ideal site for studying field-aligned whistler mode propagation, by which transmissions are ducted through a kind of natural waveguide.

With such a receiver, it is possible to measure doppler shifts in the region of 10 millihertz which speak of events up to 100000 km away in the magnetosphere.

Ignition noise

For many receiving systems it is not sensitivity but ambient noise that sets the limit to performance. Dr Adel Turkmani of the University of Liverpool described a receiving system for measuring the characteristics of impulsive noise. This system covered $20 \mathrm{MHz}-1 \mathrm{GHz}$, a range of considerable commercial importance.

DrTurkmani explained that ignition noise from motor vehicles was now the dominant noise source at $h . f$. and v.h.f. in cities; and because of its random nature it had to be quantified statistically rather than just measured.

To avoid disturbing the signals under observation, his receiver was designed for high linear dynamic range and for an impulse response with very low time side-lobes. Digital signal processing stages fol-

lowed the detector.
Already the unit had been tried in Liverpool for measuring noise at frequencies used for land mobile radio, both at base-stations and in vehicles. The system was easy to calibrate and use, according to Dr Turkmani, and it produced an accurate and useful characterization of the noise amplitude distribution.

Radionasties

Dynamic range is a quality where practical receivers often leave something to be desired, especially with domestic broadcast receivers where specmanship in the hi-fi market has resulted in sensitivity being valued much more than selectivity or freedom from intermodulation.
An alarming report from the BBC revealed that v.h.f. transmitter planning was almost being undermined by the apparent indifference of some setmakers to these important characteristics. The broadcasters are concerned at the large number of sets which do not meet internationally-agreed protection ratios for interfering signals. And the spread of pirate stations with overdeviating transmitters may mean that interference is even worse than the figures suggest.
Alan Hall, a service planning engineer, described tests the BBC carried out last year on 20 domestic stereo receivers. The tests were made objectively, following methods set out by the CCIR. Five sets were rejected right at the start as being unable to produce in

Fig. 2. With a more complex detector than the D-type flip-flop of Fig. 1, the number of edges examined can be increased and performance improved.
stereo a signal-to-noise ratio of 52 dB from a 1 mV input, even in the absence of other signals. The remainder varied widely in their immunity to unwanted signals, some doing especially badly with transmitters spaced 10.9 MHz and 10.8 MHz apart. A high price appeared to be no guarantee of excellence.
Fortunately, the especially troublesome 10.7 MHz spacing has been avoided in the UK band-plan, apart from an instance in Kent where BBC Radio Kent at Dover is 10.7 MHz above Radio 4 from Wrotham. However, no complaints have arisen because the Radio Kent listeners affected get their Radio 4 from Dover too.

One cause of poor performance, according to the BBC, is that manufacturers often leave a.m. intermediatefrequency transformers in circuit during f.m. reception, giving an unwanted peak in response at 500 kHz .
Using recorded examples, Mr Hall demonstrated the severe twittering and noise produced by one set, a $£ 120$ tuner with digital display. "Next time signals are good and r.f. is rolling in from everywhere", he said, "don't blame the planners straight away!"

Further reports from the conference are included in Pat Hawker's Communications Commentary on page 9.

5max Microcontroller chip includes peripherals

Using built-in peripherals gives versatility, as illustrated by a limited issue of specially-programmed microcomputers.

Fig. 1. Block diagram of the $S 2$ singlechip microcomputer.

There is a great variety of single-chip microcomputers for control applications. Many recent devices contain not only ram and rom, but also peripheral functions such as a-to-d converters, serial interfaces, phase-locked subsystems and multiple timers.

Motorola's M6805 microcomputer family currently consists of 30 devices: some high-density mos and others c-mos, but all with instruction sets based on that of the 6800, which simplifies software writing.
Mike Catherwood is a systems engineer at Motorola's
Semiconductor Products Division in East Kilbride.

Microcomputers for medium and large-volume production applications have maskprogrammed rom; software designed by the user is programmed into this rom by the manufacturer. But for small-scale production and development, every mask-programmed rom part has an equivalent eprom part that can be programmed directly by the user.

The most versatile h -mos family members are the MC6805S2 and the larger memory version, MC6805S3. Designed in Geneva, these 28 pin microcomputers feature a four or five-channel a-to-d converter, three timers, two prescalers, a serial-peripheral interface, 1.5 or 3.7 K -byte of rom

and 64 bytes of ram, 16 bytes of which may be used as standby battery-backed ram. An additional timer is included in the S3.

Fourteen of the devices' twenty-one i/o port lines are bidirectional; eight of these, port A of Fig. 1, may optionally be made c-mos compatible as outputs through the addition of a depletion-mode pull-up device on each line.

High-current sinking is possible on four lines of port B. A novel feature of these microcomputers is the softwareprogrammable open-drain outputs associated with the serial interface, described later. To fit the device into a small 28 pin dil package, many pins have a dual function.

Both a crystal and RC network are suitable timing elements for the S2/S3 on-chip oscillator producing a clock frequency of typically 4 MHz . Internal dividers quarter this frequency to provide the bus clock.

Figure two shows the S2's 4 K memory map with the top half of page zero, addresses $0-7 \mathrm{~F}_{16}$, expanded to show $\mathrm{i} / 0$, ram and data/control registers more clearly.

As with all 6805 -family members, the S 2 may be operated in self-check mode, enabling the device to perform a 90% functional test on itself through execution of a small amount of reserved rom code. Additionally, the S2 includes a small bootstrap routine, entered through the self-check mode, which transfers userdefined code such as an evaluation test routine from an external eprom into ram and then executes it.
For development purposes and small production runs, there is an eprom-based ver-

Table 1. Analogue-input multiplexer selection

$\begin{aligned} & \text { Control register } \\ & \text { ACR }_{2} \end{aligned}$	ACR $_{0}$	Input	min.	Digital value typ.	max.
$0 \quad 0$	0	AN_{0}			
$0 \quad 0$	1	AN_{1}			
$0 \quad 1$	0	AN_{2}			
$0 \quad 1$	1	AN_{3}			
10	0	$\mathrm{V}_{\mathrm{RH}}{ }^{*}$	FE	FF	FF
10	1	$\mathrm{V}_{\text {RL }} \dagger$	00	00	01
$1 \quad 1$	0	$\mathrm{V}_{\mathrm{RH}} / 4 \dagger$	3F	40	41
11	1	$\mathrm{V}_{\mathrm{RH}} / 2 \dagger$	7F	80	81

* $A N_{4}$ may replace the $V_{R H}$ caiibration channel (mask option).
\dagger Internal calibration levels
sion of the S 2 called the MC68705S3.

Analogue-to-digital conversion

Successive approximation is used for the S2's built-in eightbit analogue-to-digital converter, Fig. 3. Up to four - or five by a mask option - external analogue inputs, via port D, connect to the converter through a multiplexer. Overall accuracy is typically ± 1 l.s.b. Four internal channels are also available for calibration.
Multiplexer selection is controlled by the lowest three bits of converter-control register ACr at address 0E, Table 1. Whenever the a.c.t. is written to, the conversion in progress is aborted, conversioncomplete flag ACR_{7} is cleared and the selected input is sampled and held internally.
The converter operates continuously using 36 machine cycles to complete a conversion of the sampled input. When conversion is complete, the digitized sample or digital value is placed in the converter result register (ARR) at address 0 F , the conversion complete flag is set, the selected input sampled again, and a new conversion started.
The converter is ratiometric. Two reference voltages, V_{RH} and V_{RL} are supplied to the converter via port-D pins. An input voltage equal to V_{RH} converts to FF_{16} (full scale) and an input voltage equal to V_{RL}. will convert to zero.

Timers

The S2 contains one eight-bit and one 16 -bit timer, timers A and B respectively, whose clocks may be derived from 8 and 16 -bit prescalers. Either prescaler may drive either timer under software control, as shown in Fig. 4.
An auxiliary counter is
available for use as a fixed rate polled timer or as a system watchdog. All the timer operating modes are software programmable.
Timer A incorporates a modulus latch which allows the timer to be reloaded with the latch contents when either the timer decrements to zero (autoreload), or a rising edge is detected on the second interrupt line, port D_{6}. This is called an asynchronous external event load.
The timer can of course be configured to allow loading at any time by a write to the timer data register at address location eight (direct load). Timer operation is controlled through control register teka at address location nine.
On timer overflow, i.e. at value zero, the interruptrequest flag, bit seven of timerA control register (TCRA_{7}), is set. Provided the timer and c.p.u. interrupt-mask bits TCRA $_{6}$ and I respectively are clear then an interrupt occurs on completion of the current instruction.
The timer overflow signal may also be used to toggle the

state of either port B_{0} or B_{1} data register bits. This feature, with the auto-reload function, is used to automatically generate the 50% duty-cycle s.p.i. clock on port B_{1}, when required.
The modulus latch is loaded with the number of timer decrements per half cycle so that at every timer overflow, port B_{1} toggles and the modulus latch

Fig. 2. Memory map. There is a version of this processor with eprom instead of rom.

Fig. 3. Using a multiplexer, the single successiveapproximation converter in the S 2 reads four analogue channels.

contents are transferred into the timer data register to time the next half cycle.

Prescale values are software selectable from divide-by-one (bypass) to divide by 2^{7} (8-bit) or 2^{15} (16 -bit). Clock sources of the prescaler may be either the bus clock, gated bus clock, an external clock or no clock, Fig. 4.

Sixteen-bit timer B offers
the same interrupt and porttoggle features and operates through a control register similar to that of timer A. However, to effectively remove the delay between a read or write of each half of the 16 -bit timer data register, a pipeline latch is included. This latch captures the contents of the $\mathrm{m} . \mathrm{s} . \mathrm{b}$. during a read of the l.s.b. and transfers the contents of

When to choose mask-programming

Used in numbers above the minimum-order quantity, microcomputer units with mask-programmed rom are cheaper than eprom versions but they are less flexible and cannot be bought off-theshelf.

Consequently, eprom versions are used for development, prototyping and preproduction runs. In addition, eprom microcomputer units, m.c.us, are ideal for small to medium production runs of up to 10000 units and for applications where the software will or might need altering.

Prices depend on quantity, features, fabrication technology and device maturity; eprom m.c.us from Motorola start at under $\$ 5$. For software security, devices with a feature which inhibits any access to the eprom after programming are available.

All mask-programmed rom m.c.us are subject to a
minimum-order quantity of between 1000 and 10000 units, the actual value being determined primarily by die size. A mask charge of typically $\$ 3500$ is also levied, so it is almost always uneconomical to use a maskprogrammed device in quantities below the minimumorder quantity.

At the upper end of the quantity scale, the generalpurpose nature of the rombased m.c.u. is reflected in a slightly higher cost compared with an efficient but less flexible fully-customized design.

For rom-based m.c.u. designs, availability of incircuit real-time emulators and eprom-based equivalents shortens development time and allows users to be confident of their designs before committing them to a mask.

Assuming that an m.c.u. is suitable for the task in hand environmental and appli-
cation-related problems may make an m.c.u. an impractical solution - the rom-m.c.u./ full-custom break-even point is difficult to accurately predict as it depends on many less quantifiable factors than unit cost.
With a full-custom solution for example, consideration must be given to ease of testing, cost/time of testphilosophy, cost/time of program-development, long and short-term quality issues, acceptability of a single-source supply and the inevitable uncertainty associated with functioning of the first-pass silicon.

On the positive side, a fully-customized design gives users almost complete control over how the product functions and a greater influence over items such as electrical specifications and packaging.
itself into the m.s.b. during a write to the l.s.b. Provided that the timer is accessed in the correct sequence, any timer counts occurring between m.s.b. and l.s.b. transfers will not cause any problems.

When using a processor in an electrically noisy environment, it is wise to include some sort of protection against the possibility of system failures. One common method that provides a good level of protection is to include a watchdog timer in the system. A watchdog timer is essentially a free-running counter which the processor clears on a regular basis. Should the system fail, then it is highly likely that the processor will not be able to clear the timer, letting it overflow and subsequently reset the system. Having regained control over itself, the processor can take recovery action.
The S2 auxiliary counter can be configured to operate in this manner. Alternatively, it may be used as a fixed-interval polled timer using 4095 bus cycles in applications which require lengthy delays.

Serial data

Within the S2 is a clocked serial interface capable of operating either as a master (clock generator) or a slave. In master mode the serial-peripheral interface produces clock signals for synchronous operation and in slave mode it depends on clock signals from outside.

The s.p.i. is intended to be used for moving data between the S2 and serially-loaded peripherals, like certain display drivers, memory devices, etc., and/or other processors, releasing the S2c.p.u. for other tasks during transfer.
Arbitration logic in the s.p.i. allows several S 2 devices to interface to networks supporting multi-master-type protocols. A slave-select line is provided which can act as a slave chip select in a singlemaster, multi-slave system.
The s.p.i. operates via port B and communicates with the processor through data and control registers at addresses 10_{16} and 11_{16} respectively. Essentially consisting of an 8bit shift register, a divide-byeight counter, some slave -elect and arbitration logic and a control register, Fig.5, the s.p.i. may function in full or
half-duplex transfer modes with or without clock arbitration and/or slave-select operation.
Transfer rates for the eightbit data blocks may be up to $125 \mathrm{Kbit} / \mathrm{s}$, depending on the modulus-latch value, and therefore overflow rate, chosen for timer A. Single-wire autoclocked transfer such as for n.r.z. data is possible using interrupt line int to synchronize the start of the transfer.
In many systems, an individual chip enable for each slave device connected to the serial bus is not feasible. In this situation, each slave can be configured to respond to a unique address, which the master transmits prior to transmission of the data destined for that device.
As all transmissions are one byte long, distinguishing between address and data fields might be seen as a problem for the S2. In common with many standard systems however, the s.p.i. recognizes a unique change of state on the clock and data lines that it interprets as the start condition, setting a register bit, after which the software expects an address byte.
When enabled the s.p.i. will receive all data transmitted on the serial bus. However, once the processor has found an address field which does not contain its own address, the s.p.i. can be configured so as not to interrupt the processor again until another start bit is recognized, allowing the processor to continue with other tasks.

Demonstration devices

For new rom-based m.c.u products Motorola generally produces an evaluation device containing a demonstration
Table 3. Monitor command set

Command Action

R	Displays registers on stack +1 page-zero memory location as HINZC AA xxpPP vV = xy for condition codes, accumulator, index regisiter, program counter, page-zero address
and address contents respectively.	

Table 2. A port code determines which routine runs.
code; Table 2 lists the demonstration packages contained in the S2 demonstration device XC6805S2P1. After reset, a common initialization routine reads a code on port A_{1} to A_{3} to determine the selected demonstration package. It then jumps to the corresponding code.

Code $\mathbf{P A}$	$\mathbf{P A}_{\mathbf{2}}$	$\mathbf{P A}_{\mathbf{1}}$	Routine
1	1	1	Monitor
1	1	0	A-to-d converter evaluation
1	0	1	Auxiliary counter demonstration
1	0	0	Pulse-burst generator
0	1	1	Audio-communications link, master
0	1	0	Audio-communications link, slave
0	0	1	Frequency meter

Fig.4. Besides these 8 and 16-bit timers the $S 2$ has an auxiliary timer that can be used as a system watchdog.

Fig. 5. The serial-peripheral interface communicates with the processor through registers at address locations 10_{16} and 11_{16}.

Fig. 6. An evaluation version of the $S 2$ is available with a monitor program and other software programmed into it.

Fig. 7. One routine in the S2 evaluation version turns the device into a
pulse-burst generator producing up to 9999 cycles at 1 Hz to 10 kHz .

jumps to the corresponding code.

Monitor. The monitor will communicate with any terminal supporting an RS232 interface at either 300 or 1200 baud and is useful for evaluating the special features of the S2 or for testing short pieces of code.
Through a set of simple commands, the user can enter and debug code within the onboard ram area. Calls to any useful rom based subroutines are also permissible. The command set is shown in Table 3 and the circuit in Fig. 6.

Pulseburst generator. A pulse train containing a predetermined number of pulses can be useful when trying to debug synchronous logic circuitry. The pulse-burst generator can generate bursts of up to 9999 cycles at $1,10,100,1 \mathrm{k}$ and 10 kHz with a 50% duty cycle. Although programmed and operated through a small keyboard, the generator can produce a burst initiated by a digital input. Additionally it is possible to generate a positivegoing trigger pulse on the rising edge of any of the 9999 pulses. Width of the trigger pulse is a half of the pulseburst period.
Keyboard assignment is indicated in Table 4 and a diagram is shown in Fig.7. The keyboard does not require isolation diodes. Figure seven also includes an optional circuit to provide some control over pulse duty cycle.

Frequency Meter. In this application advanced timer facilities have been used to produce a simple but useful four-and-a-half-digit frequency meter. It will accept an input frequency of between 0.1 and 530 kHz using four switchable gate periods, Fig.8. An input amplifier and a divide-by-100 prescaler would greatly extend its usefulness, creating a very cheap 50 MHz frequency meter.

The demonstration device's audio communications and watchdog timer softuare vare described in the next short article.

Fig. 8. Using a serialinput display driver, the S2 can be turned into a frequency meter for between 0.1 and 530 kHz using four switchable gate periods.

Stages in obtaining a rom- based m.c.u.

When the development team is satisfied that its code is fully debugged and unlikely to require change, the object code in eprom or on disc is simply submitted to a distributor or sales engineer with an order form.
This code, referred to as a pattern, is assigned a unique part number. Next the code is loaded into a main-frame computer which generates a series of coordinates for shapes on the mask that define the rom content.
Mask options are also encoded on the program layer and a rom test-pattern database is produced. Remaining masks needed to make the device are generic and already exist.
A further program reconstructs the original binary file from the newly created mask data. This file, referred to as the verification file, is returned to the customer for checking against the original binary file to minimize the chance of errors on the program-layer mask.
Simultaneously with returning the verification file, the mask-coordinate file is sent to the local mask shop so that manufacture can start as soon as the customer confirms the
verification listing..
Once the new mask arrives in the factory and passes the quality-assurance tests, a romverification wafer lot is produced. Following fabrication, the wafers are tested (probed) then cut (scribed) and a few good die are assembled locally.
Further testing is used to select ten devices which form what are called rom-verification units'. These ten are sent to the customer who evaluates them and if all is well, permission is given to make production quantities.
Remaining dice are simultaneously sent for assembly to become the pre-production batch, which will be sent out a few weeks later provided that the verification devices are satisfactory.
Both probe and final test programs use the rom test pattern database created during the computer processing of the customer's pattern.
In the UK, the cycle from the customer verifying the reconstructed pattern to production of the rom-verification units takes four weeks or less using Motorola's mos facility in East Kilbride.

Table 4. Pulse-burst generator keyboard operation

Key	Function
Fx	Set frequency, where x is an integer between zero and four representing the frequency exponent, i.e. 10° to $10^{4} \mathrm{~Hz}$.
Nxxxx	Set number of pules, where $x x x x$ is four digits representing the number of pulses between 0000 and 9999.
Txxxx	Set trigger point, where $x x x x$ is four digits representing when the trigger pulse is to occur, between 0000 and 9999. Run. If F or T parameters are not entered, R will cause a burst of 65536 pulses with no trigger puise.

Unacceptable entries cause the command to be aborted and the error led to flash

Limited-issue m.c.u.

Around 300 S 2 microcomputers with maskprogrammed demonstration software have been made exclusively for $E \& W W$ readers. Besides monitor, pulse-generator and frequency-counter software, these devices include two routines for full-duplex audio communication and one for demonstrating use of the auxiliary counter as a watchdog timer.

This limited number of single-chip microcomputers together with an MC14499 four-digit serialinput display driver and data are available for $£ 11.45$ including postage but excluding vat from Gothic Crellon Ltd, 3 The Business Centre, Molly Millar's Lane, Wokingham, Berkshire RG11 2EY. Mark your request, with cheque or order made out to Gothic Crellon Ltd, for the attention of Paul Gillman.

Assembly-language software listings are available from $E \& W W$'s editorial offices at Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS in return for a large, addressed envelope (at least A4) and $£ 2.50$ to cover copying and postage costs. Please mark your envelope "S2".

01-208 1177 Technomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

PRINTERS \& PLOTTERS

EPSON	COLOUR PRINTERS	
EPSONLX•80 NLOE195 (a)	Epson JX80................................ $£ 420$ (a)	
Optional Tractor Feed........................ £20 (c)		
Sheet Feeder 449 (c)		
FX85 (80 col) ………………\| £315 (a)		
FX105 (136 col)E449 (a)		
LQ800 (80 col)E459 (a)	Dotprint Plus NLQ Rom for Epson	
LQ1000 (136 coll) 6659 (a)		
TAXAN: and		
LX86.....................................2229 (a)		
	PLOTTERS	
KP910 (156 colfE369 (a)	Epson Hl-80 (A4) $£ 325$ (a)	
	Hitachi 672 (A3)Graphics Plotter (A3)609 (a)	
6100 (daisy wheel)............................ $£ 249$ (a)		
brother		
HR15 (Daisy Wheel)E325 (a)	Plotmate A4299 (a)	
M1409 (Dot Matrix) (80 col) £229 (a)	A4M...399 (a)	
M1509 (Dot Matrix) (136 coll) $£ 399$ (a)	A3M... £549 (a)	
PRINTER ACCESSORIES		
We hold a wide range of printer attachments (sheet feeders, tractor feeds etc)		
in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also		
available. Please phone for details and prices		
Plain Fanfold Paper with extra fine perforation (Clean Edge):		
2000 sheets $9.5^{\circ} \times 11^{\prime \prime} £ 13$ (b) 2000 sheets $14.5^{\circ} \times 11^{\prime \prime} £ 18.50$ (b)		
Labels per 1000s: Single Row $3_{2}^{1{ }^{\circ} \times} \times 17 / 16^{\prime \prime} \mathrm{£} 5.25$ (d) Triple Row. $2-7 / 16^{\circ} \times 17 / 16^{\circ} \mathrm{£5.00}$ (d)		

MODEMS

MIRACLE WS 2000 - The world standard BT approved modem covering all standard CCITT and BELL (Outside UK only) standards up to 1200 baud. Allows communication with virtually any computer system in the word. Expandabity to Auto Dial and Auto Answer with full sottware $2000 £ 79$ (c), Data Cabie $£ 7$ (d), Auto Dial Cord $£ 26$ (d), Auto Answer Cord $£ 26$ (d).

WS 3000 RANGE - the new professional series. All are intelligent and 'Hayes' compatible allowing simply 'English' commands to control its many features. All models feature Auto-Dial. with 10 number memory. Auto-Answer. Speed buffering, printer port, data security option etc. All models are factory upgradeable.
WS3000 V21/23 (V21 \& V23 + Bell £295 (a). WS3000 V22 (as above plus 1200 baud full duplex $£ 495$ (a). WS 3000 V22bis (as above plus 2400 baud fill duplex) $£ 650$ (b).

BBC Data Cable for WS3000 £6 (d). Data Cables for other micros available. The WS3000 range all have BT approva!

NEW WS 4000 'SCHOOLS' MODEM - a new low-cost high performance 'Hayes' intelligent modem with ADial and A/Answer and V21/23 $£ 149$ (a). A V22 upgrade can be added at $£ 250$ and $V 22$ bis at £405. Other options available. please send for details.

GECDATACHAT 1223 - An economically priced BABT approved modem complying with CCITT V23 standard capable of operating at $1200 / 75 \mathrm{bps}$ and $75 / 1200 \mathrm{bps}$ and $1200 / 1200 \mathrm{bps}$ pseudo full duplex. is line powered, does not require external power source. It is supplied with sottware suitable for connecting to PRESTEL. Micronet 800, Telecom E69 (b).

SOFTY II

This iow cos intel Igent eprom progranmer can program 2716, 2516,

 Solly
Acaptor
2564

SPECIAL OFFER 2764-25 f2;00(d); 27128-25 £2:50(d); 6264 LP-15 f3:40(d):

Subcodes explained

by J.R. Watkinson M.Sc.

How control signals are combined with and separated from audio samples

This definitive compact disc series, introduced in January 1985, featured
Principles of optical storage, March 1985, pp 70,71 April pp 43-46
- Channel code and disc format, May pp 27,28, June pp 80-82
Compact disc mastering, February
1986, pp 47-50 \& 62
- Compact disc
mastering, February
1986, pp 47-50 \& 62
- Digital audio editing, March pp 29-32, April pp 52-54.

Fig. 1 Relationship between major data and signal rates in a compact system. This diagram supercedes that shown in the June 1985 article.

It is very difficult in analogue audio recording to simultaneously convey control information without some degradation of the audio quality. Applications range from the simple pulsing of a slide projector to the recording of time code to synchronize to film video. In the digital domain no such problems arise because all information conveyed is numerical. A digital recording is not concerned with the meaning of the numbers it is entrusted with, it is only charged with recovering the same numbers later.

Provided that a standard format is used, it is possible to combine control signals in numerical form with audio samples, and achieve complete separation on replay. This is the function of the subcode system of CD. The purpose of the control signals is flexible, but definitions exist for the essential functions of locating the beginning of the different musical pieces on a disc, and providing a catalogue of their location on the disc and their durations. A further vital function is to convey the status of
pre-emphasis in the recording, so that de-emphasis can be automatically selected in the player.

The subcode information in CD is conveyed by including an extra byte, which corresponds to one efm symbol, in the main frame structure. As the format of the disc is standardized, the player is designed to route the subcode byte in the frame to a different destination to the audio sample bytes. The separation is based on the physical position of the subcode byte in the frame. The player uses the sync. pattern at the beginning of the frame to reset a byte count so that it always knows how far through the frame it is. As a result, subcode bytes will be separated from the data system at frame frequency.

In the article on disc format (May 1985 issue, pages 27/8) I showed that the frames contain among other things six samples for each channel. As the sampling rate is 44.1 kHz , the frame rate must be $44.1 / 6$ $=7.35 \mathrm{kHz}$. The subcode bytes have their own block structure, and one block consists of

period. It can be used even where there is no audible pause in the music, since the start point is defined as where the P data becomes zero again. The CD standard calls for a minimum of two seconds of start flag to be recorded which seems wasteful but it allows a very simple player to recognise easily the beginning of a piece by skipping tracks. The fact that every bit is a 'one' means that it is not necessary to wait for subcode block sync. to be found before finding pause status on the disc track. The twosecond flag period means that the status will be seen a few tracks in advance of the actual start point, helping to prevent the pickup overshooting. If a genuine pause exists in the music, the start flag may be extended to the length of the pause if it exceeds two seconds. Again for the benefit of simple players, the start flag alternates on and off at 2 Hz in the leadout area at the end of the recording.

At the time of writing the only other defined subcode data word is the Q word. This word has numerous modes and uses which can be taken advantage of by CD players with greater processing and display capability.

Fig. 3 shows the structure of the Q subcode word. In the 96 bits following the sync. patterns, there are two four-bit words for control, a 72 -bit data block, and a 16 -bit c.r.c. character which makes all 96 bits a codeword.

The first four-bit control word contains flags specifying the number of audio channels encoded, to permit automatic decoding of future four channel dises, the copy prohibit status and the pre-emphasis status. Since de-emphasis is often con-

trolled by a relay in the analogue stages of the player, the pre-emphasis status is allowed to change during a p-code start flag.

The second four-bit word determines the meaning of the subsequent 72 -bit block. There can be three meanings: mode 1 which tells the player the number and start times of the recordings on the disc, mode 2 which carries the disc catalogue number, and mode 3 which carries the disc i.s.r.c. (the international standard recording code). Of all the subcode blocks on a disc, the mode 1 blocks are by far the most common.

Mode 1 has two major func-

Fig. 2. Frame contains one subcode byte; after 98 frames, the structure repeats. Each subcode byte contains one bit from eight 96 -bit words following the two synchronizing patterns.

Fig. 3. Structure of the Q-data block: the 72-bit data can be interpreted in three ways, determined by the address bits.

Fig. 4(a), above: General formal of Q subcode frame in Mode 1. There are eight unused bits, leaving eight active bytes. First byte is music or track number, which determines meaning of remaining bytes. (b), right: During lead-in T no. is zero, and \mathbf{Q} subcode builds up a table of contents using numbered points with starting times. Point limit Codes A0 and Al specify range of bands on multi-disc sets. Example shows two-dise set, with five bands on first dise and six bands on second. (c) bottom: During music bands T no. is 01-99 and subcode shows time through band and time through disc. The former counts down during pause, see Fig.5. Each band can be subdivided by index count.

tions. During the lead in track it contains a table of contents (TOC), listing each piece of music and the absolute playing time when it starts. During the music content of the disc it contains running time.
The 72 -bit block is subdivided into nine bytes, see Fig. 4 (a), one of which is unused and permanently zero. Each byte represents two hexadecimal digits where not all codes are valid. The first bytes in the block is the music number (MNR) which specifies the number of the track on the disc, where in this context track corresponds to the bands on a vinyl disc. The tracks are numbered from one upwards, and the track number of 00 indicates that the pickup is in the lead-in area and that the rest of the block contains an entry in the table of contents.
The table of contents is built up by listing points in time where each track starts. One point can be described in one subcode block. Fig. 4 (b) shows that the second byte of the block is the point number. The absolute time at which that point will be reached after the start of the first track is contained in the last three bytes as point minutes, point seconds and point frames. These bytes are two b.c.d. digits, where the maximum value of point frame is 74. As there is only error detection in the Q data, the point is repeated in three successive subcode blocks. The number of points allowed is 99 , but the track numbering can continue through a set of discs. For example, in a two disc set, there could be five tracks, 1 to 5 on the first disc, and six tracks, 6 to 11 on the second disc. Clearly the first point on the second disc is going to be point 6 , and to prevent the player fruitlessly looking for points that are absent, the point range is specified.

If the point byte has the value $A 0_{16}$ the point minute byte contains the number of the first track on the disc, which in the example given would be 6 . If the point byte has the value A1 the point minute byte contains the number of the last track on the disc, which would here be 11. A further point is specified, which is the absolute running time of the start of the leadout track, which uses the point code of A2. These three points
come after the actual music start points.

During the lead-in track, the running time is counted by the minute, second and frame bytes in the block. If the first byte of the block is between 00 and 99, the block is in a music track, and the meaning shown in Fig. 4 (c) applies.

The running time is given in three ways. Minute, second and frame are the running times from the start of that track, and $\mathrm{A}($ absolute $) \mathrm{Min}$, ASec and AFrame are the running times from the start of the first track on the disc. The third running time mode employs the index or x-byte. When this is zero, it denotes a pause, which corresponds to the \mathbf{P} subcode being 1. During this pause, which precedes the start of a track, the running time counts down to zero, so that a player can display the time to go before a track starts to play. The absolute time is unaffected by this mode.

Non-zero values of x denote a subdivision of the track into shorter sections. This would be useful to locate individual phrases on a language course disc, or the individual effects on a sound effects disc.

Figure 5 shows an example of the use of P and Q subcode information in a hypothetical recording consisting of several pieces of music.
Mode 2 of the Q subcode allows the recording of the barcode number of the disc, and is denoted by the address code of 2 in the block as shown, in Fig. 6 . The 52 -bit barcode, along with 12 zeros and a continuation of the absolute frame count are protected by the c.r.c. character. If this mode is used, it should show up at least once in every 100 subcode blocks and the contents of each block should be identical. The use of the mode is not compulsory.
Mode 3 of Q subcode is similar to mode 2, except that a code number can be allocated to each track on the disc. Fig. 7 shows the i.s.r. code requires five alphanumeric characters of six bits each and seven b.c.d. characters of four bits each. Again the mode is optional, but if used, the mode 3 subcode block must occur at least once in every 100 blocks.
The r-to-w subcode is currently not standardized, but proposed uses for this data include a text display which

would enable the words of a song to appear on a monitor in synchronism with the sound played from the disc. A difficulty in this area is the requirement to support not only the kind of alphanumerics this article is written in but also the complex Kanji characters which would be needed for the Japanese market.
The second proposed mode is to support colour graphics display, and the third mode would be to store colour television stills. A frame store would be necessary in the player to refresh the c.r.t. The large number of pixels needed for a tv still would require some 2.5 seconds of playing time to read each one from the disc. A future article will describe the r-to-w subcode details as soon as the standardization process is completed.
The master tape from which a compact disc is cut contains the exact audio sample values which will be transferred to the disc. All timing for the insertion of subcode information during cutting must therefore be derived from the timecode on one of the linear tracks of the cassette. It should be clear from Fig. 1 that the timecode must be locked to the sampling rate for cD mastering. Most p.c.m. adaptors and editors offer this feature. Dropframe timecode is obviously unsuitable for a synchronized application such as this.
A further constraint is that the timecode on a master tape should not roll across midnight i.e. it should not overflow from 24 hours. The actual timecode start on the mastertape is
irrelevant because the disc cutting computer subtracts the start timecode from all even timecodes, to obtain times with respect to the start of the disc. There is also need for some translation, since the mastertape timecode uses 525/60 video related frames, of which there are 30 in one second, whereas there are 75 CD subcode frames in the same period. The cutting computer also takes care of this.
The subcode data, containing table of contents and the timing of all pauses can be submitted on a standard form along with the cassette, or it can be recorded on the cassette itself. The timecode occupies analogue audio track 2 on the cassette, thus subcode is recorded on audio track 1. The standard for subcode recording specifies a block structure where toc data an p -flag timings are coveyed along with an error correcting code. The channel coding is f.m. as in the timecode track.
The CD cutting computer needs to have read all of the roc data from the subcode recording before commencing cutting the disc, since тос is in the lead in area. It is also proposed that the subcode track will be available for recording r-to-w subcode in the future throughout the length

Fig. 5. Relationship of P and Q subcode tuning to the music bands. P-flag is never less than 2 s between bands, whereas index reflects actual pause, and vanishes at a cross-fade. Time counts down during INDEX $=00$. *1: lead-in time does not have to start from zero. *2: A-time must start from zero.
*3: De-emphasis can only change during pause of 2 s or more.

Fig. 6. In mode 2, catalogue number can be recorded, but must be the same throughout the disc and appear in at least one out of $\mathbf{1 0 0}$ successive blocks.

ELECTRONICS \& WIRELESS WORLD SEPTEMBER 1986

Fig. 7.ISRC format in mode 3 allows each band to have a different code. All mode-3 frames must be the same within same T number, and must appear in at least one out of every 100 successive blocks. (Not present in lead-out tracks.)
of the recording. For these reasons, the P and Q subcode information is placed on the cassette prior to the beginning of the first music track

Specialised equipment is avaiable for the generation of subcode recordings from timecode charts. Fig. 8 shows a subcode editor intended for use in conjunction with a digital audio editor, as it makes use of its time code reading and audio monitoring ability. The subcode editor is connected by in-
terposing it in the audio keyboard cable, where it can pick-off timecode from the v.c.r going to the display on the keyboard, and where it can control the recorder by simulating transport commands from the editor keyboard. In this way the subcode editor can record the subcode data block in the correct place at the beginning of the cassette before the first music. The time codes entered into the subcode block can also be used to position the
mastertape using the autolocate function of the audio editor, so that the operator can verify that the P flags have been inserted at the correct time with respect to the music.

This concludes the Compact Disc series, which has been most satisfying to research and write. I have been surprised and delighted by the response to the series, which has added to the satisfaction. I should like to thank the following people for their helpful discussions: Dr Kees Immink of Philips, Dr Toshi Doi of Sony, and Dr Roger Lagadec of Studer (now also with Sony). -JRW.

The 1986 satellite and cable tv show

Our roving reporter focuses on d.b.s. opportunities - as seen at Cable '86

The problem of cable in Bri tain is "to make those millions of Britons who do not have cable wish they had." So said Bryan Cowgill, head of Robert Maxwell's cable and tv interests, in his opening speech at Cable 86. "Cable and satellite" predicted Cowgill "will no longer be a small matter on the periphery of broadcasting." But in trying to answer the question of how successful cable has been so far in attracting new subscribers, Ian Young of Ewbank Preece told his audience that in the UK the answer is shrouded in "complications and secrecy"
Complications come from the confusion of existing low-capacity systems and upgraded cable systems, many of which offer only limited services. Surprisingly, official figures show that between February 85 and January 86, whilst there has been a 39% increase in the number of households 'passed' by new-build systems, the actual number of households in total subscribing to cable services fell over 18,000 . This statistical freak was caused by mixing both old and new cable system into the same computation. Young wondered why, when clear information is required, the UK cable industry has allowed such confusion to occur in the basic data.

Ian Young explained that his
at tempts to get accurate information on existing subscribers totals and growth projections on specific cable systems were usually met "with aimiable but resolute evasion". Young's own estimates suggested that less than 20,000 subscribers are connected to 'new. build' cable tv networks in the UK. Penetration (numbers of households connected as a percentage of the numbers of houses passed) is around 21%

From Finland, Helsinki Cable TV's (HTV) Esa Malm said that over 200,000 out of Finland's 1.8 million households are connected to cable networks. Helsinki alone has 110,000 households connected. Current estimates for Finland are that over 50% of all urban households will be connected by 1990. HTV aim to provide 38 channel capacity to all viewers by 1987

DBS: risks and opportunities

Jon Chaplin of ESA, the European Space Agency, in analysing the risk and opportunities of d.b.s. listed the four major risks as: loss of satellite (particularly at its launch), 'green field' operation (concerning the provision of suitable receivers and their installation in homes), regulation and government policy (where there are still some unkowns) and finally the uncertainty in thw growth of revenue.

This display of satellite feeds included a stunning demonstration of low-power tv reception using only a 0.8 m dish made by D H Satellites and supplied by Harrison Electronics.

Chaplin believes that the crucial factor in d.b.s. is to maximise the probability of realising predicted growth of revenue. The extraordinary high levels of front-end investment have to begin to be paid for as quickly as possible by providing a sufficient variety of services. DBS services should include not only radio and tv broadcast services but also closed user-group video services and specialist information services. Accurate local weather reports for farmers are an example of a service that could be marketed as part of the d.b.s. package. The sale of such d.b.s.-borne services could be used to off-set
some of the front-end investment and help to build up revenue quickly.

Chaplin complained that "more imagination" was needed by the UK government on the use of d.b.s; it could also be used for innovative educational and training services. Chaplin forecast that it will be the "primary medium by the end of the century".

But in the meantime d.b.s has to get over the launch problem. Launch failures only have disastrous consequences for systems relying on single new types of

Z80 ■ CONTROL ■ Z80

CARDMASTER CPU

- 46 MHz 280 CPU
- CPM compatible
- User transparent MULTL-TASKING
- Up to 32 K EPROM \& 16K RAM
- Watchdog crash protection
- RS232 \& RS422 Comms
- 2*280a PIO (one uncommitted)
- On board bus buffering
- Power-on jump hardware
- Euro-card construction

NOW FROM $£ 99+$ VAT

CUB MICROCONTROLLER

- 280 CPU
- $4 \times 280 \mathrm{a}$ PIO's (6410 lines)
- 280a CTC
- 4K Battery backed RAM (2K sup.)
- 4K EPROM (2K MCV2.0 sup.)
- Powerful monitor (MCV2.0)
- Eurocard construction

NOW FROM $£ 86$ + VAT

STARBURST V1.31

A CROSS ASSEMBLER FOR
CP/M80 covers four major families of single chip uP's and uC's

* 8048 inc. $8741 / 2$ 8748/9/50
* 8051 inc. 8031/2 87518744
* 6801 inc. 6800/1/2/3 68701
* 6805 inc. 6870563705

Supplied with a complete set of demonstration files.
STARBURST V1.31 £95.00 + VAT
Requires $\mathrm{Z80} \mathrm{CPU}$

CMR16 NOW FROM玉165.00		
Bare PCB's Available		
	$1+$	10
C/MCPU	28.50	25.65
C/M I/O	28.50	25.65
CUB	23.50	21.15
CMR16	40.00	36.00
Manuals on request		
GNC ELECTRONICS Little Lodge, Hopton Road, TheInetham, DISS IP22 1JN Tel: 0379898313		

CIRCLE 17 FOR FURTHER DETAILS

CIRCLE 44 FOR FURTHER DETAILS

CIRCLE 35 FOR FURTHER DETAILS

RAyros

CIRCLE 34 FOR FURTHER DETAILS

RUGBY TIME?

MSF CLOCK IS EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds SELF SETTING at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds. EXPANDABLE to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show event time
COMPUTER or ALARM output also, paralleI BCD (including
Weekday) and audio to record and show time on playback DECODES Rugby 60 KHz atomic time signals, superhet receiver (available separately), built-in antenna, 1000 Km range. LOW COST, fun-to-build kit (ready-made to order) with receiver ONLY $£ 89.80$ includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb by-return postage etc and list of other kits. Get the TIME RIGHT.

OAMESBEBEMG
45(WJ) Old School Lane, Milton, Cambridge, Tel 860150

CIRCLE 49 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD SEPTEMBER 1986

Solid-state logo player

Thames tv plans to switch its familiar logo from film to silicon

Thames Television's station identification appears at the start of every programme: in the Thames area alone, it is screened on average 50 times each week.
At present, the ident is televised from film, and usually the replay process also includes at least one videotape stage. To improve the consistency of replay quality and relieve pressure on expensive studio equipment, generating the logo from solid-state memory seemed an attractive alternative.

The memory capacity needed to store this type of material depends on two factors: the duration of the animated sequence and the amount of picture detail. Fully detailed pictures in full colour and with a full grey-scale range demand about eight million bits per picture. An animation sequence lasting only three seconds would therefore call for some 600 M bits of storage. Even with current chip capacities of 1 M -bit per chip, a solid-state store of this size would still be somewhat unwieldy.

However, the idea of committing frequently-used station idents to solid-state memory is by no means new. At the BBC*, the recording capacity limitation has been overcome in the case of material contain-
Lawrence, R.K., and Mason, B.R. 1982 IBC, 71,72.
ing large areas of identical data effectively by storing only data changes which occur at transitions. In this way it has been possible to produce very efficient equipment.
Such memory conservation measures cannot be applied to Thames's main ident symbol, which is a highly detailed photo-montage of the London skyline. However, its saving grace lies in the nature of the animation sequence: in essence, the sequence is composed by read-and-reflect operations on a single master frame (Fig. 1).

A solid-state picture store can be considered as a twodimensional array. The horizontal index represents the address of a pixel relative to the start of a television line and the vertical index corresponds to the line number. In the present case, the memory array is filled with data representing the picture in Fig. 1

The moving sequence is synthesized by memory addressing which scans vertical segments of the stored picture. At any one time, only 50% of this picture is used in composing the output. The complete image is obtained by re-reading the first 50% in reverse to produce a reflected mirror image in the lower half of the output frame.

Figure 2 shows the scene which opens the ident. Picture data is derived from the upper half of Fig. 1, together with its
vertical mirror-image. To synthesize the scene, the array is first read from top to centre, producing the top half of the cloudscape. Then the vertical index counters are cued to count backwards so as to produce the reflected lower half.
As the animated sequence develops, new picture data emerges from the central line (Fig. 3). This effect is achieved by incrementing the vertical index start address by six lines at the start of each field.
The final image is shown in Fig. 4, which is made up entirely of data from the lower half of the array. In all, the animated sequence lasts about two seconds.

Hardware

Two main sections make up the equipment required to generate the video sequence: an acquisition system, to convert the original artwork into digital form, and a read-out unit.
Design of the data acquisition hardware is in part determined by the read-out strategy. Our initial thoughts were to base the memory array on read-only memory chips

Fig. 5. Block diagram. This simple system meets Thames's experimental requirement. But a dedicated computercontrolled version could be more versatile.

Ivan Brown T.Eng. (CEI) is a senior project engineer with the research and development group of Thames Television Ltd. His recent work includes investigations into new video systems, including variations on PAL, analogue t.d.m. and p.c.m. systems. In his spare time he is studying psychology with the Open University.

,

by I.G. Brown

OF PERFECTION

Designed and manufactured in West Germany by Hameg, one of the World's leading oscilloscope manufacturersa complete range of high instrument-standard oscilloscopes, at prices that defy comparison. Make the comparison and discover the 'Peak of Perfection'.

HM208 £1300(£1550 withIEEE)

20 MHz Digital Storage
 vert. resolution. Digital Timebase from $50 \mathrm{~s} / \mathrm{div}$. to $10 \mu \mathrm{~s} / \mathrm{div}$ Stores XY-Operation. Single/Refresh/Roll Mode. Analogue Output. IEEE-Bus optional . Sensitivity $1 \mathrm{mV} / \mathrm{div}$. $-20 \mathrm{~V} / \mathrm{div}$.

HM605

60 MHz Dual Trace
Sensitivity $5 \mathrm{mV} / \mathrm{div}$. at $60 \mathrm{MHz}, 1 \mathrm{mV}$ at 5 MHz . Automatic peak-value or normal triggering to 80 MHz . Delay Line Variable Sweep Delay. Timebase from $2.5 \mathrm{~s} / \mathrm{div}$. to max. $5 \mathrm{~ns} / \mathrm{div}$. . Unique fast-risetime $1 \mathrm{kHz} / 1 \mathrm{MHz}$ calibrator. Y-Output. High-resolution 15 kV CRT

HM204

20 MHz Dual Trace
Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{div}$., 1 mV at 5 MHz . Timebase from 1.25 s/div. to max. $10 \mathrm{~ns} / \mathrm{div}$. DELAY LINE. Variable sweep delay Single sweep. Automatic peak-value trigger to 50 MHz . Y-Output Z-Modulation. Overscan indicator

HM203

£270
20 MHz Dual Trace
Western Europe's best selling $\mathbf{2 0 ~ M H z}$ - Scope! Sensitivity $2 \mathrm{mV} / \mathrm{div}$. Trigger bandwidth 40 MHz . Timebase from $0.2 \mathrm{~s} / \mathrm{div}$ to max. $20 \mathrm{~ns} / \mathrm{div}$. . $X-Y$. Component Tester

FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1 RX
Tel: (0582) 413174 Telex: 825484
CIRCLE 11 FOR FURTHER DETAILS

MODULAR FORTH

* FORTH 83 in Modules
* MULTI-TASKING, Floating Point and many more features
* AN INNOVATIVE FORTH

FORTH 83 FOR ATARI ST

* WITH COMPLETE GRAPHICS

Our dependable Work-Forth

* Takes the hard work out of Forth

EXTRAS: Floating Point
Source level De-bugger
Show prices: $\mathbf{£ 4 8 . 0 0}+$ VAT
and AMSTRAD £35.50 + VAT

MicroProcessor Engineering Ltd

21 Hanley Road, Shirley Southampton SO1 5AP
Tel: 0703780084

CIRCLE 38 FOR FURTHER DETAILS

Toroidal \& E.I. Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competative prices Quantity Prices and delivery on request.

MAIL Order Price List
(prices inclusive of VAT \& Postage)

Toroidal transtormers 15VA $7.95,30 \mathrm{VA} 9.18$, 50VA 10.16, 80VA 11.36, 120VA 12.07, 160VA 14.20, 225VA 15.51 m 300 VA 17.04, 500VA $22.10,625 \mathrm{VA} 24.66$,	E.I. transformers (clamp) 6VA 2.90, 8VA 3.40, 12VA 4.20, 15VA 4.75, $25 \mathrm{VA} 5.40,50 \mathrm{VA} 6.50$, 100VA 13.02. Available in the following voltages: $6-0-6,9-0-9,12 \cdot 0-12,15$. $0.15,20-0.20,25-0-25$. Primary 240 volt.
Available from stock in the following voltages 6.0.6, 9-0.9, 12-0-12, 15-0.15, $\begin{aligned} & 18-0-18,22-0-22,25-0-25,30-0-30, \\ & 35-0-35,40-0-40,45-0-45,50-0-50, \end{aligned}$ 110, 220, 240 primary 240 volt. Also available $1 \mathrm{k} 2,1 \mathrm{k} 5,2 \mathrm{k}, 2 \mathrm{k} 5$, $3 k$. Prices on request.	Printed circuit mounting transformers. (E.I.) 3VA 2.38, 6VA 2.99, 8VA 3.75, 12VA 4.66. Available in the folowing voltage: $6 \cdot 0-6,9 \cdot 0 \cdot 9,12-0-12,15-0$ $15,20-0 \cdot 20$. Primary 240 volt.
Auto translormers 240 volt inpet 115 volt USA socket outlets (fully shrouded) $150 \mathrm{VA} 11.00,300 \mathrm{VA} 15.00$. $500 \mathrm{VA} 27.00,1000$ VA 34.00 , 1500 VA 48.00 .2000 VA 53.00	Portable isolating transformers Input 240 output 110 V . rating continous/tool 500/750VA 53.84, 1000/1500VA 72.57, 1000/1500VA 76.59, 1500/2500VA 85.54. Input 240 output 240 250/400VA 57.40 , 5001750 VA 65.25

Air Link Transformers.

Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425

Designing with dynamic memory

Dynamic rams are not as complex as their timing diagrams suggest

The write cycle timing diagram of a dynamic ram is not as simple as a read cycle diagram because of the more stringent requirements placed on the \bar{w} and data inputs. As the first part of this article (August issue) worked through the read cycle timing diagram, it is not necessary to plough through all the same material again. Fig. 10 gives the full timing diagram of a HM4864 $64 \mathrm{~K} \times 1$ dynamic ram during a write cycle; Fig. 11 is a copy but includes only parameters that differ between the read and writes cycles. You can see that all the timing requirements of the $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and address inputs are identical in both read and write cycles

Write timing

Consider first the requirements of the $\overline{\mathrm{w}}$ input, which signal has to satisfy six conditions. It is latched by the falling edge of the $\overline{\text { CAS }}$ clock, and has a setup time of $t_{\text {wCS }}$ seconds. The minimum value of $t_{\text {wCs }}$ is -20 ns , implying that $\overline{\mathrm{w}}$ can be asserted as late as 20 ns after the falling edge of $\overline{\mathrm{CAS}}$. Once asserted, it has a minimum down-time of $t_{w p}$ seconds (write pulse width 45 ns), and must not be negated until at least $t_{\text {WCH }}$ seconds (write pulse hold time 45 ns) after the falling edge of $\overline{\mathrm{CAS}}$.
In addition to these parameters, \bar{w} must be asserted at least $\mathrm{t}_{\mathrm{RWL}}$ (write command to row strobe lead time) before the rising edge of $\overline{\mathrm{RAS}}$, and at least $\mathrm{t}_{\mathrm{CWL}}$ (write command to column strobe lead time) seconds before the rising edge of $\overline{\mathrm{CAS}}$. These are both quoted as 45 ns . Finally, \bar{w} must not be negated at least $t_{\text {WCR }}$ seconds (the write command pulse hold time referenced to $\overline{\mathrm{RAS}})$ after the falling edge of $\overline{\mathrm{RAS}}$.

At this point, dear reader, you can be forgiven for thinking that the dynamic ram is a hideously complex device and that you would rather stick to static ram. There is an old saying "Look after the pennies and the pounds take care of themselves". So it is with dynamic ram. Look after the $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ clocks and the \bar{w} input will take care of itself.

To illustrate this point consider a simple example in which the write pulse is made equal to the $\overline{\mathrm{CAS}}$ clock, see Fig 12. The $\overline{\mathrm{RAS}}$ pulse is given the minimum possible value of $\mathrm{t}_{\mathrm{RAS}}=150 \mathrm{~ns} . \overline{\mathrm{CAS}}$ is derived from $\overline{\mathrm{RAS}}$ by delaying its falling edge by 50 ns from ras, to yield a value for $t_{R C D}$ of 50 ns , and for $t_{c a s}$ of 100 ns , its minimum permissible down time. The \bar{w} signal is obtained by gating the $\mathrm{r} \sqrt{\mathrm{w}}$ output of the processor with $\overline{\text { CAS. }}$

Below the Fig. 12 timing diagram are the six parameters associated with \bar{w} dur ing a write cycle and their minimum requirements, together with the values achieved by this circuit. In each case the righthand column gives the margin by which the requirement is satisfied. A negative value would indicate a failure to meet a requirement. As no entry in this column is negative, it can be concluded that this circuit satisfies all constraints on \bar{w} Note that the margin on the write command setup time is only 20 ns , of the order of the propagation delay through two gates in series. A margin as low as this would require careful attention to fine detail in a real circuit.

Data timing in a write cycle

Data is written into the memory on the falling edge of the
$\overline{\mathrm{CAS}}$ clock. The requirements for data-input timing are entirely straightforward and involve only three parameters (see Fig. 11). The data to be written into the memory must be valid for $t_{D S}$ seconds (data setup time) before the falling edge of $\overline{\mathrm{CAS}}$, and must be main tained for t_{DH} seconds (data

by Alan Clements
 Teesside Polytechnic

Fig. 10. Full timing diagram of a dynamic ram in a write cycle (top).
Fig. 11. In this detail of the write cycle timing diagram (bottom) the 'critical event' is the falling edge of CAS which latches the \bar{w} and the data input to the d-ram. Only parameters directly related to the write cycle have been included.

Fig. 18. In dynamic memory control on the 68000 board, valid access to d-ram array forces four-bit shift register out of reset (clear) state.
Each clock pulse causes 1 to be shifted down the register to general $\overline{\mathrm{RAS}}$, $\overline{\text { MUX }}, \overline{C A S}$ and $\overline{\text { DTACK }}$ signals in sequence.
Fig. 19. Read cycle timing diagram for Fig. 17.

Typical time values (ns)

$t_{\text {ASR }}$ row address setup 0 command
tcw write-to-col strobe lead 45
time
I_{DH} datahold time 45
t_{DH} data hold time ref. to ras 95
t_{DS} data setup time
$\begin{array}{llr}\mathrm{t}_{\mathrm{FC}} & \text { refersh cycle time } & 270 \\ \mathrm{t}_{\mathrm{FI}} & \text { REFRESH inactive time } & 60\end{array}$
$t_{\text {fp }} \quad$ REFRESH pulse period $60-2 \mu$
$\mathrm{t}_{\text {FRD }}$ REFRESH-to-RAS delay 320
$t_{\text {FRI }}$ RAS inactive time during 370 refersh
$t_{\text {FRL }} \quad$ RAS-IO-REFRESH lead 370 time
$\mathrm{t}_{\text {FSR }}$ REFRESH-TORAS setup -30 time
$t_{\text {tas }}$ row address strobe $150-10 \mu$ pulse width
$t_{\text {RAH }}$ row address
20 hold time
$t_{\text {RC }} \quad$ random access read 270
cycle time
$t_{\text {RFD }}$ RAS-to-REFRESH delay -10
trwL write command-to-row 45 strobe lead time
$t_{\text {Rp }}$ row address strobe 100 precharge time
$\mathrm{t}_{\mathrm{wCH}}$ write command hold time 45
$t_{\text {WCR }}$ write command time -20 ref. to RAS
$\mathrm{t}_{\text {wCs }}$ write command setup -20 time

ledge) input. If DTACK is not asserted in state S_{4} the 68000 inserts wait states and idles until DTACK goes low. This feature permits the 68000 to be operated with a mixture of fast and slow peripherals.

A difficulty associated with 16 -bit systems is the need to carry out byte operations on only half a word. While it would be possible to design two completely independent memory systems, one for the lower and one for the upper byte, such an approach would be hopelessly inefficient. To access data in a dynamic memory, both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are in volved in a cycle. Therefore, by negating either $\overline{\text { RAS }}$ or CAS to
one half of a word, that byte is disabled and takes no part in the memory access. As refresh operations are applied to all bits of a word, $\overline{\mathrm{RAS}}$ should not be gated with $\overline{\text { UDS }}$ or $\overline{\text { LDS. In }}$ any case, it should not be gated with $\overline{\mathrm{UDS}} / \overline{\mathrm{LDS}}$ because the data strobe is asserted late in a 68000 write cycle. In Fig. 16, the $\overline{\mathrm{CAS}}$ inputs to the 16 d -rams are divided into two groups of eight, $\overline{\text { CASL }}$ and CASU: CASL is formed by gating $\overline{\text { CAS }}$ with $\overline{\text { LIS }}$ and $\overline{\text { CASU }}$ by gating $\overline{\text { CAS }}$ with UDS.

Control of 68000 board

An example of a 68000 dynamic memory system is provided by the Motorola 68000
single-board educational computer. This uses $16 \mathrm{~K} \times 1 \mathrm{com}$ ponents, but the principles are valid for components of any size. Figure 18 gives the basic circuit of the timing generator for the read and write cycles. The arrangement of the dynamic memories and the row/ column/refresh address multiplexers is not included here, as it is entirely straightforward. The read cycle timing diagram for this circuit is in Fig. 19.

The component at the heart of the controller is a 74 LS 175 four-bit shift register, clocked at twice the rate of the processor clock. As long as the dynamic memory block is not being accessed (that is both LIS and $\overline{U D S}$ high, or Ramen low), the output ($\overline{\mathrm{CLR}}$) of the twoinput and-gate is low and the shift register is cleared with Q_{a} $=Q_{\mathrm{b}}=\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{d}}=0$. Whenever the processor addresses the array, RAMEN goes active-high, enabling one input to the and gate. As soon as $\overline{\text { LDS }}$ or $\overline{\mathrm{UISS}}$ is asserted, the second input to the and-gate rises and its output, $\overline{\mathrm{CLR}}$ becomes high. The shift register is now enabled and a logical one is shifted along on each rising edge of the $8-\mathrm{MHz}$ clock. Note that the educational board has a 4 MHz version of the 68000 .

On the first clock pulse, the Q_{a} output rises to a high level, because the serial input to the shifter is tied to $V_{c c}$. The q_{a} output from the shift register is 'NOR ed' is with REFIASS from the refresh circuitry (to generated $\overline{R A S}$ pulses during refresh cycles), and inverted by a norgate to provide the system $\overline{\mathrm{RAS}}$. On the next rising edge of the 8 MHz clock, Q_{b} goes high and \bar{Q}_{b} low; $\overline{\mathrm{Q}}_{\mathrm{b}}$ acts as the row/ column multiplex control signal and also gates the r / W sig nal from the 68000 . The next rising edge of the 8 MHz clock sets Q_{c} and resets $Q_{c^{*}}$ to generate $\overline{\text { CAS. }}$. This is followed one clock pulse later by DTACK. The falling edge of $\overline{D T A C K}$ is recognized by the 68000 and the memory access continues with state S_{5}. During $S_{7}, \overline{A S}$ is negated (together with UDS and $\overline{L D S})$ and the shift register cleared, forcing RAS, $\overline{\text { CAS, MUX, }}$ \bar{w}, and DTACK high.
(Tobe concluded).

There can't be too many serious electronics events that enable you to save valuable time, do a very productive day's work and have the opportunity to enjoy yourself afterwards.

But that's the case with Internepcon - the electronic packaging show. This October, Internepcon in Brighton will play host to approaching 400 suppliers who'll be showing products for the contruction of electronics apparatus. And of those, nearly 100 companies will be new to the event. Not only that, the Show will boast Britain's largest ever collection of connectors.

Come and talk to top names like: Amp, Molex, Imhof, Schroff, Siemens, A B Elect, ITT Cannon, BICC-Vero, Plessey, Varelco, who'll be showing the latest in components, connectors, wire \& cable, racks, enclosures, PCBs and a lot more besides.

More than just an exhibition

If you've been to any of the previous 18 Internepcons, (and most of your industry has) you'll be aware that it enjoys a rather special atmosphere. For a start there's a great deal of cross-fertilisation between exhibitors and visitors. And second, it's evolved into more of a club because it's an event that depends upon the participation of both you and your colleagues.

High-powered, back-up Conference

As well as the 1000 's of products on show there's also an authoritative Conference alongside to give you practical help. Relevant topics and special insights into the latest equipment and materials in the electronic packaging field will be covered in depth. Topics to be covered will include: Surface Mount Devices \& Techniques, Connectors \& Interconnection Techniques, CAD/CAM, RFI/Static Protection, Printed Circuits, Hybrid Techniques and Automated Assembly.

COMPONENTS, CONNECTORS, WIRE \& CABLE. \&ACKS. ENCLOSURES, PCB'SETC, ... ANDIT'SIN BBIGHTON

Metropole Convention Centre CIRCLE 9 FOR FURTHER DETAILS

Brighton's such a nice place to do business in

Visiting Internepcon in Brighton does have its compensations. Because as well as being able to save yourself literally months of product evaluation time you've got a coastal location that's been delighting visitors for years. It's brimming full of good places to eat, breathtak ing sights and exciting nightlife. So take this opportunity to spend a productive day (or why not stay over?) and then unwind in pleasant surroundings.
So make sure you don't miss out at Internepcon in Brighton this October. For you and your colleagues to gain FREE entry to the Show just complete the coupon below or better still ring 018916471.

[^0]
CIRCUIT IDEAS

Loop-resistance corrector for telephone exchanges

This correction circuit was devised to rectify a fault which caused a lack of dialling tone in 2000s! telephone lines connected to 700) telephone exchanges.

In a telephone exchange, maximum loop resistance is the highest value of resistance that a line can have without upsetting normal operation of the telephone set. When this resistance value is exceeded line current is insufficient to
drive the line relays at the exchange even though the handset can operate at as low as 5 mA . In a 2000 ת exchange, minimum line current for relay switching is 15 mA .

Connected at the exchange end, this circuit rectifies this fault provided that line current is above 8 mA . Relay current is doubled while handset current is reduced by 20%.

Base and emitter currents of the two transistor pairs act as telephone line current and relay current respectively. Two transistor pairs must be used to so that the circuit operates in either polarity.

Electromagnetic transducer usinga flux guide

Magnetic pick-up coil transducers can be used in non-contact sensing applications but they have never been as popular as optoelectronic. inductive or capacitive proximity sensors because they tend to be large and clumsy.

Now though, miniature 3-by-2-by- 1 mm sintered samarium-cobalt magnets magnetized through their thickness are readily available from Mullard so a compact and inexpensive transducer can be made for inaccessible places.

A ferrite rod is used as a flux guide to couple flux from the magnet to the pick-up coil. The magnet is glued to the rotating target. Since mass of the magnet is only 50 mg , the target's moment of inertia is not appreciably affected.

With a remnant dipole moment of the magnet as high as $4.24 \times 10^{-3} \mathrm{~A} / \mathrm{m}^{-}$, the magnetic flux can be coupled to the pick-up coil with the ferrite
rod 5 mm away from the magnet.
The pick-up coil is a 21 mm diameter Mullard FX2239 pot core wound with 250 turns of 0.224 mm wire. The ferrite rod, fitting in to the core, is about 50 mm long and can be made up of segments to form a curved flux path for cases where the target is not accessible directly.
Magnitude of the induced e.m.f. is proportional to the rate of change of flux and even at 23 Hz , as in the photograph, s / n ratio is high enough to allow processing with one opamp and comparator i.c. like the LM392.
In the photograph, the top trace is output of IC_{12} with Y deflection at $0.5 \mathrm{~V} /$ div. Section $\mathrm{IC}_{\mathrm{bb}}$ is used in Schmitt-trigger mode to produce output as shown in the lower trace with Y deflection at $5 \mathrm{~V} / \mathrm{cm}$. For bott traces, a $10 \mathrm{~ms} /$ div horizontal deflection was used.
Power supply requirements are 4.5 and -4.5 V at 2.5 mA . A.de Sa

School of Physics
University of Newcastle-uponTyne

Resistors reduce the ratio of these currents to $1: 3$ while providing a bidirectional communication path. The two diodes stop the transistors from acting as zener diodes

Variable-length shift register

Length of this shift register can be varied from one to 64 bits. It overcomes the speed limitation and signal-level difficulties of the c-mos 4557 .

Data at select inputs of the two 74151's determines the shift-register length. Setting inputs A to F to zero gives a one-bit delay between input
while polarity is reversed. Ratings of all the transistors are 100 V and 500 mA .
D.P. Ediriweera

Tea Research Institute Talawakele Sri Lanka.
and output and setting all the inputs to one gives a 64 -bit delay

If need be clock inputs of the 7491 scan be gated with data selected lines D. E and F to avoid clocking unused registers on shorter shift sequences. This circuit could be extended using 16bit multiplexers and extra registers J.Jeffery University of London

Low-noise preamplifier for data

When a magnetic medium such as $1 / \mathrm{in}$ tape is used for data storage there are numerous potential error sources including inconsistent tape width, tape stress, wow, flutter and dust between head and tape. As a result, a widely fluctuating playback signal can be expected.
This circuit improves reliability by keeping digital output level constant over a wide range of input signals.

Output from the head is normally a few millivolts but flutter and dust can reduce the level significantly. With this circuit, a playback signal of $20 \mu \mathrm{~V}$ still gives excellent results. To amplify a signal of $20 \mu \mathrm{~V}$, a very-low-noise amplifier is needed. Integration of the signal is impractical since the very high low-frequency gain required for the integration results in too much low-
frequency nose. Here a flatresponse amp_ifier is used.
Noise in modern very-low noise integrazed amplifiers is higher than she noise of two low-cost BC107-type transistors which have been selected for noise and frequency performance in the actual circuit.
By choosing the transistors in this way, an effective output-noise value of 30 mV was obtained over the whole bandwidth ard an input impedance of 27Ω Referred to the input, this ncise figure with a gain of 60000 is $0.5 \mu \mathrm{~V}$ effective which is ive times higher than the noise of figure of a $27 / 2$ resistor.

Direct-current drift of the two transistors is compensated for. Here a d.s. reference level is created by integrating output from the two transistors. The integration constant of 10 ms , determined by an RC

network, is long enough for the frequency of 3 kHz used.

Gain correction is achieved with an LM3915 bar-display driver switching fet transistors which, with an op-amp, acts as a digitally-controlledgain amplifier. In each step a parallel resistor is switched in or out to alter gain.

No feedback for the gain adjustment is used, therefore no pulses are lost due to overshoot, etc. Roll-off time for the gain adjustment is determined by an RC time constant; when the signal becomes smaller,
the gain is doubled every 70 ms .

Circuit IC_{1} is a bandpass filter added so that unwanted noise spikes do not alter the amplifier gain. Gain correction response is mainly determined by the time lag of this filter.

The circuit could be improved by inserting a delay line between Tr_{2} and IC_{2} to overcome the bandpass-filter time lag.
F. Ypenburg

National Physical Research Laboratory
Pretoria

Capacitor-

 powered fibreoptic transmitterThis circuit takes electrocardiogram signals from a pair of electrodes and transmits down a fibre-optic link. It can be powered by a memory backup type capacitor, 0.33 F charged to 5 V providing about five hours operation or it could equally well use a pair of watch type cells.
The circuit was designed for use in a nuclear magnetic resonance scanner, this being very sensitive to electrical noise as would be conducted down wires. Output is sufficient for transmission up to at least 10m using Honeywell "Sweet Spot" devices and 1 mm polymercable.
Input from the electrodes is bandpass filtered before being fed via a buffer to a long-tailed pair. The $33 \mathrm{nF} / 3.3 \mathrm{M} \Omega$ which filters a.c. from the drive to one

side of the pair also forms the third stage of the high-pass Bessel filter. This long-tailed pair limits the linear range to about 20 mV , but this is adequate for the purpose intended.

Current from one collector, which is a linear function of
input voltage, is used to charge a capacitor in a current-tofrequency converter which in turn delivers approximately 3μ s pulses to the led driver.

Extensive use of constantcurrent sources makes this circuit insensitive to supply vol-
tage changes, the lower limit of 2 V being dictated by the led. Receiver design is not critical. The requirement is for a frequency-to-voltage converter, linear up to about 1500 Hz . G.G.R. Rutter

London W2

8255 portdirection changing

In eprom programmers, the 8255 programmable peripheral interface is often used. But a problem arises when you try to use one of its ports in mode 0 or 1 as a data port for the programming socket and some pins of the other ports as control pins for activating relays or selecting programming voltages for example.

The problem is that during the program/verify sequence you must first output then input data from the same port. When this port is programmed in mode 0 or 1 , is necessary to send another control word to the 8255 to change direction of the port. On sending this control word, all outputs are set to zero so an undesired situation may occur such as changing the $V_{p p}$ level or relay states during programming.

This problem is easily overcome by programming port A for example in mode 2 and activating both $\mathrm{PC}_{4}\left(\overline{\mathrm{STB}}_{\mathrm{A}}\right)$
and $\overline{P C}_{6}\left(\mathrm{ACK}_{\mathrm{A}}\right)$ signals by a single bit set/reset operation on the two remaining pins of port C ($\mathrm{PC}_{1,2}$).

Reading from port A is carried out by sending a zero then a one to PC_{1}. To output data on port A, first write the data to port a then set PC_{2} to zero. Data is held on port A as long as PC_{2} is kept low

While $\mathrm{PC}_{1,2}$ are high, port A is in its high-impedance state. During i/o to and from port A, pins, $\mathrm{PB}_{0.7}$ and PC_{0} remain unchanged.
Tadeusz Jarosiński
Warsaw

DON'T WASTE GOOD
 IDEAS

We prefer circuit idea contributions with neat drawings and widelyspaced typescripts, but we would rather have scribbles on "the back of an envelope" than let good ideas be wasted.

Submissions are judged on originality and/or
usefulness so these points should be brought to the fore, preferably in the first sentence.
Minimum payment of $£ 35$ is made for published circuits, normally early in the month following publication.

IT'S NEW TISE
 IT's Enconoran

Years of research and development have enabled EEV to produce in the most moderr, CCD plant in Europe, a completely new range ofCCTV Cameras ... "The Photon". They are tough, and very reliable featuring custom designed ceramic covered hybrid circuits which provide sensor drives and video processing in a miniature housing. Our new dedicated fabrication facility provides the low noise CCD sensor for these cameras which initially will offer a choice of variable integration time, switchable between 1 ms and TV , logether with standard features such as genlock, auto iris drive, a.g.c. and video clamp. The cameras power requirement is less than 4 watts, at either 12 V d.c. or via a line power supply. More new models will be released later this year as the Photon CCD family grows, but in the meantime, contact us for details of these exciting new cameras.

A SELECTION FROM OUR STOCK OF BRANDED VALVES

lan R Sinclair

Working with Microprocessors
 Based on a broad range of equipment this book

 describes the hardware of modern microprocessor devices for those who know something of digital systems, but are unfamiliar with microprocessors and microprocessor circuits. Topics covered include how microprocessor systems are connected up, what signals exist, the timing relationships and the actions, and the servicing of microprocessor equipment156 pages $£ 9.95$

E A. Parr

Logic Designer's Handbook

An invaluadble source of both theory and practical information including data on CMOS and TTL devices. Essential reading for all logic systems designers

472 pages $£ 20.00$

Collins Professional and Technical Books
8 Grafton Street, London WIX 3LA Tel: 01-493-7070 Ext 4513 CIRCLE 36 KOR FURTHER DETAILS

Line scan camera

Considering the basic simplicity of linescan cameras - photosensitive array, lens and straightforward electronics - it is surprising they are not more widely used.

This article is based on results obtained using an EG\&G Reticon LCO310 line scan camera together with some experimental electronics. The equipment was arranged to test the feasibility of a system for inspecting circular pressed metal lids passing along a conveyor. The report describes a practical system and suggests further work for improved operation.
The line scan camera operates like a normal optical television camera, with three important exceptions.

- Much higher stability, with no danger of burn due to continuous viewing of a stationary object.
- No field scan, so that instead of viewing an object using the raster principle, a single line only is viewed; consequently a movement of the item under inspection is required to view its complete area
- The camera produces a 'clock' pulse for each picture element. This enables exact location of defects by counting clock pulses from start of scan.
The camera contains an array of photosensitive diodes (in our case 1024 but usually in multiples of 128 e.g. 256, 512 etc) mounted so that the image is focused onto it. Circuitry within the camera integrates the charge produced by the incident light, then clocks these representative charges out from the array by means of a shift register, thus providing a familiar video waveform. A sample and hold circuit provides a smooth transition from one element to the next. Electronics within the camera provide the clock timing pulses, and synchronized pulses for the analysing circuitry. The video waveform may be directly viewed on a oscilloscope to
enable positioning, lighting, and focus.
As integration time varies with clock frequency, camera sensitivity to light varies. The amount of light required is greater the faster the camera is run. Maximum clock rate is 500,000 pulses per second, giving a minimum line scan time of 2.064 ms , and 484 lines per second. From this it is possible to determine the maximum inspection rate, given required definition and object size.

Typical uses of such cameras are for determining overall dimensions of goods, for example paper width or box height. But the excellent stability and definition of the line scan camera should enable its use in much more detailed work.

Control electronics

The high definition electrical representation of the surface under inspection requires suitable electronics to analyse the results and take decisions. The product being inspected is a range of lids having various sizes and coatings. The difference in size is fairly well accomodated by altering the field of view of the camera. It is clearly desirable that the maximum dimension of the product should always fill the viewing width of the camera to maximize definition. Experiments showed two main problems.
The extreme edge of the lid has a number of serrations, is folded at differing radii, and may be painted any colour. This makes total inspection of this area very difficult due to the randomness of the reflected light, and positional difficulty. This problem is still under investigation.
Lids may be coated with a light-coloured plastics material, which is easy to inspect, or not, in which case striations in the grain of the metal cause direct reflection of light from
an unpredictable and wide range of angles. This should be overcome by using a very narrow angle of incident light with respect to the lid. At least two light sources will then be required to overcome shadow.
We constructed a form of optical bench that enabled lids of varying diameter to be placed at the camera's focal point. Using a local illumination of 50 watts at various angles and distances, the video waveform was observed. The definition was so good that the smallest visible blemish could be detected, and it is possible that 512 instead of 1024 pixels might be sufficient for the item in question, with a consequent saving of cost.

It was also clear from these tests that a fault might generate light levels either above of below that of the normal surface, particularly in the case of scratches, so that circuitry to detect this would be required. Circuitry to define a window of valid inspection would also be necessary to eliminate false rejection if the camera were scanning past the lid edge.

by L. Hayward Technical director Eastpoint Ltd

From these observations a basic detector unit was designed which works as follows. It is assumed that the lid can be fed intermitently, and rotated at least once in the camera field of view, and that a signal to indicate 'lid in position' can be derived.

The circuit of the detector electronics is shown above. Certain timing operations are generated by monostables. This was done for the sake of simplicity. A production unit would preferably have all timing derived from the camera clock for greater stability and ease of use. The camera is equipped to transmit differential data and clock signals, though this experimental circuit does not use differential receivers for the short range operation en visaged.

Operation

The video waveform from the camera is fed to two voltage comparators, IC_{7} giving a posi-

Simple circuit detects flaws in material moving along a conveyor, provided that the inspected area is constant.
tive output when the video is higher than threshold, and IC_{8}, when video is lower. The threshold voltage is an average of the video level, the waveform being integrated by the network at the in put to IC_{6}. A voltage may also be injected from a high and low margin potentiometer to allow an additional offset in each case. Since the reference is in part derived from the average light level, reasonable variations in the light source are tolerable. The video waveform is only connected to the averaging circuit during the 'inspect'period, so that reflections from the edge and background do not distort the average.

At the start of each scan, the camera produces a positive going 'enable' pulse. This is used to trigger, in sequence, $\mathrm{IC}_{2 \mathrm{a}}$ and $\mathrm{IC}_{2 \mathrm{~b}}$, the first of which determines the non-inspect
period from start to scan and the second determines the inspect period from then on. Two further monostables are used: $\mathrm{IC}_{3 a}$ provides a delay to ensure a short scan period to allow the averager to settle after the lid is ready for inspection, while $\mathrm{IC}_{3 \mathrm{~b}}$ is provided to light an indicator for about one second to indicate that a fault is present. The comparator outputs are or-ed and gated with the 'lid in position' signal (LIP) The boolean expression for a reject then becomes
REJECT $=\left(\text { COMP }_{\mathrm{a}}+\text { COMP }_{\mathrm{b}}\right)_{\text {LIP }}$ inspect (after delay)
It became obvious during early tests that a visual method of setting time and voltage margins would be required, and the remaining circuitry of Fig. 1 is designed to present all the necessary data on a single channel oscilloscope, having
bright-up capability and sufficient speed ($>10 \mathrm{MHz}$ bandwidth).
The camera clock drives . signal chopper, which splits the oscilloscope display up into a voltage displaying the high margin a voltage displaying the low margin and the video waveform. In addition the trace is brightened during the inspect period, so that its start and finish may be observed in relation to the video waveform. Page 49 shows a typical result.
A wideband buffer amplifier to drive the output to the oscilloscope is desirable for highest clock rate. Minimum times of the monostables will also need to be reduced. The trigger pulse for the oscilloscope time base is obtained directly from the camera, although the x-sweep could be generated directly from a digital-to-analogue converter driven by a counter of camera clock pulses.

The result of many tests using this method has shown
that a practical unit can be easily designed to fully inspect the interior face of lids of all practical diameters. The result of inspection using an intermittent and rotary scan would result in a slowing of the production line, but a linear scanning method would enable inspection at full conveyor line rate with minimal mechanical change. Problems arise regarding the initial sensing of the lid, tracking its edge, and then dynamically changing the non-inspect zones.

Sensing the lid edge as it appears in the camera field of view and adjusting the initial non-inspect area present little problem, but automatically defining the end of the inspect period is more complicated. The problem is not insuperable, and a block diagram of the proposed electronics is shown above. The theory assumes that the camera is adjusted in each case so that the field of view is that of the lid diametere, so that the lid diameter is 1024 elements. We can then state that the enable $\mathrm{T}_{\text {on }}$ measured in clock pulses from line start will be equal to the clock count a the detection of the lid edge plus the preset margin, and the enable $\mathrm{T}_{\text {off }}$, will be equal to 1024 - the clock count at $\mathrm{T}_{\text {on }}$. (The preset margin is assumed to be equal at start and finish of scan, and is thus included and defined at $\mathrm{T}_{\text {on }}$.)
This hardware approach is preferred to a microprocessor

application, since the system speed will always be limited only by the camera and not the computer processing time. In fact the hardware required should be about the same or less, and servicing easier.
Clearly other techniques may be necessary to inspect other products. In cases where product speed is slow, inevitable with larger items, a microprocessor approach may be

Only a simple circuit is

 required to produce video signal from the diode array. Power requirement is very low compared to vidicon cameras and overall stability much higher.Inspecting circular objects where the inspect area varies according to diameter and position calls for a more complext digital solution.
desirable to allow easier parameter change.

A variety of line scan cameras and arrays are advertised in this country and it may seem surprising that such a potentially useful device is not more widely used. One factor is the price. Diode arrays typically cost $£ 500$ for a 1024 -element device, although some chargecoupled devices made by Fairchild would seem to give similar definition at a lower cost and faster data rate.

Cable '86

satellite. This is just the situation with d.b.s.
But there was some disagreement on the actual size of the launch failure risk. Chaplin argued that despite recent failures (Shuttle and Ariane), the total launch success rate was 94%. Chaplin added however, that once a satellite was in orbit there was only a low probability of an inorbit failure. The highest risks are in getting it there in the first place. Space consultant Rodney Buckland challenged Chaplin's launch failure figures saying that the true launch commissioning failure rates for commercial satellites are nuch higher, nearer 18%.
Bemoaning the fact that different countries in Europe are going their separate ways when it comes to d.b.s. transmission, Chaplin warned that in practice different modes of transmission may end up being used at different orbital locations. The UK and Irish direct broadcast satellites which will be at $31^{\circ} \mathrm{W}$ may be transmitting on isolation in C-MAC while other European satellites at $19^{\circ} \mathrm{W}$ and else where will be using D2-MAC.
In a later technical session, Bernard Green, the IBA's satellite broadcasting head, entered the CMAC v. D2-MAC argument saying that "C-MAC was the best of the MAC family for viewers in the UK, where cable is just not a major consideration."
DTI consultant Bernard Rogers said that B, C, D2-MAC were all good and that MAC provides the path for enhancement to future $t v$ systems. MAC as a transmission system is more 'rugged' than PAL or SECAM, because there are no subcarriers.

Brighton was the cheerful seaside venue for this year's satellite and cable tv exhibition and conference, Cable ' 86 , attracting 5,300 visitors and 72 exhibiting companies. The increases over the last year's figures (4,000 visitors and 50 exhibitors) reflects a growth of interest in an industry which impinges on many others: telecommunications, information technology and broadcasting.
The Cable ' 86 organisers, Online, are bringing next year's exhibition and conference, CableSat, forward to 2-4 June 1987 to avoid clashing with the start of the European holiday season. With the recently announced launch delays and with rumours circulating that France is considering scrapping its high-powered TDF-1 d.b.s. project altogether in favour of a lowerpowered satellite, it's anybody's guess whether there'll be any European d.b.s. in orbit by the time Cable ' 87 comes round! - NC

GRS - PRINTERS - PRINTERS - PRIWTERS

SUPER DEAL? NO - SUPER STEAL THE FABULOUS 25 CPS "TEC STARWRITER"

 electronics offer full electronics offer full
DIABLO/QUME com mand compatability and full controt via CPM WORDSTAR paper handling with up to 163 characters pertine friction foed interfar single sheet or continuous paper, internal buffer, standard RS232 seria and FRE information. Optional extras RS232 data Feed £140.00. Spare daisy wheel $£ 3.50$. Carriage \& Ins. (UK Manual £7.50. Tractor (UK Manliand) \& 10.00 .

NOW ONLY £499 + VAT

DIV PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - digitiser etc, entirely to their own specification. The printer mechanism is supplied ready built, aligned and pre tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder, NINE needle head $2 \times$ two phase 12 V stepper motors for carriage and paper control, 9.5" Paper platten etc. etc. Even a manufacturer's print sample to show the unit's capabilities!! Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$ Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp $£ 4.50$.

TELETYPE ASR33
 DATA I/O TERMINALS

Industry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reader Standard RS232 serial interface deal as cheap hard copy uni or tape prep. for CNC and NC machines. TESTED and in good condition. Only $£ 250.00$ floo stand £10.00. Carr \& Ins. £ 15.00 .

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporation Often seen in major Hotels printing up to
the minute News and Financial informhe minute News and Financial inform
ation, the unit operates on 5 UNIT ation, the unit operates on 5 UNIT
BAUDOT CODE from a Current loop, BS232 or TTL serial interface. May be RS232 or TTL serial interface. May be
connected to your micro as a low cost printer or via a simple interface and filter o any communications receiver to TELEX and RTTY services
Supplied TESTED in second hand condition complete with DATA, 50 and 75 baud xtals and large paper roll. TYPE AE11
50 Column 50 Column
Spare paper roll for AE 11 ONLY $\begin{array}{r}\text { E49.95 } \\ \mathbf{E 4 . 5 0}\end{array}$ TYPEAF11R72 Col TYPE AH11R80 Col £65.00 ASCII/BAUDOT £185.00
Carriage and Insurance $£ 7.50$

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

DEC CORNER

PDP 1140 System comprising of CPU, 124k memory \& MMU 15 line RS232 interface Tu10 40 MB hard disk drive Tu10 9 track 800 BPI Mag tape drive. dual track system. VT52 VOU, etc etc. Tested and running ${ }^{\text {BA11.MB } 3.5^{\prime \prime} \text { Box PSU LTC E3,750.00 }}$ BA11-MB 3.5"Box, PSU, LTC
DH11-AD 16" RS232 DMA intertace
interface
DLV11-J
DLV11-E \times EIA intertace DUP11 Synch . Modem support DO200 Dilog - multi RK controlier DZ11-B 8 line RS232 mux board KDF11-B M8189 PDP 1123 PLUS LA30 Printer and Keyboard 20 mA loop
MS11-JP Unibus 32kb Ram MS11-LB Unibus 128 kb Ram MS11-LD Unibus 256kb Ram PDP11/05 Cpu Ram, i/o etc PDP1 $1 / 40$ Cpu 124k MMU RT11 ver 3 B documentation kit RKO5-J 2.5 Mb disk drives M18E PDP 8 Bootstrap optio VT50 VDU and Keyboard

VT52 VDU and RS232 interface

\section*{£1,900.00
 1,900.00} | £190.00 |
| :--- | ع190.00

ع650.00 $£ 495.00$
$£ 650.00$
£1,100.00 £80.00 £270.00 880.00 $£ 450.00$
$\& 850.00$ £ 850.00
$£ 450.00$ £1,850.00 ع70.00 £650.00 $\varepsilon 175.00$
$\varepsilon 75.00$
$\varepsilon 175.00$

Give your VT100 a Birthday!!!
Brand New VT100 Keyboards Brand New VT100 Keyboards 1000's OF EX STOCK spares for PDP8 PDPAín PDP11. PD P1134 etc. SAE, for list, or CAL sales office for details.
ALL TYPES OF COMPUTER EQUIPMENT AND SPARES WANTED FOR PROMPT CASH SPARES

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

All in one quality computer cabinet with integral
switched mode PSU, mains filtering, and twin fan
cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds.

$$
\text { Made to run } 24 \text { hours per day the psu is fuli }
$$

screened and will deliver a massive +5 v DC at $17 \mathrm{amps},+15 \mathrm{v}$ DC at 1 amp and $-\sqrt{5} \mathrm{v}$ DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for 240 v operation complete with full circuit and tech. man. Give your system that professional finish for only $£ 49.95$ + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $6^{\prime \prime}$ w $10.5^{\prime \prime} h 11.5^{\prime \prime} \mathrm{d}$.
Also available less psu, with fans etc. Internal dim. $19^{\prime \prime}$ w, $16^{\prime \prime} \mathrm{d}, 10.5^{\prime \prime} \mathrm{h}$ £19.95. Carrage £8.75

66% DISCOUNT on
 ELECTRONIC COMPONENTS EQUIPMENT

Due to our mas:zive bulk purchasing programme, which enables us to bring you the Sub-assemblies, Switches etc. etc. surplus to OUR requirements. Because we don have sufficient stocks of any one item to include in our ads we are packing all these ems into the SARGAIN OF A LIFETIME. Thousands of components at giveaway prices. Guaranteed to be worth at least 3 limes what you pay Unbeatable value and perhaps one of the most consistently useful items you will every buy!! Sold by

[^1]$5 \mathrm{kls} £ 6.90+£ 1.80$
s £19.50

GE TERMIPRINTER

A massive purchase of these desk top printer terminals enables us to offer you these quality 30 or 120 cDS printers at a SUPER LOW PRICE against ther rigmal COSt full OWERTY keyboard and printer mech with print face similar to correspondence quality ace simiar to correspondence quality enables full width - up to 13.5120 column paper, upper lower case
standard RS232 serial interface internal vertical and horizontal tab settings. standard ribbon. adjustable baud rates, quiet operation plus many othe Geatures. Supplied complete with manual GE $1200120 \mathrm{cps} £ 175.00$ GE1200 120 cps $£ 175.00$

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 includeriacs. diodes. bridge recs. etc. etc spec with manutacturer's markings fully guaranteed
$50+£ 2.95100+£ 5.15$
TL 74 Series A gigantic purchase of an across the board range of 74 TTL series es enables. us to offer 100+ mixed "mostly TTL" grab bags at a price which wo or three chips in bag would 's all cost to $200+\varepsilon 12.30,300+\varepsilon 19.50$

MAINS FILTERS

CURE those unnerving hang ups and data glitches caused by mains interference with professional quality filters. SD5A match box size up to 1000 watt 240 V completely cased unit with 3 pin fitter

EPROM COPIERS

The amazing SOFTY 2 The "Complete Toolkit" for copying, writing. modifying and listing EPROMS of the $2516, ~ 2716$
2532,2732 range. Many other functions face. serial and parallel i/o UHF modulator IF socket etc.
ONLY $195.00+\mathrm{pp} £ 2.50$
'GANG OF EIGHT' intelligent Z80 controlled 8 gang programmer for ALL
single $5 v$ rail EPROMS up to 27128 Wi single $5 v$ ral EPROMS up to 27128 . Wil CD display and checking IDIOT PROOF operation. Only £395.00 + pp £3.00
GANG OF EIGHT PLUS" Same spec. as above but with additional RS232 seria interface for down line loading data from
computer etc ONLY $\mathbf{4 4 5 . 0 0}+\mathrm{pp} £ 3.00$

Data sheets on request

COOLING FFINS

Kaep your hot parts COOL and RELLABLE with our tange of
COLING FANS ETRI $126 L F 21240 \mathrm{v} 5$ blade equipment tan
 GOULD JB. $3 \mathrm{AR} \mathrm{Xim}, 3 \times 2.5$ compact very quie
 BOXER standard $120 \times 120 \times 38 \mathrm{~mm}$ fans Order $110 \vee$ Oh
2400.3 or 5 bade. NEW at 10.50 or tested EX EQUMPMENT
E5 50 Low Voitage DC Fans. BUHLER 69.11 22 B.16v DC

1000's of other EX STOCK itéms including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

John Gordon is senior lecturer in electronics and microelectronics at Blackburn College.

Memory addresses for the 8085
board. Single bits may be read from memory by loading from either the set or clear addresses.

2716 eprom (tirmware)	$\$ 0000-\$ 1 F F F$
2114 ram	$\$ 4000-\$ 43 F F$
8154 p.i.a.	$\$ 8000-\$ 80 F F$
port A	$\$ 8020$
port B	$\$ 8021$
d.d.r. A	$\$ 8022$
d.d.r. B	$\$ 8023$
Set bit 0, port A	$\$ 8010$
Set bit 1, port A	$\$ 8011$
Clear bit 0, port A	$\$ 8000$
Clear bit 1, port A	$\$ 8001$
Set bit 0, port B	$\$ 8018$
Set bit 1, port B	$\$ 8019$
Clear bit 0, port B	$\$ 8008$
Clear bit 1, port B	$\$ 8009$

Fig. 2 (opposite). The complete controller. The spare dil device is included for convenience in making connections to the 8085's reset and interrupt inputs.

Fig. 1. Prototype of the 8085 controller board showing leads to the BBC Micro.

8085 development on the BBC Micro
 A simple system to introduce 6502 users to another popular processor family

This article describes hardware, firmware and software which together allow the user of a BBC microcomputer to study and develop stand-alone applications for the 8080 series of microprocessors. For those who have had little microprocessor experience outside the confines of the 6502, the project offers an opportunity to experience a contrasting processor architecture. The 8080, 8085 and Z80 all have similar structures and the newer 16-bit 8086 and 8088 are upward-compatible with the 8080 .
The system consists of a simple, almost minimal, 8085 controller board with firmware in a 2716 eprom to handle communications with the BBC Micro. Software includes a simple but effective 8085 assembler written in Basic; a loader, also in Basic; and a communication program, in Basic and machine code, which allows memory transfer between the BBC and the controller. The software is designed for disc-based systems; but since only one data file is

open at a time, it wịll run from tape if cassettes are changed as required.
The 8085 microprocessor is described fully in many textbooks. The book listed as reference 1 is a general electronics text which contains an more than adequate description of 8085 hardware and software.

Hardware

Construction of the hardware is quite straightforward, Fig. 1. A suitable basis for it is the dip board supplied by Maplin Electronics or RS Components. A spare 14-pin socket has been included with supply connections suitable for a 7400 or 7404. Such a device may be needed later if the reset output or interrupt inputs of the microprocessor are to be used.
The 8085 microprocessor and its associated address bus latch are situated at the right of the board. The latch is an 8212 eight-bit type which is activated by the address latch enable (ale) line on the microprocessor. This active-high line is high during the first T-clock cycle to indicate that a valid address has been placed on the address/data multiplexed bus (the address is also valid during the trailing edge of Ale). This signal causes the strobe input to the 8212 to latch the lower address byte. The high address byte remains on the address bus for the complete instruction cycle.
On the circuit diagram, Fig. 2, ale is connected to the 74138 enable line so that chip select does not occur during ale. This is to prevent ram data from corrupting the valid address. The 2114 ram devices employ the not-write enable line as a read/write signal. This means that the ram is normally set to read (i.e. not-
write enable is set high) when software in ram is being accessed and it might otherwise corrupt the address/data bus during address latching. Reference 1 gives an alternative arrrangement.

At the bottom left of the board, two 2114 static rams provide 1K-byte of memory organised as 1 K by four bits. Each device handles one half of the data bus.

The system firmware is quite compact and so there is plenty of room in the 2716 eprom to extend the board's capabilities further. The notread strobe from the 8085 is used to enable the output of the 2716 and the chip select comes from the 74138 three-to-eight line decoder. The eprom must be located at the lowest address, as shown in figure 2, since the reset start location for the 8085 is 0000_{16}.

The i/o device is the 8154 p.i.a. This is useful for applications where the control of single bit i / o is predominant: it has separate address locations to set, clear and read any of the sixteen bits in the two eight-bit ports, as well as address locations for the ports as a whole Especially useful in a small controller such as this is its 128-byte block of user ram.
The m / Io line on the diagram is connected to A_{7} of the address bus and the chip is enabled at 8000_{16} (or its shadows). For this configuration, the port bit address lines will lie between 8000_{16} and 807 F ; and the addresses from 8080_{16} to 80 FF will be user ram. In contrast to the ram i.cs, this device is of the 8000 series and therefore supports the correct not-read and not-write strobe lines

With the 8085, the not-read and not-write lines require pull up resistors as shown in

A kit of parts for this design is available from Microkit Ltd， Blakesley，Northamptonshire NN12 8RB at £39．99 including v．a．t．and postage．Send a stamped，self－addressed en－ velope for more details．

References

1．＇The Art of＇Electronics by Horowitz． and Hill Cambridge University Press． 2．The Advanced User Guide for the BBC Microcomputer by A．C．Brav．AC Dickens and M．A．Holmes．Cambridge Nicrocomputer Centre． 1983
the circuit diagram．The clock can be generated on the 8085 simply by the addition of a resistor and capacitor at pins 1 and 2 ，or a 3 MHz crystal may be used instead．The values shown given an input frequen－ cy of about 3 MHz and an out－ put clock frequency of half this value．

Reset is achieved by short－ ing together two pins at the top of the board，though a small push－to－make switch might be more serviceable．The reset－in line also resets the p．i．a．；but this may be altered so that the reset－out line resets the p．i．a．， allowing controlled resetting of the i / o function．
Figure 1 shows eight short wires surrounding the 8212
latch．These wires，the low eight bits of the address bus were left on the board to allow a logic analyser to be con－ nected but are not needed on the complete board

Connections to the computer user port are four control or data wires and a common ground．The board must of course be reset before com－ munication takes place．
The interrupt facility of the 8085 has been rendered in－ active，but any interrupt line may be used with only slight modification to the board．The interrupt lines have varying priorities and their inputs are active high．
Software for this design will be described in the next article．

Simple pulse generator

Two separate kits are available for B．J．Frost＇s pulse generator described on page 43 of the Au－ gust issue．Kit A comprising p．c．b．，components and switches， costs $£ 23.50$ and Kit B．compris－ ing low－profile case，screen－ printed front panel，knobs and BNC connectors，costs $£ 17.40$ ； both prices exclude v．a．t．

The generator is also available built and tested for £78 excluding v．a．t．from the kit suppliers Ver Controls（St Albans）Ltd at Rook－ ery House．Crowes Loke．Little Plumsted．Norwich NR13 $5 \mathrm{JJB}_{3}$ tel． 0603721215.

U111							
111\％．	 						
1115							
11114	LAKEIS LSED IN FIKMARE						
111）							
11116	ト＇トkor	－	\pm ¢0\％				
10117	BY＇l＇E	$=$	きといぬ」				
0178	F＇E		\＄8088				
Bity	Fbe	$=$	\＄0ijus				
11111	FB3	$=$	\＄81784				
（1）1	F_{4}		あ8い日ら				
012	Ofker	＝	き8けくら				
111 ：	H1TH	$=$	玉xtur				
1114	bl＇ll	$=$	\＄8019				
U15	Bl＇IC	－	ま801り				
116.	ถ1720	\pm	玉．8urja				
017	E］ 735	$=$	\＄8018				
018	BI＇33：	$=$	ゅ8」ur				
019		URG	0	JUMP INS＇10			
1120		JMF＇	STAET＇	JHMP T＇O START	OuOS	C3	EB OL
0 O			．	：			
122				PROGRAM			
1123		ORG	16\％	ORIGIN			
024	SNいちI＇l＇	FUSH	PSW	TO STACK	0200	F5	
1125	SLIA	I，UA	B17＇2	LOAD C＇TS	0201	3A	［jA 80
1126		CPl	0	COMPARE ZERO	0204	FE	00
127		P p^{2}	SLIA	BACK TIL－	0206	F2	0102
1028		FOP	PSW	FROM STACK	0209	F1	
029		JNC	SZERO	SEND ZERO	U20A	12	1302
030		STA	EITIS	DATA $=1$	0200	32	1980
131		JMP	SENU1	SEND A 1	0210	C3	1602
11.52	SZEFO	STA	B1T1C	DATA $=0$	0213	32	0980
033	SENU：	5 TA	B1T3C	RTS LOW	0216	32	OB 80
034	SLCor	LDA	B．T2	GET CTS	0219	3A	OA 80
1335		CHI	a	COMPARE ZERO	021 C	FE	0 O
036		JM	SLOOP	BACK IF－	021E	FA	1902
037		STA	BIT 35	FTS HIGH	$0<21$	32	1 B 80
018		FET			0224	C9	
039	SNUBYT	［1VI	A，${ }^{\text {a }}$	MOVE O TO ACC	0225	3E	00
1740		STA	EFROR	IN ERROR	0227	328	8680
1041		MV1	H， 8	INIT COUNTER	022A	26	08
114\％	SBLOOP	LDA	BYTE	BYTE TO ACC	022C	3A 8	8180
1143		KAR		ROTATE RIGHT	022 F	1F	
1144		STA	BY＇l＇E	BACK IN BYTE	02.30	328	8080
045		CALL	SNUBIT	SEND BIT	0233	CD	0002
1146		いによ	H	DEC COUNTER	0236	25	
047		JNZ	SBLOOF	IF NOT ZERU	0237	C2	2 C 42
1048		RET			023A	C9	
649	SETUP	MV1	A．\＄FA	LUAD FA	023B	3E	FA
1150		ST＇A	ODRE	SET ODR	023D	32	2381
051		ST＇A	BIT3E	KTS HIGH	0240	32	1880
052		RET			UC43	C9	
$11 \cdot 3$	RECBI＇I＇	MVI	H． $9+5$	SET UF CULINTER	U244	26	FF
1154	RECWAT	lida	В ${ }^{\text {¢ }}$	GET CTS	0246	3A	OA 80
1150		CPI	0	COMPARE ZERO	0249	FE	00
1156		JP	OKGE＇J	ON IF READY	024B	F 2	5502
（い）		DCE	H	DEC H REG	024 E	25	
1163		JNE	RECWAT	BACK NOT ZERO	U24F	c2	4602
0159		JMF＇	FAULT	IF NO BIT FNU	0252	C3	$8 \mathrm{C} \mathrm{U}_{2}$
bala	－ $\mathrm{K}_{\text {cet }}$	LUA	Bltio	GEl Latia Bli	0255	3A	08 80
1 l		FAL		BIT TO CARRY	¢2b8	1%	
1164		PUEH	PSW	SAVE CARRY	0254	F5	
1163		S＇A	B1730：	RTS LOW	025A	32	Ob 80
11 ti4	トビい．」	1，DA	BITz	GET ClS	425	3A	OA 81
065		ご1	0	COMYARE ZERO	0260	FE	00
16.6		，${ }^{\prime}$	RECL． 1	WAIT FOK CTS	0262	F2	54 12
U6，＇		57 A	BlT 35	KTS HIGH	0265	32	1 B 80
408		POP	PSW	GET CAKRY BACK	U268	F1	
1659		FE゙T			0269	C9	

076	RECEV	MVI	A，O	CLEAR ACC
［57）		S＇TA	ERROR	CLEAR ERROF
072		MVI	L， 8	INIT L REG
073	RECBYT	CALL	RECBIT	GET UNE BIT
074		Push	PSW	SAVE CARRY
075		Lid	ERROR	GET ERROR BIT
076		CFI	0	COMP ZERO
077		JNZ	RECEND	FAlL IF ERROR
078		PUP＇	PSW	GET CARRY
079		LDA	BYTE	GET BYTE
080		RAR		kotate bit in
081		STA	BYTE	PUT BYTE BACK
082		DCR		DEC L REG
083		JNZ	Recbyt	DO 8 BITS
084		Plish	H5W	CORRECT PULL
485	RECEND	POr＇	PSW	RECOVEK PSW
086		RET		RETURN
087	FAlut T	MV1	A，£FF	LOAD FF
088		STA	ERROK	SIGNAL ERROR
089		RET		RETURN
490	SNDATJ	LHLD	FBC	GET ADDR
091		X CHG		INTO DE
092		LDAX	D	LOAD ACC
093		STA	BYTE	store data
094		CALL	SNDBYT	SEND A BYTE
095		RET		RETURN
096	RECADR	LHLD	FB2	GET ADDRESS
097		XCHG		Into de
098		LDA	FB4	get data
099		STAX	D	STORE INDIRECT
100		RET		RETUEN
101	RECFORRELOOS	LXI	B，FB1	B\＆C POINTERS
102		CALL	RECEV	GET 1 BYTE
103	Relour	LDA	ERROR	TEST FOR ERROR
104		CP1	0	COMP ZERO
105		JNZ	RFLOOP	AGAIN IF ERROR
106		LDA	BYTE	GE＇T DAT＇A
107		STAX	B	STORE INDIRECT
1.08		MV1	A，\＄86	END OF 4 BITS
109		INR	C	
110		CMP	C	test end value
111		JN2	RFLOOP	DO 4 BYTES
112		RET		RETURN
113	ACTION	LOA	FB1	GET COMMAND
114		CP1	1	is it 1
115		．JNZ．	ACTI	CARRY ON
116		call	Recauk	RECEIVE BYTE
117		НЕТ		
118	ACTI	CPI	2	15 IT 2
119		JNE	Act＇2	CARRY ON
120		CALL	SNDADR	SEND BYTE
121		RET		
122	ACT 2	CPI	5	IS IT 5
123		JNZ	ACT4	CARRY ON IF NO
12.4		CALL	DOPROS	DO PROGRAM
125		RET		
126	ACH^{4}	MV1	A，\＄AA	GET AA
127		STA	BYTE	REPORT FAULT
128		CALL	SNDBYT	
129		CALL．	SNUBYT	
130		RET		
131	START	LXI	SP，\＄80FF	STACK POINTER
132		cald	SETUP	SET PORTS
133	MAIN	CALL．	RECFOR	kECEIVE
134		CALL	ACTION	DU l＇T
135		JMF＇	MAIN	
136	DOF＇KOG	LHLD	FB2	GET START ADDR
1.37		PCHL		JJMMP IND
138	：END	OF COD		

U26A 3E UO 102tC $32 \quad 86 \quad 80$ प26F 2E 08 Uदे71 CD 4402 0274 F5 0275 3A 868 0278 FE 00 427A C2 8A 0 U27D F1
027E 3A 8080 0281 1F
$02823280 \quad 80$ 0285 2D $0286 \mathrm{C2} 71$ U2 0289 F5 1228 B C 9 028 C 3E FF 028E 328680 $0291 \mathrm{C9}$ 0292 2A 8380 0295 EB $0297 \quad 328080$ 029A CD 25 UZ $029 A$
$029 D$

C9 $\square 29 \mathrm{E}$ 2A 838 OZA1 EB 02AZ 3A 8580 | $02 A 512$ |
| :--- |
| $02 A 6$ | 02A6 $02 A 7018280$ 02AA CD 6A 02 UZAD 3A 868 OZBO FE OO $02 B 2$ C2 AA 42 $\begin{array}{llll}02 B 5 & 3 A & 80 & 80 \\ 02 B 8 & 02 & & \end{array}$ 02B9 3E 86 02 BB OC CZBC B9 $0 \angle B D$ C2 AA $0 Z$ 02 CO Cg 02 Cl 3A 8280 $02 \mathrm{C} 4 \mathrm{FE} \mathrm{O1}$ $02 C 6$ C2 CD 02 $02 C 9$ CD 9E 02 02cc C9

02 CD FE 02
02 CF C2 D6 02
リ2U2 CU 9202
$02 \mathrm{D} 5 \mathrm{C9}$
$02 D 6$ FE Or
02 D 8 C 2 DF 02 OZDB CD FA UZ 02 DB CO
020 C 9 02 DF 3E AA 02 E 1328080 $\begin{array}{lll}02 E 4 & \text { CD } 25 & 42\end{array}$ $02 \mathrm{E}^{\prime}$ CD 2542 02EA C9 $0 \angle E B$ O1 FF 80 02 EE CD 3 B 02 OZF l CD A7 12 U2F4CDC1 U2 U2FA $2 A$ B 880 UZFD E9

Imhof-Express gives you a 24-hour delivery of the most comprehensive range of small diecast boxes available anywhere.
They are ideal for the hobbyist who wants strong metal boxes with good screening properties.

To order you simply phone your Access or Visa card number and the goods will be despatched within 24 hours.

For details on these and all our many other products, ask for our latest catalogue.

Imhof Express

Riverside Way, Uxbridge Middlesex UB8 2 YX (0895) 72247/8/9 and 72261/2/3/4

089572447

SPECIAL OFFER-SAVE £££S Tektronix 2215 Oscilloscope 60 MHz Dual Trace. Delay Sweep. With manual ONLYE475 each

COMMUNICATION RECEIVERS ONLYEL10 eact

STEWART OF READING Telephone: 073468041 110 WYKEHAM ROAD, READING, BERKS RG6 IPL

Callers welcome 9 am to 5.30 pm . MON-FRI. (UNTIL 8pm. THURS)

BEST PRICE MEMORIES

ALL THE LATEST FASTEST DEVICES AS USED BY INDUSTRY DO NOT CONFUSE WITH SLOWER OLD STOCK OFFERED ELSEWHERE.
WE ONLY STOCK MEMORIES PRODUCED BY ESTABLISHED
MANUFACTURERS WHOSE COMPONENTS HAVE BEEN
SUBJECTED TO LONG-TERM UK TESTING. BEWARE OF CHEAP FAR EASTERN MEMORIES THAT MAY BE UNRELIABLE
DRAM 5 v NMOS 150 nS
(not Samsung or Texas)

amsung or		
${ }_{41256}$	$64 \mathrm{k} \times 1$ $256 \mathrm{k} \times 1$	£0.9
1256	$256 \mathrm{k} \times 1$	
4416	$16 \mathrm{k} \times 4$	£2.8
41464	$64 \mathrm{k} \times 4$	¢5
MSM37\$64	$128 \mathrm{k} \times 1$	£5.9
(bMar upgrade)		
SRAM 5v NMOS 150ns		
2114LP	$1 \mathrm{k} \times 4$	
2128LP	$2 \mathrm{k} \times 8$	
SRAM 5v CMOS 150nS		
6116LP	$2 \mathrm{k} \times 8$	
6264	$8 \mathrm{k} \times 8$	¢3
62256LP	$32 \mathrm{k} \times 8$	
A complete kit of com		
A the 8085 microcontroler project		
featured in this article is avalable		
m Microkit at $£ 39.99$ inclusive of		

EPROM 5 v NMOS 250 nS		
2716	$2 \mathrm{k} \times 8$	£2.85
2732	$4 \mathrm{k} \times 8$	£2.65
2764	$8 \mathrm{k} \times 8$	£2.50
27128	$16 \mathrm{k} \times 8$	$£ 2.40$
27256	$32 \mathrm{k} \times 8$	£3.90
EPROM 5v CMOS 250 nS		
$27 \mathrm{C64}$	$8 \mathrm{k} \times 8$	£8.50
27C256	$32 \mathrm{k} \times 8$	¢ 15.00
EEPROM		
2816A	$2 \mathrm{k} \times 8250 \mathrm{~S}$	£13.50
2864A	$8 \mathrm{k} \times 8250 \mathrm{~ns}$	£45.00

10\% DISCOUNT
 norders over $£ 25$ regardless o

DESPATCH BY RETURN FROM LARGE STOCKS

OUR EXTREMELY POPULAR EX-EQUIPMENT MEMORIES Guaranteed uv erased, cleaned \& TESTED. 1,000 's soid to delighted customers

4116	$16 \mathrm{k} \times 1$ DRAM 60 p	10 for $£ 5.50$
2716	$2 \mathrm{k} \times 8$ EPROM $£ 1.50$	10 for $£ 14.00$
2732	$4 \mathrm{k} \times 8$ EPROM $£ 1.50$	10 for $£ 14.00$

Orders under $£ 25$ add 15% VAT plus 50 p p\&p UK. Overseas orders welcome add $£ 2.00$ p\&p no VAT (payment in $₹$ stering please)
SEND S.A.E. FOR FULL LISTS, 74HC CMOS LOGIC, DISK CONTROLLERS, ETC.

TELEPHONE 0933626420 (24 hour service)
New telephone number from 1 st September 0327860130

MICROKIT LIMITED
 BLAKESLEY, NORTHANTS NN 12 8RB

PINEAPPLE SOFTWARE

Programs for the BBC models ' B ' with disc drive with FREE updating service on all software

DIAGRAM

Still the only drawing program available for the BBC micro which gives you the ability to draw really arge diagrams and scroll them smoothly around the screen stopping to edit them at any time if required. Pineapple's unique method of storing the diagram information on disc means that the size of diagrams is imited only by the free space on disc, and not the amount of computer memory you have available. (A blank 80 track disc will allow up to 39 mode 0 screens of diagram
The superb print routines supplied with the program enable large areas of the diagram to be printed in a ingle print run in a number of different sizes and rotated through 90 deg. if required. Full use can also be made of printers which have a wider than normal carriage avaitable
The program is fully compatible with the Marconi Tracker ball described below
PLEASE STATE 40 or 80 TRACK DISC \& WHETHER STANDARD BBC or MASTER VERSION IS REQUIRED PRICE 825.00 + VAT

DIAGRAM UTILITIES

A suite of six utility programs which add additional features to the 'Diagram' drawing program. The utilities nctude the saving and loading of areas of diagram to and from disc. The ability to display the whole of your large diagram on the screen at one time (in erther $4 \star 4$ or $8 \star 8$ screen format). The addition of borders and screen indents to diagrams, and the ability to shift a whole diagram in any direction

PRICE $£ 10.00+$ VAT

MARCONI TRACKER BALL

This high quality device comes with it's own Icon Artmaster drawing program and utilities to enable it to be used in place of keyboard keys, joysticks, or with your own programs

PRICE $£ 60.00$ + VAT p\&p $£ 1.75$
PRICE INCLUDING 'DIAGRAM' SOFTWARE £79.00 + VAT p\&p £1.75

TRACKER BALL for MASTER series

The Pointer ROM is supplied instead of the Icon Artmaster disC and enables the Tracker ball to work directly with the MASTER series computers. (e.g. to use with TIMPAINT etc.) Prices are the same as for the standard tracker ball.

POINTER

The Pointer Rom is available separately for people already owning tracker balls, and comes with instructions for use with the MASTER computer

PRICE £12.50 + VAT

PCB

This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any FX compatible dot-matrix printer
The program is supplied on EPROM and will run with any 32 k BBC micro (including Master series) Als popled is a disc containing a sample PCB layout to demonstrate the programs features
By using an EPROM for the program code the maximum amount of RAM is available for storing component cation and ASCII identification filies etc. (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). These is no limit to the number of tracks for a given PCB, although the maximum size of board is restricted to $8^{\prime \prime}$ * $5.6^{\prime \prime}$
Using a mode 1 screen, tracks on the top side of the board are shown in red, while those on the underside re blue Each side of the board may be shown individually or superimposed. A component placement screen liows component outlines to be drawn for silk screen purposes and component numbers entered on this creen may be displayed during track routing to aid identification of roundels.
The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition
1 scale, enabling direct contact printing to be used on resist covered copper clad board.
This program has too many superb features to describe adequately here, so please write or 'phone for more information and sample prinouts.

PRICE $£ 85.00$ + VAT

CONVERTER LEADS

Converter leads to enable the Trackerball to run mouse software and the mouse to run trackerball software (inc. DIAGRAM). Please state which way round when ordering.

PRICE $\mathbf{8 . 0 0}+$ VAT

BASIC COMPILER

Use our Basic Compiler to produce direct 6502 machine code programs and ROMs for your own Basic programs Speed increases of up to 25 times are achieved

PRICE $£ 25.00$ + VAT

ALL ORDERS SENT BY
 RETURN OF POST

39 Brownlea Gardens, Seven Kings, IIford, Essex 1G3 9NL. 중 Tel: 01-599 1476
CIRCLE 22 FOR FURTHER DETAILS

ㅍMS Power Systems

EMS manufactures DC Power Supplies and
Battery Chargers both linear and switch mode in a range from 5 VA to 3.2 KVA
Also a complete range of Standby, UPS and Mains Stabilizer Systems 35 VA to 1 KVA. EMS specialises in the manufacture of customised products and has a full design and
development facility
EMS (Manufacturing) Limited,
Chairborough Road,
High Wycombe,
Bucks HP12 3HH.
Tel: (0494) 448484

STEREO STABILIZER

What makes a good oscillator?

> Oscillators are sometimes taken for granted. This article discusses the parameters to consider when defining their performance.

Function generators have become common place instruments in a typical laboratory and provide a versatile source of signals with square, triangle and sinusoidal waveforms. The source of these signals is usually an astable circuit formed by a closed loop, consisting of an integrator and a hysteresis gate. The hysteresis gate generates the square wave and the integrator generates the triangular wave from which the sine wave is formed by employing a diode shaping circuit. This method can provide reasonably low harmonic distortion.
Casual observation of a typical waveform generated by this method, displayed on an oscilloscope, can be deceptive, as it may not show the frequency or phase jitter generated. Although the performance of some function generators can be reasonable in this respect, closer examination of an inferior generator's waveform near the top end of its frequency range could well reveal observable phase jitter. This is seen at its maximum in the zero cross-over region of the waveform towards the end of the oscilloscope trace.
Phase jitter, together with any amplitude noise which may be present, can be observed and quantified with a spectrum analyser, providing it is within the resolution of the analyser. The displayed spectrum requires careful interpretation because (a) the spectrum analyser has its own limited resolving bandwidth and (b) the local oscillators within the spectrum analyser also exhibit phase jitter and there will be a reciprocal mixing between its internal oscillators and the signal being analysed. In the frequency do-
main, the ideal oscillator spectrum consists of a single discrete line at the frequency of oscillation. In practice, this ideal spectrum is contaminated by harmonics and noise which appears approximately symmetrical about the oscillator frequency. In r.f. oscillators harmonics may be reduced by filtering. The reduction of oscillator noise, however, is only realistically achieved by careful design
Whilst astable oscillators perform an important role in the electronics laboratory, the oscillators considered here employ a frequency-selective network, around which is placed an active network that provides the necessary feedback to cause oscillation. This class of oscillator is capable of providing an excellent performance in terms of spectral purity, especially when compared to its astable counterpart.
It is possible to gain considerable insight into the performance of such an oscillator if one analyses the behaviour of a simple linear model. With this model the salient parameters are defined without restricting the oscillator to a particular circuit design. Although linearity is assumed, meaningful results may be obtained, particularly for higher grade oscillators

The frequency selective network within the oscillator may normally be represented by a second-order bandpass function which, for example, takes the same form as the impedance function of a simple LCR parallel circuit In general this may be represented by the equation:

$$
B(f)=\frac{B_{0}}{1+j Q\left(f / f_{0}-f_{0} / f\right)}
$$

(1)

In this equation, f_{0} is the re-
sonant frequency and B_{0} is the gain of the circuit at $f=f_{0}$. Q is the selectivity of the circuit and defines the 3 dB bandwidth given by f_{0} / Q.

In the block diagram Fig. 1, an amplifier of gain A is shown driving a filter block $\mathrm{B}(\mathrm{f})$. The output of this is fed back to the input of the amplifier via a summing point, where an external signal V_{1} has been added to investigate the response of the circuit to V_{1} as the amplifier gain is varied Voltage $V_{2}=V_{1}+V_{4}$ and therefore the overall feedback is positive, as V_{4} is in phase with V_{1} at resonance. The combined response of the block diagram illustrated can be simply derived and is the standard feedback equation.

$$
\mathrm{V}_{4} / \mathrm{V}_{1}=\mathrm{AB}(\mathrm{f}) /(1-\mathrm{AB}(\mathrm{f}))
$$

Substituting equation (1) into (2) gives

$$
\frac{V_{4}}{V_{1}}=\frac{A B_{0}}{\left.\left(1-A B_{0}\right) \| 1+j\left(Q /\left(1-A B_{0}\right)\right)\left(f / f_{0}-f_{0} f\right)\right]}
$$

(3)

Equation (3) is of fundamental importance in determining the behaviour of an oscillator. This can be appreciated when A is allowed to in crease and the product $A B_{0}$ approaches unity. At this point the gain goes to infinity Therefore V_{1} can be zero and oscillation is maintained. However, in practice this description is a simplification, because the product $A B_{0}$ sus-

by K. Lewis
M.I.E.R.E.

Mr Lewis is group leader with responsibility for design and development of frequency synthesizers at Grinaker Electronics in South Africa. Before that he designed v.h.f. synthesizers at Plessey, Ilford.

Fig. 1. Linear model of an oscillator, which is a frequency-selective network, represented by $B(f)$, an active network to provide gain and feedback.

tains an average value less than unity. A practical oscillator therefore turns out to be a very high-gain amplifier having a narrow bandwidth, which employs automatic gain control or limiting to define a given output level. The input to this amplifier is noise!

Equation (3) above is of the same form as equation (1) and, by comparison, it can be seen that at frequency f_{0} the operational gain has been increased to

$$
\mathrm{G}_{0}=\mathrm{V}_{4} / \mathrm{V}_{1}=\mathrm{AB}_{0} /\left(1-\mathrm{AB}_{0}\right)
$$

The operational Q has been increased to

$$
\begin{equation*}
\mathrm{Q}_{0}=\mathrm{Q} /\left(1-\mathrm{AB}_{0}\right) \tag{5}
\end{equation*}
$$

The 3 dB bandwidth has therefore been reduced to

$$
\begin{equation*}
\mathrm{f}_{3 \mathrm{~dB}}=\mathrm{f}_{0} / \mathrm{Q}_{0}=\mathrm{f}_{0}\left(1-\mathrm{AB}_{0}\right) / \mathrm{Q} \tag{6}
\end{equation*}
$$

Now let the voltage source V_{1} be replaced by a noise source of voltage density V_{n} r.m.s. volts per $\sqrt{ } \mathrm{Hz}$. This noise may be regarded as the equivalent voltage noise source of the amplifier. The oscillator output level, determined by the a.g.c. characteristic of the oscillator design, is not of course a function of V_{n}. Since the closed-loop voltage gain of the oscillator is capable of reaching infinity, the amplifier gain will adjust itself. At this point it is worth noting from equations (4) and (6), that each time the operational gain, G_{0}, is doubled, i.e. increased by 6 dB , the 3 dB bandwidth is halved. This reduction in bandwidth alone results in a 3 dB reduction in output signal. The net increase in signal is therefore 3 dB .

Any white-noise which is subject to narrow band filtering will, when examined on a suitable storage oscilloscope, take on the appearance of a sinusoid. The average r.m.s. value of that sinusoid is simply given by the product of the voltage noise density V_{n} and the square root of the filter noise bandwidth. The oscillator is an extreme example of the narrow-band filtering of noise.

From this discussion it should be apparent that the output V_{4}, taken as the r.m.s. value, is the product of V_{n} times the gain, given by equation (4), times the square root of the noise bandwidth. This may be shown to be the 3 dB
bandwidth, given by equation (6), multiplied by $\pi / 2^{1}$. The result of combining these equations is
$\frac{\mathrm{V}_{4}}{\mathrm{~V}_{n}}=\frac{\mathrm{AB}_{0}}{1-\mathrm{AB}_{0}} \sqrt{\mid \mathrm{f}_{0} \pi\left(1-\mathrm{AB}_{0}|/(2 \mathrm{Q})|\right.}$

This equation is also fundamental, since it enables the product AB_{0} to be qualified and therefore the operating Q, gain and bandwidth to be determined. Equation (3) can now be used to determine the noise spectrum of the oscillator within the limitations of the theorectical model.
Equation (7) cannot be written explicity in terms of the product $A B_{0}$, which in practice is very close to unity. Only the difference terms $\left(1-\mathrm{AB}_{0}\right)$ therefore need be considered. In making this approximation equation 7 simplifies to:

$$
\left.\left(1-\mathrm{AB}_{0}\right)=\left(\mathrm{V}_{\mathrm{n}} / \mathrm{V}_{4}\right)^{2}\right) \pi \mathrm{f}_{0} / 2 \mathrm{Q}
$$

Substituting equation (8) into the above equations gives the following results

Operational Q

$\mathrm{Q}_{0}=2 \mathrm{Q}^{2}\left(\mathrm{v}_{4} / \mathrm{V}_{\mathrm{n}}\right)^{2} / \pi \mathrm{f}_{0}$
Operational gain
$\mathrm{G}_{0}=2 \mathrm{Q}\left(\mathrm{V}_{4} / \mathrm{V}_{\mathrm{n}}\right)^{2} / \pi \mathrm{f}_{0}$
Oscillator gain response,

$$
\begin{equation*}
G(f)=\frac{G_{0}}{1+j Q_{0}\left(f_{0} / f_{0}-f_{0} / f\right)} \tag{11}
\end{equation*}
$$

In oscillators the spectral purity can be measured as the ratio of the carrier amplitude to the noise level measured at some frequency offset Δ from the carrier such as $\Delta f=f-f_{0}$. Assuming that $|\Delta f|<f_{0}$, equation (11) may be approximated by

$$
\begin{equation*}
G(f)=\frac{G_{0}}{1+j 2 Q_{0} \Delta f / f_{0}} \tag{12}
\end{equation*}
$$

If practical values are substituted, as is done shortly, it will be noticed that an oscillator's 3dB bandwidth is typically very small. Therefore at practical values of $\Delta \mathrm{f}$ the real term 1 , in the denominator of equation (12), may be neglected. This gives a simple expression, after some cancellation, for the magnitude of gain.
$|G(f)|=f_{0} /(2 Q \Delta f)$
This remarkably simple result could have been derived
directly from equation (3) by equating the product $A B_{0}$ to unity in order to obtain the theorectical gain of the oscillator when the input noise is zero. In practice this means that as Δ fincreases, positively or negatively, the gain of the oscillator rapidly converges on to the ideal gain response and is independent of the output voltage V_{4} ! From this result it is apparent that the carrier-tonoise ratio can be maximized by simply designing the oscillator to provide a large voltage output swing: the accompanyinging noise output being the product of the gain, given by equation (13) and the voltage noise density V_{n}.
Equation (13) also illustrates a fundamental property of oscillators. This is that the operating gain, and therefore its accompanying noise, is proportional to the oscillator frequency f_{0} for a given value of $\Delta f, Q$ and V_{n}. Because of this property, even the noise performance of audio oscillators which typically operate with low-Q, frequency-selective networks, can be very good when compared to r.f. oscillators. The basic requirements for a low-noise oscillator are therefore a high value of Q , and low values of V_{n} and F_{0}, if this is possible. This may be intuitively obvious; however, equation (13) quantifies their simple relationship.
The frequency stability of an oscillator also relates to its effective operating bandwidth. The oscillator output, which is essentially amplified noise, will be coherent in phase for a time proportional to the reciprocal of the effective bandwidth. It can therefore be appreciated that even with perfectly stable components there will be a random drift in the oscillator's phase.
In general, the oscillator output V_{4} exhibits less noise, at larger values of Δf, than the output V_{3} because of the filtering action of $B(f)$. Output V_{3}, assuming that it is available in practical oscillator, is simply equal to V_{4}, divided by the filter response. At larger values of Δf, the enhancement of gain, due to positive feedback, becomes negligible and the output noise is equal to the product $\mathrm{V}_{\mathrm{n}} \mathrm{A}$. Also, any harmonic distortion introduced by the amplifier is reduced at the
filter output. This is of particular relevance in the design of low harmonic-distortion audio oscillators.

Take the example of an oscillator operating at 100 MHz . Let the Q of the frequencyselective network be 40 , the amplifier noise voltage be $10 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, and the output voltage be $3 V$ r.m.s. From equation (8), $\left(1-\mathrm{AB}_{0}\right)=4.4 \times 10^{-11}$. The operating gain, defined by Equation (4), is the reciprocal of this, i.e., $G_{0}=2.3 \times 10^{10}$. From equation (9) $\mathrm{Q}_{0}=$ 9.2×10^{11} and $\mathrm{f}_{3 \mathrm{~dB}}=1.1 \times 10^{-4}$ Hz . At 10 kHz from the carrier the gain given by equation (13) is 125 and the noise is 1.25×10^{-6} volts per $\sqrt{ } \mathrm{Hz}$. The carrier-to-noise ratio, 10 kHz off, is therefore -128 dB . Figure 2 is a graph of the oscillator gain in dB over the frequency span of 40 kHz as defined by equation (11). Figure 3 shows the output level, in dBV as would be displayed by an ideal spectrum analyser employing a true rectangular filter with a noise resolution bandwidth of 1 Hz . In Fig. 4 the frequency span has been reduced to 200 Hz and the flat top of the filter is just visible. The extreme values of gain and Q may appear incredibly high. However, it should be remembered that in the ideal oscillator model both these parameters are infinite.

Consider now the degradation in noise performance of an oscillator which has an amplifier that introduces an arbitrary phase shift θ at the oscillator frequency. If it is assumed that this phase shift is constant over the frequency range of interest the gain of the amplifier may be represented in polar form by $\mathrm{A}>\theta$. The oscillator is now forced to operate at a frequency removed from f_{0} so that the bandpass filter can offset this phase shift. If equation (3) is rewritten in terms of $\Delta \mathrm{f}$, and $\mathrm{A} \Delta \theta$ is written in its trigonometric form, the equation becomes:
$\frac{V_{4}}{V_{1}}=\frac{A B_{0}(\cos \theta+j \sin \theta)}{1-A B_{0} \cos \theta+j\left(2 Q \Delta / f_{0}-A B_{0} \sin \theta\right)}$
This equation will have a maximum value at a frequency which makes the j terms in the denominator zero. This gives the result:

$$
\begin{equation*}
\Delta f=\left(f_{0} A B_{0} \sin \theta\right) / 2 Q \tag{15}
\end{equation*}
$$

At practical values of $\Delta \mathrm{f}$, in
equation (14) the real part of the denominator may be equated to zero. This results in the equation:

$$
\begin{equation*}
\cos \theta=1 /\left(\mathrm{AB}_{0}\right) \tag{16}
\end{equation*}
$$

Substituting the AB_{0} in equation (15) gives the particular value of Δf which defines the modified operating frequency:

$$
\Delta \mathrm{f}=\left(\mathrm{f}_{0} \tan \theta\right) / 2 \mathrm{Q}
$$

(17)

This result may be illustrated by considering a phase shift θ of 45 degrees in the amplifier. Then $\tan 45=1$ so that $\Delta \mathrm{f}=\mathrm{f}_{0}$ 2 Q . This corresponds to the 3 dB corner frequency of just the filter where it is generally known the filter phase shift is the corresponding 45 degrees.
To examine the effect of the phase shift on the oscillator noise, it is convenient to redefine the offset frequency as Δf_{1} wh ch will now equal the offset from the actual oscillator frequency. If Δf_{1} is used in equation (14), the term $\mathrm{AB}_{0} \sin \theta$ falls away and for practical values of Δf_{1}, the term ($1-$ $\mathrm{AB}_{0} \cos \theta$) is negligible. Equation (14) then simplifies to

$$
\begin{equation*}
\frac{V_{4}}{V_{1}}=\frac{A B_{0}(\cos \theta+j \sin \theta)}{j 2 Q \Delta f_{1} / f_{0}} \tag{18}
\end{equation*}
$$

If from equation (16) AB_{0} is substituted by $1 / \cos \theta$, the magnitude of the gain simply becomes

$$
\begin{equation*}
|\mathbf{G}(\mathrm{f})|=\mathrm{f}_{0} /\left(2 \mathrm{Q} \Delta \mathrm{f}_{1} \cos \theta\right) \tag{19}
\end{equation*}
$$

This expression can be directly, compared to equation (13) from which it can be seen that the gain has been raised by a factor of $1 / \cos \theta$. (In practice a small correction is necessary to allow for the fact that f_{0} is defined by the filter and is no longer the oscillator frequency. 1 For the example of $\theta=45^{\circ}$ it is apparent that the gain and therefore the oscillator noise will be increased by 3 dB .

It may seem surprising that the gain symmetry predicted by equation (19) has been preserved, since the centre frequency of the filter no longer coincides with the oscillator frequency. However, substituting practical values in the more exact equation confirms this symmetry for reasonable values of Q . In contrast the gain V_{3} / V_{1}, and therefore the noise, will no longer be symmetrical, as can be demonstrated by dividing equation

Fig. 2. Oscillator gain over a range of 20 kHz either side of carrier: gain defined in equation (11).

Fig. 3 Oscillator output (in dBV) shown by ideal spectrum analyser.
(19) by the filter response defined by equation (1).

In a practical oscillator it is a simplification to represent the total oscillator noise source by a single white noise generator particularly in r.f. oscillators. Also no allowance has been made for the noise generated by the tuned circuit. However, it should be apparent that this noise source may also be referred to V_{n} when considering just the output V_{4}. In practice, the close-in noise determined by equation (12) is ideal and is degraded by a flicker noise and non linearity in the amplifier or tuned circuit. This results in a complex frequency translation of low-frequency amplifier noise which is folded symmetrically about the oscillator frequency.
The principle of injecting a stimulus, such as a sinusoidal source, is an important one. This enables closed-loop responses of oscillators to be analysed. The model depicted in Fig. 1 may readily be extended to represent an actual oscillator circuit to enable a more complete analysis to be carried out employing the approach described.

In the oscillator model discussed, the sideband noise energy is equally divided be-

tween phase noise and amplitude noise. However, in practice, the phase noise will normally predominate because of voltage-sensitive capacitances in the amplifier. These, for example, convert power supply noise to phase noise. This is particularly true for Varactordiode frequency-controlled oscillators. Varactor diodes, in addition to increasing oscillator non-linearity, readily convert externally injected noise into phase noise to the extent that induced phase noise can become totally dominant.

Reference

1 Transmission Systems for Communications, 4th ed., Bell Telephone Labs, Western Electric Co. Winston-Salem, N.C.

Fig. 4. Fig. 3 graph on 200 Hz base, showing flat top of spectrum analyser filter curve.

Versutower:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tili-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V; part 2; 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design, quality and reliability
Suitable for mounting equipment in the fields of:
Communications
Security surveillance - CCTV
Meteorology
Environmental monitoring
Geographical survey
Jefence range-finding
Marine and aero navigation
Floodlighting
Airport approach lighting
Further details available on request.

TRUMECH ENGINEERING LIMITED Portland House, Coppice Side, Brownhills Walsall. West Midlands WS8 7EX, England Telephone: Brownhills (0543) 374321 Telex: 335243 SEL.G

CIRCLE 4 FOR FURTHER DETAILS

The Wings Appeal

 Fund helps to maintain the RAF Association Home for Disabled and Chronic Sick. Care is essential for those who have served their country and who are in need. So please help by giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.to : Royal Air Forces Association. Appeals Dept. (DS) Portland Rd. Malvem, Worcs. WR14 2TA
enclose a donation of for the Wings Appeal Fund

Name
Address \qquad

Please tick if receipt required \square orinformotion on RAFA
Membership

Space donated by
Electronics \& Wireless World

CIRCLE 39 FOR FURTHER DETAILS

LOW COST UNIVERSAL PROGRAMMER EPROMS EEPROMS MICROS

- Completely sell contained unit
- No personality modules require c
- Controlled via RS232 serial interface
- Supports Intel. Motorola and Ascii hex data formats.
- Easily controlled by mos l computers
- Fast and standard programming modes
- Low and nigh byte programming for 16 bit data
- Bye. block and chip erase for Eeproms

Price uncased $\mathbb{2} 295$ plus VAT
proms
2508/16/32/64
2758
2716/32/32A/64/64A/128/ 128A/256/512/513 68732:64/66

- Eeproms 2816A/64A 52B13/23/33 48Z02 8748/48H/49/49H

Micro Concepts

Tel: 0242510525
2 St Stephens Road • Cheltenham • Glos • GL51 5AA
CIRCLE 53 FOR FURTHER DETAILS

VIDEO TERMINAL BOARD

80 characters $\times 24$ lines
Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMS and program listing $£ 48$ plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:

CORTEX CONTROLLERS

50 St. Stephens Place. Cambridge CB3 OJE Telephone (0223) 68000

APPLICATIONS SUMMARY

Ten-channel graphic equalizer

One of numerous application examples in Samsung's audio i.c. data book is this graphic equalizer circuit in which two five-channel i.cs are combined.
The KA2223 consists of an op-amp and five active-filter circuits. Total harmonic distortion for 1 V input at 1 kHz is 0.02% and noise between 10 Hz and 20 kHz is $7 \mu \mathrm{~V}$.

Other products in this, the first Samsung audio data book to be made available in the UK, include f.m./a.m. r.f. devices, stereo decoders, pre/ power amplifiers and led level meters.
Enter 300 on reply card.

$50-240 \mathrm{~Hz}$ inverter with precision snubber

In switching power converters using more than one power
 transistor, a delay is usually needed between switching one transistor off and the next one on. Without this delay, trarisformer ringing would be dissipated in the switching transistors

In this inverter circuit, one of 23 applications in "Dmos design entries and articles" frorn Supertex, the 11.25° delay is produced digitally Output power is increased by con recting more switching transistors in parallel. Enter 301 on reply card.

NEW PRODUCTS

Digital capacitance meter

Capacitance values between 0.1 pF and 2 mF can be measured on the Levell 7705 capacitance meter. Accuracy on this 3 -digit instrument is 0.5%. The test voltage is 3.2 V peak with two measurements a second. The unit has an imput protection fuse. $£ 49$ (+ tax) from Levell Electronics Ltd, Moxon Street, Barnet, Herts EN5 5SD.
EWW218 on reply card

Fast256K d-ram

Claimed to be the fastest available, the 256 K d-ram from Inmos has an access time down to 60 ns , more than twice as fast as the usual standard of 150 ns . The IMS2800 is suitable for all applications in replacing 64 K d-rams in, for example, personal computers or upgrading first-generation 256 K d-rams in mainframe applications. It also has an important application with the latest generation of 32 -bit processors where, according to Inmos, it is the only dynamic ram that can enable them to work at peak performance. The c-mos devices can operate at up to $30 \mathrm{Mbit} / \mathrm{s}$. Inmos
International plc, Whitefriars, Lewins Mead, Bristol BS1 2NP.
EWW209 on reply card

68020 on VME card
The VME processor module from Syntel is claimed to be the first to use the 68020 and the 68881 maths co-processor with a G-64 i/o interface. High speed maths and graphics are possible. The addition of the G-64 interface allows the user to select from over $300 \mathrm{i} / \mathrm{o}$ modules from more than 15 suppliers. Processing power is further enhanced by the 1 Mbyte, 32-bit wide on-board memory. Additional memory cards can be added in units of 64 and 256 K d-ram.
The processor can operate at 12 or 16 MHz and the VME interface offers $16 \mathrm{Mbyte}, 16$ -
bit wide addressing space with bus access logic and full line buffering in accordance with the VME specification. The G64 interface allows off-board transfers at 1 or 2 MHz within a 1 Mbyte memory address space. A separate on-board i/o memory space allows slow devices to be used with the 2 MHz clock.
The module includes a realtime calendar/clock and dual RS232/422 ports. It supports the OS9 68000 operating system, providing multi-user, multi-tasking capabilities for both rom and disc-based systems. Syntel Microsystems, Queens Mill Road, Huddersfield, HD1 3PG EWW206 on reply card.

Pulse generator

An instrument from Ver Controls is suitable for field or bench work and has sufficient output for direct drive of positive logic families, and is also capable of driving capacitative loads such as power mosfets and small relays. The frequency range extends from 1 Hz to over 5 MHz and the mark/space ratio can be adjusted as required. Based on the design described in last month's issue
(pages 43-47), two complimentary outputs are provided to allow push-pull driving; 30 V peak-to-peak and pre-trigger functions. A single shot facility is also included The generator is powered by a.c. mains and there is also provision for internal rechargeable batteries. Ver Controls (St Albans) Ltd, Rookery House, Crowe's Loke, Little Plumstead, Norwich NR13 5JB
EWW210 on reply card

Surface-mount starter kit

Designed to make surface mounting a viable proposition for the smaller company, the Cosy surface mounting starter kit is manufactured by Contact Systems in Switzerland. Hand assembled boards can be produced with the kit which is made up from a screen printer, assembly station, vacuum pick-up pen and a conveyor oven for reflow soldering.
The screen printer offers two sizes of work area; 100 by 120 mm and 220 by 300 mm . It uses etched or drilled stencils of varying thickness, according to the nature of the circuit. An accurate pin and vacuum positioning system holds the board while the adhesive or solder paste is applied through the screen.
The assembly station can accommodate all of the formats that components are supplied in; stick and tape feeders as well as loose components. An

optional control unit can be programmed to light indicators on each component feeder in the correct sequence for rapid population of the board
The bench-mounted infrared conveyor oven features three heating zones and can accept boards up to 108 mm wide an up to 34 mm high Typical reflow temperatures are between 180 and $280^{\circ} \mathrm{C}$ but temperatures above and below this range can be selected for specific applications. All three heating zones and the speed of the conveyor can be adjusted. Sohlberg-Surtech Ltd, Intec 2, Wade Road, Basingstoke, Hants RG24 0NL. EWW222 on reply card

LANGREX SUPPLIES LTD Cimax House, Fallsbrook Rd, Streatham, London SW166ED RST Tel: 01-677 2424 Telex: 946708 RST

Flat cable goes round
The routing flexibility of round cable is combined with the easy termination of flat ribbon types in the 3M 3659 cable. The flat cable is surrounded by a film foil shield which is in turn covered by a 90% tinned copper braid. This combination offers effective r.f.i. shielding. A flat cable termination area occurs every 20 mm along the cable which minimizes cable waste during preparation. The outer p.v.c. insulating sleeve, rated at $80^{\circ} \mathrm{C}$, is available in four colours. Connect and Control Systems Ltd, Unit D3, Taylor Industrial Estate, Culcheth, Warrington, Cheshire WA3 6BH. EWW221 on reply card

Low-cost scanning microscope

Especially suitable for the inspection of electronic components and microcircuits. The T100 scanning electron microscope costs $£ 1500$ which is less than an advanced optical microscope. It offers magnification up to 100000 times. It comes with a $24-$ function maintenance checker to help the user to check quickly the operating parameters.

A fast scan facility presents the operator with continuous images up to tv frame
frequency and images can be captured by the integral camera. Optimum settings are automatically maintained even when the field-of-view or magnification are altered. With a resolution down to 8 nm , the scanning electronic microscope offers several advantages over optical instruments in terms of sharper detail and in electronic circuit testing. Many other facilites, such as X-ray spectroscopy and backscatter electron detection are possible with the system. Jeol UK Ltd, Grove Park, Colindale, London NW9 0JN. EWW214 on reply card.

Thyristors for medium-power applications

Designed for use in general purpose phase-control applications such as converters, lighting circuits, battery chargers, regulated power supplies and temperature or motor speed control circuits, the RIA series of glass-passivated thyristors come from International Rectifier. Features of the devices include, depending on type, a maximum 'on' current of 25 or 35 A ; and a maximum peak non-repetitive current of 190,285 or 335 A . The maximum repetitive reverse voltage is 100 to 1200 V and the typical turn-on time is $0.9 \mu \mathrm{~s}$. Available through Hi-Tek Electronics, Ditton Walk, Cambridge CB5 8QD EWW215 on reply card.

The Archer Z8O 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.
\star Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
\star OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
from $£ 185+$ VAT
CIRCLE 42 FOR FURTHER DETAILS

The Bowman 68000 sBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM.

* Extended width versions with on board power supply and case.
from £295 + VAT
CIRCLE 43 FOR FURTHER DETAILS

Sherwood Data ©ystems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

HIGH QUALITY - LOW PRICES

4+11GHz SATELLITE TV RECEIVING EQUIPMENT RECEIVERS, LNB's, LNC's, FEED HORNS, ANTENNAS, ANTENNA POSITIONERS, POLOROTORS, LINE AMPLIFIERS, ETC. HARRISON ELECTRONICS Century Way, March, Cambs PE15 8QW Tel: (0354) 51289

RF POWER
 U.S. supplier of RF POWER DEVICES.

A quality source for a complete range of RF POWER devices - From 230 MHz , SSB 12.5 V 728 V transistors - $14-30 \mathrm{MHz}$ CB/AMATEUR 27-50 MHz , low band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band FM - $156-162 \mathrm{MHz}$ VHF MARINE RADIO FM $-130-175 \mathrm{MHz} \mathrm{HI}$-BAND VHF FM - 108-152MHz VHF AIRCRAFT AM - 22540 MHZ UHF 28 V $407-512$ UHF CATV/MATV CLASS A linear transistors - A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES

MRF 450 MRF 453 MRF646 BLY88A BLY90 BLY93A .2N3553 .2N4933 .2N5109 .2N3375 .2N5016 - 389 2N4128 .2N5070 2N5591.2N6080 .2N4427 .2N5090 2N5634 2N6083 .2N4431 2N5102 .2N5918 .2N6084

TIC Semiconductorinc.

18 WEST 21st STREET NEW YORK, N.Y. 10010 U.S.A TEL: (212) - 6756722 TELEX: 284564 TICS UR CIRCLE 15 FOR FURTHER DETAILS

HART - The Firm for QUALITY

LINSLEY HOOD 300 SERIES AMPLIFIER KITS Superb, HART designed, integrated amplifier kits derived from Linsley-Hood's articles in 'Hifi News'
Ultra easy assembly and set-up with sound quality to please the most discerning listener Ideal basis for any domestic sound systems in quality matters to you. Buy the complete kit and save pounds off the individual component price. K300-35. 35 Watt, Discount price for Complete Kit
K $300-45$, 45 Watt, Discount price for Complete Kit.
 RLH4\&5. Reprints of Original Articles from 'HiFi News
§1.05 no VAT
Very high quality kit LINSLEY-HOOD SYNCHRODYNE AM RECEIVER an for total stability, ease of construction and minimal wiring This module will torm the AM section of an ultra high quality AM/FM switched bandwidth tuner to match our 300 series amplifiers. Power supply and tuning gang will be included with the FM section. K450 JLH Synchrodyne Kit ..

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
Complete stereo record, replay and bias system for reel-to-reel recorders. These circuits wil Complete stereo record, replay and bias system lor reel-to-reel recorders. These circuits will
give studio quality with a good tape deck. Separate sections for record and replay give give sumio quality wind a good aperformance and allow a third head monitoring system to be used where the deck has this fitted. Standard 250 mV input and output levels.
K900W Stereo Kit with Wound Coils and Twin Meter Drive
.. 565.67
RJS1 Reprints of Original Articles.
£1.30 no VAT
HIGH QUALITY REPLACEMENT CASSETTE HEAD
Do your tapes lack treble! A worn head could be the problem
Tape heads are constantly improving and fitting one of our
latest replacement heads could restore performance to better than new! Standard mountings hit most decks and our TC1 Test Cassente will make if easy to set the azimuth spot on. As we are the actual importers you get prime parts at lowest prices. All ou heads are suitable for Dolby machines.
HC20 Permalloy Stereo Head. Good quality standard head fitted as original equipment on
HS16 Sendust Alloy Super Head Quite simply the best Longer life than permalloy, 5.1 $\begin{array}{ll}\text { output than ferrite, fantastic frequency response. } & \text { E9.91 }\end{array}$ He551 4-Track head for auto-reverse or quadrophonic use. Full specification record and play head
Special Offer Stereo R/P Heads
4-Track Auto-Reverse Play Head
HART TRIPLE-PURPOSE TESTCASETTETC
One inexpensive test cassetle enables you to set up VU (Doiby) level, head azimuth and tape speed without test equipment. Vital when fitting new heads. Complete with
instructions.
$£ 4.66$

Send for your FREE COPy of our lists with full detais of ar omplete rane Send for your cas copy of our ilsts with hill delans of our complete range of Please add VAT to all prices. Postage on orders up to £10-50p. £10 to £49-£1. Over £50-£1.50.

ELECTRONIC KITS LTO
1, Penylan Mill, Oswestry. Shropshire SY10 9AF
24 hr SALES LINE iO 6911652894 Please add VAT

B
righten up your office

or lab with a copy of Electronics and Wireless World's wallchart of frequency allocations. The from $3 k H z$ to 300 GHz in eight sections, with colour each band. Detailed notes mark areas of special interest to the scientist and engineer - such as standard frequency and time signals, radioastronomy bands, mobile radio, public and anti-theft devices. The carries a useful list of addresses. radiophones and This special unfolded edition
mes to you in a cardboard til comes to you in a cardboard tube. The chart is laminated for protection and it

Please send me

Each wall chart is priced at.......opies of the 1986 Frequency Wall Chart. $\square 155$ (including VAT)
 \square l enclose my cheque/ at $£ 5.75$ (including VAT) 986 Frequency Wall Chart.
 \square Please debit my credit card (cirder for $£$.

 My card number is Name. Address
1986 Frequ -

 1 My card expires on\qquad

Calibration system

A programmable calibrator can be combined with a personal computer to give an automated, documented calibration system for multiplexers, oscilloscopes, wattmeters and watt-hour meters. The system is aided by menu-driven programmes to enable less-skilled operators to conduct tests and calibrations. Compucal, as it is called, assures quality control by programming the test to be carried out on each instrument. Results before and after the adjustment can be recorded, and a test certificate automatically printed. Storage
of an instrument's test history on disc can help in the organizing of test instrument inventory. New test procedures can be entered simply by response to program-generated questions All tests can be password protected. Control is carried out through an IEEE488 interface.
The tests are carried out to certification standardin accordance with BS5750 and can be used by those who previously had to send the equipment to other test laboratories to be certified. PPM Instrumentation Ltd, Hermitage Road, St. Johns, Woking, Surrey GU21 1TZ. EWW212 on reply card.

Function generator

A frequency range from 1 Hz to 100 kHz with calibrated vernier adjustment is available on Global's 2001 function generator which can also provide frequency sweeps High and low-level sine, triangle and rectangular outputs are augmented by a separatet.t.l.-level rectangular-wave output which can drive up to 30 standard loads with rise and fall times less than 25 ns. Outputs levels are adjustable
over a range of more than 40 dB . The voltage-controlled sweep oscillator can be set to any range of frequencies, and the sweep input can be within the range of $\pm 10 \mathrm{~V}$. Of low weight and easily portable, the instrument is suitable for field servicing and measurement of audio and video equipment and for oscilloscope sweep drives, as well as for general use in the laboratory. Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. EWW205 on reply card.

Instant crystals
A service designed to supply quartz crystals in the frequency range 1 to 70 MHz on an express made-to-order basis is available from Piezo
Products. Their production unit in Hampshire is geared to producing crystals within three days, or even less in an emergency. The crystals are tested for compliance with the relevant standards. They can reproduce a crystal from its type number or specification, or from the equipment type and model number together with the frequency. Piezo Products Ltd, Millstream Trading Estate, Christchurch Road, Ringwood, Hants BH24 3SD.
EWW225 on reply card

Two-portram speeds interprocessoraccess

A dual-port static ram simplifies multiprocessor system design by allowing independent read/write access to the devices' common data bank. The 1 K by 8 device, AM2130, has separate i/o ports, addresses and controls, as well as busy and interrupt signal for interfacing with most popular processors. For increased flexibility the device also independent chip-enables for each port control. Automatic power-down circuitry allows the respective sides of the device to remain in standby power mode while it is inactive. On board arbitration circuitry and an internal mailbox prevent clashes between simultaneous access to the same memory location and eases port-to-port communication

The main function of the device is to offer a data communications memory between two asynchronous processors or controllers. This aids efficient instruction and data transfer between c.p.u. and i / o processor in mini and multiprocessor computers. Advanced Micro Devices (UK) Ltd, Goldsworth Road, Woking, Surrey GU21 1JT. EWW224 on reply card

Serial/parallel printer buffers/converters

Two versions of the Model B Datalinker serial-to-parallel and parallel-to-serial conversion and either 8 or 32 K of printer buffer. The 8 K version can be upgraded to 32 K at a later stage. Other attributes include selectable
page repeat and automatic line-feed generation Recommended prices for the converters are $£ 120$ for the 8 K and $£ 180$ for the 32 K models. Interlink Communications Ltd, 6 Buchanan Units, Gorse Lane Industrial Estate, Clacton-on-Sea, Essex CO15 4XA.

EWW208 on reply card

CROSSWARE

Assemblers and Disassemblers on ROM

The BBC Microcomputer is an impressive machine. especially the new Master 128 rurning with the hierarchical Advanced Disc Filing System. Our software allows full use of its advanced facilities. For example, source code modules held in separate files of any name in any directory on any drive can be linked and assembled to create your machine code program in Motorola S , Intel hex or binary tormat.
It's also very fast. In fact. one of our customers has compared the speed of the BBC micro with Hewlett-Packards powerful HP64000 development system. He assembled identical software on both machines and was surprised to find the BBC micro running with our 6801XR cross-assembler to be the fastest of the two.
Our software is available for assembling machine code programs tor the BBC micro itself (for which our 65C02XR rom is ideally suited) or for any of the other target processors listed below. It is compatible with the models B, B + and Master 128 and with all DFS, ADFS and Econet filing systems. (Owners of early model B's should ensure that their computer is equipped with Basic 2).

Order Code	Target Processors	Price
$6801 \times R$	$6800,6801,6802,6301 \ldots 6301 \times$	$£ 48.00$
$6805 \times R$	$6805,146805,6305$	$£ 48.00$
$6809 \times R$	6809 family	$£ 48.00$
$8085 \times R$	$8085,8080 \mathrm{~A}$	$£ 48.00$
$280 \times R$	280, HD64180	$\mathbf{£ 4 8 . 0 0}$
$68000 \times R$	68000,68008	$£ 56.00$
$65 C 02 \times R$	$65 C 02,65 S C 02,6502$	$£ 38.00$

Further information from:
(prices exclude VAT) CROSSWARE PRODUCTS
2 The Lawns. Melbourn, Royston, Herts SG8 6BA Telephone: 076361539 CIRCLE 25 FOR FURTHER DETAILS

Wirelesswôrld Editorial Feature List

OCTOBER
Oscilloscopes
From high performance to low-cost, the October issue takes a comprehensive look at the array of oscilloscopes available on the UK market.

NOVEMBER

Mobile Radios
With the launch of 900 MHz cellular radio last year and the release of Band III frequencies, mobile radio in the UK is enjoying a period of unprecedented expansion. November's special feature focuses on the systems and the equipment currently available.

For further advertising details please ring Ashley Wallis on: 6613130

LOOK AHEAD! WITH MONOLITH MAGNETICTAPE HEADS

DOES YOUR VCR GIVE WASHED OUT NOISY
PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES. SAVE EEE'S ON REPAIR CHARGES Our replacement video heads fit most models of VHS or Betamax VCR's. Following our replacement guide and with a practical ability, you can do the whole job in your own home. VIDEO HEAD REPLACEMENT KIT

VMC-02 KIT ONLY £19.95 inc. VAT. + £2.50 p\&p (Kit does not include video head)
TELEPHONE US NOW FOR INFORMATION OF THE REPLACEMENT HEAD FOR YOUR VIDEO RESORDER. CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads Motors, Mechanisms, etc. Please forward 50p p\&p.
THE MONOLITH ELECTADNICS CO. LTD. 5-7 Church Street, Crewkerne, Somerset TA187HR, England Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTHG

CIRCLE 19 FOR FURTHER DETAILS

DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DG mini flat on its budget stretch only to a PC? Or is your old Heed an upgrade? Second printer? Hardware support? As back? Need an upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older
(and newer) equipment. We also deal in second-hand and surplus (and newer) equipment. We also deal in s
micro systems. Large SAE for current catalogue.

Sample stock: Ferranti PC860 IBM-compatible with twin floppy disks and 20 MB hard disk, Perfect Filer, Writer \& Calc, on-site warranty (used 4 months) - $£ 1,200$. Torch ZEP 100 Z80 add-on for BBC Micro with Perfect Software - £150; Data General $10+10 \mathrm{MB}$ disk drive subsystems with 3 spare disks, refurbished \& tested - $£ 800+$ carr.

SILICON GLEN LTD

Moray Street, Blackford, Perthshire, Scotland
Callers \& Overseas Enquirers welcome
or Telephone: 076482315 or 464
Telex: 295141 TXLINK G quoting MBX 076482315 on first line Bulletin Board Sales Catalogue (Prestel Standard) on 076482465

CIRCLE 27 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 01445 2713/0749

Portable data aquisition and control

Up to 100 remote measurement channels can be monitored and controlled through the Solartron Impact system. This is designed to work with the same companies' IMP family of
isolated measurement pods; rugged remote scanners that can be sited close to the sensors in the plant or test rig. Impact interfaces through a two-wire network link with up to five of the IMP units, each of which has up to 20 measurement channels. The controller comes in a portable case and includes a keyboard, 8 -line display,
graphic printer and a serial interface for RS232/422 or a 20 mA loop. It can be fitted with a mini-disc drive or batterybacked c-mos ram for mass storage GPIB interfacing is available as an option. The unit is mains or battery powered with an automatic switch-over for protection in case of failure of the supply.

Scanning is performed under the control of an internal clock, setting date, day, hours and seconds as well as the intervals between scans External triggering is also possible. Results may be stored in several forms: a complete record, alarm conditions or none at all. All remote inputs can be converted into any required units. Alarm limits can be set, including a rate-ofchange limit. Solartron Instruments, Victoria Road, Farnborough, Hants GU14 7PW. 217 on reply card.

Video controller with touch screen

Maurice is a touch-screen software based controller that can interface with a wide variety of studio equipment to provide real-time, on-line control of digital effects on one, two or more channels, as well as signal processing and route switching. Digital effects, mostly from v.t.rs, can be added during the postproduction cycle and include smooth zooms, slides, flips, folds as well as compressions, montages, coloured borders and key signals.
Menu-driven software allows moves to be planned, with start and stop points,
rehearsed and then stored Nine such moves can be stored at any one time. Many commands are easily accessed through the central flat screen touch sensitive c.r.t. In addition to the joystick, spin wheel, T-bars, and image control knobs, there is a builtin floppy disc drive to download software and store commonly used effects sequences. The controller is at the heart of a modular system of interfaces and frame stores and the system can be expanded for additional channels or extra effects units, picture combiners etc. very easily. CEL Electronics Ltd, Chroma House, Shire Hill, Saffron Walden, Essex. EWW219 on reply card.

Bus controlled 0.002% multimeter

Keithley's latest $61 / 2$-digit sixfunction multimeter is capable of reading rates up to 1000 readings per second in its $31 / 2$ digit mode. For $41 / 2$ digits this reduces to 200 , and for $51 / 2$ digits it makes 20 readings per second. Direct voltage, two and four-wire resistance, decibel measurements, thermocouple and resistance thermometry, and l.f. alternating voltage from 0.1 to 10 Hz are the basic functions of model 193. True r.m.s. readings are available (crest factor 3, bandwidth 500 kHz) with optional accessories, as are direct current, high voltage and high current ranges. Best 24 h accuracy is $\pm 0.007 \% \pm 2$ counts over a 12 month period. The $6 \frac{1}{2} / 2$-digit mode allows a resolution of 100 nV on the 200 mV range.

The unit contains Keithley's Translator Software which allows the definition of more meaningful terms, for example, ‘DC Volts' (sic) may be used in place of the typical GPIB alpha numeric command. Long control strings are replaced with short mnemonics, increasing efficiency through bus traffic reduction. And the emulation facility means that a 193 can be substituted into an existing

ATE System, with minimal software exchanges.

Other features of the 193 include a 500 point nonvolatile memory, data retention during a power loss, and digital calibration from either the front panel or over the bus. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berkshire.
EWW220 on reply card.

CP/M control card

Centred around a Z80 processor is a single-board controller which can also function as the heart of a larger unit. The card contains two peripheral i/o chips; dart, c.t.c. and an array of memory up to 48 K with 16 K of c -mos ram made non-volatile by the addition of optional Smart sockets. Other features include a watchdog timer and multitasking facilities

The software provided with the card is Mirror, a communications package that reflects the functions of CP / M. Once connected via RS232C to a host computer, the operator has the illusion of CP / M running on the Cardmaster board. Named programs load and run automatically, as they do on the host computer, correctly locating themselves in the new system. GNC Electronics, Little Lodge, Hopton Road, Thelnetham, Diss, Norfolk IP22 1JN. EWW211 on reply card.
the highest quality
from 2299

the most competitive prices + VAT

Hitachi Oscilloscopes provide the quality and perfort nance that youd expeet from such a famom name, will a newly-ětendex $1+$ model range that represents the best value for money available anywhere.
V-212/222 20 MHz Dual Trace $\quad V-650 \quad 60 \mathrm{MH} /$ Dual Timebase V. $223 \quad 20 \mathrm{MHz}$ Sweep Delay $\quad V-1050 \quad 100 \mathrm{MH} /$ Quad Trace (illustrated) Delay V-1070 $\quad 100 \mathrm{MH} / \mathrm{Fow}$ chammel V-11(\%) $100 \mathrm{MH} /$ DMM/Counter V. $204 \quad 20 \mathrm{MH} /$ Mini-Portable V-422 foMH\& Dual Trace V. 13410 NH , Tube Storage V-423 $40 \mathrm{MH} /$ Sweep Delay Ve-(x)15 loNHL Digital Storage
 Prices start at $£ 299$ plus vat (20 MHz dual trace) including a 2 yr . warranty. We hold the range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby Electronics Lid, New Road, St. Ives, Cambs. PE17 4BG

CIRCLE 45 FOR FURTHER DETAILS

IEEE-488 controlled laboratory Power Supplies-at low cost the new Thurlby PL-GP series
 - $30 \mathrm{~V} / 2 \mathrm{~A}$ and $15 \mathrm{~V} / 4 \mathrm{~A}$ single and twin units
 - Constant voltage or constant current operation
 - Programmable to 10 mV and 10 mA resolution
 * Readback of current demand via the bus
 * Twin units have fully independent outputs
 - Remote sensing terminals provided
 - Bench mounting or 19" rack mounting
 - Singles $£ 395$ + vat, Twin units $£ 598$ + vat
 Thurlby Electronics Ltd New Road, St. Ives, Cambs. PE17 4BG
 || Thurlby NE

CIRCLE 46 FOR FURTHER DETAILS

The world's most advanced low-cost bench multimeter! Thurlby 1905a £349

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$
- Full ac and current functions as standard

A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St.Ives, Cambs. PE174BG
||Thurlby Nax
Tel: (0480) 63570
designed and built in Britain
CIRCLE 47 FOR FURTHER DETAILS

Now Thurlby makes logic analysis affordable ! from

AFFORDABLE ACCURACY
Quality Multimeters from

ANALOGUE
HM-102BZ - 10ADC Range, 20ks2NDC Buzzer. Battery Test Scale $\mathbf{8 1 2 . 5 0}$ 19 measuring ranges
HM-102R - Low end voltage ε current ranges Jack for Audio o/p voltages $£ 11.00$ 20 measuring ranges
HM-1015 - Rugged, Pocket sized meter, for general purpose use $\mathbf{\Sigma 7 . 5 0}$ 16 measuring ranges
Battery. Test Leads and Manual included with each model.
Ptease add 15\% for VAT and 50 p for pE p

Cirkit

A comprehensive range of Analogue and (Pushbutton or Rotary Switched) Digital Models smary Suntizicat OUTNOW

DIGITAL
HC-7030
0.1% Accuracy. Standard Model $£ 39.50$ HC-6010 0.25\% Accuracy. Standard Model $£ 33.50$ HC- 5010 T
0.25%
Accuracy. 0.25% Accuracy. TR Tentin
DM-105
521.50 0.5\% Accuracy. Pocketable £21.50

All models have full functions and ranges and feature $31 / 2$ digit $0.5^{\prime \prime}$ LCD display - low battery indication - auto zero\& auto polarity - ABS plastic casing - DC AC 10 mp range (not DM-105) - Overload protection on all ranges - battery, spare fuse, test leads and manual.

Full details and specification from:
Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts EN10 7NQ
Telephone (0992) 444111 Telex 22478 TRADE ENQUIRIES WELCOME
CIRCLE 63 FOR FURTHER DETAILS

Liniplex

HF Broadcast Relay Receivers
Now available in 2-4 channel, clock controlled, diversity configurations for unattended operation. HF feeds can now compete with satellites.
Phase Track Ltd.,
55 Russell Street,
Reading RG1 7XG
Tel: 073453933
Telex: 848888

19" RACK MOUNTING CASES

A range of lightweight aluminium $19^{\prime \prime}$ rockmounting cases ot competitive prices, available in the following sizes.

	Height	Depth	Price
	IRU	89 mm	28.00
	1 RU	153 mm	28.50
	1 RU	254 mm	29.00
)	${ }_{2 R U}^{2 R U}$	¢99mm	30.90 31.75
	2 RU	254 mm	32.60
	3 RU	89 mm	34.50
	$3 \mathrm{3RU}$	153 mm 254 mm	35.25 36.35

Front panel. 3 mm extrusion finished in down grey, all other panels 16 SWG clear anodised aluminium. It should be noted that no constructional fixings are visible on the front panel.
For finishes or sizes different from obove, or for details of our range of blank panels, vent panels, audio and video jackfields, panel punching and prototype manufocturing services, please coll.

Please add 3.00 P\&P $+15 \%$ VAT
Ian P. Kinloch \& C0. Ltd
75 Milford Road, Reading, Berkshire, RG1 8LG Tel: (0734)598867 \& 599773
CIRCLE 60 FOR FURTHER DETAILS

HAMEE
 Instruments

The New Modular System 8000
 the complete Test System

Consisting of Mainframe with power supply and constantly expanding Range of plug-in test and generator modules. It accommodates two modules at a time and can be placed above or below the Oscilloscope, or it may be stacked with other Mainframes.
The Modular System 8000 has been designed to match the new HAMEG Low Profile Oscilloscope series and thus enables the user to assemble a complete and var-
 iable test rack in a minimum of space. In addition, some of the modules can be accessed from the rear panels between Mainframe and Oscilloscope thus expanding their flexibility. The resulting system is unique and will be the standard of the future.

Modular System:
Mainframe with Power Supply HM8001 £121.00
Digital Multimeter $4 \frac{1}{2}$ digits HM8011-2 £184.00
Milliohm Meter incl. HZ84 Test Leads £165.00

HM8014
Counter/Timer $\mathbf{1 0 H z - 1 ~ G H z ~ H M 8 0 2 1 - 2 ~}$ £181.00
Distortion Meter HM8027 £ 134.00
Function Generator $0.1 \mathrm{~Hz}-1 \mathrm{MHz}$ £ 150.00

HM8030-2
Sinewave Generator $20 \mathrm{~Hz} \cdot \mathbf{2 0 M H z}$ £150.00

HM8032
Pulse Generator $2 \mathrm{~Hz} \cdot 20 \mathrm{MHz} \mathrm{HM} 8035$ f243.00
Low Distortion Sinewave Generator
$5 \mathrm{~Hz}-50 \mathrm{kHz} \quad \mathrm{HM} 8037$ £134.00
Blank Module with Connector HM8050 £16.00
inodule Adaptor - for external operation £34.00
i ivivo51
2 Years Warranty, parts and tabour
For more information contact:

Instruments
HAMEG Ltd. 74-78 Collingdon Street, Luton, Beds. LU1 1RX. Tel: (0582) 413174. Telex: 825484.

Appointments

> Advertisements accepted up to 12 noon September 3 for October issue

DISPLAYED APPOINTMENTS VACANT: $£ 23$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 5$ per line, minimum $£ 40$ (prepayable).
BOX NUMBERS: $£ 11$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: SUSAN PLATTS, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNA TIONAL LTD . and crossed

ELECTRONIC TECHNICIAN

INTERESTING WORK REPAIRING, MANUFACTURING AND DEVELOPING ELECTRONIC FLASH EQUIPMENT FOR A LEADING PHOTOGRAPHIC DISTRIBUTOR IN CENTRALL LONDON
Applicants should have a knowledge of basic electronics to City \& Guilds standard but experience in this field is not essential. A driving licence would be an advantage. Salary negotiabie Apply in writing to Tony Beveridge The Flash Centre 54 The Brunswick Centre Bernard Street, London W1

EXPERIENCED MAINTENANCE ENGINEER

urgently required for large expanding recording complex in North London. Box No: 307

ELECTRONICS ENGINEER

 Lights... Camera... Action!The National Museum of Photography, Film and Television in Bradford is planning to open new Teievision Galleries in November 1986.

You will assist with the design and installation of complex electronic displays and will be responsible for the technical operation and daily maintenance of this equipment once installed. Maintenance of all existing audio-visual displays, particularly the electrical and computer-based exhibits will play an important part in your work. You will also be responsible for the installation of future innovative, interactive exhibits.

You must have either an HNC/HBTEC in
electronic engineering or C and G Full Technological

Certificate in a relevant subject or be a registered Technician Engineer or have a degree in electronic engineering. In addition you must have between 2 and 8 years' postqualification experience, depending on qualifications. Salary $£ 9010$ - $£ 11,395$ depending on qualifications and experience. Significant improvements in pay scales will take place over the next 3 years - in addition to normal annual pay increases.

For further details and an application form (to be returned by 29 August 1986) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 468551 (answering service operates outside office hours). Please quote ref: T/6930.

NATIONAL MUSEUM OF PHOTOGRAPHY, FILM AND TELEVISION

\section*{Professional Career Opportunities

 The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.
 We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:
 Your next step is to complete and return the attached coupon or 0442212650 during evenings or weekends.
 Executive Recruitment Services
 Freepost. Hemel Hempstead, Herts. HP1 4BR
 | -Real Time Software | - Technical Sales | -ATE Programming |
| :--- | :--- | :--- |
| -Radar Systems | \bullet RF Development | -Technical Authorship |}

Appointments

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge . . . why not join us in GCHQ?

We are recruiting

RADIO OFFICERS

who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an RO extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $\mathbf{£ 5 , 8 1 7}$ at age 19 to $\mathbf{£ 6 , 9 2 0}$ at age 25 and over during the training and then $£ 7,954$ at 19 to $£ 10,162$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 13,777$ inclusive of shift and week-end working allowances.
application form phone $024232912 / 3$
or write to:

OXLEY ${ }^{-}$(
 ELECTRONIC DESIGN ENGINEER ELECTRONIC PRODUCTION ENGINEER

Oxley Developments Company has been established for over 40 years, and is a leading designer and manufacturer of high reliability electronic components.
Vacancies exist in both design and production areas, supporting the development and manufacture of components for operation at frequencies up to 10 GHz .
These are exciting opportunities, and are ideally suited to newly qualified graduates in an engineering/science discipline.
The Company is situated on the edge of the Lake District, in an area offering a whole range of recreational facilities.
Please write for an application form to:
The Personnel Director,
Oxley Developments Company Limited, Priory Park, Ulverston, Cumbria LA12 9QG.

Radio

Communications

 Technicians ZimbabweThe Zimbabwe Republic Police are seeking three Communications Technicians to assist in the training of local staff in Harare and Bulawayo The ZR police radio network operates on UHF and VHF and stations, posts and patrols are radio linked.

As "on the job instructors", you will give practical instruction to Technicians of all grades and also help with routine maintenance where necessary to avoid backlogs building up.

Equipment used includes base and mobile equipment of 40 MHz band and VHF packsets of dual frequency 40 MHz and 120 MHz bands - all amplitude modulated and fully solid state; 4 watt output VHF handheld walkie talkies; 100 watt synthesised SSB transceivers; and SSB packsets both crystal controlled and synthesised.

Applicants should be British Citizens, ideally with C\&G Full Technological Certificate in Communication Engineering or similar qualification and 10 years experience including fault finding to component level with the equipment listed. The ability and willingness to train young inexperienced technicians is essential.

The appointments are on contract to ODA, on loan to the Government of Zimbabwe, for a period of 2 years. Salary (UK taxable) will be commensurate with qualifications and experience and will include an element in lieu of superannuation. A tax free Foreign Service Allowance, currently in the range $£ 1,315$ to $£ 3,380 \mathrm{pa}$, is also payable.

The posts are wholly financed by the British Government under Britain's programme of Aid to the developing countries. Other benefits normally include paid leave, free family passages, children's education allowances, free accommodation and medical attention
For further details and application form, please apply, quoting ref. AH364/ES/EWW, stating post concerned, and giving details of age, qualifications and experience to: Appointments Officer, Overseas Development Administration, Room 351, Abercrombie House, Eaglesham Road, EAST KILBRIDE, Glasgow G75 8EA.

Closing date for applications is one month from the date of publication.

Britain helping nations to help themselves

ENCNNEF:1Na oon Nation UOE

Edinburgh (031) 2265381 Leeds (0532) 580510 Manchester (061) 8325856 Birmingham (021) 6431994 Leicester (0533) 544193 Milton Keynes (0908) 666872 Bishop's Stortford (0279) 506464 London (01) 6370781 Bristol (0272) 211035 Bracknell (0344) 481808 Maidstone (0622) 687171 Crawley (0293) 514071

Salaries 88,000 to 930,000 p,a.

As the UK's leading specialist sales and technical recruitment consultancy, we provide a FREE service to engineers seeking a career move If you have experience in digital, analogue, microprocessor or communications technologies (either hardware or software), ideally with a recognised qualification, we have hundreds of vacancies threughout the UK in R \& D, Design, Manufacturing, Test, Service and Sales Call your nearest branch for more information or send a comprehensive C.V. (no stamp required) to:-

 A Division of ATA Selection and Manacement Services Ltd

 FREEPOST, Bishop's Stortford, Herts. CM23 2BR
VIDEO/ELECTRONICS TECHNICIAN

to service and repair wide range of video equipment including professional monitors, Umatic recorders, miniature cameras etc. Qualified to C\&G finals or equivalent plus 5 years practical experience. Age 26 upward. Salary negotiable.

Please telephone
01-902 8835 ext. 251.

RIVERSIDE HEALTH AUTHORITY
 Westminster Hospital, SW1.

Department of Clinical Measurement

ELECTRONICS TECHNICIAN

This post is in the electronics section of the Department of Clinical Measurement, Westminster Hospital and is associated with the arrangement of a wide range of analogue and digital equipment used for patient monitoring and therapy. Duties will involve safety testing and commissioning as well as routine maintenance and repair of such equipment
There will also be opportunities for the design and construction of new devices for hospital use. You will will work in both workshop and clinical areas and will need the ability to communicate with medical and nursing staff.
The electronics section is supported by small computer systems for equipment data bases and job recording and by well equipped mechanical workshops. Hours: 37 . Salary: $£ 6,786-£ 9,797$ (inc) dependent upon experience and qualifications.
Job description and application form from Personnel Department, Westminster Hospital, Dean Ryle Street, Horseferry Road, London SWi. Tel: 01-8289811 Ext 2323 (24 hour answering service).
Closing date: 4th September, 1986.

FIELD SERVICE ENGINEER

required for the commissioning and maintenance of geophysical logging equipment in the UK and overseas. A sound practical ability to troubleshoot analogue and microprocessorbased digital circuitry is essential as is an enthusiasm for worldwide travel.

Box No: 305

Telecommunications Technical Officer
 Grade III

The Operations (Technical) Support Group have a vacancy for a TTO ill in the Metropolitan Police Forensic Science Laboratory, which is located in South East London, about 10 minutes walk from Lambeth North Tube Station
The Laboratory enjoys a worldwide reputation for uncovering facts and providing the police and the courts with invaluable assistance.
The vacancy exists in the Laboratory's Electronic Support Unit where the successful candidate will be required to service maintain and occasionally modify a wide range of equipment There will also be an opportunity to be involved in the design, development and construction of new equipment. It will be necessary for the postholder to liaise with scientists of several disciplines on a regular basis.
The skills required range from basic workshop practice to modern micro-processor technology. A knowledge of, or a willingness to learn, computer programming would also be an advantage
Applicants must possess as a minimum qualification an ONC in Engineering or an equivalent City and Guilds/TEC qualification in a relevant discipline and have at least four years relevant experience.
Salary: $£ 8,595$ per annum to $£ 11,392$ per annum inclusive of London weighting allowance.
Annual Leave: 4 weeks 2 days rising to 6 weeks plus $101 / 2$ days public and privilege holidays.
For further details and an application form write to: The Establishment Officer, E8(1) Branch, Room 213 (TTO/FSL), 105 Regency Street, London SW1P 4AN, or ring 01-230 3122 (24 hour answering service)
The Metropolitan Police Office is an equal opportunities employer.

METROPOLITAN POLICE

Senior Design Engineer

For exciting development of computer graphics products for television use.
Experience in Digital and Analogous design, and an understanding of video technology would be essential. You could be required to manage a small development team, and be able to take products from conception through to production. If you have an active enthusiasm for Computer graphics together and a liking for a small but expanding company you would be ideally suited to this job
Salary dependent on age and experience up to $£ 15,000$.

Design Engineer

For assisting in the design of Computer Graphics products Experience in at least one of the following fieids would be required. Digital Design. Analogue Design, Video Engineering You would have the opportunity to participate in many aspects of design, from CAD or schematics and PCB layouts to prototyping. Salary depending on age and experience from $£ 8,000$ to $£ 12,000$
Applications in writing please, together with full C.V. to The Technical Director, Spaceward Microsystems Ltd., The Old School, Stretham, Cambridge CB6 3LD.

CAPITAL APPOLNTMENTSLTID THE UK's No. 1 ELECTRONICS AGENCY
If you have $\mathrm{HNC} / \mathrm{TEC}$ or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:
Telephone now for our free jobs Ilst We have vacancles in all areas of the UK Salaries to £15,000 pa
018083050
(24hours)
CAPITAL APPOINTMENTS LTD 76 WILLOUGHBY LANE, LONDON N17 OSF

North Lincolnshire
Health Authority
ST GEORGE'S HOSPITAL
Department of Medical Physics and Computing MEDICAL
EQUIPMENT UNIT

Medical Physics Technician Grade II/III

Required to join a team providing a comprehensive service to users of medical equipment throughout the District. The range of services provided includes evaluation and acceptance testing of commercial equipment, development of new eutpment and the mamterance of equipenent.
Experience in the field of diagnostic imaging or a general medical electronics background would be preferred.
Applicants should hold an I/NC or equivalent and five vears of relevant experience for Grade II Applicanis widh less experience may be considered for a post at Grade ll level.
A current driving licence is essential; Salary: Grade I/ 18,073 - 110,070 (Award pending).

Grade III $66.703-£ 8.664$ For further information please telephone Dr N Granvill or Mr D Walson, on (0522) 29921 ext 7246.

Application forms and job descriptions are available from and should be returned to: $\mathbf{M r} \mathbf{N}$ Barron, Unit Personnel Officer, St George's Hospital, Long Leys Road, Lincoln LNI IEF.
Telephone: Lincoln 29921 ext 7184

RADIO SERVICE ENGINEER required by expanding company dealing with P.M.R. systems. Cellular and Community Repeater Equipment R.C.S (London) Ltd., Unit 7, Millmead Centre, Millmead Road. London N17 9QU. 01-801 6457 Contact Frank Stafford.

ARTICLES FOR SALE

to MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.
 LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713 R. HENSON LTD

21 Lodge Lane, North Finchley, London, N. 12 minutes from Tally Ho Corner)

QUARTZ
CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order Personal and export orders welcomed SAE for lists please. OEM support thru: design advice, prototype quantities, design advice, prototype quantities, production schedules. Goledge Electronics, Merriott, Somerset YA16
5 NS. Tel: 046073718 .
BRIDGES waveformn/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters, Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true RMS, audio, RM, deviation. Tel: 040376236 (2616) NOW AVAILABLE - Bumper Catalogue - 170 pages - for collectors of vintage radio, audio \& TV equipment. Price: $£ 2.00$ post paid UK, $£ 3.00$ post paid overseas. Vintage Wireless Co. Ltd., Cossham Street, Mangotsfield, Bristol BS17 3EN. Phone: 0272565472 .

QUALITY USED EQUIPMENT
 Hewlett Packard Synthesizer 8660 C maln frame with keyboard entry 86602 B RF section $1-1300 \mathrm{MHz}$ Fully restored $£ 5.000 .00$
 Hewlett Packard Vector Voltmeter 8405A measures voltage and phas
 Hewlett Packard Spectrum Analysers Price and details on application.
 Marconi PCM Tester/Analyser Kit TF2807A PCM multiplex tester TF2828 PCM digital simulato All as new complete $£ 2.950 .00$ This and other equipment can be inspected at COOKE INTERNATIONAL
 Unit 4. Eordingbridge Site, Main Road. Barnham, ognor Regis PO22

G.W.M. RADIO LTD.

 40/42 PORTLAND ROAD. WORTHING. SUSSEX Tel: 090334897 Marconi TF 791D Devation Meter $41024 \mathrm{MHz} £ 85$ Buyers coltecl Eddystore EB37 Solld State Rece ver. Simular to ECLO but no BFO $150 \mathrm{KHz}-350 \mathrm{KHz}$$+550 \mathrm{KHz} 22 \mathrm{MHz} 9 \mathrm{y} £ 6 \mathrm{inc}$. Pye Bantamis H/B FM
woth battery box and microphone $£ 25$ inc. Pye W25FM with battery box and microphone $£ 25$ inc. Pye W25FM
nobile units soid state High power Westminsters 10 channel ex car telephone high band, no contiol geat
(unnts only) $£ 40$ inc. Signal generator advance type B4B directy callbrated from 30 KHz to $30 \mathrm{MHz} £ 35$ inc.
Pye $450 / 461 \mathrm{UHF}$ base $£ 40 \mathrm{inc}$. fantavox public address Amps. 20 watts $4-8$ or 16 ohm OT 72 Volt
output 230 V . AC or 12 V DC 829 inc. p\&p. P
Bantam HP1 AM mid band. example requency Bantam HP 1 AM mid band. example qequency IX
107 Mliz Rx 139 MHz . Will mod to alr band sets only no
mics. or battery but with dry batlery tray $£ 25$ inc $\mathrm{p} \& \mathrm{p}$.

PCB'S MANUFACTURED, prototypes, small/large production runs, single, double-sided, P.T.H. screen printing, panels, labies, solder
masking \& photography. Orbitechnic Circuits, The Rear of 127 Woodlands Road, Ilford, Essex. Tel: 01-5535211.
(154)

TEKTRONIX OSCILLOSCOPES 221560 MHz £495, $568230 / 241$ 1GH system £495, $454 \mathrm{~A} 150 \mathrm{MHz} £ 475,661$ 3-9 GHz 1495, PCB Sub-assemblies, Transistors, Delay-lines, viewing hoods, valves. 1L5 £375, 7B50A 295 3A74 £85. Telequipment D83 £325 Helay 1100 Hz Delay-lines 1100A £65, Transformers $9100-147 \mathrm{z}$ (new) 15 . Brimar C.R.T.s.
Manuals. Tel: (01) $868-4221 .(293)$.

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices Please telephone 01-646 5686 for advice or further details.

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

DISC COPYING

FORMAT CONVERSION

We can convert your files to and from most CPIM, Ms. DOS land look alikel disk tormats and sizes.
© $7.50+$ Disks ifif required) + VAT
For details contact Clive Waller at Chiatronix Ltd, 238 Old Bedford Road, Luton. Beds,
LU2 7EQ Tel: (0582) 21010
(Callers by appointment please

IMPORTS/EXPORTS of all kinds of Electronics and Computers. Please send your enquiry or product details to DEDICATED MICROPROCESSORS LTD, 299A Edgware Road, London W2 1BB, England, or Telex 945922 GLADEX-G for the attention of Mr C.Paps. (300)

PCB'S MANUFACTURED Prototype, small/large production runs. Single/double sided, multilayer, PTH Singledouble sided, multilayer, PTH standards. Screen printing and photography. Full CAD artwork design service from circuit diagram. Prices are competitive, delivery fast $2,5,14$ days or by agreed schedule. Translab Electronic Services, 38 Matlock Close Rugby CV21 1LB. Tel enquiries: (0788) 536626.
(284)

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quate for complete factoryclearance. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188.

CLASSIFIED RATES ARE:

Displayed: £23 per single column centimetre Linage: $£ 5$ per line (minimum $£ 40$)

WANTED

Test equipment, receivers, valves, transmitters, com ponents, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB 0532435649
(9956)

STEWART OF READING
110 WYKEHAM ROAD READING RG6 1PL TÉL NO: 073468041

TOP PRICES PAID FOR

 ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY> WANTED Test equipment, computers, components. Any quantity. Good prices paid Immediate settlement. G. Give us a a ring O.Teq Electronics

> Unit 6, 28 Botley Road, Hedge End, Southampton. Tel: Botley 81487

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement.

Tel: 01-208 0766
Telex: 8814998
(2491)

USED TEST EQUIPMENT

FOR SALE \& WANTED
Buyers \& Disposal Officers Contact

NEW WINCHESTER 20 MEGABYTE HARD DISC, controller board, IBM PC, host adaptor, £325, 10 megabyte disc controller board, $£ 235$. 20 megabyte tape streamer IBM PC, host adaptor, £295. Oscilloscope D83, 50 MHz dual trace, $£ 449$. 1 N 5406 12000 £295 B NC connectors 1500 12,00 , Transformers $30 \mathrm{~V} / 1 \mathrm{~A} 300$ 1 119 , $£ 295$. Transformers $30 \mathrm{~V} 1 \mathrm{~A} 300, \mathfrak{£} 149$. 36V/1/2A $160, £ 90.24 \mathrm{~V} / 4 \mathrm{~A}$
Slough (0753)
824027.
£199.
(278)

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.50 PER LINE. Average six words per line. Minimum £36 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 10$
- Cheques, etc., payable to "Business Press International Ltd." and cross "\& Co." 15% VAT to be added

NAME.

ADDRESS
\qquad

Computer Appreciation

111 Northgate, Canterbury, Kent CT1 1BH

Tel: Canterbury (0227) 470512. Telex: 966134 COMPAP

 monochrome monitor $\&$ MSOOS Signally cost over $£ 2.00$. BRANO NEW. TWe have very low cost sotware packages BRAND NEW
 printer interface \& AS232 comms interace. With dual $5^{1 / 4}$ floppy disc drives (double density, double sided. $40{ }^{1}$ rack).
high resoution monochrome monitor $\&$ low protile keyboard. Excellent protessional word processing software is inctuded and the machine is capable of running CHPNA aithough we do not yet have a configured version avalable. Manciactured 1983 and orignally selling ar over S5000 BRAND NEW \quad In . 17 SCRIBE III. As above, but with 10 MB WINCHESTER hard disc dive and single tioppy
NEC SPINWRITER Model 7700 daisy wheel printer. 55 c .p.s. printer sulable processers BRANO NEW

 FULL 256 K MEMORY \& NEC MODEL 7700 SPINWRITER 55 c.p.s. PRINTER. ALL BRAND NEW \& GUARANTEED MEWLEII PACKAAD desktop computer Model 9825 with 24K RAM, operating system ROM (69705) 8 General VO display lape drive $\boldsymbol{\ell}$ printer HEWLETP PACKARD Model $7225 B$ A4 graph plotte IEEE interlace. will sell lest \& clectrosiatic paper hold \quad E350.00
 MATMOS TERMINAL MATMOS PC with EPROM for terminal emulation Probably the lowest cost terminal avaliable anywhere BRAND NEW
MATMOS TERMINAL. AS ABOVE but complete with ZENITH 1230 monoctrome monior and monitor cable ERAND
NEW

PYRAMID Modet 501 CPM MICROCOMPUTER SYSTEM. WIth 4 mHz 280 A processor 64 K memory and winn
 with NORTH STAR HORIZON. Oliginaly priced at $\Sigma 2$ OOO BRAND NEW (Requires terminal)...... are sotware compatible IEKTRON X Modet 4051 DESKIOP GRAPHICS COMPUTER. With integral tape cartridge drive and 4000 Senes uitra tugh resolution storage display. BASIC is in ROM.
DEC Model BA1 1 MF 8 -slot box backplane and os
HITACHI Model 305S $3^{\prime \prime}$ disc drives. With SHUGGART compalitle interlace as tor $5 \frac{1}{4}$ drives Uncased These
 AS ABOVE. But double sided
levels (postive -video, intensity \& synci) Resolution is 640 dols $\times 200$ line
NEC \& CUB colour monitors Low resolution ex-demo (unmarked) with TL input. 12 and 14 available

TEKTRONIX Model 7603100 mHz . Osciloscope with CRI readout. $2 \times$ Model 7 A18 dual trace amp
7853A dual time base
TEKTRON X Model 7403 M osculloscope with 7 A 18 N \& 7 BS 3 A
TEKTRONX Model 5403 oscillosccope with $5 \mathrm{~A} 18 \mathrm{~N} \& 5 \mathrm{~S} 10 \mathrm{~N}$

TEK TRON X Moded 466 portable storage 100 MHz oscilloscope
TEKTRON X Model 7012 AUD Converter with M2 sample hold moduie
TEKTRON IX Model 7012 A/D converter with M2 sample hold modu
HATFIELD Type 210550 Ohm antentuator
Please Note: "VAT \& Carriage extra for all items

Wrelessiviotld

Appointments Vacant Advertisements appear on pages 75-79

PAGE	PAGE	PAGE	PAGE
AEL Crystals 32	Electronic Brokers 1FC, 3, OBC	Internepcon Packaging 41	Pineapple Software 58
Airlink Transformers 36	EMS Mfg. Ltd......................... 58	IQD Ltd.................................... 5	PM Components46/47
	English Electric Valves 45		Radiocode Clock
Beckenham Peripherals 12	Essex Electronics Centre 73	John Radio................................ 58	
	E\&WW 1986 Frequency Chart 68	Kestral Electronic Components	Raedek Electronics 10
Cambridge Kits 32	E\&WW Edit Feature List 70	.. 71	RAFA Wings Appeal............... 62
Carston Electronics Ltd 15	E\&WW Smart Watch offer 4	Langrex Supplies Ltd............... 65	RCS Micro Systems Ltd 8 Research Communications 12
Cavendish Automation 2	Gould Electronics 48	Lincoln Binns \square	
Cirkit Holdings PLC 73	GNC Design 31		Sherwood Data Systems Ltd 67
Collins \& Sons Co Ltd (Wm) 48		Marco Trading......................... 62	Silicon Glen Ltd 70
Componedex IBC	Hameg	Matmos Ltd 8	SMC Electronics....................... 8
Computer Appreciation 80	Happy Memories 8	Micro Concepts 62	Stewart of Reading.................. 57
Cortex Controllers 62	ris	Micro Kit Ltd........................... 57	Strumech Engineering Ltd....... 62
Crossware Products 70	Harrison Electronics 67	Micro Processor	Surrey Electronics Ltd.............. 58
Cybernetic Application............. 31	Hart Electronic Kits Lid........... 67	Engineering Ltd 36	Taylor Bros............................. 32
	Henry's Audio Electronics 80	Monolith Electronics 70	Technomatic Ltd24/25
Dartington Frequency	Henson, Lid (R)		Thandar Electronics Lid 31
Standards............................. 4			Thurlby Electronics 72
Dataman Design 35	Ian P Kenloch Lid 73	Number One Systems 10	T I C Semiconductors 67
Display Electronics52/53	Imhof Express 57	Phase Track Ltd 73	Triangle Digital Services.......... 10
OVERSEAS ADVERTISEmENT AGENTS			
France and Belgium: Pierre Mussard, 18-20 Place de la Madelaine. Paris 75008.			
United States of America: Jay Feinman. Business Press International L.td. 205 East 42nd Street. New York. NY 10017-Telephone (212) 8672080 - Telex 23827.			
Printed in Great Britain hy Ben Johison Printers Lid. Oldhill. Dunstible, and typeset by Graphac Typesetting. Imperial House, 108 The Broadway, Wimbledon SW19, for the proprietors, Business Press International. Quadran! House. The Quadrunt. Sution. Surree SM2 5 AS © Business Press Inernational 1986. Wireleses Wordd can be obtained from the following. AUSTRALIA and NEW ZEALAND Gordon \& Gotch Ltd INDA:A H Wheler \& Co CANADA. The Win. Dawson Subscription Sirvice Ltd. Gordon \& Gotch Ltd SOUTH AFRICA: Central News Agency Led: WilliamDawson \& Sons ISA. Ltd UNITED STATES: Eastern News Distribution Ine., 14th Floor. 111 Eighth Avenue, New York. N Y 10011 .			

TEST COMPONEDEX PUTOUR TESTERS TO THE TEST

The Fakerscope 2000 is a new portable data analyser from Componedex. The Fakerscope 2000 provides a widerange of data test facilities including: data capture and aralysis, pre-defined message generation and BERT testing. The Fakerscope 2000 supports a wide range of standard data codes and formats ancluding Synchronous and (optional) SDLC/HDLC operation.
The Fakerscope 2000 is totally portable, powered by re-chargeable batteries and is supplied with all accessories and transit case.
DATAFAKER £360.00
The Datafaker is a portable RS232 message generator ! error checker. The unit is simple to operate and features a "Centronics" data port. The Datafaker is an ideal unit for testing terminal devices, the Datafaker features an EPROM socket allowing custom messages to be transmitted. Supplied with transit case and accessories.

CIRCLE 29 FOR FURTHER DETAILS

Test the Componedex CABLEFAKER! a pocket LCD RS232 breakout box and line monitor which requires no batteries. The Cablefaker is supplied with case and patch leads.
The prices quoted are UK phices and subject to VAT.

To: Sales Manager, Componedex Ltd., Unit 87 Alston Drive, Bradwell Abbey, Milton Keynes, MKl3 9HF. Tel: (0908) 322177 Tlx: 265871 MONREF code: WJJ093

\squarePlease send me information on the Componedex range of data tesfers.
\square
Name
Company
Address:

Componedex testers are distributed throughout
Europe and Australia, contact us for your nearest dealer

THERE'S A PHILIPS INSTRUMENT/

THAT'S JUST RIGHT FOR YOU

AT ELECTRONIC BROKERS

OSCILLOSCOPES

PM3055 DUAL

 TIME BASE 50MHz SCOPE\qquad
Philips all-new PM3055 is the smart scope - in more t's smart in performance. With an advanced-technology 16 kV 100 , hook-up via an IEEE option.

And it's smart in simplicity, with
Autoset, right-every-time microcomputer control and full modular design for fast, easy service.

But most of all it's smart at
Electronic Brokers' price of only $£ 845$.

PM3302 DIGITAL STORAGE WITH TWO MEMORIES

- Max sampling frequency 20 MHz - Maximum resolution $50 \mathrm{nS} \quad 2 \mathrm{~K} \times 8$ bit memory 2 K back-up memory X-Y recorder output for hard copy $\quad 50 \mathrm{~s} / \mathrm{div}$ roll mode for low frequency
signals.
£1,450.00

DIGITAL MULTIMETERS

PM2534 COMPLETE SYSTEM MULTIMETER

- IEEE interface fitted as standard a $31 / 2$ to $61 / 2$ digit modes \quad Up to 100 measurements/second - Accuracy to 0.005\% True RMS measurements $\begin{aligned} & \text { Resolution } \\ & \text { to } 100 \mathrm{nV} \text {. }\end{aligned}$:59.00

PM2518X/PM2618X/PM2718X PORTABLE METERS

- Direct dB and relative measurements 200 kHz frequency counter 0.3% analogue bargraph display Up to 0.05% DC accuracy -10MHz logic view function Up to 100 kHz true RMS readings.
PM2518X/01 PM2618X/01 PM2718X/01 $£ 149^{.00} £ 195^{.00} £ 225 .{ }^{\circ 0}$

PATTERN GENERATOR/

PM5515I COLOUR TV GENERATOR WITH USER PROGRAMMES

- Synthesised control of RF frequency - Keyboard call-up of up to 70 patterns/ combinations Simple switch selection of PAL or NTSC ■ Operation of up to 3 or 4 receivers on a 10 mV output - Storage and recall of up to 10 complete programmes \quad Covers every RF band from IF bands IVN including cable TV bands

PM6670/01 HIGH RESOLUTION WITH EXTRA FUNCTIONS - High accuracy frequency measurements - High resolution counting - Burst frequency average, phase and RPM Time interval, single and average \quad High trigger accuracy Excellent 10 mV
sensitivity.
£695.00

FUNCTION GENERATOR/

PM5193 PROGRAMMABLE

 SYNTHESISED GENERATOR- Wide 0.1 mHz to 50 MHz frequency range - Extremely high frequency accuracy and stability - Full 8 digit resolution with clear LED readout - 8 standard programmable waveform outputs - Modulation facilities include FM, AM, Gate, Sweep, Burst \square Remote control of all programmes via IEEE
interface.

Electronic Brokers Ltd., 140-146 Camden Street, London NW1 9PB. Tel: 01-267 7070 Telex 298694 Fax No: 01-267 7363

[^0]: To: Internepion-the Electronic Packaging Show, Cahners Exhibitions ${ }^{5 C}$ London Road, Twickenham TW1 3SZ. \square Yes I'm plannigg a trip to the Show. Please send \square Yes I'm planning a trip to the Show. Please send
 me_ FREE tickets plus a Conference Programme. $\square \mathrm{me}$ FREE tickets plus a Conference Programme.
 | NAME
 \qquad
 \qquad
 POSITION
 ORGANISATION
 ADDRESS \qquad
 \qquad
 TELEPHON E_POSTCODE__
 TELEX
 No minc under 13 acnitted

[^1]: $2.5 \mathrm{kIs} \mathbf{E 5 . 2 5}+\mathrm{pp} £ 1.25$
 $10 \mathrm{kIs} £ \| 1.25+\mathrm{pp} £ 2.25$

