

2 METRE FM RECEIVER Tune in to local amateurs at home or in the

 c

PIC-A-TUNER Instant tuning for musical
instruments

OUASI-BELL DOOR ALERT

 An unusual bell-like sounderPart 1: GREAT EXPERIMENTERS The fascinating work of the great electrical and magnetic experimenters

THE No. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY \& COMPUTER PROJECTS

pLUS Techniques New Technology Update Innovations Circuit Surgery Ingenuity Unlimited

THERE IS ONE DANGER YOU CAN•T SEE, HEAR, SMELL OR FEEL. TTS RADIATION. THERE ARE OVER 10,000 SHIPMENTS OF RADTOACTIVE MATERIAL IN THE UK EVERY YEAR BY ROAD AND RAILI WOULD ANYBODY TELL YOU OF A RADIATION LEAK? NEW GEIGER COUNTER IN STOCK Hand held unt win LCD screen, autoranging. low battery alarm, audble 'dick outpur New and guaranteed £129 ret GE
RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the worldi ing for colour brochure RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER Exceptional coverage of 9 wave bands. (5 short. 1 LW 1FM. 1MW) imternal ferrte and eximal telescopic aenals, maine batiery $£ 45$
NEW LASER POINTER\& 45 mm 75 metre range. hand held und nun on Nwo AA bettenes (supplied) 670 nm £29 rel DECA9
HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES COmprehensive 270 page book covera all aspecta of sperit production from everyday matenals included consaruction details of simple stills etc $£ 12$ ret MS3
NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 thes is our top selling bugl less than 1 " square and a 10 m voice prikup range $£ 28$ Ref LOT 102 BUILD YOU OWN WINDFARM FROM SCRAP New pubication gives step by step guide to building wand generatora and
propelions Armed wint this pubication and a good local scrap yard propellore Armed wint this pubication and a good local ecrall
could make you sell sufficient in electncity' $£ 12$ ref LOT8 PC KEYBOARDS PS2 connector, top quality suhable for all 286 $386 / 486$ etc $£ 10$ rel PCKB 10 for $\mathbf{£ 6 5}$
NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT E29 range 15 -5 miles, 5,000 hours on AA battenes. tranemta info on car direction, lefl and ngmt lums, stant and stoD information Worls with any good FM radio $£ 29$ rel LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brand new Itallan lock and latch assembly win both Y ate type lock (keys inc) and 12 v operated deadlock $\& 10$ rel LOT99
-NEW HIGH POWER WRELESS VIDEO AND AUDO BUG KIT 1/2 MILE RANGE Tramemita vieo and audio sqnals from a minature octv camera (included) to any standard televeson! Suppliecl with telescossc aerfal $£ 16$
CCTV PAN AND TILT KITMotorze your ©C TV camera win thre s.mple 12vdc lot 2 hermenticaly sested DC linear senvo motors 5 mm threaded outpul 5 secs stop to stop. can be stopped any where. 10 mm
trovel. powertul $£ 12$ ret LOT 125 trovel. powertul \& 12 ref LOT 125
GPS SATELLITE NAVGATION SYSTEM Made by Garmin the GPS38 is hand held. Docket slzed, 255 g . poention, athtude. graphic compess. map builder, nitro filled. Bargain price رusa $₹ 179$ rel GPS1
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm} .30$ grams 12 100 mA a auto electronic shutter, 36 mm F2 lens CCIR 512×492
 IR Leo inpul on a N or video IR semarive E 7996 rol EF13 IR LANP KIT Sunable for the above cam
to De used in total dancmesel E 6 ref EF 138
INFRA RED POWERBEAM Handheld battery powered lamp. 4 inch reflector, gnes oun powerful pure infrared ligml perteci for OCTV use, nightaighta etc e29 ref PB
SUPER MDEBAND RADAR DETECTOR Detects both radar and laser, XK and KA bands speed cameras, and al known speed detaction syateme 360 degree coverage from \&eanwaveguides. 11207×46 fits on sun visor or dash $£ 149$ ret
CHIEFTANTANK DOUBLELASERS 9 WATT+3 WATT+LASER OPTICS
Could be adapted for laser listener. long range communications etc Double beam unifs desgned to in in the gun barrel of a tank. each unl has two semi conductor lasers and motor drve unita for alginement 7 f 199 Each unit has two gallium Arsenide injection lasers, 1×9 watt. 1×3 wath, 900 nm wavelength, 20 vdc .600 hz pulse frequency The units atso contain an electronic recenver to defect refiected engnats from targets f 199 for one Ref LOT4
targets $£ 199$ for one. Ref LOT4
EASY DYYPROFESSIONAL TWO WAY MIRROR KIT includes special achesive film to make no way mirror(s) up to 60 ne0 (olases not included) includes full insaructions \& 12 red TW1
NEW LOW PRICED COMPUTERNORKSHOPIHI-FI RCE UNITS Complete protection from faully equipment for everybodyl Inline unnffa in standard IEC lead (erdenca in by 750 mm). fitted in less inan 10 seconds, reseltiest buttion, 104 rating $£ 699$ each ref LOT5. Or a pack of 10 at $£ 49$ so ref LOTG if you wam a box of 100 you can have one for $£ 2501$
TWO CHANNEL FULL FUNCTION B GRADE RADO CONTROLIED CARS From world tamous manutacturer these are returna sothey will need attemion (usually physical damage) cheap way of buying TX and RX plus servos etc for new projects etc $£ 12$ esch sold as seen rel LOT2.
MAGNETIC CREDTT CARD READERS AND ENCODING MANUAL es.ss Cased whin fyleads, designed to read standard credin cardal complete with condrol elctronica PCB and manual covenng everything you could want to know abour wh
magnetic strip on your card juast $£ 996$ rel BAR31

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuats that ane you information on setting up differem businesses, you peruse these at your lesure using the text ednor on your PC. Also included in the certficate enabing you to reproduce (and sell) the manuals as much as you like' £14 rel EP74
RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction buill in inght. mirror etc Russuanshnmp farm!. group newng screen. lots of accessones 129 ret ANAYLT
AA NICAD PACK Pack of 4 tegged AA nicada $₹ 299$ rel BAR34 RUSSLAN NIGHTSIGHTS Model TZSA with infra red illuminator new up to 75 metres in fill dariness in infrared mode 150 m range 45 mm lens. 13 deg angle of new. focussing range 15 m to infinity 2 AA battenes requred 9500 weing $£ 199$ rel BAR61 i years warranty LIOUID CRYSTAL DISPLAYS Bargain prices. 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ rel SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} \mathbf{£ 3} 99$ rel SM2024A 16 character 4 line, $62 \times 25 \mathrm{~mm}$ £5.99 rel SMC1640A TAL.1, 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian Supert astronomical scope, everyining you need for some Russian Supert asironomical scope. everyining you need for some senous star gazing' up to $169 x$ magnification Send or
information $201 \mathrm{co} 885 \times 800 \times 1650 \mathrm{~mm}$ ret TAL-1, §249 YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensme plana wah loads of info on deagning aystems. panets. comfol etectronics elc $£ 7$ ref PV1

> COLOUR CCTV VIDEO CAMERAS, BRAND NEW AND, CASED, FROM £99.

PERFECT FOR SURVEILLANCE,

 INTERNET,VIDEOCONFERENCING, SECURITY, DOMESTIC VIDEOWorks with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, iv P.P, composite, 750hm, 1/3" CCD, 4mm F2.8, $500 \times 582,12 v d c$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $\mathrm{E99}$ ea $100+$ E89
MICRO RADIO ire tmy. Jusi $3 / 8$ thick auto funning. complete with hesdphones FM $£ 999$ rel EP35
25 SQUARE FOOT SOLAR ENERGY BANK KIT 1006×6 ov Amorphous 100 mA paners, 100 diodes, connection detais etc to OV Amorphous 100 mA panets, 100 diodes, connection
build a 25 square foot solar cell for just $£ 99$ red EF112
CONVERT YOUR TV INTO A VGA MONITOR FOR E25! Converts a colour TV mo a basc VGA screen Complete with buil in peu, lead and eware Ideal for laplope or a cheap upgrade Suppled off form for home assembly SALE PRICE E2S REF SA34

- 15 WATT FM TRANSMITTER AIready aseembled but some RF knowedoe wh be useful for setting up Preamp req'd. 4 stage 80 -
108mhz. 12-1 Bvdc, can use oround plane, yago or dipole $£ 69$ ref 1021 4 WATT FM TRANSMITTER KIT Smal but powertul FM transmitter kt 3 RF stages, mic $\&$ audio preamp included $£ 24$ ref 1028 YUASHA SEALED LEAD ACID BATTERIES 12V 15AH at £ 18 ref LOT8 and below spec θ 104H at $£ 5$ a par
ELECTRIC CAR WNDOW DE-HERS Complete wilh cable Dlug eic SALE PRICE JUST E4. 90 REF SA28
plug erc SALE PRICE JUS 14.99 REF SA28
AUTO SUNCHARGER 1551300 mm solas panel with diode and 3 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3
metre lead fited with a cigar plug 12v 2wam e12.9e REF AUG 10P3 metre lead fitted with a cigar plug 12v 2wath e12.99 REF AUG 10 P3
SOLAR POWER LAB SPECIAL You get 26×6 OV 130 mA cells, 4LED's, wre, buzzer, swich - 1 relay or motor 27.99 REF SA27 12V DC MOTOR SPEED CONTROL KIT COMplete with PCB atc Up to 304 A heat ank may be required $£ 1900$ REF: MOQ17 SOLAR NICAD CHARGERS $4 \times A A$ size $£ 999$ ret $6 P 4762 \times$ C suze $£ 999$ ret 6P477
MEGA POWER BINOCULARS Made by Helios, $20 \times$ magnfication, preciaion ground tulty coaled opica. 60 mm objectives. shock resstant caged prams, case and neck atrap $£ 89$ rel HPH 1 GIANT HOT AR BALLOON KIT Build a 45 m arcumfrence filly functioning balloon, can be launched with home made bumer etc Reusable (until you loose il) \& 12.50 rel HA1
AR RIFLES . 22 As used by the Chinese army for fraining puposes, so there in a lof aboull $£ 3996$ Ret EF78 500 pellets $£ 4.50$ red EF80 -NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT. Transmits both audio and video sunals from ether a video camera, indeo recorder. TV or Computer etc to any standard TV set in a 500 m rangel (tune TV to channe 31) 12v DC
op Pnoe io f65 REF: Mals 12V peu is \&5 exta REF: MHOSP2
- MINATURE RADIO TRANSCEIVERS A pair of walke talldees

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN3 SQT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $\varepsilon 4.50$ PLUS VAT. overseas orders at cost pluis $\varepsilon 3.50$
'phone orders: 01273203500 (ACCDESS, VISA, SWTTCH, AMERICAN EXPRESS) FAX 01273323077 E-mail bull@pavilion.co.uk
whth a range upto $2 \mathrm{~km} \cdot \mathrm{n}$ open country Unts measure $2252 \times 155 \mathrm{~mm}$ Including cases and eard'ces 2rPP3 req'd $£ 3700 \mathrm{pr}$ REF: Maaso -FM TRANSMITTER KIT housed in a standard working 13A adapterll the bug runa directly of the maina so lasta forever why pay £700) or pnce in $£ 18$ REF EF62 (kit) Transmits to any FM radio Buil and tested version now arailable of the abore unit at $\mathbf{£} 45 \mathrm{ret}$ EXM34
-FM BUG BUILT AND TESTED supenor design to km Supplied lo detective agencies $9 v$ batlery req'd $\$ 14$ REF MAG14
GAT AR PISTOL PACK Complete win pertod, darts and pellets §14 95 Ret EF82B exra pellets (500) \&4 50 ref EF80
HEAT PUMPS These are mains operated air fo air units that conswet of a aluminium plate (cooling side) and a radiator (warming side) connected together wilh a compressor. The plate if inserted into water will freeze it Probably about $3-400$ watts so could produce 1 kw in ideal

3 FOOT SOLAR PANEL Amorphous silcon, 3×1 ' housed in an aluminum frame. 13 v 700 mA ouput £ 55 rel MAGA5
SOLARWND REGULATOR Prevents batteries from over charging On reaching capacity the regulanor diverts excess power into heat avoiding damage Max power is 60 watts $£ 2799$ ref SiCA 11 -105 FANCY A FLUTTER? SEEN OUR NEW PUBLICATION? Covers all aspects of horse and dog betting. systems etc and gives you a copy ref BET1
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $\mathbf{\& 4 9}$ ret MAG5P13 rieal for expenmenters 30 m for £ 1299 ret MAG13pi 4×28 TELESCOPIC SIGHTS Surable for all air mies ground lenses. good ligh gathenng properties $£ 2496$ rel $\mathrm{R} /$
GYROSCOPES Remember these? well we hove found a company that aill mamutactures these popular scientitic ioys, pertect off or for educational use etc $\mathrm{E6}$ rel EP70
NICAD CHARGERS AND BATTERIES Slandard unmersal mains operated charger, takes 4 batts - I PP3, \& 10 ret PO11D Nicade- AA are (4 pack) \& 4 rel 4P44. C sare (2 pack) \& 4 red 4P73. D saze (4 pack) ©9 rel 9P12
RECHARGE ORDINARY BATTERIES UP TO 10 TIMESI With the Battery Wrardl Uses the latest pulse wave charge system to charge all pooular brands of ordinary battenes AAA. AA. C, D. four an a time' Led aystem showa when battienes are charged. automatically rejects unsurtable celts, comptete with maine adaplor BS approved Price in $£ 2195$ ref EP3
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new mulliband 2000 radar delector can prevent even the most responsible of divers from losing their licencel Adjustable audible alarm with 8 flashing leds gnes instant wamung of radar zones Defects $X \mathrm{~K}$, and Ka bands 3 mile range. 'over the hilf 'around bends' and 'rear trap tacilites micro sue just 4255° 2 $5 \times 75^{\circ}$ Can pay for tsell in fuat one dayl 889 rel EP3
3" DISCS As used on oldee Amstrad machines. Spectrum pluazs etc £3 each ret BAR 400
STEREO MICROSOPES RACK IN STOCK Russuan 200 M complete win lenses. "gits. ficers efc eic very compretensive
microscope that would normally be around the f 700 mark our pnce ra fuak $£ 299$ (full money back guaramea) full detals in catalogue SECOND GENERATION NIGHT SIGHTS FROM 1748 RETRON Russian nigm egme. 1 \&x infra red lamp $10 \mathrm{~m}-\mathrm{mm}$, standard M42 lens. 11 kg £349 ref RET 1
LOW COST CORDLESS MIC 500 range. 90.105 mkz .115 g . $193 \times 26 \times 39 \mathrm{~mm}$. SV PP3 batlery required $£ 17$ rel MAG15P
HI POWER SURVEILLANCE TELESCOPE COntinuous zoom control from 20 times to an amazing 60 times megnification 60 mm tully costed obyective lens for mavomum ingm transmrasion, complete with inpod featunng micro elevation control $\mathbf{E 7 5}$ ret ZT1
JUMBO LED PACK 1510 mm ztcoiour leds. plue 5 galat (55 mm) seven segment displays all on a pct $£ 8$ ref JUM 1 Pack of 3055 mm seven seg displays on pcbs in $£ 19$ rel LED4, pack of 50 § 31 rel LED50 12VDC 4OMM FANS MADE BY PANAFLO. NEW 44 REF FAN 12
HELP WANTED WTH MOTORS We have thousands to clear at rock bottom prices' bumper pack of 20 motors (our choice) it just $£ 1895$ I Some of these will be 5° or maybe larger '
HELP WANTED WITH MULTI RAIL POWER SUPPLIES Again we have thousancs avalable, most with fans. mostly cased. cold as seen. condition may vary, some wortong some
HELP WANTED WITH TELEPHONE COIN BOXES Need we say thousands availablelithese are unita designed to conven
an ordinary phone into a coinbour phone They have deinaged cases bun an ordinary phona into a coinbou phone They have deinaged cases but
the electronica and coinslots are on Speech chip on the board tallcs io the electronics and conslots are on Speech ch
you as you program in Pack of 10 is $£ 1995$
HELP WANTED WITH EXTERNAL MICRO TAPE STREANERS 10,000 in stock space neededl brand new cased unts Whth loads of imeresting bis (motor, tape hesds, PCB etc etc Very HELP WANTED WTH YUASHA 12V 6.5AH SEALED LEAD ACIDBATTERIES About 10 palets hll uss inside warehouse no 21 pack of 5 for |uat $£ 1995$ also some below spec θ 10aH an $£ 1995$ for a pack of 8

Chook out ourWEB BITE full colour intereotive 1987 cataloge

htepm//www.pavilionco.uk/bull-eloctrical
FREE COLOUR CATALOGLE WITH EVERY ORDER

WE BU Y SUR R LUIS STOCK
FOR CASH
SURPLUS STOCK LINE 0802660335

ISSN 02623617
PROJECTS .. THEORY . . . NEWS
COMMENT . . . POPULAR FEATURES

VOL. 26 No. 5
MAY 1997

EVERYDAY

PRACTICAL
ELECTRONICS
http://www.opeman.wimborne.co.uk
The No. 1 Magazine for Electronics, Technology and Computer Projects

(c) Wimborme Publishing Lid 1997. Copyright In all drawings, photographs and articles publishod in EVERYDAY PRACTICAL ELECTRONICS Is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
Projects and Circuits
2 Merte E. . Recever by ounan Bova300
Listen-in to the world of amateur radio from your home or carEPE PIC-A-TUNER by John Becker316
Let this precision tuning aid bring harmony for all electronic and acoustic musical instruments!
INGENUITY UNLIMITED hosted by Alan Winstanley324
Scrabble Timer; Mains Touch Switch; Aquarium Temperature Monitor;
Battery Converter; Experimental Cycle Light; 60p Relay
ALARM OPERATED CAR WINDOW WINDER by Robert Hunt 328
Hasten departure - let your alarm automatically trigger car window wind-up
Hasten departure - let your alarm automatically trigger car window wind-up 334
OUASI-BELL DOOR ALERT by William E. Chester
OUASI-BELL DOOR ALERT by William E. Chester
356
PIC-AGORAS WHEELIE METER - 2 by John Becker 356
Giving you the final push-off with our nearly-ultimate wheeled distanceand speed monitor
S eries and Features
CIRCUIT SURGERY by Alan Winstanley
Buzzers and Sounders; Prescaler Chip Blues; More on Resistors312
NEW TECHNOLOGY UPDATE by lan Poole314
Increased processing speeds de
voltages and parallel operation
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold 332
Advice to beginners on choosing suitable projects and how to build and check them
GREAT EXPERIMENTERS - A Short History - 1 by Steve Knight 341Great Experimenters, and our views of the world began to change
TYPE 7660 VOLTAGE CONVERTERS by Andy Flind346
Simple, low cost voltage inversion and multiplication are just some of thepossibilities offered by these devices
ADC200 STORAGE OSCILLOSCOPE INTERFACE REVIEW
by Robert Penfold348
Putting Pico's Picois impressive
NET WORK - THE INTERNET PAGE surfed by Alan Winstanley 364
FTP Layout; A Question of Service; Pick of the Web
Regulars and Services
EDITORIAL 299
SHOPTALK with David Barrington 309
The essential guide to component buying for EPE projects
INNOVATIONS - Barry Fox highlights technology's leading edge 310
READOUT John Becker addresses some of the other points youhave raised345
BACK ISSUES Did you miss these? 352
FAX ON DEMAND 353
Need a recent EPE article now? Dial our "instant" response service!
ELECTRONICS VIDEOS 354
Our range of educational videos
DIRECT BOOK SERVICE 360
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 362
PCBs for EPE projects - some at "knockdown" prices! Plus EPE software
ADVERTISERS INDEX 368
Readers Services - Editorial and Advertisement Departments 299

LOW COST PC's

SPECIAL BUY

'AT 286'
$40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram
LMITED OUANTITY only of these 1 zaniz H GRADE 280 aymems dessoned ior rocul molibiliy. The compect cmex housea the motrer. boorr. PSU and EGA vidoc card Whasingle B6. 12 Mo fiopoy diak with batiery beckup is provided as standard. Suppisd in good used DOS 401 and 00

Opliona Fitud exiras:	52.00
1.4Mb $3 \mathrm{~K}^{\circ} \mathrm{Hloppy}$ disk drive (instead of 1.2 Mb)	¢18.05
Wordparlect 6.0 for Dos - when 33' FDD option ordered	c20.50
E2000 Ethernel (thick, thin or twisted) netwodk card	E29.00

with keyboard. 4 Mb ol RAM. SVGA monito output, 256 k cache and Fully lesied and guaranteed. Fully expandabio

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ or $31 / 2^{\prime \prime}$ from only $£ 18.95$!
Massive purchases of alandard $5 \%^{\circ}$ and $3 y^{\circ}$. dives enablas us 10
pressent prime product at monuastry beating low pricesal Aul untas (unless Stasd) are BRANO NEW or removed fom ohen brand new equipguarames and poerale from standard voltages and are of standard siza. Al ere tBu-PC competibia (i) $3 \mathrm{H}^{\circ}$ supported on your PC)

 Table iop case whin integral PSU for HH 55° Flo
a. Shugan soorino 8° SS relurbished \& lesied a's $^{\prime}$ Shugar 8108° SS HH Brand Now
a" Shupart 8518° doubl sided refurbished 8 tested Mitaublehi M2A9-63-02U 0° OS simin NEW

$E 24.95(\mathrm{~B})$ $\mathrm{E25} .05 \mathrm{~B}$ 10.95 B

HARD DISK DRIVES

End of line purchase scoopl Brand new NEC $022488^{\circ} 85 \mathrm{Mbye}$ drive with Induatry atandard SMD Interteca, replaces Fujinsu

- CONNER CP 300420 mb MFM IF RFE
. CONNER CP 300420 mb IDE WF (or equlv) IRFE
. CONNER CP 3044
40 mb IDE WF (o equiv.) AFE 4- RODIME RO3OS7S 45mb SCSI UF (MAC \& ACom) 33°. WESTERN DIGTAL 850 mb IDE VF Brand ANWW

54. MINISCRIIE 342520 mb MFM VF (OO equiv.) RFE . SEAGATE ST-238R 30 mb RL WF Refurt. 4. HP 97548850 MD SCSI RFE tested

HP C3010 2 Gbye SCSS dfterential RFE lested
FUJTSU M2322K 160 Mb SMD VF RFE leatid

THE AMAZING TELEBOX

띰.

 The TELEBOX is an atrractive fully cased mains powered unin. con made by makers such as 10 plug inio has ol video moninorsmitEC, ATARI, SANYO, SONY COMMOOORE, PHILIPS, TATUNG, AMSTRAD eic. The composie scepion of TV chennele not normally recelvabie on moat televin alon recalvera- (TELEBOX MB). Puah bution cominots on the from panal allow reception of 8 fully funeable of air UHF colour television Channels. TELEROX MB covers virtualy all ielevision frequencias TV operatorn. A composine video outpul in localed on the rear panel vidio aytema. For complete compatizilty. even lor monitors with out sound an integral 4 wath audio
TELFBOX ST for composine video inpul lype moninors 238.05 ELF80X STL as ST bu inted with iniegral speaker 536.05
839.50
869.05 For overseas PAL verrions state 5.5 or 6 mHz sound specitication. cable lype semce suppin cods on all Tevebons is (B)

DC POWER SUPPLIES

virtuuily ouvery tyo oit power

IC's -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK

6,000,000 Items EX STOCK

VIDEO MONITOR SPECIALS

One of the highest specification monitors you will ever see At this price - Don't miss it!!

 VGA crits for BM PC Incuder

Only 8119 Examel cribles for other types of compures CALL

As Now - Used on film set for 1 week onlyll $15^{\circ} 0.28$ SVGA 1024×768 res. colour montors. Swivel \& the otc. Full 80 day guarantee. 1145.00 (E) Jusi in - Microvtrec 20° VGA (800 y 600 rea.) colour monho
Good SH condition - from 8290 . CALL for Info Good SH condition - from $\mathbf{2 9 9 0}$ - CALL for Into PHILIPS HCS35 (same slyle as CM8833) atractively styled 14 Kh 2 video Inputi va SCART sockel and separate phono jacks. Inlegral audio power amp and spanker for all mudio vilual usas. Wit connect direct to Ampa and ALen BBC computers. Ideal lor all video monlioring / securty applications with drect connection to most colour cameras. High ouality with many fealures such as used condition - fully lested - quaranleed Only £95,
Dimensions: W $14^{\circ} \times \mathrm{H} 12 \%^{\circ}$ a $15 \%^{\circ} \mathrm{D}$. PPILIPS HCS31 Ukie compact g° colour video moninor with stan dard composhe 15.625 Khz vdeo input va SCART sockel. Idee for at moninoring I security apolications. High quality. exequipmen
fully lesied o guaranieed (possible minot scieen bums). In alfac 240 V AC mains powered. pitch. Superb clarity and modern syling
Operales from any 15.625 khz sync RGB video source, with RGB analog and composite syme thimedes 8 BBC. Meesures only $13^{\circ} \times 12^{\circ} \times$
Good used condition. Only $£ 125(E)$

$20^{\circ} 22^{\prime \prime}$ and 26° AV SPECIALS

Supertly mada UK manulaclure. PIL all solid state colour moninors conk sty wis composie for Schools Shops Disco Clubs cic lll 90 day quarantee
20"....£135 22"....£155 26"....£185 (F)

SPECIAL INTEREST ITEMS

ins. 1 FA3 M5EmLL 14 Indusinal spec SVGA monion

 IBM 5SFSsof Token Ring ICS 20 porl lobe modules IBM MAU Token ring disiribution panel 8228-23-5050N
AMm SO1 Low distortion Oscmator $9 H 210 ~ 330 K h z$, IEEE Trend DSA 274 Dala Analyear with G703(2M) 6i vo HP18508 Loqle Analyeer
hp37L1A Patiom generalor \& HP3722A Error Delector HP APOLLO RX700 sysiem units
HPEs21A Dual Programmabla GPI日 PSU $0-7$ V 160 watls HP82e4 Rack mount variable 0-20V Barcode swipe reader HPSA121A DC to 22 GHz four channel lesi sal HP7580A A1 8 pen HPGL high speed drum plotrer EG+G Brookdel 95035C Precision lock in amp Vlow Eng Mor 1200 compularised inspection system Ung Dynamica 2kW programmabla vibration leas syasiem Kelthlay 590 CV capacior / vollaga analyser Recal ICR40 dual 40 channel voica recorder sysiem Flekera 45KVA 3 ph On Line UPS. Naw batls Dec. 19 CI RSO30UV34 Cleanine ultrasonic cleaning sysiem Mann Tally MTCA5 High speed line printer Intal SBC 488133SE Mulibus 486 sysiem. 8 Mb Ram Nikon HFX-11 (Ephiphol)
Molorola VME Bus Boards \& Components Last. SAE / CAL Trio 0-18 vac linear, melered 30 mp bench PSU. New Fultau M3011A 600 LPM band primer FLJItay M30410 600 LPM prinier with network
Perkin Elmen 2000 infrated spectropholometer PGentin Elmer 2ea Inirared spectropholometer Andrewa LAAGE 3.1 m Salelline Dish + mount (For voyme Sekonlc SD 150H 18 channal digital Hybrid chart
TAYLOR HOBSON Tallymurl amplition / tecordea symem Vloe 1159 PA. wavelorm monior
\qquad Kenwood 9e01 PAL Vectorscope . NEW

Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! rop quality is rack cabiner made in UK by dasigner, smoked acrylic lockable troni door, and louvered removable side panels. Fully adjustable internal fixing struls. ready punched for any conliguration of equipment mounling
plus ready mounted iniegral 12 way 13 amp
socket swithed mains diantioution strio make these reck a some of the mont varemila we equire only two sida panels 10 stand singly or in muliple bays OPT Reek 1 Complete with removable side panels. E335.00 (G) OPT Reck 2 Rack. Less side panels \quad P25.00 (G)
32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Lid to the highent posalble apec, rack lealuras all aicail construction with remove sida, lronl and back doors. Front and back doors ve secure 5 hever barrel locke. The front doo dangener atyla' smoked wacryic front panel to pane, yer remain unobiruana. Intemaly the rach members to take the heaviest of $19^{" \prime}$ rack aripas availata) cage nuls' A mann diletribution penel pin Euro sockets and
ullity aockat. Ovarall ventitation is auriched hulty louvered back door and double skinned top saciion with 100 and side lourres. The 100 panel may be rumeved firs firing casiors and floor levelers, prepunched utility panel al lower rear for cable I connector cocosas elc. Supplied in exceltent, slightly used $m=1625 \mathrm{H} \times 635 \mathrm{D} \times 603 \mathrm{~W}$ ($644^{-} \mathrm{H} \times 25^{\circ} \mathrm{D} \times 23 \pi^{-} \mathrm{W}$
Sold at LESS than a third of makers price I!
A superb buy at only $\{195.00$ (G)

Over 1000 racks - $19^{\prime \prime} 22^{\prime \prime}$ \& $24^{\prime \prime}$ wide 3 to 44 U high. Available from stock !! Call with your requirements.
 TOUCH SCREEN SYSTEM

The ultimate in Touch Screen Technology' made by the exparts

 MeroTouch - but sold at a price below cont II Sysiem consisis o connected to an electronic contiolier PCB. The controlier produces a atenderd serial AS232 of TTL outpur which cominuously gives here singer is containing positional the yoves, the data instanily changes. The $X \& Y$ information is given al an Incredible metrix resolution of 1024 y 1024 posinions over the entire screen mection to PC for a myiad ol apolications including: control pan nection to a PC lor a myriad ol applications including: control pancompule! un-trained eic atc. Imagine using your linger with'Windows', insiead of a mouse il (a drver is indeed available i) The apptications for inle amaring product ere only llmithed by you mopinationll Complate system including Coniromer, Powe Supply and bata supplied al an incredibla prica ol only. £ 145.00 (日)

LOW COST RAM \& CPU'S

NTEL 'ABOVE' Mamory Expanalon Board Full length PC-XY

 Card ta fully seleciable for Expanded or Exiended (286 and abova) memory Full dets and driver dake aupplled RF Fully lested and quaranteed. Windows compatible. E59.95(A) Hall length a bl memory upgrade carde for PC AT XT axpands in RAM bove 640k DOS limn. Complete with dala.1 ME 9 SIMM 9 chio $\frac{\text { SIMM }}{1200 \text { SPECIALS }}$

1 MBxo SMMM 3 chip 80 ns E19.50

FANS \& BLOWERS

EPSON DOM12 $40 \times 40 \times 20 \mathrm{~mm}$ 12v DC

 MHOF 8281900 rack mm $34 \times 18^{\circ}$ Blowor $110 / 240 \mathrm{~N}$ NEW 879.05

Issue 13 of \mathcal{D} isplay News now avallable - send large SAE - PACKED with bargalns!

ALL MAIL \& OFFICES
Open Mon-Fn 9.00-5:30
Dept PE. 32 Biggin Way
Upper Norwood
LONDON SE19 3XF

Electronics Principles 3.0

For Windows 3.1, ' 95 \& NT.

If you are looking for an easy and enjoyable way of studying or improving your knowedge of electronics then this is the software for you.

Electronics Pinciples 3.0 now contains fifty-eight Windows and an extended range of nearly 300 fully interactive analogue and digital electronics topics and is currently used in hundreds of UK and overseas schools \& colleges to support GCSE, Alevel, BIEC, City \& Guilds and university foundation courses. Also NVQ's and GNQ's where students are required to have an understanding of electronics principles.

Other titles available.

Electronics Toolbox 3.0 £ 19.95^{*}
Presents commonly used electronics formulae and routines in a way that makes calculations easy. Just select the topic, 'pop' in your values and find the result.
Mathematics Principles $3.0 £ 49.95^{*}$
Study or revise mathematics in what we believe is an interesting and enjoyable way. Nearly two hundred topics, including the GCSE syllabus with interactive, full colour graphics to enable learning through doing'.
Electronics Principles 4.0 £ 99.95^{*}
Contains all of the extended version 3 and many more digital and analogue topics. Plus: Microprocessor \& microcomputer operation, registers, arithmetic and logic unit, ROM, RAM etc. Addressing modes and full instruction set can be executed on the screen.

Inputs \& ounputs use electronics symbols.
Scientific notation avoided where possible to make numbers \& calculations meaningtul.
Experiment with standard textbook examples, even check your homework!
Hundreds of electronics formulae available for circuit investigation.
Multi-user site licence for schools \& colleges.
Produce OHP slides \& student handouts.

Complete Package just £49.95*

For more information, upgrades or software by retum. Telephone (01376) 514008.

EPT Educational Software. Pump House, Locloam Lane, Witham, Essex. UK. CM8 2BJ. Telfoox: 01376514008. E-Mail sales@ eptsoft.demon.co.uk Web pages http://uww.octacon.co.uk/ext/ept/software.htm

- UK Please Add E 2 per order for post \& packing + VAT. Make cheques payable to EPT Educational Software. Switch, Delta, Usa and Mastercard orders accepted - please give card number and expiry date.
OVERSEAS ORDERS: Add $£ 2.50$ postage for countries in the EEC. Outside EEC add $£ 3.50$ for airmail postage.

PIC DEVELOPMENT

PRO(YRAMMER PIC ENZZE-V2

Program/read/verify 16C54/55/56/57/58/61/62/620/621/622/63/ $64 \Pi 1 / 73 / 74 / 84 /$ Serial EEPROMs. Expansion port. Built and Tested Only $£ 52.95$

PROGRAMMER/ICE PIC EEZE-V3

As above but with In-Circuit Emulation Capability. Built and Tested Only $£ 72.95$
Both systems have ZIF sockets already fitted and expansion ports for current and future developments!

Other PIC developments. Leaming pack for beginners, demonstration pack, PIC basic (Tel/write for details).

True PIC Real Time In

Circuit
Emulator

TRICE ${ }^{4}$

PIC Real Time In-Circuit Emulation

- Emulation to 20 MHz .
- Step/Skip/Animate/Run etc.
- Variable speed selection.
- $8 \mathrm{k} \times 16$ Emulation RAM.
- Target Probes included.
- Supports 18/28 pin PIC's.

Only $£ 149.95$

Test your code in a

 'TRICE'Please add $£ 2.00 \mathrm{P} \& \mathrm{P}$ and
make cheques payable to LENNARD RESEARCH

29 Lavender Gardens, Jesmond, Newcastle upon Tyne, NE2 3DD. Tel//Fax: (0191) 2818050.
Product pictures/info on our web site: http://www.vex0l.demon.co.uk/lennard.html

TRANSMITTERS

Fully comprehensive guide to building and using short/medium range radio transmitiers and receivers. Includes detailed and practical information on all aspects of construction, from simple FM room transmitters to more sophisticated and powerful audio and data transceivers.

Manual includes

- AM, FM and UHF Transmitters from micro power up to 3 Watts. Covers simple 'bugs' as well as circuits operating on 27 MHz and 418 MHz etc.
- TRACKING AND SIGNALLING. How to build micro circuits for finding animals, cars etc.

- CRYSTAL CONTROLLED TRANSMITTERS.

 High stability circuits.- RADIO PAGER AND RADIO CONTROL. How to build coded radio keys, multi-channel remote controls, radio alarms etc.
- RECEIVER CIRCUITS. Wide range of receiver projects for building high security audio links and transceivers.
- EXTENSIVE assembly information. Includes sections on construction, testing, mics, aerials, coils and miniaturisation.
Over 100 detailed PCB, strip-board and point to point designs. Manual comes with FREE micro transmitter PCB.

FREE	Make cheques/POs payable to
JCG ELECTRONICS	

Wide range of Audio/Radio kits available. Send stamp for list. Mail order only.

THE CR SUPPLY CO

RESISTORS
40. Wan Mixec metaicarbon liim resislor
5% E12 senes 10 ohms to io Meothm
5% E12 senes 10 ohms to 1 Megohm
Wath Canoon film resislors 5\% E24 senes
1 ohm 1010 Mogohm.
40018-23p: 40118-25p; 40178-45p
4069UB unbutlered - $25 p$
D.I.L. HOLDERS
8-pin-9p:14.16, 18-pin-15p;24-pin-19p:
28 -pin- 22p; 40 -pin - 31 p .

$1 \mathrm{~A}+\mathrm{ve}$ or - ve $5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} 824 \mathrm{~V}$
$61 \mathrm{p}: 100 \mathrm{~mA}+\mathrm{ve} 5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}-38 \mathrm{p}$.
DIODES (PIV/ampal

$100 / 1$ A 1 N 4002 - 4 p 10001 A 1 N 4007 - 5 p .

OA47 gold bonded - 24 p .
Ioner alodea E24 sertes 3 V 3 to 33 V 400 mW - 6 p .
1 wall - 12p LE.D.'s
3 mm and 5 mmm Red Green, Yetow - 14p: Grom.
mets io suin $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}-3 \mathrm{p}: 5 \mathrm{~mm}$ Troolou
8 Bicotor - 22p: Red flasting LE. D.'s seavina
9V-12V supply only, 5 mm - 70 p
WHP7 NiCar rechargeable cets - $\$ 1.78$ each.
Wht PCB mounting pins 600 mAH, C2 28 P . AAHP7
znccarbon batieries in pacis ol is - 11.10 per pack
Walch batieries dam \times thidness in mm 79.93 .6
$11.6 \times 3.11 .6 \mathrm{nt} 2.11 .6 \times 5.4-550$ each
Batiery snaps lor PP3 - 8p for PPS -
SV ELECTAIC MOTORS
.5 V 103 V wath brackel 18.205 mm shal diam 2 mm

- $£ 124 \mathrm{p}$: high iorque $30.23 \mathrm{~mm}-\mathrm{El} .45 \mathrm{p} ; 3 \mathrm{~V}$ io
MISCELLANEOUS
Maing Indicalor neons wilh 220k resistor_14p
High speed PCB drill bits $0.8,10,13.15$,
$-47 \mathrm{p}, 12 \mathrm{~V}$ mini drill 3 pew chudk- 14.75 -47p 12 V min dinl 3 pw chud - cri4 75 10 hold awnard iobs cas fion nase 6 dos Glane reed switiches with molo pole make conlacts - 12p: Magnets - $28 p$
.1* Sinpboerd $2^{1 / 3} \times 1^{\prime \prime} 9$ rows 25 holes - 260 .
 35 mm crystal- $\mathbf{~} 1.60$
Multicored solder, 22SWG-11pyard
18SWG - 21 p y ard
Ior and car lead made by Smins industries adap 21 -pin Scan to 21 -pin Scan lead, 1.2 m al 12.50 connecied-E3.95p. PCB Scan sochets- 92 p Satellite cable 75 ohm semi air spacec 65 mm 741 Op A of white -- 36p-yand
South Yorkshire SG1 2 IL. Tel/Fax: 01142468049

BTEC approved TUTOR supported

DISTANCE LEARNING COURSES in:

Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms

- Courses to suit beginners and those wishing to update their knowledge and practical skills
- Courses are delivered to the student as self-contained kits
- No travelling or college attendance is required
Learning is at your own pace

For information contact:
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

SURVBILIANCE PROFRSSIONAL QUALTTY RITS

N
 o 1

 for KitsWhether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter

Smallest room transmitter kit in the word! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3 V -12V operation. 500 m range.
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 1000 m range.
£13.45
STX High-performance Room Transmitter
High performance transmitter with a butlered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, including mic. 6 V -12V operation, 1500 m range. $£ 15.45$ VT500 lligh-power Room Transmitter
Powertul 250 mW output providing excellent range and performance.
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V -12V operation. 3000 m range
£16.45
VXT Voice-Activated Transmitter
Triggers only when sounds are detecled. Very low standby current. Variable sensitivity and delay with LED indicalor. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range. $\{19.45$ HVX400 Mains Powered Room Transmitter
Connects directly to 240 V A.C. supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm} .500 \mathrm{~m}$ range.
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range....... £22.95
SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range.......... £23.95
SCDM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9V-12V operation.
£22.95
ATR2 Micro-Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches lape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered trom line
£13.45

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radio Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way d.il. switches on both boards set your own unique security code. $T X$ size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits) \qquad £50.95
Individual Transmitter DLTX \qquad 819.95 Individual Receiver DLRX
MBX. 1 Hl.FI Micro Broadcaster
Not technically a surveillance device but a great idea! Connects to the headphone sutput of your HI-FI, tape or Cn and transmits HI-F quality to a nearby radio. Listen to your farvourite music anywhere around the house, garden. in the bath or in the garage and you don't have to put up with the DJ's choice and boring watile.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 y operation. 250 m range

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter ki available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$!
Connects to line (anywhere) and switches on and oft with phone use. All conversation transmitted. Powered from line. 500 m range

TLX 700 Micro-miniature Telephone Transmitter

Best-selling telephone transmitter. Beind $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects 10 line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range.
STLX High-performance Telephone Transmitter
High pertormance transmitter with butfered output stage providing excellent stability and pertormance. Connects to line (anywhere) and switches on and oft with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range.
TKX900 Signalling/Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9V operation.
£22.95
CD400 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.
£30.95
CD600 Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmikers. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation.

〔50.95 QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the uthimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range..

QLX180 Crystal Controlled Telephone Transmitter

As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
40.95

QSX180 Line Powered Crystal Controlled Phone Transmitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
£35.95
QRX 180 Crystal Controlled FM Receiver
For monitoring any of the ' Q ' range transmitters. High sensitivity unin. All RF section supplied as pre-buitt and aligned module ready to connect on board so no ditficulty setting up. Output to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.
£60.95

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £2.00 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 01827714476.
OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Tel/Fax:
VISITORS STRICTLY BY APPOINTMENT ONLY

PCB Designer
 For Windows 3.1, '95 or NT

12 Short Hedges Close. Northleach. Cheltenham. GL54 3PD Phone (01432) 355414 Available in South Africa from JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00

GREENWELD
 ELECTRONIC COMPONENTS

Greenweld has been established for 23 years specialising in buying surplus job lots of Electronic Components and Finished Goods

We also keep a wide range of new stook regular lines. Why not request our 1997 Catilogule and latest Supplement - both absollitily FREE!

BECOME A BARGAIN UST SUBSCRIBER TO SEE WHAT'S ON OFFER BEFORE TT'S ADVERTISED GENERALLY

Standard Bargain List Subscription
For just £6.00 a year UK/BFPO ($£ 10.00$ overseas). we'll send you The Greenweld Guerdian every month With this newsletter comes our latest Bargain List giving detals of new surplus products avallable and details of new lines being stocked. Each issue is supplied with a personalised Order Form and details of exclusive offers available to Subscribers only.

Gold Bargain List Subscription

For $\mu s t ~ £ 12.00$ a vear ($£ 20.00$ overseas) the GOLD Subscriber category offers the following advantages:
\square The Greenweld Guardian and latest Bargain List every month. logether with any brochures or fliers from our suppliers
\square A REDUCED POSTAGE RATE of $£ 1.50$ (normally $£ 3.00$) for all orders (UK only) and a reply paid envelooe
\square 5\% DISCOUNT on all regular Catalogue and Bargain List items
So Don't Miss Out - Subscribe Today!

1997 CATALOGUE OUT NOW!

Greenweld - 27D Park Road Southampton • SO15 3UQ TELEPHONE: 01703236363 FAX: 01703236307
 INTERNET: http://muw.herald.co.uk/clients/G/ Greenweld/greenweld.html

Our stores (over 10,000 sq. ft.) have enormous stocks. We are open 8.00 am - 5.30 pm Monday to Saturday Come and see us!

PIC16C84 and BIM Transceiver Development Platform in one !

A hardware development platform for exploring high speed PC.PC, half duplex, two way Radio Data Communications I

Reso Trach Limne CYPMERNET - 14 INCLUDES:10MHz PIC16C84 BIM-418-F Transceiver 9-PIn D-Type Connector 2-Wire RS232 Interface
Transmitter On LED Recelver On LED 1/4 Wave Wire Antenna
Supplled with a free firmware driver the Cyphemet transcelver will permit you to link PC's and transfer data using Windows terminal mode. Only $£ 79.95$ each. Comblned power and data cable only $£ 6.95$ each

Dedlcated PIC16C84 programming tool for re-programming the Intemal control firmware, permitting the user to explore and develop appllications of ther own. Only 94.95 each.

Unil toaturec eborve ibl Lcenco Exempl to MPTI330 mithen ine UK Expor Vorsions on 43392 MHz to ETS300.220 evalabie mith 1 and 10 mW ortoul power Pnces erculo VAT ano Camzope

Free Catalogue

[^0]

The Summer '97 Edition brings you:

- Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.
- WIN! a 15" CTX SVGA Monitor in our easy to enter competition.
- 100's of new products including; Books, Connectors, Entertainment, Test Equipment, Security, Speakers, Satellite Equipment and Tools.
- A full range of Aver Multimedia products for PC and Mac.
$>$ £25 worth discount vouchers.
- 232 Page main Catalogue, plus 40 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.
- Get your copy today!

MAIL ORDER ONLY © CALLERS BY APPOINTMENT

EPE MICROCOONTROLLERT

P.I. TREASURE HUNTER The latest MAGENTA DESIGN - highly
I stable \& sensitive - with MC control of all timing functions and advanced I pulse separation techniques.
I New circuit design 1994
I- High stability
d drift cancelling
1- Easy to build
I \& use
1 - No ground effect, works in seawater

1
1
$!$
$!$
$!$
$!$

WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mainspower unit $£ 5.99$ extra.
KIT 856. silver, ferrous non-ferrous metals

- Efficient quartz controlled microcontroller pulse generation - Full kit with headphones \& all hardware

KIT 847.......................モ63.95

DIGITAL LCD THERMOSTAT

A versatile thermostal using a thermisior probe and having an I.c.d display. MIN/MAX memories. -10 to 110 degrees Celsius, of can be set to read in Fahrenheif. Individually setrable upper and ower switching temperatures allow close control or atternatively allow a wide dead band to be sal which can result in substantial energy savings when used with domestic hot water systems. Ideal fo greenhouse ventilation or heating control, aquaria. home brewing, etc Mains powered, 10A SPCO Relay output. Punched and printed case
KIT 841 \qquad .£29.95
PORTABLE ULTRASONIC

PEsT SCARER

A powertul 23 kHz uthrasound generator in a com pact hand held Case MOSFET output drives a special sealed transducer with intense pulses via output is designed to give maximum output with. out any special setting up.
KIT 842. \qquad £22.56

DIGITAL CAPACITANCE

METER

A really professional looking project Kit is sup. plied with a punched and printed front panel, case, p.c.b. and all components Quart con rolled accuracy of 1% Large clear 5 - digit display and high speed operation. Ideal for beginners as the $\mu \mathrm{F}, \mathrm{nF}$ and pF ranges give clear un ambiguous read out of marked and unmarked capacitors from a tew pF up to thousands of μF KIT 493 \qquad £39.95

SUPER ACOUSTIC PROBE

Our very popular project - now with ready buill probe assembly and diecast box. Picks up vibraions amplifies, and drives headphones. Sounds can be heard watches. and speech through walls strument engineers and nosey parkers! a very useful piece of kit
KIT 865.

* TENS UNIT

DUAL OUTPUT TENS UNIT

 As featured in this issueMagenta have prepared a FULL KIT for this excellent new project. All components, PCB,
hardware and electrodes are included.
Designed for simple assembly and testing and providing high level dual output drive.
KIT 866.... Full kit including four electrodes
£32.90
1000V \& 500V INSULATION
TESTER
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848. \qquad £32.95

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero Toroidal mains transformer Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment. KIT 845 . \qquad $£ 64.95$

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

EFFICIENT 100V
TRANSDUCER OUTPUT

- COMPLETELY INAUDIBLE TO HUMANS
KIT 812
- UP TO 4 METRES RANGE
- low Current drain
$£ 28.00$
SPACEWRITER
An innovative and exciting
project. Wave the wand through - the air and your message appears. up 1016 dite to hold any message With "MERRY XMAS". Kit includes PCB, all components \& lube plus insifuctions for message loading KIT 849........................£16.99!

12 V EPROM ERASER

A sate low cost eraser for up to 4 EPROMS at a time

 A sate low cosi eraser for up to 4 ERROMS at a timein less than 20 minutes. Operates from a 12 V supply in less than 20 minules Operates from a 12 V supply
$(400 \mathrm{~mA})$. Used extensively for mobile work - up. dating equipment in the field etc. Also in educa tional situations where mains supplies are not al lowed. Sefterv interlock prevents contact with UV.
KIT 790.
£28.51

INSULATION TESTER

A reliable and neat electronic tester which checks insulation resistance of wiring and appliances etc. at 500 Volts. The unit is battery powered simple and sate to operate. Leakage resistance of up to 100 Megohms can be read easily. A ver popular college project
KIT 444 $£ 22.37$

SUPER BAT DETECTOR

NEW DESIGN WITH 40 kHz MIC. A new circuit using a 'full bridge' audio amplifier i.c., internal speaker, and headphone/tape socket The latest sensitive transducer, and 'double balanced mixer' give a stable, high peformance superheterodyne design.
KIT 861.
£24.99
E.E. TREASURE HUNTER P.I. METAL DETECTOR MKI
Magenta's highly developed 8 acclaimed design Quartz crystal controlled circuit MOSFET coil drive. D.C. coupled amplification. Full kit includes PCB, handle, case ${ }^{\text {\& }}$
search search coil.

KIT 815.
$£ 45.95$

DOLEY PRO-LOGTC DECODER

Experience the delight of SURROUND SOUND in your own home. This project brings full Genuine PRO-LOGIC surround sound to you at a fantastic price. The circuit meets all "Dolby
 specifications, with "Stereo", "3-Stereo" and "Surround Sound" selections.

For minimum cost the "Short Form Kit" is ideal. This is complete except for the case and power transformer. It includes the switches, sockefs, and pots, and is ideal for building into a custom set-up with pre-amp and power-amp modules, where power is available.

The alternative "Full Kit" gives the best value option. With a printed front panel, punched rear panel, power transformer and mains lead and black brushed aluminium knobs. This kit produces a complete stand-alone decoder that can be used with any audio.

Short Form KIT, Kit Ref: 858 £99.00
-DOLEY and the double-D aymbol are trademarks.
Kit with case and transformer, Kit Ref: 869 £ 124.99

DC Motor/Gearboxes

Our Popular and Versatile DC motor/Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4-5V Multi ratio gearbox gives wide range of speeds
LARGE TYPE - MGL 16.95
SMALL - MGS - £4.77

Stepping Motors

MD38...Mini 48 step...£8.65
MD35...Std 48 step... $£ 12.98$
MD200... 200 step... $\mathbf{\Sigma 1 6 . 8 0}$
MD24...Large 200 step...£22.95

SIMPLE PIC PROGRAMMER INCREDIBLE LOW PRICE!
 INCLUDES 1-PIC16C84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD \& INSTRUCTIONS
 Kit $857 \mathbf{£ 1 2 . 9 9}$
 Power Supply $£ 3.99$
 EXTRA CHIPS:
 PIC 16C84£7.36
 Based on the design in February '96 EPE article, Magenta have made a proper PCB and kit for this project. PCB has 'reset' switch, Program switch, 5V regulator and test L.E.D.s. There are also extra connection points for access to all A and B port pins.

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16C84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 16-CHARACTER 2-LINE LCD DISPLAY

Kit $860 £ 17.99$

Power Supply $£ 3.99$ fULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!
Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE x 16-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
\star Chip is pre-programmed with demo display \star

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS텐 SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
- SEND FOR DETAILED

INFORMATION - A
SUPERB PRODUCT AT AN
Kit $862 \mathbf{£ 2 9 . 9 9}$
Power Supply $£ 3.99$ UNBEATABLE LOW PRICE.

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB, PIC16C84 WITH DEMO PROGRAM, SOFTWARE DISK, instructions AND MOTOR.

Kit 863 £ 18.99

FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1A. Kit includes all components and 48 step motor Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

PIC16C84 MAINS POWER 4-CHANNEL CONTROLLER \& LIGHT CHASER

- WITH PROGRAMMED 16C84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING 10 CHASE PATTERNS
- OPTO ISOLATED
- 4×3 KEYPAD CONTROL
- SPEED CONTROL POT.
- HARD FIRED TRIACS
- 4 CHANNELS @5 AMPS

Kit $855 \mathbf{2 3 9 . 9 5}$ LOTS OF OTHER APPLICATIONS

Now features full

 4-channel chaser software on DISK and pre-programmed PIC16C84 chip. Easily re-programmed for your own applications. Software source code is fully 'commented' so that
68000 oram oewer mo

 TRAINING KIT
PIC16C5X

IN CIRCUIT
EMULATOR - WITH ON-LINE MONITOR. The easiest way to get started. Allows single stepping through programs displaying the internal registers and driving the I/O pins. Software and hardware can be developed and tested together. Programs 16C54, 5, 6, \& 7 chips. Full featured software runs under DOS at high speed

Kit $853 \mathbf{£ 9 9 . 0 0}$

Power
Supply $£ 8.99$

- FULL 8 MHz 68000 16-BIT DATA BUS - EXPANDABLE - PIT OPTION 68230
- FULL MANUAL PLUS DATA - SUPER LOW PRICE:
- USED WORLDWIDE IN SCHOOLS COLLEGES \& UNIVERSITIES
- DOUBLE EUROCARD, 2 SERIAL PORTS
- NOW WITH EXPANDED RAM \& ROM
- FULL FEATURED MONITOR \& LINE ASSEMBLER IN ROM KIT 601...........£69.95

EXTRAS: 9-way P.C. lead $\mathbf{£ 6 . 9 9}$ 25-way P.C. lead $£ 6.99$

- CROSS-ASSEMBLER AND COMMS SOFTWARE DISk f PSU + 5V, +12V, $12 \mathrm{~V} £ 12.99$

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta. Teach-In 7 is $£ 3.95$ from us or EPE Full Mini Lab Kit - $£ 119.95$ - Power supply extra - $£ 22.55$ Full Micro Lab Kit - $£ 155.95$ Built Micro Lab - $£ 189.95$

All prices include VAT. Add $£ 3.00$ pEp.

Tel: 01283565435 Fax: 01283546932 E-mail: Magenta_Electronics@compuserve.com

$x^{2}, x^{3} 2^{2}$								
		Tipe Cunnectors		All Aisilable in - Ricd. Black.	Von L Black			
						133: $70 \times 37 \mathrm{~mm}$	+N2S Orob Counler	${ }^{36}$
		Num						
Stamped Pin		Solder Huc			${ }_{\text {Black }}^{\text {Brack }}$	102		19
			5029	33 mm Curedilic Clips ${ }^{2} 0.13$	Blue ${ }_{\text {E063 }}$	$76 \times 31 \times 25 \mathrm{~m}$	${ }_{6} \mathrm{~N} 138 \mathrm{O}$ Opora-counler	5090 11 10
			¢039		Ruicher Suliches ${ }^{\text {Whe }}$	178. $1277 \times 63 \mathrm{~mm}$	${ }^{\text {ol }} 1390$ Ppo Coulicer	17
n DL 0		15 way female Socket	¢039			203 $102 \times 152 \times 170 \mathrm{mmm}$	CNYT-1 Orlocounce	¢0.37
(ein	${ }^{601}$	is way HD plug						(10.37
Pin Dit $0.6{ }^{\text {a }}$	${ }_{60} 19$	${ }_{23}^{23}$ Way May Male Pruge	¢0.49			Sitcel/ Suminium	isp ${ }^{\text {ind }}$ iso	(0)1099 cis 1
rned Pin			¢0 ${ }_{\text {co }}^{\substack{\text { ¢ }}}$			Plustic contud sice	Tix suef	E068
		inc kinmor Moun			SpST $30 \times 115 \times 22 \mathrm{~mm}$			
Dit ${ }^{\text {3 }}$	\%	${ }_{\text {9 }}$	${ }^{511} 20$	DC Pug			Solar Csils	
in ditio ${ }^{\text {a }}$	(10.	${ }^{25}$ Way Malc Pluy	${ }_{\text {E1 }}^{126}$			Wirce 4 Cuble ${ }^{\text {a }}$	inima 20.15 thm	
Pin DIL $06{ }^{\text {cos }}$	011	Righi Ankild PCB		DC Linc Sockec 2.5 mm 10.56		${ }_{\text {R }}$ Ribhun Combe	20mat	70
SiL Hesder Strip					DPDT 30×2 Smm Ginen $\mathrm{El} 1+0$		Rximm, $68 \times 9 \times 9 \mathrm{~mm}$	${ }_{21}{ }_{13} 9$
					PCis ${ }^{\text {PIour }}$		Dxam Dighul	
					1 A	${ }^{2}$		
20 Way Socker S	¢0.54	91	${ }_{20}^{20} 35$				mulime	
10184 Basc Sockect			${ }_{\text {¢0, }}^{\substack{073}}$		sallo	(ta waj ire Ritbon L0,	Ac volis DC	
			¢0.51	${ }_{3}^{3} \mathrm{P}$ Pin 1 IEC	Sal lio brio	Per 50812021	injuxior Ourut	
			${ }^{\text {[0 }} 30$		${ }^{\text {A }}$			
			${ }_{603}{ }^{2} 30$					
		y Coict. Hr	${ }_{503}$		$10.420 \times$ SPDT 2 JV Eif	${ }_{22}^{20} \mathrm{SWWGGE}$ Enamellicd		
So	¢0 34	${ }_{25}{ }^{2}$ Way Way	(e.36		Computer Accessoris			
${ }^{\text {Way }}$	¢020	9109 Coler	5096		Ad			
${ }^{\text {une }}$	¢0.30	251025 Cover Casc				${ }_{3}^{30}$ SNUGE Ena		
Wa som								
Ox He		,				38 sucie namellid		
		2.3 mm Jact Pluy	¢021		${ }_{\text {9F }}{ }^{\text {91/ Genduter Changer }}$			
			${ }_{60}$	Sub-		16 Swi Tin		
		${ }_{3}^{35 m}$	${ }^{13}$	Smmondou	9al 6 Whini Din Male	${ }_{20} 5 \times 5 \mathrm{C}$ Tin		
Way	${ }_{50}$	${ }_{3}^{3.5 m m m ~ S t a r e o ~ L i n ~}$	1037	SPDI $5 \times 10 \mathrm{mmm}$	${ }_{\text {SM Din }}$		D. Volis	
${ }^{2} \times 2$ Stro					Din 6 M M			
		Mono Li	${ }^{\text {co }}$ [35	linimiure	Minin Tocicr 7 L	Onn Rad	(CA)4 A-2.20-2001m -10 A	
50 way Smirath		Noru	60		Chack		11.21m $1.2 .2 \cdot 20.200 \mathrm{k} / 2$	
	¢0	mo Line S	${ }_{60}^{5038}$	Sps	Enter		D1430 ${ }^{\text {a }}$	
${ }_{26}$	¢00.53	min serics		SPDT ${ }^{\text {Spor }}$	2sprach Bor	Stranded 702 mm E214	Multimeter 59.8	
	${ }^{10} 97$	${ }_{2}{ }^{\text {Pin }}$ Chasesis ${ }^{\text {a }}$	¢0,	SPDT CO Biased 2 way		PC		
	(t0 10	3 Pin Lunc Plug			I.cad ${ }^{\circ} \mathrm{C}$			
			${ }_{5025}$	DP				
				DPDTC O Blased \| "ay 1 I. 28		verin		
			$\xrightarrow{1035}$	STDT $18 \times 3 \mathrm{smm}$			${ }_{3} x^{6}$ Sintle Sided	
Sraich		Sprn Chassis	¢0,37	SpDT ${ }^{\text {Sol }}$			9x ${ }^{\text {a }}$ Sinyte siced	
ay	¢ 8078		${ }_{\substack{2032}}^{203}$	DPDT Con $21 \times 30 \mathrm{~mm}$ E1.78	,	(en	${ }^{200} \times 160 \mathrm{~mm}$ Singl	
		7 Pin Ch	${ }_{\text {col }}^{60}$	Slide Snlta				
	111.56 $1_{1} 129$	${ }_{\substack{8 \\ 8 \\ 8 \\ \text { Prn } \\ \text { L } \\ \text { Lin }}}$	${ }_{10}{ }^{20.36}$		Null Mestem 9\%-92\%		- ${ }^{\text {a }}$	
	${ }_{50}$	Phono Scrics			Null		len) : Noumm loubl	
	(4088			Minintur	Mosels	(1)		
${ }^{26}$				${ }^{3001 m A} 125 \%$	Inicrlink Lead $2 \mathrm{SFF}-25 \mathrm{FF}$ E .50	Drating Materiuls	PCH Fyuil ment	
(10)	${ }_{51} 1.74$	Red Linc						$\{7929$
DIL 1		Yeclow Lin Plug	¢0\%		prach Lead 3611.36 M 1 5991 Floppy Dric Cable A A \{ $\{+51$	Ene beh resil Pen in ko	PCB Chemicals	
		Red Linc	${ }_{60}{ }_{60} 0$		Hard Dist Cable 2 , 101120	(scru Polshing lilock 11.89		
		ck		t0 27		lable	Ferric 2 C 2 Sonesm	
		Whictin	¢0 20	Rutary Sin itches	Poonc Caht s,			
		${ }_{\text {Rench hassis }}$ Slact Chasis			Netuarki		PCil flus Spray	
	${ }_{\text {¢1 }}^{100}$	${ }^{\text {Prated }}$			(tact		${ }^{1} 10$ mols	
Transistion lleader				0				
Way Transisition					BNC Rauncer		Plasuc Fwerem	(21) ${ }^{5}$
Uay	(1047			Matak becor ircal 22 mma			(e)	
u ay Transsision	5						0.8 .091155	
	¢0097	${ }_{3}^{3}$ Pin	50		Please Phone for			
50 way tranisition	${ }_{61} 102$	${ }^{3}$ 3 Pin Chasesis Pup	[1170		items not Listed	(ex	Alws aralable Recucce Shin	

EMERYDAY

PRACTICAL
ELECTRONIES

Editorial Offices:
EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692. Due to the cost we cannot reply to orders or queries by Fax.
E-mail: editoria@epernag.wimborne.co.uk
Web Site: http://www.epemag.wimborne.co.uk
See notes on Readers' Enquiries below - we regret lengthy
technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX CO13 OJS
Phone/Fax: (01255) 850596

TWEAK TWEAK

One or two bits of editorial "tweaking" have gone on this month. As a result of our Readership Survey back in the November 1996 issue we have made a couple of changes to regular items - there will be other changes, mainly on the emphasis given to various types of projects and features, but these will not be instantly apparent to readers. We anticipate, however, that they will ensure EPE continues to be the best selling hobbyist magazine in the UK.
The tweaks that we have made so far concem regular editorial pages. Many readers may be surprised that we no longer have a Fox Report, but don't be too upset as Barry Fox is now contributing regular news items to Innovations. Barry has been writing for the magazine for over 25 years and during that time has established himself as the best known and most respected technical investigative joumalist in the UK. You told us that you preferred news items to Barry's "Reports" so we have made the change.
You also told us that you wanted more on practical techniques so we have brought back Techniques - which had been rather pushed aside due to lack of space - and we will now altemate it on a monthly basis with Interface. We are also gradually introducing a little more colour to the magazine.
In general you seem happy with EPE and the changes we are making are, as I have said, really only tweaks that will enable us to continue to produce what we honestly believe is the best magazine of its type.

HUSH HUSH

I will not go into the change of emphasis on projects and features as we believe our research is very valuable and I don't want to tell our competitors what we have found out. Over a period of a year or so anyone will be able to monitor the type of projects and features we publish, and the areas of interest they cover, and so catch up with our tweaks.
But for now please be assured that we will go on publishing a wide range of projects (with at least four in every issue) and that they will. we believe. be even more interesting to a wider range of readers than previously. Stay with us for project and feature packed pages - we will continue to cram as much into EPE each month as we possibly can.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 24$. Overseas: $£ 30$ standard air service ($£ 47.50$ express airmail). Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subscriptions Dept., Allen House,

East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c. printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.
Payment in $£$ sterling only please. Visa and MasterCard accepted, minimum credit card order $£ 5$. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Doputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller:
DEREK NEW, Wimborne (01202) 882299

READERS' ENOUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped soll-addressed onvelope or a sel-addressed onvelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data, or answer queries, on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE
 \section*{EQUIPMENT}

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can resulh from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

2 METRE
 DUNCAN BOYD

F,M, RECEIVER

Listen-in to the world of amateur radio with this double conversion superhet design. Can be used in the car or from a mains supply.

Nor all that long ago, a few decades perhaps. the average electronics hobbyist would have most likely been involved in designing and building radio receivers and associated equipment like amplifiers etc. This tendency was most likely influenced by the technology of the day. While today there are still many amateurs who build radio equipment, the general emphasis of our subject seems to have shifted to other areas, computers being a prime example.

This is no bad thing although some may argue differently and it does tend to hide the grass roots of technology which we would find difficult to live without in these days of electronic mail and mobile phones. This article describes a double-conversion superhet receiver for the 2 Metre f.m. band which may provide an inexpensive introduction to the subject of amateur radio.
On the v.h.f. band of radio frequencies there are a great many users each with their own portion of the band specially allocated. Operators include Radio Amateurs, Aircraft and public services like the Police and Fire Brigade. The most common mode of operation is f.m.

AMATEUR BAND

A portion of the band which is specifically set aside for radio amateurs is the 2 Metre band from 144 MHz to 146 MHz . This band allows local radio amateurs to keep in touch about "the latest project" and "events" etc.

Communication can be either direct or via repeater stations which are located around the country. These repeater stations are mainly intended for amateurs operating from cars or portable equipment whose range would be limited otherwise.

The 2M F.M. Receiver described here is tuned by means of a varicap diode and a Squelch control and Automatic Frequency Control (a.f.c.) are included. The project
can be powered from a d.c. rail of between liV and 16 V , this allows portable operation or operation from a car, alternatively the project will accept the mains supply. The receiver is relatively inexpensive and so it could be left permanently installed in a car where most people would be reluctant to leave expensive commercial equipment.
filtering and amplification is done at one fixed frequency the characteristics of the "i.f. stage" could be defined much more easily and accurately.
A block diagram of the superhet is shown in Fig. 1. The mixer is the key to the superhet design. The mixer is in effect a frequency changer, it does this by multiplying the incoming signal with a signal from an oscillator within the receiver (local oscillator).
A well known identity of Trigonometry that can be found in any maths text is $\operatorname{Cos} \mathrm{A} \times \operatorname{Cos} \mathrm{B}=1 / 2 \operatorname{Cos}(\mathrm{~A}-\mathrm{B})+1 / 2 \operatorname{Cos}(\mathrm{~A}$ $+B)$. We can see from this that if we multiply two signals (A and B) we will oblain two further signals, one which is the $\operatorname{sum}(A+B)$ and one which is the difference ($A-B$) of the two signals. In receiver designs we can arrange for one of these signals to be at our i.f. frequency.

Fig. 1. Block diagram for a basic superhet.

SUPERHET

As with many receiver topologies the superhet was developed in the early 1920s by Major Edwin Armstrong of the US army. The superhet design provides a very cost effective and versatile solution to the radio receiver problem and the majority of receivers that are now available use this topology in some form or other.
Armstrong realised the difficulty of trying to reliably tune many receiver stages. He came up with the idea of putting the majority of the filtering and amplification at one fixed frequency, somewhere between the input frequency and the frequency of the demodulated signal, an Intermediate Frequency, (i.f.). He then converted the desired input frequency down to this i.f. before demodulation etc. Since the majority of the

A mixer can consist of any non-linear device, a diode or transistor could be used. Dual-gate MOSFETS are also quite common, the input signal is fed into one gate and the local oscillator is fed into the other gate. The load for the transistor may consist of a tuned circuit at the i.f. frequency, this provides some of the i.f. filtering.
This type of mixer is a single-ended system since there are single signal and oscillator ports. These miters are relatively inefficient and as well as allowing the sum and difference signals to pass, the local oscillator (LO) and input signal will also pass through at quite high levels. There will also be a number of components at harmonics of signals A and B , these signals may mix to produce undesirable outputs at the i.f. frequency. Single or double balanced mixers where
push-pull stages are employed are usually used to reduce the number of frequency components that are present as well as providing higher efficiency and better signal/noise performance.

FILTERS

Filters for use in i.f. sections are commonly available commercially. Over the years specific i.f. frequencies have been accepted for use in radio receiver circuitry. in general for v.h.f., 10.7 MHz is used as the i.f., although sometimes 21.4 MHz is used. In a.m. broadcast receivers i.f.s in the region of 455 kHz to 470 kHz are commonly used, these are chosen because they are in between the Medium wave and the Long wave bands in the radio spectrum.

Traditionally i.f. amplifiers would use an i.f. transformer with the primary and secondary of the transformer tuned to be resonant at the i.f. frequency. In practice, they might be de-tuned in opposite directions in order to give the required bandwidth whilst allowing steep roll off at each side, thus reducing the risk of adjacent channel interference. Many stages may be required to give a suitably steep roll off.

Ceramic and crystal filters are now offering a suitable alternative to the i.f. transformer. These filters are extremely small for the given performance and they don't need setting up or aligning and therefore they are simpler to use, the downside is that they are slightly more expensive.

If we wanted to tune a receiver to 145 MHz and our i.f. is to be 10.7 MHz then the local oscillator frequency could be $145+10.7=155.7 \mathrm{MHz}$ or $145-10.7=134.3 \mathrm{MHz}$. Now let's say that we choose 134.3 MHz then we have $145-134.3=10.7 \mathrm{MHz}$ which is fine, but unfortunately $123.6-134.3=-10.7 \mathrm{MHz}$ (we can think of negative frequencies reflecting through $\mathbf{0 H z}$ to give positive frequencies). This means that signals at 145 MHz and also 123.6 MHz will be mixed down to 10.7 MHz .

The unwanted signal at 123.6 MHz is termed the "Image" and is the main drawback of the superhet topology. Note that the Image is twice the i.f. away from the desired signal. In the block diagram of Fig. 1 the Bandpass Filter after the Input Amplifier is present to attenuate any signal at the Image Frequency as much as possible.

INPUT AMPLIFIER

In systems at v.h.f. and above, problems with noise and signal loss in cables and receiver circuitry becomes a problem. To combat this, the first stage in high frequency receivers is usually a high quality (low noise) amplifier. This amplifies the signal adding as little noise as possible prior to the signal, being de-graded in other stages of the receiver.

In some cases an amplifier may be placed directly after the antenna to overcome the losses in the coaxial cable connecting the antenna to the receiver. This is the reason that satellite receiver systems have an amplifier located at the antenna dish. In fact, since these systems are used at extremely high frequencies there is also a mixer located at the antenna, this converts the signal to a lower
frequency and allows lower cost cabling to be used between the antenna and the set top box.

LOCAL OSCILLATOR

In a receiver the Local Oscillator can take many forms and there are many texts that will provide suitable circuitry. whether the oscillator is to have a fixed frequency or a variable frequency. The important considerations in radio receiver oscillators are that they should be stable in frequency and have low noise and spurious signal content in their output.

One of the troubles when using v.h.f. oscillators is that they tend to drift in frequency slightly with temperature and there are circuits available to combat this. although this usually adds to the complexity and cost. One method is to start with a low frequency oscillator and then multiply the frequency up by tapping off and filtering the harmonics of a nonlinear amplifier.

Other methods involve feedback to keep the oscillator's output frequency stable.

Fig. 2. Demodulator circuit.

DEMODULATION

There are many methods of demodulating a Frequency Modulated (f.m.) signal, one common circuit, which is often missed in the text books, is the Quadrature demodulator. This type of demodulation is
far from perfect and is not particularly linear, however it is simple and is used in many communication systems where the quality of the demodulated signal is not the highest priority. Fig. 2 shows the arrangement; here we have a mixer where the two input signals are at the same frequency.

This means that only the difference component is at zero frequency or d.c. The level of the d.c. voltage is proportional to the phase difference between the two signals. When the phase difference is 90 degrees the signals are in "Quadrature" and the d.c. voltage will be zero.

In the circuit of Fig 2 the combination of the 10 pF capacitor and the $L C R$ parallel tuned circuit give us a 90 degree phase difference between the ports of the mixer when the tuned circuit is resonant. As the frequency deviates from the centre the phase difference will vary from 90 degrees and therefore we have a voltage at the output of the mixer which varies in sympathy with the modulation.

CONVERSION

The circuit we have just described is that of a single conversion superhet. This means that there is only one mixer or frequency changer stage. This system is often preferred but if the i.f. frequency is low, i.e. 455 kHz , then it becomes difficult to filter out the image frequency which will only be 910 kHz away from the chosen frequency.

Double or triple conversion designs reduce this problem. In these designs the signal is mixed down in stages before being demodulated. In a three-stage design the i.f.s might be at $21.4 \mathrm{MHz}, 10.7 \mathrm{MHz}$ and 455 kHz . This means that the image will now be 42.8 MHz away from the desired signal and this is much easier to filter.

HOW IT WORKS

The 2M F.M. Receiver is a double conversion design and the system block diagram can be seen in Fig. 3. The front-end of the receiver consists of a dual-gate f.e.t tuned r.f. amplifier. This is a low-noise amplifier which provides around 15 dB of r.f. gain, although this will be dependant on the actual supply voltage

the output of TRI to the 50 ohm input impedance of the 145 MHz bandpass filter XI. Resistor R4 is present to reduce the possibility of the amplifier oscillating.

The components that make up the input amplifier are contained within a small area on the printed circuit board (p.c.b.) and this gives rise to the situation where energy from coil L2 could be coupled into coil L1, for this reason LI and L2 are enclosed within metal screening cans; this also helps stop the amplifier oscillating. Resistor RI and capacitor C4 provide some filtering of the supply line.

The frequency response of the input amplifier can be seen in Fig. 5a, the bandpass characteristic can be clearly seen but it is desirable to have a much greater attenuation at the image frequency of

Following the amplifier is a 2 MHz bandwidth Bandpass Filter which is centred at 145 MHz . This filter will considerably reduce the level of any signal at the image frequency as well as any other out of band signals.

The output of the bandpass filter supplies the signal to the input of the first mixer. The mixer and local oscillator are contained within ICl (Fig. 4), the local oscillator can be tuned from 133.3 MHz to 135.3 MHz by means of a varicap diode and inductor coil. The output of the mixer will be at 10.7 MHz and we have a 15 kHz bandwidth crystal filter and some amplification at this frequency.

The output of the i.f. amplifier stage is fed into the second mixer, this and the $10 \cdot 245 \mathrm{MHz}$ crystal oscillator are contained within IC2. A frequency of 10.245 MHz was chosen because $10.7-10 \cdot 245 \mathrm{MHz}$ will give us a second i.f. frequency of 455 kHz .

A ceramic filter is employed here, the output of which is amplified and passed through some limiter stages which are also within IC2. The output of the limiter stages drive the demodulator which consists of IC2 and a Quadrature coil tuned to 455 kHz .

The output of the demodulator is fed into an audio amplifier IC3 which drives the loudspeaker. IC2 provides a squelch signal which shorts the input of the amplifier to ground $(0 \mathrm{~V})$ when there is no signal present, this removes the annoying hiss between channels.

Fig. 3. System block diagram.

CIRCUIT DESCRIPTION

The main receiver circuit diagram for the 2M F.M. Receiver can be seen in Fig. 4. Received broadcast signals are picked up by the antenna and enter the circuit via socket SK1. Capacitors C1 and C2 match the 50 ohm impedance of the antenna to the dual-gate MOSFET input amplifier TR1. Coil L1 is present to tune the amplifier to have a bandpass characteristic centred around 145 MHz .

The output of this tuned circuit ($\mathrm{C} 1, \mathrm{C} 2$ and L1) is fed into one gate of TRI, a lownoise high frequency amplifier, the other input gate is biased at around 4 V by resistors R2 and R3, this gives the best combination of high gain and low noise. The output of TR1 is again tuned to a centre frequency of 145 MHz , this is done by components L2. C5 and C6. Capacitors C5 and C6 match

Fig. 5 (a) Input amplifier response and (b) amplifierfilter response.
123.6 MHz . For this reason a pre-tuned Helical filter, XI, is inserted after the amplifier, this is centred around 145 MHz with a bandwidth of 2 MHz . The frequency response of the amplifier and filter together can be seen in Fig. 5b, this shows a much higher attenuation out of band and we can see that any component at the image frequency will be reduced considerably.

MIXER/OSCILLATOR

Signals from the filter X1 are coupled to the first mixer, within ICI, by capacitor C7. The mixer and oscillator are intermal to ICI. an NE602 dual balanced mixed/oscillator. However, the oscillator requires the use of an external tuned circuit.
Most of the components to the right- of ICI on the circuit diagram (Fig. 4) are concemed with the oscillator. Resistors R8, R9 and potentiometer VR1 form a variable potential divider, this acts as the tuning control. The output of the divider is filtered by capacitor C14 and applied to VD1 via resistor R7. VD7 is a varicap diode, whose capacitance varies with the reverse voltage across it, this variation in capacitance is used to vary the resonant frequency of the tuned circuit.

Other components fundamental to the tuned circuit are capacitors C12, C13 and ferrite inductor coil L3, the ferrite coil being used to vary the centre frequency of the tuned circuit. With the components shown, the resonant frequency of the tuned circuit can be varied around 134.3 MHz .
The MC3359 IC2 provides us with a.f.c. (Automatic Frequency Control), this helps compensate for local oscillator drift due to temperature etc. The output of the a.g.c. is filtered by R12 and capacitor C16 before being applied, via RII, to the base of transistor TR2. TR2 modifies the tuning voltage which is applied to the varicap diode

COMPONEVTS

Resistors	
R1	220Ω
R2, R22	100k (2 off)
R3	82k
R4	47Ω
R5	270Ω
R6. R16.	
R20. R23	10k (4 Off)
R7, R21	150k (2 Off)
R8. R10	4k7 (2 off)
R9, R13	39k (2 off)
R11	1M
R12, R14.	
R15	22k
R17	$3 \Omega 9$ See
R18	5k6 ¢0
R19	15k Sor
R24	56k TALK
All 0.25W 5\%	Page
Potentiometers	
VR1 4k7 rotary carbon, linear	
VR2 10k rotary carbon, log.	
VR3 10k rotary carbon, linear	

VDI. The voltage is modified in such a fashion as to track the input signal.

CRYSTAL CONTROL

The output from the first mixer stage (IC1 pin 5) is fed into X2, a 10.7 MHz crystal i.f. filter, the output of which is applied to the base (b) of TR3, a common emitter amplifier biased by resistors R13 and RI4. The output of this i.f. amplifier is

Capacitors

C1	6 p 8		
C2	27p	C10. C11	15p (2 off)
C3. C20, C21, C23, C33, C41	10 n (6 off)	C13	10p
C4, C8, C12, C17, C31, C32	in (6 off)	C16, C40	10μ radial elect. 16V (2 off)
C5	8p2	C19	220p
C6, C18	39p (2 off)	C25, C34	1μ radial elect. 16 V (2 off)
C7	330p	C28	3n3
C9, C14, C15, C22. C24		C29	100μ radial elect. 16 V
C26, C27, C30, C36 to C39,		C35	100p
C43, C44	100n (14 off)	C42	470 μ radial elect. 25 V

All capacitors are monolithic ceramic with 2.5 mm lead spacing, except where stated.
Semiconductors

VD1 D1 to D4
D 5
TR1
TR2
TR3
IC1
IC2
IC3
IC4
IC5
REC1

Inductors

L1. L2
L4 type S18 Orange (2 off)
Toko $2 \cdot 5$ turns v.h.f. ferrite core coil, type S18 Red
Toko 7 mm 455 kHz fernite core coil, type LMC4202A 7E Black

Miscellaneous

$\times 1$	145 MHz bandpass filter (271MT1008)
$\times 2$	10.7 MHz crystal filter (10 M 15 A)
X3	$10-245 \mathrm{MHz}$ crystal
X4	455 kHz ceramic filter (CFU455D2)
LS1	$8 \Omega 0.5 \mathrm{~W} 76 \mathrm{~mm}$ dia. loudspeaker
SK1	BNC chassis mounting socket
SK2	2.5 mm power socket
S1	s.p.s.t. loggle switch .
S2	d.p.d.t. toggle switch (mains rated - not on model)
FS1	250 mA 20 mm mains fuse, with panel fuseholder
T1.	230 V mains transformer, with 15 V 250 mA secondary
Printed circuit bo	from the EPE PCB Service. code 144: metal case,
$203 \mathrm{~mm} \times 127 \mathrm{~mm} \times$	d.i.l. socket (2 off); 18-pin d.i.l. socket; plastic kno
off); strain relief grom	er tag; p.c.b. mounting spacer (4 off) and fixing nuts
bolts; multistrand	vire; length of single-core screened cable; mains
solder etc.	

BB405B u.h.f. tuning a.f.c. varicap diode
1N4148 signal diode (4 off)
green I.e.d. with mounting clip
BF981 low-noise dual-gate MOSFET
BC1828 non silicon transistor
2N2222A npn gen. purpose r.f. transistor
NE602AN dual balanced mixer/oscillator
MC3359P mixer/oscillator/demodalator (ULN3859)
LM386N power amp.
$78 \mathrm{LOB}+8 \mathrm{~V} 100 \mathrm{~mA}$ voltage regulator
$78 \mathrm{~L} 15+15 \mathrm{~V} 100 \mathrm{~mA}$ voltage regulator
DB005 50V 1A 4-pin d.i.I. bridge rectifier

Toko 3.5 turns v.h.f. ferrite core coil, with screening can,

145MHz bandpass filter (271MT1008)
$10 \cdot 7 \mathrm{MHz}$ crystal filter (10M15A)
10.245 MHz crystal
ans ceramic niler (CFUaSSO2)
BNC chassis mounting socket
2.5 mm power socket
s.p.s.. ooggle switch
50. . .

230 V mains transformer, with 15 V 250 mA secondary
Printed circuit board available from the EPE PCB Service. code 144: metal case, size $203 \mathrm{~mm} \times 127 \mathrm{~mm} \times 51 \mathrm{~mm}$; 8 pin di.i.l. socket (2 off); 18 -pin di.i.l socket; plastic knob (3 bois; mulistrand connt, solder etc.

Fig. 6. Mains power supply, with external d.c. socket, for the Receiver.
applied, via capacitor C17, to the second mixer stage which is contained within IC2 (pin 18), an MC3359 mixer/oscillator/ demodulator i.c.

The oscillator in IC2 is controlled using an external crystal X3, the frequency of this crystal is 10.245 MHz . Capacitors C18 and C19 are also part of the external oscillator circuit.

Our first i.f. of 10.7 MHz and our second local oscillator of 10.245 MHz give us a second i.f. at $10.7-10.245=455 \mathrm{kHz}$. X4 is a ceramic i.f. filter centred around 455 kHz and the output is i.f. amplified and limited within the IC2. The limiting removes the effect of any amplitude variations that may be present on the signal, this is one of the main advantages of F.M.

The output of the limiter circuit is then Quadrature demodulated with the aid of the external tuned circuit consisting of coil L4 and resistor R15. Capacitor C22 is a supply decoupler.

DE-EMPHASIS

The output of the demodulator, at pin 10 IC2, goes two routes. First of all it is low pass filtered by R16 and C23 before being applied'to the audio amplifier stage IC3, via capacitor C24. This low pass filtering is called "de-emphasis". The high frequencies are amplified or "emphasised" at the transmitter and the de-emphasis in the receiver compensates for this with the intended benefit of reducing the high frequency noise in the received signal.
Potentiometer VR2 provides a volume control for the audio amplifier IC3, which is based around the LM386 device. Capacitor C27 and resistor R17 provide a load for the amplifier at higher frequencies where the impedance of the loudspeaker is high. Capacitor C25 defines the gain of the amplifier and R18 and C28 reduce the noise produced by the amplifier at the higher gains. Capacitor C30 is a supply decoupler.

SQUELCH CIRCUIT

The second route the signal takes is to the Squelch circuit. The signal from the demodulator, at pin 10 IC2, goes via resistor RI9 to a bandpass filter/amplifier based around the op.amp within IC2 and external components R20, R21, C31 and C32. This filter is roughly centred around 12 kHz .

When there is no received signal present on the output of the demodulator there will only be high frequency noise or hiss, which is very annoying. The 12 kHz filter/amplifier combination will amplify

Think of it as "BASIC" for Scientists \& Engineers

399

FREE Technical Support FREE Upgrades for 12 months 30 Day Money Back Guarantee

Use MExpress and you could wonder how you ever managed without it! Whether you just want to load, analyse and visualise data - or create complete scientific \& engineering applications MExpress combines the simplicity of BASIC style commands with over 250 powerful matrix based numerical \& graphical functions.

MExpress is fully 32 bit, works
with Windows 3.1, 95 or NT and costs just $£ 99$. A special Developers Edition is also available ($£ 299$) which works together with a C++ compiler (a wide range are supported) to turn your MExpress application into a fast standalone executable which you can distribute royalty free!

Tel01614760202

 Fax 01614760505EMail info@quicksys.demon.co.uk WWW http://www.quickroute.co.uk

Send me more Informationl Post to

- Quickroute Systems Lid, FREEPOST NWW13136, Stockport. SK4 IYR, U.K. (No stamp required if posted in the U.K.).

Name
Address

Tel \& Email

Quickroute Systems Lid Regent House
Heaton Lane Stockport SK4 1BS
Prices exclude post \& packing and V.A.T. All trademarks acknowiedged. All products sold subject to our standard terms \& conditions. Copyright (c) 1997 Qulckroute Systems Lid

Create complete applications flike the one above) with user conirols. plots \& powerful numerical melhods

MExpress includes a wide range of fuly customisable 3D and 2D plots \& arbitary 2D and 3D grophics

The Devclopers Edition works together with a C+ - compiler to turn your MExpress application into a siunuactone executable

Elecfronics Workbench Version 5.0

Electronics Workbench Version 5 with analog, digital and mixed A/D SPICE simulation, a full suite of analyses and over 4,000 devices. Still the standard for power and ease of use. Now ten times faster. Still the same low price.

Join over 75,000 customers and find out why more engineers and hobbyists buy Electronics Workbench than any other SPICE simulator. You'll be working productively in 20 minutes, and creating better designs faster. We guarantee it!

1 $199<\begin{gathered}\text { SAME } \\ \text { GREAT } \\ \text { PRICE! }\end{gathered}$

Canash
46ailolsion

High-End Features

TRUE MIXED ANAIOG/DIGITAL FUIIY INTERACTIVE SIMULATION ANAIOG ENGINE DIGITAI ENGINE TEMPERATURE CONTROL PRO SCHEMATIC EDITOR HIERARCHICAL CIRCUITS VIRTUAL INSTRUMENTS ON-SCREEN GRAPHS ANAIOG COMPONENTS DIGITAL COMPONENTS DEVICE MODEIS MONEY-BACK GUARANTEE TECHNICAI SUPPORT SPICE 3F5, 32-BIT NATIVE, 32-8IT EACH DEVICE YES YES YES YES OVER 100 OVER 200 OVER 4,000 30-DAY FREE

Powerful Analyses

DC OPERATING POINT	YES
AC FREQUENCY	YES
TRANSIENT	YES
FOURIER	YES
NOISE	YES
DISTORTION	YES

30-DAY MONEY-BACK GUARANTEE
VERSION 5.O FOR WINDOWS 95/NT/3. 1

POWERFUL NEW VERSION!

Fax: $44(0) 1203233210$ E.mail: sales@rme.co.uk

this noise. The output of the filter/amplifier at IC2 pin 13 is coupled to a peak reader circuit by capacitor C33. It is also added to the d.c. voltage generated by the potential divider R24 and VR3. The peak reader circuit consists of diode DI which rectifies the noise plus d.c. whilst C 34 will hold the peak voltage for a short time determined by the time constant of C34/R22.
When the voltage across C34 reaches about 0.7 V , this switches on a transistor within IC2 (between pin 16 and pin 14). This transistor takes the input signal of the audio amplifier to ground (0 V) and so the hiss isn't amplified and applied to the loudspeaker LSI. When there is a legitimate signal present at the output of the demodulator the voltage across C33 will be less than the 0.7 V and so the signal will be amplified and applied to the speaker as normal.
The level of noise that will activate the squelch circuit is varied by means of potentiometer VR3.

POWER SUPPLIES

There are two power lines used within the Receiver. The 13.8 V or the battery voltage (Fig. 6) is used to power the front end amplifier and the audio amplifier sections.

The other stages of the receiver are powered from an 8 V regulated supply which is derived from the higher voltage rail. IC4 is an LM78L08 100 mA regulator device which is decoupled by capacitors C38, C39 and C40.
The front-end r.f. amplifier and audio output amplifier power supply circuit diagram can be seen in Fig. 6. The 15V secondary winding from the mains transformer TI is full-wave rectified by RECI and smoothed by electrolytic capacitor C42. The unregulated voltage is then regulated to 15 V by IC5, which is a 100 mA voltage regulator. Capacitors C43 and C44 provide decoupling and remove any possibility of ICI oscillating.
The regulated 15V supply now passes

Fig. 7. Receiver printed circuit board component layout and full size copper foil master pattern.
through diodes D2 and D3, this drops the voltage down to around 13.8 V , the diodes also isolate the battery supply from the output of the regulator. The Extemal D.C. supply enters the circuit at SK2 and passes through diode D4 to supply switch SI. This means that if a battery and the mains are supplied at the same time then the 13.8 V will not appear across the battery. Light emitting diode D5 and resistor R25 provide an indication that the Receiver is powered up.

CONETRUCTION

The 2M F.M. Receiver is constructed on one single-sided printed circuit board (p.c.b.). The component side layout and full size track pattern can be seen in Fig. 7. This board is available from the EPE PCB Service, code 144.

Assembly of the components can be
carried out in any order you feel content with, ideally starting with the lowest profile components. The three p.c.b. mounting rotary potentiometers should be left until last since they are quite bulky compared with the rest of the components.

It was chosen to mount these directly on the p.c.b. to simplify construction of the receiver. If, however, you prefer to mount them on the front panet of the chosen enclosure for the receiver this is fine and wires should be taken to the appropriate positions on the board.

If the project is to be battery powered only, the components in Fig. 6 can be omitted. The use of i.c. sockets is strongly recommended.

Take care over the polarities and orientation of the electrolytic capacitors and semiconductors. Following assembly, thoroughly check that the soldered joints

Fig. 8. Interwiring from p.c.b. to off-board components. The double-pole mains on/oft switch (S2), shown in the power supply circuit diagram, was not used in the prototype model. This is inserted directly into the Live and Neutral leads of the mains cable before the transformer and fuseholder.
are satisfactorily made and that the components are indeed correctly oriented.

FINAL ASSEMBLY

The Receiver is best suited to a metal enclosure which will provide some screening. Holes should be drilled to suit the antenna connector SK1, the extemal power connector SK2, the shafts for the potentiometers, the power switch SI, fuseholder FSI and the loudspeaker LSI which can be either bolted or glued into position. Before mounting the loudspeaker drill a matrix of "sound exit" holes in the case, see photographs. In addition holes will be required in the base for the mains transformer and for the spacers on which the p.c.b. will be mounted.

Once all the holes have been drilled as required the front panel can be sprayed using car touch-up paint. Rub-down lettering can then be used to provide suitable legends on the front panel which can then be sprayed with clear protective lacquer.

Once the case is complete, the printed circuit board can be fitted in place and wired up as per Fig. 8.

TESTING

Before powering up the receiver, the resistance across the d.c. supply lines should be checked. This should be in excess of six kilohms (6 k). If it differs greatly check the position and orientation of all components and ensure that there are no solder splashes on the board underside copper tracks.

With the receiver switched off, plug in the mains lead and check the voltage at the D.C. pin on the board, it should be around 13.8 V . Disconnect the mains and apply a battery and again check for the
correct voltage on the D.C. pin. If all is well then we can proceed with powering up the receiver.

With the Volume and Squelch controls turned to their minimum positions and the Tuning control set to mid travel, switch the receiver on and advance the volume control clockwise. If all is well there should be a hissing sound from the loudspeaker.

If this does not happen check all the voltage levels on the semiconductors and re-check their orientation. When these voltages are correct and the hissing sound is present the receiver can be tuned up.

ALIGNMENT

Adjust the ferrite "slugs" within L1, L2 and L3 so that they are flush with the tops of their formers. (The ferrite cores in these coils are very fragile and adjustments should only be made with nylon or brass trimming tools - never use a stee screwdriver). Adjust LA for the maximum noise output. Adjusting the first local oscillator is best done with a frequency counter or spectrum analyser if these are available, successful adjustment can, however be achieved without these instruments with a little patience.

Turn the slug in L3 and LA one quarter turn into the former, with the Tuning control set to mid position, this should correspond to around 134.3 MHz (which will result in the receiver demodulating signal at 145 MHz). Using a frequency counter or spectrum analyser to "sniff" the r.f. energy from L3 this can be confirmed and the slug can be adjusted to bring the oscillator to exactly 134.3 MHz .

With this adjustment complete and with a suitable antenna connected turning the tuning control VRI should reveal any stations that are operating on the band. If a repeater of known frequency is heard this can again be used to calibrate the loca oscillator. Once a station has been successfully located the ferrite core of LA can be adjusted for the best audio quality (this can be done more easily with one end of R12 disconnected).

FRONT-END

The next stage in the alignment is to adjust the response of the front-end input amplifier. With the receiver tuned into a fairly week station adjust the core of L2 for maximum signal strength. If an os cilloscope is available this can be done very easily by adjusting L2 for the maxi mum amplitude of the 455 kHz sinusoid that should be seen on pin 5 of the IC2. Coil Ll can now be adjusted to give the minimum noise output on the signal.

If all is well with the Squelch circuit the receiver should go silent when the Squelch control VR3 is advanced beyond a certain

Layout of components inside the metal case. Note the loudspeaker is mounted on the underside of the case lid behind a series of "sound holes".
point. If this is not the case, check the voltage on the wiper (moving contact) of VR3 and also on pin 14 of the IC2. When in use the Squelch control should be advanced just beyond the point where the hiss disappears.

AERIALS

There are many commercial aerials available for the two meter band which will work well with the 2M F.M. Receiver but good results can be obtained without going to a great expense in this area. In its simplest mode the aerial need not consist of more than a piece of wire connected to the aerial socket. However, clearly the best performance will be obtained with some sort of resonant aerial located out doors.

One of the simplest aerials is, of course, the half-wave dipole and Fig. 9 shows a suitable arrangement for a dipole resonant on the two metre band. The elements can be made from stiff wire or thin bore copper pipe such as that used in car brake pipes.

Cut the elements to length then solder a large solder tag to one end. Cut a piece of perspex or suitable insulating material to an appropriate size ($5 \mathrm{~cm} \times 10 \mathrm{~cm}$) and drill holes in the positions indicated for two wood screws and for two M4 bolts which will be used to mount the elements. Suitable coax cable can be connected using large solder tags connected to the same bolts.

The perspex insulator can be screwed to some sort of boom, a broom handle with a "flat" cut in one end is very good for this purpose. This boom can be used to mount the aerial as high as possible out of doors perhaps using a TV aerial clamp or similar.

If the receiver is to be used in a car, the standard car aerial can be used. If this is the telescopic type the sections should be adjusted to 49 cm in length. This 49 cm is half a wavelength at 145 MHz it can be calculated by dividing 71.25 by the frequency in MHz , in our case 145 .

IN USE

Although this is a simple design with the minimum of parts, the dual-gate MOSFET front end gives the Receiver a sensitivity which should be equal to, if not better than, some commercial equipment and with a suitable aerial connected good results can be obtained throughout the two metre band. The prototype has been in use for some time and has obtained good results in a variety of locations. It does tend to drift slightly when first switched on but after a few minutes it remains stable on the chosen station.

Although it was designed for the 2 M Amateur Band the actual frequency of operation can be easily changed by altering the position of the ferrite core in coil L3. Indeed, a different value inductor could be loaded here to give a significantly different frequency coverage.

Fig. 9. Detail for a DIY version of a $1 / 2$-wave dipole aerial.

The filters in this receiver are, of course, at 145 MHz and will therefore attenuate signals outside this band. However, adjusting L3 can still allow coverage of local Taxi bands etc.
The 2 MHz bandwidth of the receiver is controlled by resistors R8 and R9. These values can be changed to give a wider or narrower bandwidth. Reducing R9 to 390 ohms and removing R8 altogether will give around 6 MHz of bandwidth.

2M F.M. Receiver

We had quite a nightmare when we came to sourcing components for the $2 M$ F.M. Receiver project. We found that the expected supplier of the MC3359P mixer/oscillator/demodulator chip had exhausted his supplies and was unable to track down further ongoing stocks, even for his own kits.

After several phone calls, even to the manufacturers, we eventually discovered that the Macro Group of Slough (TeI; 01628 504323) have stocks and readers should ring them for latest prices and availability. We understand that the ULN3859 is a similar device but no stockists have been found.

Some of the other components can be classed as "specials" and are carried by Cirkit (Tel. 01992 488999). These include: the BB4058 varicap diode, code 12-01055; 4 in d.i.l. bridge rectifier DB005, code 12-01050; BF981 MOSFET, code 60-06981; 2N2222A transistor, code 58-02222; and the NE602AN dual mix/osc., code 61-00602.

They also specialise in Toko coils and can supply all the inductor coils and screening can. They should be ordered as follows: 3.5 turns v.h.f. ferrite S18 Orange, code 3510303 (plus screening can 21-09105): 2.5 turns v.h.f. ferrite S18 Red, code 35-10203: and the 7 mm 455 kHz ferrite type LMC4202A 7E Black, code 35-42021.

For the filters and crystal quote: Bandpass 271MT1008, code 17-01008; Crystal filter 10M15A, code $20-10152$; $10 \cdot 24 \mathrm{MHz}$ crystal, code 45-10003; and ceramic filter CFU455D2, code 16-45582. The 15 V 250mA mains transformer should be generally available.

The Receiver printed circuit board is available from the EPE PCB Service, code 144.

Alarm-Operated

Car Window Winder

You must use heavy-duty automotive wire where specified when building the

Alarm-Operated Car Window Winder project. Remember, you MUST disconnect the vehicle's battery before connecting the unit into the vehicle's electrics.

Also, in view of the high currents present, there is a risk of overheating and even fire if you do not double-check your wiring and make good connections prior to reconnecting the car battery.

Make sure you have provided a good "solid" earth (chassis) connection and that you have placed an in-line fuse in each Closer circuit "live" power line cable. Be . extremely cautious, watching and smelling for telltale signs of heat etc when setting-up - Warning over.

All components required for the Trigger and Closer circuits should be readily available. However, for the Closer circuit you may experience a little difficulty in obtaining 0.015 ohm resistor rated at 4W. You should find one in the "wirewound" range stocked by advertisers, but you may have to select a 7W type as these seem more readily available.

You must use a relay which has contacts capable of handling currents of at least 16A. A typical example is the Maplin 12V d.c. 16A miniature relay, code $\mathrm{YX99H}$. Other similar types may be offered, but check that the relay contact arrangement will suit the circuit board or you may have to "hardwire" it to the board.
The two small printed circuit boards are available from the EPE PCB Service, codes 150 (Trigger) and 151 (Closer) respectively. You will need a Closer p.c.b. for each window you wish to control.

PIC-A-Tuner

Only a couple of items for the PIC-A-Tuner project give rise to further comment and these concern the PIC microcontroller and display module.

If you intend to program your own PIC, make sure you ask for the 10 MHz version
of the PIC16C84. Also, we understand from the designer that a 3-key membrane keypad does not appear to be listed by anyone and a 4-key "pad" was used in the prototype, with one key not used. The one in the model came from Electromail (Tel. 01536 204555), code 130-381.
Turning to the I.c.d. display module, you may find that by shopping around you can purchase a 2 -line 8 -character module at a "bargain basement" price from one of our advertisers. Before buying, check it is a HD44100-compatible device.
For those who wish to purchase a readyprogrammed PIC16C84, these can be obtained from Magenta (Tel. 01283 565435) for the sum of $£ 15$ inclusive. Alternatively, if you wish to do your own programming, the software is available on a 3.5 in disk from the Editorial Offices - see the PCB page for details or, for Internet users, free from our FTP site: ftp://ftp.epemag.wimborne.co.uk.

The printed circuit board is available from the EPE PCB Service, code 149.

Quasi-Bell Door Alert

No problems should be encountered by constructors of the Quasi-Bell Door Alert project. All components appear to be "off-the-shelf" items. Most advertisers stock a miniature, about 76 mm dia., 64 ohm loudspeaker. If you wish to use a "telephone" mic. insert you could try contacting Bull Electrical or J\&N Factors, see their advertisement pages.

The printed circuit board is available from the EPE PCB Service, code 133.

PIC-Agoras

Fully-programmed PIC16C84 microcontrollers for PIC-Agoras are available from Magenta (Tel. 01283 565435) at £15 each inclusive of VAT, etc. You will need to program in your own wheel size, however, as discussed in the text.

If you have TASM-compatible PIC-programming facilities, you can, of course, program your own chip. The software is available either on disk from the EPE Offices or from our Web site (see page 363).

Snow Drifts into C5's Launch

Barry Fox reports

TTRANSMISSION tests run by Channel 5 Broadcasting (C5B) to establish likely levels of interference to VCRs, have exposed a completely different practical problem. Many viewers will need to pay at least $£ 100$ for a new roof aerial if they are to receive watchable pictures from C5. If viewers cannot watch C5, advertisers will not fund the station.

The Independent Television Commission warned of this both when advertising and granting the C5 licence. But the theoretical warning meant little until C5B started testing its transmitters and a few inquisitive viewers tuned in to the test card.

NTL, the company which transmits for ITV and C4, and will now serve C5, accepts no responsibility for the snowy and ghosted pictures which some people are now seeing. NTL must follow technical rules set by the ITC after international negotiations aimed at preventing interference to stations in mainland Europe which already use the same frequencies as C5.

C5 confirms that its test transmissions have been "at full power, all day". So if viewers get poor pictures now, they can expect nothing better when the full service begins, unless they erect more efficient aerials.
Says Bruce Randall of NTL, "the original international frequency plan was for four channels, which is one more than many European countries have got. So it was a quart in a pint pot already. We are doing our best, but C 5 is never going to have the same coverage and power as the other four."

Questionable Validity

The Independent Television Association, which represents the ITV companies, has already warned that C5B is behind with its retuning and questions the validity of C5B's recent tests because of the limited publicity. Says ITVA spokesman Jim Cavanagh, "If C5 thinks the tests are valid, good. I hope they are right. But if they are wrong they could find themselves launching a channel that not many people can receive. Then the proverbial will really hit the fan". Cavanagh had tuned his TV set into C5's frequency and got only very poor pictures.
NTL and the ITC both say it is impossible to put a figure on the number of people who will need new aerials. The true picture will not emerge until C5 has conducted further rests, with much wider publicity, and following the
start of its full service over the recent Easter weekend. But industry insiders estimate that four or five million homes will not be able to receive clear pictures with existing aerials.

The UK's four existing TV stations come from 50 main transmitters, and over 900 lower powered relays to boost pockers of bad reception, behind hills and tall buildings. C 5 comes from a total of 33 main transmitters only. No relays carry the C5 signal. Some parts of the country will not get C 5 at all.

C5 will broadcast to its main audience, in London, from a 250 kilowatt transmitter. This is one quarter the power of the transmitters used by the BBC, ITV and Channel 4.

Aerial Combat

The existing four stations come from omni-directional transmitter aerials at Crystal Palace. Because there was no room for more aerials on these masts, C5 will broadcast from the Beulah Hill FM commercial radio mast, a few kilometres away. Receiving aerials which are close to the area and
pointed at Crystal Palace will be wildly off-axis for Beulah Hill. So the C5 signal is further weakened and pollured by reflections which cause ghost images.

Existing aerials in London are classified as Group A and designed to receive channels at frequencies up to channel 34. Group B starts at channel 39. In London, C5 uses UHF channel 37. So existing aerials are not suitable for UHF channels 35 and 37, as used by C5. The Group A aerials used in London are very poor at receiving C5's London frequency, channel 37.

NTL says that the signals that viewers get from existing stations are usually so strong that viewers can split their aerial to feed between several TV sets or VCRs, without noticing much difference. But the split feeds will give poorer pictures when they are handling C5's already reduced signal.

Although C5 has done little to publicise its transmission tests, anyone interested can find full details for all parts of the country from the BBC's Teletext pages on Engineering Information (BBC1 page 698).

Musically Vintage Auctions

DID you know that VEMIA (Vintage Electrical Musical Instrument Auctions) are held twice a year in Devon? The next one is between April 6th and 30th (what a Marathon!), that's starting this coming Sunday if you've just acquired this copy of EPE on its publication day of 4th April (subscribers should have received it a few days earlier and be able to plan for this weekend's auction a bit more easily).

The info we've received about it is sparse, basically just the following: Vemia, Dept. EPE, Star House, Sandford, Crediton, Devon, EX17 4LR; Tel: 01363 774627; Fax: 01363 777872; Web: http:/www.eclipse.co.uk; E-mail: vemia@mail.eclipse.co.uk;

The received photo shows a selection of items that will be nostalgia-generating to older readers and remarkable curiosities to younger ones. Apparently, all the major names are represented from Ace-Tone and Ampex, through Gibson, Korg, Rickenbacker, to Wirlitzer and Yamaha, to mention but a few from the list that starts in the 1930s and extends to the '80s. Sounds interesting! For more info, contact Vemia by any of the above means. (There's another auction in November.)

TV'S GOT A DOODLE-DO!

 Getting your revenge on politicians - by Barry Fox

 Getting your revenge on politicians - by Barry Fox}

IBM has invented new technology which could make the UK's forthcoming election much less of an ordeal for TV viewers. It gives the viewer control over the way someone looks and sounds on screen. This, says IBM, adds entertainment value to even the most boring political speech.
Now that a date for voting in the UK has been announced. British TV stations are obliged to give all the major parties equal free air time for Party Political Broadcasts. Because these are unpopular with viewers they are slotted into the schedules at short notice, and across several channels.
A series of lengthy patents recently filed in Europe by IBM in Armonk, NY describes a system which gives people so much control of their TV sets that they can get their own back on political speakers by ridiculing them (European applications 746 147-746 153).

TV'S SPACE-AGE

IBM's researchers have been rethinking the way people will watch home screens in the new digital age. They have coined the term. "television space" to describe a viewing experience which combines pictures, sound and interactive education and entertainment from broadcast. cable, games consoles and pre-recorded discs and tapes. There will be several hundred channels, from sources which require a dozen remote controls, some having fifty separate buttons.
This, says IBM, is "unmanageable". The patented remedy is a master controller, which sits on top of the TV set, connects to all the various sources and responds to a single remote handset with only a few buttons. Instead, it has a "wiggle stick" or "wobble plate" which works like the joystick control for a video game to move a cursor over the TV screen.

The control box generates images on the screen which look like a fanned pack of cards. Each card represents a family of programmes; for instance, weather, sport, comedy or movies. Moving the cursor over a card and clicking "OK" moves to another set of cards which show the choice of programmes.

PRIME-TIME BORING

All the time, the control box is generating what IBM calls "diversions". These are either displayed automatically during commercial breaks or when the viewer gets bored and pushes a button. IBM cites political speeches as a prime example of boring viewing.

Each diversion is like a video game which lets the viewer play with the TV image or sound. "Doodles" freezes the picture and displays a palette of moustaches, beards and spectacles at the side of the screen. The viewer then uses the wiggler or woggler to drag and drop disguises over the unfortunate victim's face. The live soundtrack continues to play so that the viewer can stop doodling and start watching the programme again as soon as it gets interesting.

Another diversion, called "Wall". lets the viewer use graphic blocks to construct a wall which progressively obscures any unwelcome face on screen. "Puzzle" automatically breaks the picture into blocks and rearranges them so that the face on screen becomes unrecognisable. The viewer must then try to get the blocks back into their correct position.
"Voices" lets the viewer replace the boring performer's live speech with the same words heard in the funny voice of a cartoon character. A palette appears on screen to offer a choice of "goofy" characters.

All these diversions, says IBM, will "pass time otherwise spent in an uninteresting fashion"

Tooling-up with Squires

NOW here's a catalogue to delight any ardent DIYer - that from Squires Model \& Craft Tools. It's a mail order catalogue, so you don't need to go drudging round the shops on the off-chance that they've got what you need to create your latest brainchild. This catalogue has probably got far more modelling tools in it than you could ever dream oft!
The 1997 edition is a sizeable volume at 100 A4 pages of illustrated products, a mixture of monotone photographs and line drawings. Nearly everything available is shown. Moreover, it is also indexed; probably well over 150 subject headings are quoted. Products include: airbrushes; caliper guages; de-burring wick; electrically conductive paint; fractional drill bits; gas torches; inspection mirrors; liquid poly; needle files; optical centre punch; punch and die set; quick action clamps; rotary cutters; tag boards; universal work holder; vemier guages; wire cutters; X-Acto blades, to mention but an alphabetical few!
The catalogue is admirably and clearly compiled, and all the items have prices quoted. Credit card orders are welcome.

No self-respecting hobbyist, in whatever constructional field - electronics, model cars, aircraft, whatever - should be without this one-stop shopping guide; it's a tool in its own right! And it's FREE! We are told that not even postage is charged for. This desirable Cat will be sent to you almost as soon as you've asked for it. Get a copy!

For more information, contact Squires Model \& Craft Tools, Dept. EPE, The Old Com Store, Chessels Farm, Hoe Lane. Bognor Regis, W. Sussex, PO22 8NW. Tel/Fax: 01243587009.

BASIC FOR ENGINEERS

BASIC as a programming language has appealed to a whole generation of programmers. It is quick to learn and relatively easy to use. Even programmers who ultimately need the speed of machine code will use it to establish the validity of their program flow logic before starting on the source code programming.

What, then, should be more natural than to expect a similarly constructed language that is tailored to meet the needs of engineers and scientists? That expectation is what QuickRoute Systems have addressed through their introduction of MExpress 1.1.
MExpress 1.1 is a powerful numerical and visualisation package which uses a BASIC-like scripting language. Over 250
 functions are built in, covering everything from solving simultaneous equations and signal processing, to advanced 2D and 3D plotting, and creation of user interfaces.

Designed for use with Windows 3.1, 95 and NT, this comprehensive package can be used in various ways. As a "super-charged graphing calculator", for example, simply typing commands and expressions at a familiar prompt. Data can be loaded, processed, plotted or visualised by calling on the powerful built-in functions. Once you are content with the basic commands, you can move on to create simple script files and then functions, updating the Function Library as you wish.

Complete applications can be created, with buttons, sliders, menus, multiple windows, etc. Furthermore, if you are using the Developer's Edition, the applications can be compiled into a Wins32 executable file which can be distributed royalty-free.

Managing Director Dr I.R. Frost says, "We expect MExpress to be popular with industrialists, engineers, scientists and enthusiasts because of its ease of use, power and, best of all, low price of just $£ 99$ (excluding VAT)". We feel his optimism is well justified. Other versions are available.
QuickRoute Systems are a company whose name is well established amongst regular EPE readers through the range of software products featured in their advertisements, which include the PCB drafting packages QuickRoute and SMARTRoute.

Much more information is available on this interesting new software tool from: QuickRoute Systems Ltd., Dept. EPE, Regent House, Heaton Lane, Stockport, SK4 1BS. Tel: 0161476 0202; Fax: 0161476 0505. E-mail: info@quick:sys.demon.co.uk; Web: http://www.quickroute.co.uk.

CIRCUIT

ALAN WINSTANLEY

Our monthly "Help Desk' takes piezo sounders apart and offers more guidance on resistor colour codes. An appeal too, for an elusive chip.

Buzzers and Sounders

AUDIBLE waming devices come in various flavours and it's worth understanding the differences between them if you're to specify the right parts and generally get the best decibels-per-pound of your money. Some typical questions which have come in over the past few months, include:
"I have some piezo discs (I ${ }^{1 / 8 / 8}$ diameter) which have two ceramic electrical contacts plus the base, as opposed to the more common type featuring one contact plus the base. What is the purpose of the extra contact?' - Leon Vaicius (on the Internet).

Meantime, regular reader Syd Mercer of Retford, Notts. asks:
"Can you help with a drive circuit for a three-terminal piezo sounder? I have obtained some from a few surplus boards. but I can only make them sound at a fraction of the level they are capable of."

I'll start with a general run-down on ways of adding audible warning devices to your circuits. They divide into several groups:

Electromechanical buzzers are nothing more than a coil supplied by a normallyclosed (n.c.) contact. When power is applied, the coil tums into an electromagnet, which "attracts"' the normally-closed contact and opens it. Power is therefore removed, the contact moves back again and re-applies power. Thus the contact is
forced to oscillate on and off, producing a piercing tone. The contacts tend to arc horribly, producing lots of RFI (radiofrequency interference: some commercial units have a suppressor capacitor included) and they are large and crude, but effective. Such a buzzer can be made using a sixinch nail, some enamelled copper wire as a coil, and an n.c. contact formed from an old baked-bean tin! Fig. I shows how! (Beware of back e.m.f. which may give you a tingle.)

A more practical device is the common "hammer" buzzer which comes in a small moulded rectangular plastic housing with a grille, costing about $£ 1$ each. (Example, Maplin FL39V).

These incorporate a single transistor oscillator circuit driving a small coil. Whilst they have no moving electrical contacts (hence no arcing), they do cause a tiny spring-loaded hammer to vibrate to and fro, which creates the sound like a vibrating reed. They are used in small alarm projects, telephones, etc. and are cheap and cheerful buzzers.

Piezo elements arrived on our scene in the late seventies, the first in the UK probably being manufactured by TOKO. The piezo disc or piezo

Fig. 1. The time-honoured electrical buzzer technique.
element is formed from a brass disc, onto which a layer of coated ceramic is deposited. A piezo ceramic element 'will distort very slightly when a voltage is applied across it.

On their own, they are of no use if you attempt to use them as a free-standing sound generator, so the mechanical aspects of mounting them are critical if an efficient sounder is to be achieved. This is because it is necessary to try to match the "impedance" of the airspace surrounding the disc: open airspace alone has a very low impedance compared with the high acoustical impedance of the disc, but by suspending a piezo disc within a suitable enclosure, see Fig. 2a, you can "compress" the air immediately surrounding the disc and the result will be a clear, crisp note.

Piezo discs are usually ready-mounted within a plastic housing (often being described as piezo sounders), and the brass element is often visible by looking into a sound-exit hole in the moulding. The

Fig. 2(a) Cross-section of a piezo sounder; (b) mounting of a piezo disc on its resonant "nodes"; (c) mounting a disc on its circumference.

Fig. 3. Typical driver circuits for piezo sounders: (a) continuous tone driver; (b) "bleeps" modulator; (c) 555 generator with variable pitch control.
dimensions of the moulding are carefully calculated by the manufacturer so that the piezo disc will resonate efficiently when driven by a suitable signal.

In Fig. 2b, the disc is mounted at the specific "nodes" where it resonates at maximum efficiency. In Fig. 2c, the disc is fixed down at its circumference, but this is somewhat less efficient and may reduce the output.
In order to utilise piezo elements, it is necessary to apply a drive signal, which can be in the form of a simple square wave. It is best to try to match the drive signal to the resonant frequency of the sounder, to obtain maximum output.

Many manufacturers now produce piezo disc elements and you should check the data to obtain the resonant frequency value. Fig. 3 shows some typical ways of driving a piezo disc with an extemal oscillator. Note that by using another low-frequency generator to interrupt the continuous drive, the piezo can be made to bleep.

Incidentally, the piezo principle also works in reverse: by tapping a piezo element, a voltage is produced, and this signal can be input to other systems. (This is the basis of a crystal microphone.)
For instance, a piezo disc can form a simple mechanical shock detector. A good example is the EPE Micro Sense Alarm (January 1992 issue) by Jason Sharpe. which uses piezo elements as sensors for an anti-theft system. Also, a neat design is M.G. Argent's Vibration Alarm (EPE

November 1992). which used a piezo disc not only as a small alarm tone generator. but as a shock sensor too! (Consult our Back Issues page elsewhere in this issue for ordering details.)

Three Wires

Things can be a little more complex when the manufacturer provides a third wire connection to the piezo disc. This is intended to provide feedback for an extemal driver circuit, in order to obtain a more piercing tone (see Fig. 4). In our market, it is very rare for this type of disc to be used, but they do find their way into commercial equipment (e.g. smoke alarms).
An altemative to a piezo sounder is a complete self-contained piezo buzzer. These contain all the driver circuitry needed to produce a waming tone. All that is required is an extemal power source to generate a signal - there is no need for an extemal oscillator.
Piezo buzzers are extremely convenient to use, of course, and certain models can produce an ear-splitting tone of well over 100 dB which will leave your ears ringing for hours afterwards, as I can testify! Typical models include the Maplin FX84F.

Piezo "sound bombs" include several piezo buzzers for extra output. Novel musical buzzers are also available. You may also see three-wire piezo buzzers. where the third conductor is used as a control - connect it to one rail or the other. to produce a bleep or warble. Look out for high-power piezo sirens, too, for use in burglar alarm systems and similar. At least one user I know, employs a piezo siren inside his car, to deafen potential car thieves.

Some final tips: when it comes to purchasing these parts, it is worth checking and clarifying the difference between a sounder and a buzzer. Make sure you are actually buying the right part to begin with - it's easy to be mistaken if catalogues aren't clear.

Also, piezo elements and buzzers are designed to be fixed properly to produce maximum resonance, so mount them rigidly to a base to improve the resonance. I usually stick them down with doublesided adhesive foam strip or I use a dab of hot-melt glue. However. I previously had lots of problems with one particular type of piezo buzzer, which wouldn't work at all if it was fixed down too tightly. I guessed the enclosure was too flimsy and this impinged on the movement of the disc.

Prescaler Chip Blues

By co-incidence, two regular readers. Mr. Charles Hill of Carmarthen, and Mr. BJ. Taylor of Rickmansworth both asked for help in locating an integrated circuit. the SP8269 Divide-by-100 Prescaler chip with pre-amplifier, made by GEC-Plessey Semiconductors. Mr. Hill is trying to extend the range of a home-brewed DFM, whilst Mr. Taylor is constructing a frequency counter with a minimum input of $150-200 \mathrm{MHz}$.

Unfortunately, it seems to be discontinued and the nearest I managed was a mere Divide-by-10 or 11 Prescaler, the SP8680B (575 MHz) listed by RS Components (302-378). Their catalogue has the

Fig. 4. Driver circuit for a 3-terminal feedback-type piezo sounder.
ominous black square next to the part number, meaning that that chip is likely to be discontinued in the near future too. If anyone has a spare, or knows of a suitable source or altemative, please drop me a line and I'll pass on your advice.

More on Resistors

Last month I described the colour codes for standard 4 -band and 5 -band resistors. The fourth stripe of a vanilla 4-band resistor is the tolerance, and sometimes - not shown last month - you will see red (2 per cent) or brown (I per cent).

Just to confuse the issue a little more, 6 -band types crop up from time to time, too! Resistor colour codes cause immense problems for beginners at times, and it isn't helped by the fact that some manufacturers may have their own specific code for particular types of resistor.
It's worth repeating that Maplin's popular "Min. Res." range of miniature metal film resistors (order code M+Value) is slightly unusual in that whilst they have a 1% tolerance, (with the 4th band coloured red), they say that a 5 th red band may sometimes be present which denotes a 50 ppm temperature co-efficient.

On many other ranges, this would be equivalent to the sixth band of a 6 -band type, which denotes the temperature coefficient of the resistor; usually you can expect to see a red 6th stripe (indicating 50 parts per million) or brown (100 parts per million). My graphics last month seem to hold true for the vast majority of types, though.

Eventually, you will find that it's very easy to "read" a resistor value simply by looking at the coloured stripes. By breadboarding circuits and constructing prototypes, you will soon be able to associate a resistance value shown on a circuit diagram, with the colour code of the physical component itself. Most electronics enthusiasts can do this. it simply takes a little practice - so don't worry if you puzzle with colour codes to begin with - we all did!

Next month: an alternative design for a siren, using a custom siren chip and a loudspeaker. If you have any queries or comments, please write to: Alan Winstanley, Circuit Surgery. Wimbome Publishing Lid., Allen House, East Borough, Wimborme, Dorset. BH2I IPF. E-mail alan@epemag.demon.co.uk. We try to help where possible but a personal answer cannot always be guaranteed. geometries, lower supply voltages and enhanced parallel operation - lan Poole reports.

THE microprocessor is a little over 25 years old. Since the introduction of the first processor chip by Intel back in 1971 over 50 billion have been made. So successful have they been that barely a household in the westem world cannot have one in some piece of household equipment. Businesses are also major users. Offices today bristle with PCs which use microprocessors at their heart. In fact we have become so used to the advantages of processor technology that it is hard to imagine what life would be like without them.

Whilst many changes have been made to everyday life as a result of them, more changes are set to come our way. Many new developments are being researched. Many of these ideas will not be feasible for many years but the seeds of ideas are beginning to show the way technology will progress. Faster speeds, smaller chips, more memory and a host of other ideas will all greatly increase the power of machines in the years to come.

It is possibly easier to see how device technology will move forwards, but what is not nearly as clear is how it will be used. Very few people would have foreseen the success of the PC, and the many other ideas which we take for granted. So, too, it will be difficult to see what we will be using in 25 years time.

Increased Throughput

It is clear that people will be striving for greater throughputs in CPUs. Here clock speeds are being raised at an ever increasing rate. Pentium chips running at well over 100 MHz are commonplace now.

In the future, clock speeds will increase further. One of the current aims is to have processors running with clock speeds of around 1 GHz . It is likely that this increase can be achieved with the same basic technology which is used today. But, to achieve this, a number of changes will be necessary.
Currently, there is a move to migrate from supply voltages of 5 V to 3.3 V . These lower voltages are required for two reasons. The first is that any v.l.s.i. (very large scale integration) chips running at very high speeds consume large amounts of current and run very hot. To reduce the power dissipation to acceptable levels, a reduction in the supply rail is needed.

Secondly, the chip geometries need to be made smaller to support the increased speeds. This results in them not being able to withstand the higher voltage rails, and therefore requiring a change to lower operating voltages. Only a few years ago chip geometries of one micron
represented the latest in technology. Now most new designs are being launched with geometries of around 0.5 microns or less.
However, the changes required to bring about the speeds of 1 GHz will need even lower voltages to be used. Power consumption rises considerably with an increase in speed and this means that even smaller chip geometries and voltages will be needed. The estimates available at the moment indicate that a standard of around 1.65 V may be chosen. The chip geometries are falling in line. Manufacturers are installing equipment to make devices with much smaller geometries, 0.18 microns being the next stepping stone, but it is likely that inside a few years even this will be reduced.

Despite these improvements, the dissipation in these large chips remains a problem. To overcome this a number of new ideas are being implemented in order that the heat which is generated can be removed from the chip itself, to ensure that it does not become too hot, thereby reducing its reliability. In addition to this, improved design methods are being employed to reduce the power dissipation to the absolute minimum.

Low Yoltage Logic

In the mean time, many new devices are coming onto the market for the latest 3.3 V standard. Many of the processors already use 3.3 V , and there are families of the familiar 74 series logic which use it. However, designers soon run into problems when they need some of the more specialised functions. Many of them are only available at 5 V , and this often means introducing further chips to interface between the two supply standards. Often it is possible to run the 5 V chips at a lower voltage, but even when this is possible, there is always a significant speed penalty to be paid.
Even though there are many advantages to be gained by reducing the supply voltage, this approach introduces a number of problems of its own. For high speed processors, one of the main concerns is that bus drivers operating at the low voltages will not be able to drive their lines sufficiently fast, thereby counteracting the speed increases on board the chips. If geometries can be reduced, though, and more placed onto individual chips, this will help to overcome the problem.
This will not all occur quickly because designers are reaching the limits of integration in some areas, and trying to place even more onto the chips cannot always be achieved. One of the main factors to be taken into account when deciding what
needs to be placed onto the chip, is to determine how much on-board DRAM is required.

Parallel Processing

Other methods are also being investigated to increase the throughput of the devices. The actual processing speed is obviously dependent upon the clock speed. Increasing this affects the throughput by the same degree. However, if a number of instructions can be run at once, this can increase the throughput several times.

Although the idea sounds easy, it is far from simple to implement. At the very high speeds now being envisaged, even small delays can mean that different parts of the processor may be performing instructions which are meant to be simultaneous but are at slightly different times. These synchronisation problems make the design of parallel systems far more complicated.
One approach to solve this is to distribute the master clock and perform local synchronisation. This requires a modular design to be implemented on the chip as well as new ideas for bus control, and memory access. This type of system can operate up to a maximum of around eight processing elements, saturating aboive this. To progress beyond this, a totally new style of architecture will need to be developed.
Despite these problems there are many ways forward which are being adopted. Even over the last few years, vast increases in speed have been seen. In many areas the limits of technology have not yet been reached and, as a result, similar increases will be seen in the coming years. In those areas where the limits of existing technologies are in sight, totally new ideas are being investigated so that the relentless increase in the speed of computers will continue for many years to come.

LOWER STILL

> Already Texas Instruments have devices that operate at voltages below 3V. Their new 10-bit DACs operate down to 2.7 V and interface directly to microcontrollers without the need for "glue" logic. Also, their ALVC devices operate at down to 2.5 V and have improved speed characteristics, typically $4 \cdot 3 n \mathrm{~s}$ instead of 5.Ons. TRIED \& TRUSTED STRAIGHT FROM GERMANY

NO PROBLEM !

NO. OF DRILLS?
NO LIMITS !

SERIE XX 5

$n \mid y \in 25 .$	20 oun 8001 only 19 .

Eurocard + Soldermask + Position print

Beta LAYOUT Ltd IRELAND PCB-Brokerage
1 A Y 0 U i 6 College Grove Ennis - Co. Clare

Fax/send back

Send/ fax me the PCB-POOL ${ }^{\infty}$
participation requirements.
Please send me the PREVUE-DISC free of charge.

Constructional Project

EPE PIC.A.ATUNER

JOHN BECKER

Highly accurate, microcontrolled tuning aid for all electronic and acoustic instruments.

THERE was a time when music tuning accuracy was at the mercy of the individual's ability to "know" pitch, either "recalled" from memory, or imposed by a leading member of an orchestra - what note he or she regarded as being right was right as far as that group was concerned: it didn't matter too much. provided they all played the same tune on the same notes, whatever the absolute frequency! The use of mechanical tuning forks helped to keep things within a range of acceplability.

Electronics. however, has for many years allowed us to tune in relation to an absolute standard frequency of 440 Hz , commonly known as Concert A. all other notes being derived from that single frequency. Even 25 years ago, constructional projects for music luners (which should really be called tuning aids) based on i.c.s were being published. But. sadly. the chips which used to be available
have long-since disappeared (the good old "AY" and "MK" series. for example). and their passing is grieved.

It's PIC's to the rescue, though! With these simple but sophisticated microcontrollers, it's comparatively straightforward to produce an accurate tuner that listens to what frequency you are playing and tells you how far out you are from the ideal note.

Moreover, it's especially easy to build one if someone else has already worked out the software program - enter the P/C. A-Tuner! lt's all here: electronics. liquid crystal display and program. You ve even got a tactile keypad you can press for a few "Functions" as well. Tune in and read on!

PIC-A-TUNER

PIC-A-Tuner has been designed to accept input signals from three sources: a square wave frequency output from a

digital musical instrument, such as a synthesiser: from an analogue electronic instrument, such as an electric guitar; from any acoustic instrument via an internal microphone. In the latter category comes the entire instrumental line-up of any orchestra, band, soloist. singer or pet cat! If it makes a noise. PIC-A-Tuner will respond to it.

Using a microcontroller. the tuner analyses the incoming signals, quantifying the time it takes for eight cycles of the signal waveform to occur. Using look-up tables. it relates each result to an octave range (from -3 to over +7 , well to either side of the audio range). determines the nearest note value and name within that octave. and the amount by which the frequency differs from the ideal value for that note

READING THE MUSIC

The octave and note name are displayed on one line of an intelligent liquid crystal display (l.c.d.). On a second l.c.d. line is displayed a bargraph which shows the actual frequency deviation from the ideal value. When the two values are equal. asterisks appear, confirming the note's accuracy.

A preamplifier with a panel-mounted control allows signal levels from the internal microphone or the analogue input socket to be adjusted to suit different sources.

A frequency filter is included as a switchable option allowing the fundamental frequency of a harmonicallyladen analogue note to be extracted. Whereas an instrument such as a flute or acoustic guitar will produce relatively clean waveforms and so not need the filter. other instruments, such as those in the brass and percussion groups for instance. will produce harmonics which can confuse the analysis procedure unless filtered out.

Selection of the filter band is made via a tactile keypad mounted on the case. The band selected is displayed numerically on the l.c.d.. the numbers being roughly relative to an octave value. Using the filter requires experimentation to suit differing circumstances, and sensible adjustment of the incoming signal's amplitude

The analogue processing circuit, including the filter. may be omitted if PIC-ATuner is to be used only for monitoring square wave signals.

WELL-TEMPERED

Although the tuner is crystal controlled, the precise tuning relationship between the frequency analysis parameters and the frequencies received can be changed via the keypad. This facility can be used when PIC-A-Tuner is first put into service, adjusting the tuning to correct for any deviation in the crystal's actual frequency and the ideal (even crystals have a manufacturing tolerance). The updated tuning factor is automatically stored in the tuner's EEPROM data memory and is recalled at each switch-on.

The facility also allows the unit to be tuned up or down from the international frequency standard of Concert $A=440 \mathrm{~Hz}$ (A^{\prime}). Historically, A^{\prime} has only been intemationally standardised at this value since May 1939; an agreement brought about by the proliferation of broadcasting. Before then, A^{\prime} as played by musicians and "imagined" by composers could have had a frequency well to either side of 440 Hz .

Alexander Wood, in his book The Physics of Music, tabulates some historically documented frequencies for A^{\prime} (many of them established by examining organ pipes). Two extreme examples are the Halberstadt organ of 1351 for which $A^{\prime}=505.8 \mathrm{~Hz}$, and Silberman's organ of 1713 at Strassburg for which $\mathbf{A}^{\prime}=393 \mathrm{~Hz}$. Handel's tuning fork of 1751 is set for A^{\prime} $=422 \cdot 5 \mathrm{~Hz}$.

Some purist musicians still prefer to tune to the frequency which they believe the long-departed composer had in mind. The validity of such arguments may be academic, but PIC-A-Tuner allows these preferences to be catered for.

Note, however, that you do not need to adjust the tuning of PIC-A-Tuner. The default parameters set into the software and the accuracy of the crystal frequency provide an inherent tuning accuracy which is well within the needs of most musicians. Nonetheless, the facility for extreme precision is there if you want it.

When PIC-A-Tuner is being tuned, the hexadecimal value of the tuning parameter being set into the software is shown on the l.c.d., slowly changing when the TST/SET and the relcvant UP or DOWN keys are pressed. An additional hexadecimal display is also shown, representing the microsecond timing value for a single cycle of any frequency which is being input to the tuner. This latter display can be called at any time by pressing the TST/SET key on its own.

The fourth key, which you will have noticed in the photographs, is marked NIL. That's just what it's for - nothing: tactile keypads do not seem to be available with just three keys, so a four-key one had to be used.
Let's now look at the electronics of PIC-A-Tuner.

SCOPING THE PROCESSOR

The circuit diagram in Fig. 1 will probably look familiar to many of you, being similar to others that show the heart of a PIC-controlled processing and display circuit and which have been published in previous issues of EPE, the PIC-Agoras Wheelie Meter Part 1 in last month's issue, for example.
This is one of the advantages of using a PIC, once the basic circuit configuration
has been established, only minor variations are needed to modify the circuit to a slightly different application. The main difference, and a very significant one at that, is that the software requirements will be different. From an end-product point of view, PICs offer enormous possibilities.

From the designer's point of view, though, PICs require far more time to be spent on program writing than on the electronic circuit design. In many instances, this development can take far longer than might be the case for a design having a similar function that is performed purely electronically. No doubt some of you will have found that when designing something, the soldering iron can be far less used than PIC development software!
There are two principal devices in Fig. 1, the PIC16C84 EEPROM-based microcontroller, IC1, and the intelligent I.c.d. module, X2, which is operated in 4-bit mode. Both devices have been discussed at length in previous issues of $E P E$ and will not be described in detail here.

SAMPLING

The master clock frequency for microcontroller ICI is generated at 10 MHz , using crystal X1, resistor R4 and capacitors Cl and C 2 . (When purchasing the PIC16C84, the 10 MHz version must be specified.)
The frequency to be analysed by the microcontroller is fed via resistor R3 to IC1 pin 6, the INT/RB0 pin, as a logicshaped waveform (digital pulses swinging between 0 V and 5 V). Its source can either be from an external instrument via socket SK1, or from the analogue processing circuit (Fig. 2, later).

Fig. 1. Circuit diagram of the processing and display stages of the PIC-A-Tuner.

The software within ICI repeatedly examines the status of pin 6, incrementing a series of counters while it does so. Within a time-out period, each time software detects that eight pulses have been received, the count value is stored and the counters are reset.

Strictly speaking, the counters are not "incremented" (adding one to the value). Rather, the software repeatedly adds the binary equivalent of a decimal number that is accurate to several decimal places. This technique allows PIC-A-Tuner to be extremely accurate in its calculations, and for its reference values to be so accurately set via the keypad.

Each count value is compared against look-up tables which, as discussed earlier, provide the octave number, note name and ideal note frequency values. The difference between the true and actual frequency value is converted into a bargraph value.

COUNTS TO THE BAR

The resulting answers are formatted appropriately for the two 8-character lines of the l.c.d. and output to it as 16 nibbles (1 nibble $=4$ bits, 8 bits $=1$ byte) via port pint RBI to RB4 (pins 7 to 10), which are connected to the l.c.d.'s D4 to D7 (pins 11 to 14) data lines. Included in the format is the number of the filter band selected (whether or not the filter is switched on).

As each nibble is output, port pins RB5 and RAO (pins 11 and 17) toggle the l.c.d.'s RS and E lines respectively. The RS line controls whether the l.c.d. is to receive or transmit data on its D4 to D7 lines. In this instance, RS is set for the l.c.d. to receive data. The data is input to the l.c.d. when its E line is taken low.

Having output the data to the l.c.d., the software resumes its perusal of the status of port INT/RB0, waiting for the next batch of eight pulses.

The format for the tuning information display is:
Line I position 1 Octave number
Line 1 position 2 Octave sign (- for minus, blank for +)
Line 1 position 3 Blank
Line I position 4 Note letter
Line 1 position 5 Blank or sharp symbol (\#) as appropriate
Line 1 position 6 Blank
Line 1 position 7 Filter number (from -1 to 6)
Line 1 position 8 Blank or flashing X (see later)
Line 2 positions
1 to 8

bargraph display

With the bargraph display, unless the input frequency is correctly in tune, only one position is normally active, the others remaining blank. With this one active position, a vertical line will appear in one of the five available sections of that position. Underneath this position, a horizontal line (the l.c.d. 's cursor) will be shown.

If the input frequency is correctly in tune, an asterisk will appear to either side of the vertical line position. When tuning is exact, the asterisks always appear in positions 3 and 5, and the vertical line will be in the centre of position 4 . This position is immediately below the note letter in line 1 .

COMPONEVIS

Resistors

R1 to R6, R19, R26, R29, R30, R34. R35
R7 to R10, R17, R18, R20, R22, R24, R25, R27, R28, R33, R37 R11 to R13, R16, R21, R23, R32, R36. R38. R39
R14
R15
R31
1k (12 0ff)
100k (14 off)
10k (10 off)

All 0.25W 5\% carbon film or better

Potentiometers

VR1	100k min. cermet, round
VR2	2 k 2 min. cermet. round
VR3	10k rotary, lin.

VR3
10k rotary, lin.

Capacitors

C1, C2
C3, C10, C14
C4, C5, C7, C9, C13, C17
C6, C8, C11, C12
C15, C16
15p polystyrene (2 off)
1μ radial elect. 16V (3 off)
22μ radial elect. 16 V (6 off)
100n polyester (4 off)
33p polystyrene (2 off)

Semiconductors

D1
D2 to D4
IC1
IC2
IC3
IC4
IC5
IC6
red l.e.d.
1N4148 signal diode (3 off)
PIC16C84 microcontroller (10MHz version).
pre-programmed (see text)
74HC14 hex Schmitt inverter
DAC08 or DAC0800 digital-to-analogue converter
LM358 dual op_amp
LM13600 dual transconductance amplifier
78 L 05 5V regulator, 100mA
Miscellaneous
MIC1
PL1
S1.S3
S2, S4
S5 to S7
SK1, SK2
$\times 1$
$\times 2$
X 2 2-line 8-character intelligent I.c.d. module
(HD44 100-compatible controller)
Printed circuit board, available from the EPE PCB Service, code 149; plastic case, 150 mm $\times 80 \mathrm{~mm} \times 45 \mathrm{~mm}$, with I.c.d. viewing cutout and integral battery compartment; knob; PP3 9 V battery; PP3 battery clip; self-tapping screws, to suit case (4 off); double-sided 1 mm terminal pins; 24 s.w.g. tinned annealed copper wire; connecting wire; solder, etc.

Note that resistors R1, R5 and R6, l.e.d. D1 switches S2 to S4, and connector PL1 are only required if on-board PIC programming is contemplated (see text).

Approx Cost

mın. microphone insert, approx impedance $1 \mathrm{k} \Omega$
Centronics 25 -way printer port connector
s.p.s.t. min. toggle switch (2 Off)
d.p.d.t. min. toggle switch (2 off)

4-key (or 3-key) tactile keypad, push-to-make, self-adhesive
3.5 mm s.p.c.o. jack socket (2 off)
3.
apping screws, to suit case (4 off); double-sid
aled copper wire; connecting wire; solder, etc.
R6, I.e.d. D1 . switches S2 to S4, and connecto

Guidance Only

(excl. programming parts) 2,4

If the input frequency is not correctly tuned, the vertical line will appear displaced to one side of the central section of position 4, by an amount relative to the degree of inaccuracy. If it is lower than the ideal, the line will be shifted left; if too high, it will be shifted to the right.
Typically, for a correctly tuned input frequency the display might show:

Display showing accurate tuning on E octave 3, filter 1. .

This indicates that the note is $A \#$ in octave -1 and that filter band 1 has been selected. (Only the sharps of notes are catered for, not their flats.)

TACIT

If, within a pre-determined time-out period, eight pulses are not received, one of two actions will take place. If no pulses have been received, software activates a routine which outputs the statement PLAY A NOTE! to the l.c.d., overwriting any other data displayed.

If at least one pulse has been received, but fewer than eight, the message FREQ UNSURE is output.
-

Request to "Play a note!" display.

Frequency unsure display.

When the software recognises that port INT/RBO is inactive, i.e. when no frequency signal is being received, the flashing letter X is displayed in the top right hand position of the display.

To avoid the previous tuning information from being erased immediately an input note ceases, another time-out period allows the tuning information to briefly stay on screen. In such an instance, the flashing letter X will also appear.

MISCELLANEOUS THEMES

For the l.c.d. module used, a negative bias voltage is required to set the display contrast level. This is generated using a standard voltage inversion technique:

Throughout its activities, software repeatedly toggles ICI line RAI (pin 18) up and down. This alternating signal is buffered by Schmitt trigger inverter IC2a, and rectified as a negative voltage (about
-3.5 V) by capacitor C3 and diodes D3 and D4. Capacitor C4 smooths the voltage and preset VRI sets the level applied to the contrast control (-VE) pin 3 of the 1.c.d.

The same negative voltage is supplied to IC3 pin 3.

Switches S5 to S7 are the keypad tactile switches referred to earlier, and responsible for controlling the tuning and filter parameters. Their use will be further detailed later.

The status of the switches is read via port pins RA2 to RA4 (pins 1 to 3). Resistors R7 to R9 hold these pins at 0 V when the switches are open (unpressed).

It is intended that PIC-A-Tuner should be powered by a 9V PP3 battery housed within the case. This supply is regulated down to 5 V by IC6. It must not be applied directly to ICl or the I.c.d. Current consumption is about 15.75 mA .

ANALOGUE NOTES

The circuit diagram for the analogue processing stages is shown in Fig. 2. It consists of a microphone and preamplifier, a digitally programmed voltage controlled filter (VCF) and a waveform squarer.

The microphone, MICI, is a small microphone insert mounted on the printed circuit board behind a suitable hole in the
case. Its signals are amplified by op.amp IC4a and routed to the switched jack socket SK2. Amplifier gain is set at $\times 100$ by resistors R19 and R20.

At SK2, there is a choice of inputting an external analogue signal, or routing the amplified microphone signal to capacitor C13 and the panel mounted Level control potentiometer VR3

Switch S8 then provides a choice of routing the signal from VR3 either through the filter, or direct to the waveform shaper. Op.amp IC4b forms the first stage of the waveform shaper, providing a signal gain of $\times 10$, as set by resistors R21 and R22.

From IC4b, the signal is a.c. coupled by capacitor Cll to the input (pin 9) of Schmitt inverter IC2b. The latter is biassed by resistors R24 to R26 so that its input is held at a mid-voltage (2.5 V) level to ensure cleaner processing of the op.ampderived signal.

The output at IC2b pin 8 is a wellshaped logic signal swinging between 0 V and 5 V . The signal is routed to socke SK1 (Fig.1), which allows for either the processed analogue signal, or an external digital signal, to proceed to microcontroller ICI.

It should be noted that external digital signals should swing between 0 V and 5 V . Amplitudes less than this may fail to be

Fig. 2. Circuit diagram for the analogue processing stages of PIC-A-Tuner.
recognised by ICI; signals much greater could damage it, although a degree of buffering is provided by resistor R3 (signals up to about 6 V should be OK , but are not recommended).

FILTERING HARMONICS

The filter is a bandpass type based on the conventional configuration for an LM13600 transconductance amplifier (TCA). The LM1 3600 has featured several times in EPE and is very easy to use where voltage controlled gain or filtering is required. It contains two identical sections, each comprising a controllable TCA op.amp and a Darlington buffer.
In this application, the device is configured for its bandpass/lowpass operation. though only the bandpass output at pin 8 is used (lowpass is present at pin 9).
Control of the filter is via pins 1 and 16 . the amount of current flowing into them setting the central frequency range. Both control nodes are joined and the current is determined by the voltage differential across resistor R27.

The control voltage is derived via the digital-to-analogue converter (DAC) IC3. Binary control codes generated by the software and output via IC1 port pins RBO to RB7 (pins 6 to 13) are sent to IC3's digital inputs B1 to B8 (pins 12 to 5). The output voltage at IC3 pin 2 has a level relative to the code applied. The voltage range available can be trimmed using preset potentiometer VR2.
The parallel connection of resistors R 10 and RII inserts a limiting resistance of $\mathbf{9 . 1}$ kilohms (a single resistor of this value could have been used but was not stocked by the author!).

Preset VR2 allows the filter range to be slightly adjusted so that the softwareselected values can be related more closely to the octaves of the audio signal frequency. The calculations for the software control were based on the total resistance value across VR2 and R10/R11 being 10 kilohms. In most cases, setting VR2's wiper to the central position will probably be satisfactory and adjustment not be required.

Experienced programmers could, however, also play around with the values of the software codes which control the filter ranges to suit their own idiosyncrasies!

Fig. 4. Connections for the 25 -pin D-plug printer-port connector.

COMPOSITION

Details of the printed circuit board for PIC-A-Tuner, and the interwiring required, are shown in Fig. 3. This board is available from the EPE PCB Service, code 149.

Note that the following are only needed if you wish to program your own PIC16C84 using this board (see later): resistors R1, R5 and R6, l.e.d. DI. switches S2, S3 and S4.

First of all, insert and solder all the onboard link wires shown; 24 s.w.g. tinned annealed copper wire is ideal for this. Follow by soldering in the sockets for ICl to IC5. Other components can be assembled in order of increasing size.

All polyester capacitors should be mounted on the rear of the board (trackside). Leads of the electrolytic capacitors should be bent so that these components lie flat on the board. Crystal XI should similarly be mounted flat,
orientating it to lie above resistor R4 and capacitor C2 (see photograph).

Capacitor C13 is soldered directly be tween potentiometer VR3 and socket SK2, squeezing it into the tight space between them when the case-mounted components are being fitted.

All connections between the p.c.b. and the panel components are soldered to the trackside of the board, but it is still suggested that terminal pins are used on the p.c.b. (double-sided so that they can be used more effectively).

Mounting the l.c.d. to the p.c.b. is a bit tricky, requiring a bit of patience! First. cover with insulating tape the p.c.b. link wires which will lie below the l.c.d.

Solder 24 s.w.g. wire (as above) into the required ten connecting holes of the l.c.d. module (see Fig.3), allowing about 50 mm to protrude on its trackside. Let the solder flow through the holes to allow both sides

to be soldered. Trim the wires to equal lengths for the inner-most row, and to equal but slightly shorter lengths for the outer row.

With a steady hand and the aid of a small screwdriver, carefully get each of the innermost wires to pass through the relevant hole on top of the p.c.b., being careful not to allow these insertions to be extractions (!), do the same with the outer row.

Gently push down on the l.c.d. so that it sits neatly on the p.c.b., wires protruding on the trackside. Solder and trim the wires on the p.c.b. Ultimately, two additional securing wires could be used at the other end of the l.c.d. if preferred. They will have no electronic function, but merely provide additional rigidity to the assembly. Do not solder them until the tactile switch has been connected (they were not used on the prototype).

Above the ICl position, four angled wires are required to be soldered, onto which the keypad connector is to be pushed. Insert $24 \mathrm{~s} . \mathrm{w} . g$. wire vertically into these holes from the rear of the p.c.b. Solder and cut them to about 25 mm long. Trim off any wire which is protruding on the component side.

Using thin-nosed pliers, bend the wire through 90° towards the I.c.d., allowing about 10 mm between the p.c.b. and the bend. Trim the leads evenly back to about 10 mm . Adjust their spacing so the keypad connector can be pushed onto them. Take care not to stress the p.c.b. and its tracks while doing this.

Fig. 3. Printed circuit board and interwiring (left) and full size foil master (above). The completed board is shown right. Note the electrolytics lie flat on the p.c.b.

IMPROVISATION

Before mounting it all in the case, do an improvised "lash-up" wiring job between all the components involved and make sure everything is working.

Also, of course, if you are intending to program your own microcontroller, using the p.c.b.'s optional programming facilities, you need to do that task first.

We'll deal with the programming operation in a moment. Assume for now that it has been done and you are ready to test the tuner.

Do a visual check (preferably with a close-up eye-glass) of the connections on the p.c.b., ensuring that there are no soldering or component placement anomalies, and rectifying them if there are. Leave out ICI to IC5. Apply power and check that 5 V (from IC6) is present where the circuit diagram shows it should be. The l.c.d. will probably remain blank.

When satisfied all is well, switch off and insert the remaining i.c.s. On powering up, adjust preset VRI until detail is seen on the l.c.d.'s screen. The detail could be anything at the moment, but should correspond to one of the display formats referred to earlier. Any noises you make in the tuner's vicinity should modify the display.

ACROSS THE SCALE

With the I.c.d.'s contrast set, turn up the Input Level control VR3, and then be silent for a while. The screen should revert to its stand-by mode, displaying the PLAY A NOTE! message with letter X flashing in the top right position and the filter range number beside it on the left.

Click your fingers near the microphone, or sing or talk to it! The display should change, showing an octave number, note name. filter number. and the bargraph line e
dithering back and forth along the lower display line. The flashing X should have disappeared. Periodically, you may also see the FREQ UNSURE message, accompanied by the flashing X.

Press the UP and DOWN keys individually. The filter number should increment or decrement accordingly at each key press. The action will probably be heard by the tuner and it will respond to the sounds as before.

Tum on a music player near the tuner and observe its response. It will be rapidly changing with the music, but, unless it's only a solo instrument playing, the tuning display will be inaccurate since the microcontroller will be trying to extract single note data from a multi-note signal, and get it all wrong!
(Experiments examining multi-note analysis have been carried out by the author, thousands of lines of code having been written on a high-speed PC in an attempt to crack the problem, but without success. But that's another story!)

Periodically, while complex music is playing, you will see the "correct tuning" asterisks appear briefly, though that will be more by coincidence.

While music is playing, press the TST/SET key on its own. In the right hand four positions of the two display lines will appear two 4-digit hexadecimal numbers. The upper one will be static, displaying the code associated with presetting the tuning accuracy. The lower will be changing with the music, representing the detected timing period values in microseconds.

If you have the equipment, i.e. a signal generator or mechanical tuning fork, you are now in a position to make use of these numbers.

FINE TUNING

Ideally, plug in a signal generator/ counter (the latter having a digital readout) to the digital input socket, setting the output

to a digital waveform of 0 V to 5 V peak. An analogue waveform may be plugged into the analogue socket instead. Altematively. but less easily, a mechanical tuning fork can be repeatedly struck and held near the microphone. In both analogue instances. keep the filter switched off (the filter doesn't affect the digital input).

Preferably powering PIC-A-Tuner (9V maximum) from the same power supply as the signal generator, switch on both units. Allow the generator to warm up and stabilise.

Then set the generator for an output of exactly 440 Hz . If the counter has decade frequency switching, set it to 44000 Hz , and then switch back by two decades, ensuring a really close match to 440.0 Hz . rather than the possibility of the actual frequency being closer to 439 Hz or 44 IHz than 440 Hz .

PIC-A-Tuner's screen should show octave I, note A, with the bargraph line possibly somewhere to one side or the other its central "correct tuning" position.

If the pointer is to the right of the position, simultaneously press the TST/SET and DOWN keys. Holding both keys down, the hexadecimal number displayed at the top right will show a steady increase. EvenIually, the bargraph line will move into the central region of line 2 position 4 and the two adjacent asterisks will appear. (The hex display may obscure the vertical bargraph line during the early stages of this procedure. Be patient, it will eventually come into view.)

Hexadecimal "in tune" numbers display.
Observing the hex number in line 2 can also achieve the same result - tuning is correct when the number shows 08 E 0 .

Release both keys. Shorly afterwards. the screen will display the message EEPROM UPDATED, and then reven to the normal screen display. PIC-A-Tuner is now set correctly to tune against intemational Concert A at 440 Hz .

Should the tuning pointer be to the left of the correct position, simultaneously press TST/SET and UP keys, and follow the above procedure, in which the hex numbers steadily decrease and the point eventually moves to the right.

CONDUCTING TIME

In the above paragraphs, the word "eventually" is used with purpose. The software allows for such a high degree of accuracy in the tuning set-up that the observed movement of the tuning line will appear tediously slow. Although it may not seem to be changing, the tuning factors are doing so, as evidenced by the changing hex number display in line 1 .

In practical terms, there is an amount of "slack" possible when tuning the unit, during which the asterisks will continue to confirm an accurate response.

Also, in practical musical terms, most human ears may find that notes will sound to be correctly and harmonically
tuned relative to each other even if the tuning marker is even as much as one or two whole display positions away from optimum. It is up to the individual to decide how accurately a musical instrument should be tuned against the extremely accurate PIC-A-Tuner.

Furthermore, again speaking musically. precisely tuning musical instruments to a really exact frequency is actually undesirable in an orchestral context. A very slight deviation in the tuning between instruments helps to create the fulness of the orchestral sound. If all instruments of the same type were "ganged" to an identical frequency, the resulting sound would be purely an increase in the volume obtainable from a single instrument, rather than an increase in the richness of the sound as well as its amplitude.

This is one reason why the use of vibrato enhances the musical experience: the output frequency of the instrument is being deliberately and repetitively shifted up and down about the "optimum" base frequency.

NOTE THE FREGUENCY

Once the tuner has been tuned, there is an additional use for $i t$, as a form of frequency counter. Pressing TST/SET. the hex number in line 2 can be noted and then translated to decimal and to an equivalent frequency expressed in Hertz. PIC-A-Tuner has not been programmed to perform this operation for itself.
Take the hex number 08EO displayed for Concert A as an example:

Hex 08EO $=2272$ decimal $=2272$ microseconds
Since frequency $=1 /$ waveform period. hex 08 E 0 represents $I / 2272 \mu \mathrm{~s}=440 \mathrm{~Hz}$.

Any hex number in line 2 can be similarly converted to frequency.

SHARP PRACTICE

As mentioned earlier in passing. PIC-A-Tuner has been programmed to relate frequencies to note values which include sharps (\#) but not flats (b). Although not strictly true, it is widely accepted that the sharp of one note can be regarded as the flat of the next one up the scale.

Table I shows the 12 notes of octave 1 with their calculated frequencies in Hertz, period timings in microseconds, and hexadecimal conversion value of the latter's integer. By definition, notes one octave apart have a frequency relationship of 2:1 (or I:2, depending on how you look at it!), thus the values for notes from octaves other than those in Table I can be easily calculated.

Table 2 shows the calculated parameters for note A across 12 octaves (the varying number of decimal places shown is due to computer truncation of the calculation answers to stay within the permissible numeric display length of that computer the ancient workshop-relegated 32 K Commodore PET, vintage '79!).

INSTRUMENT CASE

The case used in the prototype includes a preformed I.c.d. viewing cut-out. complete with transparent cover, so avoiding the need to cut your own slot!

Layout of components on one end panel. The other end takes a toggle switch.
Before drilling the other required holes in the case, examine how the assembled p.c.b. will sit inside. If necessary, file the ends and comers so that it sits correctly. with the l.c.d. seen evenly through its slot.

Referring to the photographs, mark and then drill the holes for the switches, sockets, potentiometer VR3 and the tactile switch pad. With the latter, a slot is required so that its flat cable and integral connector can pass through the top of the case, allowing the pad to sit comfortably within the area preformed into the case. Do not remove the adhesive-protecting strip which covers the rear of the switch pad at this stage.

Once you are content with the switch pad's position, insert into the slot provided a photocopy of the legends shown in Fig.s.

Table 1.
Octave 1 parameters

Note	Frequency	Period $\mu \mathrm{S}$	Hex $\mu \mathrm{s}$
C	261.625566	3822-25643	OEEE
C\#	277-182631	3607.72966	OE17
D	293.664768	3405.24335	0D4D
D\#	311.126984	3214-12173	OC8E
E	329.627557	$3033 \cdot 72694$	0BD9
F	349.228232	2863.45693	0B2F
F\#	369-994423	2702.74344	OA8E
G	391.995437	2551.05011	$09 F 7$
G\#	415-304698	2407.87067	0967
A	440.000000	2272.72727	08 E 0
A\#	466.163762	2145.16889	0861
B	493.883302	2024-76981	07E8

Table 2.
Parameters for note A relative to octave number

Octave	Frequency	Period $\mu \mathrm{s}$	Hex $\mu \mathrm{s}$
-3	27.5	$36363-6364$	8 EOB
-2	55.0	18181.8182	4705
-1	$110 \cdot 0$	9090-90909	2382
0	$220 \cdot 0$	4545-45455	11 C 1
1	$440 \cdot 0$	$2272 \cdot 72727$	08 EO
2	$880 \cdot 0$	1136.36364	0470
3	$1760 \cdot 0$	568.181818	0238
4	$3520 \cdot 0$	284.090909	011C
5	7040-0	142.045455	008E
6	$14080 \cdot 0$	71.0227273	0047
7	$28160 \cdot 0$	$35 \cdot 5113636$	0023
8	$56320 \cdot 0$	17.7556818	0011

Now remove the adhesive－protecting strip and carefully lower the pad into position on to the case．Beware that once stuck，the adhesive is very reluctant to let go！

Actually，being aware of this potential problem，the author chickened－out of using the pad＇s own self－adhesive properties，using instead a couple of strips of double－sided adhesive tape （Selotape）which was known to be easier to remove if necessary．It was stuck first to the keypad＇s backing strip，and then eased onto the case surface．

Next，insert the sockets，switches and potentiometer into their case holes．
Once this is done，slide the keypad＇s flat cable between the l．c．d．and the p．c．b． Place the p．c．b．in position in the case， curve the cable（without stressing or kinking it－its internal tracks can be fragile）and gently push its connector onto the mounting wires on the rear of the p．c．b．

Using self－tapping screws，secure the p．c．b．to the holes provided in the case．

Now tidy－up the interwiring to the p．c．b．．making it short and neat．Close up the lid and perform the finale：test it to make sure you＇ve tidied up correctly．

Completed PIC－A－Tuner showing the keypad cable connection on the p．c．b． trackside．

Run the TASM SEND program in the PIC initialisation mode，setting the PIC parameters to：

HS crystal（ 10 MHz ）
Watchdog timer OFF
Power on reset ON
Then，in PIC programming mode，down－ load the assembled TUNER213．COM file

立	験	a	务	

Fig．5．Full size keypad lettering line－up．This diagram can be photocopied and inserted in the tactile switch pad．

ON THE PROGRAM

Those of you who do not have PIC programming facilities can buy a pre－pro－ grammed PICI6C84 from Magenta，see Shop Talk column on page 309 （thanks to Magenta for again offering this service）．

Readers who wish to program their own PICs can acquire the software either on disk from the EPE editorial office or download it from our Web site（there is a nominal charge for the former，but the latter is free－again see Shop Talk for details）．The Web site file is in sub－ directory PICatuner．

The software has been written for the TASM assembler（share－ware），but should be fairly readily translatable by experienced programmers for other as－ semblers，such as the industry－standard MPASM，for instance．

For the benefit of readers having a PC－compatible computer and the EPE－ available TASM software，but lacking a PIC programmer，PIC－A－Tuner has been designed for the temporary addition of the few extra components required to carry－out on－board programming of the PICI6C84．

Referring back to Fig．I，the extra com－ ponents are：resistors RI，R5，R6，l．e．d． D1，switches S2，S3 and S4，plus the printer－port connector PLI in Fig． 4.

Connect the components as shown in Fig． 3 and Fig．4．Using the TASM software，assemble the supplied source code file TUNER213．ASM under the suggested title TUNER213．COM．Connect the tuner to the computer via the printer port connector．
to the tuner．It occupies 866 words（ 85 per cent）of the program memory．In both pro－ gramming modes，follow the on－screen in－ structions with regard to the use of switches S2 and S3．Switch S4 is the author＇s inser－ tion which allows the tuner and computer data lines to be isolated when programming is not taking place．

table notes

PIC－programming readers who study the software for this design will see that many look－up tables are used for several different purposes．Some of you may have experienced trouble when trying to em－ body tables into a program，finding in－ stances when the program crashes for no apparent reason．

In the author＇s early PIC－learning days． this problem seemed insoluble until it was recognised that in these instances the PIC16C84＇s in－built program counter was not correctly handling the return jumps from the tables and becoming wrongly addressed．

Experimentation revealed that this did not occur if the tables were only placed within the first 256 program address code locations．Any table overlap beyond this region．even by one byte，could cause a program crash．

Examination of the ．LST text file（as generated under TASM）created at as－ sembly time will show whether or not a table exceeds this page boundary．Study of the source code text file（．PIC or ．ASM）is unlikely to reveal this situation．

ENCORE

Being an EEPROM－based microcon－ troller，the PIC16C84 can be programmed and re－programmed as many times as you wish．If you make an initialisation or program downloading mistake．just repeat the operation from the beginning．

For the same reason，PIC－A－TUNER can also have its tuning parameters，as set via the keypad，changed as frequently as you want．Each time you do so，the new data is stored in the EEPROM data memory and automatically recalled at each subsequent switch－on．

Although there are finite limits to the number of times the EEPROM cells can have their data changed，in situations such as those described here，there is effectively no practical limit．

Readers who wish to know more about PIC programming should refer to the Back Issues page where previous EPE PIC－ based project articles are listed and avail－ able as stated．You should also obtain PIC data books from Arizona Microchip，Unit 6．The Courtyard．Meadowbank，Furlong Road，Bourne End．Bucks．SL8 5AJ．Tel： 01628851077 ．Fax： 01628850259.

Watch out for our next PIC－based music project，the PIC－OLO．It＇s a modern equivalent to the Penny－Whistle－and it＇s got polyphony！

INTERNET

Why not visit the EPE Internet site．Among other things you will find details of past and present issues，plus a five year index for EPE articles．Our ftp site also holds software for most of the PIC based projects we have published．
You can also order back issues or subscriptions and read some comments from readers．
http：／／www．epemag．wimborne．co．uk

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible.
Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. They could earn you some real cash!

"Scrabble" Timer - cen second rimerout

The simple timer depicted in Fig. I was designed to limit the time taken by each player when playing Scrabble, but could be used in any similar role. A metal-cased, mercury-filled, vibration-sensitive switch SI momentarily closes with a shake of the timer at the start of play. This pulls pin 3 of ICla down to 0 V . On S1 opening, the rising edge at pin 3 enables the monostable built around ICla, so pin I goes high for one to five minutes depending on the setting of preset VRI.

At the end of the cycle, pin I of ICla goes low again, causing a high pulse at the output
of IC2a. This drives transistor TRI and completes the circuit to WDI, a piezo buzzer. for approximately $R_{2} \times C_{4}$ seconds. This is a "ten seconds to go" signal.

The positive pulse from IC2a also clocks a second monostable (ICIb) which, after ten seconds, initiates a longer "bleep" from the piezo via IC2b, indicating that the player's turn has finished. The circuit then requires switch SI to be closed again, in order to repeat the sequence.

Monostable IC2c/IC2d generates a short signal to confirm timing has commenced, and also it resets ICIb if the next player activates
the timer. In the event that a fresh stan is needed while ICla is active, when switch S1 closes electrolytic capacitor C3 will discharge through diode D2 and pin 3 goes high again to re-clock ICla when the switch opens.

No on-off switch is necessary as standby current consumption is negligible. The original project was built into a small plastic box, but to add further novelty, a furry dice or small toy could be used.

M, L. Unsted, Hailsham,
East Susser.

Fig. 1. The simple Scrabble Timer.

Fig. 2. Mains Touch Switch - note the warnings on construction and use given below.

Mains Touch Switch -

WITH only the single touch of a fingertip the circuit of Fig. 2 will allow the on off control of a 240 V mains load. It uses the 50 Hz mains signal which constantly surrounds us. to trigger the circuit which functions as follows

A transformerless power supply derives a low voltage direct current from the mains a.c. voltage by using the reactance Xc (a.c. resistance) of Cl together with a bridge rectifier DI to D4 and RI: the result is smoothed by C2 and regulated by 12 V Zener diode D5. R2 is included as a bleeder resistor to discharge Cl when power is removed

Since $\mathrm{Xc}=1 / 2 \pi \mathrm{fC}$. assuming a frequency
of 50 Hz and a value of $0.47 \mu \mathrm{~F}$ for C . this produces a reactance of 6.773 ohms. This implies a maximum current flow of $240 \mathrm{~V}-12 \mathrm{~V}$ 16.773 ohms. i.e. 33 mA . RI limits the in-rush current to the bridge rectifier.

ICI is a 5.55 timer wired as a monostable with period of approx. 0.9 seconds. Placing a fingertip on the touch plate transmits a 50 Hz a.c. signal via C4. to the trigger pin of the timer. This pin is held high by R5. a select-on-test resistor of between 2 M to $1(0 \mathrm{M}$. This is necessary where areas of high electrical noise may otherwise produce false triggering When triggered. ICl pin 3 goes high for ap proximately $(0.9$ seconds. This output is fed to the clock of IC2, a 4013 D-type flip-flop. The Q2 output (pin I) is toggled high which switches on TRI along with the mains relay

RLA. Successive touching of the touchpad will turn the relay on and off.
Due to the transformerless power supply, the circuit may only be assembled by experienced constructors and for safety reasons, it is best to test the circuit by applying a 12 V supply across points \dot{A} $(+12 \mathrm{~V})$ and $\mathrm{B}(0 \mathrm{~V})$ before applying the mains supply; the l.c.d. D6 is included for test purposes. No attempt should be made to test the circuit with an oscilloscope. CI must be a suitable mains-rated (500V a.c. Class $\mathrm{X})$ type and C 4 must also be mains rated as a precaution. The unit should be housed in a fully insulated enclosure. It is wise to use this circuit via an RCD circuit breaker.

Martin Campbell.
Undercliffe, Bradford.

Aquarium Temperature Monitor

THE Aquarium Temperature Monitor circult shown in Fig. 3 was designed in order to monitor the water temperature within my tropical fish tank.
The circuit is straightforward and consists of two integrated circuits. ICI is a National LM3914N bargraph I.c.d. display chip and IC2 is an LM 335 Z precision temperature sensor. The display chip is wired as an ex-panded-scalc "dot-mode" bargraph driver.
The prototype spans $36^{\circ} \mathrm{F}$ and displays $60^{\circ} \mathrm{F}$ to $96^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$. but this is adjustable via potentiometer VR3. The resolution of the scalc is resolved via VR4 which also sets the l.c.d. current to 12 mA . The l.c.d.s can be coloured to suit.
Potentiometer VR2 is used to calibrate the LM335Z: when IC2 is at $25^{\circ} \mathrm{C}$ then its output will be 2.982 V . Resistor RI and potentiometer VR3 form a voltage divider for the input signal.
The circuit is designed to operate from a commercial 300 mA multi-voltage mains adaptor. With the adaptor set to 4.5 V d.c.. the circuit was supplied with about 7.3 V at 22.5 mA . Temperature sensor IC2 was connected via a 3 -core lead and mounted in a "probe" sealed with silicone sealant
To set up the circuit, with one of the l.e.d.s illuminated. adjust VRI so that IC2 is suppliced with ImA. Adjust VR4 to set pin 4 of ICI to 1.15 V . Then with IC2 at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$. adjust VR2 to give IC2 an output of 2.98 V . Finally adjust VR3 so that I.e.d.s. five and six are alight.

Michael Jones,
Neath, W. Glams.

Fig. 3. The Aquarium Temperature Monitor - the circuit can be set up to read other temperatures.

Battery Converter -

finee enemov (alimost

A
D.C. Converter circuit, operated from a single 1.5 V cell to produce a 15 V d.c. output, is shown in Fig. 4. When power is initially applied from B1, a 1.5 V cell, current flows through resistor RI causing transistor TRI and TR2 to conduct.

Current now flows into inductor coil LI, progressively magnetising its core which saturates. Inward current flow now ceases and the magnetic field, which surrounds the coil. collapses.

The back-e.m.f. generated by coil LI reverse-biases the base (b) of TRI and both transistors turn off. The action then repeats and the circuit oscillates.

In order to make an effective D.C. Conventer, the energy of the back-e.m.f. generated by the choke is stored on electrolytic capacitor CI. The high frequency of the oscillation requires the use of a high-speed diode, and the IN5822 Schottky rectifier diode is recommended here.

If the whole back-e.m.f. waveform was rectified and allowed to charge Cl then the voltage was found to rise to well above 20 V . The desired output voltage was easily obtained using a Zener diode (D2), in this case. a 15 V type. The choke LI used in trials was a TOKO 8RBS type (available from Cirkit).

John Greenbank, Haslingfield, Cambridge.

Fig. 4. D.C. voltage converter.

INGENUITY UNLIMTED

BE INTERACTIVE

IU is your forum where you can offer other readers the benefit of your Ingenuity.
Share those ideas and earn some cash.

Fig. 5. Experimental Cycle Light.

60 Pence DPDT Relay - switch 10

AN electronic version of a double-pole double-throw (DPDT) mechanical relay, with a few significant differences is shown in Fig. 6. It costs a fraction of the price, operates from 3V-I5V, draws only 2 mA current, and switches thousands of times faster! The disadvantages are that it does not provide isolation, it has a maximum "contact" rating of 25 mA , and the "contact resistance" is approximately 100 ohms.

ICI is a 4066 quad bilateral switch (transmission gate) chip which contains four switches, each with a control signal. When the control voltage is high, the switch turns on and approximates a low value resistance. If the control is low, then the gate assumes a high resistance value. When the relay on/off signal goes high, the "relay" toggles and switches over, with the two "poles" switching over in a DPDT pattern. If a break is made at point " A " then the circuit is converted to two single-pole double-throw (SPDT) relays.

Rev. Thomas Scarborough,
Cape Town,
South Africa.

Experimental Cycle Light -

Ontinuing on the same basis, Fig. 5 shows how the D.C. Converter circuit may be used to produce an experimental 3-l.e.d. (non-flashing) rear cycle light. This utilises three ultra-bright l.e.d.s in parallel, based upon the circuit of Fig. 4.

A matchbox-sized "lamp" has been produced, operating from a single AAA cell. It could be used for other applications where compact size and low battery usage are important.

John Greenbank,
Haslingfield,
Cambridge.

Fig. 6. Inexpensive substitute for a DPDT relay.

seetrax cae RANGER pCb design

WITH COOPER \& CHYAN AUTOROUTER

RANGER2 + SPECCTRA £400.00

RANGER \& SPECCTRA AUTOROUTER Together giving the most cost effective PCB design system on the market TODAY ! SEETRAX'S ease of use combined with COOPER \& CHYAN'S renowned gridless autorouter, at an outstanding price.

R2 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber, NC Drill, AutoCAD DXF
Demo Disk available at $£ 5.00$ +VAT

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAN SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

> UPGRADE YOUR PCB PACKAGE TO RANGER2 £60

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036 + VAT \& P.P Al Trademans schnowededged

The most powerful source of reference for technical products and you can get it for $£ 5.00$

Electromait has atwoys providad an oulstonding range backed by the highest lovels of service. Over 70,000 products from electranic components. electrical equipment to mechanical parts and tools, eosh one quality selecied and available aves the phons for next working day dolivery

You could soy that's a service hord so beot. but that's just what we've done
The new Electromail CD•ROM caralogue mokes a lechnological breakthrough by providing tull information about our complete range, with colour phatographs and rechnical illustrations. There are powerful seorch functions by productiype and word number - its the fossess and easiest woy ever to select and order the product you need. There's a special new products review section to keep you informed of new range additions and it contains the full RS library ol Dato Sheets as an added bonus.
Bul the bese news is you con gel all that for juss ES - send for your copy, and get in the fast lane to finding the components you need

ELECTROMAIL, P.O. Box 33, Corby, Northonts, NN17 9EL.
Tel: 01536204555 Fax: 01536405555

ALARM DPERATED

 CAR WINDOWWINDER

ROBERT HUNT

Automatically winds up your car windows when setting the alarm. Includes safety cut-out feature.

Tlie author. being a self-confessed lazy person, preferring all kinds of electronic gadgetry to perform boring or irritating tasks rather than complete them himself, found it a constant irritation that when setting the car alarm, which automatically locked all the doors, he would still have to bother with manually winding up the electric windows.
In moments of forgetfulness, after getting out of the car and pressing the alarm remote to lock the doors, he was frequently aggravated to find that the windows were not closed! Here, now, is the complete solution for those busy people who, like the author, hate sitting in a parked car holding down a window button or two whilst in a hurry to depart.

By building this device, you too will be able to jump out as soon as the engine has stopped, pressing your remote button and thankfully noting that your electric windows are closing, whilst you put away your keys and begin to walk off.
Commercially manufactured units are available, of course, but these often depend on the alarm having a suitable connector or output to signal the window closer electronics. The design presented here has the advantage that it depends on the alarm's indicator I.e.d. (which almost all alarms have) to control it, making it possible to be used on almost any alarm.
The "Before" and "After" block diagrams in Fig. I illustrate how simple this window closer is to install.

CIRCUIT DESIGN

The system comprises two basic circuits, the Trigger circuit (see Fig. 2) which connects to the alarm in whatever way is decided upon during installation, and the Closer circuit(s) (see Fig. 3) which is (are) triggered by the Trigger circuit. You need one Closer circuit for each window.

The purpose of the Trigger circuit is two-fold. Firstly, to generate a trigger pulse to the Closer circuits which is shor enough for them to function properly. Secondly, to prevent spurious triggering from electrical "spikes" occurring in the vehicle's wiring.

Zener diode DI in Fig. 2 reduces the total input voltage. from wherever an "alarm set" signal is going to be obtained. to around two volts. In the author's unit it was obtained from the same part of the alarm circuit which controlled the alarm's l.e.d. (You are recommended to establish a suitable signal source in your own car's alarm system before obtaining parts for this project.)

The Zener value of diode DI needs to be chosen to suit your car's alarm trigger source. Use a meter to measure the voltage present at the point from which you are planning to taking the signal. If it is above two volts, then select a Zener diode whose value matches the difference in voltage level.

If the signal being input to the circuit is pulsating one, rate diode DI according to the highest voltage present and choose component values for resistors R2 as zero ohms (a link wire), R3 as $10 \mathrm{k} \Omega$ and capacitor Cl as $470 \mu \mathrm{~F}$.

If. however, the signal is a steady output. then choose an appropriate Zener diode for DI to suit the steady voltage, and use I()kS for resistor R2, zero ohms (link wire) for R3, and $10 \mu \mathrm{~F}$ for Cl

Signals coming in through diode DI are rectified by D2, and smoothed by capacitor Cl in conjunction with resistors R2 and R3. The resulting signal provides a clean switch-on voltage for Darlington transistor TRI, after a shor delay, imposed by the rectifying network, which prevents spurious triggering.

Once TRI switches on, capacitor C2 passes a negative-going pulse to the output which lasts for about a tenth of a second and is used to trigger a timer in the Closer circuit.

CLOSER CIRCUIT

The negative-going pulse from TRI triggers timer chip ICI, which stays triggered for a time set by capacitor C3. resistor R6 and preset potentiometer VRI. When triggered, the output of the timer, pin 3. goes high (near to the power rail positive voltage) and switches on relays RLA and RLB via diode D4. The contacts

Fig. 1. Basically, all you need to do is to insert the Alarm Operated Car Window Winder between the window controls and the window motor.
of the relays disconnect the output from the window switch and then connect the window motor to its voltage supply lines.

Note that ICI must be the "standard" 555 timer version; a low power type would not be able to supply the current required by the relays.

If the window shuts before the timing cycle ends, or if the window is already shut when the circuit is triggered, the comparator circuit around IC2 trips-out (resets) the timer, an action determined as follows:

The motor current passes through resistor RII, creating a voltage drop across the resistor which is relative to the current flowing. Comparator IC2 compares this voltage, applied to its pin 2, with a reference voltage supplied to its pin 3 . The reference voltage is set by the network comprising resistors R7 to R9, Zener diode D7 and potentiometer VR2.

This technique provides the circuit with the ability to detect if the window is shut, since a shut window causes the motor to stall, which in tum greatly increases the current flowing through the motor.

Capacitor C6 prevents spurious surges in the motor current from tripping out IC2. Capacitors C7 and C8 provide a small amount of smoothing to the reference voltage circuit.

After installation, VR2 is used to set the trip current to a level that causes the circuit to trip out approximately 0.75 seconds after the motor stalls.

CONSTRUCTION

One Closer circuit is needed for each of the window motors you wish to control. Only one Trigger circuit is needed, irrespective of the number of Closer circuits used The size of case should be chosen to suit the number of circuit boards to be installed.

Printed circuit board (p.c.b.) details for the Trigger and Closer circuits are shown in Fig. 4 and Fig. 5. These boards are available from the EPE PCB Service, codes 150 and 151 , respectively.

Assemble the p.c.b.s, starting with the smallest components and working up to

The size of case you use will depend on how many windows you want to automate. This case holds the circuits for two windows.

Fig. 2. The Trigger circuit simply generates a control pulse which is of adequate length and amplitude. The source of the pulse must be established by the constructor to suit the vehicle in question.

Fig. 3. Circuit diaaram for the Closer circuit. Up to four of these circuits may be driven by a single Trigger circuit. One closer circuit is needed for each window.
the biggest. Note that IC2 is a static sensitive device, therefore take the usual precautions when handling it, i.e. briefly earthing yourself through a suitable contact. Make sure that all polarity-conscious components are oriented correctly on the boards as indicated.

WIRING-UP

Solder heavy-duty wire to the appropriate power line tracks underneath the boards, flowing plenty of solder around them as they must carry large currents.

COMPONEVTS

TRIGGER CIRCUIT

Resistors

Rest	1M
R1	10k or link wire (see text)
R2	10k or link wire (see text)
R3	R4
R5	100k
R5	$22 k$

All resistors $0.25 \mathrm{~W} 5 \%$ or better
Capacitors
C1 470μ or 10μ radial elect 25V (see text)
C2 $4 \mu 7$ radial elect. 25 V

Semiconductors

D1	400mW Zener diode (see text)
D2	1N4148 signal diode
D3	12V 400 mW Zener diode
TR1	MPSA14 npn Darlington transistor

Miscellaneous

Printed circuit board, available from EPE PCB Service, code 150; terminal
pins; connecting wires.

CLOSER CIRCUIT		
Resistors		
R6	33k	
R7, R8	1 k (2 Off)	
$R 9$	24Ω	
R10	100k	
R11	$0.015 \Omega 4 \mathrm{~W}$	Page

All resistors (except R11) $0.25 \mathrm{~W} 5 \%$ or better.

Potentiometers

$\begin{array}{ll}\text { VR1 } & 47 \mathrm{k} \mathrm{min} \text {, horiz. preset } \\ \text { VR2 } & 100 \Omega 2 \mathrm{~min} \text { horiz preset }\end{array}$

Capacitors

C3	100μ radial elect. 25 V
C4 $4 . \mathrm{C}$	470μ radial elect. 25 V
C5. C7.	
C8	100 n ceramic (3 oft $)$
C6	10μ radial elet. 25 V

C6 $\quad 10 \mu$ radial elect. 25 V

Semiconductors

D4 to D6 1N4001 (3 oft)
$\begin{array}{ll}\text { D7 } & 3 \mathrm{~V} 6400 \mathrm{~mW} \text { Zener diode } \\ \text { IC1 } & 555 \mathrm{~N} \text { timer }\end{array}$
$\begin{array}{ll}\text { IC1 } & 555 N \text { timer } \\ \text { IC2 }\end{array}$

Miscellaneous

RLA, RLB 300Ω s.p.c.o. relay, p.c.b. mounting, 16A (2 off) FS1 line-mounting fuseholder plus 30A fuse (see text) Printed circuit board, available from the EPE PCB Service, code 151; terminal pins; 4-way terminal block (3 OH); cable ties; heavy duty wire; connecting wire; nuts and bolts; solder, etc.
Also required: box to suit number of
Closer circuits in use

Approx Cost

Culdance Only

for two windows excl. case.

A cable tie with a self-adhesive base secures the Trigger p.c.b. to the case lid. There are various component use options available which is why this board appears to differ from the detail in Fig. 4.

Fig. 4. Details of the Trigger p.c.b. See text for different component use information.

Fig. 5. Details of the Closer p.c.b., also showing where the heavy duty cables are soldered directly to the trackside.

Leave their other ends unconnected for the moment.

After assembly is complete, check that there are no solder bridges anywhere, and that all components are installed correctly.

Drill the case for the terminal blocks which should then be bolted to the case. Assemble the boards into the case, allowing room for easy access to the adjustment potentiometers. Connect the heavy current wires into terminal blocks.

If you are using more than two Closer circuits, you will need to make the power connections in at least two pairs. This is because each Closer circuit must be fused; each will draw up to about 15A and you cannot get fuses above 30A! A cable mounting fuseholder should be used (not illustrated), inserted into the power cable at a convenient point between the unit and its power source.

All trigger inputs on the Closer circuits are wired together back to the output of the Trigger circuit, with the positive and negative leads soldered onto the power pins respectively. Connect another flying lead to the Trigger circuit's input pin and route this outside the case, allowing plenty of length for the wire to reach the alarm unit.

As seen in the photos, the Trigger circuit was mounted in the lid of the prototype's case.

Careful attention must be paid to enclosing the p.c.b.s in a case and to the satisfactorily wired connections, ensuring that the lid can be properly closed without causing stress or electrical shorting inside.

The board-mounted relays and enclosed presets give stability to the Closer p.c.b. It is recommended that i.c. sockets and axial electrolytic capacitors be used. contrary to the assembly shown here.

INSTALLATION

It is recommended that you disconnect the car battery before connecting the unit's wires to the car electrics.
Establish where you will place the unit. You will need a high current feed available, probably a new one from the battery. allowing for each Closer circuit to take around 15A. This feed must be live all the time, even when the ignition is switched off.

You will need to interrupt the wires going to the window motor in the door. cutting both of these and leaving four ends to connect into the unit for each window.
It is best to mount the unit as near as possible to the high current feed because the four wires to each wiodow motor can be a bit longer if they are the correct current rating. Trace the cable to the window motor in the door, and find a suitable point on these two wires that comes after all other devices before the window motor itself (refer back to Fig. 1). Cut these wires and connect into the unit.

You may find difficulty working out which way round to connect the two wires. This is best done by trial and error. Connect them either way for the time being, ensuring that the motor wires go into the motor connections on the unit, and that the "from switch" wires go into "from switch" on the unit. For now, connect only one window and identify which Closer p.c.b. is connected to it.

SETTING UP

Connect the power feeds, ensuring that you get a very solid earth connection. In view of the high currents involved, there is a risk of overheating and even fire if you do not make very good connections. Once the fuse has been inserted and the car battery is being reconnected, be very cautious, watching and smelling for heat, and other signs of malfunction.
Rotate both potentiometers fully anticlockwise. Trigger the input circuit by touching the input wire to the positive line. If the window momentarily moves down,
reverse the motor connections. Switch on the ignition and make sure that your window switch still works the correct way. If not, then reverse the "from switch" connections

Wind the window fully down and switch off the ignition. Adjust potentiometer VR2 to its fully clockwise setting, and trigger the unit as before. Now adjust VRI to a position which allows enough time to close the window from fully open, plus about a second or so to spare. Now for the fun bit, selting up the trip level!
All you really need to do is leave the window shut and trigger the unit, adjusting VR2 so that the unit trips out about threequarters of a second after triggering.
Repeat the above procedure for each Closer p.c.b. and then wind down all windows, switch off the ignition, and trigger the unit. Observe for correct operation. Now wind down the windows by various amounts, repeat the tests, and watch that each Closer p.c.b. trips out when each window is closed.
If this functional test fails, the probable reasons are that the power feed wire is too long or too thin, or that the trip level potentiometers (VR2) have not been set quite right. Experiment by adjusting for a slightly different trip out delay.
Remember that in normal use the unit will be operating just after the battery has had a long charge, and also that the windows will be faster when the engine is running because the battery voltage is higher. whereas now you probably have a tiring battery after repeatedly winding the windows up and down!

WIND UP

Now connect the trigger wire to the alarm point you have already decided upon and check that it all works! Note that neither the author or EPE can take responsibility for flat batteries caused by lengthy set up procedures!

TECHNIQUES has been reintroduced after a few months absence from the pages of EPE. The aim of this column (which will now appear every other month) is to help newcomers to get started in project building.

Who Dares Wins

Probably few novices take the attitude that there is "nothing to it" and jump straight in with their first project without a moments hesitation. Most people are naturally a bit cautious about trying anything new, and afraid of failure. With electronics there is the added problem of the techno-phobia that many people seem to suffer from.

Electronic project construction can be pursued as a craft by someone with little or no technical knowledge, but it is probably not a pastime that is suited to those who genuinely hate virtually all things technological. However, provided you are reasonably practical, and are prepared to use a bit of ingenuity from time to time, it is a hobby that should be within your capabilities.

You do not need a degree in electronics in order to start, and you really need very little in order to get under way. The main requirement is the gumption to buy some components and a few basic tools, and make a start.

Now You See It

It is a common misconception that you need space for a proper workshop in order to build projects. It is certainly an advantage to have good facilities with plenty of space to work in, but it is by no means essential.
I began constructing electronic projects when very young, and built
dozens of them sitting cross-legged on the bedroom floor, using an unused corner as a workbench. Old newspapers served to protect the carpet against the inevitable fall-out of solder blobs, wire trimmings, etc. Some of my early published projects were put together using this improvised workbench!

Going Mobile

Obviously the "yoga" method of construction is not suitable for most people, but it is not difficult to improvise a more sophisticated temporary set-up. A popular method is to have a piece of plywood or thin particle board measuring about $750 \mathrm{~mm} \times 500 \mathrm{~mm}$.

This can act as a temporary "mobile" worktop that can be used on (say) the kitchen table. Many constructors have the soldering iron stand permanently fixed to the board, possibly together with other items such as a box to take screwdrivers and other small tools, and a multimeter.
The basic idea is to have a workbench that can be stored away in a cupboard somewhere when it is not needed. Preferably, it should be possible to get the workbench set up and ready for use with a minimal amount of fuss and bother, and to whisk it back into the cupboard in a similar fashion. Remember to let the soldering iron cool down before replacing the unit in a cupboard.

Solder Dispenser

Some years ago I used a temporary workbench, and found it useful to have a large reel of solder mounted on the
base board using the basic arrangement outlined in Fig.1. This helps to keep the workbench as a single and easily managed unit, and it also acts as a convenient solder dispenser provided the reel of solder is free to rotate.
In fact, it can be useful to build a dispenser of this type for use on an ordinary workbench. Simply use a heavy steel or wooden base in place of the temporary workbench.

The base must be quite heavy so that the unit stays in place on the workbench when solder is pulled off the real. Alternatively, the unit could be fixed to the bench using something like Bostik Blu-Tack or double-sided adhesive pads.

I will not claim that a temporary workbench is as good as having a large workbench which is used for nothing but project construction. On the other hand, many people have successfully pursued the hobby in this way, building many projects, including some quite large and complex ones. A neighbour of mine once built a computer based on dozens of TTL integrated circuits using this method.

Tools for the Job

Another common misconception is that you need a vast array of tools in order to build electronic projects. Unlike many modern hobbies, electronics is one that can be undertaken with surprisingly little equipment, and at relatively low cost.

I suppose that over a period of time I use quite a range of tools when building projects, but initially a relatively small number will suffice. Start with a basic toolkit and add to it as and when necessary.

Initially, it is probably best to settle for quite simple projects that are free from unusual aspects of construction, and that do not require any "out-of-theordinary" tools. Apart from avoiding the need to buy tools that may not be required again for some time, it keeps things simple and straightforward.

The beginner has plenty of new things to master, and it makes sense to avoid any unnecessary complications. The usual recommendations are simple household gadgets or car projects, but anything will do provided it is simple, you understand exactly what it is

Fig.1. A simple but effective solder dispenser which can be built onto a portable worktop.

All that is needed to assemble circuit boards: two sizes of solder, small electric iron with stand and wire cutters/strippers.
supposed to do, and can test it out easily.

Avoid projects such as obscure pieces of test gear which are often quite simple, but not really intended for beginners. Also avoid old projects, particularly those from more than about five years ago.

Being given some very old electronics magazines seems to be a standard method of entry into this hobby. The problem is that the projects they contain often require components that have become difficult or impossible to obtain. With any project that is more than a few months old it is advisable to ascertain that all the components are still available before actually buying.

It's a Snip

Many of the tools required are the type of thing that can be found in the average household toolbox, such as pliers, a hacksaw, and screwdrivers. These may not all be ideal for the job though. The average screwdriver is too large for most electronic construction work, and it will probably be necessary to buy some miniature electrician's screwdrivers.

Fortunately, these cost very little. It is advisable to have a least one small cross-point screwdriver.

The best type of pliers are, as one would expect, the electrician's variety. It is possible to make-do with other types initially though, and long-nose pliers are very useful.

One of the most important tools is a good pair of wire cutters and insulation strippers. The cheapest way of obtaining these is to buy them in a combined tool. These mostly work quite well, and the wire strippers often seem to be easier to use than dedicated wire strippers.

In general, the wire cutters are perhaps less effective, and are sometimes not very good a cutting fine wires, but they are adequate for circuit board construction and wiring-up controls, etc. However, I would advise buying a good pair of wire cutters when funds permit, and these should work well for many years.

No excuses are offered for repeating once more the warning against using scissors, knives, or other improvised methods of cutting and stripping wires. Apart from the fact that these methods do not do a very good job, you are quite likely to damage the tools and harm yourself.

Improvised methods of wire stripping are particularly ineffective, and tend to nick the wires. This makes them very prone to breaking, and gives very unreliable results. A pair of wire strippers or a combined stripper and cutter tool has to be regarded as an essential item for the project constructor.

Soldering On

A soldering iron is obviously central to electronic project building, and is not something that will already be present in the average household toolbox. For modern electronic work a
small electric iron having a rating of about 15 W to 25 W is required.

There is no need to buy an expensive temperature controlled iron. The Antex C series irons are widely available at quite attractive prices, and I have used these successfully over a period of nearly 30 years.

With any soldering iron the bit will need occasional replacement, but otherwise the iron should last for many years. The iron will probably be supplied with a bit of about 2.3 mm in diameter, which is about right for most work on circuit boards and the "hard" wiring. However, a wide range of sizes are available, and for work on intricate circuit boards some constructors prefer a small diameter bit (about 1 mm to 1.5 mm).

A matching stand for your selected iron should only cost a few pounds and should be regarded as an essential rather than an optional extra. It is not difficult to improvise a stand, but this has to be regarded as slightly risky, and is hardly worth it with the "real thing" costing so little. Also, a proper soldering iron stand will conduct excess heat away from the iron, which helps to extend the operating life of the bit and the heating element.

Joint of Solder

Obviously some solder will be needed, and for electronic work it is a 60% tin $/ 40 \%$ lead type containing a non-corrosive flux that is required. This is available from most electronic component retailers in two thicknesses. These are $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. $(1.22 \mathrm{~mm}$ dia.) and 22s.w.g. (0.71 mm dia.).

For circuit boards and most other joints it is the thinner gauge that is easier to use. It is useful to have a small pack of thicker solder for the occasional large soldered joint.

I would suggest buying a reasonably large pack of the thinner gauge, say about 10 metres or more. When I first started building projects I bought small packs of solder, and had to endure the frustration of forever running out of solder with projects 99 per cent finished. Of course, this always happens just after the shops have closed!

Hole Truth

Some form of drill is essential, and a heavy-duty hand-drill is perfectly adequate. An ordinary electric drill is also suitable, but is much easier to use if it is fitted in a proper stand. Otherwise the relatively soft materials used in electronic project construction can be rather awkward to work on.

It is probably best to avoid cheap drill bits, but medium quality types are adequate for drilling into the plastics, aluminium, etc. encountered in project construction. A set of a dozen or so HSS drills should be sufficient, or you could settle for the most frequently used sizes to start with. The ones I wear out most frequently are the 3.3 mm , 5 mm , $6.35 \mathrm{~mm}(0.25 \mathrm{in})$ and 10 mm diameter drills.

For larger and more awkward holes it is useful to have a set of miniature files, or an "Abrafile". This is a small round file which is slightly flexible. I have never found their flexibility to be an advantage, but they are relatively coarse which enables holes to be cut relatively fast. The standard "Abrafile" is better suited to electronic work than the really small type.

A vice is more than a little useful, and even one of the larger "hobby" vices will suffice. This is basically just a small vice that is secured to the workbench via a large suction cup.

If you have short fingernails, or your fingers are not as nimble as they used to be, one or two pairs of tweezers will make it easier to handle small components such as resistors. A large blob of Bostik Blu-Tack or plasticine is useful for all manner of things, such as holding awkward components in position while they are soldered into place.

Although complaints about the cost of project building are not unknown, it really is a hobby that can be pursued at quite low cost. Even starting from scratch, it is possible to buy the components and tools for a simple project for well under $£ 50$.

Most people will have a few tools to start with, and could probably build their first project for little more than half that figure. There are probably few other modern hobbies that can be started so cheaply.

Some essentials for project construction. An assortment of electrician's screwdrivers and a pair of pliers.

QUASI-BELL DOOR ALERT

 WILLIAM E, CHESTER
A no fuss, no nonsense, straight as they come 16-tone doorbell.

This project arose from a friend's requirement for a no fuss, no nonsense, straight as they come doorbell. In fact. the design brief included the constraint that the sound emitted should be fairly invasive, having an almost bell-like noise to attract urgent attention.
The trouble with electro-mechanical bells is that while of robust construction. they do make heavy demands on the power supply. Many people do not like the idea of wiring to the domestic mains supply, so large expensive batteries are the order of the day.

Thus is bom the final requirement. The battery should be small, concealed and relatively cheap. What's more, it must last for an admirable length of time in normal usage.
Of course, electronic door alarms have been around in many varied forms for years. This particular design seeks to justify its existence by employing a novel technique to emulate the traditional bell.

Additionally, the circuit offers room for modification, something not available with a bell dome.

Fig. 1. Function block diagram for the Quasi-Bell Door Alert.

This alarm outputs 16 tones, one at a time in smooth succession. The chosen sequence of tones or notes is then repeated, like in a loop. A slow loop time gives an unexciting result. At an increased repetition rate the tones exhibit a bell-like quality. The musical note of individual tones can be altered by resistor changes as can the speed of loop repeat.

the switch elements always exhibit a finite on-resistance, $R_{\mathrm{ON}}-$ this being the channel resistance of the f.e.t. devices within IC3.
Even so, a typical R_{ON} of 100 ohms constitutes a sufficient short in comparison with the much larger values of the discrete resistor chain.

In conjunction with resistor R10 and capacitor C3, the resistor chain R6 to R9 completes a simple square wave astable built around gate IC4a. The Schmitt trigger action of this gate is desired since slow rise and fall voltages appear across C3 during the astable timing. Table 1 shows the status of S1 to S4 for each of the sixteen possible output tones.

TONE GENERATOR

Gate IC4a is actually the tone generator. Looking at the circuit should reveal that by shorting one or more of the chain resistors the tonal output at that instant is changed. What we have are tones produced in binary combination at an output rate determined by astable ICI. Table 1 shows the status of SI to S4 for each of the sixteen possible output tones.

The binary count from 0 to 15 is constantly repeated. In practice the initial count state of IC2 is irrelevant. The Reset input, pin 7 is therefore taken down to the OV line, "grounded".

Gate IC4c works to buffer the output tone before it is fed on to the base (b) of transistor TR2. This is used in switch. rather than linear mode.

A good burst of tone, nearly supply rail magnitude, appears across loudspeaker LSI. Transducers such as this are not generally designed to be connected across supply lines but the presence of transistor TR2 switching rapidly at audio frequencies does no harm. A loudspeaker impedance of at least 64 ohms keeps the current peaks down to acceptable levels while preserving battery life.

Table 1: IC3 switching status for the 16 possible output tone steps.

TONE No.	SWITCH STATE			
	S1	S2	S3	S4
1	0	0	0	0
2	0	0	0	1
3	0	0	1	0
4	0	0	1	1
5	0	1	0	0
6	0	1	0	1
7	0	1	1	0
8	0	1	1	1
9	1	0	0	0
10	1	0	0	1
11	1	0	1	0
12	1	0	1	1
13	1	1	0	0
14	1	1	0	1
15	1	1	1	0
16	1	1	1	1

NOTE: $1=$ SWITCH ON $0=$ SWITCH OFF One complete loop (1-16) - repeated while TR1 is turned on.

Fig. 2. Complete circuit diagram for the Quasi-Bell Door Alert.

TRIGGER CIRCUIT

So far we have described the basic alarm circuit, we now move on to the trigger section. For reliable triggering from the door mounted pushbutton switch S5. components around transistor TRI, IC4b, IC4d and diode D2 are needed

The single wire-pair from door pushbutton S5 connects to mono jack socket SK1. Schmitt gates IC4b and IC4d form a monostable which gives a single output pulse of fixed and consistent width each time S5 is pressed. This action effectively prevents button contact bounce and impatient visitors from giving unwanted retriggering.

Alarm ON time is determined solely by the monostable timing components capacitor C2 and resistor R5. The values shown give about five seconds during which transistor TRI is pulled into saturated conduction via resistor R3.

Transistor TRI acts as the power on/off switch. with 9 V appearing at the collector and the alarm is sounded. When the monostable pulse expires, TRI is turned off and the alarm ceases.

Note that the battery voltage is connected directly to IC4 pin 14 only. This

ensures that pushbutton presses are detected while the remainder of the circuit is dormant.

Resistor R2 provides a pull-down for one input of IC4a when transistor TRI is off. Uncontrolled oscillation of IC4a may result if R2 is omitted. Diode D2 provides protection by preventing a large negative voltage (due to discharge of capacitor C 2) from appearing at IC4d inputs.

CONSTRUCTION

Most of the components for the Door Alert. with the exception of the Doorbell pushswitch S5, jack socket SKI and loudspeaker LSI. are accommodated on a small. single-sided, printed circuit board
(p.c.b.). The topside component layout interwiring and underside copper trach master are shown in Fig. 3. This board is available from the EPE PCB Service, code 133

It is best to begin assembly by inserting the three wire links. followed by all the resistors since these parts have the lowest profile. Diodes D1 and D2 should also be mounted at this stage. Be careful to place these in the correct orientation - the dark band denotes the cathode (k) connection.

All sockets for the integrated circuits can now be inserted and soldered in place. Next. position capacitors Cl and C3. then electrolytic C 2 : ensuring that this is orientated correctly.

Fig. 3. Printed circuit board component layout, interwiring and full size copper foil master for the Quasi-Bell Door Alert.

Finally, insert transistors TR1 and TR2. Make sure that TR1 is the BC557 (not the BC547!). Solder the three capacitors in place, then take care soldering the transistor leads. Do not let the iron tip dwell too long on each lead, or thermal damage might be done to the semiconductors.
Terminal pins can be soldered in position at points PI to P5 if desired. They will allow easy access when doing final assembly wiring to battery connector BI, jack socket SKI and loudspeaker LSI.
If flying leads are your preference, solder adequate lengths to copper pads P4, P5 (a twisted pair about 200 mm long) and to pads P2, P3. The red (+) lead from the battery clip is soldered dirèctly to pad PI. The black lead to the 0 V or P 3 pads.

Before final assembly solder two lengths (120 mm to 150 mm each) of stranded connecting wire to the appropriate tags of socket SKI. Be sure that the tags chosen will be electrically extended to "bellpush" switch S5 when the jack plug is pushed home.

CASE

The finished p.c.b. is fixed inside an aluminium case (measuring $133 \mathrm{~mm} \times$ $102 \mathrm{~mm} \times 38 \mathrm{~mm}$ approx.) by three M2.5. 15 mm long pan-head screws.
It is a good idea, before mounting any components on the board, to use the unpopulated p.c.b. as a template to mark the position of the three 3 mm holes that must be drilled into the case base. The position chosen for the p.c.b. should be one that avoids components fouling with the loudspeaker or input socket, when the case halves are held together.

The remaining hole needed in the base section is that for jack socket SKI. This is made in what will become the alarm bottom panel, see photographs. Positioning SKI to one side allows space inside for battery BI to rest. Use a 4 mm drill bit and deburt the hole once made.
The only holes required in the " U shaped" lid cover are those that allow the alarm sound to permeate from the loudspeaker diaphragm. The general

Layout of components on the two halves of the metal case.

arrangement shown on the prototype has proved to be a good one.
It does depend, to some extent, on the actual transducer type employed. The model used a surplus telephone handset receiver (earpiece) from a modem instrument. The holes made in the case mimic those in the transducer itself.

A neat and effective means of fixing speaker LSI to the lid underside is achieved using double-sided sticky tape. Mark the circumference of LSI on the lid underside then mark the numerous sound holes to lie within a smaller radius (say 5 mm to 8 mm less than that of LSI). The clear circular margin created is then filled with sections of double-sided tape that butt snugly together.

The aim is to produce an almost air tight seal when LSI is stuck onto it. Sound pressure can then only escape through the sound holes.

The p.c.b. mounted to one side of the case to accommodate the battery.

FINAL ASSEMBLY

Once the case preparation has been finalised, the completed p.c.b. can be bolted into the case using plastic. 5 mm high. spacers dropped over each screw first inserted into the pre-drilled holes in the case base. If you are using flying leads instead of terminal posts, be sure these are in place before tightening the p.c.b. fixing nuts.

Next fit input socket SKI into its base side panel hole. One of the leads from SKI will be in electrical contact with the case metal. Solder this lead to p.c.b. solder pin P3 (0V). The other lead, which will make contact with the plug tip, is soldered to terminal $\mathbf{P} 2$.

Solder the battery clip, black (negative) wire to 0 V , then red wire to terminal PI .

Now is a good time to peal off the remaining protective backing on the double-sided tape, previously stuck around the bedding area for LSI in the case lid. Carefully offer up the front face of LSI to the tape and secure it in place using a little pressure, when you are satisfied with the final position.

If you have not already done so, solder two wires (each about 150 mm long) to the terminations on LSI. Twist the pair together, for say six to ten times, before soldering one free end to p.c.b. terminal pin P4 (+Ve) and the other to P5.

TESTING

Assuming none of the semiconductors are defective, testing should proceed in a logical fashion.

First, remove the pushbutton jack plug PLI from socket SKI. With the battery disconnected do a measurement of resistance between collector and emitter of transistor TR2. This should give quite a high reading (20 kilohms) and provides some confidence that transistor TR2 is not waiting to put LSI permanently across the supply lines. Reconnect battery BI.

Make checks, using a multimeter, for full battery voltage at transistor TRI emitter and pin 14 of IC4. The same voltage should be observed at pin 2, IC4b. Pin 11 of IC4d should be high, at 8.7 V or more.

Fig. 4. Drilling and bending details for the wall-mounting fixing bracket.
the case halves, obviating the need for nuts and bolts.
Connect the battery, insert the bracket, screw the case halves together. The alarm need only be fixed to the wall by a single No. 8 wood screw and Rawlplug.

IN USE

As already touched upon, in construction, some discretion or experimentation can be exercised in the choice or loudspeaker LS1. It was found that certain discarded or surplus telephone handset receivers (earpieces) operate in this application with excellent earpiercing results.
This despite the fact that they are designed primarily for outputting lowlevel audio signals. The nominal impedance of these receivers is mostly in the range 100 ohms to 200 ohms, again making them ideal for this project.
A particular feature to note, and not a mistake, is the way the alarm is mounted so that sound is ejected straight into a wall surface. Experimentation demonstrated that the wall face acts like a "reflector", providing a dispersal effect that results in a more intense sound level than with the sound radiating into free space with no immediate obstructions.
Resistor R1 alters the tone loop speed. This resistor could be changed to a preset potentiometer or even an externally

adjustable rotary potentiometer to allow speed variation to suit personal preference.

When a very quick loop speed is set, the Door Alert tends to exhibit sound effects properties. Some of the strange sounds emitted could well be mistaken for an alien spacecraft landing!

While varying fixed resistors R6 to R9 will alter tones more on an individual basis, a shift in fundamental or base frequency is attained by changing capacitor C3. A lower value will increase frequency: a higher value decrease.

Resistor R4 determines the input trigger sensitivity, so much so that if it is increased in value from 10 kilohm to, say 820 kilohm, the alarm can be triggered by a finger across p.c.b. pins P2 and P3. This is because the skin resistance acts with R4 to form a potential divider. When the voltage appearing at IC4d pin 2 falls to less than 30 per cent of the battery voltage capacitor C2 begins to charge while transistor TR1 turns the alarm on for the monostable pulse duration.

In practice, such a touch switch might be tricky to implement successfully; the Bell Alert will have you running for the door every time it rains!

In the off-state nothing approaching 0.6 V will appear between transistor TR1 base and emitter. In consequence, the level at TR1 collector should be very low, no more than 0.2 V . This measurement can be taken across resistor R2.

At this point reconnect the doorpush S5. via socket SK1. This action alone may well trigger the alarm; if not proceed to press S 5 .

If all is well the alarm sound will provide self evidence. After a nominal period of about five seconds the noise should be automatically silenced; proof that monstable IC4b, IC4d is doing its job.

Due to the momentary action of IC4, this can be by-passed, to aid fault diagnosis by applying a short across TR 1 emitter to collector. Absence of ringing sound can mean that IC2 is unwell or capacitor Cl or resistor R1 values are inappropriate (as may be the case if only a long single tone is heard). The C1/R1 values shown in Fig. 2 give a moderate to fast loop time that renders the sound produced with a characteristic trill. Of course, if TR2 is reverse connected, sound will also not reach LS1.

INETALLATION

The alarm can be fixed to a vertical wall using the fixing bracket shown in Fig. 4. This is designed to be clamped between

TEST EQUIPMENT SPECIAL OFFER
vind 10MHz Function Generator
(Clier valid while stoctos lests)

Δ Sine, equaro, triangle, pulse \& sawtooth $\Delta \mathbf{2 0 m V}$ to 20 Vpp output $\triangle 50 \Omega$ and TIL outpute Δ External frequency modulation \& sweep Δ Pulee with modulation \triangle Offect and duty cycle adjuatment H8000 0.1Hz-10MHz £ 198.68 \& 149.00 Al equipmert is supplted new, complete whth meins lesed, operating manual and 1 year guaramee. Prices inctude VAT and thee dedincy. phone for complete list. MX160 $31 / 2$ digit, 20 range, digital multimeter $£ 28.00$ £ 14.95
 DMSOE3 31/2 digh, capacitance meter 200pF-20mF \& bt 08 \& 49.00 H2001 2 2 MHz Pulse generator 50Ω \& TIL outputs I T3s, 89 \& 59.00 AF2000 Audio signel generator $10 \mathrm{~Hz}-1 \mathrm{MHz}$ F 754.58 \& 129.00 NX1100F 1 GHz bench liequency coumter, 8 digit IT7500 i 129.00 CSA125 Kenwood 20NMIz 2 channel oscilloscope £ 468.8 §

Printed Circuits in Minutes Direct from LaserPrint!

18 STAPLETON ROAD • PETERBOROUGH PE2 6TD
TEL: 01733233043 FAX: 01733231096

Schomatb Copterre

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit. Tel: 01756753440 . Fax: 01756752857.
53-55 Main St, Grassington. BD23 5AA.

Fully interactive demo versions available for download from our WWW site. Call for educational. mult-user and dealer oncing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademanks acknowfedged

EMAIL: info@labcenter.co.uk WWW: http://www.labcenter.co.uk

Learning and Skills Updating

 in Comeges and Univerallea. now aveluble to the putic Onty C99:00 (Other werkiome coming soon! call for detelis).

Swich mode Power Supplles You've heard about them. now hann how they wort Complete with training and pertappobit to alow you to consliuct 3 atfierent types. plus a mint-compertment storage case Only £49:00
Anelogue to Otgitel Convertors: Thia practicer aystem nlowe you to underatend how ANO FC besed oscmosicopeldela logeor olc (son were eremples meludod). Onty E29:00

Computer Control: Leern how io control and monthor erternal devices using your computen. Comptete syetem includes herdware and stmple, but powertul, programming tenguger iden for modelters end enperimenters Ony E 49.00

Lovic Trainer. hieal for haering about how logte works. covers all geten, blatrbian ate work, ided for Nelional CurnculumitECJONVO. Onty £19:00

Experimentation and Design tools

Logic Analyser: Low cost but fast (40 minz captura). Ideal for experienters and hobbytati.

Programmers and emuletors: Universal Eprom, PIC. 51 Series - all fill apec, tough,

PIC dovelapmani syetem. Get your project going quicty whout the uaud denigh book
 Arogremmer, prolotyping boerd, devolopment software, manuelt etc. ©DA:00
51 Series Development: Very sophisticated and easy to use. Complete with in Circull Emuletion, Programmar, Oevilopmanl Softwere, Maruels etc. $£ 149.00$
 fritionity safoty tented and CE maried. Only E12:00.
 prices then yourll find etacmetiere. Frees cetiogna avaliable on request.

Fricee do not inctude VAT or cerriege (E] normaly, free on onders over E3O) All Major Credit Cards Accepted

SQUIRES

MODEL AND CRAFT TOOLS

A comprehensive range of craft tools and equipment featured in a fully illustrated

100 page Mail Order Catalogue

1997 Issue

SAME DAY DESPATCH FREE POST \& PACKING

For your free copy of our catalogue write, telephone or fax to:

Squires, The Old Corn Store,

Chessels Farm, Hoe Lane,
Bognor Regis, West Sussex
PO22 8NW
Tel/Fax: 01243587009

Special Feature

GREAT

 EXPERIMENTER A short history - Part One STEVE KNIGHT
Abstract

Aristotle's philosophy held sway for 2, DOD years but, once questioned, many experimenters then began to deduce the truth about electrical forces.

IN MY schooldays I often asked myself (and my teachers) the question "What is electricity?" As far as I can recall, I never received a satisfactory answer at that time, and to tell the truth I remain. fundamentally, none the wiser today.
This fact is of little imporance. Nobody gave a definitive answer to my question (of the kind I was hopefully looking for) because there was no such answer and the whole question was about as silly and unanswerable as asking anyone for the length of a piece of string.
It would possibly have been of more value to me, and less frustrating to the teachers, if I had directed my enquiries to the effects electricity produces and to what practical purposes these effects might be put. Further, who were the men who discovered and investigated these effects and how did they set about it?
This seems the logical approach that no doubt "Mr Spock" would have approved of, because we can derive and obtain more useful applications from any branch of science by knowing the way it developed and what it does than we can by just asking what it is. This way, too, my own abiding interest in electrical science and its major offspring. electronics, might have got off to a less confused beginning.
But, to go back to other beginnings:

GREEK CONNECTION

I suppose the Greeks were the first to derive some very elementary knowledge about magnetism and frictional electricity. Thales, who lived about 600 BC , observed that a piece of amber (the Greek word, for which is elektron)
when rubbed with a piece of suitable material, attracted such things as small scraps of paper or straw, much as a plastic pen case. for example, when rubbed on the sleeve will do the same for us today.

These effects of "static electricity" must have been observed much ear lier than the classical Greek period, of

Tille illusiration (above): The Dip Circle.
from William Gilbert's De Magnete, 1600
course, but the Greeks were the first to make mention of it and to undertake some elementary studies of its effects. They were aware also of the magnetic properties of "loadstone". a naturally occurring ore. A piece of this ore, floated on water by means of corks. was in use early in the thimeenth century as a compass, though no one at that time knew why the compass always pointed in one direction.

It was, in fact, not until the end of the eighteenth century that progress was made beyond the observations of the Greeks'. Across this vast range of time.

Magnetising an iron rod, as illustrated in William Gilbert's De Magnete, 1600.
practically nothing of value had been established beyond the bare facts of electrification by friction and the basic attraction and repulsion effects of primitive magnets.

The Greeks never progressed very far in either of these subjects for the reason that the ideas evoked by these two phenomena were mingled in their minds with the fancies of magic. Thales asserted that both were possessed of "soul" and this kind of influence was typical of the ideas held by philosophers right through to the fifteenth century.
The lodestone, for example, was accused of inducing dejection and gloom in those who handled it: it reputedly had the ability to generate love potions (though the procedure for this has never been revealed); it supposedly lost its magnetism when rubbed with garlic and increased it when dipped in the blood of some unfortunate goat; and so on.

It is patently obvious that there could be little advancement in any meaningful study of electricity and magnetism under the yoke of such fanciful stuff as this. In schools and colleges today. with our organised scheme of things. integrated with experimental work in well equipped laboratories, the circumstances under which fifteenth century students encountered the subjects must seem very curious and inhibiting.

ARISTOTELIAN

The difficulties were almost entirely those brought about by the teachings of the Greek philosopher Aristotle who lived round about 350BC. In his discourses on physics, which is our concern here, and using the word in its widest sense, we find that Aristotle's pronouncements contain a remarkable mixture of good sense and what appears to us now as complete nonsense. The trouble with Aristotle's "science" was that he never checked by experiment anything he looked at and commented on.
Up to the sixteenth century, therefore. all college text books were almost entirely translations of Aristotle, some of them of doubtful quality: all the lectures given were Aristotelian in direction and any experimental approach to science was completely absent. Laboratories did not exist. When any problem arose, obtaining a solution became merely a matter of looking up what Aristotle had to say about it.
Nobody, as recorded, ever seemed to say "Well, let's try an experiment, if only to check what Aristotle says". If they did, they were soon made to understand that there was, against the ancient philosopher, no appeal or even the thought of an appeal.

We should not be too harsh on Aristotle, however, for he was one of the outstanding figures in antiquity; the fault must lie with those teachers who slavishly copied him without question.
So it is little wonder, that science in general and electricity and magnetism in particular, stayed static over the centuries, awaiting the appearance of someone who would break the chains of conformity and try things out for himself. One of the earliest men who saw to this was William Gilber.

GILBERT - FATHER OF ELECTRICITY

William Gilbert, who lived from 1544 to 1603, was what we might call a "modern" scientist. He was known as the father of electricity; he was certainly the father of magnetic science and of the necessity of scientific verification by experimentation. In fact, he was probably one of the first men to break with the "head-in-the-sand" philosophy of the pure thinker. Not that there is anything wrong with being a thinker, but there have to be moments when the hand comes into use as well as the head.

It has to be kept in mind that up until Gilbert's time, all science workers were wrapped up under the general heading of "philosophy", and scientific subjects were themselves listed as "natural philosophy", not "science" or "physics".

Gilbert's claim to fame is found mainly in a treatise on magnetism called De Magnete which was published in 1600. Quite apart from the words of this treatise throwing a completely new light upon the mysteries of the magnetic lodestone. it placed a great emphasis on the necessity of an experimental approach to scientific enquiry. This much-needed appraisal of the experimental method, which was throughout the tract supported by Gilberts own work, gives him a foremost place in scientific history.

When an argument or a statement can be studied by experiment and observation then, Gilbert said, its truth must stand or fall by the result of the experiment: and that this experiment must be repeated not once but many times over to make certain that all possible causes of error and mischance are eliminated.

As he himself put in the preface: "To the founding fathers of philosophy let due honour be given, for by their work wisdom has been handed down to posterity. But our age has unearthed many facts which they, were they with us now, would gladly have accepted. Therefore I have not hesitated to show by demonstration and theory those things which I have discovered by long experimentation and concern".

NOT ONLY AMBER

But Gilbert's work was not restricted to the mere rebuttal of statements made by others. Taking the case of frictional electricity as an example, he made extensive tests to demonstrate that the beloved amber of the Greeks was not the only substance which when rubbed attracted light-weight objects. Using a carefully balanced light-weight needle as the attracted object, he introduced it to various substances which had been rubbed with other materials such as silk and fur.

He fourd that some of these substances attracted the needle. such as glass, sealing wax, resin and sulphur, and he gave these the general name of "electrics". Other substances such as metals, wood and flint did not attract the needle and he called them "non-electrics".

Such a classification we now know to be a wrong one: but Gilbert knew nothing of the properties of electrical conductivity and insulation, or it would have occurred to him that those substances he
referred to as non-electrics would in fact have acquired a static charge by rubbing. provided they were properly insulated from an earthed object such as the hand.

EARTH'S MAGNETISM

It was on the subject of magnetism that Gilbert made his most important contributions: this was his realisation that the loadstone behaved as it did because the earth itself was an enormous magnet. The mariner's compass made up, as most of us will have seen demonstrated, from a piece of lodestone floating on corks in water (clearly an erratic device in stormy weather) had been in use for several centuries, with no reason for its behaviour being advanced.

A further phenomenon had also been recorded about this time: when an iron needle was freely suspended about its centre of gravity so as to be able to rotate about a horizontal axis, it came to rest in a horizontal position whatever its orientation, rather as Fig. Ia shows.

Fig. 1. Response of (a) non-magnetised and (b) magnetised needles to the earth's magnetic field.

When, however, the iron needle was magnetized by rubbing it with a piece of lodestone, it was found that if placed in line with north and south poles of the earth, it came to rest at an angle to the horizontal, this angle being known as the "magnetic dip", as shown in Fig. Ib.
It also soon became general knowledge that this magnetic dip depended upon the location of the needle upon the earth's surface, being zero in the region of the equator and tending towards ninety degrees as the polar regions were approached.

FUNDAMENTAL GUESTIONS

Gilbert pondered an explanation for these effects by asking the questions: is the earth a magnet? Could a magnet be of spherical shape, anyway? Experiment would provide an answer.
By fashioning an iron sphere and mag. netizing it by rubbing it with lodestone, Gilbert found that not only did it behave as a spherical magnet, exhibiting magnetic poles as lodestone did, but also that, by bringing up a small carefully suspended magnetic needle, two observations could be made: one, the needle always came to rest with one of its poles pointing directly to the opposite pole of his sphere, and two, the suspended needle came to rest at various angles of dip with respect to the sphere, changing from ninety degrees at the poles to zero dip at the midway point (the equator) between the poles.
The significance of these observations was that the earth did behave as a giant magnet, with magnetic poles roughly coinciding with the geographical poles, and from his interpretation Gilbert concluded that an explanation of both the
phenomenon of the compass and its dip had here been obtained.

Since like poles repelled and unlike poles attracted. a suspended magnet would clearly come to rest with its north-seeking pole pointing to the north magnetic pole of the earth. Gilbert went to great lengths to insist on the correct use of the terms north-seeking and south-seeking; even today we loosely say that the pole of a magnet marked with an N will point to the earth's north magnetic pole when the end of a magnet facing north must in reality be the opposite south pole, that is, unless we heed Gilbert's words and introduce the term north-seeking into our vocabulary.

Although Gilbert himself was unaware of the "shape" of the magnetic field around the earth (and his magnetized sphere) we can appreciate how. when the earth is considered as a bar magnet. the angle of dip indicates the direction of the force lines, as Fig. 2 indicates. Gilbert produced a device similar to this which he called a "Terrella".

So, by the logic of experiment, Gilbert swept away all the myth and superstition which had hitherto plagued the true explanation for the mariner's compass.

Until the introduction of the MKS (Metre-Kilogram-Second) system, Gilbert's name was honoured by being given to the electromagnetic unit of magnetomotive force.

ELECTRICAL CLASSIFICATION

So far as the study of electricity and magnetism after Gilbert went, the following century was one of progress in the development of electrostatics only. From what has been said above, Gilbert had classified substances as electrics and nonelectrics, depending upon whether or not the substances were capable of being electrified by rubbing.

Two men tum up at this slage, who are not so popularly known as some who followed later on, like Faraday and Ampere, but who nevertheless contributed to the advancement of the science.

One of these was Stephen Gray, an English experimenter, who developed an accurate grouping of conductors and insulators. He also showed that the human body was a conductor by charging a lad after standing him on an appropriately insulated surface.

The other man was a Frenchman, Charles du Fay; he showed that Gilbert's classification was in error, since all bodies could be given an electrical charge.

Those substances which Gilbert had marked up as non-electrics were actually such good conductors that they were losing any charge placed on them as fast as they were receiving it. The problem of a substance holding a charge was simply a problem of providing insulation - from a true Gilbertian non-electric. Hence, a

Fig. 2. How the earth's magnetic field is like that of a bar magnet and accounts for the magnetic dip.

Following Gilbert's example, other experimenters produced their own Terrelas; this one was made by G. Adams in about 1765.
metal rod clasped in a nubber handle, for example, could be charged by friction just as readily as amber could.

Charles du Fay also demonstrated that electricity came in two "sorts" or "fluids". what we now know as "positive" and "negative" charges, but to which du Fay gave the names "vitreous" and "resinous". He noticed this by the attraction which came about between certain substances when rubbed, and the repulsion which occurred between others; and the way a charge could be neutralized
by connecting it to "earth" or touching it with an equal and opposite charge.

Thus were the phenomena of electrostatic attraction, repulsion and neutralization established. The mathematical laws which determined the forces of attraction and repulsion had to wait until a later date.

DISCOVERING CAPACITANCE

Another little-known man now enters the fray. in 1746, a Dutch physicist named Pieter van Musschenbroek discovered by accident the principle of the capacitor in an assembly which was known as the Leyden jar. This was a glass jar, similar to our familiar wine fermenting varieties, to the inside and outside walls of which were glued sheets of metal foil, so that two plates were effectually placed on each side of a non-conducting material - what we now call the "dielectric".

The thing that Pieter was apparently trying to do was to electrify water contained in the jar. In this he was so successful that he received a powerful electric shock from the charged jar, afterwards confessing that he would not take the experience again "for all the kingdom of France". Many would-be modern experimenters have no doubt uttered words to the same effect when carelessly handling circuits and boards containing charged capacitors!

By contrast with Musschenbroek's words of wisdom, a story has passed into legend that a Professor Bose of Wittenberg "was ready to die by electric shock" so that his demise would provide an article for the immortal memoirs of the French Academy of Science!

The " jar"" became the unit of capacitance for quite a long period. Now, of course, we use the Farad and its sub-multiples. For the record. $1 \mu \mathrm{~F}$ equals 900 jars!

Human nature being what it is. the electrical discharge of the Leyden jar was soon utilized as a form of executive toy by itinerant fair ground showmen for the delight of the masses. Exhibitions were staged in which the discharge was passed through a line of hand-holding volunteers who seemed willing to experience this kind of thing: each member of the line gave a simultaneous twitch as the jar was discharged. Whether they all enjoyed it remains a matter of conjecture; by all accounts the ludicrous proceedings were thoroughly appreciated by the audience.

BENJAMIN FRANKLIN

Much of the progress which followed. particularly about the middle to late years of the eighteenth century, came from three men: an American, Benjamin Franklin; an Englishman. Henry Cavendish, and a Frenchman. Charles Coulomb.

Most of Franklin's work extended our knowledge of electrostatics. He first drew attention to the fact that discharge from a charged body took place more
rapidly if the body had sharply pointed protuberances. He referred to this as "the marvellous effect of pointed bodies, both in drawing off and throwing out the electrical fluid".

At the same time he introduced his famous "one fluid" theory of electricity, replacing du Fay's "two fluid theory". According to Franklin, all bodies normally possess electricity and only display electrical characteristics when they acquire an excess of the "fluid", when they exhibit "positive" or "plus" charges.

When they lose some of the "fluid" to other bodies, they exhibit "negative" or "minus" charges. This theory, which on examination anticipated the possibility of a movement of electrical "fluid" (which we now call current electricity) from a positive to a negative condition, explained all the then known elementary features of static electricity and was generally accepted by scientists until the discovery of the electron replaced the "fluid" a hundred years later on.

Franklin devised his theory about positive and negative charges by noticing that if a glass rod was rubbed with silk and suspended from a thread, as Fig. 3 shows, then a second glass rod, similarly rubbed, when held close to the rubbed end of the first rod caused the rods to repel each other. On the other hand, an ebonite or hard rubber rod rubbed with fur attracted the suspended glass rod. Clearly, the charges on the glass and on the ebonite must be different in nature.

Fig. 3. Positively charged glass rods repel each other.

Franklin called the charge on the glass "positive" and that on the ebonite "negative' ${ }^{\prime}$. The result of his experiments can be summed up by saying that like charges repel and unlike charges attract, which was similar to the way magnetic poles behaved.

Franklin's choice of sign was, of course, quite arbitrary. We now know that materials in their normal or neutral state contain equal amounts of positive and negative charge, though (neglecting ionized gases and solutions) only one form of charge can move.

When two bodies are rubbed together, a small amount of this moveable charge is transferred from one to the other, upsetting the electrical neutrality of each. In Franklin's experiment the glass became positive and the silk negative; electrons moved from the glass to the silk.

LIGHTNING
 CONDUCTOR

Franklin's work on electrostatic charges turned his attention to the subject of thunder storms. These had hitherto been accepted as the explosion of gases in the upper atmosphere, but Franklin noticed the resemblances between lightning and the spark discharges of the Leyden jar. These similarities, he noted, were the production of light, a crack or noise accompanying the light, the haphazard direction of the spark and its swift motion through the air, and its ability to shock the bodies of humans and animals.

Experimenting on this, he flew a kite connected to his hand by a thin metal wire during a thunderstorm. Such an experiment as this could have ended in disaster for both Franklin and his kite; Franklin, however, had a charmed life and demonstrated that electrical discharges in the form of sparks were obtained between the end of the wire and a key he held in his other hand. Thunderstorms were therefore electrical phenomena.

Combined with the knowledge that pointed objects emit a charge "leakage". the thunderstorm adventure soon led to the introduction of lightning conductors on high buildings and steeples. It should be appreciated in this context that the socalled lightning conductor (an erroneous name) is not placed where it is to attract lightning; that would be defeating its purpose which is protecting the property. The atmospheric electrical charge is actually neutralized in a gradual manner by the presence of the upturned points of the conductor and so the chance of a violent discharge is greatly diminished.

CAVENDISH

As a result of Franklin's experiments into electrical charge, the way was paved for giving the subject a proper quantitative footing. At about the same time as Franklin was trying to commit suicide, a great deal of work was being done in this field by Henry Cavendish in England and Charles Coulomb in France.

Cavendish carried out investigations into the subject of the capacity of isolated bodies and parallel plate assemblies representing the Leyden jar form of capacitor in a different and more convenient shape, and came close in the process to anticipating Ohm's law.

COULOMB'S LAW

For his part, Coulomb was the first to measure the forces of attraction and repulsion between charged bodies in mathematical terms and deduce the law that covered these forces. His apparatus is shown in a skeleton form in Fig. 4. This resembles the hanging rod in Fig. 3, except that the charges are confined to small spheres a and b.

If these spheres are charged, then the force either of attraction or repulsion will cause b to move towards or away from a respectively and the thin fibre thread (or ribbon) will be twisted from its initial or neutral position.

By having a calibrated restoring head at the top of the fibre, Coulomb brought sphere b back to its initial position with respect to a. The angle θ through which

Fig. 4. Basic constructional features of a Torsion Balance.
the head was tumed was then a relative measure of the electric force acting between the spheres. This apparatus is known as a Torsion Balance and this kind of instrument was used by many other workers in a variety of investigations. notably as we shall see, by Simon Ohm.

Coulomb found that the force between the charged spheres could be expressed as being inversely proportional to the square of the distance between the charges, that is, $\mathrm{F} \propto 1 / r^{2}$ where r is the spacing.

Coulomb also studied how the force varied with the relative strengths of the charges on each of the spheres; he found that the expression for the force now became $F \propto Q_{1} Q_{2} / r^{2}$ where Q_{1} and Q_{2} are the relative measures of the charges on spheres a and b.

This relationship is known as Coulomb's law; it holds strictly only if the spheres have very small diameters and the spacing between them is very much greater than these diameters.

In honour of his work, the SI unit of charge is called the Coulomb, and one coulomb of charge passes through a circuit when a çurrent of one ampere flows for one second.

PART TWO

In Part Two of this short history, next month, we will turn to current electricity and meet up with the invention of the galvanic battery and see how the science of electro-magnetism came into being through the researches of Andre Marie Ampere, the great French experimenter. whose portrait is shown below.

AKNOWLEDGEMENT

The illustrations used in this article have been kindly supplied by the Science Museum, London.

READOUT

John Becker addresses some of the other points readers have ralsed. Have you anything Interesting to say? Drop us a line!

TRANSPARENCIES

Dear EPE
I'm puzzled by your reference to ' 'transparentising sprays" in Build Your Own Projects Part 3. Jan '97. Surely the toner side of the transparentised copy should be in contact with the board, but which would result in a mirror image being printed onto the p.c.b. material? If it is the other way up. the thickness of the paper will be between the image and the board, with a good chance that the image will be less than sharp.
B. J. Taylor, Rickmansworth

You are correct in every respect, and you will not get an image that is as sharp as the original. The system is satisfactory, though. $t o$ readers who recognise the limitations and are prepared to do a bit of "doctoring" to the p.c.b. once the image has been etched. The technique may sometimes result in very thin tracks being eiched away and other tracks blending in with each other if they are 100 close logether, requiring hardwiring between the affected sections, or scraping with a knife.

Obviously, discretion and experience must be used in choosing which published layouts are suitable to the process. The ideal solution to oblaining first-class p.c.b.s is to buy them ready-made from the EPE PCB Service. Nonetheless, some readers like to do things for themselves (full marks to them!) and are content to have to fiddle a bit with the final result.

Where the process can come into its own is with genuine design prototyping work. For many years I always used to sel up a plate camera in front of the taped-up doublesize p.c.b. artwork, created on transparent acetate from the component side viewpoint. In conjunction with a photographic enlarger. a life-size litho-film image was produced. from which the p.c.b. was then made in the conventional photosensitised way. Then I heard about ISO-Draft iransparentiser, and tried it.

A life-size photocopy of the double-sized artwork was made (which was the correct way round because of the way it had been laped), and then sprayed. The image was placed toner-side down onto the p.c.b. and exposed as before, though at a much longer exposure time (typically five minutes instead of about 30 seconds). I was sufficiently impressed to be still using this technique many years later. despite the occasional need to "clean up" the eiched p.c.b. It has since been discovered that WD40 achieves similar acceptable transparentising results.

Since going over to using a p.c.b. design package on a PC, the dot-matrix printed image (correctly orientated) is first photocopied onto normal paper, and I continue to use transparentising for all my prototypes, including those with 10 -thou tracks going between i.c. pins. The photocopy stage has to be used since the tranparentising spray makes the dot-matrix print "run'"

The secret to using the technique acceptably is to obtain a good black image without the white areas being degraded (becoming grey), and then to expose for an optimum period which has been previously established
using the test-strip method. Fresh developing solution is also a pre-requisite 10 good imaging. Incidentally, I find that Farnell's photosensitised boards require much longer exposures than those from RS Components (Electromail), typically three times as long.

JB

BOARD DRILL

Dear EPE

I recently bought a set of p.c.b.s from you and successfully assembled most of the components. until I came to the preset potentiometers. Their legs would not go into the holes. Using a sharp point tool I attempted to prise open the holes to make the legs fit; this eventually worked but I found that I had damaged the solder pads irreparably. Link wires had to be used to cure the situation. Could you not supply your boards with all the holes drilled to the right sizes for each component? Anonymous phone call

In a strictly-controlled component-source environment, p.c.b.s are drilled to suit the components they are required to lake. Regrettably, absolute standardisation of component lead diameters is not practised by the various component manufacturers: indeed. is never can be since some components are designed for use in different situations, with some situations demanding heavier-duty leads than others.

For the hobbyist constructor, the problem is more significant than for an equipment manufacturer. The latter can specify which component sizes are required for specific applications and have the p.c.b.s. drilled accordingly. The hobbyist, though, usually buys components from the most convenient or inexpensive retail source. Each source will possibly have bought in components from different manufacturers, again according to convenience or pricing imperatives. Furthermore, the retailer may well change manufacturing sources, depending on availability of supply, and special offers etc. It is obviously impossible, therefore. for us to specify to our p.c.b. manufacturer what hole sizes should be drilled to allow for each component's lead size: readers will be buying components having different sizes.

We cannot specify a single source for components since this would alienate all advertisers except the chosen one. Nor can we tell the p.c.b. manufacturer to drill all holes large enough to accept all possible component variations; drilling i.c. pads at 1.3 mm inslead of 0.8 mm could cause severe breaks in adjacent lracks. The best he can do is standardise on a minimum size, typically 0.8 mm , and expect the reader 10 drill out any holes which need a larger diameter. Frankly. though. it is the exception when this needs to be done. Nearly all small components. resistors, capacitors, transistors, i.c.s, many presel pots, elc. will fit into 0.8 mm holes. The principal exceptions are 1 mm terminal pins (needing a 1.0 mm hole!) and some presets, notably the open carbon ones which need 1.3 mm holes. Bridge rectifiers, resistors of IW or greater and large electrolytic capacitors are also exceptions.
It is never advisable to use the wrong tool to do a job (although we all do it from time to time). To increase the size of a hole to
suit the components you have. the correct drill bit should be used. Ballery operated handheld drills designed for p.c.b. work are readily and cheaply available. They should be regarded as an essential workshop tool. logether with a selection of drill bits, including sizes 0.8 mm .10 mm and 1.3 mm .

If you don'I have a drill and are faced with a hole size problem. you have two other options open to you. If the existing holes are 0.8 mm , insert resistor cut-off wires into them and solder the component to them. If the holes are 1.0 mm . insert I mm terminal pins to which the component can be readily soldered. The same principle can be used if the component's leads are wider apart than the p.c.b. has allowed for. Never try to brutalise a hole to make a component fit.

JB

CURRENT SHORTS

Dear EPE
I have taken your magazine ever since it was first published as Everyday Electronics over 25 years ago. Even after all this time, though. I still consider myself to be very much an amateur and simply use electronics as a hobby.
What I have greatly missed over the last few years, however, is the wealth of really simple projects which you used to publish in the early days. Even those projects which you now describe as "simple" are much more complex than those which I used to enjoy. Surely there must be many potential electronic enthusiasts who would be persuaded to join your readership if only some of the projects could be built with a really minimum of components, expense and time? Not all of us want to spend time and money on the type of sophisticated projects you currently seem to be publishing. A regular selection of simple gadget circuits would be nice to tinker with again.
P. Price, Doncaster

Food for thought, indeed! Yet, we recall that in those distant days, most designs were based on transistors and it was not feasible to do a great deal more with a handful of Iransistors than come up with circuits whose function was of a simple nature.

Are we really mistaken in feeling that with the ready availability of i.c.s which incorporate functions you could only dream of twenty-odd years ago. that we should not take advantage of their capabilities and share their varied and ingenious applications with you all. Do some of you want to return to simplistic basics, preferring to dabble with less-thanoptimum ways of doing things? If you do, then lel us know.

We will be publishing some relatively inexpensive, easy to build projects over the coming months. But we have no intention of dispensing with sophistication, using state-of-the art i.c.s where appropriate in some of our designs, but perhaps we could mingle them with a few very simple circuits to build if enough of you would welcome it. Interestingly. our recent survey indicated that most readers think our projects are at the right degree of simplicity/complexity and price. But, it must be acknowledged. this mãy not be surprising since only readers who like EPE as it is will have responded to the survey. We admit that the opinions of non-readers, who may be potential electronics enthusiasts but view EPE differently, were not sought.

We would be interested to hear what your opinions are on this subject. And, if you know of anyone who would be glad to become regular reader if only more very simple projects were to be published on a frequent basis, tell us their opinion 100. We have designs on pleasing you!

TYPE 7660

 VOLTAGE CDNVERTERS
ANDY FLIND

With a little ingenuity, negative supplies, voltage doubling and simple alarm circuits are possible with these low-cost chips.

The recent use of a type 7660 voltage converter as a voltage doubler in a circuit design led to queries about its operation, which in turn prompted the idea for a more comprehensive description of this i.c. and some of the uses to which it can be put. In general it is a very simple device requiring few external components for operation. The SI7660 is taken as a readily available example.
It is ideal for battery-powered designs since it can work with supply voltages from 1.5 V to 10 V and draws a quiescent current of "micro-power" proportions. This is usually quoted as being about $170 \mu \mathrm{~A}$, but several examples tested drew less than half of this. At low output currents the voltage conversion is very efficient, often in excess of 90 per cent.

FLYING CAPACITORS

The intended application for the 7660 is for provision of an auxiliary negative supply for devices such as op.amps which require dual supplies, by generating this from the single 5 V positive supply often found in digital systems. To do this it uses a method sometimes referred to as a "flying capacitor" circuit.

Fig. 1. Principle of "flying capacitor" voltage converter circuit.

This is shown in its simplest form in Fig. 1, with the two-pole changeover switch Sl altemately connecting capacitor Cl across the incoming supply and the output capacitor C 2 . Whilst the switch poles are in the position shown. Cl charges to the supply voltage. When they change to the opposite position, Cl dumps some of the charge into capacitor C2, thereby creating the additional negative supply rail.
For successful operation the switching action must be rapid and continuous so the "switches" must in fact be electronic devices. MOSFETS, with their high speed and low "on" resistances, are ideal.

INTERNAL STRUCTURE

A simplified block diagram of the internal structure of the device is shown in Fig. 2. It contains an oscillator which operates at a nominal frequency of 10 kHz . although this can be externally altered
junction of the internal transistors TRI and TR2, a point which alternates between the positive supply voltage and ground at half the oscillator frequency, nominally about 5 kHz . These two transistors can provide a reasonable amount of current, certainly to beyond 50 mA without 100 great a voltage drop across them, making this output useful for driving "charge-pump" circuits and even loudspeakers in simple alarm systems.

Pin 3 is the supply "ground" or negative input, and is also "ground" for the auxiliary negative output if the i.c. is used to generate this. Pin 4 is intended for the other end of the "flying capacitor" and goes to the junction of TR3 and TR4.

When used in this way the output is taken from pin 5. When not used, as in a "charge pump" circuit, pin 5 should be grounded. For supply voltages below 3.5 V the "LV" connection, pin 6, should be grounded to disable the internal regulator.

OSCILLATOR

The oscillator (pin 7) is of the $R C$ type, with the resistor and capacitor both provided within the i.c. The value of C is

Fig. 2. Simplified block diagram of the internal structure that goes to make up the type 7660 voltage converter chip.
through the "oscillator" connection (pin 7). This is followed by a divider stage to ensure a 50:50 ratio drive waveform. These two sections have an internal voltage regulator to reduce the supply voltage to them slightly, but with low supply voltages this should be disabled through the "LV" connection (pin 6).

Logic is then used to provide drives to the four output switching transistors TR1 to TR4, configuring them for use in the "flying capacitor" circuit described earlier. When used this way, unacceptable voltage levels might appear across the gates of TR3" and TR4, so "bias logic" is provided within the i.c. to ensure that the gate junćtions are always correctly biased.

PINOUTS

A descriptive tour of the eight pins of the di.i.l. version of the i.c. will be useful to anyone wishing to use it in their own designs. Pin I is simple to describe as it is not used! Pin 2 is for the positive end of the "flying capacitor", but a glance at Fig. 2 will show that it is connected to the
necessarily very small and that of R correspondingly large, so the external connection through pin 7 should be treated as a high impedance point. Any connections made to it should be designed in a way that will minimise stray capacitance or interference pickup.

It can be used for reducing the oscillator frequency by connecting an external capacitor from it to ground. A 100 pF capacitor will reduce the frequency at pin 2 from 5 kHz to about 500 Hz . Alternatively, it can be forced to run at an externally generated frequency by driving this pin. the high impedance allowing direct drive from a single CMOS gate output.
It is also possible to control the oscillator through pin 7. stopping it by pulling it to either supply rail. When stopped in this way the quiescent current drain drops to only a couple of microamps. The collector of an external transistor is useful for this as wiring to it can be kept short to prevent adverse effects upon performance. Pin 8 is the positive supply input, with an acceptable range of 1.5 V to 10 V .

NEGATIVE RESPONSE

The SI7660 can be used in several ways. The simplest is as an auxiliary Negative Rail Generator, as shown in Fig. 3.

Two requirements should be observed with this circuit, both related to supply voltage. For voltage supplies below 3.5 V pin 5 should be "grounded" to negative supply. For supplies above $6 \cdot 5 \mathrm{~V}$, diode DI should be added. Both these modifications are shown as dashed lines.

The output is normally stated as being similar to a perfect voltage source in series with a resistance of 70 ohms, so with a 5 V supply a drain of 10 mA would result in a "minus" voltage of -4.3 V . Many modem op.amps actually draw much less.

Application notes for the SI7660 point out that devices can be connected in parallel for increased current, though this would cancel out the benefit of simplicity and low cost to some extent. Where the diode DI is used, this will add an additional voltage drop of about 0.6 V .

Fig. 3. Basic Negative Rail Generator circuit.

VOLTAGE DOUbLER

The next application shown is a Voltage Doubler, using the "charge pump" principle as shown in Fig. 4. The output drive from pin 2 is used on its own here, through capacitor C1, to altemately draw current in through diode DI and push it out through D2 into C 2 , increasing the voltage across this capacitor to nearly twice the supply.

A drop of about a volt will be present due to the two diodes. Note that pin 5 is grounded in this circuit.

With a 10 V supply a test circuit provided around 10 mA at 17.9 V and 20 mA at 17.5 V , a drop from the no-load value of less than 10 per cent. In fact, it still produced nearly 16 V at 50 mA .

Fig. 4. Circuit for a Voltage Doubler.

Fig. 5. Circuit diagram for a Regulated Voltage Multiplier using the SI7660.

VOLTAGE MULTIPLIER

A development of the voltage doubler is a Voltage Multiplier circuit, Fig. 5. This consists simply of more pairs of diodes and capacitors, each pair adding roughly the supply voltage less two diode drops $(1-2 \mathrm{~V})$ to the total.

This is best suited to applications where tiny currents of only a few microamps are drawn but a reasonably high voltage is needed. Example applications might be detecting the closing of contacts liable to oxidation, or medical applications such as TENS, etc. Most of the capacitors can then be small, cheap ceramic types.

The multiplier circuit diagram shown in Fig. 5 also includes simple voltage regula tion. Sufficient stages are provided to ensure that the target voltage will be reached at the lowest expected supply voltage, such as 6 V or 7 V if the power is to be from a 9 V battery.

Zener diode D5 has a voltage of about the required output, though the low operating current may call for a little trial and error here. In operation, as soon as the intended output voltage is reached the Zener starts to conduct. Current from it tums on transistor TRI and the collector (c) stops the oscillator by pulling it to ground.

The quiescent current drawn by the circuit will be little more than that needed to maintain sufficient collector current through TR1, and although in terms of supply current this is multiplied by the number of stages in the diode and capacitor chain, for an output as high as 50 V it should still be far less than ImA.

ALARM SIREN

The last circuit shown, in Fig. 6, is an Audio Generator for an alarm system. Capacitor Cl reduces the output frequency of pin 2 to about 1 kHz and transistor TRI controls the circuit. A positive voltage applied to resistor R3 tums on TRI which then stops the oscillator.

With a small 8 -ohm loudspeaker this simple circuit is capable of making a lot of noise, ideal for simple alarm applications. The volume can be set to the preferred value by adjusting the value of resistor R1.

These simple circuits should provide some idea of the versatility of the SI7660 device, and perhaps suggest further possibilities to designers. In some situations the low power output capability may be a disadvantage.

The ICL7660, LMC7660 and TC7660 are equivalent devices. The type 7661 is a pin-compatible version designed for operation with supplies of up to 20 V , with increased current output in the negative rail generation mode of 20 mA , and may be worth considering in some cases.

Another possible altemative is the Maxim MAX665. Intended for use with supplies of 1.5 V to 8 V , this can supply up to 100 mA with a much smaller voltage drop from the unloaded value. The main disadvantage of this device at present is cost; at around $£ 7$ for a one-off it is expensive, though this may well improve in time.

Meanwhile, it is hoped that this article will inspire some interesting and creative solutions for readers' design problems.

Fig. 6. Using the SI7660 in a simple Alarm Siren circuit.

ADCZOO STORAGE OSCILILSCODE INTEEFACE

 ROBERT PENFOLD

 ROBERT PENFOLD}

Putting Pico's PC "virtual instrument" interface module through its paces to see if it measures up to its claims.

AN EARLIER review in EPE covered the Velleman PCS32 twinchannel digital storage oscilloscope interface for PCs. The unit described here is a broadly similar device which converts a suitable PC into (amongst other things) a virtual 2 -channel Storage Oscilloscope. Like the PCS32 it can also operate as a Spectrum Analyser.

The Picoscope ADC200 can additionally operate as a Frequency Meter and an A.C./D.C. Voltmeter. As an A.C. Voltmeter it can provide readings in either r.m.s. volts or decibels. Using the Windows version of the software it will provide all these functions simultaneously!

Virtually Virtual

The hardware is a neat box which has sockets for the mains adaptor and the computer lead at the rear. The unit can operate with printer port one or port two using the lead supplied.

On the front panel there is an indicator light which switches on while sampling is in progress, and BNC input sockets for channel A, channel B, and an external synchronisation signal. The only controls on the hardware are the a.c./d.c. coupling switches for the two channels.

Windows and MS/DOS versions of the software are provided. If you have a relatively simple PC it might be necessary to run the MS/DOS version, but otherwise the Windows program is the better option.

It is the Windows software that we will consider here, but the MS/DOS program offers the same basic features. The MS/DOS software has a relatively crude user interface though, and is a bit cumbersome to use. Installation from the single 3.5 inch floppy disk is quite straightforward, and it is just a matter of running the installation program from Program Manager (or the "Run" option from the "Start" button in Windows 95).

The software implements a rather less virtual instrument approach than some systems. There are few on-screen virtual controls, and no fancy control dials, etc. Control of the program is largely in conventional Windows fashion, with pop-down menus and tool-bars being used set the required sweep rate. sensitivity, etc.

This makes the program slightly less quick and easy to use, especially when you first try to use it. On the other hand, it is still quite straightforward to use, and it is not often necessary to resort to the on-line help screens. There is no printed manual for the Windows software incidentally.

An advantage of not adopting virtual controls is that the vast majority of the screen is available for displaying data. With some form of SVGA screen it is possible to have three or four functions running simultaneously and visible on the screen. When used in this way the oscilloscope and spectrum analyser programs still produce decent sized displays that are detailed and easy to interpret.

Tremendous Scope

Probably most purchasers of the ADC200 will buy it first and foremost as a Dual-Channel Digital Storage Oscilloscope. The ADC200-20 received for review has a maximum sampling rate of 20 MHz , but a 50 MHz version is also available.

The ADC200 has two fully independent channels, and the sampling rate therefore remains at 20 MHz when both channels are used. The software offers "chop" and "altemate" dual channel modes, but with the ADC200 these both give normal two channel operation. With the 50 MHz version the sampling rate is halved to 25 MHz for dual channel operation. Apparently two 25 MHz ADCs work in tandem to give a 50 MHz bandwidth, or independently to provide two channels having a bandwidth of 25 MHz .

It's all go! The left section of the screen shows a 1 kHz waveform (top) and its spectrum analysis. The right hand section shows the signal level in $d B$ and millivolts and the input frequency. All three can be active simultaneously.

Bear in mind that the bandwidth is much less than the sampling rate. The bandwidth of the 20 MHz version is sufficient to handle PAL video signals. Vertical shift controls are provided in the form of scroll-bars. In the dual channel mode these enable the two traces to be separated. The scroll-bars seem to be a bit "flashy" at times, but nevertheless worked reliably.

"The Oscilloscope software provides excellent results, with a large clear display."

The timebase can be switched from 100ns per division to 50 s per division using the usual 1-2-5-10 sequence. The sensitivity can be set automatically, and is set separately for the two channels in a dual trace mode.

It runs from plus and minus 50 mV (10 mV per division) to plus and minus 20 volts (four volts per division). Again the normal I-2-5-10 sequence is used.

There is 8 K of memory per channel, which gives far more samples than can be displayed on a normal Windows screen. A magnification facility enables part of the waveform to be viewed so that it can be examined in detail. The standard Windows scrollbar enables the desired part of the waveform to be selected.
The zoom factor can be switched from one to 200. Of course, at high sweep speeds the sampling rate limits the resolution to a level that prevents meaningful magnification of the trace. When I tried to use the magnification feature at a sweep rate of 100 ns per division the program crashed! However this bug has subsequently been fixed, and should not present a problem in the software supplied to customers.

Trigger Points

There is a useful facility which enables the trigger point to be shifted from the beginning of the trace to a specified point further

view the waveform prior to the trigger point as well as after it. Triggering can be on the rising or falling edge, and the modes available are single, repeated, automatic, or none.
Trigger voltage can be set at any sensible figure, and can be a positive or a negative voltage. Triggering can be via channel A, channel B, or the external synchronisation socket. In fact this aspect of the system is very comprehensive, and seems to work quite well even on slow waveforms.
The oscilloscope software provides excellent results, with a large and clear display. Being a storage oscilloscope it is ideal for catching fleeting events, but is less good for repetitive triggering.
Storage oscilloscopes operate on the basis of taking in a full set of samples and then updating the display. This can give rather "flickery" results, but the Picoscope is generally very good in this respect, and gave very smooth results when used with a 75 MHz Pentium PC. For sweeps of more than one second in duration the trace is drawn as samples are taken, which gives totally flicker-free results.

"The meter focilities are more than just aftert houghts, and are usefill instruments in their own right."

An interesting feature of the Picoscope is its ability to accumulate traces on the screen so that it is easy to spot changes in the waveform. This feature has a couple of slight weaknesses in that it only seems to work with sweep durations of less than one second, and the accumulated waveforms are erased if the Y scaling is changed by the automatic sensitivity circuit. It is better to set the sensitivity manually when using this mode.

Analysis

The Spectrum Analyser function can operate with a range of maximum frequencies from 610 Hz to 10 MHz . In many ways this program is similar to the oscilloscope software, and it has the same trigger options for example. Horizontal (frequency) scaling is linear or logarithmic, and the vertical scaling is in decibels or volts.

The frequency components present in the input signal are determined by mathematic analysis of the stored sample. This process is known as fast fourier transformation, or FFT. The eight-bit resolution of the hardware limits the dynamic range to about 40 dB or so, but this is sufficient for most purposes.

Results on test signals were much as expected, and the spectrum analyser software seems to work very well at audio frequencies. At higher frequencies the 20 MHz sampling

(Above). A pulse waveform (bottom) and its spectrum analysis (top). Control of the program is via pulldown menus plus some on-screen controls.
(Above). A dual trace display showing direct and phase-shifted sinewaves. There are no Y shitt controls. but the traces are different colours.
(Left). Any of the program will expand to fill the screen properly.
frequencies limits the accuracy of results. The frequencies of strong components are still shown quite accurately, but the weaker components seem to become overlooked.

The meter function provides a simple on-screen digital display. "Jumbo" size digits are displayed if a large window is used. which could be useful for classroom demonstrations. For voltage measurement there are d.c. and a.c. ranges, and for a.c. voltage measurement there is the option of a decibel display. Although on the face of it the eight-bit resolution limits the dynamic range to about 46 dB , the automatic ranging increases the dynamic range considerably.
Using the decibel scaling of the a.c. voltmeter, it kept accurately in step with the attenuator of my signal generator from +10 to -60 dB . With a voltage readout the full scale values run from 50 millivolts to 20 volts, with manual or automatic scaling.
Although the frequency meter did not keep precisely in step with my d.f.m., it was always very close. It will certainly provide far more accurate results than can be calculated from the duration of one cycle measured from the oscilloscope display. The meter facilities are more than just afterthoughts, and are useful instruments in their own right.

"If it was a case of 'maney is no object'I uould certainly opt for the Picoscope"

There are the usual facilities for saving results. and printing them to any Windows compatible printer. Export facilities are limited, but screen dumps can be saved to the "clipboard", and there are some facilities for exporting data to spreadsheets, or graphs to a wordprocessor.

The external synchronisation socket can be used as the output of a simple signal generator facility. The signal is only produced during sweeps, and only a squarewave output signal is available (degrading to a triangular waveform at very high output frequencies).

Final Analysis

The Picoscope ADC200 is very capable system. providing the user with a Dual-Channel Storage Oscilloscope. Digital A.C./D.C. Voltmeter and Millivoltmeter with linear or decibel scaling. Digital Frequency Meter, and Spectrum Analyser. It may not offer the ultimate in performance in any of these guises, but its degree of precision is more than adequate for most purposes.
The lack of full printed manuals is a slight drawback, and there seem to be one or two omissions in the on-line help. However, the software is fairly simple to master provided you already understand the basics of oscilloscopes, spectrum analysis, etc. Those with a limited knowledge of test gear techniques will need to "brush up" on the subject before trying to use any system of this ilk.
I think it is fair to say that in comparison to the PCS32 the Picoscope has the superior software, however. the Picoscope is

ADC 200 Oscilloscope Specification
Minimum system requirements
Not stated

Technical Data

Digital storage
Sampling Rate $\quad 20 \mathrm{MHz}$ (two channels)
Vertical Resolution 8-bits
Buffer size $2 \times 8 \mathrm{~K}$
Vertical Deflection
Input coupling
Input Impedance
Frequency Range
Sensitivity
Input Voltage

Horizontal Deflection
Timebase
A.C.ID.C.

1 M
D.C. to 10 MHz

10 mV to 4 V per division 20 V max (D.C. or peak A.C., 5 V on external trigger input)
riggering
Trigger mode
Slope
Level
Trigger

100ns to 50s per division
single, repeat, auto, none, delayed positive or negative going fully adjustable channel A, channel B, external

price

The ADC200 is available in two versions $(20 \mathrm{MHz}$ or 50 MHz), supplied with cables, power supply and Windows and MS/DOS instructions software:

ADC 200-20 $£ 421.82$
ADC 200-50 £586.32
These prices include VAT - UK post \& packing charge £3.50. For export add $£ 9$ for carriage and insurance.
Pico Technology Ltd. Dept EPE, Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 7QJ. Tel: + 44(0) 1954 211716. Fax: + 44 (0) 1954 211880.

E-Mail: post@picotech.co.uk
Web Site: http://www.picotech.co.uk
more expensive and no kit version is available. The Picoscope software is not quite as easy to use as the Velleman software with its virtual controls, but the Picoscope program gives increased screen area for the Oscilloscope and Spectrum Analyser displays.

Also, the Picoscope has proper metering facilities which work very well, and it generally seems to provide somewhat more precise results. If it was a case of "money is no object" I would certainly opt for the Picoscope.

SAVE OVER £7 (ON COVER PRICE) - SUBSCRIBE NOW!

I enclose payment of £ (cheque/PO in £ sterling only), payable

Signature.
Card Ex. Date
Please supply name and address of cardholder if different from the subscription address shown below. Subscriptions can only start with the next available issue. For back numbers see page 352.

Name

Address \qquad
\square
\qquad

Transform your PC into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
Hardware and software are supplied together as a package no more worries about incompatibility and no programming required.
Pico Technology specialises only in the development of PC based data acquisition instrumentation. We have the product range and experience to help solve your test and measurement problem.
Call for your guide on 'Virtual Instrumentation'.

The ADC-10 supplied with PicoScope gives your computer a single channel of analog input. ADC-10£49 with PicoLog $£ 59$

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog data logging software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs
- No power supply required

TC-08 £199 TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADe-100 £199 ADe-100 with PicoLog $£ 219$
ADC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or

DOS environment

- $\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
- Multimeter
- 20 MSPS also available

ADC 200-20 £359.00 ADC 200-50 £499.00

Both units are supplied with cables, power supply and manuals.
Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (0)1954 211880 E-mail: post@picotech.co.uk Web site: http://www. picotech.co.uk/

[^1]We can supply back issues of EPE by post, many issues from the past five years are available. An index for each year is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

NOV '95 motemm Only (meston)
PROJECTS - Digital Delay Line - Video En. hancer - 50 Hz Field Meter - Temperature Warning Alarm - Current Tracer - Distortion Effects Unit.
FEATURES - Teach-In '96 Part 1 - Developments in Radio Broadcasting Technology Turnpike for Windows Review - Ingenuity Unlimited.

PROJECTS - Light Operated Switch - Stereo "Cordless" Headphones - EPE Met Office - 1 - Modular Alarm System - Audio Meter and Amplifier.
FEATURES - Teach-In '96 Part 2 - Circuit Sur. gery - Index for Volume 24.

PROJECTS - Printer Sharer Mains Signalling Unit Automatic Camera Panning System Audio Signal Generator EPE Met Office - 2.
FEATURES - Teach-In '96 Part 3 - Ingenuity Unlimited - European Consumer Electronics Show - Techniques - Actually Doing it Maths Plus Review - Decibels and dBm Scale.

PROJECTS © Simple PIC16C84 Programmer Mains Signalling Unit - $2 \bigcirc$ PIC Electric Meter - 1 - Vari-Speed Dice - Analogue Frequency Meter. FEATURES - Teach-In ‘96 Part 4 - Circuit Sur. gery Making Your Own P.C.B.s Techniques - Actually Doing It.

WAFCH 'g6

PROJECTS - Mind Machine Mk III Part 1 High Current Stabilized Power Supply MultiPurpose Mini Amplifier © Infra-Zapper - PIC. Electric Meter - 2 .
FEATURES - Teach-In '96 Part 5 - Ingenuity Unlimited Olight PAL Trainer Review.
FREE Headphones (UK copies only).

PROJECTS - Dolby Pro-Logic Decoder (Free Booklet) - Bat-Band Converter - Event Counter - Mind Machine Mk III Part 2 Programmer - Hearing Tester
FEATURES - Teach-In '96 Part 6 - Circuit Surgery - Thermionic Valves Part 1

WAY'gS

PROUECTS - Midi Analyser - Mind Machine Mk III Part 3 - Tape Controller Versatile PIR Detector Alarm © Countdown Timer - Bat Band Converter B.F.O.
FEATURES - Teach-In '96 Part 7 - Ingenuity Unlimited Thermionic Valves Part 2 - The C.R.T.

TUN $2: 8$ St

PROJECTS - Sarah's Light - Ultra-Fast Frequency Generator and Counter Part $1 \bullet$ VU Display and Alarm - Pulstar - Home Telephone Link.
FEATURES - Teach-In `96 Part 8 - More Scope for Good Measurements Part $1 \bullet$ Circuit Surgery - Miniscope Review.

JULY 96 Enotontits only (EtaElewl PROJECTS - Advanced NiCad Chargers - Single-Station Radio 4 Tuner - Games Compendium - Twin-Beam Infra-Red Alarm -Ultra-Fast Frequency Generator and Counter - 2 . FEATURES - Teach-In '96 Part 9 - More Scope for Good Measurements Part 2 Circuit Surgery The Internet Ingenuity Unlimited.
AUC'gS Fhotothtionlytectentow:
PROJECTS - Component Analyser - Garden Mole-Ester - Mono "Cordless" Headphones -Bike-Speedo - Mobile Miser.
FEATURES - Teach-In '96 Part 10 - Circuit Surgery - Ingenuity Unlimited - Spies, Lies and Electronics - EPT 3.0 Review.
 Simple Exposure Timer - PIC-Tock Pendulum Clock Draught Detector Power Check.
FEATURES © Circuit Surgery - Ingenuity Unlimited - Net Work - The Internet MAX038 Waveform Generator.

loroller PROJECTS - Video Fade-To-White Direct Conversion Topband and 80 m Receiver Vehicle Alert © 10 MHz Function Generator. FEATURES - Introduction to Satellite Television \bullet Ingenuity Unlimited © Circuit Surgery \bullet Net Work - The Internet

NOVFGE

PROJECTS © D.C.-to-D.C. Converters © Central Heating Controller - EPE Elysian Theremin, Part 1 Tuneable Scratch Filter.
FEATURES - Build Your Own Projects, Part 1 - Ingenuity Unlimited - Circuir Surgery © Net Work Interface.

URGENT?
 NEED AN ARTICLE TODAY? TRY OUR FAX ON DEMAND SERVICE - see opposite for details

PROJECTS - Vari-Colour Christmas Tree Lights - PIC Digital/Analogue Tachometer Stereo Cassette Recorder - EPE Elysian Theremin. Part 2.
FEATURES - Build Your Own Projects, Part 2 - Interface - Circuit Surgery - Ingenuity Unlimited Net Work - Internet News.
PROJECTS - Earth Resistivity Meter, Part 10 Psycho Rat Theremin MIDI/CV Interface, Part 1 - Mains-Failure Warning.
FEATURES © Ingenuity Unlimited Build Your Own Projects, Part 3 Circuit Surgery Interface - Net Work - Internet News - PCS32 Storage 'Scope Interface Review.

PROJECTS - Pacific Waves - How To Use Intelligent L.C.D.s, Part 1 - PsiCom Experimental Controller - Earth Resistivity Meter, Part $2-$ Theremin MIDI/CV Interface, Part 2.
FEATURES - Ingenuity Unlimited - Build Your Own Projects, Part 4 Circuit Surgery Interface © Net Work - Internet News.

PROJECTS - Simple Dual-Output TENS Unit - Video Negative Viewer - Tri-Colour NiCad Checker - How To Use Intelligent L.C.D.s - 2 Oil Check Reminder
FEATURES © Interface - Ingenuity Unlimited Build Your Own Projects, Part 5 Digital TV The Reality © Circuit Surgery © Net Work.
AFill'gl
PROJECTS - 418 MHz Remote Control System - Midi Matrix - Puppy Puddle Probe -PIC-Agoras Wheelie Meter.
FEATURES © Interface \bullet Ingenuity Unlimited Digital TV and MPEG2 EDWin NC Software Review Circuit Surgery - Net Work.

BACK ISSUES ONLY $£ 2.75$ each inc. UK p\&p.

Overseas prices $£ 3.35$ each surface mail, $£ 4.35$ each airmail.
We can also supply issues from earlier years: 1990 (except Jan., March and Dec.), 1991 (excepı May, June, Aug., Sept. and Nov.). 1992 (except April and Dec.I, 1993 (except Jan. Feb., March, April and May), 1994 (except April. May, June and Nov.), 1995 (except Jan. May, June, Sept., Nov. and Dec.I. 1996 (except Feb., July. Aug.).
Please note we are not able to supply copies (or' stats of articles) of Practical Electronics prior to the merger of the two magazines in November 1992.
Where we do not have an issue a photostat of any one article or one part of a series can be provided at the same price.

FAX ON DEMAND EVERYDAY PRACTICAL ELEGTRONICS ON FAK

WHY WAIT?
We Give You The Fax! Projects and Series From Past Issues of EPE
\section*{AVAILABLE INSTANTLY! 24 HOURS A DAY!}

HAVE you ever wanted to get hold of a past project or part of a Teach-In series fast? EPE ON FAX is a service aimed at providing you with the article you need, on-demand, seven days a week, 365 days a year, 24 hours a day.

All the projects and major series from the the April ' 95 issue onwards have been stored on computer and linked to a sophisticated selection system that uses the latest voice and Fax technology. You can select the article you require from a menu and have it downloaded to any UK Fax machine on demand.

The service will be constantly updated with new material as each issue is published, thus providing a live, instantly available, resource.

HOW TO USE EPE ON FAX

- From your tone telephone or Fax machine call 0991002 225, making sure that your handset is switched to "tone". You will then hear a series of messages, which will help to guide you through the system.
- For a copy of the index, which contains the article numbers and the number of pages of each article, press " 1 " when prompted.
- To obtain a particular article, press " 2 " when prompted and, when requested, enter the article number you want from the keypad on your phone or Fax machine. The system will then confirm your selection.
- When you have selected the document that you require, you will then be prompted to enter the phone number of the Fax machine you want the article or index sent to, including the dialing code, finishing with the \# key; the system will then confirm the phone number. Ring off and the Fax will automatically be sent to the given number.

HOW MUCH WILL IT COST?

EPE ON FAX service is a higher rate premium line phone service. Calls cost $£ 1.50$ a minute. First time use should cost no more than $£ 3$ per index or article. Subsequent use should only be $£ 1.50$ per article.
NOTE. Articles over six pages long are split in two, requiring two calls.

FURTHER INFORMATION

If you would like further information about how this project
was put together, ring Starcomm Limited on (0113) 2940600 .

TRY IT NOW! CALL 0991002225

ELECTRONIC ZONE CHILD MINDER
Electronics seems to be used in an ever increasing array of electronic security devices, and this sphere of electronics now covers a lot more than simple intruder alarms. The system featured is an example of what is sometimes termed an electronic "fence." This name is not a strictly accurate one, since equipment of this type does not provide any sort of barrier.
It simply activates an alarm if someone, or something, goes outside the area encompassed by the notional "fence." The project consists of a transmitter and a portable receiver. The receiver produces an audio alarm if it goes outside the area covered by the transmitter.

No doubt there are many potential uses for equipment of this type, but the Electronic Zone was primarily designed to give warning if a toddler starts to wander too far away from the designated play area.

PYROTECHNIC CONTROLLER

The use of stage flashes for effect has increased in recent years. Once, it was strictly the domain of professional theatre companies. Now, it is not unusual for stage pyrotechnics to be used in the local pantomime, or even by the group performing at the local youth club.
Commercial flash cartridges are readily available, as are the controllers required to initiate them. The controllers are expensive and are often designed to give a large amount of flexibility. This article describes a relatively simple pyrotechnic controller that can be built for approximately $£ 35$.

PIC DIGILOGUE CLOCK

In this updated design a PIC is used to replace several CMOS counters, plus many other components, in a clock where hours are shown in analogue fashion and minutes digitally. The resulting timepiece is easy to read, unusual and easy to build in virtually any size case.

REACTOBOT AND VIRTUAL REALITY

How the work of the Department of Electronic Engineering at the University of Hull is making Virtual Worlds more realistic using a "reacting robot".

EVERYDAY

PRACTICAL

ELEETRONICS
 DON'T MISS THIS ISSUE JUNE ISSUE ON SALE FRIDAY, MAY 2

VIDEOS ON ELECTRONICS

A range of videos designed to provide instruction on electronics theory Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

BASICS

VT201 to VT206 is a basic electronics course and is designed to be ased as a complete series, if required.
VT201 54 minutes. Part One: D.C. Ctrcuits. This video is an absolute must for the beginner. Series circuits, parallel circuits. Ohms law, how to use the digital multimeter and much more. Order Code VT201 VT202 62 minutes. Pan Two; A.C. Ctrauts. This is your next step in understanding the basics of electronics. You will learn about how coils transformers, capacitors, etc are used in common circuits. Order Code VT202 VT203 57 minutes. Part Three; Semiconductors Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained. Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204 VT205 57 minutes. Part Five: Amplifiens. Shows you how amplifiers work as you have never seen them before. Class A. class B. class C. op.amps. etc.

Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscil lators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206

VCR MAINTENANCE

VT 10284 minutes: Introduction to VCR Repair. Warning. not for the beginner Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code UT 102
VT 10335 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most UHS UCR's. The viewer will also become familiar with the various parts found in the tape path

Order Code UT103

DIGTAL

Now for the digital series of six videos. This series is designed to prowide a good grounding in digital and computer technology.

VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit. plus Binary notation.

Order Code VT301
VT302 55 minutes. Digital Two: Flip Flops will further enhance your knowledge of digi tal basics. You will learn about Octa and Hexadecimal notation groups, flip-flops counters, etc. Order Code UT302 VT303 54 minutes. Digital Three; Registers and Dtsplays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers. registers. display devices. etc

Order Code VT303 VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to com municate with the real world. You will learn about digital-to-analogue and analogue-to-digi tal converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devioss introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM. EPROM. EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305 VT306 56 minutes. Digital Six: The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306

ORDERING: Price includes postage to anywhere in the world. OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send $£ 34.95$ per tape. All payments in $£$ sterling only (send cheque or money order drawn on a UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address
Orders are normally sent within seven days but please allow a maximum of 28 days longer for overseas orders.
Send your order to: Direct Book Service. 33 Gravel Hill. Merley, Wimborne. Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ltd., Tel: 01202 881749. Fax: 01202841692
Due to the cost we cannot reply to overseas orders or queries by Fax. E-mail: editorial@epemag.wimborne.co.uk

RADIO
VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. recepion. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C. QUAM a.m. stereo system. Order Code VT401 VT402 58 minutes. F.M. Radio Part 1. F.M. basics ncluding the functional blocks of a receiver Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m receiver.

Order Code VT402

VT403 58 minutes. F.M. Radio Part 2. A con tinuation of f.m. technology from Part 1 Begins with the detector stage output, proceeds o the 19 kHz amplifier, frequency doubler. stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

Order Code VT403

MISCELLANEOUS

VT501 58 minutes. Fitre Optics From the fun damentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers. Order Code VT501 VT502 57 minutes. Laser Technology A basic inroduction covering some of the common uses of laser devices, plus the operation of the Ruby Rod laser. HeNe laser. CO_{2} gas laser and semiconductor laser devices. Also covers the basics of $C D$ and bar code scanning

Order Code VT502

Each video uses a mbture of animated current flow in circuits phus text, phus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier. (All videos are to the UK PAL standard on VHS tapes)

DIFFERENTIAL THERMOSTAT KIT Perfect for heat recovery, sotar sytums, boter eficiency eec Two sensons will operitie and pct £28 rup LOTSO
MAGNETIC RUBEER TAPE Seffecheenv 10 merre reel 8 mm
MACNETIC RUBBER TAPE SetmadhesNo 10 mes
wode pertect for all sorts of applcatonsl \&15 rel LOTB7
MNNS POWER SAVER UX made plug in unk fied inseconds.
 solderng irons. conventional buibe
YUASHA SEALEDLEAD ACID Betrenes, ar equipmem bui ak bargan price jual $£ 5.89$ each red Yal 100 or more $£ 350$ eech DC TO DC CONVERTERS
DRMEs inpur 10 -40voc altpur Sv 84 \& 15 DRM 128 mpen 17 -40vode

HTTACHI LM225X LCD SCREENS $270 \times 150 \mathrm{~mm}$ standard 12 way connector. 840,200 doks, wece spec sheot $£ 15$ each rel LM2 VARABLE CAPACITORS Dual gang. $80 \cdot 333 / 5 \mathrm{~mm}$, reduction geenng. unkrown capactry but probebly good quality (multiary spec) general purpose redio tuner CQ rel VCl
ELECTRONIC FLASH PCB Smell pcb fued with components including a flash twibe. Juas connect 12voc and in heshes, vernabio speed potantioneme ©8 rel FLS 1
THIEF PROOF PENI Amazing new ball porm pen froed with a combination lock on the end that only you knowl 52.45 rel TP2 JUMBO BI COLOUR LEDS PCB with 15 fited atso 5 giem seven segmem displays (55 mm) Ce rel JUM 1
HOME DECK CLEARANCE These unnes must de cleored
 UHF modubtor. a standard 120075 BT epproved modem and loeds
of chips, capectors, diodes, resistors otc all for just $£ 10$ rol BAR 33 6.8NW HELIUM NEON LASERS Now unts fes rel LOT 30 COINSLOT TOKENS You may hove a use for these? mosed beg of 100 mome 25 rel LOT20
PORTABLE X RAY MACHINE PLANS Emy to construct plame on a ample and cheep way to buid a nome X-ray machine!

TELEKINETIC ENHANCER PLANS Mymity and amere pour frends by creetong moton with no known appermen meeras or cause Unes no electrical or mectrancal connections, no special gimmicios megoc Ahows partydemomstabons or serrous reseen reh \& developmem of tis strange and amering phychic phenomenon
cusen Rel FTKKE
ELECTRONIC HYPNOSIS PLANS 8 DATA This deta shown several wa ys to pul subjects under your control included is a full volume retersonce tind and severol constructon plans thel when used causounly I is for use as emtertainmem al parbes atc only. by Hose expenenced in to use $£ 15 / 8 \mathrm{ct}$ Ref F/EH2
GRAVITY GENERATOR PLANS This unique plan demonstrates a simpte electrical phenomena uner produces en antgrevty entect You can ectually buld a small mock speceshup ouf of flobee Rel FIGRA1
WORLDS SMALLEST TESLA COILIIOHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of dascherge. expenmem with efreordinary HV eficcts. 'Plesme in a per'. SI Elmo's fire Corons. eroellent scrence profect or comernation proce 15 her Rel F/BTC1/ $G 5$
COPPER VAPOUR LASER PLANS Procuces 100 mm of usible groen ligM High coheroncyand spectral qualiy emilar to Agon leserbut easeire and bas costy to buld for for more emiciem this NEGEV in larael f10hal Rel FICVI
VOICE SCRAMBLER PLANS Minature solid state system turm spesch sound intoindeapherabla nose thel camnor be undertbod whout a sacond matching und Use on tol
PULSED TV JOKER PLANS Liwe nend hold devioe ublies pues fechmaues tran will completely darupt TV pictire and sound worts on FM tool DISCRETION ADVSED \&Bhet Ref FTTJS BOOYHEAT TELESCOPE PLANS Highly diractional tong renge dence uses recent trechnology to detsct the presence of mmng bodies, warm and hot spots, heat leats etc intended for securty, taw or very ineresting science propect £Bsed Red F/BHP1
BURNNG. CUTTING CO2 LASER PLANS Propects an mivible beam of heat capeble of buming and meting metrenslis over a considerabled astance This beser is one of the mose eflciert converting 10% inpur power into usefu output Not onty in inse devica a wortionse in welding. Cuting and hest processing materais bu if es akso a intaly cancidete es an effective drected energy beem weapon againse mescies, everat ground-te-ground. etc Partcie beams may very well utize a leser of mis yppe to blast a channel in the atmosphera for a high energy strsam of nevtrons or other partcies ine device is easily spopicabin io burnng
WYSTERY ANTI ORAVITY DEVICE PLANS Unes smple concept Obpects fiow in arr and move io the buch Defies grovity. amaing git comversation prace, megre inctor science project E8hat Rel FINNTIK
FRUTT POWERED CLOCK Juar add a froeh orange. tornabo benane or eny otres flut plug in the probes and the clock wortal 1985 rol SCISA
OYMamo FLASMLIONT Imeresting concepl no beturnee needed Mus squeeze the thoger for instam highas apperently wern worta under
 ULTRASONHC BLASTER PLANS Lebortiory source of sonk shock woves Blow holes in metal, produce 'cold stanm. ctomus houiden Many cleanngu
ULTRA HIGH GAIN AMPISTETHOSCOPIC MIKEI SOUND

AND VBRATION DETECTOR PLANS UINasenstive dence eneblas one to hear a whole new wortd of sounds Leten trrough wells. wndows, hoors erc many applictions show., from low envorcement neture insening. medical heertbed to mechanical dences febet Ref

WOLVERHAMPTON ELECTRONICS STORE NOW OPEN IN
 WORCESTER ST TEL 0190222039

ANTI DOO FORCE FIELD PLANS Hathy enective arcum producse time vanable pulses of sccoustical energy that dogs cannot tolernt fehe Rel FDOG2
LASER BOUNCE LISTENER SYSTEM PLANS AIOWS you to heer sounds from a premses withour gaining access £ 12 seet Red Fi LUST 1
LASER LIOHT SHOW PLANS Do a yoursell dars show unces mathods 56 Red FIUS
PHASOR BLAST WAVE PISTOL SERIES PLANS Mandheid, hes lage trineducer and batiory capecty with external contock EEMAR Rel FIPSP4
INFINTY TRANSMITTER PLANS Telephone line grabberl room montor The ulemete in hometrice securty and sately' sumple
to ueal Call your horme or office phone. push a secret tone on your \$o usal Call your home or office phone. push a secret tone on your belephone to access either A) On promises sound and wices or B)
Exsting comvorsaton whth break-In capmbitity for emergency mesceges Exsiting conversebonw
\& 7 Re FTELEGRAB
C7 Re FITELEGRAB
BUG DETECTOR PLANS is the someone goenng the goods on roul Esay to construct dovice locates any hidden source of radio energyl Snifts oul and finds bugs and other sources of bothensome interferenca Detects low, high and UHF trequencies $£ 5$ sed Ref FI

BD

ELECTROMAGNETIC OUN PLANS Propecta a meal obpect a considerable distance-raquires sduh supervion $£ 5$ rel F/EML
ELECTRIC MNN PLANS, SHOCK PEOPLE WITH THE ELECTRIC MWN PLNNS, SHOCK PEOPLI
TOUCH OF YOUR HNNDI £5/me Ref FEMA1
PARNBOLIC DISH MICROPHONE PLANS Listen io distam sounds and vackes, open whoows. sound sources in hard to ger or hostit prameses uses arielite bechrology to gether destam sounda end focus them to our ulve censive etectronics Plans etso show an optional wiretess lint syitom EQ3eat rol FIPMS
2 FOR 1 MULTIFUNCTIONLL HIOH FREQUENCY AND HIOH DC VOLTAGE, SOLD STATE TESLA COLL AND VARIARLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc. many possibid expenments $£ 10$ Ref FAMMM71

MEOA

GALED DISPLAYS FCB Noo W
MOD TRANSMITTINO VALVES GJ180E $\mathbf{\varepsilon 8 0}$ ref LOT112 SWTCHED MODE PSUSS 24 well 05324.1264 .5024 . 1202 A inere as also an optonel 33 V 25 A rall avaviabie 120240 V
 connection 1 mboard \& 15 rel LOT135
HYDROOEN FUEL CELL PLANS There is a lot of interest in using Hyrogen es the hel of ine huture. Hydrogen is eesy to produce using chemicats and eurphas solar generated electicity in also ensy to store wat intie or no lose hyrogen fuel cells are designed to store hydrogen and wonghe for wergm mill hold iwoe es much ereergy es a full petrol tank Our plans give you loeds of informition on Hyrogen cell you will need acceses io a well equiped wortehop for tise buif full construction debais and drawngs ere induded. Ful cell plens $£ 9$ reel HY 1 VDEO PROCESSOR UNITS?/IV 10AH BATTSR24V 8A TX Not too sure what the function of trese unts is but they cortainly make good strppers1 Measures $390 \times 3 \times 0 \times 120 \mathrm{~mm}$, on the from are controls for scan speed, scan deley. scan mode, losds of connections on the rear ineide 2×0 © 10 AH sealed lead acid batis. pcb's and a 84 ? 2vitorroidial transformer (mains in) sold as seen, may hen
broken knobs etc due to poor storege $£ 1598$ rel VP2
RETRON NIOHT SIOHT Recognation of a standing man ef 300 m in $1 / 4$ moonigite hermetcally sealed. nume on 2 AA beteenes, 80 mm F1 5 lems, 20 mw infrareo leeer inciuded $£ 325$ rel RETRON
MAKE YOUR OWN CHEWNO GUM KIT Evernoming rou need to makaree chewng gum, even niobowl and treesap from the Sapodila Coc 99 rell SC180
MINI FM TRANSMITTER KIT Vory ingh gain preamp. suppied complete win FET electrex microptione Designed to cover $88-108 \mathrm{Mhz}$ but easuly changed to cover 63-130 Mrz Worts with a common of (PP3) bathery O 2W RF E9 Rel 1001
3-3OV POWER SUPPLY KIT Vanable stabilued power supply for lat use Short crruif prosected, surabie for probesional or amsteur
use 2 sv 3 A transtormer is needed to complete the lot $£ 14$ Red 1007 1 WATT FM TRANSMITTER KIT Suppled with prazo evectric mice 8-30voc At $25-30 \mathrm{y}$ you will get neerly 2 waisis $£ 15$ ref 1009 FMWAM SCANNER KIT Wall not quite, you have to tum the knot your self bur you will hear things on tirs radio then you would not hear on
an ordinary radio (oven TM Covers $50-160 \mathrm{mkz}$ on both AM and FM an ordinary radio (oven TM Covers $50-160 \mathrm{mrz}$ on both AM and FM Buith in 5 woth amplifer, inc spealeer $£ 18$ rel 1013
3 CHNNEL SOUND TO LIOHT KIT Wireleses system, mains operatisd, seperate sensitvity adpustment for eech chemel, $1,200 \mathrm{w}$
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 SQT. (ESTABLISEIED 50 YEARS). MAI ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS 53.50 PEP PLUS VAT. ' 24 HOUR SERVICE \&A.50 PLUS VAT. OVIRSIAS ORDERS AT COST PLUE ELSO
(ACçss Vis,
FAX 01273323677
E-mail bull@pavilion.co.uk
power hendiung, microphons incluced \& 17 Rel 1014
4 WATT FM TRNNSMITTER KIT Small bue powertul FM rransmimer. 3RF stages, mocrophone and audio preamp inctuced EQA Rel 1028
STROBE LIOHT KIT Adjustable from 1.60 hz (a lot faster inen comventionel strobes) Mains opernted $£ 17$ Ref 1037 COMBMAATION LOCK KIT 9 loey. programmabie. completa with Koyped, will sunch $2 A$ mains $9 V$ de opernton $£ 13$ rel 1114
PHONE BUG DETECTOR KIT This dence will mam rou I somebody is evvesoropping on your line c9 rel 1130 ROBOT VOLCE KIT mearesing Orcun the dutiots your vacel eciustable, answer the phone wat a dilierent vorcal 12vac $£ 9$ roll 1131 TELEPHONE BUG KIT Small bug powered by the 'phone ime. starts tranamitung es soon as the phone is picked upl £12 Ref 1135 3 CHANNEL LOHT CHASER KIT 800 wetw per channel. epeed and dirsctoon conserassupplied with 12 LEDS (rou can fin trices insieed to malioe lot mains, not supplidd) Q 12vde § 17 ral 1028 12V FLOURESCENT LNMP DRNER KIT LigM up 4 foot wibes from your car bamber' or 2a transtormer also required of rim 1089
HELPNNO HANDS Pertect for those fidaty fobs them need sat mends. 6 ball and sockeof forms. megnitior $£ 799$ rel YOS7A
VOX SWITCH KIT Sound activeted swith ideal for matang bugging tape recorders etce aduustebto sensituly $£ 10$ rell 1073 PREAMP MIXER KIT 3 input mono mbor, eep bess and trede PREANP MIXER KIT 3 input mono moer, sep bess and traote contson $p l$
ret 1052
SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens Comptete with speateor, edd sound ant tos 59 ral 1015
16 WATT FM TRANSMITTER (BUILT) 4 stage high power preamp required 12-18vdc, can use ground ptene, yigior open dipote es rat 102
HUMIDIT METER KIT Builds inta a precrion LCD mumatity meter, 8 ic design. DCb, led display and all componemts included. CZa PC TIMER KIT Four chemel output controlled by your PC, wil switch high current mairs with relevs (supplied) Softwre supplind so you can prognm the channets to do whill you wemt whenever you wamt Minimum eystion comperation in 288, VGA $41,640 \mathrm{~m}$, seriel pon hard arvering min 100k tree E2499
MAGNETIC MARBLES They have been around for a number of years but eill gme rse to cunosty and amazement A pack of 12 ns jue E390 rof GUR20
NHCKEL PLATING KIT Promesionel esectroplating hot over wil osenatorm rusting parts into ahowpieces in 3 hours' Will plate onto toel, iron, bron2s. gunmecal, copper. Weided, siver soldered or brazed

Minature adjustable timers, 4 pole cjo output 3A 240v, HY1230S, 12vDC adjustable from 0-30 secs. $£ 4.99$ HY1260M. 12vDC adjustable from $0-60$ mins. $£ 4.98$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 4.89$ HY24060m, 240 adjustable from $0-60$ mins. $\mathbf{£ 6 . 9 8}$ BUGOINO TAPE RECORDER Small voice ectived recorder uses micro cascete compteto whth heedphones 22899 ref MAR29P 1 POWER SUPPLY fully cesed woth mains and ofp weos $17 v \mathrm{DC}$ 900 mA aftput Bargain pnce $\mathrm{E5} .98$ rel MAG6PB
COMPOSITE VIDEO KIT. Converts composite ndeo into sepe. rate H sync. V sync. and udec 12V DC \&1200 Rep: MMOer2.
FUTURE PC PONER SUPPUES These FUTURE PC POWER SUPPLIES These are 296x 135080 mm , 4 drive connectors 1 mother board
Vind and onlol swith $£ 12$ Red EF6 simple lat E3 ree EF34
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \geqslant 155 \times 310 \mathrm{~mm}$ 130 mA Bergain prica just E 589 ea REF MAGGP 12
FIBRE OPTIC CAPL
FIBRE OPTIC CABLE BUMPER PACK 10 meves for E 4.59 rel MAGSP13 ideal for experimentersi 30 m for $£ 1290$ rel MAG 13 P1 ROCK LIOHTS Unusual mings these, wo piecoss of rock that glow when rubbed together belined to cause rainil3 a pair Ref EF28 3' by 1 ' AMORPHOUS SOLAR PANELS 145 N 700 mA 10 wetis, aluminium freme. screw terminals, E56 rel MAGAs
ELECTRONIC ACCUPUNCTURE KIT Builds into an electronic verwon maseed of needibsl good to expenment when. ©8 ral 7P30 SHOCKINO COIL KIT BuId this inte batery operated device into all sorts of elings. also gets worms out of the groundil 59 rel 7P36 HIOH POWER CATAPULTS Hinged arm onice for stablity, mipered stael yote. super strengit latox power bands Oeporture 200 meves' $£ 899$ ref R/9
COMPAQ POWER SUPPLES WITH 12V DC FANS EX equipment peus. come an some not bur worth in for the fen alonal probably aboul 300 wat PC unk wath IEC inpur $£ 350$ each rel CO1 BALLON MANUFACTURING KIT Bridsh made emall blob blows into a large, longlesiong balloon, hours of funl £ 3.97 rel GVESBR ME- 1 A TRANSFORMERS, chasess moum $£ 7$ rof LOT 19 A MEGA LED DISPLAYS Build your self a clock α cometing with
 C4.98 rel LOT 18 or a bumper pack of 50 diapleys for juse C 29 rof LOT17
SOLD STATE RELAYS
CMP-DC-200P 3-32de operntion 0-200vac 1A $£ 250$
SNT 200003 3-24de 0 .
SWT 20000/3 3-2Avoc openition. 2e-280vac 3 E $£ 50$

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH

SURPLUS STOCK LINE 0802660335

Constructional Project

PIC:AGORAS WHEELIE METER

JOHN BECKER

Part 2

Keep a check on your speed and distance. From child's tricycle to heavy-haulage vehicle.

LAST month we introduced the megnetic field sensor and dealt with the circuits and construction of the frequency-to-logic interface, display and processing stages. The system software demands were also discussed.
We conclude this month with the first display run and possible downloading failures. Also, details of setting the wheel size and possible altemative sensing are covered.

FIRST DISPLAY RUN

Switching off S3 (Reset), the program inside the PIC should now start running. though preset VR2 will probably need adjusting before anything is seen on the l.c.d. screen. What you should see is Line I showing the time counting upwards in seconds, from a zero starting position which you may have missed while adjusting VR2. Line 2 should show "KD000.00".

Rotate switch S4 through all eight Mode positions, observing that the display shows what appears to be sensible information (see Pan I for typical Mode displays), and that the buzzer sounds when in Mode 7.

It is just possible, particularly if the PIC has been used before, that non-zero results may appear in some lines for which the data should at present be zero. This situation can be resolved later by initiating the Full Reset option.

DOWNLOADING FAILURE

This section will be of particular interest to anyone who has had problems programming PICs.

Apart from errors in assembly (or the unlikely event of a faulty component). there are two reasons why the program may not behave as expected, probably resulting in no screen display or one that is unexpected.

Sometimes, if the leads to the computer are a bit long, the data being transferred may become compted. Re-send (download) the data and try again. Shorten the leads if necessary.

The other possibility is that the computer has been configured to output information to the printer por via a different register than the downloading software has been set for. The TASM Send software is set to output via the "normal" register \& H378.

To check the printer port operation, run the following test program from QBasic or GWBasic:

10 FOR A $=0$ TO 255
20 OUT \&H378. A
30 NEXT A
40 GOTO 10

The magnetic field sensor taped to the bike fork and the magnet glued and taped to a plastic reflective plate attached to the wheel spokes.

This toggles the printer register \&H378, and thus the printer por lines if this register is the one the computer has been configured to use. An oscilloscope can be used to monitor connector PL2 pins 2 and 3 (port lines DA0 and DAI) to check that they are toggling between high and low. Line DAI should toggle at half the rate of DAO

A multimeter (preferably analogue) can be used if a scope is not available. Set it to a suitable range for +5 V d.c. and observe the meter display. It will probably be necessary to insent a delay loop in the above program so that the meter readings can be seen more slowly. The following is a good starting point (inserting it between lines 20 and 30):
25 FOR B $=1$ TO 10000: NEXT B
The value of 10000 can be increased if the delay is still not long enough.

If it is found that the port register is no $\& H 378$, the computer must have its printer configuration changed. You should consult your computer manual to find out how this is done. The TASM Send program cannot be modified except by programmers experienced in C and having the necessary compilers.

A related problem may be that at tempts are made to assemble/download the data which is in the wrong format for the downloading program. TASM files need TASM downloading software, for example.

The display/control unit clamped to the bike handlebars. The two leads from the DIN plug go to the sensor and battery (located in rear saddle-bag).

SETTING WHEEL SIZE

Readers who will be doing their own programming of the PIC16C84 may prefer to set the wheel diameter size directly into the software, using the modified program referred to earlier. Those of you who are using pre-programmed chips, or unmodified software, should still read the calculation aspects of this section as you still need to know how to establish the parameters to suit your wheel.

For the internally presel method, wheel diameter details are held in two subroutine calls whose details need to be entered before the PIC is programmed (if preferred, they can be changed later and the PIC re-programmed).

About 270 lines into the ASCII source code text file are the two statements:
SIZE1: retlw 45 ;Isb wheel size 27.5 inches
SIZE2: retlw 56 ;msb wheel size 27.5 inches
When these routines are called, the software returns to the calling point with the stated value (45 or 56) held in its accumulator register.

The values shown are those calculated for the author's wheel size of 27.5 inches diameter. Other values can be calculated through the following QBasic/GWBasic program, which uses the diameter of 27.5 inches as the example:
10 DIA $=27.5: \mathrm{PI}=3.1416: \mathrm{MM}=$ 25.4

20 REM MM $=25.4$ only for wheel diameter in inches
30 REM if wheel diameter is in millimetres, set MM = 1
40 CIRCUM $=$ DIA * PI ${ }^{\circ} \mathrm{MM}$
$50 \mathrm{X}=\operatorname{INT}\left(65536^{\circ} \mathrm{CIRCUM} / 10000\right)$
$60 \mathrm{MSB}=\operatorname{INT}(\mathrm{X} / 256)$
70 LSB $=\mathrm{X}-\left(\right.$ MSB $\left.^{*}{ }^{\circ} 256\right)$
80 CLS: LOCATE 10. 1
90 PRINT "MSB = "; MSB; "LSB =" LSB
(Those who wish to use a hand calculator should note that INT means integer, i.e. ignore the fraction.)
The screen - displayed answer in this case is:

$$
\text { MSB }=56 \text { LSB. }=45
$$

From this answer, 56 is the SIZE2 value, and 45 is the SIZEI value.

If the wheel size is in millimetres, change the value of MM in Line 10 to a value of I .

The statements following the semicolon (i) in the SIZEI and SIZE2 sub-routine lines do not need to be changed, except for your own information; the software ignores anything following a semicolon.

Theoretically, the smallest diameter wheel that can be used in calculation is 0.002 inches $(0.0508 \mathrm{~mm})$ (m.s.b. $=0,1$. .s.b. $=1$), though you might have problems mounting the magnet! The maximum wheel diameter that can be monitored is about 125.317 inches (3183.052 mm) (m.s.b. $=$ 255 , l.s.b. $=255$).

When considering the diameter of a wheel having pneumatic tyres, calculated answers may never really be bome out in practice since the tyres of a bicycle, for example, will flatten slightly when the rider mounts the bike, so changing the
actual distance covered per wheel revolution. Different rider weights will have different flattening effects! This situation applies to any distance/rotation calculator used with flexible tyres.

The maximum speed that can be detected for any wheel depends on its size. As previous stated, the maximum wheel rotation rate that can be used is 25 Hz . Therefore, for a 27.5 inch diameter wheel, the maximum speed is:
diameter in inches $\times 11 \times 25 \mathrm{~Hz} \times$ seconds per hour / inches per mile
Thus: $27.5 \times 3.1416 \times 25 \times 3600 /$ $63360=120 \cdot 49$ m.p.h. (192.78 k.p.h.).

The 25 Hz limit is dictated by three factors, the rate at which data can be processed, the number of memory bits allocated to calculations, and the $R C$ time constant of resistor R4 and capacitor C2 on the output of ICI.

If the maximum pulse rate is exceeded. the velocity line in Mode 1 and Mode 4 will have the word MAX substituted for the speed value. In Mode 6, the TA value will show 255.

Fig. 5. Circuit for triggering wheel diameter parameters into PIC16C84 EEPROM Data Memory.

EXTERNAL SETTING

With the unmodified software and preprogrammed chips. wheel size data is entered by using a signal generator. Three components also need to be temporarily added, as shown in Fig. 5. Disconnect the wires of the buzzer. WDI. Switch off the additional switch. S6. Calculate the values of the m.s.b. and I.s.b. for your wheel diameter.

Connect the signal generator to test point TPI. Switch on PIC-Agoras and the
signal generator. set to a 5 V square wave output at between 0.1 Hz and 25 Hz . Switch to Mode 6. and observe line 2 (display 'TA xxx').
Adjust the signal generator until line 2 displays the m.s.b. value. Since the display shows an average of the pulse count received over 10 seconds, allow at least that time to elapse between slight adjustments to the signal frequency.

When the correctly displayed m.s.b. value has stabilised, switch to Mode 0 (showing time and kilometres distance). then switch on the new switch S6. leave it on for a couple of seconds, and then switch it off. The m.s.b. value is now programmed into the PIC's EEPROM data memory.

Switch back to Mode 6 and adjust the signal frequency so that line 2 now displays the wheel's l.s.b. value. Allow it to stabilise, then switch to Mode 1 (showing kilometres speed and average). Again switch on the new switch S6, leave it on for a couple of seconds. and then switch it off. The I.s.b. value is now programmed into the PIC.
Programming space available (three bytes left!) has not allowed room for a routine to provide a visual check of the EEPROM's new contents, but you could verify them indirectly by setting the signal generator to different frequencies for which you have calculated the equivalent factors for speed and distance, as if the pulses were being generated by the wheel itself.

When satisfied. disconnect the three temporary components and the signal generator, and reconnect the buzzer. That's all there is to the external programming. The same technique can be used as many times as you want to change the wheel diameter factors.

SIGNAL GENERATOR

Most electronics enthusiasts should have' a signal generator, but if you don't. you can construct a suitable one on a breadboard using the circuit in Fig. 6. No assembly details are offered, but stripboard is the suggested constructional base.

Potentiometers VR3 and VR4 provide Coarse and Fine adjustment respectively.

Completed Wheelie Meter with FGM-3 magnetic field sensor.

Fig. 6. Circuit for a simple Squarewave Signal Generator.

Completed prototype control board for the distance/speed monitor.

The signal can be taken from any of the output pins. The value of capacitor C7 may be changed if you want to alter the frequency range for another application.

A breadboarded version of this generator produced a basic range of 750 Hz to 2000 Hz (at pin 9). The output range at Q6 was thus 11.72 Hz to 31.25 Hz , and at Q14 it was 0.05 Hz to 0.12 Hz .

MOUNTING - UP

On the author's bike, the unit's case is bolted to the top of the bracket normally used for the bike's battery-powered front lamp (from Halford's). A suitable bolt already exists in the bracket. The battery is held in the pocket of a rear saddle-bag, the wires being run along the frame and secured with cable ties and insulating tape at convenient intervals.

The magnetic sensor X1 is secured to a front fork with insulating tape. Its wires are lengthened, using insulating tape to cover the connections (a 3 -way connector block could be used), and then terminated by plug PLI.

The magnet is fixed to one of the clear plastic reflective plates which most bike's have on their wheels. Again, insulating tape can be used, or a strong glue.
It must be remembered, though, that fast wheel rotation rates will put a strain on the magnet fixing and unless really secure, it could fly off, causing injury.

Recalling the results of the bench tests with the magnet and sensor, position them relative to each other for the maximum change when the wheel is rotated. Then adjust preset VRI until the best output response at IC2b pin 10 occurs. During this time. Mode switch S4 can be set to Mode 6 and the l.c.d.'s changing rotation count observed.

Note that PIC-Agoras does not know whether the bike is going forwards or backwards, or if you are stationary and just idly moving the wheel back and forth with the sensor and magnet at the fringe of high/low response.

ALTERNATIVE SENSING

Other types of sensor which produce individual pulses per wheel revolution could be used instead of the FGM-3. In
this situation, IC1, the p.I.I., is not required and should be omitted, as should resistors RI to R4, capacitors C1 and C2, and preset VRI.
The pulses from the altemative sensor can be brought in at test point TPI, using IC2a and IC2b as buffers. The pulses must have normal 5 V logic levels.
For test purpose, signal generator pulses can also be brought into TPI, without removing ICI or other components, should you want to trigger the microcontroller without using the sensor.

As a suggestion for experimentation. a wind speed sensor or even a water flow sensor could have its output fed into TPI, making appropriate changes to the programmed wheel size value to suit.

Perhaps even a speed indicator for boat or sail-board use could be evolved from this suggestion, as long as adequate waterproofing is ensured!

SOFTWARE SOURCES

Copies of the author's PIC program for this unit are available on $3 \cdot 5$-inch disk from the Editorial Office for the sum of $£ 2.50$ UK, $£ 3 \cdot 10$ overseas surface mail or $£ 4 \cdot 10$ airmail. This is to cover admin costs and postage. The disk itself is free.
The program can also be downloaded free from our FTP site: ftp ://ftp.epemag.wimborne.co.uk. in the sub-directory: pub/PICS/PICagoras.

The source code is written for the TASM assembler, which is included on the same disk and also available from our FTP site. Experienced programmers can translate the code to suit other assemblers, such as MPASM, for example.
Magenta Electronics have offered to supply PIC16C84s pre-programmed with the software, see Shop Talk. The author is grateful to them for supplying him with an intelligent l.c.d. module for use in the development of this project.

WHAT'S IN A NAME?

PIC - Agoras? Why?
It was one of those days at the office when euphoria rolled through the atmosphere and banter exchange reached nearly warp speed. Queries Tech-Ed to Ed: "What can we call it? It's more than
a bike computer. less than the infinite answer to wheeled life as we know it."
It's nearly The Ultimate PIC-uppable Revolutionary Versatile Wheeled Distance Computer for Anyone Who's Going Places. Bit long. perhaps"', cogitates Ed. "Any Greek gods of the Wheel?"
"Helios and his chariot, that's got wheels: HelioPIC?"
"Would need to be solar powered."
"There's the mythical Cyclops: CycloPIC? ${ }^{-}$
"Just says bikes for the optically impoverished."
"Greek mathematicians?"
"Euclid: Archimedes: Aristotle: Aristweed; Pythagoras ..."
"Modem Greeks seem to call him Pit - a - gor - rass. His bith village still exists - on Samos, named after him llve α yopetov. They've got a statue."
"PIC - Agoras! That's it - angles of the dangles; arc-eology: diametrics; distance round a wheel!’
And so the World revolves . . .

Homage to Pythagoras (Ilvearopos) on the Greek island of Samos.

Everyday Practical Electronics, May 1997

E1 BARGAIN PACKS

If you would like to receive the other four £1 lists and a lot of other lists, request these when you order or send SAE.
TEST PAOOS FOR MULTIMETERS with 4 mm sockets. Good length very fiexitolo load, Rel: D86.
a OHM Pul SPEAKERS, size $8^{\circ} \times 4^{\circ}$. pack of two. These may be lioditly nusty and thal is why they are so cheap bur are electrically OK. Rel: D102
PAXOLIN PANELS, size 8×6, approximataly $1 / 10^{\circ}$ titck peck of two. Rel: 0103
13A SOCKET, virtually unbreakable, ideal tor trailing lead. Rel: 095.
PIE2O BUZZER whth electronic sounder circult. 3 V 10 9V O.C. operated. Rel: 076

Dirio bul withour intemal electronics, peck of two. Rel 075.

LUMINOUS ROCKER SWITCH, approximately 30 mm sq. pack al two. Rel: D64
ROTARY SWITCM, 9pole 6 -way. small size and 1/4
spindle. pack of mo. Ral: D54
FERRITE RODS, 7 with coils for Long and Medium
waves, pack of noo. Rel: D52.
DITTO bul withour the coils. pack of itree, Rel: D52.
SLIDE SWITCHES, SPDT, pack ol 20, Rel D50
MANS DP ROTARY SWTCH with $V_{4}{ }^{*}$ control spindie pack ol five. Rel: D49.
ELECTROLYTIC CAP, $800 \mu \mathrm{~F}$ al $6-4 \mathrm{~V}$. pack ol 20 . Rel D48
ELECTROLYTIC CAP, $1000 \mu \mathrm{~F}+100 \mu \mathrm{~F} 12 \mathrm{~V}$. pack of 0 Rel: D47
MINI RELAY with 5 V coil, size only 26 mm . 19 mm mm, has two sels of changeover conlacis, Ral DA2
10. Rel: 1050. 10. Ral: 1050

TELESCOPPC AERIAL, chrome plated. extendable and ES IN in imoroved F.M. reception. Rel: 105
,
PAXOLIN TUBINB, $z_{10} 0^{\circ}$ internal diamelar, pack ol two 12 lengthe. Rel: 1056.
ULTRA THiN DRILLS, 0.4 mm , peck of 10 , Rel: 1002
20A TOGGLE SWITCHES, cenire ofl. part spring con troled. will slay on when pushed up but will spring back when pushed down. pack of two. Rel: 1043
HALL EFFECT DEVICES, moumed on amall healaink. pack of two. Rel: 1022
12 V POLARISED RELAY, wo changeover comacts. Ret: 1032.

MINI POTTED TAANSFORMER, ONIY 1.5 VA 15V-OV-15V or 30 V . Ret: 964 .
ELECTHOLINC CAP, $32 \mu \mathrm{~F}$ al 350 V and $50 \mu \mathrm{~F}$ section at 25 V . in ahminium can for uprigm mounting. pack of two. Ret: 995.
PRE-SET POTS, one megohm, peck al live, Rel: 998. WHITE PROJECT BOX with rocker swilch in lop left-hand side, slize $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprimed. Ret: 1006. 6V SOLENOID, good slrong pull bul quite small. pack al No. Ret: 1012.
FIGURE\& MANS FLEX, also makes good speaker lead. 15 m. Rel: 101
high current relay, $24 V$ A.C. of i2V D.C., Ihree changeover conlacts. Rel: 1016.
OUDSPEAKER, 8 Oinm 5W, 3.7• round, Rel: 962
NEON PILOT LIGHTS, oblong for froni panel mounling with intemal resisior lor normal mains operation, pack of our, Rel: 970
3.5MM JACK PLUGS, pack ol 10. Rel: 975.

PSU, mains coperaled. wo outpurt one 9.5 V al 550 mA and the olher 15 V al 150 mA . Rel: 988
ANOTHER PSU, mains operaled, output 15V A.C al 320 mA , Rel: 989
PHOTOCELLS, silicon chip type, peck of four. Ref: 939 OUUDPEAKER, ${ }^{5}{ }^{4}$ OHm SW rating. Ral: 946 .
LOUDSPEAKER, $T \times 5^{\circ} 4$ Ohm 5W. Aal' 949.
LOUDSPEAKER, 40^{-}circular 60 wm 3 W , pack of 2 , Re 951.

ERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, malch ing pair. Ral: 901
OLI P PNEL, $81 / 2^{\circ} \times 31 / 2^{*}$ wilh elecirolytics $250 \mu \mathrm{~F}$
CAR SOCKET PLUG wilh P.C.B. compartment, Rel: 917.
OOUR-COAE FLEX suitabla tor telephone extensions. 10 m , Ret: 918.
PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable iid. held by four screws. pack of two. Rel: 876 .
SOLENOIDS, 12 V io 24 V . will push or pull. pack of two Rel: 877.
2M MAINS LEAD, 3-core with insirument plug moulded on, Rel: 879
ELESCOPIC AERIAL, chrome plaled. exlendable, peck al no. Red 884

P1ONE, dynamic with normal body for hand hold-
ing. Rel: 885. CUPS, aperior quality fiex. can be al
CaOCOOLE lached wilhoul soldering. live each red and black. Rel lache
886
84π
BATTERY CONNECTOR FOR PP3, superior quality, pack
al Iour, Rel: 887 , STEREO HEADPHONES, Ret: 898
PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pock of 10, Rel: 849
THERMOSTAT lor ovens with $1 / 4^{*}$ spindle to lake conirol
nob. Rell 857
12V.OV-12V 10W MANS TRANSFORMER. ReI. 811
18V-OV-18V 10W MANS TRANSFORMER, RAI: 813.
AR-SPACED TRIMNER CAPS, 2pF 10 200F, peck of
MMPLFER, ov or 12 V operated Mullard 1153 . Rel: 823 2 CIRCUIT MCROSWITCHES. IICOn, pack ol 4, Ral: 825 LARGE SIZE MICROSWITCHES changeover conlacts.
pack of two, Ael: 826 .
HANS VOLTAGE PUSHSWITCH wilh whine dolly, through panel mounting by hexagonal nul. Ael: 829. POINTER KNOB for spindte which is just under $1 / 4^{*}$, like mosi Ihemostals, pack of four, Rel: 833 .

SUPER WOOFERS. Two have just arrived. The first is a $10^{\prime \prime} 40 \mathrm{hm}$ with a power rating or 250 W music and normal 150W. Has a very heavy magnet and is beautifully made and finished by Challenger. Normal selling price for this is £55 + VAT, you can buy at £29 including VAT and carriage, Order Ref: 29P7. The second one is a $8^{\prime \prime} 40 \mathrm{hm}$, 200W music, 100W normal. Again by Challenger, price £18, Order Ref: 18P9. Incidentally, as these are so heavy, if
you collect then you will make a saving of $\mathbf{\Sigma 2}$ on the $10^{\prime \prime}$ and $£ 1.50$ on the 8^{n}.
THESE SPEAKERS
ARE ALL BRAND NEW
TWO MORE TOROIDAL TRANSFORMERS, Order Ref: 4P100 is 120 W and will give you 27 V at 4.5 A or 54 V at 2.5 A , price $\mathbf{8 4}$. An interesting thing about this transformer is that it is very easy to add tums, 4 turns will give you 1A.
Order Ref: 1.5 P 47 is 25 W and will give you 24 V at 1 A or 48 V at .5 a , price $£ 1.50$.

GALVANISED BOX. Size $51 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} \times 1^{3 / 4^{4}}$ deep with knockouts on all sides. There is no lid with this but there are 4 tags threaded to accept a lid or panel holding equipment. Price of this box is £2 each, Order Ref: 2P433.
3 HOUR VIDEO CASSETTE. The Goiden Shadow suits all video recorders with VHS mark and most others. Price only $£ 2$, Order Ref: 2P434.
MOTOR START CAPACITOR. $60 \mu \mathrm{I}$ 250V AC. E3, Order Ref: 3P222. Note this capacitor can only be used with motors which have an internal switch to cut it out once motor is up to full revs.
4 GANG 13A SOCKET WITH NEON INDICATOR LAMP AND FUSE. Fully encased and 100% safe, providing it is not overloaded, makers say 13A max. Price £4, Order Rel: 4P102.
BIG VALUE PARCELS - Regular price $£ 50$, yours this month for £30.
12V 2-3AH YUSA BATTERY, non-spillable so ideal for 12 V motor assisted golf trolleys, cycles, etc. Recently $£ 5$ each, you can now have 10 for £30.
5V 3A + 12V $1 / 2 A$ POWER SUPPLIES, our ref 5P188, take 10 and you can have these for $£ 30$ instead of $£ 50$.
VIDEO CAMERA LEAD, our ref 5P195, good long lead and very special cable with a video plug each end. Take 10 of these for $£ 30$ instead of £50.
PLATED STEEL CASE, size $151 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}$ deep with switch one end and mains input and output sockets the other end. Nickel plated and ventilated, Order Ref: 5P203, take 10 and you can have them for $£ 30$ instead of $£ 50$.
12V 10A POWER SUPPLY, easily made from our ref 5P212, we supply the details. Get 10 of these for $£ 30$ instead of $£ 50$.
OLD TYPE TV TUNERS, Order Ref: 5P219. No good for modem TV sets but we are told they easily convent into receivers for radlo phones, etc. Get 10 of these for $£ 30$ instead of $£ 50$.
100 TELEPHONE LEADS, each 3 m long ter. minating with the modem flat BT plug and gold plated contacts, all yours for $£ 30$.
VERY SENSITIVE SOUND SWITCH, Order Ref: 5P251. This is on a PCB ready for casing and in full working order with data, 10 for $£ 30$ instead of £50.
BT ENGINEERS TELEPHONES. These are listed by RS Components at over $£ 100$ each. They are nor new and most will require a new lead, get 10 of these for $£ 30$ instead of $£ 50$.
40 mm AXIAL BRUSHLESS 12 V FANS, Order Ref: 5P266. Summer is coming so you may very soon need these. Get 10 for $£ 30$ instead of $£ 50$.
MOVING COIL CHARGE METER, OA•3A, £2, Order Ref: 2P366.
DIMMER SWITCH, standard size plate, colours red, yellow, green, blue, £2, Order Ret: 2P380.

DYNAMIC MICROPHONE. 600 ohm, plastic body with black mesh head, on/ofl switch, good length lead and terminated with audio plug, £2, Order Ref: 2P220.

TELEPHONE EXTENSION LEAD, flat plug one end, socket the other, 12M, E2,Order Ref: 2P338.
FIGURE-8 FLEX, mains voltage, 50m, ع2, Order Ref: 2P345.
INFRA-RED RECEIVER, as fitted TV receiver ع2, Order Ref: 2P304.
2A MAINS FILTER AND PEAK SUPPRESSOR, 22, Order Ref: 2P315.
$45 A$ DP 250V SWITCH on $6^{\prime \prime} \times 3^{\prime \prime}$ goid plate, $\mathbf{\varepsilon}^{2}$, Order Ref: 2P316.
LOCTITE METAL ADHESIVE, tube and some accessories, £2, Order Ref: 2P215.
35 mm PANORAMIC CAMERA. Has super wide lens, ideal for holiday viewing, is focus free and has an extra bright and clear view finder. Brand new and guaranteed, individually boxed, $\mathbf{~} 6.50$, Order Ref: 6.5P2.
OV-20V D.C. PANEL METER. This is a nice size, 65 mm sq. It is ideal if you are making a voltage variable instrument or battery charger. Price £3, Order Ref: 3P188.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price $\mathbf{~ 5 . 0 0}$, Order Ref: 5P267
12V 2A TRANSFORMER, £2, Order Ref: 2P337 12V-OV-12V TRANSFORMER, 35VA, £2.50, Order Ref: 2.5P13.
HIGH RESOLUTION MONITOR, 9" by Philips in metal frame for easy mounting. Brand new, offered at less than the price of the tube alone. £15, Order Ref: 15P1.
15W 8" 8 OHM SPEAKER AND 3" TWEETER. Amstrad, made for their high quality music centre, £4 per pair, Order Ref: 4P57.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enables you to read insulatlon directly in Megohms. The multimeter has tour ranges: A.C./D.C. volts; 3 ranges milliamps; 3 ranges resistance and 5 amp range. Ex-British Telecom, tested and guaranteed OK, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra, Order Ref: 7.5P4.
We have some of the above testers not working on all ranges, should be repairable, we supply diagram, £30, Order Ref: 3P176.
LCD $31 / 2$ DIGIT PANEL METER. This is a multirange voltmeter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet. Special snip price of £12, Order Ref: 12P 19.
MINI BLOW HEATER, 1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, £5, Order Ref: 5P23.
MEDICINE CUPBOARD ALARM. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery, £3. Order Ref: 3P155.
DON'T LET IT OVERFLOW! Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, \&3. Order Ref: 3P 156.

TERMS

Send cash. PO, cheque or quote credit card number - orders under £25 add £3 service charge.

> Je N PAGTO:S
> Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH17 SPA
> Telephone: 01444881965
> (Also fax but phone first)

INTAODUCING MICROPAOCESSORS
Mike Tooley B A (published by Everyday Practica) Electronica
A complete course that can lead successful readers to the award of a City and Guilds Centificate in Introductor Microprocessors (726/303). The book contains everyhing you need to know including lull details on registering lo assessment, etc.
Sections cover Microcompuner Systems. Microproces sors, Memories, Input/Output, Interfacing and Program ming. There are various practical assignmens
And excellent introduction to the subject even for those who do not wish to take the City and Guilds assessment.
80 pages

ELECTRONICS TEACH-IN No. 6 DESIGN YOUA OWN CIRCUITS
(published by Everyday Practical Electronics) Mike Tooley B A.
This book is designed for the beginner and experienced reader alike, and aims to dispel some of the mystique associated with the design of electronic circuits. It shows the right approach, design and realise quite complex circuits.
Fourteen individual p.c.b. modules are described which with various detailed modifications, should allow anyone to design and construct en very wide range of differen projects. Nine hands-on complete Dir projects have also been included so readers can follow the think evaluation iogether with suggested "mods" Io meet individual' needs.
The subjects covered in each chapter of the book are: Introduction and Power Supplies; Small Signal Amplifiers: Power Amplifiers: Oscilators: Logic Circuits: Timers: Aadio: Power Control; Oploelectronics
The nine complete constructional projects are: Ve satile Bench Power Supply: Simple Intercom: Benc Amplifier/signal Tracer: Waveform Generator, Electronic Die: Pulse Generator: Radio Receiver: Disco Lights 136 poges
[OTder cade II6]
£3.45

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.
FOR ANOTHER SELECTION OF BOORS SEE NEXT MONTH'S ISSUE.

Note our UK postage costs just $£ 1.50$ no matter how

 many books you order!TEACH-IN No. 7. plus fREE SOFTWAAE
ANALOGUE AND DIGITAL ELEC TRONICS COURSE Ipublishad by Everyday Practical Elactronicyl
This highly acclaimed EPE Tesch-In series Ahich The construction and use of the Mini Lab and Micro hest and development units, has been put logether in book form. Additionally. EPT Educational Software have developed a GCSE Electronics software program to com pliment the course and a FREE DISKC covering the firs two parts of the course is included with the book
An interesting and thorough fulorial series aimed speci ically al the novice or complete beginner in electronics CCSE Electronics or GCE Advanced Levels, and stan with fundamental principles.
If you are taking electronics or lechnology al school ap college. this book is for you. If you just want to earn the basics al electronics or lechnology you mus make sure you see it. Teach-In No. 7 will be invaluable you are considering a career in elecrronics or even you are already training in one. The Mini Lab and software enable the construction and testing of both ing aids bring electronics to life in on enjoyable and

RADIO / TV / VIDEO

ELECTRONIC PAOJECTS FOR VIDEO
ENTHUSIASTS

A. A. Penfold

This book provides a number of practical designs for video accessories that will help you get the best results from your camcorder and VCA. All the projects use inexpensive components that are readily available, and provided, including stripboard layouts and wiring dia prams. Where appropriate, simple setting up procedures are described in detail: no test equipment is needed
The projects covered in this book include: Four chann audio mixer, Four channel stereo mixer, Dynamic noise limiter (DNL). Automatic audio fader, Video faders, Video

SETTING UP AN AMATEUR RADIO STATION

I. D. Poole
the aim of this book is to give guidance on the decision which have to be made when setting up any amateu radio or short wave listening station. Otten the ex perience which is needed is learned by one's mistakes. however, this can be expensive. To help overcome this guidance is given on many aspects of setting up and
 leps that need to be taken in gaining a ful transmitting Topic
Topics covered include: The equipment that is needed; Setting up the shack; Which aerials to us An essential addition to the libran of all those taking
86 pages $\quad \mathbf{~ O r d e r} .95$

EXPERIMENTAL ANTENNA TOPICS

H. C Wright

Although nearly a century has passed since Marconi's firs demonstration or radio communication, there is still re search and experiment to be carried out in the lield o nienna design and behaviou
The aim of the experimenter will be 10 make measurement or confirm a principle, and this can be done with relatively tragile, shor-life apparatus. Because of this cardboard, cooking foil, plastic bottles, car food tins etc These materials are, in general, cheap to obtain and easily worked with simple fools, encouraging the trial-and-erro philosophy which leads to innovation and discovery
Although primarily a practical book with text closely supporied by diagrams. some formulae which can be used by straightorward substitution and some simple raphs havę also been included

25 SIMPLE INDOOR AND WINDOW AERIALS

. M. Nol

Many people live in flats and apanments or other types of ccommodation where outdoor aerials are prohibited, of lack of garden space etc. prevents aerials from being erected. This does not mean you have to forgo shortwave listening, for even a 20 -foot length of wire stretched ou along the skirting board of a room can produce accep perimentation However, with some addional ehor and en perimentation
mance further
This concise book lells the story, and shows the reader how to construct and use 25 indoor and window aerials that the author has proven to be sure performers
Much information is also given on shortwave bands, aerial

interesting way: you will both see and hear the electro action! The Micro Lab microprocessor add-on system will appeal to higher level sludenis and those develo 160 pages [Order cose 17 £3.95

ELECTRONIC PROJECTS BOOK

published by Everyday Practical Electronics in association with Magente Electronics)
Contains iwenty projects from previous issues of EE each backed with a kit of components. The projects Mini Seashell Sea Synthesizer. EE Treasure Hunte竍 Sound to Light. BBC 16K sideways AAM, Simple Shon prom Eraser. 200MHz Digital Frequency Meter, Inlra Red Alarm, EE Equaliser, Ioniser, Bat Detector, Acoustic Probe. Mainstester and Fuse Finder, Light Rider - ILape Badge. Disco Lights. Chaser Light), Musical Doorbel function Generaior. Tilt Alarm, $10 W$ Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Mid Interface. Variable Bench Power Supply. Pet Scarer 128 pages

Order code EPT
£2.45

PROJECT COSTRUCTION

TEST EQUIPMENT CONSTRUCTION
R. A. Penfold

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equipment. Stripboard layouts are provided for all designs, together with wiring diagrams where appropriate, plus notes on construction
The following designs are included
AF Generalor, Capacitance Meter, Test Bench Amplifier. AF Frequency Meter. Audio Mullivolimeler. Analogue AF Frequency Meter. Audio Mulivo Meler, Analogue
Probe, High Resistance Volimeter, CMOS Probe. Transis or Tester, TLL Probe
The designs are suitable for both newcomers and more experienced hobbyists
104 pages [-T TBM.
£3.99
A BEGINNER'S GUIDE TO MODERN ELECTRONIC

COMPONENT

The purpose of this book is to provide practical informa ion to help the reader sort out the bewildering atray of components currently on ofter. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to explain the differences between components of and wire-wound resistors) so that the right component for given application can be slected A wide range of com. ponents are included, with the emphasis firmly on those components that are used a greal deal in projects tor the home constructor
166 pages Tamporarily out of print
HOW TO DESIGN AND MAKE YOUR OWN P.C.B.s
R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books, and covers all aspects of simple p.c.b. construction including photo

AUDIO AMPLIFIER CONSTRUCTION

A. A. Peniold

The purpose of this book is to provide the reader with a wide range of preamplifier and power amplifier designs that will, it is hoped. cover most normal requirements The preamplifier circuits include low noise microphone and RIAA iypes. a tape head preamplifier. a guitar preamplifier and various tone controls. The power to 100 W MOSFET types and also include a 12 volt bridge amplifier capable of giving up to 18 W outpu?
All the circuits are relatively easy to construct using the p.c.b. or stripboard designs given. Where necessapy any setting. up procedures are described, but in most cases no setting-up or test gear is required in order to successlully 100 pages \quad Temporarily out of print

DESIGN YOUR OWN CIRCUITS
See ELECTRONICS TEACH IN No 6 above leh

CIRCUITS AND DESIGN

PRACTICAL OSCILLATOR CIRCUITS

NEW and resiators to control trequency. Designs using CMOS, timer i.c.s and opamps are all described in detail, with a special chapter on "waveform generator" i.c.s. Reliable "white" and "pink" noise generator circuits are also included
Various circuits using inductors and capacitors are ation. Some of these are amazingly simple, but are still very useful signal sources
Crystal oscillators have their own chapter Many of the circuits shown are readily available special ic.s for simplicity and reliability, and ofter several outpul fre quencies Finally, complete constructional details are
133 pages \quad f4.99
PRACTICAL ELECTRONIC CONTROL PROJECTS
Owen Bishop
Explains electronic control theory in simple, non mathematical terms and is illustrated by 30 practical
designs suitable for the student or hobbyist to build Shows how to use sensors as input to the control system, and how to provide output to lamps, heaters, solenoids, relays and motors
Computer based control is explained by practical examples that can be run on a PC For stand alone systems. the projects use microcontrollers. such as The inexpensive and easv-to-use Stamp BASIC and demonstrate as many aspects as possible of the programming language and techniques. COIL DESIGN AND CONSTRUCTIONAL MANUAL B. B Babani

A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and trans formers. Practically every possible type is discussed and calculations necessary are given and explained in detail Although this book is now twenty vears old, with the exception of toroids and pulse transioners in coildesie has 96 pages \quad OFTler code 169

PRACTICAL ELECTRONICS HANDBOOK
Fourth Edition. lan Sinclair
Contains all of the everyday information that anyone working in electronics will need.
it provides a practical and comprehensive collection of circuits, rules of thumb and design data for profes sional engineers. sludents and enthusaists, and there fore enough background to allow the understanding and
development of arange of basic circuits development of a range of basic circuits
Contents: Passive components. Active discrete components, Discrete component circuits, Sensing
components, Linear IC.s. Digital I.C.s, Microprocessors components, Linear C.s. Digital I.C.s, Microprocessors and microprocessor systems. Tansterring digital data, tronics. Hardware components and praclical work, Standard metric wire table. Bibliography. The HEX scale, Index
scale, index
440 pages
Temporarily out of print

AUDIO IC CIRCUITS MANUAL

A. M. Marston

A vast range of audio and audio-associated i.c.s are readily available for use by amateur and professional design engineers and technicians. This manual is a guide to the most popular and usetul of ihese devices
with over 240 diagrams It deals with i.cs such as low frequency linear amplifiers, dual pre amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators, and shows how to use these devices in circuits ranging from simple signal conditioners and fitters to com plex graphic equalizers, stereo amplifier systams, and

DIRECT BOOK SERVICE ORDERING DETAILS

Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Our postage price is the same no matter how many books you order, just add $\mathbf{£ 1 . 5 0}$ to your total order for postage and packing (overseas readers add £3 for countries in the EEC, or add $£ 6$ for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Di rect Book Service or credit card details (including card expiry date), Visa or Mastercard - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see next month's issue.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD.
Tel 01202881749 Fax 01202841692
Due to the cost we cannot reply to overseas orders or queries by Fax. E-mail:editorial@epemag.wimborne.co.uk

50 CIACUITS USING GERMANIUM. SILICON AND Zener diodes R. N Soal

Contains 50 interesting and useful circuits and applications. covering many different branches of electronics, using one of the most simple and inexpensive of components - the diode. Includes the use of germanium and silicon signa 64 pages \quad Order code EPS3id

TIMER GENERAIOA	TMMER/GENERATOA CIR-
CUITS MANUAL	

OPTOELECTRONICS CIRCUITS MANUAL
R. M. Marsion
A. uselane guide to the optoelectronic

INTRODUCTION TO DIGITAL AUDIO
 (Second Edition)

Ian Sinclai
Digital recording methods have existed for many vears and have become lamiliar to the professional recording engineer, but the compact disc (CD) was the first device to appearance of digital audio lape (DAT) equipment. All this development has involved methods and circuit that are totally alien to the technician or keen amateu who has previously worked with audio circuits. The prin ciples and practices of digital audio owe litile or nothing to the traditional linear circuits of the past. and are much more comprehensible to today's computer engineer tha the older generation of audio engineers.
This book is intended to bridge the gap of understand methods are explained, but the mathematical background and theory is avoided other than to state the end product 128 pages I0-चe-ricta

PROUECTS FOR THE ELECTRIC GUITAR
J Chatwin
This book is for anyone interested in the electric guitar. It
engineer, technician, and the experimenter, as well as the electronics sludent and amateur. It deals with the subject in an easy-toread, down-to eanth, and nonmathematical vet comprehensive manner, explaining known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the i.c.s and other devices used are inexpensive and readily available types, with universally recognised type 182 pages ETतF eoxpmity 14.99

OPERATIONAL AMPLIFIER USEA'S HANDBOOK

A. A. Penfold

The first part of this book covers standard operational amplifer based "building blocks" lintegrator, precision ectifier, function generator, amplifiers, etc). and considers the ways in which modern devices can be used part describes a pertormance in each one. The second modern operational amplifiers, such as high slew-rate. ultra low noise, and low input offsel devices The projects include: Low noise tape preamplifier, low noise RIAA preamplifier, audio power amplifiers. dc power conemperature monitor, low distontion audio signal gener. ator, simple video fader, and many more. $\mathbf{4} 95$ A BEGINNERS GUIDE TO CMOS DIGITAL ICs A. A. Penfold

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digita loes nol lose sight of the fact that digital electronics has numerous "real world" applications.
The topics covered in this book include: the basic con cepts of logic circuits: the functions of gates, inventers and other logic "building blocks": CMOS logic i.c characieris. lics, and their advantages in practical circuit design; oscillators and monostables (timers); flip/flops, binary dividers and binary counters; decade counters and display drivers. The emphasis is on a praclical treatment of the subject. numer of the circuits demonstrate the use of CMOS logic number are cincuis demonsiral 119 pages [-Icoratery] £4.95

AUDIO AND MUSIC

explains how the electronic functions of the instrument work together, and includes information on the various pickups and transducers that can be fitred. There are comas well as a selection of wiring modifications and pickup. as well as a selection of wiring modifications and pickup your own custom wiring.
Along with the electric guitar, sections are also in cluded relating to acoustic instruments. The function of specialised piezoelectric pickups is explained and there are detailed instructions on how to make yout own contact and bridge transducers. The projects range from simple preamps and tone boosters. to complete active conirols and equaliser unit

MIDI SURVIVAL GUIDE
Vic Lennard
Whether you're a beginner or a seasoned pro, the MIDI Survival Guide shows you the way. No maths, no MIDI theory, just praclical advice on staning up, setting up and ending up with a working MIDI system
Over 40 cabling diagrams. Connect synths, sound modules. sequencers, drum machines and multitracks How to budget and buy secondhand. Using switch. thru and merger boxes. Transfer songs between Understand MIDI implementation chans. No MIDI theory.
104 pages [Or木er codefichill $\mathrm{E6.95}$
PRACTICAL ELECTRONIC MUSICAL
EFFECTS UNITS
A. A. Panfold

This book provides practical circuits for a number of electronic musical effects units. All can be built at relatively low cost, and use standard, readily available comDistontion Units: Phaser: Guitar Envelope Shaper: Compressor: Tremolo Unit; Metal Effects Unit: Bass and Treble Boosters: Graphic Equaliser: Parametric Equaliser. The projects cover a range of complexities, but most are well within the capabilities of the average electronics hobbyist. None of them require the use of test equipment and several are suitable for near beginners.
102 pages

LOUDSPEAKERS FOR MUSICIANS
LOUDSPEAK
Vivan Capol
This book contains all that a working musician needs to know about loudspeakers: the different lypes. how they work, the most suitable for different instruments, for cabarel work, and for vocals It gives tips on constructing cabinets, wiring up, when and where to use wadding, and when not to. what fittings are available, finishing. how to ensure they travel well, how to connect multi-speaker arrays and much more.
Ten practical enclosure designs with plans and comyou've read that far you should be able to design your youve 164 pages

$£ 3.95$

BABANI BOOKS

We now supply all the books published by Bernard Banani (Publishing) Lid. We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Evervday Practical Electronics (all books with a BP prefix to the order code are Babani books). Many readers have asked us to also supply various other Babani books, which have a reputation for value for money.

Our customers tell us they appreciate our speedy service and low postage charge and they would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum (1.50p for UK p\&p no matter how many books you buy). We are pleased to be able to respond; we are now able to meet all your requirements for Babani books.

Code	The
BP37	50 Projecte using Reloys, SCPs and TRIACs
$8 P 44$	IC 555 Projectu
BP48	Electronic Projects for Beginners
BP76	Power Supply Projecta
BP78	Practical Computer Enperiments
BP90	Audio Projects
BP115	The Pre-compuler Book
BP125	25 Simpla Amatour Band Aoriala
8 P 132	25 Simpla SW Broadcam Band Aorials
BP144	Further Practical Electronica Calculationa \& Formule
8P145	25 Simple Tropical and MW Band Aarials
BP 147	An Introduction to 6502 Machine Code
BP171	Easy Add-on Projecta for Amstrad CPC 464. 664, 6128 and MSX Computers
8 P 182	MID Projects
BP192	Mora Advanced Power Supply Projecta
BP193	LOGO for Beginners
BP198	An Inteoduction to Antenna Theory
$8 P_{2} 45$	Digital Audio Projectu
$8 P 246$	Munical Applicationa of the Atari ST:
BP249	More Advanced Tear Equipment Conarruction
$8 P 250$	Programming in FORTRAN 77
BP251	Computer HObbvista Handbook
$8 P 258$	Leaming to Program in C
$8 P 259$	A Concise Introduction to UNIX
BP261	A Concise Introduction to Lotua 1-2.3 (Revised Edition)
BP262	A Concise Introduction to Wordperiect (Revised Edinion)
BP26A	A Concise Advanced Unerı Guide to MS-DOS
BP273	Practical Electronic Sensors
BP274	A Concise Introduction to SuperCals
8P276	Shorl Wave Supertat Recoiver Constuction
BP281	An Introduction to UHFNHF for Radio Amstours
BP284	Programming in OuickBASIC

Code	Tribe
BP292	Public Address Loudspeakter Sysiems
BP293	An Introduction to Radio Wave Propagation
BP294	A Concise Introduction to Microsoh Worts
BP298	A Concise Introduction to the Mac System of Finder
BP301	Antennes lor VHF and UHF
BP305	Leaming CAD with AutoSkelch for Windown
BP306	A Concise introduetion to Am Pra 3
BP311	An introduction to Scanners and Scanning
BP312	An introduction to Microwaver
BP313	A Concise Introduction to Sege
89315	An introduction to the Electromagnatic Wave
BP317	Practical Electronic Timing
BP320	Electronic Projects lor Your PC
BP324	The Art ol Soldering
BP325	A Concise Users Guide to Windown 3.1
BP326	An Introduction to Satalite Communicationa
BP327	DOS One Step at a Time leovers Version 6.2]
BP328	Sega Enplained
BP329	Elactronic Music Leaming Projecta
3P330	A Concise User's Guide to Loival 1-2.3 Relesse 2.4
BP331	A Beginners Guide to MIDI
BP334	Magic Electronics Projects
8P336	A Conciea Users Guide to Lotus 1-2.3 Relesse 3.4
BP337	A Concise Unera Guide to Latual 1.23 for Windows
BP341	MS.DOS 6 Explained (covers V6.2]
BP343	A Concise Introduction to Microsoth Works lor Window:
BP345	Gerting Started in Practical Electronica
BP346	Programming in Vrsiual BASIC lor Windowa
8 8349	Practical Opro-Electronic Projecta

IF NO PRICE IS SHOWN THE BOOK IS OUT OF PRINT (O.O.P.)
SEE PREVIOUS PAGE FOR FULL ORDERING DETAILS

PCB SERVICE

Printed circuit boards for cortain EPE constructional projects are available from the PCB Service, see list. These are tabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Servce, Everyday Practical Electrontics, Allen House, East Borough, Wimbome, Dorset BH21 IPF. Tel: 01202 881749; Fax 01202841692 (NOTE, we canno reply to orders or queries by Fax); E-mail: editorial@epemag.wimbome.co.uk Cheques should be crossed and made payable to Everyday Pracical Electronic Paymemt in £ sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of recelpt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are avallable if required - see the

Back lssues page for detalle.

Please chock price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

Special KNOCK DOWN SALE of PCBs.

We have a few p.c.b.s left from past projects these are being offered at the knock down price of $\mathbf{E 2} .00$ each - no matter what size they are (some o these boards are worth over $£ 15.00$ each) while stocks last. This price includes VAT and UK post - overseas orders please add 50p postage (or £1 per board for armall postage)
Audio Lead Tester 641: Hand Tally main board 699 and display board 700; Modular Disco Lighis Masterlink 752 - Dimmer Interface 765: Knockerbox 775: Car Electric Window Enhancer 821: Electronic Fire, 820; Electronic Snooker Scoreboard, 832; Bike Odometer (pair of boards), 836/7; Amstrad PCW A to D Converter (double-sided), 838; Linear Power Supply
 double-sided), 844: IW Stereo Amplifier, 851: Visua double-sided). 844: IW Stereo Ampinier, 851. Visual Doorboll, 863; CCD Camera Conim Board, 865: Telephone Ring Detector, 864: CCD TV Camera - Combined Video, Test \& Ext Plug Boards 866a/e: EPE SounDAC PC Sound Board, 868; Stereo Noise Gate 873; Capacitance/Inductance Meter 876; Digital Water Meter - Scaler, 878 Counter/Display, 879; Microprocessor Smantswitch, 881; Print Timer, 874 Watering Wizard, 883; Simple NiCad Charger, 884; Stereo HiFi Controller - 1 Power Supply. 886 - Main Board. 887 - Expansior/Display Boards, (pair) 888; Dancing Fountains - 1 Pre.amp, 889 - Pump Controller, 890 - Fitter, 891; Dancing Fountains - 2 - PC.Compatible Interface (double-sided), 892; Soismograph - 1 Sensor/Fitter, 896; Clock/Mixer, 897; 3-Channel Lamp Controller, 899

Any of the above for just $£ 2$ each inc. VAT and p\&p.
Back numbers or photostats of articles are available see the Back Issues page for details.

\begin{tabular}{|c|c|c|}
\hline PROJECT TITLE \& Order Code \& Cost \\
\hline Experimental Electronic Pipe Descaler AUG\%3 \& 839 \& £5.50 \\
\hline L.E.D. Matrix Message Display Unit MAY 94 Boards 870. 871 ONLY \& \[
\begin{gathered}
\text { (Special Offe } \\
870 / 1
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Price) } \\
\& \text { £13.00 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Seismograph - 2 \\
PC-Compatible Interface (double-sided) \\
Visual/Audio Guitar Tuner \\
Hobby Power Supply \\
Audio Auxiplexer - Control Board \\
Receiver
\end{tabular} \& \[
\begin{aligned}
\& 898 \\
\& 900 \\
\& 902 \\
\& 903 \\
\& 904
\end{aligned}
\] \& \[
\begin{array}{r}
£ 10.72 \\
£ 7.55 \\
£ 5.00 \\
£ 7.72 \\
£ 6.24 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
Power Controller 1000Vi500V Insulation Tester Active Guitar Tone Control
TV Off-er (pair) \\
Video Modules - 1 Simple Fader Improved Fader Video Enhancer
\end{tabular} \& \[
\begin{aligned}
\& 905 \\
\& 906 \\
\& 907 \\
\& 908909 \\
\& 910 \\
\& 911 \\
\& 912 \\
\& \hline
\end{aligned}
\] \& \(£ 4.99\)
\(£ 5.78\)
\(£ 4.50\)
\(£ 7.25\)
\(£ 5.12\)
\(£ 6.37\)
\(£ 5.15\) \\
\hline \begin{tabular}{l}
Rodent Repeller \\
EPE Fruit Machine \\
Video Modules -2 Horizontal Wiper \\
Vertical Wiper \\
4-Channel Audio Mixer \\
Spacewriter Wand \\
Universal Digital Code Lock
\end{tabular} \& \[
\begin{aligned}
\& 913 \\
\& 914 \\
\& 916 \\
\& 917 \\
\& 918 \\
\& 921 \\
\& 922
\end{aligned}
\] \& \(£ 6.26\)
\(£ 8.14\)
\(£ 6.23\)
\(£ 6.35\)
\(£ 6.20\)
\(£ 4.00\)
\(£ 6.25\) \\
\hline \begin{tabular}{l}
Video Modules - 3 \\
Dynamic Noise Limiter \\
System Mains Power Supply \\
Magnetic Field Detector \\
Model Railway Track Cleaner \\
Moving Display Metronome
\end{tabular} \& \[
\begin{aligned}
\& 919 \\
\& 920 \\
\& 923 \\
\& 924 \\
\& 925 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& £ 5.92 \\
\& £ 4.98 \\
\& £ 5.77 \\
\& £ 5.11 \\
\& £ 6.24
\end{aligned}
\] \\
\hline The Ultimate Screen Saver Foot-Operated Drill Controller Model Railway Signals 12V 35W PA Amplifier \& \[
\begin{aligned}
\& 927 \\
\& 928 \\
\& 929 \\
\& 930 \\
\& \hline
\end{aligned}
\] \& \(£ 5.66\)
\(£ 5.73\)
\(£ 5.96\)
\(£ 12.25\) \\
\hline \begin{tabular}{l}
Mulfi-Purpose Thermostat \\
Multi-Project PCB \\
Sound-Activated Switch \\
Audio Amplifier \\
Light Beam Communicator (2 boards required)
\end{tabular} \& \[
\begin{aligned}
\& 931 \\
\& 932
\end{aligned}
\] \& £6.30 \\
\hline \begin{tabular}{l}
Multi-Project PCB \\
Light-Activated Switch \\
Switch On/Off Timer \\
Continuity Tester \\
Auto Battery Charger \\
- National Lottery Predictor
\end{tabular} \& \[
\begin{aligned}
\& 932 \\
\& \\
\& 934 \\
\& 935 \\
\& \hline
\end{aligned}
\] \& £3.00

£5.36
£5.34

\hline R.F. Signal Generator - R.F.Mod MAY \quad Mo
MIDI Pedal \quad \&oil Power 5 Upply pairl
Club Vote Totaliser
PIC-DATS Development System

(double-sided p.t.t.) \& $$
\begin{aligned}
& 936 \\
& 937 a / b \\
& 938 \\
& 939 \\
& 940 \\
& \hline
\end{aligned}
$$ \& $£ 6.48$

$£ 6.10$
$£ 7.78$
$£ 6.05$
$£ 9.90$

\hline
\end{tabular}

PROJECT TITLE	Order Code	Cost
EPE Hifi Valve Amplifier - Phase splitter PIC-DATS 4 -channel Light Chaser	$\begin{aligned} & 941 \\ & 942 \end{aligned}$	$\begin{aligned} & £ 6.71 \\ & £ 7.90 \\ & \hline \end{aligned}$
HV Capacitor Reformer JULY'95	943	£5.60
Ramp Generator		
Logic Board (double-sided p.t.h.) \& Analogue board (pair)	944/5	£32.00
Automatic Curtain Winder	946	£6.75
Windicator	947	$£ 4.10$
Microcontrolled 3-Digit Timer LUGT95	933	£6.61
IR Remote Control - Transmitter	948	£5.76
- Receiver	949	£6.14
Personal Practice Amplifier	950	£6.09
	926	£5.55
Simple Theremin	952	$£ 6.68$
Vandata		
Boot Control Unit	953	£10.52
Display Unit	954	£6.61
Sound Switch EOCTH5	915	£6.55
Multiple Project PCB	932	£3.00
Audio Sinewave Generator		
Treble Booster		
Infra-Red Controller/Alarm (2 boards required)		
Capacitor Check	955	£5.76
Ginormous VU Meter	956	£9.31
Multiple Project PCB NoV'95	932	£3.00
Video Enhancer - Current Tracer Distortion Effects Unit		
Digital Delay Line	958	£8.04
50 Hz Field Meter	959	£8.32
Temperature Waming Alarm (Teach-In '96)	960	£6.15
Stereo "Cordless " Headphones DEC'95		
Transmitter	961	£8.04
Receiver	962	£7.66
- EPE Met Otlice - Sensor/Rainfall/Vane	963/965	£11.33
Spiral transparency free with above p.c.b.		
Light-Operated Switch	966	£6.37
Modular Alarm System (Teach-In '96)	967 a b	£7.12
Audio Meter and Amplifier	968	£5.99
- EPE Met Office - Computer Interface (double-sided) JAN 96	964	£7.69
Audio Signal Generator	969	£6.58
Mains Signalling Unit, Transmitter and Receiver	970/971 (pr)	£9.09
Automatic Camera Panning (Teach-In '96)	972	£6.63
Printer Sharer	973	£9.93
Ânalogue Frequency Meter FEB 96	957	£6.70
Vari-Speed Dice (Teach-In ${ }^{\text {96 }}$)	974	£5.69
Mains Signalling Unit - 2		
12V Capacitive PSU	975	£6.07
- PIC-Electric Meter - Sensor/PSU- ControVDisplay	$977 / 978$ (pr)	£9.90
Multi-Purnose Mini Amolifier MARTis]	976	£6.12
- PIC-Electric - Sensor/PSU - Control/Display	$977 / 978$ (pr)	$£ 9.90$
High Current Stabilised Power Supply	979	£6.62
Mind Machine Mk III - Sound and Lights	980	£7.39
Infra-Zapper Transmitter/Receiver (Teach-In '96)	981/982 (pr)	£8.01
Mind Machine Mk III - Programmer EAPAG6	983	£7.36
Bat Band Converter/B.F.O.	984a/b	£5.80
Hearing Tester	985	£6.87
Event Counter (Teach-In '96)	986	£8.39
B.F.O. and Bat Band Converter Wixy	984a/b	£5.80
Versatile PIR Detector Alarm	988	£6.76
Mind machine Mk III - Tape Controller	989	£6.70
Midi Analyser	992	£6.74
Countdown Timer (Teach-In '96)	993	£9.44
Sarah's Light JuNE'961	996	$£ 7.17$
Home Telephone Link	997 (pr)	£10.72
* PulStar	998	£6.60
VU Display and Alarm	999	£7.02
Ultra-Fast Frequency Generator JULYMG and Counter - Oscillator/L.C.D. Driver		
Timed NiCad Charger	100	£6.99
Single-Station Radio 4 Tuner	101	£7.02
Transmitter/Receiver - Games Compendium	$\begin{array}{\|c} 102 / 103 \text { (pr) } \\ 104 \end{array}$	$\begin{array}{r} £ 10.50 \\ £ 6.09 \end{array}$
Mono "Cordless" Headphones AUG'96		
- Transmitter/Receiver	990/991 (pr)	£10.16
Component Analyser (double-sided p.t.h.)	105	£12.18
Garden Mole-Ester	106	£6.07
Mobile Miser	107	£6.36
Bike Speedo	108	£6.61
* PIC-Tock Pendulum Clock SEPT'S6	109	£6.31
Power Check	110	£6.42
Analogue Delay/Flanger	111	£7.95
Draught Detector	112	£6.22
Simple Exposure Timer	113	£6.63

PROJECT TITLE	Order Code	Cost
Video Fade-to-White OCT'96	114	$£ 6.98$
Direct Conversion 80m Receiver	116	$\underline{\mathrm{E}} .52$
Vehicle Alert	117	$£ 6.55$
10MHz Function Generator		
- Main Board	118	£7.33
- PSU	119	£5.39
Tuneable Scratch Filter ENOVG\%	115	£7.83
- Central Heating Controller	120	£7.85
D.C. to D.C. Conventers		
- Negative Supply Generator	122	$£ 5.96$
- Step-Down Regulator	123	£6.01
- Step-Up Regulator	124	£6.12
EPE Elysian Theremin (double-sided p.t.h.) DEC'96	121	
- PIC Digital/Analogue Tachometer	127	£7.23
Stereo Cassette Recorder		
Playback/PSU	128	£7.94
Record/Erase	129	£9.04
- Earth Resistivity Meter Jañ		
Current Gen. - Amp/Rect.	131/132 (pr)	£12.70
Theremin MIDI/CV Interface (double-sided p.t.h.)	130 (set)	£40.00
Mains Failure Waming	126	£6.77
Theremin MIDI/CV Interface FEB g? (double-sided p.t.h.)	130 (set)	$£ 40.00$
Pacific Waves	136	£9.00
PsiCom Experimental Controller	137	$£ 6.78$
Oil Check Reminder MAR 97	125	£7.16
Video Negative Viewer	135	£6.75
Tri-Colour NiCad Checker	138	£6.45
Dual-Output TENS Unit (plus Free TENS info.)	139	£7.20
* PIC-Agoras APRIl 97	141	£6.90
418MHz Remote Control - Transmitter	142	$£ 5.36$
- Receiver	143	£6.04
Puppy Puddle Probe	145	£6.10
MIDI Matrix - PSU	147	£5.42
- Interiace	148	£5.91
Quasi-Bell Door Alert EMAYG7	133	£6.59
2M F.M. Receiver	144	£7.69
PIC-A-Tuner	149	£7.83
Window Closer - Trigger	150	£4.91
- Closer	151	¢4.47

FPE SOTTWARE

Software programs for the EPE projects marked above with an asterisk (*) are available altogether on a sing/e 3.5 inch PC-compatible disk, or as needed via our Internet site. The same disk also contains the following additional software: Simple PIC16C84 Programmer (Feb '96), PIC Disassembler (unpublished).
The disk (order as "PIC-disk") is available from the EPE PCB Service at $£ 2.50$ (UK) to cover our admin costs (the software itself is free). Overseas $£ 3.10$ surface mail, $£ 4.10$ airmail. Alterna tively, the files can be downloaded free from our Internet FTP site ttp://ftp.epemag.wimborne.co.uk.

EPE PRINTED CIRCUIT BOARD SERVICE

```
Order Code Project Quantity Price
```


Name
Address...

REGULAR readers of this column will be aware of the EPE World Wide Web Site, the URL (Uniform Resource Locator) of which is http://www.epemag.wimborne.co.uk. Interestingly, we hear that our overseas readers eagerly look forward to the new site update, which features the latest issue's cover in colour plus basic details of the projects and features. This is especially welcomed, you tell us, because as it can take a week or two for overseas copies to be delivered by airmail, you can now get a preview on the Intemet!

Also it is possible to subscribe to EPE on-line, check the availability of Back Issues, and purchase these on-line, too. Unfortunately we haven't been able to make the Secure Electronic Transaction (SET) system available yet, due to reasons which are out of our hands.

FTP Layout

Don't forget our FTP site, too, (ftp://ftp.epernag.wimborne. co.uk) from where you may download the codes for most of our PIC projects. Without any doubt, this is a unique service that EPE provides which has made us a "smash hit" with Intemet users. Usually, the source codes are available from the date of publication, and the Web Site is updated on the date of publication of the new issue, or shortly thereafter. So you can have the PIC codes in a matter of seconds.

Some readers seem a little confused about the layout of the FTP site: we try to arrange the files in a logical way. However. it seems that some users attempt to download a "folder" rather than the files within! It is always necessary to navigate to the correct folder (sub-directory) first of all. and then, you need to open that folder to access the file(s) it contains.

For example, if you are interested in the PIC-ATuner project (May'97 issue), you would need to go to ftp://ftp.epemag.wimborne.co.uk/pub/PICS/PICatuner and then, open that folder and fetch the file TUNER213.ASM within. Some other PIC folders have several files and you would need to fetch them all. Also note that since the server uses Unix. filenames and folders are usually case-sensitive.

How you actually effect the transfer, depends very much on your software. In my view, it is usually preferable to use proper FTP software (an FTP client) rather than, say, Netscape Navigator for FTP transfers (where you type the FTP URL into the browser, instead of a web address). Some packages will recognise a crash or time-out during a transfer, and will enable you to re-start the transfer where you left off, rather than being forced to transfer the entire file all over again.

However, the FTP process is usually quite reliable, as witnessed by the fact that I recently downloaded a software upgrade - all 9Mb of it - in somewhat over an hour, at a cost of well under $\mathfrak{f l}$. without missing a beat. Problems usually only occur due to heavy traffic; this may be when a new PIC project is launched or when the planet is generally busy, thereby limiting available bandwidth. Or you might simply have got a noisy connection. If you have any persistent problems using the FTP site, we'd like to know straight away so that we can check with our sysadmin. E-mail please to webmaster@epemag.demon.co.uk.

A Guestion of Service

London-based Demon [ntemet Services are reputedly the UK's largest Intemet Service Providers. They offer the quirky "Tumpike" Windows package as the "Demon Intemet Suite" of software. Call me old-fashioned, but I like old-fashioned levels of personal service. Or even, any level of personal service. Even the maligned CompuServe manages to handle customer relations reasonably effectively, in my experience. so much so that I forgave them for losing my web pages several months ago.

However, if you send Demon a support query by E-mail, you automatically get a "bot" reply from a machine, a bit like an answerphone telling you that you are in a queue, please hold; only the wait can be for several weeks or more.

In the case of Demon Intemet Services, I very rarely need to contact their Support but when I do. I see that little has changed. In one bewildering example of disarray. I sent a specific Tumpike software query by E-mail to Tumpike Lid. themselves, who replied that I would now have to address it to Demon Support where all Tumpike queries are dealt with. So I obediently copied Demon in on the game, received the autoresponder reply, then nothing. Several weeks later, still nothing. For a Company founded on communications, this is terrible.
Sending a terse chaser together with another detailed explanation of the problem to Demon Support produced an equally terse one line reply: that I must address my query to Tumpike instead! After several weeks, full circle! There seems to be more help on offer (if you call blunt, one-line replies "help") in the form of demon.internet.support.turnpike, a Usenet newsgroup where at least Tumpike users can cry on each others' shoulders, with the odd brusque interjection by a Demonpike guru.

Meantime. Demon's marketing guys gush about their expansion plans - including selting up an oftice in New York. Perhaps the higher expectations of Americans, rather than the customary acceptance in England of indifferent and impersonal service, will give Demon the jolt I think it deserves.

Pick of the Web

Onwards to this month's pick of electronics-related web links. Remember. if you know of any sites which would appeal to your fellow readers, let me know and I'll check them out for possible inclusion. As always, the following links are made for you on the Net Work page of our Web site.

First. Microsoft Intemet Explorer 3.0 running in Windows 95 or NT4.() has an apparent security flaw whereby, when you follow a link on a web page, this can cause a program to be executed on your PC without your permission. Details of a fix can be found on http://www.microson.com/ie/security/update.htm.

If you'd like the low-down on the latest MMX (multimedia extensions for the Pentium processor) technology from Intel, try http://www.mmx.com. Two sites worth checking, if you are involved with electronics education. include the Doctronics Educational Publishing for Design \& Technology at http://www.users.dircon.co.uk/~doctron/index.htm, (with a nice example of flashing l.e.d.s!) and http://www.crocodileclips.com/education/index.htm, the latter being a simulation program for demonstrating electronic circuits for, say, GCSE and Advanced Level pupils.

Thanks to Jaap van Ganswijk in Holland for updating us on the famous "ChipDir" IC Directory. Jaap says that a UK mirror is finally coming on-line at http://www.shellnet.co.uk/chipdir/. It's an invaluable resource for sussing out tricky chips. Simon Davis at Lancaster University recommends http://www.crhc.uiuc.edu/~dburke/databookshelf.html as a very comprehensive data source. A fast UK mirror is given too.

A well presented WWW tutorial on basic d.c. circuits (resistors in series, parallel. Thevenin. etc.) is listed at http://www.infinet.com/~sweeethvn/tech03.html. The Unusual Diode FAQ is sponsored as a commercial site but has some very interesting snippets, at http://www.avtechpulse.com/faq.html. See what a brick-built diode looks like!

Next month I'll be describing web by E-mail - see you next month for more Net Work. My E-mail address is alan@epemag.demon.co.uk. My own Home Page is at http://ourworld.compuserve.com/homepages/alan_winstanley.

the Autorouter for EASY-pc Pro' XM!

EE Product News "Products of the year" A ward Winner (USA Magazine)
"The Best Autorouter that I have seen costing less than £10,000!"
R.H. - (Willingham, UK)

- Uses the latest 32 Bit, Shape Based, Multi-pass, Shove-aside and Rip-up and Re-try Technology
- AutoRoute very large and complex boards
- User Controllable,

User Configurable

- 100% Completion where other autorouters fail
- 100\% Autorouted 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- Could Easily Pay For Itself On The First Project

MultiRouter - only £295/\$475!

Integrated Electronics CAD

Analogue \& Digital Simulation

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR	From \$275	£145
MultiRouter: 32bit Multi-pass Autorouter for EASY-PC Professional XM	$\$ 475$	£295
LAYAN: Electro-Magnetic Layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	$\underline{1} 495$
PULSAR: Digital Circuit Simulator	From $\$ 195$	$£ 98$
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	$\varepsilon 98$
FILTECH: Active and Passive Filter Design program	From $\$ 275$	£145
STOCKIT: New comprehensive Stock control program for the small or medium sized business	\$275	£145
EASY-PC: Award Winning PCB and Schematic CAD.	\$145	$\varepsilon 75$
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From \$275	£145
We operate a no penalty upgrade policy. USS prices include Post and Packing Sterling Prices exclude P\&P and VAT		

For Full Information and Demo' Disk, please write, phone, email or fax:-

Number One Systems

UKJEEC: Ref: EVD, Harding Way, St.lves, Cambridgeshire, ENGLAND, PE17 4WR.

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: EVD, 126 Smith Creek Drive, Los Gatos, CA 95030

Email: sales © numberone.com International +44 1480461778 as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magezine in this market for the last twolve years.

Abstract

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display

 pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 (+ VAT) per word (minimum 12 words).All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Adverisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Holland Wood House, Church Lane, Great Holland, Essex CO13 OJS. Phone/Fax (01255) 850596.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

RCS VAPIAELE VOXTACE D.C. BENCH POWER SUPPIY Up to 38 volts d.c. at 6 amps continous. 10 amps peak, fully variable from 1 to 38 volts. Twin Voltage and Current meters for easy readout. 240 volt a.c
 \&76 6 VAT out. 240 volt a.c. carriage $\varepsilon 6$ input. Fully smoothed, size $141 / 2 \times 11 \times 41 / 2$ inches.

RADIO COMPONENT SPECIALISTS 37 WHITEHORSE ROAD CROYDON SURPEY CPO THS TA O191 Gen IGES SUlier CRO 2HS TA: 0181-68 160

THE P.C., MAC and OI's "Lrete Friond"
 CAMBRIDCE 288 A4 NOTEBOOK COMPUTER AVAILABLE ACAIN 899. ONLY T THICK. $4 x A A$ BATTS 20 HOURS WORK. LCD SCREEN. 72 Crs, 6 LINES, 82 K RAM, EXTRA RAMS \& EPROMS, 9 Pin D SERIAL PORT, ROM HAS 日BC BASIC. WPROCESSOA. SPREADSHEET. DATA BASE
IMPIEXPORT TO PC FIC V52 TERMINAL. MPIEXPORT TO PC EIC. V52 TERMINAL
W. N. RICHARDSON \& CO

6 RAVENSMEAD CHALFONT ST PETER
POST E5. ACCESS, VISA ETC

MINI CCD CAMERA

Miniature b/w PCB camera $46 \mathrm{~mm} \times 44 \mathrm{~mm}$, 25 mm high. Auto iris. $7 \mathrm{~V}-16 \mathrm{~V}$ DC. 2 lux. Chinon CX103. Connects to VCR or video monitor. $£ 49$ inc. reg. airmail.
Pay by your usual UK cheque sent to me See our web page at:
http://www.hk.super.net/~diykit

PO 8OX B8458. SHAM SHUI PO. HONG KONG.

MEC SYSTEMS

http://dspace.dial. pipex.com/hown/parade/nx22/
PIC 16C84-04 Only $£ 3.75$

1, 2 Chip PCB Cards for Satellite Decoding $£ 2.50$

 Post \& Packing $£ 1.50$Write or see Web Site for deniils of our New range of PIC Development Boards. PIC Programmers and New PIC Bus Boards for Embedded Control Applications. Cheques Payable to: MEC SYSTEMS
18-20 William SL. Herne Bay, Kent CT6 SEJ
E-mail: Picinfo@dial.pipex.com

QUALITY COMPONENTS FOR YOUR PC. CHECK OUT THESE PRICES

 1GON Full buplex PnP 8 thrio Sound card E 19.00

Wo aleo sell a large ranga of PC peripheralis i.e. IDE. Floppy A CD-Rom audio canles, power lesde, Herr cablen and Bega 8 CPU's.CD-Roms, Moderns, Serial projects. Pleese phone for prices and friendty advice

All prices Include VAT.

TEL: 01752227001 FAX: 01752250733 var No 591.3509.22

Miscellaneous

PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive, Hove. Sussex BN3 8GR, or phone Brighton 883871.

VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice/lists please ring, Geoff Davies (Radio). Tel: 01788 574774.
G.C.S.E. ELECTRONICS KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics. 70 Oxford Road, Clacton. COIS 3TE.

MINI CCD CAMERA SALE

Great opportunity for camera enthusiasts! Miniature b / w PCB cameras $56 \mathrm{~mm} \times 38 \mathrm{~mm} \times$ 30 mm (high), incl 6 infra red LEDs for low light conditions. IV p-p composite video output for connection direct to montor or standard TV set (via modulator).

$£ 39.99$ (incl p+p)
 Send cheque or P.O. to

Hob Electrics Lid, Unit 5 James Cl.
off Caroline St, Wigan, WN3 4HQ
Tel: 01942-497544 Fax: 01942-493690

BTEC ELECTRONICS
 TECHNICIAN TRAINING

GNVO ADVANCED ENGINEERING (ELECTRONIC) - PART-TIME hND ELECTRONICS - FULL-TIME B.Eng FOUNDATION - FULL-TIME

Next course commences
Monday 15th September 1997
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Depl EPE) 20 PENYWERN ROAD EARLS COURT. LONDON SW5 9SU TEL: 0171-373 8721

THE BRITISH AMATEUR

 ELECTRONICS CLUBexists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. J. R. Devies, 70 Ach Rood, Curdington, Northwieh, Cheehlire CWB 2PB.

Space donaind oy Exupilay Prectical Eloctionices

PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production. Arwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar. 36 Woodcot Avenue. Belfast. BT5 5JA or phone 01232473533 (7 days).
WANTED: "Magnum" metal detector (PE project August 1980), built, unbuilt or PCBs. 01926512264 .
AMPLIFIERS?? Illustrated catalogue +30 components. 50p. K.I.A. 1 Regent Road, llkely. Sale!! $30+30 \mathrm{~W}$. Stereo amplifiers, $£ 8.95 .60$ watt amplifiers + controls, 35 volt, $£ 5$.

LIOHT ENOINEERINO SERVICES (PRECISION) Machining sheet metalwork. instrument/toolmaking etc - most engineering processes in most materials. One oris, parts. prototypes. panels, mods. jigs. repairs. anything - no job 100 small - trade or private - for quick friendly service contact Richard Tel/Fax: 01954260804

NVE IN-CIRCUIT TRANSISTOR TESTER A hand held tester which enables transistors to be quickly lested without the need for them to be removed from the circuit, even SMT types, saving hours of fault finding time. Price $£ 29.99+£ 1.50 p \& p$ + VAT. total $£ 37.00$).

CQ/P.O. to PHTV,
259 North Valley Rd, Colne, Lancashire, BB8 9DR.
Or send S.A.E. for info-sheet.
Fax/Phone 01282864415.

MINI CCD CAMERA

Latest low light ($0 \cdot 1$ lux) IR-Sensitive Mini Camera. 6 IR LEDs on board $44 \mathrm{~mm} \times 28 \mathrm{~mm}, 12 \mathrm{~V}$. durable polypropylene case
Plugs direct into VCR or standard TV $\Sigma 79$ inc. Reg. Alrmail
Send Eurocheque or Iriah Punts Bank Dratt to: DEMITAI ELECTRONIC8
52 Donamore Avenue, Kıllinarden, Tallasht,
Dublin 24. Ireland.

SAVE OVER 27 Subscribe Now

Everyday Practical Electronics
Annual subscription rates (1997): UK £24.00.

Overseas $£ 30.00$ standard air service, £47.50 express airmail.
Send your name and address with ε sterling cheque, bank draft or credit card number and card explry date to:

Everyday Pracilcal Electronics, Allon House, East Borough, Wimborne. Dorsel BH21 1PF Tel: 01202881749 VKA Fax: 01202841692

TRAIN TODAY FOR A BETTER FUTURE

Now you can get the shills and qualifications you need for
 Electrical Contracting \& Instaliatio

 career success with an ICS Home Study Course. Leam inElectrical Engineenng C8G Basic Electronic Engineering the comtort of yout own home at the pace and limes thal
suit you. ICS is the worid's largest, most expenenced suit you. ICS is the world's largest, most expenenced
home study school. Over the past 100 years ICS nave home study school. Over the past 100 years ICS have
heiped nearty 10 million peopte to improve their tob prospects. Find out how we can heio YoU. Post or phone Refngeration Heating \& Aur Conditioning
today for FREE INFORMATION on the course of your Motorcycle Maintenance

TECHNICAL INFORMATION SERVICES

76 Church St, Larkhall, Lanarks, ML9 1HE Tel: 01698 883334/884585 Fax: 01698884825 PHONE NOW FOR YOUR FREE QUOTE We have the World's Largest Collection of
SERVICE MANUALS
Why not join Europe's fastest growing "Information Library Service"
Buy ANY Service Manual for $£ 10.00$ and return any manual no longer needed for a $£ 5.00$ credit CALL WRITE NOW FOR FURTHER DETALLS Initial joining fee of $£ 70$: Thereafter $£ 20$ Yearly Join Now: Get your first Manual FREE!

SER VICE MANUALS \& Technical Books
Available for most equipment, any make, age or model Technical Book and Manual Compilations now on CD-ROM MAITRITRON TECHNICAL SERVICES (EPE) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY Tel:- 01844-351694. Fax:- 01844352554 Email:- sales@mauritron.co.uk Web site at:- http://www.mauritron.co.uk Please forward your latest catalogue for which I enclose $2 \times$ Ist Class Stamps. or $£ 4.11$ for the complete Service Manuals Index on PC Disc plus catalogue. NAME
ADDRESS \qquad
\qquad
POSTCODE
Phoocongy the coepon if you do nol ereh in qut the magaine

The following features apply to all of our PC control cards.
Standard 8 bit ISA, base address fully selectable via dip switches. Installation instructions application notes. circuit schematic and sofiware examples in "C"', BASIC and assembler (on $3.5{ }^{\circ}$ floppy disk). All connections to the cards made via a standard 25 -way female D-type connector on the end plate.
H134A 24 Digital UOs: Fully programmable 'I'IL level digital l/O's based around the $\mathbf{8 2 5 5}$. Kit available K134A $\mathbf{1} 27$
H130A 8 Channel Relay: Completely isolated programmable relay output cand 3 contacts available per channel. NO. NC. and C. Contacts rated IA@ 30V DC (Readback Festure!) Kit available Ki 30 A £ E 32
Isolated IN: For ultimate protection this virtually indestructible cand offers 8 opto isolated inputs and 4 relay outputs. 5V H131A, 12V H132A 2AV H133A.
Kits available SV K131A, 12V, K132A and 24V K133A £32
H135A 25.Way terminal board: This board allows simple screw terminal access for all of the above cands. Kit available K135A £12
A057A M/M 25-way or A058A M/F 25 -way cables avaulable.

> 151 The Exchange Building, Mount Stuart Square. Cardiff, CF1 6EB. Tel: (01222) 458417 Fax (01222) 625797 httpall www.vsltec.demon.co.uk ALL Prices INCLUSIVE of VAT and delivery (UK Only). Some day dispateh.

COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receivers (Wireless). Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS

Please phone 01812015359 for free catalogue Fax 01812030161
Callers by appointment only

DREMEL X-ACTO
 MINICRAFT
 IHE ONLY CHOICE for the Best Names in the Business!

DREMEL	D. 3950 Multi-Tool Set w/ 40 Accs.
	D. 1371 Precision Scroll Saw
	D. 751 Mini Mite Cordless Tool Kit
MINICRAFT	MB1012 High Precision Drill
	MB750 Univ Variable Speed Trans.
	MB450 Bench Sander
ANTEX	CasCat Torch With S1 Fine Tip
	CasCat Butane Torch Kit

X-ACTO DI Knife Set \& Free A4 Culting Mat $£ 41.95$

- FREE UK Posenge! (onders over E10) - Fully Illustrated Calalogue - E1.50

Millions of quality components at lowest ever prices!

Plus anything from bankruptcy - theft recovery

- frustrated orders - over production etc.

NO VAT to add on.
Send 45 p stamped self addressed label or envelope for clearance lists.

Brlan J Reed

6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ

Tel: 0181-393 9055

Mall order UK only.
Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a fow thousand of an item is available. (Payment is returned if sold out. I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wait!

SHERWOOD ELECTRONICS

FREE COMPONENTS
Buy $10 \times £ 1$ Special Packs and choose another one FREE

SP1	$15 \times 5 \mathrm{~mm}$ Red L	SP135	6 £ Min. stide switches
SP2	$12 \times 5 \mathrm{~mm}$ Green Leds	SP136	3 : BFY50 transistors
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds	SP137	4. W005 bnige rectitiers
SP11	$30 \times 1 \mathrm{~N} 4001$ diodes	SP136	$20 \times 2.2 / 50 \mathrm{~V}$ radial elect. caps.
SP12	30×1 N4002 diodes	SP139	$12 \times 1000 / 10 \mathrm{~V}$ rad. etect. caps.
SP18	$20 \times$ BC1 82 transistors	SP142	$2 \times$ Cmos 4017
SP20	$20 \times$ BC184 transistors	SP144	$3 \times$ TIP31A transistors
SP21	$20 \times$ BC212 ransistors	SP145	$6 \times 2 T \times 300$ transistors
SP22	$20 \times$ BC214 transistors	SP147	$5 \times$ Stripboard 9 strips
SP23	$20 \times$ BC549 tansistors		25 holes
SP24	$4 \times$ Cmos 4001	SP148	$6 \times 2 \mathrm{~mm}$ lighthouse Leds.Red
SP25	4×555 timers	SP151	$4 \times 8 \mathrm{~mm}$ Red Leds
SP26	4×741 Op amps	SP152	$4 \times 8 \mathrm{~mm}$ Green Leds
SP27	$4 \times$ Cmos 4002	SP154	$15 \times$ BC548 transistors
SP28	$4 \times$ Cmos 4011	SP156	$3 \times$ Strpboard 14 stmos/
SP29	$4 \times$ Cmos 4013		27 holes
SP36	$25 \times 10 / 25 \mathrm{~V}$ racial elect. caps.	SP157	$5 \times$ BCr70 transistors
SP37	$15 \times 100 / 35 \mathrm{~V}$ radial elect. caps.	SP160	$10 \times 2 \mathrm{~N} 3904$ transistors
SP39	$10 \times 470 / 16 \mathrm{~V}$ radial elect. caps.	SP161	$10 \times 2 \mathrm{~N} 3906$ transistors
SP4 1	$20 \times$ Moxed transistors	SP164	$2 \times$ C106D thyristors
SP42	$200 \times$ Mxed 0.25W C.F. resislors	SP165	$2 \times$ LF351 Op.amps
SP47	$5 \times \mathrm{Min}$. pushoution swiches	SP167	$6 \times$ BC107 transistors
SP102	20×8-pin DIL sockets	SP168	$6 \times$ BC108 transistors
SP103	15 $\times 14$-pin DIL sockets	SP170	$2 \times$ LM339
SP104	15×16-pin DIL sockets	SP173	$10 \times 220 / 25 \mathrm{~V}$ rad elect caps.
SP105	$5 \times 74 L S 00$	SP175	$20 \times 1 / 63 \mathrm{~V}$ radial elect. caps.
SP106	5×74LS02	SP176	$4 \times 20 \mathrm{~mm}$ PCB fuse holders
SP112	$4 \times$ Cmos 4093		plus covers
SP115	$5 \times 10 \mathrm{~mm}$ Red Leds	SP182	$20 \times 4.7150 \mathrm{~V}$ rad. elect. caps.
SP116	$63 \times 10 \mathrm{~mm}$ Green Leds	SP183	$20 \times$ BC547 transistors
SP117	$15 \times$ BC556 transistors	SP187	$15 \times$ BC239 transistors
SP118	$8 \times$ Cmos 4047	SP192	$3 \times$ Cmos 4066
SP119	4 \times Cmos 4072	SP194	$10 \times$ OA90 diodes
SP130	$0100 \times$ Mixed 0.5W C.F. resistors	SP195	$3 \times 10 \mathrm{~mm}$ Yellow Leds
SP131	$12 \times$ TL071 Op.amps	SP197	6×20 pin DIL sockets
SP132	$2 \times$ TL082 Opamps	SP198	5×24 pin DIL sockets
SP133	$20 \times 1 \mathrm{~N} 4004$ diodes	1997 Catalogue £1 inc. P\&P or FREE with first order. P\&P [1. 25 per order, NO VAT.	
	RESISTOR PACKS - C. Film		
RP3	5 asch value -		
RPP	10 each value - toma 7300.25 W cla 95	Orders 80	
RP10	1000 popular values 0.25W		
RP4		Sherwood Electronics,	
RP8	10 each value-10tal $730.5 \mathrm{WW} \quad 5630$	7 williamson St., Mansfield, Notis. NG19 6 TD.	
RP11	1000 poovia values 0.5W $\quad 88.00$		

ADVERTISERS INDEX
A.L. ELECTRONICS 367
N. R. BARDWELL. 368
BETA LAYOUT GmbH 315
B.K. ELECTRONICS Cover (iii)
BRIAN J. REED 368
BULL ELECTRICAL Cover (ii)/355
CIRKIT DISTRIBUTION 295
COMPELEC 367
COOKE INTERNATIONAL 367
CR SUPPLY CO 292
DISPLAY ELECTRONICS 290
ELECTROMAIL 327
EPT EDUCATIONAL SOFTWARE 291
ESR ELECTRONIC COMPONENTS 298
GREENWELD ELECTRONICS 294
ICS. 367
JCG ELECTRONICS 292
J\&N FACTORS 359
JPG ELECTRONICS 295
KANDA SYSTEMS 340
LABCENTER ELECTRONICS. 339
LENNARD RESEARCH 292
MAGENTA ELECTRONICS 296/297
MAPLIN ELECTRONICS Cover (iv)
MAURITRON 367
NATIONAL COLLEGE OF TECHNOLOGY 292
NICHE SOFTWARE (UK) 294
NUMBER ONE SYSTEMS 365
PICO TECHNOLOGY 351
PRESS-N-PEEL 338
QUASAR ELECTRONICS 340
QUICKROUTE SYSTEMS 305
RADIO-TECH 295
ROBINSON MARSHALL (EUROPE) 306
SEETRAXCAE 327
SHERWOOD ELECTRONICS 368
SQUIRES 340
SUMA DESIGNS 293
TECHNICAL INFORMATION SERVICES 367
VANN DRAPER 338
VENTURA HOBBY 368
VERONICA KITS 367
VISIBLE SOUND 367
ADVERTISEMENT MANAGER: PETER J. MEW ADVERTISEMENT OFFICES:
EVERYDAY PRACTICAL ELECTRONICS,
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS
Phone/Fax: (01255) 850596

[^2]

BY PROFESSIONAL USERS

 HIGH POWER．TWO CHANNEL 19 IINCH RACK

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS：－MXF200（100W＋100W）MXF400（200W＋200W） MXF600（300W＋300W）MXF900（450W＋450W）

$$
\text { ALL POWER RATINGS R.M.S. INTO } 4 \text { OHMS, BOTH CHANNELS DRIVEN }
$$

FEATURES
\＃Independent power supplies wilh iwo loroidal lranslormers＊Twin L．E．D．Vu melers＊ Level coniris：Latesinale Mosfels for sligass hee power dalivery Inio virinally any load Alog slew rate very lou distonion Aluminium cases © MXF600 8 MXF 900 lan cooled wht DC
USED THE WORLD OVERIN CLUBS．PUBS，CINEMAS，DISCOS ETC

PRICES：－MXF200 175.00 MXF400 2333.85
MXF600C329．00 MXF900C449．15
SPECIALIST CARAIER DEL \＆12 SOE EACH

OKIP XOK STEFIEO S－WAY ACTIVECROSSEOVE：

 bass．mid 8 lop The removabie rront lascia allows access io the programmable Dil swilches to adjust the on each bass channel．Nominal 77 Smvinoutioulpul．Fulil conallie wilh OMP rach amplililer and module Price ع117．44＋ع5．00 P\＆P

 STEREO DISCO MIXER winh 2 ： 7 band LED vu melers MANY OUTSTANDING FEATURES：－Including Echo with redeat a apeed control，DJ Mic with talteover owitch，© Channels with individual tader plus croas lade．Cue Headphone Monitor．a Sound Enects．Useful combination of theTollowing inputs：－： 3 turnabial（mag）， 30

Price E144．99＋E5．00 P\＆P

SIZE： $482 \times 240 \times 120 \mathrm{~mm}$

Join the Piezo revolution！The low dynamic masa（no voice coll）ol a Dlezo iweeter produces an Improved Transient response wilh a lower distorition level than ordinary dynamic iweeters．As a crossover is nol requred The se unila can be added to existing speaker systems ol up 10100 wam
EXPLANATORY LEAFLETS ARE SUPDLIED WITH EACH TWEETER

TYPE＇A＇（KSN1036A） 3 ＇round with prolective wire mesh．Ideal loboorshell and medium sized Hi－Fi apeakers．Price $\mathbf{£ 4 . 9 0}$－5Dp P\＆P． TYPE＇${ }^{\prime}$（KSN1005A） $3 \% / 2$ super horn lor general purpose speakers， TYPE and P．A．syslems elc．Price 55.99 －50p P\＆P．
 TYPE＇D＇（KSN1025A） $\mathbf{2}^{\prime} \times 6^{\prime}$ wide dispersion horn Upper requenc response relained extending down to mid－range（ 2 KHz）．Suilable for high quality HI．Fi syslems and quality discos．Price $£ 9.99$ 50p P\＆P． TYPE＇E＇（KSN 1038A）3＇．＂horn Iweeler with atractive silver finish Irim Suitable for Hi －Fi monitor syslems elc．Price $\mathbf{5 5 . 9 9}$－50p PaP． LEVEL CONTROL Combines，on a recessed mounling plate，level coniro and cabinel inpul jact sockel $85 \times 85 \mathrm{~mm}$ ．Price $\mathbb{\$ 4 . 1 0 + 5 0 p} \mathbf{P \& P}$ ．

EFFFLTMHT CASEOLOUOSFEAKERE

IN－CATSTENEO BOOSTER AMPS

 THREE SUPERE HIGH POWER
CAR STEREO BOOSTER AMPLIFIER 150 WATTS（75－75）Stereo．150W aridged Mono 250 WATTS（ 125 －125）Stereo．250W Bridged Mano 400 WATTS 1200 －200）Stereo．400W Bridged Mono
Features：
Features
Shere，bridgable mono＊Choice of high 8 low level inpula \＆\＆A level
controls Aemote on oht Speaker \＆
PRICES： $150 \mathrm{WC4Q} .99250 \mathrm{~W}$ CQ日．9日 400W C109．95 PAP C2．00EACH bermal orgtection

 dive circulis to power a compatibie Vu meter all models are open and anon circull prool THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS
 R．M．S． －3dB，Damping Factor 300，Slew Rale $45 \mathrm{~V} / \mathrm{uS}$ ， T．H．D．Iypical 0.002% ，Inpul Sensitivity 500 mV ，S．N．R 10 dB ．Size $300 \geq 123 \geq 60 \mathrm{~mm}$ PRICEC40．85－C3．50 P8P

OMP／MF 200 Mos－Fet Oulpul power 200 walls A．M．S．inlo 4 ohms，Irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ －JdB，Dampling Faclor \quad 300，Slew Rale 50V／uS T．H．D．Iypical 0.001% ，Inpul Sensitivity 500 mV ，S．N．R． 110 dB ．Size 300 ¥ $155 ¥ 100 \mathrm{~mm}$
PRICE C64．35－C4．00 P\＆P

OMP／MF 300 Mos．Fet Oulpul power 300 watts A．M．S．into 4 ohms，trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB，Damping Faclor 300．Slew Rate 60V／uS T．H．D．Iypical 0.001% ，Inpul Sensitivity 500 mV ，S．N．R 110 dB Size 330 ： 175 ： 100 mm PRICEC81．75－C5．00 P\＆P

OMP／MF 450 Mos－Fel Oulpul power 450 watis A．M．S．into 4 ohms，Irequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ 3dB．Damping Faclor－300，Slew Rate $75 \mathrm{~V} / \mathrm{uS}$ T．H．D．Iypical 0.001% ，Inpul Sensitivity 500 mV ，S．N．R． 110 dB，Fan Cooled，D．C．Loudspeaker Protection， 2 econd Anti－Thump Delay．Size 385 ¥ 210 ¥ 105 mm PRICE C132．85－C5．00 P\＆F

OMP／MF 1000 Mos－Fei Oulpul power 1000 watts A．M．S．inlo 2 ohms， 725 waths R．M．S．inlo 4 ohms requency response 1 Hz －100KHz－JdB，Damping Factor 300，Slew Rate 75V／uS，T．H．D．typical 0.002% ，Inpul Sensitivity 500 mV ，S．N．R．-110 dB ，Fan Cooled，D．C．Loudspeaker Protection， 2 Second Anti－Thump Delay．Size 422 घ 300 ： 125 mm PRICE C259．00 C12．00 P\＆P

OTE MOS－FET MOOULES $\triangle A E$ AVAILABLEIN TWO VERSIONS Na． PEC（PAOFESSIONAL EOUIDMENT COMPATIBLE）．IMPUV
IOUDSPGIRERE LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FREQUENCY BULLETS AND HORNS，LARGE（A4）S．A．E （ $60 p$ STAMPED）FOR COMPLETE LIST

McKenzie and Fane Loudspeakers are also available．

GMTNINCE－INSTHUMENIS，P．A．，DISCO．ETC

ALLEMINENCE UNITS B OHMS IMPELANCE
B 100 WATT R．M．S．MEB－100 GEN．PURPOSE，LEAD GUITAR，EXCELLENT MID，DISCO RES．FREQ． 72 Hz ．FREQ．RESP TO $4 K H 2$ ．SENS 97 A ． 10 100 WATT R．M．S．ME1O－100 GUITAR．VOCAL．KEYBOARD．DISCO，EXCELLENT MID．
RES．FREO．71H2．FREO．RESP TO 7 KHZ，SENSSTdB． RES．FREO．71R2．FREO．RESP TO 7 KHz ，SENSS7d RES．FREQ 6SH2．FREQ．RESR TO 3．SKH2．SENS 99OB． 12100 WATT R．M．S．ME12－100LE GEN PURPOS RES FREQ $49 \mathrm{~Hz}_{2}$ ，FREQ．RESP TO 6 KHz ．SENS 100 dB RES FREQ 49H2，FREQ．RESP．TO 6 KHz．SENS 100dE．$A D$ GUITAR．DISCO，STAGE MONITOR 12 100 WATT R．M．S．ME12－100LT（TWIN CONE）WIDE RESPONS MONITOR RES FREQ 42 H2，FREQ RESP TO 10KH2，SENS $98 d B$ 12200 WATT R．M．S．ME12－200 GEN．PURPOSE
RES．FREQ．S8Hz．FREQ．RESP．TO 6 KHz ．SENS 98 dB 12300 WATT R．M．S ME 1 2－300GP HIGH POWER 15 RREO．47H2．FREQ．RESP．TO SKH2．SENS 103dB RES．FREQ $46 \mathrm{H}_{2}$ ．FREQ．RESP TO 5 KH2 SENS 99 A ． 15 SOO WATT R．M．S．ME15－300 HIGH POWER BA RES．FREO． 39 Hz ．FREQ RESP．TO 3 KHz ，SENS 103 CB ．

ALLEAREENDER UNITS B OHMS（EICepl EBB－50 A EB10－50 Which are dual
B SOWAH EBE－5O DUALIMPEDENCE，TAPPED 4／8 OHM BASS．HI．FI．IN．CA
RES．FREQ． $40 \mathrm{~Hz}_{2}$ ．FREQ RESP．TO 7 KHz SENS 97d日 10 SOWATT EBTO．5O DUAL IMPEDENCE，TAPPED $4 / 8$ OHM BASS．HI．FI，IN．CAR． RES FREQ $40 \mathrm{H}_{2}$ ，FREQ．RESP TO 5 KHz ．SENS．99dB RES FREO 35 Hz FREO RESP 12－100WATT ER12－100 BASS STUDIO MIFI EXCE RES FREO 26H2，FREO RESP TO 3 KHz SENS 93 EXELLENT DISCO FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURROUN 5＇．－COWATT EB5－GOTC（TWIN CONE HI－FI．MULTI．ARRAY DISCO ETC RES．FREQ 63H2．FREQ．RESP．TO 20KH2．SENS 92dB．
O＇ $\boldsymbol{2}$ GOWATT EBG－COTC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC Q＇，OOWATT EBG－GOTC（TWIN CONEI HI－FI，MULT RES．FREO．38Hz，FREQ．AESP．TO 20KH2．SENS 94dB． B COWATT EBE－GOTC（TWIN CONE）HI．FI．MILTI．AR RES．FREQ 4OR2．FREQ．RESP．TO 18KHz．SENS 89dB
10 OOWATT EB10－GOTC（TWIN CONE）HI．FI MULT RES．FREQ． 35 Hz ．FREQ．RESP．TO 12 KHz ．SENS $98 d \mathrm{C}$ ．

IRANSMTTER MO：Y KITE

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIERE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS W．COMPLETE WITH CIRCUIT AND INSTRUCTIONS OE RE RRMAMITEE

FM MICRO TRANSMITEER $100 \cdot 108$ MHz VABICAP TUNED，COMPLETE WITH
VERV SENS FET MIC RANGE $100 \cdot 300 \mathrm{ml}$ ．SIZE 561.46 mm ．SUPDIY GV BATTERY

E．K．EL－＝CTRONIC＇s UNITS 1 E SOMET WAY，SOUTHENO－ON－SEA， Tel． $0702-527572$ Sax：0702－apopas

Increase the 'scope of your PC

$\because 15$

Digital Storage PC Oscillosope

Hamess the processing and storage power of your exsting PC (286 or better) to give you a high performance storage scope for a fraction of the price of a comparable piece of equipment. If you've already got a PC, with MS Windows for accessing the assembly instructions, dont waste money buying a storage scope when you can build yourself this superb PC Storage
Oscilloscope add-on unit. Features include 8-bit vertical resolution, 4K-byte/channel memory, TIFF (Tagged Image File) format, and linear or rounded interpolation.
\star Accurate Oscilloscope Operation
\star Comprehensive Software

* Expandable to 2-Channel
\star Waveform Storage, Printer Output
* Timebase 100 ns to 100 ms idiv
* Input Sensitivity 10 mV to $5 \mathrm{~V} / \mathrm{div}$
* Ideal for Hobbyists, Engineers, Laboratories, Schools and Colleges
PC Storage Scope Kit:
Order Code 51268, £173.99

Second Channel Kit

Equips the PC Storage Scope with a second channel allowing side-by-side comparison of two signals.

Order Code 51270, £66.99

Software Upgrade

Adds Fast Fourier Transtorm (FF)
Spectrum Analyser and Transient Recorder capability (requires co processor). Order Code 51949, $£ 25.49$

Fully Built Version

Ready to use and fully calibrated dual channel version with all software options as standard. Also includes probes, PSU, interface cable and carry case. Order Code 51950, £324.99

INTERESTED?

See the full-cotour display, with sample waveforms and operational controls on your own PC!
Download the demonstration software from our WWW Site:
http://www.maplin.co.uk/velleman/velle man.htm or order a demonstration disk:

Order Code 51269, £3.05
ORDER NOW on 0800136156
Priority Reterence Code MA031

Ol phone 01702554002 for details of your nearest Maplin or Mondo store.
for orders over $£ 30.00$ inc VAI goods are dispatched tree of handling charges. Small order charge of $£ 2.95$ inc VAT for orders less than $£ 30.00$ Inc VAT. All items subject to availability. All prices are inclusive of VAT @ 17.5% and are subiect to change E\&OE

[^0]: Radlo - Tech Limited, Overbridge House, Weald Hall Lane
 Thornwood Common, Epping, Essex CM16 6NB.
 Sales +44 (0) 1992576107 (4-lines) Fax +44 (0) 1992561994 http://www.radio-tech.co.uk E-mail radtec@radtec.demon.co.uk

[^1]: Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

[^2]: Publianed on approximately the firat Friday of each month by Wimborne Publishing Lid., Allen House, East Borough. Wimborne, Dorsel BH21 IPF. Printed in England by Wiltshire (Bristol) Printers Led., Bristol. BS20 9XP. Distribuled by Seymour. Windeor House. 1270 London Road. Norbury. London SW 16 4DH. Subacriptiona INLAND £24 and OVERSEAS $£ 30$ (£47.50 airmail) payable to "Everyday Practical Electronics". Subs Dept. Allen House, Ealt Borough. Wimbome, Dorset BH2I IPF. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions. namely that it thall not, without the written consent of the Publighers first having been given, be leme, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affized to or as pan of any publication or advertising. literary or pictorial matter whatsoever

