$=-=c / 10]$ and computer provich

$$
\because \because-
$$

Gybervox iobot Voice
nsulation Tester Fbrelarm

HIGH QUALITY MODULES FOR STEREO, MONO \& OTHER AUDIO EQUIPMENT
Audio Amplifiers

\section*{| | POWER O/P | MAX SUP. | |
| :---: | :---: | :---: | :---: |
| O/No. | RM.S. | VOLTAGE | PRICE |
| AL 30A | 10 Watts | 30 V | f4.95 |
| AL 60 | 25 Watts | $30-50 \mathrm{~V}$ | E5.92 |
| AL 80 | 35 Watts | 40.60 V | 68.75 |
| AL 120 | 50 Watts | 50.70 V | 15152 |
| Al 250 | 125 Watts | $50-80 \mathrm{~V}$ | 520.60 |

Stabilised Power Supplies -
Output current 25 Amps

Mono Pre-Amplifiers - Operating VIg. 40-65V OMNO.
MM 100 Suitable for Disco Mixer
MM 100 G Suitable for Guitar Pre-Am Mixer

Magnetic Cantridge Pre-Amplifier O No. MPA30. Sup Vtg. 20-30V

Monographic Equaliser
GE 100 MK:II 10 Channel OUR PRICE ONLY E20.00

Please send seth-addressed envelope.

0 HYB

LED COLOUR DISPLAYS
Red, Green, Yellow .3/5/.6 inch Mixed types and colours NUMERIC \& OVERFLOW Common Anode/Cathode GaAsP/GaP. Brand New. FuH-Data incl 10 pieces (our mix) . . $\mathbf{£ 4 . 0 0}$ Normal Retail Vaiue Over $£ 10.00$

Order No. VP58
BI-PAK'S OPTO SPECIAL
A selection of large and small sized LED's in various shapes, sizes \& colours, together with 7 Segment Displays both anode \& cathode plus photo.transistors emitters and detectors. Cadmium Cell ORP12 and Germ, photo transistor OCP71 included. In all a total of 25 Opto pieces valued over
 E12 Normal Price Order No. VP57 Our Super Valu
£5.00

SEMICONDUCTORS FROM AROUND THE WORLD
100 A collection of Transistors, Diodes, Rectifiers \& Bridges CR's, Trics, iC. s a Diós alab devices.

Guaranteed Value Over 110 Normal Retail Price.

Data etc in every pack. Order No. VP56
Our Price $\mathbf{f} .00$
\because

3

DGE CONNECTORS
2×5 way 1 Pitch Edge Connector (Gold] 10No. AMP163279 21 f120 each. 50 per 50 oft

PICK-UP COIL
Large telephone pick-up cal tor high
senstriviny Suction pad psitct senstivivy, Suction pad to stick to tele-
phone 90cm lead to 3.5 jack plug. Con-
 32 mand dia) $\times 17 \mathrm{~mm}($ bodyl 36 mund dia) sucker. 0 /No. YPB

VALUE PACKS		
No	Oty	Description
VPI	300	Assorted Resistors Mixed Types
VP2	300	Carbon Resistors $1 / 4-1 / 2$ Watt Pre-Formed
vp3	200	1/A Watt Min Carton Resistors Mixed
VP4	150	$1 / 2$ Watt Resistors 100 ohm-1M Mixed
VP5	200	Assorted Capacitors All Types
VP6	200	Ceramic Caps Miniature - Mixed
VP7	100	Mixed Ceramics Oisc. 1pf - 56pf
VP8	100	Mixed Ceramic Disc. 68pf - .015pf
vp9	100	Assorted Poivester/Polystyrene Caps
VP 10	60	C280 Type Caps Metal Foil Mixed
VP11	50	Electroytics - All Sorts
VP12	60	Bead Type Polystyrene Min Caps
VP13	50	Sidver Mica Caps Ass. 5.6pt - 150pt
VP 14	50	Silver Mica Caps Ass. 180pi - 47000
VP15	25	. OluF 250 Min. layer metallised Polyester Capacitors
VP16	50	Wrewound Res. 9W lavg) Ass. 1 ohm - 12 K
VP17	50	Matres PVC Covered Single Strand Wire Mixed Colours
VP18	30	Metres PVC Covered Mutit Strand Wire Mixed Colours
VP19	40	Matres PVC Single/Mutti Strand Hook-Up Wire Mixed
VP20	6	Rocker Switches 5 Amp 240v
VP21	15	2in. high bright REO LEDS in plastic encapsulation-Large area light source
VP22	200	Sq. Inches Total, Copper Clad Board Mixed Sizes
VP23	20	Assorted Slider Pots. Mixed Values
VP24	10	Slider Pots. $40 \mathrm{~mm} 22 \mathrm{~K} 5 \times \operatorname{Log.~} 5 \times$ Lin
VP25	10	Slider Pots $40 \mathrm{~mm} 47 \mathrm{~K} 5 \times$ Log. $5 \times$ Lin
VP26	15	Small .125" Red LED's
VP27	15	Large 7 Red LEO'S
VP28	10	Rectangular 7 RED LEO'S
VP29	30	Ass. Zener Diodes 250 mW - 2W Mixed Vis. Coded
VP30	10	Ass. 10W Zener Oiodes Mixed Vtrs. Coded
VP31	10	$5 \mathrm{Amp} \mathrm{SCR's} \mathrm{T0-66} \mathrm{50-400v} \mathrm{Caded}$
VP32	20	3 Amp SCR's TO-66 Up To 400 N Uncoded
vp33	200	Sil. Oiodes Switching Like INat49 00-35
VP34	200	Sil. Oiodes Gen. Purpose Like OAz0/BAX1316
VP35	50	1 Amp INacoo Series Sil. Oiodes Uncoded All Good
vp37	8	Black Instrument Type Knobs With Pointer 1/4 Std
VP42	10	Black Heatsinks To Ft T0-3, TO-220 Ready Orilled
VP43	4	Power-Fin Heatsinks $2 \times 10.32 \times$ T0.66 Size
VP45	50	8C107/8 Type NPN Transistors Good Gen. Purpose Uncoded
VP46	50	BC1718 Type PNP Transistors Good Ger. Purpose Uncoded
vP47	10	Silicon Power Trans. Similar 2 N3055 Uncoded
VP140	50	Precision Resistors 2 -1\% tol.
VP141	40	IN4002 Sil. Rects 14.100 v preformed pinch
VP142	4	40A Power Rectifiers Silicon T048300PIV
VP143	5	BY187 12 KV Sil. Oiodes in carriers 2.5 mA
VP144	4	100k lin. Muti-furn pots ideal vari cap tuning
VP145	10	Assorted pots. inc. Oual \& Swiched types
VP146	25	Solid Tanratum Caps. Mixed Values

OPTICALLY COUPLED MODULES

pair SD1/131 Consisting $1 \times$ LS600 Silicon Light Sensor $\& 1 \times$ Matched Galium Arsenide Lgit Source - Type tizs, on ready mounted BI-PAK Price ONLY $£ 0.60 \mathrm{pr}$.

LED DISPLAYS

VP130
VP130 6 RED 7 Seg. CC $14 \mathrm{~mm} \times 75 \mathrm{~mm}$ ROP FNO353
VP131 4 GREEN 7 Seg. CA. $6^{\prime \prime}$ LDP XAN6520
VP132 5 REO 7 Seg. CC. $6^{\prime \prime}$ LDP XAN6940
VP133 6 RED Over-flow $6^{\prime \prime} 3 \times$ CA $3 \times$ CC $6630 / 50$
VP134 5 GREEN Over-flow .6" CA XAN6
$\begin{array}{ll}\text { VP135 } & 5 \\ \text { VP136 } & 3\end{array} \quad$ DUAL Reg. CA. $3^{\prime \prime}$) (AN 3061
$\begin{array}{ll}\text { VP136 } & 3 \\ \text { VP137 } & 3 \\ \text { DUAL RED } 7 \text { Seg. } 5^{\prime \prime} \text { CA OL527 OPR } \\ \text { DUED } 7 \text { Seg. } & 51^{\prime \prime} \text { CA DLI27 DPR }\end{array}$

VP138 20 Assarted IED Displays - Our mix with Dat

 RDP $=$ Right Hand Decimal Point$C C=$ Common Cathod
$C A=$ Common Anode
LOP $=$ Left Hand Decimal Point

SWTTCH 2 and 3 WAY
Co-axial switch for one transceiver transceiver to two Dims: $86 \times 55 \times 32 \mathrm{~mm}$ (Body). No. VP 113
As above but
ONo. VP 114
3-way
er to wo
£4.50
£4.75

HIGH PASS FILTER/SUPPRESSOR
CB/TV. High pass fitter. Reduces unwanted signals picked up by antenna. Dims: $45 \times 25 \times 17 \mathrm{~mm}$. O/No. VP 115

Designed to reduce hamonics on the VHS and TV band. Cut-off frequency: 30 MHz V.S.W.R.: Less than 1.2 to insertion loss: $-0.2 \mathrm{~dB} @ 27 \mathrm{MHz}$
Impedance: 50 ohms.
Dims: 80×56
ONa. vp 116

$£ 2.75$

LOW PASS FILTER $=\begin{gathered}\text { LOW-PASS FITTER } \\ \text { LP-30 } \\ \text { ABC }\end{gathered}$

IC BARGAINS

40 Assoned TL CMOS INTEGRATED CIRCuITS 74 Senies \& CD4000 Series - All new Gates. Flip-Flops - MSI etc. GREAT VALUE Data Book \& Sheets included. 40 Pieces (Our Mix) $£ 4.00$ ONo. UP40

> TRANSISTOR PACKS
> VP150 20 BC183B Sil. Trans. NPN 30v 200mA Hfe $240+$ TO92
> VP151 25 BC1718 Sil. Trans. NPN 45v $100 \mathrm{mAHfe} 240+$ TO92
> VP152 15 TIS90 Sil. Trans. NPN $40 \mathrm{~V} 400 \mathrm{~mA} \mathrm{Hfe} 100+$ TO92
> $\begin{array}{lll}\text { VP153 } & 15 & \text { TIS91 Sil. Trans. PNP } 40 \mathrm{~V} 400 \mathrm{~mA} \text { Hfe } 100+\text { TO92 } \\ \text { VP154 } & 15 & \text { MPSA56 Sil. Trans. PNP } 80 \mathrm{v} 800 \mathrm{~mA} \text { Hfe } 50+\text { TO92 }\end{array}$
> VP154 15 MPSA56 Sil. Trans. PNP 80 V 800 mA Hfe50+ TO92 $\begin{array}{lll}\text { VP155 } & 20 & \text { BF595 Sil. Trans. NPN eqvt. BF184 H.F. TO92 } \\ \text { VP156 } & 20 & \text { BF } 495 \\ \text { Sil Trans. NPN Eqvi BF173 H. }\end{array}$ VP156 20 BF495 Sil. Trans. NPN eqvt. BF173 H.F. TO92 VP157 15 ZTX 500 Series Sil. Trans. PNP Plastic VP158 15 Z1X107 Sil. Trans. NPN eqvt. BC 107 Plastic VP159 15 2TX108 Sil. Trans. NPN eqvt. BC108 Plastic VP160 20 E5024 Sil. Trans. PNP equt. BC214L TO92 VP161 25 BC183L Sil. Trans. NPN 30v 200mA TO92 $\begin{array}{lll}\text { VP162 } & 5 & \text { S.JE5451 Sil. Power Trans. NPN 8OV 4A Hfe } 20\end{array}$ $\begin{array}{lll}\text { VP163 } & 2 & \text { NPN/PNP pairs Sil. Power Trans. like SJE5451 } \\ \text { VP164 } & 4 & \text { 2N6289 Sil Po }\end{array}$ 2N6289 Sil. Power Trans. NPN 40 V 40w 7A He30 VP165 6 $\begin{array}{lll}\text { VP166 } & 5 & \text { BFT34 NPN Sil. Trans. 100v 5A Hfe50-200 TO39 } \\ \text { VP167 } & 1 & \text { BUY60C NPN TO3 VCB 500 10A } 100 w \text { Hfe } 15+\end{array}$ $\begin{array}{lll}\text { VP167 } & 1 & \text { BUY69C NPN TO3 VCB } 500 \text { 10A } 100 w \text { Hfe } 15 \\ \text { VP168 } & 10 & \text { BC478 eqvt BCY1 PNP Sil Trans. TO } 18\end{array}$ VP168 10 BC478 eqv. BCY/ PNP Sil. Trans. TO18 VP169 10 BXS21 eqvt. BC394 NPN Sil. Trans. 80v 50 mA TO18 VP1 7010 Assorted Power Trans. NPN/PNP Coded \& Data $\begin{array}{lll}\text { VP171 } & 10 & \text { BF355 NPN TO-3S Sil. Trans. eqvi. BF258 } 225 \mathrm{~V} 100 \mathrm{~mA} \\ \text { VP1 } & 10 & \text { SM1502 PNP TO }\end{array}$

TRANSISTORS

100 Silicon NPN Transistors. All Per- 100 Silicon PNP Transistors. All Per ied. Types With Data And Eqvt. Sheet No Re jects. Fantasic Value. O/No BP38 $\quad \mathbf{E 3 . 0 0}$ fect Coded. Mixed. Types With Data and Eqv. Sheet. No Rejects. Real Value. O/No. 8 P39
£3.00
The best known Power Transmitter in the world 2N3055 NPN 115W.
10 off 50 off $\quad 100$ off
£3.50 £16.00 £30.00
BD312 COMPLIMENTARY PNP POWER TRANSISTORS TO 2 N3055. Equivalent MJ2955 BD312 TO3. Special Price $\mathbf{£ 0 . 7 0}$ each. 10 off $\mathbf{£ 6 . 5 0}$

SEMICONDUCTORS FROM AROUND THE WORLD

100 A collection of Transistors, Diodes, Rectifiers \& Bridges, SCRs, Triacs, I.C.s \& Opto's all of which are current every day useable devices. Guaranteed Value Over ElO Normal Retail Price. Data etc. in every pack. Order No. VP56
Our Price £4.00

TRANSISTOR CLEARANCE

100 All Sorts Transistors A mixed bag NPN-PNP Silicon \& Germ. Mainly Uncoded You To Sort Pack includes instructions for making Simple Transistor Tester, Super Value
$150 \begin{aligned} & \text { De soldered Siticon Transistors from boards } 10 \mathrm{~mm} \text { leads all good. O/No. } \\ & \text { VP173 }\end{aligned}$
$£ 1.00$
TECASBOTY
THE ELECTRONIC COMPONENTS AN SEMICONDUCTOR BARGAIN OF THE YEAR!
This collection of Components and Semiconductors for the hobbyist is probably the most value-packed selection ever offered, it consists of Resistors, carbon and wirewound of various values. Capacitors: All types, sorts and sizes including electrolytics. Potentiometers - single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection of Semiconductors for everyday use in popular Hobby Projects. These include: SCR's, Diodes, Rectifiers, Triacs \& Bridges as well as a first class mix of Transistors and I.C.'s. In all, we estimate the value of this in current retail catalogues to be over E25! So, help yourself to *a great surprise and order a Box TODAY - ONLY at BI-PAK. $3182 / 3442$ and order with your Barclaycard or Access Car
Service NOW. Order No. VP 85.

PIEZO BUZZERS

Miniature round pier PEZO buzzer. White plastic. Low consumption.
Frequency 4kH approx. Output: $70 \mathrm{~dB}(\mathrm{~A}) @$
Power: $12 \mathrm{Vd.c}$.4 mA Dims: 22 (dia) $\times 11.5 \mathrm{~mm}$ Fixing Centres: 26.5 mm .
\qquad

PIEZO
leads. For use on a.c. mains.
Frequency: 3 Sintz
approx
Output. 8sdB (A) @

5 mA
0.
0 ms
14 mm.

5xing centres:
NNo. VP 108
£1. 25
POWER SUPPLY OUR PRICE £3.75
Power supply fits directly into 13 amp socket. Fused for safety. Polarity reversing socket. Voltage switch. Lead with multi plug input - 240 v AC 50 Hz Output -34.567 .59 \& 12v DC Rating 300 ma MW88.
$3 V$ ZTmA: ONo. VP 82 EV $25 \mathrm{~mA}:$ VP 83

95p each
TAPE RECORDER SWITCH
Unit to control motor of tape recorder. 18 m
cord and 2.5 mm plug attached. On/Off
switch. Dims: $55 \times 20 \times 20 \mathrm{~mm}$.
$\mathbf{0 N O}$. VP 127
$\mathbf{E 1 . 0 0}$

(LEARN A UNGO)

PILLOW SPEAKER
Slim under pillow unit. 80
2.5 speaker. 1.5 m lead with
3.5 mm mono jack plug. Black
Dims: 65 (dia) $\times 17 \mathrm{~mm}$. 1 .
£1.25
BH:R:K
Send your orders to Dept EE4 BI-PAM PO BOX 6 WARE, HERTS TERMS CASH WITM ORDER, SAME DAY DESPATCH, ACCESS, ADD 15\% VAT AND E1 OD PER ORDER POSTAGE AND PACKING

ISSN 0262-3617
PROJECTS . . . THEORY . . . NEWS . . COMMENT . . . POPULAR FEATURES ...

See Page 204

(c) IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

CYBERVOX ROBOT VOICE by John M. H. Becker 192
Automatically translates your speech into robot dialect
INSULATION TESTER by Mark Stuart 200
Carry out your own safety checks with this low cost instrument 220
Fail-proof security using fibre optic cable
IMMERSION HEATER CONTROL by T. R. de Vaux Balbirnie 230
A hot water quantity programmer
SERIES
COMPUTER CLUB by Thakery 212
A fun outlook on computing-Simple loop program structure
ON SPEC by Mike Tooley BA214
New regular feature devoted to the Sinclair Spectrum
FAULT FINDING by E. A. Rule 218
Part Six: The cassette player-its problems and remedies
DIGITAL ELECTRONICS by D. W. Crabtree 226
Part Seven: Realistic computer design considerations
FEATURES
EDITORIAL 191
SHOPTALK by Mike Abbott 199
Product news and component buying
MAKING PRINTED CIRCUIT BOARDS by Stephen Ibbs 204
A fundamental look at how to etch your own boards
DOWN TO EARTH by George Hylton209
Operatlonal Amplifiers: theory and applications
CIRCUIT EXCHANGE210
A forum for readers' ideas
PLEASE TAKE NOTE 210
Sound Operated Flash; Headlight Activated Switch:
Digital Electronics; Motorcycle Codelock (Circuit Exchange)
EVERYDAY NEWS 216
What's happening in the world of electronics
FOR YOUR ENTERTAINMENT by Barry Fox 224
Manual for Divorce; Reverse Charge; Hot Line 229
A retailer comments
NEW PRODUCTS 235
Facts and photos of instruments, equipment and tools
PRINTED CIRCUIT BOARD SERVICE 236
Our May 1985 issue will be published on Friday, April 19. See page 211 for details.

NEW THIS MONTH

"SENSING CONTROL PROJECTS FOR THE BBC MICRO
hove you ever wondered what all those plugs and
sockets on the back of the BBC micro are for? This book assumes no previous electric knowiedge and no soldering is required, but guides the reader (pupil or teacherl from basic connexions of the user sockets. to quite complex profects. The author, an experienced teacher in this field. has provided lots of practical experiments, with ideas on how to follow
up the basic principles. A complete kit of parts for all the experiments is also available. Book, $245 \times 185 \mathrm{~mm}$ 120 pp 25.95. Kit $\mathbf{2} 9.95$.

GREENWELD

- The Pack Peoplel -

K524 OPTO PACK - a variety of single point and seven segment LEDS fincl. point and seven segment LeDS (incl.
dual types) of various colours and sizes, dual types) of various colours and sizes, gas discharge displays, photo transis gas discharge displays, phono uransis, assorted $£ 3.95$; $100 £ 14.95 ; 250 £ 36$.

K525 PRESET PACK - Big, Big variety of types and sizes - submin. min and std MP, slider, multiturn and cermets are all included. Wide range of values from 20 R to 5 M . 100 assorted $\mathrm{f6.75}$; 250 £12.95; 1000 £48.
K526 HEATSINK PACK - Lots of different sizes and shapes of heatsink for most diode and transistor case styles. A pack of 25 assorted including several large finned types - total weight over
$1 \mathrm{~kg} £ 5.50 ; 100 £ 19.50$.
K528 ELECTROLYTIC PACK - All ready cropped for PCB mounting, this pack offers excellent value for money. Good range of values and voltages from $0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$. 6 v to $100 \mathrm{v} £ 3.95$; 250 £8.95; 1000 £32.
K531 PRECISION RESISTOR PACK High quality, close tolerance R's with an extremely varied selection of values mostly $1 / 4$ and $1 / 2 w^{2}$ tolerances from 0.1% to 2% - ideal for meters, test gear etc
$250 £ 3 ; 1000 £ 10$. 250 £3; 1000 \& 10.
K532 RELAYS - Wide selection of styles, voltages and contacts. $4 \mathrm{~V}-240 \mathrm{~V}$. K517 TRANSISTOR PACK - 50 assorted full spec marked plastic devices PNP NPN RF AF. Type numbers include BC114 117172182183198239251214
255320 BF 198255394 2N3904 etc. etc. 255320 BF 198255394 2N3904 efc. etc.
Retail cost $\mathbf{E 7 +}$; Special low price 275p.
K523 RESISTOR PACK - 1000 - yes $10001 / 4$ and $1 / 2$ watt 5% hi-stab carbon film resistors with pre-formed leads for PCB mounting. Enormous range of preseveral megohms. Only 250p: 5000 £10; 20,000 £36.
K520 SWITCH PACK - 20 different assorted switches - rocker, slide, push, otary, toggle, micro etc. Amazing value at only 200p
$K 522$ COPPER CLAD BOARD - All pieces too small for our etching kits. Mostly double-sized fibreglass 250 g (approx 110 sq. ins.). For 100p.
K530 100 ASSORTED POLYESTER CAPS - All new modern components, radial and axial leads. All values from Super value at 83.95 .
$K 518200$ DISC CERAMIC CAPS - Big variety of values and voltages from a few pF to 2.2 uF ; 3 v to 3 kv £1.00
K203 100 WIREWOUND RESISTOAS From 1w to 12 w , with a good range of values 92.00
K505 20 ASSORTED POTENTIOMETERS - All types including single, ganged, rotary and slider £1.70.
W4700 PUSH BUTTON BANKS - An assortment of latching and independent switches on banks from 2 to 7 way, DPCC to 6PCO. A total of at least 40 switches for $£ 2.95 ; 100 \mathrm{£6.50}$; 250 E14.00.

Goods normally desputched by return of post.

$1984 / 85$ CATALOGUE

 84 page A4 size - Bigger, Brighter, Better more components than ever belorel Wh ach copy there's discount vouchers, Bargain List, Wholesale Discount List, Buik Buyers List, Order Form and Reply Paid nvelope. All for lement now out - Send large SAE for your free copy.
"TORUS"

Computer-controlled Robot built around the gearbox described below. Complete kit of parts inc PCB, program listings for BBC (other micros soon). E44.85. 20W ribbon cable (min 3 m recommended -5 m better) $\mathbf{~} 1.30 / \mathrm{m}$. SAE for illustrated leafle1.

MOTORIZED GEARBOX

The unit has $2 \times 3 V$ motors, linked by magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the fina drive speed to approx 50 rpm . Data is sup plied with the unit showing various options on driving the motors.
Two new types of wheels can be supplled the aluminium discs and smaller plastic wheels are now sold out). Type A has 7 spokes with a round black tyre and i 100 mm dia. Type B is a solid heavy duty wheel 107 mm dia with a flat rigid tyre 17 mm wide.
PRICES: Gearbox with data sheets: $£ 5.95$ $\begin{array}{ll}\text { Wheel type A: } & \quad 80.70 \text { es } \\ \text { Wheel type B: } & \mathbf{e a}\end{array}$ Wheel type B: $\quad \mathbf{E 0 . 9 0} \mathrm{e}$

NI-CAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac $57 \times 50 \mathrm{~mm} \varnothing$ rated 7.2 v 1000 mAH and another smaller Deac $32 \times 35 \mathrm{~mm} \varnothing$ rated 3.6 v 600 mA . The price of these Ni -cad slacks new is over £20. Also on the panel is mains input charger transformer with two separate secondaries wired via bridge rect fiers, smoothing capacitors and a relay to the ourput tags. The panel weighs 1 kgm All this for just $\mathbf{£ 6 . 0 0}$

PCB MOUNTING NI-CADS

Much sought after 4.8 V 150 mA batts with PCB mntg tags on 25 mm pitch. Batt size 25×16. . Ideal for paralleling. 99p ea; 10+ $85 p ; 25+70 p ; 100+60 p$.
NI-CADS: AA 99p; C 199p; D 220p; PP3 395p.

IW AMPLIFIER

2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives IW output with 9 V supply. Switch and vol. control. Just con ect batt and speaker. Full details supplied. Only $£ 1.50 ; 10$ for $£ 12 ; 25$ for $£ Z 5 ; 100 £ 75$

AM TUNER PANEL

2916 - For use with mono amp above. Nea panel $60 \times 45 \mathrm{~mm}$. Only $£ 1.50 ; 10$ for $£ 12.00$.

FIBRE OPTICS

Sor use withase of single and twin cable, 1 mm with visible light or infra-red. Core $50 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}$ coil $\mathrm{f6.30}$. Twin $90 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}$ coil E11.00.

Our shop has enormous stock of components and is open 9-5.30 Mon-Sat. Come and see usil

GREENWELD All prices include VAT; just add 60p P\&P.
 443D Millbroak Road

 Min Access order $\mathbf{E 5 . 0 0}$ No min. CWO value. Official orders from schools etc. welcomemin invoice charge f10.
 Southampton SO1 OHX Tel (0703) 772501/783740

 -

 Quotations piven for Large Quantitios
Please allow 7 deys for delivery All brand new Components. All valves are new ind boxed

GRANDATALTD.

, 12 THE Broanoway. PRESTON ROAD
WEMBLEY, MIDOLESEX, ENGLAND
Telephone: 01-904 2093 \& 904 1115/6
Telex: 932885 Sunmit

FREE CAREER BOOKLET

Train for success, for a better job, better pay
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million alreadyl Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or obligation at all.
GCE
Over 40 ' O ' and ' A ' Level subjects from which to choose. Your vital passport to career success.

ICOMPUTER		
IPROGRAMMING	\square	RADIO AMATEUR'S
LICENCE		

BOOK-KEEPING \& ACCOUNTANCY

Please send FREE DETAILS for the course ticked above.
| Name
| Address

ICS Dept. ECS45 8 Elliot Place Clydeway Centre
Glasgow G3 8EF

- Direct Conversion Receiver A high-performance design for the 3.5 and 14 MHz amateur bands.
- Amateur Bands Occupancy An analysis of activity on the 3.5 and 7 MHz bands.

Putirelers
 OUT NOW!

TELEVISION/COMPUTER FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Televisison, Video, Testing \& Fauth Diagnosis) 15 MONTHS
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING \{Electronics, Television, Video Cassette Recorders, Cctrv, Testing \& Faut Diagnosis) 15 MONTHS
BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods) 9 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY. \& ROBOTICS
(Microprocessor Based Systems, Faut Diagnosis, ATE, Robotics) these courses include a high percentage of college based PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPIICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE
NEXT TWO SESSIONS COMMENCE ON APRIL 22nd \& SEPTEMBER 16th

FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $30 \mu A, 50 \mu A, 100 \mu A$. 58.45 Post 50p.
METERS: $45 \times 50 \times 34 \mathrm{~mm}$
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $25 \mathrm{v}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}, 25 \mathrm{~V}$.
£4.32. Post 30 p .
METERS: $60 \times 47 \times 33 \mathrm{~mm}$
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$ $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$,
$50-0-50 \mu \mathrm{~A}, 100-0-100 \mu \mathrm{~A}$. $£ 7.25$
VU meters $\mathbf{£ 6 . 0 4}$.
Post on above meters 30 p.
Silicone grease 50 g £1.32.
Post $16 p$.
NI-CAD BATTERY
CHARGER
Led indicators charge-test switch. For PP3, HP7, HP11 \&
HP2 size batteries.
Price £6.40. Post 94p.
Motorola Piezo Ceramic Tweeter
$E 5.52$ Post 33p

METERS: $60 \times 46 \times 33 \mathrm{~mm}$
illuminated. Require 6 V supply.
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, $100-0100 \mu \mathrm{~A}$
$1 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 25 \mathrm{~V}, 30 \mathrm{~V}$ \& VU.
55.44 post 30 p

ALSO \mathbb{N} STOCK
$2,3,4,6$ \& 8A Transformers

TRANSFORMERS

240v Primary

$300-3 \mathrm{v}$ -	100 mA	85p
6-0-6v	100 mA	£1.38
6-0-6v	250 mA	£1.52
12-0-12v	50 mA	£1.32
12-0-12v	100 mA	£1.40
$9-0-9 \mathrm{v}$	75 mA	£1.40
9-0-9v	250 mA	£1.52
Post on above	transfor	$48 p$.
9-0-9v	1 1A	$E 2.37$
12-0-12v	1A	E2.95
15-0.15v	1 A	E3.45
6-0-6v	11/2A	f2. 38

Post on above transformers 94 p.
Rotary Switches: 1 Pole 12
Way 2P6W, 3P4Way, 4P3W $42 p$
Post 16p
Illuminated Rocker Switch 240V 6A Red $\quad 88 p$ Post 16p

All above prices include V.A.T. Send $\mathbf{E 1}$ for a new comprehensive 1983/84 fully illustrated catalogue with a new price list. Send S.A.E. with all enquiries. Special prices for quantity on request.

All goods despatched within 3 days from receipt of the order. Catalogue Owners: Please send large s.a.e. for new prices coming in force 1.11.84

[^0]
E.E. PROJECT KITS

Full Kits inc. PCBs, or veroboard, hardware, electronics, cases (unless stared). Less batteries.
If you do not have the issue of E.E. which includes the project - you wifl need to order the instruction reprint as an extra -70 p each. Reprints available separately $70 p$ each + p\&p 60p. INSULATOR TESTER Apr. 85
LOAD SIMPLRER Feb. 85 E16.98
WASHING MACHINE ALERT Feb. 85 less
thermostat
$\mathbf{E 5 . 4 5}$
MAINS MONITOR Feb. 85 E9.49 COMPUTERISED TRAIN CONTROLLER FEb. SOLID STATE REVERB FEb $85 \quad$ E39.98 MIC PRE-AMP Jan. 85 539.98
54.87 GAMES TMER Jan. $85 \quad$ E7.23 SPECTRUM AMPLFIER Jan. $85 \quad \mathbf{£ 5} 58$ TV AERLAL PRE-AMP Dec. 84 £12.36
Optional PSU $12 \mathrm{~V} \not 2.03$. MINI WORKSHOP POWER SUPPLY Dec. MINI WORKSHOP POWER SUPPLY Dec. FLUID DETECTOR NOV 84 $\begin{array}{r}14.91 \\ \\ \hline 8.73\end{array}$ ELUID DETECTOR NOV. 84 FBC MICRO AUDIO STORAGE SCOPE INTER-
FACE
E 28.77 DIGITAL MULTIMETER NOV JDec. $84 \quad$ E78.95 PROXIMITY ALARM Nov. 84 £17.98 MAINS CABLE DETECTOR Oct. 84 E4.39 ORILL SPEED CONTROLLER Oct. 84 GUITAR HEAD PHONE AMPUFIER Sept. 84 OP.AMP POWER SUPPLY Sept. 84 EZ1.98 SOUND OPERATED FLASH less leed Sept. 84 TEMPERATURE INTERFACE FOR BBC MICRO CAR PA £19.70
£13.87 THERMOSTATIC SEED PROPOGATOR AUg 84 KITCHEN APPLLANCE TIMER Aug. 84 less WASHER FLUID MONTTOR Aug. 84 E5.28 ULTRASONIC BURGLAR ALARM July 84 inc
relay + sounder CAR LIGHTS WARNING July 84 E7.98 SPEECH SYNTHESISER June 84 €29.22 VARICAP AM RADIO May 84 E10.43 ${ }_{84}$ EXPERIMENTAL POWER SUPPLY May SIMPLE LOOP BURGLAR ALARM May 84E13.62 MASTERMIND TIMER MaY 84
USE/DIODE CHECKER Apr. 8
UUASI STEREO ADAPIOR Apr. 84
DIGITAL MULTIMETER add on for BBC Micro
Mar.
REVERSING BLEPER Mar. Mar. 84 £9.85
REVERSING BLEEPER Mar. 84 £6.78
APE FINDER Mar
APE FINDER Mar. 84
$E 3.60$
OW POWER STEREO AMP Mar. $84^{\circ} \quad £ 27.88$
ONISER Feb 84
SGCNAL TRACER GOMMMER FEb $84 \quad \mathbf{£ 1 4 . 4}$
SGMAL TRACER FOb 84 E14.89
CAR LIGHT WARNING FOb 84
GKIOGICAL AMPLIFIER
مONTMUTY TESTER Jan 84 £ 19.16
CHILDREN'S DISCO LGGHTS Dec
68.99
68.42

NOVEL EGG TIMER Dec 83 inc. case $\begin{aligned} & \text { £8.42 }\end{aligned}$ SPEECH SYNTHESZER FOR THE BBC MICRO Nov. 83 less cable + sockets $\quad £ 21.98$ MULTIMOD NOV. 83
ONG PANGE CAMERA/FLASHGUN TRIGGE HOME INTERCOM less link wire Oct. $83 £ 14.38$ ${ }_{83}$ SHORT WAVE RADIO less 'phones, Oct . Mono headphones extra
DGITAL TO ANALOGUE BOARD Oct
83
$£ 19.38$ ess cable, case \& conmector
HIGH POWER DAC ORIVER BOARD Oct. 83 less
case
$£ 12.52$
Case
A TO D CONVERTER FOR RM $380 Z$ Sept. 83 inc
plug
835.98
HIGH SPEED A TO D CONVERTER Sept 83 less SIGNAL CONDITIONING AMP Sept 83 no STORAGE SCOPE INTERFACE FOR BBC MI.
CRO AUg 83 less Software CRO Aug 83 less software $£ 15.38$ PEDESTRIAN CROSSING SIMULATION BOARD
Aug 83 no Case
E10. HIGH POWER INTERFACE BOARD Aug 83 no
CAR INTRUDER ALARM Aug $83 \quad \mathbf{\$ 1 6 . 9 8}$

USER PORT I/O BOARD less cable + plug
USER PORT CONTROL BOARD July 83 less
825.14 ENVELOPE SHAPER JU 83 Iess case 5933 ENVELOPE SHAPER Jun. 83 less case $£ 1233$ GUITAR HEADPHONE AMPUFER May $83 \varepsilon 7.92$ GUTTAR HEADPHONE AMPURER May $83 £ 7.92$ MW PERSONAL TUADE DETECTOR May 83 May 83 E7.62 CAR RADH POWER BOOSTER ADril 83 £11.99 FUNCTION GENERATOR ADRII 83 £45.98 FUNCTION GENERATOR April 83 $£ 45.98$
$£ 24.17$ FLANGER SOUND EFFECTS April $83 \quad £ 24.17$
NOVELTY EGG TMMER Aprit 83 less case $£ 5.48$ NOVELTY EGG TMER April 83 less case $£ 5.48$
ZX SPECTRUM AMPLFIER April $83 \quad 89.87$ OUAL POWER SUPPLY March 83
BUZZ OFF March 83
PUSH BIKE AL ARM Feb. 83
DOUBLE DICE Jan. 83
DX TAPE CONTROL Nov. 82
SINE WAVE GEN Oct. 82
G. PGHTS ON ALERT O 82

LGHTS ON ALERT Oct. 82
CONTNUHTY CMECKER Sept. 82
CONTINUTV CMECKER Sept.
SOUND SPUTTER Sept. 82
SOUND RECOMBINER Sept. 82
SCREEN WASH DELAY Sept. 82
2-WAY INTERCOM July 82 no case
ELECTRONIC PITCH PIPE July 82
REPLEX TESTER July 82
SEAT BELT REMINDER Jun 82
EGG TIMER JURE 82
un 82 CAR LED VLITMER less case. May 82 . 51 V.C.O. SO ND EFFECTS UNTT Apr. 82 E12.71 CAMEAA OR FLASH GUN TRIGGER Mar. 82 POCKET TIMER Mar. 82 84.10 GUITAR TUNER Mar. 82 SIMPLE STABHLSED POWER SUPPIY Jan. 82 MINI EGG TIMER. Jan. 82 . $\$ 4.40$ SIREN MODULE Jan. 82 less speaker SIMPLE INFRA RED REMOTE SIMPLE INFRA RED REMOTE CONTROL CAPACIT SUSTAIN UNIT Oct. 8
TAPE NOISE LMMTER Oct. 8 HEADS ANO TAILS GAME Oct. 81 CONTINUTTY TESTER OCI. 81 PHOTO FLASH SLAVE Oct 8 FUZZ BOX OCt. 8 SOHL MOSTURE UNIT Oct 8 KEE ALARM Oct. 87
O-12V POWER SUPPLY Sept 81 CMOS CAR SECURITY ALARM Sept. 81 CMOS DIE Sept. 81
CMOS METRONOME Aug. 81 COMBINATION LOCK July 81 less case 81 SOHL MOISTURE INDICATOR E.E. May 81 E4.49 GUITAR HEADPHONE AMP E.E. May 81 E4.66 PHONE BELL REPEATER/BABY ALARM May INTERCOM April 89 SIMPLE TRANSISTOR \& DHOE TESTERS $\mathrm{E}_{\mathrm{M}} 4.43$ 81 Ohmeter
Led version
LED DICE Mar 8
MODULATED TONE DOORBELL Mar. 8 2 NOTE DOOR CHIME Dec. 80 UVE WIRE GAME Dec. 80 GUITAR PRACTICE AMPIRER Nov, 80 SOUND TO LIGHT Nava case extra TRANSISTOR TESTER Nov. 80 AUDIO EFFECTS UNIT FOR W Oct. 80
IRON HEAT CONTROL Oct. 80
TIL LOGIC PROBE Sept. 80
ZENER DHODE TESTER JUN. 80
UGHTS WARNING SYSTEM May 80 BATTERY VOLTAGE MONITOR May
MICRO MUS
SLIDETTAPE SYNCHRONISER Feb 80 MORSE PRACTCE OSCILLATOR Feb $\mathbf{£ 1 3} 5$ SPRING LINE REVERB UNTT Jan. $80 \quad \not 27.20$ UNIBOARD BURGLAR ALARM Dec. 79 E6.70 DARKROOM TMER July 79 TRANSISTOR TESTER Apr. 7 MICROCHIME DOORBELI. Feb. SOUND TO LGGHT Sept. 78
CAR BATIERY STATE INDICATOR le
R.F. SIG

IN SITU TRANSISTOR TESTEP 78 FLASHMETER less calc \& diffuser May 7 WEIRD SOUND EFFECTS GENERATO
AUDHO VISUAL METRONOME Jan. 78 ELECTRONIC TOUCH SWITCH Jan. 78 PAPID DIODE CHECK Jan. 78

THIS MONTH'S KITS

SAE or 'phone for prices

OUR PRICES INCLUDE VAT
MAGENTA ELECTRONICS LTD.
EE27, 135 HUNTER ST.,
BURTON-ON-TRENT
STAFFS, DE14 2ST.
MAIL ORDER ONLY.
028365435 , Mon-Fri $9-5$
Access/Bardaycard (Visa) by
phone or post.
phone or pos

ADD 6OP P\&PP TO ALL ORDERS. PRICES INCLUDE VAT
SAE ALL ENQUBRIES.
OVERSEAS: Payment must be sterling IRISH REPUBLIC and BFPO: UK PRICES. EUROPE: UK PRICES plus 10%. ELSEWHERE: write for quote.

We offer a range of superb Fischertechnik sets. These cover robotics, electronics, electromechanics, motors \& gears, \& basic construction
Robotics kit: build 6 different working models including a robot arm, graphics board, sorting system etc. Note that not all the models can be built at the same time. Simple to assemble. Easily combined with all other Fischertechnick kits. Top quality. Includes 2 motors, an electromagnet, lamps, potentiometers, switches etc.

ROBOTICS kit (554)/EE
Construction/base kit (ut1) Motors \& Gears (ut2)
 Use ut2 to motorise ut
Electromechanics (ut3) \qquad 537.50 Electronics (ut4) £73.20 Interfaces for the.BBC \& Spectrum Computers. Interfaces are available for controlling the Robotics kit (554),
and the motorised construction kit (uti \& ut2). Details in our catalogue ($£ 1$ or sae marked 'FT/EE' (state micro).

BOOKS

50 CMOS IC Projects, 244 ects

2 Proiects Using IC 741, BP24 A Practical Introduction to Digital ICs, 225 Beginners' Guide to Building Electronic 11.90 ects-227 Practical Thi
Microcomputer
questions \& Answers - Etectronic Basic Electronics wers - Electro
ystems, Capel
Burglar Alarm Systerns, Capel
Electronic Music \& Creative T
B51
Eletronic Music Projects, BP74
Electronic Music Projects. BP74

Electronic Projects For Beginners, 8P48 Electronic Projects in Music, Find Electronic Science Projects, BP10 Electronic Science Projects, BP10 | Electronic Test Equipmen | E2.25 |
| :--- | :--- |
| 2.10 | | Handbook of ICs, Equiv, \& Subs, 202 Handbook of ICs, Equiv, \& Subs, 202

How to Build Your Own Metal \& Locators, BP32
How to Build Your Own Solid State Oscillo
scope, BP57
How to Get Your Electronic Proide
How to Get Your Electronic Projects Warking,
BP110
How to Identify Unmarked ICs, BP 101
How to Make Walkie-Talkies, BP4
IC Projects for Beginners, BP97
Projects for Beginners, BP97
Microcomputers
Iternational Diode Equiv Guide, BP108 Microprocessors for Hobbyists Mobile Disco Mandbook, BP47
Power Supply Projects, BP76 Practical Construction of Pre-amps, ton trols, filters \& atten, BP60
Radio Control for Beginners, BP79 Simple LED Circuits - Book 2 , BP87
MORE BOOKS IN OUR USTS

FUN WITH ELECTRONICS

Enjoyable introduction to electronics. Full of very clear full colour plctures and easy to follow text. Ideal for all beginners - chitdren and
aduits. Only basic tools needed. 64 full colour agas cover all aspects - soldering - fauh they work). components (identrication and how burglar alarm, radio, games, etc. Requires sol dering - 4 pages clearly show you how. COMPONENTS SUPPLED ALLOW AL PROJECTS TO BE BUILT AND KEPT
Supplied less batteries of cat
FUN WTH ELECTRONICS, COMPONENT PACK £1698 BOOK EXTRA £1.75.

TEACH IN 84

Full kit including 2 EBBO breadboards \& a FREE copy of our catalogue. TEACH IN 84 KIT $£ 22.98$
ine VAT. Reprints 70 each (12 part series).

CATALOGUE

FULIY REVISED 1985 CATALOGUE. Brief de tails of each kit, our books, \& illustrations of our range of tools \& components. Also stepper notor, interface kit \& simple robotics. Plus circuin ideas for you to build. If you read Everyday Electronics than you need a copy of the MAGENTA catalogue.
CATALOGUE \& PRICE LIST - Send E1 in stamps etc. or add 81 to your order. Price list 9×4 sae.
Caralogue FREE TO SCHOOLS/COLLEGES

TOOLS

ANTEX MODEL C IRON
 ANTEX X5 SOLDERRING IRON $25 W$

 STA STAND FOR IRONS SOLDER HANDY SIZE 5 SOLDER CARTON SIZE SOLDER REEL SIZE LOW COST PUERS LOST COST CUTTERS BENT NOSE PLIERS MINI DRILL 12 V (MD 1 MULTMETER TYPE 1 10000pv MULTIMETER TYPE $220,000 \mathrm{opv}$ MULTIMETER TYPE $330,000 \mathrm{opV}$ DESOLDER PUMPSIGNAL INJECTOR
CIRCUIT TESTEP
HELPNGG HANDS JIG a MAGNIFER MINIATURE VICE (PLASTIC)

ROBOTICS

DIY ROBOTICS \& SENSORS BOOKS - with the BBC E7.95; for the Commodore 6487.99 Components used in these books are in our catal

sae.

SAA 1027 driver 55.99 ; 8 way darlington driver ULN2803) E2.38; TL081 49p.
D35 STEPPER MOTOR. 48 Steps. 12V. $£ 14.50$ BBC TO ID35 STEPPER MOTOR INTERFACE PCB PCB, driverIC components, connectors $\&$ leads included. Demonstration software listings, cirgiven. Requires unregulated 12 V dc power supply
INTERFACE KIT (ref EE)
OPTIONAL POWER SUPPLY PARTS $\quad \$ 43.97$ HOW TO MAKE COMPUTER CONTROL LEORO 80TS by Potter/Oxlade, BOOK £3.20. For BBC Spectrum, C64 \& VIC20.
als. Electronile arm robot from simple materiais. Electronic parts etc. avaliable from Magen Also similar to above HOW TO MAKE CON PUTER MODEL CONTROLLERS, BOOK $£ 3.19$

COMPONENTS

We stock a standard range of electronic compo nents including resistors, pots, ICs, capacifors, wire, cases, speakers, switches, connectors tails cases, speakers \&

COMPUTER ACCESSORIES

BBC TRACKBALL CONTROLLER. 2" ball. 2 fire buttons. Analogue input port connector. includes simple soltware listing for treehand drawing. Simply
BBC Digital Joystick. 2 fire buttons. D plug connects to analogue input. $\mathbf{E 9 . 5 9}$

ADVENTURES WITH ELECTRONICS

An easy to follow book suitable for all age Ideal for beginners. No soldering, uses an S Dec Breadboard. Gives clear instructions wit radios, siren, metronome, organ intercom, timer, etc. Helps you learn aboug electronic compo nents and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 3.58$. Component

VOL 14 NO4

 APRIL'85
EVERYDAY ELECTRONICS and computer PROJECTS

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer querles on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons.

COMPONENTSUPPLIES

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 12.00$. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Lid., and sent to Room 2613 , King's Reach Tower, Stamford Street, London SE1 9LS.

BACKISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS are available world-wide price £1.00 Inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders to hold one volume (12 issues) are available from the above address for $£ 5.50$ inclusive of postage and packing worldwide.

PCBs

OVER THE past few years more and more EE projects have been built on printed circuit boards rather than Veroboard or any other constructional form. The introduction of the p.c.b. service has encouraged readers to build using this method and we also supply boards to companies, education departments and training establishments both in the UK and around the world.

Of course p.c.b.s are used in virtually all forms of commercial equipment, they are very reliable, make wiring up easier, help to eliminate mistakes, enable easier checking and usually result in a neater job. This does not mean that there is no place for Veroboard or plug-in breadboarding systems; they continue to provide excellent means of building prototype and one off units and Veroboard is particularly suitable for hobby electronics.

In this issue we take a look at how the hobbyist can make his own p.c.b.s, either from our designs or to meet his own requirements. Even if you never intend to make your own board this article is well worth reading since an understanding of the principles involved in p.c.b. manufacture is always good background knowledge for the user.

FIBRELARM

The Fibrelarm published in this issue is a development of a Bike-A-Larm which won Gideon Tearle his second consecutive prize in the Schools Design Prize competition organized by The Design Council and sponsored by Thorn EMI. Gideon, who is 14 , has designed the first EE project to use fibre optics. The use of the optical fibre in this application is an excellent idea and prevents anyone shorting and cutting the loop, as they could with a wire loop. Fibrelarm is very secure and, since it can operate a large loop, is also versatile.

We are pleased to be able to encourage such designs and hopefully help a little by publishing the results.. It is apparent that EE plays an important part in the dissemination of information and ideas in electronics, particularly in the educational areas. We intend to continue this and indeed develop our involvement in this important sector.

Editorial Offices

EVERYDAY ELECTRONICS EDITORIAL, WESTOVER HOUSE,
WEST QUAY ROAD, POOLE, DORSET BH15 1JG
Phone: Poole (0202) 671191
We regret that lengthy technical enquiries cannot be answered over the telephone

Editor
MIKE KENWARD
Secretary
PAULINE MITCHELL
0202671191 Ext 259
Advertisement Manager
NIGEL BELLWOOD 01-2616882
Advertisment Sales Executive
RICHARD WILLETT 01-2616745
Classified Supervisor
BARBARA BLAKE 01-2615897
Advert Make-Up and Copy Department
JULIE FISH 01-2616615

Advertisement Offices

 EVERYDAY ELECTRONICSADVERTISEMENTS
KING S REACH TOWER
STAMFORD STREET.
LONDON SE1 9LS
Telex 915748 MAGDIV-G

CYBERUOX ROBOT LOICE

JOHN M.H.BECKER

A^{s}S ANY ANDROID knows, cybernetics is a multilimbed field that also includes robotics. Amongst themselves robots probably banter together in a high speed din of binary, but for human-robot chatting, a vocal interface is needed. The "Cybervox" is just such an interface. Translational confrontations are catered for by producing variations of the Dalek dialect, the cavernous cyborg lingo, and some unidentified alien gibberish just in case.

This multi-lingual module consists of a ring modulator, a reverb unit and a voice gate, with five panel controls and two switches to select the desired vernacular. It is battery powered and can be used with many different speech sources including most microphones, cassette decks and pre-amplifiers. Budding robot communicators are referred to the block diagram in Fig. 1

GENERAL DESCRIPTION

A voice signal is brought into either the high or the low level input socket, preamplified at an adjustable gain level, fed to the ring modulator controlled by the variable speed and depth low frequency oscillator. The modulated signal then passes through the mixer to the delay stage through which it travels at a variable rate determined by the frequency of the high speed oscillator.

From there it goes to the first of two filter stages where a proportion can be fed back to the delay loop via the mixer. It also passes through the second filter, and on to the voice gate. This consists of two sections, the first being the gate openclose control activated by the signal from the second pre-amp stage, and the other being the gate itself conducting the processed signal through at a level determined by the control section. The final signal can be fed to a normal amplifier system.

INPUT STAGE

Low level voice signals from sources such as microphones are brought in to the first pre-amp stage IC1a where the gain is set at roughly 100 by the relationship of R2 to R3. From here they go to the
second pre-amp IC1b which also has a separate input, for higher level signals.

Since IC1b is connected as a mixer, signals from both inputs could be brought in simultaneously. It also acts as a gain stage and low pass filter restricting frequencies above the range set by C 4 and C5, though the characteristics will be slightly modified by the setting of VR1.

At 200 Hz the gain can be varied by VR1 from one-tenth to 10 , at 1 kHz the maximum gain is about 2.5 . The preamplified signal is then split to the voice gate control stage, and to the ring modulator.

RING MODULATOR

This is the heart of the Dalek type voice production section. IC3 is a balanced modulator-demodulator chip that has two signal inputs and two carrier inputs. In this circuit only one of each is used for the signal and carrier, but the bias on their counterparts is also important for correct operation.

In simple terms, if a carrier frequency is modulated by another, the frequency at the two antiphase outputs will consist of the sum and the difference of the two. Under ideal conditions, suppose the carrier is at 3 kHz and the modulating signal at 2 kHz , the output will consist of 5 kHz (3 +2 kHz) and $1 \mathrm{kHz}(3-2 \mathrm{kHz})$. In reality life is never that simple and using voice frequencies that consist of numerous harmonics and odd waveforms, other combinations of composite waveforms are produced for a given carrier frequency.

With a low frequency carrier, say between 7 Hz and 30 Hz , variations on the Dalek modulation theme occur.

As the carrier increases so more exotic sounds are produced, gradually acquiring a "metallic" sort of audio fringe at carrier frequencies between 400 Hz and 1 kHz . Beyond that they lose their intelligibility until by the maximum of 3.5 kHz complete gibberish results.

The carrier frequency is generated by the oscillator around IC 2 a and IC2b. As the output of IC2a crosses the comparator trip point governed by R39-41 so IC2b changes its output state. C19 then varies its charge accordingly at a rate set by the total resistance of R42 and VR6, until the trip point is again crossed, whereupon the cycle reverses. The output from IC2a is a triangular waveform of some 2.5 V peak-to-peak. The frequency range available is basically set by C19, which on its own offers a range of 200 Hz to 3.5 kHz . S1 can also switch in C18, which reduces the range to about 7 Hz to 130 Hz . The former range is more suited to exotic modulation effects, becoming unintelligible at the extreme limit, and the latter range more suited to Dalek-type vocalisations.

The output of IC2a is taken via C20 and the attenuator R43 to one carrier input of IC3. In the absence of a signal the two carrier inputs, pins 8 and 10 would be held similarly biased by the voltages applied by the equal resistance series R15/44, R16/45. If both inputs are held in exact equilibrium then the modulation

In the presence of a carrier signal or d.c. imbalance, the input signal from 1 C 1 b and the carrier interact and a composite output results. The modulation inputs, pins 1 and 4, are similarly held at equilibrium by the resistor series R12/13, and R11/10. VR2 is in series with both so that an exact balance point can be achieved. In the absence of a signal from IC1b, with the modulation inputs held in balance, the carrier signal from IC2a is not allowed to pass through.

In practice full suppression of the carrier signal is not possible, and at full carrier strength of 400 mV about 10 mV p-p breakthrough at each output of IC3 is likely to be experienced. The implications of this are discussed later. In this unit exact balancing of the carrier input bias is not required as it is desirable to be able to vary the emphasis of the carrier waveform, to the extent of removing it entirely allowing only the voice to pass through. VR7 is used as a variable parallel shunt; at maximum resistance it makes no significant difference to the potential drop at the junction of R15 and R44 and the maximum modulating strength is then governed by the ratio of R43 to R44.

As VR7 is reduced, so too is the carrier level by the diminishing drop across it and R44, and at the same time the balance between the two carrier inputs, pins 8 and 10 , is modified. At minimum resistance of VR7, the carrier level is reduced to nil, and the imbalance between the two carrier inputs allows the voice signal to pass through without frequency modification.

The maximum amplitude available at the two outputs of IC3, pins 6 and 12, is governed by the degree of imbalance between the carrier inputs, the current through R14, and the value of the two load resistors R17 and R18. The two antiphase signals are then summed at the differential amplifier IC2c which also serves as a mixer to the feedback loop signal ultimately coming from VR5.

DELAY STAGE

To create a reverberation effect, a time delay has to be given to a signal that is then fed back upon itself. The output from IC2c goes to IC4 which is a 1536 stage delay chip. An optimum d.c. bias is required at its input in order to maintain an even waveform shape of the signal passing through. This bias is delivered from VR3 via R25. IC4 is a recentlyintroduced, but otherwise standard bucket-brigade device that passes a signal through each "bucket" stage at a rate set by a split-phase clock signal.

The clock is generated by IC2d which is connected as a squarewave oscillator with a frequency set by C22 and its charging rate controlled by VR8 and R51. At maximum resistance of VR8, the clock frequency is at its slowest of around 13 kHz , and the time delay in IC4 is at its longest of 59 ms . The highest clock of 66 kHz gives a delay time of 12 ms . The

Internal view of the Cybervox Robot Voice with all interwiring complete.
exact delay in milliseconds for a given frequency can be calculated as- (number of delay stages/clock frequency in Hz) \times 500 . The antiphase counterpart to the clock is achieved by inverting the square wave at TR1. The amplitude imbalance between the two is unimportant in this instance. The twin outputs of IC4 are summed at R28 and sent for filtering in the circuit around IC1c.

FILTER STAGES

It is inherent in bucket-brigade delay line chips that a proportion of the clocking signal is carried over into the output. Even though this lies above 13 kHz , it is still desirable to remove most of it. C11 and C12 cause the first filter IC 1c to mop up about 15 dB of a 13 kHz clock, and progressively more of higher clock frequencies. The resulting output is sufficiently clean to be fed back to the delay loop to produce the reverb effect.

The amount of reverb and its quality is governed by the amount of delay and feedback. If too much feedback is given, a perpetual loop can result, causing howl. VR4 is thus inserted and adjusted to keep the feedback just below the critical howl point when VR5 is fully up. Howl is particularly prone to occur with high level bass signals, and a 6 dB cut is given to signals at 100 Hz , to slightly restrict the lower end of the audio spectrum. From IC1c, the processed signal has the clock residual further removed by the second filter stage IC1d, with a cut-off point set by C15 and C16, and giving an additional 26 dB cut to a 13 kHz clock.

VOICE GATE

With an ideal response from IC3, and with no carrier breakthrough the signal would at this stage be suitable for feeding direct to a normal amplifier. However, although the maximum signal output can be around 1.5 V and the maximum summed breakthrough is only about

20 mV , this 37 dB difference was found to be unsatisfactory especially in the absence of a voice input. As the maximum frequency of the carrier is up to 3.5 kHz , it is not possible in a simple unit to filter it out without also losing the voice signalan obviously undesirable solution!

In a more complex unit a steep notch filter tracking with the carrier control, could perhaps achieve the required selective reduction. For this unit though, a voice-operated gate provides a simple alternative. This is not just a straightforward electronic switch operating on and off in response to a voice input, but it has also been given a degree of amplitude-following to smooth the start and finish envelope. The processed signal from IC1d is brought to the voltage controlled amplifier IC5c.

In fact this is a current controlled amplifier, but as the current on its control node will change with the variation of the voltage across R72, it can be regarded as a VCA. The signal is first attentuated by R65 and R66 to a level respected by IC5c. With no current flowing through R72, the gate will not conduct; as the current rises, so the conductance increases and with it the output signal amplitude as additionally set by R68. Buffered by IC5d it can be delivered to the normal amplifier. The control signal is derived from the unprocessed preamplified one from IC1b.

This is further amplified due to the current through R60 and the value of R61. IC5b buffers and presents it to the diode pump network C29, D1, D2 to be stored in C30. As the amplitude varies, so does the charge on C 30 , with a maximum limit set by the Zener D3. The varying charge then controls the current through R72, and thus the output volume. The envelope shape has been selected to give a fast attack set by R63, and a moderate decay set by R72. The overall effect is not only suppression of carrier and other noise breakthrough during speech pauses, but also deliberately introduces a slightly
staccato effect to the robot voice.
This is best emphasised by selecting a gain at IClb that does not allow external background noise to undesirably trigger the gate. Despite the high gain given at IC5a the crosstalk between all stages of IC5 is not intrusive. When the unit is used without the carrier, the gate can be switched out by S2, which applies a fixed voltage to C30 to maintain a constant signal gain, and to shunt the input of IC5a to the reference line so eliminating the gate controller variations.

POWER SUPPLY

The unit is designed to run from a 9 volt battery drawing only about 25 mA . Several intermediate reference levels occur throughout the circuit, the main one which supplies IC1a-d and IC2c is set by R55 and R56 at half the battery voltage level. The large value given to the smoothing capacitor C24 enables the preamp stages IC $1 \mathrm{a} / \mathrm{b}$ to give high gain with minimal circuit noise.

The expedient of providing two 0 V connection points to the main p.c.b. also minimises high gain noise problems. The circuit will operate from a power supply up to 16 V , but only if $\mathrm{C} 24, \mathrm{C} 27$ and C35 have their ratings increased accordingly. Both input jack sockets are wired as battery on/off switches and a mono jack plug must be used with one or other of them for correct operation.

ASSEMBLY

The Cybervox Robot Voice is built on two printed circuit boards. The layout of components on the topside of the Ring Modulator/Reverb board and an actualsize master p.c.b. pattern is shown in Figs. 3 and 4. Layout of components and full-size master pattern for the Voice Gate board is shown in Fig. 5.

Interwiring details of the case-mounted
components is shown in Fig. 2. The key numbers relate to wiring points on the printed circuit boards.

There is nothing complex about the assembly of the printed circuit boards though it is preferable for them to be assembled in order of resistors, diodes, small capacitors, i.c. sockets, presets, short wire links (which can be made from resistor offcut wires), large capacitors and finally the transistor.

Insert only a few parts at a time before soldering them and checking the joints with a magnifier. Do not bend the wires on the track side as this makes them tricky to remove if subsequently an assembly error is found, though it is a good idea to slightly angle them before soldering so that components do not fall out when the p.c.b. is inverted. Next,
neatly carry out the wiring to the panel controls, keeping the wires moderately short, but long enough for inversion of the p.c.b. for examination.

To minimise the chance of error in assembly, lightly cross off from the drawings each component or wire as it is assembled. Diverse colour coded wiring is recommended so that routing can readily be double-checked. Screened leads within the box should not be necessary, but the box should be grounded through one of the pot bodies as shown. Plan out the box drilling before making holes, then use sharp drill bits, if necessary gently removing burred hole edges with a fine file. Upon completion the box can be painted and panel legends applied. Most stationers stock a variety of rub-down lettering that is suitable.
 front panel controls, and the input and output jacksockets on the rear panel.

Fig. 5 (left). The layout of components on the topside and (below) actual-size master pattern for the Voice Gate board. See also previous page, for details of the internal layout and wiring.

CHECKING AND SETTING

There are only three presets to be adjusted, and although they do not require specialised equipment, it is worthwhile adjusting them with patience to attain the best response. For setting up and general testing it is preferable to use a good voice recording from a cassette deck. This should be as free from background noise as possible and of a consistent amplitude. First, VR1 min, VR2 and VR3 midway, VR8 and VR4 max, VR5, VR6 and VR7 $\min , \mathrm{S} 1$ down, S 2 up.

Plug the cassette into the high input socket, and output into the main amplifier. Check that the cassette recording reaches the main amplifier, adjusting VR1 to suit if necessary in order to achieve a reasonable level.

Adjust VR3 around its midway point until the minimum distortion is apparent at higher signal levels. If no difference is heard, leave midway and ignore until other setting up is completed. Fully rotate VR5 and slowly reduce VR4 until a slight reverb effect is heard. Set VR8 for the slowest clock speed whereupon the reverb will deepen. Further reduce VR4 until the best echoing reverb hollowness is achieved. Taking VR4 too far may result in spontaneous "howl" occurring on heavier voice inputs; if it does, sharply back off VR4 and start again. Aim for the closest you can get without howl. Playing around with VR8 and VR5, the full range of delay effects will be found.

COMPONENTS

Resistors

R10,R13
R24,R26,R27,R44,
R45,R53,R63,R66,R67
R46
R17,R18,R42,R43,
R47,R55,R56,R70,R71
R2,R7,R9,R14,R52.
R58,R59,R62,R69
R11,R12,R15,R16
R28,R64,R65
R6,R30,R34,R39
R1,R4,R5,R8,
R19-R23.R25,R29,R31.
R33,R35-R38,R40
R48-R51,R54,R57,R72
R32,R60
R41
R61,R68
R3
All $\frac{1}{4}$ W 5% carbon film

Capacitors

C1-C3,C6-C8,C13
C14,C23,C25,C26,C31
C10,C28
C19
C22
C5,C12
C4.C11
C16
C15
C9,C18,C32
C17,C20,C21,C33-C35
C29, C30
C27
C24

100 (2 off)
1k (9 off) 3k

4 k 7 (9 off)
10k (9 off)
18 k (4 off)
47k (3 off) 82 k (4 off)
$100 \mathrm{k}(25 \mathrm{off})$
200k (2 off)
300k
560 k (2 off)
1 M2

100n polyester (12 off)
22π polyester (2 off)
$47 n$ polyester
56 p polystyrene
180p polystyrene (2 off)
330 p polystyrene (2 off)
470 p polystyrene
1n polystyrene
$1 \mu, 63 \mathrm{~V}$, axial elect. (3 off) $22 \mu, 10 \mathrm{~V}$, axial elect. (6 off) $4 \mu 7,63 \mathrm{~V}$, axial elect. (2 off) $470 \mu, 10 \mathrm{~V}$, axial elect.
$470 \mu, 6 \cdot 3 \mathrm{~V}$, axial elect.

Semiconductors

IC1.IC2	TL084 (2 off)
IC3	MC1496
IC4	TDA1097
IC5	LM13600
TR1	BC549
D1.D2	1N4148
D3	BZY88 3.3V, 400 mW Zener.

Potentiometers
VR2,VR3

VR4

VR7
VR5,VR6
VR8
VR1

5 k skeleton, horizontal mounting (2 off) (may be 4k7) 100k skeleton, horizontal mounting 100k log., rotary pot. 100 k rotary pot. (2 off) 500 k rotary pot. (may be 470k) 2 M log., rotary pot.

All linear tracking unless stated otherwise

Miscellaneous

S1
s.p.d.t. switch, sub-min.

S2
d.p.d.t switch, sub-min
ted circuit boards; i.c. sockets; jack sockets; p.c.b. clips; PP3 battery clip; pot knobs.
Case- $9 \times 5 \frac{1}{4} \times 2 \frac{1}{2}$ in. approx.; stick-on feet.

Next, VR5 min, VR8 min (highest clock-shortest delay), S1 up, VR6 midway, VR7 max. A moderate Dalek type modulation to the input voice should be heard. VR7 will vary its depth, and VR6 the rate of modulation. Switch down S1 and the rate will increase dramatically and be accompanied by a high pitch whistle. As the highest setting of VR6 is approached, the voice output will become virtually unintelligible as the extreme modulation effect increases. With the high pitch whistle at its most apparent setting, fully turn down VR1 and also the voice input source volume control so that only the whistle remains.

Do not pull out the jack plug from the input as this will turn off the battery, and thus remove power from the unit. Now very carefully and with patience rotate VR2 around its midway point until the minimum whistle is heard. It will never be completely nullified by VR2 but will drop to a markedly lower level as the modulation input bias of IC3 is absolutely balanced. Turning down VR7 it should totally disappear. The voice gate can now be checked but requires no setting up. With S2 down the gate is under control from the signal coming from IC1b.

The operation of the gate under automatic voice control will of course depend on the level of the signal at IC1b. Too high a level will increase any background noise present and this will be amplified by the control to above the gate operation threshold. Too low a signal and
the gate will be reluctant to open. The best setting of VRI is that which will cause the gate to open and close regularly for moderately spaced words or phrases. This gives the semi-staccato effect to the unit when the carrier is being used. For the reverb on its own, the gate can usually be switched off allowing the reverb effect to die away of its own accord. With the gate on the reverb will naturally die as the gate closes.

Experiment for a while with various settings of all the panel controls and attain a feeling for the flexibility of the simulator, if necessary slightly adjust any of the presets. Any adjustment to VR2 though should only be made after the unit has been switched on for several minutes as the balance may be slightly temperature sensitive.

USE

Either of the inputs may be used, to suit the strength of the incoming voice signal. Within reason it will not harm the unit to have the wrong strength on the wrong jack socket, it will only produce signal distortion or reduction. IC4 is the most sensitive to overloading and has a maximum desirable signal input level of 1.5 V rms.

The maximum output from IC3 is approximately the same as that from IC1b, depending on the setting of VR7 which will give a slight reduction'at full carrier
modulation. To this level IC1c can add a similar level via VR5. Substantially this means that the signal from IC1b should be no more than half of 1.5 V rms, i.e., 750 mV . With the wide reduction and expansion range offered by VR1 the unit will cope with signal levels up to 7.5 V . The maximum output though is dictated by the imbalance created between the two carrier inputs of IC3.

Without the reverb in circuit and with VR7 turned down so removing the carrier, the gain factors throughout have been set to give roughly a 1.5 volt output at IC5d for a 1.5 volt output at IC1b. This is the maximum output level that can be expected and increasing VR1 further will be likely to lead to distortion, but not output gain. Incidentally VR1 will only significantly increase signals below the filter cut off region as set by C4 and C5.

There is no reason why the unit should not be used with musical sources if odd effects are required, but the frequency bandwidth is too restricted for full range serious musical use. However, any sort of voice input will produce results. The most dramatic results though come from words spoken in a uniform monotone fashion. For those with drama facilities the unit plus a small amplifier could be inserted into a model robot for supreme realism. But even for lesser time lords without stage props a lot of realistic fun can be had with only the unit, a microphone and an amplifier. Just plug in, switch on and enjoy a spot of social cyberchat.

$$
\begin{aligned}
& \text { PREPARE FORTOMORROWHS } \\
& \text { WORLD,TODAY! } \\
& \text { An understanding of electronic and computer } \\
& \text { technology is fast becoming a vital part of today's } \\
& \text { living. Take out an annual subscription and have } \\
& \text { EVERYDAY ELECTRONICS \& COMPUTER } \\
& \text { PROJECTS delivered direct to your door every } \\
& \text { month... }
\end{aligned}
$$

EVERYDAY

E -3 SUBSCRIPTION and computer pROJECTS ORDER FORM

Complete this form and post it, with payment or credit card authorisation to: Everyday Electronics Subscription Dept. Oakfield House, 35 Perrymount Road, Haywards Heath, West Sussex RH16 3DH

POST COPIES TO: NAME:

ADDRESS

Card valid from: \qquad 10

SHOP in ing
 BY MIKE ABBOTT

Catalogue Received

We have received the latest Cricklewood Electronics catalogue, and as a general electronics components supplier with an emphasis on semiconductors we can recommend this company as a useful source of parts for the hobbyist. In addition to multimeters and soldering irons, knobs, boxes and connectors, p.c.b. making accessories, nuts, bolts and heatsinks, there are some surprise items like valves and thermal fuses. Telephone orders can be accepted on most major credit cards by simply quoting your card number and shopping list. To obtain a current catalogue just telephone Cricklewood (601-450 0995) with your details and they will arrange to send you one free of charge.

Suck Blow

Dealing a blow to the underworld of micro-debris is the smallest vacuum cleaner in the world, as far as we know. With the Mini-Vac, a lightweight miniature vacuum cleaner powered from a single 9 V battery, you can remove dust and filings from your equipment with peace of mind.

As every hobbyist knows, you can always blow swarf from a freshly drilled metal box, but the mischievous debris you seek to remove invariably siezes the opportunity to lodge somewhere more devastating. MiniVac will 'bag' the blighters for you, and the bag may be quickly removed for emptying, by way of a Velcro seal.

The tool has an optional attachment to turn it into a blower. The two-brush vacuum head is described as 'lense" quality and is therefore of interest to photographers also.

The vacuum cleaner is clearly not intended for use as a solder sucker. MiniVac costs $£ 19.60$ + VAT and should be found generally available, otherwise contact O \& S Photographic Co., South Block, The Maltings, Sawbridgeworth, Hertfordshire, for more information.

Surprising Spectacles

Stand-mounted magnifying glasses are the most widely used aid to fine detail benchwork, but they tend to be bulky and not cost justifiable to the hobbyist. An alternative exists in the shape of the Leeda Magnifier. These prismatic, half-lense magnifying spectacles have a focal length of around 255 mm (10 ins), and may be perched on your nose whilst modelling or inspecting those terrifyingly'minute tracks of a micro computer p.c.b. If nothing else, they will earn you the sympathy of your friends funless you explain what they're for).

The spectacles seem an obvious idea for today's electronics hobbyist, although (shshsh!) they were originally conceived to assist trout fishermen with their artificial flies! A sobering thought. If you cannot find them locally you can order a pair from Leeda Ltd., 14 Cannon St., Southampton SO9 2RB. Send $£ 13.70$ to include VAT and P\&P.

CONSTRUCTIONAL PROJECTS

Insulation Tester

A full kit of parts for the Insulation Tester project is available from Magenta Electronics Ltd., 135 Hunter St., Burton-on-Trent, Staffordshire DE14 2ST. The kit price is $£ 16.96$.

You may purchase the p.c.b. separately for $£ 2.98$, and both these prices include VAT, although 60p extra per order should be sent to cover P\&P. All parts for this project are available separately.

Fibrelarm

In fact, there is no cause for alarm with the Fibrelarm project. All components are readily available. The light fibre specified is available from RS Components, although only in bulk amounts; and from Maplin in short lengths. T1 is Tandy No. 2737011. The BPX25 phototransistor is available from Magenta Electronics, for $£ 4.75$.

Immersion Heater Controller
Most of the components required for the Immersion Heater Controller are widely available from suppliers such as Maplin and a host of other companies which you will find listed in the Advertisers' Index at the back of this magazine. A flip through the aforementioned Cricklewood catalogue reveals that this company sells the thermistor type VA 1067 (do obtain a catalogue for ordering details), and 2 -pole/ 6 -way rotary switches, but no suitable relay for RLB, nor the BTX 18-400 thyristor.

Relay RLA can be the Maplin 10A mains relay, although any 12 V relay with normally open contacts rated at 1 A or more at 240 V a.c. will do. It is worth noting that when relays and transformers are specified, and very often switches too, substitutes may be found that have adequate electrical characteristics but differ in physical configuration.
'Stripboard layouts, such as the one illustrated in the Immersion Heater Controller may of course be altered to accommodate components which are electrical substitutes but which have different physical configurations, or size, although this is unfortunately not so with p.c.b.s. But beware switches, typically rotary switches, when following wiring diagrams because, again, physical variations occurwiring diagrams, as opposed to circuit diagrams, can sometimes only be a guide.

For RLA the author used relay UOD featured in the Cirkit catalogue, details of which may be obtained from Cirkit Consumer Division, Park Lane, Broxbourne, Hertfordshire EN10 7NQ. C0992 44411 1. Relay RLB was selected from RS Components' range (RS 348-403) but any 20 A mains relay with 240 V coil will suffice. A suitable choice would be Arrow Code No. 30A026 (order code 258-35375E) from Verospeed, Stanstead Rd., Boyatt Wood, Eastleigh, Hampshire SO5 4ZY. $\int 0703$ 644555.

Robot Voice

A complete kit of parts for Cybervox Robot Voice is available from Phonosonics, 8 Finucane Drive, Orpington, Kent BR5 4ED. COrpington 37821 , and costs $£ 44$ inclusive of VAT and P\&P. The two p.c.b.s are available separately for f 6.07 inclusive. The TD 1097 can be ordered individually for $£ 12.86$ which includes VAT and 50 pence postage. The following components are available also from RS Components: TDA1097. LM 13600 and TLO84.

The MC 1496 is available from Maplin Electronics. Note that parts from trade supplier RS Components can be obtained through: Ace Mailtronix Ltd., 26 Castle Rd., Wakefield, West Yorkshire WF2 7LZ. ك0924250375.

INSULATION TESTER MARK STUART

MOST electronics enthusiasts will at some time have been called upon to install or check domestic appliances and mains wiring.

Using a standard multimeter on resistance range it is easy to check for continuity, and the correct operation of switches etc. The difficulty comes when the quality of insulation is to be tested. Most meters use standard 9 V or 15 V batteries on the 'high' resistance ranges; this voltage is clearly a long way below the working voltage of the wiring and so the readings obtained can be very misleading. Insulation which breaks down dangerously at mains voltage can appear to be fine at 15 volts.

To overcome this limitation it has become standard professional practice to measure insulation at a potential of 500 volts using an instrument known as a 'Megger'. The original Meggers used a small hand cranked generator to produce the 500 volts. Modern versions are now available which derive the test voltage from a few 1.5 V cells via an electronic inverter. The problem is that commercial instruments are rather expensive for occasional use by the hobbyist.

This project is a reliable 500 volt insulation tester at a reasonable price.

CIRCUIT

The circuit diagram is shown in Fig. 1. IC1 produces a 30 kHz pulse waveform which drives TR2, the inverter output transistor, via R4. The collector of TR2 drives L1, which is the primary of a toroidal transformer. When TR2 is turned on the current in L1 builds up and energy is stored in the ferrite core. At the end of a drive pulse TR2 is turned off.

The sudden interruption of the current in L1 causes a high voltage 'back e.m.f.' pulse to be produced in L1, and in the other windings on the core. This high voltage pulse on L1 is stepped up by the winding ratio of the transformer ($50: 9$) and produces a pulse of 250 volts across L3. The maximum voltage of the pulse is determined by the amount of energy stored in the core of the transformer and by the load connected to L3.

A third winding on the core (L2) provides feedback, which stabilises the voltage of the back e.m.f. pulse regardless of the battery state or the load presented
across the probes. Diode DI and capacitor C4 rectify and smooth the voltage from L2. The resulting d.c. voltage is fed via D7 to the base of TR1.

If the voltage across C 4 rises to more than 3.6 volts TR1 begins to turn on. As TR1 turns on the Threshold Control pin of IC 1 is pulled towards the negative supply rail. This alters the output waveform from ICl resulting in narrower drive pulses being supplied to TR2. In turn this means that less energy is stored in the transformer core during each pulse and the output voltage falls.

This feedback results in the circuit settling so that the voltage across C 4 is always maintained at 3.6 volts. Allowing

for the efficiency of D1 this gives a peak voltage of 5 volts across the single turn winding L2. The peak voltage at TR2 collector is $9 \times 5=45$ volts and the voltage across L 3 is $50 \times 5=250$ volts.

The secondary voltage from L3 is connected directly to D2 and also via C5 to D3 and D4. This arrangement works as a voltage doubler producing 500 volts across the series combination of C6 and C7. Resistors R7 and R8 ensure the rapid discharge of the capacitors when power is removed.

The test voltage is fed to the meter via R6, which limits the output current to $500 \mu \mathrm{~A}$.

The components around the meter are arranged to remove some of the scale non-linearity which occurs in ohm-meters at high values of resistance. At low currents there is insufficient voltage across the meter to enable D5 to conduct and so the meter acts as a standard $100 \mu \mathrm{~A}$ meter. Above half scale D5 begins to conduct and introduces the shunting effect of VR1 across the meter. This changes the sensitivity to 500 microamps. In this way the meter can display a wider range of resistance values without scale cramping.

A single p.c.b. is used for this circuit. Fig. 2 shows the copper foil pattern. Refer to Fig. 3, the component layout diagram, and fit the components as shown. The inverter transformer consists of a ferrite toroid core upon which three windings must be threaded for L1, L2 and L3. The windings should be neat single layers positioned as in Fig. 3. Begin by winding L3. Approximately 2 metres of $28 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire are required. Leave approximately 10 cm of free wire at each end and secure the winding with adhesive tape. Note that the winding does not need to be covered with tape, use just enough to stop the ends unwinding.

Next use $\frac{1}{2}$-metre of $28 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire to wind the primary winding L1. It is important that the windings have the correct polarity. The 'dots' shown on Fig. 1 and Fig. 3 indicate the starts of the windings. Keep the same side of the core uppermost and start each winding by passing the wire up through the centre of the core. The polarities of the windings will then be correct.

When L1 and L3 are complete, wind L2 by passing a length of insulated connecting wire once through the core. Attach the core to the board using a length of insulating sleeving passed around the core and through the holes in the board, as shown in Fig. 3. Do not use bare wires to fix the core as this would become a shorted turn, and prevent the circuit from working.

Carefully scrape away the enamel from the ends of L1 and L3 before soldering the wires to the p.c.b.

It is important to note that only the specified ferrite core should be used. The design of inverter circuits depends upon the inductance of the windings and the properties of the ferrite. Some types of ferrite core may look very similar but be completely unsuitable for this circuit. It is also important to use the specified diodes for D1,2,3 and 4. Ordinary rectifiers such as 1 N4005 are designed for use at 50 Hz . They are practically useless at 30 kHz because of their slow response.

When the board is complete the case lid should be cut out to take the meter and the test switch S1. The p.c.b. is mounted in the bottom of the case using two bolts with nuts as spacers-the high

Fig. 1. Complete circuit diagram for the Insulation Tester.

SAFETY

Fig. 2. Printed circuit layout (actual size).

EEI660
Fig. 3. Component layout on the topside of the printed circuit board. TR2 may be a TO5 can transistor.

Resistors

R1	330
R2,3	10 k (2 off)
R4	470
R5	8 k 2
R6	1 M
R7.8	10 M (2 off)

All resistors $\frac{1}{4}$ W 5% carbon film

Potentiometer

VR1 2k2 preset

Capacitors

C1	10 n C280
C2	2200 p poly
C3	$100 \mu 16 \mathrm{~V}$ elect. radia
C4	$10 \mu 10 \mathrm{~V}$ elect.
C5.6.7	$4 \mathrm{n7} 7$ ceramic 500 V
C8	10 n 50 V ceramic

Semiconductors

D1,5,6	1N4148
D2,3,4	BY206G high speed 300 V
D7	BZX61 C3VO
TR1	BC1B3
TR2	BFY50
IC1	555

Miscellaneous

S1 Momentary action push button switch
T1 Toroidal transformer core type ROF241212
$100 \mu \mathrm{~A}$ meter approx. 4 K resistance (MR45)
Leads- 1 M red and black well insulated
Probes- 1 probe and 1 crocodile clip Case plastic-approx. $150 \times \mathrm{BO} \times 50 \mathrm{~mm}$ PP3 battery, clips, feet, fixings, 28 s.w.g. enamelled copper wire, sleeving. Printed circuit board

The meter can be calibrated by using a range of resistors and marking the readings each time on a blank piece of paper fitted over the scale. Alternatively, if the specified meter is used Fig. 4 can be cut out or traced and fitted to the meter.

If a multimeter is available the voltage across the probes can be measured. This should be between 450 and 550 volts. The battery current consumption is between 20 and 60 milliamps depending upon the resistance across the probes. With the probes open-circuited the battery current should not exceed 35 mA .

USE

An insulation tester is very straightforward to use. Clip the probes across the component or wiring to be tested and press the test button. When testing mains wiring take care to disconnect the power first and check between Live and Earth, and Neutral and Earth, as well as between Live and Neutral. When testing electrical appliances always check for insulation between the mains terminals and exposed metal parts.

Take special care when testing circuits with suppressor capacitors. These will be charged to 500 volts and will give a very nasty shock if touched. To prevent this problem always release the test button and wait for a few seconds before discon-

necting the probes. This will allow the external capacitor to discharge via R6, R7 and R8.

The tester can be used to check high voltage semiconductors such as power rectifiers and thyristors etc., provided
they are rated above 500 volts. Never use the tester on integrated circuits or low voltage semiconductors. The circuit is designed to withstand being accidentally connected to the mains. The battery life should be very long since current is only

Fig. 5. Wiring diagram and mechanical layout of the Insulation Tester.
taken during tests. When the battery is getting low it will no longer be possible to get full scale readings on the meter when the probes are shorted. This is a simple test that should be carried out prior to each test.

MOST of the projects published in magazines have p.c.b. designs, and yet many readers may be unfamiliar with this form of construction technique and are still using Veroboard, or 'bird's nest' wiring arrangements. This article has been written to sweep away many of the fears, and to show how simple the process really is, given a bit of tenacity in the learning stages.

Printed circuit boards replace as many connecting wires as possible with solid copper tracks bonded to a sheet of material, usually 'Synthetic Resin Bonded Paper' (SRBP), or fibreglass. The components are then mounted on the plain side, with the leads inserted through holes onto the various connecting points (pads) on the track side. They are then soldered to make the inter-connections. The art is in drawing the tracks so that the components can be mounted neatly, and with as few link wires as possible.

If you look at a complicated circuit, you will realise that to join all the components together without any of the tracks crossing each other (which is obviously impossible, as they will short circuit) requires a good deal of forethought and planning with a sheet of graph paper. However, let's start simply. How do you 'draw' the tracks?

When you go to an electronics shop for p.c.b. materials you will be presented with a sheet of plain 'copper-clad' board, either a special pen, or some transfers, and a bottle of horrible brown liquid called 'Ferric Chloride'. Before going any
further a WARNING. This liquid gets everywhere and stains everything, so the use of an apron and rubber gloves is recommended. Tracks are drawn on the copper side with the pen or transfers which are etch-resistant, and the board is then placed in a tray containing the Ferric Chloride. The 'tracks' prevent the Ferric Chloride from dissolving away the copper underneath them, and when the process is finished, the board is cleaned. Copper tracks will be left where you have placed the lines, pads, etc. Holes are then drilled, and the components inserted and soldered. The best way of learning this is with simple examples.

PREPARING A SIMPLE PCB

Look at the circuit in Fig. 1 which turns on an l.e.d. when the pushbutton is pressed. The transistor is actually superfluous, but has beeen included for a special reason, to show that you must think in reverse. You are preparing the drawing for the 'track side', and this will then be turned upside down to insert the components on the 'component side'. Thus the pin-out for a common BC109 npn type transistor from underneath is reversed as in Fig. 2. Usually it is best to try to place the supply lines at the top and bottom of the p.c.b. The following spacings can be used as a rule of thumb. Allow $\frac{4}{10}$ " for a resistor, $\frac{3}{10}{ }^{\prime \prime}$ for diodes, and $\frac{2}{10}{ }^{\prime \prime}$ for l.e.d.s, ceramic and tantalum capacitors. Polyester capacitors vary so

Fig. 1. Simple pushbutton circuit diagram.

FROM BELOW
[E1014]
Fig. 2. Pin-out of BC109 from above and below the p.c.b.
much in size that one spacing dimension will not suffice.

From the collector of TR1 we need to have one pad to connect the l.e.d. cathode, then another pad for the anode, $\frac{2}{10}$ " away, linked to the 470 ohm resistor. The spacing for this is $\frac{4}{10}$, and it is placed East to West to keep the overall p.c.b. size small (Fig. 3). From this end we need a pad for the 1 k resistor, placed North to South, and another pad for the positive supply. The other end of the 1 k resistor has a pad attached for one lead to the pushbutton, the other lead being connected to a pad from the base of TR1. Also from the base is a pad for the 100 k resistor, again placed East to West. Small pads are used for components, the larger pads used for interconnecting leads, to a) accommodate Veropins, and b) to differentiate them from component pads.

Fig. 3. Track layout and component overlay for the simple pushbutton circuit.

Fig. 4. Circuit diagram for l.e.d. flasher circuit.

ICs, PRESETS, ETC

It may seem pedantic to arrange the components in straight lines but it really does make following the circuit a lot easier; important for other people who may build the same circuit and use your p.c.b. design. This is particularly true as the circuit becomes slightly more complicated as in Fig. 4. This is a simple NE555 based l.e.d. flasher, but it incorporates some more elements into p.c.b. design, namely a polyester capacitor, a preset pot, and an i.c. It is here that the warning about thinking in reverse becomes vitally important. If you look at the i.c. and then turn it upside down, i.e. looking from the track side, you will note that pin 1 is in the top right hand corner. (See Fig. 5.)

It is likely that most designers of p.c.b.s. have forgotten this fact at some time or other, and ruined a p.c.b. because the i.c. was back to front. To avoid wasting numerous p.c.b.s. always use a sheet of $\frac{1}{10}$ " graph paper, and draw the i.c. block in ink, with the pin numbers starting with ' 1 ' at the top right, then numbering round clockwise, so that from the beginning the i.c.s will be correct. The use of imperial measurements may seem old-fashioned, but the fact is that i.c. pins are exactly $\frac{1}{10 \prime}$ apart, with the two rows $\frac{3}{10}$ " apart ($\frac{6}{10}{ }^{\prime \prime}$ for the large i.c.s).

Fig. 5. Track layout and component overlay for the l.e.d. flasher.

Looking at the circuit in detail, the 0.1 microfarad polyester capacitor is allowed a $\frac{4}{10}{ }^{\prime \prime}$ spacing, and the tantalum $\frac{2}{10}{ }^{\prime \prime}$. The components have been spread out a little to help explain the principles; obviously these 'rules' have to be broken if space is at a premium, e.g. resistors may need to be placed on end. Note the preset; this has a spacing of $\frac{2^{\prime \prime}}{10}$ for the two legs, with the 3 rd (the 'wiper' leg) spaced $\frac{4}{10}$ " away (larger pads were used for the preset).

The prototype was drawn using graph paper, so that mistakes are easy to rub out, before committing pen to copper. All the components are again placed N / S or E / W, and the aim is to avoid using link wires. The resistors have been placed $\frac{2}{10}{ }^{\prime \prime}$ apart and $\frac{2}{10}{ }^{\prime \prime}$ from the i.c., but in practice they can be closer together, if necessary. The '+ve' Veropin pad has been placed only $\frac{1}{10}{ }^{\prime \prime}$ away from the end of one resistor, and this is quite acceptable if the soldering is neat. The i.c. has pin 1 to 0 ve , so is placed with pin 1 at the bottom of the p.c.b.

When the design is finished, the board can be prepared by cleaning it thoroughly, either with wire wool or a special p.c.b. cleaner (RS 555-308). Lay the graph paper over the copper and secure with 'Sellotape'. Using a sharp

stylus, press the point through the paper to mark the various pads onto the copper. Also mark the corners of all the lines so that they can be drawn straight using a ruler. The paper is then removed and the pads and lines drawn with the pen (or transfers). As a general rule make the lines thick, both in width and in consistency. Pale straggly lines will get eaten away by the solution. Do not touch the cleaned copper, otherwise the grease from the hands will affect the etching process. The board is then placed in the Ferric Chloride.

ETCHING

There are many schools of thought about how the board should be immersed. It is true that placing the board in the bottom of the tray, copper side up will result in a very slow process. This is because as copper is etched away it remains on the board, preventing fresh solution from reaching the copper. Thus the use of a slender container is advised, insert the boards vertically. This has the advantage of enabling double-sided boards (see later) to be etched easily.

If the solution is bought in powder form it needs to be mixed with water. Important This is an 'exothermic' reac-

tion, i.e. it gives off heat, so do not add water to the powder, as it will spit and fume. Pour the powder gently into the water.

It is difficult to find a list of recommended mixing amounts, but 4 oz of powder to 10 fl oz of water seems to be about right. Manufacturers' claims of 10 minutes etching time may be rather optimistic; if the solution is cold, allow about $1 \frac{1}{2}$ hours! If the solution can be warmed the process will be much faster; standing the container in a bowl of hot water will speed up the process.

When the etching is complete remove the board and rinse with clean water. The etch-resist can be removed with wire wool or scouring powder, after which you should be left with a perfect p.c.b. waiting to be drilled. It is preferable to use a minidrill with a 1 mm bit, after which the components can be inserted with confidence, knowing that the circuit will work first time (you hope). You will find that using a stylus to mark the pad positions has the advantage of providing ready made 'starters' for the mini-drill which would otherwise tend to 'skate' over the smooth copper surface.

TRANSFERS

You may feel after a time that pens do not give neat results, even using a ruler, and there are aids to make life easier and the result more professional. Rub down transfers can be purchased, and these can be simply placed direct onto the copper (again very clean) and etched as normal. Sheets of pads, i.c. configurations, lines, etc., and special crepe tape can be purchased in various thicknesses to quickly produce the lines. They are very simple to use, and the final p.c.b.s look much better.

As a general rule, try to avoid running lines between i.c. pins, but if this is unavoidable, special transfer packs of i.c. designs with lines between individual pins are available. Obviously it is quite easy to run lines between the two separate rows of i.c. pins, usually assume that three can be drawn with relative ease, using very
thin crepe tape; this has, on occasion, been increased to six where necessary. Packs of transfers are available from most electronics shops, and readers may like to note that 'Letraset' and similar makes are also etch-resistant. Very effective badges can be made using lettering and etching, e.g. radio hams' callsign badges.

PHOTO-ETCHING

Taking the production of p.c.b.s a stage further, those readers who are interested in developing their own projects and p.c.b.s will find any of the above methods very time-consuming. This is almost invariable because the p.c.b., after it has been etched, will need modifications, improvements, etc., and to completely redraw the whole board again is very annoying, particularly as copying errors will often creep in.

To alleviate this, a process of photoetching is possible. This involves using the same transfers, lines, pads, etc., but instead of placing them direct onto the copper they are rubbed onto a clear acetate sheet. Graph paper is placed underneath,

and the process is very similar to that used when drawing the board, with the exception that mistakes, modifications and improvements can be made much more easily by removing the lines and pads from the acetate by gentle scraping.

The completed sheet is then placed onto a piece of photo-sensitive board (which has had its protective plastic layer removed) and inserted into an 'Ultraviolet box'. Make sure the design is the right way round; rub down lettering can be used to add the word 'TRACK' to the p.c.b. side. It is also a good idea to include a small figure ' 1 ' by pin 1 of each i.c. to help orientation when inserting the components. The coating on the board is sensitive to Ultra-violet light, so the whole board is exposed for about three minutes. The pads and tracks prevent the light reaching the copper in the required areas, and after the allotted time the board is
placed in a solution of caustic soda (3 teaspoons of powder to 2 beakers of water). The reaction is again 'exothermic', and rubber gloves should be used as this solution is not kind to the hands!

Within a few seconds a stunning change will occur and the p.c.b. design will appear. When this is clear and contrasted, the development time being approx one-two mins, remove the board, and rinse gently in cold water. Do not touch the board as the design is soft and can be easily damaged. Leave to dry and harden for about half an hour, and then etch as normal in the Ferric Chloride. The big advantage of the system is the ease of modification, and repeatability, the disadvantage being the cost of photosensitive boards and the light box.

DOUBLE-SIDED BOARDS

Sometimes a circuit is just so complicated that one set of tracks will not suffice, and the choice is between having several link wires, or preparing a second set of p.c.b. tracks on the component side (double-sided). This obviously raises many difficulties-avoiding the compo-

nents themselves, matching the two sides together, etc.-but the effect can sometimes be extremely dramatic in shrinking the size of a completed board and making the final assembly straightforward. It is outside the scope of this article to explain how double-sided boards are made. Experimenters, however, may like to know that using the 'photo' technique the acetate sheets can be placed on top of each other, immediatley showing up any problem areas where, e.g. the pads from the track side will interrupt the tracks on the component side.

This article has been written not to frighten people off, but to show that with a bit of determination, p.c.b. design and production can be mastered quite easily, it really is worth it. The effect this will have on projects can be dramatic, being neater, easier to fault-find, and possibly more likely to work first time!

TRANSISTORS				SERVIC
AC128	0.30	BF338	0.38	ALL SE
AC176	0.28	BFX26	0.28	PROD
AF239	0.68	BFX84	0.24	Switch Clea
BC107	0.10	BFX85	0.26	Circuit Freez
BC108	0.10	BFX87	0.26	Foam Cleans
BC109	0.10	BFY50	0.21	Aero Klene
A.B.C.	0.12	BFY52	0.21	Grease \Aer
BC147	0.09	BFY90	0.90	
BC182	0.09	BSX20	0.34	
BC182L	0.09	BU208	1.55	Plastic Seal
BC184	0.09	BU407	1.65	Excel Polish
BC184L	0.09	MJ2955	0.90	Fre Extingui
BC212	0.09	OC45	0.58	
BC212L	0.09	OC71	0.50	Video Head
BCY70	0.15	OC72	0.52	
BD131/2	0.34	TIP31A	0.44	Solda Mop
BDI33	0.56	TIP32A	0.42	Solda Mop
BDI35	0.32	T1P33C	0.88	
BD136	0.36	TIP34A	0.72	
BF115	0.32	TIP2955	0.60	above 30 p
BF184	0.32	TIP3055	0.60	
BF185	0.32	TIS43	0.88	
BF194	0.08	TIS88	0.40	OLTAC
BF195	0.10	2N3055	0.45	REGULA
BF196	0.10	2SC1096	0.68	
BF197	0.10	2SC1173Y	0.82	78L05/12/1
BF200	0.38	2SC1306	0.92	7505/12/15
BF224	0.20	$2 S C 1307$	0.40	7905/12/15
BF244	0.26	2SC1957	0.76	LM317K
BF244A	0.28	2SC2028	0.73	
BF244B	0.30	2SC2029	2.10	PLASTIC
BF259	0.32	2SC2078	1.05	
BF262	0.30	2SC2166	1.20	$3 \times 2 \times$
BF263	0.30	35K88	0.65	$3 \times 21 / 2$
BF337	0.38	40673	0.80	4×3
TRANSFORMERS				$6 \times 4 \times 2$
British made transformers at very attractive prices.				$81 / 2 \times 5$
Primany 240v:	$\text { y } \mathrm{Cu}$	$\begin{array}{ll} \text { Current } & 1+ \\ 100 \mathrm{~m} / \mathrm{a} & 0.58 \end{array}$	$\begin{array}{lc} 10+ & 100+ \\ 0.52 & 0.40 \end{array}$	boxes wit
240v:	50	$500 \mathrm{~m} / \mathrm{a}$ a 0.05	$0.60 \quad 0.48$	sc
Carriage 45p per 1ransformer. £1.00 per 10.				
MARCO TRADING (DEPT EE4)				
The Maltings				
High Street				

Wem, Shropshire SY4 5EN
Tel: 093932763 Telex: 35565

MULTI METER SPECIAL

Requires $A A$ cells (not supplied) and leads, etc Russian type A U4324, 20,000 O.P. D.C. Voltage: $0.6,1.2,3,12,30,60,120$. 600, 1200; AC. Voltage: $3.6,15,60,150,300,600,900 ;$ D.C. Intensity M/A: $0.06,0.6,6,60,600,3000$; AC. Intensity M/A: 0.3, 3, 30, 300, 3000; D.C. Resistance: 0.2 5, 50, 500, 5000 kO hm ; g.e. level dB: -10 to +12 FANTASTIC SPECLAL PRICE: inkuding P/P and VAT

CA3011 I.C.S

CA3011

CA3012
CA3018
CA3020
CA3028A
CA3080E
CA3085
CA3090AO
CA3130E
CA3140E
HA1336W
LM324N
LM339
LM348
LM380
LM381N
LM386
LM387
LM389N
LM3914N
LM3915N
ML232B
555
C-mos555
741
SAS560S
SAS570S
SL901B
SL917B
SL917B
TA7205AF
TA7222P
TDA1004
TLO72
TL.O81
TLO84

SOLDERING AIDS
TELECOM EQUIP

BT Plug \& 3M lead | Antex 15 W iron | 5.00 |
| :--- | :--- |
| Antex 18 W iron | 5.00 |
| Antex 25 W iron | 5.20 |
| Antex Elements | 200 | Antex Elements

Antex Bits Antex stands BT MASTER SOCKET $\quad \begin{array}{r}-1.25 \\ 2.85\end{array}$BT Sec SktBT 4-core cable
0.15

100 M 12.00
Desolder Tool \qquad
25W Kit-iron with 13 plug
\& stand
ONLY 620

NI-CAD CHARCER
ROTARY POT
0.25W Carbon Log 8
ach 0.32
103.00
Any 10028.00
ARD

VEROBOARD

$21 / 2 \times 31 / 4$
$21 / 2 \times 5$
$21 / 2 \times 17$
$21 / 2 \times 17$
$31 / 4 \times 17$
$31 / 4 \times 5$
$33 / 4 \times 17$
$33 / 4 \times 17$
$43 / 4 \times 173 / 4$
Pkt of 100 pins
Spt face cutter Pin insert tool Vero Wiring Pen $\&$ Spool
Dip Board
Vero Strip

RESISTOR KITS

/AW Pack 10 each value E12 10R-1M
Total; 610 resistors
W Pack 5 each value E12 10R-1M
Total: 305 resistors
2W Pack 10 oach value E12 2R2-2M2 Total: 730 resistors
2W Pack 5 each value E12 2R2-2M2 Total: 365 resistors

ONLY 4.80
ONLY 2.75
ONLY 5.25
ONL.Y 3.50

MARCO	Our latest 123 page catalogue over 4000 items fully illustrated. Send $65 p$
85	now for your copy. FREE with orders Electronics Components Catalogue

thabbyboard Printed Circuit Hardware \& Component Catalogue

* COPPERCLADLAMINATES

PHOTO-RESIST LAMINATE \& CHEMICALS PRINTED CIRCUIT DRAUGHTING AIDS VERO BOARD \& PROTOTYPING SYSTEMS CONNECTORS/CASES/GENERAL HARDWARE
SELECTION OF COMPONENTS EDUCATIONAL COMPUTING ELECTRONICS KITS

KELAN ENGINEERING LTD. Circuit Products \& Components Division. 27-29 Leadhall Lane, Harrogate. North Yorkshire. HG2 9NJ. Tel: (0423) 870938.

EE/4/85
NAME
ADDRESS

SECURTTY EQUIPMENT

1. Magneic Contact from 50
2. 6 inch $12 \mathrm{~V} D \mathrm{D}$ Bell 26.75 .
3. Bell Boxes. All colours and types from 23.55
4. Microsiren approx 100 dB 12v DC $\mathbf{e 3 . 9 5}$.
5. Control panel timed entry and exit dry 12 v battery only (ANTI TAMPER) E21.75
6. Control panet timed entry and exin (variable) BSA 737 mains battery. Auto Reset includes, fused spur block very smant (white) lots of functions 833.50 .
7. High power xemon beacom. Colours, Red/Blue/Yellow/Amber weather prool. $250 \mathrm{~mA} 12 \mathrm{~V} 0 \mathrm{C} \boldsymbol{2 7 2 0}$. 9. 4 -core security cable. 100 metres $\mathbf{7 7} 35$.
8. Pressure matts from $£ 1.05$.

We stock everyhing in Security equipment. CC, TV, Tools. Microwave. Lighting. FCT and Big Name products like Racal, Elkron, Munford \& White, A\&G, Bentley, to name a Iew.
with first order of $£ 75.00$ or more.
Wiy not become an alarm instalier with our extra discoumt trade prices you could really have a high profit
business in no time?All trade enquiries wetoome.

ELECTRONIC COMPONENTS Our Electronic Components department will be fully open Dec 84 with super bury lines like these. Electronic buzzer 25 mA 12 vDC . 55 p . 240 V mains transformers, secondary voltage type are: 4.5vo. 4.5 59p 600, $6 v £ 1.06$ 9v0, 9v $£ 1.15$ 3. Capacitors from $2.5 p$ anch (pc). 4. Transistors from $4 p$ (popular	ELECTRICAL EQUIPMENT Once again a few samples of our prices. 1. 1 mm win \& earth, 100 mtrs E9.93. 2. 13 amp plugs 390 . 3. Twin swatched sockets $\not 289$. 4. Mini trunking $16 \mathrm{~mm} 16 \mathrm{~mm} \times$ 3 mtrs $£ 1.99$ (callers only). 5. 5 foot fluorescent tube compiete with tube $\mathbf{6 5 . 5 5}$. 6. 500 W tungsten halogen fitting complete $\mathbf{~} 9.95$. 7. 240 v bulbs S.E.S. or S.B.C. 40 w 60 w 100 w 25 p.	SECURTY EQUIPMENT Racal $7 / 212 \mathrm{mtr} 13$ zone passive infra red movement detector E31.00. Passives from E750.
5. $21 / 2$ inch miniature speakers 8ohm 0.3W 99p. 6. IN4148 Dlodes 2p, ench 7. Resistors from ip ench 8. LEDs 3 mm \& 5 mm Red with clips 10p each (Also full range). Price Lists send $50 \mathrm{D}+$ SAE.	TELEPHONES We now have a large variety of telephones and fittings all at low low prices. For instance: Digital teleotiones from $\mathbf{\Sigma 1 0}$.	All trade enquines weloome. We have the lowest wholesale and tetail prices. Send 500 \& SA.E. for price list E2 P\&P to be added to all post orders. All prices subject to VAT (@) 15%.

Cut Price Electrics Ltd
Dept E.E. 159 High Street, Strood,
Rochester, Kent ME2 4TH. Tel: Medway (0634) 727604
Shop hours $8.30-6 \mathrm{pm}$ Mon-Sat.

2
 4

Mail order \& shops:
441 PRINCES ROAD, DARTFORD, KENT DA1 1RB Telephone: (0322) 91454
ORDERING INFORMATION: P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed. Discounts available on orders over $£ 50$ - phone for details. For unlisted components phone for price. Goods normally despatched by retum post.
NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED
This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.
Sections are headed as follows:
Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, OPTO, PCB, Resistors,
Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.
In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.
How many suppliers do you have at the moment that offer a service like this?

Please fill in coupon below and send with $£ 1.25$. Print clearly as coupon is used as address label.
Catalogue contains $£ 2.50$ discount order form - You make a profit straight away.

NAME

ADDRESS

POSTCODE ELECTRONICS MAZE

First there was SUPERKIT

and now NEW
 SUPERKIT II

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchrogous, decade and Gray code), registers, pattern recognisers and 7 -segment displays. You need the board and components from SUPERKIT to enable you to build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronlcs - what really goes on inside a computer.
SUPERKIT (SUP) £22.00 SUPERKIT II (SUP II) £16.00 Special price $£ 36.00$ for both (SUP + II) (inc. VAT and $p \& p$) The SUPERKIT series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced), which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.
DIGITAL COMPUTER LOGIC (DCU E7.00
DIGITAL COMPUTER DESIGN (DCD) £9.60
MICROPROCESSORS AND MICROELECTRONICS (MIC) £6.60 Please send for full information on these and our other courses.
GUARANTE E If you are not completely satistied refum the liem to us within 28 doys for a full refund. All prices include woridwide surface postage (ask for prepayment invoice for airmall). Allow 28 days for delivery in UK. Overseas payment by intemational credli card or by bank drath
on a London bank
CAMBRIDGE LEARNING LTD, Unit 39, Rivermill Site, FREEPOST, St lves, Cambs PE17 4BR, England.
Tel: 0480-67446
Vat No 313026022 Transcash No 2789159 Reg No 1328762
Please send me (initial letters used):

```
SUP @ £22.00
@22.00 .........DCL @ £7.00
.......SUPII @ £16.00........DCD @ £9.50
.......SUP + II @ £35.00 .........MIC @ £6.50
```

I enclose a cheque/PO payable to Cambridge Leaming Lid for£
Please charge my . credit card,
No
Expiry date
Telephone orders fromi credit card holders accepted on
048067446 (24 hrs)
Name
Address

WHY is it that some operational amplifiers need two batteries and others only one?

Like many integrated circuits, the operational amplifier is a small miracle of technology. : Operational amplifiers once existed in non-integrated form; indeed, they existed back in the days of radio valves. When it was realised that quite simple electronic circuits could perform quite difficult mathematical functions (such as integration); engineers set about designing a standardised amplifier which could be adapted for performing mathematical tasks.

NUMBERS

In these tasks, numbers were represented by voltages: $2 \mathrm{~V}=20,3 \mathrm{~V}=30$, for example. If a circult was arranged to add, then with the values just given, $20+30$ required an output of $5 \mathrm{~V}(=50)$. Since the input voltages (2 V and 3 V) were measured with respect to a zero-voltage (OV) line, then the output voltages must also be measured with reference to the same zero line. In other words (Fig. 1), the zero line had to be common to both input and output.

Now, valves and transistors have this in common: the output of amplifier lat a collector or anode) is normally at a different voltage level from the input.

A transistor stage with an input to the base of OV has an output at the collector at some other voltage, such as +10 V . This is no use in analogue computing, where +10 V means a number (in our case, 100). For computing purposes, the steady output must somehow be reduced to zero.

SPLIT SUPPLIES

The solution (Fig. 2) is to use split power supplies. The standing voltage at TR1's collector must be positive with respect to the zero line. The standing voltage at the lower end of R3 is negative. The voltage at the junction of R2 and R3 is somewhere between the collector voltage and B2-. If the values of R2 and R3. are chosen correctly the voltage is zero.

Fig. 2. Split power supplies.
Any change of collector voltage (due to input, signal) now changes the output (at the Junction of R2 and R3) from zero. The change can be positive or negative, so the circuit can handle both positive and negative numbers.

OPERATIONAL AMPLIFIERS

The idea of an operational amplifier evolved from such analogue computing circuits.

A pre-requisite was that inputs and outputs should be referenced to a common zero line and thls called for split power supplies.

Certain other needs affected the design. One was that the amplifier should have a very high gain: because analogue computing calls for great accuracy. If an operational amplifier has an extremely high gain, and the gain is then reduced to some required value, say 100 , by negative feedback, then the reduced gain can be set by two resistances and is virtually independent

Fig. 3. Op-amp circuit. EEI84A
of the 'real' or internal gain of the amplifier (called on data sheets the open loop gain).

Another requirement was very low output impedance. This ensures that the output voltage stays constant irrespective of the amount of current taken from the output. The amplifier has to be stable (not oscillate) when negative feedback is applied, even when the whole of the output is fed back to the input (which sets the gain to 1 of -1 , a mathematically useful condition).

Finally, the operational amplifier must go on working properly in the face of supply voltage variations, temperature changes, mains pick-up and similar nuisances.

When the small miracles happened, and all this performance was pushed into an integrated circuit, and sold at a low price, everybody wanted to use operational amplifiers. Not just for analogue computing (which is specialised), but for everyday jobs like audio amplification.

For many of these new users there was no need of a common input/output 'zero line'. They were quite happy to take an a.c. output from a point at a d.c. level different from the input. If the d.c. was embarrassing, It was easy enough to insert a coupling capacitor.

CHEATING

Almost any operational amplifier designed for split-supply operation can be worked as an a.c. amplifier from a single supply. The trick is to set the d.c. input and output voltages to half the supply voltage. This is done (Fig. 3) by making $\mathrm{R} 1=\mathrm{R} 2$. Direct current feedback from output to the inverting (-) input (via R4) then forces the d.c. output voltage to be the same as the voltage applied to the non-inverting (+) input; d.c.-wise, the amplifier operates as if its supplies were $6 \mathrm{~V}+6 \mathrm{~V}$ instead of a simple 12 V ; a.c.-wise it doesn't care.

The coupling capacitors C1 and C3 allow the output to swing about the zero line, going negative or positive, though of course the output terminal of the operational amplifier really sits at +6 V .

SINGLE-SUPPLY

It would be nice not to have to cheat in this way; i.e., to have an operational amplifier whose inputs could be applied d.c.-wise as well as a.c.-wise, between the input terminals and "zero", without blocking capacitors and d.c. biasing.

Unfortunately, some operational amplifiers have an Achilles' heel. If the voltage at one of their input terminals goes negative with respect to the negative end of the battery, the amplifier draws a large and uncontrollable current and is destroyed.

This is known as latch-up, and since the kind of single-supply operation we are interested in makes it inevitable that the input voltage will swing below battery negative (on the negative half cycles of input signals), something must be done.

Something has been. Single-supply operational amplifiers whose input can safely be taken a little negative of battery minus are now available.

CIRCUIT EXCHANGE

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circults published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

The ZX Power Supply Add-On also provides a reset facllity.

One of the let-downs of many home computers is the exclusion of an on/off switch or reset facility. As a bonus to the main purpose of this project this facility is provided by a simple break switch.

The push button S1 (which is a push-tobreak type) provides a "reset" facility, and D1 shows when power is applied to the computer.
S. L. Walls,

Great Dunmow,
Essex.

ZX POWER SUPPLY ADD-ON

THIS IS a design for a circuit which will reduce the heating effect in the ZX81 by reducing the voltage fed to the regulator. It is suitable for computers which use a 9 V supply, such as the $\mathbf{Z X} 81, \mathbf{Z X}$ Spectrum and $\mathbf{Z X}$ Spectrum+.

The output of the ZX Power Supply is about 15 V of rectified and smoothed a.c., which the internal regulator reduces to 5 V for the TTL chips and the processor. The 10 V extra voltage leads to heating of the regulator and heatsink, which can cause errors and mechanical failures, due to the high internal temperature.

The circuit included pre-regulates the 15 V to about 9 V which is fed to the computer.

IC1 should be mounted on an aluminium plate about $50 \times 50 \mathrm{~mm}$, or the case of an aluminium box. The tab of the i.c. is internally connected to pin 1 , so if the unit is boxed in a metal enclosure it should be isolated by mica washers and insulating bushes.

It is recommended that the small power plug which plugs into the computer is cut off with some cable left to connect it to the output of the circuit, and the cable from the ZX Power Supply is connected to the input of the circuit.
The 10 k preset should be adjusted so that 9 V or just over appears on the output terminals, before connecting it to the computer. When this is done, it is ready to be used with the computer, which should not heat up as much as before.

MULTIMETER

BUYER'S GUIDE...

For most hobbyists the multimeter is the first major investment in serious electronic construction. Our guide will help to ensure that this investment is well made.

AMSTRAD CPC 464 AMPLIFIER

If you own an Amstrad CPC 464 microcomputer why not build our stereo amplifier add-on, and give your machine true arcade quality sound effects when running games. The amp will also prove handy when developing multi-channel sound programs.

AUTO PHASE

Musicians-Build a really nasty foot controlled effects box. To be different, this phaser uses signal amplitude to shape the envelope. Auto-phaser is simple and economical to construct.

MAY 1985 ISSUE ON SALE FRIDAY; APRIL 19

START \Rightarrow				R	E	G	E	R	
Y	H	P	A	O	U	E	N	A	T
E	\times	T	R	R	L	F	N	O	1
5	N	E	G	\bigcirc	B	\bigcirc	T	T	0
0	M	E	T	E	R	G	N	1	M
M	0	D	E	P	M	1			
E	T	E	R	E	\times	P	0		
0	M	E	S	1	L	A	N		
5	F	L	T	T	M	1	E		
T	E	B	A	L	U	T	N		

$\cdots \mathrm{W}$	5403
G_- B	Feedbacr.
ELUO	Image on screen
	MEASURES change
B.-.-.-. ${ }^{\text {G }}$	Bodow the KNEE
-. R--- ${ }^{\text {M }}$	Measures impedace
$\underline{\square}$...Curve
M---.-I_E..	Not one stable state
-O.--L	metal oxide.

byithakery

Solutions on

page 225

11б FOR SLOW $=1$ TO LONG: NEXT SLOW REM This is the delay loop: it is a For'loop: the \}variable 'SLOW'starts with the value before the 'To' and is increased by 1 until it is preaters than the value after the 'TO' ie lone,

120 IF $\mathrm{COL}=39$ THEN $\mathrm{CHANGE}=-1$
$13 \varnothing$ IF COL $=0$ THEN CHANGE $=+1$
$14 \varnothing$ PRINT TAB(COL,RoW)" "SEM ThiS Drints a'space' (Over the'star' to wipe it yout from its ald position
$15 \varnothing$ LET COL = COLTCHANGE REM This changes the value
of col in order to change Dosition of 'star'
60 GOTOIO0 REM Returs us to the Deginning

180 REM Notice that we nave GOTOl00. This brings up the point that line numbers in basic programs are used both to 'EDIT' progrems while theyare \{ Deing wntten te to put the program into proper order even when its being changed.

190 REM and LINE numbers are used when the program is running so that Goto statements (have a (unique) way of identifying which line Yyouare to GOTO.

$>$ RUN
PRESS'RETURN'KEY

Their quest to pr the valley of the 5 before. Although 1 actually a series | formed a total of |
| :--- |
| can you. |

THIS MONTH, as promised, we shall turn our attention to a simple four channel input interface for use with the Spectrum and Spectrum-Plus. This device will allow you to connect up to four switches or TTL-compatible devices which can be "sensed" by the Spectrum in order to determine whether they are "on" or "off". Before going further, let's briefly consider a practical application of such an interface in the form of an "intelligent" security alarm.

Intruder Alarm

Suppose that we wish to protect a room against intruders. To each door and window we could fit a magnetic reed switch. These switches would open whenever their respective window or door is opened and close whenever their respective window or door is shut.

Assuming that the room has three windows and one door, each of the four reed switches could be wired to its own input on the interface. With the aid of some relatively simple software (written in BASIC) it is possible to repeatedly sense the state of all four switches. We could then arrange for an alarm signal to be generated whenever any one, or more, of the switches was found to be open and print an appropriate warning message on the screen to indicate which entrance has been opened.

Sounds complicated? Not at all, the four channel input interface requires only three common TTL integrated circuits and can be built in less than an hour for an outlay of less than $£ 5$! The added bonus with using a computer as an
"intelligent" controller is that it becomes very easy to make changes to the operation of the system by simply altering the control software.

If, for example, we wished to incorporate some sort of delay in order to permit brief opening and closing of the door without setting off the alarm, all we need to do is include a suitable delay loop (or PAUSE in ZX BASIC) within our control program. Alternatively, we could include a routine within our software to record each individual opening and closing of a door or window storing also the time and period for which the door or window was opened.

Hardware

The complete circuit of the fourchannel input interface is shown in Fig. 1. An eight-input NAND gate, IC2, is used to partially decode the address bus, IORQ and RD signals in order to produce an active-low enable signal for the four-channel tri-state multiplexer, IC3. The decoding produces a low signal to enable IC3 whenever the following address and control bus pattern appears:

Construction

The interface components are assembled on a small piece of Veroboard measuring approximately $80 \mathrm{~mm} \times$ 80 mm . Whilst the precise dimensions of the board are not critical, it must have a minimum of 28 tracks aligned in the vertical plane. The 28 -way double sided edge connector is mounted along the bottom edge of the board and will require approximately 5 rows of holes across the full width of the stripboard. The board will thus stand vertically when the connector is mated with the Spectrum.

Before soldering any of the components to the stripboard, it is important to leave some clearance for the rear "overhang" of the case. For the Spectrum this gap should correspond to 8 rows of holes (20 mm approx.) whilst for the Spectrum Plus the gap should be increased to 12 rows of holes (30 mm approx.).

Whilst component layout is not usually critical, care should be taken to ensure that the supply decoupling capacitors, C 1 to C3, are distributed around the board (each preferably associated with an individual integrated circuit supply). Great

$\overline{\text { IORQ }}$	$\overline{\mathrm{RD}}$	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
0	0	1	X	X	1	1	1	1	1
(where $\mathrm{X}=$ don't care)									

It should be noted that the $\overline{\text { IORQ }}$ and $\overline{\mathrm{RD}}$ control lines go to logic 0 whenever the $\mathbf{Z 8 0}$ CPU executes an IN instruction (corresponding to the ZX BASIC IN function).

Further address decoding is provided within IC3 which has its select inputs connected to A5 and A6 of the address bus. The particular input port selected is thus governed by the state of these lines and, assuming that all of the other address bus lines are "high", the inptit port assignment is as follows:

A6	A5	INPUT PORT (decimal)	INPUT CHANNEL (fed to D0 line)
0	0	159	A
0	1	191	B
1	0	223	C
1	1	255	D

The four 1 k resistors connected to each input line act as "pull-up" resistors and ensure that a disconnected line or switch open produces a "high" or logic 1 input. Conversely, a closed switch produces a "low" or logic 0 input.
care should be taken to ensure that all unwanted tracks are cut (including those which link the upper and lower sides of the 28 -way connector).

A purpose designed 'spot-face' cutter may be used for this purpose or, if such a device is not available, use can be made of a small sharp drill bit.

Links on the underside of the board are best made using appropriate lengths of miniature insulated wire of the type normally employed for wire wrapping. Readers requiring further information on the connector should refer to last month's On Spec.

When the stripboard wiring has been completed, the three integrated circuit devices should be inserted into their respective sockets (taking care to ensure correct orientation) and the entire board should be carefully checked before connecting to the Spectrum. Note that the Spectrum should always be disconnected from its supply before either connecting or disconnecting any interface module.

If all is well, when power is re-applied, the normal copyright message should appear. If not, disconnect the power, remove the interface and check again.

Software

The status of the four input channels may be read from BASIC using IN (port number). For example, to assign the current value of channel D to a variable, d , we could use the following BASIC program line:

110 LET d=IN 255
Since all of the unused data lines (D1 to D7) will be at logic 1 , the value of d will be either 255 or 254 depending upon whether the switch is open ($\mathrm{D} 0=1$) or closed ($\mathrm{D} 0=0$) respectively. The following program prints the logical state of input channel D:

```
110 LET d=IN 255
120 LET d=d-254
130 PRINT d
```

This simply returns " 1 " for switch open and " 0 " for switch closed. Alternatively we could use:

$$
\begin{array}{ll}
110 & \text { LET } d=\text { IN } 255 \\
120 & \text { IF } d=255 \text { THEN PRINT "off"" } \\
130 & \text { IF. } d=254 \text { THEN PRINT "on" }
\end{array}
$$

Sensing

Either of the above routines can be incorporated into a loop so that the state of the input line is repeatedly sensed. In a practical situation, however, it is a good idea to include PAUSE between statements containing IN , as shown in the following program which prints the status of all four input channels ($1=$ "off", $0=$ "on"):

```
REM Displays the logical
    REM state of inputs }A\mathrm{ to D
105 PAUSE }1
110 LET d=IN 255
112 LET d=d-254
115 PAUSE 10
120 LET c=IN 223
122 LET c=c-254
125 PAUSE }1
130 LET b=IN 191
132 LETb=b-254
135 PAUSE }1
140 LET a=IN 159
142 LET a=a-254
145 PAUSE }1
150 PRINT AT 0,0; "DCBA"
152 PRINT AT 2,0;d;c;b;a
155 GOTO 105
```

A complete listing of an intelligent security alarm program is included in our first "Spectrum Update". To receive your copy, you need only send a large stamped addressed envelope to:

Mike Tooley,
Department of Technology,
Brooklands Technical College,
Heath Road,
WEYBRIDGE,
Surrey,
KT13 8TT

Fig. 1. Circuit diagram of the four-channel interface for the intruder-detection system.

Semiconductors

IC1	74LSO4
IC2	74LS30
IC3	74LS253
D1	Red l.e.d.

Resistors

R1-R4
1k (4 off)
R5 270
All $\frac{1}{4} W \pm 5 \%$
Capacitors
C1-C3 $\quad 100 \mathrm{n}$ polyester (3 off)
C4 $\quad 10 \mu 16 \mathrm{~V}$ electrolytic

> COMMPNAENTS approximate ELISt £5.00

Miscellaneous

14-pin low-profile sockets (2 off)
16 -pin low-profile d.i.l. socket (1 off)
28 -way open end double-sided 2.54 mm pitch connector.
Terminal pins (8 off) or 8 -way 2.54 mm pitch p.c. connector
2.54 mm hole pitch stripboard measuring approx. $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ (minimum 28 strips)

It is worth noting also, that a firm called Kelan Engineering make a standard prototype kit for Spectrum and Spectrum-Plus interface projects, which includes double-sided connector, stripboard, and case.

Kelan are at 27-29 Leadhall Lane, Harrogate, and at around £9, their HB/2090 interface port would seem to be
good value. We hope to have more information on interfacing kits in future articles.

Finally, don't forget to include any comments, queries, or suggestions for inclusion in On Spec-see you next month!
NEXT MONTH: Interfacing temperature and light sensors.

EVERYDAY news

from the world of

PRUPHDCIES for the בlist CETTURY

* An entirely new range of up-to-date telephone booths will be appearing on Britain's streets as part of a major "shake-up" of BT's payphone services.

* All new booths will be equipped with the latest push-button payphones.

AGLIMPSE of the 21st Century was the claim being used by British Telecom with the unveiling of a $£ 160$ million investment programme to introduce a completely new range of modern telephone booths, using the most up-to-date electronic payphones and new concepts in cashless calling.

Introducing the modernisation programme, Mr Iain Vallance, BT's Managing Director, Local Communications Services, said: "The New British Telecom will take a radical approach to the problems inherent in today's outdated payphone service.
"We aim to encourage greater use of payphones by making them more convenient and attractive to use and by extending the facilities they offer . . ."

Added Mr Nick Kane, Director of Marketing "We are spending £35 million on these new booths over the next ten years and a further $£ 125$ million on payphone equipment.
"The familiar red kiosks will not disappear immediately. They may be kept where there are special local reasons such as in conservation areas. But they no longer meet the requirements of our customers. Few people like to use them.
"We are also planning to have payphones which take ordinary credit cards or no cards at all -a customer's own identification number will do"

Kiosks

The new booths have been specially designed with the needs of the handicapped in mind and allow easy access by wheelchair users. It is claimed that they are cheaper to maintain, more brightly lit and fitted with sound proofing and vandal-resistant panelling.

The range consists of models with and without doors, "walkin" booths and hoods which cover only the telephone equipment. Decisions on which designs to use at which sites will be taken locally by district managers.

Baçk-to-back pedestal booths is one solution to the problem of fitting them into crowded town

The old traditional, warm and cosy, "red" telephone/bus kiosk was first introduced in 1936 and was operated by the now famous "push button A and button $B^{\prime \prime}$ sequence. The new, in some cases open to the elements, push-button payphone booth is ideal for wheelchair-bound users.

The new CreditCall phones are fully automatic and accept Access, Visa and American Express charge and credit cards.

Calls from these phones cost the same as normal coin operated ones but there is a 50p initial charge for five units. The cost of calls is charged to the user's credit card account in the normal way.
centre sites. Future designs, for shopping precincts, concourses and busy sites, will also include a triangulat-plan design.

The full length booth will be used in quieter locations where traffic noise does not intrude on the conversation. The open design does not allow litter or smells to accumulate but still protects the equipment and the user from the elements.

All new booths will be equipped with the latest push-button electronic payphone.

Payphones

Two new types of cashless payphones are planned. The first service, entitled CreditCall, operates on a customer's own credit card, such as Access, Visa or American Express. The customer inserts his or her card in a special unit attached to the payphones. This reads the card, records the details of the call and transmits the information to special equipment in the telephone exchange, The customer is then charged on his credit card account in the usual way.

Trials are being held in London, at Heathrow Airport, and British Rail Waterloo. The

Heathrow experiment involves equipment fitted with an automatic "voice response" message to guide users.

The other service, entitled AccountC all, will soon go on trial in Bristol. Modern push-button payphones are used, linked to special equipment at the exchange.

The customer dials his account number and personal identification code number before making a call. The call charges are then added to the user's home or business telephone account.

Other payphone developments for the future include extending the "Trainphone" trial on British Rail's Western Region to other services and the introduction of public payphones on express coaches and ferries. This service would be through BT's radio network.

It's not often that you can find fault with BT's services or new products, but in this case for the sum of $£ 160$ million a "multipurpose" booth that accepts cash as well as credit cards is surely to be expected. After all not everyone wants to become reliant on "credit cards".-See Barry Fox's comments in "For Your Entertainment", page 224.

SKY RIDER

Cars guided by satellites are being developed by A ustin Rover.

Just as satellites help with ships navigation, so they will be linked by computer to vehicles to tell the driver which way to go for the quickest. least hazardous or less congested route.-Who knows they may even be able to monitor vehicle speeds on motorways and so prevent some of the fatal pile-ups!

This small peep into the future came about recently when Austin Rover's chief executive, Mr. Harold Musgrove, opened an Advance Technology Centre at Warwick University. The centre is to research ways of applying aerospace technology to the design of future family cars.

Eric Sawkins has been appointed Land-based Sales Manager of Electra Communications, a division of the Marconi International Marine.

Name Change

When Computer Link (UK) Ltd., was first registered a search of UK company names was made but not of foreign registrations. It now transpires that a foreign company exists which has exactly the same name.

Although the foreign company does not supply the same goods they have raised strong objections to the use of the name. So Computer Link (UK) have agreed to change their name. In future they will be trading as R.S.D. CONNECTIONS LTD., PO Box 1, Ware, Herts.

Honeywell on Dole

The prestigious contract to supply minicomputers and terminals to the DHSS for unemployment benefit offices has been awarded to Honeywell Information Systems.

The contract was won from a short list including Honeywell, British Telecom and Standard Telephone \& Cables.

BBC SHUT-DOWN

A milestone in the history of British broadcasting came to a close recently when all of the remaining BBC 405-line transmitters were switched off.

When the 405-line service started in 1936 it was described as "The World's first regular public service of high-definition television programmes". The number of viewers had been dwindling since the introduction of the duplicate 625-line ultra-high frequency (u.h.f.) colour servjce in 1969.

The closure comes as the result of an announcement by the Home Secretary in 1983 that the frequencies used by the 405-line transmitters should be released by the broadcasters for mobile radio communication. The close-down of the last transmitter, at Melvaig in West Scotland, was carried out by Syd Garrioch, the local transmitter manager.

In its hey-day, the 405-line network comprised one hundred and seven transmitters.

Former Engineer-in-Charge at the BBC's Crystal Palace (London). transmitter station, Bill Busby, switched off the 405-line sound transmitter on 2 January 1985.

The purchase of a 27,000 square metres manufacturing facility in Taiwan is announced by Motorola.

Situated in Chung-Li, it will be used to manufacture, assembl and test a variety of products, including integrated circuits.

Cellnet Captures Birmingham

Cellnet became the first cellular operator to move outside the London area when the service opened in the Midlands at the beginning of February. The historic first call was made during a conference held at the Hilton, Park Lane and was seen by the guests by mean of a live video link.

The initial City of Birmingham service allows existing customers (more than 750) to extend their use of the system. Additional "cells" will be added over the next few weeks to offer a comprehensive coverage of the West Midlands area.

Work has now started on more than 100 cells which will extend the service along the motorways radiating from London to cover, Birmingham, Liverpool, Manchester and Leeds by April, and Severnside and the south coast from Bournemouth to Brighton by June.

A TOUCH OF CLASS

Now firmly settled in their new modern $9,200 \mathrm{sq} \mathrm{ft}$ premises, Watford Electronics have come a long way in only twelve years. Thanks to the entrepreneurial skills of their Managing Director, Mr N. Jessa, they topped the £5 million turnover figure last year, mainly through mail order.

The new premises, located in the High Street, Watford, have been specially designed to meet their every need. This includes improved storage, packing and administration areas, plus customer car parking facilities in front of the building.

Watford stock a very large range of general components, including probably one of the most comprehensive stocks of i.c.s and microprocessor chips in the UK. Also, the range of custom designed BBC Micro peripherals has been highly acclaimed by both amateur and professional alike.

Their pricing strategy on all computer based items is second to none and a visit to their new demonstration "studio" is to be recommended. Their full address is: Watford Electronics, Jessa House, 250 High Street, Watford, Herts, WD1 2 AN.

FAULT FINDING E.A.Rule Part 6

THE cassette recorder is found in most homes these days, either used as a means of reproducing music tapes or used with a home computer. In general these machines are very reliable, but they can and do go wrong. From time to time they require servicing if maximum performance is to be maintained. In view of this a brief look at some of the common faults may be helpful.

COMMON FAULTS

One of the most common faults to come into the workshop is where the cassette recorder will not record, and will only replay with either low output or very poor frequency response. In almost every case this is due to dirty record/replay heads. The oxide wears off the tape and builds up onto the heads and tape transport mechanism resulting in the head gap being filled with oxide dust.

Recording/replay heads have a very small gap across which the magnetic flux is transferred either from tape to head or head to tape. Once this gap is filled with oxide dust it is in effect 'shorted out' and it becomes impossible to record. Long before this happens however there is a gradual falling off in high frequency response and volume on replay. This dust can also affect the erase head causing poor erasure and leaving a residual on the tape from earlier recordings.

The first job when servicing a cassette recorder then is to clean the heads and tape transport mechanism. To make a thorough job of this the unit should be removed from its case so that it can be worked on in the open. First clean the heads using a cotton bud (these can be obtained from most chemists) soaked in a specialised video-head cleaning fluid. Gently wipe the cotton bud across the head and also up and down along the line
Fig. 1. Typical cassette recorder layout (before removal from case).

of the gap, with really dirty heads you may need to repeat this a number of times. The final cotton bud should be a clean one. Then use a dry cotton bud to finish off.

Once the heads are cleaned, use the same method to clean the tape guides, capstan and pinch roller. Be thorough in your cleaning or you may get misleading results later during the service. Sometimes the capstan is so dirty that a cotton bud just will not remove the oxide dust, in these cases hold a small screw driver blade very gently against the capstan while it is rotating and then finish off again with the cotton buds. Use only gentle pressure and do not touch the heads with the screwdriver.

Fig. 2. Pinch roller assembly. Its surface should be flat. Clean with same solventused for the heads.

Oxide on the capstan can be one reason for a variation in tape speed resulting in a high level of 'wow' but another cause is a faulty pinch roller. The surface of this against the capstan should be clean and flat as its job is to keep the tape in constant contact with the capstan, see Fig. 2.

After much use they become distorted and the surface becomes rounded, when this happens it can cause tapes to 'ride' up and jam. A replacement pinch roller is the only satisfactory answer and you may need the services of a skilled engineer to effect a replacement.

Another cause of speed variations is grease on a drive belt or motor pulley, these can also be cleaned with cotton buds etc. but often the drive belt will be found to have stretched and a replacement may well be required.

Another fairly common fault on cassette units is oscillation on replay. Quite a number of cassette recorders are
received with this symptom in the author's workshop. The cure is simple. Clean the record/replay switching. To do this use an aerosol switch cleaner spray to spray the switch contacts and then operate the switch a number of times. This will clean off the tarnish and oxide from the contacts and it is the high resistance due to this that causes the oscillation. (This is because both inputs and outputs are switched via the same contacts on many cassette recorders.)

Note, because most cassette recorders have a mechanical interlock to prevent accidental recordings, this will prevent the record/replay switch from operating, a simple method of overriding it while cleaning switches is simply to fit a blank cassette into the recorder. (One which has not had the anti-recording tabs removed.)

Do not be tempted to adjust any presets you may find around the recorder. If these are incorrectly set you will need a special recording tape to reset, and these test tapes can set you back about $£ 25$, so I repeat do not be tempted unless you really know what you are doing.

Electronic faults can be traced in much the same way as already described in earlier parts of this series. However, an oscilloscope will be found most helpful because in many parts of the circuit you will be dealing with very small audio signals mixed up with high frequency bias signals. Without a scope you will not know what you are measuring. Once servicing is completed the final job should be to demagnetise the heads and tape transport. Suitable demagnetisers are available from a number of sources at reasonable cost and the improvement in signal to noise on recordings makes the investment worth while.

Fig: 3. Enlarged view of heads. These should be cleaned with a specialised head cleaning fluid, such as Bib Video hiead cleaning fluid.

HEAD CASE

I have not yet mentioned the azimuth adjustment of the record/replay head. To adjust this correctly requires the special test tape, however if the head has been changed or otherwise removed for some reason it is possible to get near to the correct setting by using a good quality commercial music tape. Simply adjust the azimuth screw for maximum high frequency sounds, see Fig. 3.

Worn heads can cause many problems. At first the high frequency starts to fall, then the output volume. Later 'flutter' increases and in extreme cases damage to tape results. The author once had a cassette in for service where the record/replay head had a hole in the front where the gap should be. The customer complained that it was chewing up tapes, no mention of the poor sound quality, it takes all sorts.

Replacing a worn head is not difficult providing you can obtain a suitable replacement. A number of stockists now carry replacement heads and if you tell them the type of machine you have they will advise you on a suitable replacement.

Having obtained a suitable replacement (check it has the same connections) carefully unsolder the leads to the old head, noting which colour leads go to which tag. Remove the old head by undoing the two fixing screws (one each side) one of which will be the azimuth adjustment screw. Note how many turns this re-
quires to remove the head because when fitting the replacement you can screw it down by the same amount. This simple measure will ensure that the azimuth is reasonably near the correct setting. Be careful not to lose any springs, washers etc. It may be easier to solder the leads to the new head before fixing it into position, but this is really a case of personal choice. Be careful not to let the front surface of the new head touch any hard object which could scratch or damage it.

After fitting and setting the azimuth the whole mechanism should be demagnetised. If you have fitted the correct head no difficulties should ensue.

To check for head wear, take a look at the gap surface with a magnifying glass, it should have a 'mirror' finish and be perfectly smooth. If its rough, scratched, or uneven it should be replaced. Erase heads in general do not need replacement and although the author has found about 50 percent of cassettes need new record/replay heads I have never had to replace an erase head. Most cassette recorder faults are due to the mechanical faults mentioned. Electronic faults, if found, can be traced using the same methods as for other equipment.

Next month (final part) we shall look at the various service aids that are available.

Multicore makes soldering easy, fast and reliable

Ersin Multicore
Contains 5 cores of non-corrosive flux. Uses: For all electrical joints. Handy Pack. Size 1.2060 in lead 1.22 mm dia $£ 1.50$ Tool Box Reel: Size 3 $60 / 40 \mathrm{tin} / \mathrm{lead} 1.6 \mathrm{~mm}$ dia $\mathbf{\Sigma 4 . 3 7}$

Multicore All Purpose Handyman Solder Pak
Contains three types of solder for electrical. meial and aluminium repalrs all in handy easy to use dispensers. Handy Pak: Size 8 £2.99

Ersin Multicore
Contains 5 cores of non-corrosive flux Uses: Small transistors. components and fine wire. Handy Pack: Size PC115 $60 / 40 \mathrm{tin} /$ lead 0.7 mm dia $£ 1.61$
Tool Box Reel Size $1060 / 40$ tin/lead 0.7 mm dla $£ 4.37$

Bib Wire Strippers and Cutters With precision ground and hardened steel Jaws. Adjust able to most wire sizes. With handle locking catch and easy-grip plastic covered handles. Wire Strippers: Size 9 E2.99

Multicore Savbit
Increase the life of your soldering Increase the life of your soldering
bit by 10 times. Uses: For all electrical work. bit by 10 times. Uses: For all electrical work
Reduces copper errosion. Handy Pack: Reduces copper errosion. Handy Pack:
Size 51.2 mm dia $£ 1.38 \mathrm{Tool}$ Box Reel: Size 121.2 mm dia $£ 4.37$

Multicore Solder Wick Absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering lron. Quick and easy to use.
desolders in seconds. Handy Pack: Slze AB10 £1.43

Multicore Solder Cream
Mixture of powdered $60 / 40$
Mixture of powdered $60 / 40$ (tin/lead metal alloy and rosin flux). Uses: Micro electronics and printed clrcuits. Handy Tube: Size BCR 10 £1.73

Bib Audio/Video Products Limited, (Solder Division).
Kelsey House. Wood Land End.
Hemel Hempstead. Hertiordshire. HP2 4RQ Telephone: (0442) 61291 Telex: 82363

FIBRELARM
 GIDEON TEARLE

THIS loop alarm system was developed as a unit which could be used as an alternative to conventional wire loop alarm systems which have one major drawback-as shown in Fig. 1. This drawback was obviously one which needed to be eradicated, so a more effective loop alarm system was devised using a fibre optic loop.

OPTIC FIBRE

Optic fibre (or fibre optic) is a polymer strand encased in a protective sleeving.
the optic fibre and then picking it up at the other end, and comparing it with the original light source.

CIRCUIT DESCRIPTION

The full circuit diagram of the Fibrelarm is shown in Fig. 2. The mains voltage is stepped down by T 1 to 6.3 V a.c. which is then rectified by REC 1 and smoothed by Cl to give $9-10 \mathrm{~V}$ d.c. Power is then applied to D1 and S1 with D1 lighting to show when the unit is connected to the mains.

EEEB6A
Fig. 1. Conventional loop alarm. The loop can easily be bridged between X and Y; which would foil the system:

The polymer strand is capable of transmitting light round bends whilst still maintaining the brightness and colour of the light.

Thus optic fibre seemed to be the ideal loop. All that had to be designed was some way of sending a light signal down

When the key switch, SI, is closed, power is applied to the rest of the circuit, indicated by D2 lighting. The timer i.c., IC1, and its associated components, R2, R3 and C2, cause pin 3 to alternate between low and high at about six cycles per second. This is used to flash D3, a red l.e.d. shining down the optic fibre loop. The signal also causes TR1 to turn on in sympathy, whose collector is held low by

Fig. 2. Complete circuit diagram of the Fibrelarm.
place as shown. Then join all off board components to the board using fairly short wires and Veropins at the board end.

The connection between the mains and the primary side of the transformer should be achieved using a terminal block.

OPTIC FIBRE

The optic fibre should be cut off to the desired length with about $\frac{1}{2} \mathrm{~cm}$ of the sleeving removed from one end. This
should be done very carefully as the sleeving is thick but the fibre is brittle and very easy to fracture. The two ends should be cleaned up by firstly using some fairly coarse sandpaper then draw file the ends with a very fine file.

Check that the ends are good by holding one end up to a light, the light seen at the other end should be exactly the same colour and about the same brightness. It should be realised that the whole unit will not work effectively unless the optic fibre is well polished and unfrac-
tured (the fibre will fracture if it is bent into very small curves).

So that the loop can be removed when the unit is switched off, it is only fixed at one end. The end of the optic fibre which has been stripped is held in place on the board, whilst the end in contact with D3 is inserted into a piece of sleeving stripped from 1 core screened cable into which the diode is fitted as shown in Fig. 6a.

Fix the diode in as shown and then glue the other end of the piece of sleeving into the hole for it in the box. The end of

Fig. 3. Actual-size master pattern of the p.c.b. Available from EE PCB Service: Code 8504-03.

Fig. 4. Component layout of the Fibrelarm.

Fig. 5. Wiring diagram of the Fibrelarm.

the optic fibre in contact with TR2 should be fixed as shown in Fig. 6b, remembering first to stick a small piece of the sleeving mentioned above into the hole shown and then thread the optic fibre through the sleeving. On no account use Superglue on the optic fibre as this greatly weakens it.

Do not put the back on the unit until you have tested and set up the unit.

TESTING

When the unit is built check over the printed circuit board for joined tracks and incorrectly orientated components. If all is well check the off board components for loose connections and joined wires. Also check the orientation of l.e.d.s.

Next disconnect one of the terminals of the buzzer to preserve your sanity when you come to test the alarm, then connect the unit to the mains making sure the plug is fitted with a 3 amp fuse and that the key switch is in the OFF position.

The l.e.d. matked MAINS ON should light. If it doesn't disconnect the alarm immediately and check the wiring of the mains to $9-10$ volts d.c. section of the circuit for faults. If all is well and there are no faults, turn the key switch to the ON position. The l.e.d. marked ALARM ON should light.

Insert the optic fibre and darken the room. Then move the phototransistor, TR2, so that the stripped end of the optic fibre (which you should put through the hole directly underneath TR2) is in contact with the transistor. Move the phototransistor around further so that D4 and D5 flash dimly or not at all; the dimmer they flash the more effective the unit will be. Try to make sure that as you do this the only light source that TR2 can pick up is that from the optic fibre.

When you are happy with the position of the transistor, reconnect the buzzer (after you have turned off the mains) and then put the back on the box. Plug the unit back in to the mains and then break "the optic fibre (it is probably easier and financially more beneficial to simulate the breaking of the optic fibre by removing it

Fig: 6a. The sleeving mounted in the box.
from its piece of sleeving making sure that you remove the optic fibre from the right piece of sleeving).

If the unit is working properly, the buzzer should go off as you 'break' the optic fibre. If it doesn't the problem probably will lie in the positioning of the optic fibre and the phototransistor. If the reader finds that it is very hard to position the optic fibre correctly, it may be wise to

Fig. 6b. Mounting of the optic fibre.
place where it could be easily unplugged, it would seem wise to add some extra components to the circuit as shown in Fig. 7. This expansion will give a certain amount of extra protection in the event of a power cut or when the system is unplugged whilst the key switch is in the ON position. To make this adaptation it may be necessary to use a larger box and to slightly alter the p.c.b.

Fig. 7. Additional protection provided by 'mains fail' circuit.
change the phototransistor and replace it with a photodarlington which is more 'sensitive; a suitable one would be the $\mu \mathrm{E}$ MELL 11. Once the unit works, apply any dry transfer lettering. It may be wise to mark the piece of sleeving connected to D3 so that its obvious which end of the fibre is the mobile one.

FURTHER PROTECTION

If the unit is likely to be in a vulnerable

FREQUENCY

The three components $\mathrm{R} 2, \mathrm{R} 3$ and C 2 are only given suggested values. These values may be altered to give different pulse rates at the reader's discretion. It is advised that if the reader wishes to change any of the three values, then IC1, D3, R2; R3 and C2 should be assembled on Verobloc or similar to check that the frequency is acceptable, i.e. it's not too fast or too slow.

Resistors
 R1,R3-R7470
 (6 off)

all resistors $\frac{1}{4} W \pm 5 \%$

Capaçitors

C1	$1000 \mu 16 \mathrm{~V}$ elect.
C 2	$47 \mu 10 \mathrm{~V}$ elect.

Semiconductors

$$
\begin{array}{ll}
\text { D1,D2 } & 0.2^{\prime \prime} \text { red l.e.d. (2 off) } \\
\text { D3-D5 } & \text { miniature red l.e.d. } \\
& \text { (3 off) }
\end{array}
$$

TR1,TR3, BC214L pnp (3 off) TR5
TR2,TR4 BPX 25 phototransistors (2 off)

IC1 NE555 timer chip REC1 silicon bridge rectifier 2A

Miscellaneous

RLA
subminiature p.c.b. mounted relay n.o. and n.c. contacts 5-10V coil 240 V primary, 6.3 V sec. $9-12 \mathrm{~V}$ sounder/buzzer key switch

T1
WD1 S1

Single core optic fibre; Printed clrcuit board, EE p.c.b. 8504-03; interconnecting wire; 3 amp 2 core mains cable; 3 amp fuse; plug: grommet; fixing nut and bolt for T1; glue.

BAKERS DOZEN PARCELS

Price per percel is $£ 1,00$, but if you order 12 you get one extratree.

5 r 3 amp ring main junction boxe
513 amp ring main spur boxes
513 amp ring main spur boxes
513 amp luses for ring mains
urface mounting switthes suitable Insulated for mains voltage
5 - 3 flush electrical switches imtermediate type, will also replace 1 Or 2 way sw
5 in flex line switches
4 In flex line switches with neon
280 watt brass cased elements
2 mains transformers with $12 \mathrm{v} 1 / 2 \mathrm{a}$ secondaries
1 extension speaker cabinet for $6 \%{ }^{\prime \prime \prime}$ speaker
5 octal bases for relays or valves
2 glass reed switches
4 OCP 70 photo transistors
25 assorted gemanlum transistors OC45 etc
4 tpae heads, 2 record, 2 erase
2 ultra sonic transmitters and 2
2 ultra sonic transmitters and 2 ditto receiver
2 light dependent resistors similar ORP1
5 diff micro switches
2 mains interference supp
225 watt crossover units
225 watt crossover units
140 watt 3 way crossover
140 watt 3 way crossover unit
250 various screws and self tappers
of each wafer switches $-6 p 2$ way; $4 p 3$ way: $2 p 6$ way
1012 way
10 12 way
2 tape deck counters
16 digit counter mains voltage
1
BOAC in
1 BOAC in flight stereo uni
1 key switch with key
2 humidity switehes
2 aerosol cans of ICI Dry Lubricant
96×1 metre lengths colourcoded connecting wires
4 battery operated model motors
2 atr spaced 2 gang tuning concensors
2 atr spaced 2 gang tuning condensors
2 solid diaelectric 2 gang tuning condensors
10 compression trimmers
Long and Medium wave funer
$4 \times 465 \mathrm{KC}$ IF transformers
8 Rocker Switches 10 amp Mains SPST
6 Rocker Switches 10 amp Mains SPDT
5 Rocker Switches 10 amp SP DT Centre Off
4 Rocker Switches 10 amp DPDT
124 hour time switch mains operated
16 hour clockwork timeswiteh
16 hour clockwork timeswitch
2 lever switches 4 pole changeove
2 lever switches 4 pole changeover up and ditto down 2 Gv operated reed switch relays
10 neon valves - make good night
10 neon valves - make good night lights
$2 \approx 12 \mathrm{~V} D C$ or 24 V AC 4 CO relays
1 x 12 v 2 C 0 very sensitive relay
1 K 12 v 4 C 0 relay
2 mains operated relay $3 \times 8 \mathrm{amp}$ change overs (secondhand) 10 rows of 32 gold plated IC sockets (total 320 sockers) - 1 locking mechanism with 2 keys)

Miniature Uniselector wit
5 Dolls' House switches
5 Dolls' House switches
2 telephone hand sets incorporating ear piece \& mike (shand) 2 ferrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ do diameter aerials
4 ferrite slab aerials with L \& M wave coils
4200 earoieces
4200 earpieces
I Mullard Thyristor irigger module

- 10 assorted knobs \% spindles

With most hems quantity buyers get good discounts and
save on postage cosis.
SOUND TO LIGHT UNIT

Complete kit of parts for a three channel sound to light unlt controlling over 2000 watts of lighting. Use this at home If you wish but it is plenty rugged enough for risco work. The unit is housed in an attractive two tone meral case and has controls for each chaniel, and a master on/off. The audio input and output
are by ' $/$ " sockets and three panel mounting fuse holders provide are by $/{ }^{\prime \prime}$ sockets and three pantel mounting fuse holders provide
thyristor protection. A four pin plug and socket facilitate ease of connecting lamps. Special price is $£ 14.95$ in kit form or $£ 25.00$ assembled and tested.
MINI MONO AMP Fitted volume control and a hole for a to trol should you require it. The a ate the ourput to be 3 W rms. More technical data will be inclu ed with the amp. Brand new. perfecy condtion, affered at the very
low price of $£ 1.15$ each, or 10 for

The AMSTRAD Stereo Tuner.
This ready assembled unit is the ideal tuner for a music
centre or an amplifier, it can also be quickly made into a personal stereo radio - easy to carry about and which will give you superb reception.
Other uses are as a "get you io sleed radio", you could even take it with you to use in the lounge when the rest of the
family want to view programmes in which you are not interested. You can listen to some music instead.
Some of the features are: long wave band $115-270 \mathrm{KHz}$, medium wave band $525-1650 \mathrm{~K} \mathrm{Mz}$, FM band 87 -
108 MHz , mono, stereo \& AFC switchable, fully assembled and futly aligned. Full wiring up data showing vou how to connect to amplifier or headphones and details of sultable FM aerial (note ferrite rod aerial is included for medium and long wave bands. All made up on very compact bo
Offered at a fraction of its cost: only $£ 6.00$

25w SPEAKER SYSTEMS

By Amstrad

25 watt RMS loading $8^{\circ "}$ woofer, $4^{\text {" }}$ tweeter with crossover. $£ 12,00$ per pair \& 4 post. New and
but cabinets slighty damaged
hence thls low price, carry our normal guarantee.

CAR STARTER/CHARGER KIT Flat BatteryI Don't worry you will start vour car in a few minutes with this unit- 250
watt translormer 20 amp rectifiers, case and all parts with data E16.50 or without case E15.00. post paid.
4/5A BATTERY CHARGER Transformer and recilfier ¢ 3.95 \& $£ 1$ post, 3 kits $£ 12$ post paid
PRESTEL UNITS
These are brand new
and we understand tested, came with manufacturer's
guarantee now guarantee now vord
as the manulac turer no longer trades.
These eriginally
 sold for over $£!50$
We offer them
7 plug in i.c.'s and price is only $£ 14.95$ (less than the value of the
STABILISED POWER SUPPLY (MAains Input) By LAMDA (USA) - Ideal for computer add-ons, d.c. oukpul.
Requlated for line vols and load current. Voltage regulation . $\%$. with input variations up to 20% - load regulation 19% from no case - Models avallable: $5 \mathrm{v} \cdot 9 \mathrm{~A} £ 23.12 \mathrm{~V} \cdot 1.5 \mathrm{~A}$ £13.25. 15v - $1.2 \mathrm{~A} £ 13.25 .24 \mathrm{v}$ - $2 \mathrm{~A} £ 23$.

25A ELECTRICAL PROGRAMMER Learn in your sleep: Have radio plaving and
kettle boiling as you wake - switch on lights kettid boiling as you wake - switch on lights to
ward off intruders - have a warm house to come nome to. You can do all these and more. By
famous maker with 25 amp on/off switch. Independent 60 minute memory iogger.
Independent 60 minute m
A beautitul unat at $\mathbf{E} \mathbf{2} .50$.

THIS MONTH'S SNIP
 TOP OF THE POPS LIGHTING if you use our disco switch

These have $12 \times 10 \mathrm{amp}$ changeover switches each

 rated at 10 amps so a whole street could easily be If with one. Switches adjustable and could be setto give a running light, random flashes, etc etc. 230 to give a running light, random flashes, etc etc. 230
volts main operation. Brand new, made by HoneyI ONLY E6.90

COMPUTER DESKS Again available comput desks - size approx 4' $42^{\prime \prime}$
$2^{\prime} 6^{\prime \prime}$ high formica covered, cost over $£ 100$ each. Our price
onty from $£ 9.50$ - you must collect - hundreds supplied to schools.

VENNER TIME SWITCH

 Mains operated with 20 amp switch, oneon and one off per 24 hrs repeats daily on and one off per 24 hrs.' repeats daity automatically correcting for the lengthen-
ing or shor tening day. An expensive time ing or shor tening day. An expensive time
switch but you can have it for only $£ 2.95$ without case, metal case. $£ 2.95$, adap tor without case, metal case. £2.95, adap tor
kit to convert this into normal 24 hr , time kit to convert this into a normal 24 hr , time
switch but with the added advantage of uo to 12 onloffs per 24 hrs . This makes an io 12 on/orfs per 24 hrs. This makes an Price of adaptor kit is $£ 2.30$. Ex-Electricity Board.
Guarantegd 12 month

EXTRACTOR FANS - MAINS OPERATED

TANGENTIAL BLOW HEATER
used in best blow heaters. KW $£ 6.95$ complete heat switeh, safety cut out and connection diagram

5.5 Kw KIT Still furalable $\mathbf{3}$ for $£ 20$ post paid 2.5 Kw KIT Still available: $\mathbf{£ 4 . 9 5} \mathbf{+ \mathbf { £ } 1 . 5 0}$ post.

ROCKER SWITCHES Standard slze fit $11.5 \times 28 \mathrm{~mm}$ cut changeover 20 peach - 1000 for $£ 100$. Single pole changeover with cenve off - 250 each - 1000 for $£ 125$. Singie pole on/off ROCKER SWITCH DP/DT 15 amp 250 vol ts suitable for motor reversing etc. - 46p - 100 for $£ 34.50,1000$ for $£ 230$. 1000 - £ 100 Spdt 3001000 - £150, very tow tongue Spdt

EX-G.P.O. TELEPHONES

 Ex-G.PO 746 typ
 Ex-G.P.O. plug.... Ex-G.P.O. socket

WALL MOUNTING ROOM THERMOSTAT By Danfoss has a really pretty iwo tone grey case with circular
white scale and dial. Setting temperature from $0-30 \mathrm{c}-13 \mathrm{amp}$ 250 v contacts. Price $£ 4.60,-10$ for $£ 40$.
BLEEPERS 6 or $12 v$ battery or transtormer operated, ideal for using in alarm circuits but Dar ticulariv suitable for can and
motor cycle alarms. These give a loud shrill note. Price 69 p . 1000 for £345. Jap made.

FROZEN PIPES. Can be avoided by winding our heating cable around them - 15 mirs connected to mains costs only about $10 p$ pe
week to run. Hundreds of other uses as it is waterproof and very flexible. Resistance 60 ohms/metre, Price 28p/metre or 15 m for $\mathbf{~} \mathbf{2 3 . 9 5}$

FLEXIBLE EXTENSION LEAD twin rubber 5 mm ideal grass cuther etc. 250 metre coil $\mathbf{E 5 . 0 0}$. 50 metre coil $\mathbf{E 6 . 7 5}$

50 THINGS YOU CAN MAKE

ohms tester, A.C. amps meter, Alarm clock, Soldering iran minder, Two way telephone, Memory jogger, Live line tester. Continuity checker, etc, etc,. and you will still have hundreds of parts for future projects. Our loKg
parcel contains not less than 1,000 items-panel meters parcel contains not less than 1,000 items - panel meters,
timers, thermal wips, relays, switches, motors, drills, taps timers, thermal wips, relays, switches, motors, dill, rest,
and dies, tools, thermostats, coils, condensers, resistors. neons, earphone/microphones, nicad charger, power unit 90% are unused componants
YOURS FOR ONLY £ 11.50 plus $£ 3.00$ pos:.
REVERSIBLE MOTOR WITH CONTROL GEAR Made by the famous Framco Company this is a very robust motor size approxmately $7 \mathrm{ha}^{\prime \prime}$ long, $31^{\prime \prime}$ "dia. $3 / 8^{\prime \prime}$ shaft Tremendousty powerful motor, almost impossible to stop, Ideal for operating stage curtains, sliding doors, ventilators etc., even garage doors if adequately counter. oalanced. We offer the motor complez
with control gear as follows:
$\begin{array}{ll}1 \text { Framco motor with gear bok } & 1 \text { push to start switch } \\ 1 \text { manual reversing } \& \text { on/loff switch } & 2 \text { limit stop switches }\end{array}$ £19.50 plus postage $£ 2.50 \quad 1$ circuit diag of connection

\section*{J. BULL (Electrical) Ltd.
 | (Dept. EE). 34 • 36 AMERICA LANE, |
| :--- |
| Established |
| HAYWARDS HEATH, SUSSEX RH16 3QU. 30 VEARS |}

PRICES: All prices include VAT.
MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders und £12 add 60 pervice charge. Monthly account orders accepted from schools and public companies. Access \& B/card orders accepted day night. Haywards Meath (0444) 454563 . Bulk orders: phone for quote
Shop open $9.00-5.30$. Mon to Fri, not Saturday.

12 volt MOTOR BY SMITHS
Made for use in cars, ete. these ere very
powerful and easily reversible. Size $31 /{ }^{\prime \prime}$ long by $3^{\circ "}$ dia. T
length of $\mathrm{K}^{-"}$ spindle
Price £3.45.
Oitto, but double ended $£ 4.25$.

MAINS MOTORS

We have very large stocks of motors from 2 watts to $1 / 4 \mathrm{hp}$. Most at

IONISER KIT

Refresh your home, office, shop, work room, etc. with a
negative 10 N generator. Makes you feet better and work harder - a complete mains operated kit, case included.

OTHER POPULAR PROJECTS

3 Channel Sound to Light - with fulty prepared metal case 14.9. Big Ear, listen through walts. $£ 9.5$
Silent sentinel Ultra Sonic Transmitter and recelver
Car Light 'left on' alarm
secret switch - fools triends and enemies alike
3 - 30v Variable Power Supply
2 Short \& Medium wave Crystal Radio
3v io 16 v Mains Power Supply Kit
Radio stethoscope - fault findling aid
Mug stop - emits piercing squark
Morse Trainer - complete with key
Drill control kit
Interrupted beam kit
Radio Mike
FM receiver kit - for survelliance or normat FM Insulation Tester - electronic megger
Battery shaver or fluorescent Irom 12 v
Matchbox Radio - recelves Medium Wove
40 watt amp - hifi $20 \mathrm{hz}-20 \mathrm{kHz}$
115 Watt Amplifier 5 Mz 25 kHz
Power supply for 115 watt amps

9.9:

 $£ 9.50$69.50 c 9.50
$£ 3.50$

$£ 3.50$

 Shop open $9.00-5.30$, Mon to Fri, not Saturday.
FOR YOUR
 ニNTERTATNMENT
 BY BARRY FOX

Manual for Divorce

I believe the computer industry is on the whole cheating to stay in business. It is selling high technology computers to the general public on the strength of blatantly misleading advertising claims and publicity.

No-one disputes that computers today offer extraordinary power, speed and capacity for their price. They can, and the operative word is can, perform all manner of extraordinary tasks. Young people who have been brought up with computers, at school and college, find them easy to tame. Others take up computing as a hobby, like fishing or radio construction.

Up until now the industry has survived mainly on selling computers to people like this, who are computer literate. When they sell to householders and business people who find themselves totally at sea, the computer trade just makes the customer feel guilty for not being able to cope.

That's why so many new computers go straight back into their original boxes and stay in the drawer. That's why businessmen use them only to play games. Even people who get their systems working for business, frequently scratch only the top surface of potential. They use spreadsheets wrongly, never really exploit a data base as intended, and call up only a few word processing demands.

But now the credit is running out. The honeymoon is over. If the computer industry is to continue growing, it must sell to more and more people who are not computer literate. As more and more of these people become discontented, and feel cheated, resistance will grow.

In my experience, the main obstacle for people learning about computers in later life is the disgusting state of documentation that goes out with these high technology machines. The computer specialist press is largely to

Reverse Charge

Sometimes I do wonder whether people who sell things, ever actually use them. Recently British Telecom proudly launched its new range of payphones. The plan is to spend $£ 160$ million over 10 years, on updating the 76,500 public payphones around the country.

At the press conference lain Vallance, Managing Director of the division inside British Telecom, which looks after payphones, and his marketing man, Nick Kane, were astonishingly rude about the existing payphone service. Apparently it lost $£ 50$ million last year and is the service of which BT is "least proud".

Even in an age when soap powder companies continually imply that what they have previously sold is no good, by bringing out whiter-than-whiter-than-white improvements, I have seldom heard any organisation be so rude about its existing product. In return the audience of press was pretty rude to British Telecom about what it plans. What made many people, including myself, really hot under the collar, was the technical nonsense talked by BT about a ridiculous deficlency of existing payphones.

As everyone, except a chauffeur-driven $B T$ boss with a radio telephone will know, it is a nightmare trying to find a working payphone. Most are either vandalized or won't work because they are full of money: people then vandalize the phone because it is full and won't work.

Although a full-up telephone will still let you make 999 calls, it won't let you dial 100 and make reverse charges calls. This is crazy, because it infuriates the public and loses BT the healthy revenue available from reverse charge calls.

Under pressure the embarrassed Vallance and Kane double act admitted that new phones also wouldn't allow 100 calls
when they are full up or faulty. "It's the software in the microchip," they said. But both 999 and 100 are 3 digit calls, so why can't the system default to both 3 digit options, instead of just 999? Very flustered, Kane and Vallance would say only that they were "actively looking at ways of changing the situation"

Vallance then put his head in a noose by chiding the public for not reporting broken phones. But how can you report a broken phone if you can't dial 1007 Vallance then contradicted his own point, by saying that the new phones were self-diagnostic and reported their own faults automatically to the Exchange. So the public needn't report faults after all.

Plessey make the electronics for the old, and new phones. I couldn't believe that Plessey wasn't able to write default software for two 3-digit codes instead of one. And of course they could. The truth of the matter is that Plessey told BT that the new phones should give users the 100 dial option when full or faulty. But heaven knows why BT insisted on 999 only.

Quite recently, with tail between legs, BT went back to Plessey and asked them to change over. Obviously it will take some time, which is why the BT people tried so desperately to hedge the issue at the press conference.

For the record, I am now a BT shareholder. On principle 1 don't normally own shares because I think it can compromise a journalist to own part of a company which he or she may be writing about. But in the case of BT, I just couldn't miss the chance of going to the annual shareholders meeting, along with around two million other people who are all trying to ask questions like-why can't I dial 100 from a faulty phone?
blame. They have pushed the manufacturers into producing new products and getting them on the market, before they are ready.

They have failed in their duty to protect customers against poor documentation and software. They should have blasted and ridiculed inadequate manuals. It is surely quite unacceptable for a computer specialist to review a new product on the strength of prototype hardware, incomplete software and either a draft manual or no manual at all. But in a mad scramble not to be left behind this is what they do.

If the machine gets a favourable review, there is no incentive for the manufacturer to clean out the bugs and produce a decent manual. They are too busy developing the next generation prototype, software lash-up and sketchy draft documentation.

Enough is enough. If the computer press won't sort this nonsense out, then somebody else has got to do it. Earlier this year I got in touch with the Office of Fair Trading, the Government-backed body which exists to protect consumers from nonsense like this. It was the OFT which bullied Sir Clive Sinclair into promising that he would no longer take customers' money before he was ready to send out their goods by mail order.

The OFT (Field House, Breams Buildings, London EC4A 1PR) will not take up personal complaints, for instance on faulty goods. For that you must contact your local council Trading Standards, or Consumer Protection, Officer, or your local Citizens Advice Bureau. What the OFT does do, is keep an eye on any firm which is consistently playing unfair

The problem with computers is that most people who don't understand them aren't well equipped to explain in clear terms what is wrong with what they have bought. Computer literate buffs, who find handling new equipment a doddle, aren't going to be bothered to complain anyway. But readers of Everyday Electronics are a special breed. They tend not to be dedicated computer buffs, but they do tend to be interested in electronics in general. I know, from letters which I have received over the years, that EE readers have one thing in common, and that's electronic common-sense.

Fox Hunt

My plan, for 1985 , is to pass on to the OFT any documentary evidence which might encourage the Office to start policing the computer industry. Quite clearly it isn't going to police itself.

I started on the OFT with some personal experience. I bought an Apricot Xi , hard disc machine, and was astonished at the appalling documentation. It came with six printed manuals (one more through the post made it seven) and a string of postscripts that roll up on the screen as a "Readme" program.

Instructions grasshopper between manuals and Readme, with never a logical thread and important procedures inadequately explained, often in what I take to be the Martian language. One thing the manuals did make clear, was that it was absolutely vital to make safety copies of the programs stored on the master hard disc. But the one thing they did not make clear was how to do itl

I followed what I thought was the right
procedure (it turned out subsequently to be wrong) and ran into trouble. I 'phoned the makers in Birmingham who told me that I was in trouble because some of the programs I was copying were faulty and I should delete them.

When I tried, I ended up deleting the main command program which killed the machine for a week. It sat dead until Apricot sent me the equivalent of a new brain on floppy dise through the post. They then told me by telephone how to do the copying procedureI never did find it explained in the manuals.
A business friend from America was visiting when I was sitting despondently in front of the newly dead machine. I explained that I had pressed a key twice instead of once and killed it. "Is that the way you do things in this country?" he said in bewilderment.
"When you buy a car you don't expect the steering wheel to fall off if you turn the ignition key in the wrong direction. Or at least if it's going to fall off they put a notice on the dashboard warning you".

At around the same time an insurance broker I know got himself an Apricot and threw up his hands in despair. He paid someone $£ 25$ an hour to teach him how to use it but still had to give up.

I wrote a string of letters to ACT , the firm which makes the Apricot, but after a month had heard nothing in reply. If ever you think that journalists get special treatment when they raise queries, think again.
This correspondence has now been forwarded to the Office of Fair Trading. If anyone has similar tales to recount, I'd be pleased to receive them, and forward them too.

Hot Line

If like me, you've been fooled by the cinema into thinking that the "Hot Line" is a red telephone at the end of a line between the White House and Kremlin, think again. It's not, and it never has been. It has always been a text link, not an ordinary speech telephone.
The idea of a hot line dates back to President Kennedy and the Cuba crisis of 1962. Kruschev was putting missiles onto Cuba, and Kennedy blockaded the island. For a while it really did look as if there might be a nuclear war. The main problem was that the two world leaders had to talk to each other through rather clumsy diplomatic channels. So they vowed, never again.
In June 1963 Kruschev and Kennedy signed an agreement for a direct communication link, or DCL, between their offices. It was inaugurated in August 1963. The first DCL worked as an ordinary telex service, using high frequency and microwave radio links. There was also an under-sea telephone cable backup in case the radio links went wrong, or were jammed.
Right from the start they rejected the idea of a speech link, because of the problems of translating inference, implication and innuendo. The typed telex messages were transmitted from America in the English language, and from the Soviet Union in Russian.
Although use of the hot line telex is a classified secret, we know that it was very busy during the 1967 and 1973 Arab-Israeli wars. Almost certainly it prevented escalation.

The radio link soon proved unreliable, because of atmospheric interference. Privately telecoms engineers admitted that they were worried about the submarine cable link, because it relied on copper technology and booster amplifiers and switching stations along the route. Obviously it was vulnerable to anyone who could sabotage a booster or exchange.

In 1978 the radio link was replaced by a dual satellite link. The Russian Molniya satellite handles the signal at the same time as the world's telecommunication network of Intelsat satellites. But they kept the submarine cable as a last ditch back up.
Now all that is changing. President Reagan has apparently been worrying about the time delay needed to type a message into the telex machine. Also, it's not possible with telex to draw sketches, relay photographs or show troop movements on a map.
So now ITT in America has been commissioned to install a facsimile link. This has already been tested and should by now be in action. Of course we'll never know how it works, unless it goes wrong-in which case there could be a holocaust and we wouldn't know anyway.

Apparently the facsimile can transmit a page of print or a map inside two minutes. The only snag, for which there seems to be no solution, is that messages still have to be typed out before they are sent, even though they aren't now typed direct into a telex.

Let's hope that if there is a sudden world crisis, the White House or Kremlin typing pool isn't on holiday or out to lunch.

AMSWERS

Their quest to prove this belief lead them to a tomb in the valley of the Seal with a'Hieroglyphic' never seen Defore. Although it appearea'Hieroglyphic' it was actually a series of LETTER segments when completed formed a total of 9 words reisted to ELECTPONICS
can you find them?

GH15TM El EETRGNAEE D.w. GRABTREE BSc Tech Eng(cEI) FHRT SEVEN

N N the last article we looked at the basics of numbering and coding systems, and arithmetic processes which are used by some computers. It is now time to describe the computers themselves.

BASIC DEFINITIONS OF COMPUTERS

Basically, a computer is a device, or more correctly, a group of devices, capable of making mathematical decisions and calculations. It then uses the data thus created to assist it in carrying out a fixed set of instructions, called a program. There are several pieces of hardware involved to manipulate the instructions and data, and each of these pieces are described in brief below. For greater detail of the computer architecture, many good books are available for reference.

ARITHMETIC UNIT

The purpose of the Arithmetic Unit is to perform the basic mathematical functions of ADD and SUBTRACT, together with other logic functions such as AND, OR and NEGATE. Referring to the diagram above, the function required is selected by the bit pattern on the control lines, with the data put out onto the data lines, called the DATA BUS.

CONTROL UNIT AND DATA BANK

The purpose of the Control Unit is to read and write data to the arithmetic unit, and to control or select the current function being performed by the arithmetic unit.

The purpose of the data bank/memory is to store data used by the system until required. (See diagram).

INSTRUCTION MEMORY

There is an instruction memory built into the computer system whose function is to hold a list of instructions which form the basis of a PROGRAM. This list of instructions is fed, in a logical sequence, to the control unit which then carries out arithmetic logical and data movement operations as required by the information within the instruction being carried out. The details of the instructions are also sent to the data bank in order to select the correct words of data to be operated upon.

The instruction format will be described below and the diagram below shows the basics of the computer layout. The part of the drawing showed within the dotted line represents the Central Processing Unit.

The instruction memory and the data bank will generally be on the physical block. I.e.: The memory or store.

INSTRUCTIONS AND LANGUAGES

The instructions used by the system generally will fall into two parts, the

The Control Unit and Memory.
operation part and the address part. The operation part specifies the function being carried out, e.g. add or subtract, whilst the address part specifies the address or location of an item of data within the memory.

The format of the actual instructions used can be of several different types. The actual components within the system only understand machine code language which is the use of binary numbers only, with the size of word being used being dependant upon the type of system being used. For example, early machines used 4 -bit word format. Later, 8 -bit words became

used and later still 16 -bit words were to be found. Many new machines are now using 32 -bit word formats.

Each instruction can carry several words. The format described above is said to be machine readable and is called the Object Program.

Now, for the user, it would become quite tedius to enter an object program into a computer as a series of binary words, especially if 32 -bit words were being used. Also, it is likely that many mistakes would result. Instead, the user can write the program as a series of hexadecimal words, usually of 2 digits. This makes the task less tedious but, even then, numbers and figures are still being entered and, again, mistakes are possible.

How much easier it would be to program the computer using a language that was man-readable instead of machine-readable. Well, this is sometimes possible, depending upon the type of system being used. The program can sometimes be entered as mnemonics which is a series of instructions that are fairly easy to understand and read by the user. The mnemonics form the source program and are written in assembly language.

Thus the program is generally written in assembly language (as the source program) and this is then converted by a part of the system called an assembler into the object program that the machine readily understands.

We therefore have three different ways of entering the information of the program into the system, either by entering complete binary words, hexadecimal or by entering mnemonics. Let us now consider a simple piece of a program and look at the comparison of the three different ways of entering the information, without trying to understand what is happening in the program.

Looking at three data words, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, held in three successive memory locations 0200,0201 and 0202, we compute $\mathrm{A}=\mathrm{X}+\mathrm{Y}-\mathrm{Z}$ and storé the result in location 0203. (The instructions shown in the table are instructions within the Motorola 6800 microprocessor architecture.)

Now, looking at the three different ways of showing each instruction, using mnemonics must surely be the best method used. It is very useful to see exactly what is happening within a program listing and, using mnemonics, a programmer does have a better idea of what functions are taking place in the program at a particular point. With hexadecimal, the program is listed using pairs of hexadecimal. This is an aid to entering the program into the computer but, at the same time, the task of identifying individual parts of the program, in a long program listing, is very difficult. With binary, the task seems to be almost impossible when the programmer is faced with a continuous stream of 0 's and 1 's.

Much of what has been said above depends very much on the type of system being used and that system's built-in intelligence but, nevertheless, it should give a useful grounding to the reader.

Instruction	Mnemonic	Hexadecimai	Binary
Load ACC.B from	LDAB 0200H	F6	11110110
location 0200		02	00000010
		00	00000000
Add the contents of	ADDB 0201H	FB	$1111100^{\circ} 11$
0201 to ACC.B		02	00000010
		01	00000001
Subtract the contents of	SUBB 0202H	F0	11110000
0202 from ACC.B		02	00000010
		02	00000010
Store the contents of	STAB 0203H	F7	11110111
ACC.B in 0203		02	00000010
		03	00000011

Comparison of instructions.

The example of the program used above was written for a Motorola 6800 series microprocessor. This is an 8-bit processor that has two main registers, A and B, an index register, X (which can carry 16 bits of information) and three other special purpose registers. Of these special purpose registers there is:-

(1) THE CONDITION CODE REGISTER (CCR)

This is an 8 -bit register which is capable of storing the states (either ' 0 ' or ' 1 ') of certain flags used by the system. For instance, if an addition takes place within the processor and a carry takes place, then a CCR 'carry flag' will be set.

(2) THE PROGRAM COUNTER (PC)

This is a 16 -bit register that always contains the address in memory of the next instruction to be carried out. That is, a program is written by the programmer and a section of memory is set aside to hold the program, so that for any particular byte of the program, a specific memory location is set aside for it. The program counter, therefore, keeps track of which parts of the program have been carried out already and becomes set to the address of the next instruction in memory. Before the program has been started, therefore, the program counter contains the actual start address of the program.

(3) THE STACK POINTER (SP)

Part of the RAM memory is set aside for use as the stack. This is a section that is used to store results, on a temporary basis, during a run of the program. It is called a stack because the system works on a last-in-first-out basis. The stack pointer, therefore, contains the actual address in memory of the stack. I.e.: it points to it by address.

Most of the instructions available for the device, therefore, include functions that encompass one or more of the above registers. The remaining instructions provide other special facilities. But, as stated previously, the above only concerns the Motorola 6800 series of microprocessors. However, other types of microprocessors have similar structures
and similar instructions available. For example the Z80 microprocessor, by Zilog, has, instead of just two main registers, several pairs of main registers together with an alternate set as well. Each pair, say the BC pair, can be used together as a 16 -bit register or separately as a B register and a C register, both being 8 bits. As far as the alternate register set is concerned, not all the instructions for the main register set can be used by the alternate register set.

EXTERNAL COMMUNICATION

Computers generally need to have external communication facilities in order to talk to or listen to other devices. Facilities are therefore available to provide communication with printers, visual display units, modems, etc, as well as input/output ports for driving to and from the real world.

MICROCOMPUTER DESIGN

Let us now consider a simple, yet practical microcomputer design. First of all we must formulate our requirements:-

(1) MICROPROCESSOR USED

We must decide which microprocessor should be used as the central processing unit. We have mentioned briefly the Motorola 6800 series and the Zilog Z80 series microprocessors above. Many other processors exist including the Intel 8080, which uses a similar instruction set to that used by the Zilog Z80. The 6800 series offers a limited yet fairly easy to understand instruction set whilst the Z80 offers more computing facilities, if required, by the greater number of registers.

Let us use a Z80 microprocessor in our design.

(2) OPER ATING SYSTEM USED

Every computer requires an Operating System, of some kind, to function and usually this is put in firmware form into a ROM (or EPROM) chip. Let us consider that our design utilises a 4 K Byte EPROM in the form of two 2716 chips, each of which offers 2 K Byte storage of 8 -bit words.

(3) TEMPORARY DATA STORAGE USED

Every system needs some form of temporary data storage and as previously stated, this is generally in RAM form. For our design, let us say we require 1 K Byte of RAM and we will use two 2114 chips in order to get the 1 K Byte required. These chips offer 1 K Byte storage of 4 -bit words.

(4) INPUT/OUTPUT USED

Let us suppose that our system design requires to include some input/output facilities. This is available using a readily available input/output chip, the 8255 , for Z80-based systems and this is the chip that we shall use in our system, giving 24 I/O lines. If we need 24 lines, only one 8255 is required.

All the basic components described above have data lines and address lines and power supply connections. Apart from the Z 80 microprocessor we will not consider, the power supply connections, but we will have to show all the data and address line connections for each chip. Now, so far we have discussed all the basic components required but we have not considered how the microprocessor can communicate with each particular chip. Since all the chips utilise the same set of control/data lines, the microprocessor cannot distinguish between one chip and another. Therefore we need to have some type of coding for each chip, so that only the relevant chips are enabled at any one time. Also since all the chips are now going to have a unique coding for each function used, we must have some way of making sure that, in fact, the codes are unique and that no two functions share the same code area. This is called MEMORY MAPPING and is essential if the system design is to be feasible.

MEMORY MAPPING

We look at each component in turn and decide where, in the total possible addressing area, each is to be situated. We split the area up into sections, so much for ROM, so much for RAM and so much for I/O, etc. Hence we are creating a map which shows where each function can be found.

Let us consider the system that we are designing. The Z 80 microprocessor has 16 address lines, A_{0} to A_{15}, therefore we have facilities to address $2^{16}=65536$ individual locations. (Note that $65536=$ 64 K Bytes), or in hexadecimal form, from 0000 up to FFFF.

We can now consider each component function and allocate a space within the available 64 K Bytes of memory.

EPROM

We have 4 K Bytes of 8 -bit words, and we are using two 2 K Byte chips to form the total 4 K Bytes. Now 2 K Bytes represents $2 \times 1024=2048$ in decimal and 0800 in hexadecimal This last figure is the important one since we can now map our two EPROM chips at memory locations 0000 to 07FF and 0800 to 0FFF, which is a total memory area of 4 K Bytes.

RAM

We have 1 K Byte of 8 -bit words, and we are using two $1 \mathrm{~K} \times 4$-bit word chips to form the total required.

Now 1 K Byte represents 1024 decimal, which is 0400 in hexadecimal. Let us, therefore, map our RAM at memory locations 1000 to 13 FF , which is an area of 1 K Byte.

1/O

Now for our Input/Output port, we are using one 8255 I/O chip. This has three 8 -bit word lines available. That is, any one of three words can be input or output from the device at any time. Now, we have a function available from the microprocessor that can control whether we read/write to memory or to input/output, we are not able to read/write to both at the same time. Therefore we can locate our I/O port at any location we choose. We have three lines as stated, therefore we can locate our lines at, say, locations 20,21 and 22 hexadecimal.

Our memory map will now look like this:-

$\begin{array}{r} 0000 \\ \mathrm{I} / \mathrm{O} \cdot 20 \\ 07 \mathrm{FF} \\ \hline \end{array}$	EPROM (CHIP 1)
$\begin{gathered} 0800 \\ \text { OFFF } \end{gathered}$	EPROM (CHIP 2)
$\begin{array}{r} 1000 \\ 13 \mathrm{FF} \end{array}$	RAM
$\begin{aligned} & 1400 \\ & \text { FFFF } \end{aligned}$	SPARE

Now we mentioned, previously, that we needed to code the functions so that each had its own unique memory area. We have now mapped out the memory areas but we have not yet provided the necessary coding (or decoding to be more specific). Let us consider the first EPROM chip, to be situated at memory locations 0000 to 07FF hexadecimal. We require to enable this chip whenever we are in the area of map from 0000 to 07FF only. Therefore, let us look at the $15 \mathrm{ad}-$ dress lines, together with the total possible memory area that each line could enable.

Now we need to locate our EPROM memory between 0000 and 07 FF , that is, at all times that address lines A_{11} to A_{15} are set to logic ' 0 '. Therefore all we need to do is detect all 0 's on A_{11} to A_{15} and enable our first EPROM chip. Our block diagram for this is shown below:-

For our second EPROM chip, we need to locate this at memory area 0800 to 0 FFF, therefore we detect when the address lines A_{12} to A_{15} are all 0 's and A_{11} is a 1.

We next look at the two 2114 RAM chips and note that they need to be decoded between 1000 and 13FF. We therefore look at address lines A_{10} to A_{15} and decode accordingly.

Finally, for the I/O chip, we need to locate this at 20 hexadecimal which is equal to 32 in decimal. Therefore we AND the A_{5} address line with the I/O control line so that the chip is enabled wherever 20 hexadecimal is selected on the address. To select the required $1 / 0$ line at address 20, 21 and 22 we then look at A_{0} and A_{1} to see when 20,21 or 22 is addressed.

We have now memory mapped the complete microcomputer system and so we can now draw the (block) diagram to show our complete design (as shown on opposite page).

It should be noticed that we also send the data lines to each chip as required. 'For instance, the 2716 chips are 8 -bit word chips so we send data lines D_{0} to D_{7} inclusive. The 2114 chips are 4 -bit word chips so we send D_{0} to D_{3} inclusive to one chip and D_{4} to D_{7} inclusive to the other, giving 8 -bits in total. We similarly send D_{0} to D_{7} to the 8255 chips.

Each decoding circuit is fed with the $\overline{M R E Q}$ and RD controls from the microprocessor which are (active low) Memory Request and Read/Write controls respectively. Likewise the I/O port is fed with the IORQ (Input/Output Request) control as previously mentioned.

The decoding discussed is called Partial Address Decoding because we are only looking at some of the possible address lines. If we looked at all the address lines, then this would be called Total Address Decoding (not generally required).

Above we have discussed the basics of microprocessor system design and we have tried to describe the best way of going about such a design. For further information, several good books are available.

	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	${ }^{2} \mathrm{~A}_{8}$	A9	- A_{10}	A_{11}	A	A_{13}	A_{14}	A_{15}
(DECIMAL)	2	4	8	16	32	64	128	256	512	1 K	$2 \mathrm{~K}^{\cdot}$	4 K	8 K	16 K	32 K	64 K
(HEXADECIMAL)	0002	0004	0008	0010	0020	0040	0080	0100	0200	0400	0800	1000	2000	4000	8000	10000

COUNTER NTELCENCE
 BY PAUL YOUNG

Path Finder

If there is one engineering success that would not exist today without the micro chip and modern electronic technology, it is the aircraft flight simulator. That being so, it is nice to be able to report that one of the foremost leaders in the field is British; 1 refer to Rediffusion. They are the largest manufacturers of aircraft simulators in Europe, and one of the largest in the world.

I was reminded of this a few weeks ago when I was watching the BBC2 Money Programme. It showed the flight deck of a DC10 taking off from Heathrow. A few hundred feet up, there was a sudden severe down draught which the pilot skilfully corrected.

The commentator then told us that even if the pilot had failed to correct it, no one would have been hurt as they were in a simulator. At that moment the pilot turned his head, and I recognised an old friend of mine, Captain Charles Coates. 1 rang Captain Coates next day and he filled me in on the company and its success record.
The modern simulator is an incredible piece of machinery. Externally it looks like a house on steel stilts, but once inside you are immediately transported on to the flight deck of. a Jumbo jet, a Concorde, a Harrier or any other aircraft. So effective is the simulator, that a captain of an American airline flew over from the States in a Jumbo jet, spent the requisite number of hours in a DC10 simulator, went down to Gatwick
and flew a DC10 back to Los Angeles with a full load of passengers, although he had never flown one before.

Apart from the safety angle, they are cost effective, as the cost of training in a real aircraft is twenty times as much as the simulator. Bearing in mind their average price is about five million pounds, they need to be. In spite of the price, there are no lack of orders and they are being exported all over the world, including America and Japan.

Thunder Struck

When Sir Clive Sinclair announced a year ago that he was going to build an electric car, I thought it won't be long now before the oil sheiks are folding their tents and silently departing. I must admit that the end product has been a great disappointment. The C5 is little more than a toy. The range, the speed and the carrying capacity are all too low to be of any practical value.

When I read that it will carry one cubic foot of shopping I nearly fell off my chair laughing. Sir Clive ought to line up at the check-out of any supermarket and observe the matrons with their trolleys piled so high you begin to wonder if they have a small pantechnicon in the car park.

However, I haven't given up hope of having an electric car, as I see that Mr. Joe Schwarzkopf (a relative of the singer), with the help of a consortium which includes Varta Batteries, Unipart, Uniroyal Tyres, HB

Switch Gear and Berger Industrial Coatings, is producing a kit to convert the family car into an all-electric vehicle. It will have a range of 140 miles, a top speed of 80 , and the running costs and maintenance will be almost nil. In addition, no road tax is required.

The conversion will cost about $£ 3,000$, and the following cars are particularly suitable for converting. The Austin Mini and Maestro, Ford's Fiesta, Volkswagen Polo and Ford's Sierra. So I am afraid the Editor will have to rough it in his Rolls for a little longer.

A B747 flight simulator installed at American Airlines Gatwick training academy by Rediffusion Simulation.

IMMERSION HEATER COITROLLER

T.R.de Vaux Balbirnie

I
NDISCRIMINATE use of the immersion heater can result in large electricity bills. One method of heating only the water required is to switch on for short times. Unfortunately, it is easy to forget to switch off again. This unit switches off the immersion heater when the water in the copper storage cylinder is heated to a predetermined temperature at some chosen level. It is a one-shot system initiated by a push-button switch on the unit. When the immersion heater switches off it will stay this way until the switch is pressed again. Potential savings are high.

OPERATION

As the water heats up, it does so from the top of the cylinder downwards. Thermistors attached to the tank at four points act as temperature sensors. When hot water reaches the chosen level, the circuit is triggered and the heater switches off. The level is selected by a rotary switch representing hot water quantity on the front panel of the unit. One red lightemitting diode in a row of four illuminates to confirm the level chosen. A similar row of green l.e.d.s light in sequence following the progress of hot water. In this way, the state of the system is seen at a glance. One additional position on the rotary switch selects Cancel, and this serves two purposes. If used while the immersion heater is on, it will switch off immediately. If the system is not operating, the green l.e.d.s will light when the Start button is pressed allowing the level of hot water to be checked without operating the heater. Another spare position on the rotary switch gives continuous operation if required.

The new circuit takes over all normal operation of the immersion heater-the existing wall switch is retained simply as an isolator. The temperature at which each sensor operates is adjusted at the testing stage and is performed with the lid of the case in position-an important safety point since there are mains connections inside.

CIRCUIT DESCRIPTION

Fig. 1 shows the entire circuit of the Immersion Heater Controller. The single
integrated circuit, IC1, contains four separate operational amplifiers, IC1a to d, each responsible for one particular water level-IC1a for the top one and so on. When S2 (Start) is pressed, mains current flows through the primary of T1 and the low-voltage output is rectified by REC1 and smoothed by C1. This supplies power to the rest of the circuit. TR 1 turns on due to base current flowing through R13 and this operates RLA connected in the emitter circuit. The normally-open contacts of RLA allow mains current to flow through the coil of RLB and this operates the mains load through its pair of normally-open contacts. RLB also allows current to flow to T1 so the action is now self-sustaining and S2 may be released. This all happens so quickly that momentary pressing of S2 is sufficient for the system to operate.

The non-inverting inputs of all opamps share the common potential divider R5/R6 which applies a voltage of onehalf that of the supply (nominally 6 V) to them. The inverting inputs have individual potential dividers-VR1 to VR4 in the upper "arms" and R1 to R4 in conjunction with R15-18 in the lower ones. Thus, the voltages produced at the inverting inputs will depend on the individual adjustments of VR1 to 4 and the temperatures of the thermistors. Since the thermistors are negative temperature
coefficient types their resistances fall as their temperatures rise. When a thermistor senses hot water, the voltage at the inverting input of the corresponding opamp will fall. In use, VR1 to 4 will be adjusted so that, under cold conditions, the voltages at the inverting inputs will exceed those at the non-inverting inputs and the op-amps will be off. As the level of hot water progresses, the op-amps will switch on in turn operating the green (Progress) l.e.d.s D1 to D4. One pole, Sla, of the double-pole rotary switch; S1, selects the op-amp output appropriate to the level of hot water required. When this op-amp switches on, thyristor CSR1 is triggered by gate current flowing through R11 and TR1 switches off. RLA no longer maintains the coil of RLB and the mains load switches off. Primary current to T 1 is also interrupted so the circuit cannot work until S2 is pressed again. The purpose of CSR 1 is to provide a switching action at the critical temperature.

The second pole of S1, S1b, operates the red (Level) l.e.d.s D6 to D9 or the yellow (Continuous) one D10. The Continuous position of Sla is left unconnected so CSRI never triggers allowing RLB to operate continuously. The existing thermostat prevents the water from overheating. The Cancel position is connected direct to supply positive so CSR 1

Fig. 1. Circuit diagram. Note: If the mains supply does not come from a 13A fused plug, then a fuse should be inserted in the supply LIVE wire.
is triggered as soon as S2 is operated. This prevents the immersion heater from switching on yet allows the Progress 1.e.d.s to operate.

The sensors are glued to the surface of the copper cylinder and connected to the unit by means of an audio-type 5 -pin DIN plug and socket.

CONSTRUCTION

Refer to Fig. 2 and construct the circuit panel using a piece of 0.1 in. matrix stripboard size 17 strips by 41 holes. Check that this fits the runners of the plastic box securely. Mount the i.c. socket and make all the breaks and inter-strip links. Note especially the breaks between the pins of the i.c. holder but not between pins 3 and 12 or between pins 5 and 10 . Note also the break at the bridge rectifier. Solder the on-board components noting
that VR1, VR2 and VR4 have one of their connections cut off close to the body and left unconnected-they are adequately supported by the remaining two soldered connections. The breaks in the copper tracks at RLA isolate the mains section from the rest of the circuit. For safety reasons, check that these are completely broken.

For clarity, Fig. 2 shows C1 alongside the circuit panel but when in position its leads are bent so that the lid fits. Connect 20 cm lengths of light-duty stranded wire to the 15 points indicated along the lefthand edge of the panel. Do not make the right-hand connections yet. In view of the possibility of error, it would be wise to use different colours if possible. Make a final check for wiring errors and for accidental solder "bridges" between adjacent copper tracks.

Prepare the case by making holes for the nine l.e.d.s, for S1, S2, SK 1 and for mounting T1, RLB and TB1. RLB must be of the heavy-duty pattern specified in the components list and $\mathbf{S} 2$ must be rated for mains use. Make holes in the case for the input and output wires which connect to TB1. Measure the positions of VR1-4 on the circuit panel and drill 5 mm holes in the side of the case so that they may be adjusted by means of a small screwdriver.

Mount the off-board components (the exact layout will depend to some extent on the size of T1) and, referring to Fig. 3, complete all internal wiring. Note that TB $1 / 5$ (mains earth) inter-connects the following: l.e.d. cathodes, solder tag at T1, solder tag at S2 (only needed if this component has a metal body), SK 1 body which forms the common thermistor connection and the circuit panel earth lead.

EE1964

Fig. 2. Stripboard layout of Immersion Heater Controller.

COMPONENTS

Resistors

R1,2,3,4
R7, 100k (2 off)
R7,8,9,10,14 470 (5 off)
R11,12,13 1k
All fixed resistors $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$

Potentiometers

VR1,2,3,4 100 k min. hor. preset

Capacitors

C1 $1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors

IC1 LM324N quad op. amp.
CSR1 BTX 18-400 thyristor
TR1 ZTX300 npn silicon
D1,2,3,4 green (4: off)
D6,7,8,9 red (40ff)
D10 yellow
D5 $\quad 1$ N4148
REC1 W005 bridge rectifier

Miscellaneous

T1 Miniature mains transformer with 240 V primary and 12 V secondary. 150 mA or more current rating. 2-pole 6-way miniature rotary switch-break-before-make action. Pointer knob to suit S1 Push-to-make switch with 240 V contacts. P.c.b. mounting relay400 ohm coil and mainsrated normally-open contacts, e.g. Maplins 10A Mains Relay.
RLB Heavy-duty relay with 240 V coil and doublepole changeover
contacts rated at 20A
(R.S. type 340-403). 14-pin integrated circuit socket.

5-pin DIN plug and chassis socket.
15A terminal block (5 sections needed). 0.1 in . matrix stripboard, size 17 strips by 41 holes.
L.e.d. panel mounting clips (9 off).
solder tags, sleeving. 13A mains wire, immersion heater wire, 5-core wire.
ABS box size $190 \times$ $110 \times 60 \mathrm{~mm}$ external.
RTH1, VA1067S miniature rod $2,3,4$ thermistors (4 off)

Fig. 3. Wiring diagram.

Make RLB connections using $\frac{1}{4} \mathrm{in}$. connectors. Do not solder the wires direct. Connections between the contacts of RLB and TB1 must be made with mains wire of at least 13 A capacity ($40 / 0 \cdot 2 \mathrm{~mm}$). Those between RLA contacts and RLB also the link wire at RLB and connections to $\mathbf{S 2}$ are made using light-duty mains wire.

Leave VR1 to 4 adjusted to approximately mid-track position, slide the circuit panel into position and fit the lid of the case bending the leads of Cl as necessary. Check that there are no trapped wires and that the l.e.d. connections do not cause short circuits.

TESTING

Note: All tests and adjustments must be made with the lid of the case on. A basic check may be made on the circuit before attaching the thermistors to the hot water cylinder. Using light-duty mains wire, connect a mains plug to TB1/2, 1 and 5 (Live, Neutral and Earth respectively) and fit a 3 A fuse. Connect the Live, Neutral and Earth wires of a table lamp

to TB $1 / 3,4$ and 5 respectively. Connect five short temporary wires to the DIN plug noting that the common one is connected to the metal body. Set S1 to Level 1 , plug the unit into the mains and press S2. RLB should click distinctly and the lamp light. D6 shouid light but all other l.e.d.s remain off. Rotate S1 noting that D7 to D10 light in the correct sequence. With S1 at Level 1, connect the Level 1 and Common sensor wires together. D1 should light. Touch the Level 2 and Level

3 wires to those already connected-D2 and D3 should light. Add the Level 4 sensor wire and the system should switch off. Re-activate the circuit and test the Cancel position of S1. If all is well attention may be given to attaching the thermistors to the copper cylinder. Begin by extending the leads as indicated in Fig. 4. Although 5 separate lengths of light-duty stranded wire could be used, it is more convenient to use 4 -core screened wire with the screening forming the common wire. An

Fig. 4. Wiring between the thermistors and PL1, positioning of the thermistors on the hot water cylinder, and their mode of connection is illustrated
alternative would be to use 4-core telephone line with an additional wire taped to it. Remove the cylinder insulating jacket and clean the copper surface in the chosen areas using emery cloth. In the prototype, these positions were $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$, and $\frac{4}{5}$ of the distance from the top of the cylinder. Quick-setting epoxyresin adhesive should then be used to secure the thermistors. It is necessary to provide insulation between the bodies of the thermistors and the metalwork; if this is not done the circuit will fail to work properly. The film of adhesive provides this insulation but care must be taken not to make it too thick or the free flow of heat will be impaired. Finally, solder the wires to the DIN plug at the other end.

MAINS CONNECTIONS

Make the connections from TB1 to the wall switch and to the immersion heater. It is essential to use wire approved for use in immersion heater installations. This is butyl rubber heat resistant wire of 20A rating. Under no circumstances omit any earth connections. Fit strain relief bushes to the wires where they pass through the case.

After re-connecting the mains supply, the system may be checked and the preset potentiometers adjusted over a period of a few days to give the correct operating temperatures.

BRIGHT LIGHT

Afamily of standard, seven segment l.e.d. displays, driver boards and power supplies are being marketed by Antech Opto-Systems.

The standard range of seven segment l.e.d. displays are available in sizes ranging from $1 \frac{1}{2}$ to 4 inches in half-inch intervals, individual l.e.d.s being mounted on printed circuit matrix boards. The displays are fully diffused and available in red, yellow and green.

There are three different power supplies for running $1 \frac{1}{2}$ and $2,2 \frac{1}{2}$ and 3 , and $3 \frac{1}{2}$ and 4 in . displays.

A range of anciliary boards are available, including a high power driver board with 32 input/gutput ports and a splitter board for driving two separate displays, each displaying the same information.

Three control boards are included in the display family, a four digit serial data I/O board, $0-2 \mathrm{~V}$ or $0-200 \mathrm{mV}$ DVM board and a BCD input board. In addition to the standard range of displays, the superbright displays are available in sizes manufactured to customer requirements.

For further information, readers should contact:

> Antech Opto-Systems Lid., Dept EE, 14 Bell Street,
> Maidenhead, Berks SL6 1 BR.

CIRCUITMATE

ACOMPACT hand-held digital multimeter for only $£ 32.25$ (plus VAT) is now being marketed by Beckman Industrial

and is available from their network of distributors. The meter is the Circuitmate DM10

which offers all standard multimeter measuring functionsexcept a.c. current-in a case size of only $120 \times 70 \times 24 \mathrm{~mm}$.
The DM10 measures d.c. voltage in five ranges from 200 mV to 1000 V ; a.c. voltage in two ranges of 200 V and 500 V ; d.c. current in four ranges from $200 \mu \mathrm{~A}$ to 200 mA , and resistance in five ranges from 200 ohm to 2 Megohm.

A separate diode test function is also incorporated. Measurements are read on a highcontrast, $3 \frac{1}{2}$ digit l.c.d. display.

Addresses of nearest stockists may be obtained from:

Beckman Industrial Lid., Electronic Technologies Division, Dept EE, Mylen House.
11 Wagon Lane, Sheldon, Birmingham B26 3DU.

LOW PROFILE

ARANGE of p.c.b. mounted power supplies has recently been introduced by Lascar Electronics. All have an encapsulated low profile transformer giving a compact and rugged construction. The mains $220-240 \mathrm{~V}$ a.c. input may be changed to $110-120 \mathrm{~V}$ a.c. by simply moving an on-board link.

The range includes single rail, twin rail and triple rail types, some being fitted with card handles and connectors for rack mounting. All types are overcurrent, over-temperature and short-circuit protected.

For details of prices and the complete range of output voltages available readers should contact:

Lascar Electronies Ltd., Dept EE, Module House, Whiteparish, Salisbury, Wilts SP5 2SJ.

TIME FOR GAMES

Joining Systema's range of dedicated computer games are three new products of strategy and tactics-Backgammon, Checkers and Reversi.

Each game is pocket sized with a large liquid crystal display area and all models have two levels of difficulty and a two player option.

The BM424 Backgammon computer calls for fast thinking and good luck. Your fate rides on the roll of the built-in electronic dice and the keyboard will react as quickly as you can think.

Checkers is better known in the UK as "Draughts" and Reversi also known as "Othello".

All three models are now

Systema (UK) Ltd.,
Dept EE. 72/74 South Street, Reading, Berks, RGI 4LG.

EVERYDAY ELECTRONIICS PRINTED CIRCUIT BOARD SERUICE

Printed circuit boards for certaln EE constructional projects are now available from the EE PCB Service, see list. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices. Westover House. West Quay Road, Poole, Dorset BH 15 1JG. Cheques should be crossed and made payable to IPC Magazines Lid.

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
\qquad JUNE '83 Eprom Programmer, TRS-80 Eprom Programmer, Genie Eprom Programmer, TRS-80 \& Genle	$\begin{aligned} & 8306-01 \\ & 8306-02 \\ & 8306-03 \end{aligned}$	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & £ 1.98 \end{aligned}$
- JULY ' 83 User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{array}{r} £ 4.82 \\ £ 5.17 \end{array}$
- AUGUST '83 - Storage 'Scope Interface, BBC Micro Car intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Part 2 Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	$\begin{array}{r} £ 3.20 \\ £ 5.15 \\ £ 5.08 \\ £ 3.56 \\ £ 4.56 \end{array}$
- SEPTEMBER '83 - High Speed A-to-D Converter M.I.T. Part 3 Signal Conditioning Amplifier M.I.T. Part 3 Stylus Organ Distress Beacon Distress Beacon Pocket Version	$\begin{array}{r} 8309-01 \\ 8309-02 \\ 8309-03 \\ -8309-04 \\ 8309-05 \end{array}$	$\begin{aligned} & £ 4.53 \\ & £ 4.48 \\ & £ 6.84 \\ & £ 5.36 \\ & £ 3.98 \end{aligned}$
- OCTOBER'83 - D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electronic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	$\begin{array}{r} £ 5.77 \\ £ 5.13 \\ £ 5.43 \end{array}$
- NOVEMBER'83 - TL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Digital Gauss Meter Speech Synthesiser for BBC Micro Car On/Off Touch Switch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 83111-03 \\ & 8311-04 \\ & 8311-05 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & £ 3.11 \end{aligned}$
- DECEMBER'83 - 4-Channel High Speed ADC (Analogue) . M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 TRS-80 Twin Cassette Interface Touch Operated Die (Dot matrix) Touch Operated Die (7-segment) Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$\begin{array}{r} £ 5.72 \\ -£ 5.29 \\ £ 7.43 \\ £ 4.34 \\ £ 4.34 \\ £ 3.41 \end{array}$

*Complete set of boards. *"Calibrated with C1, VR1 and IC3 fitted. M.I.T.-Microcomputer Interfacing. Techniques, 12-Part Series.

- JANUARY '84-		
Central Heating Pump Delay	8401-01	£3.33
Biologlcal Amplifier M.I.T. Part 7	8401-02	£6.27
Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit	8401-03	¢2.35
Analogue-to-Digital Unit	8401-04	£2.56
Games Scoreboard	8401-06/07	£9.60
FEBRUARY ' 84		
Eprom Programmer/ROM Card for 2×81	-*8402-01	¢7.84
Oric Port Board M.I.T. Part 8	8402-02	¢9.56
Negative Ion Generator	-8402-03	£8.95
Temp. Measure \& Control for ZX Comprs Relay Driver	8402-04	£3.52
- MARC		
Latched Output Port M.IIT. Part 9	8403-01	$£ 5.30$
Buffered Input Port M.I.T. Part 9	8403-02	¢4.80
VIC-20 Extension Port Con. M.I.T. Part 9	8403-03	¢4.42
Com. 64 Extension Port Con. M.I.T. Part 9	8403-04	£4.71
Digital Multimeter Add-On for BBC Micro	8403-05	£4.63
APRIL 84		
Multipurpose Interface for Computers	8404-01	¢5.72
Data Acquisition "Input" M.I.T. Part 10	8404-02	£5.20
Data Acquisition "Output" M.I.T. Part 10	8404-03	£5.20
Data Acquisition :"PSU" M.I.T. Part 10	8404-04	£3.09
Timer Module	8404-05	£3.58
A.F. Sweep Generator	8404-06	£3.55
Quasi Stereo Adaptor	8404-07	f. 3.56
MAY' 84 \qquad Simple Loop Burglar Alarm	8405-01	£3.07
Computer Controlled Buggy M.I.T. Part 11 Interface/Motor Drive	$8405-02$	£5.17
Collision Sensing	8405-03	£3.20
Power Supply	8405-04	f. 4.93
\qquad Infra-Red Alarm System	8406-01	£2.55
Spectrum Bench PSU	8406-02	¢3.99
- Speech Synthesiser M.I.T. Part 12	8406-03	¢4.85
Train Wait	8406-04	£3.42
- JULY'84 -		
Ultrasonic Alarm System	8407-01	£4.72
Atom EPROM Simulator	8407-02	£3.0B
Electronic Code Lock		
Main board	B407-03	£2.70
Keyboard	8407-04	£3.24
- AUGUST '84		
Microwave Alarm System	8408-01	¢4.36
Temperature Interface-BBC Micro	8408-02	¢2.24
SEPTEMBER 84		
Op-Amp Power Supply	8409-01	£3.45
- OCTOBER 'B4 -		
Micro Memory Synthesiser	*8410-01	£8.20
Drill Speed Controller	8410-04	£1.60
- NOVEMBER '84 -		
BBC Audio Storage Scope Interface	8411-01	£2.90
Proximity Alarm	8411-02	£2.65
\qquad		
Digital Multimeter	-8412-02/03	¢5.20
Mini Workshop Power Supply	8412-04	£2.78
- JANUARY '85-		
Power Lighting Interface	8501-01	¢8. 23
Games Timer	8501-02	£1.86
Spectrum Amplifier	8501-03	¢1.70
- FEBRUARY '85-		
Solid State Reverb	8502-01	£3.68
Computerised Train Controller	8502-02	£3.38
- MARCH ${ }^{8}$ 8- Model Railway Points Controller	8503-01	£2.78
-APRIL '85-		
Insulation Tester	8504-02	£2.53
Fibre larm	8504-03	£3.89

QUALITY COMPONENTS...FAST!

SEMICONDUCTORS									
AC127	25.	Bu208	2800	W01	34 D	401285	${ }^{28 p}$	40668E	260
${ }_{\text {A A }}{ }_{\text {A } 1281}$	350 598	CA3046 CAMOAOF	${ }^{999}$	W02	380 440	${ }_{4}^{40138 E}$	${ }_{680}^{380}$	4067BE 4068 BE	2500
A016?	600	CA3140	90 p	W005	300	4015 BE	650	${ }^{40694 U B E}$	${ }_{28 p}$
BC1078	$17 p$	CA3189	2400	2 M 14	1200	4016BE	350	40708E	$30 p$
BC108C	180	CA3240	145p	2X500	220	40178E	$55 p$	40718E	210
EC109C	170	LF347	1750	27×502	180	40188E	65 p	${ }^{407285}$	900
EC140	370	LF351	750	27×504	320	40198E	410	4073BE	289
${ }^{\text {BCl }} 161$	369	LT353,	960			40208E	65 p	40758E	350
${ }_{8 C 168 C}$	120	LM305A	330	1 N 4001	78	402188	${ }^{68 p}$	4076BE	740
${ }_{8 C 182}{ }^{\text {BCI }}$	129	LM311	990	1 N 4002	50	402788	72 p	40778E	32 p
${ }_{8 C 1831}{ }^{\text {BC1 }}$	12 D	1 m 380	${ }^{1650}$	144005	${ }_{70}^{60}$	40238E	280	40788E	329
	168	LM381 1 M382	1800 1500		${ }_{40}$	$4{ }^{4025} 485$	48 p	40818 E	280
BC212	14 p	LM334	1700	1N914	59	40268E	1100	4 4 4 BSBE	59p
BC214	120	LM387	1750	2 N 2219	370	$40278 E$	38 p	40898E	140p
BC327	14 D	LM309	1500	2H2369A	28p	40288E	55p	4093BE	400
$8 \mathrm{BC328}$	140	LM3994	3800	2N2646	900	40298E	600	40948E	1100
$8 \mathrm{BC337}$	140	Mu2955	1150	2 2 2904	${ }^{32 \mathrm{p}}$	40318E	1300	4098BE	850
BC547	${ }^{9 p}$	ML922	5050	2N2907	${ }^{260}$	40328E	650	40998C	960
BC548	12p	MPF102	850	2N3054	$79 p$	4033385	$94 p$	40106	440
${ }^{\text {BCLS49 }}$	$12 p$	NES55	370	2 N 3055 H	1050	403585	65 p	40109	${ }^{86 p}$
8cr70	239	NE556	650	2 N 370	${ }^{14} \mathrm{p}$	403885	${ }^{85 p}$	40162	S8P
ECV71	220	NE565	${ }^{1550}$	$2 \mathrm{2N3704}$	12 p	\$04085	600	40174	72 p
80131	490	NES66	1600	2 N 3705	12 p	404185	${ }_{59}^{69}$	40194	${ }^{790}$
80132 80135	500 370	${ }^{\text {OAP }}$ OA 47	210	$2 N 3706$ 2N3708	14 p 120	${ }_{404385}^{404285}$	560 600	${ }_{4}^{4502388}$	600 550
B0139	400	OA90	9	2 N 3711	110	40448E	630	45088E	1500
80140	40 p	0991	100	2037/2?	1950	4[1458E	1150	4510	650
8018	45p	SL490	3200	2 N 3903	$16 p$	$4 \mathrm{TH6BE}$	${ }^{75 p}$	4511	${ }^{700}$
$8 \mathrm{Br256}$	370	TDA1022	6400	2 N 3904	88	4 C47BE	15p	452088	${ }^{655}$
BF259	370	T0A1024	1790	${ }_{2}^{2 N 3905}$	${ }_{5}^{14 \mathrm{p}}$	40488 E	500	${ }_{7106}^{456885}$	310 p 8100
$\begin{aligned} & 8 F x \times 29 \\ & 8 F \times 34 \end{aligned}$	349 340	$\begin{aligned} & \mathrm{TIP} 122^{T P 1 P_{127}} \end{aligned}$	${ }^{950}$		59p	4049UBE 40508 E	$\begin{gathered} 56 p \\ 38 p \end{gathered}$	7106 7107	8100 8108
${ }_{8 \times \times \times 8 \mathrm{P}}^{8}$	378	TIP2955	950 870	40008E 40018 F		40518 EF 4052 E 5	$\begin{aligned} & 600 \\ & 600 \\ & \hline \end{aligned}$	741 748 C	$\begin{aligned} & 20 p \\ & 590 \\ & 50 \end{aligned}$
BFx 88	350	TiP3iA	390	40028 F	$28 p$	40538 E	720		
${ }^{\text {BrF50 }}$	$31 p$	TIP H1A	450	40006 E	750	${ }^{40545 E}$	${ }^{880}$		
BFY51	380 310	TIPGR	450		${ }_{750}^{280}$	${ }^{405685}$	${ }_{8}^{95 p}$	CATA	$\text { E } 1985$
	2000	VNG6AF.	1828	${ }_{40} 4018 \mathrm{BE}$	${ }_{28}$	4063888	90p	for	huge
PLEASE REMEMBER OUR PRICES INCLUDE 15% VAT!								COMP	E OF NENTS

CAPACITORS
ELECTROLYTIC AXIAL 25V:10uF $8 \mathrm{p} ; 22 \mathrm{uF}$ 10p: 17uF 12p; 100uF 15p; $330 \mathrm{uF} 20 \mathrm{p} ; 470 \mathrm{uF} 22 \mathrm{p}$ 000uF 36p; 2200 HF कोp 3300 uF 91p
63V:1 UF 9p; 1.5uF 11p 2.2uF 8p; $3.3 \mathrm{JF} 8 \mathrm{pp}_{\mathrm{i}}$ 4.7uF 8p; 6.8uF 18p; 10uF 12p; 15uF 16p; 22uF 17p; 47uF 17p;
100uF 21p; 150uF 31 p . 100 F 21p; 150uF 31p;
$220 \mathrm{~F} 29 \mathrm{p} ; 330 \mathrm{~F}$ 32p; 470 FF 45 p ; 1000 uF 78 p : ur 1.50 TANTALUM BEAD (uFNoits) $0.47 / 35$ 18p; 1/35 19p; $22 / 3521 \mathrm{p}_{\mathrm{i}} 4.7 / 16$ 17pi 1016 26p; $22 / 25$ 63p; DISC CERAMIC TYPE 0.01 UF 6p; 0.022 uF 6 p 0.047 uF 日p; 0.1 uF 8 p 1\% POLYSTYRENE TYPE 100 25p; 150 (pF) 25 p; 220 25p; 270 25p; 330 26p; 390 27p;
SEE CATALOGUE FOR CAPACTORS

RESISTORS
1\% 0.4 WATT METAL FILM
These high quality resistors are supplled singly or in bargain packs. All E24 values 1R-1M are available:
ONLY $2 p$ EACHI ...OR
PACK 1: 10 of each value
1210 resistors $E 21.95$
PACK 2: 5 of each value
$=605$ resistors $£ 10.99$

1985 CATALOGUE

PACKED WITH THOUSANDS OF TOP QUALITY COMPONENTS AT COMPETITIVE PRICES AND ALL COVERED BY OUR SUPERB DISPATCH SERVICE! INCLUDES 3 £1 VOUCHERS AND DETAILS OF OUR DISCOUNT SCHEME FOR REGULAR CUSTOMERS.
SEND 500 CHEQUEIP.O. TODAY FOR YOUR COPY BY RETURN OF POST!

AB MICROSYSTEMS

P.O. BOX 12, SWINTON, MANCHESTER M27 3WS.

PRICES INCLUDE VAT @ 15%. POSTAGE: PLEASE ADD 30 p TO ORDERS UNDER £5. OFFICIAL ORDERS WELCOME. DESPATCH NORMALLY 24 HRS. E. $20 . E$

MASIMER Bechonics-Microprocessors-Now! The PRACHICAL Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips';
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

EVERYDAY
 ELECTRONICS at Your and computer PROJECTS

Reach effectively and economically to-days enthusiasts anxious to know of your through our semi-display and classified pages. Semi-display spaces may be booked at timetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word number 60p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisetance, should be sent to the Classified Advertisement Department, Everyday Electronics and 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone

Receivers \& Components

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement.

RESISTORS 1,000 mixed $1 / 8 w, 1 / 4 w, 1 / 2 w, 2 \%, 5 \%$, 10%, C. film $£ 3.45$ inc. P\&P. D. J. HOOKER, Romney Marsh Electronics, Pennywood, Clark Road, Romney Marsh, Kent TN28 8PB.

VERY LARGE PACK OF MIXED COMPONENTS Capacitors, transistors, resistors, diodes, boards, thyristors, multi-pin plugs \& sockets and many more items $\mathbf{5 6 . 5 0 p}$ post \& packing inclusive. G. EVANS, 7 Mendip Close, Pendine Park, Summerhill, Wrexham, Clwyd.

Security

Electrical
BENCH AND PROJECT POWER SUPPLIES. Complement your electronics project with one of our quality British designed and manufactured power supplies. Send SAE with your requirements for immediate quotation. COLTECH ELECTRONIC CONTROLS LTD., Holly Lane Industrial Estate, Atherstone, Warwickshire, CV9 2HA. Telephone 082774299 ?

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to: BTS, 190 King 's Road, Harrogate, N. Yorkshire. Tel: 042355885.

FULL SIZE TOP QUALITY Service Sheets $£ 2.50$ + 1.s.a.e. CTV/Music centres $£ 3.50+1$. s.a.e. Repair data almost any named TV/video $£ 10.50$ in circuits. L.s.a.e. brings any quite-free magazine/pricelists. TISEE, 76 Churches, Larkhall, Lanarkshire. Tel. 0698 883334.

Services

INVENTORS
 Think of something new? Write it down!

American industry offers potential royalties for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.
American Inventors Corporation 82 Broad Street, Dept. EV.
Westfield, Massachusetts 01086 United States of America
A fee based marketing company

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next availble issue of Everyday Electronics for Insertions. I enclose Cheque/P.0. for $£$ (Cheques and Postal Orders should be crossed Lloyds Bank Lid. and made payable to Everyday Electronics)

HEADING REQUIRED:
NAME
ADDRESS

EVERYDAY ELECTRONICS and COMPUTER PROJECTS

Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street, London SE1 9LS
Telephone 01-261 5942
Rate:
33 per word, minimum 12 words. Box No. 60 p extra.

[^1]

SERVICE

products and services £7.80 per single column cen(minimum 12 words), box and Computer Projects and ments, together with remitComputer Projects, Room 01-261 5942).

Wanted

WANTED BACK ISSUES of Everyday Electronics. Telephone Kings Langley 63708 after 6 pm.

Tuition

Miscellaneous

FREE! PARCEL OF COMPONENTS worth $£ 10$. Send only 80p postage! D. HORSLEY, 113 Clare Road, Braintree, Essex.

SCHOOLS AND COLLEGES. Send now for our 1985 catalogue top quality components at very competitive prices. ELECTRON ELECTRONICS, 62 High Street, Croydon, Surrey.
"PROJECT BUILDERS" Our cased transistorised breakdown units will save fef's. S.A.E. for lists, 5 St Josephs Park, Ballycruttle, Downpatrick, BT30 7EN.

- BAKER * GROUP PA OISCO
AMPUFIERS post $£ 2$
150 watt Output, 4 input Mixer pre-amp. Illustrated 150 watl Output, Slave 500 mv . Input; $4+8+16$ ohm Dutputs. $\mathbf{\epsilon 8 0}$ $150+150$ watt Stereo, 300 watt Mono Slave 500 mv. Inputs $£ 125$ 150 wat P.A. Vocal, 8 inputs. HighLow Mixer Echo Socker $£ 129$
100 watt Valve Moder, 4 inputs, 5 Outputs. Heavy duty......... $£ 125$ MikES Dual f . Floor Stand $\varepsilon 13$. Boom Stand $£ 22$ PP $£$ REVERB UNIT for Microphone or Musical Instruments E35 PP \&1. +H AMPUFIERS 500 wat stereo "Reconditioned" $£ 275$ PP ©5 BAKER LDUDSPEAKERS
Trpe Midrange Hi-Fi
Hi Fi
P.A/Disco/Group
$\mathrm{Hi}-\mathrm{Fi}$
P.A.Disco/Group

PA.Disco/Group
PA/Disca/Group
DG100
DISCO CONSOLE Twin Decks, mixer pre amp $£ 145$ Carr $£ 10$. 150 wath $£ 360 ; 360$ watt $£ 41 a$ Carr $£ 30$.
DISCO MIXER. 240V, 4 stereo channels, 2 magnetic, 2 ceramic tape, 1 mono mic channel, win v.u. meters, headphone monito Tape ourput facility, panel or desk mounting, matt biack facia DELUXE STEREO DISCO MIXER/EQUAUSER as above plus LE.D V.U. displays 5 band graphic equaliser, leftright fader, switchabie
inputs for phone/line. mikelline. As above but 3 deck inputs, 4 linejaux inputs, 2 mic inputs, headphone monitors $£ 145$.
PA. CABINETS (empty) Single 12 E32; Double 12 E38. carr $£ 10$. WITH SPEAKERS 45W E50; 75W E54; 90W E73; 150W 882. HORNBOXES 200 Watt E32, 300 Watt e38. Post E.
WATERPROOF HORNS 8 ohm's 25 watt EzO .30 watt $\mathrm{Ez3} .40$ wath 299. 20W plus 100 volt line E38. Post E2.

MOTGROLA PIEZO EEFCTRONIC HORN TWEETER: 33 kin , squar
100 watts. No crossover required. $4-16$ chm. $7 / 3 \times 3 / 8 \mathrm{n}$.
CROSSOVERS. TWO-WAY 3000 c/s 30 wat E3. 60 watt E5. 100 wath 3 way 950 cps 3000 cps . 40 watr rating Et .60 watt f6.50, 100 watr $£ 10$ 4 ohm, $5 \mathrm{in} .7 \times 4 \mathrm{in}, 62.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}$. ©3. Bin. $6350.61 / 2 \mathrm{in}, 25 \mathrm{~W} 67.50$.
 44.50, T0in E5; 12 in E6 8 in. 25W E6.50. 8 in Twin Cone 6Ow E12.50.

Make	Model	Sive Watt	Ohms	Price	Po
AUDAX	WOOFER	51/2in. 25	8	E10.50	
G00DMANS	hifax	$71 / 2 \times 1 / \mathrm{min} 100$	8	f 5	
goodmans	HB WOOFER	In 60	8	513.50	
WHAFFEDALE	WOOFER	8 in 30	8	63.50	
CELESTION	DISCO/Group	10m. 50	$8 / 16$	21	
g000MANS	MPG/GROUP	12in. 120	815	130	
G00DMANS	HPD/DISCO	12n. 120	815	530	
$\mathrm{H}+\mathrm{H}$	Disco/Bass	15in. 100	4816		
GODDMANS	HP/BASS	$15 \sin 250$	8	ET2	
GOODMANS	HPD/BASS	189n. 230	8	681	

DISCO UGHTING EQUIPMENT

READY BUILT DELUXE 4 CHANNEL 4,000 WATT sound chaser +t
speed + programme controls E69. Mk 216 programs, 899 PP PARTY HCHT 4 Colo FIDE 1 PARTY UGHT 4 Coloured Flood Lamps Flashing to Music. Self
contained Sound to Light $410 \times 196 \times 115$ MAINS TRANSFORMERS
$250-0-250 \mathrm{~V}$ 80mA 6.3 V 3.5A 6.3V IA. Price Pos $350-0.350 \mathrm{~V} 250 \mathrm{~mA} .6 .3 \mathrm{~V}$ GA CT $£ 12.00$ Shrouded $£ 14.00 £ 2$ 220 V 25 mA .6 V 1 Amp 63.00220 V 45 mA . 6 V 2 Amp f 4.00 E Low voltage tapped outputs available
 31-26-0-26-31 volt 6 amp £1400 €2 LOW VOLTAGE MAINS TRANSFORMERS $£ 5.50$ each post paid
$9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A}: 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-0-17 \mathrm{~N}$ $9 \mathrm{~V}, 3 \mathrm{~A}: 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A}: 2 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / \mathrm{A}: 30 \mathrm{~V}, 5 \mathrm{~A}+17-0 \mathrm{-} 17 \mathrm{~V}$
$2 \mathrm{~A} ; 3 \mathrm{~V}, 2 \mathrm{~A} ; 20-40-60 \mathrm{~V}, 1 \mathrm{~A}: 12-0-92 \mathrm{~V}, 2 \mathrm{~A} ; 20-0.20 \mathrm{~V}, 1 \mathrm{~A} ; 50 \mathrm{~V}, 2 \mathrm{~A}$

68.50 post 50 p MINI-MULTI TESTER Pockel size instrument, o.p.v. DC volts 5, 25, 250,500
AC volts $10,50,500$, 1000 . DC O-25M. AC volts $10,50,500$, Resistance 0 to 600 K .
De-Luxe Range Doubler Meter, 50,000 o.p.v. 7×5 2 in . Resistance 0,20 meg in 5 ranges Current 50 MA to 10 A . Volts $0.25 / 1000 \mathrm{~V}$ DC, $10 \mathrm{v} / 1000 \mathrm{v}$ AC. $£ 25.00 \mathrm{PP} \mathrm{E} 1$ PANEL METERS $50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA} 1 \mathrm{~mA} .5 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$

$1 \mathrm{amp}, 2 \mathrm{amp}, 5 \mathrm{amp}, 25$ vot, vU $21 / 4 \times 2 \times 1 / 4 \mathrm{ain}$. 5.50 posi 50 p ALUMINIUM PANELS $188 . \mathrm{w} . \mathrm{g} .12 \times 12 \mathrm{in} . £ 1.80 ; 14 \times 9 \mathrm{im}, £ 1.75$; $\mathrm{Rp} ; 12 \times 5 \mathrm{in}$. $90 \mathrm{p} ; 16 \times 10 \mathrm{in}$. 1210 ; $16 \times 6 \mathrm{in}$. 161.30 . $4 \times 21 / 2 \times 2$ in. E1.20; $3 \times 2 \times$ lin. E1; $6 \times 4 \times 2 \mathrm{in}$. $1.30 ; 8 \times 6 \times$ in. $23 ; 12 \times 5 \times 3$ in. $£ 3.60 ; 6 \times 4 \times$ Jin. $£ 2.20 ; 10 \times \cdot 7 \times 3$ in. $£ 3.60$	HIGH VOLTAGE ELECTROLHIICS	
$16 / 450 \mathrm{~V}$	$20+20 / 350 \mathrm{~V}$	$\begin{array}{llrll}16 / 450 \mathrm{~V} & 50 \mathrm{p} & 220 / 400 \mathrm{~V} & \mathrm{E} & 32+32 / 500 \mathrm{~V} \\ 20500 \mathrm{~V} & 75 \mathrm{~V} & 8+8 / 50 \mathrm{~V} & \mathbf{7 1} & 32+32 / 350 \mathrm{~V}\end{array}$

 SINGLE PLAY DECKS. Post C2.

Make	Drive	Model	Cartridge	Price
BSR	Bell	12 volt	Ceramic	$£ 20$
BSR	Belt	P232	Magnetic	$£ 28$
BSR	RIm	P207	Ceramic	$£ 20$
AUTOCHANGER	BSR	Ceramic	£20	

RADIO COMPONENT SPECIALISTS
Dept 4, 337, WHITEHORSE ROAD, CROYDON
ACCESS SURREY, U.K TEL: O1-684 1665 VISA full Lists 34 p Stamps. Same day despatch Closed Wod

1] DON'T MISS OUT ON CROFTON

 CASH \& CARRY BARGAINS

 CASH \& CARRY BARGAINS}

Computer Monitors
 Combined Colour TV/Monitors ZX81 Keyboards Light Pens (BBC) TV Cameras Lenses Video Digitisers - Eprom Erasers etc.

HIGH QUALITY PRODUCTS AT AMAZING PRICES

CROFTON ELECTRONICS

35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

	INDEX TO ADVERTISERS
边 It's no secret!	AB Microsystems.. 237 AC/DC Electronics 2393 AD Electronics 238
	American Inventors 238 Benning Cross $\quad 240$
	Benning Cross 240 Bib Audio 219
	BiPPak......aver II BK Electronics Cover ili
Nidevidence that we sucues in	B.N.R.E.S. 237
take a look through our com-	Bull J......- $\quad 223$
$\begin{aligned} \text { Hogue } \\ \text { Hos } \end{aligned}$	Cambridge Learning 238 Computronics 238
\%	Computronics 238 Cut Price
CRICKLIEWOOD ELECTRONICS LTO. to Cricklawood Broodway NWZ 3ET.	Electronics 207
	$\begin{aligned} & \text { Cricklewood } \\ & \text { Electronics } 240 \end{aligned}$
	Crofton Electronics 240
	188
	Electrovalue 210
	Grandata Limited .. 186 Greenweld
	Ideal Schools
	ICS Intertext.
	Kelan Engineering 207
	London Electronics College
	Magenta
Kil Mid Destripion Price	Electron
	aplin
Ultrsonic Transminer Remote Swich	Electronics Cover IV Marco Trading 207
	Radio Compone
Sound hash-riger	Specialists 240
	Rapid Electronics ... 189 Riscomm lto
	Riscomp Ltd Roden Products 239
${ }^{14}$	Skybridge Ltd........ 208
	T.K. Electronics 187

OMP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES
 Nowenjiona
 world-wide reputation for quality, reliability and performance at a realistic price. Four models

 available 10 suit the needs of the prolessional and nobby markel. i.e.. Industry. Leisure.Instrumental and Hi.Fi. etc. When comparing prices. NOTE all models include Toroidal Insirumenial and Hi-Fl. etc. When comparing prices. NOTE all models include foroidal
power supply, Integral heat sink. Glass fibre P.C.B., and Drive circuits to power compatible Vu meter. Open and short circuit proof. Supplied ready built and tested.
 OMP100 Mk II Bi-Polar Output power 110
watts R.M.S. into 4 ohms, Frequency Res ponse $.15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$. T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max. output 500 mV al 10 K , Size $360 \times 115 \times 72 \mathrm{~mm}$. PRICE $£ 32.99$ + $\mathbf{1 2 . 5 0 ~ P \& P . ~}$
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typica 0.002%, Input Sensitivity 500 mV , S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE £ $39.99+$ E2.50 P\&P
OMP/MF200 Mos-Fet Output power 200 watts R M.S into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}, 100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate 50V/uS, T.H.D. Typica 0.001%. Input Sensitivity 500 mV . S.N.R -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE ᄃ62.99 + 13.50 P\&P

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350, Slew Rate 60V/uS. T.H.D. Typicai 0.0008%, Input Sensitivity 500 mV , S.N.R -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE £79.99 + £4.50 P\&P

Vu METER Companble with our four amplifiers detailed above. A very accurate visual display emploving 11 L.E.D. diodes $(7$ green, circuits for very fast rise and decay times. Tough moulded plasiic case, with timed acrylic front Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $88.50+$ 50 p \& a ?
NOTE: Mos-Fels are supplied as slandard 1100 KHz bandwidth \& Input Senstivity 500 inv . If required NOTE: Mos-Fets are supplied as slandard (100 KHz bandwidth \& In
P.A version (50 KHz bandwidth \& Input Sensilivity 775 mV) Orde

19* RACK CASED MOS.FET STEREO AMPLIFIEAS with iwin power supplie
Three models (Ratungs RMS into 4 ohms) MF400 (200 + 200w) $£ 228.85 \quad$ Securicor MF200 (200 + 200w $2228.85 \quad$ Delivery
MF600 $300+300 w$

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence

POWER RANGE

oz magnet 1.S. Mi-Fi/Disco.
20 oz magnet 1 " atly voice coll Ground ally haing escuicheon. Res. Freq 40 Hz . Freq. Resp. io
6 KHz Sens 92 dB 'PRICE 10.99 Available with

50 oz . magnet. $2^{\text {" ally }}$ voice coll, Ground ally fiting escutcheon. Oie-cast chassis, Whute cone, Res.
Freq. Freq. Resp to 4 KHz Sens. 95 dB . PRICE $128.60+6300 \mathrm{P} \& \mathrm{P}$ ea
15", 00 WATT R.M,S. Hi-Fi/Disco
50 oz magnet $2^{\prime \prime}$ ally voice coul Ground ally fixing escutcheon Die-cast chassis Whate cone. Res
McKENZIE
12 " 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Disco
12" 85 WATT R.M.S. C1285 GP Lead guitar/ Keyboard/Disco.
2" ally voice coll Ally centre dome. Res Freq. 45 Hz Freq Resp to 6.5 KMz . Sens 98dB PRICE $\mathbf{~} 24.99$?" ally vorce coll

$$
\text { E300 P\& }
$$

WEM
$5^{-} 70$
WATT R.M.S. Multiple Array Disco etc

8" 150 WATT R.M,S. Mulliple Array Disco etc.
$10^{\prime \prime} 300$ WATT R.M.S. Disco/Sound reenforcement etc.
$1 / 2$.
vaice coil Res Freq 35 Hz . Freg Resp to 4 KHz Sens
r/". voice coll Res Freq 35 Hz . Freg Resp to 4 KHz . Sens. 92 dB . PRICE $\subset 30.00+12.00 \mathrm{P} \mathrm{\& P}$ ea.
$12 " 300$ WATT R.M.S. Disco/Sound re entorcement etc.
$1 / /{ }^{\prime \prime}$ vorce coul Res Freg. 35 Hz Freq Resp to 4 KMz . Sens 94 dB . PRICE $\mathrm{f} 3 \mathrm{~B} 00+13.00$. P
SOUNDLAB (Full Range Twin Cone)
60 WATT R.M.S. HIF Fi/ Multiple Array Disco etc
voice coll. Res Freq 63 Hz Freq. Resp to 20 k .
voice coll. Res Freq 63 Hz Frea. Resp to 20 KHz Sens. 86 dB PRICE $\int 9.99+11.00 \mathrm{Pg} \mathrm{P}$ ea 60 Wart R.M.S. Mi.Fi/Multiple Array Disco etc.
voice coll Res. Freq 56 Hz Freq Resp to 20 KHz . Sen
$60 \cdot$ WAT Res. Freq 56 Hz Freq Resp lo 20KHz. Sens. 89d8. PRICE $\mathrm{f} 10.99+61.50 \mathrm{Pg}$ P ea

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ whth vary sensitive microphone. Range 100
3 WATT FM TRANSMITTER 3 WATT $85 / T 15 \mathrm{MHz}$ varicap controfed professional performance. Range
(12 vott) Price: $£ 13.74+750$ P\&P.
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts Ideal for
many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ vol). Price: many applications. $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt Price. ©11 27
P\&P +75 p each, S.A.E. for complete list.

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDLY SERVICE LARGE S.A.E. 28ロ STAMP FOR CURRENT HT

BURGLAR ALARM

Better to be 'Alarmed' then terrifed. Thandar's ram ous 'Minder' Burglar Alarm System. Superior microwave principle Supplied as three units.
complele with interconnection cable. FULLY GUARANTEED
Control Unit - Houses microwave radar unit. range Tp to 15 meltres adjustabie by senstivity control Three posilion. 104 dB output
Outdoor Alarm - Electronic swept Ireq. siren. 98dB output. Housed in a tamper-proof heavy duty metal Eoth the controt unt and outdoor alarm contain re. chafgeable batteries which provide full protection $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors. panic SAVE $£ 148.00$ Usual Price $\mathbf{£ 2 2 8 . 8 5}$
BKE's PRICE $£ 79.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS
The very best in quality and value. Made specially to suit todays hard wearing black vynide with protective cor ners, grille and carry handle. All models 8 ohms. Full Range $45 \mathrm{~Hz}_{2}-20 \mathrm{KHz}$. OMP $12 / 100$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$ f 125.00 per pai OMP $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} \times 145.00$ per pai
OMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime}$ f 169.00^{\prime} per pair MP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 169.00$ per pair

Delivery: Securicor $\mathbf{C 8} .00$ per pair

STEREO CASSETTE DECK

STEREO CASSETTE DECK Ideal for installing into Disco and Hi-Fi cabinet/Consoles Surface mounting (Horizon-
tall. Supplied as one unit with 1al). Supplied as one unit with mains power supply.

* Metal top panel Black finish * Piano type keys including pause Normal/Chrome tape switch
* Twin Vu Meters * 3 Digit counter * Slider Record Level control Size $171 \times 317 \mathrm{~mm}$ Depth 110 mm PRICE $535.99+\mathbf{~} 3.00$ P\&P

1 K-WATT SLIDE DIMMER
 Control loads to IKw
Compact Size
 ing through panel cabinet cut out * Insulat
case
. case

BSB00

- Suitable lor both resist ance and inductive loads. In numerable applications in
industry, the home, an Industry, the home,
disco's, iheatres etc. disco's, theatres etc.
PRICE $f 12.99+75 \mathrm{p}$ PRICE f(Any quantity).
(An)

PIEZO ELECTRIC TWEETERS MOTOROLA

Join the Prezo revolution The low dynamic mass ino voice coill of a Piezo tweetel produces an
improved transtent response with a lower distortion level than ordmaiy dynamic tweeters As a crossover is not required these units can be added to existing speaker systems of up 10100 wailt
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWE ETER.

STEREO DISCO MIXER STEREO DISCO MIXER with 2×5 band $L / 8$ R graphic equalisers and twin 10 segment
L.E.D. Vu Meters Many ourstanding features 5 Inputs with individual faders providing a useful combination of the following:3 Turntables (Mag). 3 Mics, 4 Line plus Mic with talk over switch. Meadphone Montior Pan Pot. L \& R. Master Output controis. Ou put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$.
Price $\mathrm{f} 134.99-\int 300 \mathrm{P} \& \mathrm{P}$

B. K. ELEGTRONIOS

From a gentle purr to a mighty roar the tightly controlled power of the beast is yours to command!

PROFESSIONAL OUALITY HGLIPOWER LOUISPEAKERS

A new range of superb quality loudspeakers.

* Virtually Indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heat overload tolerance
* Advanced technology magnet system
* Rigld cast alloy chassls
* Linen or Plastiflex elastomer surroinds
* 5-year guarantee (In addition to statutory rights)

- Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω. impedances. and with input powers ranging from 50 W to $300 \mathrm{We.g}$.
5in. $50 \mathrm{~W} 95 \mathrm{~dB} 8 \Omega$: XG39N / 16 Ω : XG40T £17.95§
8in. 100W 98dB 8 Ω : XG43W £29.95§
10in. 100W 100dB 8 Ω : XG46A £29.95§
12in. $100 \mathrm{~W} 101 \mathrm{~dB} 8 \Omega$: XG49D £29.95§
12in. Twin Cone 100W 100dB 8 8 : XG50E / 16 2 : XG51F £31.95§
Note - the output power doubles for each 3dB increase (ref 1W@ 1m).

PREGISION GOLD MULTIMEIERS

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2000Ω N DC/AC $£ 6.95 \S$ (YJ06G)
$\mathrm{M}-102 \mathrm{BZ}$ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, $20,000 \Omega$ N DC $£ 14.95 \S(\mathrm{YJ} 07 \mathrm{H})$
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges $20,000 \Omega$ N DC $£ 19.95 \S$ (YJORJ)
$\mathrm{M}-5050 \mathrm{E}$ Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak $A C$, centre-zero and 12A AC/DC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and 20μ A DC/AC FSD ranges, continuity buzzer, diode lest, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ10L)
N.B. All our prices include VAT and Carriage. A 50 p handling charge must be added if your total order is less than £5 on mail order (except catalogue).

MAPLIN ELE CTRONIC SUPPLIES LTD.

Main Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552914 SHOPS

- BIRMINGHAM Lynton Square, Perry Bar, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hamimersmith, W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831
- SOUTHEND 282-284 London Rd, Westcifif-on-Sea, Essex. Tel: 0702-554000 Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detalled in our catalogue, and with well over 600 new lines In our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue. (The items below are NOT kits).

- Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14 p (gold from 70 p)
* Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only $£ 58.95$ (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum ánalyser - from £ $£ 77.95$

- Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only £195.00 (AF98G) * Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
*Detailed descriptions of the exciting new 74HC range of IC's which combine the advantages of CMOS and TTL. From 46p
* Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only £37.95 (YJ13P)

* 1% Resistors now $50 \mathrm{ppm} \mathrm{m}^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!
* Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, \AA 10.75 \S$ (YJ56L). 100VA $£ 14.95 \S$
(YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
\star Digital Clinical Thermometer. Only $£ 13.95$ (FK51F)

\& Phone before 2pm for same day despatch.

1885 GATALOETE

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CAO2C).

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K.
send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$.
Name ..

Address

[^0]: The Rapid Guarantee

 * Same day despatch \star Competitive prices
 \star Top quality components $\star \ln$-depth stocks
 OROERING INF \mathbf{Q} All components brand new and to full spec. All prices exelude VAT. Please add to total order. Please add 50 p carriage to all orders under $£ 20$ in value Minimum order C5. Send cheque/P.O. or Access/Visa number with order. Our new 50 page catalogue is given free with all orders over $£ 20$. Avallable at 70 p each. Telephone
 orders weicome with Access or Visa. Official orders accepted from colleges, schools etc. Export orders no VAT but please add for carriage. We are open Monday to Friday.

[^1]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street London SE1 gLS.

