EVERYDAY

 and computer PROJ=CTS
JANUARY 1985

For:

SPECTRUM
BBC and RML 380 Z

EVERYDAY Electronics and computer PROJECTS

VOL. 14 NO. 1 JANUARY 1985
ISSN 0262-3617

PROJECTS . . . THEORY . . . NEWS .
COMMENT . . . POPULAR FEATURES . . .

suront crebtangs
 READERS
(C) IPC Magazines Limited 1985. Copyright In all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or Imitations in whole or in part are expres sly forbidden.
PROJECTS
POWER LIGHTING INTERFACE by M.P. Horsey 8
Six-channel, 480W per channel, lighting effects interface for your micro TRUTH TABLE DISPLAY by O. J. Bruere 24
Project for the "digital enthusiasts"
GAMES TIMER by W. English30
Useful timer with lots of applications
SPECTRUM AMPLIFIER by Mark Stuart 34
Sound booster for the Spectrum "beep
ALFRED by Alan Green44
Part Three: The software and how to use it
MICROPHONE PREAMPLIFIER by R. A. Penfold 48High galn audio preamplifier
SERIES
DIGITAL ELECTRONICS by D. W. Crabtree 20
Part Four: Clock systems and bistables
FUNTRONICS by Thakery 32
A new outlook on electronics 54
Part Three: Fault analysis on newly built equipment
FEATURES
EDITORIAL 7
Trumpeting
SPECIAL REPORT by David Shortland 16
Amstrad CPC 464 Microcomputer 18
Product news and component buying
NEW PRODUCTS 19
Facts and photos of instruments, equipment and tools
CIRCUIT EXCHANGE 35, 56
A forum for readers ${ }^{\circ}$ ideas
36
EVERYDAY NEWS
What's happening in the world of electronics
38
38
NEW PRODUCTS SPECIAL
40
RADIO WORLD by Pat Hawker G3VA
Ham or Experimenter; Talking to Ships; DBS Radio; Sir Martin Ryle SQUARE ONE
42
42
Beginners' Page: Atoms and electricity 49
BOOK REVIEWS
A selection of recent releases
49
49
PLEASE TAKE NOTE
PLEASE TAKE NOTE
PRINTED CIRCUIT BOARD SERVICE 50
FOR YOUR ENTERTAINMENT by Barry Fox 52
Flight Path; Cellular Radio; Hands Off The President
COUNTER INTELLIGENCE by Paul Young 58
A retailer comments

Cirkit.Making it bigger and better.
 Cirkit stock all the
 1.30 V ImA-2A PSU
 Adjustable l.30V Power supply with pre-setable

 Selected LInes

 Selected LInes}
components, accessories and tools and the kits you're looking for. Designed and selected to offer the best possible standards at the best possible price.

CIrkit Kits

CIRKIT ELECTRONICS TOOL KIT
Contains: 15 W Soldering Iron 2 spare blts, heat shunt, solder, pliers, cutter,
screwdriver
$40.00007 \quad 15.56$
AUDIO FUNCTION GENERATOR
Versatile waveform generator with sine.
triangular and square wave outputs.
$\begin{array}{llll}\text { On board mains PSU } & 41-01302 & 27.00\end{array}$
STEREO 40 W AMPLIFIER
Single board 40 W per channel stereo amplifier
$41.01301 \quad 38.00$
STEREO VUMETER
5 LED per channel stereo VU meter for use with stereo amplifiers $41-01401 \quad 11.50$ SW AUDIO AMP
A very compact audio output stage for use in a wide range of equipment $\quad 41.01406 \quad 4.60$ UNIVERSAL AMP
A universal audio pres amp with a gain of 10 $41-01604 \quad 6.45$ MONO REVERBERATION UNIT
Single channel, spring line reverb unit
to add echo effects to tape
recording etc.
41-01602 $\quad 10.00$
TONE GENERATOR AND DETECTOR
Very low distortion tone generator
and signal detector for circuit fault
finding
$41.01603 \quad 10.46$
10 MHz DEM
8 Digit LED digital frequency meter
and period measurement $41-01500 \quad 54.10$
50MHz PRESCALER
Extend the range of the 10 MHz DFM to
50 MHz
$41-01501 \quad 8.55$
$1-5 \mathrm{MH}_{2}$ RE AMP
Low frequency preamp and waveform
$\begin{array}{lll}\text { shaper for the } 10 \mathrm{MHz} \text { DIM } & 41-01502 & 5.13\end{array}$
70 cm RE AMP
Low noise, miniature pre-amp for the
70 cm amateur band
$41.01506 \quad 4.78$
70 cm CONVERTER
70 cm to 144 MHz low noise converter featuring pre-aligned helical filter, schotity diode mixer and low noise transistors
current ll mit from $1 \mathrm{~mA}-2 \mathrm{~A} \quad 41-01600 \quad 37.46$ 5.12V IA PS

Adjustable PSU from 5.12 V with current protection, 1 Amp max output $41-01504 \quad 6.45$ 1.30 V 1.5 A PS
1.30 volt adjustable PSU with protected output up to 1.5 Amps
$41.01402 \quad 10.45$
3 DIGIT LED DM
DVM to read up to 99.9 volts or configured as an $\begin{array}{llll}\text { ammeter to read up to } 9.99 \mathrm{amps} & 41 & -01403 & \mathbf{1 7 . 0 0}\end{array}$ INFRARED LINK
Single channel IR Link with relay output
$41.01300 \quad 9.60$
TEMPERATURE SENSOR
Thermistor based temperature sensor
whet relay output
tensor
LOCOMOTIVE SOUND GENERATOR
Realistic steam mound and whistle for
model railways
$41-01304 \quad 9.20$
LAMP DIMMER
Control lamps and drill speed $41-01305 \quad 5.70$ WATER LEVEL ALARM
Alarm to indicate high water level or
flooding
$41.01601 \quad 2.70$
3 NOTE CHIME
Doorbell chime with adjustable
tones
$41-01503 \quad 7.00$
TM PRS AMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band \quad 11-01307 $\quad 3.9$
2M CONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
band converter
41-01306• 17.35
2M POWER AMP
20 W - 10 dB gain - power amplifier for the 2 m
band. Automatic TX switch over, RX
$\begin{array}{llll}\text { preamp, robust construction } & 41-01404 & 32.87\end{array}$

TOMMY DAM
CRYSTAL CALIBRATOR
Crystal reference calibrator for alignment of receivers, outputs at $4,2,1 \mathrm{MHZ}$,
100,50 AND 10 KHz
$41.00801 \quad 4.32$
CB NOISE SQUELCH
Improves the mute performance of the majority of CB rigs
$41-01605 \quad 5.40$
CENTRONICS INTERFACE
Connect your personal computer to
the outside world via the Centronics
printer output
$41.01406 \quad 2250$
70 cm PA
10W Power amp to boost the output of
handheld and portable 70 cm
transceivers

BBC to Centronics
Connect Cable
Dragon to Centronlcs
Connect Cable
C12 Computer Cassette
Interface 84 multiplexed
Ram Card
280A industrial controller
EPROM Eraser \&
6502 Micro Controller
6802 Micro Controller

PB2720 80d8 Plezo Buzzer

 10M15A 10.7 Center Freq.10M08AA 10.695 Center Freq.
FC177 LCD (Freq.)
CM161 LCD Clock
$8 \times 0.3^{\prime \prime}$ IC socket
14×03" IC socket
16x0.3" IC socket
6 V KUIT-ARelay
9 V KUIT-ARelay
12V KUIT-ARelay
CX120P
COAX Relay COAXRelay (BNC) $\quad 46.90540 \cdot 26.98$

HT- 320

Multimeter (20k $\Omega-V) 56-83201 \quad 14.00$
Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.
Just send for our catalogue or vistione of our three outlets at:
200 North Service Road, Brentwood, Essex. CM 14 4 SG; 53 Burrields Road, Portsmouth, Hamps hire. PO3 5EB: Park Lane. Broxboume. Hertordshire. ENiOTNQ. Hems in stock despatched within 48 hours
To: Cirkit Holdings PLC, Park Lane,
Broxbourne, Hertfordshire. EN 10 7NQ. lenclose 85 p. Please send me your latest catalogue and $3 \times \$ 1$ discount vouchers! II you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name
Address

Telephone
Area of Special Interest
EEl
03-10019 725
03-10017 $\quad 7.25$ $21.00012-0.55$
$40-84000 \quad 59.95$
$40.82000 \quad 54.95$
10-82001 59.95 $40.65020 \quad 54.95$ $\begin{array}{ll}40-68020 & 54,95\end{array}$ 3.27201 0.55 $20.10152 \quad 2.10$ $20.11152 \quad 3.49$ $80161 \quad 8.25$ $\begin{array}{ll}8.00800 & 0.12\end{array}$ $8.14000 \quad 0.13$ 8 -16000 $\quad 0.13$ $80000 \quad 0.48$ 80001 0.A8 -80002 0.48 $.90540 \times 26.98$

-10

NEW THIS MONTH

FIBRE OPTICS

Scoop purchase of single and win ca ble. For use with visible light or infrared Core 50 mm dia, overail $£ 6.30$. Twin Single $50 \mathrm{p} / \mathrm{m}$; 20 m coll $90 \mathrm{~m} / \mathrm{m} ; 20 \mathrm{~m}$ coil $£ 11.00$.
PCB MOUNTING NI-CADS
Much sought after $4.8 \mathrm{~V} \quad 150 \mathrm{~mA}$ batts with PCB mntg tags on 25 mm pitch Batt size 25×160. $99 p$ ea; $10+85 p ; 25+70 p ; 100+60 p$.

STEPPING RELAY

Schrack 2 pole 10 way 24 V DC (work down to 15 V) only $39 \times 20 \times 24 \mathrm{~mm}$. Con nexions by 0.1 " pitch edge plug. Special low price E 1.95

MINIATURE RELAYS PCB mounting, DPCO size 21 each.

GREENWELD

- The Pack Peoplel -

More packs - more in them - more valuel All our packs contain brand new, narked full spec components at constructors the widest range of parts at the lowest costl How do we do it? By buying manufacturers end-of-run and surplus components. Because we purchase from many sources, we have an extremely wide range of top quality parts - too costly to sort hence the packs are ideal for schools, groups or packs are ideal for schools, groups or

NEW PACKS:

K524 OPTO PACK - a variety of single point and seven segment LEDS (incl. dual types) of various colours and sizes, opto isolators, numicators, multi digit gas discharge displays, photo transistors, 25 assorted 53 95. 100 E14.95; 250 £35.
K525 PRESET PACK - Big, Big variety of types and sizes - submin, min and std, MP, slider, multiturn and cermets are all included. Wide range of values from 20R to 5 M .100 assorted £6.75; 250 £12.95; $1000 £ 48$.
K526 HEATSINK PACK - LOts of different sizes and shapes of heatsink for most diode and transistor case styles. A pack of 25 assos - total weight over 1 kg E5.50; 100 £ 19.50
K527 HARDWARE PACK - This has a large variety of pk and self tapper scrows from $2 \times 1 / 2^{\prime \prime}$ up to $8 \times 1 \mathrm{y}^{\prime \prime}$ also washers, some BA, metric and Whit screws plus other miscellaneous brackets, captive nuts and bits and pieces. 1 kg (up to 1000 pieces) $£ 4 ; 3 \mathrm{~kg}$ K9; 10kg E25.
K528 ELECTROLYTIC PACK - All ready cropped for PCB mounting, this pack
offers excellent value for money. Good offers excellem value for moltages from
 250 £8.95; $1000 E 32$.
K531 PRECISION RESISTOR PACK High quality, close tolerance R's with an extremely varied selection of values mostly $1 / 4$ and $1 / 2 w$ tolerances from 0.1% to 2% - ideal for meters, lest gear etc 250 E. PELAYS
K532 RELAYS - Wide selection of styles vortages and contacts. $4 \mathrm{~V}-240 \mathrm{v}$,
SP to 4 PCO .20 for $£ 6 ; 100 £ 25$.

ESTABLISHED FAVOURITES

 K517 TRANSISTOR PACK - 50 assorted full spec marked plastic devices PNP NPN RF AF. Type numbers include BC114 117172182183198239251214 255320 BF198 255394 2N3904 etc etc.Retail cost $£ 7$; Special low price 275p. K523 RESISTOR PACK - 1000 - Ves $10001 / 4$ and $1 / 2$ watt 5% hi-stab carbon film resistors with pre-formed leads for PCB mounting. Enormous range of preferred values from a few ohms to several megohms. Only 250p; 5000 £10; 20,000 E36.

1984/85 CATALOGUE

 84 page A4 size - Bigger, Brighter, Better more components than ever beforel With each copy there's discount vouchers, Buyers List, Order Form and Reply Paid Envelope. All for just $\mathbf{f 1 . 0 0 1 1}$ Winter Supplement due out November - Send arge SAE for your free copy.

NHCAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac $57 \times 50 \mathrm{~mm}$ g rated $7.2 v 1000 \mathrm{mAH}$ and $3.6 \mathrm{v} ~ 600 \mathrm{~mA}$. The price of these Ni -cad stacks new is over $£ 20$. Aiso on the panel is a mains input charger transformer with two separate secondaries wired via bridge rectifiers, smoothing capacitors and a relay to the outpurtags. The paner weighs 1 kgm .
All this for lust $\mathrm{f6} .00$.

1W AMPLIER
2914 - Audio amp canel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives $1 W$ output with $9 V$ supply. Switch and vol. conerol. Jusi connect batt. and speaker. Full details supplied. Only f1 50; 10 for £12; 25 for £25 . 700 c75.
2915 - Stereo version of above $115 \times 65 \mathrm{~mm}$ featuring $2 \times$ TBA820M and dual vol.
control. $E 3.50 ; 10$ for $530 ; 25$ for $865 ; 100$ contro
ع200.

AM TUNER PANEL

2916 - For use with mono amp above. Nea panel $60 \times 45 \mathrm{~mm}$. Only $£ 1.50 ; 10$ for $£ 12.00$

NI-CAD CHARGER SCOOPII

Ever-Ready model CH4, this charger will take up to $4 A A, C$ or D cells plus 2 PP 3 , $212 \times 97 \times 60 \mathrm{~mm}$. Only 87.95 .

NI-CADS: AA 99p; C 199p; D 220p; PPS 395p.
"TORUS"
Computer controlied Robot builh a ound the gearbox
 20 N
nefter) $\mathrm{E}, 30 / \mathrm{mb}$. SAE for illusirated loofict.

MOTORIZED GEARBOX
The unit has $2 \times 3 \mathrm{JV}$ motora, linked by magnetic
dutch, thus enabling tuming of the vaticie, and
 reducing the final drive speed to approx 50rpm. Data is supplied with the unit
oriving the motors etc.
Two new yoors of wheels can be supplied tehe
aluminium discs and smaller plastic whieels are nowt
aluminium discs and smaliser passsic wheopls eme now
sold out). Type A has 7 spokes with o round black
 Whoel 107 mm dil with elfot rigid trate 17 mm wide
Photo shows gearbox with one of each wpe of wheel
PRICES: Gearbox with date shoers Wheol rype A :
Wheel ypo B :
85.9500
6070.00
50.9000

POWERNU METER
Neat unit $40 \times 40 \mathrm{~mm}$ scaled $0-25200 \mathrm{uA}$ movement. Only $£ 1.00 ; 10$ for $£ 8 ; 25 £ 17$. 100 E58

WE CAN SUPPLY KITS OF PARTS FOR
MOST PROJECTS FEATURED IN PROJECTS FEATURED IN "EVERYDAY
ELECTRONICS
Ring of write for quote.

Our shop has enormous stock of components and is open 9-5.30 Mon-Sat.

GREENWELD

 Min Access order E5.00 No min CWO value Official orders from schools etc weicame min invoice charge $£ 10$.443D Millbrook Road Southampton SO1 OHX Tel (0703) 772501/783740

FREE CAREER BOOKLET

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training
you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million alreadyl Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course
there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or obligation at all.
Over 40 ' O^{\prime} and ' A ' Level subiects trom which to
COMPUTER
PROGRAMMING
|ELECTRONICS
COMMERCIAL
I ART
TV, RADIO \&
LAUDIO SERVICING
RADIO AMATEUR'S LICENCE
INTERIOR DESIGN WRITING FOR PROFIT
CAR MECHANICS
BOOK-KEEPING \& ACCOUNTANCY
I

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasurel Every kit includes a constructors' guide covering soldering and component identification which makes construction straightforward even for a beginner.
The Heathkit range contains many kits ideal for beginners as well as amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses that have easy-to-understand texts and illustrations, in sections so that you can progress at your own pace, whilst the handson experiments ensure long-term retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.(For shop addresses see back cover.)

	8ำ 				

AROUND THE WORLD

100 a collection of Transistors SCR's. Triacs. I.C's \& Opto's all which are current every-day useable devices.
Guaranteed Value Over f10 Normal Retail Price.
Data etc in every pack. Order No. VP56
Our Price $\mathbf{E 4 . 0}$

BI-PAK'S OPTO SPECIAL

A selection of large and small sized LEO's in various shapes, sizes \& colours, together with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and s̀erm. photo transistor OCP71 included. In all a total of 25 Opto pieces valued over £ 12 Normal Price

HYBRID
LED COLOUR
DISPLAYS
Red, Green, Yellow 3/.5/.6 inch Mixed types and colours FLOW \& OVER AnodelCathode. GaAsP/GaP. Brand New, Full Data incl.

10 pieces (our mix) . $£ 4.00$ Normal Retail Value Over $£ 10.00$ Order No. VP58

OPTO 7-Segment Displays Brand now 1st Quality LITRONIX DL 707R 14-pin

Red 0.3 Common Anode Display 0.9 with right hand decimal point TIL compatible $5 v$ DC Supply. Data supplied
$\begin{array}{lr}\text { IN } & \begin{array}{l}5 \\ \text { pieces } \\ \text { E3 }\end{array} \\ 10\end{array}$
50 pieces $\mathbf{5} 20$
100 pieces 20 - 400 p each)
$\begin{array}{ll}100 & \text { pieces } 535 \\ 1000 \\ \text { pieces } 5300 & \text { (35p each) }\end{array}$
THE MORE YOU BUY
THE LESS YOU PAY

BI-PAK
 SOLDER
 DESOLDER KIT

Kit comprises: O/NO. VP 80 1 High Quality 25 Watt General Purpose Lightweight Soldering Iro aualing Despldering Pumm) 1 Quality Desoldering Pump High Knurled anti-corrosive casing and Teflion nozzle 1.5 metres of De-Soidering brald on plastic dispenser.
2 yds (1.83 m) Ressin Cored Solder on Card
1 Heat Shunt tool tweezer Type Total Retail Value over $£ 12.00$ OUR SPECIAL KTT PRICE $\mathbf{£ 9 . 9 5}$

PakNo. ary Description VP1 300 Assonted Resistors Mired Tye Prise VP2 300 Carbon Resistors $1 / 4-1 / 2$ Want Pre VP3 Formed $\mathbf{1 1 . 0 0}$ VPA Mixed Min Carbon Resistors Mixed 51.0 UP4 150 H Watt Resistors 100 ohm- 1 M VPS 200 Assorted Capacitors All Types $\quad \$ 1.00$ 200 Ceramic Caps Miniature - Mived VP7 100 Mixed Ceramics Disc. 1pf - 56 pit VP8 100 Mixed Ceramic Disc. $68 \mathrm{pf}-.015$ pi $£ 100$ VP10 Caps Polyester/Polystyrene $\begin{array}{ll} \\ \text { VP11 } & 60 \\ 50 & \text { C280 Type Caps Metal Foil Mixed } \\ \text { E1.00 }\end{array}$ VP12 50 Electrolytics - All Sorts 61.00 VP13 50 Bead Type Polystyrene Min Caps 87.00 $\begin{array}{lll}\text { VP14 } & 50 & \text { Silver Mica Caps Ass. } 180 \mathrm{pof}-1700 \mathrm{FEI} 1.00\end{array}$ $\begin{array}{llll}\text { VP15 } & 25 & .01 \text { uf } 250 \mathrm{v} \text { Min. layer metallised } \\ \text { Polyester Capacitors }\end{array}$

50-way $\times 2.1$ pitch Edge Connector (Gold) (0 No. AMP163279-2) $\mathrm{E1} .20$ each E 50 per 50 off

VALUE PACKS

PakNo. aty Description
VP28 ${ }^{10}$ Reclangular $\mathbf{2}^{\prime \prime}$ RED LED'S Price Ass. Zener Diodes $250 \mathrm{~mW}-2 \mathrm{~W}$
Mixed Vis. Coded Ass. 10W Zener Dlodes Mixed Vits. 5 Amp SCR's TO-66 50 400, Coded f
VP31 $10 \quad 5$ Amp Uncoded Sil. Diodes Switching Like IN4148
00. $\mathbf{- 3 5}$ 00.35

VP34 200 Sil. Diodes Gen. Purpose Like 51.00
VP35 $50 \quad 1$ Amp IN4000 Series Sil. Diodes $£ 1,00$
VP37 8 Uncoded All Good Uncoded All Good lack instrument Type Knobs wi.00 Black Heatsinks To Fit TO-3, T0-220 1.00 Ready Drilled

$$
\begin{aligned}
& \text { Power-Fin } \mathrm{He} \text { en } \\
& \text { T0 } 66 \text { Size }
\end{aligned}
$$

$$
\begin{aligned}
& \text { T0 } 60 \text { Size } \\
& \text { BC107/8 Type NPN Transistors } \\
& \text { Good Gen Purfoce Hncaded }
\end{aligned}
$$ Good Gen. Purfose Uncoded BC177/8 Type PNP Transisiors Good Gen. Purpose Uncoded Uncoded

Pak No.aty Description
Pak
VPI6
50
vP17 50 Ass. 1 ohm - $12 \mathrm{~K} \quad \mathrm{~K} 1.00$
Metres PVC Covered Sin. gle Strand Wire Mixed Co ours $\quad 1.00$
$\begin{array}{lll}\text { VP18 } & 30 & \text { Metres PVC Covered Mutti } \\ \text { Strand Wire Mived Coloursf1.00 }\end{array}$ Strand Wire Miked Coloursfi.00 Metres PVC Single/Mutio Strand Hook-Up Wire Mixed
VP20 6 Rocker Switches 2 Amp
VP21 $15 \quad Z^{\prime \prime}$ High Bright RED LEDs in plastic encapsulation
VP22 200 Sa. Inches Total. Copper Clad Board Mixed Sizes $\$ 1.00$

ELECT \& PIEZO BUZZERS

- buzzer. White pieno-electronic butzer.
consumption
Heguw Frasuencry 4 \&Hz approx
Output: 70 B Output: $70 \mathrm{~B}(\mathrm{~A})$ (e) 1, Ni
Power Power: IVUd.c 4 mA
Dims: 22 (dial $\times 1$ Dims $22($ dieie $) \times 11.5 \mathrm{~mm}$
Fixing
Centres:
£105
Q1 Piazo buzzer, White plastuc. SIEzm
-) Froquency $3.5 \mathrm{skHz} \mathbf{z}$ approx mans

Dims: 32 (dio.). $\times 14 \mathrm{mmm}$
$0 / \mathrm{N} . \mathrm{VP}$. 108
Minieture ELECTRONIC

ers. Solid. state. Vorn pias-
tic.
soo
15 mm

Fixing centres: 26 mm
3V TSmA 0 No. VP 8 .

6V 25mA: Vp 83
$12 \mathrm{~V} 25 \mathrm{~mA}: \mathrm{VP} 88$
95p each

IC BARGAINS

40 Assorted TL CMOS INTEGRATED CIR CUITS 74 Series $\&$ CD 4000 Series - All new Gotes, flop-Hlops - MSI etc. GREAT VALUE
Data Book \& Sheet included Data Bieces (Dur Mix) $£ 4.00 \quad$ O/No UP40

TECASBOTY THE ELECTRONIC COMPONENTS AND

This collection of Components and Semineanductors for the
obbyist is probably the most value-packed selection ever of fered, it consists of Resistors, carbon and wirewound of various values. Capacitors: All types, sorss and sizes including electrolitics. Potentiometers - single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection of Semiconductors for everyday use in popular Hobby Projects. These include: SCR's, Diodes, Rectifiers. Triacs $\&$ Bridges as well as a first class mix of Transistors and I.C.'s. In all, we estimate the value of this in current retail catalogues to be over $£ 251$ So, help yourself to a great surprise and
ordder a Box TODAY for ONLY at 81 -PAK. Remember,
locks are limited so hurry You can call us on
$09203182 / 3442$ and order with your Barclaycard
$£ 7.00$
Access Card - 24 hr Answerphone Service

BI-PAK PCB ETCHANT AND
DRILL KIT
Complete PCB Kit comprises
1 Expo Mini Dill $10,000 \mathrm{RPM}$
120 OC incl. 3 collets \&
$3 \times$ Twist Bits
I Sheet PCB Transters $210 \mathrm{~mm} \times$
150 mm
1 Etch Resist Pen
1 1/2b pack FERRIC CHLORIDE $1 / 216$ po
cristals

crrstals

3 sheets copper clad board 2 sheets Fibre plass copper clad board full instructions for making your own PCB boards
Retail Value over C 15.00
OUR BIPAAK SPECLAL KT PRICE £9.95 ORDER NO. VP 81

DIGITAL VOLT METEA MODULE

$2 x \pm$ instructions proved to extent Itage \& current fanges Operating voltage 9/12v. Typ. Power Con Once
f9.95 SINGLE SIOED FIBREGLASS BOARD

DOUBLE SIDED FIBAEGLASS
BOARD

HIGH QUALITY MODULES FOR STEREO MONO \& OTHER AUDIO EQUIPMENT
Audio Ampllfiers

$120 / 65 \quad 60.65 \mathrm{Y}$
Mono Pre-Amplifiers - Operating Vig. 40-65v MM
MM 100 Suitable for Disco Mixer $\begin{gathered}\text { Price } \\ \text { E14.75 }\end{gathered}$ MM 100 G Suitable for Guitar Pre-Amp Mixer
£14.75
Magnetic Cantridge Pre-Amplifie
O/No. MPA30. Sup Vig. 20-30V. Price $£ 4.29$
GEnographic Equailsor

GE 100 MKII 10 Channel
OUR PRICE ONLY
20.00

Full Specifications and Data available on request. send self-addressed envelope.

Please

RATCHET SCREWDRIVER KIT

Comprises 2 standard screwdriver blades 58 7 mm slize 2 cross point size $4 \& 61$ Ratch handle. 5 -in-1 Kit f1.45 each. $0 /$ No 3298

VP38 100 Silicon NPN Transistors All Pertect Coded Mixed
Types Writ Data And Enit Yypes Wot Data And EqV
Sheer No Rejects. Fantas-

83.00 Types Wit Date and Equt shes No Reiects Real
Salue
Shen
2N3055 The best known Power Transminter in the world -2N3055 NPN 115 W
Our Bi-Pak Special OHter Price. 10 of
8350

50 of 100 of
80312 COMPLIMENTARY PNP POWER TRAN.
 - BD312 - TOCS Special price 50.70 each. 10 off

SILICON BRIDGE

RECTIFIERS
Comprising $4 x$
${ }^{1 \frac{1}{2}} \mathrm{Amp}$ rectifers
mounted on PCB
IFM - 1.5 Amps
Size: 1 inch squar
10 off $£ 1.00$
50 off $£ 4.50$
100 off $£ 7.50$
ORDER NO: 4RI 8
Rect.

Use your crefit card. Fing us on Ware 3192 now and ger your order even laster. Goods nomall sent 2nd Class Mail Remember you must add VAT at 15% to your order.
Total Postage add $\mathbf{F 1 0 0}$ per Tonal orde
 ADD 15\% VAI AND 75p PER ORDER POSTAGE AND PACKNG Total Postage add $\$ 100$ per Total order.
\square

EVERYDAY = =cirer computer proj=cts

VOL 14 Nọ JANUARY'85

READERS' ENQUIRIES

We cannot undertake to answer readers letters requesting modifications, designs or information on commercial equlpment or subjects not published by us. All letters requlring a personal reply should be accompanled by a stamped self-addressed envelope of international reply coupons.

We cannot undertake to engage in lengthy dlscusslons on the telephone.

COMPONENT SUPPLIES

Readers should note that we do not supply electronic components for bullding the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonablé precautions are taken to ensure that the advice and data glven to readers are pellable. We cannot, however, guarantee it and we cannot accept legal responslbility for It. Prices quoted are those current as we go to press.

OLD PAOJECTS

We advlse readers to check that all parts are stlli avallable before commencing any project in a back-deted issue, as we cannot guarantee the indefinite avallabillty of components used.

SUBSCRIPTIONS

Annual subscription for dellivery direct to any address In the UK: £12.00. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Lid., and sent to Room 2613, King's Reach Tower, Stamford Street, Londan SE1 9LS.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are avallable world-wide price £ 1.00 inclusive of postage and packing per copy. Enquiries with remitiance should be sent to Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-avallability remittances will be returned.

BINDERS

Binders to hold one volume (12 issues) are avallable from the above address for $£ 5.50$ inclusive of postage and packing worldwide.

TRUMPETING

UJlike some hobby publications we feel it is our duty on EE to keep readers abreast of technology in general and more specifically informed about anything which may affect their lives. For this reason we carry regular news and new products pages, features on various aspects of technology and information pages like For Your Entertainment. Of course, EE is also committed to putting over the basics of electronics and enabling our readers to develop their knowledge of circult operation etc.

Our Teach-In courses are unsurpassed in any electronics magazine. The experience gained in publishing seven different Teach-In courses since EE started in 1971 is invaluable in planning and coordinating subject matter for future series. Over those years EE has also built up a fine relationship with many educational establishments and with teaching staff at all levels, a relationship that enables us to keep in touch with the requirements of those thirsty for knowledge of our particular subject.

This general information is backed up by our regular handful of projects designed to be of interest to a wide range of readers. Many of our projects are now aimed at computer users, projects like the Power Lighting Interface, Alfred and the Spectrum Amplfer in this issue. While it may seem that three "computer peripheral" projects is too many for one issue we must point out that two of the projects will connect to various computers and that all three items are aimed at a wide range of users. The Power Lighting Interface could be used in the home, but is more likely to be found with an amateur dramatics group or disco; Afred will no doubt soon be found in many schools and colleges demonstrating robotic principles while the Spectrum Amplifer is almost essential for any user of the computer, particularly the games players at home.

While all the above may sound like blowing our own trumpet (which is just what it is!) it is designed to give you some insight into our present editorial policy. A policy which is set with you in mind, a policy which you can change, a policy which will go forward with EE into the future of electronic technology around the world.

What we would like you to do is to keep us informed of your requirements and of how well our policy and the magazine meet them so that together we can go forward gaining in ability as we go.

Editorial Offices

EVERYDAY ELECTRONICS EDITORIAL, WESTOVER HOUSE,
WEST QUAY ROAD, POOLE, DORSET BH15 1JG Phone: Poole (0202) 671191
We regret that lengthy technical enquiries cannot be answered over the telephone
Editor
MIKE KENWARD
Secretary
PAULINE MITCHELL
0202671191 Ext 259
Advertsement Manager
NIGELBELLWOOD 01-2616752
Advertioment Sales Executive
RICHARD WILLETT 01-2616819
Classified Supervisor
BARBARA BLAKE 01-2615897
Advert Make-Up and Copy Department
JULIE FISH 01-2616615

Advertisement Offices EVERYDAY ELECTRONICS
ADVERTISEMENTS KING'S REACH TOWER STAMFORD STREET LONDON SE1 9LS Telex 915748 MAGDIV-G

POWER LIGHTIIG IIITERFACE...

 SPECTRUM: BBC-B: RML 380Z: VIC-20
M.P.HORSEY

Control banks of coloured mains lights by computer, using this easy-to-build project. Any effect can be achieved by simply changing the program data.

AUTOMATIC switching of mains lights poses several problems for the constructor. Either the electronic controlling circuit is at mains potential (as in commercial dimmer units)-in which case numerous safety precautions must be taken, or some form of isolation must separate the mains output from the input control.
Relays offer suitable isolation, but are unsuitable for fast or continuous switching. Sound to light units often use isolating transformers, but these require an a.c. input.

OPTO-COUPLED TRIAC

Fortunately, a package looking like a small i.c., and known as an opto-coupled triac, comes to the rescue. Pins 1 and 2 are connected internally to an infra-red light emitting diode. When energised, the infra-red light causes a triac to switch on. A triac is an a.c. switching device, and may be used with the mains supply. Since there is no electrical connection between the l.e.d. and triac, complete safety is assured.

APPLICATIONS

The circuit was originally planned to control five channels, but it soon became clear that there would be many applications for a power interface of this type,
and a sixth channel was added to enable a greater variety of lighting effects to be achieved.

Any d.c. signal (within the working voltage limits) may be used as an input, even one derived from an a.c. signal-for example an audio output. However, the circuit is designed for digital signals, and an analogue input could cause overheating and/or interference, unless extra suppression is added.

CHANNELS

It will be apparent both from the circuit diagram, and the p.c.b., that the basic circuit is fairly simple, and is repeated six times over, for the six channels. In practice, any number of channels may be built, and some constructors may prefer a full eight channels if used with a computer.

COMPUTER CONTROL

Clearly the design lends itself to control by computer, and with a suitable computer program, virtually unlimited lighting displays can be achieved. The computer program listed will enable synchronisation of the lighting effects to verses, lines, or even words of a song. Once the master program is on tape or disc, the lighting effects required can be quickly added as DATA statements.

Obvious applications are parties, discos, and stage shows. The prototype was used in a school show with 48 coloured lights around the stage. The effects were synchronised with the script via the computer.

A user port is required on the computer, and the lighting interface unit has been used with a Research Machines 380 Z, BBC, and Vic-20 computer. Any computer with a suitable port should work with the interface; alternatively some firms now advertise adaptors for computers without user ports, as for example, the RE-350 from Redditch.

POWER RATING

The power triacs specified will each handle a maximum current of 8 amps , and allowance must be made for the possibility of all channels switching on together. Thus with a 13 amp mains supply of which 12 amps is available with the specified circuit breaker, 2 amps may be drawn from each channel. This provides up to 480 watts per channel, and a total power of 2880 watts from the system.

CIRCUIT DESCRIPTION

Channel 1 will be considered, as all the channels work in the same way. Refer to Fig. 1. The positive 5 volt supply from the computer is fed into the infra-red l.e.d. at

pin one of IC1. If input 1 is "high" (ie. about 5 volts), then no current will flow through the l.e.d. and channel one will be switched off. If input 1 is "low" (about 0 volts), current will flow via limiting resistor R1 and the channel will switch on. The other channels are fitted with separate current limiting resistors as several inputs may operate at the same time.

If the infra-red I.e.d. in IC1 is switched off, no current will flow through the triac in IC1, and the power triac CSR1 will be switched off as well. Assuming that the circuit is connected to one or more lights, if the I.e.d. is switched on, a very small current will flow through the triac in IC1, and limiting resistor R7. The power triac CSR I will allow a much larger current to flow, switching on the lights connected to channel 1.

FUSING ARRANGEMENTS

Each channel is fused separately with a 3 amp fuse on the p.c.b. These fuses were not placed in the "live" side of the circuit, because in practice the live connections are "commoned" to the lighting display unit. A 12 amp circuit breaker CB1 is included separately in the live connection.

INTERFERENCE SUPPRESSION

Although triac circuits tend to produce radio interference, and mains supply interference, this circuit is designed for "clean" digital operation, and drives a mainly resistive load. Extensive tests have been carried out with the prototype, to ascertain the amount of interference produced, and therefore the amount of suppression needed.

In fact, with the circuit indicated, no interference could be detected. The worst possible conditions were created, with computer leads, audio leads, the lighting output cables and mains input cables all tangled together. None of the three computers used showed any ill effects, even when sharing the same mains adaptor with the interface. No interference was detected on TV radio and audio circuits.

Thus no suppression was included in the design. However, there is space on the p.c.b. for the addition of a snubber network in each channel if desired. A snubber network consists of a high voltage capacitor and resistor in series. It should be connected to the points marked with an X on each channel. Note that a capacitor must not be used without the resistor, or the power triacs will burn out.

CONSTRUCTION

The circuit is constructed on a printed circuit board. See Figs. 2 and 3. Care should be taken to ensure that the common neutral track can handle the required current-hence the reason for three connecting points. The tracks leading to each power triac are wide enough to allow the drilling of additional holes for the connection of the snubber network if required.

When drilling these holes, take care to allow sufficient clearance for the heat sink, which is made from a single piece of aluminium measuring about $230 \mathrm{~mm} \times$ 110 mm , earthed to the case. An earthed track surrounds the p.c.b., and runs between the input/output pins of the i.c.s for additional safety.
Begin by soldering i.c. terminals to house the 6 -pin di.i.l. opto-triacs. Next solder the resistors, fuse holders, and connecting wires-ensuring that the mains
connecting wires will carry the required current.

The power triacs are soldered directly to the p.c.b., their metal bases being fixed to a suitable heat sink. Note that the metal bases are "live" and must be insulated from the heat sink with proper heat conducting material.

Finally, plug in the opto-isolators-the correct way round-and check the p.c.b. carefully for hair-line cracks in the tracks, and short-circuits.

Fig. 1. Circult diagram for the Power Lighting Interface.

Left: The metal-cased prototype.
Fig. 2 (Opposite). P.c.b. design. Available from the EE PCB Service, code 8501-01.
Fig. 3 (Below). Component layout.

HOUSING THE UNIT

The original unit was housed in a plastic case, and performed very well. The second "prototype" was housed in a metal case, which-if properly earthedprovides greater security. All the mains connections are at the rear of the unit, with the low voltage connections at the front.

OUTPUT CONNECTORS

An 8 pin chassis socket (rated at 6A 250 V) is used to connect the channel outputs with the lighting system. The centre pin MUST be used as an earth connection, thus only one 6 A pin is available to supply the common "live" connection. Since a 12 A supply is required, a second "Euro Facility Outlet" socket is included with both sides used as a "live" connection, as shown in Fig. 4. The earth connection should be used as intended. Note that if 6 A cable is used, two wires must be used as "live" conductors, and two as "earth" conductors.

The following holes will be required:
Input connector: A seven way DIN socket may be used.
Output connectors: Eight pin chassis socket (rated at 6A 250 volts), 3 pin Euro Facility Outlet (rated at 6A 250 volts). Mains 13A cable inlet hole (with room for grommet).
Mains 13A d.p. switch.
Mains 12A circuit breaker.
Mains neon with integral resistor.
Holes to mount p.c.b., heat sink supports, and handle.

COMPONENTS

Resistors
 R1-R6 330 (6 off)
 R7-R12 150 (6 off)
 All $+W \pm 5 \%$

 Semiconductors

IC1-IC6 Opto-coupled triac (6 off)
CSR1- Power triac 8A.
CSR6 type C226D (6 off)

Miscellaneous

FS 1-FS6 Fuse clips and 20 mm fuses 3 A or 3.15 A (6 off)
CB1 Mains circuit breaker 12A
S1 Mains toggle switch 13 or 15 A d.p.s.t.
LP1 Mains neon with integral resistor

Printed circuit board $(255 \mathrm{~mm} \times$ 145 mm)
7 way DIN socket
8 way Bulgin socket
Mains Euro socket
13A cable
Insulators for mounting power triacs
Heat sink
Case (Length 300 mm , width
160 mm , height 135 mm)
Interconnecting wire, screws etc.

FINAL ASSEMBLY

When drilling is complete, fit the various connecting sockets, switch, neon etc. Fix the p.c.b. to the base, using spacers to ensure that the copper tracks are well clear of the metal base. Complete all the connections, not forgetting the earth wire from the p.c.b. and case.

HEAT SINK

The heat sink may be made from a sheet of aluminium measuring about $230 \mathrm{~mm} \times$ 110 mm . The aluminium should be shaped as shown in the diagram, Fig. 5, thus allowing it to be fixed to the p.c.b.taking care to avoid the "live" tracks. One or both of the mounting screws should also "earth" the heat sink. Note that the metal tabs on the triacs are connected internally to one of the leads. They must therefore be insulated from the aluminium, using the special insulators available. Nylon nuts and bolts may be used to fasten them to the aluminium.

Examine the unit carefully for faults, paying particular attention to the isolation of the low voltage parts of the circuit. Finally, attach the lid of the case, ensuring that it does not touch any electrical parts inside.

TESTING

A d.c. supply of between 4.5 and 6 volts may be used to test the circuit. Connect a lamp(s) to one or more channels, plug in the unit, and switch on. The lamp(s) should not light. If they do, unplug immediately, and check the circuit for mistakes or short circuits.

Connect the positive of the d.c. supply to the positive connection on the interface. Connect the negative to input 1 , then 2 etc. The appropriate light should work.
If no channels work, unplug the unit, and check that the opto-triacs and power triacs are connected the correct way round. If these are correct, check the external wiring carefully for mistakes.
If only one channel fails to work, the fault may be a poorly soldered joint, or hair-line crack in the p.c.b. In this event, the unit must be dismantled for checking. Assuming the tests work with a d.c. supply, a computer may be connected to the power interface, and test programs can be run.

INTERFACING WITH A COMPUTER

Connect up a suitable lead between the computer and power interface, as indicated in the diagrams, Fig. 6. Switch on the computer, and type one of the following test programs:

RESEARCH MACHINES $380 Z$

20 POKE \&FBFF, 255
30 PRINT"State number for poking" 40 INPUT N
50 POKE \&FBFF,N
60 GOTO 30

Fig. 4. Wiring diagram tor the Power Lighting Interface.

VIC 20 COMPUTER
10 POKE 37138,255
20 POKE 37136,255
30 PRINT"State number for poking"
40 INPUT N
50 POKE 37136,N
60 GOTO 30
BBC COMPUTER
$10765122=255$
20 ? $65120=255$
30 PRINT'State number for poking"
40 INPUT N
50 265120=N
60 GOTO 30
Line 10 configures the user port in the Vic and BBC computers, for outputting. Line 20 causes all the output lines to go "high", thus switching off each channel in the power interface. Line 50 causes only those lines selected by the number N , to go high. Thus typing 0 , will cause all the channels to switch on. Typing 1, will cause all except channel 1 to light. Typing 2, will cause all except channel 2 to light. Typing 4 will cause all except channel 3 to light. The series continues in this way with 8,16 , and 32 . Typing 3 will light all channels except 1 and 2 ; typing 5 will light all except 1 and 3 etc.

Switch on the power interface, and check correct operation. In the event of any failure, disconnect from the mains,
and from the computer.
It may be more convenient to work positively, rather than in an inverse way as described above. A line 45 may be added to the program as follows:

45 LET $\mathrm{N}=255-\mathrm{N}$

Typing zero will now turn off all channels; typing 1 will turn on channel 1 ; etc. An understanding of this system is not necessary as the Master Program listed provides a simple means of creating various lighting displays.

Fig. 5. Side view of case, showing heatsink.

MASTER PROGRAM

The original program was written for the RML 380Z. The Vic- 20 version differs in screen layout (to allow for the much larger print), and in requiring a data direction indicator at line 60 . The BBC program, listed, uses a different command to POKE, and also requires a data direction indicator. Apart from this, the programs are very similar, and the method of coding the lighting sequences identical.

CODING

Brief instructions about the coding system are contained in lines 790 to 890 of the program. The actual codes are contained in the form of DATA statements starting at line 1000 . The codes may be general-for a complete song, or relate to a particular line or word of the song. In the example the codes are arranged line by line. In practice, "SONG LINE 1 " could be the actual words in the song, "SONG LINE 2" the next set of words etc.-though slow typists may prefer the minimum effort eg. line 1010 could simply be DATA 1.

The first DATA statement-line 1000 - provides the time delay between each change of lights. Various different values may be tried here when testing the unit, but when running normally, most applications will require a fast display, obtained by reducing the value at line 1000. The last DATA statement must be the word END.

All the other DATA statements are information lines (eg. lines or verse numbers of a song), alternated with the lighting codes required for that line or verse. Note that commas must not be used unless the whole line is enclosed by quotation marks.

LIGHTING CODES

Each lighting channel is denoted by a letter, in this case from A to F. (ie. channel 1 to 6). Thus, typing DATA A will switch on channel 1 for line 1. A space, or letter X will switch off all channels. Thus line 1020 will cause channel A, then B, then C etc. to light singly. The time each channel stays on is set at line 1000 . The letter Y switches off all channels, but pauses for the time set by line 1000 . The sequence then repeats indefinitely.

Typing letters without spaces will cause the next channel to switch on without the previous one switching off. Thus in line 1060 channel A switches on, followed by the other channels until all are on. The letter Y switches them all off, and the sequence repeats. A double letter eg. AA will simply double the time delay at that point.

A letter H at the end of a line (see line 1120) will prevent the sequence repeating, and the last command holds indefinitely. A letter \mathbf{Z} (see line 1140) will cause the previous channel only to switch off. The letter R causes the channels to operate at random. Omitting any commands (but

Fig. 6. Connections to DIN socket and user ports.
note that the word DATA must still be present), will cause the previous effect to be retained.

Channels may be programmed to light in any order, and the examples contained in the Master Program give only a brief indication of the type of effects which may be achieved.

COMPDNENTS approximate fist $£ 40.00$

```
5 MODE6
10 REM"LIGHTS" FOR BBC
20 REM CONVERTED BY LEE TRICE
30 CLEAR
40 VDU 23;8202;0:0;0;
45 765122=255
50 REM P=1/O ADDRESS
60 LET P=65120
70 CLS
80 PRINT" CHASER LIGHTS WITH WORDS'
90 PRINT" *******"********************"
100 PRINT
110 READ TI
120 LET X=0
130 PRINT" TIme="T
140 PRINT:PRINT:PRINT
150 PRINT"TO READ LINES OF SONG:"
160 PRINT
170 PRINT"'FOR NEXT LINE AT END OF SEQUENCE,"
180 PRINT"' TAPSPACE"
190 PRINT
200 PRINT"TO MOVE IMMEDIATELY TAP RETURN"
210 PRINT
220 LET G$=GET$
230 LET X=X + 1
240 LET TT=TI
250 READ W$
```

```
260 IF W$="'END"THEN }53
270 READ L$
280 IF L$="'"THEN LET L$=LK$
290 LET LK$=L$
300 PRINT TAB (0,20)X" 'W$
310 LET T=0:G=0
320 FOR Y=1 TO LEN(L$)
330 LET A$=MID$(L$,Y,1)
340 IF A$="R"THEN }73
350 IF A$= 'X"OR A$=" "THEN LET T=0:GOTO 470
360 IF A$='"'"THEN LET R=255-(S OR Q):?P=S OR Q:GOTO 450
370 IF A$="Y'"THEN R=0:GOTO420
380 IF A$="H"THEN Y=Y-1:GOTO 480
390 LET A=ASC(A$)}-6
400 LET Q =INT (2^ A+0.5)
410 LET R=Q OR T
420 LET T=R
430 LET S=255-R
440 PP=S
450 GOSUB 590
460 FOR K=1 TO TT:NEXT K
4 7 0 ~ I F ~ G = 3 2 ~ T H E N ~ 5 0 0 ~
480 LET G=INKEY(O)
490 IF G=13 THEN 230
500 NEXTY
510 IF G=32 THEN }23
520 GOTO 320
530 PP=255:PRINT
540 PRINT TAB (0,21) "DO YOU WANT TO REPEAT SONG ";
550 INPUT R$
560 IF R$="'Y"OR R$="'y"THEN RESTORE:GOTO10
570 IF R$="'N"OR R$="n"THEN END
50 GOTO 580
590 REM DENARY TO BINARY CONVERTER
600 LET B1$="O":B2$="'0":B3$="0":B4$="O":B5$='0':B6$="O"
610 IF R/32>=1 THEN B 1 $ ="'"':R=R-32
620 IF R/16>=1 THEN B2$=":1":R=R-16
630 IF R/8>=1 THEN B3$=*" '":R=R-8
640 IF R/4>=1 THEN B4$="1":R=R-4
650 IF R/2>=1 THEN B5$= "1":R=R-2
660 IF R=1THEN B6$='"1'
670 LET BB$=B1$+B2$+B3$+B4$+B5$+B6$
6 8 0 ~ P R I N T ~ T A B ( 0 , 3 ) B 8 \$ ~
7 0 0 ~ R E T U R N
710 PP=255
7 2 0 ~ E N D
7 3 0 ~ R E M ~ R N D ~ G E N E R A T O R ~
750 LET T=0
760 LET A=INT(6*RND(1))
770 LET TT=INT(TI*3*RND(1))
7 8 0 \text { GOTO 400}
790 REM"*******DATA INSTRUCTIONS******
800 REM 1ST.DATA STATEMENT=TIME DELAY
810 REM EACH LINE OF SONG TO BE FOLLOWED BY THE LIGHTING
CODES A TO F
```

820 REM IF LIGHTING CODES ARE OMITTED THEN PREVIOUS LINE
CODES ARE USED
830 REM $\mathrm{M}^{* ~}$
840 REM CLOSE SPACED LETTERS=LIGHTS STAY ON AS SEQUENCE
BUILDS UP.
850 REM A SPACE, OR X, TURNS OFF LIGHTS.
860 REM $Y=$ TURN OFF LIGHTS WITH PAUSE
870 REM Z = TURN OFF LAST LIGHT ONLY
880 REM $H=$ HOLD ON LAST PART OF SEQUENCE UNTIL "RETURN" IS
PRESSED
890 REM R = FLASH LIGHTS AT RANDOM

1000 DATA 100

1010 DATA SONG LINE 1 1020 DATA A B C D EFY 1030 DATA SONG LINE 2 1040 DATA A B C DEFEDCBY 1050 DATA SONG LINE 3 1060 DATA ABCDEFY
1070 DATA SONG LINE 4 1080 DATA ABCDEFYFEDCBAY 1090 DATA SONG LINE 5 1100 DATA ABCYBCDYCDEYDEFY 1110 DATA SONG LINE 6 1120 DATA ACE BDF ACE BDF ACH 1130 DATA SONG LINE 7 1140 DATA ABCDEFZEZDZCZBZAZ
1150 DATA SONG LINE 8
1160 DATA R
1170 DATA SONG LINE 9
1180 DATA
1190 DATA SONG LINE 10
1200 DATA
1210 DATA END

OPERATING THE PROGRAM

Once the commands are programmed, the operator RUNs the program, and presses RETURN to cause the first line of the song to appear on the screen. The first lighting sequence will start, and continue until he presses RETURN. The next line will appear, and the next lighting sequence will take over. The SPACEBAR may also be used like RETURN, but now the program waits until the end of a sequence, before moving on. (Note that the SPACE-BAR cannot be used if the sequence is "holding" ie. the line ends with the letter H).

Lines 590 to 700 provide a running report of the lighting effect, by placing a binary number on the screen, equivalent to the binary output into the power interface. Even those not familiar with the binary system will understand that the number 00000001 turns on channel A, 00000010 turns on channel B, and 00100000 turns on channel F. 00111111 will turn on all six channels.

NOTE: Readers requiring program listings for the RML 3802, Commodore Vic-20, or Spectrum, should send a large SAE together with a P.O. for 50 pence to EE Editorial offices (see page 7), quoting this project title, and stating which listing is required.

The CPC 464 design from Amstrad is the company's first venture into the personal computer market and reflects their overall marketing strategy of consumer electronic products.

Amstrad believes the mass market appeal is towards "complete systems" and this policy which has been very successful for them in the hi fi field is now being applied to the computer market.

The CPC 464 is a complete computer system housed in two matching units with just one mains lead and overcomes the "spaghetti" effect of leads and wires which seems to accompany most home computer set-ups.

The computer has been designed around the 280 A processor running at 4 MHz and a list of the LSI chips used is given in Table 1.
The computer, keyboard and cassette recorder have all been placed in one case measuring $580 \times 170 \times 70 \mathrm{~mm}$ and the usual TV set has been replaced by a choice of two monitors: You can either have a high resolu-
tion monochrome display with a green screen or a medium resolution colour display.

The power supply for the system has been placed inside the monitor. Any problems that could be encountered if you wanted to use a different monitor or your own TV set have been overcome by Amstrad with a power supply/modulator unit which is sold separately for $£ 30$. This is especially useful if you need the high resolution of the monochrome monitor but want to use your colour TV for the full effects when playing software games.

KEYBOARD

All the keys on the CPC 464 are redefinable. The keyboard itself is a full 74 key QWERTY layout with a numeric keypad and cursor keys. The feel of the keyboard is very good, especially the large blue enter key. The addition of the keypad is a real bonus not only for typing in data but it can also be user defined with up to 32 single key functions to

Table 1. LSI chlps used in the CPC 464.

Z80A	Processor running at 4 M Hz
64 K	Bytes of RAM (over 42K available to the user)
32 K	Bytes of ROM containing the BASIC and the operating system
6485	CRT controller device
AY-3-8912	3-voice, 7-octave sound generator chip
8255	Parallel I/O device, interface to the sound chip

provide BASIC keywords. When the keypad is used in this way the numeric keys at the top of the keyboard can still be used in the normal way. The only snag is that the keypad keys cannot be labelled with the functions because there is not enough room around them. The 32 functions can be defined with strings of up to 32 characters.

CASSETTE UNIT

The use of a built-in cassette recorder has overcome many of the error problems associated with loading and saving cassette programs. Another advantage is that because the performance of the cassette recorder was known, Amstrad have been able to offer two standard tape speeds; 1000 and 2000 baud, with the computer being able to sense automatically the speed at which the program was saved, on playback.

The forward and rewind controls of the cassette can be used at anytime whereas play and record are under software control and wilt only operate the cassette motor when the micro is instructed to load or save a program; a very useful feature when storing or loading a number programs on one tape.

REAR VIEW

The rear of the unit houses all the expansion sockets. There is a user port for use with joysticks. Strangely though, the joysticks from Amstrad are connected in series; the first is connected to the port and the second plugs into the first. So unless you use the Amstrad joysticks only one can be used. Although the second joystick is mapped over some of the keys on the main keyboard so these can be used in its place. The next port is for a printer and has a Centronics interface. Any Centronics type printer can be used and Amstrad supply the DMP-1, 80-column dot matrix printer which is priced at $£ 199.99$.

The expansion port can be used for a series of add-on's including additional ROMs and RAMs, but the main use of the port is for the disc drive units. Here, Amstrad has decided on the 3 in Hitachi disc system complete with PSU, interface, CPM; which is a standard disc

The DMP- 1 dot matrix printer.

SPECIAL REPORT AMSIRAD CPCI

operating system, and a specially designed version of Dr. Logo, a simple graphics based language incorporating the sound and graphics command of the CPC 464 . The disc drives are double sided, double density, 40 track units.

One small point is that both the printer and expansion ports are edge connectors on the main PCB and could become worn with use. Perhaps it would have been better if sockets had been fitted.
Finally, there is a handy socket for stereo sound. When this is connected up to a hi fi unit it certainly improves the sound of your games.

COLOUR DISPLAY

There are three display modes on the Amstrad and in each mode there is a maximum number of colours which can be displayed on the screen at one time. This is the usual trade-off between resolution and colour. These colours can be chosen from a palette of 27 colours.
Mode 0 is a 20 -column display with a choice of 16 colours (from 27), Mode 1 is a 40 -column display with four colours (from 27) and Mode 2 is an 80 -column display with two colours (from 27). Text and graphics can operate together in all modes.

The maximum graphics resolution in Mode 0 is 160×200, in Mode 1320×200 and in Mode 2640×200.
When in Mode 2 the 80 -column text on the colour monitor is difficult to read so if you wanted to work in this mode for long periods the high resolution green screen monitor would be best.
The difference between a colour monitor and a modulated TV picture is shown quite vividly on the Amstrad. The display is completely steady and gives well defined, crisp colours.

The screen colours are controlled by the BORDER, PAPER (the character area) and PEN (the character itself) commands. Further changes of the paper and pen can be carried out using the INK command.

SOUND

The sound effects of the machine are generated by the General Instrument's 3 -voice AY-3:8912 chip. The level of sound can be adjusted by the volume control on the right hand side of the computer.

You can specify the tone period, duration, volume (that is the starting volume of the

THE CPC 464 MODEL RANGE AND PERIPHERALS

System 1: Computer and green monitor $\mathbf{£ 2 3 9 . 0 0}$
System 2: Computer and colour monitor $£ 349.00$.
System 3: Computer, disc drive and green monitor $£ 429.00$.
System 4: Computer, disc drive and colour monitor £529.00.
Disc Drive DD1-1: Complete with p.s.u., plug-in controller and interface unit which will support up to two drives $£ 199.95$.
Disc Drive FD-1: Second drive unit less p.s.u. and interface f159.95.
Printer DMP-1: 80-column dot matrix model £199.95.
Modulator/p.s.u, MP1 : For driving a TV £29.95.
Joystick JY1: £\{4.95.
All prices includes VAT
note), volume envelope, tone, tone envelope and noise period. All these can be used in conjunction with the STEP TIME command so each step is variable in amplitude with respect to the last step. White noise is also available for gunshots, explosions, etc.

All the sound effects are easy to program and each new sound can be held until the last sound has been completed. But the best part is the stereo output which enables you to feed the sound through your hi fi. The three voices are separated into left, right and middle.

BASIC

The overall impression of the BASIC from Locomotive is that it is a well designed, easy to use system with a number of interesting features.

Among the programming and debugging features are RENUMBER and AUTOLINE NUMBERING with editing carried out either by the standard line edit command or the copy cursor method. To reset the machine the CONTROL, SHIFT and ESCAPE keys have to be held down in that order, so resetting the machine by mistake would be somewhat difficult!

Any key can be redefined by the KEY DEF command, for example, the D key can be changed to the $£$ character. Also the repeat period of any particular key can be altered by the SPEED KEY command.

The EVERY command will interrupt a program at regular intervals, determined by one of the four timers, and switch the program to a sub-routine whilst the AFTER command will carry out the same function only once.

A program can be halted by pressing the es-
cape key once and to break into the program the escape key must be pressed twice.

CONCLUSIONS

A great many opinions have been expressed about the wisdom of Amstrads' design concept; whether or not the p.s.u. should have been included inside the monitor, the advantages of the internal cassette unit, the restraints imposed by a custom-designed monitor, etc. My own opinion is that the Amstrad CPC 464 is exceptional value for money, it is easy to use and the "complete system" idea will attract many people into computing who have been waiting for just such a system to appear.

Because the CPC 464 has been designed by a well known and respected manufacturer which is already a household name, the machine is certain to make a major impact in the next year. Although the software and addon's currently available are not at the same level as many of its rivals this will quickly be rectified as designers and companies jump on the Amstrad bandwagon.

Another pointer to Amstrad's commitment is its claim that over 200,000 units will be sold by the end of 1984 and over 350,000 units in 1985. When you consider the UK sales of the BBC Micro is less than 200,000 and the total UK sales of the Spectrum is $1,600,000$ the market will certainly feel the effect of the CPC 464.

One final note of interest is that Amstrad is developing a range of peripheral items of hardware which will be launched in the Autumn of ' 85 . These items they claim will keep them well ahead of the opposition. So Amstrad seems totally committed to the computer market.

Catalogue Received

The latest edition of the Electrovalue components catalogue contains 44 pages, with each item priced on the page. The range of items listed extends from aerosols and batteries to integrated circuits and Eprom programmer/copiers.

When you consider that they only produce three editions throughout the year, it just shows how confident they are in their pricing system being able to withstand (for four months) all the elements that can affect prices.

We have only one minor criticism and that is the lack of an index. However, as items are listed in alphabetical order this has not detracted from its usefulness in the office when pricing projects.

Coples of the Electrovalue catalogue may be obtained Free of charge from Electrovalue Ltd., Dept EE, 28 St. Judes Road, Englefield Green. Egham, Surrey TW20 OHB.

Hot Tip

Having endured the frustration of trying to replace a broken electrical lead in the car, without the facility to make a simple solder joint, the latest soldering product from Greenwood gets our vote for money well spent.

Little bigger than a felt-tip pen, the Oryx Portasol Iron works on entirely different principles from conventional gas types. There is no flame during operation, the chemical energy of the gas is converted into heat by means of a catalytic converter in the solder tip.
The iron delivers the equivalent of 60 W , the tip temperature being adjustable between 250 and $450^{\circ} \mathrm{C}$. The fron will run for 60 minutes on its internal gas supply, and refuelling is identical to filling a gas cigarette lighter. It is claimed that the same principles that make gas lighters safe are applied to the Portasol.
Capable of being clipped in the work overalls pocket, by the protective top, the iron incorporates a built-in igniter. Replacement tips, which include the converter, are readily available.
The Oryx Portasol is priced at £ 17.25 and is available from:

Greenwood Electronics, Portman Road, Reading, Berks, RG3 1NE. At this price it's far cheaper than being towed in 1

Equally, it should prove invaluable to the service engineer, prototype wireman and the constructor.

CONSTRUCTIONAL PROJECTS

Spectrum Amplifier

We do not expect any component purchasing problems for the Spectrum Amplifier project. However, some difficulty may be experienced in locating a source for the "reverse log" Volume Control potentiometer VR1. If a lin. or log/law "pot" was used here, the control of volume would be very abrupt and concentrated at one end of the track.

The reverse log potentiometer is available from Magenta Electronics. They are also able to supply a complete kit of parts (including p.c.b.) for this project for the sum of $£ 5.98$. This price includes VAT,
but a further 50 p per order will have to be added for post and packing. They will, of course, sell all parts separately.

The printed circult board for this project is also available from our "Printed Circult Board Service", see page 50.

Readers requiring a complete kit should contact: Magenta Electronics, Dept EE, 135 Hunter Street, Burton-on-Trent, Staffs, DE14 2ST.

Power Lighting Interface

There are several components that are likely to cause purchasing troubles when tackling the Power Lighting Interface project.
The only source we have been able to locate for the opto-coupled triacs is Maplin Electronic Supplies. This device should be ordered as: QQ10L (Triac Isolator). The 8A triacs, type C226D or suitable alternatives, are listed by Maplin, Bi Pak, Electrovalue, Rapid and TK Electronics

The 12 A mains circuit breaker is avallable from Maplin and carries the order code: BK24B (Thermal Breaker 12A). The Euro and Bulgin sockets, SK2 and SK3, are stocked by Cirkit, Skybridge and Maplin.

One final note of warning. As mains voltages are present: it is most important that the details regarding insulating, cable ratings and "earthing" are followed most carefully.

Alfred

This month's final instalment of Alfred the hobby robot deals with the setting up and software listings.
A complete kit of parts for Alfred would normally cost £170, plus VAT. However, special arrangements have been made with Robot Clty Technology whereby readers of EE may purchase a kit for the sum of $£ 160$, plus VAT. A saving of over $£ 10$. This kit includes a fully expanded version of the software on casserte.
Robot City Tech are also prepared to supply all components as individual Items. This includes mechanical mechanisms and pulleys, servo motors and Interface board.

For full detalls, readers should write to: Robot City Technology, Dept EE, 437B Midsummer House, Midsummer Boulevard, Milton Keynes, MK9 2 HE .

Games Timer

The case used in the prototype unit of the Games Timer was an old plastics digital watch presentation case.

If a case of this type is not to hand, then one of the common "flip-top" cases, stocked by most of our advertisers, could be used. This would probably necessitate a slight rearrangement of the component layout, but should not be to difficult to accomplish. The actual arrangement will obviously be governed by the "physical" size of the relay used.

The AC128 transistor used to drive the "buzzer relay" is quite commonly available: however, we see that Grandata are offering this device for 15 p-thls appears to be about half current prices.

Truth Table Display

A suitable case for the Truth Table Display is available from Enfield, Maplin, Rapid and TK Electronics.

The red and black 1 mm plugs and sockets should be stocked by most of our advertisers. The semiconductor devices are currently listed by Rapid and Skybridge.

MICRO mODULES

The new range of Zenith I/O Modules are designed to interface between 5 V logic microprocessor control systems and 240 V mains and low voltage d.c. load devices. Optically isolated between Inputs and Outputs, the modules are moulded in epoxy compound and mounted on heavy duty heatsinks.

The Input modules 505 A\&D have been designed to provide feedback information to the Input Ports of a computer. It is therefore logic compatible when an input ranging from 150 to 280 V a.c., or an input ranging from 5 to 30 V d.c. is applied to the input of the modules.
Applications include feedback information from a robotic machine or position sensing.
The AC Output module 106 provides power control of medium to high voltage and current to various electrical loads. The logic of a computer port will drive the photo-coupled circuit, the output load operating on an a.c. supply between $50-280 \mathrm{~V}$ a.c. The maximum load current is 6 A .
The DC Output module 103 is intended to provide power control of low voltage and current to d.c. loads such as motors, solenoids and lamps. The maximum load current being 3A.

For further details and prices write to:

Zenith Electronics, Dept EE, 21 Station Road Industrial Estate, Hailsham.
E. Sussex BN27 2EW.

CLEAN HEAD

THE latest cleaning solvent from Electrolube is claimed to loosen and remove accumulated deposits of dirt and tape oxide and dry quickly without leaving any residue on the tape head or tape.

The solvent comes in 110 gram aerosols and is applied by spray ing directly on to the heads and mechanisms. Incidentally, it can be sprayed onto other cleaning devices, such as cotton buds or felt and chamois leather sticks.

The Video Tape Head Cleaner can be used for tape heads on video, tape and cassette recorders. It is also ideal for use in data processing, word processing and computer machines.

For prices and local stockist write to:

Electrolube Ltd.,
Dept EE, Blakes Road Wargrave, Berks RGIO-8AW.

AERIAL VIEW

S
UPPLying television aerials for family touring caravans is now big business. A domestic TV receiver, operating off the vehicle 12 V supply, or from mains where available, is today as essential to the holiday traveller as his portable cooking facility.
Any portable aerial must be capable of receiving adequate signals wherever the owner may venture and it must be readily removable before transit. Because large numbers of British holidaymakers travel abroad, their aerials must also be designed to provide signals from the various stations operating on the continent and beyond.
Now Maxview Aerials have launched a new aerial design intended to meet all of the above requirements. Appropriately, it is called the Euromax Universal and is, in effect, two antennas in one to cover both the v.h.f. and the u.h.f. black-and-white and colour wavebands.

A fixing kit is supplied with the aerial and includes suction pads, for attaching to smooth surfaces in caravans or boats, as well as a bracket and mast for use when it is to be installed at a more permanent site, such as a holiday home, villa or apartment.
The Euromax Universal retails for $£ 23.75$ and details of nearest stockists may be obtained from:

Maxview Aerials Ltd. Dept EE, Maxview Works, Setch, King's Lynn, Norfolk PE33 0AT.

RIGHT NOTE

THE technique of Sampling, as associated with music, involves the recording of natural sounds and playing them back at a different pitch. When digital electronic techniques are applied to this process, the result is that one sound, such as a bird warble, can be used as the basis for a complete sound spectrum. Link up a keyboard and the possibilities are limited only by the musician's creative imagination.

Until now the equipment to produce these effects has usually carried a price tag of thousands of pounds and consequently mainly used by the professional However, the latest MCSDigital Sampler from Powertran Cybernetics in kit form retails for

$£ 499$ plus VAT. Ready-built models will cost $£ 699$ plus VAT.

The unit incorporates a sophisticated "looping" technique which makes infinite sustain possible. This can be applied to any part of the recorded sound wave, giving the player very precise control over the sound being played.

It can operate on either MIDI signals or control voltage (lV/Octave). Owners of the machine can, therefore, use their existing keyboards and avoid further expense. Alternatively, the stored sounds can be triggered
from an external source such as a drum machine.

A feature of the MCS- 1 is that it can be used in conjunction with a BBC Micro and a special interface (extra cost) to save sounds permanently on floppy disc. This allows the formation of a digital sound library to be created. Saving direct to tape provides an alternative for those without a BEEB. Further details may be obtained from:

Powertran Cybernetics Ltd.,
Dept EE, Portway Industrial
Estate, Andover,
Hants SP10 3NN.

DHEITPL ELELTRUNHES D.W.GRABTREE BSc Tech Eng (CEI) PRRT FOUR

N the articles already covered in this series, we have not, as yet, included any details of systems that require 'clocks' or other pulsing mechanisms. Future systems to be described will all require 'clocks' of some shape or form and so now is a good time to describe the various types, design and implementation of such mechanisms. We will also describe the timing characteristics of components that are often encountered in data books and are, at the same time, of great importance when designing systems that work efficiently.

CLOCK SYSTEMS IN DIGITAL ELECTRONICS

Let us consider a microprocessor, which is the heart of any modern computer system. The processor is basically a device capable of carrying out a list of instructions in a preset pattern. Each of these instructions is carried out sequentially within a programme. However, how does the microprocessor, on the first instruction, know when to pass on to the second and subsequent instructions?

It must be true to say that no. microprocessor could ever function without-the very basic of circuits, namely the clock circuit. This is purely and simply a circuit that gives out a continuous stream of pulses in a fixed manner. The microprocessor together with other components, like bistables utilises these clock pulses by stepping on to the next instruction with each subsequent pulse.

Clock 'pulse train' producing a series of square waves.

Usually a clock pulsing system produces a series of symmetrical square waves as shown above. The width of each pulse must be wide enough (ie: of sufficient time delay) for all circuits using the pulses to have sufficient time to detect
that the pulse is there and carry out the required work for each particular pulse.
Similarly, the amplitude of each pulse must be large enough to be detectable, since too low an amplitude may mean a pulse goes unnoticed. Equally important is the frequency of the pulse 'train' (ie: series of pulses) since, if the frequency is too high, the rate of pulsing will be greater than component characteristics can allow and so inefficiencies will result. Likewise, if the frequency is too low, then the system that the pulses are being used for will become slow in operatior with, again, inefficient working.

In practice a frequency is chosen that is as high as possible, without exceeding the characteristics and tolerances laid down in the component data books. That is to say, the maximum frequency depends on the 'logic family' used. For example, Standard TTL which has a maximum frequency of operation of 25 MHz , compared with LS TTL which has a max imum of 40 MHz and Schotky TTL, which has a maximum of 110 MHz . CMOS families depend very much on the supply voltage level, since the higher the voltage gives a higher maximum frequency. (5 V gives a maximum of 500 kHz whilst 15 V gives a maximum of 1 MHz).

Some systems use both the rising and trailing edge of the clock pulse.

Besides the points mentioned above, it is important to note that some systems utilise clock 'rising edges' whilst other systems use clock 'falling edges' as shown above, It is also important to note that some systems use both the leading edge and the trailing edge, where one edge is used for one function (say, setting data on address lines) and the other edge is used for another function (say switching or reading data). Alternatively, multiphase clocks may be used, as shown below for this purpose. For example, the Motorola

6800 series microprocessors use 2 clocks working in antiphase (ie: 1 clock is rising whilst the other is falling) whilst the 9900 series of microprocessors use 3 clocks, each out of phase with each other.

A multiphase clock system employing two separate pulse trains.

TIMING CHARACTERISTICS OF COMPONENTS

When serious design work in digital electronics is to be undertaken, reference at some time must be made to the various data books available for the different logic families. When looking at these data books, certain timing characteristics are given for the families and, unfortunately, different books have different ways of saying the same things. Some of these characteristics are set out below.
PROPAGATION DELAY. This is the time between a change in input state (or receipt of a clock edge) and the change in the output caused. It is also sometimes called 'Response Time'. It is generally specified by:
(A) $t_{\text {PD }}+\left(\right.$ or $\left.t_{P L H}\right)$ meaning the delay on low to high transition.
OR
(B) $t_{P D}-$ (or $t_{P H L}$) meaning the delay on high to low transition.
SET UP TIME. This is the minimum time for the data inputs to be correctly set (ie: 'settled down') so that a correct response is obtained when a subsequent clock pulse appears. It is generally shown as $\mathrm{t}_{\text {su }}$.
HOLD TIME. This is the time that data must be kept constant, after the start of the clock pulse, to ensure that a correct response is obtained. (ie: Data put onto lines must remain in the same state for a certain time after the switching clock edge has appeared.) Generally given as th.

TRANSITION TIME. Given as tTLH $^{\text {TL }}$ or ${ }^{\mathrm{t}} \mathrm{THL}$, this is the time taken for an output (or for a clock pulse) to change from a low to a high or a high to a low respectively. Also sometimes given as rise time or fall time and for the clock rise or clock fall it can be shown as $\mathrm{t}_{\mathrm{T}}(\mathrm{CL})$ and $\mathrm{t}_{\mathrm{f}}(\mathrm{CL})$ respectively.
CLOCK PULSE WIDTH. Where a clock pulse is required, the clock pulse width is the minimum width of the pulse required for a system for correct detection.
CLOCK FREQUENCY. As previously described, this is the maximum frequency of the 'train' of clock pulses to be used by a system to ensure correct operation, usually given as f_{c}.

So far we have given brief descriptions of the most common timing characteristics that will be met in digital electronics data books. Others do exist but those will only be of great use to the experienced designer. Further details, if required, can be sought from the many text books available. We shall now go on to describe the different types of bistable circuits in use.

J-K BISTABLE

These bistables are generally called ' J K flip-flops'. Let us look at one such device in the TTL range, the 74109, which is a 'dual J-K +ve edge-triggered flip-flop'. As the title suggests, this chip incorporates $2 \mathrm{~J}-\mathrm{K}$ flip-flops in one package, each being triggered (ie: allowed to function) on the + ve edge of the clock pulse. If observation is made of the pin connections, it will be seen that, besides those connections described below, there are also 'set' ($\overline{\mathrm{S}}_{\mathrm{D}}$) and 'reset' ($\overline{\mathrm{R}}_{\mathrm{D}}$) connections which may be used to put the flipflop into certain modes of operation, (See below). These functions will not be described here.

Let us now look at the truth table for the J-K flip-flop. We will not look at the way the gates within the flip-flop work since such information is not really necessary for our purpose. However there are many excellent books available if further understanding is required. The truth table shows that the J-K flip-flop has 4 modes of operation, and the circuit symbol shows that the device has (apart from the set (\bar{S}) and reset (\bar{R}) functions
previously mentioned) 5 connections. The 'clock' input has been adequately described in previous passages and so its function needs no further comment. J and K are 2 inputs to the device and Q and $\overline{\mathrm{Q}}$ are the 2 outputs from the device, with ? being the complement of Q (ie: negated.) Now the truth table shows two columns Q - and $\mathrm{Q}+$, which perhaps need further explanation. Q-represents the state of Q IMMEDIATELY BEFORE a clock pulse, whilst $Q+$ represents the state of Q IMMEDIATELY AFTER the clock pulse. So looking at the 'No operation' mode in the truth table, if, as in the first row, J and K are both low and Q is also

$$
\begin{array}{c|c|c|c|l}
J & K & Q- & Q \cdot & \text { MODE } \\
\hline 0 & 0 & 0 & 0 &) \text { No operction } \\
0 & 0 & 1 & 1 & \text { No } \\
0 & 1 & 0 & 0 & \text { Reset } \\
0 & 1 & 1 & 0 & \text { Ret } \\
1 & 0 & 0 & 1 & \text { Set } \\
1 & 0 & 1 & 1 & \text { Sogele } \\
1 & 1 & 0 & 1 & \text { Tog } \\
1 & 1 & 1 & 0 & \text { Ren }
\end{array}
$$

Truth table showing the four modes of operation of the J-K flip-flop.
low (ie: Q is ' O ' before the clock pulse) it can be seen that, after the clock pulse, Q remains at O . Similarly, looking at the last row of the truth table (in the 'Toggle' mode), where both J and K are ' 1 ' then, with Q at 1 before the clock pulse, it is seen that this changes to a ' O ' after the clock pulse. ($\mathrm{Q}+$).
From the truth table it can be observed that the J-K flip-flop has, therefore, 4 ways of operating, all dependent upon the states of the inputs, J and K. (Although, obviously, the bistable could not work without the clock pulse, either). With J and K both set to 'O', the flip-flop is put ino the 'no operation' mode, whereby no change of state occurs to Q after the clock pulse. In the 'reset' mode, J must be at ' O ' whilst K is at ' 1 ', in order to set Q to ' O ' after the clock pulse. In the 'set' mode, J must be at ' 1 ', whilst K is at ' O ,' in order to reset Q to ' 1 ' after the clock pulse. In the 'toggle' or 'switching' mode, this is where both J and K are set to logic 1 , in which case Q output 'toggles' (ie: changes state) after a clock pulse. If, in this last stated, a ' 1 ' was maintained on both J and K , the subsequent clock pulses applied would merely give a continuous change of state to Q output. In other words Q would become a delayed function of the clock pulse. (Delayed because of the propagation delay of the device plus the type of triggering required, say + ve or -ve edge triggering).
We have considered edge-triggered J-K flip-flops but we must be aware of the use of 'Master-Slave' flip-flops, for example the TTL device 74107. This device operates in a similar way to that described above, but, because it is effectively split into 2 sections ('master' and 'slave') it creates a further time delay over and above the usual propagation delay.

On the first clock pulse, the data on the $\mathrm{J}-\mathrm{K}$ inputs is 'fed into' the 'master' section and on the next clock pulse the information is used, as per the modes previously described, by the slave in order to give the required outputs at the Q and \bar{Q} terminals. In other words, the Master becomes a temporary store of information and the Slave acts in a manner previously described, to the effect that information put onto the J-K inputs is delayed by one clock pulse before any change (if not in the no operation mode) is witnessed at the output.

For either the edge-triggered or the master-slave flip-flop the characteristic equation for $\mathrm{Q}+$ and $\overline{\mathrm{Q}}+$ are:

$$
\begin{aligned}
& \mathrm{Q}+=\mathrm{J} \overline{\mathrm{Q}}+\overline{\mathrm{K}} \mathrm{Q} \\
& \overline{\mathrm{Q}}+=\overline{\mathrm{J}} \overline{\mathrm{Q}}+\mathrm{K} \mathrm{Q}
\end{aligned}
$$

S-R BISTABLE

The 'S-R' bistable is a flip-flop which has many uses, since it is a 'latch' that, basically, is a form of data storage. It remembers an item of data for as long as power is applied. The symbol is shown below together with the truth table.

Circuit symbol of the S-R flip-flop.

$$
\left.\begin{array}{c|c|c|c|c}
\text { S } & R & Q- & Q \cdot & \text { MODE } \\
\hline 0 & 0 & 0 & 0 & \\
0 & 0 & 1 & 1 & \text { No operation } \\
0 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \text { Rosot } \\
1 & 0 & 0 & 1 & \\
1 & 0 & 1 & 1 & \text { Set } \\
& 1 & 1 & 0 & x \\
\text { EEGIM Ambiguous } \\
& 1 & 1 & 1 & \mathbf{x}
\end{array}\right) \text { An }
$$

Truth table showing the four modes of operation of the S-R flip-flop.

Note that here, Q - and $Q+$ refer to the states of Q immediately before and after a change of input. (Not clock pulse). It will be seen that the Set/Reset (S-R) bistable functions, according to the truth table, are very similar to the J-K flip-flop. Certainly the 'No operation', 'reset' and 'set' modes are identical, with' S and R inputs being equivalent to the J and K inputs respectively. However, there the similarity ends, because, with both J and K set to ' 1 ' on the J-K flip-flop, that device toggles, (ie: changes the Q output from a ' 0 ' to a ' 1 ' or vice versa). On the S-R bistable the situation described, where both inputs are ' 1 ', should be avoided. This is called the 'Ambiguous' mode and, in this mode, the output could go to any state, dependent upon the characteristics of the actual circuitry within the chip used. If S-R bistables are used, supporting circuitry (ie: input circuitry) should be included that does not
allow both S and R inputs to be at ' 1 ' at the same time, otherwise false operation will result.

If we now look again at the truth table, we can draw the Karnaugh map for the S-R bistable, and thus formulate the Characteristic Equation. Again Q- is the state of Q output before an input change, not before the clock pulse, since the S-R is an unlocked device, unlike the J-K flipflop.

CHARACTERISTIC EQUATION

Hence $\mathbf{Q}+=\mathbf{S}+\overline{\mathbf{R}} . \mathbf{Q}-$ is the characteristic equation for the $\mathrm{S}-\mathrm{R}$ bistable.

3 HW

Implementation of the S-R function using NAND gates.

If observation is made of the characteristic equation, it can be seen to be implemented simply by use of Nand circuit.

The same function as above using a more common method of drawing.
(Note: Invert S and R if required as inputs.) This circuit is usually as shown in the alternative diagram. Note that most S-R chips have active low inputs hence $\overline{\mathrm{S}}$ and $\overline{\mathrm{R}}$ are shown.

The circuit symbol of the S-R flip-flop.

The S-R latch circuit.
As stated previously, the S-R bistable is the basic "latch" circuit and with the addition of two more gates to those shown above, we have the ability to 'strobe' or 'enable' the latch.

APPLICATIONS OF
 S-R FLIP-FLOP

One main, ideal, use of the basic S-R flip-flop is in switch 'de-bouncing'. Here we show a changeover switch which is connected across the $\overline{\mathbf{S}}$ and $\overline{\mathbf{R}}$ terminals of an S-R bistable, with the common terminal of the switch to ground potential ('low'). Each of the inputs is connected to a 'high' via resistors. These are provided to ensure that the S-R flip-flop cannot enter the 'ambiguous' mode. (Note that if \underline{S} and R inputs were available, instead of \bar{S} and $\overline{\mathrm{R}}$, then the switch common would be connected to a 'high' whilst the inputs would be connected via resistors to a 'low'.)

Looking at the circuit as shown, with the switch set to the S position, it will be seen that, due to the characteristics of the S-R bistable, nothing will change until the switch is thrown and it makes the first contact at the R position, at which time the Q output will change from a ' 1 ' as it was, to a ' O '. Subsequent 'bouncing' of the switch will not affect the output Q . (See waveforms below.)

Another use of the S-R flip-flop is in counting systems, where the device is used as a 'latch' to ensure that only stable data is encountered. It is, for example, used in digital voltmeters, frequency counters and the like, as well as in many other industrial processes, to avoid flicker on the display. When the data is stable the latch allows the data to be read and subsequently displayed.

T BISTABLE

This bistable, which is unclocked, has, generally, only one input (T) and two outputs, Q and Q. The device works in very much the same way as the J-K flip-flop when in the 'toggle' mode since whenever an input is received at the T input the outputs change state, ie: they 'toggle'.

The truth table and circuit symbol are shown below.

T	$Q-$	Q
0	0	0
0	1	1
1	0	1
1	1	0

[E57M]
Truth table and circuit symbol for the ' T ' type bistable.

The truth table shows the state of I together with the state $Q-$, which is the state of Q output immediately before T appears. It follows, then, that $\mathrm{Q}+$ is the new state of Q after T and Q - were present in the given states shown.

Therefore, it can be seen that if T is ' O ', Q does not change state, but if T is ' 1 ' then Q will toggle. The truth table then becomes:

Which is, from a pre-
$\mathrm{Q}+=\overline{\mathrm{Q}} \mathrm{T}+\mathrm{Q} \overline{\mathrm{T}}$
vious article, the
EX-OR function.

THE D BISTABLE

This bistable is clocked and is a single input device. It accepts data onto the D input and when the clock pulse is received, the data present at D is transferred to the output $\mathrm{Q} . \overline{\mathrm{Q}}$ is also available. The symbol for the device is shown below together with the logic circuit. With Clock Active Low, the 'mark'

EELOM

The circuit symbol for the 'D' type bistable.

Logic circuit of the 'D' type bistable.
can be used to 'set' the data on D, whilst the 'space' can be used to 'read' the data at the output.

D-type flip-flops are available in many packages, but in CMOS, for example the 4013 which is a dual D-type flip-flop, and in TTL, for example the 74173 which is a quad D-type flip-flop. This latter device does not have a clock pulse input as on the 4013 CMOS device and as described above. Instead it has 'enable' inputs. Functionally, the device works as described above. A 'Master Reset' pin is also available on the device to set outputs when the 'MR' (master reset) pin goes to the required state ('high' for the 74173).

The Bistables discussed above are extensively used in counting circuits, which will be described in great detail in the next article in this series. Because adequate numbers of examples and exercises will be given in that article, we do not propose to give any more here since it may confuse the issue at this point.

TWO FABULOUS OFFERS FROM

The incredible ' MINI 20'

28 ranges

$20 k \Omega / V$ d.c. $4 k \Omega / V$ a.c.
(With protective fuse)
Accuracy: 2\% d.c. and resistance,
3% a.c.
28 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$, $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}$, $600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$. a.c. V $15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. $130 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms $0-2 \mathrm{k} \Omega$, $0-2 \mathrm{M} \Omega \mathrm{dB}$ from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operation is straightfonward, just turn the selection switch to the required range.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10.00$.

THE IDEAL INSTRUMENT FOR THE CONSTRUCTOR

ONLY £21.60
(complete with carrying case, leads and instructions)

'SUPER 20 '

A SUPER PROTECTED UNIVERSAL MULTIMETER

Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.) 39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 10 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$. $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$.
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$ $d B$ from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
(complete whth carrying case, leads and instructions)

ONLY £33.50
PRICES Our prices include VAT and postage and goods are normally despatched by return.
For details of these and the many other instruments in the Alcon range, Including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

A IC (b) N

Instruments Led.

[^0]

- This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction - manual and many more components, anabling you to design and use - adders, subtractors. counters (ripple, up/down, synchronous decade and Gray code), registers, pattern recognisers and 7 -segment displays.
- You need the board and components from SUPERKIT to enable you to
- build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.
- SUPERKIT (SUPI E22.00 SUPERKIT II (SUP II) E16.00 - Special price 835.00 for both (8UP +11) (inc. VAT and p o pl
- The SUPERKIT series is backed by our theory courses, DIGITAL
- COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced).
- which covers the design of digital computers. MICROPROCESSORS
- AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.
- dioital computer logic (DCl) e7.00

DIOITAL COMPUTER DESION (DCD) E9.60
MICROPROCES8ORS ANO MICROELECTRONIC8 (MIC) 86.80 -••••••••••••••••••••••• Please send for full information on these and our other courses.
QUARANTEE IH you are not completoly ontisfied wium the hem to ua within 28 dava for a hull
 Allow 2θ davi for dealiven in UK Oversess poyment by intemational credit cerd or by benk dratt druwn on : London bank
CAMBRIDGE LEARNING LTD, Unit 36, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England.
Tel: 0480-67446
VAT No 313026022 Transcash No 2789159 Rog No 1328782

- ploase send me linitia lotrers us id):

SUP	(1) £22.00	..DCL @ £7.00
SUPII	(£18.00	DCD ¢9.50
SUP + 11	@ £35.00	MIC@ £6.50

I enclose'a chequa/PO payable to Cambridge Leaming Ltd fore
Please charge my
credit card
No
Expiry date
Telephone orders from credit card holders accepted on 048067448 (24 hrs)

Name
Address

Signature

CAMBRIDGE

 LEARNINGUnit 36, Rivermill Site, FREEPOST St lves, Cambs PE 17 ABR, England

TRUTH TABLE DISPLAY

O.J. BRUERE

THe unit was developed as an educational aid and a simple constructional project suitable for sixth form students following a course in digital electronics. Depending on the way in which the display is arranged it can be used to display either a conventional Truth Table or a Three-Variable Karnaugh Map as shown in the photographs.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Three-Variable Truth Table and Karnaugh Map is shown in Fig. 1. As can be seen from the circuit diagram, IC1a, IC1b, IC2a and IC2b form a 3-bit binary counter. The outputs of the 3 -bit binary counter, A, B and C cause a binary coded decimal to decimal decoder (IC3) to light up eight l.e.d.s (D1-D8) in sequence.

The D input of the decoder (the most significant bit) is fed by the inverted output of the circuit under test $(D=\bar{F}) . F$ is inverted by IClc a 2 -input NanD gate. Note that the notation for an inverted figure is given by a bar (-) over the figure.

The display is inhibited if the D input is held high (logic " 1 ") and none of the l.e.d.s will light up irrespective of the states of A, B and C. Whenever the D input falls to a logical " 0 ", just one of the I.e.d.s will light depending on the states of A, B and C. It is worth noting that although a " 0 " causes a diode to light, this must be read as a " 1 " on the display.

CLOCK PULSE

The outputs A, B and C also provide the inputs to the combinational logic circuit under test. If a fast clock is used some of the l.e.d.s will appear to be lit continuously, whereas others will not light at all. Each lit indicator is interpreted as a " 1 ". The clock itself can be used to generate A, thus saving a bistable A TLL dual D bistable IC2 is wired as a 2 bit divider, and a TTL quad 2 -input NAND gate IC1 serves as a clock pulse oscillator and an inverter.

The l.e.d.s D1-D8 are wired in a common anode configuration. A single resistor R3 with a value of about 180 ohms restricts current flow through the conducting diode to about 15 mA . The decoder outputs are normally high (logic " 1 ") falling to logic " 0 " when activated.

OSCILLATOR CIRCUIT

Two gates, ICla and IC1b are wired as an astable multivibrator with a
mark/space ratio of 1 . The time constant is provided by an RC network, $\mathrm{R} 1, \mathrm{Cl}$ and $\mathrm{R} 2, \mathrm{C} 2$.

The frequency is not critical. If high value electrolytic capacitors are used a low frequency is produced and the outcome of each set of inputs can be observed separately. For a frequency of 1 Hz a capacitor with a value of about $200 \mu \mathrm{~F}$ should be used. If a continuous readout is desired the oscillator frequency should be above 100 Hz , which means a capacitor of less than $2 \mu \mathrm{~F}$ value should be used.

CONSTRUCTION

The circuit is constructed on a piece of 0.1 inch matrix stripboard, 10 strips by 40 holes (Fig. 7). The breaks in the copper strips should be made first and then the components may be positioned as shown in Fig. 8 and Fig. 9. Note that if the Truth Table Display and Karnaugh Map are both being built, twice the number of components will be needed

A plastics case having dimensions of $114 \times 64 \times 26 \mathrm{~mm}$ should be used to house this project. The front panel should be marked with the socket and l.e.d. positions and then these drilled. Once the front panel has been drilled and the l.e.d.s and sockets have been fitted in place the interwiring may be completed.

The anodes of D1-D8 are linked via R3 to the sockets SK 5, SK $6(+5$ volts). The cathodes can now be wired to the corresponding outputs of the decoder IC3 using flexible wire.

POWER SUPPLY

An external 5 V power supply is required although a 6 V supply can be used if two silicon diodes are wired in series with it, to drop the voltage to a safe level.

TESTING THE UNIT

When the power supply is connected, l.e.d.s D1-D8 should all light. Using a connecting wire, make a connection between the socket marked F (SK4) and the negative side of the power supply D1-D8 should now extinguish.

Connect a lead between $F($ SK 4$)$ and A (SK1) and all the odd numbered I.e.d.s should light. Connect F to B (SK2) and l.e.d.s, D2, D3, D6 and D7 should illuminate. Finally connect F to C (SK3) and I.e.d.s, D4, D5, D6 and D7 should illuminate.

USING THE TRUTH TABLE DISPLAY

A convenient test deck may be constructed from a piece of breadboard. The i.c. under test should be placed on the breadboard and leads brought out from each of the i.c. pins, using flexible connecting wire and 1 mm plugs.

Shown in Fig. 2 is a 7400 Ttl i.c., this device contains quad 2 -input Nand gates which can be interconnected to perform many logical functions. The outputs of the Truth Table Display A, B and C provide the inputs to the logic circuit

Fig. 1. The circuit diagram of the Truth Table Display
under test. The final output of the display is fed back to the F input. Use the spare power supply sockets to provide power for the i.c.
The tests on a 7400 i.c. are shown in Figs. 3, 4, 5 and 6.

Fig. 2. The internal logic and connection of the TLL 7400 i.c.

Fig. 3. Examine the truth table for $\overline{\mathrm{A} . \mathrm{B}}$. The bottom four l.e.d.s can be covered up for this exercise.

Fig. 4. Negate this expression by adding an extra inverter to give $\overline{\bar{A} \cdot \bar{B}}=\mathrm{F}$.

8 Fig. 5. Remove the link between pins 4 and 5 of the i.c. under test and connect C to pin 5. The function is now $\overline{\bar{A} . \bar{B} . C}$. This is equivalent to $A \cdot B+\bar{C}$.

Fig. 6. A third gate can be used to invert any one of the inputs before it is fed into the circuit in Fig. 5, or the output can be inverted vielding a further four possibilities. Interchanging inputs A and C in this circuit vields

$$
F=\overline{\bar{A} \cdot(\overline{B \cdot C})}=A+B \cdot C
$$

BOOLEAN ALGEBRA
Useful Identities

$$
\begin{array}{ll}
\mathbf{A} \cdot 0=0 & \mathbf{A}+0=\mathbf{A} \\
\mathbf{A} \cdot 1=\mathbf{A} & \mathbf{A}+1=1 \\
\mathbf{A} \cdot \mathbf{A}=\mathbf{A} & \mathbf{A}+\mathbf{A}=\mathbf{A} \\
\mathbf{A} \cdot \mathbf{A}=0 & \mathbf{A}+\mathbf{A}=1
\end{array}
$$

Commutative Laws

$$
\begin{aligned}
& A+B=B+A \\
& A \cdot B=B \cdot A
\end{aligned}
$$

Associative Laws

$$
\begin{aligned}
& A+B+C=(A+B)+C= \\
& A+(B+C) \\
& A \cdot B \cdot C=(A \cdot B) \cdot C=A \cdot(B \cdot C)
\end{aligned}
$$

AND "." takes precedence over OR " + " as in ordinary algebra. (AND terms behave as though they have brackets round them.)

Dé Morgan's Theorem

If all the signs are changed in a Boolean expression retaining brackets where present (or implied) and all the terms are negated, the new resulting expression will also be true.

$$
F=(A \cdot B)+C
$$

then $\bar{F}=(\bar{A}+\bar{B}) \cdot \bar{C}$. Hence

$$
F=\overline{(\bar{A}+\bar{B}) \cdot \bar{C}}
$$

Distributive Laws

$A \cdot(B+C)=A \cdot B+A . C$.
$A+(B . C)=(A+B) \cdot(A+C)$

Fig. 8. Wiring diagram and component layout of the Truth Table Display

Fig. 7. Truth table display (10 strips $\times 40$ holes)

NOTE: The same stripboard layout may be used for either of the two units.

Fig. 9. Wiring diagram and component layout of the Karnaugh Map Display

COMPONENTS

Resistors

R1,2	3 k 3
R3 (2 off)	
R3	

All ${ }_{8}^{1} W$ carbon $\pm 5 \%$
Capacitors
C1,2 470n polyester
(2 off)

Semiconductors

ICI
AND gate 7474 TLdual D-type flip-flop
74141 TL b.c.d. to
decimal decoder/driver TIL220 0.2in red I.e.d. (8 off)

Miscellaneous
SK 1-6 1 mm red sockets
(6 off)
SK7,8 1 mm black sockets
(2 off)
PL1-8 1 mm plugs
Stripboard, 0.1 inch matrix; 10 strips by 40 holes; plastics case, $114 \times 64 \times 26 \mathrm{~mm}$ (Box PB1 white); connecting wire; 14 -pin d.i.l. hoider (2 off); 16 -pin d.i.l. holder.

USING TRUTH TABLES

A truth table is a systematic way of listing the outputs caused by all the possible combinations of inputs to a logic circuit. If the circuit has "n" inputs there are 2^{n} different ways of combining them. In order to ensure that no possible states are overlooked, it is customary to list the input states in binary order. A three variable truth table is shown below. The column labelled " F " lists the output states of a logic circuit. The positive logic convention is used here, " 1 " means a positive voltage and " 0 " means a lower positive or zero voltage.

\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

By comparing the output column with the A, B and C columns it can be seen that
i) F is " 1 " whenever A is " 1 ";
ii) the output is also " 1 " if $C=$ " 1 ", $B=$ " 1 " and $A=$ " 0 ".
Closer inspection shows that $F=$ " 1 " if $C=" 1 ", B=" 1 "$ and $A=" 1 "$.

Hence we can describe the behaviour of the circuit as follows:

The output is " 1 " when $A=$ " 1 " OR when $B=" 1$ "AND $C=$ " 1 ".

Using the symbols "+" for OR and "." for AND we can abbreviate the above statement as follows:

$$
F=A+B \cdot C
$$

Expressions like this can be handled very much like ordinary algebraic equations. The dot "." behaves like a multiplication sign and the " + " behaves almost (but not quite) like an addition sign. The following truth tables should make this clear.

\mathbf{B}	\mathbf{A}	\mathbf{F}
0	0	0
0	1	0
1	0	0
1	1	1

Truth table for A AND $B(A \cdot B)$ " 0 " and " 1 " are shorthand symbols

Truth table
for A OR B
$(A+B)$
$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$

Multiplication table for the numbers " 0 " and " 1 "
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=2$

Addition table for the numbers " 0 " and " 1 "

It will be seen that both processes yield the same pattern.
2 has no meaning in a two-state logic system. We can use the OR sign "+" in the same way as the ADDITION sign "+" except that we must remember that

$$
1+1=1!
$$

A bar over a symbol means that it is INVERTED or NEGATED. In this truth table for an inverter X is " 1 " if $A=$ " 0 "

\mathbf{A}	\mathbf{x}
0	1
1	0

$$
\begin{aligned}
\text { or } X & =\text { Not } A \\
X & =\bar{A}
\end{aligned}
$$

The most common type of TTL gate is the NAND gate and is equivalent to an AND gate followed by an inverter.

\mathbf{B}	\mathbf{A}	$\mathbf{A . B}$	$\overline{\mathbf{A} . \boldsymbol{B}}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& A \cdot B=A \text { and } B \\
& A \cdot B=\operatorname{not}(A \text { and } B) \\
&=\text { NAND }
\end{aligned}
$$

Any logical function can be rewritten so that it can be implemented using only NAND gates.

Referring back to the three variable truth tables, it can be seen that the expression $F=A+B . C$ can be implemented with an AND gate and an OR gate.

How can the same function be realised with NAND gates?

The original expression can be transformed with the aid of Dé Morgan's Theorem which tells us that:

$$
A+X=\overline{\bar{A}} \cdot \bar{X}
$$

Writing $B . C$ instead of X yields

$$
F=\overline{A \cdot(\overline{B . C})}
$$

This can be translated into the circuit as shown in Fig. 10.

Fig. 10. Translated circuit
The circuit in Fig. 10 can be proved by building up the truth table from scratch, as shown below.

C	B	A	\bar{A}	B.C	B.C	A. ${ }^{\text {B }}$	(B.
0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	,	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1)	0	1	0	0	1

THE KARNAUGH MAP

A truth table can be displayed in a different format. As in ordinary maps a point on the map can be specified by "coordinates" (latitude and longitude). As well as being more compact for three or four variables the layout is usually easier to interpret.

Fig. 11. Karnaugh Map
If adjacent cells can be combined in blocks of two or four as shown (Fig. 11) simplification results.

 $\left\{\begin{array}{ll}A & A \\ \square\end{array}\right\}\left\{\begin{array}{l}D \\ Q\end{array}\right\}$

Iand

GAMES TIMER
 W.ENGLISH

OINING in various board games with two young grand-children, it became obvious that some method of timing the duration of their turns was necessary to maintain harmony and avoid arguments. Not finding anything suitable on the market, the author devised this unit, employing a 555 i.c. for the timing and an AC128 transistor driving a small buzzer. In the absence of a suitable commercial buzzer, by reason of physical size and current requirements, it was found that by suitably wiring a miniature relay it was possible to achieve the desired note with low battery consumption.

As a spin-off, after the author had completed construction, other applications were found, in the kitchen.

CIRCUIT DESCRIPTION

The circuit diagram is shown in Fig. 1. A 555 i.c. is employed in a standard configuration. Switching on S2, the cycle starts with a build-up of voltage at pin 2 via Cl charging through R1. At this instant, the voltage on the output pin 3 is high, which being applied to the base of TR 1 keeps this turned off. The voltage on pins 6 and 7 of the i.c. is zero initially, gradually rising as C2 charges via the selected resistor (R2 through to R5), until the voltage is sufficient to drive the multivibrator in the 555 into operation, when the output at pin 3 becomes low. This turns on TR 1 fully, energising the relay coil in the collector circuit. The coil is connected to the relay contacts so that when energised the circuit is repeatedly broken and re-made in very rapid succession, resulting in a satisfactory buzz. The unit is switched off by $\mathbf{S} 2$, and after a very short time may be switched on again to repeat the cycle of operation.

SWITCH SETTINGS

Switch S1 connects R2, R3, R4 or R5 to C2 and the 555 timer. The values shown give delays of: one, two, three and four minutes, but if other times are required, suggested resistor values are given in Table 1. It may be found that the times vary from two to seven seconds over the desired time, but as standard resistors are used, it was felt to be acceptable.

CONSTRUCTION

Because of the simplicity of the circuit, a piece of single-sided printed circuit board was marked out and etched. The layout is shown full-size in Fig. 2. (If desired, however, there should be little trouble in assembling the circuit on a piece of stripboard.) The 555 i.c. is mounted in Soldercon sockets to facilitate any changes. To obviate any error, the author used coloured wires from the printed circuit board to S1, following the standard resistor colour code.

THE CASE

A suitable case came to hand with the packaging of a digital watch. The dimensions are: 60 mm wide, 110 mm deep and

Table 1. Time delay settings.

Time delay required	Suggested resistor value
5 minutes	820 k
6 minutes	920 k
7 minutes	1 M
8 minutes	1 M 2
10 minutes	1 M 5
15 minutes	2 M 2
30 minutes	4 M 7

60 mm high, and the case opens up lengthways. The following photograph shows the position of the switches and the p.c.b. The PP3 battery fits very neatly as shown, and may be secured by winding 3 or 4 turns of Sellotape (reversed) round the battery case, then pressing it to the container.

RELAYS AND BATTERIES

Several relays have been tried, all successfully, so if a miniature type cannot be obtained, then the smallest available type may be used, making alterations to the layout as required.

The current drawn from the PP3 battery in the timing mode is 5 mA , rising when the buzzer actuates to an acceptable 25 mA , bearing in mind that the buzzer would be switched off in a matter of

Fig. 1. The complete circuit diagram of the Games Timer.

seconds. Reasonable service may be expected from the average PP3, but a high-life type is recommended.
The author required only the four time settings shown, but obviously any further number can be accommodated using a suitable switch for S1 with the resistor values shown in Table 1.

It was found that the prototype was more reliable when an extra capacitor, C3 (100 n) was added. This should be connected between pin 5 of IC 1 and ground.

Photograph showing internal view of the Games Timer.

SPECTRUM amplifiler MARK STUART

MOST people who have used the Sinclair Spectrum computer will be aware of the low level of the 'Beep' signal. This project was designed to raise the level to something more suitable for use when playing games in a noisy family house.

In order to avoid having to make power supply connections, the amplifier contains its own PP3 type battery. The only connection required is a link from the computer 'EAR' socket. The amplifier is switched on by insertion of the input lead.

CIRCUIT

The circuit diagram is shown in Fig. 1. As the output from the Spectrum consists only of square waves it is not necessary to use a conventional audio amplifier. Instead a switching amplifier circuit is used. This means that a very simple circuit which uses very little quiescent current can be used.
The input signal is coupled via R1 to the base of TR1 which is connected as a common emitter amplifier stage, but is biased by R2 and R3 so that in the absence of an input signal it is cut off. When TR1 is cut off its collector voltage rises to 9 V and this ensures that TR2 and TR3 are also turned off. The only current drawn in this state is via R3 and R2 in
series. With a 9 V battery this is $9 /(\mathrm{R} 2+$ R3) or $18 \mu \mathrm{~A}$.

When an input signal is applied TR1 turns on during positive half cycles and off during negative half cycles. When TR1 is on its collector voltage falls to almost zero and TR2 receives base current via R5. TR2 and TR3 are connected as a 'Darlington' pair. In this arrangement they work as a single emitter follower stage. This has a voltage gain of only 1 but a very high current gain.

The small input current from R5 turns TR2 and TR3 fully on, delivering nearly the full supply voltage across VR1. During negative input half cycles TR 1, TR2 and TR3 are turned off and the voltage across VRI falls to zero. The signal across VR1 thus appears as a much amplified version of the input signal. VRI acts as a high level volume control directly feeding the speaker. A reverse log potentiometer must be used because of the unconventional arrangement. If a standard \log or linear potentiometer were used the control would be very abrupt, and concentrated at one end of the track.

CONSTRUCTION

The whole circuit is built on a small printed circuit board. Fig. 2 shows the printed circuit board design and Fig. 3 the component layout. Take care to get the

Fig. 1. Circult diagram of the Spectrum Amplifier.

transistors in the correct positions. When the board assembly is complete drill the front panel to take SK1 and VR1, and drill a pattern of holes for the speaker. The printed circuit board is mounted simply by being soldered to the pins of VR1.

When all the components have been fitted to the case lid complete the wiring as shown in Fig. 4. The connections to the printed circuit board are made by stripping 5 mm of insulation from each wire, passing the bare end through the board and soldering on the track side. SK 1 must be connected exactly as shown to ensure correct switch action.

TESTING

After checking the assembly and wiring, connect a battery, plug or suitable 3.5 mm lead into the amplifier (the lead supplied by Sinclair for connecting a cassette recorder is suitable). If you have

COMPONENTS

Resistors

R1	$10 k$
R2	$22 k$
R3	$470 k$

Spap
 page 18

R4 4 k 7
VR1 470 reverse log
potentiometer
All $\frac{1}{4}$ W 5% carbon film

Semiconductors

TR1 BC184
TR2, TR3 BC2 14 (2 off)

Miscellaneous

PP3 battery clip
64 ohm miniature speaker
S1.SK 13.5 mm make break jack socket
Knob, feet, wire
Plastic case approx.
$120 \times 80 \times 35 \mathrm{~mm}$
Printed circuit board
Approx. cost
Guidance only
£6.50

EE1296
Fig. 4. Wiring diagram.

Fig. 2. Printed circuit board design.

Fig. 3. Component layout.
a multimeter you can check that the battery current is about $20 \mu \mathrm{~A}$. If not connect the other end of the lead into your Spectrum and issue a 'Beep' command. Check that the amplifier output is present and that the volume control works correctly. If all is well fix the battery inside the case using double sided adhesive tape, and fit the case lid. The battery life will be very long even with regular use because current drain is only significant when sound is present. Current drain during beeps is reduced at lower volume settings. Most of the time that the amplifier is connected it will be silent and the current drain will be very low. Remember to disconnect the lead from the amplifier before putting it away.

ZX81 INPUT/OUTPUT

THIS 8-bit port is designed for use with the $\mathbf{Z X} 81$ or the $\mathbf{Z X}$ Spectrum home computer. It uses just three low cost and readily available TTL i.c.s, two 74LSO2's and a 74LS245. The mapping is very straightforward as it only requires A6 to be low during an input-output operation.

The decoding is performed by the two quad 2 -input OR gates which determine the state of the chip enable and the S / R pins of the bi-directional port i.c. For an output operation the $\overline{C E}$ and the S / \bar{R} pin is low and for an input operation the CE is low and the S / R is high.

When using this circuit it must be noted that the address of the port is "echoed" throughout the memory map. Also when an output operation is performed it may be necessary to include another device for latching the data output.
A. Moran,

Reading,
Berks.

EMERYDAY ค $-1,5$... from the world of
 TV COLOUR VIDEO PRINTER

THE worid's first printer for instantaneous print-out of pictures on a television screen was introduced by Miltsubishi Electric last year. Now comes news that they have unveiled a NTSC Colour version.

The colour printer can be broken down into five major blocks: a block where the incoming National Television System Committee (NTSC) composite video signals are demodulated to obtain red, green, and blue (RGB) signals; an A-to-D converter for processing each colour signal into a digital sequence; a tield memory for storing digital colour signals for a frame of picture; a block where the colour signals read from the field memory are converted into the three colours-yellow, magenta and cyan-of the subtractive colour process to obtain the necessary graduation colour signals; and finally a block where a colour print is obtained by a thermal transfer system.
Once the print button is pressed, it takes about one minute to produce a colour print. The paper is stored in cassette form, each "cartridge" holding sheets for 100 pictures.
At present there are no plans for a European standards version.

EDUCATED ROBOT

THE Nottingham based company TecQuipment International has won an order from the Open University for 150 of its new educational robots, type MA2000.
The MA2000 was developed in response to the Open University's requirement for an educational robot which would be capable of being programmed to perform a wide range of scaled down industrial tasks. The robots are wanted for use in two new OU courses; "Robots in Manufacturing" and "Robotics and Computing", which form part of the two modular M.Sc. degree programmes Manufacturing and Industrial Applications of Computers.

The price of the MA2000 Robot is $£ 3,400$.

Radio Kuma

Kuma Computers developed the Basicode $2+$ translator for MSX microcomputers in advance of the two new "Radio Chip Shop" series on Radios 1 and 4.
Now, all users who purchase one of the MSX micros currently appearing in the shops will be able to take advantage of the free software offered by the BBC for downloading every week.

Bank Calls in Telecom

British Telecom's London City Area has signed a 12 -month agreement with the Midland Bank relating to future orders of switching systems for branches of the bank throughout England and Wales.

The agreement, representing a special discount arrangement, covers BT's Herald, Monarch and S6022 business switchboards. All Midland Bank orders for those systems in the next year will be placed with the City Area.

AWARDS

The 1984 British Computer Society award for technical achievement has been won by Inmos for its development of Occam, a new porgramming language. It was given for the simplicity of the language and its high performance when used with the Inmos transputer.

A microcomputer system which can be operated by the eye movement of disabled patients won the Social Benefit class for St George's Hospital, Lincoln:

As part of its continuing initiative in the education sector Commodore has announced that it will be sponsoring the 1985 British Computer Society Schools' Computer Quiz.

CELLNET DRIVE

Initial orders for the much heralded cellular radio telephones have far exceeded Securicor's expectations. Already, they have all but reached their pre-launch sales targets with orders of $£ 4.6$ million.

Securicor is in partnership with British Telecom in setting up the CELLNET service.

Says Peter Towle, Securicor's Managing Director: "We are already pushing the manufacturers of the 'Go-Phone' mobile radios to their maximum production capacity, but it looks as though we may be unable to meet the demand until April 1985."

electronics

TALKING COMPUTERS

The country's first computer information service is being provided by British Telecom, Bradford. The Bradford area has been selected for the first "field trials" of a new Guideline Service Home Computer Line.

Callers dialling Bradford (0274) 722622 will hear a three minute tape giving all aspects of computer ownership. The contents will initially be about hardware, software and peripherals; what's new in the computer world, new concepts and new ideas

The message is updated twice weekly and is claimed to cater for all needs, such as tips on programming, games and so on. The information is supplied by a Hebden Bridge company, Information Unlimited.

Akadimias Program

Academic staff at the University College of North Wales, Bangor, have established a small educational software house. Known as the Akadimias Project it is funded by the College and run on a commercial basis with all profits, after payment of royalties, management fees and running costs, to be devoted to the uses of the College.

WELSH BASIC

The development of XBasic in Welsh is announced by XItan. This version is syntactically the same as XBasic except that all keywords and messages are in Welsh. For example the equivalent of LOAD is LLWYTH and RUN is RHEDEG

Geoff Lynch, Managing Director of Xitan, admitted that Welsh XBasic was a means of testing the firm's capability to provide XBasic in other languages, and that Welsh was chosen for a number of reasons-not the least was the "ability to get the product checked out by people in the same country", and its "high levels of real use in the Welsh academic community.

The Clvil Aviation Authority has published the second edition of lts Radiotelephony Manual ($£ 2.90$ including UK postage) to reflect the recent changes to the phrascology used in aviation radiotelephony.

The general philosophy behind the phraseology changes is an attempt to remove the ambiguity in messages. Wherever possible the concept is "one word-one meaning".

Memorex's 5.25in, 0.25 Mbyte, single-sided, double density flexible disks are now available from selected branches of Currys. They join Boots and Dixons in stocking the Memorex disks.

SPEECH RECOGNITION

Computers that recognise the human voice are to be developed in a $£ 2$ million research project headed by British Telecom's Research Laboratories at Martlesham Heath, Ipswich.

The study, which will run for three years, will be undertaken in collaboration with Logica and Cambridge University. It is being funded by the Alvey Directorate

Soft Touch for BT

A new range of home computer games costing $£ 2.50$ each, and backed by a British Telecom guarantee of value for money and honest packaging, are now on sale through High-street shops.

Published by British Telecom's new software house, under the label Firebird, the cassettes are available for the most popular machines, including the Sinclair Spectrum, Commodore 64 and the BBC Micro. A full colour picture of what the players will actually see on their TV screen or monitor appears on the cassette pack, enabling customers to judge the games from their covers.

Announcing the new venture Mr. Richard Hooper, Chief Executive of British Telecom's Value Added Systems and Services said: "You can now judge a game by its cover. In a market where quality and prices tend to be variable and complaints of mis representation frequent, Firebird software is setting new stan dards . . "
"Our first releases are all games but we shall be offering educational software and other types of programs."

CLEAN CUT

THE ART of controlling a metal turning lathe using the BBC Microcomputer, was ably demonstrated at the recent Design \& Technology Exhibition, Wembley, by Shesto-Tech of London.

The system, known as CoNeCt 121 , is a reasonably priced (about $£ 3,600-4,000$) interface plus software for the BBC model B micro to control a modified Myford ML10 precision lathe, enabling students to learn Computer Numerical Control (CNC), as used in industrial engineering control systems.
Programming can take place on any BBC B Micro, leaving the lathe free for the use of others. The graphics package allows a complete run through of the program showing each machine tool movement. Students can therefore check and change their programs before running them on the lathe, either as a straight through sequence, or one line of program at a time to double check the cutting tool actions.

The electronic interface unit controls the lathe movements. Two high quality precision d.c. stepper motors are used to move and position the cutting tool using X and Z axes information. The spindle drive motor receives d.c. power drive signals to provide a stepless range of speeds from 150

STILL HAVING PROBLEMS SELECTING A SUITABLE GIFT? WE OFFER OUR SMALL CONTRIBUTION (INCLUDING TELEPHONE NUMBER) TO THIS ANNUAL DILEMMA!

VIDEO STAR-1

FOR the whole family we have gone for the luxury of the Ferguson Video Star C 1n-Camera Recorder Model 3V41. This latest concept in "eleotronic photography", which combines a video camera and recorder in one unit, will find equal appeal from the lady of the house; especially for holiday and "new baby" growing up sequences.
The package includes a single unit camera and recorder, slimline rechargeable battery, battery charger, r.f. converter, detachable microphone, carrying handie, VHS C EC3O video cassette and instruction book. Developed from VHS technology it is completely compatible with all VHS video cassette recorders.
Supplied in an executive style carrying case, the Ferguson Video Star C is a truly portable home video system that includes everything needed to make home videos in colour and with sound, and to immediately replay them on the TV screen. The anticipated retail price for the Ferguson Video Star C In-Camera Recorder Model 3V41 is £995: Thorn EMI Ferguson Ltd., Dept EE, Cambridge House, Great Cambridge Road, Enfield, Middlesex EN1 1 UL. Tel: 01-363 5353.

NURSERY CALL-4

W HILST big brother (or sister) is busy playing video games or writing programs for their home computer, the younger'members of the family can enjoy their very first introduction into the world of the microchip with the Phillip Phone, an addition to the Milton Bradley range of Playskool products.

Designed for the 3 to 6 year olds, the Phillip Phone is an electronic musical phone with a flip-down front to reveal a 12 -note touch sensitive keyboard which is easy to play by colours or numbers.

The "nerve centre" of the phone is an SGS processor chip, type 884024 Y , battery operated it features an automatic on/off to conserve battery life. It comes complete with a coded music book, containing eight different tunes of old favourites, and budding young composers can write their own funes. The usual retail price for the Phillip Phone is between £6 and £8: Milton Bradley Ltd., Dept EE, Spencer House, 23 Sheen Rioad, Richmond upon Thames, Surrey TW9 1AL. Tel: 01-940 6069.

ENGLISH SPEAKING—5

A NEW complete O-level English. Language course for BBC Model B and Electron micros would make an interesting present for the teenager approaching exam year.

Developed by LCL and called Micro English, it consists of 24 easy-to-use programs on either disc or cassette that, it is claimed, was field tested in schools under normal learning conditions. A feature of the course is an accompanying audio cassette, controlled by the computer, which it is claimed enables the computer to "talk" sensibly to the student in a conventional teacher-pupil manner.
The Micro English program is priced at $£ 24.50$ and consists of either 2 discs plus audio cassette or program and audio cassette in tape version. A comprehensive manual, with step-by-step instructions is included with both packages: LCL, Dept EE, 26 Avondale Avenue, Stalnes, Middlesex. Te/: 078458771.

TALKING TAPE—2

FOR the busy executive or the overworked student, Panasonic have marketed the voice activated microcassette tape recorder, type RNz109.
Ideal for meetings and in the classroom, It features a voice activated system which eliminates the need for a manual on/off operation and keeps tape usage to a minimum. When speaking finishes, the recorder automatically pauses, and when the sound continues so does the recording.
A digital tape counter, enables the user to note important sections on the tape. The recorder automatically turns off when the tape has finished.
Two-speed swltching provides one hour recording at standard speed and up to two hours playing time at low speed. Other features include: onetouch recording, follow-up recording, pause control and l.e.d. record/battery indicator.
Powered from the mains, with an optional a.c. adaptor, or by batteries, the RN-Z109 has a suggested retail price of $£ 66.50$ through authorised dealers: Panasonic UK Lid., Dept EE, 300/318 Bath Road. Slough, Berkshire SL1 6JB. Tel: 075334522.

We would like to point out that readers buying from these pages are not protected by the Mail Order Protection Scheme unless the company concerned have advertisad the product in a display advertisement in this issue.

COMPUTER AID—3

DEAL for younger children, adults and those who would like to attemp some of today's more complex games but have not yet acquired the necessary skills or reaction levels, we offer the Slomo from Cambridge Computing Research Ltd.

This little gadget will prove an invaluable gift to the newcomer to the Spectrum, BBC, Electron and Commodore 64 home computers. It provides slow motion and freeze frame facilities for most games or programs.

It accomplishes this by setting a "Bus Request" signal on the system bus. This is acknowledged by the main processor and causes a "high impedance" or hold state until the signal is called off.

The two front panel push-button switches provide elther instant freeze frame, for as long as the switch is held down, or slow motion mode. The rate of viewing in the slow motion mode is set by the Speed control knob.

The Slomo, micro VDU slow motion and freeze frame controller, is available by mail order (state which micro used) for the sum of $£ 14.95$, inclusive of VAT and postage. Cheques should be made payable to Nidd Valley Micro Products. For more detalls contact: Cambridge Computing Research Lid., Dept EE, 61 Ditton Walk, Cambridge CB5 8QD. Tel: 0223214451.

SOUND STUDIO-6

THE Porta One Ministudio from Tascam, marketed by Harman (Audio). will appeal to the professional musician. It is a high quality portable 4×2 mixer and 4 -channel multi-track cassette recorder, with switchable dBx noise reduction.
Each input channel of the built-in mixer can accept a microphone, musical instrument, line level source or playback from the built-in recorder. You can preset the sensitivity with a Trim control and adjust the channel level with a Fader. Because there are Record Function switches as well as Pan Pot, you can assign each Input to any of the four tracks for recordingor all four inputs to one track.
The MInistudio's system includes cue capability. This means you can mix all four tracks plus "live" Inputs onto an independently controlled headphone output so you can hear what you are doing while recording and over-dubbing. Four VU meters provide a visual monitoring of any recorded or reproduced signals.
Avallable from the specialist music shop, the Porta One Ministudio is expected to retall for around £429: Harman (Audio) UK Ltd., Dept EE. Professional Products Division, Mill Streer, Slough, Berks SL2 5DD. Tel: 075376911.

BY PAT HAWKER G3VA

Ham or Experimenter?

On both sides of the Atlantic there is a continuing debate on what the activities carried out by radio amateurs should be called. Some British enthusiasts complain that the term "ham radio" is derogatory and is frequently applied Indiscriminately by the media to both amateur radio licencees and c.b. enthusiasts. Some even object to being called "amateurs" on the grounds that this may be taken to imply "amateurish

The origins of the term "ham radio", as applied to the hobby, are lost in time, although that does not prevent writers from presenting highly speculative accounts, including the rather far-fetched story that the names of three young enthusiasts who appeared before a 1912 Congressional Committee in the USA had surnames beginning H, A and M and were in the habit of using these letters as a callsign in the period before any official amateur licences were issued in the States.

Others suggest it may have derived from the derogatory term "ham actor", but far more plausible is the belief that it stemsas do other terms such as "73"-from maritime radio and land-line telegraphy. In the days when all telegrams and American railroad messages were sent in Morse by skilled telegraphists, the "professionals" became very proud of their "fists" or in other words their manual dexterity and precision in manipulating morse keys.

When the often very young and inexperienced amateur enthusiasts began to venture on air with crude spark transmitters, based on vehicle ignition coils, their morse must have been pretty poor. So the old pro's dismissed them as "ham-fisted" from which it was a short step to the collective title of hams.
Today, with most traffic sent by machine-telegraphy or data communications there are far fewer professional telegraphists-and the morse heard on amateur bands is often very far from being "ham-fisted". There is, however, a word that is almost identical with what may have been the original: "hamfest", applied to a large meeting or convention of radio amateurs.

Talking To Ships

One of the services that still depend on manual morse rather than machine telegraphy (r.t.t.y.) and electronic data transmission systems is the maritime service, although increasingly the requirement is for Radio and Electronics Officers, trained to cope with radio and radar navigational equipment, etc, as well as acting as "Sparks". The continued decline in the slze of the merchant fleets has dramatically reduced the number of sea-going jobs, and many radio officers have taken up shore jobs.

Telephony on m.f., h.f. and v.h.f. has also drastically reduced the amount of "brasspounding" and this will increase as more satellite terminals are fitted to ships, providing high-quality voice circuits through the Inmarsat satellite system which is also planning to introduce automatic distress systems, including search and rescue systems. The latest Marconi Marine satellite communications terminal, Oceanray is priced at under $£ 20,000$ and is claimed to be the smallest and cheapest system suitable for fitting on all kinds of vessels, from luxury yacht to passenger liner or supertanker. It has been designed to make long or medium distance communication as easy as using an STD telephone or telex machine.

Sir Martin Ryle

Radio-astronomy has lost one of its most distinguished pioneers with the death of Professor Sir Martin Ryle, the former Astronomer-Royal and former director of the Mullard Space Observatory at Cambridge.

He was one of the few eminent British scientists who kept his amateur radio licence, G3CY, issued while he was still at university. I still have his QSL card for a 17 MHz contact in 1939 although he was apparently not active as an amateur in the post-war period.

What he retained was an ability to make use of odd pieces of equipment-his early studies of signals from the Sun and beyond were largely based on surplus British and German radar equipment with which he became familiar during six years of wartime work on airborne radar at T.R.E. at Malvern and eisewhere. But Ryle disliked the idea of a career designing military radars just as in recent years he became an outspoken critic of nuclear energy for both civilian or military applications.

A great scientist with tremendous enthusiasm for radioastronomy to which he contributed so much.

When the telephone handset is lifted a synthesised voice glves instruction on how to use the system. For incoming calls, the Oceanray terminal remains switched on with its 3 ft diameter dish aerial locked on to the nearest /nmarsat satellite, automatically searching for another satellite should the signal become too weak.

Defence Radio

Oceanray is much less complex than the type of enhanced shipborne communications terminals ("Scot 1A") now being fitted to 19 more Royal Navy frigates under a $£ 40$-million contract. These latest digitalcommunications terminals now cover a much wider tuning range permitting their use with American, NATO and the British Skynet military satellites.

But this does not mean that naval vessels can now dispense with longdistance h.f. equipment since there still remains the possibility that in a major conflict it would be possible to put communications satellites out of action, either with anti-satellite systems or by jamming from ground-based terminals.

Recently, for example, the American services have begun modernising their h.f. facilities, resulting in a number of orders for British companies who have long recognised the continued value of h.f., even while stressing the advantages of satellites in overcoming the problems of the constantly changing h.f. propagation conditions.

Military radio systems seem to present a picture of ever-increasing complexity as the implications of electronic warfare sink in. First you need a basic system, then a counter-measures system, then a counter-counter-measures system, a computer to crack codes, a bigger computer to design unbreakable codes, a still bigger computer to try to break them . . . You need surveillance equipment, you need jammers, you need sensors that detect movement, that detect heat, that one day may even detect the brain waves of your enemy!

DBS Radio

The ambitious British plans for early installation of fully interactive, star-switched 30-channel television networks seem recently to have gone into reverse, as the early euphoria evaporates. The City has added up the costs and taken fright. This may or may not leave the way clearer for 12 GHz direct television broadcasting from satellites, though there is now no chance of this happening in 1986 as originally forecast, and even 1987 or 1988 still have question marks against them.
More promising is that the European countries seem close to agreement on a compatible transmission system based on both C-MAC/packet with a digital high capacity binary sound/data system and D2-MAC which has slower-rate duobinary digital sound system. Both could use a common set of i.c. devices and countries could then choose which to use without upsetting the entire apple-cart.

In fact most people agree that the main problem for DBS is more a question of how to provide programmes at low cost sufficiently attractive to encourage viewers to subscribe to yet another new service of home entertainment. For many of us four programme channels of television are quite sufficient.

In the USA a problem is that many viewers have found that by installing their own C-band dishes directed at low-point distribution satellites they can receive the cable programmes without paying for them, although over 43 per cent of U.S. homes are now cabled, and still increasing at almost 10 per cent per year.
The American United States Information Agency has funded a feasibility study for a DBS sound broadcasting system that would be operated by "Voice of America". It will study how such satellite radio would be powered from solar or nuclear sources, what type of orbit would be most suitable, and what would be a sultable frequency, from h.f. at about 26 MHz up to 12 GHz .

The whole system would have to be suitable for launching from the Space Shuttle. There is however virtually no likelihood of VOA using DBS until the mid-1990s.

E.E. PROJECT KITS

MAGENTA

Full Kits inc. PCBs, or veroboard, hardware, electronics, cases (unless stated). Less batteries.
If you do not have the issue of E.E. need to order the instruction reprint as an extra -70 p each. Reprints available separately 70 p each $+\mathrm{p} \& \mathrm{p} 60 \mathrm{p}$
 VARICAP AM RADIO May 84 £ $£ 10$ 84 EXPERIMENTAL POWER SUPPLY May $\begin{array}{r}34 \\ \hline\end{array}$ MASTERMIND TIMER MAY 8 \&
AUDIO SINEWAVE SWEEP GENERATOR APS
 OUASI STEREO ADAPTOR Apr 8 E 19090
TIMER MODULE FOR CENTRAL HEATING SYSTEMS Apr. 84 ERER 177.64 Mar. 84 MULTIMETER add on for BBC Micro N-CAD BATTERY CHARGER Mar. 84 REVERSING BLEEPER MAT. BA DIN LEAD TESTER Mar. 84
PIPE FNNER Mar. 84
LOW POWER OW POWER S
ONISER FEb 84
EPROM PROGRAMMER Feb 84
SIGNAL TRACER Feb 84
GUITAR TUNER Jan 84
BHLOGICAL AMPLIFIEA
CONTINUITY TESTER DOC 83
CHILDREN'S DISCO LIGHTS Dec 83 SOVEL EGG TMMER Dec 83 inc. case
SPEECH SYNTHESIZER FOR THE BBC Nov. 83 less cable + sockets LONG RANGE
GER NOV 83 HOME INTERCOM less link wire Oct. 83 §13.50 ${ }^{〔 138}$ 83 WAVE RADIO less phone Mono headphones extra
DIGITAL TO ANALOGUE BOARD ess cable, case \& connector lest case MIGG SPEED A TO O CONVERTER SEp cable \& connector
SIGNAL CONDITIONING AMP Sept STORAGE 'SCOPE INTERFACE FOR BBC ${ }^{58}$ CRO Aug 83 less software
PEDESTRIAN CROSSING SIMULATION
 CAR INTRUDER ALARM Aug 83 E16.98
AUTOMATIC GREENHOUSE WATERING SYS. GEM Jly 83 GREENHOUSE WATERING SYSTRI BOOST GUITAR TONE CONTROLLER July OUR PRICES
lug PORT INO BOARO less cable ${ }^{\text {E }}$ USER PORT CONTROL BOARD July 83 less
cable + plug + case
£25.16 cable + plug + case
GINARY BANDIT GAME July 83 less case $\mathbf{E 9 . 8 5}$. EPROM PROGRAMMER JUn. 83 less software, TRSBO E4S 99
ENVEL OPE SHAPER Jun. 83 less case $\mathbf{E A 5} 12.33$ ENVELOPE SHAPER Jun. 83 less case 12.33
REAL TIME CLOCK May 83 less software and REAL TIME CLOCK May 83 less sofware and Apple II $£ 33.98$ BBC $£ 39.59$ less power plug
MODEL TRAIN CONTROLLER May 83 £27.17 GUITAR HEADPHONE AMPLIFIER May
${ }^{83}$ MW PERSONAL RADIO lass case 83 ${ }^{83}$ ISTURE DETECTOA MaY 83 CAR RADIO POWER BOOSTER AD
FUNCTION GENERATOR APFII B3 PUNCTION GENERATOR APIII B3
FLANGER SOUND EFFECTS ARII LANGER SOUND EFFECTS April 83 ZX SPECTRUM AMPLIFIER April 83 DUAL POWER SUPPL
BUZZ OFF March 83
SPEECH PROCESSOR Feb. 83 PUSECH BIKE ALARM Feb. 83
DOUBLE DICE Jan. 83
ELECTRONIC VI METER Dec, ZX TAPE CONTROL Nov, 82
SINE WAVE GEN Oct. 82 G. P. PAE-AMP OC1. 82 IGHTS ON ALERT Od 82 CONTINUTY CHECKER Sept
SOUND SPLTTER Sopt 82 SOUND RECOMBINER Sept. SCREEN WASH DELAY Sept. 82
CB ROGER BLEPER AUO 82 CB ROGER BLEEPER AUg 82
2. WAY INTERCOM July 82 no
ELECTRONIC PITCH PIPE July ELECTRONIC PITCH PIPE July 82 AEFLEX TESTER July 82
SEAT BELT REMINDER J
EGG TMER June 82
CAR LED VOLTMETE less case. Ma
V.C. O. SOUND EFFECTS UNIT A V.C.O. SOUND EFFECTS UNIT Apr. $82 \mathrm{E12}$. CAMERA OR FLASH GUN TRIGGER Mar. 82 POCKET TMER Mar. 82
GUTAR TUNER Mar. 82
SIMPLE STABILISED POW
MINI EGG TMER. Jan. 82
SIREN MODULE Jan. B2 les
MODEL TRAIN CHUFFER Jan, 82
NoV. 81
CAPACITANCE METER OCt
81
SUSTAIN UNIT Oct. 81
HEADS AND TALLS GAME Oct.
CONTINUTY TESTER Oct. 81 ,
FUZZ BOX Oct. 81
SOIL MOISTURE UNIT Oct 81
ICE ALARM OCT. 81
O-12V POWER SUPPLY Sept 81
CMOS CAR SECURITY ALARM Sept.
CMOS DIE Sept. 81
CMOS METRONOME Aug. 81
COMBINATON LOCK JUIV. 81
SOIL ILSS Case
81
GUTAR HEADPHONE AMP E.E. May 81 f4. PHONE BELL REPEATER/BABY ALARMM May 81 ITERCOM ADril 81
SIMPLE TRANSISTO
SIMPLE TRANSISTOR \& DIODE TESTERS
Led version
MEODUCE MATR 81
2 NOTE DOO TONE DOORBELL Ma
2 NOTE DOOR CHIME Dec. 80
UVE WIRE GAME Dec. 80
GUIT AR PRACTICE AMPLIFER Nov. 80
E14.10 less case. Standard case extra
SOUND TO LIGHT Nov. 803 channel P23.4
TRANSISTOR TESTER Nov. 80 TRANSISTOR TESTER NOV. 80

AUDIO EFFECTS UNIT FOR WEIRO SOUND | Oct B0 |
| :--- |
| IRON MEAT CONTROL OCt. 80 |
| 14.40 | TLI LOGIC PROBE Sept. 80

ZENER DIODE TESTEA JUN. 80
LIGHTS WARNING SYSTEM MAY
BATEERY VOLTAGE MONITOR May BO CABLE \& PIPE LOCATOR less coil former Ma 80 CHEN TIMER MAF. 60
KICRE MUSIC BOX Feb. 8
Case extra SUDERTAPE SYNCHRONISER Feb 80 SUDENAPE SYNCHRONISER Feb 80 £ 13
MORSE PRACTICE OSCILLATOR Feb. 80 f SPRING UNE REVERB UNIT Jan. 80 © $£ 27.20$ UNIBOARD BURGLAR ALARM Dec. 79 £6.70
DARKROOM TIMER JUIY 79
DARKROOM TIMER JUly 79
TRANSISTOR TESTER APF, 79
TRANSISTOR TESTER ADI, 79
MCROCHIME DOORBEL FEb.

CAR BATTERY STATE INDICATOR less case
Sept. 78
£2. 29

Sept 78
R.F. SIGNAL GENERATOR Sept. 78
IN SITU TRANSISTOR TESTER JUN
 FLASHMETER less calc \& dithuser May
78 E16.50
WEIRD SOUND EFFECTS GENERATOR Mar 78 IRD SOUND EFFECTS GENERATOR Mar. $\begin{array}{lll}\text { AUDIO VISUAL METRONOME Jan. } 78 & £ 6.58 \\ \text { ELECTRONIC TOUCH SWITCH Jan. } 78 & \mathbf{E 2} 98\end{array}$ RAPID DIODE CHECK JWI. 78
ELECTRONIC OICE M
INCLUDE VAT

MAGENTA ELECTRONICS LTD.
MAGENTA ELECTRO
EE24, 135 HUNTER ST.,
BURTON-ON.TRENT MAIL ORDER ONL 0283 65435, Mon-Fri 9.5 Access/Barclaycard (Visa) by phone or post. 24 hr Answerphone for credit orders.

ADD GOP P\&P TO ALL ORDERS. PRICES INCLUDE VAT
OFFCIAL ORDERS WELCOME
OVERSEAS: Payment must be sterlin EUROPE: UK PRICES Plus 10%. ELSEWHERE: write for quote.

Electronics is a young science: only a hundred years ago, Edison in America and Swan in Britain were struggling to develop the first electric light bulb. Now, it seems there is almost no ixea of life which is unaffected by electronics. Our understanding of the phenomenon we call electricity has increased steadily since then, though even today it cannot be said to be complete.

ATOMS

All matter is made up of atoms, or compounds of atoms, of which there are only around one hundred which occur naturally. Any atom can be imagined as comprising a very small nucleus, and orbiting that nucleus, a number of particles-electrons-rather as the planets orbit our sun.
The simplest atom is that of hydrogen, which is made up of one proton and one orbiting electron. It should be pointed out here that it is believed at present that an atom is actually made up of many different kinds of elementary particles; however, the ones which are of particular interest here are protons and electrons.

Protons each have a small charge, which is balanced by the charge on the electrons. It is conventional to consider the charge on the proton as being "positive", and the charge on the electron, "negative". Since there are as many orbiting electrons as there are protons in the nucleus, the atom as a whole is electrically neutral.

This model is a simplified one, but is useful in explaining the connection between simple chemical processes and the generation of electricity. This "planetary" model is shown in Fig. 1, with similar models for the atoms of Neon and Argon. Although the total number of electrons is the same in each case as the number of protons in the nucleus, it will be seen that the electrons orbit the nucleus in different numbers at different distances.

These precise orbits, or "shells", can accommodate fixed numbers of electrons-two In the innermost orbit, eight in the next two orbits. When the maximum number of electrons exists in the outermost shell, the atom is chemically stable. Neon and Argon, for example, are "inert" gases: they will combine with no other elements.

Similar models are shown in Fig. 2a for sodium and chlorine. Sodium, with a total of eleven electrons, has one in lts outermost orbit, while chlorine, with a total of seventeen, has seven. As shown in Fig. 2b, the naturally stable state of eight electrons in the outermost orbit is achieved by the movement of the single electron from the outermost orbit of the sodium atom into the orbit of the chlorine atom. The sodium atom, which has now lost an electron, is left with a net positive charge, while the chlorine atom gains one negative charge (due to the electron).

Both atoms are now said to be ionised-an ion is an atom which has lost or gained one or more electrons. Further, the ions-one negative and the other positive-attract each other very strongly, and form a rigid crystal structure known as sodium chloride, or table salt.

CONDUCTION

Copper, like sodium, has one electron in its outermost orbit. This outermost electron is easily dislodged, and in any piece of pure copper, one can imagine a "sea" of electrons, moving randomly from atom to atom, the whole piece meanwhile remaining electrically neutral. In an insulator, the electrons are not free to move easily, as the outermost shells are full.

The flow of electrons-electricity-is the result of chemical action: energy, of course, cannot be created or destroyed, but by choosing appropriate materials, chemical energy can be converted into electrical energy.

SIMPLE CELL

The simple cell shown in Fig. 3 will produce electricity, and was first demonstrated by the Italian scientist Volta, in 1799. The zinc plate dissolves in the dilute sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, forming zinc sulphate, and this simple process transforms chemical energy into electrical energy. This happens because, chemically, it is posltive zinc ions which combine with negative "sulphate" ions, displacing positive hydrogen ions. These hydrogen lons become atoms again by taking the weakly-held electrons from the outermost orbits of the copper atoms in the other plate-and in practice, bubbles of hydrogen gas collect on the plate.

The net effect of this chemical reaction is to leave the zinc plate with extra electrons, while the copper plate is deficient. When a conduc-

[^1]

Fig. 2a. Sodium and chlorine atoms.

4 In
Fig. 2b. Movement of electron to create a sodlum-chlorine ion pair.
tor is placed between the two plates, electric current flows, and can be measured.
This flow of electric current is a movement of electrons from the zinc plate, through the copper wire, to the copper plate. The movement appears to be almost instantaneous, because of the millions of electrons free to move in the copper wire. The electrons in the conductor behave like a long line of snooker balls which are all touching-if a ball at one end is moved forward, the ball at the other end moves forward at almost the same time.

This electron flow is sustained for as long as the chemical reaction continues; after that, no more current flows, and the battery is "flat."

DRY CELLS

An improvement on the simple wet cell described above is one which makes use of carbon, rather than copper, and ammonium chloride instead of sulphuric acid. This type of cell produces a higher voltage for a longer time than the wet cell. However, eventually, it will also become "flat", and it is not possible to easily reverse the chemical processes that have taken place; the cell has to be replaced. This type of cell is the one in most common use today.

oilute sulphuric acio

Cहागय6

($\mathrm{H}_{2} \mathrm{SO}_{4}$)
Fig. 3. Simple electric cell. The arrow shows the direction of electron flow.

MARCO TRADING

TWiricicis sumane

|N the previous two parts of this series we concentrated on the hardware construction details of friend Alfred. To fully explore Alfred's ability to educate and entertain this month (the final part) we take a look at software; in particular a program which allows the robot to learn, store and then replay a series of movements.

WHAT DO YOU THINK, ALFRED?

There are two versions of the software available. The more sophisticated version is a comprehensive package including a demonstration routine. This is supplied as a standard item in the Alfred kit as available from RCT.

To save a few trees from the paper mill we have shown a simplified version of the software in Table 3.1. Alfred may be controlled directly using this program.

SIMULATED PENDANT

In industry an increasingly popular method of operating robots is that of using a control box linked via an umbilical cable, and which is often referred to as a 'pendant' control. This has specific buttons on it which relate to axes or preset movement sequences of the robot.

Alfred's software is extremely easy to use, and mimics the pendant by setting up certain keys on the computer's keyboard to activate individual axes on the robot.

The software described is written for the BBC microcomputer, although programs that replicate the same functions, which will run on other popular machines, are available. Unfortunately some microcomputers such as the $\mathbf{Z X}$ Spectrum and the ZX81 require a parallel port adaptor, as only the bus lines are available for this kind of system expansion.

USING THE SOFTWARE

Immediately the program has been loaded and run a menu of options appears on the screen. Of the options displayed the user makes his choice by tapping the Tab kêy until the appropriate selection is highlighted. The program allows the motors to be frozen, or deenergised, by pressing the ' F ' key, and energised again by pressing the ' E ' key. All motors are automatically frozen when the program is first run.

The centre position of any motor is numerically 128 , and by selecting ' C ' on
the keyboard each motor may be driven to centre position directly. Positional data is displayed to the right of the menu. See Fig. 3.1 which shows the display format.

One built-in safety precaution is a software flag to limit the motor positions to within certain extremes so that mechanical damage to Alfred cannot occur.

On the BBC micro the 'Copy' key is used to memorise the selected position of a particular axis. The 'arrow' keys are used to enter the numerical position of an axis. The 'up arrow' increases the number displayed, and the 'down arrow' decreases the number. The amount by which the number you are adjusting is incremented by each push of the 'arrow' key will depend upon the Increment selected beforehand. The Increment is selected by pressing the ' S ' key and then entering a number between one and nine. Although when expressed in words this may sound complicated the practice is simple, and the logic of operation quickly becomes self-evident.

Fig. 3.1. A typlcal screen display using the full length software. The alternative topline would read: ENERGISED 'F' TO FREEZE SERVOS.

FROZEN 'E' TO ENERGISE SERVOS

MOVEMENT	$<T A B>$	POSITION	No.
Waist	\leftarrow	120	1
Upper Arm	\uparrow	15	2
Forearm	\uparrow	105	3
Wrist UP/DOWN	\uparrow	75	4
Wrist rotate	\leftarrow	10	5
Gripper	\uparrow	220	6

STEP SIZE = 'S' TO CHANGE

C Contralise Position (Position 128)

RET Return Menu

COPY Store Sequence
Current Sequence No. 13

1000 REM * ALFRED DRIVE
PROGRAMME *
1010 REM 30/10/84
1020 REM COPYRIGHT ROBOT CITY
TECHNOLOGY LTD. 1984
1030 REM AUTHOR A. J. CAVES
1040
1050 DIM PV\%(7):DIM OV\%(7)
1060 P\%=\&FE60
1070 *FX229,1
1080 *FX12,15
1090 MO\%=1
1100 *FX229,1
1110 VDU23,1,0;0;0;0;
1120 FXX4,1
1130
1140 PROCwelcome
1150 PROCinit
1160 PROCmanual
1170 *FX4,0
1180 VDU23,1,1;0;0;0;
1190 PROCenable(0)
1200 CLS
1210 *FX12,0
1220 * $\mathrm{FX} 229,0$
1230 END
1240
1250 DEFPROCmanual
1260 PROCman_disp
1270 REPEAT
1280 K $\$=$ GETS
1290 KEY\%=ASC(K\$)
1300 IF KEY\%=9 PROCmovement
1310 IF KEY $\%$ > 135 AND KEY $\%<140$ PROCstep
1320 IF K $\$=$ " ${ }^{\prime \prime}$ THEN PROCenable(1):PRINT TAB(0,1); $\mathrm{H} 7 \$$
1330 IF K $\$=$ "F" THEN PROCenable(0):PRINT TAB(0,1);H6\$
1340 IF K $\$=$ " $\mathrm{S}^{\prime \prime}$ THEN PROCsize
1350 IF K $\$=$ "C" THEN PROCcent
1360 UNTIL KEY\%=13
1370 PROCenable(0)
1380 ENDPROC
1390
1400 REM Sets up data so that all servos are centralised when energised.
1410 DEF PROCinit
1420 *FX $151,98,127$
1430 FOR J $\%=0$ TO 7
$1440 \quad$ PV \%(J\%) $=128$
$1450 \quad$ OV $\%(J \%)=234$
1460 NEXT
1470 FORJ $\%=0$ TO 7
1480 PROCdata(J\%,8,0V\%(J\%))
1490 PROCdata(J\%,0,PV\%(J\%))
1500 NEXT
1510 M1\$ ="Waist
$1520 \mathrm{M} 2 \$=$ "Upper Arm
1530 M3S="Forearm
1540 M4S="Wrist Rotate
1550 M5\$="Wrist Up/Dn
1560 M6\$="Gripper
1570 P4 $\$=$ " C Centralise (Position $=128$)"
1580 P5S="RET Exit from Programme"
1590 H2S="Movement <TAB>"
1600 H3S="Position"
1610 H4S="No."

1620 H $5 \$=$ "STEP SIZE= 'S' to change"
1630 H6S=FROZEN ' E ' to energise servos"
1640 H7S=" ENERGISED ' F ' to freeze servos "
1650 H8\$="ROBOT CITY
TECHNOLOGY"
1660 ENDPROC
1670
1680 REM Selects servo number and loads
new position data
1690 DEFPROCdata(cn\%,off\%,d\%)
1700
1710 REM cn\% is servo number 1 to 6
1720 REM off\% should be 0
1730 REM d\% is the position data 0 to 255
1740
1750 Un\%=d\%DIV 16
$1760 \mathrm{Ln} \%=\mathrm{d} \%$ MOD 16
$1770 \times \%=128+\mathrm{cn} \%+\mathrm{off} \%$
1780 ? P\% $\%=128+\mathrm{Un} \%$
1790 ? P\% $=144+\mathrm{Un} \%$
1800 ? $\mathrm{P} \%=144+\mathrm{Ln} \%$
1810 ? P\% = $=128+\operatorname{Ln} \%$
1820 ? $\mathrm{P} \%=\mathrm{x} \%$
1830 ? $\mathrm{P} \%=\times \%+32$
1840 FOR j $\%=1$ TO 38:NEXT:REM Approx. 8 mS delay
1850 ?P\%=x\%
1860 ENDPROC
1870
1880 DEFPROCenable(en)
1890
1900 REM en=0 freezes all servos
1910 REM en=1 energises all servos 1920
1930 ?P\%=128+en
1940 ?P\%=192+en
1950 ?P\%=128+en
1960 ENDPROC
1970
1980 DEFPROCwelcome
1990 CLS:PRINT"'
2000 VDU141:PRINTTAB(10);
"WELCOME TO"
2010 VDU141:PRINTTAB(10);
"WELCOME TO"
2020 PRINT"'
2030 VDU141,136:PRINTTAB(4);
"ROBOT CITY TECHNOLOGY"
2040 VDU141,136:PRINTTAB(4);
"ROBOT CITY TECHNOLOGY"
2050 PRINT"M""Press any key to continue"
2060 REPEAT UNTIL GET
2070 ENDPROC
2080
2090 REM Display Form
2100
2110 DEFPROCman_disp
2120 CLS
2130 VDU31,2,3:PRINTH2S
2140 VDU31,19,3:PRINT H3S;" ";H4\$
2150 PRINT'TAB(2);M1S
2160 PRINTTAB(2);M2\$
2170 PRINTTAB(2);M3\$
2180 PRINTTAB(2);M5\$
2190 PRINTTAB(2);M4\$
2200 PRINTTAB(2);M6\$
2210 FOR J=1 TO 6:VDU31,30,4 +J ,
$48+\mathrm{J}, 31,16,4+\mathrm{J}, 135,156,31,25,4+\mathrm{J}$,
135,156,31,32,4+J,135,156:NEXT

2220 FOR J=1 TO 6:VDU31,21,4+J: PRINT RIGHTS! (" "+STR\$ (PV\%(J)),3):NEXT
2230 PRINT TAB(0,1); H6\$
2240 PRINT TAB $(0,15)$;H5\$
2250 PRINT'P4S"P5S
2260 SS\%=0:PROCsize
2270 MO\%=6:PROCmovement
2280 ENDPROC
2290
2300 DEPROCmovement
2310 VDU31,0,MO\% +4,32,32
2320 IF MO $\%<4$ OR MO $\%>4$ THEN VDU31,19,MO $\%+4,32,32,31,28$, MO\% + 4,32,32
$2330 \mathrm{MO} \%=\mathrm{MO} \%+1$:IF $\mathrm{MO} \%=7$ THEN MO\%=1
2340 VDU31,0,MO\% + 4, 157,132,31, $19, \mathrm{MO} \%+4,157,132,31,28$, $\mathrm{MO} \%+4,157,132$
2350 IF MO\%=4 THEN VDU31,19,MO\% +5,157,132,31,28, MO $\%+5,157,132$
2360 IF MO $\%=6$ THEN VDU31,19,MO\%+2, 32,32,31,28,
MO\% + 2,32,32
2370 ENDPROC
2380
2390 DEFPROCstep
$2400 \mathrm{CN} \%=\mathrm{MO} \%$
2410 IF $\mathrm{MO} \%=4$ OR $\mathrm{MO} \%=5$ THEN V1\%=PV\%(4) ELSE
V1\%=PV\%(CN\%)
2420 V $2 \%=$ PV \% (5)
2430 IF MO\%=1 AND KEY\%=136 THEN V $1 \%=$ V $1 \%+$ SS $\%$
2440 IF MO \%=1 AND KEY\%=137 THEN $\mathrm{V} 1 \%=\mathrm{V} 1 \%-\mathrm{SS} \%$
2450 IF MO $\%=2$ AND KEY $\%=138$ THEN V $1 \%=$ V $1 \%+$ SS $\%$
2460 IF MO $\%=2$ AND KEY $\%=139$ THEN V1\%=V1\%-SS\%
2470 IF MO \% = 3 AND KEY\%=138 THEN V1\%=V1\%-SS\%
2480 IF MO\%=3 AND KEY\%=139 THEN V1\%=V1\%+SS\%
2490 IF MO\% $=4$ AND KEY\% $=138$ THEN V $1 \%=\mathrm{V} 1 \%-\mathrm{SS} \%: \mathrm{V} 2 \%=\mathrm{V} 2 \%+\mathrm{SS} \%$
2500 IF MO\%=4 AND KEY $\%=139$ THEN V $1 \%=\mathrm{V} 1 \%+\mathrm{SS} \%: V 2 \%=\mathrm{V} 2 \%-S S \%$
2510 IF MO\%=5 AND KEY\%=136 THEN V $1 \%=\mathrm{V} 1 \%-S S \%: V 2 \%=\mathrm{V} 2 \%-S S \%$
2520 IF MO $\%=5$ AND KEY $\%=137$ THEN $\mathrm{V} 1 \%=\mathrm{V} 1 \%+\mathrm{SS} \%: \mathrm{V} 2 \%=\mathrm{V} 2 \%+\mathrm{SS} \%$
2530 IF MO\%=6 AND KEY\%=138 THEN V $1 \%=\mathrm{V} 1 \%+\mathrm{SS} \%$
2540 IF MO\%=6 AND KEY\%=139 THEN V1\%=V1\%-SS\%
2550 IF V $1 \%<0$ OR V $1 \%>255$ THEN ENDPROC
2560 IF V $2 \%<0$ OR V $2 \%>255$ ENDPROC
2570 IF MO\%=5 THEN PV\%(4)=V1\%
ELSE PV\%(CN\%)=V1\%
2580 PV\%(5)=V2\%
2590 PROCstep_disp
2600 ENDPROC
2610
2620 DEFPROCstep_disp
2630 D1\$=RIGHTS(" "+STRS(V1\%),3)

Table 3.1. Shortened version of the program supplied with Alfred.

2640 IF MO\%=5 THEN VDU31,21,8
ELSE VDU31,21, MO\%+4
2650 PRINTD1S
2660 D2S=RIGHTS(" "+STR\$(V2\%),3)
2670 IF MO\%=4 OR MO\%=5
VDU31,21,9:PRINT D2S
2680 PROCdata(CN\%,0,PV\%(CN\%))
2690 IF MO\% $=4$ THEN
PROCdata(5,0,PV\%(5))

Fig. 3.2. Alfred's connectors.

2700 IF $\mathrm{MO} \%=5$ THEN
PROCdata(4,0, PV\%(4))
2710 ENDPROC
2720
2730 DEFPROCsize
2740 SS\%=SS\%+1
2750 IF SS\%=10 THEN SS\%=1
2760 PRINT TAB(10,15);SS\% 2770 ENDPROC

NOTE: IC19 is now an $8 \times 47 \mathrm{k}$ package with Common to +5 V . R1 is deleted. Also, on IC8 pin 15 does not now go to OV but to pin 11 of IC13.

After entering each position number the program will ask you to enter a 'Pause' number (in seconds). It is important to remember that as there is no feedback to the computer to tell it when an axis position has been reached during a run, the pause must be long enough to cover this running time as well as any further wait before moving on to the next instruction.

Once a sequence of positional instructions has been stored the menu may be exited by pressing Return.

2780
2790 DEFPROCcent
$2800 \mathrm{CN} \%=\mathrm{MO} \%: \mathrm{V} 1 \%=128: \mathrm{V} 2 \%=128$
2810 IF MO\%=4 OR MO\%= 5 THEN
PV\%(4) $=\mathrm{V} 1 \%: \mathrm{PV} \%(5)=\mathrm{V} 2 \%$ ELSE PV\%(CN\%) $=\mathrm{V} 1 \%$
2820 PROCstep_disp
2830 ENDPROC

The second page to appear on the screen consists of a choice of replay possibilities. This choice is: Single Step and Continuous Movement; and through stopping a replay it is possible to edit functions.

Alfred is a fundamental building block comprising parts which may be used to build other mechanisms including a fun robot. He has two bigger brothers which are capable of lifting 1 kg and 3 kg objects and therefore capable of being used in light industrial situations.

Individual parts of Alfred are available from RCT, such as servo motors and mechanical parts and the interface board, but it is recommended that procurement of sub-assemblies is adhered to, such as the waist, carriage and upper arm. Alfred's big brothers and expansion systems will be described in $E E$ as they become available, probably in early 1985. We hope you have a great deal of fun and reward in pursuing this project, which we expect to be the most cost effective introduction to robotics available to the hobbyist and student.

This compact, ologant unit programs 2764 \& 27128 eproms and offers the following attractive foatures.

- high quality, low cost menu driven software incorporating the following commands: program, save, verity, testblank, checksum, select eprom, MOS call, ROM format optional conversion from Basic to ROM format free 2764 eprom containing programming software - no cassette loading problems easy to use 28 pin zero insertion force socket bull-in voltage converter integral cable connecting to user port; no other connection needed - comprehensive documentation plus one year's guaranteo.

This product is avallable in quantity NOWI
Programmer and data sheet from Softlite Lid.,
7 Rose Crescent, Cambridge CB2 3Li. Tel: 0223-62117

MICROPHONE PREAMPLIFIER

BY R.A. PENFOLD

IT IS often necessary to use a microphone with a piece of audio equipment that has a high level input, probably requiring an input signal of around 200 to 900 mV r.m.s.

This gives a slight matching problem since the output level of the popular high impedance dynamic and electret microphones (which have a built-in step-up transformer) is typically only a few millivolts r.m.s. or less. In order to obtain usable results it is therefore necessary to use a high gain amplifier between the microphone and the item of audio equipment.

OPERATIONAL AMPLIFIER

This simple design uses a dual bIFET operational amplifier to give the high gain required plus low levels of noise and distortion. The voltage gain of the unit is continuously variable from about 40 dB (100 times) to approximately 66 dB (2000 times), and this should enable any high impedance dynamic or electret microphone to be matched properly to any high level audio input.

The unit is not recommended for use with low impedance dynamic microphones or with crystal types. The circuit is powered from a 9 -volt battery which gives many hours of use as the current consumption is only about 4 mA .

CIRCUIT DESCRIPTION

The circuit diagram of the preamplifier appears in Fig. 1. ICla is used as an input stage having a fixed voltage gain of about 26 dB (20 times), while IC 1 b is the output stage having a voltage gain which is adjustable from about 14 dB (5 times) to 40 dB (100 times).

ICla is used as a straightforward inverting amplifier having the non-inverting input biased by R2 and R3. C2 prevents stray feedback to the non-inverting input which would otherwise almost certainly cause instability. R1 and R4 is the negative feedback network which sets the input impedance and voltage gain of the input stage.

What is termed a "virtual earth" is formed at the inverting input due to the stabilising effect the negative feedback has on the voltage. Thus the input im pedance is equal to the value of R1, and this gives a figure of 47 kilohms which is ideal for this application. The purpose of

Cl is simply to provide d.c. blocking at the input. The voltage gain of the input stage is equal to the value of R 4 divided by the value of R1.

VOLTAGE GAIN

The output amplifier uses IC Ib in the non-inverting mode and it is direct coupled to the output of ICla. This gives the required quiescent bias voltage of about half the supply voltage at the noninverting input of 1 Cl 1 b . The voltage gain of the output amplifier is determined by the negative feedback network which consists of VR1, R5 and R6.

The gain is equal to the sum of these three resistances divided by the sum of VRI and R5. By adjusting VR1 it is therefore possible to vary the gain of the amplifier, with maximum resistance giving maximum gain. C3 provides d.c. blocking so that there is virtually 100 per cent negative feedback through R6 at d.c. and only about unity voltage gain so that the output of the unit is biased to the required level of about half the supply potential. C 4 provides d.c. blocking at the output of the unit.

The integrated circuit used in the prototype is a TL082CP but similar devices such as the LF353 and TL072CP are also suitable; the TL072CP having the lowest noise level.

CASE

With a sensitive piece of audio equipment such as this it is advisable to house the circuitry in a metal case so that it is screened from mains leads and r.f. interference. A diecast aluminium box measuring approximately $120 \times 65 \times$ 38 mm is used as the housing for the prototype, but any metal box having similar dimensions should be suitable.
Sockets SK 1 and SK 2 are mounted at opposite ends of the case with S1 positioned next to SK 1. The sockets are 3.5 mm jacks or any preferred type of audio connector.

COMPONENT BOARD

The components are assembled on a 0.1 inch matrix stripboard which has 10 strips by 24 holes and this is a standard size in which the board is sold. However, it is of course possible to use an offcut trimmed to the right size or to cut a suitable piece from a larger board using a hacksaw.
Fig. 2 shows the component layout and other details of the board and wiring. The two mounting holes in the board are drilled for 6 BA clearance $(3.2 \mathrm{~mm}$ diameter). All 14 breaks in the copper strips should be made before soldering the components and link wires into place.

Fig. 1. Circult diagram of the Microphone Preamplifier.

COMPONENTS approximate -1.5l $£ 6.00$

See
 SK1 INP
 INPUT

COMPONENTS

Resistors

R1	47 k
R2.3	$27 \mathrm{k}(2$ off $)$
R4	1 M
R5	1 k 8
R6	180 k
All $\frac{1}{3} \mathrm{~W}$	carbon $\pm 5 \%$

Capacitors
C1 $\quad 1 \mu 63 \mathrm{~V}$ elect.
$\mathrm{C} 2,3,4 \quad 6 \mu 816 \mathrm{~V}$ tantalum (3 off)
Semiconductors
IC1 TL082CP dual BIFET op-amp
Miscellaneous
VR1 47 k minlature
horizontal preset
S1 s.p.s.t. miniature toggle
SK 1,2 $\quad 3.5 \mathrm{~mm}$ jack sockets (2 off)
Aluminium cast housing, $120 \times$ $65 \times 38 \mathrm{~mm}$; 0.1 inch matrix stripboard, 24 holes $\times 10$ strips; battery connector: connecting wire.

10
ABCDEFGHIJKLMNOPQRSTUVWX
9
-000.000000000000ea.1000 $1000000000000 \cdot 000000 \cdot 0000$
0000000000000000000000 00000000000000000000000 10000000.0000000000000000 00000000000000000000000 $10000000000000000000 \cdot 10000$ $000000000 \cdot 0000 \cdot 10000 \cdot \pi$ $0000000000000000000 \cdot 1000$

Fig. 2. Stripboard and component layout of the Microphone Preamplifier.

The board is then wired to S1, SKI, SK2, and the battery clip (as shown in the diagram), and it is not necessary to use screened leads to carry the connections from the board to the two sockets. The case provides screening from external signals, and as the input and output of the circuit are out-of-phase, any slight stray feedback between the two will not cause instability.

The component panel is then bolted to the base panel of the case, and spacers are used to ensure that the underside of the board does not short circuit against the metal case. Leave sufficient space for
the battery to one side of the board and use foam to keep it in place.

In use the microphone is plugged into SK 1 and an ordinary screened audio lead fitted with the appropriate type of plug, is used to couple the output to the mixer or amplifier. VR1 is set for the lowest gain level that gives good results.

A higher level of gain is inadvisable since it could lead to overloading of the unit, although an output signal of up to about 2 V r.m.s. can be handled before the onset of clipping and severe distortion. Maximum gain is produced with VR1 set fully clockwise.
most important one of all, yet you would find it difficult to find one that gives you a better introduction.

Although I use the word "Introduction", I do not wish to imply that this book in any way gives a superficial account, on the contrary, they deal with the subject in great detail and I feel with authority. One difficulty they are up against is this, many of the results of the fifth generation may not be apparent for one or two decades. While I found it necessary to read this book slowly and carefully, in no way did I find it difficult, and due to Pamela McCorduck's delightful touches of humour, it was also an enjoyable experience.

Edward A. Feigenbaum is Professor of Computer Science at Stam ford University. Pamela McCorduck is a New York writer who became interested in Artificial Intelligence in 1960 and has already written books on the subject.

Finally, 1 strongly recommend this book to everyone who is in terested to know which way the computer world is heading, and learning how it will effect our lives.
A.S

take Note
Doorchime (Dec. '84)
On page $760, \mathrm{ICl}$ is shown the wrong way round on the component layout. Pin one (indicated by black dot) should be in the bottom-right position, not the top-lef, as shown.

EDERYDAY ELECTRONICS PRIITED CIRCUIT BOARD SERUICE

Printed circult boards for certain EE constructional projects are now avallable from the EE PCB Service, see llst. These are fabricated in glass-flbre, and are fully drilled and poller tinned. All prlces include VAT and postage and packing. Add $£ 1$ per board for overseas alrmall. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Lid.

Please note that when ordering it is important to give prolect ittle as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers ordering both p.c.b.s and software cassettes may send a single cheque/PO for the combined amounts llsted.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 deys for dellvery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
- JUNE'83 - Eprom Programmer, TRS-80 Eprom Programmer, Genle Eprom Programmer, TRS-80 \& Genie	$\begin{aligned} & 8306-01 \\ & 8306-02 \\ & 8306-03 \end{aligned}$	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & \mathbf{E 1 . 9 8} \end{aligned}$
- JULY'83 User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
- AUGUST '83 - Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Part 2 Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	〔3.20 £5.15 £5.08 £3.56 £4.56
\qquad High Speed A-to-D Converter M.I.T. Part 3 Signal Condltioning Amplifier M.I.T. Part 3 Stylus Organ Distress Beacon Distress Beacon Pocket Version	$\begin{array}{r} 8309-01 \\ 8309-02 \\ 8309-03 \\ -8309-04 \\ 8309-05 \end{array}$	$\begin{aligned} & £ 4.53 \\ & £ 4.48 \\ & £ 6.84 \\ & £ 5.36 \\ & £ 3.98 \end{aligned}$
- OCTOBER '83 D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electronic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	$\begin{aligned} & £ 5.77 \\ & £ 5.13 \\ & £ 5.43 \end{aligned}$
- NOVEMBER'83 - TTL/Power Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Digital Gauss Meter Speech Synthesiser for BBC Micro Car On/Oft Touch Switch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-03 \\ & 8311-04 \\ & 8311-05 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & £ 3.11 \end{aligned}$
- DECEMBER'83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 TRS-80 Twin Cassette Interface Environmental Data Recorder Touch Operated Dle (Dot matrix) Touch Operated Die (7-segment) Continulty Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-04 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.29 \\ & £ 7.43 \\ & £ 7.24 \\ & £ 4.34 \\ & £ 4.34 \\ & £ 3.41 \end{aligned}$

- JANUARY'84-		
Central Heating Pump Delay	8401-01	¢3.33
Blological Amplifler M.I.T. Part	8401-02	¢6.27
Temp. Measure \& Control for $2 \times$ Comprs		
Analogue Thermometer Unit	8401-03	£2.35
Analogue-to-Digital Unit	8401-04	£2.56
Games Scoreboard	8401-06/07	£9.60
- FEBRUARY'84 -		
Eprom Programmer/ROM Card for 2×81	- 8402-01	$£ 7.84$
Oric Port Board M.I.T. Part 8	8402-02	£9.56
Negative Ion Generator	-8402-03	£8.95
Temp. Measure \& Control for $2 \times$ Comprs Relay Driver	8402-04	
- MARCH '84		
Latched Output Port M.I.T. Part 9	8403-01	£5.30
Buffered Input Port M.I.T. Part 9	8403-02	¢4.80
VIC-20 Extension Port Connector MIT. Part 9	8403-03	¢4.42
Commodore 64 Extension Port Connector		
M.I.T. Part 9	8403-04	¢4.71
Digital Multimeter Add-On for B BC Micro	8403-05	£4.63
- APRIL' 84	8404-01	
		£ 5.72 $£ 5.20$
Data Acquisition "Input" M.I.T. Part 10	8404-02	£5.20
Data Acquisition "Output" M.I.T. Part 10	8404-03	£5.20
Dapa Acquisition :"PSU" M.I.T. Part 10	8404-04	£3.09
Timer Module	8404-05	£3.58
A.F. Sweep Generator	8404-06	E3.55
Quasi Stereo Adaptor	8404-07	f. 3.56
\qquad MAY'84 Simple Loop Burglar Alarm	8405-01	$£ 3.07$
Computer Controlied Buggy M.I.T. Part 1 Interface/Motor Drive	8405-02	£5.17
Collision Sensing	8405-03	£3.20
Power Supply	8405-04	§4.33
\qquad JUNE '84 -		
Spectrum Bench PSU	8406-02	£3.99
Speech Synthesiser M.I.T. Part 12	8406-03	¢4.85
Train Wait	8406-04	£3.42
\qquad Ultrasonic Alarm System	8407-01	£4.72.
Atom EPROM Simulator	8407-02	£3.08
Electronic Code Lock		$£ 2.70$
Main board Keyboard	$\begin{aligned} & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{array}{r} £ 2.70 \\ £ 3.24 \end{array}$
Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{array}{r} \text { £ } 4.36 \\ \text { £2.24 } \end{array}$
- SEPTEMBER 84 -Op-Amp Power Supply	8409-01	£3.45
- OCTOBER'84 - Micro Memory Synthesiser Drill Speed Controller	$\begin{array}{r} 8410-01 \\ 8410-04 \end{array}$	$\begin{aligned} & £ 8.20 \\ & £ 1.60 \end{aligned}$
- NOVEMBER '84 BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{array}{r} £ 2.90 \\ £ 2.65 \end{array}$
- DECEMBER'84 - TV Aerial Pre-Amp Digital Multimeter Minl Workshop Power Supply	$\begin{aligned} & \text { " } 8412-01 \\ & \text { " } 8412-02 / 03 \\ & 8412-04 \end{aligned}$	$\begin{aligned} & £ 1.60 \\ & \text { £ } 5.20 \\ & £ 2.78 \end{aligned}$
- JANUARY '85-		
Power Lighting Interface	8501-01	¢8.23
Games Timer	8501-02	£1.86
Spectrum Amplifier	8501-03	£1.70

[^2]

MASTHR Blectronics-Microprocessors -Now! The PRACTICAL War!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'
- Carry out full programme of experimental work on electronic \& computer circuits including modern.digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computcr/industrial equipment.

EOR YOUR FHTHRTATNWIENT

Flight Path

Different airlines have different policles over the use of electronic equipment on board. Almost without exception the cabin crew will stop passengers running a portable TV set. In fact there's not much point in even trying, because it will usually pick up a mish-mash of channels on the same frequency.

The whole theory of u.h.f. TV cover relies on the limited transmission distance of u.h.f. signals so that different stations can operate on the same frequency in different parts of the country. At 35,000 feet you pick them all up

Airlines don't like radios much either, but will usually now let passengers use tape recorders, personal stereos, calculators and portable computers. Why, you may well ask, should there be any problem? I found out recently, when I had the opportunity to travel on the flight deck of a Boeing 757.

Forget the fiction idea of a distraught passenger trying to land an aircraft after the captain and his co-pllot have both fallen ill. For one thing they eat different food, to avoid the risk of food poisoning. For another modern aircraft, like the 757 and the Trident, fly by computer.

Once the alrcraft has taken off it can fly across Europe, land, taxi down the runway and even switch off its own engines, all without any pilot actionl Of course, this isn't how flights normally run. The pilots handle a lot of tasks like landing, with the controls. "We do it for practice," one of them told me.

It's also quite clear that they do it because they want to, and to stop getting bored. But the extent of electronic automation now found on the flight deck of a modern alrliner is quite extraordinary.

Before taking off, the captaln keys the departure and destination Into an onboard computer. He also keys in the number of the air-lane route to be taken, rather like a bus route. The computer then dlsplays the flight path on a cathode ray tube (c.r.t.). It shows up as a white line with landmark names, like towns, along the route. The aircraft shows up on the screen as a triangle. The "auto pilot" computer then continually adjusts the direction controls to keep the aircraft on the computer route.

But how does the onboard computer know where it is with relation to the ground? Contrary to public misconception, this need not rely on radio slgnals from ground beacons or space satellites. On board there are three crossed gyroscopes which continually sense any change of direction and feed an appropriate signal into the computer.
The c.r.t. map is backed with a radar disolay showing any clouds ahead, with colours geared to the llkelihood of a bumpy ride, for instance, red for the most bumpy weather.

This on-board radar is not much use in preventing collisions. Most small aircraft would produce 100 small a bllp on the screen. Collisions are avolded partly by eye,
out mainly by ground control which by voice radio warns any alrcraft that another is getting too close.

The ground radar system has enough resolution to pick up small aircraft. Also all aircraft are required by law to carry a transponder; that is a transmitter which sends out an identification signal when interrogated by a signal sent out by ground or another aircraft. The one thing the law can't do, however, is ensure that small aircraft with casual pilots switch on their transponders

There is one type of dangerous weather which the radar cannot show. That is clear air turbulence or CAT. It's invisible, just an up or down draft that bumps the aircraft like mad. CAT is at best a nuisance because it can throw crew and passengers around the cabin without any warning. This happens a lot over the Pacific. At worst it is dangerous, because the aircraft may fall thousands of feet through an air pocket.

There are now attempts at detecting CAT, by beaming lasers out onto the sky ahead and picking up a return signal caused by the differences in refractive index. But so far it has not proved a rellable technique.

All the other controls on board are now c.r.t. displays, which show engine or oll temperature, brake temperature, air speed and so on. They can be switched out but come back automatically if there is an alarm condltion. At the same time an alarm buzzer sounds.

Touch-Down

As the alrcraft approaches its British landing strip, it flies into British air traffic control space. The ground controller tells the captain either to go into a holding pattern or fly on Into the Instrument Landing System. This is a radio pattern beamed up from the ground which is sensed by onboard equipment to create a spot to the centre of another c.r.t.

When the 'plane is directly on course for landing the spot is dead centre. Alr traffic control simply radios up a bearing number which the pllot keys into another computer. Thls alters the craft bearing elther to put it into a holding pattern or latch onto ILS.

For manual landing the pllot moves the joystick control to keep the spot in the centre of the ILS display c.r.t. and stop lt movIng sldeways or up or down. But the onboard computer could do this equally wall It is a remarkable sight to fly through cloud with the invisible ground somewhere below and then suddenly break through io see the runway ahead, lined up purely by electronles on-board reading directional beam slgnals from the ground.

The ban on some electronic equipment is necessary because it generates spurious signals that are close in frequency to those used by the ILS system. In a worst case situation, the pilot could be flying through cloud, lining up the ILS spot with the dial centre and then find the runway not dead ahead after all!

There are a few other questions you might llke answered. What happens for instance if the onboard computer crashes? What happens if the c.r.t. dlsplays fail?

There is a small bank of duplicate equipment, with air speed, altitude, gyro, compass and ILS display which are purely mechanical. The alimeter works as a barometer, the alr-speed Indicator works with a plece of pipe sensing air pressure and the gyro is battery operated. Every six months pllots have to prove on a ground slmulator that they can stlll use the old equipment.
What happens in foreign countries, where English language isn't spoken? How does air traffic control communicate?

Britain and America have exported English as the international language at air traffic control. Every controller must learn to speak enough basic English to bring down an aircraft. But quite often French pilots jabber to their ATC in French, which is confusing for other pilots trying to listen in.

Also, as often happens in obscure African states, the controllers may speak only a very limited vocabulary of English. Any question outside that limited vocabulary isn't understood. So all verbal ATC communication has to be in common jargon.

Cellular Radio

For my sins, I like to have things straight, and for the record. I am not interested in folklore facts that everyone knows to be true, simply because enough people say so. That's the way journalists get sued. And it's no defence.
Recently I have been looking at the comIng, next month (Jan '85), of Cellular Radio. That's the technique of dividing a country up into hexagonal cells which re-use the same radio frequencies over and over again, at low power.

The trick is for no cell in a natural cluster of seven, to use the same frequency as any other cell with an adjoining boundary. Several dozen frequencles, around 900 MHz in the u.h.f. band, are used in each cell. A mobile and fixed transmitter keep tabs on each other, switching frequencies as the signal strength fades when a moblie moves out of one cell and into another.
In country areas, where radio traffic is light, the cells can be 20 or 30 mlles across, because only 20 or 30 people will be using the system at any one time. In cltes, where radlo traffic is heavy, the cells can be down to less than a mile across.

It's a clever Idea, dreamed up by Bell Labs of America in 1947. But at that time the computers necessary to juggle and switch frequencles weren't avallable. Working systems were put together in the 70's, and a full scale test started in Chicago in 1978.

After a five year trial, the system went commercial, In October 1983. Now Britaln is getting a similar system, using the US technology.

In keaping with present Government pollicy, almed at stimulating free market competition, two different consortla have been glven 25 year licences to run cellular radio in Britain. One is TSCR, Telecom Securicor Cellular Radio Lid., which as the name implles is a joint venture between British Telecom and Securicor. Thelr service will be called Cellnet.

The other operator is Racal, which has connections with the US radio firm Millicom. The Racal service will be called

Vodafone. Both services will cost the same, around $£ 20$ a week for moderate telephone use. It's clear that the government's enthuslasm for free market competition has actually put the price up. Both consortia have had to Install their own network of computers and transmitiers, to cover the same area twice over. Also the available frequencles, [600 channels now with 400 available when the rest of Europe decides which system to use] have been split down the middle, with a 17 per cent loss of air space because both services need their own separate switching control channels.

The American experience is that businessmen who have been waiting for a car telephone, or using one on the presently over-crowded v.h.f. spectrum, will Jump at the chance of subscribing to cellular radio. This pent up demand is there for the taking by whichever serviçe gets into business first. After that it gets harder to sell the system.
Not surprisingly, therefore, both Cellnet and Vodafone are struggling to get their services up and running at the same time. To date Vodafone has not even demonstrated its system yet, but hope to be ready for tests this month (December). Heaven knows how ready they will be. I also wonder about Cellnet. Here's why

Cellnet got under way faster than Vodafone, thanks largely to the chance of providing a $3000 \mathrm{sq} . \mathrm{km}$ pilot cellular radio service for the Economic Summit Conference held in London in June. The idea was to give all world leaders a mobile phone. But the press demonstration given
soon after was a sloppy affair, wlth the press coach simply driven round a single transmitter tower so that journalists did not have a chance to witness the all-important "hand off". This is the channel switch which takes place when a vehicle moves from one cell to another and the recelver has to change frequencies to pick up another cell's transmitter.

After making myself a thorough nulsance, I was offered the chance for a separate demonstration a week or so later. We drove round London, to check hand off and it worked perfectly well. But in the meantime Celinet pulled an extraordinary publicity stunt, most uncharacteristic of a business venture incorporating British Telecom.

Hands Off The President

On Thursday, 14 June 1984, The Times carried a full page advertisement, showing an enormous picture of President Reagan using Cellnet radio, at the Summit meeting. But had President Reagan really allowed his photograph to be taken, and used in a full page advertisement for a commercial product?

I tried telephoning Cellnet to ask these questions. I couldn't get through on the numbers Cellnet had given me. So I tried British Telecom and they gave me another number for Cellnet. Still no joy. It turned out that Cellnet, part-owned by British Telecom, had changed its telephone numbers. There was no system working to redirect calls!

Finally, I found a working number for Cellnet and asked my questlons. Rather sheeplishly, Cellnet admitted that the full page plcture of President Reagan, wasn't of President Reagan. It was a male model with Reagan's face grafted on from another photograph
So did the White House approve? "Our advertising agency got permission from the American Embassy" sald Cellnet. I don't believe it, I sald, and checked with the American Embassy in Grosvenor Square.

The Embassy checked with the White House, right up to the lawyer who represents the President. "Under no circumstances and in no way do we approve advertisements that use the President's photograph and appear to endorse a product" said Reagan's lawyer. "We have seen the phoney photograph. We weren't asked for permission and wouldn't have given it"
By this time Cellnet had decided to come clean. "Our advertising agency sought legal advice and were told that they did not need to get the President's permission" Cellnet told me, "but knowing that journalists were looking at the story they checked with the Advertising Standards Authority and the ASA checked with the Embassy. In any case there haven't been any formal complaints from the Embassy". I checked with the Embassy but they could recall no approach from the ASA.

I'm laying bets that if President Reagan comes to Britain again and needs cellular radio, It will be Vodafone who get the contract next time, not Cellnet.

FAULT FINDING E.A.Rule Part 3

CONTINUING with our look at faults found on newly built equipment, we will now take a look at some actual faults found on kits returned for service in the authors workshop. The first of these is an example of how an incorrectly specified component can cause mystifying symptoms. The unit in question was a tuner which covered the Long and Medium wave bands as well as VHF, FM and TV.

The symptoms were that a fault on the TV band only was causing extremely erratic tuning and large jumps in the frequency tuned to. The VHF and AM bands were seemingly OK. Tests showed that tuning on the AM and VHF bands did appear normal but the TV stations tended to 'jump' off tune. All circuits were tuned by varicap diodes. As the television RF unit was a sealed-unit it was decided to replace this as a reasonable starting point with a known good unit. The fault remained. We now have a situa-
tion where we know that the RF unit was OK, so that the fault must be external to it. This was at first confusing because the only other circuits involved were common to the FM and AM bands and these were found to be OK.

CAREFUL AND DETAILED

It was obvious now that a very careful and detailed check would have to be made and the varicap tuning circuit was a good place to start. The basic circuit used is shown in Fig. 1. The d.c. supply is stabilised by the Zener diode D1 and fixed at approx 30 volts, this then goes to either the pre-set tuning pots or the manual pot.

As the fault appeared on both pre-sets and manual tuning it was felt that these could be ruled out. This left the varicap supply or the circuits leading to the various tuning units. At this stage it was decided to use a signal generator to

provide the input signal, at which point it was found that the signal was completely stable.

UNLIKELY

Now to say the least it would be unlikely that the actual TV stations were jumping in frequency but when tuned to local TV, the frequency jumped about and when tuned to the signal generator, it did not. But, we were injecting our generator signal at the low frequency end of the TV band, whereas our local signal is at the high frequency end, was there a clue here? Injecting a signal at the high frequency end produced the jumping in frequency. In other words, the fault only happened at the high frequency end of the TV band. We already know that the RF unit is OK so what could cause a fault to only happen at the high frequency end that was external to the RF unit and yet not effect the low frequency end or the other wave bands?

FURTHER TEST

A further test was made at the high frequency end of the FM band and a jumping in frequency was detected there also, but, nothing like as much. Now the varicap tuning voltage swings from 3 volts to 30 volts to cover each band. The FM band covers 88 to 108 a total of 20 MHz which works out at 1.35 MHz per volt of tuning. On TV the coverage is from about 440 MHz to 900 MHz or 460 MHz total which works out at 17 MHz per volt of tuning. Here was our first clue, a small variation in tuning voltage would have a larger effect on the TV band than on the VHF band, so it seemed we had to look for very small variations in tuning voltage.

Now the TV signals were jumping from the correct tuning position to just outside the IF pass band, or about 200 kHz . At a tuning rate of 17 MHz per volt, a 0.2 MHz jump meant we were looking for a change in tuning voltage of only about 12 millivolts. It was felt that a possible leakage current in one of the decoupling capacitors might be the problem and these were checked out. The reason for the fault turned out to be $\mathbf{C 1}$, the 0.01 microfarad capacitor decoupling the varicap feed to the TV tuner. It had only a 12 volt rating and its leakage became excessive as the varicap supply voltage went above this. This was why

Fig. 1. Basic varicap supply voltage and tuning system.
the tuning behaved normally at the lower frequencies, the voltage across this capacitor then was within its rating. The reason for the fault was simple enough, but over two hours were spent in tracking it down. In the parts-list it simply said 0.01 disc, no mention of working voltage at all. The constructor had ordered 0.01 disc and been sent a 12 volt component. Changing this 0.01 to a 63 volt version completely cured the problem.

CHECK THE RATINGS

The important point about this case is that the clue came when a careful check was made, and a similar effect, although less, was found on another waveband. This clue gave positive evidence that the fault was common to all sections. The moral is to check that the voltage ratings of capacitors is higher than the maximum voltage expected in a circuit.

MEDIUM WAVE RECEIVER

Now for a less complicated story. This concerns a medium wave only receiver which used a gang capacitor for tuning. This was returned with the complaint that it would not align and that if the slugs in the coils were adjusted at the low frequency end and then the trimmers at the high end (the correct way) it always finished up with the tuning slugs right out of the tops of the coils and the trimmers screwed up tight but without the correct alignment.
The first thing was to return all the trimmers and tuning slugs to their midway positions and then inject 600 kHz
from a signal generator with the receiver tuned to 600 kHz on its scale. The slugs were tuned for maximum signal. Then both generator and receiver were tuned to 1.4 MHz and the trimmers adjusted. Using the normal technique of backwards and forwards across the band until no improvement can be found, it was in fact found that the slugs were wound right out and the trimmers screwed up tight, exactly as stated by the constructor.

The fault turned out to be the fact that the tuning gang capacitor was not wired up at all. When the generator was set to 600 kHz and supposedly the receiver was tuned to the same frequency, it was in fact tuned to the third harmonic of the generator on 1.8 MHz . The generator was then changed to 1.4 MHz and the trimmers adjusted, of course the set tuning had not changed due to the unwired gang, no wonder the trimmers had to be screwed tight to bring the tuning down to 1.4 MHzl , the slugs then had to be unwound to take them back to 1.8 MHz etc.

WORKING BACKWARDS

As stated right at the beginning of this series, the most complicated faults often turn out to be a simple mistake or component failure. Another example of this was found in an FM tuner which used a quadrature detector circuit (Fig. 2). The tuner was fitted with AFC (Automatic Frequency Control) which was working backwards. In other words it was pushing the stations off-tune instead of pulling them into tune. The reason for this was that L1 was open circuit, it was acting as a capacitor instead of an inductance and

Fig. 2. Capacitive effect with LI o/c.
this reversed the phase of the detected signal (polarity) making the AFC control voltage reversed to normal.

Not an easy fault to locate because the voltage on the i.c. pins is the same at each end of the coil and an open circuit coil makes no change. In this particular instance it was the author's experience which enabled the fault to be found quickly as the same fault has happened several times before. However, finding it for the first time was not so easy and a number of wrong roads were first explored. The original clue came when the detector curve was displayed on an oscilloscope and the reverse phase noted. Another clue was that the detector coil L2 was critical in its tuning whereas it is normally fairly broad.

MAKE NOTES

The clues mentioned above are very important, always note anything that appears to be different to normal, however slight, and consider if it could have a bearing on the problem in hand. Try to work out what could happen in a circuit if various things went wrong, would that same fault affect other circuits and if so what type of result could be expected?

Next month we will look at faults on equipment that has been working satisfactorily to date, and has now falled. The methods covered will assume that the test equipment is limited to a multimeter and a signal generator. Oscilloscope techniques will also be looked at.

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributlons should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

MAINS FAILURE EMERGENCY LAMP

This lamp illuminates your room in the event of a power failure. The circuit uses only one transistor and the whole unit is very cheap.

When there is mains power, the current from the transformer is half-wave rectified by D1 and smoothed by C1: The voltage divider resistors, R1 and R2, holds the transistor's base at a greater voltage than its emitter and hence the emitter base junction is reverse
biased. So no current flows through the transistor and the lamp.

In the event of a power failure, the voltage across the resistor $\mathbf{R} 2$ drops and the transistor begins to conduct and the bulb will be illuminated. When the mains power is resumed, the light is again switched off.
Current consumption from the batteries is zero when the mains power is present. The cir cuit is very useful in situations where a coin operated electricity meter is used
J. Streekumar,

Cochin, India.

operates in the following manner. C2 will in the first place be uncharged, so when the circuit is switched on the input will be low and the output will be high, current will then flow through R2, and C2 will charge up. Wheh the voltage reaches the upper Schmitt trigger point, pins 9 and 10 will be high and pin 8 will now be low and the capacitor now discharges via R2 till the lower Schmitt trigger point is reached at pins 9 and 10 . Now the input will again be low and pin 8 (output) will invert back to the high position. This action then repeats, the frequency of oscillation being just a few hertz, using the C/R network as in the diagram. To alter the frequency to a higher rate, change C2 to a lower capacitance, or higher for a slower rate.

As each l.e.d. in sequence lights up, the voltage on that pin will drop low, so when D16 (pin 17) is reached, pin 17 along with pin 5 , IC lb will become low. The output pin 6 will go high along with pin 2 , and pin 3 will invert to become low. With pin 6 high, pin 5 of IC 3 will also be high by which the count will now be down. When DI is reached pin 1 along with pin 1 of ICI will go low.

RI and R3-R8 are current limiting resistors to prevent the l.e.d.s from overheating, and Cl is the decoupling capacitor that prevents stray spikes from upsetting the proper function of the circuit.
G. A. Hewes,

Syston,
Leics.

A
lthough Christmas is usually the period when we think of getting out the fairy lights and despite the above title, this project can be put to use at any time, for example, bringing attention to an advertisement.

This circuit offers something a bit different from fairy lights in that the l.e.d.s, D1 to D16, light up one at a time in an "upwards" direction. When D16 is reached the reverse procedure takes place in sequence, down to DI. This pattern is then repeated, at the same time D17 to D22 flash on and off. The os cillator, IC1c, and associated R/C network determine the frequency of operation of all the l.e.d.s.

The oscillator that brings the circuit into motion, consisting of ICIc, R2 and C2,
(CE264)

CAR BURGLAR ALARM

THis circuit is designed to pulse a relay on and off, which in turn will sound the horn of a car, when the alarm is triggered. Once a car door has been opened, the alarm will switch for approximately 20 seconds and then stop, even if the car door remains open. This will prevent the battery from going flat.

The circuit is a monostable configuration connected to an astable. The monstable acts as the delay circuit, and the astable controls the alarm switching circuit.

Capacitor C3 controls the time delay, which for the value shown will give a delay of 20 seconds. Before switching the alarm on the reset button should be operated to discharge C3, thus enabling the green I.e.d. D4 to light when the key switch SI is operated. This will indicate that the alarm is ready, and the doors should now be kept closed.

The display (l.e.d.s) should be mounted in a suitable place on the outside of the car. The green l.e.d. should be near to the door lock to remind you that the alarm is switched on.

> S. S. Palin, Amington,
> Staffs.

ICE WARNING FOR CARS

T HIS is a very useful device, especially in the winter, as it gives a visual warning of icy conditions. The unit should be placed at the front of the car in a position best suited for exposure to the elements. When the circuit is built it can be calibrated by placing the thermistor, R6, in a bucket of icy water and the I.e.d. can be made to light by adjusting VRI.

The circuit consists of a 555 timer, ICI, which is prevented from operating because TR1 is normally conducting taking pin 4 low. When the temperature drops sufficiently the resistance of R6 increases causing the voltage on the base of TR2 to decrease which will switch off TRI thus taking pin 4 high. The 555 which is configured as an astable will flash the l.e.d., D2, until the temperature rises. Gordon Bamford, Cleckheaton,
West Yorks.

TTL LOGIC PROBE

THis is a simple, yet very useful circuit for checking TTL logic levels. It can distinguish between four conditions; high/low, rapid switching between high and low, or undefined.
The main component is a 74LS04 hex inverter i.c. Two inverters are used to drive each l.e.d. With the probe not connected, the input to ICIc is held low by R1 so that D4 does not light. Because of the forward voltage drop by D1 and D2 the input to IC1 a remains high, so D3 does not light.

When the probe is taken to 0 volts, the input to ICla is pulled low so D3 lights. If the probe is taken to +5 volts, the input to IC Ic is taken high so D4 lights. Where the logic level
is switching rapidly from one level to the other, then both l.e.d.s will appear to light.

The circuit can be built on a piece of stripboard 11 strips by 6 holes which is then mounted in the body of a steel nibbed pen, with the nib acting as the probe. The power supply is taken from the circuit under test via two leads fitted with crocodile clips.

The circuit will work well under most conditions, but because of the low impedance input it may cause problems in some applications. These problems may be overcome by adding an op-amp to the input.

> Mark Adams,
> Selby,
> N. Yorks.

साइटगान EXCHANCE

WASH AND WIPE CONTROLLER FOR CARS

FOR some old cars, operating the windscreen washer and wipers simultaneously while still remaining in perfect control is not easy. The unit described here washes the screen and then wipes it clear, having switched off the washer; all at the touch of a button.

The circuit for the wash and wipe controller is shown above. When S1 is depressed Cl charges up almost instantaneously and the relay contacts close. When SI is released C1 discharges slowly through the relay, RLA and the resistors R1 and VR1. During this time

(variable up to about 10 seconds by the pre-set VR1) the relay RLA is "on" and the washer motor will be in action.

When RLA1 is closed, the capacitor C2 charges and the relay RLB is energised. Hence the wiper motor will also be in action simultaneously with the washer motor. When finally the contacts RLA1 become open and the washer motor ceases working, the relay RLB will still be on because of the stored charge in C2. The charge in C2 leaks through R2 and VR2 and when the voltage in C2 is in-
sufficlent, the contacts RLB। will be open and the wiper motor stops working. The time for which the wiper should work, after the washing operation is over, can be controlled by the pre-set resistance VR2 (up to about 10 seconds).

A convenient position for the switch SI is on the steering column. The whole unit should be mounted in a dry place away from exhaust fumes and extreme temperatures.
J. Sreekumar,

Cochin, India.

A Moving Story

I recently came across a list of things that should be avoided, as they tend to increase blood pressure. Near the top of the list was one that caught my eye "Moving House". It goes on to say that sufferers from hypertension should avoid it at all costs. I can endorse that. The tension builds up over a period of six to seven months, while you are trying to sell your house and buy another, and reaches its climax when the moving men arrive. When you arrive at "Chez Nous" or "Shangri La" you may be greeted by a crowd of friendly relatives, anxious to help, or in my case it was a swarm of hostile wasps who decided they liked the look of the joint and took possession of the garage roof.

Even the friendly relatives may bring additional problems as they expect to be fed and this is difficult without crocks or cooking utensils. After all this, you spend the next six months trying to find out where you have put everything, having distributed your belongings among twenty tea chests.

What's all this to do with electronics ask our puzzled readers. Nothing, for which please accept my sincere apologies. I have only mentioned it in case you are wondering why Young has not written his usual scintillating article. I am sure you will be understanding. I just hope it arrives in time for the January issue, because just at the moment I am trying to find my typewriterl

Inventing

I can never remember how the well known saying goes. Is it:
"Necessity is the Mother of Inventlon"? or,
"Mother is the necessity of Invention"?
I rather feel that in an age where anything goes, it must be the former. Unquestionably we all feel the urge to invent from time to time. Who, in his youth, hasn't invented "perpetual motion", usually consisting of an electric motor turning a dynamo and the resulting current driving the motor.
Luckily we grow out of it, without any lasting ill effects. The difficulty is, that electronics offers such a large scope to the would-be Inventor that it becomes very tempting to indulge.

Since the would-be inventor is seldom discouraged by anything or anybody I can safely mention some of the pitfalls. To begin with the cost of taking out a provisional patent is quite high unless you can do it yourself. It is possible to do this and the Patent Office and HM Stationery Office would be good places to visit as a preliminary exercise. The big firms are always on the look out for new patents, to see if they can use the idea and get round the patent.

However, I suppose the first question you should ask yourself is, why you are doIng it and there could be several answers. The most likely one is that it is something you need for yourself.

It may even be altruistic or more likely along with the rest of us, the idea is to make money. If money is the ultimate aim, then some market research is necessary. It is essential to find out if thousands of people will be queuing up to buy it.

I was amused to read in Arthur Koestler's blography how hls father brought home a machine that was going to make the family fortune. It was large, nolsy and clattered away interminably and in the end, its sole achlevement was to open a fow envelopes, and very slowly at that. I need hardly add that it was not a commercial success.

For my money I prefer the simpler inventions. Take for example the invention of Raymond Joseph. You have never heard of him. I am not surprised and yot his invention Ilterally lightened the burden of hundreds of thousands of people. He invented the Super Market Trolley.

Finally, the Inventor (and I admit I don't know his name) who will get my accolade, I shall even put up a statue to him when I am Prime Minister, is the man who invented the Electric Blanket.

I have no doubt, by this admission, readers will be able to place me in my correct age group; the younger generation have found more exciting ways of keeping their beds warm.

Computers Blameless 1

I see I haven't mentioned computers once, so to finish up with here is a recent experience of mine. Thinking that after 30 years, new carpets to go with the new house might be advisable, we hurried to the nearest carpet shop and made our selection.

We naturally asked about availability. After a few bouts with her computer, the young lady peturned and told us, "ExStock". The house was duly measured and we recelved an estimate.

Returning to the shop to accept the estimate, we were greeted by another salesman who insisted on re-checking the stock position. He returned with the unwelcome news, "No stock, and no more until next year" II

The computers had not been regularly updated. Which reaffirms what I have said for years. "A computer is only as good as its programmer".

COMPONENT PACKS All bend new componenta price is
13 mp ring main junction boxes
13 amp ring main upur boxes
$3-2513$ smo fuses for fing motns
Surfoce mounting switches suitable insulated for moins
voluage
filuth electrical switenes intermediate tyoe, will also
replace 1 or 2 way switches
5 in tilex the witchei
in thex line switches with neon
280 matt orass cesed
2 mains tronisformert with bvis
2 mains transiformerrs with $12 v \%$ \%as secondaries
1 extension soenker cubinet for 6 .3is speaker
5 octal bses for rel ays or volves
12 glass reed switches
45 acp 70 photo trensistors
25 assor ted gemanium renalstion
4
tpae heases. 2 -ceord, 2 erase
2 2 utrt tonic transmithera and 2 ditro reecivern
21 light dependent resistors similiar ORP1
5 dirt miero twirches
=
$23-140$ watt 3 wav crossover unit
$24-250$ veriout screws ond self tappers
8 POWERFUL MODEL
MOTORS
Por robots, mecc anos, drills.
remote control plemes, boots,

remote con
eft. $E 2.95$.

SOUND TO LIGHT UNIT

$[208$ B

Complete her of ofrss tor ot hree chmnel sound to light unit
controlling over 2000 watts ol lighting. Use this ot home if you wish bue it in plenty rugged enough for disco work. The unit is each channel, und a master onfott. The eudio input and output are by :". scockest and Ahree panel mounting fuse holsert provitue thyrituor protection. A four pin plug and sockei facilitate ease
Connecting lamps. Speciol price ts $£ 14.95 \mathrm{In} \mathrm{kit}$ form or assembled and rested.
WANT A PART OF HISTORY? Ouring the last war, cars and amy lorties were sbio to travel whthour ligh ts. The drivers looked Brtish invention). We have these infred red binoculars ond you can obtain this bit of history for onit $\mathrm{E3} .50+\mathrm{E} 2.50$ po Coases are:
bit ruity through long yorage and a though unused, we cannot bit runt through long yiorage ond a though unused, we can
guarantee the cells are in working order, but working colls availabie.
AOw 1 metre FLUORESCENT TUBES ideel for Jelmes lighting etce esrge quantities so clear box of 25 for $\varepsilon 12$, corriage
poid, or $£ 2$ per 100 you cotlect other tubes in stock a also chokes

SUN LAMP
SUN LAMP bytlast and condenser for $6^{\prime} 100$ watt UVA Tube
REED RELAY KIT High Inductance coil, on former to take

E500
THERMOSTAT ASSORTMENT

 in front of the element of oblow heater, the heat would trip
the stat it the biower tuses; sopllance stets, one lor high temp eratures, otherss adiuy tabies over er range
culd ind

 tort could protect your pipes from freezing. Senarately, these
thermostats could cost around $C 15.00$. hownever the parcel for $\mathfrak{E Z . 5 0}$.
MINI MONO AMP
Firted volume control and on pol. .b. for
rel should you reaulire it. The ampl

ate the outpur to be 3 W mes
More technical data will be incluc.
sad with the amp. Brand new.

- BARGAIN OF THE YEAR

The AMSTRAD Stereo Tuner
This ready assembled unit is the idesel tuner for a music centre or an amplifier, it can also be quickly made into a
personal stereo radio, - easy 10 carty about and which personal stereo oradio - eas.
give you supert reeception.
Other uses ore aso "ger you to steep radio", you could even Other uses rre as os "get you to sleep radio", You could eve
take it with yous to use in the lounge when ihe rest of the
 Some of the features are: long wave band $115-270 \mathrm{KHz}$

 FM aerial (note ferrite rod aeriat is included for medium ant
long wave bonds. All made up on very compact board Offered et of fiaction of tis cost: only $£ 6.00$

THIS MONTH'S SNIP
AMSTRAD SPEAKER SYSTEMS 25 wotr RMS

JIGSAW PUZZLE USING THE MINIATURE UNISELECTOR Ideally a 30 -piece purzle should be cho as there are 30 switch coniactis on the uniselector. To utar the purzle
off the prove must be touehed to section 1 . This would rathe is off the probe must be touched to sec tion 1. This would racher is
along to be resdy for the next more when the probe is ouched on section 2 and so on mhough the 30 poositions. The lower set of
conta contax th should be made 10 light lamps. Firss lamp 1 , then lemp 2 ,
3 night up to lamp 30 would be progessively lit. Lamp 30 could be
 lavghing b
included.

CAR STARTER/CHARGER KIT FIat Batterv 10

 worty you will stary your car in : few minutes with this unit -250watt rranstormer 20 amp lectifers, case and all parts with date 4/5A BATTERY CHARGER Transformer ond rectilizer
E3.95 \& $£ 1$ post, 3 kits $£ 12$ post paid. TELEPHONE ITEMS
Plugs only 4 Din or 5 pin
Modern desk telephone
Moser
Heary black old yppe
External bell

Bellt ringing Pick up coil

STABILISED POWER SUPPLY (Mains Input)

 E13.25. 15V - 1.2A
PRESTEL UNITS These are brand nem

We ofter them
complete, excen
Tplue in i.c.c.s.s. nd porice to only $E 14.95$ lless than the value of
nodern includect). 25A ELECTRICAL PROGRAMMER
 home to. You cen do all these and moure by
tamus mater vith 25 amp onfoff switch.
Inderenten Independent 60 minute
A peaut fifu unit at $£ 2.50$ AGAIN AVAILABLE

AGAN A VAILABLE - Computer desks - he approx 4

50 THINGS YOU CAN MAKE

 onms tester. A.C. amps meter, Alerm clock, Soliderin Iron minder. Two wav reeternone ne, Memork iopger, Live parcet contains not less than 1,000 hems - panel meters
 and dies, toots, thermostans, collt, conden seers, resistors,
neoons, earphone/mierophones, nicad charger, pawer unit, YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

FROZEN PIPES. Can be avoided by winding our heating cable
 Texible. Resistance 60 onms/metre. Price $28 \mathrm{p} / \mathrm{meltre}$ or 15 m for E 3.95 LEXIBLE EXTENSION LEAD iwin rubber Smm ideal gras MAINS TRANSFORMERS

4 volt	4	¢1.75	24 volt	p	4.85
	1 mmp	E1.15	25 voth		
12 volt	$x_{\text {amp }}$	E1.15	35 volt	2 mp	
	mp	E1.55	38 volt	2\% 2 mp	E4.95
12 vole 15 volt	1 amp	E1.75	26 volt	10 amp	${ }^{\text {c9.95 }}$
15 vols	2	E3.45	${ }^{50}$ vort	2 am	E5. 50
18 volif	${ }^{4} \mathrm{amp}$	¢1.95	25.0.25		${ }_{\text {E4.95 }}$
		¢230	+1, 15.12		
24 voli	mp	¢3.45			

STORE CLOSING SALE
 cally low prices - 11 you ate amenutacturer you cien zave yourselt. for tune - for instance II MAKING HEATE RS? - tangential blowe
E1.50-2.5 KW porcelsin mounted elements 600 , porcelain AD 3 level switches 250. libre glass log effects - 25 p , wood surrounds
and base $\mathbf{C 1} .50$, glass rod elements $500-$ these are the '100 off less

J. BULL (Electrical) Ltd.

HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders un
E12 add 60 p service charge. Monthly account orders accepted from schools and public companies. Access \& B/card orders accepted day tight. Haywards Meath (0444) 454563 . Bulk ordars: ohone for quote
shoo open $9.00-5.30$. Mon to Fri, not Saturday.

EXTRACTOR FANS - MAINS OPERATED

5

 All the above ex eompu 4.". $x 4$ \& 88.50 . Post 75
9." American mase $9 "$ American made
E11.50. post $E 2.00$ Yangential Blower 10x3 air oullot. dual peed

TANGENTIAL BLOW HEATER

2.5 KIV K.IT Still svailabte: $\mathbf{E 4 . 9 5} \boldsymbol{*} \mathrm{El} .50$ post.

ROCKER SWITCHES Standaro sire fin $19.5 \times 28 \mathrm{~mm}$ cu OUI. Single pole onlott - 150 oach 1000 for E75, Single pole
changeover 200 each -1000 for $£ 100$. Single pole chengeover
 ROCKER SWITCH OP/DT 15 amp 250 volts suhabie t
motor reversing etc. $-46 \mathrm{p}-100$ for $\epsilon 34.50,1000$ for $£ 230$. MICRO SWITCHES V3 type all 25010 mp SpST 20 $1000-E 1100$ Sota 300 O $1000-E 150$, very low tongue Sodi MOTORIZED DISCO SWITCH These have $9 \times 10 \mathrm{mp}$
 E6. 75 eech or 10 for $£ 50$. VAT included.
WALL MOUNTING ROOM THERMOSTAT
 Price $E 4.60$.
BLEEPERS 6 or 12v batreerv or transtormer operaled, ideal

5ist
 MINIATURE WAFER SWITCHES
 2 oole, 2 wav -4 pole, 2 way -3 pole, 3 way 4 pole, 3 wev -2 pole, 4 way -3 pole, 4 way 2 pole 6 . 2 pole, 6 wwy -1 poite. 12 way way All at 25 p each or 10 oor E .00

24 HOUR TIME SWITCH
 Central Heating Boilers hese give 2 onfolts per 24 thri. E
sultable for control of heaters of hearing svstems. $£ 4.60$. CONNECTING WIRE PACK 96 lengths of connecting wire, each 1 metre long and difterentiv colour coded, a must tor
those diff icult interconnect ing foss. 85 p the to RED LEDS 10 for 69 g . 100 for $55.75,1000$ for 652

VENNER TIME SWITCH
Mains operated with 20 amp switch, one
on and one off per 24 hri repests daily

ng or shor tening cav. An oxpensive time.
swich but you can hove it for only $£ 2.9$,
Without case, me erat case - E2.95, odap tor

ideal controllop for the immie makes an
price of edap hes

Guarentered 12 months

IONISER KIT

£ 11.95 plus $£ 2.00$ pos.

OTHER POPULAR PROJECTS

${ }_{3}$ Channel Sound to Light - with fully prearead metal case ${ }^{〔 9.95}$ ${ }^{\text {Big}}$ Eafor, listen through walls
\qquad Cart Light tett on' alarm
Secret switch - fools friends and enemies alike
3- 30 V Vatabie Power Supply
2 Shori \& Medum wave Crystal Racio
2 Shorl \& Medlum wave Crystal Radio
3v to 16 v Meins Power Supply Kit Radio stethoscope - faule tinding aid Mug 300 - emits pierctng rquark
Morse Triner - complere with key Morse Trainer - c
Drill control kit Interrupted beam kit Transmither
Radio Mike
F M receiver kit - for surveillance or normal $F M$ Insulation Tester - electranic megger Battery shaver of lluorescent from 12 v
Mach box Radio - receives Mon Matchbox Radio - receives Medium Wow 115 Watt A Aolifier 5 Hz 25 k kH
Power supoly for 115 ma

T.V. SOUND TUNER

SERIES II BUILT AND TESTED Complase wish case. £26.50 $£ 2.00$ p\&p.
TV companies do their ost quallity sound. Gliven this beckground a com. pact and Independont TV wner that connecis direct to vour HI-FI is a duction. The unit is aperated. This TV SOUND TUNER offeri full UHF covarage

HI-FI SPEAKER BARGAINS

TOKUDEN - $8^{\prime \prime}, 8$ onm full range 7% win
 OOOOMANS - 7" 60 W Bass/MId. speaker. 8 ohm impedance. Freq, res.: 40-6,000
$4 \%^{\prime \prime} \times K^{\prime \prime}$ maenet. $£ 14.95+£ 1.75$ pern
 With rolled surround. $£ 4.95+£ 1.50$ p\&p Tweeters: 8 ohm soft dome radiator type. (3% " sq .) For use in systems up to 40 wats. EAGLE - Full range 8 少 605 pr . $+£ 1.50 \mathrm{p} \& \mathrm{mp}$ cone with rolled surround. $06.95+£ 2.20$ p\&p Full range $6 \frac{1}{2 \prime \prime} 15 \mathrm{~W}, 8 \mathrm{hm}$. Twin cone with rolled surround. $£ 5.95+E 2.20$ p\&p.

125W HIGH POWER AMP MODULES

power applications - disco units, guitar ampllf. iers, public address systems and even high power domestic systems. The unit is protected
against short circulting of the load and is sate in an open circuit condition. A large safety ponents, resule, a high powered rugged unit The PC board is back primed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied Accessories: Srereo mains power supoly kit £10.50 \& $£ 2 \mathrm{p}$ \& p . Mana: $£ 7.50$ \& $£ 2 \mathrm{p} 810$

STOCK CLEARANCE

 (Irade enquiries welcome) IC regulated P.S.U. Utillsing (Matorola MC 7818 CTIAll components inc, mains transformer are mounted on \& $4 " \times 2 y^{\prime \prime}$ "P.C.B. Inpur 2201
240 AC , output 18 V DC $\odot 350 \mathrm{~mA}$ Very low ripple \& shoricircuis protected Aeady buili $\subset 2.750+.500$ P\&P.
Miniature maintranstormers.
sec: $5-0-6$ V @ 4 VA PR1: $220 / 240 \mathrm{~V}$
4 for $E 2.50 \mathrm{p}+.50 \mathrm{p}$ PRP. 4 for $£ 2.500+.50 \mathrm{p}$ PEP
6 V mains adaptor
13 amp plug-in type Fiying lead
output with 2.1 mm female plug. Max outpur 150 mA O.C.
Srablilised gV mains adeptor
Fully encapsulated with flying mains \& output leads. Mox, output: 200 mA D.C. Size $2 \%^{\prime \prime} \times 2 \%^{\prime \prime} \times \mathrm{K}^{2 "}$ " spprox.
E2.400 +.500 P8,
$E 2.40 \mathrm{p}+.50 \mathrm{p}$ P \& P
C.B. copper laminate: Single sided $16^{\prime \prime} \times 14^{\prime \prime}-1 / 16^{\prime \prime}$ thick. $11.30 \mathrm{p}+.500$ P\& P
Ready built Audio modulas by MULLARD LP 1183 Stereo preamp module suitable for ceramic p.u., radiolaux. inputs. Direct tagout connections to bass, treble \& level controls. Supply 18-24V D.C. P.C.8. size
$3 \%^{\prime \prime} \times 3 \%{ }^{\prime \prime}$ 1 $6100+50 \mathrm{p}$ P\&P. $31 /{ }^{\prime \prime} \times 31 /{ }^{\prime \prime}$ ". $£ 1.00 p+.50 p$ P\&P.
LP 1184 as above, but with magnetic p.u. input. Size 4% "x 4 " approx. £1.50p + .50p P\&P LP 1173 iow into 4 ohm Discrete power amp module. Supply 24 V D.C. Size 2N3055 FERRANTI Power Transistors 4 for $£ 1.250+.50 p$ P\&P. TBA 800 SGS/ATES 7 watt audio IC SONOTONE KS4O』/3509 S Cartridge. E2.95p + .50p P\& P

All mail to: 21A HIGH ST, ACTON W3 GNG

 Callers: Mon - Sat $9.30 \cdot 5.30$. Halt dar Note: GOD Ah tems subiect to avallability. Prices correct at or despatch. ATVC Limherd reserve the right to up

PE STEREO CASSETTE RECORDER KIT
 sectratrows
 Max. oulput power (RMS): 125 W . Operating voltage (DC): 50.80 max. Loads: 4. 16 ohm. Frenuency rasponse measured @ 100 warts: 25 Hz . 20 KHz . Sensitlvity for $100 \mathrm{w}: 400 \mathrm{mV}$
$@ 47 \mathrm{~K}$. Typical T.H.D.@ 50 watts, 4 ohms: 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$
KIT $£ 12.00$ BUILT $£ 17.50$

PAIR $10 W$ SPEAKERS Incorporetes 4\%" 10 wort
soeaker. FInlshec in teak veneer soeaker. Finlshec in teak veneer imulare. Bult, ready to use, Ideal extension sokrs. 12\%x
STEREO TUNER KIT
 OFFERI
£13.95

+ E2.60 p\&p. This easy to bulld 3 band stereo AM/FM tuner kit is designed in conjunction with PE (July 81 For ease of constructlon and alignment if incorporates three Mullard modules and on approx. With diagram and instructions.

MONO MIXER AMP

FULL-TIME TRAINING COURSES

15 MONTHS
 B-TEC NATIONAL CERTIFICATE in TELEVISION \& VIDEO SERVICING

15 MONTHS
 B-TEC NATIONAL CERTIFICATE in COMPUTING TECHNOLOGY

9 MONTHS

B-TEC HIGHER CERTIFICATE (HNC) in COMPUTING TECHNOLOGY \& ROBOTICS

- PRINCIPLES OF ELECTRONICS
- TELEVISION (MONO/COLOUR)
- VIDEO CASSETTE RECORDERS \& CCTV
- COMPUTERS \& MICROPROCESSORS
- INDUSTRIAL ROBOTICS

Short courses (from 6 weeks) with previous electronics knowledge.
Courses commence Jan '85, April '85, September '85 Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

$\star \star \star$ STEPPER MOTORS $\star \star \star$

For robotics, turtles and X / Y Plotters
 Type Hezz (Higher Resolution) *200 steps per rev. (1.8 deg staps) $\$$ Wi 600 Grms . Price 22900 inc. P/P \& VAT.
RS 8 stage Darington \ddagger Drives 2 1035's from the User Port. Price 225 inc. P/P \& VAT. SA1ce7. I.C. Single Pulsed input determines speed. Second input determines direction. Surtable for direct Drive of one lD35. (HR23 requires additional Power Transistors). Price 56.50 inc. P/P \& VAT. Book DFY Robotics \& Sensors with the BBC MICRO. $£ 7.95$ inc. P/P. (Commodore of version... Book, Dry Ro
seme price.)
NOTE Moter prices vary with foreign exchenge rates II ordering atter 1.1284 , piease telephone
Telephoned ACCESS \& VISA orders welcome.
We cannot halp with advice on projects, but a Price List of the RS components mentionad in the sbove books, plus limited Stepper Mootor dats is ravalable fiee, BUT will be sent ONLY ON RECEIPT

CARDIGAN ELECTRONICS

Chancery Lane, Cardigan, Dyfed, Wales. Tel: (0239) 614483 Shop Hours: Mon-Sat, 10 to 5.

Closed all day Wednesdoy.
Goods normally by return post, allow 14 days delivery it not in stock.

Have you one of these?

BBC * COMMODORE 64 DRAEON * VIC 20 ORIC1/ATMOS ATARI 400/800 SPECTRIM * ZX81

Then you need one of these

Best Guide to Microcomputer Soffware

1984 No. $5 £ 1.50$
Now with 5,000 programs
more educational, 5,000 programs
management listings than business \& personal NOW!

EVERYDAY ELECTRONICS AT YOUR

Reach effectively and economically to-days enthusiasts anxious to know of your through our semi-display and classified pages. Semi-display spaces may be booked at timetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word number 60 p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisetance, should be sent to the Classified Advertisement Department, Everyday Electronics and 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone

For Sale

CYCLISTS ADD The rear lamp with electronic control to your dynamo lighting. Be seen when you stop. $£ 4.95$ Requires batteries. E.D.E. Box 11 Marple, Stockport SK6 6JS.

IMMERSION TIN PLATE your D.I.Y. PCBs. Half gallon kit. £6.00 post paid. Box No. 5

Receivers \& Components

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate setuement.

Wanted

WANTED. BI-PAK S450 FM stereo push button tuner. AYRES, 31 Barr Common Road, Walsall. Tel. 092251591

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $\mathbf{5 1 . 5 0 \text { plus S.A.E. Service Manuals }}$ on Colour TV and Video Recorders, prices on request. S.A.E. with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

FULL SIZE TOP QUALITY Service Sheets $£ 2.50+$ Ls.a.e. CTV/Music centres $£ 3.50+$ L.s.a.e. Repair data almost any named TV/video $£ 10.50$ in circuits. L.s.a.e. brings any quite-free magazine/pricelists. TISEE, 76 Churches, Larkhall, Lanarkshire. Tel. 0698 883334.

Miscellaneous

Learn to make your own Printed Circuit Boards EXPERIMENTER'S PRINTED CIRCUIT KIT Laminate Boards. Chamicals, Instruction Book also, Plans \& Circunts for 50 interesting Projects you can build with own parts and transistors $\mathbf{~} 2.50 \mathrm{p} 8 \mathrm{p} 50 \mathrm{p}$ Protect vour premises with an efficient BURGLAR ALARM. PHOTOELECTRIC KT $\Sigma_{5} 50 \mathrm{p} \& \mathrm{p}$ 50p; INVISIBLE BEAM OPTICAL KIT E4.50 p\&ip 50 p . Send SAE for detads of all Kits \& Circuits, EXPERIMENTAL ELECTRONICS London SW11 ELCTHONICS 335 Battersas Park Road

"PROJECT BUILDERS!" Our cased transistorised breakdown units will save you £f£s. S.A.E. for lists, 5, St Josephs Park, Ballycruttle, Downpalists. 5, St Jose
trick, BT30 7 EN

FREE: PARCEL OF COMPONENTS worth $£ 10$. Send only 80 p postagel D. HORSLEY, 113 Clare Road, Braintree, Essex

Software

MOST ADVANCED SOFTWARE for 48 K Spec trum. 1. Dialogue tape two way writing quite advanced artificial intelligence. 2. Fail safe circuitry to quite high levels. All components available from MAPLIN. All you have to do is provide a few basic facts describing the wanted result. Full price $£ 10.00$ each to: N. J. Edwards, 68 Woodhill Rise, Norwich NRS ODW.

SERVICE

products and services £7.80 per single column cen(minimum 12 words), box and Computer Projects and ments, together with remitComputer Projects, Room 01-261 5942).

Tuition

Services

INVENTORS

Think of something new? Write it downl
American industry offers potential royaltles for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your Idea's potential value. Write without delay for your free information package.
American Inventors Corporation
82 Broad Street, Dept. Ev
Westfleld, Massachusetts 01086 ,
United States of Amerlea
A fee based marketing company

FOR FURTHER INFORMATION CONTACT PAT BUNCE 01-261-5942

ACIDC COMPONENT PACKS			
Pack	Oty	Description	Price
	12	HED 5 mm LEO	
TF 12	30	500 mz ZENERS 5%	51.00
TF 15	50	1 amp Rect. Diodes in 4000 series	11.00
TF 16	6	1 amp Bridge Rect.	21.00
TF 17	100	Trancistor pads	11.00
TF 18	20	A/S Fuses 20 mm	11.00
TF 19	10	3A Rect Diodes	51.00
TF 110	2	ORP 12	81.00
TF 111	5	BR 100 DIAC	1.100
TF 112	10	BC1098	21.00
IF 113	10	LC's all difterem	81.00
TF 114	50	BFP 86	81.00
TF 115	12	8 pin DIL sockets	\$1.00
TF 116	20	10 mm Horiz. Preset (10 values)	17.00
TF 117	10	Slide Pots - 3 K all the same	11.00
IF 118	10	Mixed Pots	81.00
TF 119	10	Fead throughs	21,00
TF 120	25	Eloctrolytic Caps	51.00
TF 121	50	Polyester Capi	21.00
TF 122	100	Mixed Resistors Incl. Wire Wound	\$1.00
TF 123	100	Mixed Transistor Hardware	51.00
TF 124	25	5 mm LED clips and rings	51.00
TF 125	10	BC 107	21.00
TF 126	10	BC 108	21.00
TF 127	6	Grean 5mm LED	E1.00
TF 128	${ }^{6}$	Yollow 5 mm LED	81.00
TF 129	150 approx	Mixed nuts/bolts/washers/ self tappar	11.00
TF 130	25	Mixed Electrolytics Axial	21.00
TF 131	25	Mixed Electrolytics Radial	11.00
TF 132	50	Mixed Polyestar Axial	21.00
TF 133	50	Mixed Polyester Radial	51.00
TF 134	15	BC 337	81.00
IF 135	20	500 MA AS 20 mm Fuse	11.00
TF 136	50	Mixed Caramic Discs	11.00
TF 137	50	Mixed Ceramic Plates	81.00
IF 21	200	47 pf 160V Polystone Cap	0200
TF 22	10	LM 3900 N	0200
TF 23	10	Mixed DTL	0200
TF 24	5	4700 mf 25 V Tag Elect $\mathbf{z}^{\prime \prime} \times 1{ }^{\prime \prime}$	0200
TF 25	10	1000 mf 63V Ax Elact	0.00
TF 26	50	. 022 mf 400 V RAD POLY	020
TF 27	10	100 mf 250 V Ax	0200
TF 28	10	2.2 mf 160V Polyester RAD	2200
TF 29	10	VDR's	7200
TF 210	10	Mixed TIL (74 series)	0200
TF 211	${ }^{4}$	$2 \mathrm{~N} 3055 \mathrm{H}(\mathrm{RCA})$	2200
TF 213	200	IN 4151 Diodes	2200
在 214	200	IN 4148 Diodes	22.00
TF 51 TF 52	100	White/Red 5mm LED	25.00
TF 52	50	BC 108C	53.00
TF 54	1/2KG	Reel 22 g ersin multicore	25.00
TF 55	10	$2 \mathrm{~N} 3055 \mathrm{H}(\mathrm{RCA})$	c5.00
IF 56	5	0 CP71	25.00
TF 57	3	$10,000 \mathrm{mf}$ elect VOV Comp. grade	25.00
TF 58	720	1/4W Carbon film IW-10Mw ten values	E5.00
TF 59	25	1,000 mf 25 V Axial	125.00
TF 510	25	1,000 mf 25 V Radial	52.00
ALL PRICES INCLUDE VAT - ALL GOONS BRAND NEW \& NORMALLY OESPATCHED BY RETUAN POST. TERMS: Cesh whth order. POST \& PACKING: Poose odd 75p to total order.			
AG/DG ELEGTRONHS			
COMPONENTS			
DEPT E.E., 45 CHURCH STREET. ENFIELD, MDDLESEX.			

If YOURE CRAFTY, YOURE BOUND TOPCK UPA LOT OF TIPSAT OURSHOW

WEMBLLY CONFERENCE
CENTRE

10-13 JANUARY, 1985
Thursday to Saturday $10 \mathrm{am}-7 \mathrm{pm}$
Sunday 10am-6pm

Whether you're a craftsman creating fine furniture or a beginner making a simple bookshelf, you'll find everything you could possibly need under one roof. See the latest ideas and equipment for woodworking. Talk to the experts about timber and finishes.
\star CRAFT MARKET See the very latest ideas and equipment for woodworking. \star FREE CHRISTIES VALUATIONS Let Christies value your antiques. An expert will be available at the show, so bring along your interesting pieces, or photographs of them, if you prefer.
Admission prices: Adults $£ 2.50$ Children under 16 and Senior Citizens $£ 1.50$. Advanced Party Booking for groups of 20 or more. Adults £2.00 Children £1.00 (Plus one free ticket per 20 sold for the organiser or teacher).

SEE DECEMBER AND JANUARY FOR 50p REDUCTION VOUCHER

Further details from: Practical Woodworking Tickets, Reed Exhibitions, Surrey House. 1 Throwley Way, Sutton, Surrey SMI $4 Q Q$

INDEX TO ADVERTISERS

Henrys Electronics ... 3 T.K. Electronics ... 15

 Othewwise disposed of by way of Trade al more shan ihe recommended sellling price shown on the cover, and that it shall not be
unauthorised cover by way of Trade. or amived to or as part of any publication or advertising. Ilerary or pictorial matter whatsoever

[^0]: 19 MULBERRY WALK LONDON SW3 6DZ TEL: 01.3521897 - TELEX: 918867

[^1]:

 ER1300
 Fig. 1. Models of Hydrogen, Neon and Argon atoms.

[^2]: "Complete set of boards. "Calibrated with C1, VR1 and IC3 fitted. M.I.T.-Microcomputer Interfacing Technlques, 12-Part Series.

