

AUGUST 1982 Vol 88 No 1559
27 BY ANY OTHER NAME
28 80-100w MOSEET AUDIO AMPLIFIER
by J. L. Linsley Hood
33 DISC DRIVES
by J. R. Wath
37 EIECTROMAGNETIC AI
40 CIRCUIT MODELING BY MICROCOMPUTER
by f. I, Harcourf
43 DIIITAL DVIIDERS WITH SYMMETRICAL OUTPUT
by Cornellus wan Holten
47 DIGITAL FITER DESIGN3 MICROCOMPUTER LINE PRINTER
by P. L. Woods
LETIERS
61 MeIEOSAT HIGH-RESOLUTION IMAGES by M. L. Chrisileson
65 MEWS OF THE MONTH
CIRCUIT IDEAS
70 communications
72 Metwonk analysis with a by L. E. Weaver
75 COST-EFFECTIVE ELECTRONIC IENITION
76 DESIENING WITH MICROPROCESSORS by 0. Zissus and Jane Pleus
79 ELECTRIC FIELDS IIN SOLENOIDAL COILS by F. S. Chute and F. E. Vermeulan
81 NEW PRODUCTS

苗

 AmCion INDUSTRIAL

 - fill Apill And shoit circuit protection guaranted stable

For full details on all Amcron Products write or phone Chris Flack

Ron ink wW - 026 FOR FURTHER DETALLS

INSTANT PRINTED CIRCUITS!!

 WHITE HOUSE ELECTRONICS P.O. Box 19, Praa Sands, Penzance TR20 9TF
Telephone: Germoe (073-676) 2329

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equipment for processing all types of picture tubes, colour and mono. Standiadd or custom buit units for 'estab:
lished or new businesses W. lished or new businesses. We export world-wide and have an
excellent sparess service backed by a strong technical team: Full training courses are individually tailorea to customers
requirements. For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2 XX
$01-6841422 / 01-6840246$ WW -059 FOR FURTHERDETALS

THE SOURCE

OF ALL HIGH QUALITY USED TEST EQUIPMENT

 SERVICETRADNG CO
 ACCOUNT CUSTOMERS MIM. ORDER £IO Ww - oos FOR FURTHER DETAILS

6 ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet.

Farrison Bros.
22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX
Tel. Southend (0702) 332338
WW - 008 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for and
days delivery. Other Ranges and special scales can be made to order.

Full Information from

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 $\left\{\begin{array}{c}\text { WW- OHI FOR FURTHTER DETAILS } \\ \text { 10 OUTILET }\end{array}\right.$

ELECTRONIC VALVES

 WANTEDAll Types Receiving, Transmitting, Industrial PL504-PL802-PCL805-CV131-CV136
CV138-CV329-CV345-CV450-805-807 813-2K25, etc.
Phone/write to:
PYPE HAYES RADIO LTD 606 Kingsbury Road
Birminghamr ${ }^{2} 24$ 9PJ 021-3734942
ww-018 FOR FURTHER D'ETALS

[^0]
We supply P1/TMS for Industry

HM 307 OSCILLOSCOPE

HM412-5
Oual Trace. DC to $20 \mathrm{MH2} 8 \times 10 \mathrm{~cm}$
display w with intemal graticule. Rise time $17.5 n 5$. Variable inpur $2 \mathrm{ml}-20 \mathrm{~V} / \mathrm{cm}$.
Ada and invert modes. Timebase

The above prices or VAT (15\%).

Simple Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 For further details

WW - 038 FOR FURTHER DETALLS

Ww - 012 FOR FURTHER DETAILS

[^1]

WW - 016 FOR FURTHER DETAIL

PHONE
P. M. COMPONENTS LTD 3 LINES MEOPHAMGREEN, MEOPHAM, KENT DAI3OQY WEST ST G

CALLERS WELCOME
\star ENTRANCE ON A227
50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLIE
 OX MAN OTHE T TEMS AVALLABLE \star

ww - 033 FOR FURTHER DETALLS

wW - 056 FOR FURTHER DETAILS

WIRELESS WORLD AUGUST 1982

TEST COMPONENTS
ON THIS NEW OSCILLOSCOPE

USE READER CARD FOR DETAILS ww - 039 For further details

$T=N-2)^{-1}$

BY ORDER OF B. BAMBER ELECTRONICS AND OTHERS

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY LOTS INCLUDE
Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares.

Over 900 lots - Catalogues available
TO BE HELD ON WEDNESDAY, AUGUST 18, 1982
ON THE PREMISES OF
B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT
CAMBS. CB6 10E
TEL: ELY (0353) 860185
WW-068 FOR FURTHER DETAILS

THE MOST

ECONOMICALLY - PRICED PROFESSIONAL EPROM PROGRAMMERS AROUND
SUITABLE FOR EPROMS:
2708, 2516, 2716, 2532, 27.32, 2732A
plus option for 2564,2764

DAIAPROM

$$
\text { WW - } 032 \text { FOR FURTHER DETALLS }
$$

ELECTRON GUNS

TV TUBE COMPONENTS

- GRIFTRONIC

EMISSION LTD Adsjip

WW - 045 FOR FURTHER DETAILS

WIRELESS WORLD AUGUST 1982

WW - 010 FOR FURTHER DETAILS

1. Freq. Counter; 2. Oscillator, 3. Noisemeter, 4. Wow \& Flutter meter, 5. Level Meter, 6. Distortion, 7. Phase, 8. Power, 9. Drift, 10. Rumble. Already in use from the small service works. Rop to Audio Equipment "
manufacturers to professional studio to IBA Broadcast station to the "BBC" AMSI provides the solution. Saves time, saves space, saves capital equipment cost, saves earthing
problems. Transportable and easy to use. This low costcomprehensive workshop meets the latest specifications for Audio Measurement with accura
10 Instruments, 15 Measurements for the price of One. That's the AMS1... BKRLimited Durban Road
Begnor Regis
West West Sussex PO22 9RL England
Tel: (0243) 825811 Telex: 86120

ELECTROVALUE

SNSPECMER2 sisummer

FREE UOUCHERS TO SRUE YOUUPTO
 + USUAL DISCOUNTS + FREE POSTAGE

 v.a.t.rost catalogue items but
not on payments by crodit
 add 40 p handiling charge. LECTROVALUE LTD. 28 ASt Judts Rood Envifiald Gronn EGham,

WKRLimiter EKER

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

WW - 013 FOR FURTHER DETALS

Marconi Type R1020 Hinged antenna column.

Easy to raise Easy to lower

* Immensely strong, corrosion resistant MATHWEB* gr.p. column in a rugged steel tabernacle
Lightweight, easy to install, and can be safely lowered by one man
* Can support a number of VHF/UHF antennas
* Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance
* Available in heights from 11 to 19.5 metres

OTHER MARCONI SUPPORT STRUCTURES Include the MATHWFB* Lattice Antenna Mast Typ R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.
For details of these and other Marconi Antennas products please contact Chris Pettitt, Marketing
Manager, Antenna Systems Division
*MATHWE8 is a registered trademark of the BPGroup

Marconi

Antennas
Marconi Communications Systems Limited Lane Works, Waterhouse Lane, Chelmstord CM1 $20 X$, England Tel: 024567111 Telex: 99108

WW - 014 FOR FURTHER DETALLS

ScheTronics Limited

For repair and calibration of test equipmen We also have the following second user LF/HF equip-
ment for sale. ment for sale Siemens including Pegamat - W \& G - H.P. - Hatfield
Anritsu - Marconi-Fluke-STC-etc...

> Unit 10, Dunstall Estate Crabtree Manorway Belvedere, Kent DA17 6 AW Telephone: 01-311 9657

Z8O DEVELOPMENT SYSTEM The 40 key keyboard will accept inputs,
both in hexadecimal and $Z 80$ mnemonics: there is a quick cassette data storage system,
a powerful editor which permits program debugging by showing contents of registers and stack.
Also there are 24 bits of $1 / 0$
for external control. A 280 disassembler
is also available which outputs to any AS 232 device is also avaiable which outputs to any RS232 device
such as a printer or terminal
MENTA was designed as a low-budget device MENTA was designed as a low-budget device
for teaching microprocessing in schools: professionai for teaching microprocessing
course-material is available to teachers couse-mathial add an boards for a variety
tog control functions and robotic applications
of control functions and robotic applications.
MENTA $-£ 115.00 \quad$ SERIAL DISASSEMBLER - $£ 19.50$

NEC PC 8000 PERSONAL COMPUTER.

The brand-l-eader in Japan; gaining ground rapidly in America; this
beautifully made, reilibate ssstem has all the features you could want at
the right price. See it! Try it! 3001 Keyboard Unit tight price. See itt Try it:

THANDAR TA2080 - £1950
20MHZ LOGIC ANALYSER Avalue for-money instrument with both TIMING and STATE capture and display
nd excellent triggefing from 23 bits.

LOMBARD HOUSE, CORNWALL ROAD, DORCHESTER, DT1 1RX

Hestgnan

UNSLEY-HOOD CASSETTE RECORDER 1

PRACTICAL WIRELESS 'WINTON' TUNER

Please send 9×4 S.A.E. or telephone for lists giving fuller details and
price breakiowns.
price breakdowns. Instant easy ordering, telephone your
requirements and credit card number to us on Oswestry (0691) 2894

ERASERS ${ }_{\text {TH요 }}^{\text {THE }}$ DEVELOPMENT LAB

in view of the extremely rapid change taking place in the electronics industry, large quantiTIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD appreciate a telephone call or a list if avallable. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchiey, London, N.12. 5 mins. from Tally Ho cormer,
Telephone 445 2713/0749
WW - 043 FOR FURTHER DETALLS
WIRELESS WORLD AUGUST 1982

Bigger and Better for 1982
he colourful Wilmslow Audio brochur -the definitive loudspeaker catalogue Everything for the speaker constructor - kits, drive units, components for Hifi and PA. 50 DIY HiFi speaker designs including the exciting new d Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercratt, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

$$
\begin{aligned}
& \star \text { Choose your DIY Hifi Speakers in the comfort of our * }
\end{aligned}
$$

(Customer operated demonstration facilities)
Send f 1.50 for catalogue
(cheque, M.O. or stamps or phone with your credit card number

* Access- - Visa-A-American Express accepted

${ }_{0625529599}$
35/39 Church Street, Wilmslow, Cheshire sk9 1AS

WW - 007 FOR FURTHER DETALLS

RADIDCODE CLOCKS

are powertul and comprehensive instruments which receive, decode
and analyse time-coded standard frequency transmissionsto
 nisation systems.
nem

Applications

| - Automatic master clock and slave controller. Synchronisation of separate equipment and events. Programmable energy management system. Computer clock/calendar with battery backup. Data logging and time recording. Broadcasting, Astronomy, Navigation. Satellite tracking. |
| :---: | Satellite tracking

If you have a time or synchronisation problem write or phone for further details of our portable and new microcomputer-controlled Radiocode locks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962
WW - 034 FOR FURTHER DETALLS

 ALIASUREOF ACHIIV: Wh:

Specification ... Versatility . . . Accuracy .. Price. In almost every major area the new 179A - a 41/2 digit bench/portable DMM from Keithley Instruments sets some pretty mpressive standards:

- 20 amp capability Full function: 27 ranges including true RMS AC Measuremen - Year's guarantee on spec 0.04% DC accuracy IEEE option Large display and $10 \mu \mathrm{~V}$ dc resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A.
Both models are part of a vast range of test equipment from one of the world's leading manufacturers
Formore information fill in the coupon at the bottom of the page.
Alternatively, phone our Instant Service on
Service on
0734864784 now

KEITHLEY

Keinhey instrumenis
1 Boulton Road Reading Berkshre RG2 ONL.
Tele Telex 847047

I'd like to know more...
Name
Position
Company
Address
Telephone

The over and outperformer

You simply can't make it
any clearer.

wireless world

Editor: PHILIP DARRINGTON
Deputy Editor: GEOFF SHORTER, B.Sc. 01-661 8639
Technical Editor: MARTIN ECCLES 01-661 8638
Nows Editor: DAVID SCOBIE 01-661 8632
Drawing Office Manager: ROGER GOODMAN
Technical lllustrator: BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. $01-6613130$
DAVID DISLEY 01-661 8641
BARBARA MILLER 01-661 8640
Northern Sales: HARRY AIKEN 061-872 8861
Midiand Sales: BASIL McGOWAN 021-356 4838
Group Classified Manager: BRIAN DURRANT 01-661 3106
IAN FAUX 01-661 3033
Production: BRIAN BANNISTER (Make-up and copy) 01-661 8648

... By any other name ...

In a recent Letter to the Editor, a reader described his feelings at seeing a copy of ireless World for the first time after a long impelled to write and suggest that the ournal might benefit from a change of itle, to take account of the fact that the Torld is now rather more computerhaped than it was when wireless was the The letrer
The letter constitutes cast-iron evidence staff for seventy years, that one simpl cannot produce a journal like this - the whole thing is logically impossible amplifiers and microcomputers, exposure meters and clocks do not, it must be admitted, appear to share much commo ground. Neither, indeed, do the types of ader to whom our articles are addressed he enchusiast making an amplifier on the modified rapture at the prospect of an ined rapture at the prospect of an acugh he Rademacher-Walsh functions, The professional engineer does not requir The professional enginer of atruction in the design of anto-d converter, but he might want to build the digital voltmeter to which the article is an introduction. And one of the continuing arguments on basic physics possibly leaves glassy-eyed, but nonetheless The fact
The act is, of course, that Wireless almost defies description. Both almost defies description. Both
professionals and amateurs read it; the
articles it contains are theoretical, or practical, or both; its topics cover the field from logic design to a discussion of the best material with which to stuff
loudspeaker enclosures and from
descriptions of optical-fibre
mmunications systems to a design for an
In all this, the one common factor is electronics, in its wider sense. It leads us into any subject in which it is used optics, chemistry, motoring, aviation - in
addition to the more familiar area of addition to the more familiar area of telecommunications. Computers happen
to be an important manifestation of electronic engineering and are therefore ompletely within our field of interest. "Wireless" as a word disappeared in the forties or thereabouts, at around the time
when "electronics" was born. But even then, Wireless World had been in existence for thirty-five years and its title was far too well known for Iliffe to risk causing an outcry by changing it
microprocessors and a mass of other digital circuitry have edged out the more traditional forms of electronic design even sound reproducing is becoming digital in form. As this happens, it is clear that the content of the journal must change
to meet new requirements, which is why a newcomer glancing at our contents page immediately after a look at the Wireless World logo might justifiably feel puzzled. If, however, a change of name after thirt
five years was felt to be too much of a shock for readers to bear, how much mo of a jolt would it be after seventy-one?
The name is unimportant, except nasmuch as it sometimes misleads the casual bookstall browser and, perhaps, the
not very well informed advertising agent. What is important is that the content should treat all aspects of electronics, which it will continue to do, no matter in what unexpected directions the subject leads us.

80-100W MOSFET AUDIO AMPLIFIER

The final section of this three-part article describes the complete amplifier circuit in detail, with the addition of a loudspeaker protection circuit.

Abstract

In the earlier parts of this article I of power mosfet audio amplifiers and described the evolution of a high-gain, symmetrical, class ' A ' driver stage suitable for use with a power mosfet output. In- vevitably, the final design of the as shown in the completed power amplifier circuit of Fig. 14, shows some minor differences in comparison with the basic voltage-amplifier circuit, which underlines the point that any final design represents the point that any final design represents only the small tip of a large submerged iceberg of design effort. Unless one is lucky, or one's target performance is relatively modest, or one has considerable exis always a large amount of work necessary to convert a reasonably satisfactory basic design into a final version having, as nearly as possible, a blameless performance under

Design considerations

The choice of output power rating for any power amplifier is, inevitably̆, somewhat arbitrary and depends on the voltage ratings of the available components, and on the cost of the power transformer, smooth-
ing capacitors and heat sinks which one is

by J. L. Linsley Hood

prepared to afford. However, in practical terms, the major considerations which limit the possible output power are the voltage ratings of the output devices, and citors.
The output power mosfets I decided to use are the complementary n -channel and p-channel devices from Hitachi, since they
are readily available, are reasonably ineyare readily available, are reasonably inexand have useful power ratings. These particular mosfets are available in peak working voltages up to 160 V . However, there are other similar devices, either available now or promised in the near future,
from Fairchild, Motorola, Ferranti, Supertex, International Rectifier and Intersil, so it seems likely that a design based on complementary power mosfets will not restrict the user to pone e
output audio ampleriments with mostet-
Fig. 14 . Complete circuit diagram of the
100W amplifier.
r.m.s power output could be related to the available supply voltage in the manner
shown in Fig. 15, over the range 25-100 shown in Fig. 15 , over the range 25-100
watts. Since it had been decided for various reasons, to use a symmetrical positive and negative supply, 63 V electrolytic capacitors on each half would allow a safe
working voltage, overall, of 120 volts, working voltage, overaul, of In
equivalent to a $\pm 60 \mathrm{~V}$ supply. In practice, the limited regulation of a simple rectifier/capacitor power supply is likely to reduce this, on load, to some $\pm 55 \mathrm{~V}$, giving an
overall power output of 80 watts. overall power output of 80 watts. This output power requires a voltage load, and if it is desired to drive this from an input voltage of ' 0 VU ' - which in audio-engineering terms implies 0.775 V
r.m.s. at a 600 ohm source impedence r.m.s. at a 600 ohm source impedence -
the gain will require to be 32.6 , which gives a suitable feedback resistor combination of 33k and 1041 ohms - though, in the event, for other considerations, it was 1 k and an 12 ohm theries 1012 , made up from a In the interests of d.c.
input-circuit resistance should be also of the order of 33 k . The values suggested are adequately close to this.
The performance of any feedback ampli-

fier under transient (step-function or
square wave) input conditions is helped if square wave) input conditions is helped in be done most easily by an input RC integrating network, $\mathrm{R}_{2} \mathrm{C}_{2}$, which gives a -3 dB point at about 30 kHz , allowing adequate bandwidth for audio use. the emitter circuit of the input long-tailed pair allows accurate d.c. balance to be obtained with transistors having normal commercial spreads in $V_{\text {be }}$ values and current
gain. This is bypassed by a $100 \mu \mathrm{~F}$ tantagain. This is bypassed by a $100 \mu \mathrm{~F}$ tanta-
lum bead capacitor to avoid loss of openloop a.c. gain. The output d.c. potential may be adjusted by means of this poteniometer to $0 \mathrm{~V}, \pm 20 \mathrm{mV}$.
Circuit performance depends strongly
on the characteristics of the 'tail' of the ' long-tailed pair'. For correct operation of any such circuit, the dynamic impedance of the tail should be very large in comparison with the impedance as seen at the emitters of Tr_{1} and Tr_{2}. Also, ideally, to current from this source should be largely independent of the dynamic emitter potenials. Finally, the tail circuit should provide an adequate isolation from unwanted ignal components on the supply line. A very fully, and also allows, as explained bove, control of the operating current in the second-stage class A amplifier. To voltages, the negative-line supply to this fet is derived from a Zener-diode-stabiized -12 volt source. The use of separate power supply for the driver stages of considerable assistance in avoiding the performance degradation which can occur
due to the intrusion of distorted signal potentials from the high-current output stage.
The second stage, class ' A ', voltage amplifier is similar to that shown earlier in ig. 13, except that conventional, tw used as the loads for each half, and that a small amount of a.c. positive feedback is derived from the output of Tr_{5}, through R_{8} and R_{7}, in addition $\mathbf{i z i n g}$ d. negative feedback path through R_{9} to Tr_{3}. The positive feedback restores the open loop a.c. gain to the 500,000 figure, over the frequency range 100 Hz 3 kHz , obtainable from the less d.c. stable configuration of Fig. 12
The output power mosfets require a quiescent current value of 100 mA for optimum performance - although it is difficult, because of the efficient operation of the n.f.b. loop, to see any significant adjusted, at any frequency below 10 kHz - and this quiescent current is largely independent of the output device temperature. The 'amplified diode' circuit of Tr_{10} is not, therefore, used to sense the output transistor temperature, but used simply to
generate a reasonably constant voltage drop.
Although the output devices present a very high l.f. input impedance, the effect cannot be ignored, and the current WIRELESS WORLD AUGUST 1982

hrough $\operatorname{Tr}_{6}-\operatorname{Tr}_{7}$ must be enough to a avoid evels allowed by the input CR ne $\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)$. A current of 7 mA is adequate for his, and permits worst-case dissipations of 00 mW for $\mathrm{Tr}_{4,7}$ and ${ }^{2}$ hich are within their limits.
since the Hitachi output devices are not
proter internal Zener diodes, it is unnecessary to exclude the possibility of reverse gate biassing, provided that this is within the $\pm 14 \mathrm{~V}$ gate-source breakdown voltage limits. This gate breakdown pro-
tection can therefore be provided by a pair of back-to-back 8 V zeners, while the gatesource capacitance and the 680 ohm gate stopper' resistor will exclude the possibility of very rapid extraneous noise pulses lead inductance or turn-on time delays. deally, $\mathrm{R}_{17,19}$ and the Zeners should be mounted close to the power mosfet pins.

Feedback loop, and loop stability Although the use of a two-stage voltage ee, under all load conditions, that the internal phase shift will not approach 180° until the open-loop gain is negligible, the necessary conditions for an adequate phase margin, at unity gain, are very much easier
o contrive in circuits in which only two successive gain stages are employed provided that the additional phase shift of any other element in the feedback path is small enough to be neglected. ventional junction-transistor Darlington or compound ($\mathrm{p}-\mathrm{n} \mathrm{p} / \mathrm{p} \mathrm{n}-\mathrm{p}-\mathrm{n}$.) emitter follower this additional phase shift is significant, veht at a few hundred kiloherzz where the loop gain is still high, so this loop gain
must be artificially reduced at higher frequencies to preserve closed-loop stability. Two basic methods exist for this, of which the first, and simpler, is simply to connect the gain stage so that this acts as an inte-

Pototype amplifier. Loudspeaker

Fig. 16. Power bandwidth of amplifier
gracion newok with a gain decreasing linearly by $20 \mathrm{~dB} /$ decade from some 1.f. allowing a wide phase margin of stability, and predictable performance characteristics. The second method is to tailor the h.f. performance so that it is maintained at as high a level as possible up to the point at which the loop phase shift approachles
180°, and then to reduce the gain rapidly, and in a manner chosen not to exceed the 180° stability threshold, until it is less than unity.
This m

 harmonic),
(0.025\%).
commercial transistor amplifier designs, often by the simple artifice of a capacitor
between collector and base of the second stage amplifier transistor, because it allows better h.f. t.h.d. figures - and consequently better reviews in the 'Hi-Fi' jour-
nals. It does, however, carry with it the penalty that the phase margin of the amplifier is less good, with a consequently inferior transient response - manifest in
respect of a less good 'settling time'6 respect of a less good serfing ime differing loudspeaker load characteristics. In addition, the intermal slew-rate limiting imposed by the second-stage collector-base capacitance (which is the mechanism by
which the h.f. gain is reduced) leads to the which the h.f. gain is reduced) leads to the
predictable problem that signals accompanying large transient inputs will be blotted out during the period in which the amplifier is slew-rate limited. This is the phenomenon called 'Transient Intermodulation not exist with the first method of h.f. compensation. A very good analysis of this problem was given by Jung ${ }^{8}$ (with a small ddendum by myself').
The biggest advantage, in this respect, is that the inherent phase-shift of the output emitter-follower impedance conversion stage is sufficiently small that it may This neglected up the megahertz region. This means that, with care, feedback audio
mplifiers having high orders of negative feedback (open-loop gain) can be designed without the need for any external control of h.f. gain, and which will exhibit the
desirable characteristics given by systems desirable characteristics given by systems
in which the gain decreases with frequency in which the gain decreases with frequency does not significantly exceed 90°.

Influence of negative feedback

 The use of negative feedback is, unfortunelectronics engineers, as even among sometimes wish, and this misunderstanding has spilled over into the more emotive, and less logical, realm of the 'Hi-Fi' raternity, where the ill effects attendant upon the improper use of this technique plifiers believed by their authors to employ no negative feedback whatever - a case of discarding the baby along with the bath water, if there ever was one.The necessary conditions which must be gained have been examined both by Baxandall ${ }^{10,11,12, \text { in his series on audio ampli- }}$ fier design in this journal, and also, from a different angle, by Wireless World's own
Cathode Ray ${ }^{13}$. The message from all these contributions, if I may presume to precis, is that the amplifier in question must be made as linear as possible before negative feedback is applied; that the gain - at the frequency under consideration - must be the mathematics will be inappropriate; and that a small amount of n.f.b., by injecting into the input an additional distorted signal, will worsen the harmonic distortion Translated into design requirements,

Fig. 20. Response of amplifier to 10 Vp p reactive loads, with and without output inductor.
his implies that a high stage gain, coupled with good linearity and the lowest practicable phase shift, is the necessary design more than two gain stages are employed The inclusion of a positive feedback path within the overall n.f.b. loop as a means of increasing the loop gain brings with it some supplementary requirements. These are that the phase shift within the positive
feedback loop must be very small over the range of interest, since the p.f.b. will worsen it, and that the linearity of this part of the circuit must be much better than that of the remaining circuit outside the p.f.b. Loop, or the benefits will be negated.
Look in this light, the use of a bootstrapped driver load in an audio amplifier is not well advised, since the loop containing the 'bootstrap' will include the output de-
vices whose linearity it is desired to impreve. prove.
In th
loop built around inearity of this is very $\mathrm{T}_{5}, \mathrm{R}_{8}$ and R_{7}, the only driving a high-value resistive it is and the dominant phase shifts are those due to C_{6} at the 1.f. end, and the circuit stray capacitances in Tr_{5} collector circuit at the h.f. end of the pass band. This gives a phase-linear bandwidth which is greater than that of the overall n.f.b. gain loop and therefore satisfies the conditions for

WIRELESS WORLD AUGUST 1982
oving the overall amplifier perform Because of the capacitive nature of the load presented to Tr_{6} by the gate-source acociance of the power mosfets, the h.f at about 30 MHz , which is sufficient to give an adequate margin of stability, while stil allowing some 60 dB of negative feedback at 30 kHz , the chosen upper operating fre quency limit. No additional h.f. roll-o components are required.

Stability with capacitative loads

 A minor problem associated with power mosfers, discussed by Hitachi in their design notet ${ }^{14}$ is that the very high-frequenc follower (typically $30-40 \mathrm{MHz}$ for the Hita chi devices) allows the inductance of the internal gate-contact lead - some 70 nH to produce a negative resistance condition with consequent parasitic oscillation, under conditions of small capacitative load $(0.01 \mu \mathrm{~F}-0.22 \mu \mathrm{~F})$. Oscillation, under these conditions, but due to other causes, is no uncommon in audio amplifiers, and can b the cause of amplifier failure when used with the so-called low-impedance loud completely stable under the $80 \mathrm{hm} / 2 \mu \mathrm{~F}$ load combination frequently chosen by reviewers. Needless to say, this possibility o parasitic oscillation should be avoided and this is most easily done in this type of
design by the inclusion of a small inductor of some $5 \mu \mathrm{H}$ inductance, (20 turns of 24s.w.g. enamelled wire, wound round the case of a $10 \mathrm{ohm}, 1$ watt carbon-rod resistor) in the output lead to the loudspeaker load.
This output inductance has two practical effects, apart from the avoidance of parasitic oscillation. The first of these is to reduce the total harmonic distortion of the circuit, as measured at the output at high an output low-pass filter. The second effect, due to the same cause is a 'ripple' on the square-wave/reactive-load test wave form, which is an inevitable effect of an steep-cut, low-pass filter. Without this
output inductor, the $80 h m / 2 \mu$ F test wave output inductor, the 8ohm $/ 2 \mu$ F rest wave-
form is smoothly rounded and free of any overshoots.

Output stage protection

 from secondary breakdown, and becaus they have an inherent positive temperatur coefficient of resistance, output stage protection can be much simpler than is the
case with normal junction transistors, and a simple fuse in the output circuit is quite adequate. This has a practical advantage over many of the electronic protection methods normally employed, in that it tions when the amplifier is required to drive fast h.f. transients into loudspeakers having a low h.f. impedance.

Fig. 21. Printed-board for power amplifier,
WIRELESS WORLD AUGUST 1982

Fig. 22. Power supply used in prototype. Figs. 19 and 20 .
Inevitably, the
whether, in the event, the sound qualit given by a well designed power mosfe amplifier is better than, or indeed noticeably different from, that given by an equally well designed power amplifier not a good person from whom to seek an answer to this question, if only because his awareness of the inevitable design compro mises in the circuit, and of the imperfec
tions which remain as a result of the im possibility of achieving all design objectives simultaneously, colour his ex pectations in respect of its perceived per formance. However, having said this, in appropriately designed circuitry, can offer an improved performance in the 'upper-middle and top end of the audible spectrum, which is apparent as an improved clarity and transparency in tonal in comparison with equivalent junctio transistor designs.

Fig. 24. Input d.c. level monitor using
c.m.o.s. Nor.

* L_{1} is wound on R_{24}

Power supply

A suitable power supply circuit is shown in Fig. 22. As mentioned above, the outpu tirely on the supply line voltages, and the original design was based on a conventional ' E ' and ' ' I ' cored transformer with a nominal $50-0-50$ secondary winding,
which gave a quiescent voltage, after rectification, of $\pm 62 \mathrm{~V}$. This was subsequently replaced by a 250 VA 50 $0-50 \mathrm{~V}$ toroidal cored unit, in the interests of a lower residual 50 Hz field, and this creased the power output, at 1 kHz acros an 8 ohm, water-cooled, resistive load, from 83 watts/channel to some 105 watts channel. It was thought prudent to uprate the reservoir capacitors to 80 V types, but no other changes are necessary.

Loudspeaker protection circuit Although the use of direct coupling be tween loudspeaker and amplifier output, together with the use of split positive and negative h.t. rails, undoubtedly helps in
the economical design of high-powered authe economical design of high-powered au-
dio amplifiers by limiting the necessary voltage rating of the reservoir capacitors, it does carry with it the implicit hazard that in the event of a component failure within one or other of the supply lines may be switched into the output circuit, with ex pensive consequences.
The most elegant way of avoiding this hazard is to employ a small supplementary circuit to monitor the average d.c. poten-
tial of the amplifier output terminals, and to disconnect the loudspeakers in the event that an averaged d.c. offset of more than volt or so is detected. Experiments over periold of time have shown that the loud-
speaker can be connected through a pair of speaker can be connected through a pair of
gold-plated relay contacts without audible or measurable signal degradation. Silver plated contacts are excellent when new and clean, but tend to become partially rectifymospheres, and should therefore b avoided if possible.
An inevitable problem in the use of an is the necessity for some contoring circui 32

tween speed of response, in disconnexion following a fault condition, and the need not to diagnose a large but legitimate v.l.f. such a fault. My own choice is an integrating time-constant of about 2 seconds. This ignores all the normal l.f. signal compo nents, at least at the largest signal levels . have so far used, but allows a switch-off in a large direct voltage being applied to the input. This should be adequate to avoi thermal damage to the loudspeaker.
In order to accommodate a fairly long integrating time-constant with the use of pedance offset-detection logic circuit is essential. C.m.o.s. logic elements of the 74 C or $\mathrm{CD} 4 * \pi \pi$ series are well suited to -this task, especially since the switchin potentials are well defined in relation to gate transfer characteristics are shown in Fig. 23. Because of this, if the gates are biassed by an input resistor chain, as and one sits above this threshold level, pair of Nor gates will effectively act as an input-threshold d.c. monitor circuit, in which the output will only be high so long as input A is high and input B is low. With the resistor values quoted, this condition
will be met while input C is within $\pm 2 V$ d.c., for a 10 V supply line. The circuit also will provide a switch-on delay of a few seconds while C_{1} charges up through R_{3} to a potential above the $1 / 2 \mathrm{~V}_{\mathrm{cc}}$ level.

The complete, two-channel, loud speaker protection circuit based on th arrangement needs only one Quad 2-inpu Nor gate, and a pair of switching tran
sistors. The final circuit is shown in Fig. sistors. The final circuit is shown in reig.
25. It is 'fail-safe' in the sense that the relay contacts are normally open, and can only operate if the h.t. supply is present an both transistors are energized. The rela used is an RS Components p.c.b.-mount
ing, 24 V unit, with $5 \mathrm{~A}, 250 \mathrm{~V}$ ac.-rted ing, gold-plated contacts, of d.p.d.t. operation H.t. supply for this is best obtained from the output stage +65 volt line.

References

6. Linsley Hood. J. L., Wireless World. Letters. Jan. 1975 p18. ${ }^{\text {P. Otala, M., Trans. I.E.E.E. AU-18, pp } 234}$ 8. Jung, w. G, Hi-Fi News and Recod Red 8. Jung, W. G., H1-Fi News and Record Review.
Nov. 1977, pp 115-123.
7. Linsley Hood, J. L., Hi-Fi News and Record

Revieuv. Jan. 1978, pp 81-83.
10. Baxandall, P. J., Wireless World. Ju.ly 1978
11. Baxandall, P. J., Wireless World. Dec. 1978,
pp 53-56. pp 53-56.
12. Baxandall, P. J., Wireless World. Feb. 1979, p. 69-73.
13. Cathode Ray', Wireless World. Oct. 1978, 14. Hitachi Ltd., Design Note DE 1A. Feb, 1979. (Central Res. Lab.)

Editor's note: Wese understand that a kito of compo
nents for the amplifer is to be made available by nents for the amplifier is to be made available b
Hert Electronic Kirs, Lud, Oswestry, Shropshire. A preamplifier design to match the mosfel power A preamplifiter design to match the mosfet power

DISC DRIVES

When a read/write head's position is determined by information on the disc surface, datastorage capacity can be greatly increased. As shown here, there are different methods of applying this technique which, in the case of a drive with ten discs in one pack, can increase the storage capacity four times despite a loss of 5% in data storage area.

Possibly the most significant event in the history of disc storage was the introduction
of the servo-surface drive. Through the of the servo-surface drive. Through the
virtual elimination of thermal effects on head positioning, servo-surface drives, in hich the head's position relative to the sc surface storage density.
Changes of temperature in relatively mple disc-drive positioners, such as tho World, do not only affect accuracy throug expansion and contraction in mechanica components such as head cantilevers Thermal drift in icue cynder cransducer lems. How temperature changes limit th number of tracks on a given disc is illus rated in Fig. 1.
Because the position-error signal in servo-surface disc drive is derived from drastically reduced. In a multi-platte drive, one surface of the pack holds serv frormation, which is read by the servo ead. All of the read/write heads mov this means that 5% of the usable data sto rage area is lost, but this is unimportan since the track density in a drive with a servo surface can be typically four times greater than in a drive without one.
Using one side of a single-platter car
tridge for servo information would be acceptable as it represents 50% of the usable data storage area so, in this case servo information is interleaved with sectors on the read/write surfaces. Disc drive as 'embedded servo' drives.
Figure 2 shows the essential features these two main categories of servo-surface drive, which will be described in turn.

Servo surface

As stated, one surface of the disc pack contains information to control the positioner. This surface is written when th disc is manufactured and, should it be come corrupted, must be rewritten
special machine known as a servo writer. The key to the operation of the servo surface is the way in which it is recorded by the servo writer. Recorded transition are in adjacent pairs known as dibits, separated are two distinct types of servo track On an A-type track, the first transition of the pair will cause a positive pulse on read ing, whereas on a B-type track, the first

Digital Equipment Co.

WIRELESS WORLD AUGUST 1982
by J. R. Watkinson B.Sc., M.Sc.,
pulse will be negative. In addition, the A dibits are shifted by one half cycle with respect to the B-track dibits. The width of the magnetic circuit in the servo.

During track following, the correct pos on for the servo head is with half of each ype of track beneath it. The read/writ heads will then be correctly centred on heir respective data tracks. The amplitude of dibits from A tracks with respect to the amplitude of dibit rom B tracks depends on the relative area of the servo head which are exposed to the

Fig. 1. At (a), misalignment x has liftle effect on the output signal, but at (b), the same misalignment in a system using four times greater track density causes unacceptable error
in the read signal. Distance x is not to scale. in the read signal. Distance x is not to scale.

19. 2. In a multi-platter disc pack, one surface is dedicated to servo information, left, but as the number of platters in a pack falls, the percentage of data storage area lost to servo information rises. For this reason, some discs have servo information embedded in the dat
on the same side, as in the case of the single platter, right.

FIg. 3. The servo surface, left, has two types of track, A and B, which are 180° out of phase with each other and have opposite polarities. Waveform (a) results when the servo head is
directly above track A, and waveform (b) appears when the head is above track B. When the head is correctly positioned, waveform (c) results.

when track following, and so must be co structed in such a way that they do no ulated e.m.a. drivers. The main problem comes when the index is due, where the presence of a noise pulse during a "missindex. There are two solutions to this problem. In the first, a preamplifier i.c. is incorporated in the servo-head cantilever so that the servo signal leaves at high leve and low impedance, making it noise im-
mune. In the second approach, the sector counter predicts when an index pattern is due, by counting slightly less than the number of dibits in one revolution, and il index has been detece. n advantage of derivi
An advantage of deriving the secto number of sectors on the disc can be aried. Any number of sectors can be a ommodated for by feeding the dibit-rate signal through a programmable divider, so say, 22 sectors of 16 -bit data for minicomputer or 20 sectors of 18 -bit words when connected to a main-frame (2 disc ords are the same as 1 memory word).
In a non-servo disc drive, the write cloc As the disc speed can vary with supply oltage fluctuations, a tolerance gap has to be left at the end of each disc block to cater prevent overrun into the next speed, write. In a servo-surface disc drive, the write clock is obtained by multiplying the ibit-rate signal with a phase-locked loop, The write clock thus obtained is locked to the disc speed, and the recording density Most servo surface disc drives offer an offset facility, where a register written into by the system controls a d-to-a converter, following loop. The action of the servo such that the heads move away from the theoretical track centre line until the position error is equal and opposite to the offset voltage. The position of the heads about the track centre line is thus program for the purpose of reading, if a write is attempted, the drive will return to the track centre line.
Head alignment. The servo-surface technique is also used for head alignment. On the data surfaces of the alignment disc cylinder. A special test box is required for head alignment, and this usually contains an exact copy of the circuit board used by the drive to obtain a position error signa from a dibit signal. The module in the tes box is fed not by the servo head, but by the
data head to be adjusted. The position-er ror output drives a centre-zero meter which gives a direct reading of the head misalignment in micro inches. The selec ted head is adjusted radially in the carriage fication. Precautions are taken to ensur that the alignment disc is not written over. Program-controlled head-alignment mea surement. In some test boxes, the posiWIRELESS WORLD AUGUST 1982

Fig. 6. The servo surface's working area is de
which the position error signal is maximum.

Fig. 7. The 'tribit'-type servo surface in which the position-error signal is derived from pulses from two types of track following a common negative synchronization pulse. (a) and
(b) are obtained when the servo head is directly above one or other of the tracks, (c) is the correct waveform, and (d) and (e) show typical off-track waveforms.
tion-error signal from the selected dat head is compared with zero volts, to creat a binary signal depending on the head position relative to the track centre line This signal is fed back into the disc-control
logic and becomes a bit in a register logic and becomes a bit in a registe
accessible to the system, known as 'sign change'. Under program control, the positioner is set to maximum offset, and the brought back until the sign-change bi needed to cancel the alignment error is equal to the error itself, Fig. 9. After sequentially testing all of the heads, the program can print out a table of the alignments. By comparison with the speciany, heads need adiustment. Which, if alignment can also be checked at further reference tracks on both the innermost and outermost cylinders, as a check on carriage alignment accuracy.

Embedded-servo drives

In drives with few platters, the use of an entire surface for servo information gives a
high percentage loss of data recordin area. In the embedded-servo drive, serv information is interleaved with data on the
same surface, causing a smaller loss of dat storage area. The embedded-servo drive heads will b information at others as the disc rotates. A sector transducer is required to generate pulse which is true when the head is read ing servo information and false when reading or writing data. Figure 10 shows the the read/write head is less than the track spacing to prevent crosstalk. As the servo head is also the read/write head here, it is slightly narrower that the spacing of the servo information. This has the harmless triangular position-error waveform. During the pulse from the sector transducer the head sees alignment information, and the servo circuit develops a position-error signal in much the same way as any servo isets of alignment patterns, the second be-
ing positioned to a position error of zero when the first is at a maximum. The two bursts of information are known as Sl and S2. Sample-and-hold circuitry is used to, is traversing read/write data.
The discontinuous nature of servo information means that cylinder crossing
 as the positioner is fast enough to cross reference to Fig. 11, the cylinder crossings
are established as follows. During the S period, the posidion error is compared with state depends on whether the head wos state depends on whether the head was
inside or outside the S1 null point. A similar process takes place during the S 2 period, and the position of the head rela tive to the servo pattern is described as These bits are stored, and at the next servo bursts, two further bits are generated, des cribing the new position of the head

Figure 12 shows that there are a number o cases which can sausty the same initial and neen the cases is the carriage velocity, so he output of the carriage-velocit ransducer is digitized and used to resolve he ambiguity.
At every sector pulse, the two bits from Ae previous bursts, the two bits from th fed into a rom whinized velocity grammed to return the theoretically cor

$1 \rightarrow-0$ - et

Fig. 11. There are two basic types of servo rackiton and S 2 , recorded in two different
positions and staggered. During S $1, a$ position error signal is generated from the
elative areas of the two types of track $(\mathbf{S}$) nd S1) under the head as in the conventional servo-surface drive. This and hold circuit. For track counting, the position error value is compared with ov to obtain a data bit. During S2, another osition error signal and data bit are of the two bits are shown here in relation to the two position errors. Fig. 8. Representation of servo-surface disc drive's feedback loop. The offset register drives
a d-to-a converter which can modify the feedback loop, allowing the heads to be offset from the track centre line under control of the operating system.

1. 9. Head alignment. An alignment disc with 'dibits' on its data surfaces is used in Sing offset, the program can move the sarvo head off track until the read/write head is in he correct position. The amount of offsef necessary to achieve this is equal to the alignment error.

FIg. 10. In an embedded-servo drive, the same head is used for both servo information and data. During a sector pulse, the read signal is treated as servo information.

ect number of cylinders which must have een crossed for all combinations of in puts. This number is then subtracted fro ols the sea difference counter which con alid for one disc rotational speed, so the disc motor requires a speed speed, so the chieved by counting controller-clock pulses during the time between secto pulses, and developing a loop error by comparison with the desired number of pulses.
As the cylinder crossing count is deduche count is in error and the position comes to the wrong cylinder. In a conventional disc drive, this would be a misposiioning error which would warrant an en continued on page 46 WRELESS WORLD AUGUST 1982

In his second article Dr Murray takes a dispassionate look at Victorian electromagnetic eory and finds that, contrary to popular belief and textbook wisdom, it had begun to go decidedly green around the edges before it was thirty years old - a fact that many otherwise worthy men have preferred to ignore.

The earliest organized investigation of the physical properties of light was underta ken in the seventeenth century by Sir Isaac
Newton. Despite the evidence of some of Newton. Despite the evidence of some of
his own experiments, Newion himself remained convinced throughout his life that "corpunsles" corpuscles surch thathority among scien tists was such that much philosphica
argument arose before Thomas Young's famous experiment - on the mutual interference of light rays after passing through a double slit - was accepted as light, largely through the mathematical light, largely through the mathematical most convincing demonstration that I know of in favour of "light waves" is due directly to Fresnel, and lies in the fact that the shadow of a one-penny piece has a bright spot at its centre one of the most thoroughly researched and supported conclusions in all science. By assuming waves of a definite wavelength one can calculate numerically how light
will behave in optical apparatus of any complexity one rhooses and, lo and behold, that is precisely the way light does behave in practice. The accuracy of the prediction seems to be unlimited, and to we can measure the result. I want to place special emphasis on the precision with which the wave theory describes the behaviour of light as observed in Nature, because it is primarily that precision which
makes the wave theory of light so convincing. As long as we stick to light which is bright enough to be seen, and of ordinary visible wavelengths, the theory works perfectly every time.
The next major step in the wave theory WIRELESS WORLD AUGUST 1982

by W. A. Scott Murray

 B.Sc.,Ph.D. was taken in 1862 by James Clerk Max-well, on the basis of his formulation of Michael Faraday's ideas of electricity and magnetism. Faraday had come to interpret his observations in terms of electric and
magnetic fields of force, which Maxwell found could be expressed by exact analogy with the mathematical formulations of hydrodynamics - that is, the behaviour of concept conveniently bypassed the funda mental problem of action-at-a-distance (namely, how can one electric charge repe another when there is no connecting rod between them?). It suggested that the electric field permeated everything and
everywhere, like a fluid throughout all everywhere, like a fluid throughout all
space, so that such actions really took place locally, within the field, rather than "at a distance".
By this means action-at-a-distance came to be regarded as a non-problem, the first of many difficulties so handled in physical
science. Note that the non-problem technique does not solve the philosophical problem to which it is addressed, but evades it. It is clearly legitimate as a tech-
nique, to permit us to maintain our monique, to permit us to maintain our mo-
mentum and get on with the next phase of the job, provided we put up a marker flag to remind ourselves that we have left beInd us a fundamental problem unsolved. It is philosophically dangerous to omit this
precaution. For example, there are those precaution. For example, there are those
who have specialized in field theory so strongly that they believe in an electric field, as if it were a physical entity having an independent physical existence in its own right - like an electron perhaps, or a
filing cabinet. Such foik do not envisage an electric field merely as a convenien mathematical trick for I am discussing this co
field" at some length because it is the fir instance we have encountered where a attractive product of romantic imaginatio has come to be treated, with no basis though it corresponded to an establishe or even a self-evident truth. It is in thi romantic, unscientific way that doctrine arise in physics. (When a doctrine i subjected to criticism that it cannot withthen to be believed by faith rather than by evidence). In the present case the truth is that we know nothing of how or why on electric charge should be influenced by the
distant presence of another, but only that it is so influenced and by precisely how much. It is another miracle.
These ideas may seem far removed from waves and light, but the connection be tween them was Maxwell's very grea
invention: he showed that a particular combination of his changing electric and magnetic fields, which can be written down mathematically in the form of "wave equation", would propagat Thence ir needed but one further, obviou step to the postulate
"Light consists of electromagnetic waves".
That step was taken. Combining as it did the three topics of electricity, magnetism,
and light under the single concept of wave motion, it was extraordinarily satisfying aesthetically and it seemed to remain true when tested to any depth. It came to be
believed by all scientists at the turn of the century and it is still believed by nearly all
scientists today. Heinrich Hertz went on o cap it by generating radio waves electri cally and showing that they belonged to the same family of phenomena.
Thus at the end of the "classical" period in physics all appeared superficially tidy spectrum of light from long-wave radio hrough and beyond the ultraviolet was a manifestation of electromagnetic waves of defined, invariant velocity c, whose
"colours" were determined by their frecolours" were determinding wavelengths quencies and corresponding wavelengths motion, frequency \times wavelength $=c$. Those must have been happy days of selfstorms broke
A couple of minor points arose. First, the physical energy transported by the ight waves, which propagated at the speed of light, was taken to be the energy concribed by a simple formula of the theory. Once launched into space, this energy had an independent existence even though its
source, a star for instance, should later explode as a supernova. So here one had explode as a supernova. So here one had
an electric field and a magnetic field, neither of which (according to the theory itself) could exist without continuous connection to a source and a sink of flumagnetic field, did have an independent existence. These static and dynamic fields were therefore quite different in their inrinsic natures, yet there was nothing in Maxwell's equations to suggest that one that is, had any more independent, objecive and existence) than the other. Second, and on a slightly larger scale of discrepancy, Maxwell's formulation of electric and magnetic fields was mathemacompressible fluids, as has been mentioned already; yet the waves in his electromagnetic field were transverse waves, f a type which in the mechanical case and will not propagate in a fluid medium. Thus the medium involved, which became known as the ether, was required to exhibit physical properties which differed from moment to moment, according to
whether the field it was supporting was static or in motion. This gave rise to much trouble.
In view of the intellectual triumph of Maxwell's work it would indeed have been churlish to have raised such apparently
insignificant points as these at the time. Yet in retrospect one can see that they Yet in retrospect one can see that they
were real discrepancies whose incidence formed part of a pattern of discrepancy in electromagnetic theory. (Remember, please, that we are not attacking the theory, but examining a miracle: a physi-
cal occurrence for which we can offer no physical explanation). For physical waves as normally understood are mechanical waves; they are waves in something - in
air, or water, or at the air-water interface, air, or water, or at the air-water interface,
or in solid rock, or what-have-you. Their
velocity is determined in relation to the nedium in which they travel. Hence a light in the laboratory, coupled with the assumption of the constancy of light velocity in its ether medium should, it was believed, reveal the velocity
laboratory through the ether.
That experiment was duly performed, most famously by Michelson and Morley in a basement in the University of Chicago in 1887. The date is most interesting, being 25 years after the first publication of nature of light, and 18 years before the publication by Einstein of the special relativity theory with which it is usually connected. That connection is something of a myth. Einstein did not refer to the Miched the velocity of light to be universally constant as a fact of nature (it was not tested in Michelson-Morley!). His other startingpoint, the principle of relativity in the
form of the denial of absolute motion, was in no sense new but had appeared in Newton's Principia just 200 years before. Thus for contemporary thinkers the eally shocking implication of Michelson and Morley's result was not that it might lead towards a new relativity theory some
two decades later, but that it asserted, unmistakably and immediately, that there was no ether for the electromagnetic light waves to undulate in. It was of secondary importance that the medium in which reveal any frame of reference of zero motion, or absolute rest. It was an equally red herring to say that it was merely the postuated electromagnetic waves that had no ether, because the experiment as per-
formed was a straightforward experiment in light, having no reference to electricity or magnetism. The really crucial experimental result was that light waves, what-
ever their form, could not be waves in a ever their form, could not be waves in a whyses in a physical medium, how could they be said to be waves at all? The answer to that question is not straightforward. There was an immediate and almost Morley result. Some physicists (like Sir Oliver Lodge) simply refused to accept it, while others up to the present day have repeated the experiment with progressively more refined apparatus in the hope
of proving it wrong. All such attempts so far have failed. Most of those experimenters believed themselves to be taking issue with Einstein and special relativity; only a discerning few have understood that they were really trying to save the electromag.
netic theory, and with it the whole of the concept of fields of force of nineteenthcentury physics. The. Michelson-Morley experiment denies the existence of an ether, and there is no doubt about its
finding: space is empry. There is nothing nere. space is emply. There is nothing In view vidence that light consisted of waves (and very probably electromagnetic waves), physics at the turn of the centry refused to
face the consequences of the Michelson-

Morley result. Two lines of experimental evidence that seemed to be equally valid flict. The philosophical crisis was acute, and it has never been resolved. One approach has been to ignore the problem in
the hope that in due course and in the light the hope that in due course and in the light
of later knowledge it will go away - this is he "don't care" or "too busy" reaction, he "don't care" or "too busy" reaction,
which really means "too difficult" - but unfortunately this is a problem that doesn't go away. Another approach is to ask why a physical ether should be necessary for the waves to propagate in: why do they de-
mand a physical medium? The answer would seem to be that according to the heory these "waves" carry physical energy in readily measurable amounts, so that they must be physical waves; and
physical waves cannot be waves in nothinysical waves cannot be waves in Then there are the semantic proaches, which seek to show that the
problem is one of wording only and has no problem is one of wording only and has no
philosophical depth. "Very well", it has philosophical depth. "Very well", it has
been said, "we have been denied a luminiferous ether; let us call the medium in which the waves travel 'space', or 'an inerial frame of reference' ". The trouble with such proposals is that space, insofar as we can measure its properties, is empty, (Do not let us get bogged down with arguments about the "permittivity" or "im-

pedance" of empty space, which are artifacts of electromagnetic theory. We cannot manufacture a physical medium
having physical properries out of nothing merely by coining phrases or by re-defining space.
Yet another approach - and this one Yet another approach - and this one
had far-reaching philosophical consequences - arose from the remark that the mathematics of wave propagation predicted
results in accord with observation even though the physical requirements for wave propagation were not satisfied. The temp tation became very strong to say that these light waves were not physical waves at all,
but mathematical waves. Here at a strok but mathematical waves. Here at a stroke
one seemed to have a potential solution one seemed to have a potential solution
satisfying both aspects of the experimental
evidence: evidence: (a) light consists of waves (c.f.
Young and Fresnel, and perhaps also Young and Fresnel, and perhaps als
Maxwell and Hertz), while at the same Maxwell and Hertz), while at the same
time (b) the waves are not physical waves time (b) the waves are not physical waves
in a physical ether (c.f. Michelson and Morley), but of a purely mathematical nature.
This was the first move in the takeover, by default, of theoretical physics by the plete takeover until the 1930s when the mathematics of the new quantum mechanics became so obscure and esoteric that the ordinary physicist gave up trying
to follow the wilder ramifactions of the theory. The nature of the physicists' default was their failure to insist sufficiently strongly on the physical reality of the phy-
sical world. In the case of light, energy is
transmitted at a definite speed through a tity w, and tis sen is a effects at its destination. Mathematical waves, being abstract and non-physical, cannot give rise to physical effects. If we
accept mathematical waves as the basis for accept mathematical waves as the basis for
light, we are accepting miracles; for by our light, we are accepting miracles; for by our
definition a miracle is a physical occurrence for which we can offer no physical explanation.
Mathematical explanations of physical
events will not do For those who believe that mathematics can take the place of physics, or who have merely failed to think about the suggestion deeply enough,
I offer the following little mnemonic: I offer the following little mnemonic
Nobody ever became sunburnt as a resul of exposure to a differential equation!
Thus in addition to being the first move was the beginning of the return of mysticism into Natural Philosophy after a banishment which had lasted no longer than 350 years. The evidence we shall put to-
gether will show that the process has con gether will show that the process has con
tinued steadily, until today the whole fundamentals area has become so permeated by mysticism that one can scarcely disting
uish where the physics ends and the metauish where the physics ends and the meta physics begins. There is a way of making
the distinction, but it calls for a certain old-fashioned ruthlessness in complying
with physical discipline and rejecting unsupported mathematical speculation,
however superficially attractive the latter
may appear. The process will become ea sier and more sure as our long-neglected and applied to these problems.
What other alternatives do we have fo dealing with the quandary in which th Michelson-Morley result has placed us
There is one approach which always car There is one approach which always car-
ried a budding promise, although in the face of the mystical takeover it has re
ceived little more than lip-service. It face of the mystical takeover it has re-
ceived little more than lip-service. It is
that light does not in fact consist of that light does not in fact consist of
electromagnetic waves but behaves like a electromagnetic waves but behaves like
system of electromagnetic waves. Th system of electromagnetic waves. The
distinction here between "is" and "be-
and haves like" is not merely tautological o
semantic, but fundamental. It tells us to semantic, but fundamental. It tells us to
treat the great electromagnetic theory as an analogy or mathematical model nature, which probably reflects some feaall features, and which may prove to be a more accurate model of nature in some
circumstances than in others. Therefore circumstances than in others. Therefor
we do not say that electromagnetic theory we do not say that electromagnetic theory successfully every day of our lives. We
simply say that the area of its applicability simply say that
may be limited.
Armed with that kind of philosophica background, which is much more res
trained and cautious than that of ou predecessors at the turn of the century, we are far better placed than they were to
withstand the next shock to physical thinking, which was about to be delivered
in 1899) by Max Planck.

Next month

2 Kbyte eprom emulator/ programmer

A design for an emulator for $2516 / 2716$ eproms, in which a ram, loaded with software by keypad, carries out the function of a rom and allows a program to be run and tested without the need for eprom reprogramming. Ram contents are easily modified, and the emulator plugs into the system eprom socket. When the program is satisfactory, the emulator transfers to eprom the tested ram contents.

Sélective call for c.b. radio
To call any one of 64 K similarly equipped c.b. receivers, enter a number on a keypad to generate a 16 data-bit frame to modulate the rarrier. Only the selectively called receiver will respond. The device is easily modified for highsecurity applications, such as remote access and data interrogation.

Simple, low-

frequency

oscilloscope

A very simple design, using a surplus radar tube. It uses easily ob tained components, is straightforward and costs only around £40.

Vertical bandwidth is up to 1 MHz at $50 \mathrm{mV} / \mathrm{cm}$ and the timebase is either astable or triggered.

Op-amp

development

As a preliminary to a full description of his new, modular preamplifier, John Linsley Hood traces the development of the operational amplifier, from the eariy 741 types to the mosfet-input CA 3140 and the bipolar/fet TL071/2/4/ series, designed for use in audio work.
On sale August 18.

CIRCUIT MODELLING BY MICRO-COMPUTER

The small-signal a.c. properties of a circuit may be modelled on a computer. Here the implementation of a program uses techniques to reduce the computing time by 77%, or more, and to plot graphs of the frequency and phase responses.

A previous article on this subiect ${ }^{1}$ led me
to implement circuit modelling on my home computer. I prefer to reserve the
word 'analysis' for analytical, nomally alword 'analysis' for analytical, normally algebraic, methods such as complex variable
theory. As home computers cannot do algebra, I have called the process 'circuit modelling'.
For the design of a 16 -node active filter, I used a program to plot frequency resphase and gain curves. The reduction of the infinite admittance determinant to a two-by-two was done for 50 frequencies in order to obtain enough points for a good curve. At first this took nearly two hours
run on my 4 MHz Z80A microcomputer. The table shows a breakdown of the number of operations in Basic.

Operation Type	Number of Operation Originally	No. atter Optimisin Code
FOR $\mathrm{X}=$	700	700
FORQ $=$	74550	21150
ADDS	223650	43400
SUBTRACTS	298200	29800
DIVIDES	149100	14900
ULTIPLIES	745500	61000
ARRAYREFS.	1341900	88800
TƠTAL	2840250	292900

Clearly any operation contained in the greater number of times than in any other position. The first step in reducing the unning time is to move as many operations as possible outside this loop. The
second step is to reduce the number of second step is to reduce the number of time. Thirdly to eliminate any unnecessary computations: the determinant being valuated is normally sparse because few odes are interconncced. This causes nany zero entries to appear and the comunused node. This can be avoided by inluding a test for zero. For a typical 16 ode circuit, these changes have reduced he number of computations ten-fold. The der. It uses the notation of A. S. Beasley's article ${ }^{1}$ and cuts the time for a 50 frequency graph to 27 minutes, a saving of 7%. Note that the use of the exponentiaused $\mathrm{A}=\mathrm{Y} 1^{*} \mathrm{Y} 1+\mathrm{Y} 2^{*} \mathrm{Y} 2$ in place of $\mathrm{A}=\mathrm{Y} 1^{* *} 2+\mathrm{Y} 2^{* *} 2$. Exponentiation is lower than multiplication and less accu-
Further opimisation will be machine deFurther opisacen the use of a Basic compiler 40

By R. I. Harcourt

FOR $X=N$ TO 3 STEP - 1 $Y_{1}=Y R(X, X)$		
${ }^{1}$		
$\mathrm{Y}^{\mathrm{Y}} \mathrm{B}=\mathrm{YR}(\mathrm{P}, \mathrm{P}, \mathrm{X})$		
Y $5=Y \mathrm{PR}(X, Q)$		
$Y_{6}=Y \mathrm{Y}(\mathrm{X},(\mathrm{i})$		

uch such as that produced by Microsoft is the simplest method. I did not use Fortran using the Fortran Format statements. It is also much harder to write a proper command decoder using Fortran rather than Basic. However, rather than spending money on a Basic compier, decided to assembler, and call the machine code sub routine from the Basic. I will not describe the assembler code in detail as it depends on the computer in use; but I will describe
the macro-codes I used. Provided a Macroassembler is available, the macro-code will be the same for any computer.
Macro-codes
A macro is a block of code which is invoked whenever the macro call is used. The macro-assembler sees the name of the macro called, and automatically inserts in would be useful even if it just saved typing, but the technique really comes into its own when the macro can have argu ments. If I define a macro for multiplecation, specify a multiplier, a multiplicand and a place for the answer. The macro MPY is used as follows:
ivalent to $Z=X * Y$ It is defined by saying:
*(code is entered here)
ENDM
The code for the multiplication is not
code replaces the macro-call. The real arguments X, Y and Z are substituted in place of the dummy arguments A, B and C. It is now possible to use expressions like:
MPY X, Y, Z
which is the equivalent of $Z=W * X * Y$, and MPY X, X, X
this is the same as (LET) $X=X * * 2$ The macro-codes for use
Graph plotting

Graph plotting
 Here is a Basic program for plotring gain

 printer or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scal-ing of axes. A gain point is plotted as letter G, a phase point as a P, but if both coincide the letter \mathbf{B} is used at that point.

The code is as follows

All the print statements can be seen to be LPRINT statements and a 132 column printer was used. If v.d.u. output is required, then PRINT statements should be substituted and the graph should be scaled according to the width available

WIRELESS WORLD AUGUST 1982

PHASE DEGRELS: -86.8-78.1-69.5-60.8-52.1-43.5-34.8-26.2-17.5 -8.8-0.2 8.5 17.2 25.8 .8 .34 .543 .251 .860 .569 .277 .8 Graphs produced by the program. The frequency axis is vertical, so the curves may make more sense if viewed from the side. Wireless world august 1982
frequency response curve - test plot - Cr Lowpass - re10k $c=10$

While working on loudspeaker crossovers, I wanted to model a crossover feeding two drive units, one of which was connected out of phase. For speakers in phase it
was easy to find the sum by specifying a summing network, but for an out-of-phase speaker, I found it necessary to invent a non-existent circuit element. I have called this an 'inverter' which is a two termina device with the property of 'losing any
current flowing into it while taking in an equal current at its other end which is also lost. This violates Kirchhoff's law and the charge conservation laws, but the method works on the computer. The 'inverter' has admittance determinant:

$$
\begin{array}{ll}
+1 E 5 & +1 E 5 \\
+1 E 5 & +1 E 5
\end{array}
$$

and the value used (always a positive value added to the YR array) was +1 E5 5 , so that the net effect was of a small resisto output node. Having cut the time for our typical
node circuit frequency plot to 16 minutes node circuit frequency plomed the effect of a from two hours, I then tried the emictosoft
BASIC compiler and used the Microsft compiler. This produces true machine code and the time for 50 reductions from 16 nodes to a 2 -by-2 was now 2 minutes 48 seconds. With the addition of the macro assembler codes to the two inner loops (P
and Q), this was cut to 2 minutes seconds, a saving over the original running time of 98%.
So it can be seen that with a little effort, much time can be saved. The purchase of

Basic compiler compatible with the interpreter can turn the home computer into a useful designer's tool.
Appendix
The -codes for fast reduction
Each maperation is shown with its equiva lent in Basic:
 precede their use, are.

All other macro definitions (ADD, All other macro definitions (ADD
SUB, MPY, DIV) are machine dependant and are not shown here.
Note: A version of the circuit modelling program, called ACM, suitable for TRS80 micro-computers, will be available from Molimerx Ltd, 1 Buckhurst Road, Tow Hall Square, Bexhill-on-Sea, E. Sussex.

References

This article is an extension of "Circuit analysis by small
computer," by A. S. Beasley, WWreless World Feb. and Appil 1980. Photocoppies of this are avaibule from
WWW Edi.

 port representation of multi-mode networks by marrix
particioning," by R. T. Kennedy, J.I.E.R.E. Feb.
169.

Orchestral sounds, halls and timbre a correction
ointed out to us one or two misprints which crept into his article in the May 1982 issue: Just under the heading 'First reflections' on p.32, the phrase should read: "Their foot $\approx 1 \mathrm{~ms})$." In the middle of page 33 reference is made to Guildford and this should read Gilford. In the third column of the same page, there are two references to reflection times which should read: "this start about 81 ms after the original sound' and; "Kingsway has quite a lot of powerfu reflections to offer within the first 105 ms . Because the larger reflections continue to return up to 147 ms , the substantial and
lengthy support of the musicians is as sured"' The figures printed (18 and 14 ms) could be misleading, especially to those interested in modelling electronically th initial reflection pattern of the hall.

DIGITAL DIVIDERS WITH SYMMETRICAL OUTPUTS

The author uses Johnson counters with controlled feedback to give symmetrical even and odd-numbered divisions of a clock pulse.

Time and again, in literature on digital circuitry, ideas are published on the problem how to obtain a 50% duty cycle when a regular pulse train is divided by an odd
number. Some clever (and less clever) methods are proposed, e.g. the use of ex-clusive-or gates in the clock pulse lines, a separate flip-flop with a delay of half a pulse period, the output of which is comined with the normal flip-flops, etc. In my opinion, the use of EXOR-gates
in clock lines should be avoided, since spikes on the output-signals of the fliphops may occur; a better way is to combine he outputs signals of the flip-flops. The deas, found in Refs. 3 and 4 are broad scheme is proposed which may be easily expanded. Moreover, the control input is pure binary and there is no attempt mand (cs and

The Theory
When a Johnson or Möbius ring counter is fed back, a sequence length of n or 2 n is or twisted loop is used. The maximum equence-length is 2 n for n bits, and sequaces of $2(n-1)$ etc, are derived when ou puts, other than the last, are chosen. Whe wo adjacent outputs are fed back via an AND-gate and negated, (Fig. 1.) an If an auxiliary flip-flop is connected to he chain and is switched on the opposite pulse edge, the output is shifted over $1 / 2 T$ here T is the clock pulse period. It necessary for the incomong pulse train to needed which will halve the frequenc In Fig. 2. the outputs of 2 flip-flops, FF e last in the chain, and FF_{2}, the extr

Table 1. Feedback signals and sequ-
Table 1. Feed
ence length.
Feedback
Sequence/leng

WIRELESS WORLD AUGUST 1982

By Cornelius van Holten
obtain an odd sequence length (9) with a symmetrical output. In this case, $\overline{\mathrm{D}}$ and are fed back (see Table 1).
When an even sequence length is choen, a symmetrical output is derived from negated) flip-flop in the chain, only one process is output is fed back and no OR iven of all possible combinations; I hrough VIII are the controls signals which witch the (negated) I for \bar{A}, II for \bar{B}, . . VIII for H .

Table 2. Control inputs and corre ponding sequen

Complete circuit

In Fig. 3, the complete diagram is given onsisting of 8 flip-flops (a shift register), ulse circuit, an output, feedback gate decision making circuit with 4 full adder or odd and even lengths.
The latter operates as an EXOR-gate
 fren lengths; the unused input of tor full adder at the bottom is permanentl eld at a logical ' 1 ' level. In the output circuit, the function H \mathbf{Z} is realized. For $\mathbf{Y}=0$, the outpur

Fig 2. The addition of

 two asymmetrical flip. flop outputs loads to asymmetrical output. symmetrical outp

becomes H (for even length sequences) and for $Y=1$, the output is $H+Z$ (for an
odd length) as shown in the time charts in Fig. 4 a and 4 b respectively.
The flip-flops A to H are D flip-flops, operating in the leading clock pulse edge
and Z (auxiliary flip-flop) reacting on the trailing edge of it. The P flip-flop is needed when the input pulses are not symmetrical, and a buffer gate is used for amplification. The correction and enabling circuit circumstances, this circuit is inoperative and the shift register is loaded with all zeros by the enabling input, and cycles via 0000000, 11000000,11100000 , through 11111111,01111111 , etc. back to
the all zero condition.' This is the "normal" sequence, 1 out of the 16 possible cycles. Of course, other values of n than 8 are possible, this number has been chosen or comparison with the circuit described by Girolami and Bamberger ${ }^{2}$.

Modification

In Fig. 3(a), there are 8 control inputs lengths) or in groups of adjacent pairs (for odd lengths). If one wishes to control the sequence length via a binary weighted ontrol input, a decoder is needed as de ibed in Table 3.
rammed as a decoder, and the input may be used to control the output circuit even or odd; the output function is H

fig 1. Basic principle of a variable length
counter.

44

Table 3. Binary weighted control inputs and corresponding signals and sequence
liengths.

Input	Decoded input								Sequence
8421	1	11	III	IV	v	VI	VII	VIII	length
0001					ense				
OO10	1	0	0	0	0	0	0	0	2
0011	1	1	0	0	0	0	0	0	3
0100	0	1	0	0	0	0	0	0	4
0101	0	1	1	0	0	0	0		5
0110	0	0	1	0	0	0	0	0	6
0111	0	0	1	1	0	0	0	0	7
1000	0	0	0	1	0	0	0	0	8
1001	0	0	0	1	1	0	0	0	9
1010	0	0	0	0	1	0		0	10
. 1011	0	0	0	0	1	1	0	0	11
1100	0	0	0	0	0	1	O	0	12
1101	0	0	0	0	0	1	1	0	13
1110	0	0	0	0	0	0	1	0	14
1111	0	0	0	0	0	0	1	1	15
0000	0	0	0	0	0	0	0	,	16

other sequences have to be detected and orrected; since 00000000 is a valid comb , ceseting of all flip-flops is an easy If one wishes to correct any invalid com bination immediately, a rather complex circuit is needed; it turns out, however,
that with certain combinations, the register may be reset; within 16 clock pulse any ertor will be removed.
In the normal sequence, no ' 0 ' is presen between ' ' 1 's; so 101 looks a a good bit ences contain this combination; 1001 also occurs.
To check these sequences we write down any non-normal sequence, econo mizing space by writing the notation in e.g. $111101101000 \overline{10010}$

YZ, realized by NAND gates via the for
mula H. YZ
Conclusion
A method is proposed by which in a straightforward manner any sequence length may be chosen via a binary weighted input. The circuits are normal
s.s.i. or m.s.i. i.cs; for an 8 bit integrated shift register, the clock input is buffered as is the clear input. The buffers may be left out. The output is symmetrical and no spikes occur, since the Johnson principle is
in fact a Gray code of sorts, changing only 1 output per clock pulse.
The number of flip-flops is $1 / 2 n$, when n The number of flip-flops is $1 / 2 n$, when n
is the sequence length, whereas for a noris the sequence length, whereas for a nor-
mal counter $\log _{2 n}$ flip-flops are needed. mal counter $\log _{2}$ nflip-flops are needed. There is little disadvantage, however, with nonbinary.
Appendix
With $\mathrm{n}=8$, there are 256 possible zero-one bit patterns, of which only $16(8 \times$
1 and 8×0 in groups of 8) are valid. All

Cornelius van Holten holds an
honours degreo in electrical
anginearing from the Techn
onginearing from the Technical
Collage at Rotterdam and a degree
College at Rotterdam and a degree
from the Delf University of
Technology. He is in charge of a digital
engineering laboratory for
undergraduates in the Applied Physics
undergraduates in the Applied Physics
Department of the Delf University,
and loctures in measurement
methodology.
He has writen a selfinstruction
course in digital circuitry and some 20
papers in periodicals.
WRELESS WORLD AUGUST 1982

Fig 4a. Time chart for an even-numbered division (e.g. 14).

The ends are in fact connected, so by,
checking 101 and 1001 "over the edge"
che if needed, the result is:
This means that FGH and EFGH have to be used; simplification gives:
$(\mathbf{E F}+\mathrm{FH}=(\mathbf{E}+\mathrm{F}) \mathrm{GH}$ or ewritten in NAND-form:
E.F.GH

Since reset is ' 'O' signal, we invert this to: E.F.GH; a buffer and an external enable (normally ' 1 ') signal results in the circcuit as show in Fiess. 3 and 4 . For a sequence of 2 , however, this cor--
rection has to be corrected itself by an
I. $\overline{\mathrm{II}}$ signal ($(\mathrm{I}$ is $1, \mathrm{II}=0$) since this
$\begin{array}{llllllllll}\text { A } & \text { B C } & \text { D } & \text { E } & \text { G } & H \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$

$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$
Detection and correction follows: there is no reason, to choose EFGH; any group of 4 consecutive outputs is valid. The reset is asynchronous, i.e. not controlled by the
clock pulse, but within one period \mathbf{T} the the sequence length may be.

References

E. Getgen. Divide symmetrical clock pulses by odd numbers, get a symmerrical out-
put. Electronic Design, 5 , March 1,1980 , p.110.
2. G. Gi 2. G. Girolami, P. Bamberger, Symmerricaloutput dividers
1982, p. 3. R. M. M. Oberman. Electronic Counters. Macmillan, London, 1973 , p. 151 Iff 4. M. Moricy. Two IC's restore symmetrical
output o a ring counter. Electronic Design,
February 18, 1982, p. 206 .
continued from page 36
ry in the' system error \log, as it indicates ai malfunction. In the embedded-servo surface drive, however, the condition is
handled differently. Figure 13 shows a lowchart for the control of the drive, which has no absolute cylinder-address register, and in which all seeks are relative. The system only knows where the heads
are by reading a header. In order to reach a are by reading a header. In order to reach a
particular cylinder, the program has to particular cylinder,
read the first header it sees on the current cylinder, and calculate the cylinder difference required to get to the desired cylinder. This cylinder difference, which may
be positive or negative, is sent to the drive, be positive or negative, is sent to the drive,
which performs a deductive seek. When this is complete, the program again reads a header. Most of the time the header will contain the desired cylinder address, proving that the seek was successful, but in the
odd case where the cylinder count deduction was in error, the program simply
oops and calculates a new difference value until the correct cylinder is reached. Since each surface has its own embe aligned using a normal data hisc mack be aligned using a normal data disc pack. source of the position error, and as the heads are only aligned to one another within a certain tolerance, the positioner will adjust itself to eliminate any position This process takes time, and further time is necessary to read a header to confirm that the desired cylinder is under the new head. The time taken by this process is the der seek, such as might be necessary when all tracks of a cylinder have been written but there is still data to transfer. With a conventional disc drive format, both of these processes would cause the loss of an entire revolution of the disc, waiting for
sector zero to come under the heads again. Having abandoned the concept of absolute

Fig. 13. Flow chart for an embedded-servo positioner system. An absolute cylinder-
address reviter address register is not used, so all seeks.
are relative. Seek errors simply cause an extra execution of the simply
cylinder addressing, which made it neces sary to read headers to discover the head position, it is also possible to abandon the fixed index concept, as the sector number is contained in every header read. There is no index point on the disc, and all of the
sector pulses are identical. The format of sector pulses are identical. The format of
adjacent tracks is displaced to allow enough time for a seek or head change, and for a header to be read to confirm the position, before sector zero of the new
track comes around. In the case of a long data transfer of many blocks, a significant transfer-time reduction achieved, since rotational latency is eliminated.
It is possible to build two versions of the drive. In the first, only the position error
developed during S1 is used for track foldeveloped during $S 1$ is used for track fol-
lowing. In the second, the position error from S1 is used for track following on even cylinders, and that from $S 2$ used on odd cylinders. The second version obviously has twice as many cylinders as the first,
but in other respects is basically the same. Winchester technology and floppy discs and their drives are discussed in the next
part of this series. part of this series.

WIRELESS WORLD AUGUST 1982

DIGITAL FILTER DESIGN

Three types of operation are required fo digital filters: multiplication of samples by constant coefficients, addition, and temporary storage for delaying samples. The digital filter shown in Fig. 1, a bi-quamathematical operations that must be carried out for each input sample \mathbf{x}_{n} referred 0 as X to produce an output sample y firred to as Y. The sequence of opera 1. Calculate \mathbb{W} by as

Calculate W by adding W^{\prime} mult $-b_{2}$ to X. (W_{1} and $W^{\prime \prime}$ are values of W stored during previous executions of this algorithm - see steps 3 \& 4) 2. Calculate the output Y by adding W^{\prime}
times a and $W^{\prime \prime}$ times as to W. 3. Set $W^{\prime \prime}$ to the number currently stored in W^{\prime} for next time.
4. Set W^{\prime} equal to the number currently stored in W.
Recursive digital filters are generally imtions i.e. the required transfer functio $\mathrm{H}(\mathrm{z})$ is expressed as the product of second order transfer functions $\mathrm{H}_{1}(z), \mathrm{H}_{2}(z)$.. each being realised by a distinct digital practical digital filter, therefore, would be a device or devices capable of performing the calculation sequence listed above for all biquadratic sections, for each input signal
sample x_{n}. These calculations must sample x_{n}. These calculations must be car span available berween samples in real time applications. Before looking at realtime digital filters, however, consider briefly their implementation on general-
purpose digital computers.

Real-time processing

Although digital filters have been studied for many years, their use has until recently been mainly confined to research applications and computer simulations. This is
likely to change rapidly with the likely to change rapidly with the de-
velopment of special-purpose microprocessors and v.1.s.si. devices for signal processing. Such devices essentially execute the type of program discussed in the panel,
but if the programmed filter is to be used but if the programmed filter is to be used
or continuous signals sampled in the Nyquist rate, all numerical calculations must be completed for each input sample before he next one becomes available; otherwise an increasing backlog of samples would be built up. This imposes a speed requireblocks of stored data on a general purpose computer. Such processing would normally use the highly accurate floatingpoint arithmetic operations provided by
high level languages but at great cost in processing time, typically loous per
WIRELESS WORLD AUGUST 1982

by B. M. G. Cheetham and P. M. Hughes

nultiply or add. The necessary increase in

 processing speed required for real-time fil pense of accuracy through the use of fived point arithmetic. It is thus necessary to epresent all samples, coefficients and reults of additions and multiplications by inary numbers of limited wordlengu i.e. the binary point, assumed fived ome position within the word.For example, the 16 -bit numbe 0.110000000001101 with fixed binar point represents the decimal number 0.75040 correct to about five significant
figures, whereas 0.0075040 mus be fritten as 0.000000011110110 which gives

fig. 1. Recursive digital filters are generally mplemented as cascades of biquadratic f mathematical operations that must be carried out for each input sample $\left\{x_{n}\right\}$ to give output sample $\left\{y_{n}\right\}$.
innaccuracy which will tend to degrade performance as compared with the theore cal ideal. Some of the most importan ects are next considered.
Quantization noise. The conversion of an duces a degree of distortion as a result of representing.the sampled voltages as fixedpoint binary numbers. This distortion quantization noise to the original signal, as illustrated in Fig. 2. The level of this unwanted noise signal is determined by the wordlength available and the dynamic tange allowed for the analogue signal i.e. oltages. It may be shown that an n-bit nalogue-to-digital conversion (with $n>4$) esults in a quanuzation noise signal of .m.s. value $\Delta / 2 \sqrt{3}, \Delta=\left(V_{\max }-V_{\min } / 2^{\text {n }}\right.$, heory, the noise is spread evenly over the requency spectrum 0 to $f_{8} / 2$. For a zeromean input of r.m.s. value σ, the signal to quantization noise ratio is

$$
\begin{aligned}
& 20 \log _{10}(2 \sqrt{3} \sigma / \Delta) \\
= & 20 \log _{10}\left(2 \sqrt{3} \sigma \cdot 2^{\mathrm{n}} / 2 \mathrm{~V}_{\max }\right) \\
\approx & 6 \mathrm{n}+10.8+20 \log _{10}\left(\sigma / V_{\max }\right) \mathrm{dB} .
\end{aligned}
$$

For this formula to be valid, input signal must not exceed the prescribed dynamic this to reasonable accuracy for noise-like signals, giving a maximum $\mathrm{s}-\mathrm{n}$ ratio of
$6 \mathrm{n}+10.8+20 \log _{10}(0.25)=6 \mathrm{n}-1.2 \mathrm{~dB}$ This formula may be used as a rule-ofof input signal although higher ratios may e obtained by reducing $\sigma / V_{\operatorname{mar}}$ for specific signals such as sinusoids. Clearly the maximum value depends on the nom, and increasing this number improves the figure by 6 dB per bit
Data wordlength. With fixed point number systems both the range and precision of the numbers which can be repreusual to think of all the signals within a digital filter as being in the range -1 to 1 . Such signals require only one bit in front of the binary point, this being used as the
sign bit to differentiate between positive
nd negative numbers. The precision of the number representation is determined by the number of bits available for storing with one bit used for the sign, gives a must therefore be rounded to the nearest integer multiple of 2^{-15}. In practice it is difficult to determine exactly how many bits are needed to satisfy particular performance requiderals. The presen gening devices employ basic wordlengths of between 16 and 25 bits.
Coefficient quantization. When a digital filter is implemented in real time its coefficient values as well as its samples must be The effect is to degrade the frequency response as illustrated in Figure 3. A wordlength of about 12 bits is typically used for coefficients. The second program response of a digital filter with original unquantized coefficients and with quantized values as they would be represented in the filter. The maximum difference over the relative frequency range 0 to 0.5 is
printed out as a measure of the degree of degradation suffered.
Dynamic range limitations. Signal overflow, which occurs when the result of an addition or multiplication within a filter is tion. The errors generated can cause selfsustaining oscillation of large amplitude which are highly undesirable. The simplest way of avoiding overtlow is to multiply the input to each biquadratic secis to reduce the input signal level sufficiently to ensure that the largest internal number likely to be generated is within range. For a sinusoidal input, S may be set equal to $1 / G_{\max }$ where $G_{\max }$ is the maxiany point in the second-order section. This ensures that no internal signal exceeds the input in amplitude. In practice, it is sufficient to examine only the overall gain of the section $G(\omega)$, and the gain $G_{1}(\omega)$ beIt can be shown that
$\mathrm{G}_{\max } \leq 2 \max \left\{\mathrm{G}(\omega), \mathrm{G}_{1}(\omega)\right\}=2 \mathrm{M}$ with $G(\omega)=\left|H_{i}\left(\mathrm{e}^{\omega}\right)\right|=$

$$
\left\lvert\, \frac{1+a_{1} e^{-j \omega}+a_{2} e^{-2 j \omega}}{1+b_{1} e^{-j \omega}+b_{2} e^{-2 j \omega}}\right.
$$

$$
\text { and } G_{1}(\omega)=\left|\frac{1}{1+b_{1} e^{-i \omega}+b_{2} e^{-2 i \omega}}\right|
$$

M may be calculated by evaluating $G(\omega)$ and $\mathrm{G}_{1}(\omega)$ over the range $0 \leqslant \omega \leqslant \pi$ A Basic program for doing this is provided, see third listing. Choosing $S=1 / 2 \mathrm{M}$
will eliminate the possibility of overflow will eliminate the possibility of overflow for sinusoidal signals, and in practice will
normally prove satisfactory for other types of signal. In many cases this result may be unduly pessimistic and larger scaling facors S may be used depending on the parti-
ype of arithmetic used. If $\mathrm{G}_{\max }$ is signifi$G(\omega)$ (overall gain) it may be necessary to scale up the output of a section to bring the overall passband gain to unity. Scaling
factors are often approximated to the nearfactors are often approximated to the near-
est power of two so that the required multiplication may be carried out by simply shiftuing the signal representation an appropriate number of bits to the left or right. Example. Consider the scaling required whose impulse response is shown in the panel opposite. The coefficients a_{1}, a_{2}, b_{1}, 0_{2} for this section are $-2,1,-1.0524$, program the maximum values of $G(\omega)$ and $\mathrm{G}_{1}(\omega)$ are found to be 2.57 and 3.56 and hence $G_{\max } \leqslant 2 M=7.12$. A suitable scaling factor is therefore $1 / 7.12 \approx 0.1404$. This would often be approximated to 2^{-3}, the
nearest power of two, requiring the input to be shifted three bit positions to the ight. As $\mathrm{G}_{1}(\omega)$ is greater than $\mathrm{G}(\omega)$ in this example, it would be necessary to scale up the output signal if a maximum gain of

Microprocessor implementation

 In addition to its filtering task, a microprocessor may be required to control a-d and d-a converters, or alternatively interface signal input and output. When controlling converters it is necessary to provide some means of accurately maintaining a fixed sampling frequency.The choice of microprocessor type depende. The present generation of general purpose eight-bit microprocessors can provide digital filters with sampling frequencies of at most a few hundred hertz; the more powerful 16 -bit microprocessors ${ }^{1}$ en-

(a)

Fig. 2. Conversion of an analogue signal into digital form produces an error signal
(quantization noise) which, in effect, is (quantization noise) which, in effect, is
added to the original.

WIRELESS WORLD AUGUST 1982

For the real-time filtering of audio bandwidth signals at sampling rates of about 8 kHz and above, it has until recently been ${ }^{2}$ necessary ${ }^{2}$ or to employ bit-silice microproces-designed hardware ors or cuits which incur a high component count and circuit board complexity. The introduction in August 1980 of a microproces sor specifically designed for digital signal processing, the Intel 2920, significantly a new trend in digital signal processing This is now being continued and ent phasized by the introduction of a digital signal processor by NEC^{3} and the fad^{4}, an .s.i. digital filter designed by British intended for digital signal processing have been published ${ }^{\text {j }}$ by Texas Instruments an Bell Laboratories.
The Intel 2920 incorporates both a-d and d-a converters on-chip and when profilter has a sampling rate of approximately 30 kHz . As such, the device can be used simply as a one-chip replacement for au-dio-bandwidth analogue filters. More rethat they do not incorporate the converters, but provide the means for interfacing with external converters. These provide more powerful arithmetic facilities than the 2920 , including fast high precision memories are provided by the NEC, Texas and Bell devices which should allow them o implement not only fixed filters, but Iso adaptive digital filters which automatcally modify their frequency response as

The Plessey/British Telecom fad (filter and sacrifices flexibility for simplicity of but sacrinces hexibing for simpicity circuitry. necessary to implement the biquadratic filter section shown in Fig. 1. Used as a single second-order section, the evice can operate at a sampling rate of and sumples per second, win each inpu ength. The fully programmable filter coefficients are supplied in serial form by external memory. As an alternative to act-

Fig. 3. Amplitude response of an eighth
drer Butterworth bandoass filter shows effect of coefficient quantization.
WIRELESS WORLD AUGUST 1982

Fig. 4. Intel 2920 is basically a high-speed microprocessor connected to a nine-bit d-to-a
ing as a single second-order section, by using on-chip memory, the fad can be used in a multiplexed fashion to implement a cascade of eight second-order sections, ampling rate of 8000 -order eiter wind cascades of between two and seven second-order sections can be implemented by modifying external connections.
To illustrate the full capabilities of microprocessor-implemented digital filters described may be applied to their design consider in more detail the use of the Intel.
consider in more detail the use of the Intel.
2920. This device is now generally availbe, at gradually decreasing cost, and may be programmed by Intel users with course to expensive design packages.

Itel 2920

Shown schematically in Fig. 4, the Intel 2920 consists basically of a high-speed microprocessor connected to a 9 -bit d-to-a onverter. The output is connected to der-to-eight ine multiplezer which oontront channels are therefore available. The out-

Program lef comparas responses of recursive filter with ideal and with imited wordlength coefficients. That
above calculates maximum values of $G(\omega)$ and $G_{7}(\omega)$ for a biquadratic
section.
put is also connected to one input of a signal comparator, the other input being driven by one of four multiplexed analogu input channels. This arrangement allows up to four analogue inputs to be sampled and converted to digital form using th converter and
ware control.
The microprocessor section of the de vice contains an eprom with space for 192 processor instructions, 40 words of ram and a specialist arithmetic unit. The basic
wordlength of the arithmetic unit and the wordlength of the arithmetic unit and the
ram is 25 bits. All arithmetic operations provided, which include add and subtract but not multiply or divide, are performed in two's complement form. A special feature of the device which allows coefficient muitiplications to be performed efficiently binary shifter (sometimes known as a bar-

References

1. Digital filter implementation on 16 -bit microcomputers by H. T. Nagle \& V.P. 2. Microprogrammable digital filter
by M. E. Woodward Microelectronics (GB) vol. by M . E. Woodward Microelectronics (GB)
10, September-October 1979, pp.23-31. 3. Neprember- ctober 1979, pp. 23
2. $\mathrm{NCE} \mu \mathrm{PD} 720$ data sheet, NEC 4. Dicrocomputal filtersing Inc., 198
device, by R. H. Macmillan \&c P. Millar, IEE
devich Colloquium on Implementation of Digital Signal Loncessing Algorithms using Microprocessors, 5. Microcomputer with 32-bit arithmetic does
rel shifter). Before being loaded into the add or sumit, one of the operands in a the binary shifter which passes throug grammed to shift the number up to two places to the right or up to thirteen places to the left in one operation. Hence, a shift and add' process which can be used for programmed multiplication is combine simplify the programming of the device include a fixed instruction execution tim (600 or 800 ns depending on device) and the absence of conditional jumps which ar
replaced by conditional operations. latter ensures that there is only one path through the program and hence that the program execution time is constant. An 'end of program' instruction is included,
which causes program execution to transwhich causes program execution to trans-
fer to the first instruction in memory, providing continuous repetition of the
high-precision number crunching, by K.
McDonough et al, Electronics, 24 February
1982, pp. 105-10. Bell System Techni
Bell 1 ystem Technical Yournal, September 1981,
vol. 60 , part 2 (varioy ${ }_{6}^{\text {vol. }}$. 290 , part 2 Design Handious papers). Intel Corporation 1980.

References in June article

1. Oppenheim A. V. and Schafer, R. W. Digital Serrell, T. J I Introduction to Dill, 1975 . Terrell, T. J. Introduction to Digital Filters,
Macmillan 1980 . Peled, A. and Liu, B. Digital Signal Processin Theory, Design and Implementation, Wiley,
2.

program. As the input signal is normally sampled on each pass through th the product of the number of ins equal and the instruction execution time. Fo example, a program containing 40 instruc tions run on a 600 ns device produces sampling interval of $24 u$ i.e. a sampling rate of approximately 41660 samples pe
second giving a signal bandwidth of 21 kHz . This represents the theoretical upper limit and it is prudent in a practical system to allow some measure of oversam one third of the sampling frequency

A technique based on the canonical signat digit code used for coefficient multiplications on the 2920 together with details of digital
filters implemented using this device will b given in a subsequent article.
2. Rader C. M. and Gold, B. Digital filter 2. Rader C. M. and Gold, A. Digial inter
design techniques in the frequency domain,
Proc. IEEE, vol. 55 1967, pp. 149-7. Proc. IEEE, vol. 55 1967, pp. $149-71$.
3. Ackroyd, M. H. Digital Filters, Butterworth 3. Ackro
1973.
4. Constantinides, A. G. Spectral transformations for digital fititrers, Proc. IEE

Appendix to June article

To calculate V_{x} where $x=a+j b$,
Convert x to Euler form $x=$ re $^{j \theta}$, where Convert x to Euler form $x=$
$r=\sqrt{a^{2}+b^{2}}, \theta=$ arctan $b /$. Take square root $\sqrt{\mathbf{x}}=\sqrt{\mathbf{r}}$. ${ }^{\text {ji/ }}$
Convert
$\sqrt{\mathbf{x}}$ to Cortesian Convert $\sqrt{\mathbf{x}}$ to Cartesian form
$\sqrt{\mathbf{x}}=\sqrt{\mathbf{r}}(\cos \theta / 2+\mathrm{i} \sin \theta / 2)$.

EVENTS

August 5-6
Comptational physics on the distributed array processor. Institute of Physics
Conference at the University Conference at the University of Glasgow. Belgrave Square, London SWIX 8QX. August 14-17 Harrogate International Festival of Sound and Video at the Harrogate Exhbition Centre and at
August 21-27
15th International Congress on high speed photography and photonics. San Diego, Sociery for Optical Engineering, Washingtonal 98227 , USA.
August 26-September 5
frate 82. Siennial exhibition and trade show for consumer electron
September 2-6
nusic and high fidelity hat been exposition of music and high fidelity has been extended this section. Milan Fair Centre, Italy.
September 6-7
Seventh annual microprocessor workshop a the University of Liverpool Computer Leptember 6-10
Annual Meeting of the British Association for he Advancement of Science. To be held at the London WIX IAB.

September 6-9

Enrolment for course for the Radio Amateurs examination. Briston College for Further Education, Brixton Hill, London SW2. September 6-10
Microcoll 82: Seventh Colloquium on
microwave communication. Budapes Sponsored by the International Union of Radio Sciences and the Hungarian Academy of Sciences. Details from Microcoll, 1252
Budapest, 114 , PO Box 15, Hungary. September 7-10
6th International conference on computer
communication. London. Detais for communication. London. Details from ICC
82 , PO Box 23 , Northwood Hills, Middlesex 82, PO Box
HA6 1 TT.
September 7-8
Semiconductor 82: Exhibition at the Bingley
Hall, Birmingham. Hall, Birmingham.
September $7-9$
Coptreme S Sotand: Exhibition of computers, systems, peripherals and software. Sponsored by Computer Weekly. City Hall, Glasgow. September 9-10
Symposium at Bristol Polytechnic, Ashley
Down Road
Bristol
SS7 9 PU Symposium at Bristol Polytechn
Down Road, Bristol BS7 9BU.
September 9-12
he sth Personal Computer World Show.
Barbican Centre, London.
Barbican Centre,
September $8-10$
Eurographics 82
Eurographics ' 82 : International congress for
computer graphics. UMIST. Conference deter computer graphics. UMIST. Conference details
from Andrew Yates, University of Manchester
astitute of Science and Technology, PO Box 88 September 13-16
September 13-1
conference, Munich. De device research Siemens AG, Otto Hahn Ring 6, D-8000 Munchen 83, FRG September 13-17. Finlandia Hall, Helsinki, Details from Microwave Exhibitions, 43 Dudley Road
Tunbridge Wells, Kent TN1 ILE. September 14-16
ElectroWest; West of England electronics exhibition, Bristol. Exhibitions for Industry OQF.

September 18

Computer Fair; Prestatyn High School PTA,
September 18-21
September 18-21 IBCernational Mroadcasting convention:
IBCROpole Hotel, Brighton. Details from the IEE, Savoy Place, London WC2R
OBL.

OBL.

September 19-24

Human aspects of computer systems: A short course at the Department of Human Sciences, September 19-24
Industrial digital and microprocessor-based control systems.

Hangover, a rather oose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you're listening to a oudspeaker.

Take it away and there's a new world the loudspeakers have nothing more to say instead there's just the orchestra and the magic of the musi

For further details and the name and address of your neares Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd Huntingdon, Cambs., PE18 7DB. Telephone: (0480) 52561.

If music is an important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you've ever made.
ment you've ever
Perhaps even something to celebrate about

QUAD落
for the closest approach
to the original sound

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the $2704,2708,2716(3)$, 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.
The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main
modes:

As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - £39; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - $£ 64$; 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - f78: GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - f65

VAT should be added to all prices

MICROCOMPUTER LINE PRINTER

This is the second of two articles describing an interface for driving a 40-column dot matrix printer mechanism from $Z 80$ signals. With the mechanism, addressing and interrupt sections covered, the author explains the controller i.c., power circuits, running the printer and modificatrons required to drive a 12 V mechanism.

Turning now to Fig. 3, the rest of the controller circuit can be considered. IC_{2} is a bidirectional buffer designed to isolate
the controller-board internal data bus from the controller-board internal data bus from
any noise on the system data bus, and vice versa. It is enabled only when the controller board is addressed, and the direction in which it passes data is determined by the WR line buffered by $\mathrm{IC}_{\text {la }}$ and $\mathrm{IC}_{3 \mathrm{a}}$. To reduce noise problems, $\mathrm{IC}_{1 \mathrm{l}}$ is a Schmit other control bus lines.
The control bus is connected to the printer controller chip, IC_{14}, and through
three-state buffers, IC_{13}, to the status out-three-state buffers, C_{13}, to the status out ted to IC9, the interrupt reply byte circuit. Note that D0 from IC 9 , pin 18, should go to D0 on IC C_{2}, pin 2, and so on up to D7, pin 9 on IC to pin 9 on IC
A 6.0 MHz clock for the controller i.c. is provided by an HC18/U or HC25/U crystal, XL_{1}. IC_{14} contains the character generator for the printer, and the output

by P. L. Woods

for the currently selected character appears on PS1 to $\overline{\mathrm{SF}} 7$ (pins 27 to 33 respectively). High-voltage open-collector line driver IC_{16} and IC_{17}, are used to send the sign to the solenoid drivers. the printer; one is a paper advance signal $\overline{\mathrm{FS}}$ (at pin 21 of IC_{14}), the other is to turn the drive motor on and off, MT (pin 34). Three status signals are needed back first of these comes from a timing coil which allows the controller to correctly space the dots for each character. If no

Fig. 3. Controller i.c. and buffers. Mr Woods informs us that the controller, $1 C_{14}$, is not the DPC-2 as given here and ants

uiming pulses are found within 0.2 s after the motor is turned on, the circuit assumes hat the motor has stalled, so an erro motor stopped to prevent it from burning

The second signal is from a reed relay which indicates when the printer carriag has reached the "home' position, and printing a line.
The third status line is from a normally losed pushbutton, connected to groun hich serves two functions. If the switch depressed (open) when the Reset line goes and prints lines of characters until the witch is closed. Otherwise, pressing the vith when the primer is iare advace he paper through the mechanism.

Solenoid and motor drivers

 Figure 4 shows a solenoid drive circui. Seven of these circuits are required for the Gid - $7,20,20$
No connection - $11,24,25,36$

Fig．4．Eight of these solenoid driver circuits are requirad，one for each of the line－feed solenoid．Truo is a power Darlington transistor．

Fig．7．Edge connector diagrams for the
printer mechanism．
head solenoids and one for the line－feed solenoid．
As the circuit consists of only one Dar－ One point worth mentioning though is that，should the circuit＇s input become open，as happens when the cable between the interface and printer board is discon－ effects of this will be explained later．No heat sink should be needed because，al－ though the peak current is high（3．2A），the duty cycle is low．Diodes D_{101} and D_{102} are used to protect the transistor
Fig． 5 ，and is a little motor is shown in Fig． 5 ，and is a little more complex because
dynamic braking（through TR_{204} ）is used to stop the motor at the end of each line．A Darlington transistor， Tr_{203} ，is used to power the motor and wiun need a small hea be turned on when the circuit＇s input open．

Printer power supply

The circuit diagram for the two powe supplies needed is shown in Fig．6．Careful separation of the interface logic from the
needle drivers has the advantage that each part of the circuit requires only one power rail．That for the interface logic（Figs 2 and 3805 it at about 300 mA ，supplied by a 7805 voltage regulator， $1 \mathrm{IC}_{3} 3$
explanation．A voltage doubler circe more used because I only had a $12 \mathrm{~V}, 2 \mathrm{~A}$ trans－ former；a $24 \mathrm{~V}, 1 \mathrm{~A}$ transformer used with a

1

Link to enable o．s．u．
lial cable
（voard）
bridge rectifier would perform equall If the action of Tr_{301} is ignored，then the vircuit is an op－amp， IC_{302} ，connected as pass element The purp302 as the serie shut down the 24 V rail should the control cable from the interface board to the sole noid drivers become disconnected．A mentioned above，in this event all the sole－ driver，turn on．The resulting prolonged 30A current demand is sufficient to des troy the rectifier diodes，as happened dur ing testing of the prototype．
So the link to enable the 24 V rail is not on the supply board，but on the interfac
board，and two of the wires in the connect ing cable are used to connect the link be－ tween the base of T_{301} and ground．Using a multipole connector ensures that if the board，then the link will not be made，so turning off the 24 V supply．Both IC_{301} and $\mathrm{T}_{3} 32$ will require heat sinks．

Construction

The circuit was constructed in two parts： built to fit into a slot in one of the compu－

Flg．6．Power supplies．The 24 V supply is
Fig．6．Power supplies．The 24V supply is
witched by a logic signal to prevent overloads when the solenoid and motor
driving circuit inputs are open．The author driving circuit inputs are open．The author
had a 12 V transformer in his＇junk box ${ }^{\prime}$ ． ad a $12 V$ transformer in his＇junk box＇，
ence the voltage doubler．Heat sinks are required for $1 l_{301}$ and $T_{r_{30}}$
ter＇s cards．The solenoid and motor driver were built on a second board which，to the base of the box containing the prin er mechanism．
The interface board should be carefully aid out，i．e．，with a good ground mesh nected to that of the i．cs around it．A decoupling capacitor is needed for each i．c．， $10 \mu \mathrm{~F}$ tantalum－bead capacitors alter－ nating with 10 nF ceramic disc capacito The layou more difficult as it caver board is a little nals and the heavy currents associated with the solenoids．Because of the solenoid surge currents mentioned earlier，a
substantial cable is needed to connect the substantial cable is needed to connect the
emitter of each driver transistor to the ground side of the 24 V power supply．To avoid noise caused by the solenoids getting back into the interface，the digital ground return should be separate from the 24 V supply return，although it need not be as
heavy．Once again，everything should be

Table 1：Program to display printer char－ demonstrate the operation of the printe and act as a confidence test for it．It is loaded at location 4000 （hex．）in memor， pointer has been set up，using a CALL in struction．This listing was produced on the priter describin

1	；Listing one．
$\frac{2}{3}$	DISPLPY PRINTER
4	CHARACTER SET．
5	
$\frac{6}{7}$	；COPYRIGHT．
8	
9	MAIN：EQU $4 \times 10 \mathrm{BH}$
19	ORG MaIN
11	LOAD MGIN
12	；mituter poit move
13	；PRINTER Port moder
14	PRT：ERU 11H
15	；eset meinter
${ }_{17}^{16} 4000$ CDE540	RESET Printer
178400010 CDEE4日	
19	；Cheracter to print．
2046033528	L0 $\mathrm{F}, 32$
21	
22	PRINT 14 LINES
23	BEGIHINGE WITH THE
24	；Ualde of The char
25	；IN HEX．EACH LINE
26	COWSISTS OF FCUR
27	GROUPS ERCH OF FOUR
28	CHARACTERS．
294905060 E	LO B， 14
	LINE：CAFLL FRTHEX
$31480 \mathrm{HCH} \mathrm{CDE540}$	C．ALL SPACE
32	；SET UP FOR GRRIUPS．
334000 cs	PUSH EC
34400 E 0604	
354010 coestu．	GROUP：CALL SPACE
	：SET UP FOR EACH

Table 2：The printer＇s character set．This
listing shows the result of running the listing shows the result of running the progras
（values 20 to 5 F
inclusive）are an upper case ASCII character set，while the last six
lines（from AO to FF）are a Kata Kana（Japa－ ines（from A0 to FF）are a Kata Kana（Japa－ are not specified for the controller chi used and so represent＇noise＇

28		\％ 8 \％	
${ }_{46} 3$			HTJKLMA
59	PQRS	Tuve	
$6{ }_{6}$	258：3		\％atysxay
	－14＊		\％x．3\％
89	\％？ s_{5}	$3{ }^{3}{ }^{\circ}$	88
90			
日is			
${ }_{\text {cin }}^{\text {cid }}$			＊Jut
	三¢x		口7う＂
${ }^{\text {E }}$			\％

well decoupled for best performance， using $20 \mu \mathrm{~F}$ ， 36 V electrolytic capacitors solenoid and ground．
Connexions to the matrix printer itself are through a pair of non－reversible suppled with me printer．One of the connectors is 14 way and supplies the sole noids，while the other is 10 way and carries the motor，paper feed and timing signal （Fig．7）
WIRELESS WORLD AUGUST 1982

The two boards（interface board and tiver board）were interconnected by D＇connectors．The precise allocation of the pins to the various signals does not natter too much provided that there are mple ground－return lines．Cable length gnals are all relatively low in frequency， but anything over 1 m in length could cause noise problems．The screen of the connect－ ng cable should be earthed to impro eliability．

Demonstration program

 ly lon in Z80 a he printer by causing it to display its com－ plete character set．The results of this program are shown in Table 2． 100 program is loaded into memory astem， and is entered from a system monito which first sets up the stack pointer（SP register），and then pushes a return addres 4000 instruck（e．g．by the use of a CALL
cutes a RET instruction when finished This article is not the place to introduce assembly language programming, and so
instead of a detailed description of the program, notes are given to assist those wishing to use all, for their own purposes.
The port address of the printer is de-
clared in an EQU pseudo instruction at ine 14. This address must correspond with the address used by the hardware.

There are three interface driver routines There are three interface driver routines
interest, namely RESET, PUTPRT and NEWLIN. Starting at line 118 is a subroutine called RESET. The purpose of this is
to 'set' the printer controller should a o 'set' the printer controller should a previous program error have left it in an be achieved by using the RESET bus signal. As good practice, a CALL to RESET should be made at the start of each program which accesses the printer. No
registers are modified by this subroutine. PUTPRT at line subroutine of note, PUTPRT at line 96, may be regarded as causing the character sent to it from the ' A '
register to be printed. PUTPRT waits until the printer is ready, then transfers a character from the ' A ' register to a print buffer in the printer controller i.c. If the printer error bit is set, the subroutine will
halt at address 405B. Normally this point halt at address 405 . Normally this point
would contain a code to alert the operator to a printer problem. If there is no error the subroutine returns, leaving all registers unmodified.
The third and final subroutine to inspect is NEWLIN, at line 60 . The purpose of
this is to cause printing of the line in the his is to cause printing, of the line in the
controller print buffer, which it does by sending an 0A character (line feed) to the printer. Once again, this routine does not change any registers. It should be noted
that this subroutine must be called at least once every 40 characters to avoid the print buffer becoming full, in which case, overflow characters will be lost.

Conclusion

In this article it has been shown that it is possible to build a low-cost printer for a home-computer system. Although this de-
sign was originally intended as a means of printing programs from a Z80-based system, it may easily be adapted to make it compatible with any popular microprocessor and for use in any application where a permanent printed record is required, only allows upper-case graphics characters o be printed is not a problem for the majority of applications.

BRITISH HI-FI

${ }^{\text {Inm }}$ informed by John Crabbe of Hi -F Newuring company's claim that the QUAD FM
factur brings 'Home the world's best broadcasting
system at the touch of a button' is ethically system at the touch of a button' is ethically
justified, as Acoustical, in connributing to th justified, as Acoustical, in contributung to the
support of the Phillarmonica, helps to pay the
piper.
Most other British high fidelity manufactur ers do not, and subsist upon music making of all kinds parasitically, and thus have no prestige o reputation internationally amongst serious con By and large, British high-fidelity product are not materially compecitive or comperitive in
terms of dazzilig or convenient features. But they are perthaps more compeuive quaitraively
Unhappily, however, recognition of their qual ities is pretty well reserved to engineers, technicians, and 'hi-fi fans'. Most serious consumer of reproduced music, here and abroad, don'
know about them, and have precious little op portunity to learn.
Thus, while the programming and technical quality of the world's best broadcasting system
is revered - and envied - internationally is revered - and envied - internationally,
British high-fidelity products are known abou and covered only by the membership of tin
audiophilic cults, here and abroad I have at hand No 1 of the 1982 Edinburgh Festival newsletter. It's publication wa apparenly entirely supported by the advertise
ments of hoteliers, restaurant-keepers, one or two insurance companies, and a bank or two Many people who will attend Festival events, , wish to, and many who - due to privation or
remoteness - are dependent upon broadcas reception and recordings for musical enjoyment during most of the year, will remain in ignorclyde Transcription Devices, the makers of the systemdek, and even Tannoy - not to mentio KEF, B\&\&W, Surden, Castle, Celef, Mitchell, Creek, Boothroyd, Stuart-Meridian, and even Wharfedale, south of the border.
It would be too charitable to say that the Britis. A harsher but more appropriate in the ment would suggest that it is contemplating its own navel from the inside, is unwholesomely
involved and beguiled subjectively by its own ${ }^{\text {entrails. }}$ John F. Withey
Pollockshields
Glasgow
SCIENTIFIC COMPUTER Please could you note in your records that I an
the new Editor of The Sci. Comp. 80 monthly newserter for users of the scienific computer
designed by John Adams, M.S., details of designed by John Adams, M.Sc., details Any of your readers who built the SC80, wh are not members of the group, woul findit well in a plethora of hardware, software and tain a plethora of hardware, sotwwe
firmware. Mr Adams contributes articles montuly, and has developed no less than five
versions of the BURP high level language, an excellent 64 K d.o.s. (CP/M M compatible), a standard Basic interpreter and some excellent
hardware improvements. These include a 32 K
dynamic memory expansion, 64 K mapping circuits, interrupt vector circuits, ASCII character generator modification and a floppy disc
controller p.c.b. Details of all these are in the controller p.c.b. Details of all these are in the
newsletter. One year's subscription is 66.50 for U.K. members, $\varepsilon 8$ for the continent, and 88.50 for el
Iow. would like to take this opportunity to thank Mr Puilip Probetrs for the past nwo years of
excellent newsletters under his editorship. excellent newsletters
hope I can do as well.
hope I can do as well.
John Hodson
189 Trent Valley Road
189 Trent Valley Road
Stoke-on-Trent, ST4 5LE

AMATEURS AND CB

C. G. Howar''s comments in the June issue of WW. under 'Amateurs and c.b.'. highlighted the indifference of the Home Office towards illegal
c.b. amateur operations. But what about th c.b. amateur operations. But what about the
specific identifiable violations where the Home Office attitude is downright irresponsible? 1 am referring to the illegal pirate radio sta-
tions that flagrantly operate in the v.h.f.ff.m. tions that flagrantly operate in the v.h.f.f/f.m
broadcast band. There are a number of them, but two examples serve to illustrate the general case - 'Thameside Radio' and 'Liberation
I asked British Telecom why these stations were not closed dowin and imagine my surprise as a legal broadcasting operator, when I was tol
that the Home Office would not give the neces sary authorization for British Telecom to do so Must a campaign be mounted privately to en sure that the law of the land is upheld when a
government department refuses to do so? Con tinual violation of the law in this way is a form of anarchy, in principal every bit as bad as other more subversive, movements.
The Home Office, in supporting the violatio of staturory laws by its non-action is encourag growing number of examples of where gover growing number of examples of where govern-
ment legislation controls the actions of responsi ble citizens but not those who chose to flout the law of the lan
H. Clayton
Northwood

CARTRIDGE

ALIGNMENT
Referring to P. E. Cryer's letter in the June 82 del the layout instructions in his second paragrap
together with the associated diagram on the next page. However, it is of course quite true, as h
says, that it makes so diference to the geometry says, that it makes no difference to the geometry
whether you think of the stylus traversing ove whether you think of the stylus traversing over
the record, or the record traversing under th stylus, all wat matters is the relative moment of Two or three points seems to warrant com ment: firstly, there is nothing particularly new or useful in finding out that the proportion of
tracking angle errors depends on the choice of tracking angle errors depends on the chaice of
setting radii - of course it does. It is necessary in the interests of minimixing tracking errol distortion, for the angular error to vary inversely
with radius and as Cryer's figures indicate, this with radius, and as Cryer's figures indicate, this
is exacly
what does happen. The relationship o tracking angle errors at both outer and inner
radii to the error at the radius for minimum
angle ($m y \mathrm{R}_{\text {minin }}$) depends on the amount of dip
in the curve of angle across the record, as i obvious from my Fig. Secondy, I cannot understand Cryer's state-
ment that my oun factore " ment that my own factors "would place B on the
other side of the datum line". If the datum lin is defined as a line through the two points where the stylus cuts the circles having radiii p and q as
in his diagram, then obviously the intersections at both inner and outer rocord grooves (his B
and A) must necessariky lie on one side of the and A).must necessariby lie on one 'side of the
said datum line, and none of my 'factors' can alter this condition. Thirdly, Cryer's roundabout method of calculating p and q as described in his has
paragraph, cannot work. The expression ${ }_{p q} / p=(p+q)-p$, is meaningless, a mere iden$\mathrm{pq} / \mathrm{p}=\mathrm{p}+\mathrm{q})-\mathrm{p}$, is meaningless, a mere iden-
tiry which reduces to $\mathbf{q}=\mathrm{q}$. O bviously it cannot
be used to separate q from be used to separate q from p when ($\mathrm{q}+\mathrm{p}$) is
known. The whole point of my final paragraph known. The whole point of my final paragraph
in the Oct ' 81 issue, was to show that one did not need to go through the whole procedur based on formula $4(b)$ every time, in the light of
the linear $y=a+b x$ retationshi the linear $y=a+b$ relationsship ascertained at
midde of paragraph. The fition outcome, which cannot be simplified or improved, was to $\begin{gathered}\text { evaluate } p \text { and } q \text { (my } r_{0} \text { and } R_{0} \text {), from the } \\ \text { empirical } \\ R_{0}=x p r e s s i o n ~\end{gathered} R_{0}=79+h C / 84$ and empirical expression $\mathrm{R}_{0}=19+\mathrm{hCl}$
$\mathrm{r}_{0}=12+\mathrm{h} / 71$ or ideally $\mathrm{L}^{2}-\mathrm{C}^{2} / \mathrm{R}_{0}$. For the
and recommended overhang value of $h=2600 / \mathrm{C}$
this reduced further to $\mathrm{R}_{0}=110$ and $\mathrm{r}_{0}=49$ this reduced further to $\mathrm{R}_{\mathrm{o}}=110$ and $\mathrm{r}_{0}=49$
(ideally 48.81 , but the 0.19 diacrepancy is insig. nificant in practice).
If one uses a protractor, or my setting gauge,
as in the November 1981 as in the November
need to evaluate the offset angle O ($m y ~$
$B)$, but desired it can be very easily obtained, within about 0.1° accuracy, from my empirical expres
sion $4380 / \mathrm{C}$. sion $4380 / \mathrm{C}$.
R. J. Gilson
W. .inchester
Hampshire

HERETIC'S GUIDE TO

MODERN PHYSICS

I was delighted to see you arre still providing a
forum for open and consuructive criticism of forum for open and constructive criticism of
modern theory. modern theory.
That Dr Mu
That Dr Murray should need to assure his colleagues that he has "no wish to cause you sics. Doubtless his article is the result of a long
and critical investigation of meder and critical investigation of modern theory, and
he would welcome any constructive criticism o he would welcome any constructive criticism of
his article. Equally doubtless, a few of his col-
leagues know his investigation is a deliberate leagues know his investigation is a deliberà
attempt to revive the flat earth theory and Max atelli's wave theory of light - an insult to Newton's corpuscular theory of light. I predict Dr Murray will soon learn to appre
ciape the truth of the supreme investigator ciate the truyth of the supreme investigato
Michael Faraday's bitter response to the hos tility to his theories of the self-satisfied mathe maticians of his day - A man who mak given case, ought to be competent to investigat
it." Many Nobel prizes were awarded for conrriMany Nobel prizes were awarded for contri-
butions to the basic premise of relativity - 'that nothing in the universe can rravel faster than the
speed of light. Cerenkov received the 1958 prize speed of light. Cerenkov received the 1958 prize
for his experimental proof that "when charged aromic particles pass through water or othe media ata speed in excess of that of light itself,
bluish light is emitted."

Aspden, Dingle, Essen, MacCausland and
other critics of relativity are dismissed as cranks and crackpots by the Establishment. Is there any member of the Establishment competent to investigate the strange case of why the crank
Cerenkov received a Nobel prize? M. G. Wellard

Kenley
WALSH FUNCTIONS
I write with respect to the recent articles on 1981, pp 31 et seq. and WWW Jan. 1982, pp 47 et seq.) to raise the following points.
of the Rademacher functions, shown in Fig. 4 $(3, \theta)$, Wal $(7, \theta)$, Wal $(15, \theta)$. . The associated by "exclusive Or" processing all combinations of the Walsh functions. Thus, for examanatie reerring to Fig. 3, the Wal ($2, \theta$) function is deived from Wall $(3, \theta) \oplus$ Wal $(1, \theta)$ and should be
nverted in the Figure. Several other derived Werted in the Figure. Several other derived correctly-signed set is enclosed for reference.
There is also an error in Fig 5 .
$\mathrm{Wal}(5, \theta)=\mathrm{Wal}(2, \theta) \oplus \mathrm{Wal}(7, \theta)$
which does not hold for this diagram. I enclose a modified diagram which will satisfy this reGordon and Brammer also contains these errors. I mention these slips since many people seem
to be becoming interested in these functions放 be vecoming intere introductory articles, such as Mr Roddam's are worth these small corrections in Re interests of accuracy
R. T. Irish,

Wilts.
Mr Irish
Mr Irish enclosed an amended set of functions, for reasons of space. They can be obtained from his office - Ed.

FUNCTION OF

FUNCTIONS

With reference to Mr Sutherland's letter (June),
I think that the view of sidebands as mathematical fiction is not entirely unfounded. I believe that a periodic complex waveform and it's Fourier series expansion are not one and the
same thing in the sense of somehow being freely same thing in the sense of somehow being freely
interchangeable without the active involvement of suitable physical devices to perform the complex series and conversion and vice versa. On
this view a modulated radio transmission propagates in its complex form and there is no need to postulate any sidefrequencies at the transmitter end. The sidefrequencies are generated at the receiving end by tuned circuits. These have
the capability to store energy and thus perform integration, thereby generating the continuous waves known as Fourier series components or
idefrequencies. The physical process by which siderrequencies. The physical process by which by considering the following experiment: Suppose that a high " Q " tuned circuit is
djusted for resonance at 110 kHz and placed near a 100 kHz oscillator. Clearly, the tuned circuit will not begin to oscillate since any such
oscillations would move in and out of phase with oscillations would move in and out of phase with
the oscillator, thus receiving just as much help the oscillator, thus receiving just as much help the oscillator be decereased whenever out of
phase with the tuned circuit and increased when phase with the tuned circuit and increased when
in phase, then the tuned circuit would receive in phase, then the tuned circuit would receive
more help than hindrance and would build up scillations. It would oscillate at 1110 kHz whilst
receiving it's energy in burst of 100 kz . receiving it's energy in burst of 100 kHz . As-
uming a very high ' Q ", the inertia of the tuned circuit would be large enough to smooth out any amplitude variations and it would appear to
receive a continuous wave input $($ i.e., one of the eccive a continuous wave in put (i.e. one of the
sidefrequencies). In fact it would be generating the continuous wave.
For the above process to take place the ampli-
ude of the oscillator would have to be altered ude of the oscillator would have to be altered
(i.e. modulated) at 10 kHz which is, of course, the appropriate modulating frequency for the

110 kHz sidefrequency.
It is interesting to note that it would not be essential to alter the amplitude of the oscillator in order to generate the 111 kHz response. The same effect could be achieved by alternating the
phase of the oscillator at 10 kHz , which suggests phase of the oscilliator ar lokHz, which suggests
how sidefrequencies are generated in the case of suppressed carrier, frequency and phase modulation systems.
So, although So, athough the sideband concept is a very
useful, even essential part of radio theory, it is not necessary to assume that sidefrequencies
have physical existence prior to the complex have physical existence prior to the complex
waveforms arriving at the receiving equipment. waverorms arriving at the receiving equipment. Cathode Ray (September 1955, under the
heading "Fourier - Fact or Fiction") continwous sinewaves are not the only possible form into which complex waveforms may be "decomposed", and hence it makes sense to assume that
he sine form occurs simply because of the sinethe sine form occurs simply because of the sine-
wave nature of oscillations in tuned circuits at the receiving end of transmitter - receiver link. G. Berrins
Frimley

Surrey

REMOTE CONTROL FOR

HI-FI

I read Mr. Kirby's article on a remote control
hi-fi system (WWW, March 1982) with sind terest, as I was at that time busy designing a similar system. I too used the Mullard voltagecontrolled potentiometers for control of the au-
dio signal path, but found a much simpler and o siggal path, but found a much simpler and
heaper remote control system. The major drawtrack sy of Mr Kirby's system seem to be the fact that the Plessey receiver (ML
22) only has three analogue control outputs; 22) only has three analogue control outputs;
hence the need to use a 'stepped' volume control. The Motorola remote control system
MC 14497 - transmitter and MC 6203 MC 14497 - transmitter and MC $6203-$ receiver) has four analogue channels and a host
of other useful features. For example, toggle action volume mute and d a single button operaion which sets three of the
50% and the fourth to 30%.
This system is the same as that used on Grundig remote control television and so the modifications for hi-fi applications are quite simple. I
wondered whether Mr Kirby was aware of this possibility and if not, and he was interested, I could send him some details. $\xrightarrow[\text { Bioengineering Unit, }]{ }$
Bioengineering Unit,
University of Strathclyde.
The author replies:
The author rephies:
It seems from Dr Lovely's comments that we are heading in opposite directions. I regard the
use of the wo maile Ise of the two analogue outputs on the Plessey have used all digitial tone level settring controls. The reason I did not was my inability to design a tereeo obass and treble contror circuit using less
han four of the Analog Devices AD7110 chips. These cost around $£ 8$ each and the extra expense compared to the use of the Mullard analogue one control i.c. seemed unwarranted.
I chose the Plessey remore contro I chose the Plessey remote control chip set
(after looking at several alternatives) because of (after looking at several alternatives) because of
the analogue and digital outputs available on the
ML922, and their use of an infrared photodiode ML 922, and their use of an infrared photodiode
to logic level integrated preamp, which saves to logic level integrated preamp, which saves
much trouble with discrete high gain amplifiers.

Also a whole family of receiver chips are available, including one with a 5 bit latched outpu the same transmitter
There is a toggle output on the ML922; this is
used to switch the loudspeaker headphones re used to switch the loudspeaker headphones relay, a quite effective mute control. In practice
the $3 / 8$ full scale normalised level of the analogue outputs is not a disadvantage; I rarely alter
the tone by more than $1 / 8$ of the scale. the tone by more than $1 / 8$ of the scale.
My choice of the AD 7110 was for the relative My choice of the AD7 in was for the relative
simplicity of driving it from a single chip simplicity of driving it from a single chip
microcomputer (the Zilog Z80), which can be
programmed in programmed in Basic, as well as machine code.
Then the interface between the controlling computer, and the controlled preamp/tuner/record deck can be some simple buffers. All the decod-
ing from the received codes to the sequences ing from the received coles to the eqequence necessary to drive, say, a synthesising tuner
could be handled in software. This would make it easily adaptable to the various units commerquencing logic used in the published design are an interim solution.

D.C. INPUT OR R.F.

 OUTPUT?In "Amateur radio" for June, 1982, Pat Hawker laments the replacement of "d.c. input power"
regulations by new limitations "d regulations by new limitations on "dBW carrier
power" in the revised Amateur Licence power in the revised Amateur Licence not particularly welcome, the change to an "r.f output" criterion is long overdue. in the days of valve transmitters and constant-carrier modes, when both h.t. voltage and anode current were metered, and the meter needles would stay stil
to be read! For most radio amateurs - like it or not - those days are gone. Either our transmit-
ters tend to be solid-stare ters tend to be solid-state and have only r.f.-
output metering or they are primarily desiged output metering, or they are primarily designed
for s.s.b. In both cases it makes more sense to measure r.f. output, and this can be done with
and acceptable accuracy for the Amateur Service. At
low powers, the accuracy requirement is low powers, the accuracy requirement in
minimal (at least for regulatory purposes), and at higher powers either commercial power
meters can be used, or extremely simple homemeters can be used, or extremely simple home-
made equipment, such as an existing s.w.r. made equipment, such as an existing s.w.r.
meter can be calibrated accurately by transfer. Although a d.c.-input limit does encourage
meter high-efficiency amplifiers, is that what we really
need? In today's crowded bands, the most important characteristic of a signal is its quality, and an r.f.-output limit allows amateurs to operate less fficient, manner.
the demise of d.c.-input limits is a welcome advance, but other relics of the past remain in 6 dB dif ference berween the power limits for c.w.
(A1AB) and for s.s.b. (J3E). Can anyone ex plain how a c.w. sifgnal with a well-shaped d keying waveform differs significantly in interfer-
ence potential from an s.s.b. (JJE) signal of the same peake envelope power, and why the power
limits for the two modes should to pe limits for the two modes should not be the
same? The 6 dB penaty against c .w. is a legacy same? The $6 d \mathrm{~dB}$ penalty against c.w. is a legacy
of the transition to s.s.b. from plate-and-screen of the transition to s.s.b. from plate-and-screeen
modulation, and has no current relevance. In any further revisions of the Schedule it deserve a decent burial, alongsid
Ian F. White, G3SEK
Abingdon
Oxfordshire
WIRELESS WORLD AUGUST 1982

THE NEW

ELECTRONICS

It is at least eight years since I shared the responsibinty for selecting graduates for employment in an electronics development laboratory,
and I read with interest and dismay Mr Jaques article in the January issue.
article in the January issue.
I was interested in that some of Mr Jaques questions were similar to the ones I put to interviewees, and didmanayed because the responses
he obtained mirrored so closely those that I he obtained mirrored so closely those that I
obtained all too often. True, my own efforts were rewarded by the occasional innerviewwee
who did u understand some of the principes with who did understand some of the principles with
which he had been presented and culld perhaps which he had been presented and could perhaps
even describe his final-year project clearly and accurately! Indeed a few such went on to be-
come much respected colleagues come much respected colleagues.
However it is not Mr Jacques
However, it is not Mr Jacques' article which
prompts the writing of this letter, but rather the contradictions and inconsistencies in the letters conrradictions and inconsistencies in the letters
about this article which appeared in the March
and April issues. In a letter of reasonable length In can only draw attention to a few of these. There is much to agree with in Mr Graham's
letter - I too would reach for my text books to letter - I too would reach for my text books to
deal with Tensor analysis etc., etc., etc., and deal with Tensor analysis etc., etc., ett., end
must agree entirely with his reference to "learnmust agree enirely with his reference to cearn-
ing by rote" but what is the relevance to Mr
Iaques articte? Jaques' article?
Mr Jaques'
nature - for example, surely a qualified nature - for example, surely a qualified
electronics engineer might reasonably be expected to derive the expression for the gain of the amplifier configuration in thirty seconds
flat, even if didn't remember " $-R_{2} R_{1}$ ". Does it really require a rext book on op-amps to deal $\underset{\text { anyway?) }}{\text { Perhaps Mr Graham would tell us - I really }}$ Perhaps Mr Graham would tell us - I really
would love to know - which text book does he would love to know - which text mook does he
reach for when he wishes to remind himself about Ohm's Law?
Surely the point is that an elementary inderstanding of circuit theory and device fundamen-
tals is all that is required to answer most of Mr Jaques' questions? That is, are they not nearly Jal designed to avoid testing the mere ability to recall tabulated data from the candidate's memory? Even if a graduate cannot recall a precise
expression governing the current/voltage relationship for a seminconductor device, is it not reasonable to expect him to understand, that it is
a function of temperature, for example? On the subject of final year projects, my experience was that studentrs gor involved in muxh too complex systems without any hope of fully
understanding them in the limited time availunderstanding them in the lilimited time avail-
abbe! Whilst I am sure that Exeter students have written many good ifinal year reports, does Mr
Graham really believe that the result of a few weeks project work is to produce an "expert specialist"?
Turring to Mr Wehner's letter, I will ignore any case, highly suspect. However, he goes on to make my point for me very well. He takes Mr Jacques to task for not drawing his (Mr Wehn-
eres), "tandard" amplifier circuit. One might er's), standard" amplifier circuit. One might
quibble with the precision of Mr Jaques' "the gain berween X and Z " but there is no amber "tigu-
ity. Mr Wehner wants to define the gain reiity. Mr Wehner wants to define the gain re-
ferred to some point not even present in the ferred to some point not even present in the
circuit - why? Even if "input impedance" is not given its normal meaning, the circuit shown
does have an infinite "source" impedance - so

Why the complication? Jacques' Figure 2, surely a graduate might be
reasonably expected to spot and question any such ambiguity? It is my own belief that extraordinary
progress in electronics has led to the very thing progress in electronics has led to the very thing
that Mr Graham objects to: learning and examination by rote. Inadequate emphasis is given to understanding and applying fundamentals. This, may not matter for curtan systems "designers",
However, one would hope that some of the electronics engineers we are educating migh actually be capable of designing the "guts" of
those fascinated multileged back boxes we all those sascinated multilegged black boxes we al
love so dearly. New processes, new devices, new circuits, all require an understanding of, and an ability to use, the fundamentals of which Mr
Graham is so scornful - or have we already left it to the Americans and the Japanese? Whilst writing this tetter, I asked my son
(who graduated with first class honours in (who graduated with first class honours in
Electronics Engineering and Physics about five years ago), to read and comment on your contri-
butor's article and letters as I to yot butor's article and letters as I thought it appro-
priate to obtain a perhaps more modern view priate to obtain a perhaps more modern view
than my own. (Although I do not actually qualthan my own. (Although I do not actually qual "Grandpa".) My son's reaction was not incon-
sistent with my own, but I feel inclined to give him the "last word". He recalled a comment he made to his examiners - "I could have done better ifI had spent. more time simply memoriz ing information rather than trying to under
stand it all . . . the examination questions all too often merely required the regurgitation of
chunks of lecture notes . . a computer prochunks of lecture notes. . . a computer pro-
grammed to do the same in response to a few key words, could have got a degree."
C. W. Ward

C. W. Ward,
$\begin{array}{c}\text { Yelverton, } \\ \text { Devon }\end{array}$

THE DEATH OF

ELECTRIC CURRENT

After Dermond O'Reilly's second blistering at-
tack, May 1982, perhaps Ivor Catt should slink away with his tail berween his leg When discussing a TEM wave, it is common practice to use the formula O'Reilly objects to
$\mathrm{E} / \mathrm{H}=\sqrt{\mu \mathrm{E}}$. See for instance Bell, Wireles World, August 1979, page 44, and also A. F. F. Kip, "Electricity and Magnetism", page 332 ,
equation 12.34. Kip uses the popular conven tion, where vectors are written in boold type and
the amplitudes of vectors are written in faint the amplitudes of vectors are written in fain
type. In Wireless World July 197, page 73 , the type. In Wireless Wo orld, July 1979, page 73, the
diagram immediately above my equation (a) tha O'Reilly obiectst to makes my equation (a) that that that amplitudes are being discussed.
Para. 3. Where is it said by anyone but
O'Reilly that a wave is called O'Reilly uhat a wave is called dransverse EM
because displacement current On the contrary, a wave is described as TTM because E (not $\mathrm{dD} / \mathrm{dt}$) and M are transverse.
$\mathrm{dD} / \mathrm{dt}$ has nothing even exist nothing to do with it, and will not O'Reilly' makes thise of a steady point earlier in signal.
same paraeraph same paragraph, that the bulk of a steady TEM
wave contains no dis Following your nolicement current. 1980 issue of mour publication in the December rent', you published a letter by R. T. Lamb and my reply to his letter, both in the March 1981
issue. The following issue. The following quotations from my reply
show that I found Lamb's letter muddled;

LETMERS

I think Mr Lamb has reversed physicists and engineers." "Lamb sems to call Theory N ' 'hen current thode and Theory H 'e-m heory"
"This is a broad generanizathor and, iniks all such, has excepuions, so please don't rush to
quote them atmel You then published R. T. Lamb's reply to my reply in September 1981. Here the plot really "hickens. For instance, I have no idea
what "principal assertion" he refers to in his

"I was pleased to note that Ivor Catt, in his reply to iny leter (March issue),
nother exame yet of of the truth of tis principal assertion."
Presumbably he is promoting a particular philosophical position in he manter of theory,
fact hyyothesis, ruth and so on. If he is, then he should give us references to the originator of His philosophical view, or it if originates with Which model of Kepler'silis he discussing in is second paragraph, September 1981, when he ${ }^{\text {says: }}$

Kepler's problem was that the central conThere should have been more information, or reference to the elitereature mererer the partion, or aciviry of Repler is discussed. Lamb may be
alking about hee ellipes, or the Hammony of the Spheres, or something else. Again, we see
Lamb's ability to pichhork confusion into a discussion.
In the December 1981 issue, you published y reply to April 1982 you published his reply. Aggain
Lamb contuses the issue. Even though in m y laresst reply, December 1981, I wrote, "IfL Lamb
thinks (unike me) that a mere model is in links (unlike me) that 2 , mere model is is in
dispute, why the tenaciity?, Lamb comes back with the reply, April 1982; " \ldots. . IIvor Cart| seems to acknowledge that we are ediscussing models of reality and not reality istelf.' A dialogute, or debare, between two paries is other man is saying.
Lumb's apparent
Lamb's apparent assertion in paragraph three Citcharge experimentally pesatabisished thed that Aischarge current does not continue for ever hat paragraphoh, what does he mean by " "ne of wave model"? Is that phrase yet another always name my theories clearly In his seand prargraph Aprit 1982, it is dearly specify which "other correspondent lave shown that the " insurmountable diff culties 'introduced dy ρ and J exist only in M
Catr's mind." N o one has retrieved classical electromagneeism from the death-blow dealt to is by the quession in my leteter of August 1981 . classical electromagneism collapsed in Augus 1981 , so I am sending a personal request to each Wireless World; Professors Mott, Dirac, soll Brown, Lindsay, Bleaney, Gosling and Mr G G. Scarrotr.

The internal contradiction in classical electro-
ioms;

1) A itransverse electromagnetic wave (TEM)
travels without change at the speed of light
in a vacuum, guided by two perfect conduc-
) ${ }^{\text {tors. }}$ Lines of electric flux terminate on electric
charge. (This is one of Maxwell's equa3) Electric (his is one of Maxwell's equa) troyed. charge cannot be created or des-
2) Electric charge travels slowly in a conducto

Eiectiric charge travels slowly in a conductor
significanty slower than the velocity of light in a vacuum.
Now consider a TEM voltage step travelling to the right between two perfect conductors. Behind the step, the D lines from the upper
(more positive) conductor terminate in (more positive) conductor terminate in
electrons, n per cm length of conductor, in (on) electrons, n per cm length of conductor, in in
the lower conductor. These electrons are in
addition to the electrons, m per cm , which neuaddition to the electrons, m per cm , which neu-
tralise the holes in the molecules of the lower tralise the
conductor.

Ahead of the voltage step, m electrons per cm

 length of lower conductor are present, neutraliscond, the voltage step moves forward nanose(approx.), so that n new electrons appear in this section of the lower conductor, to terminate the wo conductors. Where do they $\begin{aligned} & \text { an between the } \\ & \text { the }\end{aligned}$ from the upper conductor, because by definition, displacement current is not the flow of electrons. Not from somewhere to the leff, be-hind the voltage step, because such electrons hind the voltage step, because such electrons
would have to travel at the speed of light in a vacuum. Ergo, classical electromagnetism, which for this purpose includes both Theory N and vor Catt
C.A.M. Consultants
St. Albans

AMATEURS AND

BAND 1

My attention has just been brought to the fact hat the BBC is intending to use band I freque
channels $B 1$ and $B 2$, for schools broa casting. As a radio amateur with a keen intere in the 50 MHz band I find this very unsettling leads me to believe that there really is som hing wrong with, the way frequencies are allo-
ated in the UK, since if the whole 88 to 108 MHz band were available for broadcast, the BC could have far more suitable channels t nae. 1 had very much hoped that radio amateurs in $\mathrm{OHHz}^{\mathrm{MH}}$. Would would not require a band MHz ide; 50 to 50.5 MHz would be quite adequar f, however, the BBC intends to use these fre ng hole" from 50.0 to they leave a "list 50.2 at least, 50.5 MHz if possible, since these frequencies ar If scientific value.
I and many othe
I and many others have spent a lot of time resting partort in the study of this most in here is part of the spectrum, and propagatio only the other week I was able to hear the Zha beacon in Brazil for the first time. Therefore it would be very sad indeed if all of
our efforts were to come to nothing and we were unable to even listen on 50 MHz in future
BBC please take note. Mr G. M. Pheasant tate Great Wyrley

BLUMLEIN AND

STEREO
I have followed with interest the correspon-
dence in your columns relating to the invention of stereophonic colisc recording.
It now seems that the earlisest existing stereo-
phonic discs are by Arthur Keller at America made using dual groove tell Bell labs in December 1932.
The earliest known ortoral Stereophenicic discs were cut at EMI for A. D. tereophonic discs were cut at EMI for A. D.
Blumlein in 1933 and early 1934. This work was covered by his classic patent 394.325 which was oplied for in December 1931 . On recording this document I was drawn to ried out research on stereophononc disc recording before its application was made. As a result I
have made some effort to find whether work was ave by Blume effor tofore find whe mether work of was
done
Columbia Gramophone Columbia Gramophone Co and the Gramo-
phone Co to form EMI in 1931. Unfortunately phone Co to form EMI in 1931. Unfortunately I
found that his co-workers at Columbia are no longer with us and EMI were unable to confirm
or deny the possibility of such earlier work or deny the possibility of such earlier work.
There are however to my knowledge seven references to such work and among these there are which I feel are important.
One by James Moir was
One by James Moir was based on a discussion
between Moir and Blumlein during world Wa between Moir and Blumlein during World War who were co-workers of Blumlein. H. A. M. Clark worked with Blumlein at Columbia from
929 and was therefore in a position to write with authorisy.
I have found it most frustrating that the work
of probably Britain's finest electronic electronic of probably Britain's finest electronic electronic
ngineer is not proclaimed to the world at large and that his long promised biography has not yet appeared.
It does no
It does no credit to EMI that they have done
o litte to publicise the work of Blumain so hittle to publicise the work of Blumlein whose as sound recording, televevision, radar, meaarements, and electronic circuitry that we still make us

References

References
H. A. M. Clark, G. F. Dutton, P. B. Vanderlyn. 'The Stereosonic Recording and Re-
producing System'. IEE Proc. Vol 104 pt. producing System'. IEE Proc. Vol 104 pt. B
1957. Reprinted
July/August
1957 IRE Transactions. 'Hifi News \& RR' Tape re-
James Moir 'Hif
corders \& Stereo Pt 2 the Audio Fair 1957 corders \& Stereo Pt 2 the Audio Fair 1957
p483. 3. Donald Aldous 'Hifi Neus \& $R R^{\prime}$ Supple-
ment 1977 ' 100 years Recorded Sound' Chronology p85. 5. H. W. Hellyer 'Stereo Sound' 1974 plo. 5. H. W. Hellyer 'Stereo Sound' 1974 p10.
6. Gordon JJ King 'The Practical Hifi
 7. Percy Wilson. 'The Gramophone Handbook'
1957 p211. R. Maude
Dalton

Dalton
Huddersfield

METEOSAT HIGHRESOLUTION IMAGES

Enhancements for receiving high-resolution pictures from Meteosat II on a home-built station. The original weather-satellite receiver, designed for Tiros-N high-resolution mages, was described towards the end of last year.

This article describes additional equip ment required to receive Meteosat primary eceiving system outlined in a recent art le. ${ }^{1}$ Meteosat-2, which is in geosynchro nous orbit at zero degrees longitude he analogue Wefax service.
The Wefax service transmits data by means of an amplitude modulated 2400 H .m. subcarrier, and the reception of this mportant to understand how the Meteosat system as a whole operates, and how each service fits in. The spacecraft has a mirro radiometer similar to that used in the Tiro rries, but because of its stationary posidifferent. The spacecraft spins about its vertical axis at a rate of $100 \mathrm{rev} / \mathrm{min}$. The radiometer looks out of the side of it and hus the spin provides the line scan. Th frame scan is obtained by tilting the mirro
from south to north over a period of about minutes. There are five sensors; two are afra-red, two are visible-light sensitive nd one is sensitive in the water-vapou nd. Their spectral bands are isible (vis.)
0.4 to $1.1 \mu \mathrm{~m}$ infra-red (i.r.) $\quad 10.5$ to $12.5 \mu \mathrm{~m}$ Since the amount of data that may b transmitted in 25 minutes is limited, only one of each type of sensor, or one infrared
and two visible-light sensors may be used at once. The basic image format is

infra-red 2500 lines $\times 2500$ pixels water vapour 2500 lines $\times 2500$ pixels

 5000 lines $\times 5000$ pixels 5000 the raw image is digital form to the Meteosat ground computer system at the European Space Operations Centre (ESOC) at Darmstadin West Germany Here it is stored and certain processing carried out, such as the registration of the two visible channels The images are then sectored an retransmitted using Meteosat's S-band transponders as analogue Wefax data for
secondary data-user stations (s.d.u.s) and as full-resolution digital data to p.d.u.s. There are two types of digital images sent from ESOC - 'A formats' which cover the full earth disc, and ' B formats'
which cover the eastern Atlantic and Europe. Both A and B formats are sent at regular times throughout the day according to the current Meteosat dissemination

[^2]
by M. L. Christieson

schedule ${ }^{3}$ and contain, at various times data from all the sensors. The transmis sions are coded on the schedule by A or B
followed by the sensor data that they con tain; for example AI contains full-dis infra-red data and BIV contains the secto ized data from the infra-red and both visible sensors. Bivl contains infra-red
and only one visible channel because the ater-vapour image is also transmitted. Transmission duration varies, de pending on the amount of data being sent from a few minutes to 29 minutes. The shortest format at present is BIW and the
longest AV. In general terms BIV and AI are sent every half hour during daylight with water vapour replacing visible during darkness. AV is sent four times a day. This chedule is however subject to changes. These transmissions can occupy up to six
consecutive four-minute slots in the schedule and normally take place on onl one of the transponder channels. The general characteristucs of the p.d.u.s. tran missions are shown in Table

Antenna and receiver design

The basic receiver described for a.v.h.r.r.r. quency is very close to that of the h.r.p.t. from NOAA-6, and in the prototype sta-
tion the down-converter and demolulat tion the down-converter and demodulator are common to both systems. Suitable
crystals are used to retune the downconverter to either of the Meteosat fre quencies. Both frequencies are available because an s.d.u.s. demodulator is used to receive Wefax formats in addition to th
p.d.u.s. data. It is useful to have the We-
ax facility in order to receive ESOC ministration notices.
A completely separate antenna and pros y means of a coaxial relay at the input he down-converter. The preamplifier de ystem, except that the combiner section is not required since a single dish antenna used. Due to the removal of combiner loss he noise figure can be reduced to around dB. This corresponds to a noise temper ure of 75 K . The antenna noise tempera
ture is the same as before, 70 K , so the value of the system noise temperature, $\mathrm{T}_{\text {sys }}$, is approximately $70+75=145 \mathrm{~K}$ The recommended G/T for a p.d.u.s. i $1.5 \mathrm{~dB} / \mathrm{K}$, so the antenna gain, G , shoul The gain of a parabolic dish is given by approximately

$$
\mathrm{G}=\frac{4 \pi \mathrm{AE}}{\lambda^{2}}
$$

where $\mathrm{A}=$ aperture area, $\mathrm{E}=$ efficienc (usually about 0.5) and $\lambda=$ wavelength. Rearranging this, to obtain a gain of G
(expressed as a real number), the required (expressed as a real number), the requir

$\sqrt{\sqrt{\overline{E K}^{\mathrm{E}^{2}}}}$

or for this frequency, approximately
$0.0766 \sqrt{G}$ metres. For a gain of 33 dB this gives a diameter of 3.4 metres
This size of dish is recommended for commercial use, but a significantly smalle
one may be used without a large increase in error rate. The prototype uses a 2.1 metr dish, which gives a gain of about 29 dB Th $=29-21.6=7.4 \mathrm{~dB} / \mathrm{K}$).
The exact design of the prime feed for

the dish will depend on the focus-to-diameter ratio which determines the beam but without spill-over. Figures 1 and 2 show a design which was optimized for a f/d ratio of 0.33. A smaller ratio presents an almost impossible design problem. A square section wave guide was used rather beam width can be obtained before the wave guide becomes too small to support wave transmission. I a dish with a larger fid ratio were used a suitable circular sec-
tion, sometimes known as a 'beer can feed' could be used. Construction of the preamplifier is identical to that used on the iros h.r.p.t. station except that the small receiving element is connected immedi-
ately before the first chip capacitor. The length of the element is adjusted, by means of the brass screw in the top, for optimum noise performance by pointing the waveguide, without the dish, in the general
direction of Meteosat and adjusting it
able 2 Pdus frame format The Table 2. P.d.u.s. fra
are always the same.

sing the s.d.u.s. transmissions. A usable but rather noisy facsimile picture could be The dish mounting may be rigid because the beam-width is not narrow enough for he satellite to move off beam during its daily movement of about two degrees. A
reasonably unobstructed view of the sky must be available and the direction may be estimated from a nomograph or calculated. ${ }^{4}$ Once the signal has been acquired, polarization may be achieceed , focus and polarization may be achieved.
Conversion to 10.7 MHz is converter system used for h.r.p.t. which was in turn based on one for Meteosat s.d.u.s. Careful adjustment of the interdisital filter is needed if it is required to pass h.r.p.t., as well as the Meteosat transmis-
sions, without significant differences in performance on the four frequencies.
If the maximum benefit is to be gained from the lower bandwidth of the Meteosat
transmission, the i.f. bandwidth should be
reduced to about 1 MHz . The simplest way to do this is to remove the $2.2 \mathrm{k} \Omega$ damping resistor across the tuned circuit in the wideband i.f amplifier remainder of the wideband i.i. amp

Phase demodulator

The method of modulation and the modulation index are identical to those used on the h.r.p.t. transmission and so the phase-
locked loop demodulator may be used without change. The base bandwidth of the p.d.u.s. signal is considerably lower than the h.r.p.t., for which the post-detecion filter was designed, and therefore a further filter must be added before the
signal is applied to the p.d.u.s. decoder. This filter is placed after the existing filter output, in parallel with the existing connection to the h.r.p.t. decoder, and has 3 dB cut-off point of 280 kHz , Fig. 3

Data decoding

At this point in the system it is convenient to separate the p.d.u.s. chain from the
h.r.p.t. system because the differences between the two become progressively more extensive. As before, the next step is to convert the s.p.1. data to n.r.z. and clock, a manner pl. did The principle of s.p.l. decoding was covhere. The h.r.p.t. system uses a digital integrator as a bit conditioner, and although this method could have been used again, because of the lower data rate a ion was used. Far simpler methods could be used to decode s.p.1., but it is well worth making the extra effort at this point because the decoder and front-end performance determines the overall error rate.
A complete circuit diagram of the decoder is shown in Fig. 4, and it operates as follows. Raw s.p.1. data is divided into two chains, one of which is clipped, and both positive and negative transitions used to
regenerate the clock by pulsing a tuned

Table 3. The 24 -word frame labe

circuit at twice the data rate. Two c.m.o.s. phase-locked loop i.cs provide logic level s.p.l. 'bits'. Two D-type flip flops generat clocks at data rate both in phase and at 90° to the incoming data. The two clock divid ers can be initialized externally by the phase error is detected by the frame synchronizer. The clock signals are gated to produce the enable and reset pulses that operate the integrators and sampling circuits. At the end of each data bit the inteare held at the inputs of a comparator, the output of which is clocked into a further D-type flip flop. This forms the n.r.z output. Both 180° and 90° clocks are used by the sync. detector. The waveforms
marked on the circuit diagram are timed over a single data bit.

P.d.u.s.-frame format

Like the h.r.p.t. from Tiros the data called frames. Each frame consists of 364 eight-bit words and the first three words of each frame are always the same; they form the synchronizing sequence. The transmis
sion is strucured as a number of sets of the sion is structured as a number of sets of the
frames, each set containing four frames in a B format and eight in an A format. These

Background

The launch of Meteosat-2 on 19 June, 1981, began a new era of European apace exploitation. It was the major
part of the first active payload for part of the first active payload for Ariane, the European Space Agency's lite was placed in a cransfer orbit and then lifted into \& near geosynchironoius
orbit by the apogee boost motor. On 20 orbit by the apogee boost motor. On 20 castwards at a raze of 2.8° per day During the defitaphase, test transmissions were carried out and by the time is arrived on station on the morning of 21 July, most of the relecommunications
system had been checked out. The first systera had been checked out. The first
image scan in wisible light was performed at 1030 GMT oan 28 July, and in fxaran on 30 Juy. The scheduled We August and the primary-data user sta ion (p.d.u.s.) service on 15 September

One of eight registered primary data users, Mike Christieson, at his station. From left to right are colour-display electronics, computer-terminal and v.d.u. with colour monito drives. The white panel below the tape drives is the satellite interface

Fig. 2. Details of the two-stage preamplifier shown in Fig. 1. This is a slightly modified version of the one designed for receiving h.r.p.t. using the
described in the November 1981 issue of Wireless World.

pot cores
Fig. 3. Post-detection ïlter for p.d.u.s with $3 d B$ cut-off point of 280 kHz

Communications crisis

A pressure group, consisting members of
companies and associations connected with the communications industry, has been se up to try and persuade the Government to speed up their liberalization of telecommunicauons. Many of the companies hav invested money in anticipation of the
liberalization and are now suffering financial hardship. The group calls itself the Communications Crisis Committee and its members include; Professor Lou Schnur of the Chelmer Institute of Higher Educa (MRTA); The Independent Telephione Supplies Association (ITSA); The Federation of Communications Services (FCS) The Mobile Radio Users' Association and the National Commitee for the Legaliza CIBAR).
They have put their opinions together into a document called the Report of the Communications Crisis Committee which consists of contributions from each of th corporate members of the Committee.
Professor Schnurr sets the scene by decrying the self-perpetuating monopoly of the present system. Even where free enter prise agreements exist, they are bound by licensing and technical approvement
procedures. A particular area for discontent is the allocations of the radio-fre quency bands, especially the constraints on commercial development of the spec-

 Hor his pioneering ideas in the field of of satallite communication. He originated proposals
for the use of' Extra -terrestrial relays'. first published in an anticle in Wireless World in for the use of'Extra-terrestrial relays', first published in an anticle in Wireless World in
October 1945. Since then he has worked in similar proportions in both science fact and October $1945 . S$
science fiction.
M. Jones, 7906 11, ESA
7. Meteosat calibration reports, (published $\propto \mathrm{c}$ -
casionally) ESA 8 Special response data for Meteosat-2, Meteoguide annex B1, ESA
To be continued
Note that when both visible channels are scheduled and only one
All digital transmissions are preceded by a series of frames containing random data (with the label zero) to synchronise the receiver. The heading is then repeated 42
times in an \mathbf{A} format and 84 times in a B format. Data then follows and the sequence is ended by one or two conclusion sub-frames. There is insufficient space identification and the reader is referred to the ESA publications for this essential in-
formation. $5,6,7,8$

References

L. Christieson, Wireless satellite pictures, M. L. Christieson,

2 Meteosat earth station, M L Crisieso Wireless World, June, July 1979 M. Christieson, 3 Meteosat dissemination schedule, (published
regularly) ESA. regularly) ESA.
Meteosat dissen
Mly 1981, ESA
Meteosat high-resolution image disseminaD, ESA
6 Definition of h.r. format interpretation data, WIRELESS WORLD AUGUST 1982
sets are rather confusingly referred to as subframes. There are three types of subrames
heading, which contain identification
and interpretation information data, which contain the image, and the
grid-coastline bit map
conclusion, which are similar to heading information.
Table 2 shows the construction of a data ubrame for both A and B formats. Each 64
words, and its contents are shown in Table 3. The data from one line of infra-red or water vapour is sent in one subframe, but one line of visible data requires two containing more than one image are sent the lines are interleaved in the following prior-
${ }_{-}^{\text {ity }}$-infra

- infra-red line one
- visible line one
infra-red line two water-vapour line one
-visible line three, etc.

Home Office in obtaining fréquencies.' to compete with the body that issues the to compet
licences.
In conclusion, the committee puts for ward several points for "direct, immediate action": Government departments should
be asked to take steps to break the cycle of "time wasting tactics by BT and the Home Office Radio Regulatory Department licensing powers should be transferred from BT to the Department of Industry, access to BT competiors of the same facilities enjoyed by BT's own services and at the same price; require BT to set up self accounting in all areas where there may be competition, ensuring public account-
ability. Pending the division of such areas, BT should suspend further commercial development; The Cabinet Office should take action to allocate some 60 MHz of the radio frequency spectrum below 960 MH for private sector mobile radio services in
conformity with the allocations of the 1979 WARC. There should be support and funding available to a private sector coordinating group. This would assist the administration and allocation of radio com-
munications services, enabling mediumterm commercial development of information technology and telecommunications services.

trum "controlled by an organization insen-

 philosophy of optimizing available spectral bandwidth for the purpose of services development. So long as such practices are contained within the moated walls ofestablishment privilege and internal deciestablishment privilege and internal deci-
sion making, the marriage of telephony and wireless cannot exist". This, he im plies, impedes the whole of the diffusion of information technology throughout commerce. Contributions from the other committee
members also press for the liberalization of the use of British Telecom's network; to give access to mobile radio users, so that advanced data services for communication to mobile traffic. MRUA suggests that mobile services should have access to frequen-
cies below $1,000 \mathrm{MHz}$, frequencies above that being reserved for radio location and navigation. They also press for private network communications which would also works.
In a specific case study, Godfrey Wilson of Digital Paging Ltd bitterly complained about the inability to gain from BT the exchange facilities required for direct dialin capability, available on his companies
paging service. The unrealistic pricing of paging service. The unrealistic pricing of
BT's radiopaging service; the "extortionate delays in obtaining services, and servicing from BT ; excessive delays from the

Old brain, new hat?

First announced as long as two years ago the "hand-held" Newbrain personal computer emerged recently under the new parentage of Gung ing Following Newbury Laboratories
dropping of the project in 1980 - itself then only three years old - Bob Smith and colleagues left to seek new backing, ending up with a Grundy:BTG share arrangement
of $70: 30 \%$. At the same time, the specificaof $70: 30 \%$. At the same time, the specifica-
tion of the machine was improved so that tion of the machine was improved so that
Grundy now claim it is designed for "business, scientific and educational use as well as home computing". Now with its resident random-access memory increased to 32 K (plug-in modules of $64,128,256$ or
512 can take it to 2 M) and 28 K of readonly memory, it is designed to operate with a range of interchangeable and expanpandable program modules, or firmware. The hand-held claim is based on the builtin 16 -character 14 -segment vacuum
fluorescent display together with optional one-hour battery module of the AD version, designed chiefly to occupy minimum

board nickel-cadmium cells will allow display in its editing mode for four hours
and preserve memory for 20 hours and should be available in six months time. The cheapest version, model A at $£ 199+$ at, comes without this display but with t and monitor ports instead, as well as dual
cassette port, RS232/V24 printer and bidirectional ports. The screen display can provide, unusually, 40 or 80 characters per line and a resolution of 250 dots vertically by up to 640 dots, and may be mixed with separately scrollable character-mode
isplay. The 512 character fount includ vewdata mosaics, upper and lower cas reek letters, arc, and line drawing graph ics, as
Firmw . dependent interfaces, and may be panded without interference with the hardware. The enhanced-ANSI Basic allows for user proofing of programs,
direct interrupt handling, device-independent $\mathrm{i} / 0$, chaining and external calls. The
screen editor claims novelies for a microcomputer: backwards scrolling, multi-screen ability and direct cursor
addressing. The operating system provides for peripheral device drivers to the processors - the cassette device involves a second processor which uses a learning algorithm to accommodate tape speed fluctuations. Additional rom slots are available Z80 assembler, Comal structured Basic, statistics and text processing packages. The buffer module also has memory paging circuitry, parallel i/o ports, analogue
ports, two multi-speed V24 ports, as well as rom space, which will be included onboard in the M models available later. Proprietary software packages may be used from cassette or via disc under control of the CP/M module, available September. A
communications module, also available September, contains 32 V24 ports to give flexibility in sharing peripheral devices and connecting computers together. Unfortunately, a videotext module takes only
low priority, and is planned for "some low priority, and is planned for "some
ime next year". Meeting Gr adopting n.m.o.s. circuits instead of the more expensive c.m.o.s. types. Switch-off circuitry was incorporated to keep the cir-
cuits cool and power consumption within cuits cool and power consumption within
reasonable limits. "Other machines do have problems in this respect," says Grundy's Mike Wakefield, who is pleased to be able to claim a 0 to $45^{\circ} \mathrm{C}$ temperature
range. range.

Welsh Dragon

The Dragon 32 computer is the first product of a new company, Dragon Data Ltd a subsidiary of the toy manufacturers, Mettoy. Aimed at the first user, Dragon marketing a 'family home computer where the children might use it for learning and games playing while the parent can compute family budgets, or index ollection.
The Dragon 32 is based on a Motorol so designed that it needs far fewer instruc tions to operate it than many other
microprocessors and is very fast icroprocessors and is very fast. It has
6 K rom with extended Microsoft colou asic, which gives high-resolution graph cs of up to 256×192 pixels: there is modulated output to a domestic tv and there is also a monitor output. The basic computer includes a Centronics-type in terace, so a professional printer may be
plugged in directly. The keyboard is similar to that used on DEC equipmen and offers typewriter-style keys, guar There is a 32 K ram wey depressions There is a 32 K ram with the ability to
expand to 64 K . In addition there is games cartridge slot with sockets for tw joystick controls for the playing of games;
artridges for the more popular amuse ment arcade games, space invaders, a 'Pac nan'-type game and others, are available. rape Dragon Data say that they havsett particular attention to the cassette in terface so that the computer will work with a wide range of cassette recorders. Some software on cassette is already available, particularly the Dragon Special which explain how they work and so give some insight into their programming.
Especially useful for educationa programs is the ability to switch sound som a cassette player through to the can be included on the same cassette. A language lesson could show the words o the screen while they are spoken through sound with five octaves of musical notes sound with five octaves of musical notes too comes out through the tv speaker.
Future expansions and developments include a disc operating system, an RS232 port, a second microprocessor and an
operating system together with Prestel and

Banking on video

Barclays Bank has found that the best way to keep their staff informed is through video programmes, shown on tv sets at th
place of work. They have invested in place of work. They have invested in
$£ 1 M$ recording studio and insist that thei programmes should be of the highest quality both in content and presentation. So they have hired tv producers and popular tv performers to make the programme
look as much like the programmes the staff might watch at home, as possible. Such subjects as 'How to spot fraudulent use of Barclaycard' or the implications to the staff on the opening of the banks to the public on Saturday mornings, have been pro-
duced and are examples of the training and information functions. In order to generate enough copies of the video films for distri bution, Barclays have a computer controlled copying suite with quality mo
nitoring also controlled by computer. The next phase of the video network is to extend it to 2,300 outlets. Barclays have awarded a $£ 3.5 \mathrm{M}$ contract to Soundcraf Network Video to install 700 additiona Type 5 Sony U-Matic video cassette re-
corders and 1,900 Trinitron monitors, and to maintain the whole system.
Mike Pogson, the managing director of Soundcraft, told us that his company had made considerable investment in provid ing servicing back-up for such a system.
He described the lack of fully-trained broadcast engineers who were necessary to diagnose as well as rectify any faults in the field. He saw the role of his company as
teletext facilities. Other operating lan guages can be added, including Pascal, ' C and Basic compilers.
Program cassettes and cartridges are planned for a wide range of applications
The Dragon is all British, designed Dragon Data with the co-operation of th PATs Centre, and Motorola, whose chip manufactured in Scotland are used in th computer
Comparisons are always difficult but the nearest competitor to the Dragon is the pectrum. The Dragon 32 ha more memory and a particular advantage in having a 'professional' keyboard. Th Centronics interface is also a big advan-
tage. The Sinclair has more colours avail able at high resolution and the big (so far theoretical) advantage of the Microdrive the miniature, low cost disc memory However, there is a big difference in 'feel computer and the Dragon and its keyboard with the touch of a 'real' computer.
The Dragon 32 is in production at the Mettoy factory in Swansea, it will be on just under $£ 200$.
the client's shoulders so that they can 'get on with producing and distributing the programmes'.
The Soundcraft deal is claimed to be th biggest contract by a corporate organiz biggest contract
ation in Europe.

New technology and the graduate
The Department of Education and Science has approved the co-operation between the and the Open University for a series o programmes of 'technological topping-up' courses. It is intended to provide a re-edu cation for those graduates who have bee years. The SERC became aware of a nee for such courses and have commissioned the OU to produce them.
The courses will use the oU's tech niques for home study with tutoria support and study centre facilities for
practical work. Two areas in particular have been identified for priority treatment which are computer applications (includ ing real-time monitoring and contro systems), and manufacturing.
The computer applications course is expected to consist of a 'foundation' module
on software engineering, compute systems architecture, and operating systems. This would be followed by number of 'core' modules on monitorin
systems, systems modelling, contro systems, systems modelling, contro would also be optional modules on robot ics, man/machine interactions, and com puter-aided design. The full course will be
the equivalent of one year's full tim study. Certificates would be awarded fo each module of the course and a diplom for the successful completion of the whole course. Students may then be able to un dertake a further project in a related area
which would lead to an M. Sc.-level qualification.

Telecom showcase

British Telecom's new exhibition centre not a museum, stressed Peter Benton, th Deputy Chairman of BT, although it do ome history of telecommunication the early days of telegraphy. centre's full title is Telecom Technology
Showcase and in addition to the historical Showcase and in addition to the historica aspect which is well covered with many
working examples of, for example, Strowger telephone exchange of 1940 s vintage, there is an exhibition of BT' latest equipment and techniques. Cur rently these include many digital techniques, displays about optical fibres and
satellite telecommunications wit examples of some of the latest equipment It is planned to change the displays regu larly to keep them up-to-date
The Showcase is situated in Queen Vic Street, London, in part of BT's Bay nard House and is next door to the Mer maid Theatre. Lord Miles, formerly Si Bernard Miles, officially opened the show case and pointed out the role that the Me maid's Molecule Club had played in edu cating young people in science and
technology. He hoped that the Showcase would also contribute towards the edifica tion of the young. He also looked forwarr to the micro revolution which he fel would release us from the 'work ethic' and
allow us to get on with living, without the encumbrance of work.

Projects Editor

Wireless Woria needs a Projects

 Ealtor, who will be responor running the laboratory.
The work consists of design and subsequently to be described in Wireless World be described in Wreless Worid, commissioning esting pieces of commercial equipment.
The successful applicant will be experienced in both analogue and digital techniques and win dearly in writing.
If the post appeals to you, please write to the Editor, Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS or

CRTCUIT IDEAS

Extended addressing

or the $\mathbf{Z 8 0}$

Current 40 -pin memory-mapping i.cs are expensive and difficult to obtain. As this ircuit shows, it is possible to extend the 6 dressing capability of a 280 to more tha it t.t.1. rams.
bit t.t.1. rams. cess, but inves are not used for memory access, but instead address one of 16 store significant address lines; in essence the significant address lines; in essence the
same function as carried out by dedicated memory-mapping i.cs.
Each store is loaded using an OUT(C), instruction which, with the Z80, results in the contents of the B register being placed load a particular store, the program has put the eight address bits into the A (or D E, H or L) register, the store addressing the top four bits of B, then load C with the an OUT(C), A (or D, E, H or L) instruction. If 12 address bits are to be generated the top four bits must also be placed in the bottom four positions of B
Sixteen different stores are used so tha various parts of the program can be allo each store to work on its own ram. For example, interrupt routines may be ru without upsetting background pointers.

Low-current voltage

regulator
Standby consumption and output rating of this low-power regulator are $50 \mu \mathrm{~A}$ and greater than 10 mA respectively. Curren limiting is included, brought about by gate-to-source voltage starvation in the
4007 , and the output is short-circuit proof Components used are cheap and readily available.
With the components shown, the outpu voltage is 12.78 V , given by

$$
\mathrm{V}_{\mathrm{our}} \approx \mathrm{~V}_{\mathrm{BR}(\mathrm{Tr} 1)}+\mathrm{V}_{\mathrm{F}}
$$

where $V_{R}=V_{S}-V_{T}$ and $V_{T} \approx 1.5 \mathrm{~V}$. And $V_{R A}=V_{F(D 1)}+V_{B R(T r 1)}-V_{T}$ such that $V_{\text {out }}=V_{\text {RA }}+V_{\text {RB }}$. In this case assuming a typical BCl 09 breakdow voltage of 8.2 V for Tr_{1}, a forward voltage $1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RA}}=7.1$ and $\mathrm{V}_{\mathrm{RB}}=5.68$. Therefore $V_{\text {out }}=V_{R A}+V_{\mathrm{RB}}$
With a maximum input voltage of 20 V , with V_{R} at around 4 V , the c.m.o..s. devic will be operating at around 16 V which D. Roffey

Bromley

Initially, bistable IC_{4} disables the stores, nose outputs are held high by resistors until a switch-on signal is generated using
start up while the initializing program oads the 16 stores.
Dublin

Programmable

Pulse-generation using t.t.I.

Variable-pulse control using t.t.t. i.cs is not unusual, but most circuits use nonretriggerable monostables since they are less prone to false triggering from noisy supply lines and stray signals. However, when a 100% duty cycle is reached, output jitter occurs and above 100%, the puls
repetition frequency is reduced This circuit uses separate re monostables and is not prone to false trie gering. Jittering near the 100% duty cycle does not occur and at and above 100%, an l.e.d. lights and the output becomes static. A. R. Millichope Birmingham

COMMMNICATIONS

Howard Hughes

I watched the recent two-part EMI film on Howard Hughes (BBC 2) with interest though it seemed a great pity that so much emphasis was placed on his extraordinary
idiosyncrasies, so little on the remarkable contributions made to technology by the companies controlled by his secret tele phone calls in the middle of the night frit-cakes - thoush if he had been born fruit-cakes - though if he had been born
in Chipping Sodbury, rather than Hous ton, Texas, he might have passed as the last of the great eccentrics. Fruit-cake or eccentric he has the distinction of bein one of the few men ever to take on and
defeat the European telecommunication "establishment" led by the British Post Office.
Wireless World has always been proud of the fact that the potential of the geostatio nary orbit as a unique parking place fo
microwave and broadcast relay station was first pointed out in its columns in 1945 by Arthur Clarke. But the means of implementing this in 1963 by a transfer orbit and position-keeping jets were entirely the Harold Rosen, Tom Hudspeth and Don Williams. An equally difficult job was to convince the Post Office. BPO wer ranged solidly behind the concept of 12,000 miles above the Earth, involving all the problems of tracking and hand-over The Post Office engineers attacked the geostationary orbit on the grounds of ex-
cessive time delay and pointed cessive time delay and pointed out the
impracticability of conversation between impracticability of conversation between less tangle by the delays. Indeed the firs transAtlantic call I made over Early Bir (Intelsat 1) in 1965 did seem to bear out their gloomy prognostications - it was
only later, when they had virtually admitted defeat, that it emerged that the real villain of the piece was the inadequate design of echo-suppressor then in use. It is
often forgoten that it was not until well often forgotten that it was not until well after the launching of Early Bird in 1965
(following the experimental ATS series) (following the experimental ATS series)
that Intelsat/Comsat became firmly committed to the synchronous orbit. In the struggle, which lasted some 3-4 years, Hughes Aircraft was not adverse to using
the lavish hospitality that had earlier the lavish hospitality that had earlie
brought Howard Hughes before a Con gressional Committee. I have to declare an interest as I was a bemused member of a party of European journalists taken to Cul ver City, Los Angeles and the fabulous
Hughes Research Laboratories out at Malibu Beach - a trip that remains indelibly in the memory as one of the most lavishly endowed press parties of all time! I can plead only that it was not the trip that subverted me to support the geostationary
orbit but a previous more modest meeting with Harold Rosen, at the conclusion of
one of his many efforts to convince
European PTT organizations that future was to be found 22,300 miles above Earth.
No mention was made in the EMI film of communications satellites or laser though the dying recluse was shown Global Explorer, the remarkable deep-se recovery ship which came very near to success and which one day may itself be recognized as contributing to the tech nology of reaping a richer harvest from the o madness - but as an old-style entrepre neur he did more to advance communicaions and aviation technology than whol attalions of eminently sane bureaucrats!

Easily nicked

The emphasis on lightweight, microminia ture complex equipment in communica poblems. High-cost equipment that car be easily carried, can easily be carried awa y other than the rightful owners. It is no without reason that e.n.g. (electronic new athering) television equipment has earned the past few years several crews have re uarned minus many thousands of pound worth of equipment. Nor is it only portable electronic gear that vanishes. In April a BBC crew in South London lost $£ 25,000$
worth of film equipment from the back of an estate car while taking a lunch break in Stockwell. Another anonymous company has been advertising (under a box number) for information on a loss of a complete era, BVU110P recorder, battery charger radio microphone, etc. This was not the first e.n.g. unit to disappear in the UK. Communications equipment - profes-
sional, amateur and c.b. - has become vional, amateur and c.b. - has become
very vulnerable to car thieves. But the thieves need to be careful in their choice o vehicle. I heard of a case recently where what looked like a standard broadcast car police vehicle. It was in fact a disguised control unit for a boot-mounted two-way radio!

Stable at s.h.f.

Although semiconductor devices, including Gunn diodes and Impatt diodes, make pos sible relatively simple self-excited oscilla tors at s.h.f., it remains essential for many applications to provide some form of stabi-
lization. A good deal of effort, for example, has been put into developing cavity resona tors, including low-cost types that can be 12 GHz satellite receivers where thends of 12 GHz satellite receivers where the circuit out metal sheet. Recently much
in small dielectric resonators which can be
used in connection with cavity resonators used in connection with cavity resonator teristics or, for example, to stabilize monoithic GaAs fet oscillators.
In conjunction with a conventional cavity it is claimed that commercially availabl barium titanate in the cavity can reduc the temperature drift of a 10 GHz cavitytabilized oscillator from 3 MHz per ${ }^{\circ} \mathrm{C}$ to only 3 kHz per ${ }^{\circ} \mathrm{C}$. A new Mullard range of to 16 GHz frequency range includes the facility to tune over 1 per cent of the lowes frequency limit without degrading stabilization, or 8 per cent when rather lowe ability and higher noise is acceptable. ronique et de Physique Appliquée (LEP) has reported (Electronics Letters, April 15 1982 Vol 18 No 8, pp 345-347) the de elopment of a monolithic X-band GaA et oscillator stabilized by means of delivers more than 30 mW output power a 0.8 GHz with a frequency drift better han $1 \mathrm{p} . \mathrm{p} . \mathrm{m} / \mathrm{K}$ from $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$, and maximum chip efficiency of about 20 per
 it can be used as a voltage-controlled oscil lator.

Long waves, high powe

The BBC is currently carrying out a $£ 2$ million refit to the Droitwich 200 kHz $(1500 \mathrm{~m})$ long-wave station at Droitwich, ransmitter output power from 400 kW to 50 kW . The transmitters now in use ar two of the four 200 kW units originally supplied by Marconi for the special war
time 800 kW station near Hull The use me 800 kW station near Hull. The use o technique will make the higher powe ${ }^{4} 500 \mathrm{~kW}$ economical to run
500 kW is a long way from the first long wave (1600 m) BBC station at Daventry
This was completed in 1924 and had This was completed in 1924 and had coni 15 kW long-wave transmitter in the Chelmsford factory. At that time the inten tion was to supplement the local regional
transmitters $(1.5 \mathrm{~kW}$ plus 0.12 kW relays) transmitters (1.5 kW plus 0.12 kW relays) by a single transmitter providing "a
reasonable field strength over most of the British Isles" - as indeed it appears to have done at a time when most listeners used outdoor aerials, electrical interference was reasonably low and there were none of
those infuriating signals emanating from those infuriating signals emanating from power supplies of colour television sets. Indeed in the 1930 s it was firmly recog nised in the UK that high-power station
of the order of 500 kW "may be a doubfful blessing". American broadcasters, who have never
used the long-wave broadcast band, have
been limited even on medium-wave "clear been limited even on medium-wave "clea have traditionally achieved extensive and excellent night-time coverage using directional aerials to minimize mutual interfer ence.
How
However this coverage is now under severe threat from Cuba who have stated an intention to install two 500 kW trans mitters with omnidirectional aerials, plus over 180 other transmitters of various powers - and have withdrawn from a key argued that the Americans have brough this problem on themselves by their intention to transmit programmes to Cuba on medium-waves - yet another example of
how it is often external broadcasting for how it is often external broadcasting for
government agencies that has been the government agencies that has been the
prime cause of the transmitter power race and excessive interference.

LAMATEETR R/ADDO

Satellite scene

Several of the balloon flights being orga-
nized this year by the South African Radio nized this year by the South African Radio League as a preliminary to an amateur
satellite project have been completed satecessfully, including two flights to $100,000 \mathrm{ft}$ with simple recovery beacon and a 10 -hour flight to this height carrying a linear transponder as well as telemetry and recovery beacons. During the fligh
about 20 amateur operators had s.s.b. and morse contacts through the beacon ove distances of several hundred kilometres. A later flight will be aimed at keeping a transporter at $100,000 \mathrm{ft}$ over an extended panels. The whole project is enjoying the full co-operation of a number of universities and electronics firms.
During April, a false command initiated
by the main computer on board the Uni by the main computer on board the Uni-
versity of Surrey's UOSAT satellite inadversity of Surrey's UOSAT satellite inad-
vertently switched on both the 145 MHz and the 432 MHz beacons at the same time resulting in desensitizing both commana receivers so that the satillite was no longer under ground control. The normal fail-saf been temporarily over-written, with the result that the malfunction persisted for an extended period.
Ron Broadbent, G3AAJ, secretary of
Amsat-UK Amsat-UK, has complained demands directed to the society not from radio amateurs but from schoo and university staffs seeking detailed in "Brmation on what they regard as a WIRELESS WORLD AUGUST 1982

Vintage valves

A few months ago the turning over by Mullard Ltd of their Blackburn factor from the manufacture of domestic valve to other products led to nostalgic back EF50 of wartime radar, the EF39 used in many communications receivers, and othe once familiar small-signal valves. Across the Atlantic the process of closing down production lines of "vacuum without many tears being shed. But surel a note in QST will touch the hearts of every old-time amateur and professiona communications man: RCA have discontinued manufacture of a further batch of glass-envelope transmitting valves includ 813, 829 B - valves that found their way into innumerable transmitters since they were first introduced well over 40 years ago - and still do yeoman service in many
transmitters even today although presumably the demand for replacements has dipped. Transmitters needed to be large to accommodate them and the ceramic types with (often noisy) forced-air cooling were
displacing them, years before the semico ductor era began to deliver the knock-out ductor era began to deliver the knock-out blow. just to keep the filament energized;
volts but was - and remains - a magnificen workhorse for Class C service. Show me a 300 watts r.f. output at 20 MHz with a similar freedom from parasitic oscillation and ease of design - but until then many will regret the gradual passing of the ther mionic era
Perhaps
Perhaps not quite passing - Mullard
for example, tell me they have no plans to discontinue their range of transmitting valves, including near equivalents of a number of the axed RCA types. Indeed hear rumours of European manufactured
valves being sent across to the States and then returning to find sockets in European transmitters.

Here and there

The regulations introduced by the FCC on r.f.i. generated by new computing device marked for the home to limits calculated not to interfere with broadcast reception though initially many manufacturers Alplied for waivers, the regulations must be complied with by October 1983, and recently the FCC laboratory has been rejecting less than 15 per cent of devices com${ }_{\text {pared }}^{\text {pre }}$ with $25-30$ per cent in early 1981 . interference produced by other digital devices including digital clocks using synthe sized speech.
A number of candidates who took the

Radio Amateur's Examination in M a appear to have been less than happy with view, expressed on a number of previou occasions in this column, that the City \& Guilds Institute should carefully conside updating the aims and scope of the exam ination - and contributing to the reduction of the administrative time it takes in the UK to sit the exam and acquire

With the help of a small grant from the Science Research Council, the R.S.G.B Propagation Studies Committee is to assist
in the collection over the next four to five in the collection over the next four to fiv years of data on Sporadic E propagation on
frequencies above 100 MHz . North/south propagation paths on 50 MHz were open on many occasions during March and April 1982. An unusually large number of
South African stations were received in the U.K. on April 12.

In brief

The boom in walkabout audio tape cassett players has encouraged the marketing in Japan of miniature 50 MHz "walkie talkie" units, such as the Standara "Talkman" with headphones and minia ture boom microphones. In future somemay or may not be a first sign of madness . . . David Adams, VE3BHF (G4NWA) of Sutton West, Ontario has been walking
the length of Britain, from the Scilly Isles the length of Britain, from the Scilly Isles to the Orkneys with a backpack that in-
cludes a 144 MHz hand-held transceiver ... Callsign of the 70.05 MHz beacon transmitter on Harpur Hill, near Buxton, Derbyshire has changed from GB3SU to GB3BUX as part of the plan to use two letter GB callsigns for repeaters and three example, the beacon high on the IBA's concrete aerial support tower at Emley Moor, West Y Yorkshire has changed from GB3EM to GB3MLE ... Tropospheric 10 GHz contacts across the English Channel tinue to be reported over distances up to about 250 km ... A "very slow rise" in membership is reported by the R.S.G.B. who state that of members resigning "the
vast majority gave the present economic vast majority gave the present economic
climate and unemployment as the main reason". . Forthcoming mobile rallies in clude: July 25, Anglian Mobile Rally Stanway School, Colchester; Scarborough A.R.S. at Spa Ocean Room. August 1 ,
R.S.G.B. National Mobile Rally at Woburn. August 8 , 25 th annual Derby Mobile Rally, Li wer Bemrose School, of Derby Ring Road. August 15, Preston A.R.S. at Walton-le-Dale County High School, Brindle Road, Bamber Bridge,
Preston. August 22, Bromsgrove A.R.C Preston. August 22, Bromsgrove A.R.C. picnic
grove

NETWORK ANALYSIS WITH A ZX81

Extensive insertion loss and group delay computations of ladder filters are faster with an inexpensive microcomputer than with a programmable calculator

The specification of the ZX 81 reveals that it is also potentially a super-calculator capable of handling much more extensive programs at a far higher computing speed $91 / 2$-digit accuracy is admittedly less but nevertheless perfectly adequate for a wide range of practical problems. The program described was written not only to fulfil professional requirement, but also to test 16 K ram.
The menu it provides is as follows.

- Compute and display the insertion loss and group delay of a passive ladder network with up to 10 branches, ex cluding the terminations. For a frequency base in MHz the group delay is computed over an increment of 1 kHz .
Each branch can consist of a single inductor or capacitor, or a series or parallel tuned circuit. More complex structures can be handled by means of a simple device.
- A chosen value of dissipation can be assigned to the components.
Component values entered can be
listed and corrections made before putation starts.
- At the end of a calculation, individ frequencies and element values can be modified without re-starting the program from the beginning. This is invaluable for estimating the effect of component tolerances or for 'zooming in' on any particular area of the net
Up to five grou
tions can be added and the total resultant delay displayed. The display is in the form of the zero-frequency delay, value at the other points.
- Because the group delay values of the network are held in an auxiliary array, re-compuataion of the group-delay res parameters is fast.
- Added loss due to dissipation in the equalizer can be displayed.

To give an idea of the running time, the 2X81 in the fast mode displays the inserorder elliptic-function filter at 15 points in around 75 seconds. Each successive at tempt at group-delay equalization takes taken to enter values. Because many users will not need the 72

by L. E. Weaver

group-delay equalization routine, the procedure for

Computat

First some general remarks. As I am prin cipally concerned with video filters, the nits chosen are $\Omega, \mu \mathrm{F}, \mu \mathrm{H}, \mathrm{MHz}$ and μ These can be replaced by any other self consistent set, but obviously minor needed.
It is assumed that the network is unbaanced and contains no bridged-T section. The group-delay equalizers are dealt wit numbered from the input to the output and the component values are entered in the same order so that for example, the ourth branch will contain L (4) and C (4) or perhaps L(4) or C(4) alone. As shun network it is only necessary to specify th nature of one of these. This is chosen to b he branch facing the input termination. The dissipation is expressed by D must be specified at some frequency will often be the cut-off frequency or pos sibly one of the points of nominally infinit rejection. Because of the simplification in the expressions for the impedances, th standard device is employed of assumin the same dissipation, and that in a resonant circuit D is the sum of these. However, experience shows that provided D is les than about 0.02 ($\mathrm{Q}>50$) the individua dissipations do not need to be equal. It
follows that if the capacitors can be consid ered as dissipationless, D can be taken as one half of the value which would otherwise apply. This may not sound ver satisfactory but in practice it works su prisingly well.
such a long program and only 16K storage the display prompts necessarily have to be kept very short, so it seem esirable to set out the procedure in detail ach input will, of course, be followed by EW LINE.
Prompts
FO?
FM?
DF?
FM?
DF?
D?
FD?

lnputs

Starting frequency
Maximum frequency
Frequency step
Dissipation consta
Dissipation frequency (if
$\mathrm{D}=0$ then a nominal positive value must be entered)
Input termination
RO? Output termination
BRANCHES? Total excluding termina-
$\mathrm{L}+\mathrm{C}$? $\mathrm{N}=1$ tions YES for a resonant cir-
cuit, NO for a single cuit, NO for a single
sistor or capacitor
SER OR PAR? When previous input was
YES, input SER for a series and PAR for parallel resonant circuit
? $\mathrm{N}=1 \quad$ Enter L(1)
Enter C(1). If only one L
or C the other must be entered as zero

L. E. Weaver, B.Sc, M.I.E.E. is the author of three well-known works on
television measurements, and of a number of monographs and papers both on that subject and on aspects of network design. Now a television previously head of the measurements laboratory in the BBC designs department. While in that position he also used the experience previousiy gained in network design at sody
transmission laboratory to produce high-quality video filters, some of which have been commercially manufactured on a considerable scale.

This process will continue until the last branch has been entered. Then

SHUNTIN? YES for a shunt input, NO for a series GOTO CHECK. This will then list the entered
values. Modify by, for values. Modiry by, for
example, LET L (4) 5.25. Do not enter RUN or CONT. When satis-
fied enter GOTO LOSS, which starts computa
tion. After completion values can be modified and the network re-cal culated by again using GOTO LOSS
Group delay equalization
The insertion loss of a filter is usually equired over a frequency range wic nough to cover both the pass and sto thation is totally different. As roug uide the important area in that instonce es between zero frequency and the 6 d保 the 6 dB points for a bandpass. It follow ed up to the allowable must be selec achieved by entries such as LET FM $=6$ and LET FD $=0.5$. The initial computa ion is then repeated by means of GOTO LOSS, which takes very little time as the component values do not have to be re-
entered. The read-out must be completed, indicated by a 9 code.
The program allows for one first-order equalizer section followed by up to fou second-order sections may be used to defined by a resonant frequency and shape factor K , which must be made zero for the first-order section. The first-orde section, if presen, mast be entered befor the others.
the procedure is then as follows.

Prompts

9/1590
V ?
FR? $M=1$
K ?
FR? $M=2$
K ?

Inputs CONT

Total number of sections Resonant frequency of K-parameter of first sec Resonant frequency Resonant frequency
second section
K for second section
As soon as the parameters for $M=\mathrm{V}$ hav been entered the computation stan ts.

The initial attempt is not likely to be successful, so it will then be necessary to modify the equalizer parameters by inputs $=1.2$. This must be followed by GOTO EQU, which repeats the calculation with the new values.
At the end of the equalization process, equalizer dissill provide a read-out of the value of D . This does not need to be the same as the D used for the insertion los but may be re-entered before calling up the DISS routine.

Loss section
$\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{0}=75$
UNITS: $\Omega, \mu H, \mu F, M H z$
 Group delay equalize

Group delay equalizer			
M			
M	1	3	
FR	2.0	3.0	4.5
K	0	1.3	0.7

Flg. 1. Component values of a 5 MHz elliptic function lowpass filter in the form tecommended for program entry. Suggested initial parameter values are included for a
three-section group delay equalizer.

(a)

Ag. 2. Use of a dummy shunt branch where a series arm contains more than two and rejection points at 6 and 24 MHz a 10 MHz bandpass filter with midband frequency 12 MH inserted at (b).

Fig. 3. Use of a dummy series branch where a shunt arm contains more than two
components. Values shown correspond to a a 3MHz bandpasss filter with midband frequency 2 MHz and a single rejection point at 0.8 MHz . Original configuration at (a), dummy series
branch suitable for bandososs structures branch suitable for bandpass structures only (b) and universally applicable dummy series
branch (c).

In the absence of enough ram to run an optimization program, a graphical method has been found effective. This consists in plotting the combined group delay res ponses for successive parameter changes not to try to deal with too many simultaneous changes. Some of these will in-
evitably be in the wrong direction, but one
quickly gets a feel for the way in which moves have to be made. Remember tha the aim must be to minimize the absolute error, that is the positive and negative de-
viations must tend to equality, viations must tend to equality, subject to
the condition with video filters that the error may be allowed to increase with frequency. The display provides the devia tions directly, which saves a great deal of

-11

Fig. 4. Pair of
canonical two canonical reactance terms.
 arms.
edious plotting especially in the earlier stages of the process, since it is simple to note the maxima and minima at each without drawing the complete curve.
A brief guide to the shape of the delay equalizer responses may be found useful. delay which falls steadily starting from the zero-frequency value. On the other hand, here is a very useful analogy between the response of a second-order section and the mplitude response of a parallel tuned cirsame function as the \mathbf{Q} in the lastmentioned case, and the delay maximum oughly corresponds with FR.
The seventh-order elliptic function lowpass silter given in Fig. 1 may be found
useful for a trial run. The loss is about 4 dB at 5 MHz . The delay equalizer parameters do not represent an optimum, but merely a suggestion for an initial trial. The compoent values are listed in the order of inserdion into the program, with the capacitors
provided in exponential notation, thus avoiding strings of zeros.

Before leáving the subject of insertion oss calculation, one still has to deal with the problem of network branches containing more than two reactances such as may be encountered in bandpass filters. In fact it can be very easily solved by the use
of dummy branches as the following examples will make clear.
Fig. 2(a) shows a bandpass filter with a bandwidth of 10 MHz , a mid-band frequency of 12 MHz , and rejection frequenthe form of two parallel tuned circuits in series, i.e. a total of four reactances, usually the maximum number likely to be met with. The device in this instance is to add between points A and B a shunt induc-
tor of such a magnitude that it cannot possibly have any practical effect on the loss and delay responses, Fig. 2(b). The original three-branch network is now converted to a five-branch ladder which
can easily be handled by the A shunt branch yields to similar ment, as is illustrated by the bandpass filter of Fig. 3(a). This has a bandwidth of

3 MHz with a mid-band frequency of 2 MHz and a rejection frequency at 0.8 MHz . Because it has a bandpass characteristic it is possible to employ the anal
ogue of Fig. 2(b), that is the series inserogue of Fig. 2(b), that is the series inser
tion of a very large capacitor, Fig. 3 (b) tion of a very large capacitor, Fig. 3(b).
The resulting five-branch ladder can now be treated normally. In this instance, there is an alternative which applies equally to lowpass structures, that is the insertion of a parallel tuned circuit with a zero-valued
inductor and a capacitor of any nominal size, Fig. 3(c).
It is worth stressing that the dummy It is worth stressing that the dummy
branch technique can always be applied, branch technique can always be appled,
subject to the limitation of a total of ten subject to the limitation of a total of
branches imposed by the present program. The justification for this is the theorem that a two-terminal reactance arm can always be transformed into one of the two configurations of Fig. 4 (ref. 1), for which reason they are sometimes called canonical
networks. Of course, not all of the inductors and capacitors have to be present, so the two examples given above are obviously included. It will sometimes involve the transformation of one configuration simple provided a reference table of equivalent circuits is available ${ }^{2}$.

References

1. R. M. Foster, Reactance theorem. Bet

System Technical Yournal, vol. 3, April 1924, pp.
2. A. Zverev and H. Blinchikoff, Network transformations for wave filter design.
Electronics, June 26 1959, pp. $52-4$.

To be continued.

Communications crisis-a reply

On our news pages this month is a criticism of the telecommunications industry. Jönn Butcher, the Parliamentary Under Secretary of State for Industry has made the following reply,
listing the progress made to date. A licence was granted in February to Cable And Wirence was PLC on on behalf of the Mercury Communications Limited to run a telecommu-
nications system in the UK the first independent system of its kind outside North America. By the middle of next year the first subscribers hould be connected to Mercury, surely an asOn the liberalisation of attachments progress has been remarkable. Already some 50 artachnents, including about 25 telephones, 20 mocompetitively which under the old regime would either have been completely unavailable N supplied only through BT November 1981 - Interim approved scheme
for extension telephones from BT's range. The latter have been added to since then and all of BT's special range telephones can now
be supplied in competition with BT. The first approvals under this interim scheme have now
been made and more will follow shortiy.
May $27-$ An extension of this scheme to
nclude callmakers, repertory diallers and appainclude callmakers, repertory diallers and appa-
ratus incorporating integral modems. The Department is now considering applications for further evaluation. Now that BSI's new ito shoule be possible to deal with more telephones more quickly.
March 31 - Orders made requiring appara-
tus to be marked to tell customers whether or not it is approved for connection to BT's networks. This is vital information for users if they
are to choose apparatus that will not cuuse damage and produce inferior service. Six draft standards have been written and made available for public comment in record
time and further drafts will follow shortly. So time and further drafts will follow shortly. So
far all standards are meeting their target dates. May - The British Approvals Board for Telecommunications (BABT) was incorporated
and will begin to accept applications for apand will begin to accept applications for apThe Department and BT have agreed on arangements allowing BT's present suppliers of sell to BT direct to customers. This makes five
turers wish to take advantage of this manuacment. "The "the Government has a duty" he continued "to make sure that apparatus connected to BT"'s this equipment or BT's engineers and does not impair the quality of service that the network is able to provide to all. Much of the preparations
that have been made over the past 12 to 18 that have been made over the past 12 to 18
months have been aimed at avoiding such dang${ }^{\text {ers. }}$ In many ca "In many cases little of this progress is visible
to the outside observer but all of it is necessary if lithe outsidise observer but all of it is necessary is not do justice to the immense amount that has
already been achieved."
"Since April private operators have been able to apply to the Department of Industry for a licence to provide eservices over the network. The provision of these value added network
services (VANS) will help to satisfy the demand more quickly than at present and encourage the growth of a wider range of services, providing
jobs and helping business in growh of a wider range of services, providing
iobs and helping business in Britain to become
more compecitive.

COST-EFFECTIV ELECTRONICICNI

The popularity of Rod Cooper's ignition circuit design, published in the March is
sue, led to many requests for location diagram. In response, here is a component layout - regrettably held out of the last issue - designed to complement the board pattern originally given. A resis-
tor and decoupling capacitors were omitted from the published circuit, so a corrected version is reproduced herewith which now corresponds with the board
design. Printed boards to an alternative layout with components horizontally arranged, is ment), who may also be (see advertise wound transformers and discharge capacitors. Ferrite and bobbins are also available from Mullard stockists.
The graphs showing the relation be were originally published in an article titled Ignition Design Trends by K. Gar rett, in Automotive Engineering, April-May 1977. Oscilloscope traces were produced

Capacitors
470 n 1 kV polypropylene (RS ${ }_{n} 1 \mathrm{kV}$ polypropylene 470 p
5 p polyester
5 p n polyester
100 to $500 \mu 10 \mathrm{~V}$ electrolytic
Diodes 1N4001
1N4007
1N407
iN401
1N4148
iN4001
${ }^{\text {N }} 44002$ or similar 3 A rec.
Components for ignition circuit

Resistors

Resistors	
1	180
2	10 k
3	180
4	33 M
5	270
6	180
7	4.7 k
8	2.2 k
9	27 k
10	2.2 k
11	22 k
12	1.2 k
13	1.2 k
14	330

and 10 V 400 mW

DESIGNING WITH MICROPROCESSORS

Step-by-step procedures for implementing microprocessor systems with commercially available i/o chips - illustrated by a design problem - conclude this series of articles.

The most effective design strategy is to choose those i/o chips whose terminal characteristics can be programmed to match those of the peripheral in question.
But such an objective however would be unrealistic because in practice the microprocessor system will have its own programmable i/o chips already interfaced to the microprocessor chip, as illustrated starting point is to derive a simplified programming model of the i/o chip, omitting those features that are not likely to be used. Initially, a programming model should contain the ports, typically two per chip, the control and status registers.
Programming models of the Intel 8155 , p.i.a. and v.i.a. are shown in Fig. 2, 3\&4. The next items to be specified are
1 - how the interface initiates an m.p.u. read operation for moving data into a Fig. 1) 2 - how the p.i.o. chip signals that the requested read operation has taken place to the interface.
For example in the case of the p.i.a.,
when programmed with control word 26 to when programmed with control word 26 to
move an item of information from a peripheral into the microprocessor, all the interface has to do is to pull terminal CA1 in Fig. 3 high. When the microprocessor reads the item the signal on terminal CA is pulled low.
specified involve the reverse process, namely moving data from the m.p.u. into a peripheral, in which case the designe
needs to know
by D. Zissos and Jane Pleus
3 - how the interface initiates an m.p.u. write operation for moving data from the microprocessor to a peripheral m.p.u. (peripheral 2 in Fig. 1)

4 - how the p.i.o. chip signals that the write operation has taken In the case
programmed with control word 99 data is
requested from the m.p.u. by pulling the STROB terminal in Fig. 2 low when the m.p.u. responds when the requested item
of information has been loaded into the 8155, the signal on terminal BBF changes to 1 .
5 - the final item to be specified is the status flip-flop for each of the ports, as this is the signal looked at by the programmer in the test-and-skip
For example in the case of the 8155, SFFA

Mnemonic and hox llstings of the PRINT problems using programmable //o chips and test-and-skip.

Fig. 4. Block diagram of the PRINT problem.
WIRELESS WORLD AUGUST 1982
and SFFB are bits 1 and 4 of the status register - see Fig. 2. Status flip-flop ignals are normally made available on erminals for use as interrupt flags if desired. Such flags can be disabled by interrupt flag IRQ(A).
Programming models of the 8155, the p.i.a. and v.i.a. are shown in Figs $2 \& 3$.

Design problem

Objective: to consolidate the design steps escribed in the previous article. Using programmable i/o chips, design test-and-skip system that would allow the programmer to print a block of character ored in consecutive memory location mplement the design using an action nterfaced to the 8085 and (b) the pi, interfaced to the Motorola 6800 .

rint problem.

Solution
Handshake signals Fig. 1 (has new data) and 0 that ther port is empty (data has been read).
$\mathrm{h} 2-0$ to-1 change requests an m.p.u read cycle.
h3-0-to-1 change requests new data from the m.p.u.

A test-and-skip system that transfers blocks of data of specified length, byte-by byte, from memory to a periphera device through an i/o port using microprocessor-based syst one programmable $i / 0$ port is shown in the

Fig. 6. Programming flowchart of the PRINT problem using
programmable i / o chips and test-and-skip

Fig. 7.8155 implementation of the PRINT problem
78
block diagram of Fig. 4, derived directly from Fig. 5 of the previous article. Its step by-step operation is shown in the flow chart of Fig. 5. The hardware design consists of implementing the interface equations derived for each of the p.i.o.
chips. The software design is the selfchips. The software design is the sel
explanatory programming flow chart of Fig. 6. Ignore at this stage the statements to the sides of the boxes.
8155 implementation
By direct reference to the data sheet of the handshake signals $h 1$ and $h 2$, we obtain $\mathrm{hl}=\mathrm{BBF}$
and ${ }_{\text {h3 }}=$ STROB
The implementation of these equations constitutes the hardware component of our solution, Fig. 7.
Next refer to the 8085 instruction set to
derive the derive the mnemonic statements that implement the flowchart in Fig. 6. For ease of reference we list them to the left of each box. Finally, we tabulate these statements with the correspondin machine codes and comments on page 77 .

PIA implementation
Referring to the p.i.a. data sheet and the $\mathrm{h} 1=\mathrm{CB} 2$
and ${ }_{\mathrm{h} 2}=\mathrm{CB} 1$.
mplementing these equations gives the pia implementation of our solution, Fig. 8 . continued on page 80

WIRELESS WORLD AUGUST 1982

ELECTRIC FIELDS IN A SOLENOIDAL COIL

- often forgotten, more often misunderstood

The time-varying magnetic field in a coil gives rise to electric fields that in turn determine the terminal or circuit properties of the coil

Since the time of Michael Faraday's expe riments, researchers have sought to under solenoidal coil, but a complete field solution has proved a difficult and elusive goal. While it is well known that the magnetic and within a long, multi-coil is predomhe associated electric fields are less clearly defined. However, a few fundamental points can be made regarding these electri felds without having to resort to a con lete boundary-value solution.
e time variations of the axial current, field within the coil must, in accordance with Faraday's law of induction, produce an electromotive force around any closed ioop linking the magnetic field. The resul rential direction, and it is just this field hat gives rise to the eddy current tha位cuates whenever the coil is wound around a core of lossy material. However electric field at the surface of the coil causes a redistribution of charge along the helical conductor forming the coil, such hat the negative charge is concentrated towards the opposite end of the coil. Thi electric field that in the interior region of a long solenoid is predominantly axial. The redistribution of charge is precisely such that the sum of the magnetically induced circumferential electric field and the
secondary axial electrical field arising from the charge separation is just equal to zero along the surface of the coil winding.
The relative magnitudes of these cir cumferential and axial components of the electrical field are easily estimated for
long solenoid of length 1 and radius comprised of N turns. If the magnetic flux linking a cross section of the coil of area $\pi \mathrm{a}^{2}$ is defined as Φ, the electromotive in phasor form be given by of radius a mus
e.m.f. $=j \omega \Phi$
where ω is the angular frequency. An average value for the circumferential electric field at radius a can now be obtained by of the coil In other words circumferenc of the coil. In oth

$$
E_{\phi \mathrm{a}}=\frac{i \omega \Phi}{2 \pi \mathrm{a}}
$$

where $\mathrm{E}_{\phi \Phi}$ is the average induced circum-
WIRELESS WORLD AUGUST 1982
*by F. S. Chute and F. E. Vermeulen
ferential electric field at the surface of the coil. Alternatively, since the terminal
voltage, V , of the coil is just N times this voltage, V , of the coil is just N times this e.m.f.

$$
\mathrm{E}_{\phi \mathrm{a}}=\frac{\mathrm{V}}{2 \pi \mathrm{aN}}
$$

Neglecting end effects, an average value for the axial electric field, at radius a, can oltage by the length of the coil. Thus,

$$
E_{z a}=\frac{V}{1}
$$

where $E_{z a}$ is the average value of the axial ectric field at radius
Taking the ratio of $\mathrm{E}_{\mathbf{2}}$ and $\mathrm{E}_{\phi \mathrm{a}}$ yields
$\frac{\mathrm{E}_{2 \mathrm{a}}}{\mathrm{E}_{\mathrm{\phi a}}}=\frac{2 \pi \mathrm{aN}}{\mathrm{l}}=\frac{2 \pi \mathrm{a}}{\mathrm{d}}=\cot \psi$
where d is the separation between turns and ψ is commonly referred to as the pitch angle of the winding.
For coil configurat
pitch conl configurations commonly used this pitch angle is only a few degrees and the
secondary axial electric field is than an order of magnitude greater than the circumferential electric field! Moreover, the axial field E_{2} is nearly independent of distance from the axis of the coil, whereas the circumferential electric field \mathbf{E}_{ϕ} de-
creases to zero at the coil centre terior points then, the dominating fluence of the axial electric field will be even more pronounced than near the surface of the coil winding.
fully appreciated although it was pointed out as early as 1928 by Townsend ${ }^{1}$ in con junction with an investibation of gaseous discharges, and again in 1969 by Contaxes ${ }^{2}$. It is of interest to note that both of these authors comment, more than 40
years apart, that the existence of such a large axial electric field is remarkably un-
known.
It is only by virtue of the fact that the
. source is the charge distributed along the winding) is much larger than the circumfe-

University of Albengineering
 University of Alberta

rential electric field (produced directiy by the time-varying magnetic field), that a nique value of potential difference tween the terminals of the coil can be de pitch angle ψ, the magnitudes of the two fields are more nearly equal and no unique value will exist for the terminal voltage. In this case the measured value of potential
difference will depend upon the placement of the leads of the voltmeter that is used to measure the voltage across the coil.
In some earlier work ${ }^{3,4}$, the authors have described a technique for visually isplaying electrostatic fields and electro motive force by utilizing the heat-sensiti crystals. In this technique, Mylar shee coated with encapsulated liquid crystal are bonded to a sheet of Teledeltos resis ive paper. Currents induced in the resis tive paper in the presence of an electric emperature variation that is characteristic of the distribution and intensity of the electric field vectors lying in the plane o e resistuve paper. The apparent colour the liquid crystal sheets used by the
authors ${ }^{3}$ is black below about $25^{\circ} \mathrm{C}$. Between $25^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, the colour of the sheet changes with temperature from red through yellow and green, to blue at abou $30^{\circ} \mathrm{C}$. Above $30^{\circ} \mathrm{C}$, the apparent colour is again black. Regions of a uniform colorature or field intensity. While the limited hermal sensitivity of the liquid crystal and their nonlinear temperature response make serious quantitative measuremen
impractical, the liquid-crystal display does impractical, the liquid-crystal display does
serve to provide the viewer with an immediate appreciation of the overall electric field distribution.
To display the axial and radial electric fields of a coil carrying a time-varying cur rent, a sheet of resistive Teledeltos paper
was bonded to a 3.2 mm thick $60 \times 60 \mathrm{~cm}$ sheet of Perspex with spray adhesive. Four $30 \times 30 \mathrm{~cm}$ sheets of liquid crystal were then similarly bonded to the resistive tion was then carefully drilled with 40 holes of 2.5 mm diameter to serve as support plate for a 20 turn coil of No 14 A.W.G. copper wire. A continuous length of wire was then threaded through the length 40 cm , diameter 10 cm , and turn spacing 2 cm , having a pitch angle so that $\cot \psi=15.7$. The coil, which has an induc-

tance of about $12 \mu \mathrm{H}$, was series-connec ted to high-voltage capacitors to resonat MHz from an Electronic Navigation Industries A-300 RF Power Amplifier driven by a Hewlett-Packard 651A Test Oscillator. Figure 1 is a photograph of the apparanant secondary electric field surrounding the coil.
When the coil is energized, the liquid crystal sheets change colour almost instantly, in response to the current induced by the radial and axial electric field around the coil, to produce the display

The interior region is a uniform shade of blue except near the coil extremities, clearly indicating the uniform nature of the ture differs by less than $2-3^{\circ} \mathrm{C}$ over the entire central region of the photograph which ranges through various shades of
blue to shades of green in the original blue to shades of green in the origina
display. Near the ends of the coil, where all the field solutions quoted in this paper are modified by end effects, and hence, are only approximate, the axial electric-field
intensity has decreased just enough so that intensity has decreased just enough so that perceivable liquid crystal response.

References
"J. S. Townsend and R. H. Donaldson, "Electrodeless discharges,
vol. 5, pp. 178-191, 1928 .
2. N. Contaxes and A. J. Hatch, "High fre quency fields in solenoidal coiss," I. Appl.
Phys., vol. 40 , No. 9 pp. 3548 . 3550 , 1969 . 3. F. S. Chute and F. E. Vermeulen, "A visual demonstration of two-dimensional electrostatic demonstration of two-dimensional electrostatic
fields," Amer. Y. Phys., vol. 24, pp. 1075-1077,
Dec. 1974.
4. F. E. Vermeulen and F. S. Chute, "Visual demonstration of electromotive force and in
duced current," $A m$. 7 . Phys., vol. $45, \mathrm{pp}$ 309-310, Mar. 1977.

Note that a write operation does not rese the status flip-flop, so in the case of the p.i.a. we need to execute a dummy read to clear SFF. Invitation. Additional problems and solutions in this area are available from Professor D. Zissos, Department of Computer Science, University of Calgary, Calgary,
Canada T2N $1 N 4$. the right of each in mnem then the right of each box, and then tabulate
them with their machine code, page 77 .

Fig. 8. PIA implementation of the PRINT problem.
WIRELESS WORLD AUGUST 1982
continued from page 78
The Motorola 6800 statements that implement the flow chart are obtained by referring to the 6800 instruction set (see Sept. 1980 issue). As in the case of the

NEW PRODUCTS

OW-COST PRINTER FOR HOME GOMPUTERS | Graphics and dower-case leteters are |
| :--- |
| possible an the Ane |

 Four horizonalaly-aligned print so-
lenoids oscillate from side to side, each covering $1 / 4$ of the pepper
width, under control of the units
 inpur optoon. The end ato iows primaria
ily intended for use with home int intended. for use exith hame
computers. Amber Controls Ldd, Computers, Amber Controls Ltd Essate, Andover
WW301

EPROM ERASER Both models in Northern's eprom
eraser range cost under 600 excluding vat and can be wsed to erase up
to 0 six devices at once. The tatest of of to six devies at once. The hatst of
these, the UVIT, is
shasically the these, the UVIT, is basically the a 10 to 60 -minute uime swith
fitted. Lamp
Lifo is cuoted as being in excess of 3000 a and all models, 240 V operation and two ohhers for 110 or 240 V mains, comply with
appropriate
British Standards. appropriate
Northerin Electronicics Ltd, 51
Arundel Strect, Mossey, Lancs Arundel Street, Mossley, Lanc
OLSOLS. ${ }_{\text {WW306 }}$

CODED ROTARY
SWITCHES
Miniature rotary swiches with ten
or 16 positions, giving b.c.d. or or 16 positions, giving b.c.d. or
hexadecimal outputs, have been hexadecimal
added to the Elma rans range of ceramic wafer wwiches marketeed by Radiaron. Measuring 10 by 10 by tamm, these swichee can be be
tained for mounting either borizontally or vertically on a p p.c.b. and
with either a screwdriver sor or
and with either a screvdriver slot or
spindle. Gold-plated contacts are spidede. giving a contact resistance of

used less than 50m and the contact | rating is 50 V a 0.2 A between -40 |
| :--- |
| and $85^{\circ} \mathrm{C}$. Rediatiaro say that these | and

swicheses have a
a
life expectancy of
or
 Componensts Lid, 76 Crown Road
Twickenham, Middx. wW307
32×8
BIPOLAR PROM
A 'wasked eminter' process has ben used to prodace
Schotky bipolar proms with typical aceses simes of of ins. One, the 63 S080 has open-collector out-
puts and the other, the 633081 has
 ${ }^{\text {these }} 32 \times 8$.bit proms include

 Memories LLed, Laywwod House, 1
Camp
Read,
Emborough, Hants Camp Road, Famborough, Hants
GU146EN. WW308

DISPOSABLE
TEMPERATURE
inDICATORS
INDICATORS recording maximum temperatures
are avilable from Cobonic Led. are avialble from Cobonic Lud.
Within a a second of reaching the
 ${ }^{\text {temperature }}{ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$, one of of five in ifferent ${ }_{82}$

the dots, changes irreversilly from
white to black. There are 40 dif-
 range, from 40 to $260^{\circ} \mathrm{C}$, and each
sensitive area changes colour at
at sensitive area changes cilour rat
within 1 of of the specififec tiemperature These products are usefulu for monitoring and recording maxi-
mum temperautres in hazardous
 Ldd, Lantersi Yarad, LLadoo Road,
Guildord, Surrey GU2 5 NW. Gwidara ww309

BROADBAND R.F PREAMPLIFIER An r.f.preamplifier providing 9 di
gain and suitible for use with lowpower transceivers in the range 5 to 200MHz can be obtainect
Datong. Sendreexive swiching is automatic, using r.f. sensing and an internal bypass relay, and the unit
is claimed to bandie large simals is claimed to handie large sigmals
well (inerecept point +2 odism). Applicaions of the model RFA in-
cund private clude private mobile v.h.f.
transceivers, marine and aeronay transeevivers, marine and andernau
tical band reception, scanning receivers and anternal-osss compensation. Datong Electronics Ltd,
Spence Mills, Mill Lane, Bramley, Spence Mills,
Leeds SS 13 HE .
ww310
NON-INVASIVE X-RAY METER An electronic system for non-inva-
sive measurement of radiaion in sive measurement of radiation in-
tensity and exposure time in diagtensity and exposure time in ing.
nosic Xray equipment has been
devel developed in sweden by hree researchers at the Chalmers Instiutute
of Tectnology. The equipment,

 measurement unit, with prameter,
threshold and mode controls, and a detector which is satached to the patient Paeat kilovolt readings are
indiented digially and actual expe. indicated digitilly and actual expo-
sure time is calculated from sure time is calculated from
perviusly stored chreshold values
selected by by the selected by the operator. The
system may also be used to check syeam quality and, wisth an option,
be ind beam quatity and, witi an option,
be sued to
alculate current and ${ }_{\text {max }}^{\text {mas values. }}$ HB Innova Electronic, Sweden.
ww311

METALLIZED-FILM CAPACITORS Exxensions in Rifa's range of meatilizd polyproplene capaci-
lors have been made to include the tors have been made to include e he
PHE425 series. These components,

 they incorporate a 4 4m-thick
metallized film. Capacitance
 insulucion resissance is is climed od
be beteret than 200 G a $20^{\circ} \mathrm{C}$ 10V. be beter than $200 \mathrm{OC} \Omega$ a $22^{\circ} \mathrm{C}$, 10 V .
 direct Rifi AB, Market Chambers, helton Square, Coventry. WW312
T.T.L.-OUTPUT PATIERN GENERATOR A hand-held pattern generator providing t.t.1.-compatible red
green and blue signals for servicing
 manufacoruded by Sadelat Eigh
paterast are produced colour bars patterns are produced, colour bars,
red, green, blue and white rasters,
 lines, and the unit may be used for

up to four hours from one batery Charge. The RGBBI is intended or
servicing of commercial and hobby v.d.us, including video games, and c.c.t.v.v, monitors. House of Instru-
ments , Clifton Chambers, 62 High
. mensis, , liftion Chambers, 62 High
Srreet, Saffron Walden, Essex
Cat

Professional readers are invited to request further de-
tails on items featured here by entering the appropriate Wh reference numberis) on the mauve reply-paid card.
WIRELESS WORLD AUGUST 1982

The Professional Choice

Amcron 붕

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and industry, has made the name of AMCRON synonymous with throughout amplification. For the name of AMCRON synonymous with power

For further details contact the UK Industrial distributor:

$4 \sqrt{6}$

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE 10
TELEPHONE: 01-853 5295
TELEX: 923393 LASFA G

SOUND INVESTMENT领
QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
 POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS
 C21ES18 Motisisieko
 electronic products
WW - 046 FOR FURTHER DETAILS

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses,
SELF SETING at switch-on, 8 digits show Date, Hours, SELF SETMNG aconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds,
also parallel BCD output for computer or alarm and audio record and show time on playback, receives Rugby
60 KHz atomic time signals, built-in antenna, 1000 km range, GET the RIGHT TIME, 6 , 69.60 .
6OKHZ AUGBY RECEIVER, as in MSF
for computer etc., deeoding details and $\mathrm{an} \times 81$ listing for
local, GMT and SIDEREAL time, £22.20. local, GMT and SIDEREAL time, £22.20.
Each fun-to-build kit (ready made to order) includes all part Each fun-to--build dit (ready made to order) includes all parts,
printed -ircuit, case, opstage etc., instructions, money back
assurance so GET ours NOW

CAMBRIDGE KITS
45 (WH) Old School Lane, Milton, Cambridge. Tel: 860150
MEMOTECH Bxplores the Bxcellence of your ZX81
लеМОРа円 32 B

Memotech's Memopals Range

All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free
onto the back of the ZX8I, allowing more add-ons (from Memotech or Sinclair) to be connected.

fer a 14 -day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G WIRELESS WORLD AUGUST 198 WW - 019 FOR FURTHER DETAILS
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

 337 WHITEHORSS ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. $9-5$.
.

Available from stock NOW! 1.0 FARAD IOFARAD L.OFARAD SUPERCAP

tans

$£ 23.95$ | $\mathbf{£ 1 9 . 5 0}$ |
| :--- |
| OFFER |
| ENDS | ENDS

SOON
 Many sold to TANGERINE' usors and INDUSTRY

 WW-069 FOR FURTHER DETALLS

Barrie Electronics Ltid.
3,THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/7/8

GOULD OSCILLOSCOPES SET A HIGHER STANDARD

ThenewGould Os300 Dual Trace 20 MHz Scope A tough, professional instrument you can trust- at a price you can
 and "active" T.V. sync separator. \star 'Add' and 'Invert' for differentia measurements. $\star X-Y$ facility. Built to do more - safely, reliably and \Rightarrow gould
 Ask for our 8-page data sheet for full details and applications information.

 BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome CALLERS VERY WELCOME STAICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday inc.

NORWOOD ROAD, READING TELEPHONE NO. READING 669656

HF ANTENNAS

\star MODE;, Full half wave
\star BANDS; Up to ${ }^{\prime} 4$ spot
\star POWER; Receive to
\star SWR; Better than 1.5:1
on channel.
POWER BANDWIDTH DC to $100 \mathrm{KHZ}+1 \mathrm{db}$

* OUTPUT POWER IN EXCESS OF 500 WATTS PER

CHANNEL INTO 2 OHMS
OR IN EXCESS OF 1 KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
HARMONIC DISTORTION LESS THAN 0.01% O
TO 100 KHZ AT. 1 KW INTO 6 OHMS
INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE.RANGE OF SPECIALISED USES
OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
unconditionally stable into any load BASIC PRICE INCLUDING BRIDGE MODE SWITCHING AND HANDLES £455
S \& R AMPLIFICATION
6 Tanners Hill, London S.E. 8
Telephone: 01-692 2009
WW - OGA FOR FURTHER DETALLS

THE SMC TRAPPED DIPOLE ANTENNA

SOUTH MIDLANDS COMMUNICATIONS LTD. Sssorne fodp oftion Telex: 477351 SMCOMMG
Tel: Totton (0073) 867333

YOURPROEIEM SOLVFD!

Machine Intelligence
 more ways than one, human intelligence and judgement are being built into software Predictions from time series data, games strategies, pattern recognition .. we look at these three examples of "intelligent" programs in our August issue, out now.
 We review the Televideo 802 (a hard disc computer for businessmen), and the Sharp PC 1500 (a pocket micro for engineers and scientists).
 And we examine stock controlon an Apple and a portable version of the ever-popular Invaders game
 FOR ALL THIS AND MUCH MORE BUY PRACTICAL COMPUTING, BRITAIN'S LEADING PERSONAL COMPUTER MAGAZINE.
 AUGUST ISSUE OUT NOW
 80p AT YOUR NEWSAGENT'S - BUT HURRY

Hifachi Oscilloscopes performance, reliability, exceptional value $\begin{array}{r}\text { and immediate delivery! }\end{array}$

Hitachi Oscilloscopesp provide the quality ynd performance that you'd expect from
succh famous name, in range that reperesents she best value for money avaible such a famo
anywhere.

 Prices start from around $\Sigma 235$ and we hold the range in stock for immediatad delivery. For colour brochures giving detailed specifications and prices, ing 04800635 Reltech Instruments, 46 High Street, Solihull, W. Midalands B91 3 TB

R RADFORD

Audio Measuring Instruments Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast
RADFORD AUDIO LTD. WESTON-S-MAREAKAVOAD AVS23 2AU

TEL. 0934416033

P.\&R. COMPUTER SHOP

 IBM GOLFBALL PRINTER 3982, $£ 70$ EPSON MX-B0 $80 . G P$ SP 3982 IBM I/OPRINTERS DOTMATRIX PRINTER WITH SPECIAL INTERFACES VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES,

 MISCELLANEOUS COMPUTER EQUIPMEN.
OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m., OPEN: MONDAY TO
SATURDAY TIL 1 p.m.

COME AND LOOKAROUND
SALCOTT MILL, GOLDHANGER ROAD HEYSRIDGE, ESSEX
PHONE MALDON (0621) 57

WW-070 FOR FURTHER DETAILS

Export and Dealer Enquiries Welcome
Com-Tek (MIDS) LTD. 506 Alum Rock Road - Birmingham B8 3HX Telephone: 021-326 6343 Telex: 337000

reprints If you are interestar articular article. special Feature or advertisement published in this issue of
 WIRELESS WORLD
 Rhy not take advantage of our reprint service Reprints can be secured at reasonable cost to and valuable addition to your promotiona material. (Minimum order 250.)
 For further details contact Michael Rogers, IPC Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.
 To Michael Rogers, Reprints Department Quadrant House, The Quadrant
 Sutton, Surrey SM2 5AS
 ram interested in
 WIRELESS WORLD
 Please send me full details of your reprint service by
 return of post.
 Compan
 Address
 Tel. No

RC OSCILLATORS from £80

LEVELLELECTRONICS have a range of OSCILLATORS Covering frequencies There is a DECADE OSCILLATOR with digital frequency tuning and a
FUNCTON GENERATOR providing sine, square, triangle, pulse, sawtooth, FUNCTION GENERATOR providing s.
ramp and asymmetrical sine waves.
Various RC OSCILLATORS are available as detailed below

LEVELL
PORTABLE INSTRUMENTS

Hz to 1 MHz in 12 ranges. 0 to 1% fine control on TG200DMP. TG200 SERIES FREQUENCY SINE OUTPUT
DISTORTION

SQUARE OUTPUT SYNC OUTPUT SYNCINPUT
METER SCALES
$\pm 1.5 \% \pm 0.01 \mathrm{~Hz}$ up to $100 \mathrm{Kkz} .+2 \%$ up to 1 MHz .
$7 V$ r.m.s. down to $<200 \mathrm{~V}$ with Rs $=600 \Omega$.
7 V r.m.s. down to $<200 \mathrm{~N} \mathrm{~V}$,
$<0.05 \%$ from 50 Hzz to 15 kHz
$<0.1 \%$ from 10 Hz to 50 kHz .
$<0.1 \%$ from 10 Hz to 50 kHz .
$<0.2 \%$ from 5 Hz to 150 KHz .

$\pm 1 \%$ freq. . lock range per volt r.m.s.
$\mathrm{TG} 200 \mathrm{M}, \mathrm{DM} \& \mathrm{DMP}$ only, $0 / 2 \mathrm{~V}, 0 / \mathrm{V} \&-14 /+6 \mathrm{dBm}$.

TG152 SERIES
 3Hz to 300 kHz in 5 decade ranges.
$+2 \% \pm 0.1 \mathrm{~Hz}$ to 00 kHz increasing to $\pm 3 \%$ at 300 kHz ,
 2. 5 V peak down to $50200 \mu \mathrm{~V}$. 2.5V r.m.s. sine
$0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}$ on TG152DM.

LEVELL ELECTRONICS LTD.
Moxon Streat, Barnet, Herts. Tel. 01-449 5028/440 8686

WW - 006 FOR FURTHER DETALLS

Chiltern Electronics

B.C.M. BOX 8085, LONDON WCIN 3XX. TEL. 0494714483 PROFESSIONAL ASCI KEYBOARDS
Beauiful 75 -key ASCII encoded keyboards in attractive

 oads of ofher components includuing TRI chips, sall, ribbon cockene. tors. Unfortunately we have no circuit or data, so we are offering the
complete units with ribbon cables and pluss for only $\mathbf{\Sigma 2 3}$ each SELE-SCAN DISPLAY UNITS These state-of-the-art displays can repiace a vou, and measure only $12 \times$
$\times 2$ inches. Display all AsCII set 40 characters by 6 lines. As used on 4×2 inches. Display all ASCII set 40 characters by 6 lines. As used on
latest mainfame terminals, Bu again no data or circuit 50 only....223 ea. A full size circuit board ex new equipment A full size circuit board ex newe equirments containing 64 4K Dynamic
RAM chips in sockers, and complete with all decoding circuitry. OrgaAAM chips in sockerss, and complete with all decoding circuitry. Orgas tacing... Only 811.50 ea.

 AMPHENOL 36.WAY CENTRONICS PLUGS
 Our price $\varepsilon 11.50$ for 6 , or $\varepsilon 115$ for 100 all above prices include vat and postage. sameWe also stock full range of DEC Systems from PDP1/104 to VAX $11 / 780$,
and fuil range of spare cards - please telephone for dexails or catalogue. WW - OS7 FOR FURTHER DETAILS

THE POWERFET
SPECALISTS

POWERFET AMPLIFIER MODULES

PFA
Koy feature
$-\quad$ RELI

- RELLABLE - Powerfet treedom from thermal runaway and ssecondar

 ever-rxpanding rangit
priche chnic sell high quality power supply and other components at excellent prices. CHECKUS OUT
 Phil Rimmer
01 mon 8 Eti

Postage
will he

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS
 please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH, England

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry Service for Professional WIRELESS WORLD Wireless World, August 1982 WW 268
Readers $\begin{array}{llll}\text { WW. WW. } & \text { WW } & \begin{array}{l}\text { Please arrange for me to receive further details of the products listed, } \\ \text { the appropriate reference numbers of which have been entered in the }\end{array} \\ \text { WW.... WW. ... } & \text { WW }\end{array}$ space provided.
Name .
Name of Company
Address

Têlephone Number

PUBLISMERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of eminioyees at this establishment.
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World

BRITAIN'S BETTER BARGAN STLL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters. 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers-signal processing 17 Current differencing amplifiers - signal generation ${ }^{18}$ Current differencing
amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency $\begin{array}{llllll}\text { amplifiers - measurement and detection } & 19 \text { Monostable circuits } & 20 \text { Transistor pairs } & 21 \text { Voltage-to.frequency converters } \\ 22 \text { Amplitude modulation and detection } & 23 \text { Reference circuits } & 24 \text { Voltage regulators } & 25 \mathrm{RC} \text { oscillators }-1 & 26 \text { RC }\end{array}$
 multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications -1 35 Analogue gate applications -2 .

To IPC Electrical - Electronics Press Ltd. General Sales Department,	Please send me the following sets of Circards: £2 each,
Room 205,	£18 for 10 post free.
Quadrant House, Sutton, Surrey SM2 5AS	Remittance enclosed. \qquad payable to IPC BUSINESS PRESS LTD.
	Name (Please print).
Company registration in England Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS	Address (Please print)

Advertisements accepted up to 12 noon Wednesday, $\begin{aligned} & \text { for September issue, }\end{aligned}$ subject to space being subject
available.

AMPEX SYSTEM MAINTENANCE ENGINEER

to join a resident team at a site of EXCEPTIONAL INTEREST situated in the St. James's Park area of London. The team is responsible for round-the-clock maintenance of a large INFORMATION STORAGE AND RETRIEVAL SYSTEM WHICH COMBINES both VIDEO AND COMPUTER TECHNOLOGY.
Ampex requires an Engineer with:
Sound knowledge of Electronics/HNC or equivalent

- At least three years' experience of maintaining ANALOGUE and/or DIGITAL electronic equipment
- Preferably, specific experience with:

VIDEO equipment, such as cameras, VTRs, etc, and/or
DIGITAL equipment such as disk/tape drives, mini computers.
Good salary plus generous shift allowance.
Company car plus travel allowance.
Pension and Life Assurance and Permanent Health Schemes.
Please write or phone for an application form from Maureen Brake, Reading (0734) 875200, Ampex Great Britain Limited, Acre Road, Reading, Berkshire.

Electronic Engineer

In Radiation Physics Dopartment requirrod

10 assist in the servicing of a modern 20 MeV Linear Acclerator and a
6 MeV Linear Accelerator which is about to be installed and in the manufacture of dosimetry equipment and devices requirad for deExperience in Radar or Radiation Physics would be advantageous but

 Closing date, 4 August. 1982.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre ($\mathrm{min}, 3 \mathrm{~cm}$).
LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable.) BOX NUMBERS: 11.50 extra. (Replies should be addressed to the Box Number in the PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd
 tion under the auspices of the iBA, provides training
Independent Radio. As well as running full-time angineoring courses, the Engineering Department also teaches the non
technical courses and maintains 6 broadcast-capable studios technical courses ans.
and ancillary areas.
PART-TIME LECTURERS IN ENGINEERING
Engineering Course starting 11 Soptember They must have Engineering Course starting 21 September. They must heve
considerable experience in radio broadcasting and the ability to pass on that experience. Salary negotiable. BROADCAST ENGINEER
ABroadcast gine taining modern sound broadcasting eevuipment and a recog-
nised technical qualification is required. In addition to the
maintenance maintenance of the school's studios, the job includes teach-
ing Broadcast Engineers. A desire to teach is therefore essening Broadcast Engineers. A desire to teach is therefore essenan advantage. Salary negotiable.

ELECTRONICS TECHNICIANS
 Total involvement across the spectrum of advanced communications

 Applications, which will be treated in confidence, should be
madd to the Chief Engineer, NBS, 14 Greek Street, London

CCTV
 SERVICE ENGINEER

required to carry out repair and maintenance on all types of surveillance equipment. Salary commen-
surate with age and experience. Please write, with full C.V., to: BOX No. 1711

2-WAY RADIO SERVICE TECHNICLIN Experieniod in sarvicing V.H.F and U.H.F. Land Mobile Equipment,
required for expanding CoMMUNICATIONS COMPANY in STAINIS. SALARY: Cormmensurate with experience. FRANK CODY ELECTRONICS LTD TAR HOUSE, GRESHAM ROAD, STAINES, MIDDLESEX Or telephone Staines 82882 for an appointment.

Appointments

LECTURERS AND TECHNICAL AUTHORS

The Engineering. Training Centre situated near Evesham in Hereford and
Worcestershire, trains the Corporation's technical staff, both on firstappointment and Worcestershire, trains the Corporation s tectin cal stait, both on firstappointment and
thereatter in the technology of broadcasting. The site is residential for students and thereafter in the technology of broadcasting. The site is re
some 400 BBC staff normally work or are in training there.

LECTURERS

Duties will involve contributing towards the operational training of Technical Staff in
Television and/or Radio Broadcasting. This includes instructing Technical Operators Television andor kadio Broancasur. Te, audio mixing, camera work and lighting in
who are responsible for sound coverage
Television or operating Network Continuity Suites in Radio. The Training Centre has Television or operating Network Continuity Sutes in Radio. The Iraining Centr
Radio and Colour Television Studios using the latest broadcasting equipment. Candidates, male or female, should have recent experience in some aspect of Technical Operations or Engineering in the Broadcast or Closed Circuit field and a good
technical knowledge of audio or video equipment. They should preferably have a technical knowledge of audio or video equipment. They should preferably have
qualification of $H N C, C$ \& G Full Technological Certificate in Telecommunications, a quass in the examination of the Council of Engineering Institutions or equivalent.
ponsideration will be given to providing appropriate training to otherwise suitable Consideration will be given to providing approp
applicants who do not hold these qualifications.

TECHNICAL AUTHORS

Engineering Training Department includes a Unit, consisting of one Senior Author
and four Authors, which provides overall systems descriptions for major installations and
throur Autut the Corporation and pubbishes technical standards and procedures. The unit is supported in-house by a drawing office and printing faci.
computer based phototypesetting, word processing and graphics.
The technologies covered by Technical publications Unit are Radio, Television, Trans-
mission and, increasingly within these fields, computers. Authors have substantial
 personal responsibilit
acceptable to users.
The successful applicant will hold a degree in electronics or a reasonable equivalent
such as a Higher National Certificate, have good experience of technical documentsuch as a Higher National Certificate, have good experience of technical ocumment-
ation and a good grasp of a significant area of broadcasting technology or of a closely ation and a good grasp of a significant area on broact casting technologg or or a closely
related field of electronics. Increasing versatility across the whole field will be expected relaeed fiele ofe electronics. Increasing versadiity across the whole iield will be expected
as experience grows Appropiat training, including areas of broadcasting tech nology, will be provided if necessary.
Salary on appointment, for both positions will be between $£ 9,435$ and $£ 10,293$ rising to
$£ 12,254$. Excellent welfare and club facilities. Pensionable posts. Relocation expenses considered. For an application form and further information about the Technical Author vacancy please contact Head of Training Section (Engineering), Mrin
ested in the Lecturer vacancy, please contact Head of Training Section (Operations), ested in the Lecturer vacancy, pease contact Head or Training Centre, Wood Norton, Evesham, Worcs WR114TE. Telephone Evesham 44123 .
Closing date for return of application forms is 14 days after publication.
BBG

ALWAYS AHEAD WITH

 THE BEST!£5,000-£15,000
\star Experienced in: Analogue circuitry; RF and Microwave techniques?

* Where does your interest lie Image processing; Automation; Datacomms; Radar Nav aids; Mobile Radio; Medical; Telemetry; Simulation; Satcom; Lans?
* There are opportunities in:

Design; Test; Service; Sales; Systems; Production; Quality and Research. Make your first call count - Contact MIKE GERNAT on 076384 676/7 (usually until 8 p.m.)

Appointments

the university of papua new guinea SENIOR TECHNICAL OFFICER （ELECTRONICS）

Applications are invited from suitably qualified persons
for the above position in the University of Papua New Guinea．
UTIES
The successful apolicant will be expected to ioin a techni－
cal group involved in carrying out electrical／electronic cal intenance to scientific departments and faculties within the University．A proven record of experience is equired covering maintenance and servicing in a wide range of teaching and researn in inedical／Dental Sciences．The Depart－ ment of Physics houses modern and well－equipped electronics and technical workshops to facilitate the work
envisaged．
The successul applicant will be required to supervise
and to provide on－the－job training to national Papua New and to provide on－the－job
QUALIFICATION：
Applicants should hold a Higher National Certificate in entronics／eectrical engineering or equivalent qualifica－ tion．Possessio
be desirable．
SALARY：K15625 per annum plus 24\％gratuity． Further details may be obtained from the Chief Technical ffficer in Physics Department on telephone 245243 or he University of Papua New Guinea，P．O．Box 320，UNI－
VERSITY，Papua New Guinea． ，Papua Ne Guinea
Applications together with names and addresses of three ity of Papua New Guinea，P．O．Box 320，University Post Office，Papua New Guinea，not later than 9th July，1982．
university of paridia new guinea

Commissioning／Engineering Support

 Broadcast Television EquipmentTremendous growth and success has resulted in an
excellent career opportunity in the QA Department of Sony Broadcast，a avorld leader in professional
broadcast television equipment．The Company has a expanding range of high hetechnoloogy productits which
iclude video cameras，VTRs and edting control include vid
systems．
An experienced engineer，who should deally have a background in broadcast televisison equipment join a small team responsibile for the evaluation of product performance．Key activities will alsoinclude
 including software
where necessary
This position carries an attractive salary，first class conditions of employment and considerable prospects
for personal development．

Hyou are interested，please write，giving brief details of career and present salary to Mike Jones，Senior House，Basing View，Basingstoke，Hants RG21 2LA House，Basi

SOINTM，
 Broadcast Telephone（ $(2566) 55511$

RADIO OFFICERS
first－class，secure career opportunities． A number of vacancies will be available in $1982 / 83$ for suitable qualified candic
Trainee Radio Officers．
 If your trade or training involves Radio Operating，you
qualify to be considered for a Radio Officer post with qualify to be considered for a Radio
－Candidates must have had at least 2 years＇radio operating experience or hold a PMG，MPT
certificate，or expect to obtain this shortly
On successful completion of between 36 and 42 weeks Specialist train
Officer grade．

Registered disabled people may be considered．
SALARY \＆PROSPECTS
RAAINEE RADIO OFFICER：$£ 4,357$ at 19 to $\mathrm{f5}, 203$ at 25
and over．On promotion to Radio Officer：$£ 5,968$ at 19 to $£ 7,814$ at 25 and over．Then by four annual incre－
ments to $£ 10,662$ inclusive of shift working and Satur－ ments to E ， 0,662 inciusive
day and Sunday elements．
For full dotails please contact our Recruitment Officer
on Cheltenham（0242） 21491 Ext 2269 or on Cheltenham（0242） 21491 Ext． 2269 or write to her Recruitment Officer，Government Communications
Headquarters，Oakley，Priors Road，Cheltenham， Gloucestershire
GLL52 5 AJ

（GOMiou

ELECTRONIC SERVICE ENGINEER

Due to the rapid growth of our In－Car Entertain－ ment Division we seek an additional engineer to service our range of products．
Experience of both analog and digital systems is essential as complex microprocessor based units are handled．
The ideal candidate will have been employed for a minimum of 3 years servicing car audio or domes－ microprocessor－based hardware experience．Due to the nature of our products，persons without this experience are unlikely to be suitable．
Some administrative capability would be consid－ ered an advantage．

Applications in writing with full c．v．to
The Technical Manager

gutocar
 ELECTRICAL EQUIPMENT CO LTO

Chantry Road Industrial Estate
Kempston，Bedford MK42 7SD

Communications R \＆D．． ．．．the leading edge

VIDEO ENGINEER

Rediffusion Consumer Manufacturing Ltd is seeking an ax－
perienced video engineer to join a progressive team en－ geaged on a wide variety of stimulating projects associated
with videa wisserter with video cassette recorders，video cameras，video disc
players and colour TV receivers and monitors． players and colo
Assessment reporting is an important part of this team＇s
function and the ability to express oneself，both verbally and
in in writing，is essential．
Our Laboratories are situated in Chessington，within easy
commuting distance of the Surrey countryside commuting gise usual big company benefits are affered to
salary and the salary and the usual big company bennefits are offered to
suitably qualified and oxperienced engineers．if you believe you can make an effective contribution to our future video

Mr Harry Braarloy
Rediffusion Cons
Fullers Way South，
Chessington，Surrey KT9 1HJ．Phone：01－397 5413
REDIFFUSION

Broadcast Engineer

 and

At HM Government Communications Centre， we re applying the very hatesterseas of sophisticated communications systems，designed to enable and protect the flow of essential information．

The work is of the highest technical challenge， offering full and worthwhile careers to men and women
high ability，on projects covering the following areas of interest：－
RADIO－from HF to microwave，including advanced modulation systems，propagation
ACOUSTICS SIGNAL ANALYSIS MAGNETICS SYSTEMS ENGINEERING Applicants，under 30 years of age，should have a good honours degree or equivalest qualification in a relevant sub
allso apply．
 according to qualifications and experience．Promotion according
prospects．
Recruitment officer，（Dept．W／W8 Communications Centre，Hanslope Park， Teleco oilfield Services Ltd has pioneerred a reliable
shock－resistant Measurement－While－Drilling（M．W．D．） tool which saves drilling time and money，pretes satety and impoves well－path accuracy in offshore
drilling activitios．Our dynamic growth has created a driling activities．ur dy
career opportunity for an

ASSISTANT ENGINEERING MANAGER （Electrical／Electronics）

 The Personnel \＆Administration Manager
TELECO OILLIELD SERVICESLTD，Hareness Circle
Altens Industrial Estate，Aberdeen Agency enquiries are not requested

TE E E C \square
 Mロロロロロロロ！

MICROCOMPUTER ENGWEER

Required by newly formed company working on innovative computer－based speech processing systems in centrar Lon
don．Apolicants must have experience with digital hardwara and will be expected to develop real－time appolications fo and wis be expecti．s and．contribute to their software support．
Intel is in idel opportunity to work with a small team and The ite most advanced signal processing technology and
use the mosing
computer support taking the product from design through to computer support taking the product from design through to
installation．It will be necessary to liaise with customers and
 $8,000-$－110，000．Please reply in writing，givin
fications and career to date，to：

AUDIO MAGIC LTD．
105 Green Croft Gardens

FIELD SERVICE ENGINEER

LKB Instruments Limited, the U.K. subsidiary of a
maior international medicalscientific instrument command international medici/scienuiki instrument com-
pany requira
Sield Serve Departice pany require a Field
Service Department.
Applicants should have a sound knowledge of digital and
apalogue sectronich analogue electronics, with preferably some field exper-
ience in the scientific instruments world. The work entails the repair and maintenance of instru-
ments situated mainly in Hospitals and Universiy
Laboratories Preference ments situated mainly in Hespitals and UUiversity
Laboratores. Preference will
ing in the Gloucester to Soutb biven to applicants livLabratories. Preference will be ivien to applic
Conditions of employment are excellent and in addition to a good basic salary and company car, the company
have a profititharing scheme, BUPA participation and 4
weeks annul weeks annual holiday.

LKE

Contact Mrs S. Francis
for application forms:for application forms:${ }^{232}$ 2addington Road, Selsdon,

MANY FIRMS ARE THROUGH THE RECESSION AND RECRUITING AGAIN

\section*{PROJECT MANAGER}

SOFTWARE ENGINEER

For designs associated with processing Iow-noise sins

ASSISTANT COMMUNICATIONS MANAGER
 travel. Lendon. To f12,000 Whatever your experience send your cVor r ing:
Charles Airey Associates

GRADUATE ENGINEER

IN CHARGE OF THE

 ELECTRONIC SERVICES DIVISION

 (iii) soperation of the deopartmenal eleatronicis stores. The person appoined will IIso obe rouired ios supenise any

1 post of Technician Grade 6 2 posts of Technician Grade 3 Electronics
Thech Chief Techician (Grade 6) will be required to set up and run the
Resench

Lecture Theatre Manager

The Institution wishes to recruit a Theatre Manager to replace the present Institution of Electrical Engineers arranges approximately 200 meetings, seminars, colloquia and conferences a year in its lecture theatres at Savoy Plac London.
These lecture theatres are equipped with modern lighting and audio visual
aids. The latter includes large screen projection facilities for video tapes and projection facilities for films, slides and transparencies; sound reinforcement and recording facilities; radio microphones of hearing. The facilities are subject to periodic updating and improvemen
The Lecture Theatre Manager is responsible for managing all the satisfying both the needs of the audience
and the speakers Will be expected to

THE INSTITUTION ENGINEERS ENGINEER
assist and advise the speakers through the correct choice and use of audio and visual id equipment and to ensure that the information from the lecture. Will b expected to maintain the equipment in rst-class order and to make recommendations for changes and improvements, and will ope
The Lecture Theatre Manager, in addition to being professionally and technically competent, should have a personality which inspires confidence in e lecturers
We offer a competitive starting salary and other conditions of employment include: 35 hour flexible working week, staff restaurant, and pension and life assurance scheme.
Candidates (male or female) should apply in confidence, detailing career and
salary progression to the Director of Administration, Institution of Electric Engineers, Savoy Place, London, WC2R OBL.

MARTIN ASSOCIATES РАаттна : вескнам

URGETVMREQUREDOSLIOSCOPES

Video Engineers

Sony are looking for a high flier do you fit the bill?
Everyone knows our reputation for high quality domestic TV, audio and VCR equipment, but that's only part of the Sony success story.
We alsolead the field in industrial video and other commercial and industrial applications. Video cameras, professional and digital audio dictating machines, language laboratories - these are just some of the areas
in which Sony is out in front. in which Sony is out in tront.
Products like these are amongst the most sophisticated on the market and the Engineers who provide the back-up service need to have the highest which our customers have come to expect - second to none! W' expansion, we now wish to recruit an additional Engineer for our National ServiceCentre at Feltham, Middlesex.
Although we provide initial and on-going product training, you must have several years good fault diagnosis experience on the kind of products we have described. In particular, experience of industrial video (U-matic format) is essential, as is qualification to at least City \& Guilds 222 (with 4 or equivalent
If you are the high flier we're looking for, we'll offer you a very competitive salary and a range of benefits which is everything you would expect from a For an application form, you should contact Rosemary Browne, For an application form, you should contact Rosemary Browne, Sunbury-on-Thames, Middlesex. Telephone: Sunbury-on-Thames 81211.

SONY

PHONE Your clussifies

RF DESIGNER

NITH INVENTIVE FLAIR AND

A TASTE FOR RURAL LIFE
Our clients are a smalr cheerful and highly moivaled company who are sole manufactur They are in the throes of moving to a Georgian manor house with eight acres of land, in
rural England (with low housing costs). The need is for an engineer, probably between 25 and 45 , with a genuinely radical and
inventive approach to design and a sound knowledge gained in the radio frequency inventive approach to design and a sound knowledge galned in ine fiequency
(ideally, low power) field. The successful candidate
attached to the position are second ton onne. specialist team. The potential and prospect
Apart from a competitive, negotiable salary, the company offer Apart from a competitive, negotiable salary, the company offer excellent relocation ex
penses to this attractive low cost housing area. To discuss this position or any other specialist Communications vacancies
telephone Paul Hecquet on $0444647301 / 2 / 3 / 4$ or write with a brief C.V.

The Electronics
Recruitment Company
18 Station Road, Burgess Hill, West Sussex RH15 9DE
Communications
Division
04446 47301/2/3/4

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments

 service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim
Kent. TN4 8AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form
Name .
Address.

The work will appeal to someone with a keen interest in
electronics, who is eager to learn new techniques and electronics, who is eager to learn new tech
who aready has some experience in design.
Qualifications required are minimum design experience
of one year with at least TEC III or ONC and preferably wo
working toa a hith arer quastification. The salary will be on the
T5 scale $55695-\mathrm{E} 6650$.
Further particulars and an application form are available
from: Mrs. B. McBrarty (4988/1, Faculty of Technololoy,
The Oin The Open University, Walton Hall, Milton Keynes MK7 24-hour answering service on Milton Keynes (0908)
This is a re-advertisement and previous candidates do not oed to apply. Closing date for applications: 30th July.

WIRELESS WORLD AUGUST 1982
TO MANUFACTURERS, WHOLESALERS LARGE QUANTITIES OF'RADIO. TV AND ELECTRONIC COMPDNNENTS FOR DISPOSAL

 ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713

Classified

Classified

Pathology Laboratory Maintenance Engineer c. $£ 17,500$ p.a. tax-free SaudiArabia

In Jeddah, on Saudi Arabia's west coast, a 500 -bed hospital is being commissioned. It has been built and equipped to the highest international
standards, incorporating some of the most advanced medical facilities and high technology support systems
available. available.
IHG Int IHG International Hospitals Group, the British-based health care
organisation managing the proiect has given the task of finding all the specialists to IAL.
We now have We now have an opportunity for
an Engineer to maintain and reai an Engineer to maintain and repair
wide range of automated laboratory equipment made by Technicon, Beck man, Coulter, LKB, Corning and Dupont together with the full range of standard laboratory equipment.
Applicants should have an HNC or equivalent in Electrical or Electronic Engineering and
experience specialising in automated equipment in a pathology laboratory, or with an appropriate manufacturer'
service organisation. service organisation.
Preference will be qualified Saudi A rabian nationals and Arabiific speaking Arabian nationnel.
The tax-free salary will be paid in
Saudi Riyals. Benefits include free Saudi Riyals** Benefits include free accommodation, 49 days annual
holiday, free return flights to the UK holiday, free return flights to the
and free medical care. Facilities include shops, gymnasium, theatre, swimming pool, tennis courts and restaurants.
Salary SR108,000 p.a. - the effected at the rate SR $6.05=\$ 1$ For further details please send your cv to John Innes, IAL, Aeradio
House, Hayes Road, Southall House, Hayes Road, Southall,
Middlesex, UB2 5 NJ . Tel. $01-574$

MEDICAL SERVICES
COMMUNICATIONS SYSTEMS COMPUTER SYSTEMS AND SERVICES AVIATION SYSTEMS AND SERVICES-WORLDWIDE

Channel Four
 which will be transmilting nationaily from November 1982, requires a Sound Supervisor

Applicants should have had previous
broadcast operational experience. Please write enclosing a c.v. to Ellis Grilitiths,
Channel Four Televislon
Com Channel Four Televislon Company Lad..
60 Charlotte Street.London W 1 P 2 XX 60 charlotie Street,London Wip 2 AX
or telephone 01.6314444 for an application form. Channei Four is an equal Channei Four is an equal
opportunlity employer:
application appllications are welcome from
condidates regardiess of martio candidates regardloss of maritio
siatus, race, natlonallty ethnic or nationai origins and from
registered disabled persons.

CHANNEL FOUR TELEVISION

monkre spersi

WANTED
Test equipment, receivers
valves, transmitters, compo
. valves, transmitters, compo-
nents, cable and electronic
scra, and quantity Prompt nents, cable and electronic
scrap, and quantity. Promp
service and cash. Member service and cash. Member or
A.R.R.A.

M \& B RADIO

 86 Bishopsgate Stree Loeds LS14B8053235649

WANTED Scrap and re-usable mainframe
computer and industrial electronic
equipment. E.M.A. Telec E.M.A. Telecommunications Engl.
neers.
Oriford, Woodbridge, Sut tolk. Tel. $039-45$ 328. (1720)

Wicyo Processor Design our tsam of experts offer the camplete service from Destign to Manutacture

- Artwork \bullet Prototype Development \bullet Testing П1C1○ Board Manufacture \bullet Assembly \bullet Packaging

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE Arwork, Circouir Design, pcs Assembly, Test \& Repair Service, Q.A. Consultance

1 FRANCISCAN ROAD
TOOTNG, LONDONSW17

DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. AIso PCB desiign, mechanical design nand prototypersmall batch producion. - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell 52023.	Design Engineers
 	ELECTROMIGS
	- Video character \& image
	- Microprocessor-controlled video systems
	20 Trenches Road, Crowborogh, Sussex. Tel. (08926) 5069
PCB/equipment assembly/wiring from proto type/drawings. Fast turnround. Tel. 01-390 0424	prototype plastic casings, vacuurn \qquad

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 2.50$ PER LINE. Average six words per
line. Minimum £12.50 (prepayable).
- Name and address to be included in charge if

NAME.

- Box No. Allow two words plus $£ 1$

Cheques. etc., payabbe to "IPC Business
Press Ltd." and cross "\& Co."
ADDRESS

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

INDEX TO ADVERTISERS AUGUST

Appointments Vacant Advertisements appear on pages 100-111
page

WE'RE MAKINGA STAND FOR BETTER SOLDERING!

And including it in the

NEWAntex all-in-onepack!
The new ST4 stand with the big sponge onit's own of in the SK5 and SK6 kits with the new CS and XS low-leakage soldering irons. These new models have tougher, cooler handles, detachable hooks, the well known Antex doubleshaft insulation, the big range of push-on bits and fitted with or without moulded-on

SKS Soldering. Kit
Cantains Mode icseas iron
and the ST4 stand. R.R.P. E .25 sK 5 Soldering Kit
and the STA stand. R.R.P. E6. 3
SK5-BP and
SKIderering
kits fitted with

Faircress Enginering....................................... 2^{2}

 Valradio Ltd 8 Darom Suplies.....
Datam
Display Elecitronis.

Dics. | 84,94 |
| :--- |
| $\ldots .23$ |
| $\ldots 9$ |

Electrical Review Shock Cards.
 Marconi Com
Memotech
Nom
 White House Electronics.

OVEESEAS ADVERTISEMENT

Now, at last, real portable computer power. The new Sharp PC 1500 pocket computer. A pocket-sized genius that will travel with you to conferences, seminars and business breakfasts.

The PC 1500 has the capacity and BASIC language usage that is very nearly that of the desk-size Personal Computer. When fitted with the optional 4 -colour graphic printer, it is one of the most powerful pocket computers on earth.

Chores can be handled swiftly and accurately any time of day, wherever you happen to be. Estimates, records and charts of sales, billings and other important data can be re-programmed, calculated and summoned
at the touch of a button. It can even play blackjack, analyse your biorhythms or give you a beeped reminder of a scheduled meeting.

Large memory capacity, up to 11.5 K bytes. 4-colour print-out. Six user-programmable keys. The incredible new PC1500. A revolution in pocket computers.

From Sharp. Where great ideas come to life.

SPECIFICATIONS
PC1500 Pocket Computer

CPU	C-MOS 8-bit CPU
Capacity	ROM: 16 K bytes
	RAM: 3.5 K bytes to 11.5 K bytes

CE 150 Colour Graphic Printer/Cassette Interface (Optional)

Printing Digits
Printing System Printing colours
Printing directions
Cassette Interface

Standard 18 digits ($36,18,12,9,7$ $6,5,4$ digits selectable) $X-Y$ axis plotter system Red, blue, green, black Right, left, up, down Up to two cassette tape recorders can be connected.

Please send details of the Sharp PC1500
Type of application:
Name:
Address:

The world of SHARP where great ideas come to life.
 Sharp Electronics (UK) Ltd, Computer Division. Sharp House. Thorp Road,

 Newton Heath, Manchester M109BE. Telephone: 061-205 2333
[^0]: WIRELESS WORLD AUGUST 1982

[^1]: WIRELESS WORLD AUGUSTT 1982

[^2]: Feedback Instruments Lt

