THE COMPLETE COMMUNICATIONS MAGAZINE

A LOW-COSTBROADBAND LINEAR AMPLIFIER

 FORHFCENTRONICS INTERFACE FOR Z8-TBDS
of 2 issues plus
a classifiod all errata and mods

Electronic Max/Min Thermometer

Rotary Encoder Interface High Performance WBFM
Tuner Module

Noise Blanker Techniques

ATTENTION 10 METRE OPERATORS!

NEW - especially for the 10 Metre users who have converted CB rigs
The AKD 10 Metre Linear Amplifier

* 25 Watts FM out for 4 Watts in
* 50 Watts PEP on SSB
* About 10 Watts out for $1 / 2$ Watt in (13.8V)
* Automatic RF sensing
* Relay switching employed
* Requiresnominal 12 volts@ 5 amps (15 volts maximum)
\star In-line fused
$\star 2$ year guarantee (including ouput device)
* British made

10 Metre RF Switched, In-Line Pre-Amp.
\star 3SK45 Dual Gate Fet, 15 dB gain

* Fail safe, will handle 10 watts through power
$\star 2$ year guarantee

$\star \star \star \star \star$
£14.50
Incl VAT, p\&p
Also available, the AKD range of RF INTERFERENCE FILTERS - high performance, sleek appearence.
Used by British Telecom, Granada, ITT, Thorn-EMI and other prominent companies.

Also available, the AKD range of RF INTERFERENCE FILTERS - high performance, sleek appearence. Used by British Telecom, Granada, ITT, Thorn-EMI and other prominent companies.					
Model/Type	Specification	Manufacturers retail price Incl VAT, p\&p	Model/Type	Specification	$\begin{aligned} & \text { Manufacturers } \\ & \text { retail price } \\ & \text { Incl VAT, p\&p } \\ & \hline \end{aligned}$
TNF2* TUNEDNOTCH FLLTER (Notch on Inner \& on Braid) *Suffix with centre frequency of interference. e.g. TNF2/27.5MHz	Rejection - Inner>35dB Outer $>30 \mathrm{~dB}$ Band width 2 MHz Insertion loss $<0.5 \mathrm{~dB}$ Standard bands to which centred: Amateur 2,4,10, 15\& 20 metres	£7.50	HPFS HIGHPASS FILTER (SPECIAL) Including Braid Break Transformer Mainly for commercial use	Rejection Inner>60dB@ 30 MHz \& below Outer>25dB@ 30 MHz \& below Insertion loss (a) $\mathrm{UHF}<2.5 \mathrm{~dB}$	£6.73
case of Amateur Radio interference, just the Amateur Band may be specified e.g. TNF2/2 Metres	order, up to 300 MHz		$\begin{gathered} \text { BB1 } \\ \text { BRAID BREAKER } \end{gathered}$	Braid rejection - $>25 \mathrm{~dB}$ @ 30MHz \& below Insertion loss $<2 \mathrm{~dB}$	£6.32
HPF1 HIGHPASS FILTER BRAID BREAKER General Purpose	Rejection inner>60dB $@ 30 \mathrm{MHz}$ \& below Outer>15dB $@ 30 \mathrm{MHz}$ \& below Insertion loss $<2 \mathrm{~dB}$ Useable to 200 MHz Limited use to 400 MHz	£6.32	RBF1 RADAR FILTER (VCR interference filter) also suitable as: UHF NOTCH FILTER Use channel number orfrequency, or frequency band	Rejection Inner (only) approx 20 dB @ 591.25 MHz (CH.36) Notch range: $430-800 \mathrm{MHz}$ Notch set to channel 36 -	£6.32
HPF2 HIGH PASS FILTER Without Braid Break	Rejection - Inner>50dB below 30 MHz Insertion loss @ 88 MHz \& above $<2 \mathrm{~dB}$	£6.44	as a suffix e.g. RBF $1 / 70 \mathrm{cms}$ (for Amateur 70 cms band) RBF 1/CH38	others to order	

Direct from the Manufacture - or from your local Amateur Radio dealer. Trade enquiries welcome

[^0]Tel. 024-026-2360

EDITOR
William Poel
ASSISTANTEDITOR
Jean Gilmour
ARTEDITOR
Sally Bennet
PRODUCIONMANAGER
Kim Mitchell
ADVERTISEMENTMANAGER
Charles Black

=SEPTEMBER 1983二

Editorial \& Advertising (0277) 213819 117a High Street Brentwood, Essex CM144SG

CONTENTS

Projects

Max/Min Thermometer
Four-Channel Audio Mixer
Morse Key Oscillator
Nascom-based Dumb Terminal Wideband FM Stereo Tuner Module Rotary Encoder Interface
Centronics Interface for Z8-TBDS
Linear HF Power Amplifier
A Sensitive Measure of Distortion

Sophisticated but practical9
Part 1: Description 16
One Night Wonder 22
for REWTEL 24
Part 1: The Art 26
To control TTL 33
Parallel printer interface 36
Truly wideband 60
A sensitive distortion meter 72

Features

Designer's Update
Weather Facsimile Reception Zilog Z8000
ZN419CE Servo IC
ATV on the Air
End of Term Report

INMOS Memory devices

Lesson 5 49
With the Digital Scan Converter

ATVers activities 67

Your Editor reflects 90

News

Bulletin Board	For your information	$\mathbf{5}$
Readers Letters	And the Editor's replies	$\mathbf{6}$
News Background	World Communications Year	$\mathbf{7}$
Business Diary	Plessey talks to the World	$\mathbf{4 0}$
Video News	News Hi-Fi Sound	$\mathbf{4 4}$
Next Month in R\&EW	A preview	$\mathbf{7 1}$
Events	For you to attend	$\mathbf{7 9}$
Short Wave News	Short wave activities	$\mathbf{8 0}$
DX-TV	Shorter waves	$\mathbf{8 0}$
New Products	Take your pick	$\mathbf{8 2}$

Complete index to volumes one and two appears on pages 45-48
See page 89 for details of back numbers and subscriptions ZILOG COMPETITION - see page 56 for details

Note: Unfortunately pressure of space has forced us to omit the article on
Noise Blanker Techniques featured on the cover. We shall be publishing this NEXT MONTH.

Accounts Design	Jack Burrows FCA Martin Sheehan	REW TEL	$\begin{aligned} & \text { (0277) } 232628 \\ & \text { Roland Perry } \end{aligned}$
Computing Projects	Jonathan Burchell Adrian Barnes	Technical Enquiries	$\begin{array}{r} \text { (0277) } 213819 \\ \text { Keith Collins } \end{array}$

Be on a Winner: A.R.R.A. presents the

AMATEUR RADIO AND ELECTRONICS EXHIBITION BIGGER AND BETTER THAN EVER... ON

6th, 7th \& 8th OCTOBER 1983

AT

THE EXHIBITION CENTRE

 DONCASTER RACECOURSE (LEGER WAY) MAGNIFICENT EXHIBITION HALL EXCELLENT CATERING AND bARS FREE CAR PARKINGADMISSION: $£ 1.50$
OAP's \& CHILDREN $£ 1.00$
PARTIES OF 15 AND OVER:
$£ 1.25$ (inc. postage)
Contact:
FRED HOPEWELL (G4PGC) 48 GLADSTONE STREET LOUGHBOROUGH
LEICESTERSHIRE LE11 1NS
THE ODDS ARE 100-1 YOU WILL ENJOY THE SHOW!

\star * Nota Bene

This month we throught we would draw readers' attention to the results of an analysis recently published by Benn Electronics Publications. This concerned the performance in 1981/2 of the so-called 'Top 100' European Electronics Companies - that is those 'leading electronics groups' monitored in the Mackintosh European Electronics Companies File. The factors of interest in this analysis were the sales of electronic equipment within Europe, the Profit Before Tax as a percentage of these sales and the Sales per Employee, and the data were collected from the individual companies' reports published for periods ending between September 1981 and June 1982.

Overall, the picture is not good, with many companies suffering reductions in both turnover and profitability and overall sales falling by about 4% from $\$ 100.3$ bn in 1980/81 to $\$ 96.7 \mathrm{bn}$. The major factors at work here are seen to be the low national economic growth and the general decline in industrial output that pervade the whole of Europe - as well as the strength of the US dollar against the various European currencies. However, it is instructive to look at some of the figures in more detail. It is also an opportunity to give Britain a bit of a pat on the back, for while the Germans and the French both suffered a halving of their average profitability and significant drops in sales, the British companies studied retained an average pre-tax profit margin of 6% and increased their sales from $\$ 12.3 b n$ to $\$ 13.6 b n$. On the other hand, both the sole French indigenous mainframe computer manufacture, CII-Honeywell Bull, and the sole British one, ICL, both had a loss of trading over the year. Mind you, the ICL report must have reflected the serious upheavals going on in that company around 1981.
Another facet of the analysis is to compare the performance of purely European enterprises with that of Japanese-owned and American-owned companies operating in Europe. Not surprisingly, Japanese sales were up - their productivity in terms of sales/employee stands at $\$ 128400$, c.f. IBM's $\$ 81900$ and the average British figure of $\$ 48000-$ and these figures could well be understated through the Japanese habit of not consolidating the results of foreign subsidiaries within group performance. However their average profitability was down to 7.1\% from 9.3\% (pre-tax).

RAE courses

Couses to prepare students for the Radio Amateurs Examination are starting up again in September all over Britain. Details of those that have been brought to our attention are as follows:
Derby/Nottingham. Classes held at Sandiacre Adult Education Centre on Tuesdays at 7.15 pm starting 20th September. Enrolment is on 13th September. For details, contact H.G. Crowther at the centre.
Durham. Classes will again be held on Friday evenings starting on 23rd September. For details, contact J.F. Greenwood, G3ZJY, tel. Durham 66773.
Hendon. Enrolment for classes held at Hendon College of Further Education is on 13-14th September. For details, contact Chris Holford or A.M. McDonagh on 01-2023811 ext. 7.
Leamington Spa. Classes held at Mid-Warwickshire College of

Further Education on Thursdays ($7-9 \mathrm{pm}$) starting 22nd September. Enrolment 8-9th September. For details, contact the college on Leamington Spa 311711.

Loughborough. Classes held at Loughborough Technical College on Tuesday evenings starting 13th September. For details, contact the college on Loughborough 215831
Newquay. Classes held at Tretherras School, Newquay on Mondays ($7-9 \mathrm{pm}$) starting 26 th September. Enrolment is on 21st September or by post. For details, contact the course tutor, Bob Lawrence (G4LDA), on Wadebridge 3649.
Princes Risborough. Classes held at Adult Education Centre on Wednesdays \qquad (7.30-9.30pm) starting on 21 st September. For details contact the course tutor (G3INN) or Mrs S. Wallace on Princes Risborough 4977.

International Events

This year's International Audio and Video Fair is being held once again within the Berlin Exhibition Grounds, adjacent to a local landmark - the Radio Tower ('Funkturm'), a 500 foot edifice completed in 1926. The dates are $2-11$ th September. The focus for this year's event is on digital technology which is seen as making major inroads into consumer electronics. As a result, visitors will see a demonstration involving OTS-2 of the use of telecommunications satellites for high quality data transmission, as well as displays on advanced fibre optic technology as evidenced by the German wideband integrated fibre optic telecommunication network which has the appealing acronym 'BIGFON'. Of course, buzz words like 3-D colour TV, dummy head stereophonics and digital recording will not be out of place either. In putting all this together, the organisers have drawn on wide range of German insitutions for advice and assistance from the broadcasting networks, ARD and ZDF, to the Technical University of Berlin and the insitutes for broadcasting technology and telecommunications, not to mention
the society for Promoting Research and Exploration into space.
The largest Digital exhibition (i.e. show of Digital Equipment's products) ever to be presented in Europe (or so it is belived) will be held at the ETH Zentrum (federal College of Technology) in Zurich on 30th August-3rd September. The event is being hosted, of course, by the Digital Equipment Computer Users Society (DECUS). Highlights of the show include a $11 / 780 \mathrm{VAX}$ cluster configured system, served by two HSC-50s controlling RA60 and RA81 disks the whole being an implementation of the ETHERNET concept) and the MICRO/PDP- 11 that runs UNIX one of the company's most recently announced products. Other features of the event will be the wide range of applications software demonstrations covering office automation personal computing and engineering, in particular - that are to be staged and the symposium of over more than 150 technical sessions and workshops that is being run alongside the exhibition. (Decus UK \& Ireland is on Reading 387725, if you would like further details.)

SNIPPETS

Monolithic Memories - and Motorola

These two companies have recently signed a cross licence agreement with the aim of becoming the source of the broadest range of alternately-sourced subnanosecond logic devices in the market. The agreement covers Motorola's ECL logic devices - for example, its MECL 10 KH circuits and its MCA600ECL, MCA1200ECL macrocell arrays - and Monolithic Memories' programmable array logic (PAL) circuits and its 74LS series of buffers and dynamic RAM drivers. They also plan to exchange technical information and mask databases.

-and Cypress

Semiconductor

In this case, the arrangement is that Cypress will develop a 1.3 um , high performance, nonvolatile programmable CMOS process technology using Monolithic Memories' facilities in California and, in return, the latter company has been given a non-exclusive licence to employ the technology that is developed. In fact, Cypress was formed specifically to develop, manufacture and market CMOS components. Both firms believe that small-geometry CMOS will be an important technology in the latterpart of this decade.
The aim is to bring out the first products of the new process technology later this year, and to be able to market second generation
devices earlier than would have been possible if Monolithic had continued its development of CMOS technology on its own.

Microdevelopment Systems

Microsystem Services (MSS) has been appointed as exclusive UK distributor for the American company of Emulogic. The latter, formed in 1980, has designed and developed a broad range of interfaces and software appropriate to the development of micro-based systems, all based on the PDP-11 as it was felt that this machine contained hardware of sufficient power and that it was both readily available and of proven reliability. MSS will now be marketing Emulogic's full range of universal microdevelopment systems, including the relatively new ECL 3211 which offers high speed incircuit emulation and is compatible with all the common CPUs. This is, of course, in addition to its own range of circuit analysers and high/ low temperature test and cycling equipment.

Resistor Link-up

The Norfolk-based firm of Mann Components, which manufactures wire-wound resistors, has teamed up with Vishay Resistor Products (UK), which fabricates precision resistors using bulk metal foil technology at its plant in Swindon. The product of this merger -Vishay-Mann - has been operating since 1st August.

Talking RF Shop

Dear REEW,

Firstly, id like to congratulate you on your magazine, and the enterprise of those whose idea it was. May you grow from strength to strength!
My next point is that a few months back you wrote an article which was in essence about how the very large Japanese corporations are very little known in England, something I heartily agree with. In that article you mentioned that tuning 'spin wheels' were available at modest cost... but you neglected to mention where they could be obtained. I would dearly love to obtain a few of these.
I've recently come to this country (South Africa) from Rhodesia, where I was lucky to have had a factory producing industrial electronic equipment. As I came here with nothing, I have been working for others until the wheels fell off the last organisation that I was with, so I've decided to try and go it alone again. My main lines are inverters, large switch-mode battery chargers and line filters, but l'm also trying to provide some gear for the other local radio hams. At the moment these comprise various power amplifiers, but I'd like to broaden this spectrum if the demand exists.
At the moment l'm developing (between the other things) a 2 M set, using the Plessey synthesiser chips. It's going quite well. But a major hassle is getting the information into the synthesiser. This is one reason that l'd like to get the 'spin wheels'. I've also written a flow chart for up control, but will have to get someone to actually write the machine language program, as l'm not sufficiently proficient (or interested in micros) to do it myself. At the moment I'm using a circuit using ordinary CMOS... it's amazing the functions one can do with 4029 dividers! But it's inelegant. The next step is to make the set also cover 6 M and 70 cm . I intend to try and market the sets as complete kits, in an elegant box that will look as good as the Eastern equipment. By using silicon rubber moulds one can cast very nice epoxy parts such as the front panel at not too high a cost. Whether I have judged correctly that there is a demand or not l just won't know for a while. But I want to build my own equipment anyway.
When the firm I was with went bang, I was offered a job near here with the firm that makes those now famous frequency hopping HF sets, either in that division or the UP-controlled ATU division. I visit the place fairly frequently as I've a friend there who heads the switchmode PSU division. A very interesting joint, indeed! Although I'd like to discuss aspects of RF design with the guys involved, they are rightly reluctant to talk shop to outsiders. So I wondered if you know anyone whod be interested in corresponding on this subject? It's a rather esoteric one, I'm afraid, and there are not many people here whom one can talk to who do not think you're being some sort of industrial spy!
Thank you again for producing an interesting magazine which I enjoy very much.

Charles Frizell, ZS6BYB

Iohannesburg.

Facts and opinions; Yours and Ours

The Editor replies:

It's difficult to suggest how to get involved in discussions on general RF design since most commercial organisations are likely to be suspicious. The manufacturers of the components are the best bet where you have a reasonably well defined requirement - and for aeneral trawling for ideas, you can do worse than keep a collection of the latest handbooks and circuits of the commercial gear.

Once upon a time being a radio amateur was good enough to get engaged in all sorts of technical discussions, but that was before the ready made hambox took over. Perhaps this letter will attract one or two technically minded folk to get in touch directly.

Dont forget that we are pleased to accept features from anywhere, and that our rates are aenerally reckoned to be good. Even if you don't want to divulge your more commercial activities, there is a good chance that you can document the intermediate activities for the benefit of REEW readers. It's also a very good way of aetting engaged in all sorts of correspondence with like-minded individuals.

CB..CB..CB..!

Dear REEW

In the past, you promised lots of 'add-ons' which would be available for CB rigs in general. We've had the Selcall (in which I am not interested) and the noise squelch (which is super). But where are the rest? Are they still in the pipeline or has this programme been abandoned. I am still buying the magazine waiting for these things to appear.

Another thing with regard to CB which you have already commented on is the poor quality of the IF-filters provided in rigs. An article which answered some of the following questions would be most welcome. If not I personally would like them answered.
1.) How exact does matching of impedance need to be when replacing filters with a different terminating impedance?
2.) Are the input and output matchings of equal importance?
3.) In the case of the Uniden board (and others) where the Ist IF filter is strapped across two transformers, with no other matching components, is it enough to retune the transformers or should they be replaced (or rewound) to achieve the correct matching?
4.) With regard to the 8 -pole $10-695$ crystalfilter, as this will not fit directly onto any board I know of, how do you recommend mounting it?
5.) What are the relative advantages of improving
a) The first IF filter(s)?
b) The second IF filter(s)?
c) Both IF filters?
6.) What sort of insertion loss is acceptable when changing these filters before it is necessary to introduce some reamplification?
7.) I would be prepared to spend quite a bit of
money to get the maximum improvement. Where is the point reached when no further improvement in blocking and cross modulation can be obtained by filter replacement?

As you have made comments before on the poor quality of the 1 st mixers in some $C B$ rigs, perhaps you might consider a project on the replacement of 1 st and 2 nd IF filters and their associated mixers etc. With comprehensive details for installation in rigs (as per noise squelch). Or are the different rigs too different for this to be practical?
Another of your early suggestions was that your design of CB rig would be modifiable to other (legal) frequencies. There certainly seems to be a demand for modifying 11 metre rigs for 10 metre QRP operation. This is nice and easy with, say, the Icom and Telecomm, but I had assumed more difficult in rigs with the 7137 PLL (or other UK dedicated chips). However, one of my local radio shops has a Rotel 240 modified to 10 metres; so, presumably any rig can be modified without too much trouble. How about a project?

Also, whatever happened to 934 MHz ? You did suggest a design at the time of the illfated rig design. How about digging it out?

That should about fill your magazine up for the next year.
Henry Dudley
Guildford

The Editor replies:

IF filtering: here are some general points to note: 1.) The Ist IF is the most important, although for reasons of cost the 2nd IF usually contains the best shape faceter and passband.
2.) Matching the impedance of the input is generally more important than the output, although you must always endeavour to match both accurately to avoid ripple in the passband.
3.) When properly matched, insertion losses should be no more than those specified for the filter used, only $2 d B$ or so for crystal filters, and no more for ceramic types. It's a function of ' Q ' of the resonator material. The loss of a few $d B$ at IF is really quite insignificant since the sensitivity of the set should have been fixed at the input stage, where IF gain is mainly included for limiting and raising the signal to a demodulatable level.
4.) Discerning users of 8-pole crystal filters must solve individual mounting problems, but the basic rule is to keep leads short, and to earth as directly as possible. Place a screen of PCB or tin across the base of the filter, or the full 90dB adjacent channel selectivity will be compromised by the output and input seeing each other.
5.) Matching is an individual exercise. Maybe we'll publish examples if readers send in circuit diagrams.
6.) 934 MHz CB is generally beyond the scope of a $D I Y$ construction feature for $C B$ enthusiasts. We got into enough trouble at 27 MHz !

BACKGROUND NDWS BACKGROUND
 WORLD TELECOM YEAR \star SUPPORT FORINNOVATORS \star WHATEVER HAPPENED TO CB?

IF YOU have managed to survive the dynamism and euphoria of Information Technology Year, the chances are that the fact that 1983 is World Communications Year will not have escaped you.
$W C Y$ is a government inspired contrivance, on a global scale, to bring about public awareness in the importance of - you've guessed it -communications. Those of you who travel via Waterloo Station in London will perhaps have chanced upon the WCY display booth. In the words of the official newsletter: 'A Communications Centre will be appearing in the following places during the course of the year.....' It sounds a bit too much like Doctor Who's inimitable Tardis. If any reader has the occasion to sight the actual re-materialisation of the CC at the following locations, would they please let us know: Gatwick Airport; 11th July to the end of September Dover Ferry Terminal; 8th August to the end of September

Support for innovators

Some time ago, we reported on the various government schemes that set out to encourage people to 'do' things by offering cash incentives in the form of various grants and other assistance. The rather dry and terse documentation surrounding these efforts has subsequently been updated by a rather jolly brochure issued last April, titled 'How to Make Your Business Grow'
Unlike the philosophy of a certain industrialist who apologetically claims to make more money by investing his organisation's cash mountain in money market transactions than through investing it in endeavours of technological and industrial daring do, HM Government would prefer to have us all believe that there is still a living to be made from enterprise, effort and hard work.
The same rules apply to the assistance schemes, namely that you will only get help if you haven't yet started the project in question, and that the said project should look like so much of
a long shot, that you wouldn't have the nerve to carry it through unless the DTI stump up some of the place money anyway.
Once again the application forms and questions are all undeniably good sound business procedures and disciplines; but once again the chances are that after taking a realistic view of the true costs of being an innovator in British industry, you may understand rather better why a firm with over a billion pounds worth of cash floating around the money markets prefers to keep it that way.
Brave souls who want to find out more about the schemes applicable to electronics industries, write to:
Information Technology
29 Bressenden Place
London SW1E 5DT
Good luck, and do please tell us of your experiences.

Man of technological moment, Trade Secretary The Rt.Hon Cecil Parkinson MP, in a WCY Communications Centre - considering radio telephones... not CB!

Whatever happened to CB?

Now that most of the CB magazines have disappeared from the bookstalls and the trade has largely followed suit, it is quite difficult to find out what's happening in the world of CB. Some may find this a blessed relief after the over-exposure of the subject prior to and post that fateful day when it all began.

We'd like to hear from readers if any good has managed to come from the grand catastrophe - particularly how many CB enthusiasts have carried on to become radio amateurs and devotees of the practical aspects of the 'amateur' communications technologies. The fact that $C B$ is alive and still carrying on can be confirmed by a brief check of the airwaves - and one of the best ways of actually attracting the species into the open is to park a car with a fancy $2 \mathrm{~m} 7 /$ 8th wave antenna in a public place overnight.

The surplus of equipment has provided a valuable substitute for the passing of things like the 19 sets that so many of the present generation of Radio Amateurs had to cut their teeth on, and we would welcome features on some of the more daring conversions that have been carried out on the equipment.

MAX/MIN
 THERMOMETER

A sophisticated, yet practical unit for monitoring temperature. Design by Steve Kirby, York Electronics Centre.

Is it chilly out in the greenhouse? Don't fancy the stroll down the long cold garden path to check on the thermometer? Then build this electronic maximum and minimum thermometer. The unit has a 6 digit multicolour display which shows the probe temperature in either degrees Celsius or Fahrenheit, with a 1° accuracy over the range $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (if it's hotter or colder than that in the greenhouse, the petunias have had it anyway!). The rugged probe is at the end of a two core screened cable, that can be up to several hundreds of feet long. This allows the readout box to be placed indoors to save you braving the Arctic blizzard that passes for a British spring.
The thermometer can be used for monitoring tropical fish tanks, your central heating (or deep freeze) or for simply keeping a record of the weather. It can easily be interfaced to an 8 bit computer I/O port, which along with the Windspeed and Direction Indicator (R\&EW, August 1982), would make the basis of an automatic logging weather station.

Figure 1a: Current versus temperature through IC1. Figure 1b: Adding and trimming current so that the output from IC2a is zero.

WORKING RANGE

Circuit Description

IC1 is a linear, absolute temperature-to-current converter (see Ref, 1) with a laser trimmed gain of $1 \mu \mathrm{~A}{ }^{\circ} \mathrm{C}$ - at $0^{\circ} \mathrm{C}$ a current of $273 \mu \mathrm{~A}$ flows through it (Fig. 7a). The IC looks like a high impedance current sink to the -5 V rail, whose current changes very little as the supply voltage across it alters $(0.2 \mu \mathrm{AV})$. The IC can is connected to the earthed cable screen to shield the sensor from stray HF signals. Any modulation of the IC's supply voltage by mains hum is strongly rejected in the output current, which means that it can be put on the end of a long cable (provided the cable resistance is low enough to give at least +4 V across the device). A larger -15 V negative supply rail could be used for extremely long cable runs.

The current output of IC 1 is converted to a voltage by the JFET op-amp IC2a (see circuit diagram, Fig. 3). The difference between an ideal straight line characteristic of $+1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ and that of a typical AD590 is shown in Fig. 3. To minimise the zero error, an adjustable offset trimming current is added (from Vref via R1 and RV1), which exactly balances IC1's current at $0^{\circ} \mathrm{C}$, so the output of IC2a is zero. The gain ($\mu \mathrm{A}$ to volts) is set to a nominal $50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ by R 2 and RV2, trimmed so the absolute error at a known calibration temperature is zero. The remaining curvature of IC 1 's characteristic is fundamental to bandgap reference type temperature sensors, but there are five grades of AD590 available, with maximum non-linearity errors of between 3 and $0.3^{\circ} \mathrm{C}$.
To hold the maximum and minimum extremes reached by Vpresent over periods of perhaps several days, is a little beyond even the best diode peak catcher. Luckily the commonly available ZN425 counter/DAC can be configured to make a digital peak follower, which can hold counts representing the maximum and minimum temperatures indefinitely. The voltage output of IC4, the positive peak follower (MAXIMUM temperature), is buffered by differential amplifier IC2b, which also subtracts +0 V 5 , derived from the internal reference voltage generator in IC4. The output of IC4 has a range of 0 to +2 V 56 . V present and the output of IC2b, V ${ }_{\text {max }}$, are compared by comparator IC3a. If
the present temperature is less than the maximum as held in the counter, IC3's output is low, gating off the clock pulses coming into ICl la so the count in IC4 remains stable. When the present temperature exceeds the maximum, IC3's output goes high, allowing the IC4 counter to be clocked up. This continues until Vmax once again equals V present, that is, the positive peak has been captured. The $+0 V 5$ offset means the count in IC4 is zero at $-10^{\circ} \mathrm{C}$, when Vpresent $=$ -0V5; the maximum count is 250 at $+40^{\circ} \mathrm{C}$.
The negative trough follower, IC5, works on the same principle, but its output is subtracted from +2 V by differential amp IC2c such that the count increases and $V_{\text {min }}$ decreases. The comparator, IC3b, is connected up to allow clock pulses through only when V present falls below $V_{\text {min. }}$ C6 and 9 'slug the response of the fast comparators to ensure that overshoot due to crossing point noise pulses being counted, is eliminated. C7 and 8 filter out any noise from DAC glitches. $1^{\circ} \mathrm{C}$ corresponds to a change in the held count of 5 , so the non-linearity of the DACs is relatively unimportant.

The counters are reset by pressing SW 1, they then ramp back up and down so both hold V present. To interface with a microcomputer, the two eight bit counter outputs can be taken from pins on the ZN425s to a rear panel socket, together with the outputs of IC3, to act as data stable strobes.
The thermal inertia of the probe construction smooths out sudden temperature changes caused by wind gust etc, and the slow speed of the clocking pulses $(4 \mathrm{~Hz})$ ensures any noise on Vpresent is ignored, so the unit will only follow true long term changes in temperature.

The voltages $V_{\text {present, }} V_{\text {max }}, V_{\text {min }}$ are sequentially measured by a scanning voltmeter, whose output is latched into three sets of driverdecoders, IC13-18, and displayed on three, twodigit seven segment displays, D1-D6, and signindicating rectangular LEDs, D7-D9.

The DVM (Ref. 2) has a $\pm 1.99 \mathrm{~V}$ FSD and the second two digits (.99) are used to display the temperature (ie, $0.01 \mathrm{~V}=1^{\circ} \mathrm{C}$). The $\times 5$ reduction from $50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ is done by IC2d for the ${ }^{\circ} \mathrm{C}$ scale. The conversion to ${ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32$. This is
performed by simply selecting a different scale reduction factor with SW2, and adding an offset in from Vref via R24, RV4. The inversion of voltages by IC2d doesn't cause any problems the minus sign on the displays are turned on when the output voltage of IC2d is positive.

The voltages are steered through to the $31 / 2$ digit DVM IC7, by IC6, a dual four-to-one multiplexer, each input being selected in turn by binary counter IC8. An end of conversion pulse from the DVM clocks IC8, so a new input is selected after every fourth conversion (see timing diagram, Fig. 2). Two conversion periods are allowed, to give time for the outputs of the DVM to settle before two successive conversions are latched into the drivers. This ensures a stable flicker-free display. Output, O1, of IC8 is steered through to enable each pair of display driver latches in synchronism with the voltages going into the DVM. The conversion rate is about 4 times a second, giving a reading update every 4 seconds - suitable for following temperature changes.

The DVM's BCD output is multiplexed onto a common bus, taken to all the latches (the data for each digit is qualified by a digit select line). The digit select for a pair of LED's is only passed through the NAND gates when their select lines, from IC6, go high. Each conversion is latched and held in the correct display. The minus sign appears on the multiplexed BCD bus during the Dl period and is held in separate D type latches of IC12,19, also selected via AND gates by IC6. The Q output is used to drive the rectangular minus sign LEDs when the measured temperature is negative.
Current limiting resistors for the displays are in packages of eight separate resistors, lower values - used for the green display - give an equal perceived brightness. The mains power supply uses a PCB mounting transformer, with the voltage regulators mounted on a heatsink the +5 V current is around 0A7. A zinc oxide VDR across the transformer input will clamp any spikes coming down the mains cable, which might reset the counters. The unit is designed to be left running continuously so a mains switch is omitted.

Construction

The unit is best constructed using two double sided PCBs. One holds the analogue circuitry and power supply, the other, mounted vertically behind the front panel, the voltmeter, digital logic and displays. The PCBs have many through connections, most easily made with the snap-off pins, soldered in on both sides according to Figs. 5 and 6:

Add the IC sockets, then the discrete components, switches, transformer and connectors (note the 'hooks' on K5-7 go over the edge of the PCB and K3-4 are soldered in facing backwards). The resistor networks can be soldered in directly. Finally, solder the few interconnecting wires necessary. The cathodes of the three rectangular diodes are soldered on both top and bottom of the PCB (their legs may need gently bending to line up wth the seven segment displays). Test all the sockets for correct power supplies before inserting the IC .

The analogue PCB mounts onto the base

Figure 2: Timing diagram for IC1/8

Figure 4a: Digital board foil pattern (front).

Figure 4b: Digital board foil pattern (back).

Figure 6: Analogue board foil patterns. Above, front; below, back.
panel with four 3 mm countersunk bolts, using two nuts as spacers between board and steel panel. The heatsink is a simple strip of 16 gauge aluminium, held by two L-shaped brackets at the ends, fixed on top of the PCB by the rear mounting nuts and bolts. Mount the regulators using mica washers and insulating bushes.

The Probe

The recommended probe cable is a twin oval screened type. The readout end has a three pin din plug connector, wired up as in Fig. 7. The AD590 sensor is soldered on with 1.5 cm of rubber tubing covering the joints.

3 PIN
DIN PLUG

Now for the difficult bit. Take 6 cm of 6.4 mm diameter heatshrink tubing and mix up a small amount of fast curing epoxy

Figure 7: Wiring up the sensing probe
adhesive. Liberally coat the sensor and screened cable end, making sure the glue fills all the spaces in and around the joint. Slip the heatshrink tubing over the whole sticky mess until the sensor is about 1.5 cm from the open end. Apply more epoxy down the ends; it helps to warm everything slightly wth a hair dryer so the epoxy runs freely. When full, take a few minutes break to clean yourself off and let the epoxy partially set. Use the hair dryer at its hottest setting to shrink the tubing down (not too tight) over the sensor and joint - the excess epoxy will ooze out. The safest course now is to leave everything to dry for an hour. Then using a sharp knife trim off the excess tubing and epoxy to make a neat and water-proof sensing probe.

Calibration

Despite the number of pots, calibration of the unit is relatively straightforward. You'll need a voltmeter, preferably digital, another thermometer, two bowls, some warm water and some ice cubes. The carbon film resistors used in the unit have a small but appreciable temperature coefficient, so it is as well to let the unit warm up to it's working temperature for half an hour before attempting calibration. Leave the top and front panels of the case out to adjust the trim pots.

First adjust RV7 on the digital board to give +2 V on pin 2 of IC7, relative to the analogue ground, pin 1. Next, make a slurry of approximately equal volumes of crushed ice cubes and cold water in a bowl, leave it in a fridge for five minutes to allow the water to cool down to freezing point. Put the probe in the middle of the bowl and leave it to settle down to the water temperature, this can take several minutes. Adjust RVI until the voltage at pin 14 of IC2 is OV, having previously set RV2 to mid scale.

Adjust RV3 until the voltage at the junction of R13 and 14 is nearly +OV5, and that at R15,14 +2 V . Some compromise in the exact setting is necessary and will not affect the accuracy of the temperature readings. Press the reset button and you should see the maximum and minimum voltages on pins 8 and 7 of IC2 ramp respectively up and

down to settle at OV. Mix warm and cold water in the bowl until your reference thermometer reads approximately $+35^{\circ} \mathrm{C}$. Put the probe in and leave it to warm up for a few minutes. Now adjust RV2 until the voltage at pin 14 of IC2 reads ($50 \mathrm{mV} \times$ thermometer temperature in ${ }^{\circ} \mathrm{C}$). Check the OV reading back in the freezing water.

Next, with SW2 up (${ }^{\circ} \mathrm{C}$ setting), and the probe and thermometer in the warm water, adjust RV6 until the 'PRESENT' (middle) LED display reads the same as your reference thermometer. Turn SW2 down (${ }^{\circ} \mathrm{F}$ setting), put the probe and reference in the freezing water and adjust RV4 for a '32' PRESENT reading. Lastly, with the probe and thermometer back in the warm water, adjust RV5 so the PRESENT display reads the same as the thermometer in ${ }^{\circ} \mathrm{F}$.

If you put the probe in the fridge freezer

One application for the thermometer is near to sensitive computer hardware.
compartment, the minus sign (LED D8) should come on to denote a negative reading, as should that of the MINIMUM display which will follow and hold the lowest probe temperature. Below $-10^{\circ} \mathrm{C}$, the count in the MINIMUM sample and hold DAC IC5 reaches full scale and overflows 255 back to zero. The MINIMUM display will read incorrectly. Similarly, at temperatures above $+40^{\circ} \mathrm{C}$, the MAXIMUM display will cease tracking. The PRESENT display, however will work from $+75^{\circ} \mathrm{C}$. Here the output of IC2 saturates down to $-55^{\circ} \mathrm{C}$, the lower working limit of the AD590 (for ${ }^{\circ} \mathrm{F}$ the range is +99 to $-67^{\circ} \mathrm{F}$). There will be some loss of accuracy at the lower extreme because of the curvature in the AD590's characteristic.

Press RESET to re-initialise the max and min displays (no more fiddling with little magnets!!, which will ramp up and down from the negative and positive extremes. Don't worry if a display right hand digit flickers, it means the temperature is nearly half way between one degree and the next, a switch to ${ }^{\circ} \mathrm{F}$, which has nearly twice the scale length of ${ }^{\circ} \mathrm{C}$, can cure this. Now everything is ready for proper operation.

R\&EW

References

1. Analog Devices Data Acquisition Integrated Circuits Databook, Vol 1, 1982, pp9-3 to 9-1 2.
2. Motorola European CMOS Selection Databook, 1979, pp9-272 to 9-283.

A Four-Channel Audio Mixer

Here are the details we promised last month of the Multi-Option Professional Mixer from our audio designer, David Strange. Development by Adrian Barnes.

This stereo mixer has been designed for making quality recordings both on the move and in fixed locations. The basic features are shown in the block diagram (Figs 1 and 2). The input sensitivity can be continuously varied on each channel making it possible to use both microphone and line input levels. All four inputs, which are balanced, may be panned across the 'stereo stage'.

Other features of the mixer include rechargeable batteries with a mains charge/operation option, stereo limiters, peak reading meter, balanced and unbalanced outputs at +80 dBm , line-up oscillator, and stereo headphone monitoring.
In the following description, all circuit components are referred to by the references used in the circuit diagrams shown in Figs 3-11.

Mechanical Design

Beyond straightforward drilling and filing of the panels, the mechanical construction should be quite easy as it consists mainly of slotting things together.

All inputs and outputs have been placed either on the side panels or front panel to give the mixer the added versatility of being able to be used slung over the shoulder or face up on a table. The input and output sockets that matter, i.e. signal path sockets, are all XLR types because these are far more rugged than the cheaper and somewhat less reliable jack or phono sockets. Cheaper alternatives can be substituted but it should be noted that the panel drilling data to be published next month are for XLRs.

The case chosen for the mixer is all metal (for screening purposes) and it has handles through which a carrying strap can be passed, if required. The handles, which are extensions of the side cheeks, also afford protection to the front panel with its controls.

Signal Paths (Fig. 2)

The input amplifiers have a balanced input and can accept inputs from -80 dBm (80 uV) to $-34 \mathrm{dBm}(15 \mathrm{mV})$ as a continuous variable. For line inputs greater than 15 mV we recommend the inclusion of a balanced switched inputattenuator close to the input sockets.

Following the input amplifier, the signal is low pass filtered and then applied to the channel fader through the panning potentiometers. The signal level at this stage is $-30 \mathrm{dBm}(24 \mathrm{mV})$. With the panning potentiometers in their central position, the signal is applied equally to both left and right mixing amplifiers which have a gain of 12 dB ; so the signal is lifted to $-18 \mathrm{dBm}(97 \mathrm{mV})$.

The output of the mixer amplifiers is taken via a switch to the main faders so that an oscillator can be introduced when lineup is required. The oscillator is set to run at 1 kHz and its output can be continously varied in level by use of the main faders. When the oscillator is de-selected from the output, its power supply is also cut to prevent break-through onto recordings.
The main faders are followed by the meter drive amplifier and limiters. Metering is put in at this stage because this is the last point in the mixer where the signal can be increased linearly until all the power supply headroom is used. A meter placed after the limiter, by definition, will not be able to indicate that the mixer is being over-driven.
The limiters, which have a gain of 20 dB , may be switched into a linear mode if limiting is to be removed. At the outputs of the limiters the signal is at $+4 \mathrm{dBm}(1.2 \mathrm{~V})$ and it is next applied to the output amplifiers and via a volume control to the headphone amplifiers. The output amplifiers each have two outputs, one

Figure 1: One of the four input amplifier stages.
unbalanced a +4 dBm and one balanced at +8 dBm . The headphone amplifiers, which are capable of driving low impedance phones, have a gain of 4 dB .

Audio Circuits

Input Amplifiers (Fig.3)

The amplifiers are capable of giving a gain of up to 50 dB , this being varied by RV1 which is a preset accessible through the front panel of the mixer. Transistors Q1 and Q2 are operated open loop at the input stage to give a fully floating differential input. The current sources, Q3 and Q4, set the operating current of the
input pair. The bases of the current pair are setto 1 V2 by D2 and D3. In operation, Q1 and Q2 convert the differential input voltage at their bases into a differential output current at their collectors. This voltage is fed to the LF351 which is set in differential mode to obtain an unbalanced or single ended output. Gain is set by the ratio of R9 plus RV1 and the r_{e} of Q1 and Q2 to the sum of R10 and R11.

A filter made up of $\mathrm{LI}, \mathrm{L}, \mathrm{ClO}, \mathrm{Cl} 1$, Cl 2 and C 13 is placed close to the input socket of each amplifier to prevent radio frequency interference. The common mode rejection ratio of the amplifiers is in the order of 60 dB over the audio
frequency spectrum.
At the output of the LF351 there are three capacitors and, with SW1 in its centre position, only C 5 is in the signal path to RV2. The low frequency roll-off in this position starts at about 180 Hz . When C 4 is switched in parallel with C 5 the roll-off is pushed back to 90 Hz , and when C 3 is in circuit the roll-off is removed.

Following the channel fader, RV3a and RV3b - alog/antilog pair - provide left and right panning.

Although the input amplifiers are balanced, unbalanced sources are acceptable simply by grounding the unused input leg to $O V$. Each input

Figure 2: Block diagram of the four-channel mixer.

Figure 3: Input amplifier stage - one channel.

Figure 4: Mixing amplifier.

Figure 5: $\mathbf{1 k H z}$ tone generator.
amplifier stage is selfcontained on an individual PCB; everything else included in the mixer design is mounted on the main mother board.

Mixing Amplifiers (Fig.4)

There are two mixing amplifiers and these are quite simple in design each consisting of a LF351 (acting as IC2, IC3) in a summing amplifier configuration so that there is no interaction between faders. Each amplifier has a gain of 12 dB . When SW2 is operated the outputs of the mixing amplifiers is removed from the channel faders RV4a,b to be replaced instead by the 1 kHz line-up oscillator.

Oscillator (Fig.5)

The 1 kHz oscillator consists of IC4 with frequency selective positive feedback configured from C18, C19, R21 and R22. IC4 gain is adjusted by negative feedback through thermistor THI to maintain oscillation. The supply is removed from IC4 when SW2 selects output from the mixer amplifiers.

Limiters (Fig.8)

The limiters follow the main faders and have no reference to $O V$: instead they use a single rail supply referring the the negative rail as their OV and positive as their HT+. The circuit is based on the dual channel NE570 chip (IC7a and b).

The signals are taken to the inverting inputs of the NE570 (pins 5 and 12). Before a level is reached when limiting takes place, the NE570 behaves as a normal linear operational amplifier. However, connected internally between pins 5 and 3 and pins 12 and 14 is the equivalent of voltage controlled resistors. The resistors are referred to as delta gain cells, and control voltage to the cells is applied through pins 1 and 16. The delta gain cells are connected in parallel with R41 and R42 respectively - via C32 and C33 to avoid any DC offset problems.

IC8 is configured into two window comparators each comparing its respective limiter output with DC fixed potentials derived from R47 and R43 and
from R46, R48 and R44. When the peak value of the signal exceeds the fixed potentials, Q7 is turned on by the comparator and C34 is charged via R49. The voltage on C34 is fed back to the control voltage ports (pins 1 and 16) of the. delta gain cells and the gain of IC7a and b is reduced proportionally.

In order to make the use of the limiter optional, SW3 has been inserted into the voltage feedback path so that a fixed voltage instead of control voltage can be applied to the delta gain cells. The fixed voltage is derived from RV7 and the lineup of this control will be dealt with next month.

Meter Amplifiers and Drive Circuit (Figs.6,7)

The meter amplifiers are connected to the input of the limiters (for the reasons explained above). Although the left and right channels share a single meter movement, the signal on each channel is processed separately.

Each signal is fed to transistor Q5 or Q6 and use is made of the collector signal being 180° out of phase with the emitter signal to obtain phase inversion. IC5 or IC6 are used as dual positive peak detectors, but in conjunction with Q5 and Q6 they constitute a full wave 'perfect diode' rectifier because of the phase inversion. The rectified signal is used to charge C30 via R35 or R36, and R37 provides a discharge time constant.

The voltage on C30 is applied to the non-inverting input (high resistance input) of $\mathrm{IC17}$, the meter drive amplifier. The meter is placed in the feedback path of IC17 to obtain a tighter ballistic response. The sensitivity of the meter is set by RV6. The actual movement chosen as an indicator is reasonably priced, low specification VU meter with its rectifier diodes removed, but any quality meter with good ballistics would suffice. We shall look at the modification of the meter movement next month.

Headphone Amplifiers (Fig.9)

The input to the headphone amplifiers is taken via a dual volume control RV8a, b from the output of the limiters. In order to provide amplifiers with good drive characteristics, transistors Q8 and Q10/ Q9 and Q11 are used and heavy feedback is applied round IC9/IC10, respectively. The outputs are taken to a stereo $1 / 4$ jack socket on the front panel.

Figure 8: Level limiter.

Figure 9: Headphone amplifier.

Output Amplifiers (Fig.10)

There is a choice of either a balanced or unbalanced ouput from the output amplifiers. IC11 and IC12 are basically unity gain inverting buffers and their outputs are protected by R84 and R85. The balanced section of the output amplifiers have, in addition to their nomal negative feedback, positive feedback but inverted from the opposite output leg so that the signal output level is held if one leg is grounded. This way they behave like transformers.

Power Supply Mains and Battery Charger (Fig. 11)

There are no stringent requirements other than very low ripple from the power supply. Because the supply is symmetrical we shall only consider one half - the positive side. After rectification the $D C$ is smoothed by C55 and then applied to the collector of Q1 4. Q1 4 is furned on by the potential divider made up of R96 and R94 but any $A C$ is taken to $O V$ by C57. The overall effect of this is to obtain extra smoothing at Q1 4 emitter.

The roughly smoothed $D C$ is also applied from C55 to the emitter of Q1 2 via R92. Q12 has a constant voltage on its base from the drop in potential across D13 and D14. A constant current for charging the NiCad pack is derived from Q12

Figure 10: Balanced line output stage.
collector. D22 ensures that no current is taken from the battery pack by Q1 2 when the charging current is turned off, while D19 ensures that no battery power is taken by Q14 under any circumstances. D17 becomes reverse biased when mains power is in use due to the fact that the output voltage of Q1 4 is contrived to be at least one diode voltage above that of the NiCad battery pack. The charging current for the battery is around 12 mA and each supply is required to give somewhere in the region of 40 mA to power the mixer.
No mains on/off switch is used; instead the DC supply is switched. No mains voltages need be present therefore on any controls inside the mixer. Also note that NiCad charging will occur if the mixer is left connected to the mains supply. As an added safety feature an encapsulated mains transformer unit is specified for this project that contains a fuse and IEC mains connector in a sealed unit.

Construction

Next month we will look at the detailed construction and alignment of the mixer. This will include PCB layouts and full parts list. We shall also publish the full technical specification for those who wish to look before leaping!

An essential piece of RF equipment owned by all enthusiastic radio hams-a HF Linear Amplifier.

Our economical design features push-pull output stages, active biasing and an input stage which can be driven from Mixer outputs.

The amplifier is capable of delivering up to 15 W pep into a 50 ohm antenna.

SPECIFICATIONS

Bandwidth 1.6 to $30 \mathrm{MHz}+1 \mathrm{~dB}$

Power gain
40 dB minimum Input power for 10 W pep output -0.8 mW Input and Output impedance 50ohms Power required at 10W pep output
13.8 V at 3 A typical Can withstand aVSWR up to 10:1

Kit of parts containing PCB and all components except case and heatsink.

HFPower Amp 41-00903 £25.33
All prices include VAT @ 15\%. Please allow 21 days for delivery. Postage \& Packing 60p per order.

Send your order to:
Ambit International, 200 North Service Road Brentwood, Essex, CM14 4SG
Tel: (0277) 230909
Access/Barclaycard Welcome.

Our series of projects, designed by Stephen lbbs, that can be built, tested and working in one evening, continues this month with a Morse Key Oscillator.

Radio amateurs who have passed the RAE can use the VHF, UHF and microwave bands, but to use the HF bands they have to take and pass a morse examination as well. The morse test requires you to listen to a three-minute passage of plain language morse sent by the examiner, and write it down, followed by a passage of numbers. You then have to show proficiency in sending morse. To practise the latter you need a morse key and some means of producing a sound. The introduction to this series of articles (in the August issue of R\&EM said the designs would be simple and cheap, and the circuit below achieves this, using only four components plus a fransducer. It does not even need an on/off switch.

Circuit Description

ICla and b are connected as an astable multivibrator operating in the audio range. This means that the output switches between high and low at a very fast rate, generating a square wave that we can hear. The transducer can be connected between pin 4 and earth, and it will function perfectly well. However, that leaves two gates spare, and if connected as shown the output volume will be much greater. In fact, for reasons we won't go into here, there will be four times the power. The key can either be connected between the battery and the circuit, in which case insert the wire link shown in Fig.3, or between + ve and pin 2 . Either way the resultant sound from the PB2720 should be clean, with no nasty spikes or extraneous noises at the start and end of each dit or dah.

Figure 1: Schematic diagram of the morse key oscillator

Construction

This can either be on veroboard or a PCB, a design for which is given in Figs. 2 and 3. The only point to watch is to make sure the $I C$ is inserted the right way round. In the prototype the key was mounted on a small piece of plywood, with the circuit, transducer and battery mounted alongside with the aid of sticky pads. Connect up as shown and start practising for that class A licence.

Accurate Digital Multimeters at

28 RANGES, EACH WITH FULL OVERLOAD

 PROTECTIONSPECIFICATION NIODELS 6010 \& 7030

- $10 \mathrm{amp} \mathrm{AC} / \mathrm{DC}$
- Battery: Single 9V drycelf. Life: Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$ - Weight: 400 g inc. battery. AC DC Current: $200 \mu \mathrm{~A}$ to 10 A - AC Voltage: 200 mV to 750 V - DC Voltage: 200 mV to 1000 V - Resistance: 200Ω to $2 \mathrm{M} \Omega$ - Resistance: 200Ω to $2 \mathrm{M} \Omega$ - Display: $31 / 2$ Digit 13 mm LCD

OTHER FEATURES: Auto polarity auto zero, battery low indicator, ABS plastic case with silt stand, battery and test leads included, optional carrying case.

- O/load Protection: All ranges

NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE
 ($0-25,1,2.5,10,25,100$
volts 20,000 ohms/volt AC Voltage: $0-10,25,100,250,1000$ vol ts 10,000 ohms/volt. Decibels: - 20 to +22 dB DC Current: $0.50,500 \mu \mathrm{~A}, 0.5,50,500 \mathrm{~mA}$ Ohmmeter: 0-6 Megohms in 4 ranges.

30 ohms Centre Scale - Power Supply: One 1.5 V size ' A ' battery (incl) Size \& Weight: $135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{gr}$.

HM 101 POCKET SIZE NIULTINETER SPECIFICATION

- DC \& AC Voltage: $0-10,50,250,1000$ volts,
-10 to +22 dB
- DC Current $\quad 0.100 \mathrm{~mA}$
- Ohmmeter:
- Power Supply:
- Size \& Weight:

NEW HM 102 EZ SPECIFICATION
0.100 mA
$0-1$ Megohm in 2 ranges
60 ohms Centre Scale
One 1.5 V size ' A ' battery (incl) $90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr}$. incl. battery b5.50

Add 15% to your order for VAT. P\&P is free of charge. Quantity discount for trade on application.

ARMON ELECTRONICS LTD.

Cottrell House, 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH. England

[^1]
A NASCOM-based Dumb

 Terminal

Chris Honey describes how to configure your Nascom 1 or 2 so that it performs as a full duplex RS232 terminal suitable for accessing databases such as REWTEL.

Nascom microcomputers were amongst the initial offerings to the personal computer enthusiast (i.e. in the good old days when it was an enthusiast market rather than the consumer business it has rapidly developed into), and they were arguably a good example of a technology that had arrived before the market was ready to appreciate it fully. In other words, the engineering outstripped the marketing. (Nascom Computers, you will recall, ceased trading in its original format until resuscitated by an infusion of money and enthusiasm from the Lucas group a couple of years ago.)

Yet although they have been with us for a long time, they can still out-class some of the latest personal computers in terms of benchmark performance and facilities, thus making their application in novel areas a rewarding exercise. This article describes how to configure a Nascom ${ }^{\circ} 1$ or 2 as a full duplex terminal, by using the NAS-SYS 1 or 3 monitor programs - a terminal that could be plugged into REWTEL.
A full duplex terminal operates by sending any characters typed on the keyboard, but displaying on screen only those characters received through its serial port. The program presented here achieves this by making use of the powerful methods of input and output control provided by the NAS-SYS monitor programs.

Each time an input or output is requested in NAS-SYS, a special routine calls each of a number of input/output handling routines in turn. These handling routines have 'routine numbers' and there is a table of routine numbers for input, and another for output. These tables can be dynamically allocated anywhere in the memory by changing the addresses which point to them - addresses that normally point to tables in the NAS-SYS ROM. The program we look at here operates by changing the addresses of the input and output tables and using suitable input/output routines.

Program Description

Figure 1 shows the program listing which is assembled to run at 0 C 80 H .
The first part of the program initialises the variables used by

NAS-SYS

Lines $460-470$ set up the serial port for odd parity, and to omit sending line feeds after a carriage return on output. This makes the terminal compatible with both the R\&EW Z8-TBDS system and REWTEL.

Lines 490-570 set up the input/output table addresses. The input table looks at the Nascom keyboard and serial port, while the output table calls the user output and serial routines. Note that bit 7 of the location $\$ \mathrm{NOPT}(0 \mathrm{C} 28 \mathrm{H})$ is set after a serial input. This signals the serial output routine not to echo the character, and is also used by the user output routine to display that character on the screen.
Lines $660-670$ contain the main program. Line 660 flashes the cursor on screen whilst waiting for an input from either the serial port or the keyboard. After an input, the character is either displayed on screen or sent to the serial port by calling each of the output routines in turn.
The user output routine (lines 790-990) is called first. A test is made to determine if the output character has emanated from the serial port or keyboard. If it came from the latter, then that routine ends and the following routine in the table outputs the character through the serial port. But if the character was input from the serial port, then it is displayed on screen and the serial output routine ignores it.
Lines 830-860 overcome the problem of the Nascom display ignoring input line feeds, and also causes carriage returns to behave properly.
A more detailed understanding of how the program uses the input/output routines of the NAS-SYS monitor may be gained from studying the NAS-SYS operating guide.
By the way, NAS-SYS 3 users may wish to change KBD (61 H) to RKBD (7DH) and have a repeating keyboard.

The Hardware

Whilst the software can be used with NAS-SYS 1 or 3 on either a Nascom 1 or a Nascom 2, 1 am unfortunately unable to provide any information about the hardware in the former micro (though this can of course be found in the Nascom 1

TEAP Z20 Rssembler - Saurce Listitig

Figure 1: The assembled program listing.

Figure 2: The tabulated op-codes, type these in from 0 C 80 H .
manual). However, I can give details of the hardware operations that need to be carried out on a Nascom 2. This micro has the necessary hardware for running at 110, 300, 1200 and 2400 baud, and the instructions relevant here naturally depend on the chosen rate. The details are as follows:-
110 baud
Set link switch 2 to the following:--
LSW2/7 UP
LSW2/6 DOWN
LSW2/5 UP
LSW2/3 DOWN
LSW2/2 UP

2400 baud (and higher)

This is the fastest baud rate possible unless an external clock running at sixteen times the baud rate is used.

Connect the external clock input test points TP5 and TP4 together, and these can then go to the external oscillator, or, for 2400 baud to TP20
Set link switch 2 to the following:-
LSW2/7 UP
LSW2/6 UP
LSW2/5 UP
LSW2/3UP
LSW2/2 UP
300 baud
Link switch 2 is set as for 2400 baud. However there is no test point providing the 300 baud clock. The solution is to solder TP4 and TP5 to IC31 pin9.

1200 baud

The same problem as for 300 baud applies. Set link switch 2 as for 2400 baud and solder TP4 and TP5 to IC31 pin 12.

Running the Program

There are two options open to the user for entering the program. The first is to type in the op-codes tabulated in Fig. 2 at the relevant addresses, using the NAS-SYS 'MODIFY MEMORY' command. The second applies to those Nascom owners that have a ZEAP assembler. This assembler was in fact used to develop the program, and with ZEAP, the program Fig. 1 can simply be typed in and assembled. The execution address may then be changed so that, for instance, the code could reside in EPROM -whereupon the program might become a useful firmware feature.

Once the program has been entered, it can be run by executing (the ' E ' command in NAS-SYS) from 0 C 80 H (or the assembly address chosen when re-assembling using ZEAP). The program may only be halted by pressing the reset switch.

With 300 baud selected, plug your 300 baud full duplex Modem into the RS232 port, and you are only a 'phone call away' from REWTEL and other fine databases and bulletin boards!!

Refining the art of '3089
 FM IF system design yet further......
 William Poel and Derek Frost survey the fruits of over 10 years of the world's most popular IC shortcut to FM tuner design.

The CA3089 and its descendants have provided enough material to cover many pages in the electronics press over the past ten years. Once upon a time, building your own FM stereo tuner was an obligatory pastime for adherents to the hobby. Latterly Messrs. Japanese have been getting the upper hand in such things by providing such an array of delights on the shelves of your local Comet that this most instructive aspect of the hobbyist's development has been overwhelmed.

And thus not only do 'they' destroy our trade balance, they see to it that we no longer encourage the skills that might cause us to compete in the long term.

So we cautiously offer you an approach to an FM tuner design that hopefully combines the elements of performance and value in a way that does not immediately imply surrender when placed alongside the offerings of Pioneer, Akai et alia. It's a brave designer who feels he has something to contribute in this market.
And with a bit of luck, we might rekindle that spark of enthusiasm for RF design and experimentation that is nearly extinct, having been extinguished by an avalanche of packaged Hi -Fi products and diverted by a preoccupation with all things digital.

The sound's the thing

If you can't face the Japanese in open warfare on the battlefield of the discount Hi -Fi retailer, then the alternative is to start up a rearguard guerrilla action by invoking the powers of darkness in the shape of subjective appreciation. The poor Japanese, being very scientific and
objective in their reasoning, seem unable to accept that many Western ears prefer (or think they prefer, or are told that they should prefer) the sound that comes from low-volume (quantity-wise) specialist manufacturers who just happen to have the right book of spells and incantations. Even if their technologists did appreciate this, the Nipponese accountants would quickly tell them not to bother, since the market represented by those bewitched by the 'eye of newt, tooth of hen' reasoning of the subjective audio press is very much a minority anyway.
Nevertheless, there remains a sufficient, if unscientific, 'no man's land' where fact and fantasy are inseparable, and even the most cynical and clinical of observers is forced to confess that two pieces of equipment providing similar standard measurements are able to provide totally dissimilar listening satisfaction. FM tuners are a particularly fertile area for the subjective audio analysts, since they add a couple of new and not generally very well quantified aspects to the mixture in the shape of de-emphasis, separation, multipath, broadcasters and all sorts of ultrasonic paraphernalia related to the 19 kHz pilot tone, and 38 kHz DSB difference channel information.

Great Joy. A tuner can measure quite indifferently when set against the conventional wisdom of amplifiers, but still 'sound' quite sweet to the golden ear of the subjective devotee.

It's like this, see

The sound of the tuner is almost exclusively determined by the decoder and allied
audio channel processing parts, the ideal for which has (by popular agreement amongst reviewers of British audio equipment, for once) come to mean the HA1 1225/KB4441 IF amplifier subsystem (a derivative of the CA3089, of course), the KB4437 PLL stereo decoder and the KB4438 muting stereo preamplifier subsystem. The RF and IF processing will affect the sonic performance only to a limited extent - and any problems in this area that significantly affect sound performance are rather obvious and easily measured.
The contribution of the RF stage is simply to pluck the weakest signals from the ether, and amplify them without introducing noise. The question of linearity does not apply in the FM system where all irregularities are removed by limiting, and the only thing to watch out for is that the phase response of the filter stages is linear across that portion of the bandwidth occupied by the wideband FM signal.

Now let's take a look at an FM receiver system and the various stages of the signal in Fig. 1:

The Circuit (Fig.2)

You may be forgiven for having felt that you've seen this before. Actually you haven't, but it's certainly true that, since its introduction, the CA3089E has tended to cause many tuner circuits to look similar.

The circuit is a derivative of the Larsholt Electronics 7255 tunerset, and our thanks to them for their cooperation in producing this feature. The major differences are that the tunerhead contains an additional RF tuned stage, buffers the oscillator with a

MOSFET to feed the mixer, and has a JFET to feed the outside world of frequency counters and displays.
The oscillator is carefully isolated and loaded in such as a way as to produce the purest of signals at gate 2 of Tr2. The problems of spectrally impure local oscillators tend to emphasise the spurious response that occurs at a distance of half the IF from the RF signal. eg:
$R F$ signal $=100 \mathrm{MHz}$
Half IF response occurs at 105.35 MHz
LO at 110.7 MHz
Twice $\mathrm{LO}=221.4 \mathrm{MHz}$
Twice the sprog $=210.7 \mathrm{MHz}$
Difference $=10.7 \mathrm{MHz}$
Result = birdies and warbles.
In England, cases where this phenomenon arise are few and far between in average domestic listening. Not so elsewhere in the world, and not so if you use a beam of reasonable proportions.

The tunerhead is available as a readymade item (ALPS FD618), but we shall be covering the constructional aspects in an issue or two's time since it lends itself to being built comparatively readily for specific frequency bands in the range $30-200 \mathrm{MHz}$. The first MOSFET can be substituted by whatever device happens
the flavour of the month, although you won't be able to spot the difference between a 3SK88, BF981 or BF963.

The first IF filter sits at the output of the tunerhead. It is not entirely desirable that the filter should be fed from the coil secondary, since it's a great deal easier to foul up the matching of such a filter when reactance is involved, as opposed to pure resistance. The filter types tried (so far) that work are the TOKO CFSE, CFSD, and Murata SFEML. Others exhibit an asymmetrical passband, which does not enhance the linearity, and thus leads to loss of separation and distortion.

Without the filter on the base of Tr6, the tuner exhibits de-sensing when tuning to weak stationş in the presence of strong signals, since Trb saturates. Fitting the filter in front of the stage produces a strangely different impression of the band, with all those very weak intermediate signals squeezing through, courtesy of the superb noise figure and gain of the RF stage.

Horses for courses

In an ideal world, you wouldn't need the gain of Tr6. The data sheets imply that the frontend and the IF can do the job on their own - but the HF breakthrough around
10.7 MHz makes this impractical. So Tr6 is provided to raise the level of general 'noise' to swamp out the attempts of Radio Moscow to creep in, the resistive termination it provides for the filters is most welcome - and it makes a convenient place to include a switchable narrowband filter for more purposeful DX'ing.

Placing an extra switched filter in a circuit where linear phase response is so crucial is a dicey business at the best of times: following it immediately with another is definitely dicing with death! But the results bear out the fact that this 180 kHz bandwidth (-3 dB) filter works well, and does not sacrifice much by way of distortion or separation.
There isn't much left to be said about the HA11225/KB4441 IF subsystem. The width of the mute window is determined by the resistance between pins 7 and 10 ($4 \mathrm{k} 7-10 \mathrm{k}$ produces the right results), and the noise floor (and the rate at which the IF radiates harmonics) is largely determined by the quality of the decoupling at pin 10 .
Any component that slows up the response of the deviation muting signal at pin 12 is bad news. This output must respond instantaneously to catch any

Figure 1: a) An FM signal traced through the various stages of selectivity in the tuner. b) The relationship between bandpass, phase and group delay.

passing synthesiser 'scan stop' input. One of the more subtle problems encountered in this circuit is the need to keep the capacitor on pin 7 of ICl to a compromise between actually decoupling the audio adequately and avoiding slugging the mute output unduly. Too little decoupling can cause the deviation mute to trip out on modulation peaks.
(By the way, C68 should be increased to $4 u 7$ if the tuner module is used with manual tuning and not a synthesiser.)

The mute operation level is adjustable at pin 16. The module also provides access to this pin for remote control, if the user should wish to select only strong local signals with the aid of the panel control. AGC is optimised by combining the logarithmic response of the signal strength meter output with the rather stepped function of the AGC output (Fig.3).
$A C$ coupling to the signal strength output provides a good indication of multipath distortion - the pernicious form of antenna-borne phase distortion that can afflict even apparently good antenna systems and results in unexplained noise

Scan $0-20 \mathrm{kHz}$. Overall output with 1 kHz test modulation (40%). $Y=2 \mathrm{k} \mathrm{Hz}, X=10 \mathrm{~dB}$

Sweep $0-20 \mathrm{kHz}$ showing L-R and R-L separation. $Y=2 \mathrm{kHz}, X=10 \mathrm{~dB}$

$0-100 \mathrm{kHz}$ sweep. View of the composite signal after the birdy filter stage. (10dB)

Figure 3: Mute control voltage, AGC control voltage and meter drive voltage vs. input voltage.

Scan $0-20 \mathrm{kHz}$. Overall output with 5 kHz test modulation (70%). $\mathrm{Y}=2 \mathrm{kHz}, \mathrm{X}=10 \mathrm{~dB}$

Scan $0-20 \mathrm{kHz}$, overall audio frequency response in L\&R, with 2 dB verticle scale

Scan 0.50 kHz . View at the detector output of the composite signal. Note 19 kHz and 38 kHz DSB. (10dB)

$0-20 \mathrm{kHz} 5 \mathrm{kHz}, 70 \%, 10 \mathrm{~dB}$. Generator output

Scan $0-100 \mathrm{kHz}$. Before and after the 'birdy filter'. $Y=10 \mathrm{kHz}, X=2 \mathrm{~dB}$

$0-200 \mathrm{kHz}$ scan, viewing the composite input to the decoder, with birdy filter response superimposed

Figure 4: a) The composite spectrum baseband. Note that harmonics of the 38 kHz DSB may interact in their own right: with each next harmonic, the sidebands spread further from the centre until they eventually overlap and produce in-band warbles. Note, too, that slope distortion may lead to higher order harmonics interacting when the signals are too closely packed. b) the decoder output shown alongside the cut-off of the recommended filter.
and certain signals, even thoug" "Ie syluu strength indicates that there is enough signal. The cure is to adjust your antenna until it goes away - or to remove ihe antenna from the proximity of offending reflective objects like water tanks and gas holders. It's the audible equivalent of ghosting on a TV picture.

Tweet and twitter

Unnleasant and undesirable things lurk beyond 55 kHz in the signal that emanates from the detector - see Fig.4. Multiples of 38 kHz can conspire with signals unknown (usually from adjacent stations) to pervert the course of Hi -Fi. Since it is not desirable to reduce the IF bandwidth much below 250 kHz at the -3 dB points, the next best place to add selectivity is in the path of the composite signal from the detector. Since the multiplex signal expires at $53 \mathrm{kHz}(38 \mathrm{kHz}+15 \mathrm{kHz})$, the low pass filter notionally takes effect after 55 kHz although one has to take care not to disturb the phase response below 53 kHz , since it is vital that the 19 kHz sub-carrier and the 38 kHz DSB signal should be decoded with the correct relationship. Errors in the timing of the switching signal between left and right result in an overlap which reduces separation.

Like all good filters, the input and output impedance of this stage must be clearly defined - here it uses the emitter resistor in Tr8, together with R61. Incorrect termination results in reflections (simple AC theory), and reflections result in ripples in the passband (not so simple filter theory).

Tr9 raises the level into the decoder to achieve the best signal to noise ratio compatible with minimal distortion, whilst C66 is available to undo all the good work on phase linearity earlier in the circuit, thereby reducing the separation and thus the perceived noise level on weaker stereo transmissions. Experimenters can place an FET between C66 and ground and have variable high blend driven from the signal level control output. The possibilities are endless.
The stereo decoder (IC2) uses the conventional PLL system to regenerate the pilot tone. The VCO is determined by the components on pin 15 - and the other trimmable adjustment on pin 9 sets the operating point of the pilot cancelling system.

The subtle bit in the decoder concerns the audio output stages which are open collectors. And like any open collector audio stage, the noise and hum content of the voltage applied to the far end of the collector load resistor will appear at the audio output. R58 and C62 decouple any problems - but note that the supply voltage is +14 V , since the drop across $R 58$ is enough to reduce a 12 V supply below the point at which the output stages clip on full signal.

The output signal may have lost its

19 kHz signal, but it's brimming with 38 kHz and other ultrasonic nasties. You still need a filter - but at least it's one where the effect of the roll-off (and consequent phase errors) occurs after the 15 kHz audio base band.

AFC and all that

IC3 provides the means of including the AFC error signal derived from detector 'Scurve' in the main tuning voltage of the front end. One input to the op-amp is fed by the AFC reference derived from the main IF reference voltage at pin 10 of IC1. To obtain AFC action, the other input is fed from the AFC source itself (minus the audio
content), the result being used to control the overalltuning voltage.

Purists believe AFC can act to the detriment of the signal, since it is very difficult to reach a happy compromise between enough capacity to completely decouple all audio frequencies from the AFC voltage, and a time constant that makes it nearly impossible to tune when the AFC is operating. The usual compromise results in the sacrifice of separation at very low frequencies.

One solution is to employ slope control of the AFC signal, which is a grandiose description of a technique that applies AFC in proportion to the signal level. This
effectively turns off the AFC until the tuning has settled on a signal for long enough to believe that the operator has stopped tuning, whereupon a large and very highly decoupled AFC voltage is applied to prevent the tuning meandering any further.

The only thing that can then upset the tuning is drift in the detector stage, but since we've been careful to choose the best available assembly, and one that is matched for thermal drift as well as having the most linear phase, all is well. (A quadrature detector coil is nothing more than a high stability, high Q double tuned coil stage optimised to give the most linear phase response when damped with the resistors shown.)

Next month

In the final section of this feature, we'll be covering all the constructional details, including setting up with the minimum of test gear (a multimeter). It must be said that the best results will only be obtained if you have access to a signal generator and a wobbulator (best of all, an audio spectrum analyser), although an oscilloscope and the Radio 3 test tone schedule are nearly good enough.
Also included will be a slope controlled AFC drive system, and a filter/preamp stage.

R\&EW

SUMMER SALE! DIGITAL MULTIMETER KITS

These $3 \frac{1}{2}$ digit handheld DMM's are fully complete with all components (except PP3 battery) and test leads. We are using up all stocks of the DP2010K prior to launch of a new range of meters in the Autumn. The Kits will be sold on a 'first come first served' basis, and are fully guaranteed. A troubleshooting and calibration service will be maintained. This is a onceonly opportunity to make a DMM at an incredibly low price. Supplied with a comprehensive description of operation and full constructional data.

TYPICAL SPECIFICATION						
Function	PSD	Accuracy	Function	FSD	Accuracy	
Volts	2 V		Current	2 mA	$2 \% \pm 5$ digit	
(d.c.)	20 V	1.5%	(a.c.)	20 mA	$2 \% \pm 5$ digit	
	200 V	± 1 digit		200 mA	$4 \% \pm 5$ digit	
	500 V			2000 mA	$12 \% \pm 5$ digit	
Current	2 mA	$1 \% \pm 1$ digit	Resistance	2 k	$1 \% \pm 1$ digit	
(d.c.)	20 mA	$1 \% \pm 1$ digit		20 k	$1 \% \pm 1$ digit	
	200 mA	$3 \% \pm 1$ digit		200 k	$1 \% \pm 1$ digit	
	2000 mA	$10 \% \pm 1$ digit		2000 k	$1 \% \pm 1$ digit	
Volts	2 V		2%	Diode	2 V	
(a.c.)	20 V	$2 \% \pm 1$ digit				
	200 V	± 5 digit	Test			
	50 V					

LASCAR ELECTRONICS LIMITED
Module House, Whiteparish, Salisbury, Wilts. Tel. 07948-567

Soundex Professional Audio Products

Peak Programme Meter Systems, Drive Amplifiers, Meter Movements, Audio Measuring Sets, On-Air and Rehearsal Lights

Rotary Encoder

Interface

Adrian Barnes describes the construction of a simple and reliable interface that converts the output from a continuous rotary encoder into a form that could readily be used to control TTL logic.

There are many different applications where some form of fine control over a digital circuit is needed - for example, synthesised communications transceivers and computers. A stepped BCD/binary output encoder such as a CB channel selector switch has very limited use since it has just one full revolution in which to present all the available codes. The rotary encoder, however, overcomes this problem by outputting a stream of pulses characteristic of the distance through which the selector is turned. Such a system is obviously not limited to any specific number of furns or parts of a turn; in other words, it is essentially continuous. Moreover further information is readily available because the pulse widths are directly related to the rotation rate.

Getting the sense

However, in most applications, it will be necessary to know not only at what speed the shaft is turning and how far it has gone, but also in what direction it is moving. The way this is achieved on incremental encoders, such as the LA226 used in this project, is through the emission of two streams of pulses identical in form but out of phase with each other by 45°, which stream leading depending on the sense of the rotation (see Fig. 1). Thus as the shaft turns in one direction (counter clockwise in the example illustrated in the diagram) A will be low (logic 0) at the time B changes from low to high, whereas when it is turned the other way, A will be high (logic 1) as B changes from low to high.

This difference in phase can be decoded by a flip-flop to give a high output when the shaft turns one way and a low one when it turns the other way. In applications where a reasonable speed is maintained, this can be achieved with a D-type flip-flop where the output changes to the state of the D (data) input when the clock input goes from low to high. However, this can cause glitches at low speeds, so a J K type is the better one to use.

LA226 Specifications

The LA226 has a very low rotational torque - less than 100 gcm - and a rotational life of 100,000 cycles, which is why it is more suited to computers and the like than to car speedometers. Maximum current is 50uA per output at a voltage rating of $5 \pm 1 / 2 \mathrm{~V}$.
The construction of the unit is based on a brush type contact shorting out the common track and the output tracks (see

Figure 1: Timing diagram. Note that the pulse widths vary with the speed of rotation.

Figure 3: Schematic diagram.
Fig.2). The area of contact between the brush and the tracks must be very narrow in the radial direction because otherwise one pulse would run into the next and there would be no output pulse train. This is why higher resolution encoders cost more and are larger; their fabrication has to be precise. The resolution of the pulse train land hence the number of codes available for each complete revolution of the encoder) can be doubled, however, by combining signals A and B with an exclusive OR (EX-OR) gate. This has the effect of producing an output that is high only when its two inputs are different (output C of Fig.1) which has twice the resolution of either A or B. However, this has not been included in the design for this project.

How It Works

The operation of the interface is best understood by referring to the schematic diagram shown in Fig. 3. The output signals from the encoder are formed by the common connection a +5 V giving the highs, and the pull-down resistors R1, R2 creating the lows when the output is not high. Four gates from the inverting Schmitt triggered IC1 (a 4584) are used to square up the input and to buffer the signals.
The signals then take two routes. The first takes A and B to the K and J inputs of IC3 respectively: this sets the latter up. The second route goes via IC2 which ANDs the two signals together to produce the clock signal D on the timing diagram (Fig.7). The remaining gates of IC2 are used as buffers that delay the clock pulse to IC3 by about 36ns (signal E of Fig.I), which is just enough time to allow IC3 to be set up before the clock pulse comes along. The clock pulse determines when the output should change and the J and K inputs determine what it should change to. The truth table for this is shown in Fig. 4.

Figure 2: Photograph of LA226 showing its construction.

From this truth table and the timing diagram of Fig. 1, the following can be deduced:-
Travelling in the clockwise direction When E is first high A and B are both high, but towards the end of the E pulse A goes low and B stays high, D going low. Less than 20 ns afterward the J and K inputs are set up i.e. the IC has received the data. About 16 ns after this, the delayed version of D - the E signal - goes low which 'clocks' the flip-flop. Thus Eacts as the clock input and on the high to low - or negative - edge of this signal, the flip-flop output will change according to the settings of J and K. In the case being considered here, the truth table shows that these will cause a high output at Q.

Figure 5: PCB foil pattern.

J	K	CLOCK	OUTPUT Q
0	0	\square	Stays same
0	1	-	0
1	0	-	1
1	1	-	Changes to opposite

Figure 4: Truth table for operation of flipflop.

Until the next clock pulse negative edge arrives, the output will stay in this state. Obviously, when the next pulse arrives, J and K will be as before and so all the while the shaft rotates clockwise the Qoutput will be high.

Under counter-clockwise rotation

The details here are essentially exactly the same, except that when the negative going edge of E arrives, A will be high and B low, and thus the Q output will be low. Of course the \bar{Q} output will then be high.

Construction

The construction of this interface is very straightforward on the R\&EW PCB, which also includes decoupling capacitors on each IC. The foil pattern and the overlay

Figure 6: PCB overlay.

Figure 7: A rolling ball control - a possible application for the interface. Note the two rotary encoders at right-angles.
are shown in Figs. 5 and 6. Obviously which way round the connection of the LA226 is made is not important so long as the common connection is correct, since both the output and its complement can be used.
Moreover, this circuit will operate with other types of rotary encoder that give two signals with a phase difference - for example, those of a higher resolution.

Another option is to use an encoder with
a click-stop action, though this might be off-putting in a joystick or rolling ball type of application (see Fig.7).

Control Application

The interface described here thus gives a positive output in one direction and a negative one in the other, together with a stream of pulses the number of which is proportional to the length of travel and their width proportional to the speed.

PARTS LIST

Resistors all $1 / 4$ watt 5%
R1,2
22 K

Capacitors

C1,2,3
$47 n$ ceramic disc

Semiconductors

IC1	4584
IC2	74 LS 08
IC3	74 LS 78

Miscellaneous

3PC half pins, 314 pin IC sockets, 5 way molex connector. PCB etc.
Rotary encoder LA226.
The usual application of such information streams is in driving an up/ down counter so that a binary or $B C D$ output is given that is related to the position of the shaft, even after many revolutions. However, an up/down counter has not been included on the board for this project because the different applications to which the interface will be put may require $B C D$ or binary outputs, or even several counters cascaded to give a wider range of control.

R\&EW

Centronics Interface for Z8-TBDS

Chris Honey describes a full feature parallel printer interface for the Z8 series of computers.

Despite the Z8671's extensive RS232 terminal support, it is unable to control any form of hardcopy printer. However the onchip parallel $1 / O$ port is ideal for interfacing Centronics-type printers, for with the hardware aspects of the interface taken care of, a little software allows Z8 BASIC 'output' to be directed to just the programming terminal, or the hardcopy printer or both the terminal and the printer. All of this is possible due to the manner in which Z8 BASIC 'output' is vectored (directed) to I / O devices via 'jump' tables in RAM.
Before examining the printer interface in detail, it is instructive to take a look at the procedures involved in handling input and output with the BASIC/DEBUG interpreter inherent in the Z8671.

The INs and OUTs

The BASIC/DEBUG interpreter in the Z8671 normally uses the on-chip full duplex UART (Universal Asynchronous Receiver Transmitter) for input and output processing. Each time this BASIC/DEBUG interpreter requires a new INPUT character, a test is performed on the Interrupt Mask Register (IMR, R251). The contents of the IMR are effectively ANDed with 88 H and, if the result causes either of the sign or the zero flags to be set, then BASIC/DEBUG takes a look at the external memory location 1012 H for a JUMP instruction to a user-supplied input driver. The same test on the IMR is done for all BASIC/DEBUG outputs, the only difference being that the JUMP instruction to the external output driver is then found at 1015 H .
The facility mentioned above of interfacing external input/output drivers directly to BASIC allows the use of devices other than the internal UART and the execution of other application-specific $/ / O$ tasks. For example, input could be obtained from an ASCII keyboard and output sent to ASCII LCD display configured as part of the memory map.

Using external I/O drivers automatically allows the PRINT statement in BASIC to output to the user-supplied device Similarly the INPUT statement will obtain characters from the user-supplied source. With such a facility, there is no call for cumbersome programming in order to get I/O to the right place. In the normal way, outputting a text string to an ASCII display on port 2 would, for example, require
sending each character separately.
The flowchart in Fig. 7 illustrates how the external I/O drivers 'fit in' with the internal serial drivers of BASIC/DEBUG. Assuming that the external I/O drivers are not active, the usual sequence of events is that any input request waits for a serial character, stores it in register 19, and then proceeds to echo it back by going on into the serial output routine. This procedure is ended by a RETURN instruction. If however the external I/O drivers are active, the serial I/O routines are never seen, as a jump is made to an external routine. The outcome of this is that any echoing of input characters must be performed by the external routine (e.g. from the keyboard to the display) and that the external routine must contain a RETURN instruction to bring it back into BASIC/DEBUG.

There are, in addition, some other points
to adhere to whilst using external I/O. Firstly, the routines must pass each single ASCII INPUT or OUTPUT character through register 19; secondly, the parity bit (bit 7) of all input characters must be set to zero; and finally the register pointer, which is set to point to R16-31 during an I/O request, must also have this setting when returning to BASIC/DEBUG.

Table 1 summarises the requirements on using external I/O drivers.
$1 \$ 12 \mathrm{H}$ Jump to INPUT driver.
$1 \$ 15 \mathrm{H}$ Jump to OUTPUT driver.
RP (Reg Pointer, R253) Set to R16-31.
R4-15, R22-32 Must be preserved.
BIT 7 of INPUT characters Must be 0.
USER FLAG 2
USER FLAG 1 Preserved.
Return to BASIC/DEBUG withRETURN
instruction.

Table 1: Parameters for externall/O.

Figure 1: BASIC/DEBUG serial I/O flowchart.

Planning an Escape

There is another part of the BASIC/DEBUG interpreter that checks the IMR for external I/O - that part concerned with responding to an ESCAPE character. Normally, BASIC/DEBUG tests for an input 'ESCAPE' character at the end of each program line during program execution. If an 'ESCAPE' is found, user flag 1 (Bit 0 of FLAGS, R252) is set and program execution is halted. However, when external I/O is enabled, the test is ignored: thus the task of detecting 'ESCAPE' characters falls to the external I/O drivers. Their routines must therefore ensure that user flag 1 is set upon an ESCAPE character being input. In some applications, this can be turned to advantage, through the 'ESCAPE' key being made inactive or changed to any other ASCll character.

Centronics Interface

The interface described here, which allows a Centronics-type printer to be controlled transparently from BASIC/DEBUG, illustrates the use of external I/O drivers attached to a Z8671. Centronics' pioneering spirit in the field of printers led to its name becoming synonymous with a standardised method of transferring parallel data to printers.

Before venturing into the realms of the required $Z 8$ software, we take an instructive look at the hardware and the timing of a Centronics interface.

The Timing

Unlike serial interfaces, Centronics interfaces make use of handshaking on every data transfer; Fig. 2 outlines the methods used. There are two fundamental types of printer, each with a corresponding handshake.

Most printers accept data without printing it until they receive a carriage return or a line feed character, whereupon the previous line is printed. When these printers accept data, normal transfer

DATA

DATA STROBE

BuSy

Pin	Signal	Pin	Signal
1	DATASTROBE	19	GND
2	DATABIT0	20	GND
3	DATABIT1	21	GND
4	DATABIT2	22	GND
5	DATABIT3	23	GND
6	DATA BIT4	24	GND
7	DATABIT5	25	GND
8	DATABIT6	26	GND
9	DATABIT7	27	GND
10	ACKNOWLEDGE	28	GND
11	4	29	4
12		30	
13	Notused	31	
14	onthis	32	Not
15	Interface	33	Used
16		34	
17			35
18			

Figure 3: Centronics Interface connections. The connector is Amphenol type 57-40360 36 way.

Z8-TBOS EDGE CONNECTOR PIN NUMBERS

Figure 4: Z8-to-Printer connections.

Program Description

As 1 described earlier，the starting point is to set up the JUMP instructions to the external I／O drivers：both jumps have to be specified whether a routine is supplied or not．Another look at the flowchart of Fig． 1 brings out an interesting point in this connection．Whenever the BASIC／ DEBUG interpreter receives an input character， it is always echoed and hence the input can be trapped in the serial output routine．This is made use of in the program by employing the serial $/ / O$ as before but appending the Centronics routine as part of the serial output．

Figure 5 shows how this works in practice． This diagram is essentially the original flowchart but it includes the jumps to the external $1 / \mathrm{O}$ drivers．The addresses in brackets refer to addresses in the BASIC／DEBUG interpreter． Since there is no external input driver，the jump at 1012 H simply jumps back into the serial input routine at 005 AH ．A serial output will jump to the Centronics program and then jump back to 006 CH ，as if nothing happened，prior to sending the character to the UART．

The details of the procedure for setting the

JUMP instructions at 1012 H and 1015 H depend on whether EPROM or RAM is located at these addresses．The easier to deal with is EPROM，as for instance in the REEW Z8－MCS board；you merely have to ensure that the correct bytes are blown into EPROM．In assembler the code needed is：－

$$
\begin{array}{lll}
1012 \mathrm{H} & \mathrm{JP} & 005 \mathrm{AH} \\
1015 \mathrm{H} & \mathrm{JP} & \text { PRINT }
\end{array}
$$

Where PRINT is the address of the Centronics routine．If RAM is present，as on the REEW Z8－ TBDS board，then you need to ensure that these bytes are loaded into the correct locations．The method adopted here is to set up some internal registers with the required bytes and then to copy the registers to RAM．This must be done before enabling external $1 / \mathrm{O}$ ．

By the way，always ensure that the start of program pointer（R8，9）is set to 1020 H or above； otherwise the JUMP instructions may be overwritten by the user＇s program．

Once the JUMP instructions have been set up and the interrupts disabled，the $1 M R$ can be loaded with the byte that enables external I／O．In this case 08 H is used．However，if you intend
using interrupts（for example，Z8 EXEC uses interrupts for the real time clock）and the Centronics routine simultaneously，then this will have to be changed．However，details cannot be given here as they depend upon precisely which interrupts are being used．

Reverting I／O handling back to normal simply requires the $I M R$ to be changed to disable external $1 / \mathrm{O}$（in this case 80 H is used）or the reset button to be pressed．

The Centronics routine PRINT checks for ESCAPE characters and uses control P（＾P） to toggle the print state．Register 33 bit 0 is used as the flag for the latter．Initially register 33 is cleared to disable printing and pressing $\wedge P$ on the keyboard，or setting bit 0 of R33 early on in the program，will cause all output characters to be printed．Pressing \wedge P again or resetting R33 bit 0 will turn off the printer．

Another point to note is that the PRINT routine is relocatable and the only constraint is that the jump instruction at 1015 H must be set to point to it．The program listing in Fig．6，which includes initialisation for the Z8－TBDS board，is assembled for 2000 H ．

The program in use

Figure 5：External I／O flowchart．

The program as presented is designed for use with a Z8－TBDS．To load it，one merely needs to type in the assembled code using the Modify Memory Utility．External I／O is then initialised by

GO＠\％2000，
while external I／O is completely disabled by
GO＠\％202A．
These calls may be used either in immediate mode or as part of a program．
When initialised，typing a $A P$ will turn the printer on，and subsquently any further characters to be typed in should appear on the printer．A＾P can be typed at any time in immediate mode to flip the printer status．

To turn the printer on in a program，＠ $03=1$ is used while ＠ $33=0$ is used to turn the printer off．
Single characters are sent to the printer by using：
GO＠\％61，DATA
where DATA is any byte．Similarly the statement：
GO＠\％61，\％ 10
will act as a ${ }^{\wedge} P$ and flip the printer status．Control P is thus the only character that cannot be sent to the printer．
As I pointed out earlier，the listing given in Fig． 6 has been written for a Z8－TBDS board，but after studying it，the reader should be able to deduce the changes needed to implement it on aZ8－MCS board．

Example Program

This program for the Z8－TBDS，for which the code in Fig． 6 is located at 2000 H ，will initialise external I／O and output the text in line 30 on the printer．But，while the text in line 50 won＇t be sent to the printer，both the print lines will appear on the VDU screen．

```
10 G0D\% こロロロ
20 \(0 \leq 5=1\)
30 "THIS SHOULD APPEAR ON THE PRINTER."
40 2
50 "THIS DOESN' T"
ED STOP
: RUN
THIS SHDULD APPEAR ON THE PRINTER.
THIS TEXT WAS PRINTED USING THE CENTRONICS PRIBRHM.
```


Final Note

Version 2 utilities do not use the serial $/$ O routines in BASIC／ DEBUG and so cannot output to the printer．If you need to display memory and get a copy，use version 1 ．

If the printer does not acknowledge for some reason，press the reset button but note that this also disables the external I／O．

	*	imitialisation, set up variarles.			
2888	DRE	2888			
28808780	INIT		RP		
28923128			f32		
	*	SET UF INPUT/OUTPUT ADRRESSES IN R4 To R9			
2884 1C86		LD	R1،	$f 6$; RYTE COUMT
28882018		LD	R2,	f19 ${ }^{\text {H }}$; PUT 1812H IN R2, R3
28683512		L0	R3,	¢12H	
2004 4888		LD	R4,	f80H	; JP OPCOOE
280C R8E5		CLR	R5		
288 ECSF		LD	R6,	$\mathrm{fc}_{5} \mathrm{AH}$; 885AH NOH IN R5, R6
28107600		LD	R7.	f80H	
28128628		10	R8,	fHI PRIMT	
2814962		L0	R9,	flo Priwt	;PRINT ROUTINE ABCRESS IN R8, R9
2816 AC24		10	R18,	f36	;PGinTS to R4
	*	TRANSFER R4 T0 R9 T0 MEMORY FROM 1012 H			
2818 03A2	HOVE			RR18	
201A 1AFC				HOUE	
2810 5880		POP RP			
	\#	SET UP PORTS AND PRINT Flag			
2815 Re2t			33		;OISARLE PRINT
2928 88F6			P2 2		;PGRT 2 TO OUTPUT
2822 E6F741			P3\%,	¢4iH	; PORT 3 MODE
	!	Emarle external I/O drivers			
$\begin{aligned} & 282585 \\ & 2826 \text { E6F8日s } \end{aligned}$		01			
			IMR,	f^{8}	
	*	END Of	InITIALI	SATITAN. EEt	
2829 AF		RET			
	*	this routine reverts i/o back to norual			
$\begin{aligned} & 282 \mathrm{~A} \text { 8F } \\ & 282 \mathrm{E} \text { EfR88 } \\ & 282 \mathrm{EAF} \end{aligned}$	MORHAL	DI			
			IMR,	f88H	
		RET			
	*	CEntrohics print routine. relocatakle.			
	*	P32 is acknulledee from printer.			
	*	p3E IS data stkgee to priwter.			
	*	SETTINE BII 1 OF Register 33 UILL FMABLE PRINTHioifies register 16			
	*				
	*	- ${ }^{\text {P TOGELES PRINTER OM/OFF }}$			
202 F 567 CFE	PRINT	ANO	FL465,	faFEH	: RESET ESCAPE FLAg
2832 A61318		CP		$\mathrm{fl}_{18 \mathrm{H}}$; IS IT A ^p ${ }^{\text {n }}$
2835 E887		JR	NZ,	CHECK	; IUMP IF NOT
2837862181		x0\%	33,	f1	;FLIP PRINT STATUS
203 A 8013		CLR	19		: MAKE TRANSPAREMT TO BASIC
283C 8827		JR	DOME		
	*	Check if Print gnarled			
2835762181	CHECK	TM	33,	$f 1$; IS PRINT ON?
28416814		JR	Z,	ESCAPE	; IF NeT Jump
2943 E4:382		LD	2	19	; TRANSFER CHARACTER
	*	T0G6LE DATA STROEE			
204656830 F		AND	3,	f90FH	;DATA Stroge low
2849 FF		NOP			; KEEP IT LOW
284A 468328		OR	3.	£28H	; DATA STROEE HIGH
	*	WAIt for acknowledge			
2840668394	ACKLO	TCH		f^{4}	; IS ACK LOW ?
28586858		JR		ACKLD	if NGT WAIT
2852768364	ACKHI	Th	3.	$¢_{4} 4$;IS ACK HIEH ?
285568 FP		Jk	1.	ACKHI	; IF NOT WAIT
	*	CHECK FOR AN ESCAPE CHARACTER			
2657 E4F818	ESCAPE	LD	16.	510	;GET LAST IMPUT
285A 561877		AHI	16.	f7FH	;STRIP PARITY
2850 A61018		CP		f18 ${ }^{\text {H }}$;ESCAPE CHARACTER?
2868 ER93		JR		Done	; IF NOT JUMP
$2962465 C 81$		OR	FLAGS,	$f 1$;SET ESCAPE FLAE
	*	END OF ROUTIME, NOW ECho Character throush serial part			
$\begin{aligned} & 2665800866 \\ & 2868 \end{aligned}$	DONE	JP	88SCH		

BUSINESS DIARY

High Frequencies in High Places

R\&EW, as we have always said, is being read in all the right places. A provocative aside in the recent R2000/R70 review feature (June issue p46) prompted an amused riposte from no less than Plessey Radio Systems of West Leigh, Hants - not to be confused with that other Plessey establishment in Wiltshire ('the county that's full of meat' according to that rather curiously worded commentary in the sausage and pork pie advert).
Indeed, Mike Thomas of PRS, who spotted the wry comment relating Plessey and a hankering for mechanically tuned HF receivers, took the occasion to remind us that PRS receivers have been well and truly synthesised down in Hants for a good while. Furthermore, PRS was about to hold a press launch to christen the new PR2280 HF bus-controllable receiving system, so your editor was invited to come and bear witness to the state of the art for himself.

A word of caution: Plessey is one of those firms which publish its consolidated balance sheet with almost all the figures in millions of pounds. The PR2280 is not for the faint of wallet, but who's to say that it won't one day find itself in the hamshack by the same process as the HRO, AR88 etalia?

After all, the AR88 probably cost the equivalent of the PR2280's ' $£ 8 \mathrm{~K}^{\prime}$ 'ish' in 1940.

A3J and tonic, please

The presentation of the PR2280 was a low key affair, where many of the guests soon found themselves in difficulties when called upon to utter the word 'synthesiser', let alone when required to consider the finer technical points of such a device. Your scribe was evidently in the presence of one of those most wonderous products of our technological age - the sort for which those buying and selling can know about as much about what goes on inside as you or I know about glass blowing in Upper Volta.
'Have a drink' someone said with an air of bonhomie that put the whole affair into perspective. The main business of an occasion such as this is not to discuss double balanced mixers, 20 pole crystal filters or intermodulation. Selling the wares of the UK communications industry is about putting on a show to rival the legendary hospitality of people like Racal.
'Have another G\&T old man', and some military attache or other willingly submits to a gentle sales patter that would not have strained the technical resources of a young mother buying her offspring a 'Speak and Spell' at Dixon's.

The audio-visual presentation that accompanied the product launch was designed to impress upon the potential customer

that Plessey is a) very big, b) very clever, and c) dedicated to making the world a finer place to live in. The musical soundtrack of this expensively produced piece of marketing was quite delightful, and when I jokingly asked for a copy of the soundtrack LP, a Plessey salesperson (who was taking it all rather too seriously) asked if I wanted a transcript of the voiceover. Heaven preserve us!

I noted that the frequencies on the display of the receiver in the film were all BBC MW broadcast channels. Perhaps Plessey were mindful of the conditions of their broadcast reception licence, and the restrictions it places on receiving 'unauthorised' signals. Or maybe they are mindful of the fact that the Beeb at Caversham is likely to be one of their most fruitful hunting grounds, and a little flattery never did anyone's sales prospects much harm.

Notwithstanding that this was an event for those empowered to spend a Great Deal of taxpayers' money rather than for perspiring scribes seeking to thrust their readers' knowledge of the boundaries of communications technology a step further ahead, the PR2280 is still a thing of joy. Not too many frills (no noise blanker, no PBT, no FM demod), just good old dynamic range and stability. From the rather incongruous knobs reminiscent of an Eddystone front panel to the delightfully free spinning shaft encoder, the PR2280 is a workhorse for the professional listener. Much is made of the modular construction with each of the various sub-assemblies sporting its own processor (reputed to be 6800 based) to sit on the RS232 or IEEE interface.

A fearsomely expensive HP desktop computer was demonstrated using the superb high-def colour graphics to illustrate the remote programmability and information aquisition functions of the system. The man said that a program had been developed for a PET as well, and if you got it, flaunt it, as they say.

The work of the devil

The Band Scanner print out from the HP system presented here displays fearsome prospects for the capability of the combinations of computer and communications receivers, and perhaps should put to shame those radio amateurs who still dismiss computing as the work of the devil where communications is concerned. It doesn't take too much imagination to sketch out an approach to do (nearly) the same with an R70's data connector and a BBC microcomputer.
The spec of the receiver is reproduced for your edification: despite spotting the deliberate error that quoted the 3rd order intercept as 32 uV emf instead of 32 mV , we weren't given one as a prize. Most notable feature in my book is the AGC performance. The RF performance is little changed from the earlier generation devices; most of the innovation lies in the control functions and versatility.
A final sobering thought: the optical shaft encoder used on the manual version of the front panel costs more than a R2000 on its own. I wonder if the BBC will be evaluating the Icom R70 thoroughly before spending another $£ 7500$ of our licence money on this delightful, but expensive, box of tricks? Maybe I'd feel a shade more charitable towards PRS if it had the nerve to adapt its skills in producing excellence, to developing a massmarket receiver after the likes of the Trio, Yaesu and Icom offerings.
I don't doubt that there are engineers aplenty within the organisation brimming over with the enthusiasm to give such a project a crack. How about it before we all forget how to mass produce good radios in this benighted land?

Further info:

Plessey Radio Systems, Martin Road, West Leigh, Hants PO9 5DH.

DESIGNER'S UPDATE

This month, Michael Graham looks at the memory devices expected to dominate in 1984 and, in particular, at those products offered by INMOS.

INMOS as a company has been getting a far amount of press coverage of late, although much of it in the pages of the Financial Times rather than the technical press. As R\&EW is part of the aforementioned technical press, I shall not comment too much on the company's commercial plans or on the Government's involvement with INMOS, but instead I will concentrate on the products that the company is pinning its hopes on in 1984.

INMOS's major product area is memory - not the most glamorous of products but certainly a vital element of the computing
industry. The devices due to become the top sellers for 1984 are 64 K DRAMs, 16 K fast statics and non-volatile EEPROMS. These products between them accounted for only $£ 0.4 \mathrm{~b}$ of the $£ 2.5 \mathrm{~b}$ memory market back in 1980 and by 1982 still represented less than 25% of memory sales. Next year, however, it is predicted that these three types of memory will take more than half of the total memory market. INMOS is well placed to take advantage of this growth area and it is strongly represented in these major product areas, as we shall see.

IMS1400

The IMS1400 is a $16 \mathrm{~K} \times 1$ fully static RAM. The device is offered as either a 45 ns or a 55 ns access time version and it has a powerful requirement of 660 mW (110 mW in Standby mode). In addition, a process variation during production leads to lower power versions of the device with 70 or 100 ns access times.
Major areas of application include video stores and MMUs (Memory Management Units) in minis and some novel systems based on 16 -bit micros.

The block diagram of the device is shown in Fig. 1.

IMS1420

The IMS1420 is very similar to the 1400 but it is configured as a $4 \mathrm{~K} \times 4$ static device. The IC is again offered in 45 and 55 ns access time versions with a 600 mW power requirement when active and 165 mW in Standby mode.

This device's block diagram is shown in Fig. 2.

IMS2600
The IMS2600 is a standard pin-out $64 \mathrm{~K} \times 1$ dynamic memory device. It is offered in 100ns and 120 ns versions and features On-Chip Refresh. Figure 3 shows the block diagram of this device.

The IMS2600 also provides for Nibble Mode access which allows 4 bits of information to be read every 55 ns . Nibble Mode operation is possible because, although externally configured as a $16 \mathrm{~K} \times$ 1 device, the 2600 is internally organised as a $16 \mathrm{~K} \times 4$ array. In Nibble Mode, a bluck of four bits selected by the eight row addresses and the six most significant column bits are loaded into a set of registers. The two low order column bits are then used to select the first of the four bits to be read. When this bit has been accessed, taking $\overline{R A S}$ high will terminate the cycle while toggling $\overline{C A S}$ in the sequence shown in Fig. 4 will read out the remaining bits at a speed equivalent to a 55 ns rate for the four bits.

This technique is useful in memory READ-MODIFY-WRITE operations and video stores.

Figure 3: IMS2600 block diagram.

[^2]

Figure 4: IMS2600 Nibble Mode Read Cycle.
demonstrate that the IC only requires a single (5 V) rail for operation: all voltages required for erasing and programming are generated on-chip.

An on-board micro controller makes interfacing the device to a micro system a straightforward matter. It also controls the various READ/WRITE operations.

These INMOS products are either available now or will be in the near future. Some of them will not be cheap but they will be available as one-offs from INMOS distributors. Experimenting with them should be a rewarding experience and it will mean that you will be familiar with the technology of finished products that probably will not reach the market for another year or so.

Finally, I would like to thank INMOS for their permission to reproduce the data shown on these pages.

IMS2620

The IMS2620 is a $16 \mathrm{~K} \times 4$ dynamic memory that comes in three access time versions (100,120 and 150 ns). The device is similar to the Texas TMS 4416 but offers a refresh counter which means that improvements in bus usage can be achieved. Its block diagram is shown in Fig. 5.

IMS2630

The IMS2630 is a massive $8 \mathrm{~K} \times 8$ dynamic RAM that, by virtue of its bytewide design, offers EPROM interchangeability. OnChip Refresh, single 5V operation and full TL compatability, make the 2630 a very versatile device. Figure 6 shows this device's block diagram.

IMS3630

The IMS3630 is perhaps the most impressive of the INMOS devices reviewed here, being an $8 \mathrm{~K} \times 8$ EEPROM. This IC provides 64 K of non-volatile, but alterable, storage in a standard 28-pin DIL package.

Figure 7 shows both the pin-out and the block diagram of the device, which

Figure 5: IMS2630 block diagram.

Figure 6: IMS2630 block diagram.

Figure 7: IMS3630 block diagram.

Peter Luke with a few guesses as to what Hi -Fi Sound is all about, along with news of the latest crop of new releases.

The reason behind the fact that Panasonic's latest two top-of-the-range machines did not feature the in-vogue option of Stereo Recording with Playback Capability has just been revealed. It looks as if the company plans to upstage the Beta system by making the first machine to offer Hi -Fi Sound. The company is said to have decided that it would be unfair to market a stereo machine as its flagship model, only to replace it after a very short period of time.

Details of exactly how Pánasonic is to implement Hi-Fi Sound are a little sketchy. The non-technical PR handouts that are available tend to suggest that the company has mounted two audio heads on the same drum as the video heads while, it appears, also retaining the standard audio heads. The rotating audio heads will provide the high effective tape speed that is essential for good quality recording.
The Slant Azimuth Recording system adopted by both the VHS and Beta formats has, however, done away with the guard bands between adjacent tracks found on the old Philips format. (This was done to provide a higher recording density and is achieved by magnetically 'polarising' adjacent tracks during recording and similarly orientating the playback heads so that each only responds to the required signal, ignoring the information recorded on the adjacent track.) This leaves little or no room between tracks in which the audio information can be recorded. The assumption is that the audio is recorded on a frequency modulated carrier of a far lower frequency than that used for the video signal. (Recording the audio in the same way as a conventional audio recorder is probably impossible owing to the physical constraints placed upon a head that is to be mounted on the helical drum.) The fact that the two FM carrier signals are far apart in frequency and that the audio and video heads can be made to respond only to the signal which is intended for them is the reason that the audio information can be squeezed onto the tape when,
superficially, there is no room available for it.

I'll try to get hold of more detailed technical information in the near future but until then, that's my best guess as to how the Hi-Fi Sound will be achieved.If so, it's a shame - because in these days of Digital Recording techniques, it is a pity that a digital solution to the problem of high quality sound tracks could not have been found.

Sure a digital system would have posed many problems: the bit rate of a CD player being over 4 MHz - greater than the bandwidth of a video recorder - would have been just one of the hurdles to overcome. Broadcasting organisations have been using a system of digital sound in sync for some time now, and a domestic version of this would have been an elegant solution to providing Hi -Fi Sound.

Presumably the companies developing the recorders looked at a digital system but decided that, in order to be first to the market place with a Hi-Fi Recorder, the analogue approach should be adopted. We will probably have to wait a few more years before we see the application of digital techniques in video recorders.
Back to the Panasonic machine - it is already on sale in Japan and should be here before Christmas, at a price that has yet to be fixed. Whether the VHS machine will beat the Beta system to the High Streets depends on how well Sony and Sanyo are getting on with their recorders. Both the latter companies are working on $\mathrm{Hi}-\mathrm{Fi}$ Sound systems but, at present, they are keeping very quiet about naming launch dates.

Shoal of Sharps

Sharp has recently revamped its entire range of video recorders. From the bottom up, its range now consists of the VC381, a basic $£ 500$, seven-day, one-event machine with picture search, still frame and a wired remote unit. The next is a stereo machine - the VC386: This has Dolby NR, a 14-day five-event timer and the usual
range of trick effects. The price is around $£ 600$. About $£ 770$ will buy the VC388, which is a neatly styled top-of-the-range recorder.
Two more recorders feature in the revamped range: the VC 3300 H , a transportable machine offering, a resonable
either mains or battery operation (price around £700); and, lastly, Sharp has announced a two-speed recorder with a five-event, 14 -day timer at the attractive price of around $£ 650$.
While on the subject of two-speed recorders, it would be nice to see a $\mathrm{Hi}-\mathrm{Fi}$ Sound system incorporated on these machines as soon as possible. This would compensate for the fact that, while picture quality is still quite acceptable on most twospeed recorders operating at half speed, the sound quality becomes very poor when the tape is slowed down.

Symbolic Launch

JVC's new recorder - the D1 20 - has a front panel layout that sets it apart from the crowd. Gone are the anonymous squareshaped buttons of the past; instead each control is shaped according to its function. The launch should be in the Autumn and the price around $£ 500$.

Aside from its unusual styling, the recorder has a basic one-event, 14-day timer specification and it incorporates a version of the Panasonic OTR (One Touch Recording) facility.

Palace's Progress

The Video Palace has just moved from its Kensington High Street shop to a new store at 100 Oxford Street. The Video Palace is one of the larger software houses and it has over 7000 titles in stock. From its Oxford Street site it will be able to offer a comprehensive service both to callers and to those who prefer to have their tapes delivered, covering most of central London.

INDEX 1981-1983

PROJECTS

Acoustic Model
AC Power Controller
AD Converter
AF Signal Generator
Airband Memory Unit
Analogic Probe
Audio CW Filter
Audio Limiter
Audio Millivoltmeter
Autobridge
Automatic Modulation Meter - Part I
Automatic Modulation Meter - Part 2
Bargraph Display
CB Deviation Meter
CB Rig-Part 1
CB Rig - Part 2
CB Rig - Part 3
CB Rig - Part 4
CBSelcall
CB Selcall Update
Central Heating Controller
Centronics Interface for Z8-TBDS
720 Channel Airband Receiver - Part 1
720 Channel Airband Receiver - Part 2
CMOS Keyer
23cm/2m/20m Converter
2 m Converter
Convertor PSU
DC/DC Converter
DX-TV Converter
RMSto DC Converter
RS232 A-D-A Converter
$70 \mathrm{~cm} 2 \mathrm{~m} / \mathrm{TV}$ Converter
Crystal Reference
DC Pre-Amp-Part 1
DC Pre-Amp - Part 2
DFM/Capacitance Meter - Part 1
DFM/Capacitance Meter - Part 2
DFM/Capacitance Meter - Part 3
Digital Capacitance Meter
Digital Frequency Display
Digital Frequency Display II
Direct Entry Video
DMM 3.5 Digit
DNR System
DNT Modifications
DTMF Signalling System
DX-TV Converter
Electronic Ignition
Four-Channel Audio Mixer
Frequency Meter
FRG7700 Memory Expansion
GaAs FET Pre-Amp
GaAs FET Pre-Amp
Graphics Board
Higher Fidelity - Part 1
Higher Fidelity - Part 2
Higher Fidelity - Part 3
High Quality PPM
In-Car Security Alarm
IR Volume Control
Keyer Speed Read-out
Key-Pad Security Lock

Feb. '83 Apr. '83
Feb. '83
Mar. '83
Aug. '83
Feb. '83
May '83
Feb. '83
July '82
Nov. '81
Dec. '81
Mar. '83
Oct. '81
Feb. ' 82
Mar. '82
Apr. '82
May '82
June ' 82
July $\quad 82 \quad 37$
July '83 14
$\begin{array}{ll}\text { Sept. '83 } & 36 \\ \text { Sept. '82 } & 44\end{array}$
Oct. '82
Jan. '83
Mar. '82
Nov. '82
Mar. '82
July '83
Aug. '83
Aug. '83

Dec.,
Jan.
Jan

Aug. '83
July ' 82
Aug. '82 38
Nov. '81 30
Dec. '81

Jan.
July

Sept. '82
Oct. '82 76

Nov.	' 82
Jun.	10

Oct. $82 \quad 26$
Nov. '82
July ' 83
Aug. '83 68
July '82 11
Sept. '83 16
Nov. '82 24
June '83 36
Aug. '82 34
Oct. '82 62
$\begin{array}{lrr}\text { Jan. } & \text { '83 } & 59 \\ \text { Oct. } & 81 & 66\end{array}$
Nov. '81 79
Dec. '81 70
Dec. '82 73
Mar. '82 63
$\begin{array}{lll}\text { May } & 83 & 27 \\ \text { Feb '83 } & 58\end{array}$
Apr. 8283

Linear HF Power Amplifier	Sept. '83	60
2m Converter	Nov. '82'	56
2 mPA	Dec. '81	60
2 m Power Amplifier	June '82	76
2 mPre -Amp	June '82	56
4/6/10M Pre-Amp	Sept. '82	10
2m Transverter	Mar. '83	62
2 m Transverter Update	June '83	5
6 m Transverter	Dec. ${ }^{82}$	0
10 m Transverter	Jan. '83	30
Mains Signalling System	Apr. '83	1
Mains Timer - 2 Channel	June '82	29
Max/Min Thermometer	Sept. '83	9
Mini-Drill Controller	Sept. '82	20
Minimum Chip 78 Board	Jan. '83	10
Morse Key Oscillator	Sept. '83	22
Multiband Up Converter	Aug. '82	75
Muting Preamplifier	June '83	55
Nascom-based Dumb Terminal for		
Rewtel	Sept. '83	24
Ni -Cad Charger	Dec. '82	53
Noise Generator	Mar. '83	23
Noise Squelch	Sept. '82	73
Noise Squelch	Jan. '83	70
Noise Squelch Installations	Nov. '82	39
Notch Filter	Mar. '83	49
10W 70cm PA	Uct. '82	10
18W PA Amplifier	Apr. '83	65
2 mPA	Dec. '81	60
2 m Power Amplifier	June '82	76
PFIConversion	July '83	88
pHMeter	May '82	59
Polarfoil	Apr. '83	48
100W Power Amplifier - Part 1	May '83	46
100W Power Amplifier - Part 2	June '83	67
Power Booster 18W	Aug. '82	11
2 Metre Pre-Amp	Apr. '82	74
70 cm Pre-Amp	Mar. '82	37
$4 / 6 / 10 \mathrm{~m}$ Pre-Amp	Sept '82	10
DC Pre-Amp - Part 1	July '82	56
Dc Pre-Amp - Part 2	Aug. '82	38
GaAs Fet Pre-Amp	Aug. '82	34
GaAs FET Pre-Amp	Oct. '82	62
Precision Rectifier	Mar. '83	59
$0-30 \mathrm{~V}$ PSU	June '82	59
Radiation Monitor	Apr. '82	12
Radio Amateur's Test Card	July '83	8
Radio Control Receiver	July '82	70
Radio Control Transmitter	June '82	11
2 m Receiver	Oct. '81	32
UHF Receiver Converter	Nov. '81	10
'Rewbichron' MSF Clock	Apr. '82	54
'Rewbichron'- Part 1	Apr. '83	54
'Rewbichron' - Part 2	May '83	58
REW Transceiver - Part 1	Dec. '82	41
REW Transceiver-Part 2	Jan. '83	67
RF/RGB Interface	June '83	8
RMS to DC Converter	Aug. '83	65
Rotary Encoder Interface	Sept '83	33
RS232 A-D-A Converter	Dec. '81	28
Scanning FM Tuner - Part 1	Oct. '82	49
Scanning FM Tuner - Part 2	Nov. '82	35
Sensitive Measure of Distortion	Sept '83	72

Simple DVM

Solid State Coupler
Sound Shaper
WE Speaking clock
SSB Adaptor
SSB Exciter
SSB Mixer and Buffer Modules
State-of-the Art 2m Receiver
State Variable Filter
Synthesiser Control System - Part 1
Synthesiser Control System - Part 2
Synthesiser Control System - Part 3
Tape Controller
Test Card EPROM Expansion
Time Code Receiver
Train Controller
Train Controller
REW Transceiver - Part 1
REW Transceiver - Part 2
Transistor Tester
2m Transverter
6 m Transverter
10m Transverter
2 m Transverter Update
TV Antenna Selector
TV Masthead Amplifier
TV Pattem Generator
TV Splitter/Distributor
TXIO Direct Video
TX9 Monitor Conversion

FEATURES

AIFile
AIFile
AIFile
AIFile
Amateur Radio - What it's About
Amateur Radio Satellites - Part 1
Amateur Radio Satellites - Part 2
ASCII LCD Display System
ATV On The Air
ATV On The Air
ATV On The Air
Audio Brief-Peak Programme Meter
Audio Brief-IBC Report
Audio Brief-ENG Facilities at LWT
Audio Brief-Ideal Mixer for
Home AV
Audio Brief-Noise Reduction
Explained
Audio Brief-Equalisation Explained
CD4017B Applications File
CD Revealed
Circuit Blocks - IR Link \& NiCad
Charger
Circuit Blocks - ZX8l EPROM
Program
Circuit Blocks - Smart Lamp Dimmer
Circuit Blocks - In Circuit Tester
Circuit Blocks - Multi-Standard
TV IF
Circuit Blocks - Fixed Period Timer
Circuit Blocks - Quadrature
Oscillator
Circuit Blocks - Handy Resistance
Substitution Box

AIFile
AIFile
AIFile
Amateur Radio - What it's About
Amateur Radio Satellites - Part 1
Amateur Radio Satellites - Part 2
ATV
he Air

ATV On The Air
Audio Brief-Peak Programme Meter
Audio Brief-IBC Report
Audio Brief-Ideal Mixer for
Home AV
Audio Brief-Noise Reduction Explained

CD4017B Applications File
CD Revealed
rcuit Blocks - IR Link \& NiCad
Circuit Blocks - ZX81 EPROM Program
Circuit Blocks - Smart Lamp Dimmer
rcuit Blocks - In Circuit Tester TVIF
Circuit Blocks - Fixed Period Timer Oscillator
ircuit Blocks - Ha
Substitution Box

ov.	'81	67
July	'83	55
Mar.	'83	10
Oct.	'81	16
July	'83	58
July	'82	28
Oct.	'82	56
Oct.	'81	32
May	'83	63
June	'83	13
July	'83	46
Aug.	'83	14
Aug.	'83	11
Aug.	'83	38
Oct.	'81	79
Oct.	'82	38
May	'83	55
Dec	'82	41
Jan.	'83	67
May	'83	65
Mar.	'83	62
Dec.	'82	10
Jan.	'83	30
June	'83	35
Feb.	'82	61
Jan.	'82	73
Feb.	'82	61
May	'82	31
Dec.	'82	25
Jan.	'83	34

TX10-RGB
UHF Receiver Converter
Universal Counter
Universal Logic Probe
UOSAT Receiver
Up/Down Counter
Voice Operated Switch
IR Volume Control
Voyager In-Car Computer
'Watervole'- Part 1
'Watervole'- Part
WB RF Amplifiers
10W 70cm PA
18W PA Amplifier
100W Power Amplifier I
100W Power Amplifier II
WE Speaking Clock
Wideband IF Strip
Wideband LCD - DFM
Wideband FM Stereo Tuner Module
Wind Speed \& Direction Indicator
Z-8 Backplane
Z-8Development System - Part 1
Z-8 Development System - Part 2
Z-8Development System - Part 3
Z8Start-up Board
ZX81 Expansion Board
ZX81 Keyboard Upgrade
ZX81 RS 232 Interface

July	'83	40
Nov.	81	10
June	83	19
Dec.	81	66
May	82	12
July	83	73
May	83	19
May	83	27
May	82	46
Oct.	81	71
Nov.	81	47
Aug.	83	50
Oct.	82	10
Apr.	83	65
May	83	46
June	83	67
Oct.	81	16
Apr.	83	29
June	83	26
Sept.	83	26
Aug.	82	47
July	83	43
Feb.	82	12
Mar.	82	12
Apr.	82	31
July	182	79
Aug.	82	67
June	82	52
Feb.	83	74

Apr.	'83	34	Circuit Blocks - Continuity
May	'83	36	Tester
June	'83	52	Cordless Telephones
July	'83	62	Crystal Filters
Dec.	'81	84	Data Brief - MOSFETS for VHF/UHF
Apr.	83	67	Data Brief-LC7137
May	'83	68	Data Brief - TDA 1083
Apr.	82	61	Data Brief -TK10321
July	'83	78	Data Brief-MC145151
Aug.	'83	58	Data Brief - ULN2283B
Sept.	'83	78	Data Brief - KB4417
Nov.	'82	66	Data Brief - KB4413
Dec.	'82	30	Data Brief-KB4412
Jan.	'83	56	Data Brief - ULM2240
			Data Brief - MC3359
Feb.	'83	26	Data Brief - LM 1035
			Data Brief-HAl2017
Mar.	83	14	Data Brief - Ferrite Cross Check
Apr.	'83	79	Data Brief - LH1605
Mar.	'82	53	Data Brief - KB4436
May	'83	38	Data Brief - 4448
			Data Brief - European TV Standards
May	'82	66	Data Brief - Power Measurements
			Data Brief - ULN264/266
June	'82	69	Data Brief-MF10
July	'82	36	Data Brief - TDA4420
Aug.	'82	22	Data Brief - Video Switches
			Data Brief - MSL9362RS
Sept	'82	66	Data Brief-MSL9363RS
Oct.	'82	42	Data Brief - NE5553
			Data Brief-20W Audio Amp
Dec.	'82	38	Data Brief-AD7110KN
			Data Brief-ZN419 Servo Amplifier
Jan.	'83	73	Data File - Power Supplies

Aug.	'83	41
Dec.	'81	17
Apr.	'83	36
Dec.	'81	15
Jan.	'82	21
Feb.	'82	33
Feb.	'82	33
Mar.	'82	25
Mar.	'82	39
Apr.	'82	27
Apr.	'82	39
May	'82	37
May	'82	71
June	'82	17
June	'82	57
July	'82	17
July	'82	74
Aug.	'82	15
Aug.	'82	73
Sept.	'82	77
Sept.	'82	78
Sept.	'82	78
Oct.	'82	17
Oct.	'82	73
Nov.	'82	17
Nov.	'82	59
Dec.	82	21
Dec.	'82	79
Jan.	'83	25
Jan.	'83	53
Feb.	'83	21
Sept.	'83	67
Dec.	'81	23

Data File - Waveform Generation	Jan.	'82	25	Motorola's 60 MHz CMOS Synthesis
Data File-22 CMOS Circuits	Feb.	'82	77	Devices
Data File-Comparators and Windows	Mar.	'82	93	NEC Rally
Data File-32 Useful Circuits	Apr.	'82	92	Optical Astronomy
Data File-Delay Lines	May	'82	76	Pass Band Tuning
Data File-SCR Circuits	June	'82	80	Piezo Buzzers
Data File - Practical SCR/Triac				PLL Frequency Synthesis - Part 1
Circuits	July	'82	81	PLL Frequency Synthesis - Part 2
Data File - DC Motors Controlled -				PLL Frequency Synthesis - Part 3
Part 1	Aug.	'82	80	Polar Orbiting Satellites
Data File - DC Motors Controlled - Part 2	Sept.	'82	84	Polar Orbiting Satellites
Data File-Bar Graph Displays	Oct.	'82	83	Power MOSFETS - Part 1
Data File - Power Op-Amps	Nov.	'82	87	Power MOSFETS - Part 2
Data File-CMOS Logic Explained	Dec.	'82	90	Power Supplies
Data File-CMOS Gates	Jan.	'83	89	Rewtel Directory
Data File-CMOS Logic Explained	Feb.	'83	67	Rewtel Lives
Data File - CMOS 'Up' 'Up/Down'				Rewtel Software for the BBC micro
Counter Dividers	Mar.	'83	69	Rewtel Update
Data File - LM3900 Quad Norton				Rewtel Update
Amplifier	Apr.	'83	83	RF Filter Design - Part 1
Data File-Finishing the 3900	May	83	73	RF Filter Design - Part 2
Data File - A Different OTA	June	83	72	RF TMOS
Data File - The LM13600	July	83	80	Satellite TV Broadcasting - Part 1
Data Sheet - Receiver Performance				Satellite TV Broadcasting-Part 2
Parameters	Feb.	'82	67	Satellite TV Broadcasting - Part 3
Design Ideas	Oct.	'81	44	SAW Filters Explained
Designer's Update - Linear ICs	Oct.	'82	34	SAW Explained
Designer's Update - Linear ICs	Jan.	'83	40	Selcall Update
Designer's Update - Audio Functional				Signal Analysis
Blocks	Mar.	'83	44	Telephones Explained
Designer's Update - Graphic Equalisers and Fluorescent Displays	Aug.		60	Thames TV The Story of Z
Designer's Update - INMOS Memory Devices	Sept			Using the RS232
Digital FAX Conversion	Aug.	'83	52	Using UARTS - Part 1
Digital Storage Scopes	Nov.		31	Using UARTS - Part 2
Doppler DF System- Part 1	June	'82	46	Using UARTS - Part 3
Doppler DF System - Part 2	July	'82	21	Video Recorders Explained
DVM Applications	Apr.		42	Video Tape Survey
DX-TV Starting Out	Sept.		40	Video Update
Eastern Promise	Sept		62	Weather Facsimile Reception
Euro-Broadcast TV Services	Aug.		20	Weather Satellite Reception
Feedback - Project Mods and Up-Dates	Feb.		72	Welcome To The Airwaves
Gate Tum Off SCR's	Sept		24	What Do We All Do If The Bomb Drops...?
Hall Effect	Dec		38	Which Computer Do I Buy?
Helical Filter Design	Jan.	'82	67	Wideband RF Transformers
HF Receiver Design	Feb		48	Z8 Assembler
HF Receiver Performance	July	'83	30	Z8 Exec.
HF Receiver: Postscript	Aug.		73	Zilog Z8000-Lesson 1
Inside the 7910	May	'83	23	Zilog Z8000 - Lesson 2
Inside TV Cameras - Vidicons to Videos	Dec		48	Zilog Z8000 - Lesson 3
Low Cost GaAs FETs	Aug.		63	Zilog Z8000 - Lesson 4
Metal Detectors in Medicine	Apr.		36	Zilog Z8000-Lesson 5
Metal Detectors in Security	Oct.		22	ZX81 Display File Explained
Meteosat	Aug.		42	ZX81 Histograms

Hitachi 9500
Hitachi DA-1000
Hitachi VCR
ICF 2001
ICOM IC290
ICOMIC25
ICOM IC730
IC4E
IC2 Revealed
ICR70/R2000 Receivers
IMF Studio Monitors
Kyokuto FM - 2030
Marconi 2017 Sig Gen
Marconi 2019Sig Gen
M40FM CB Rig
MM32 Morse Trainer
2 m Synthesiser
NRD515 HF Receiver
Panasonic RF3100
Panasonic 7800
Panasonic NV100
Panasonic NV366
Panasonic RXC60L
PDF-11M
Philips PM2521 DMM
PMS PROM 1
PPM
RF Power Meter Duo

Dec. ${ }^{82}$	70	RGB Monitor
May '83	43	Sanyo VPR 5800
Sept. '82	70	3030 Scope
Nov. '82	46	Sinadder 3
Aug. '82	52	SMC's Oscar CB Transceiver
Aug. '82	55	Sony Camera Selector
Jan. '83	15	Sony Fl VCR
June '82	54	Sony ICF 2001
Oct. '81	58	Sony PCMFl
June '83	46	Sony Remote Controlled CD Player
May '83	52	Sony TC-D5M
Dec. '82	32	Spectrum Analyser - TR4122B
Sept. '82	32	Spectrum Revisited
Feb. '82	20	SX 200N
Mar. '82	20	Tandy Model 100
Jan. '83	21	Tektronix New 'Baby' Dual Beam Scope
Aug. '83	78	TG301 Function Generator
May '82	18	Thandar Logic Analyser
July '82	64	Thandar SCll0 2 inch Scope
		The Big Match - FRG7700 v R 1000-Part 1
Jan. '83	75	The Big Match - FRG7700 v R 1000-Part 2
Apr. '83	76	The Big Match - FRG7700 v R1000-Part 3
Feb. '83	63	Thurlby 4.75 Digit DMM
Feb. '83	40	TV Aerials
Aug. '83	36	VIC 20 Computer
Nov. '81	18	VIC 20 Expansion System
July '83	76	Video Recorders
Nov. '82	70	VHF-FT290R Takes A Brief Bow
Jan. '82	38	Zilog's New Z8

RGB Monitor
Sanyo VPR 5800
Sinadder
SMC's Oscar CB Transceiver
Sony Camera Selector
Sonyfiva
Sony PCMF1
Sony TC-D5M
保

Tandy Model 100
Tektronix New 'Baby' Dual Beam Scope
Function Generator

Thandar SCll0 2 inch Scope
The Big Match FRG7700 v R1000 Pan
The Big Match - FRG7700 v R1000-Part 3
Thurlby 4.75 Digit DMM
VIC 20 Computer
VIC 20 Expansion System
VHF-FT290R Takes A Brief Bow
Zilog's New Z8

Mar. '83
Nov. '82
Feb. '83
Mar. '82
May ' 82
Mar. '83
Oct ' 82
Oct. '82
Dec. '82
May '83
July '83
Jan. '82
Nov. ' 82
Nov. '82
Aug. '83
Nov. '81
Apr. '82
May '82
Mar. '82
Dec. '81
Jan. '82
Feb. '82
Feb. ' 82
Aug. '83
Apr. '82
Apr. '82
July '82
Oct. '81
Nov. '81

37
75
82
42

Design and Data Updates

Amateur Radio Statellites	Apr. '83: May '83	Send SAE to R\&EW Editorial Office for missing text
Autobridge	July '82	Aug.'82
Central Heating Controller	July '83	SendSAE to R\&EW Editorial Office for start-up procedure
720 Channel Aurband Receiver	Sept. '82; Oct. '82;Mar.'83	More in Oct.'83
$23 \mathrm{~cm} / 2 \mathrm{~m} / 20 \mathrm{~m}$ Converter	Mar.'82	Sept. 82
$70 \mathrm{~cm} / 2 \mathrm{~m}$ TV Converter	Jan.' 82	Sept. 82
Digital Capacitance Meter	July '83	More in Oct. '83
Direct Entry Video	Nov. 82	Feb. 83
Graphics Board	Jan. 83	Feb. 83
HF Receiver Design	Feb. 83	Mar.'83; July'83
Keyer Speed Readout	Feb. 83	Mar.'83
2 m Power Amplifier	June'82	July'82
2 m Pre-Amp	Apr. 82	July'82
2 m Transverter	Mar.'83; June'83	July'83
Mains Timer - 2 Channel	June'82	July'82
Multiband Up Converter	Aug. 82	Sept. 82
Ni-Cad Charger	Dec.' 82	Jan. 83
Noise Squelch	Sept,'82	Apr. 83
Notch Filter	Mar.'83	Apr.'83
2 m Power Amplifier	June'82	July'82
2 m Pre-Amp	Apr '82	July'82
Radio Control Transmitter	June'82	July' 82
Rewbichron MSF Clock	Apr. ${ }^{8} 8$	July'82
Rewbichron II - Parts 1,2	Apr.'83; May'83	July'83;more in Oct. '83
REW Transceiver	Dec.'82	Jan. 83
SSB Exciter	July '82	Jan. 83
SSB Mixer and Buffer Modules	Oct '82	Jan. ${ }^{\text {d }} 8$
2m Transverter	Mar.'83;June'83	July'83
TX9 Monitor Conversion	Jan. 83	Apr. 83
TX10 Direct Video	Dec. 82	Feb. 83
UOSAT Receiver	May '82	July'82
ZX81 RS232 Interface	Feb.'83	Apr.'83: more in Oct. '83

Weather Facsimile

Keith Mitchell describes the use of a digital scan converter to decode weather maps other than those from METEOSAT

There is a worldwide network of stations transmitting meteorological data in various forms and one of the most useful formats is facsimile pictures of weather maps and charts. Reception of the signals has usually been quite straightforward, but the production of a facsimile machine to 'draw' the charts has been difficult for the amateur communications enthusiast.

The digital scan converter designed by Matjaz Vidmar (YU3UMV) for the reception of weather satellite pictures - see R\&EW June 1983 p57, August 1983 p52 - appeared to be a perfect electronic answer to the problem and after a minimal amount of experimentation, good quality pictures were being received from the VLF Paris transmitter on 131.8 kHz .

The standards of the FAX transmissions are usually a line frequency of 120 lines per minute $(2 \mathrm{~Hz})$, with an index of cooperation of 288 or 576 . The index of co-operation is a measure of the line spacing of the picture, low definition pictures (288) being transmitted at twice the rate and twice the line spacing of high definition pictures (576). To arrive at the index, the length of one line of the transmission is multiplied by the number of lines per unit length of picture.

Modulation of the signal is FM and there are two standards. For very low frequency transmissions in the band 90 kHz to 150 kHz , white level is at plus 150 Hz and black is minus 150 Hz - while for HF transmissions, white is plus 400 Hz and black is minus 400 Hz .

At the commencement of each picture a start tone is transmitted. This is 300 Hz for a 576 index of co-operation and 675 Hz for a 288 index of co-operation. At the end of the chart there is a stop tone of 450 Hz .

The traditional method of demodulating these signals has been to use a communications receiver switched to SSB with
the BFO giving a high audio tone for white and a low tone for black. Most professional FAX machines have a built-in decoder to accept these signals - but I decided to take advantage of the advances in FM receiver technologies, and attempt direct FM demodulation of the signal. The result is a very simple but effective receiver using the ULN3859 IC. The circuit was adapted from the MSF Rugby receiver designed for John Robinson's Rewbichron MSF time code clock (see R\&EW April 1982 p54), and it is geared to the reception of VLF transmissions. In the UK, the Paris-National transmission on 131.8 kHz has the strongest signal with least interference.

The digital scan converter featured in the June issue of R\&EW.

The input to the digital scan converter is in the same form as the demodulated satellite signals - a 2.4 kHz signal, amplitude modulated with the picture (greyscale) information. The scan converter uses the 2.4 kHz signal as its reference frequency for deriving the line synchronization, and this system has the added advantage that the signal can be recorded on a cassette tape recorder with no synchronization problems due to tape speed fluctuations.
The signals from the VLF receiver (low level for white and high level for black) are converted into a form suitable for the scan converter in a simple module containing two CMOS integrated circuits; a 4011 and a 4040 . The video output of the scan converter is a composite video signal suitable for feeding a monitor: in order to feed an ordinary television set, an Astec VHF modulator was stuck on the back panel of the scan converter and fed from a 2 kO preset potentiometer across the composite video signal. Power for the modulator was taken from the +5 V pin in the centre of the rear edge of the memory board.

As the scanning rate is only 120 lines a minute, half the 240 lines a minute satellite rate, the magnification using the Format switch is 1 in the 0.5 position, 2 in the 1 position and 4 in the 2 position. Most charts are transmitted sideways, but when one is transmitted horizontally, it is usually the right way up with the two scan switches in the down and left positions, causing the picture to scroll from bottom to top. It has been suggested that mounting the television set on gimbals would save a lot of neck strain when viewing the charts!

In use, the 'Format' switch on the scan converter should be on the METEO side for 288 index charts, and on the NOAA side for 576 index charts. The METEOSAT start and stop tones are the same as those for the 576 index charts and automatic start and stop occurs when the WEFAX-APT switch is in the WEFAX position. Using a further tone decoder and a sprinkling of CMOS analogue switches it should be possible to automatically start, stop and switch between modes whilst also providing a signal to start and stop a recorder. Work on this aspect is already in progress, but I am reluctant to commit too much butchery to an already well designed circuit board.

The VLF Receiver: Circuit Description

A ferrite rod aerial with a long wave coil on it is tuned to the required frequency by the 470 pF capacitor and by the position of the along the aerial. Fine tuning is accomplished by the $0-60 \mathrm{pF}$ trimmer. To maintain a high Q in the aerial circuit, it is buffered by the 2SK55 IFET in a source follower circuit.

Figure 1: Circuit for crystal control of the VLF receiver.

Photo 1: Forecast of significant weather from Paris-National
The output from this passes through a low pass filter to pin 18 of the ULN3859. The oscillator of the ULN3859 is used as a Colpits oscillator tuned by L1 to 455 kHz above the required frequency. For greater stability and reliability in a fixed

Figure 2: Circuit diagram for the VLF receiver.

Photo 2: Atlantic 72-hour forecast chart.
frequency mode, a crystal oscillator would be desirable, but custom fabricated low frequency crystals are rather expensive. The 455 kHz output from the limiting IF amplifier is filtered by a narrow bandwidth filter between pins 3 and 5 and instead of a tuned circuit as the quadrature element at pin 8 , a 455 kHz ceramic resonator is used which gives a greater output with the relatively small deviation involved.

Connecting pin 9 to pin 11 doubles the output available at pin 10 and the 470 pF capacitor removes the higher frequencies. The inverting amplifier between pins 12 and 13 of the ULN3859 is used as an active low pass filter, rather than in its originally intended guise as a bandpass tuned circuit. This then feeds the trigger input of the muting gate which is used to convert the signal to logic levels suitable for feeding the converter input module. The circuit is supplied with a regulated 5 volts supply from an 78L05 regulator.

Input Module

Two gates ($\mathrm{N} 1, \mathrm{~N} 2$) of the 4011 are used as a 4.9152 MHz crystal oscillator and buffer. This is fed to the 4040 binary divider and an output of 2.4 kHz is taken out at pin 15 . This signal is gated in N3 by the FAX receiver signal and inverted to give bursts of 2.4 kHz which when added at N 4 to the original 2.4 kHz signal cancels most of the signal, giving the modulated output. As no intermediate grey levels were required, this digital method was simpler and cheaper than using a multiplier or OTA for amplitude modulation.

Beware!

As regular readers of R\&EW will be aware, receiving anything much more technologically stimulating than the Jimmy Young Show or the transmissions on the various amateur and broadcast bands is subject to a number of "restrictions" presided over by our friends in the Home Office that reside at Waterloo Bridge House. If you wish to make certain that whatever it is you want to do is not likely to run you foul of the Wireless Telegraphy Act, or the Official Secrets Act for that matter, write to the Radio Regulatory Division and ask for their guidance. They are notoriously busy folk, and may take a while to respond.

Photo 3: Surface analysis for Europe from Offenbach.

Photo 4: Picked up from METEOSAT.

The View from the Ether

Photo 1 illustrates the results from Paris-National on July 5th at 16.35 , showing the forecast of significant weather for 21.00GMT. Photo 2 shows the corresponding Atlantic 72-hour forecast, while Phofo 3 is of the surface analysis for Europe for 1200 GMT on July 11th. The latter was picked up at 16.59 that day from Offenbach, a German station transmitting on 134.2 kHz . The remaining pic is from METEOSAT using a converted R\&EW UOSAT VHF receiver after the SHF converter, which produced such surprisingly good results for a fraction of the cost of the pukka satellite receiver that we were all....err....surprised! Watch this space for a feature on the same.

R\&EW

Figure 1
28000 Addressing Modes

The latter three modes (DA, IR and X) address data in memory that may be separate from program space if memory-control hardware uses the ST3:0 output lines to form that distinction. Immediate data, of course, is part of an instruction and resides in program space. Indirect Register (IR) mode is explicitly used in the Z8000's PUSH and POP instructions.
Another less important feature relating to processor regularity is the ability to combine operand accessing modes in all possible combunations in all instructions Again, because of technological reasons and the lesser importance of this ability, the 28000 has restrictions on the ways that addressing modes can be combined within a multioperand instruction. For instance, memory-tomemory transters are possible only in the block-transfer instructions that move blocks of data from one memory area to another
All issues of regularity in the 28000 hinge on what is practical from the microprocessor-design standpoint and what is most important from the programmer's
standpoint. Thus, though current technology has limited the Z 8000 to less than full regularity, its instruction set and architecture attempt to optimize its usefulness to the programmer.
The tive basic modes of accessing operands as immediate (assembly-ime), regster (runtime) or memory (runtime) data are extended for some Z 8000 instructions by three more modes (BA, BX and RA):

Figure 2 More 28000 Addressing Modes

As does indexed (X), base address (BA) and base indexed (BX) modes allow the running program to compute an operand's address on the lly, depending on the variable content of one or two registers. Indexed (X) mode is useful for table (array) indexing, where the base of the table is known (at least for purpose of relocation) before the program runs; Base Address $(B A)$ is useful for accessing like parts of parallel, complex data structures, where the index is known belorehand but the particular table is selected on the fly by changing the content of the base-address register
Base Indexed (BX) simply combines the variable features of both X and BA modes to allow both the table base and the index to be computed as the program runs. BX may be used with the LOAD instruction to place operands in registers for manupulation by all instructions that lack this mode. When used this way, BX allows the production of fully relocatable code, because no memory addresses need be known for the operands at assembly/compilation tame
Relative Addressing is analogous to BA mode except that 1) the program counter serves as the varable base address and 2) the 28000 does not emit data status but feigns instruction fetch (IFn) status when performing RA memory cycles. In the Z8000, relative addressing is the only way data values may be accessed from program memory space, if hardware makes that distinction. Relative Address (RA) mode is typically used for IUMP and CALL instructions. Note that some instructions subtract the signed displacement from PC, while others add it to PC. Thus a negative displacement can mean a forward reference
In any of the addressing modes that reguire a memory address, either segmented or nonsegmented addresses may be used. The choice depends on the processor (28001/28002) and, in the 28001, the setting of the SEG bit in FCW. Two forms of segmented address, short and long, exist in the Z8001; but the short form may only be used when it appears within the instruction, as it does in DA and X modes. Short-segmented addresses may not be used in regsters and thus may not be used in IR, BA or BX modes.
In the 28001, because full segmented addresses occupy two words, some economy of space can be gained in DA and X modes if accesses are contined to one segment at a time. The SEG bit can be cleared after the first reference to the desired segment; this causes the machine to enter nonsegmented mode. The segment lines (SN6:0) will remain fixed, however. This will allow continued access within that segment with 16 -bit addresses. However, since the segment lines are fixed, care must be taken to avoid stack references if the stack is not located in the current segment.

THE Z8000 INSTRUCTION SET

The Z8000's instructions may be classified as: transfe , arithmetic, logiod, shift and rotate, controd, search and input-output (I/O). Transfer instructions (e.g., LOAD) move data around, arithmetic instructions (e.g., ADD) compute values and set flags (in FCW), logical instructions (e.g., AND) manipulate bits and set flags, shift and rotate instructions (e.g., SRA) move bits and s flags, control instructions (e.g., JUMP) use flags or manipulate system parameters, search instructions (e.g. CPIR) peruse memory tables, and I/O instructions (e.g. OUT) communicate with peripherals or special devices, such as the 28010 memory manager.

Transfer Instructions

The most common transfer instruction is $L O A D$, which takes several forms in the 28000; the basic form is able to use any addressing mode:

The above examples assume that no code versus data distinction is made and, therefore, that the LDR instructions shown actually reside in memory just above the data (at location 8). Furthermore, only nonsegmented addresses are used for simplicity and the notation is that of the 28000 PLZ/ASM assembler designed for the 28000 . The destination operand follows the instructon's mnemonic (LD), numbers are addresses by default, and the other symbols mean:

\#	- Immediate Mode
(a)	Indirect Register Mode
()	An Index
$\$$	-
The Current PC	

Additional members of the LOAD (LD) family are:

LDB	Load Byte
LDL	Load Long Word
LDK	- Load a 4bit Constant
LDM	Load Multiple
LDA	Load Address
LDAR	Load Address Relative
LDR	Load Relative Word
LDRB	Load Relative Byte
LDRL	Load Relative Long Word

A few of these deserve special mention.
The LDK instruction provides a quick one-word instruction for loading a 16 -bit register with a small (0 to 15) value. The higher bits of the destination register are cleared. LDK R \#xx takes five clock periods, while LD R \#xx takes seven.

- The LDM instruction allows up to 16 of the Z8000's registers (RO through R15) to be moved to or from memory in one uninterruptible series of memory cycles The instruction wraps around from R15 to RO if desired LDM 1000 R12 ${ }^{\|} 5$ will, for unstance, save R12 at word location 1000, R13 at 1002, and so on, until MO is finally saved at 1008
The LDA and LDAR instructions allow addresses to be loaded from data or program memory into registers in proper format and in either segmented or nonsegmented mode.
Obviously, the size of the data franster needed in a Z8000 instruction is indicated by the instruction's assembly - language mnemonic. The default is a word transfer, because that is the nominal width of the data bus linking the $Z 8000$ to memory and other external devices. A word transter thus requires exactly one memory or I/O cycle. (I/O cycle timings were described in an earlier lesson.) Byte operand instructions are andicated by a B suffix, while double-word (long) instructions carry an L. Naturaily, LDL to/from memory requires two memory cycles. LDB requires the same timing as LD, because a full word is always transferred on the 28000 's bus. The $Z 8000$ selects a byte from the half of the data bus estabished by an internal bit normally related to AO; thus, it is important for immediate byte mode instructions to have the desired byte duplicated in both halves of the data word assembled with the instruction.

Other data transfer instructions provided by the Z8000 are as follows

CLR, CLRB

EX, EXB

PUSH, PUSHL
POP, POPL
LDD, LDDB

LDI, LDIB
LDDR, LDDRB

LDIR, LDIRB

Clear a word or a byte in memory/register Exchange memory/register with a register
Push one or two words
Pop one or two words Block Move: Load memory to memory and decrement pointers and counter Like LDD, but increment pointers Load, decrement, and repeat until count is zero Load increment, and repeat until count is zero

Of special interest are PUSH and POP. These allow the programmer to use any register (other than RO and RRO) to hold a stack pointer and to manage the pointer automatically every time data words are pushed or popped. PUSH decrements the register first, while POP increments it after removing data from the stack. IR mode is used. PUSH@R2 \#37
One of the Z8000's powerful abilities is exemplified in the block transfer instructions (LDIR, etc). These can move as many as 65,536 bytes from one area or segment in memory to another. Two register pointers must be set up to locate the source and destination areas. Also, a byte /word count is loaded into a third register.

> LD R1 $\$ 1000$
> LD R2 $\$ 5000$
> LD R3 $\# 100$
> LDIR @R1@R2 R3

In this case, 100 words are moved automatically from location 5000 to location 1000 . These instructions are all interruptible at the end of each data transter, in order to provide good interrupt response. The interrupt routine must save any registers used by the block move instruction.

Arithmetic Instructions

Arithmetic Instructions in the 28000 also provide processing power which was previously unavailable in microprocessors. Multiply and divide are now included:

ADD , ADDB, ADDL

ADC, ADCB
SUB, SUBB, SUBL
SBC, SBCB
MULT, MULTL
DIV, DIVL
INC, INCB

> Add register and immediate/ register/memory Add including the carry flag Subtract Subtract using carry as borrow Muitiply
> Divide
> Add I to 16 to register/memory

DEC, DECB

NEG, NEGB EXTS, EXTSB, EXTSL

CP, CPB, CPL

DAB
to 16
Negat Negate Extend sign of a register Compare immediate/ register with immediate/ register/memory Decimal adjust using DA and H flags

Of particular interest are $A D C, S B C$ and EXTS, which allow multiple byte precision in sumple arithmetic. The carry flag can be used after a preceding operation (e.g., an ADD) to link a low-order sum to a higher order sum computed with ADC. Similarly, the borrow from a preceding subtraction can be communicated to a higher order SBC via the carry flag in FCW. EXTS simply allows small signed values to be expanded to the next larger precision-a byte to a word, for instance. Twos complement notation is used for all Z 8000 arithmetic operations $(-1=$ all ones).
The DIV and MULT instructions are unusual because they must deal with registers twice as long as their mnemonics indicate. This is because both quotient and remainder must be stored by DIV, and because MULT must have room in its destination for a product that is twice as long as its operands. Thus, DIV and MULT use double registers (RRO, RR2, ...) as destinations, while DIVL and MULTL use quadruple registers (RQO , RQ4, ...). It is, in fact, improper to use odd values for destination register designators. For divisions, the first half of the destination (RO, R2 ..) will receive the remainder and the second half (R1, R3 ...) will receive the quotient. The source can be any odd or even register desiqnation: DIV RR4 R1 As with other arithmetic instructions, DIV and MULT set flags in FCW, particularly when division by zero or overflow occur.
The comparison instructions (CP) are in one sense logical because they manipulate flag bits without changing their operands. But they are also arithmetic because they do a virtual subtraction of their two operands in order to set the flags. CP is often used, for instance, before JUMPs to establish control conditions:

CP POINTER \#BUFFEREND JR ULT LOOP

ULT means "unsigned less than" and combined with JR it means that a jump to LOOP occurs only if the value in pointer is less than the immediate value represented by the assembly-time symbol BUFFEREND.
The DAB (Decimal-Adjust Byte) instruction formats a BCD pair of integers by using the DA and H flags in FCW. This is useful for dealing with data in BCD format (from external test equipment, for example). Thus a DAB instruction will normally be executed after each arithmetic operation (ADD or SUB) on BCD data to restore it to BCD tormat. 10 base sixteen is 16 base ten and represents 10 base ten in BCD format; hence, a 10 base sixteen (A , or 1010 m binary) needs 6 added to it to convert it to 10 in BCD . DAB decides what to add or subtract from a byte to leave it in BCD format by looking at the H flag, which indicates a carry from the right four bits of a byte, and the DA flag, which indicates whether subtraction or addition was done last.

Logical Instructions

Logical Instructions in the 28000 are closely related to arithmetic instructions. These instructions also set flags in FCW for possible later use in program control:

AND, ANDB
OR, ORB
COM, COMB
XOR, XORB
SET, SETB
RES, RESB
BIT, BITB
TEST. TESTB
TESTL
TSET, TSETB
TCC

Of these instructions, TEST is frequently useful in program control, because it sets the flags in FCW:

Bitwise AND of register with register/memory Bitwise OR Bitwise complement Bitwise exclusive OR Set a register/memory bit Clear a bit Test a bit and set/reset Z flag accordingly OR register/memory with zero and set flags accordingly Test and set a semaphor in register/memory Map a flag condition into a register bit

TEST R3
IP NZ LOOP

The TSET Instruction is specially designed to allow multiprocess (not multi - Z8000) sharing of some resource-for example, an I/O device like a disc. When executed, TSET reads the leftmost bit of its operand into the S (sign) flag and then immediately turns on all bits in that operand. Thus S being set means the shared device is busy to all processes that want to use it ; $S=0$ means it's free. In that situation an inquiring process can, with one instruction, know whether the device is free and set the operand to all ones. Now that process will definitely own the device in the eyes of all other processes, so long as they also use TSET to look at the same semaphor operand.
The TCC Instruction can be used to map a series of condition codes (flag combinations) into a bit that will later show whether one of the TCC operations found a true condition. This is useful in constructing Boolean variables and monitoring a series of operations, all of which must complete properly. The mapped bit is only set by TCC if the condition code is true; otherwise it is left alone. The BIT testing instructions might be combined with TCC in typical cases:
RES RO \#O
TCC EQ RO
Clear RO bit zero Set bit zero of RO if flags undicate EQ condition
TCC LT RO
Similarly for LT
BIT RO \#0

JR Z CONDITIONSFALSE

Rotate and Shift Instructions

Various standard rotate and shift instructions are also part of the Z 8000 instructon set:

RLDB, RRDB - Rotate BCD digits left/right
RL, RLB, RR,
Rotate left/right
RRB
RRC, RRCB
Rotate leftright through
carry
RLC, RLCB
Shift dynamic arithmetic
SDAL
SDL, SDLB
Shitt dynamic logical
SDLL
Shift leftright arithmetic
SLA, SLAB,
SLAL, SRA,
SRAB, SRAL
SLL, SLLB,
Shift left/nght logical
SLLL, SRL,
The $Z 8000$ contains instructions for rotating $B C D$ digits (half bytes). RLDB and RRDB allow easy multiplication and division of BCD values by powers of ten. They may also be used for the packing and unpacking of four-bit data chunks.
The normal rotate and shift instructions move bits left and nght, but do so for bytes, words or, only in shifts, double words. Furthermore, the carry flog in the FCW may be included in various ways. In rotate instructions, the carry may be considered an additional bit on the lef (RLC) or right (RRC) end of the operand being rotated The unstructon name thus means: rotate left or right through the carry. The carry, in other rotates, is simply used to hold the last bit just rotated out of the operand's end by RL or RR
Instructions to rotate left and rotate right are, in fact, distinct $Z 8000$ instructions, but shifts left and right are simply distinguished by the sign of the shift value in the assembled instruction. The distinguishing feature of shifts is whether they are anthmetic or logical That is, do the preserve the leftmost bit for two's-complement signed values or not. In any case, the bit last shifted out (left o right) can be found in the carry flag. Because of the otherwise simple nature of shifts, the shift-left-logical (SLL) and shift-left-arithmetic (SLA) instructions are identical except for the setting of the flags. $Z 8000$ shifts also allow the running program to calculate the shift amount (bits) in a register so that a subsequent shiftdynamic instruction (SDA or SDL) can be executed. Some of the varous shifts and rotates are illustrated below:
 Figure 4 Shift and Rotate Instructions

Control Instructions

Control Instructions in the Z 8000 comprise a fairly standard set of decision-making tools (such as JUMP on a condition), plus special instructions that manage the Z8000 and its relationship with certain outside devices

JP, JR
CALL, CALR

RET
SC

IRET

DINZ, DBINZ

Transfer execution by changing the PC

 Push current PC on default stack (system/normal) and change PCRestore the PC saved by CALL or CALR Use PSAP and the system-call status to change FCW and PC while saving the old values on the system stack
Restore status (FCW and $\mathrm{PC})$ saved during a trap, interrupt or system call. Decrement a LOOP counter (byte/word) and exit the LOOP if the count is zero.

The $I P$ (JUMP) and $J R$ (JUMP relative to PC) nstructions, along with the procedure (subroutine) return (RET), allow either conditional or unconditional transters of execution. Conditional transfers are based on flog settings in FCW, as hinted earlier. One of several mnemonics, called condition codes, may be included in these instructions:

mnemonic	meaning	flag settings
blank	always true	none
F	always false	none
Z	zero	$Z=1$
NZ	nonzero	$\mathrm{Z}=0$
C	carry	$C=1$
NC	no carry	$C=0$
PL	plus	$\mathrm{S}=0$
MI	minus	S $=1$
NE	not equal	$\mathrm{Z}=0$
EQ	equal	$Z=1$
OV	overflow	$\mathrm{V}=1$
NOV	no overflow	$\mathrm{V}=0$
PE	parity even	$P=1$
PO	parity odd	$\mathrm{P}=0$
mnemonic	meaning	flag settings
GE	signed greater than or equal	$(\mathrm{S}$ xor V) $=0$
LT	signed less than-	$(\mathrm{Sxor} V)=1$
GT	signed greater than	$(\mathrm{Z} \text { or }(\mathrm{S} \text { xor } \mathrm{V}))$ $=0$
LE	signed less than or equal	$\begin{aligned} & (\mathrm{Z} \text { or }(\mathrm{S} \text { xor } \mathrm{V})) \\ & =1 \end{aligned}$
UGE	unsigned greater than or equal	$C=0$
ULT	unsigned less than	$C=1$
UGT	unsigned greater than	$\begin{aligned} & ((C=0) \text { and } \\ & (Z=0))=1 \end{aligned}$
ULE	unsigned less than or equal	$(\mathrm{C}$ or $Z)=1$

A blank condition always means JUMP or return, as in: JP LOOP. Note that some condition code mnemonics happen to be the same as the name of the flag they test (like Z). Some conditions are, in fact, redundant. Overflow and parity are the same bit in FCW, and so the meaning of the corresponding conditions depends on what instruction was previously executed (e.g., overflow is meaningful for ADD). All these mnemonics are
determined by the particular assembler used to generate $Z 8000$ object code.
The SC Instruction allows those 28000 systems which segregate user (normal-mode) activity from system activity to give users (tasks) access to system features, such as I/O. An SC acts like a trap, because it is. serviced by a dedicated routine whose starting address appears in the status area pointed to by the PSAP register. The operand for an SC is essentially an immediate byte that appears on the system stack when the service routine runs:

28002

28001

Figure 5
The System Call Instruction
Thus, an SC routine can be asked directly to perform any of 256 services for a user, and other data may be passed in the registers. The SC routine, like all traps/interrupts, runs in system mode. So, data transterred in user mode memory must also be accessible somehow to the routine in system mode, if memory hardware so distinguishes.
Any routine that is entered by a change of status using the PSAP (a trap, interrupt or SC) should be terminated by an IRET Instruction. This allows the system stack to be cleared properly and the old, pushed FCW and PC to be restored. IRET, therefore, terminates SC, interrupt and trap routines. In the 28001 , it must be executed in segmented mode ($\mathrm{SEG}=1 \mathrm{in}$ FCW) to restore the stack properly. This is because the SC, trap or interrupt was automatically handled in segmented mode, even if the new FCW had set nonsegmented mode:

Figure 6
System Stack for an Interrupt or Trap
IRET is one of many privileged instructions which can be executed only in system mode. IRET does not communcate the end of service to peripheral devices, as RETI does in a 280 . Therefore, to signal end-of-service to a peripheral, some explicit I/O must be done-for example, wrting to a control port in the peripheralbefore IRET is executed.
The DINZ Instructions make control of short iterative loops simple and fast. A. byte or word register is initialized with the loop pass count. DINZ (or DBJNZ) is placed at the bottom (high end) of the loop; there it decrements the count and does a relative jump back to the top of the loop if the count is still nonzero. Otherwise it simply falls out to the subsequent instruction.
Other 28000 control instructions deal with the operating mode of the machine itself, with extended processors, or with other 28000s in a busiresourcesharing environment:

LDCTL,	Manupulates FCW and other
LDCTLB	special registers
LDPS	Changes FCW and PC
EI, DI	- Enable/disable interrupts
NOP	Do nothing
HALT	Stop execution
SETFLG,	Manipulate FCW flags
RESFLG,	
COMFLG	
MBIT	Test the micro-in line
MSET, MRES	Alter the micro-out line
MREQ	Execute the mult-micro
	sharing algorithm

The LDCTL Instruction is most often used to set up the REFRESH register, the PSAP and, perhaps, the normalmode stack pointer when a system starts up.

LDCTL REFRESH R3
LDCTL PSAPSEG R4
LDCTL PSAPOFF R5
LDCTL NSPSEG R6
LDCTL NSPOFF ? 7
In the Z8002 only nonsegmented values are appropriate For PSAP and NSP. The FCW can also be accessed with LDCTL for making wholesale changes, but the flags may be accessed undependently as bytes:

LDCTLB RHO FLAGS
The VI and NVI bits are also accessible in another way va $E I$ and $D I$:

DI VI
DI NVI

The FCW and PC are most easily changed or initialized at once with LDPS. This reads a new status pair or quadruple (depending on the SEG bit in the present FCW) from data memory. Note that LDPS cannot read the status areas pointed to by PSAP if memory hardware distinguishes program from data space. LDPS is a good way of switching context from system to normal-mode tasks.
The HALT Instruction simply alliows execution to terminate and await an interrupt while refresh activity continues (if refresh is enabled). Recall a special feature of HALT: it may head up a dedicated interrupt routine that can be entered if an interrupt line is active for exactly one AS (address-strobe) interval. This precludes normal interrupt acknowledge and the use of IRET, but guarantees fast response in dedicated applications.
Several Z8000s can share a resource by using the micro-in (μ) a.nd micro-out ($\mu \mathrm{O}$) lines. This mult-micro feature of 28000 is suppported by atomic instructions MBIT , MSET and MRES to test $\overline{\mu I}$ and change $\overline{\mu \mathrm{O}}$. Th pros ammer can thus design his/her own sharingalgorithm, or use MREQ. The MREQ instructions check μ I to see if the resource is busy. If it is not, the MREQ instruction makes a request by pulling $\overline{\mu O}$ low. It then waits a time period defined by the programmer before rechecking $\overline{\mu I}$ to see if its request was acknowledged. It it was, the S flag is set and subsequent instructions can proceed accorcingly. Failure at either μ l test can be detected by examining the S and Z flags. The MREQ instructions is useful in single $Z 8000$ systems too,
because it generates uninterruptible delays (up to 90 ms with a 4 MHz clock). It decrements a 16 -bit register at clock/7:

LD RO \#490
 MREQ

This will generate a one-millisecond delay at 4 MHz
All control instructons are privileged except those that manipulate the lower byte of FCW (flags) and NOP. Prvileged instructions may be executed only in system mode ($\mathrm{S} / \overline{\mathrm{N}}=1 \mathrm{in} \mathrm{FCW}$). If executed in normal mode, they cause a trap to the privileged instruction routine listed in the status area. That routne could, of course, try to recover or even interpret such an attempt by a normal (user) program.
The remaining control unstructions appear in 28000 s with extended architecture. Six sets of instructions are designed to work with external processors (EPUs), such as floating-point devices. These will observe the memory bus as the 28000 fetches instructions and will recognize those instructions they are to execute. The 28000 can then continue executing regular instructions until the EPU is done or untl a new extended instruction is fetched. The EPU can use the STOP line to maintain synchronism with the Z 8000 :

Figure 7
EPU's in a 28000 System

These instructions are unmplemented if the EPA bit (bit 5) in FCW is not set.

Search Instructions

The $Z 8000$ provides several extensions of the elemental comparison instruction and some sophisticated table translation and scanning instructions:

CPD, CPDB

CPI, CPIB
CPDR, CPDRB

CPIR, CPIRB
CPSD, CPSDB

CPSI, CPSIB
CPSDR, CPSDRB

Compare a byte/word register with each cell of a memory table, decrementing the table pointer each time Compare and increment the pointer
Compare, automatically repeating the decrement until a condition is met
Compare, automatically repeating the increment Compare two tables of bytes/words decrementing both table pointers Compare two tables and increment
Compare two tables automatically decrementing until a condition is met

CPSIR, CPSIRB

TRDB, TRIB

TRDRB, TRIRB
TRTDB, TRTIB

TRTDRB, TRTIRB

Compare two tables

 automatically incrementing Translate a byte in a table of bytes using an indexed key tableTranslate all bytes in a table Scan a byte in a table of bytes to see if it indexes a nonzero value in a key table Scan a whole table, stopping when a nonzero value is indexed in the key table. ake the block transfers, the repeating forms of these omparisons and translations may be interrupted after each comparison or indexing of the key table. All the P instructions do more than check for a match; they allow any flag combination to halt the repetition or be mapped into the Z flag. A comparison of two character strings, for instance, can be easily constructed with the assumption that a shorter string comes before a longer
ne, even if they match otherwise:

CP R3 R4

JR ULE R3SHORTER
EX R3 R4
EXR1 R2
R3SHORTER CPSRB
JR 2 RIBEFORE R2

JP SOMEWHERE
RIBEFORER2:
(test lengths)
(swap if necessary
to avoid comparing
garbage)
(a character in string pointed to by Rl is earkier alphabetically than that pointed to by R2)

The TR Instructions allow convenient, quick translation of byte buffers from one coding to another. An ASCII buffer, for instance, can be translated into EBCDIC. This is done simply by placing each EBCDIC character into the key (translation) table at an index which is above the table's base and is the A.SCII value of the character. Each destination-table byte is thus changed to the byte it indexes in the key
The TRT Instructions provide simple commandlanguage support for user interfaces and compilers. The functioning of TRT instructions is similar to that of the TR instructions, except the key table holds arbitrary zero and nonzero values. When a destination table byte indexes a zero in the key, the scan continues. When it indexes a nonzero value, the instruction places that in register RHl and terminates. Thus, nonzeros can be placed at key locations corresponding to delimiters in the command language-for example, space, return, etc. The legal command characters, such as alphanumerics, are made to index zeros. The scanning of the destination buffer thus stops at the end of each command word. This allows subsequent code to implement or comple that command.
Input/Output Instructions
The final 28000 instructions of interest are input/output. Two classes exist, special and regular, which allow two I/O address spaces to be defined by the ST3:0 outputs. Special I/O instructions are the means for communicating with such CPU support devices as the 28010 memory manager. They are identical to regular I/O (except for the ST3:0 outputs) and their mnemonics are simply prefixed by an S. All I/O instructions are privileged, executable only in system mode. Repeating forms, analogous to memory block transfers, provide considerable programming efficiency
IN, INB, OUT,
OUTB

Transfer a word/byte
between register and peripheral

INI, INIB, IND,
INDB
OUTI, OUTIB,
OUID, OUTDB
INIR, INIRB.
INDR, INDRB
OTIR, OTIRB OTDR, OTDRB

Input and increment or decrement a count Output similarly

Input and repeat until count exhausted Output and repeat

Special I/O between a 28000 and a 28010 can in fact make good use of the repeating instructions, by loading/reading an entire MMU in one instruction. The Z8010, however, requires use of only the upper bus byte for data transters and thus should be read with AO $=0$ (even address) to guarantee reception of the byte. Writing is no problem because the 28000 duplicates an output byte on both halves of the bus, as it does for memory accesses.
The 28000 thus implements many instructions, some of which are otherwise found only on large machines. Except for the repeating instructions, all are interruptible by bus requests (BUSRQ) or the cormmon interrupt inputs (NMI, VI and NVI); memory or I/O data transfers may be extended by assertion of the WAIT input.
Note that interrupts are acknowledged only after an instruction (or a repeat cycle) has completed. But bus requests are acknowledged after any machine cycle, whether a fetch, a transfer, or an internal/refresh cycle. This is of concern only when memory refresh is enabled. If bus requests or wait delays are allowed to go on for too long, memory errors will occur, because no refresh cycles can be started. This is an important design consideration when direct-memory-access (DMA) devices are used. If the REFRESH rate counter times out during a bus request, the 28000 will immediately refresh memory when it resumes control of the bus. It can in fact remember up to two such time outs, and so it can refresh two RAM rows when BUSRQ goes away.

CASSETTE MECHANISM

\star Full Solenoid Operation \star Complete with Canon Heads \star Front loading
 \star Simple IC Control Logic

This month's databrief reveals the design of suitable logic control, using the recommended IC's to drive the solonoids.
To follow soon a tape counter mechanism, a simple addon to know where you are.
For special large quantity orders a variety of heads can be supplied, for details contact Ambit Industrial Marketing.
Full data can be obtained by sending $£ 1.95$ plus A4SAE.

Rated Operating Voltage: Motor $+12 \mathrm{VDC} \pm 10 \%$, Solenoids $+12 \mathrm{VDC} \pm 10 \%$ Installation: Vertical or Horizontal
Wow and Flutter: $>0.08 \%$ WRMS (JIS)/Test Tape: TEAC MTT-111)
Spooling Time: FFor REW >115 seconds (TDK DC-60)
Tape Speed: $3,000 \mathrm{~Hz} \pm 2 \%$
Motor Consumption: (Play, FF, REW) $>100 \mathrm{~mA}$
Heads-REC/REP: Canon H3332-0202 (2 channel sendust)
Erase: Canon H53211-02 (2 channel, double gap, metal capable)

Description	Stock No.	1.24	$25-99$	$100+$
TN3600-01 deck	$72-03600$	28.00	26.00	22.00
BA843 Cassette deck control IC	$61-00843$	1.95	1.85	1.65
LB1288 Darlington Driver (for solenoids)	61.01288	1.35	1.25	1.05

Postage and packing 60p per order. VAT not included.

The

Test how well you've learnt the basics of $\mathbf{Z 8 0 0 0}$ programming - and maybe win a complete $\mathbf{Z 8 0 0 0}$ development system.

Over the last few months in R\&EW, we have been offering - for your edification - the five lessons that make up the Zilog Z8000 tutorial series. These covered

- Basic Architecture.
- Memory and Peripheral Interfacing.
- Interrupts, Traps and other Context Switches.
- Memory and Peripheral Management.
- Instruction-Set Details.

The moment of truth has now arrived: How well did you understand the course? How much did you take in?

As we promised right at the beginning of the course, a leading Zilog distributor - Arcom Control Systems - has agreed to donate a complete $Z 8000$ development system as the prize for the reader that answers most accurately the questions associated with each lesson in the series. This board incorporates not only a $Z 8000$ micro but also Zilog's new SCC CIO support, CMOS RAM and PALs supported by a sophisticated monitor.
The questions are reproduced on the following three pages and the answer form for you to send in is on this page. Your answers should be sent to:

R\&EW Zilog Competition

Radio \& Electronics World
117a High Street
Brentwood
Essex
CM14 4SG
by 1 November 1983.
Your entries will be assessed by our panel of judges during that week and the Zilog board presented to the winner on a mutually convenient date later that month. This event will be covered, along with details of the results, in our January 1984 issue fout in December).
We would also like you to suggest a project involving the $\mathbf{Z 8 0 0 0}$ development system that you would like to undertake and a space has been provided for this on the entry form. In the event of a tie, the judges will select the ultimate winner according to which project appears to them to have the most potential.
The judges are:
Dr Brian Jasper; Applications Manager for Zilog, Mike Quee; Zilog's Sales and Marketing Manager, Industrial Products (Northern Europe) and our own Jonathan Burchell, Computing Editor of R\&EW.

R\&EW Zilog Competition

Indicate the answer for each question by ringing the appropriate letter.

Lesson 1:
Question

	A	B	C	
2	A	B	C	
3	A	B	C	D
4	A	B	C	D
5	A	B	C	D
6	A	B	C	D
7	A	B	C	D
8	A	B	C	D
9	A	B	C	
10	A	B	C	

Lesson 2:

	A	B	C	
	A	B	C	D
	A	B	C	
	A	B	C	D
	A	B	C	D
	A	B	C	D
	A	B	C	
	A			

Lesson 3:

Question 1	A	B	C	D
2	A	B	C	D
3	A	B	C	D
4	A	B	C	D
5	A	B	C	D
6	A	B	C	D
7	A	B	C	D
8	A	B	C	D
9	A	B	C	D
10	A	B	C	

Lesson 4:

Question 1

1	A	B	C	D
2	A	B	C	D
3	A	B	C	D
4	A	B	C	D
5	A	B	C	D
6	A	B	C	D
7	A	B	C	D
8	A	B	C	D
9	A	B	C	D
10	A	B	C	D

Lesson 5:

Question I A B C D

	A	B	C	D
2	A	B	C	D
3	A	B	C	D
4	A	B	C	D
5	A	B	C	D
6	A	B	C	D
7	A	B	C	D
8	A	B	C	D
9	A	B	C	D
10	H	B	C	D

The project I have in mind for the Z8000 development system is:

Name:
Address:

[^3][^4]1. The CPU clock is not one of the primary Z-Bus signals because:
__ A. Memory and I/O transfers are not synchronous to system clock
\qquad B. Address strobe synchronizes address emission and latching during memory and I/O accesses.
_C Data strobe synchronizes data transfer and latching.
\qquad D. All of the above
2. Proper memory access demands that a memory controller look at least at which of these signals?
__A. $\overline{\mathrm{AS}}$ and $\overline{\mathrm{DS}}$
——B. $\overline{\overline{A S}}, \overline{\mathrm{DS}}$ and R/ \bar{W}
_—C $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}$ and $\mathrm{B} / \overline{\mathrm{W}}$
_—D. $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{B} / \overline{\mathrm{W}}$ and AO
3. Bus direction in 28000 systems should be determined with R / \bar{W} and $\overline{D S}$ so that the bus normally points:
__ A. Toward the 28000 except during read cycles

- B
B. Toward the $Z 8000$ except during write cycles.
_C. Away from the Z 8000 except during write cycles.
_D. Away from the Z 8000 except during read cycles.

4. The ST lines by themselves can be used to create as many as:
_- A. Six memory spacesB. Three memory spacesC. Five memory spacesD. Four memory spaces
5. Which one of the following statements is true?
__ A. In order to work on a Z-Bus system, peripherals must be word organized.
__ B. Peripherals used on a Z-Bus system must be byie organized
\qquad C. On a Z-Bus system peripherals may be byte organized if they read from and write to the appropriate half of the bus according to AO.
\qquad D. On a Z.Bus system peripherals may be byte organized if they read from and write to the appropriate half of the bus according to $\overline{\mathrm{A} S}$.
6. Which of the following is not one of the basic cycles of which all Z 8000 instructions are composed?

A.	Memory
B.	I/O
\square C.	Execution
D.	Internal

7 The time that memory and peripherals have to respond before data strobe goes away can be extended by pulling the:
__ A. WAIT line low
_B $\overline{\text { STOP line low }}$
__C. BUSRQ line low
_D. ST3:0 lines low
8. By using the N / \bar{S} and ST lines, as many as six memory spaces may sensibly be distinguished by a $Z 8000$ system How many I/O spaces can be distinguished?
_A. Six
\qquad B. Four
_C. Three
—— D. Two

Lesson 3: Interrupts, Traps and other Context Switches

1. In the 28000 , program status is defined as: ___ A. The PC and PSAPB. The stack pointers and the PC
C. The status area and the PSAP.D. The PC and FCW.
2. The PSAP and the status area it points to define:
__ A. Possible future FCW and PC values.
\qquad B. Responses to interrupts and traps.C. Addresses of vectored-interrupt routines
__ D. All of the above
3. In the Z 8002 each status subarea PC occupies:
\qquad A. One word
B. Two words.
C. Three words
__ D. One or two words depending on the SEG bit in FCW.
4. In the Z8001, with $\mathrm{SEG}=0$ (nonsegmented mode). an interrupt or trap causes:
___ A. Four words to be pushed on the system stack
__ B. Four words to be pushed on the current (system or normal) stack
___C. Three words to be pushed on the system stack.
_D. Three words to be pushed on the current stack
5. Settung the exterided processor bit on or off in a 28000 affects:
___ A. The response to bus requests.
B. The number of unimplemented instructions.

C. The number of privileged instructions.
__ D. The number of peripherals that the 28000 can handle.
6. System initialization after RESET requires that the system and normal stack pointers be loaded and the PSAP be pointed to a proper status area. The greatest danger to completion of these tasks is posed by:
__ A. A segmentation or other trap.
B. A vectored interrupt
-_C. A nonmaskable interrupt
_ D A non-vectored interrupt.
7. Vectored interrupts in the 28002 may access how many PC values, compared with the 28001 ?
_ A More.
-_B. Fewer

- C. Same.
-_D. None because 28002 addresses are always nonsegmented

8. The $Z 8000$ allows the PSAP to point to:
___ A. Exactly one status area.
__B. Any status area
__ C. Any status area that starts at an address multiple of 256 .
___ D. Any status area that starts at an address multiple of 266 .
9. Which FCW control bit(s) determine the number of executable instructions?
\ldots A. S / \vec{N}
__. B. SEG
_C. S/ $\overline{\mathrm{N}}$ and SEG
——D. VI:
10. The control bits in the FCW are accessible:

- A. In system mode only.
__ B. In normal mode only
__C. In both system and normal modes
_D. In system mode only in the Z8001 and in both system and normal modes in the Z 8002 .

Lesson 4: Memory and Peripheral Management

1. For a program to be reentrant and shared by multiple users, it must:

- A. Contain only instructions.B. Be copied in memory once per user accessing it.
__ C. Exist only in virtual memory
__ D. Be accessed by only one user at a time.

2. Which of these Z 8001 signals could be used to define memory segments?
__ A. SYSTEM/ $\overline{\mathrm{NORMAL}}$
\qquad B. ST3:0C. SN6:0
__ D. All of the above
3. The Z 8001 emits a segment number on the SN6:0 signals:
___ A. With the segment offset during a Tl cycle.
B. Once at the beginning of each program.
\qquad C. In T3 or T4 of a preceding memory cycle.

- D. Asynchronously

4. A segmentation trap routine could be used to
___ A. Support virtual memory management
__ B. Issue a warning concerning memory usage and allocation.
_C. Signal illegal memory accesses
___ D. All of the above
5. Use of virtual memory involves:
__ A. Having to use a memory segmentation scheme.
__ B. Transferring files between physical memory and long-term or intermediate storage devices.
__ C. Addressing memory that does not exist.
__. D. The need for larger physical memory
Lesson 5: Instruction-Set Details
6. Which addressing modes allow use of the short form for segmented addresses for the Z8001?
\qquad A. Register and Indirect Register.

-

B. Base Address.
\qquad C. Base Indexed.
__ D. Direct Access and Indexed.
2. A block of data located at memory addresses 4 FOO (hexadecimal) through 5400 is to be moved to locations 5000 through 5500 . Which load instruction is the most likely to be used to effect this transfer?
\qquad A. LDIR

- B
B. LDDR
_C. EX
-D. D. LDM

3. The DAB instruction is normally used:
A. To add two bytes of BCD data
_—B. After an arithmetic operation involving $B C D$ numbers.
__C. To convert from ASCII to BCD
___ D. To alter the DA and H flags.
4. To return from an interrupt routine, the programmer should:
A. Use the IRET instruction.
\qquad B. Use the RET instruction.C. POP the FCW off the stack and use the RET instruction.
\qquad D Either A. or C. above, depending on the FCW
5. The TSET instruction is typically used to:
___ A. Resolve bus contention between multiple Z8000's in a system
___ B. Test and set any bit in a word.
__C. Allow multiprocess sharing of an I/O device.
___ D. Map a series of flag combinations into a bit.
6. The number of possible I/O peripheral address spaces for the 28000:
__ A. Depends on whether segmentation is implemented.
__ B. Is larger for the $\mathbf{Z 8 0 0 1}$ than for the $\mathbf{Z 8 0 0 2}$.
__C. Is defined by the ST3:0 signals.
___ D. Is defined by the SN6:0 signals.
7. The Z-Bus structure allows:
___ A. Neither nested interrupts nor nested bus sharing
__ B. Both nested interrupts and nested bus sharing.
__C. Nested interrupts but not nested bus sharing.
_- D. Nested bus sharing but not nested interrupts.
8. In a system without resource-sharing, the MREQ instructions can be used
__ A. To generate timing delays.
_ B. To request a memory cycle.
__C. As a NOP instruction
__ D. To generate an iliegal instruction trap.
9. In a virtual memory system:
___ A All users' segments are in physical memory at all times.
___ B. Some users segments are in physical memory at all times.
__ C. Logical space sometimes appears smaller than physical address space.
__ D. Some users' segments may not be in memory when their programs are ready to run.
10. Which of the following is not one of the four basic types of Z-Bus transactions?

- A. Memory.
_B. $1 / O$.
_-_C. Peripheral.
-D. Multiprocessor

6. The System Call (SC) instruction:
__ A. Is used to switch from normal mode to system mode.
___ B. Uses the system stack
__C. Changes the FCW and PC
_ D. All of the above.
7. The easlest way to do context switching from system to normal mode is:
__ A. Using the LDPS instruction.
__B. Using the LDCTL instruction.
_- C. Using the SC instruction.
-D. Using the MREQ instruction.
8. In normal mode, the programmer can directly alter the flags with:

- A. An LDCTL instruction.
__ B. An LDCTLB instruction.
_-C. An LDPS instruction.
-D. An COMFLG instruction.

9. Special I/O instructions differ from regular I/O in that:
___ A. Special I/O can be used only in system mode.
___B. Special I/O can be used only for the 28010 MMU
__C. Special I/O causes a different code on the ST3:0 lines.
__D. Regular I/O can only be used with normal mode.
10. When switching from segmented to non-segmented mode on the 28001, the SN6:0 lines:
___A. Remain fixed at their current value.
__ B. Enter the high-impedence state.
__ C. Are cleared to logical zeroes.
__ D. Decrement to a pre-determined value, then remain fixed.

ALinear HF Power Amplifier

Chris Honey describes the design and performance of a wideband amplifier he has developed which should prove very good value for money.

The broadband $2-30 \mathrm{MHz}$ linear power amplifier described here has been designed primarily for amateur band use. In particular, the inclusion of a high gain pre-amplifier allows operation from double balanced mixers and similar low level sources. Another less obvious application is for boosting the output from RF signal generators: this could be used to advantage when testing the frequency response of medium power passive filters which inevitably seem to change their characteristics when subjected to a juicy amount of RF.
The somewhat unusual construction technique employed in this design permits the use of inexpensive components throughout and exploits some of the plastic RF power transistors that were originally aimed at the Citizens Band fraternity.

Design Considerations

An ideal linear amplifier would be one in which the output signal is simply the input signal amplified by a certain amount. In reality no transistor is perfectly linear and therefore the output signal of an amplifier is never an exact replica of the input signal. The non-linearity of the device generates harmonics which are added to the signal in the form of harmonic or intermodulation distortion. These harmonics may not appear in the amplifier output, owing to filtering and cancellation effects, but they are always generated in the amplifying transistors.

In this design, a push-pull configuration has been used in order to improve distortion products and to attain higher power levels than can generally be achieved with a single transistor. This has the effect of reducing the amplitude of even harmonics by an amount that is primarily dependent upon the matching of the two transistors, but even in the worst case the suppression provided in a push-pull design is superior to that of any single ended alternative.
Audio Hi-Fi buffs might tear their hair out at the distortion produced by this amplifier: but all RF designs rely heavily on filtering after the output, so this distortion is no real problem and the performance is as good as any middle of the road commercial alternative. However, the construction technique employed should NOT be undertaken by anyone simply because it's cheaper: a degree of experience both in soldering and in the general construction of RF circuits is essential if full advantage is to be taken of this Power Amplifier's potential.

The gain needed to provide the required ouput power is distributed among three amplifier stages - each handling a progressively higher amount of power. The last two stages have a push-pull configuration, while the first stage is a single ended class A amplifier to ensure low distortion.

A general discussion of all aspects of the amplifier follows.

Classes of Amplifiers

A class \mathbf{A} amplifier is one in which the operating point of the transistor maintains a collector current at all times regardless of the input signal. It operates essentially over a linear portion of its characteristic, and reproduces the whole of the input signal.

A class B amplifier is one in which the operating point is at one extreme of its characteristic, so that the quiescent power is very low. If a sine wave is input into such a device, amplification takes place for just one half of the cycle.
A class AB amplifier is one operating between the two extremes of classes A and B. The output signal from a class $A B$ device is active for more than half of a sinusoidal input cycle but not for the full cycle.

Biasing

The practical method of biasing low to medium power amplifiers - and the method that is usually applied - is the well known clamping diode circuit. This was indeed used in the R\&EW 2m Power Amplifier (see June 1982 p67). This was tried here, but variations in transistor DC current gain (H_{FE}) produced differing collector currents which could only be optimised by changing the value of the series drop resistor - a highly impractical procedure unless a range of 1 W resistors are at your disposal.

Figure 1: Main circuit diagram.

The circuit finally decided upon controls the bias adjustment in a way that compensates for variations in transistor current gain. The quiescent collector current for both the output and driver stages can thus be set at an optimum level, even if the supply voltage is not the design value of 13.8 volts.

Similar circuits produce each of the bias voltages as shown on the main circuit diagram (Fig.7). The bias voltage for a particular stage can be set anywhere from $0.6-0.8 \mathrm{~V}$ at room temperature, allowing that stage to operate anywhere between class B and class A. The bias voltage is impressed across the base-emitter junction of two transistors in parallel through RFCs that ensure that the RF signal is essentially isolated from the bias circuits. The decoupling components of the latter absorb any stray signal that might get through. As the biased transistor dissipates power and heats up, its actual base-emitter voltage falls by $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$: correspondingly, the quiescent collector current increases, altering the bias condition, and thermal runaway would ensue if Q7 or Q9 were not present. The latter transistors are
mounted in thermal contact with the biased transistors Q2 and Q4, so that they both track the temperature and heat up in the same manner. But now an increase in the collector current of Q7 and Q9 reduces the base voltage of Q6 and Q8 (both acting as voltage followers) and the applied bias voltage is reduced. This stabilises the quiescent collector current against temperature variations, with the result that $50^{\circ} \mathrm{C}$ increase in temperature changes this current by approximately 1%.

RF is kept from upsetting the bias circuits by the decoupling capacitors Cl 0 and C12. Capacitors C20 and C21 function as audio-frequency bypasses to keep the source impedance low at modulation frequencies.

With the aid of these bias circuits, the output stage operates in class $A B$ and the driver in class B.

Impedance Matching

The output and interstage impedance matching is accomplished with the aid of conventional broadband transformers. These are not as efficient as transmission
line transformers but they are better in practical terms because they are far easier to duplicate.
Two basic factors were considered in choosing magnetic cores for the transformers. The first was core losses and how these affected frequency response. The second was the power handling capability which is limited by magnetic saturation of the core and heat generation.

The primary concern in regard to the first transformer, TI , is core losses. Since it is operating at a relatively low power level, any losses will reduce the signal and degrade the amplifier's performance. A small ferrite balun core has therefore been used for Tl with the two sets of windings closely coupled together.
Conversely the core of the output transformer T3 should be as large as possible so that it can handle the required power levels and remain in the linear operating region of the material's B-H curve. The permeability of a magnetic core changes with applied signal level, and if too large an excitation is applied, saturation of the core results and distortion is produced - this is noticeable on the
envelope of the output signal. Saturation usually occurs at low frequencies and this was a problem in the early stages of designing T3. The primary of T3 consists of one turn, centre tapped to the supply. This must have a minimum inductance of 4 uH to provide suitable load impedance for the output transistors when these are operating at full power.

The ferrites available have a permeability of 850 and the inductance attainable with a single turn is limited to $2.5-3$. OuH by the physical size of the core. This limits operation to around 4 MHz , below which excessive harmonics are generated, causing self heating and loss of efficiency.

A possible solution would have been to increase the number of turns, but the design could not accommodate this. Instead four ferrite cores were used, two stacked on top of each other, alongside a similar pair: all the windings were then wound through them.
The interstage matching performed by transformer T2 was accomplished with a single core of the same type, helped by having two turns on the primary to provide the collector load for the driver stage.

Figure 2: T1 winding details. Wire used -0.25 mm enamelled copper; core used - Fair-Rite balun core type 28-43002402.

Figure 3: T2 winding details. Wire used - solid core PVC $1 \times 0.6 \mathrm{~mm}$ PVC insulated; core used - Fair-Rite ferrite sleeve type 26-43006301.

SECONDARY: 2 TURNS \downarrow

Figure 4. T3 winding details. Wire used - solid core PVC $1 \times 0.6 \mathrm{~mm}$ PVC insulated; cores used - 4 Fair-Rite ferrite sleeves type 2643006301 arranged as shown. The cores can be cemented together or held in place with heatshrink sleeving.

Transformer Details

Transformer T1 provides a 9:1 impedance transformation to match the output of the pre-driver to the driver stage. The primary winding consists of six turns of 0.25 mm enamelled copper wire and the secondary of two turns, both wound on a Fair-Rite type 43 ferrite balun core. The winding details are summarised in Fig.2. The impedance seen at the transformer primary is 100 ohms.
A signal can be injected directly if the 'pre-driver stage is omitted: Tl is then replaced by a $4: 1$ impedance type with four turns on the primary and two on the secondary. This changes the impedance to 50 ohms, suitable for being driven from low level stages that have an output of around 10 mW . Of course, an ideal alternative to the pre-driver stage would be the LF wideband amplifier that was featured in the August issue of R\&EW (p50).

Transformer T2 has a ratio of 4:1, with a centre tapped primary to match the driver to the output stage. The base-base impedance in a push-pull circuit biased for class B operation would be four times
the base-emitter impedance of one transistor. However in class $A B$, where the base-emitter junction is forward biased and the conduction angle is increased, the impedance is closer to twice that of one device.

In this design, an impedance of 20 ohms needs to be matched of the driver output. The minimum drive required is approximately 1 watt, which is equivalent to the driver output having a load of 200 ohms. The closest practical impedance ratio to this is $9: 1$. The transistor input impedance increases at lower frequencies and a better match was achieved with a 4:1 ratio. This presents a lower load to the driver stage which results in improved linearity.
Winding details for T2 are given in Fig. 3.
Transformer T3 matches the output stage to the antenna. The required impedance on the secondary is 50 ohms and the load for the output stage must be around 25 ohms to produce the required 10W output. This calls for a 2:1 impedance ratio, but for practical reasons a $4: 1$ transformer was used.
The winding details of T3 are given in Fig. 4.

The Pre-Driver

This is based around a $2 T X 3866$ transistor biased for class A operation. This affords excellent rejection above the second harmonic, which is itself some 30 dB below the fundamental. Such characteristics are quite adequate for this application.

The operation of the pre-driver is best understood with reference to the circuit diagram in Fig.1. Resistors R6, R4 and R2 maintain a DC bias voltage of 1.2 V on $\mathrm{Q1}$ and Cl isolates this from the input source. The output signal is developed across the primary of Tl and the transformer is damped by R 5 to keep the Qlow. Resistor R4 - from collector to base - provides negative feedback to maintain a flat gain across the frequency range and to keep the input impedances of the stage low. Capacitor C16 decouples the top end of T1 at RF and C2 provides extra gain above 20 MHz to assist further in keeping the frequency response flat.

The input impedance of the amplifier is maintained by R1 at 50 ohms. The actual AC load seen by Q1 is nine times the input impedance of the driver stage, i.e. around 100 ohms. The power gain is approximately 10 dB and the frequency response extends to 50 MHz before falling off, making the pre-driver suitable for higher frequency use - for example, at 6 m .

Driver and Output Stages

The efficiency of the pre-driver under class A operation is only 40% and a simple calculation shows that, if class A were to produce 10 watts, then 25 watts would be consumed from the supply and 15 watts developed as heat in the output device. Fortunately class $A B$ or class B operating conditions are more efficient. On the other hand, these result in considerable distortion in a single output device. Ideally one wishes to achieve operation with the efficiency of class B but the low distortion of class A. Such a goal is not realistic but, as I mentioned above, surprisingly lowdistortion, high-efficiency operation can be obtained with the push-pull configuration.
The circuit of Fig.5a uses an input transformer to present signals of the opposite polarity to the two transistor inputs and an output transformer to drive the load in push-pull. The push-pull nature
of the circuit can readily be seen in the partial circuit diagram shown schematically in Fig.5b, by considering the effect of opposite-polarity inputs being supplied to the two transistors. The DC quiescent currents ($I_{C Q}$) for each transistor travel in opposite directions through the transformer winding, and so the magnetic fluxes set up by each of these currents in the core are similarly opposing. The net flux in the perfectly matched case is zero and thus the transformer - because it does not have to handle a large amount of flux generated by DC currents - can have a smaller core.

During a positive half-cycle, transistor Q1 is driven further into conduction whereas T2 is driven less. This is because the signal current I_{s} in $Q 1$ is in the same direction as $I_{C Q}$ (resulting in a larger total current) while that in Q2 is in the opposite direction (thus decreasing the current). The net result of this current flow through the transformer primary is a half-cycle of voltage across the secondary and thus across the load.

Similar argument reveals what happens in the negative half of the cycle. It turns out that the two input signals generate currents in the transformer that are in opposite directions on each half of the cycle and thus provide a complete cycle of signal at the transformer secondary.

How does push-pull reduce distortion? Fig. 6 a shows the signals for each collector in Fig. 56 under class B operation; note that both waveforms are distorted on the negative half-cycle. Figure $6 b$ shows their main components below each of the signals. The 3rd, 4th, 5 th (and so on) harmonics are, naturally, also present. But while the fundamental and all the odd harmonics of each signal are of opposite polarity (and therefore add in the voltage output at the secondary), the second and the other even harmonic components are of the same polarity and therefore cancel. The resulting output is thus made up of the fundamental and all the odd harmonic components of the distorted signal. The total distortion should therefore not be much more than the small

Figure 6: a) Collector signals in the push-pull configuration. b) Resulting distortion.

Figure 5: a) Push-pull circuit. b) Pull-pull operation.

amount of third harmonic distortion present. In reality the distortion will almost certainly be increased overall since the circuit will not be perfectly balanced due to transistors being mismatched, the transformer centre-tap being off-centre and the input signals not being exactly equal and opposite.

The push-pull stages can clearly be seen in the main circuit digram of Fig. 1. Gain compensation in both these stages is achieved through negative collector-tobase feedback. For the driver, the desired frequency selective feedback is provided by C3, L5 and R9/C4, L6 and R10, with C3, C4 acting as DC blocks. The reactance of $\mathrm{L} 5, \mathrm{~L} 6$ means that the gain does increase slightly with frequency - to the tune of $0.8 \mathrm{~dB} /$ octave.

The role of $R 8$ and $R 7$ is to stabilise the changes in the base-emitter impedance of the transistors, thereby keeping a constant input load and ensuring that the signal does not fluctuate with frequency. Capacitor C5 is a compensating capacitor which resonates with T2 at the top end of the frequency range to give a quicker rolloff.
The output stage operates in precisely the same way as the driver stage.

Construction and Testing

The printed circuit board employs those principles that are now regarded as standard in the construction of HF circuits.
The underside is a copper earth plane connected to the top component side in eleven places. All the components are soldered to the top, with their leads as short

Figure 7: PCB foil pattern. Constructors that make their own PCB should cut out the shaded areas.
as possible and bent to fit, as shown on the overlay in Fig.8. Having the connections between components visible from the component side has the advantage that the circuit can easily be followed and checked during construction.
To avoid any mishaps, construction is best undertaken in the following step-bystep approach.

Before any components are soldered, the board has to be mounted, together with the four TO220 cased transistors, on the heatsink and the case. The four transistors are mounted on the heatsink through rectangular holes in the circuit board; so if you are etching your own board, remember to cut out these holes (as illustrated in Fig.7). The PCB itself must not be mounted until the eleven throughboard links have been soldered in place. These are just lengths of wire, typically cut from the ends of components or dedicated pins, inserted through the PCB and soldered on each side.

Once the links are in place, the next step is to drill the heatsink and case as shown in Fig.9. (Alternatively the PCB foil can be used as a template.) Ensure that all the holes are deburred, otherwise a good thermal contact will not be achieved and overheating will result.

Another cause of overheating is, of course, insufficient heatsinking. A $2.5^{\circ} \mathrm{C} / \mathrm{W}$ heatsink is recommended for use with a 30% duty cycle signal at 10 watts, while for RTTY or FM use a larger heatsink will be necessary. Extra heat dissipation is readily provided if the lid of a metal case is sandwiched between the transistors and the heatsink. This technique was in fact employed in the prototype and the heatsink used was the same as that in the R\&EW 2 m power amplifier (see May 1983 p46) and fits in nicely between the PCB mounting holes.

After drilling has been completed, bend the leads of transistors Q2,3,4,5 upwards at 90° about 3 mm from the plastic body,

View of O9 mounted on O4. Note the use of silicone grease.

$A=$ HOLES FOR PCB MOUNTING. 3 mm B = HOLES FOR TRANSISTOR MOUNTING, 3 mm ALL DIMENSIONS SHOWN ARE IN mm

Figure 9: Drilling details.

Figure 10: Side view showing sandwich construction.
and altach these transistors to the heatsink/ case using 6BA nuts and bolts. Remember to use silicone grease heat transfer compound between the heatsink and the case and between the case and the transistor. Since their metal tabs are connected to their collectors, Q2 and Q3 (2SC2166) must be mounted along with insulating washers to prevent them shorting to the 'earthy' heatsink.

The PCB may now be bolted to the case with the transistor heads passing through the holes in the latter. The board may be mounted directly onto the surface carrying the transistors, but the prototype used $1 / 4^{\prime \prime}$ spacers to allow a greater flow of air to circulate around the $P C B$.

Figure 10 gives a 'side-on' view showing how the heatsink, case and circuit board are arranged relative to each other.

It is advised that construction on the top side of the PCB be done in the following logical steps, because these will aid testing.
First solder the leads of Q2,3,4,5 to the PCB. Then bend the leads of $Q 7,9$ so that the cases of the transistors will like flat when mounted on Q2,4 respectively, before soldering them in place with spot of silicone grease on the underside of their cases. Q6 and Q8 can then be added to the board.

The four links LK1-4 each consist of two ferrite beads threaded on a length of wire. These should now be soldered in place, at the same time ensuring that the beads will not touch the board subsequently. Follow this with the insertion of decoupling capacitors $\mathrm{C} 13,14,15$ and $\mathrm{C} 17,18,19$.

The next step is to solder in place VR1 and VR2, bending their leads so that they lie flat, followed by R15-20.R16 and R19 get quite hot and are best mounted 10 mm above the board. Construction continues with the insertion of C9-12 and C2O, C21; the radio frequency chokes $\mathrm{L} 1-4$; and finally R7, R8, R1 1 and R1 2.

This completes the construction of the bias circuits and they are now ready to be tested.

Turn both VR1 and VR2 fully anticlockwise and apply power to the board. The current drawn should be around 100 mA ; if not, switch off and check for faults in construction. If all is well so far, check that the voltages at the bases of Q2, TR3 vary between 0.6 and 0.8 V as VR1 is turned. Similarly test the bases of Q4, Q5 for the same voltage range by adjusting

VR2. Achievement of these voltages proves the operation of the bias circuits.

Construction is continued by soldering in place all other components except for T2 and T3. Winding details for T1 were, 1 remind you, given in Fig. 2.
The constructor should now test the DC conditions of the pre-driver. Again turn VR1 and VR2 fully anti-clockwise and apply power. Current consumption should be less than 200 mA ; otherwise there must be a fault in the construction.

Next, measure the voltage at the collector of Q1: this should be around 11.3 V with respect to ground, with a 13.8 V supply.

The next stage is to build T2 as in Fig. 3 and to solder it in place, except for the centre tap (CT) which should be bent to point upwards. Apply power again and check that the current consumption has not risen since the previous measurement. Now connect a multimeter between the supply (positive lead) and T2's centre tap (negative lead). Put the multimeter on a 50 mA current range, and adjust VR1 until the meter reads 20 mA . This represents twice the quiescent collector current of Q2
and Q3. Leave this for 10 minutes (readjusting if necessary) before removing the power. T3 should now be built (following Fig.4) and soldered in place with the centre tap upwards as for T2. Once again a multimeter should be connected between the supply and the centre tap, precisely as for $T 2$ except that the meter should be set to a 500 mA range and the current reading should be adjusted to 100 mA with the aid of VR2. Once the quiescent currents have been adjusted in this manner, the centre taps may be soldered to the board.

The entire amplifier can now be tested. Connect the output to a 50 ohm dummy load and a power-meter (an R\&EW Autobridge - July 1982 p48 - would be ideal), short the input connection to ground and then apply power. No spurious oscillations should occur and so no reading on the power meter should be observed.

It is advisable to leave the amplifier in this state for 10 minutes whilst observing the current consumption, which should not increase dramatically. A low level signal now input should produce an amplified signal. In other words, the HF linear amplifier is now ready for use.

Power Supplies

There has been no mention so far of how to provide power to the amplifier. Fortunately expensive supply units are not required: a battery or any supply capable of giving 4 amps at the operating voltage will suffice. However, since the amount of current drawn is about 350 mA on standby

PARTS LIST

Resistors (All $1 / 4$ W 5% carbon unless specified)

R1,5,13,14	100 R
R2	680 R
R3	12 R
R4	4 k 7
R6	56 R
R7,8	33 R
R9,10	120 R
R11,12	22 R
R15,18	10 k
R16,19	$150 \mathrm{R} 1 / 2 \mathrm{~W}$
R17	330 R
R20	220 R
VR1,2	100R Horizontal miniature
	preset

Capacitors

C1,3,4,6,7,9,11
C 2
C5
10n Monolithic

C8
270p Ceramic plate 68p Silver Mica

C10,12,16
10n Low voltage disc ceramic
C13,14,15
100n Low voltage disc ceramic C17,18,19 10uF 16 V tantalum bead C20,21 220uF 6.3V ultra min. electrolytic

Semiconductors

Q1	ZTX3866
Q2,3	$2 S C 2166$
04,5	$2 S C 1945$
06,8	BD139
07,9	ZTX108

Inductors

L1,2,3,4 100uH Axial RF choke L5,6 1.8uH 7BS fixed inductor. Toko 283AS - 1R8

Ferrites

Fair-Rite 28-43002402 Balun Core (T1)
Fair-Rite 26-430063015off (T2,T3)
Fair-Rite 26-43000101 8off (Ferrite beads).

Miscellaneous

0.25 mm enamelled copper wire: 1 m . 0.6 mm solid copper wire PVC insulated: 1m. PCB. TO220 insulating kits (2 off). 6BA nuts, bolts (length depending on mounting). Heatsink (Prototype used type 4M-229). Silicone grease.

Photo 1: Frequency response. Output power 10W.

Vertical2dB/div

Horizontal $0-50 \mathrm{MHz} .5 \mathrm{MHz} /$ div.

Photo 3: Output frequency spectrum showing 2nd and 3rd harmonics. Fundamental 30 MHz . Power output 10W. Vertical $10 \mathrm{~dB} /$ div. Horizontal $0-200 \mathrm{MHz}$. $30 \mathrm{MHz} /$ div.
and this rises with signal level, the supply regulation must be good. For AM and SSB use, the $A C$ impedance of the supply should not be greater than 0.05 ohms to ensure that the power output level is not modulated by the signal. Generally speaking, heavy duty wire should be used for connections to the power supply to keep voltage drops to a minimum.

Performance Data

Various measurements were taken on the amplifier to assertain its performance over all the operating range. At a power output of 10 W CW , almost all the output harmonics were found to be about 26 dB or more below the fundamental, the exception being the third harmonic which was only attenuated by 14 dB below 10 MHz . This figure is typical for a four and a half octave amplifier and it is obvious that some type of output filter will be required when this PA is used for communication purposes.

The driver transistors turned out to be very badly mismatched, but as they had been chosen from a random batch of

POWER IN mW	POWER OUT W	POWER GAIN dB
1.00	15.0	42
0.32	5.9	42
0.10	1.5	42
0.03	0.4	42

Table showing power in, power out and gain at $\mathbf{3 0 . 0} \mathbf{M H z}$.

Photo 2: Frequency response. Output power 10W.

Vertical 10dB/div.

Horizontal $0-50 \mathrm{MHz} .5 \mathrm{MHz} /$ div.

Photo 4: Amplitude modulated 5 MHz carrier.
Single 1 KHz tone.

SPECIFICATIONS of the prototype

Bandwidth $1.6-30 \mathrm{MHz} \pm 1 \mathrm{~dB}$ (max) Power Gain $40 \mathrm{~dB}(\mathrm{~min})$ Power Input for 10W output
$0.8 \mathrm{~mW}(\mathrm{~min})$
Supply
Voltage $\quad 11-14 \mathrm{~V}$ (nominal 13.8 V)
Load Mismatch
Susceptibility 10:1 at any phase angle
transistors, the results obtained with this prototype must represent just about the worstyou can expect from this amplifier.

The higher order odd harmonic components can be substantially reduced by increasing the collector currents of the output and driver stages although, in the prototype, increasing the driver stage current produced no better results. Increasing the collector currents of the output stage reduced the 5 th, 7 th, 9 th harmonics by around 10 dB but increased the third harmonic by $2-3 \mathrm{~dB}$. Of course, increasing these currents will entail using a larger heatsink.

The various pictures displayed in photos 1-4 give a visual impression of how harmonics, frequency response and amplitude modulation are handled by the amplifier.

Load mismatch was simulated at 10:1 VSWR by using a reactive load containing 10 m of URM95 coaxial cable. The latter has an attenuation of approximately 1 dB at 30 MHz , corresponding to a return loss of 2.0 dB . The coax cable was terminated in an LC network consisting of two 30-140pF capacitors and two inductors

	HARMONIC DATA (dB below fundamentai)			
FREQUENCY MHz	2	3	4	5
20	-30	-14	-35	-26
4.0	-30	-15	-36	-32
7.5	-32	-15	-37	-38
15	-25	-20	-37	-34
20	-30	-18	-40	-44
30	-44	-28	-70	-70

Harmonic data taken at 10W power output into a 50 ohm load.

Figure 11: Load mismatch test circuit.
(shown in Fig. 77).
Under these conditions, the amplifier was found to be stable at all frequencies and at all phase angles. However the output transformer T3 became warm and the transistors became more heated. The extent of this overheating will obviously be the crucial factor in determining the maximum load mismatch that can be accommodated.

Equipment Used.

A Hewlett-Packard 86408 signal generator was used for all single tone measurements, while frequency spectrum measurements were carried out with a Tektronix 7603 combined oscilloscope and spectrum analyser in conjunction with a TR501 tracking generator. Other equipment included a BNOS 13.8 V stabilised power supply, a Philips PM2521 automatic multimeter and an R\&EW Autobridge. A Gould OS250B was used to display the AM modulation.

- R\&EW

References

1. Granberg.H. 'Low-distortion 1.6 to 30 MHz SSB Driver Designs.' AN-779. Motorola Semiconductor Products Inc.
2. Granberg.H. 'Broadband Transformers and Power Combining Techniques for RF,' AN-744. Motorola Semiconductor ProductsInc.
3. Boylestad and Nashelsky. 'Electronic Devices and Circuit Theory' Pages 399 to 403. Prentice-Hall.
4. Bowick.C.'RFCircuitDesign.'Howard.W. Sams \& Co. Inc.

R\&EW Data Brief

Precision Servo Integrated Circuit

FEATURES

* Low External Component Count
* Low Quiescent Current (7 mA typical at 4.8V)
* Excellent Voltage and Temperature Stability
* High Output Drive Capability
* Consistent and Repeatable Performance
* Precision Internal Voltage Stabilisation
* Time Shared Error Pulse Expansion
* Balanced Deadband Control
* Schmitt Trigger Input Shaping
* Reversing Relay Output (DC Motor Speed Control)

The ZN419CE is a precision monolithic integrated circuit designed particularly for pulse-width position servo mechanisms used in all types of control applications. The low number of components required with the ZN419CE, together with its reduced length and low power consumption, make this integrated circuit ideal for use in model aircraft, boats and cars where space, weight and battery life are at a premium. The amplifier will operate over a wide range of repetition rates and pulse widths and is therefore suitable for the majority of systems. The ZN419CE can also be used in motor speed control circuits.

Servo Application
 Introduction

In the standard servo application the displacement of a control stick varies the pulse width of a timing circuit and many such pulses are time division multiplexed and typically modulate a 27 MHz or 35 MHz transmitter. A receiver then decodes the transmitted signal and reconstitutes an independent train of pulses for each servo channel. The servo shown in Fig. 2 consists of the ZN419CE integrated circuit, several external components, a power amplifier consisting of two external PNP transistors and two on-chip NPN transistors which form a bridge circuit to drive the DC motor. The motor drives a reduction gear box which has a potentiometer attached to the output shaft. This potentiometer in association with R_{1} and the timing components C_{T} and R_{T} controls the pulse width of the timing monostable. The input pulse is compared with the monostable pulse in a comparison circuit and one output is used to enable the correct phase of an on-chip power amplifier. The other ouput from the pulse comparison circuit drives the pulse expansion circuit $\left(C_{E}, R_{E}\right)$ via the deadband circuit (C_{D}). Thus any difference between the input and monostable pulses is expanded and used to drive the motor in such a direction as to reduce this difference so that the servo takes up a position which corresponds to the position of the control stick.

Input Circuit

The ZN4I9CE operates with positive going input pulses which can be coupled either directly or via a capacitor to pin 14. The advantage of AC coupling is that should a fault occur in the multiplex decoder which causes the input signal to become a continuous positive level, the servo will remain in its last quiescent position, whereas with direct coupling the servo output arm will rotate continuously. A nominal 27 kohms resistor

Fig. 1. SYSTEM DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
6.5 Volts

Package Dissipation
Operating Temperature Range ..
Storage Temperature Range
300 Milliwatts
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right.$. At $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise stated).

Parameter	Min.	Typ.	Max.	Unit	Conditions
Input threshold (lower)	1.15	1.25	1.35	V	Pin 14
Input threshold (upper)	1.4	1.5	1.6	v	Pin 14
Ratio upper/lower threshold	1.1	1.2	1.3		-10 to $+65^{\circ} \mathrm{C}$
Input resistance	20	27	35	$\mathrm{k} \Omega$	$V_{\text {in }} \leqslant 2 V($ Pin 14)
Input current	350	500	650	$\mu \mathrm{A}$	$V_{\text {in }} \geqslant 2 V($ Pin 14)
Regulator voltage	2.1	2.2	2.3	\checkmark	$\begin{aligned} & -10 \text { to }+65^{\circ} \mathrm{C}, 1.3 \mathrm{~mA} \text { load } \\ & \text { current } \end{aligned}$
Regulator supply rejection ratio	200	300	-		$\begin{aligned} & V_{\mathrm{S}}=3.5 \text { to } 6.5 \mathrm{~V} \\ & \mathrm{RSRR}=\frac{\mathrm{d} V_{\text {in }}}{\mathrm{d} V_{\text {out }}} \end{aligned}$
Monostable linearity	-	3.5	4.0	\%	$\begin{aligned} & \pm 5^{\circ}, R_{\mathrm{P}}=1.5 \mathrm{k} \Omega \\ & \mathrm{R}_{1}=12 \mathrm{k} \Omega \end{aligned}$
Monostable period temperature coefficient	-	$+0.01$	-	$\% /{ }^{\circ} \mathrm{C}$	Excluding Rt, Ct. $R_{p}=1.5 \mathrm{k} \Omega, R_{1}=12 \mathrm{k} \Omega$ (potentiometer slider set mid-way)
Output Schmitt deadband	± 1	± 1.5	± 3	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{E}}=0.47 \mu \mathrm{~F}$
Minimum output pulse	2.5	3.5	4.5	ms	$\mathrm{C}_{E}=0.47 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{E}}=180 \mathrm{k} \Omega$
Error puise for full drive	70	100	130	$\mu \mathrm{s}$	$\begin{aligned} & 15 \mathrm{~ms} \text { repetition rate } \\ & \mathrm{C}_{E}=0.47 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{E}}=180 \mathrm{k} \Omega \end{aligned}$
Total deadband	± 3.5	± 5	± 6.5	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{D}}=1000 \mathrm{pF}$
P.N.P. drive	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\mathrm{mA}_{\mathrm{mA}}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \mathrm{~T} \end{aligned}$
Output saturation voltage	-	300	400	mV	$\mathrm{I}_{\mathrm{L}}=400 \mathrm{~mA}$
Direction bistable output	2	2.8	3.6	mA	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$ max.
Supply voltage range	3.5	5	6.5	v	
Supply current	4.6	6.7	10	mA	Quiescent
Total external current from regulator	1.3	-	-	mA	$\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}$
Peak voltage $\mathrm{V}_{\mathrm{C}} \mathrm{EXT}$ (with respect to 2 V regulated voltage)	二	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	二	v	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}=-10^{\circ} \mathrm{C} \end{aligned}$

Component Function	Circuit Reference	Value	Comments
Monostable Timing Components	$\mathrm{R}_{\text {T }}$	$100 \mathrm{k} \Omega$	
	$\mathrm{C}_{\text {T }}$	$0.1 \mu \mathrm{~F}$	
Potentiometer and Timing Reference Components	R_{p}	$1.5 \mathrm{k} \Omega$	
		$5 \mathrm{k} \Omega$	
	R_{1}	$4.7 \mathrm{k} \Omega$	
Pulse Expansion	CE	$0.47 \mu \mathrm{~F}$	
	RE	$180 \mathrm{k} \Omega$	11Ω Motor
		150 k ת	8Ω Motor
Deadband (Note 1 (c))	$C_{\text {D }}$	1000 pF	118 Motor
		1500 pF	8Ω Motor
Dynamic Feedback	R_{F}	330 k ת	
	R_{B}	$330 \mathrm{k} \Omega$	
	R_{2}	$1.2 \mathrm{k} \Omega$	
Input Coupling	C_{C}	$2.2 \mu \mathrm{~F}$	
Motor Decoupling	C_{2}	$0.01 \mu \mathrm{~F}$	
	C_{3}	$0.01 \mu \mathrm{~F}$	
R.F. Decoupling	C_{1}	$0.1 \mu \mathrm{~F}$	
Drive Transistors	T1, T2		

Fig. 2. SERVO SYSTEM USING THE ZN419CE
is shunted across the input on chip to provide DC restoration of the input signal when AC coupling is used. The active input circuit is a Schmitt trigger which allows the servo to operate consistently with slow input edges and supplies the fast edge required by the trigger monostable independent of input edge speed.
The input circuit and its $\mathrm{V} / 1$ characteristic are shown in Fig.3. D_{1} and D_{2} are the parasitic substrate and isolation diodes associated with the input resistors. It is advisable that the pulse input amplitude should not fall below OV nor exceed the supply voltage $V_{C C}$ in order to prevent these diodes from conducting, although a small amount of conduction will not cause the circuit to malfunction. When AC coupling is used the value of C_{C} should be chosen to give a pulse droop not exceeding 0.3 V
Assuming that the input signal swings between OV and V_{5} and taking the input chord resistance $R_{\text {in }}$ of 13 kohms, the droop for a pulse of duration t_{p} will be:

$$
v_{d}=\frac{V_{\mathrm{s}} t_{p}}{C_{c} \cdot R_{\text {in }}} \text { volts }
$$

with t_{p} in $m s, C_{C}$ in $u F$ and $R_{\text {in }}$ in kohms. For a nominal pulse width of 1.5 ms and V_{d} equal to 0.3 V the required minimum value of C_{c} is found to be 1.85 uF so the nominal value of 2.2 uF is chosen (nearest preferred value).

$$
C_{C}=\frac{4.8 \cdot 1.5}{0.3 \cdot 13}=1.85 \mu \mathrm{~F}
$$

If the servo is to operate with reduced input pulse amplitude, the input pulse should exceed the upper Schmitt threshold voltage of 1.5 V by a reasonable margin and a minimum input amplitude of 2.4 V is recommended.

Deadband Circuit

The function of the deadband circuit is to provide a small range of output shaft position about the quiescent position where the difference pulse does not drive the motor. This is necessary to eliminate hunting around the quiescent position caused by servo inertia and overshoot. The minimum deadband required is also a function of the pulse expansion characteristics and dynamic feedback component values.

Fig. 3.

Fig. 4. INPUT WAVEFORMS

When the difference pulse is applied, T_{1} turns off and the base of T_{2} rises on an exponential waveform with a time constant of 4 . 7 kohms x C_{D}. If the difference pulse is small, the potential reached on the base of T_{2} is insufficient to turn T_{2} on and no output results.
The pulse expansion circuit has a built in deadband of 1.5 us with $\mathrm{C}_{\mathrm{E}}=0.47 \mathrm{uF}$ and this must be added to the deadband caused by C_{D} to obtain the total T_{d}.
$\therefore \quad \mathrm{T}_{\mathrm{d}}=1.5+\mathrm{t}_{\mathrm{d}} \mu \mathrm{sec}$
t_{d} is found from the exponential equation.

$$
\begin{aligned}
& \quad v_{b e}=v_{1}\left[1-\exp \left(\frac{-t_{d}}{c_{D} \cdot 4.7 \mathrm{k} \Omega}\right)\right] \\
& \therefore \quad \\
& \quad \mathrm{t}_{\mathrm{d}}=C_{D} \cdot 4.7 \operatorname{loge}\left(\frac{v_{1}}{V_{1}-V_{b e}}\right) \\
& \therefore \quad \\
& \quad=3.3 C_{D} \mu \sec \left(C_{D} \mathrm{in} n F\right)
\end{aligned}
$$

(Taking $V_{1}=1.5$ volts and $V_{b e}=0.75$ volts)
Thus with C_{D} equal to $1000 \mathrm{pF}(1 \mathrm{nF})$

$$
\mathrm{t}_{\mathrm{d}}=3.3 \mu \mathrm{sec} \text { and } \mathrm{T}_{\mathrm{d}}=4.8 \mu \mathrm{sec} .
$$

The mechanical deadband $\varnothing \mathrm{d}$ depends on the chosen sensitivity S_{1} of the servo and in the usual radio control application a ± 500 us input pulse variation causes $\pm 50^{\circ}$ rotation, i.e. $S_{1}=10 u s$ per degree.

$$
\text { Thus } \quad \varnothing \mathrm{d}=\frac{2 \cdot \mathrm{~T}_{\mathrm{d}}}{\mathrm{~S}_{1}} \text { degrees }
$$

(T_{d} in $\mu \mathrm{sec} . \quad S_{1}$ in μ sec per degree).
Thus a value for T_{d} of $5 \mu \mathrm{sec}$ provides a mechanical deadband $\emptyset \mathrm{d}$ of 1°.

And generally:

$$
\begin{aligned}
& \emptyset d=\frac{2 \cdot\left(1.5+t_{d}\right)}{S_{1}} \\
& \emptyset d=\frac{3+6.6 C_{D}}{S_{1}} \text { degrees }
\end{aligned}
$$

with $\left\{\begin{array}{l}C_{D} \text { in } n F . \\ S_{1} \text { in } \mu \text { sec per degree. }\end{array}\right.$

Pulse Expansion

A schematic of the pulse expansion circuit is shown in Fig.6. In the quiescent state with no drive, the Schmitt trigger input is biased via R_{E} and takes up a level just above the lower threshold V_{L}. A drive pulse causes a current I_{E} to be switched on for the duration of the pulse and this discharges C_{E} linearly with time. Thus, at the end of the pulse the voltage on C_{E} depends on the duration of the pulse. If the pulse is narrow and just causes the potential on C_{E} to fall to V_{L}, the Schmitt trigger will switch to the upper threshold V_{H} and at the end of the drive pulse C_{E} will start to charge to V_{H} with a time constant $C_{E} R_{E}$. When the potential on C_{E} reaches V_{H} the Sch mitt will switch to V_{L} and C_{E} will discharge to the quiescent level. The output drive is taken from the Schmittoutput.
DC motors need a certain amount of drive to overcome static friction and the minimum output pulse obtained from this form of pulse expansion characteristic is chosen to ensure that the motor will rotate when driven. A linear initial pulse expansion characteristic would result in the motor remaining stationary and drawing full stall current for small drive periods. If the motor needs 2 ms of drive at a repetition rate of 20 ms to cause rotation, this is equivalent to an average drain of 50 mA for a 0.5 A stall current. This is many times more than the quiescent current of the ZN419CE (7 mA) and could
(d) Pulse Expansion

Fig. 6. PULSE EXPANSION CIRCUIT AND CHARACTERISTIC

Fig. 7. PULSE EXPANSION TIMING DIAGRAM

Fig. 8. PULSE EXPANSION WAVEFORM
considerably reduce flying time for the standard battery operated airborne multichannel radio control system. This effect also causes an annoying buzz from the motor and gearbox. The use of the Schmitt trigger removes these two deficiencies.
The value of $t_{\text {min }}$ is determined by the Schmitt trigger hysteresis and the exponential waveform on C_{E} in the following equation.

$$
V_{H}=\left(V_{C C}-V_{L}\right)\left(1-\exp \left[\frac{-t_{\min }}{C_{E} R_{E}}\right]\right)
$$

Because V_{H} is small the following linear relationship is sufficiently accurate.

$$
\begin{gathered}
V_{H}=\frac{\left(V_{C C}-V_{L}\right)}{C_{E} R_{E}} \cdot t_{\text {min }} \\
\therefore \quad t_{\text {min }}=\frac{V_{H}}{\left(V_{C C}-V_{L}\right)} \cdot C_{E} R_{E} \operatorname{msec}
\end{gathered}
$$

For nominal operation
$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{L}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{H}}=0.12 \mathrm{~V}$ and :

$$
t_{\text {min }} \simeq \frac{C_{E} R_{E}}{30} \text { msec } \quad\left\{\begin{array}{l}
C_{E} \text { in } \mu F \\
R_{E} \text { in } \mathrm{k} \Omega
\end{array}\right.
$$

and for $C_{E}=0.47 \mu \mathrm{~F}$ and $\mathrm{R}_{\mathrm{E}}=180 \mathrm{k} \Omega$,
$\mathrm{t}_{\text {min }}=3.5 \mathrm{msec}$.
It can be seen from the simple equation that $t_{\text {min }}$ is dependent on V_{CC}, and $\mathrm{t}_{\text {min }}$ will increase with reducing V_{CC}. This variation is put to good use to maintain the initial motor drive, $V_{C C} \times$ $t_{\text {min }}$ reasonably constant over the operating voltage range of $3.5-6.5 \mathrm{~V}$.
When the pulse expansion drive is increased above the minimum value, the output pulse increases from $t_{\text {min }}$ almost linearly until full pulse expansion is reached, i.e. when the output pulse width equals the input pulse repetition rate. The
(e) Monostable Timing

Fig. 9. MONOSTABLE TIMING CIRCUIT AND WAVEFORM

pulse expansion will be almost linear provided that the current source I_{E} does not saturate, i.e. provided that C_{E} is not discharged to almost zero valts. Ideally the current source should saturate when full motor drive is obtained but, due to component tolerances, it is usual to allow some margin to ensure that full motor drive can be obtained. If a margin is allowed, an extended pulse expansion characteristic results (shown dotted in Fig.6) and if this is excessive it can lead, to the servo exhibiting an underdamped characteristic causing jittering or hunting. Thus, for full pulse expansion, the voltage on C_{E} should discharge from its quiescent value of $1.5 \mathrm{~V}-0.75 \mathrm{~V}$. Thus with $\mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$ for the current source:

$$
\frac{1.5-0.75}{t_{e}}=\frac{t_{E}}{C_{E}}
$$

$\therefore \quad C_{E}=4 . t_{e} \mu F\left(t_{e}\right.$ in msec)
For $\mathrm{t}_{\mathrm{e}}=0.1 \mathrm{msec}$, a value of $0.47 \mu \mathrm{~F}$
was chosen for C_{E}.
If t_{p} is the maximum motor drive pulse length required, i.e. equal to the input pulse repetition period for full pulse expansion, and the mean value of the potential on C_{E} is taken as 1.2 V then:

$$
d v=\frac{\left(t_{p}-t_{\text {min }}\right)}{C_{E} R_{E}} . \quad\left(v_{C C}-1.2\right)
$$

And for the discharge period t_{e} :

$$
d v=\frac{\mathrm{I}_{\mathrm{E}} \cdot \mathrm{t}_{\mathrm{e}}}{\mathrm{C}_{\mathrm{E}}}
$$

$\therefore \quad R_{E}=\frac{\left(t_{p}-t_{\text {min }}\right)}{I_{E} t_{e}} \quad\left(V_{C C}-1.2\right)$

For nominal values of $\mathrm{V}_{\mathrm{cc}}=4.8 \mathrm{~V}$
and $\mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$

$$
\begin{aligned}
R_{E} & =1.2 \frac{\left(t_{p}-t_{\min }\right)}{t_{e}} \mathrm{k} \Omega \\
\text { and for } t_{p} & =20 \mathrm{msec}, t_{\text {min }}=3.5 \mathrm{msec}, \\
t_{e} & =0.1 \mathrm{msec}, R_{\mathrm{E}}=180 \mathrm{k} \Omega
\end{aligned}
$$

(Nearest preferred value).

Monostable Timing

The leading edge of the input waveform triggers the timing monostable by opening switch $\mathrm{S}_{1} . \mathrm{C}_{\mathrm{T}}$ then charges until the differential amplifier detects that the timing waveform potential has fallen to V_{p} the potential on the potentiometer wiper, and switch S_{1} is closed to terminate the timing pulse. Thus the monostable period is determined by the setting of the potentiometer wiper. In the standard application the servo centre position pulse width is 1.5 ms with a range of $\pm 50^{\circ}$ rotation at 1 Ous/degree. Thus the 2.0 ms maximum monostable period $\mathrm{t}_{\text {mono(mox }}$ corresponds to a potentiometer setting of 200° (for a linear relationship) and since the potentiometer has a total rotation of approximately 270° and the maximum allowable swing on pin 3 is specified as 0.5 V , the value of $C_{T} R_{T}$ can be calculated as follows:

$$
\begin{aligned}
& \frac{0.5}{I_{\text {mono }(\text { max })}} \simeq \frac{2}{C_{T} R_{T}} \\
& \therefore \quad C_{T} R_{T}=4 . \quad t_{\text {mono(max) }} \\
& \text { Thus if } \mathrm{t}_{\text {mono(max) }}=2 \mathrm{msec} \text {, } \\
& C_{T} R_{T}=8 \mathrm{msec} .
\end{aligned}
$$

The optimum value of R_{T} is 100 kohms, owing to the design of the on-chip monostable circuit, giving $C_{T}=0.1$ uF (nearest preferred value). The value of R_{1} can now be calculated from the actual voltage swing with a potentiometer setting of $\varnothing_{\mathrm{p}}=200^{\circ}$ and $\varnothing_{\max }=270^{\circ}$. Thus from the equivalent circuit

$$
\frac{V_{m}}{\frac{200}{270} \cdot R_{p}}=\frac{\left(V_{C C}-V_{m}\right)}{R_{1}+\frac{70}{270} R_{p}}
$$

where V_{m} is calculated from the actual value of C_{T} and R_{T} chosen using the relationship

$$
V_{m}=\frac{2.0 \cdot t_{\text {mano }(\text { max })}}{C_{T} R_{T}}
$$

With the chosen values of C_{T} and $R_{T}, V_{m}=0.4 \mathrm{~V}$ and hence $R_{1}=3.2 R_{p}$. If $R_{p}=1.5$ kohms then $\mathrm{R}_{1}=4.7 \mathrm{kohms}$

Dynamic Feedback

Without dynamic feedback, in the standard application the inertia of the motor and the gearbox causes the servo output shaft to overshoot the set position, which results in the servo 'hunting'. If the deadband was widened to stop this effect, an unacceptably large deadband would result and the servo would still be underdamped. The dynamic feedback circuit uses the motor back EMF (which is proportional to motor speed) and feeds back a proportion of this signal to the wiper of the potentiometer. The phase of the feedback signal is chosen to modify the potentiol on the wiper in such a way that the monostable period is dynamically varied to reduce the motor drive as the servo output shaft approaches the set position and the values of the feedback resistors are chosen to achieve optimum settling characteristics.
The value fo R_{F} and R_{B} of 330 kohms will suit the normal type of servo mechanism; however if the servo is fairly fast, this can be decreased to 300 kohms to minimise any tendency to overshoot. Where the servo is slow, R_{F} and R_{B} can be increased to 360 kohms or 390 kohms .

Alternative Value of R_{p}

Although a 1.5 kohms feedback potentiometer is the most common source of R_{p}, 5 kohm potentiometers are used in some servo mechanisms. In order to use this value with the ZN419CE a 2.2 kohm resistor is usually connected across the potentiometer to maintain the values of the R_{F} and R_{B} at 330 kohms and R_{1} at $4.7 \mathrm{kohms}, R_{2}$ is omitted; i.e. the wiper of the potentiometer is connected directly to pin 3 of the ZN419CE

RF Decoupling

C_{1} (typical value 0.1 uF) is only necessary where strong RF fields may affect the operation of the circuit.

Traansistors T1 and T2

The external PNP transistors are usually selected for a low V EE(sol) to obtain maximum output drive and the recommended types are the ZTX550, ZTX750 or ZTX753.

in the first issue of Volume 3

MODULAR COMMUNICATION SUBSYSTEMS

 - PART ONEPractical Building Blocks : Cheap, Sophisticated and Informative

THE DETECTOR
Carrier squelch
Signal level metering
AGC
Balanced product detector
AM peak detector
Auto noise limiter
 PLUS:

- ALL THE NEWS THAT IS FIT TO PRINT
- TWO APPROACHESTO TONEBURST
- SPECTRUM ANALYSIS MADE EASY
- THE YAESUFT77HFTRANSCEIVER

Bill Evans traces the evolution of his Z8 controlled colour processer from the day he heard about our offer of a FREE Z8-TBDS for people with ideas and determination to the day his production model emerger (and worked!)

Dual Conversion IF with twin balanced mixers
Crystal/Ceramic Filters
AGC'd IF Amplifier
Crystal controlled second conversion
AGC delay for RF stages

The chromicro: A stirring tale of daring do.....

A SENSITIVE MEASURE OF distortion

Distortion measurement can readily be carried out by means of a spectrum analyser, but it may be assumed that few amateurs have access to this costly instrument. On the other hand, a traditional distortion meter is relatively easy to build and a good design will have a similar level of sensitivity.

Design Considerations

Such an instrument, shown schematically in Fig. 1, is based on the following principles. First the fundamental is filtered out by means of a notch filter; then the residual distortion is amplified and read off on a suitable instrument (an AC millivoltmeter); and finally the reading is converted to a percentage of the original signal level. The procedure is undoubtedly somewhat more complicated than using a spectrum analyser, but the results are of equal merit.

Figure 1: Principle of distortion measurement

In fact, the method described above is generally the more accurate one for very small distortion contents, and since the new generation of amplifiers - with MOSFET output stages - will often produce less than 0.003% harmonic distortion, there seems to be a good case for this kind of instrument, provided it will be sensitive enough to detect distortion down to at least 0.0001% of the output voltage of a power amplifier.
Consider, for example, a moderately rated amplifier (say 25 watts into 4 ohms). This will deliver $10 V_{\text {rms }}$ into a 4 ohms load:

$$
V_{0}=R(P / R)^{1 / 2}=(P \cdot R)
$$

The desired sensitivity of 0.0001% of this value amounts to 10 uV . Assuming a reasonably accurate reading at $1 / 10$ th of FSD (full scale deflection), this ultimately entails a sensitivity of 100 uV in practical terms.

At the same time, the instrument amplifier must have a noise figure somewhere around $2 u \mathrm{~V}$, referred to the input, with the result that needle deflection should be hardly noticeable in the absence of a signal.

The Notch Filter

We turn next to the notch filter. Other things being equal, the parallel T-filter offers the simplest means of obtaining a
null at a chosen frequency and it has been in general use in several commercial distortion meters for quite some time.

As its name implies, the parallel T-filter consists of two symmetrical T-filters (Figs.2a and b) connected in parallel. For convenience, the impedances $Z 1, Z 2, Z^{\prime} 1$, $Z^{\prime} 2$ are made equal. This condition is fulfilled when:

$$
R_{y}+2 / j \omega C_{y}=2 R_{x}+1 / j \omega C_{x}
$$

which leads to:

$$
R_{y}=2 R_{x} \text { and } C_{y}=2 C_{x}
$$

(see Fig.2c). The characteristic impedance will be:

$$
Z_{\text {in }}=Z_{\text {out }}=R_{x}+1 / 2 j \omega C_{x}
$$

At the notch frequency f_{0}, this becomes:

$$
Z_{\text {in }}=Z_{\text {out }}=V 2 \cdot R_{x}
$$

The notch frequency in turn is determined by:

$$
f_{0}=1 /\left(2 \pi \cdot 2 R_{x} \cdot C_{x}\right)
$$

At lower frequencies, the impedance will gradually approach $4 \mathrm{R}_{\mathrm{x}}\left(+\mathrm{Z}_{\text {load }}\right)$. Indeed, the impedance of C_{x} and $2 C_{x}$ will approximate to infinity and may therefore be ignored. Figure 2c then becomes Figure 2d.

At frequencies much higher than f_{0}, the impedance of C_{x} becomes so low that the set up reduces first to Fig. $2 e$ and then Fig.2f. The impedance ultimately reaches $1 / 2 \mathrm{R}_{\mathrm{x}}$.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Analysis of the parallel T-filter

Starting from the low frequency end, the phase lag will reach -90° at f_{0}; but from the higher end of the frequency scale, the phase difference will gradually increase up to $+90^{\circ}$ at f_{0}. This means a sudden jump of 180° at $f_{0}-$ in other words : a polarity reversal.
These impedance and phase characteristics, together with the transmission curve, are represented in Fig.3. A closer study of these parameters will reveal the conditions which have to be fulfilled to ensure satisfactory performance with a parallel T-filter.
i) Phase relationship: The polarity reversal at f_{0} clearly indicates zero admittance, which means complete suppression of the fundamental.
ii) Impedance: It is obvious that the notch filter must look into an input impedance several times higher that $4 \mathrm{R}_{x}$; on the other hand, the filter must be fed from a source impedance considerably lower than $1 / 2 R_{x}$. iii) Insertion Loss: This is undoubtedly the weak point of this type of filter. The Qfactor is only 0.24 , according to the formula $Q=f_{0} / \Delta f, \Delta f$ (the bandwidth) being the difference between the two -3 dB points on the transmission curve. In

Figure 3: Transmission, impedance and phase characteristics of the parallel T-filter

Figure 4: Parallel T-filter with shunt feedback
this case, the response is 9 dB down at $2 \mathrm{f}_{0}$ (the second harmonic) and the loss is 5 dB at $3 f_{0}$ (the third harmonic). As second and third harmonics normally account for the greater part of the total distortion, accurate distortion measurement is not possible.

It will therefore be necessary to raise the Q-factor of the parallel T-filter; in other words the notich must be made much sharper to avoid excessive loss of harmonics. Fortunately this can be achieved by applying the right amount of feedback to the filter. Many distortion meters have appeared on the market which make use of shunt feedback to sharpen the response of the parallel T-filter (Radford, Sugden). Their general arrangement is shown schematically in Fig. 4.
For very large values of ' A ' (open loop gain), the closed loop gain is determined by:
$A^{\prime}=\frac{\left(R_{i N}+R_{X}\right)+R_{f b}}{\left(R_{I N}+R_{S}\right)}$
Clearly, $\mathrm{R}_{\mathbb{N}}$ will influence the amplification, so it must be kept constant. This could be achieved by preceding the filter by an emitter-follower, which will provide a constant low-impedance source for the parallel T (Sugden). Because the distortion and the noise generated by the emitter-follower also pass through the filter, the use of this circuit is limited in practice to a distortion reading of about 0.05\%.

Further Developments in Filters
Since then, much work has been done on active filters, such as the Butterworth and the Tchebychev, which make use of positive feedback - in the form of bootstrapping. The possibility of applying the same principle to the parallel T-filter was pointed out by Riordan in 1963. In the case he considered, the bandwidth of the filter was reduced in proportion to the feedback factor.
If a normal gain amplifier is used, the same effect is achieved by inserting a potential divider across the output, provided that

$$
\frac{R_{2}}{R_{1}+R_{2}}<A
$$

(see Fig.5a). However, the response curve will assume an asymmetrical shape, as a

Figure 6: Circuit diagram of the HD meter

result of the additional phase-shift. This is of course undesirable; however this particular difficulty can be overcome by using the same voltage divider to inject feedback to the system (see Fig.5b). Positive feedback is then introduced between point ' x ' and the input. It is also possible to apply feedback to the filter by means of a differential amplifier, as shown in Fig.5c.

The Hitachi HA1 2017 operational amplifier is one that can be adapted for this kind of application, and indeed it has been used in this particular design.

Design Characteristics

A practical design for a distortion meter will then present the following characteristics:

1) A constant impedance input attenuator.
2) Alow impedance load at the output of the filter.
3) A high impedance load at the output of the filter.
4) Three or more fixed frequencies for distortion measurements.
5) Modified HA1 2017 circuitry to obtain a bandwidth of $100 \mathrm{kHz} \pm 0.2 \mathrm{~dB}$.
6) A voltage follower op-amp driving meter with 0.1 m A FSD .
7) An optional high-pass filter to attenuate 50 and 100 Hz hum.
8) A power supply derived from batteries.

Circuit Details

Figure 6 shows the complete circuitry for the distortion meter. The description that follows brings out how the desired characteristics for the distortion meter have been implemented in this design.

1) Input sensitivity is selected by an Ltype constant impedance attenuator. There are seven sensitivity ranges: 100 uV , $1,10,100 \mathrm{mV}, 1,10,50 \mathrm{~V}$. The last value was chosen because amplifier output will generally lie between 10 and 30 V , which can be read more accurately off a 50 V scale.

For a constant attentuation ratio of 10:1, the resistors for the successive steps must be in the proportion of 8.1 to 1 . This is readily achieved by choosing values of 22 k and 2.7 k from the E-12 series of resistors (1% metal film). The error is only 0.6%; even so, the total discrepancy after six steps is 3.6%. It is therefore advisable to measure the individual resistors with an accurate DMM and to choose combinations which will come as close as possible to a ratio of $8.1: 1$. The 50 V position will require a voltage divider with a $4: 1$ ratio and a total resistance of 24.444 kohms . Parallel combinations of resistors have to be used here.
A final point to be raised in this connection is the frequency response of

Two types of attenuator ($\mathbf{S} 1$).

the attenuator. On the 1 volt position, the attenuation ratio is $10,000: 1$, and stray capacitance of just 0.1 pF between the input and the mother-contact of the switch will cause a rise of +3 dB at 70 kHz (see Fig.7). Obviously, some form of frequency compensation is necessary. The exact value of the capacitors $\mathrm{Cp} 1, \mathrm{Cp}_{\mathrm{p}}, \mathrm{C}_{\mathrm{p}} 3$ will depend partly upon the physical properties of the switch and the lay-out, but with the more usual type of switch (e.g. the CK 1024 supplied by Ambit) values of $1.2 \mathrm{nF}, 12 \mathrm{nF}$ and 33 nF respectively were suitable, regardless of the configuration (two possibilities are shown in).
2) The input resistance of the attenuator is 24.4 kohms. This is a bit on the low side, but it should be borne in mind that amplifiers and pre-amplifiers have for should have!) a low impedance output. On the other hand, the attenuator has an

Figure 8: Stray capacitance within the attenuator

Inside the sub-chassis.

Figure 9: High pass filter
output resistance of 2.2 kohms , which is just about right to feed the parallel T-filter (except on switch position No.1, where the total resistance is determined by the input resistance - 24.4 kohms in parallel with the output impedance of the apparatus under test).
3) The measured input impedance of the HA1 2017 in the circuit shown in Fig. 6 was greater than 600 kohms at 1 Hz . This will not cause any significant loading on the parallel T-filter.
4) By using two variable resistors (fine and coarse adjustment) in each arm of the filter and three sets of four capacitors, continuous coverage from 20 to $20,000 \mathrm{~Hz}$ could be achieved. But this would require several adjustments of six knobs for each reading: a rather elaborate procedure!

For simplicity's sake, a few well-chosen spot frequencies are much to be preferred. In that case, S2 is used to select three sets of capacitors. Moreover, only two variable resistors (10-turn types) are needed to filter out the fundamental, provided the signal generator is adjusted to within a few percent of the nominal frequency. In the prototype, the choice was limited to three frequencies: $60 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$.
5) Some modifications to the original Hitachi applications circuit (R\&EW July 1982 p17) are required in order to adapt the HA1 2017 to its present purpose:
i) All the elements concerned with RIAA correction have to be omitted.
ii) The stabilisation circuit with R107, C107 and C108 is unsuitable for this application: it causes a hump of approx. 10 dB at 70 kHz . Simple frequency compensation with a 4.7 pF capacitor between pins 1 and 5 proved satisfactory at a gain of 200 and a bandwidth of $100 \mathrm{kHz} \pm 0.2 \mathrm{~dB}$. This would have reduced the stability margin but no adverse effects were noticed.
iii) Negative feedback is applied between pins 1 and 7. With the specified values for R21 R22 and R23 the amplification factor becomes:

$$
A^{\prime}=\frac{R_{21}+R_{22,23}}{R_{22,23}}=200
$$

R22has been included to avoid excessive sharpness of tuning in the parallel T-filter. Indeed, with an open-loop gain of 105 dB at 1 kHz , the Q-factor with 100% bootstrapping would become very high. With R22 included, Q reaches a value of
+3 and the harmonics will be well maintained (see Fig.7).
Incidentally, harmonic distortion of the measuring amplifier is not a major consideration, because this parameter will be introduced into the system roughly as a fraction of the reading: e.g. a distortion factor of 1% will increase a reading of $10 \cup \mathrm{~V}$ to 10.0005 UV ! -an error which may be safely ignored...

Input noise is an altogether different matter. The measuring amplifier has an input noise of 0.85 uV with $\mathrm{R}_{\mathrm{IN}}=220 \mathrm{ohms}$. The total input noise is mainly caused by Johnson noise in the input resistor(s). It is determined by:

$$
V=(4 k T R \triangle f)^{1 / 2}
$$

in which k is Boltzmann's constant $\left(1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}\right), \mathrm{T}$ is 300° Kelvin (at room temperature), R is the resistance and Δf is the bandwidth. The formula can be written in the more practical form:
$N(u V)=(0.0166 . R(k o h m s) . \Delta f(k H z))$
This means a noise level of about $2 u \mathrm{~V}$ with a 2.4 kohms input resistance. Together with the noise factor of the HA1 2017, the total noise amounts to approximately $2.4 \cup \mathrm{~V}$, which will barely cause perceptible needle movement*.
With the parallel T-filter switched into the circuit, the situation deteriorates: its impedance is added to the input resistance. For f_{0} $=1 \mathrm{kHz}$, the total noise level is raised to 3.5 uV and the needle will move to a little more than 1 scale division. Although this is not a very serious drawback, it can be avoided by using 0.2 mA meter. No other changes are necessary (except for multiplying the scale indications on S 1 by 2 , of course).
6) The output from the HA1 2017 measuring amplifier is fed to the drive amplifier for the milliameter. It consists of a CA3140 voltage follower. In its normal configuration, the circuit will produce a loss of some 3 dB at 90 kHz . A frequency-compensation network, consisting of a 220 ohms resistor and a 3.3 nF capacitor, is therefore shunted across P3. The latter allows precise adjustment of the meter scale.

Figure 10: Measuring amplifier PCB: a) copper side b) component overlay

An oscilloscope may be connected to the output of the measuring amplifier. This not only allows exact examination of the distortion contents, but it will also assist during the adjustment of the notch filter.
7) Very small distortions may partly be masked by mains and rectifier hum at 50 and 100 Hz . It is therefore a sensible precaution to include a switchable highpass filter. The circuit around Q1 consists of an active Tchebychev 2nd-order filter with

a 1 dB ripple and a turn-over point at 440 Hz , followed by a passive RC element.

As a result, there is a cut of 36 dB at 100 Hz and of 54 dB at 50 Hz , which are ample (see Fig.9).
8) A mains power supply was tried out, but it proved impossible to avoid a certain amount of hum breakthrough. Current drain being a mere 9 mA , battery supply is by far the simplest solution ($2 \times \mathrm{PP} 3$).

Constructional Details

Little remains to be said about the input circuit, except to point out that the connector and the cable should be of the first quality (BNC and RG58U cable). A small extra screening cover over the connector and the coupling capacitor (C1) is advisable.
The measuring amplifier and the voltage follower are mounted on separate PCB's (see Figs. 10 and 17).

A - -shaped sub-chassis is used in order to keep S2, P1 and P2 as close together as possible. It is fixed to the front panel by means of these components' shaft nuts. A metal cover over this sub-chassis

Figure 11: Driving amplifer PCB: a) copper side b) component overlay

PARTS LIST			
Resistors (1\% metal film)		C11	47p
R1,2,3,4,5,21	22k	C12	100p
R6	19k6 (22k 180k)	C13	4 p 7
R7,8,9,10,11	2k7	C14,15	220 FF 16 V
R12	$4 \mathrm{k9}$ ($5 \mathrm{k} 6 \mathrm{39k}$)	C16,17,18	22nF 1\%
R13, 16,20	15k	C19	0.47 uF polyst.
R14,18	910R	C20,21	$10 \mathrm{uF} \mathrm{16V}$
R15	390 R	C22	3 n 3 polyst.
R17	6k8	C23	330 FF 16 V
R19,31	220	C24	1 uF tantal.
R22	10R	C25	220 FF tantal.
R23	100R	Potentiometers	
R24	470R		
R25	10k	P1 P2	$1 \mathrm{k}-10$ turns $500 \mathrm{R}-10$ turns
R26	39k		500R - 10 turns
R27	3 k 3	Semiconductors	
R28	180k		
R29	18k	HA12017	
R30	1 M	CA3140	
Capacitors		$\begin{array}{lr}\text { Q1 } & \text { 2SC2546 (BC550C or equivalent) } \\ \text { D1-4 } & \text { AA119 (or equivalent) }\end{array}$	
Cp1,2,3	see text		
C1 ${ }^{\text {c, }}$	1uF polyst.	Miscellaneous	
C2,5	165nF 1\%	S1	ole, 7 way rotary
C3,6	10nF 1\%	S2,3	de, 3 way rotary
C4,7	1 nF 1\%	0.1 mA meter	
C8	220nF 1\%	2 BNC connectors, PC	knobs, case (for
C9	20nF 1\%	example, Centurion	from Ambit, or
C10	2nF 1\%	270-270 from Tandy)	

will ensure effective screening of these sensitive elements. On one side, the cover must extend to the bottom of the case in order to screen the CA3140 voltage follower from the rest of the circuitry. A few holes are drilled in the bottom of the subchassis, through which the connecting wires to S1, S3 are passed.

Measurement Procedure

Let us assume that we want to ascertain the harmonic distortion produced by a power amplifier with an output of 16 watts into a 40 hms load ($\mathrm{V}_{\text {out }}=8 \mathrm{~V}_{\mathrm{rms}}$ at 1 kHz)

1) With S 1 on the 10 V position and S3 on 'Direct', the output from the signal generator is adjusted to a reading of 8 V on the scale of the distortion meter.
2) $S 3$ is switched to 'Distortion' and $S 2$ to 1 kHz : P1 and P2 are adjusted for minimum reading.
3) SI is switched down to the 1 V position and P1, P2 are again adjusted for minimum reading.
4) Sl is switched down again and the whole procedure is repeated until no further reduction of the fundamental is possible.
5) Assuming a final reading of 4 mV , this is converted to a distortion percentage:

$$
\begin{aligned}
D \%=\frac{V_{D} \times 100}{V_{\text {out }}} & =\frac{4(\mathrm{mV}) \times 100}{8(\mathrm{~V})} \\
= & 0.05 \%
\end{aligned}
$$

Versatility

Apart from its obvious use as a distortion meter, the instrument will also perform several otherfunctions:
i) mV metering
ii) frequency characteristics measurement
iii) hum and noise measurement

References

1. D.T.N. Williamson: "Design for a Highquality Amplifier"(Wireless World, May 1947, etc.)
2. L.Boullart: "Distorsiometre" (Toute L'Electronique, France, Nov. 1963).
3. Riordan: "Simulated inductance" (Electronics Letters, Jan 1963).
4. W. Van Bokhoven: "Filters zondre spoelen"(Radio Electronica, Oct. 1970).
5. J.Linsley-Hood: "Spot-frequency distortion meter" (Wireless World, July 1979).
6. L.Boullart: "Ultra-gevoelige distortiemeter" (Radio Bulletin, Holland, Nov. 1982).
7. Beatty \& Sowerby: "Attenuation circuits" (Radio Data Charts, 1949).
[^5]
Welcome again to your ATV column, which this month takes a look at what ATVers are getting up to on the air.

We start with 70 cm and a bit of mobile TV; I hear that G4BAV is 'at it' in the Ipswich area, but more details are missing. Amazing what you pick up from other people ... New station just north of Canterbury is G8KUC at the University of Kent. They have installed a MM transmitted in their club shack and are feeding it with video from an Acorn computer. Contacts to date include Tony G6EXU in Ashford and yours truly in Blean. G6EXU has had a number of other contacts lately, such as G8PPQ (Ide Hill, 700 ft ASL), G4NYO in Crowborough and G6VHL in Hawkhurst. The last mentioned, John G6VHL, is suffering from the classic TVI problem - a communal aerial system with the wrong group aerials, a 'DC to light' wideband preamp and incredibly weak off-air broadcast TV signals. lohn's ATV transmissions wipe out Channel 4, yet the authorities responsible for the aerial system refuse to renew it. In the meantime, the Buzbies have declared John's ATV transmissions 'clean' but he has to live with the neighbour problems. If you don't suffer in this way perhaps you should count your blessings

In Wallington, Surrey, Ted G6CTV announces he is now QRV with lovely high quality colour. Seems like he got a Hitachi 1020 camera at a 'silly' price and now he can justify that CTV call. The letters CTV came by accident, by the way. Some stations in the north-west have been getting extra QSL cards lately: Andy Webster, an SWL from Billinge near Wigan, tells me he has logged G3RLA (Heswall), GW6NUO, G8VHF (pirate?), G8VPH (Sutton Coldfield) and GW8XLL (Rhyl) during his DX-TV watches. A couple were also logged by TVDXer Arthur Milliken (also Wigan) using his Panasonic 7000 VCR's tuner, which covers 70 cm .

Nick Foot G8MCQ wrote a fine letter from Wimborne detailing the stations active several nights of the week in his neck of the woods; they are:
G8MCQ/G6TEA Wimborne; G6MPA Northbourne; G6IAC Ringwood colour; G6MYU West Moors colour; G2HCG Barton on Sea; G8MCP Corfe Mullen; G4BGT/G6JGR Corfe Mullen colour; G6OAI Poole colour; G6JAT Parkstone colour; G8CMQ Southampton; G4JQU Southampton; G6CPE Romsey; G6COB Southampton; G4JXC Romsey; G4MHF Broadstone

Many stations have built up converters (mainly PW design) and are thinking of building transmitters, Nick says. Of the transmitting stations most apparently run 5 to 10 watts though Nick runs 50 watts (2C39 homebrew PA) and G4MHF 100 watts (MM solid state PA). The 2C39 PA design came from a 1974 issue of 'VHF Comms' and has just been reprinted in the 'UHF Compendium', available from RSGB sales. (I too have bought this marvellous book: it's the size of a telephone directory, full of 70 cm and 23 cm info and knocks spots off the RSGB joke VHF manual of museum piece information. Have you seen the super 405 line circuits in the latest 1983 edition??? - G8PTH) Nick also had TVI problems, which could be cured only by installing filters ahead of people's masthead preamps.

One more 70 cm letter and that's from Ray Hill G6TSL in Ross on Wye, Herefordshire. With 3 watts from a Wood \& Douglas ATV1 he has worked Grant G8CGK (4 miles), Neil G6TZA (7 miles), GW4RZE/GW6PMF/P (5 miles) and Chris G8TPS/P at Kington Golf Course (P2 pix over a 30 mile path -- not bad...).

On Friday 13th May he sent pictures to Grant who was giving a talk to the local Round Table on SSTV. The meeting opened and Grant announced over the air from Ray's QTH. On the 14th and 15th a demonstration station was set up at a scout camp at Walford, not far away. Pix were sent from Ray's shack by G6TSL, GW4RZE and his brother in law. A brief talk was given on ATV, with explanations of the difference between amateur radio and CB. Ray welcomes any skeds and would like to see a circuit for a linear using a QQVO6-40A.

On to higher things (or bands) and news is coming in fast. I said last time that I suspected there was some quarter-metre band TV in the London area and this has been confirmed by Chris G8CIU (Bexley) who says he and Dick G8CTT (Chislehurst) have been swapping signals on 1308 MHz . They generate an AM signal on 427 MHz and put it through a MM varactor tripler; reception is with 23 cm to 2 metre converters feeding a VHF-UHF upverter and a normal TV. What's more it works - and passes colour.

In the Worthing repeater area Martin G8KOE (East Preston) is already transmitting 24 cm to Roy G6AIW and Nick G4JEI. Rov acts as relay station and retransmits the signal on 70 to the

Thinking of upgrading the TV in the shack? Then this JVC CX-610 should do the job. It covers broadcast VHF and UHF channels (so it will work with all ATV converters) and changes automatically between PAL and SECAM colour (ideal for openings to France!) As well as being a receiver it's also a monitor, so you can use it for closed circuit demonstrations or use it to extract a video and audio signal from off-air reception (to make a recording or to retransmit). For battery or mains operation, with audio subcarrier offsets covering $5.5,6.0$ and 6.5 MHz , it's a very versatile set; compact too, with a $6^{\prime \prime}$ screen. Price around $£ 240$.
stations 'round the corner' in Chichester. Moving to Essex now, John G3OGX has 5 mW on 24 cm (good start) and hopes to swap signals with Nick G4IMO, who is also building when he isn't watching FM TV from the Russian satellite.
Some while ago I mentioned the 150 watt PA available from muTek. Domestic reasons have prevented me from getting it on the air, but Frazer G8FEZ is currently using it on 23 cm with a MM SSB transverter. The verdict is excellent... Nick G8MCQ is also building for 24 cm , as is G6IAC; Nick hopes to have 50 watts and a $4 \times 23 \mathrm{el}$. quad loop array fed with $0.5^{\prime \prime}$ heliax. He has an optical takeoff for at least 15 miles to the north and will be looking for contacts. A TV repeater is another possibility under active consideration.
Several other stations are known to have transmitters nearly complete, so things should get busy soon.
Finally a bit of DX, like 2000 km . This snippet was lifted from the February 1983 issue of 'Amateur Radio' (Australia). On the night of 19.11.1982 Reg VK5QR sent pictures 2000 km to Wally VK6WG on 1290 MHz . Reg was transmitting 100 watts and Wally received him with a MM two metre converter (144 MHz is Australian TV channel 5A). Recognisable pictures were passed between Albany and Adelaide, and I guess this must be a world ATV record. No silly AM versus FM quips, please.
Yes, we even cover SSTV, with letters from three people. Top of the pile is John G3YCV in Cliffsend, near Ramsgate, who has been active in SSTV on 20 metres and elsewhere for 15 years or more. Starting with flying spot scanners and 5FP7 tube receivers, John is now fully up to date with a SC160 scan converter modified for colour (assistance from G3NOXY and DL2RZ gratefully acknowledged). TX tests, with a PyeLynx
camera, are just awaiting receipt of the correct colour tilters. John is QTHR and will be happy to answer anyone's SSTV queries for the cost of an SAE. He says Tony G3VID, also in the Thanet area, is finishing a new scan converter.
Nick G8MCQ has a workirfg slow to fast scan converter based on the JA0BZC design - any two metre SSTVers in the New Forest area who can send him signals? Finally, a welcome note from Dick G3LUI (Hullbridge, Essex). He says the Wednesday night SSTV net is going great guns ($2030 \mathrm{hrs}, 144.50 \mathrm{MHz}$). Current participants include G4BCH, G4KXN, G4IMO, G3NOX, G8UUL, G8BKE and G3LUI (Essex area). Also G3EDK, G3WCY, G4CZT, G4GZN, G3GRJ, G4PAL and G8ZWM (London area), G3WW (Cambs.), G8ASI (Hemel Hempstead) and G6IYD (Ashford, Kent). Successful 3D colour tests have been carried out between Jeremy G3NOX and several others, believed to be a UK 'first'. Peter G4BCH continues his battle to convert his all singing, all dancing version of the Robot 400 to colour, while Nick G4IMO, Roddy G3CDK and G3NOX are getting very good results interfacing computers with their Robot 400s. Dick's DL2RZSC160 plus two homebrew memories is at last producing PAL colour via the BATC PAL coder and an ASTEC 1233 modulator. Finally a plea to all SSTV stations using 144.50: please call CQ rather than just listen. After all, this is World Communications Year, says Dick.

That's it, a bumper bundle of activity, and that's just mentioning a few districts. If your station or club didn't get a namecheck this time, why not drop me a line care of R\&EW? And if there are any other TV topics you'd like to see covered just write ... See you next month.

R\&EW

EVENTS: MOBILE RALLIES August/September/October

August 21st	RAIBC/FRARS Hamfest '83
August 27th	Scottish ARC
August 28th	Torbay Mobile Rally
August 28th	BARTG Rally
August 28th	Preston ARS 15th Annual Mobile Rally
September 6-8th	6th West of England
	Electronics Show
September 11th	Telford Mobile Rally
September 11th	Vange Mobile Rally
September 18th	Peterborough R\&ES Mobile Rally
September 25th	Harlow Mobile Rally
September 25th	West ARC
October 2nd	Great Lumley ARES Rally
October 6-8th	Amateur Radio Retailers Exhibition
October 15th	Midlands VHF Convention
October 15-16th	El-GlConvention

Flight Refuelling Social Club, Wimborne
Cardonald College, Glasgow
ITT Social Centre, Old Brixham
Sandown Park, Esher
Lancaster University
Bristol Exhibition Centre
Town Centre Malls, Telford
St.Nicholas School, Basildon

Wirrina Sports Stadium
Peterborough
Harlow Sportscentre
Oakdale Community College, Blackwood
Community Centre, Great
Lumley
Doncaster
BTTraining School, Stone
Ballymascanlon

Robert A Burrows, Christchurch 474305 GM4JDU Mrs MG Rider, Kingskerswell 5130 Edward Batts, G8LWY Mrs D Stevens, Houghton 3304 Oxted 4371

G8DIR, G8UGL, G3UKV Mrs D Thompson 10 Feering Row, Basildon D TWilson Peterborough 76238 G8FRG R B Davies, GW3KYA Ian Blackman, G4OCQ Fred Hopewell, G4PGC J P H Burden, G3UBX

SHORT WAVE NEWS

 FOR DX LISTENERSFrank A. Baldwin

All times in GMT, bold figures indicate the frequency in kHz

Continuing our review of the Latin American stations likely to be heard here in the UK during the 'season' for reception of this area of the world under the most favourable conditions, a progression is mode to the more difficult to log transmitters
The Bolivians have always been somewhat hard to receive, the first one to be mentioned being a typical example. Radio Nueva Americo in La Paz , the capital city, operates on 4797 from 1000 to 0400 (Sunday until 0200) with a power of 10 kW but this frequency is shared with the Brazilian Radio Tabajora scheduled from 0730 to 0400 (Saturday until 0500) with a power of 2 kW . As they both close at 0400 one must hope that the former predominates at some period during the latter part of the schedule - and by that I mean from around 2300 through 0400 . The plot
thickens however in that just 2 kHz away is the 10 kW transmitter of La Voz de los Caras in Ecuador working away on 4795 whilst 5 kHz further up the band is Radio Lara in Venezuela on 4800 at 10kW.
Radio Nueva America on 4797 is therefore straddled by two 10 kW tronsmitters, one on 4795 and the other an 4800. Sharing the channel does not help either!

I have described this example in some detail in order to bring to readers' attention some facets of the 'difficull' label I have assigned to the stations mentioned in this part of the general review. Despite the above however R Neuva America is sometimes logged by DXers in this country and reported in the SWL press.

Sited in Yacuiba is Radio Frontera operating on 4805 from 1100 to 0400
with a power of 7 kW . Another occupant of this channel is Radio Difusora do Amazonas in Brazil at 5 kW but from 2230 to 0130. Obviously then one must tune to this frequency after the latter signs off.
Radio Nacional, La Paz is listed on 4815 from 1000 to 0400 at 1.5 kW and is very seldom reported. I'm not surprised at that - this frequency also being occupied by three Brazilions, a Peruvian and the powerfut (by comparison) Colombian Radio Guatapuri at 10 kW on a 24 -hour schedule.
Probably one of the most reported Bolivians is Radio Grigota, Santa Cruz on 4833 a 7 kW . This one wanders around from 4832 to 4834 and therefore one must hope it is on the latter channel so that the listener con largely avoid interference from the 4832 Emisora Radio Reloj in Costa Rica. The latter operates around the clack whilst the former is lisled from 1000 to 0400.

Then we hove the La Paz based Radio Fides on 4845 at 5 kW from 2300 to 0300 (Saturday to 0200) it also operates from 0900 to 1800 but this time slot does not interest us here in the UK Despite the often dominant cochannel Radio Bucaramanga in Colombia, R. Fides is logged from time to
time
La Cruz del Sur, La Paz is on 4875 with a 10 kW signal, that part of the schedule of interest to us being from 2300 to 0030. If you are listening for this one then you must do battle with the cochannel Radio Jornal do Brasil 10 kW , the irregular La Voz del Norte in Colombic 5 kW and the often reported Radio Super. This latter Colombian operates around-the-clock with a 2 kW transmitter.

Radio Illimani, 'La Voz de Bolivia', uses a 10 kW tronsmitter on 4945 from 1000 to 0400 but the snag here is that another occupant of this frequency is the very often reported Radio Caracol in Colombia on a 24 -hour schedule. Radio Illimani is more offen reported on the parallel 6025 channel.

Radio Battalon Topater in Oruro is scheduled from 1000 to 0400 at 5 kW on 4980 but again a co-chonnel transmitter hogs the limelight in the form of Ecos del Torbes in Venezuela timed from 0900 to 0400 at 10 kW .
In despair you could tune to 5025 for R. Quillabamba 5 kW , it closes at 0300 weekdays or in desperation to 5045 for Radio Altiplano 1.5 kW , it closes at 0500 . And this is where I close the review for this month - it's a bout Peru nexttime.

Around the Dial

In which ore listed the frequencies, the times and the programmes which will prove of some interest both to the short wave listener and the DXer. Some target areas are also shown.

Pakistan

Islamabad on 17660 at 1040 , YL lyoung lady) with songs in Urdu in a World Service presentation to the UK, scheduled from 0715 to 1100 daily.

Karachi on 17640 at 1034 , local-style music then OM fold mon - male announcer) with announcements during the Indonesian programme, timed from
1000 to 1045.
Radio Pakistan on 6080 at 0058 , interval signal (an appealing composition which instantly brings to mind the locality from which it emanates), OM with announcements in vernacular then quotations from the Holy Quran. Both the location and the schedule are unknown, this channel not being listed.

India

AIR (All India Radio), Dethi on a measured $\mathbf{1 7 3 8 7}$ at 0958 , interval signal (a charming melody in local-style
repeated many times and well warth recording if one is interested in Indian music), $Y L$ with station identification followed by OM with a newscast in the English transmission intended for Australasio and North East Asia in the General Overseas Service and timed from 1000 to 1100.
AIR Dethi on 9912 at 1735, OM and YL with a duet in Hindiduring the Persian programme directed at Iron from 1615 to 1745. At the latter time, OM with station identification at the commencement of the Arabic programme which is timed from 1745 to

1945 on this channel.

Egypt

Cairo on 17745 at 1045 , YL with station identification 'Huna Kohera' (Here is Cairo) during a Voice of the Arabs' transmission to Africa, Europe and the Middle East timed from 0600 to 1400 on this frequency.

Cairo on 17670 at 1355 . OM with a song in the Arabic Generol Service for the Middle East, Europe, North Africa and North America and scheduled from 1300 to 1900.

Cairo on 9850 at 1740 , OM's with a

The 1983 Sporadic-E season opened on cue with a flurry on May 2nd with Central and Eastern European countries predominating during the early afternoon. Unfortunately the good conditions turned out to be short-lived and were quickly followed by endless 'dead' days with only minor openings taking place, usually from the USSR. Conditions improved on the 15th and from then on several intense openings occurred.

Reports filtering through indicate that at least two signals classed as 'exotics' have been seen. A Romsey enthusiast noted a programme with French subtitling on channel E4. This was almost certainly the Lebanese Maasser El Chouf outlet operated by CLT with 60 kW ERP. To endorse this possibility, a West Midlands DXer positively identified an Arabic transmission at around the same time on channel E3 originating from the 104 kW Suweilih outlet in Jordan.

Throughout the UK, signals from the Zimbabwe E2 transmitter at Gwelo appeared on several occasions during May with typical F2 multiple-image and video distortion. ZTV was seen using the PM5544 test card on the 24th.

African Television

Most signals encountered from a southerly direction originate in Portugal (RTP) or Spain (TVE) but from time to time double or even triplehop Sporadic-E allows the reception of signals from an African country. The following African states use Band I and reception is possible in the UK given favourable conditions:-
Ghana (GBC) on channels E2, E3 and E4; Nigeria (NTA) on E2, E3 and E4; Sierra Leone (SLTV) E2; Equatorial Guinea (RTGE) on E2. Kenya (VOK) and Zimbabwe (ZTV) also use channel E4 (48.25 MHz vision) but these are more likely to be received via a combination of Trans-Equatorial skip and Sporadic-E. How does one identify such a transmission? Well, watch out for dark skinned announcers and newsreaders. If the sound channel is resolved it will usually be English. Test transmissions tend to be confusing since standard patterns such as sawtooths, greyscales, grids and multi-bursts are

Figure 1. The GTE colour test card used by Spain and Equatorial Guinea.
commonly used. Sierra Leone uses a chessboard pattern at times, not unlike the Spanish type, while Equatorial Guinea radiates a test card similar to the one used by TVE-Spain (see Fig.1). This pattern was devised by Guardia Tecnical Espanol. The Equatorial Guinea version has the identification 'Radio Television Guinea Ecuatorial' at the top in lieu of 'rve' and the location 'malibo' at the bottom. White blocks are substituted for the digital clock and transmitter inserts used by TVE. Identification captions show the initials 'TGE'. Nigeria uses a caption featuring a satellite dish with the letters 'NTA' to the right. Occasionally the transmitter location is shown together with the channel number.

Service Information

Luxembourg: There is speculation that RTL are to introduce a new television service next October in the German language. It is anticipated that there will be four hours of programmes each day. The new service appears to be part of RTL's preparations for their satellite TV network which is due to commence in 1986.
Albania: Television transmissions from an RTS outlet operating on the Eastern European OIRT channel R5 93.25 MHz vision, 99.75 MHz sound) have been monitored at Titograd in neighbouring Yugoslavia. Signals were positively identified by the RTS test card. It was previously assumed that RTS radiated only on CCIR (Western European) channels such as IC (82.25 MHz vision). Test transmissions noted during May featured the PM5544 test card with the identification 'RTS' at the top and 'TV Shaiptar' in the lower black rectangle.
discussion in the Arabic Domestic Service which may be heard on this channel from 1500 to 2345 -the service that is.

Turkey

Ankara on 17885 at 1016 , OM and YL with announcements in a Voice of Turkey' presentation for Turks abroad, on this frequency from 0900 to 1430.

Qatar

Doha on 17910 at 1446, Arobic-style music, $O M$ with announcements in Arabic in a Domestic Service programe, scheduled here from 1300 to 1730 .

Israel

Jerusalem on 17865 of 2017 , OM with an interesting talk all about internal affairs during on English programe directed to Africa, Europe and North America and timed on this channel from 2000 to 2030
Jerusalem on 17630 of $1103, O M$ with a newscast mainly of local affairs in the English transmission intended for North America, Europe, the Middle East, Australasia and South and East Asio, on the air from 1100 to 1130 . Also logged in parallel on 17685
Jerusalem on 17585 at 1028, OM with a local pop song and music in a relay of the Domestic Service Network ' B ', on this channel from 0400 to 1400 and from 1830 to 2310. Also heard in parallel on 17630 where this service operates from 0610 to 1100 and from 1200 to 1400.

Greece

Athens on 11645 of 1845 , YL with a newscast mainly composed of local affairs in an English language news report which may be heord here from 1840 to 1850 daily.
VOA ('Voice of America') Kavalla on 7170 at 0332 , OM with news of world events in an English programme for

North Africa, scheduled from 0500 to 0700. Also logged in parallel on 7200 butthis is a Wooferton (UK) relay.

Ascension

BBC Reloy of 0340 on 7105 , OM with identification at the end of the Italian transmission for East Africa, timed from 0300 to 0345. Off at 0345

United Arab Emirates

Dubai on 21655 of 1056, OM with station identification at the end of the English programme for Europe and North Africa, scheduled on this channe from 1030 to 1100. A transmission in Arobic followed.

Afghanistan

Radio Afghaniston on 15530 of 1709 , OM with a newscast in on Arobic programme for the Middle East, scheduled here from 1700 to 1730 . This transmission probably originates in the USSR.

Austria

Vienno on 6155 at 0830 , OM with station identification, a newscast and then news comment during an English transmission for Europe, timed from 0800 to 0830.

Vatican City

Vatican on 6252 at 1934, YL with o tolk in the French programme for Europe, scheduled from 1930 to 1950.

Bulgaria

Sofio on 17825 of 1129 , interval signal, YL with station identification as 'Huna Sofia' at the commencement of the Arabic tronsmission intended for the Middle Eost and North Africa, timed from 1130 to 1230.

Australia

Melbourne on 21720 of 0925 , OM with
dentification and announcements in the English programme (External Service) to the Pacific, timed from 0800 to 1100 on this channel.

Now Log This

In which is presented each month o station for your special interest. Listen for it, \log it and QSL it. A start is made by bringing to your attention a station that has been much in the news, particularly of course during the Falklands Campaign and I refer to

Argentina

LRA31 Radio Nacional in Buenos Aires on 15345 at 2240 , YL with a talk about some local musicians and orchestras during on English transmission directed to the Americas which may be heard on this channel from 2230 to 2300 but not on Sunday. For those interested, the English progromme for Europe, Africa and the Middle East is scheduled from 1900 to 2000 on the same channel. The power is 50 kW . The address is Casilla de Correo 555, 1000 Buenos Aires.

Brazil

Radio Nacional do Brasil, Brasilia on 15390 at 2050, OM with announcements about the frequencies and times of transmissions, target areas etc. All during the English presentation to Europe and scheduled from 2000 to 2100.

Radio Nacional da Amazonica, Brasilia on 11780 at 1950, OM with onnouncements in Portuguese, time pips every second until OM with station identification. ZYE365 is on the air from 0500 to 1200 and from 1500 to 2400 , the power is 250 kW .

Chile

Radio Nocional de Chile, Sontiago on 6150 at 0055 , OM with a talk in Spanish, some local music and then station identification of 0100 . CE61 5 operates
from 1100 to 0500 with a power of 5 kW .

Ecuador

Radio Luz y Vido, Lojo on a measured 4851.7 at 0420, OM with a local pop song, YL with announcements, identification and off at 0430 without the Nationol Anthem.

Now Hear These

As is mostly the cose with stings in the tail, the only antidote is to log them. therefore leave you this month with the following targets.
In Olanchito, Honduras, Radio Lux operates on 4890 from 1200 to 0300 . The closing time is voriable, reportedly closing anytime between 0240 and 0400. I can report it closing at 0402 after listening to some piano music, OM with announcements and identification in Spanish and then a choral Nationol Anthem. The power is 5 kW .
In La Paz, Bolivia, Radia Illimani has a 10 kW signal working to the schedule 1000 to 0400 on 4945 , of which point on the diol it was heord at 0200 with a sports commentary. The signal was dominant over the co-channel Radio Caracol in Colombia at this time. Radio Illimani was also logged at a later date on the 6025 channel at 0106 , OM with a talk in Spanish after station identification. CP5 Lo Paz has the some schedule as that shown for CP7.
A change in direction and location brings us to the Republic of China in the shape of Xinjiang PBS in Urumqui which can be logged on 4735 where it is scheduled from 2230 to 0200 and from 1045 to 1730 with the Home Service in Uigher and relays of Radio Beifing (Peking). It also operates in Russian from 1800 to 2100 . Entered into the log here at 2350 when featuring a talk in the Uigher Home Service.

With these porting shots, I bid you al adieu until next month!

Iceland: The channel E7 transmitter at Hafell is reported to have an ERP of 1100 kW . Its location on the south coast means that it may just be possible to receive RUV in Band III during exceptional tropospheric conditions.
West Germany: Programmes from the third network of Norddeutscher Rundfunk are now broadcast from the channel E54 outlet at Minden/Jacobsberg.
The French Forces network (FFB) operating in West Berlin is to commence broadcasting a selection of programmes made by the French services of TF-1, Antenne 2 and France Regions-3 rather than material purely from TF1. Channel E31 is used for FFB programmes which are beamed from a 17.8 kW site in the 'Quartier Napoleon'.
Bulgaria: Bolgharska Televizia is radiating a new colour electronic test card which has, presumably, replaced the old monoscopic test card ' G '. The new pattern (see Fig.2) includes the identification 'BT-SOFIA' in Cyrillic characters.

Figure 2. The new Bulgarian colour test card radiated from studios in Sofiya.

The above information was kindly supplied by Gosta van der Linden (Netherlands) and Alexander Wiese (Editor of the German DX magazine'Tele-audiovision').

Reception Reports

Kevin Jackson (Leeds) has recently moved into a tower block giving his aerials an effective height of 100 ft above ground level. He has a clear take off from the north-east through to the south-east and despite the use of indoor aerials his results are excellent. Using a 10 -element group B aerial at UHF he is able to receive Crystal Palace, Lille (France) and several Belgian transmitters on an almost daily basis. On May 12th using a Band I dipole against the window he saw a Russian clock caption showing BST+4 hours on channel R1 from Yerevan Television situated in the area between the Black Sea and the Caspian Sea. Other successes include practically the whole of Europe with strong signals from the Bucuresti (TVR-Rumania) transmitter on R2 on the 25th. Closer to home, auroral activity on the 24 th produced Scottish 405 -line reception on channels B3 and B4.
Cyril Willis (Little Downham, Cambs) also noted the excellent conditions of the 25 th. Using a Tandy Patrolman 50 to monitor audio in Band I he was surprised to hear Spanish cordless telephone conversations on 49.60 MHz during an opening to the south.
Andrew Webster (Billinge, near Wigan) has again been active following the cessation of high-level interference from a $C E G B$ insulator. Two short-range signals have aroused interest: Lopik E4 (NOS-Netherlands) was seen not as a trop signal but was in fact similar to one
propagated by SpE , while the Eireann (RTE) transmitter at Gort is now received on a regular basis. 50 MHz amateur radio activity has been noted at times during the late afternoon. There is speculation that it originates from a 6 -metre ham in Gibraltar rather than a naughty UK operator!
Clive Athowe (Blofield, Norfolk) commented that there were many quiet days during May when only short-duration signals from the USSR on R1 and R2 were present. His log for the 16th and 25 th makes impressive reading:-
16th: TSS (USSR) colour test pattern, R1; ORF (Austria) with programmes on E2a; JRT (Yugoslavia) with cartoons on E3; CST (Czechoslavakia) using the EZO test card on R1 and R2 plus the PM5544 on R2 with the identification 'BRATISLAVIA'; TVP (Poland) with the PM5544 on R1 and R2 received in SECAM colour.
25th: ORF E2a; TVP R1, R2; TSS R1, R2; JRT E4; RAI (Italy) IA, IB; TVE-2 (Spanish second network) E2; RTP (Portugal) E2, E3; TVR (Rumania) using the EBU Bar test pattern followed by the test card at 1745BST. Programmes then followed which were also noted on channel R3.
On the 13th, the MUF rose high enough to permit reception of TSS on channel R4 (85.25 MHz). Clive also noted a mystery greyscale pattern from the south on E2 on May 20th which was apparently via F2-layer and SpE propagation modes. He wonders if this may have been of African origin. Another impressive catch was the Polish PM5544 test card on channel R6 (175.25 MHz vision) via a meteor shower on the 5 th.

there are transformers and... $\boldsymbol{V} \boldsymbol{\text { Trake }}$ Transformers

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

NEW PRODUCTS

Smart 8-pen flatbed plotter

The DMP-29 - a low cost multipen desktop plotter manufacturerd by Houston Instruments - is now available from House of Instruments. In many ways, this compact device seems too good to be true. Not only are the graphics multicoloured and said to be of the quality you might expect from a rather more expensive machine, but the firmware incorporated in the DMP-29 gives: five sets of characters; circles, arcs, ellipses and general curves; straight or slanted characters at any of 360 possible angles and in any of 255 sizes; linetype variation from smooth line to dashes and dots (including a print mode); automatic clipping for when drawing is larger than the page; selected area reproduction; and scaling - to name but a few, for then there are all the operatorfriendly features that have been built-in. The latter include, for example, an adhesive (paper) hold-down to make loading
cmazingly quick and simple' and a choice of two plotting formats, DIN A4 and DINA3.

To give you some idea of the speed at which it works, smooth step-free strokes can be produced across the page at a rate of $16^{\prime \prime}$ per second or at $22.62^{\prime \prime}$ per second diagonally. The resolution is 0.001 " and the reproducibility $0.004^{\prime \prime}\left(0.008^{\prime \prime}\right.$ with a different pen). Other points to note are that the DMP-29 can deliver on paper, vellum or mylar (and so can be used to produce overhead transparancies) and that the plotter has on RS232C port. No wonder that the suppliers claim that it can handle NC tape verification, architectural drawings, business graphs and charts, engineering drawings, medical applications and more.
House of Instruments
Clifton Chambers,
62 High Street,
Saffron Walden,
Essex
CBIOIEE

Toroidal Transformers

Twenty-one low noise toroidal transformers appear in the 'Budget Range' manufactured by Cotswold Electronics. They all are fixed by a single hole (using a dished washer) and they can be supplied in the following power ratings: $30,60,100,160$ and 530VA. The toroids have two separate primary windings (to permit both 120 V parailel operation and 240 V series operation) and twin separate secondary windings to provide a range of output voltages including $2 \times 6,9,12,15,18,22,25,30,35,45$ and 50 V (RMS) - though naturally not from each VA size! Winding termination is via 150 mm long flexible leads.

Other aspects to note about these toroidal transformers are primary to secondary winding insulation to class E $\left(120^{\circ} \mathrm{C}\right)$; winding wire to Class $\mathrm{A}\left(105^{\circ} \mathrm{C}\right)$ and that their construction enables them to be operated for short periods at $120^{\circ} \mathrm{C}$ without deterioration. The transformers can also be operated in a 'derated'

condition that results in lower temperature rise and improved regulation. The nominal frequency is $50-60 \mathrm{~Hz}$ over an operating range of $47-400 \mathrm{~Hz}$, and the voltage tolerance is within 3\% at nominal input and full load. Cotswold Electronics Ltd., Unit T1,
Kingsville Road,
Kingsditch Trading Estate,
Cheltenham,
Glos.
GL5I 9NX.

Peripheral TV Connectors

A new type of peripheral TV connectors - SCART plug and socket connectors - are now available from Hesto (HenkelsStocko). These have been designed to enable TV receivers to be used as VDUs and they meet European Standard 50 1Q 049 and the German DIN-EN 50049. Design features include: leaf spring contact; reinforced contact blade; and cable assembly by multicrimping. They also incorporate an interlinking device that prevents unintentional disengagement of connectors. The basic technical data are: normal voltage of 35 V at 50 cycles; maximum current loading of 3 A at $20^{\circ} \mathrm{C}$ or 1 A at $70^{\circ} \mathrm{C}$ for single contact but 1.5 A at $20^{\circ} \mathrm{C}$ or 0.1 A at $70^{\circ} \mathrm{C}$ for all contacts; and the contact resistance is 25 mohms.

Audio Communications De-

 coderAnalogic's new MP1936 (patent pending) combines a 16 -bit DAC with a distortion suppressor in one compact unit that has been optimised to meet the criteria of such diverse digital audio communications systems as satellite downlinks and low-cost digital telephone equipment. It s ability to decode digital signals to analogue form with virtually no distortion - for example, giving a peak line distortion of less that- 86 dB on a full scale +5 V sine wave measured over the 20 Hz to 20 KHz audio band - results from the propietary DAC architecture that has been incorporated in the decoder. This is claimed to offer ultrahigh differential linearity as the output passes through zero volts which is where conventional DAC systems offen exhibit their largest errors at audio frequencies but

Hesto (Henkels-Stocko) Ltd, 21/23 Station Close,
Potters Bar,
Herts
ENG ITT
where the best performance is often demanded. The MP1936's nonlinearity near OV is quoted as typically $1 / 8$ LSB and it is said to drift by less than 1LSB even when the temperature changes by $60^{\circ} \mathrm{C}$. Also quoted is a calculated maximum nonlinearity after 3 years without recalibration - + 25 ppm FSR.
Of course, Analogic has also taken the step of providing all the necessary analogue support components - such as a distortion suppressor, a precision reference supply and power supply by-pass capacitors. The result, one fully tested unit that can handle four voice grade (32 kHz sampling rate) channels and can be used to decode a typical 60 kHz to 108 kHz PCM/FDM telephone baseband group.
Analogic Limited,
The Centre, 68 High Street,
Weybridge,
Surrey

We suppiy the complete system from antenna to video monitor, at the lowest price ever imagined for such a comprehensive system. View the entire globe on your video screen, or select any enlarged portion of the earth, for example Europe, as seen by the satellite from 20,000 miles above the earth. Both visible light picture and infra-red pictures can be selected, the latte giving useful temperature information.
Our complete system consists of the following items:

1. ANTENNA: 1.1 metre diameter parabolic dish with feed, supplied in kit form to reduce costs and make transportation easier.
2. ANTENNA PREAMPLIFIER: Gasfet low-noise preamplifier to be bolted onto the antenna, to overcome feeder losses and provide maximum sensitivity.
3. 1690 MBz CONVERTER: Frequency converter from 1690 MHz to 137.5 MHz to allow a conventional receiver to be utilised.
4. 137MEz RECEIVER: The FM receivers, which demodulates the received encoded signal. Orbiting satellites on the $136-138 \mathrm{MHz}$ band can also be received using this receiver.
5. DIGITAL FRAME STORE: The audio signal from the receiver is stored in a large Dynamic RAM memory, which then drives the monitor to provide a continuous display.
6. VIDEO MONITOR: A high quality black-and-white monitor, with 25 MHz bandwidth, ideal for displaying this type of image with excellent definition.
The above items are all that are necessary to obtain first-class pictures from Meteosat.

> ALL FOR£1295 + VAT

Individual items from the above system are also available.
Write or phone for further details
MICPDWAVE MODULES
BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, ENGLAND ${ }^{-}$ Telephone: 051-523 4011 Telex: 628608 MICRO G

WOOD \& DOUGLAS
 VHF/UHF COMMUNICATION PRODUCTS

Have you read the review in this issue of R\&EW of our 2M FM Transceiver kit?
Are you worried about spending that amount of money on such a complex kit?
Are you surprised that a BRITISH company can still produce equipment designs AND give a comprehensive friendly backup service for the complete range?
With W\&D products your worries are unfounded and to give you an extra confidence and incentive we are offering exclusive to R\&EW readers the following:

144PAC + 144FM10A (10W Amplifier) for $£ \mathbf{1 0 0 . 0 0}$ inclusive VAT/p\&p
 (This offer is valid until $31 / 8 / 83$ and please mention R\&EW in your order)

Ill you will need is a case, squelch and volume controls, speaker, microphone and a channel selector in BCD format.
Delivery on this offer as with all our product range is return of post providing stock at time of ordering.
Telephone your ACCESS or BARCLAYCARD order or post your cheque today to our commercial premises detailed below. Full detailed lists will be forwarded on receipt of a large SAE.
We know you will enjoy putting the modules together and if you can't make them work we will!
UNIT 13, YOUNGS INDUSTRIAL ESTATE, ALDERMASTON, READING, RG7 4PQ
Telephone (07356) 5324
$\sim_{\bar{\Delta}}$

MASYHR FTHCYMRNICS NOW!
 The PRAGMTCAT way!

You will do the following:

- Build a modern oscilloscope
- Recognise and handle curren electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'

- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment

New Job?NewCareer?NewHobby? Getinto Flectronics Now!

prop: al balley gawpo WPO GOMMUNICATIONS

ARE YOU BULLDING OMEGA?

Join the ever growing number of people building the unique kit form Project Omega HF Transceiver as currently being described in HAM. RADIO TODAY. Our answer to the high price black boxes for about $1 / 3$ the cost - a complete up-todate transceiver covering ALL 9 bands, SSB/CW with FM/AM options. The design is totally modular so you can build just a receiver, or CW only transceiver, or single/ multi-bank SSB/CW versions, and all in stages. The design features full CW break in, 5 or 50 watts (variable in each case), highly efficient Woodpecker blanker, IRT/ ITT, variable speed AGC, PLL synthesised VFO (1 MHz bands), digital readout etc etc. With the October issue (published September), Omega will be at the stage of a 9 band SSB/CW receiver, and in November, a 5 watt CW transceiver. All runs off +12 V .

Modules available so far are the IF unit@£69.50, Preselector at $£ 11.00$, Notch Filter@ $£ 11.20$ and Active SSB/CW Filter@ $£ 15.45$. Pcb's only are available with a copy of each article included. The low noise VFO (easily modded for 4CLF/3ZVC designs) will be available from early September@ $£ 64.00$ plus crystals at $£ 5.00$ each or $£ 40$ for the set of 10 , together with the LCD digital readout at $£ 31.00$. Diecast boxes/feedthroughs are extra for those modules which require them. Kits contain ALL pcb components, pots, wire drilled pcb's with a copy of the detailed constructional information. All potential builders are placed on our Omega Mailing list - write for more details.

PUT YOUR VEF MULTIMODE ON HF !!

A unique 3-band transverter design by G4DHF which avoids wasting all the facilities of your VHF multimode on one band only. This design converts 2 metres down to 20, 15 and 10 metres and effectively turns the VHF rig into an HF rig! 2 watts minimum output at HF, typically 3 watts, with 0.1 to 10 watts input at VHF. Features high level Schottky mixing and a broadband PA together with RF sensing (therefore only needs one connection to your VHF rig). Built on 2 pcb's making a compact transverter unit ideal for portable/mobile (runs off 12V) or QRP base station capable of driving a linear. Kit of parts includes both drilled pcb's, all components (3 bands) including air spaced preselector capacitor, but less crystals (one per band obtainable from OSL Ltd). Price $\mathbf{£ 6 1 . 0 0}$, or pcb pair only $\mathbf{£ 8 . 5 0}$. AND coming soon, a 3 band 160/80/40 metre version at same price

All prices include VAT/post. Allow 1-4 weeks for delivery if not in stock. MAIL ORDER ONLY. Post Office COD available over $\mathbf{E} 30$. More details of these and other Transceiver kits for SAE.
Tel. 079186149 . Export no problem
20 FARNHAM AVENUE HASSOCKS WEST SUSSEX BNG 8NS

NEW PRODUCTS

High Power Hybrid Op-Amps

Burr-Brown has introduced a new high power hybrid operational amplifier that is rated for continuous 80 W dissipation and can withstand peaks of more than 200W without damage. The OPA501 can deliver $\pm 10 \mathrm{~A}$ peak into a 2 or $2.60 h m$ load and $\pm 4 A$ continuous into a 5 or 6.50 hm load. Output current limiting circuitry is included to protect both the amplifier and the load should the amplifier be overdriven or a fault condition occur. Other specifications include a unity gain bandwidth of 1 MHz and a full power bandwidth of 16 kHz , typically. The input offset voltage against temperature is around
$\pm 10 \mathrm{UV} /{ }^{\circ} \mathrm{C}$ while the input bias current changes by $\pm 0.05 u \mathrm{~A}^{\circ} \mathrm{C}$. The input impedance is 10 Mohm (differential configuration) or 260 Mohms (common mode). Other important aspects of the OPA501 include an ability to operate from ± 10 to $\pm 36 \mathrm{~V}$ (so it can readily be inserted in existing circuits) and being hermatically sealed in a 8-pin T0-3 package, the outer can of which is electrically isolated from the amplifier circuitry. These op-amps can therefore be mounted directly on a chassis or heatsink.
Burr-Brown International,
Cassiobury House,
11/19 Station Road
Watford,
Herts
WD 1 IEA

Variable Filter System

The VBF/29 from Kemo is a 16 channel variable filter system that can be tuned either manually or from a computer via either a parallel or a serial interface. It should thus be ideal for use in automated instrumentation or signal processing systems. Each channel of the filter can be set independently over the range $0.1 \mathrm{~Hz}-100 \mathrm{kHz}$ (in fact 0.01 Hz is available as an optional lower limit) and its fine-tune facility offers 1023:1 resolution with decade multipliers.

A full range of filter options is available. For example, there is an anti-aliasing filter offering an attenuation of $135 \mathrm{~dB} /$ octave (factory set to either high-pass or low-pass characteristics) as well as a 90 dB /octave filter with switchable high-pass/low-pass response. Filler characteristics include Butterworth, elliptic and linear-phasetypes.
Kemoltd,
9/12 Goodwood Parade,
Elmers End,
Beckenham,
Kent
BR33QZ

Parallel Addressable Multiplexer

Rapid Recall has announced the availability of a new parallel addressable multiplexer I/O system known as PAMUX II, which is manufacturerd by the American company of OPTO 22. The PAMUX 11 is a freestanding circuit board that can be used with 8 or 16-bit data bus structures, the board itself accommodating OPIO 22 high density Quad Pak power I/O modules. A watchdog timer is

included as standard, while there is also potential for an anaolgue option with up to 48 A D and 8 D / A channels, both with 12-bit resolution.

On-board mechanical switches allow the address of each PAMUX Il board to be set individually and, as a result, up to 16 boards can be multiplexed to a single microcomputer parallel $1 / 0$ port. (This is achieved with the aid of a 50 -way connector daisy chain cable.) Thus, as there are a maximum of 8 Quad Pak modules on any board, up to 512 individual I/O functions may be acccommodated in one PAMUX II system.
Each Quad Pak device contains either four inputs or four outputs and some of them are $A C$ while the others are (naturatly) DC. Details are best obtained from Rapid Recall, but it is worth noting that all of them provide complete electrical isolation and can be used to control or monitor AC/DC motors, relays, solenoids etc directly.
Rapid Recall Ltd.,
Ropid House,
Denmark Street
High Wycombe,
Bucks

Electronic Soldering Iron
Light Soldering Development (Litesold) has announced the introduction of a soldering iron the temperature of which is controlled electronically. In other words, the EC50 has an electronic temperature control circuit mounted inside its handle that operates in response to a thermistor that is incorporated within the bit mount. Power to the 50 W heating element is controlled by a triac that is operated by a zero-voltage switching $I C$ to minimise spiking and attendant RF interference. The iron is fully earthed and so it can safely be used on electrically sensitive equipment and components. (The usual temperature restrictions on where the iron is applied still hold of course.)

A special feature of the design is that the low voltage supply which runs the control circuit is obtained by a novel means on which a patent is pending. However it is admitted that it involves fitting a dropper resistor in or near the handle. The value of this invention is that the handle of the iron remains sufficiently cool for electronic control to be feasible.

The power to the heating element is fully on or fully off outside a particular temperature band, but within that band power is
supplied in regular pulses, the interval between which remains the same but their length varies according to the difference between the 'actual' and the 'set' temperatures. This mechanism leads to very close termperature control with no swing or overshoot. The temperature is set via a control potentiometer and the available range is $280-400^{\circ} \mathrm{C}$ (standard setting is $370^{\circ} \mathrm{C}$).
Light Soldering Developments Ltd, SpencerPlace,
97199 Gloucester Rood,
Croydon
CRO2DN

NEW PRODUCTS

MANY ADVANCED DESIGNS TO SET THE PACE

- 13 cm TRANSVERTER system-0.5W linear O/P 2.8 dB $\mathrm{Nf}(0.9$ with preamp). Fully assembled- $£ 200$
- 23 \& 13cm Valve (2C39) LINEARS-150-25 Watts!
- 23 \& 13cm INTERDIGITAL FILTERS—a very high quality design- $3 \& 5$ pole-N cons. From $£ 41.86$
- Superb DIRECTIONAL COUPLERS-calibrated to $\pm 0.2 \mathrm{~dB}$ up to 13 cm - N cons.-in line- 2 KW - $£ 55.24$
- 23 cm MASTHEAD PREAMP Fully switched-GaAsFET design-DC supply via the feeder-£130-£150 (2 models)
- COAXIAL RELAY-35dB isolation 400W@ 23 cm £57.16
- 23cm Transverter System (kit)—5W O/P-4dBNF
$(<1 \mathrm{~dB}$ with preamp.)- $\mathbf{£ 1 8 1 \text { . Also } 1 0 \mathrm { W } 2 3 \mathrm { cm } \mathrm { PA }}$
(0.5W drive)- $\mathbf{£ 1 2 2 . 6 0}$
and many other very high quality RF assemblies and kits all designed to EXACTING STANDARDS.
Single item info SAE.
Full range in the NEW Catalogue-30p.

SSB Electronics \& EME Products

From:

PIPER COMMUNICATIONS

4 Severn Road, Chilton, Didcot, Oxon OX11 OPW
Telephone: 0235834328 . Evening calls welcome B4 9pm please

Special prices on surplus equipment

Racal RA17 Receivers High grade communications receivers $500 \mathrm{KHz}-30 \mathrm{MHz}$ in 30 effective bands. From $£ 175$. Eddystone receiver $730 / 4500 \mathrm{KHz}-30 \mathrm{MHz}$ in 5 bands £145. All in excellent conditior. Carr $£ 15$
Avo valve testers£ 30 p\&p £4.NEW 28 range digital multimeters $£ 40.25$. PCR Receivers LW/MW/SW Untested less PSU £20 p\&p £5. 12' Whip aerials £4 p\&p $£ 1.50$. Advance E2 Signal generators $\mathbf{1 0 0 K H z - 1 0 0 M E z} £ 40$ p\&p $£ 3$. Various single and double beam oscilloscopes, signal generators, valve testers, output meters etc always in stock.
Surplus circoits Book containing circuits and notes on many surplus receivers, transceivers etc. $£ 6.50$. Send 50 p for illustrated catalogue includes $£ 1$
voucher. Over 500 sets in stock. Avos amateur rigs WANTED for cash
New shop open at 218 St Albans Road.
Come and see the bargains
WEIRMEAD LIMITED. 129 St Albans Road. Wattord Herts
Telephone Watrord 49456 Access/Visa cards welcome.

Low Cost Potentiometer

Variohm Components is the UK agent for KIF Parechoc of Le Sentier, Switzerland, which has just introduced its Series 7040 potentiometer into the UK market. This device uses the Rolling Ball Wiper system but the manufacturer has still been able to fabricate it at relatively low cost. The advantages of this type of construction (as far as this potentiometer is concerned) are a standard linearity of 0.8%, a life expectancy of around 100,000 cycles at 40 rpm and a 'behind the panel' space requirement of only 6.6 mm .

Like its predecessor, the 714, the new unit is available with three different terminal configurations, details of which are best obtained from the suppliers. The 7040 can, of course, be mounted directly onto printed circuit boards.
Variohm Components,
The Cattle Market,
Watling Street,
Towcester,
Northants,
NN12 THN

Motherboards for VME Modules
Microsystem Services has announced the availability of two motherboards designed for use with the full range of VME bus compatible modules manufactured by Force Computers. These are known as the SYS $68 \mathrm{~K} / \mathrm{MOTH}-09$ and the SYS $68 \mathrm{~K} / \mathrm{MOTH}-20$ and they can accommodate up to 9 or 20 modules respectively. The data
transfer rate between modules can be anything up to 20 MHz .

The range of VME modules includes 8 MHz and 10 MHz CPU boards; a 512 Kbyte dynamic RAM board; a 512 Kbyte EPROM static RAM board; and a SASI interface board, floppy and Winchester disk controllers, a serial I/O board, and a network communications board (While the former are already available from MSS, the latter group are being added to the firm's range.) A full screen orientated editor/assembler, together with an extended BASIC interpreter for the CPU board, is also available. The VME modules are plugged into the motherboards via 96 pin connectors (DIN 41612C), while goldplated 'fast-on' connectors are used : to provide the required external power to the motherboards.
Microsystem Services,
P.O.Box 37,

Lincoln Road
Cressex Industrial Estate,
High Wycombe,
Bucks
HP123XJ

STANDARD FEATURES:

Green phosphor screen
Conventional keyboard legended for all functions
10 user memories for transmit text
preparation
Transmitreceive CW (morse) and RTTV (teleprinter)
Char by char, and 'page' transmission modes Full duplex working
Users callsign programmed
Self check facility
Printer port (parallel, centronics compatible) External video port
PTT control
Phase coherent AFSK generator Real-time clock

CONTACT US TODAY at POLEMARK Limited, Lower Gower Road, Royston, Herts SG8 5EA. Tel: Royston (0763) 47874. Or call at one of our dealers listed below:

STOP PRESS: Northern Communications, South Wales Communications Ltd., Graig-y-Master, 373 Uxbridge Road, Claremount, Halifax, W Yorkshire
enycaemarw, Nr. Usk, Gwent
Tel: 01;992 5765

SSTV board to be available in the Autumn
el. Wolvesnewton (02915) 552

Precision RF Measurement The new HP8902A from HewlettPackard is a fully programmable measuring receiver with which to determine RF power, tuned RF level, modulation and RF frequency to a high degree of accuracy. For example, in combination with a HP11722A sensor module, it can measure power from -20 to +30 dBm at frequencies from $100 \mathrm{~Hz}-2.6 \mathrm{GHz}$, while the HP8902A can also determine filter rejection of over 100 dB in seconds when it is being used to test transmitter multiplexers in a cellular radio base station, for instance. At the same time, the instrument is also expected to make a very useful lab-
oratory or production tool because it offers all the functions of power, level, frequency count, modulation and audio anaylsis. The combined dynamic range of the tuned $R F$ level function and the built-in power meter is 157 dB and it can thus be used to characterise a signal generator over its entire dynamic range $(+30 \mathrm{dBm}$ to $-127 \mathrm{dBm})$ easily and with a great deal of precision.
Hewlett-Packard Ltd (Literature
Section),
Eskdale Road,
Winnersh,
Wokingham,
Berks
RGI1 5DZ

SRURCTRTONIC

Radio, TV and Radio Communication Specialists

934 MHz UHF Radio Equipment

An easily installed radio system, with uses for small businesses, from home to small boats and a useful home to car two-way private radio system. Range available from this equipment mobile to base 10-15 miles; base to base up to 100 miles (conditions permitting).
We have in stock the full range of Reftec equipment, i.e. Mobile Transceiver MTR 934/1 plus full range of aerials and fittings, etc.
\star STOCKISTS OF AMATEUR RADIO EQUIPMENT: Yaesu, Trio, F.D.K. Tonna, Jaybeam, Revco etc.
\star REPAIR \& MODIFICATIONS BY EXPERIENCED \& QUALIFIED STAFF
\star CREDIT TERMS AVAILABLE
\star STOCKISTS OF THE NEW TANDY 100 PERSONAL COMPUTER

For further information please ring Mike Machin on (0268) 691481

Tandy

BARGAIN OFFER

Annual Bound Volumes
Radio \& Electronics Constructor

Each of these handsome bound volumes contain more than 150 practical articles in their 100-800 pages of text, published in 12 monthly issues of R\&EC.

12 monthly issues to August 1978 (Volume 31), 1980 (Volume 33)

Only £4.95 each inclusive of post and packing.
Volume 33 contains Ian Sinclair's Databus Series -
How Microprocessors Work; Selection \& Bussing, CPU Registers; Addressing Memory; The Accumulator; Inputs and Outputs; Interrupts; Status
Register; Signed Binary Arithmetic; Computing Languages.

12 monthly issues to July 1974 (Volume 27), 1975 (Volume 28), 1976 (Volume 29).
Only £3.95 each inclusive of post and packing.
Subjects cover - Amplifiers, Amplifier Ancillaries, Calculators, Electronics, 'In Your Workshop', Receivers, Receiver Ancillaries, Television, Test Equipment etc. etc.

Vols 30 \& 32 Sold Out

Please send remittance payable to
'Radio \& Electronics World' stating volumes required to:
DATA PUBLICATIONS
45, Yeading Avenue,
Rayners Lane,
HARROW
Middlesex HA2 9RL

COMPLETE, full-size sets any published service sheets $£ 2+$ large s.a.e. - except CTV's/Music Centres from $£ 3+$ large s.a.e. Manuals from 1930 to latest. Quotations, free 50p magazine, price lists, unique technical publications, for large s.a.e. Repair data/circs almost any named TV/VCR, $£ 8.50$ by return. Tisrew, 76 Church Street, Larkhall, Lanarkshire, ML9 1HE. Phone: 0698-883334.

934 MHz . Convert your set (Reftec) to 40 ch . At 25 kHz . Kit of parts and full instructions $£ 15$. PC49. 4 Haddington Street, Hove, Sussex, BN3 3YQ.

FUBA super quality universal UHF TV aerial CLOU 45 with AKV145 internal amplifier. Both mint and boxed. Ultimate compact aerial for DXTV. $£ 45$. Phone: 01-888-1909.
WOLSEY Colour King wideband UHF TV aerial. Mint and boxed. £15. Telephone: 01-888-1909.
AUDIO JUMBLE (Bayswater). Including CYCLE JUMBLE/MUSIC JUMBLE. Once only secondhand bazaar, Saturday 8th October, 1 p.m. to 4.30 p.m. St James' Hall, Gloucester Terrace, London W2. (Near Lancaster Gate tube). Sell off your unwanted equipment - immediate stall bookings half-price!! S.A.E. to 67 Liverpool Road, London N1 ORH. (Phone; 01-837-7811).
AUTO TRANSFORMER $110 / 230$ rated $3,000 \mathrm{VA}$, weight 32 lb , uncased. $£ 15.00$ o.n.o. Hayes, 78 Neptune Motel, Hythe Road, Dymchurch, Kent.

ZILOG Z8000 DEVELOPMENT

 MODULE. Cost $£ 1350$. Accept good over over half price. Telephone: 01-794-7204.OSCILLOSCOPE. Heathkit Model IO103 with dual beam electronic switch unit Model ID-101. Price $£ 95.00$. Phone: 01-794-7204.
NATIONAL PANASONIC. Auto stop stereo cassette deck RS-26OUSD. £35.00 o.n.o. Box No. 37.
ADVERTISING USED EQUIIPMENT is fast and easy with List-a-Rig. Send $£ 1$ for every 40 words or less for immediate entry. For a copy of the latest list send 2 first class stamps. G3RCQ, 65 Cecil Avenue, Hornchurch, Essex.

SELLING Yaesu FRG7000 14 months old in mint condition, $£ 150$. Buyer collects. Consider exchange $22^{\prime \prime} / 26^{\prime \prime}$ colour TV in good condition and $£ 100$ cash. 50 Midfield Court, Thorplands, Northampton.

WANTED: 'Radio \& Electronics Constructor', Volume No.17. £6 plus postage. Dr. Cowan, 51 Wellington Street, Oxford, OX2 6BB.

SCARBOROUGH. Derwent Radio for Communications receivers, new, second hand. Good trade-in. Thousands of components, books, magazines. 5 Columbus Ravine, Scarborough. Tel: 0723-65996.

INTRODUCTORY OFFER: Solid state relay 240VAC@ 25 amps. List price $£ 14.95$. Our price $£ 2.95$ or 2 for $£ 5.00$. 150 top quality IC's in manufacturers tubes (complete with data) plus 10 red LED's and 2 opto-isolator IC's (worth $£ 2.50$ alone) for only $£ 6.00$. Prices include VAT and UK postage and a copy of our 50 page catalogue No. 20 , packed with thousands of mechanical and electronic bargains. J.A. Crew \& Co., Spinney Lane, Aspley Guise, Milton Keynes, MK178JT.

AMATEUR ANTENNA Silver $70-70 \mathrm{cms}$ 16dbd Gain Beam f31.95. Tiger LY6 9 dbd 2 Metre Beam £12.95. Tiger LY8 11 dbd 2 Metre Beam £19.50. Tiger LY10 14 dbd 2 Metre Beam £32.95. Two Year Guarantee on Above.
ZL12 Mk2 13 dbd Gain Beam Antenna £32.95. ZL8 Mk 29 dbd Gain 5'-7"'Long Boom £19.95. All above have Stainless Steel Parasitic Elements.
Norcone 512 Wide Band Discone Antenna £25.95.
Securicor Delivery (Extra) $£ 4.50$. Send cheque or money order today, made payable to ANT PRODUCTS or write enclosing SAE for full details. Ant Products, All Saints Industrial Estate, Baghill Lane, Pontefract, West Yorkshire. Tel: 0977700949.

007 SPY. Lets you stop and copy any Spectrum cassette. One cassette £3. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
CONVERT ANY TV into large screen oscilloscope. External unit plugs into aerial socket of any TV. Uses approx $£ 12$ of easily obtainable components. Circuit \& Plans £3. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
AIRCRAFT COMMUNICATIONS HANDBOOK. (UK/Europe) including spot MF, HF, VHF, UHF frequencies, Military \& Civil airports, air traffic control centres, long range stations, meteorological broadcasts, broadcast times, navigation beacons, coordinates, call signs, maps, etc. $£ 7.50$. p\&p E1. PLH ELECTRONICS, 70 Vallis Road, Frome, Somerset, BA11 3EJ.

CLASSIFIED ADVERTISEMENTS

Advertisements must be prepaid and all copy must be received by the 4 th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers.

Underline words required in Bold type. Your name, address, and/or telephone number, if to appear, must be paid for. Telephone numbers count as two words. Please use BLOCK CAPITALS. Advertisements are accepted on the understanding that the details stated comply with the conditions of the Trade Description Act, 1968. - Cancellations must be notified by telephone or in writing by the 6 th of the month preceeding publication. Replies to Box Numbers should be addressed to: Box No. - RADIO and ELECTRONICS WORLD

Where advertisements offer any equipment of a transmitting nature, readers are reminded that a licence is normally required.

Rate: 12 p per word. Minimum charge $£ 2.00$
Box No. 30p extra
Send your copy to RADIO \& ELECTRONICS WORLD, Classified Ads., 45 Yeading Avenue, Rayners Lane, HARROW, Middlesex. Tel: 01-868-4854.

SAVE IT!!! Save £ffs when you buy our superb bargain box of assorted full spec. components. ALL NEW guaranteed at least 500 items for only $£ 8.50$ inclusive. Please allow up to 28 days for delivery. Fullers Supplies, 22 Verder Grove, Heronridge, Nottingham, NG5 9BH.
RADIO AUSTRALIA, Peking, Canada, Voice of America. A Vega 206 ($6 \times$ SW/ MW/LW) pulls these and dozens more. £23.45. Year's guarantee. Return despatch. Radiowatch, Building 109, Prestwick Airport, KA9 2RT.

FOR SALE. Pair Hi-Fi stereo headphones, Howland West Audio CIS-550. £10.00 o.n.o. Box No. 36.

AC LINEAR CIRCUIT ANALYSIS PROGRAMS for Sinclair Spectrum (48K), BBC Model B and Grundy NewBrain microcomputers. Analyses circuits with up to 16 nodes and 60 components. Very easy to use. Cassette $£ 35$. To order - send cheque or telephone your name, address and Access or Visa number. Number One Systems, 9A Crown Street, St. Ives, Huntingdon, Cambs. Tel: St. IVes (0480) 61778 (24 hour answering).

DIGITAL WATCH REPLACEMENT PARTS. Batteries, displays, backlights, etc. Also reports, publications, charts, S.A.E. for full list. Profords, Copners Drive, Holmer Green, Bucks. HP15 65GF.

PHOTO TECHNICS for precision PHOTO TECHNICS for precision
photographic services, artwork reduction, step and repeats, accurate secondary masters and drawing restorations. Complete circuit design and layout. Telephone: Paignton (0803) 559595.

ZX81 EPROM PROGRAMMER. Program, copy, verify, List-2516, 2716, 2532, 2732 type eproms. Uses simple peek and poke commands. Copies and checks 4096 bytes in 430 seconds. Also enables user to run $8 k$ of eprom based software. Fully built, boxed and guaranteed with software and instructions. $£ 75+£ 1$ p\&p. SAE for details to: JC Barker, 26 Topcliffe Mews, Morley Yorkshire, LS27 8UL.

Jake me to your oNewsagent!

Newsagents often run out of copies of R\&EW simply because it is the best value for money electronics magazine around. To make sure you don't miss a single issue, why not fill out the coupon and your newsagent will reserve a copy of every month's magazine ready for you to pick up at your leisure. Fill out the coupon NOW and drop it in when you pick up your morning paper.

Back issues of R\&EW are available from: R\&EW Back Numbers Dept., 45, Yeading Avenue, Rayners Lane, HARROW, Middlesex HA2 9RL. Tel: 01-868-4854 All issues, with the exception of January 1982, are still available. All orders must be prepaid, the cost of each issue being $£ 1.00$ inclusive of postage and packing. Photocopies of specific articles can be provided. The month(s) in which the article appeared must be stated. Due to the high staffing costs involved in providing this service we regret that we must charge $£ 1.00$ per article. Again, all orders must be prepaid.

Ơubscriptions

If you want to be sure of getting your copy of Britain's most informative Radio/Electronics magazine, PLAY SAFE \& SUBSCRIBE.
Fill in the form below and send to: R\&EW Subscription Dept., 45, Yeading Avenue, Rayners Lane, HARROW, Middlesex. HA2 9RL. Tel: 01-868-4854

An End of Term Repart

This issue marks the end of the second volume of R\&EW and, as hinted in the last issue, we've been taking a look at the way we're going.

One of the first things you will have noticed is that we have shifted publication date from the first Thursday of the month preceeding the cover date to the the third Thursday of the month preceeding the cover date. The reason is simple: R\&EW was appearing as much as two months ahead of cover date, frequently being taken off sale before the date shown on the cover. This was leading to a degree of confusion in the minds of everyone from your friendly local newsagent to our beloved advertisers, not to mention the staff of the magazine itself.
If we had the nerve, we might have even published on the first Thursday of the cover date month, but even we aren't brave enough to flout such time honoured conventions.
We also hope to use this shifted date to emphasise the fact that R\&EW operates to the tightest news schedule in the monthly market.

Philosophy

The only thing that we seem able to conclude from the surveys we have carried out into the nature and likes/dislikes of our readership is that the readership of the magazine is as broad as the content. Few readers actually undertake many of the projects in a 'personal' capacity, citing time and 'lack of test equipment as the major problems. Notwithstanding the agonies and efforts that go into the compilation of these types of feature, we're tailoring the approach to our practical features to accommodate the restrictions under which our readers find themselves working.
But perhaps one of the most significant but uncited problems for our readers is the fact that the modal age band is between 25 and 35 . Those of us in this bracket are painfully aware of the costs of operating a home/wife/kids, let alone the luxury of running a costly hobby and the problem of finding the time without incurring our partner's wrath.
As usual, the surveys revealed that a prime mover in occasioning practical motivation is the possibility of achieving a performance that compares the cost of DIY favourably with the cost of the equivalent item courtesy of Messrs. Japanese. Educational interest wasn't perhaps as fully evaluated in the format of the questionnaire as might have been.

Volume 3 is just around the corner - and we shall be bearing in mind many of the points you've raised over the last two years as we continue in our aim to bring you the up-do-date magazine that looks at the forefront of electronics and communications technology.

FREOUSNCY COUNTERS MIGH pasformanct HIGH RELIABILITY
 LOW COST

The brand new Meteor series of 8 - digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$
* Low Pass Filter
- Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5ppm
* High Accuracy
- 3 Gate Times

PRICES (Inc. adaptor/charger, P \& P and VAT)

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.07$
METEOR 600	$(600 \mathrm{MHz})$	$£ 133.97$
METEOR 1000	$(1 \mathrm{GHz})$	$£ 184.57$

为

* Battery or Marns
* Factory Calibrated
* 1-Year Guarantee
* 0.5" easy to read L.E.D. Display
lilustrated colour brochure with technical specification and prices available on request

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Resistors ． \& \[
\begin{array}{lll}
22 \& 100 \& 11 p \\
2 \& 2 \& 350 \\
3 \& 350 \& 30 p \\
3 \& 35 \& 10 p
\end{array}
\] \& \[
\left\lvert\, \begin{aligned}
\& \text { Single sided } \\
\& 100 \\
\& 100 \\
\& 100 \\
\& \hline 1.200 \\
\& \hline 1.55 \\
\& \hline
\end{aligned}\right.
\] \& \[
\begin{array}{ll}
\text { 2N2905 } \& 28 \mathrm{p} \\
\text { 2N2005A } \& 29 p \\
\text { 2N2906 } \& 25 p
\end{array}
\] \& \& \[
\begin{array}{ll}
\text { BC547A } \& 14 \mathrm{p} \\
\text { BC547B } \& 14 \mathrm{p} \\
\text { BC548 } \& 120
\end{array}
\] \& \multicolumn{7}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
CRICKLEWOOD ELECTRONICS LTD． \\
40 Cricklewood Broadway，London NW2 3ET．Tel．01452 0161．Tlx． 914977. \\
Here＇s a selection from our vast stocks．Full price list free on request．Orders by＂phone qudting credit card no．or by mail order．Callers welcome．All products first grade franchised source． All in－stock items despatched same day Official orders welcome from GDvt．Depis，schools，etc \\
Please add \(60 \rho \mathrm{p} 6 \mathrm{p}+15 \%\) VAT．Overseas orders no VAT but allow C 2.00 mm ．p\＆p． Quantity discounts negotiable． \\
TRY US NDW－WEVE GOT WHAT YOU NEEO．
\end{tabular}}} \\
\hline \& \& \begin{tabular}{lll}
100 \& 220 \& 190 \\
203 \\
233 \& 129 \& 1.85 \\
220 \& 399 \\
\hline
\end{tabular} \& \& \[
\begin{array}{ll}
40673 \\
40822 \& 180 \\
4007
\end{array}
\] \& \& \& \& \& \& \& \& \\
\hline NOISE \& \begin{tabular}{l}
437 \\
47 \\
4 \\
4 \\
\hline
\end{tabular} \& Double sided \& \& \({ }^{79 p}\) \& \& \& \& \& \& \& \& \\
\hline \& \& （100 \& \({ }_{\substack { \text { cha } \\ \begin{subarray}{c}{250 \\ 150{ \text { cha } \\ \begin{subarray} { c } { 2 5 0 \\ 1 5 0 } }\end{subarray}}\) \& \& \({ }^{\text {8C549 }}\) \& \& \& \& \& \& \& \\
\hline \& \& 233． 220 \& \({ }_{\text {2N2 }}\) \& \& \& \& \& \& \& \& \& \\
\hline 2WE12 12p \& \[
\begin{array}{lll}
10 \& 25 \\
10 \& 25 \\
10 \& 80 \\
10 \& 120
\end{array}
\] \& above ldo not \& \& \& \({ }^{\text {BC557 }}\) \& \& \& \& \& \& \& \\
\hline METAL \& （rrer \& \& \begin{tabular}{ll}
2 N3354 \& \(56 p\) \\
\(2 \times 3055\) \\
\hline \(60 p\)
\end{tabular} \& 1 p \& \multirow[b]{2}{*}{} \& \& \& \& \& \& \& \\
\hline \& \multirow[t]{2}{*}{uFd v} \& \multirow[t]{2}{*}{ebcable} \& \multirow[t]{2}{*}{} \& \[
\begin{array}{ll}
\text { AC152 } \& 45 \mathrm{AD} \\
\text { AC } 153 \& 55 \mathrm{~F}
\end{array}
\] \& \& \multicolumn{7}{|l|}{} \\
\hline Cow 1 l MM \& \& \& \& AC153K \& \multirow[t]{2}{*}{¢} \& \multirow[b]{2}{*}{J300

3130} \& Diodes \& \& \& 56 \& \multirow[t]{2}{*}{} \& $4518{ }^{39 \mathrm{p}}$

\hline 24 5p \& \multirow[t]{2}{*}{$$
\begin{array}{rrr}
22 & 25 & 11 \mathrm{p} \\
20 & 40 & 14 \mathrm{p} \\
22 & 63 & 16 \mathrm{p} \\
22 & 100 & 21 \mathrm{p}
\end{array}
$$} \& Prices per Metre Solid conneciing

whe $5 p$ \& \& \& \& \& 134A \& ${ }_{\text {S }} 508188001550$ \& ${ }_{\text {TBAS }}$ TBA \& 597 ${ }_{59}{ }^{29 p}$ \& \& \multirow[t]{2}{*}{}

\hline \& \& \& \& \& \multirow[b]{2}{*}{${ }^{178}$} \& \multirow[b]{2}{*}{} \& \& \& \& \& \&

\hline Low or \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{2N34422 ${ }^{\text {2NA }}$} \& \& \& \& \& 001 1200 50p \& \multirow[t]{2}{*}{} \& \& （talsel \&

\hline \& \& \& \& \multirow[t]{2}{*}{} \& BC560
BE560C
$\mathrm{BC65}$ \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{（1）} \& \& \& \& \multirow[t]{2}{*}{（tas} \&

\hline 2411 \& \& Cote $2,{ }^{\text {\％amp }}$ \& 2n346 \& \& \multirow[t]{2}{*}{} \& \& \& PW00（400） 950 \& \multirow[t]{2}{*}{} \& \& \& 4532
4534
459.96

\hline \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| 3 Core 6 amp 31p |
| :--- |
| 3 Core 13 amp |} \& ${ }_{\text {2N3448 }}^{2 \times 34}$ \& \& \& \multirow[t]{2}{*}{} \& （1） \& \& \& \& \multirow[t]{2}{*}{} \&

\hline ONCER \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 2 \mathrm{~N} 351212 \\
& 2 \mathrm{~N} 355 \mathrm{~s}
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{ll}
\mathrm{BC} 107 \mathrm{~A} & 12 \mathrm{D} \\
3 \mathrm{C} 107 \mathrm{~B} & 12 \mathrm{P}
\end{array}
$$

\]} \& \[

$$
\begin{array}{ll}
\text { BCY70 } & 16 p \\
\text { BCY77 } & 169 \\
\text { BCY72 } & 190 \\
\text { BCO131 } & 190
\end{array}
$$
\] \& \& Nata \& der \& \multirow[t]{2}{*}{（tasele} \& \& \& \multirow[t]{2}{*}{}

\hline EWATT \& $$
\begin{aligned}
& 100 \\
& 100 \\
& 100 \\
& 100 \\
& \hline 000
\end{aligned}
$$ \& 56p \& \& \& \multirow[t]{2}{*}{} \& \& （1） \& clad wirh \& \& \& \multirow[t]{2}{*}{} \&

\hline 析 \& \& Screened Cable Single \& \multirow[t]{2}{*}{} \& $$
\begin{array}{ll}
3 C 1078 & 12 \mathrm{p} \\
\mathrm{BC108} & 10 \mathrm{p} \\
\mathrm{BC} 198 \mathrm{~A} & 12 \mathrm{p}
\end{array}
$$ \& \& \& \multirow[t]{2}{*}{} \& 12 \& A560C \& \& \&

\hline WA \& \multirow[t]{2}{*}{$\begin{array}{llll}220 & 25 & 22 \mathrm{p} \\ 220 & 40 & 25 p\end{array}$} \& （erer \& \& \& \& \& \& \& 39 \& （tar \& \& ${ }^{45565}$

\hline 101011 WATT \& \& \multirow[t]{2}{*}{} \& \& BC108C
881409
881090 10 \& 80136

$8 D 137$ 80138 \& \multirow[t]{2}{*}{（1）} \& （1） \& \& （003 3 39d \& \& \multirow[t]{2}{*}{| 74.52939 |
| :--- |
| 7445323 |
| 7 |} \& | 45560 |
| :--- |
| 4.49 |
| 4566 |

\hline ${ }^{33 \mathrm{~K}}$ \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{BDO 38
80
BDI 140} \& \& \multirow[t]{2}{*}{（1NS500} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{TDA 1005 3．94} \& \multirow[t]{2}{*}{} \& \&

\hline \& | 470 | 16 |
| :--- | :--- | :--- | :--- |
| 470 | |
| 420 | 25 |
| 280 | | \& ${ }_{4}^{4}$ Core 4 Screens 148 \& \& \& \& （1）MJE330 \& \& \& \& \& \&

\hline Prestis \& \multirow[t]{2}{*}{470
470
770} \& 5 \& $c2N370237708$ \& BC 141
BC 142 \& ${ }_{80}$ \& \& \& \& \& \& ${ }_{74} 7$ \&

\hline otany pots \& \& \& ${ }_{2}^{2 N}$ \& ${ }^{\text {BC143 }}$ \& \& \& iNS406 ${ }^{\text {Pap }}$ \& \& ＋1061 400 \& \& ${ }_{7415}^{74.53}$ \& Locic

\hline NOL \& 1000 \& | Aerral Cable |
| :--- |
| 50.1 | \& P \& ${ }_{\substack{10 \\ 10 \\ 10}}$ \& 80240A 590 \& ${ }^{\text {250 }}$ \& （1） \& \& \& $74188{ }^{2} 2.50$ \& 74 \&

\hline \& （1000 \& ${ }^{\text {755 UHF }}$ \& ${ }_{\text {2N371／}}^{2 \times 13}$ \& \& 73． \& ${ }^{29}$ \& insore \& \& 50p \& \& 74 \& ${ }^{1802}$

\hline 2 M \& \& \& ${ }_{3.31}^{298}$ \& \& ${ }^{677^{6}}$ \& \& 1594

SAL \& （15p \& 边 \& \& \& | 2650A | |
| :--- | :--- |
| | |
| 6502 | |
| 1.929 | |
| | 1.24 |

\hline （06 \& $220025 \quad 63 \mathrm{P}$ \& Wibb \& \& ${ }^{12 p}$ \& \& \& \& 15 \& $25 p$ \& \& \&

\hline \& ${ }^{22000} 400000000$ \& \& \& 13 p \& ${ }^{728}$ \& \& （er \& \& ${ }^{39}$ \& \& 74 \&

\hline 791 \& 4770016 \& 8 \& ${ }^{389}$ \& 100
120

120 \& \& ${ }_{49}^{498}$ \& BA \& \& \begin{tabular}{ll}
JAA 70

UAA 80

\hline 1.69

\hline 1.69

 \& \& \&

6．49

\hline 18
\end{tabular}

\hline \& \& in Way
16 Way
290
390 \& 2N321

2N3822 \& \& \& \& \& 1 \& \& \& | 7415386 |
| :--- |
| 7415390 |
| 7 |
| 1450 | \&

\hline \& RADIALS IPCB \& 20 Way 48 p \& 45 \& ${ }_{\text {BC } 1523}{ }^{35 p}$ \& 14 \& \& ${ }^{250}$ \& | 25p |
| :--- |
| 270 |
| 20 | \& UPC575C2 ${ }^{\text {U }}$ \& ${ }_{74221} 73 \mathrm{p}$ \& \& 2085

\hline \& Marsushlut on \& \& $\begin{array}{ll}\text { 2N3824 } & 1.70 \\ \text { 2N366 }\end{array}$ \& ${ }^{278}$ \& 20 \& \& （eas \& Y10 278 \& XR2206 2.92 \& \& ${ }_{74}^{74} 5$ \& ${ }_{\substack{20.00 \\ 2.98}}^{2}$

\hline \& ${ }^{\mu} \mathrm{FH}$ \& ay 82 p \& ${ }^{135}$ \& 120 \& 150 \& \& \& －arge clea \& \& \& ${ }_{741} 74$ \&

\hline \& 22 \& Way 88 \& 13 \& \& 231 \& \& \& ${ }_{170}^{170}$ \& ZN1034 1.99 \& \& ${ }^{7415}$ \& membries

\hline \& 22 \& \& \& \& 2.46 \& \& ${ }_{2}^{250}$ \& \& 74 Til \& \& 990 \&

\hline \& $$
\begin{array}{llll}
47 & 10 & 7 p \\
47 & 10 & 7 p \\
80
\end{array}
$$ \& Rechahgeas \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& 69p \& ${ }^{\text {BCCI59a }}$ \& gop \& \& \& \& 2400 110 \& \& \&

\hline \& \& tor duad \& \& \& 919 \& \& ${ }_{\text {BAV20 }}{ }^{\text {BA5 }}$ \& $250 \quad 380 \quad 290$ \& \& \& 1564 99p \&

\hline E3S \& \& \& \& \& ${ }^{80442} 9830$ \& \& \& ${ }^{150} 4$ \& ${ }_{7004} 1208$ \& \& cmos \&

\hline ${ }_{0} 500 \mathrm{~K}$ \& \& \& 2Na34 $\quad 2.26$ \& \& \& \& \& \& \& \& \&

\hline \& 100010 \& HP20 2 Aht 210 \& \& BC167a \& ${ }_{80535} 75$ \& 59p \& \& \& \& \& 108 \&

\hline \& ${ }_{2200}^{1000}$ \& ＋10 \& ${ }_{30 \mathrm{p}}^{33 \mathrm{p}}$ \& ${ }^{\text {BCI } 16788}$ \& 80 \& 2.30 \& 1.26 \& \& 814 p \& \& 1002119 \&

\hline \& \& \& \& 10 \& ${ }^{800}$ \& 2.50 \& \& \& ${ }^{148}$ \& \& \&

\hline E12 MICROM \& \& \& \& ${ }^{\text {BC }}$ \& ${ }^{80}$ \& 35 \& BY22 \& \& ${ }^{165}$ \& \& 320 \&

\hline \％ \& FORMERS \& \& ${ }_{80}$ \& \& \& 35 \& \& \& \& \& \&

\hline \& \& \& 2N4877 \& ${ }_{\text {BCL } 1998}$ \& 1.20 \& 820 \& －8Y293 \& AY15050 950 \& 25p \& \& \& 74151988 ${ }^{2} 2.25$

\hline \& \& \& \& ${ }^{165}$ \& ${ }_{770}^{720}$ \& \& DAA \& \& ${ }^{9 p}$ \& \& ＋017 150 \& ${ }_{74152}^{74152}$

\hline \& 15 \& ${ }_{\text {cosem }}^{\text {TYPEN }}$ \& 2N4503 198 \& \& \& 500 \& \& 15 \& （190 \& \& $801446{ }^{4}$ \&

\hline \[
$$
\begin{aligned}
& 250 \\
& \text { inf }
\end{aligned}
$$

\] \& ${ }_{\text {A }} 955$ \& \& \& \& \& | 50p |
| :--- |
| 500 |
| 750 | \& | OAPS | |
| :--- | :--- | :--- |
| OA200 | 200 |
| 200 | | \& AOC $\begin{aligned} & 280 \\ & 3 \\ & 3\end{aligned}$ \& ${ }^{198}$ \& \& \& misc logic ics

\hline ${ }^{80} 21047 n$ \& \& \& 2 N \& \& 1.32 \& \& OA202 20 p \& （ 7 c \& 19p \& \& \&

\hline \& 12012 \& \& 3.15 \& \& 80x 88 \& ${ }^{35}$ \& \& 390 \& \& ${ }^{7} 7115451$ 359 \& ${ }_{9}{ }^{850}$ \& C0877

\hline \& \& TYPEA \& $\begin{array}{ll}\text { 2n4909 } & 2.90 \\ \text { 2Na18 }\end{array}$ \& \& \& \& \& | H41366W |
| :--- | \& ${ }^{268}$ \& \& \&

\hline \& － 6 cova 895 \& ， \& ${ }_{75 \text { ch }}^{655}$ \& BC \& \& ${ }^{3}{ }^{3 p}$ \& \& | 2.54 |
| :--- |
| 685 | \& $14 p$ \& 74457318 p \& \& 251

\hline nf to 390 nF \& \& soldering \& 85 \& \& \& ${ }^{38}$ \& 4.86 \& 1C17107 $\quad 950$ \& 22p \& \& \& SAA5

\hline \& \& \& （1） $\begin{aligned} & \text { 2N4921 } \\ & \text { 2N4922 }\end{aligned}$ \& BC182L 100 \& \& 42p \& rexas 10220 \& \& ${ }^{25}$ \& 74 \& \&

\hline OMF to 560 \& \& ANTX SELD \& ${ }^{2 N} \mathbf{2 N 4 5 2 3}$ \& \& 12p \& ${ }^{78 p}$ \& 200V \& \& ${ }_{\text {che }}^{219}$ \& \& \& SAAS5020 $\quad 7.50$

\hline － \& \& \&	$2 N 5086$
$2 N 5087$	
290	
390	\& \& \& \& 300 \& ${ }_{\text {cki }} \mathrm{CL}$ \& 7440

7441
750
750 \& 774 \& \& SAA 5 S30
SAES040

\hline m） \& cifference \& \& \& \& ${ }_{\text {BF }}^{\text {BF } 197}$ \& \& － 400 V \& （C） \& \& 744 \& \&

\hline \& veroboard \& \& \& ${ }_{8 C}{ }_{8 C}$ \& \& \& \& LC \& \& ${ }_{7415} 74$ \& \&

\hline 析 \& \& \& ${ }^{68}$ \& ВС1834 \& 1.49 \& ${ }_{39} 29$ \& TIC106A 46p \& \& \& \& \&

\hline ${ }_{\text {5nF }}$ \& \& \& 900 \& \& ${ }_{3}^{32}$ \& \& ${ }_{\text {Hex }}$ \& LF351 4 47p \& \& \& \&

\hline \& ${ }^{375}{ }^{\text {83p }}$ \& \& \& \& ${ }_{\text {BFF240 }}$ \& 55p \& \& \& \& \& \& 20

\hline \& 375 \& \& ${ }^{2 N 5246}$ \& \& St \& \& \& \&	7450
7451	
750	
150	\& \&
:---	
4037	
1.13	\& ${ }_{8975}^{8795}$

\hline \& $\bigcirc 99$ \& \& ${ }_{46 p}^{45 p}$ \& ${ }^{\text {BC184C }}$ \& ${ }^{39}$ \& ${ }_{1.40}^{1.20}$ \& 1C1168 680 \& ${ }^{1+3999}$ \& 7453150 \& \& \& （1）

\hline \& 375－17 3.85 \& No 51 Meci） 85 \& 边 488 \& \& 5 \& ${ }_{158}^{157}$ \& \& ${ }_{62 \mathrm{p}}$ \& | 7454 | 140 |
| :---: | :---: |
| 7860 | |
| 150 | | \& \& \&

\hline \& 4，${ }^{\text {a }}$ \& \& ${ }_{98}$ \& ${ }_{\text {BC1 } 18412}{ }^{148}$ \& \& 4p \& 16m sop \& \& ${ }_{7470} 748$ \& \& \&	811598
6522	

\hline THM \& card \& 18 swg ${ }^{\text {2 }}$ \& 1.28 \& \& ${ }_{53}^{39}$ \& ${ }^{90 p}$ \& 26a 720 \& \& \& \& \&

\hline 500 V \& \& W9 ${ }^{\text {a }}$ \& ${ }_{35}^{1.37}$ \& \& 5 \& \& TKC1268 728 \& \& \& \& \&

\hline \& loci \& \& 1.10 \& 129 \& ${ }_{3}^{55 p}$ \& ${ }_{69}$ \& Tic \& Lm38 \& ${ }^{747565}$ \& 73151332380 \& 404644 p \& 8212

\hline please enour \& \& \& ${ }_{16 p}^{1.54}$ \& ${ }_{\text {BC212\％}}$ \& ${ }_{4} 42 \mathrm{p}$ \& ${ }_{\substack{\text { l3p } \\ 88 p}}$ \& 26M 96p \& LM381AN 226 \& \& \& 4048839 \& 216

\hline \& Sp \& \& ${ }^{19 p_{p}}$ \& \& ${ }_{\substack{350 \\ 480}}$ \& ${ }_{\text {839 }}^{89}$ \& TR \& （1m382N \& $\begin{array}{ll}7481 \\ 7788 \\ 7 & 193 \\ 630\end{array}$ \& \& ${ }^{23 \mathrm{p}}$ \& － 2268

\hline tant \& ${ }^{6}$ \& \& 2NS449
2nsta \& ${ }_{8 C 213}{ }^{\text {C2120}}$ \& \& \& \& \& $\begin{array}{ll}7482 \\ { }_{7483} & \text { 63p } \\ 389\end{array}$ \& \& \&

\hline \& \& \& 2N5451 \& | $8 C 213 A$ | 110 |
| :--- | :--- |
| $8 C 2138$ | |
| 120 | |
| 120 | | \& \& ${ }_{99}^{99}$ \& Tic2000014A）66p \& \& ${ }^{599}$ \& \& \& ，

\hline \& \& 2.09 \& ${ }^{29}$ \& \& \&	T1P137	998
TIP 140		
1.04		\& \& LM3931NEO \& ${ }_{\substack{\text { sop } \\ 198 \\ 198}}$ \& 7415153 39 \& $4{ }^{\text {790 }}$ \& ${ }_{\text {zex }}^{\text {z80ADMA }}$

\hline \& \& ${ }_{1}$ \& ${ }_{720}^{299}$ \& \& \& 1 \& 2360．12A1 ${ }^{\text {a }}$ \& \& 7789
7790
7

7 \& \& 583 p \&	Z8NAP5
ZN2E8	

\hline 35V \& Ourck dissolving \& ale ${ }^{2.09}$ \& ${ }^{37 \mathrm{p}}$ \& ${ }_{8 C}^{8 C}$ \& \& 1．15 \& TIC2460：16A \& ${ }_{\text {LM }}^{\text {L } 23 \mathrm{CN}}$ \& ${ }^{\text {350 }}$ \& \& \& oltage regs

\hline 35V 140 \& \& \& ${ }_{5}^{5.95}$ \& \& \& \& \& LM $725 \mathrm{CN}{ }^{3.19}$ \& 年5p \& \& \&

\hline 35V \& （litre watel） 1.69 \& \& 57 \& \& \& ${ }^{700}$ \& \& \& \& \& ${ }_{7}^{6239}$ \&

\hline \& ETCH \& ＋15p \& ${ }_{\text {che }}^{59}$ \& \& ${ }^{222}$ \& \& ${ }^{\text {TIC2630 } 254)}{ }^{2} 11$ \& \& \& \& （tacter \& $$
\begin{aligned}
& 78605 \mathrm{~A} \\
& \hline 7812 \mathrm{~A} \\
& \hline
\end{aligned}
$$

\hline | 68825 V |
| :--- |
| 6885 V 2 p |
| 1 p | \& 1t Thin \& （tas \& ${ }_{65 p}^{59}$ \& \& （er \& \& \& \& \& \& （1090 \& ${ }_{7}^{78.15 A}$

\hline ${ }^{188}$ \& Thick \& \& 75 \& \& \& ${ }^{850}$ \& \& 3．250 \& ${ }^{74104} 505095$ \& \& \& 18 Amp

\hline 15.10 V 22 p \& ${ }^{4}$ Thinck bends \& \& \& ${ }_{\text {BC237a }}{ }^{\text {c }}$ \& 295 \& － 10 p \& \& LM1872	4.38
1.38	\& ${ }_{1}^{141}$ \& \& 4073150 \& 5

\hline 5V \& ansisto \& Then \& 2 266131 98p \& ${ }_{\text {BC233C }}^{\text {BC238 }}$ \& （ersel \& 109 \& ZENER DIODES \& \& 7. \& \& \&

\hline 26 p \& $7{ }^{7}$ Dois hoies \& \& \& \& \& － \& \& LM22077 | 3．7．75 |
| :--- |
| 1 | \& \& 74151 \& $4077{ }^{4} \mathbf{4 5}$ \& $7824{ }^{781}$

\hline ${ }_{\text {cop }}^{\substack{29 \\ 308}}$ \& \& \& \& \& ${ }^{238}$ \& 150 \& ${ }^{\text {E24 S Serees }}$ \& LM2907N8 2.60 \& \& \& | 4078 |
| :--- |
| 4081 |
| 139 |
| 135 | \& ${ }_{\text {Negative }}$

\hline \& Any
anove
sheet

Ofip \& \& ${ }^{1,45}$ \& \& \& \& 24.47 V 7p \& （emen \& \& \& ${ }^{4082} \times 1789$ \& （eama

\hline \& \& \& 95p \& \& ${ }_{85 Y 53}{ }^{\text {a }}$ \& \& Serres \& \& \& \& \&

\hline 100 10V 55p \& \& ${ }^{498}$ \& \& ${ }^{\text {BC239C }}$ \& \& \& ．82V 14p \& 1.25 \& \& ${ }^{36}$ \& ${ }^{4099} 1.23$ \&

\hline 100 10v 55p \& \& ${ }^{39 p}$ \& 3．75 \& ${ }_{4}^{450}$ \& 40 \& \& \& LM3915 \& ${ }^{7412535300}$ \& ${ }_{3}^{370}$ \& ${ }^{4093}$ \&

\hline \& 24 \& ${ }^{33}$ \& \& 438 \& 2.22 \& \& \& | L．M3916 | |
| :--- | :--- |
| M13600 | 250 |
| 950 | |
| 180 | | \& \& ${ }_{320}^{320}$ \& ${ }^{40959} 71{ }^{40}$ \&

\hline \& \& \& \& ${ }_{14 \mathrm{p}}^{478}$ \& \& \& \& OM335 ${ }^{\text {On }}$ \& ${ }^{744323699}$ \& \& ${ }^{40969} 689898$ \& 79245

\hline \& 420． 24 \& \& 112 \& ${ }_{14 \mathrm{p}}$ \& | 3.39 |
| :--- |
| 3.47 |
| 1.47 | \& \& \& NE5 \& \& 74.522150 \& 40988 \&

\hline and \& \& 2N2200 \& 1.07 \& ${ }^{150}$ \& Bu \& \& amp ty \& Ne54N \& \& 55 \& \&

\hline \& \& 221 \& ${ }^{6} 938$ \& | BC338 | |
| :--- | :--- |
| ${ }_{\text {BC440 }}$ | 150 |
| 150 | |
| 180 | | \& \& \& 11100 \& \& \& \& \& $2{ }^{29}$ Pin 4.35

\hline ${ }_{47} 8638$ \& \％${ }^{\text {en }}$ \& 2222 24 P \& 2.98
600 \& $\begin{array}{lll}\text { BC441 } & \\ \text { B3p }\end{array}$ \& 189 \& \& W02（200）${ }^{26 \mathrm{p}}$ \& NE556 45p \& \& \& 4507 33p \&

\hline $\begin{array}{llll}47 & 100 \\ 47 \\ 47 & \text { 90p }\end{array}$ \& \& （22234． \& ${ }^{678}$ \& \& ${ }_{3}^{1.95}$ \& ${ }_{24}^{12 p}$ \& \& ${ }_{25}$ \& \& 74 L5244 50p \& \& Ches

\hline \& \& | 23 A |
| :--- |
| 1.15 | \& 670 \& \& ， 35 \& \& \& 18 \& \& \& \& Toggles MMinit

\hline \& \& （102368 \& 40306

40407 \& ${ }_{\substack{40 \mathrm{p} \\ 130}}$ \& \& \& 2amp typet hele \& | Ne566 | |
| :--- | :--- |
| Ne567 | 1.49 |
| 1.37 | | \& \& ${ }^{\text {S248885 }}$ \& ${ }^{\text {i8p }}$ \&

\hline 50 \& \& 23994A 270 \&	40007
404088	
408	
1.58	\& \& \& \& \& Ne570 4.07 \& ${ }^{7415454} 490$ \& \& \&

\hline \& \& \& $40410 \quad 1.80$ \& \& \& \& S02 2700140 p \& \& 74155 40p \& \& \& OT

\hline
\end{tabular}

BULGIN MULTRANGE CONTROL KNOBS A UNIQUEBLEND

[^0]: * AKD * ARMSTRONG KIRKWOOD DEVELOPMENTS

 62 Marcourt Road, Stokenchurch, High Wycombe, Bucks, HP 143 UU

[^1]: Telephone 01-9024321 (3 hines)

[^2]: Figure 1: IMS1400 block diagram.

[^3]: Return to: R\&EW Zilog Competition, Radio \& Electronics World, 117a High Street, Brentwood, Essex CM14 4SG

[^4]: 10. All of the following forms of addressing in the 28000 allow an address to be computed at runtime However, only one allows both an index into a table as well as the table's base address to be calculated at runtime. Which is it?
 \qquad A. Base Mode (BA)
 __ B Index Mode (X)
 ___ C. Base Index Mode (BX)
 __ D. Relative Mode (RA)
[^5]: *It should be remembered that, even with an opamp voltage follower, the rectifier characteristic of the diodes does not remain completely linear at extremely low currents.

