Ey=ivody

 $=c c i r$ind comeuter provechs

DECEMBER 1984

E

> ENFIELD ELECTRONICS 208 Baker Street, Enfield, Middlesex. EN1 3JY. Tel: 01-366 1873

EVERYDAY E ECTRONICS

VOL. 13 No. 12 DECEMBER 1984

PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . POPULAR FEATURES . .

(c) IPC Magezines Limited 1984. Copyright In all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

ALFRED by Alan Green 720
Part Two: Low cost hobby robot
MINI WORKSHOP POWER SUPPLY by William Leung 726
Variable-voltage unit with current limiting
TV AERIAL PRE-AMP by Mark Stuart 737
Improve the performance of your TV reception 748
Part Two: Construction and Testing
DOORCHIME by R. A. Penfold 758
Solid-state unit giving the effect of traditional chimes
SERIES
DIGITAL ELECTRONICS by D. W. Crabtree 732
Part Three: Combinational logic using LSI and MSI devices 740
A new fun outlook on computing
FAULT FINDING by E. A. Rule 756
Part Two: Fault analysis on newly built equipment
FEATURES
EDITORIAL 719
Electronics Educetion; Forum 725
Electronic Scribe: Track Record; Mind Bende
BOOK REVIEWS 730
A selection of recent releases 730
Teach In '84-Pt12; Capacitance Comparator: VIC-20 Light Pen (Circuit Exchange)SHOPTALK by Dave Barrington735
Product news and component buying SQUARE ONE 742
Beginners" Page: Software
EVERYDAY NEWS 743
What's happening in the world of electronics
NEW PRODUCTS 744
Facts and photos of instruments, equipment and tools
SPECIAL OFFER 745
Radio Control Car 746
A retailer comments 755
Clear-Faced Sun; Grey-Line Propagation; Bringing In The Picture
PRINTED CIRCUIT SERVICE 762
INDEX VOLUME 13 763
January 1984 to December 1984

Cirkit.Making it bigger and better.
 Cirkit stock all the
 1-30V 1mA-2A PSU
 Selected Lines

components, accessories and tools and the kits you're looking for. Designed and selected to offer the best possible standards at the best possible price.

Cirkit Kits

CIRKIT ELECTRONICS TOOL KIT
Contains: 15 W Soldering lron 2 spare bits, heat shunt, solder, pliers, cutter. screwdriver
$40-00007 \quad 15.56$
AUDIO FUNCTION GENERATOR
Versatile waveform generator with sine,
triangular and square wave outputs.
On board mains PSU
41-01302 27.00
STEREO 40 W AMPLIFIER
Single board 40 W per channel stereo amplifier

41-01301 38.00
STEREO VUMETER
5 LED per channel stereo VU meter for
use with stereo ampllfiers
41-01401 $\quad 11.50$
5W AUDIO AMP
A very compact audio output stage for use in a wide range of equipment $\quad 41$-01406 $\quad 4.60$
UNIVERSAL AMP
A universal audio pre-amp with a gain of 10

41-01604 6.45
MONOREVERBERATIONUNIT
Single channel, spring line reverb unit
to add echo effects to tape
recording etc.
41-01602 10.00
TONE GENERATOR AND DETECTOR
Very low distortion tone generator
and signal detector for circuit fault
finding
$41.01603 \quad 10.46$
10 MHz DFM
8 Digit LED digital frequency meter
$\begin{array}{llll}\text { and period measurement } & 41-01500 & 54.10\end{array}$ 50 MH 2 PRESCALER
Extend the range of the 10 MHz DFM to 50 MHz
$41.01501 \quad 8.55$
$1-5 \mathrm{MHz}$ PRE AMP
Low frequency pre-amp and wavelorm
shaper for the 10 MHz DFM $\quad 41-01502 \quad 5.13$
70 cm PRE AMP
Low noise. miniature pre-amp for the
70 cm amateur band
$41-01506 \quad 4.78$
70 cm CONVERTER
70 cm to 144 MHz low noise converter leaturing pre-aligned helical lilter, schottly diode mixer and low noise transistors $41.01405 \quad 21.50$

Adjustable 1-30V Power supply with pre-setable $\begin{array}{llll}\text { current limit from } 1 \mathrm{~mA}-2 \mathrm{~A} & 41-01600 & 37.46\end{array}$ 5-12V 1A PSU
Adjustable PSU from $5-12 \mathrm{~V}$ with current protection, 1 amp max output $41-01504 \quad 6.45$ 1.30 V 1.5 A PSU
$1-30$ volt adjustable PSU with protected output up to 1.5 Amps 3DIGIT LED DVM
3DIGTT LEDDVM DVM to read up to 99.9 volts or configured as an ammeter to read up to $9.99 \mathrm{amps} \quad 41-01403 \quad 17.00$ INFRA RED LINK
Single channel IR Link with relay output

41-01300 $\quad 9.60$
Thermistor based temperature sensor
$\begin{array}{lr}\text { with relay output } & \text { 41-01303 } \\ 6.20\end{array}$
LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for
model railways
LAMPDIMMER
Control lamps and drill speed $\quad 41.01305 \quad 5.70$ WATERLEVEL ALARM
Alarm to indicate high water level o
flooding
$41-01601 \quad 2.70$
3 NOTE CHIME
Doorbell chime with adjustable tones
$41-01503 \quad 7.00$
2M PRE AMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band $\quad 41$-01307 $\quad 3.9$ l 2MCONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
band converter
$41-01306 \quad 17.35$
2M POWER AMP
20W - 10dB gain - power amplifier lor the 2 m band. Automatic TX switch over, RX $\begin{array}{llll}\text { pre-amp, robust construction } & 41-01404 & 32.87\end{array}$

[^0]100,50 AND 10KHz
41-00801 CBNOISE SQUELCH
Improves the mute performance of the majority of CB rigs
of the
CENTRONICS INTERFACE
Connect your personal computer to
the outside world via the Centronics
printer output
$41-01406 \quad 22.50$
70 cm PA
10W Power amp to boost the output of handheld and portable 70 cm
handheld and

BBC to Centronics
Connect Cable
Dragon to Centronic
Connect Cable
C12 Computer Cassette
Interface 84 multiplexed
Ram Card
280A industrial controller EPROM Eraser $84 T$
6502 Micro Controller
6802 Micro Controller
$\begin{array}{lll}6802 \text { Micro Controller } & 40-65020 & 54.95 \\ \text { PR2720 } & 40-68020 & 54.95\end{array}$
$\begin{array}{llrr}\text { PB2720 } & \text { 80dB Piezo Buzzer } & 43-27201 & 0.55\end{array}$
10M15A 10.7Center Freq. 20-10152 2.10
10M08AA 10.695 Center Freq. 20-11152 3.49
FC177 LCD (Freq.) 39-17700 20.00
CM161 LCDClock $\quad 40-80161 \quad 8.25$
$8 \times 0.3^{* \prime}$ IC socket $\quad 28-00800 \quad 0.12$
$\begin{array}{llll}8 \times 0.3 & \text { C } \text { socket } & 28-00800 & 0.12 \\ 14 \times 0.3^{\prime \prime} & \text { IC socket } & 28.14000 & 0.13\end{array}$
$\begin{array}{llll}14 \times 0.3^{\prime \prime} & \text { IC socket } & 28-14000 & 0.13 \\ 16 \times 0.3^{\prime \prime} & \text { IC socket } & 28-16000 & 0.13\end{array}$
6 V KUTT-A Relay $\quad 46-800000.48$
$\begin{array}{llll}9 \mathrm{~V} & \text { KUIT-A Relay } & 46-80001 & 0.48 \\ 12 \mathrm{~V} & \text { KUIT-A Relay } & 46-80002 & 0.48\end{array}$
$\begin{array}{llll}\text { CX120P COAXRelay } & 46-90120 & 11.96\end{array}$
CX520D COAX Relay (\mathbb{N} +type) 46-90520 26.98
CX540D COAXRelay (BNC) $\quad 46-90540 \quad 26.98$

HT-320
Multimeter ($20 \mathrm{k} \Omega-\mathrm{V}$) $56-8320 \mathrm{I} \quad 14.00$
Please add 15\% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.
Just send for our catalogue or visit one of our three outlets at:
200 North Service Road, Brentwood, Essex.CM14 4SG; 53 Burfields Road, Portsmouth, Hampshire PO355B: Park Lane, Broxboume, Hertordshire. EN10 7NO ltems in stuck despatched withln 48 hours
To: Cirkit Holdings PLC, Park Lane,
Broxbourne, Hertfordshire. EN10 7NQ.
Ienclose 85p. Please send me your latest
catalogue and 3×51 discount vouchers!
If you have any enquiries please telephone us on Hoddesdon (0992) 4441 II
Name
Address

Telephone

Area of Special Interest
EE12
03-10019 7.25
03-10017 $\quad 7.25$ 21-00012 0.55
0.84000 $\quad 59.95$ $-84000 \quad 59.95$
\qquad

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Every kit includes a constructors' guide covering soldering and component identification which makes construction straightforward even for a beginner.
The Heathkit range contains many kits ideal for beginners as well as amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) leaming courses that have easy-to-understand texts and illustrations, in sections so that you can progress at your own pace, whilst the handson experiments ensure long-term retention of the material covered.
by

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd. P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.

(For shop addresses see back cover.)

You'll be proud to say, "I built it myself!"

BRITAINS No. 1 QUALITY COMPONENT SUPPLIERS SEND FOR LATEST 44 PAGE A-Z LIST FREE
attractive discounts.free postace-good service \& delivery

28 St Jude's Rd, Englefield Green, Egham, Surray TW20 OHB. (0784) 33503 Telex 264475. (CALLERS ONLY) 680 Burnage Lane M/C (O61. 4324945) EV Computing Shop, 700 Burnage Lane, Manchester M19 INA $10614314866)$

Reversible tom 2 to $100 \mu \mathrm{~F}$ Low Leak, Almnm. 0.1.100 H F. Redinal 15 values $1-1000 \mu \mathrm{~F}$, 16 . ${ }^{63 v d c}$
tantalum beads in 18 values trom $0.1-100 \mu \mathrm{~F}$.
$6.3-35 \mathrm{Vdc}$ polysfy
${ }_{39}$ values 5 pF to 160 Vde The above ranges should
meet the melority of current requirements. Mention EE when sending for our latest illustrated A-Z list showing very many more types.

ACCSSS ANB - baclaycaid Phoned Orders Phoned come Welcome 3_{3}

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 - and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like. Return of post subject to availability.

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig-FORTH compatible and it supports the ZX printer.

The price, too, is almost unbelievable. As a "f fit it yourself Eprom", complete with manual, it's just $£ 25+$ VAT.
Add $£ 2$ p\&p UK ($£ 5$ Europe, $£ 10$ outside Europe) and send your order to the address below.

sícymate
 SOFTWARE
 David Husband

73 Curzon Road, Bournemouth, BH 1 4PW, ENGLAND
Tel: (0202) 302385. international +44202302385.

E.E. PROJECT KITS MAGENTA TEACH IN 84

Full Kits inc. PCBs, or veroboard, hard ware, electranics,
ed). Less barteries
If you do not have the issue of E If you do not have the issue of E.E which to order the instruction reprint as an extra - 50 p each. Reprints available separately 50 p each $+\mathrm{D}_{\mathrm{a}} \mathrm{p} 60 \mathrm{p}$.

FLUID DETECTOR NOV. 8 M BBC MICRO AUDIO STORAGE SCOPE ACE Nov. 84 , MULTMETER Nov./Dec 84 PROXIMITY AL ARM Nov. 84
 SCOREBOARD OC1 84 MAINS CABLE DETECTOR OCt 84 MICRO MEMORY S SPECIAL PRICE NOW
 OALL SPEED CONTROLLER OCI, BA
 OP-AMP POWER SUPPLY Sept. 84 SOUND OPERATED FLASH less lead
 CARVAN DIPSTICK Sepe 84
 AUg 84 84 RADIO BOOSTER Aug 84 THERMOSTATIC SEED PROPOGATOR needs 12 V SUPPIY KTTCHEN APPLIANCE TIMER Aug.
 relay + sounder CAPACITANCE COMPARATOR July 89 CAR LIGHTS WARNING JUIV 84 TRAIN WAIT JUNe 84
 CHANNEL SELECTION SWITC VARICAP AM AADIO Moy 84 EXPERIMENTAL POWER SUPPLY SIMPLE LOOP BURGLAR ALARM MASTERMIND TIMER MaY 84

 AUDIO SINEWAVE SWEEP GENERAT FUSE/DIODE CHECKER APr. 84 TIMER MOOULE FOR CENTRAL SYSTEMS APr. 84DIGITAL MULTMETER Mart. 84
REVERSING BLEEPEA MOER DIN LEAD TESTEA Mar. 84
PIPE FINDER Mar
PIPE FINDEA Mar, 84
LOW POWER STEREO AMP M IONISER Fob 84
EPROM PROGRAMMER FAb 84
SIGNAL TRACER FED 84
GUTTAR TUNER JEn 84
BIOLOGICAL AMPLIFIER Jon 84 £19.1 CONTINUITY TESTER DEC 83
CHILDREN'S DISCO LIGHTS Dec 83 NOVEL EGG TIMER Dec 83 inc case SPEECH SYNTHESIZER FOR THE BBC Nov. 83 less cable ${ }^{+}$sockets
MULTIMOO NOV. 83
LONG RANGE CAMERA/FLASHGUN TRIGC Nov. 83 HOME INTERCOM less link wre Oct. $89 \varepsilon 14.38$
IMMERSION HEATER TELL. TALE Oct 83 29.98 SHORT WAVE RADIO less phonet. Oct
83
$\$ 25.63$
 less cable. CAs \& connector
HIGH POWER DAC DRIVER BOARD Oct. 83 iess A TO D CONVERTEA FOR RM $380 Z$ Sept. 83 inc HIGO SPEED A TO D CONVERTEA Sept $833^{\text {Ploss }}$ Cable \& connector
SIGNAL CONDITIONING AMP Sept 837.38
827
 CRO Aug
PEDESTRIAN less EOTwars
CROSSING SIMULATION

E15.38 | BOARD AUC 83 no cese |
| :--- |
| HIGH POWEA INTERFACE BOARD AUg 83 |
| 10 | $\begin{array}{ll}\text { Case } \\ \text { CAR INTRUDER ALARM AUg } 83 & \text { E10.38 } \\ \text { E16.98 }\end{array}$ TEM JIV 83

TRI BOOST GUITAR TONE CONTROLLER JUl
83

EB, 35 USER PORT IO BOARD less cable | Plug |
| :--- |
| USER PORT CONTROL BOARD Juty |
| 183 less |
| $\$ 25.14$ | Cable + DIUQ + case

BINARY BANOIT GAME July 83 less case 89.188

REAL TIME CLOCK May 83 less sotware and Apple II E33 98
MODEL TRAIN CONTROLLER May 83
B3
E27.1 GUTTAR HEADPHONE AMPLIFIER May $83 E 7.92$ MW PA HEADPHONE AMPLIFIER MOISTURE DETECTOR May 83 CAR RADIO POWER BOOSTER UNCTION GENERATOM April B3 NOVELT EGG TIMER ADRII April 83
$2 X$ Iess
$2 X$ SPECTMUM AMPLFER 2X SPECTRUM AMPLIFER AFril 83 BUZZ OFF March 83 SPEECH PROCESSOR FEG. 23 USH BIKE ALARM Feb. 83
OUBLE DICE Jan. 83 ELECTRONIC V/I METER Dec 82 2X TAPE CONTROL Nov. $B 2$ G. P. PRE-AMP Oct. 82 IGHTS ON ALERT OCt 82 CONTINUITY CHECKER Sept 82 SOUND SPLITTER Sept 82 SOUND RECOMBINEA SERR 82
SCREEN WASH DELAY CB ROGER BLEEPER Aug 82 2. WAY INTERCOM July 82 no case
ELECTRONIC PITCH PIPE July 82 ELECTRONIC PITCH PIPE July 82 REFLEX TESTER July 82 SEAT BELT REMINDER Jun 82 GG LIMED VOLTMET V.C.O. SOUND EFFECTS UNIT. May 82 E3. C.O. SO OR FIASH CU UIT Apr. 82 £12.71 E1365 less tripod bushes OCKET TIMER Mar. 82 GUITAR TUNER MOI. 82
SIMPLE STABILLSED POWER SUPPLY
MINI EGG TIMER. Jan 82 SIREN MODULE Jan 82 less speake SIMPLE INFRA RED REMOTE
Nov. 81 NCE METER OCt. 81 CAPACITANCE METER OCt
SUSTAIN UNIT OCt. 81 SUSTAIN UNIT Oct 81
APE NOISE AND TAILS GAME OI CONTINUTTY TESTER OCt 81 PHOTO FLASH SLAVE OCt 81 FUzZ $80 x$ Oct. 81
SOIL MOISTURE UNIT OCt 81 CE ALARM OCt. 81
-12V POWER SUPPLY Sept. 81
CMOS CAR SECURITY ALARM SeDe CMOS DIE Sept 81
CMOS METRONOME Aug 81
COMBINATION LOCX July 81 less case SOIL MOISTURE INDICATOR E.E. Mav81 GUTTAR HEADPHONE AMP EEE. MaV 8
INTERCOM April 81
SIMPLE TRANSISTOR \& OIODE TESTERS Led version
Led version
MODULATED TONE DOORBELL Mar. 2 NOTE DOOR CHIME DeC BO
LIVE WIRE GAME DOC 80
GUITAR PRACTICE AMPLIFIER Nov. 80 UUITAR less case Standard case Nov. 80 SOUND TO LIGHT Nov, 803 channel TRANSISTOR TESTER NOV. 80 AUDIO EFFECTS UNIT FOR WEIRD S IRON HEAT CONTROL OCT. 80
TII LOGIC PROBE Sepe 80
ZENER DIODE TESTER JUN, 80
IGHTS WARNING SYSTEM MaY 80 BATEERY VOLTAGE MONITOR MaY 80

KITCHEN TIMER Mar. BO
MICRO MUSIC BOX FEO. BO
SLIOERTAPE SYNCMRONISER FED 80
MORSE PRACTICE OSCILLATOR Feb. UNBBOARD BURGLAR ALARM DeC. 79 DARKROOM TIMER JUlY 79
ELECTRONIC CANARY JUN. 7
TRANSISTOR TESTER Apr. 79
MICROCHIME OOORBELL
FUSE CHECKER Sept. 78
SOUND TO LIGHT Sept 78

CAR BATTERY STATE INDICATOR	$\mathbf{£ 2} 54$
9.20	

Sept 78
R.F. SIGNaL GENERATOR Sept 78
IN SITU TRANSISTOR TESTER JUN. 78
FLASHMETER less calc a diffuse
78 WEIRD SOUND EFFECTS GENERATO
AUDIO VISUAL METRONOME Jan 78 ELECIRONIC TOUCH SWITCH Jan $78 \quad$ E2 99 RAPIO DIOOE CHECK Jan. 78
PHONE/DOORBELL REPEATER Juhy 77
89.20 $\begin{aligned} & 63.15 \\ & 89\end{aligned}$ ELECTRONIC DICE Mar. 7

MAGENTA ELECTRONICS LTD.
EE23, 135 HUNTER ST., ADD GOP P\&P TO ALL ORDERS.
BURTON-ON-TRENT
STAFFS, DE14 2ST.
MAIL ORDER ONLY 0283 65435, Mon-Fri 9-5. Access/Barclaycard (Visa) by phone or post
24, hr
orders.

SAE AI ELUOE VA.
SAE ALL ENQUIRIES.
OFFICIAL ORDERS WELCOME
OFFICIAL ORDERS WELCOME
OVERSEAS: PEYment must be sterling
IRISH REPUBLIC and BFPO: UK PRICE EURHOPE; UK PRRCES plus 10%
ELSEWHERE: write for quote card

Whut artano Y/.4

MAGENTA'S TEACH IN KIT INCLUDES ALL OF THESE TOP ${ }^{\star}$ * QUALITY ITEMS: resistors, pot, capacitors, semiconductors, * * varicap diode, leds, ferrite rod, sockets, crystal earpiece, termi- \# \star nal blocks, wire and of course 2 breadboards. PLUS A FREE * COMPONENTIDENTIFICATION SHEET AND A COPY OF OUR - CATALOGUE \& PRICE LIST. AVAILABLE NOW - TEACH IN 84 KIT. £22.98 inc VAT. P + P 60p. Send now for fast delivery. * Reprints of previously published parts 50 p each. Official * school/college orders welcome.

SOLDERING/TOOLS

SOIDERING IRON STAND

SOLDERING IRON STAND
SPARE EITS. Small, standard each For $\times 5+\times 25$, SOLDER. Handy siz
SOLDER CARTON DESOLDER BRAID HEAT SINK TWEEZERS HOW TO SOLDER LEAFL LOW COST CUTTERS
LOW COST LONG NOSE PLIERS IRE STRIPPERS \& CUTTERS

PRECISIO NRIL
ORILL STAND
VERO SPOT FACE CUTTER
PIN INSERTION TOOL VEROPINS (pk of 100) ${ }^{2} 1$ MULTMETER TYPE 1 (1,000 OPV) With 20 dips CK TYPE ED. 1
COOUTS MLUMINATED MAGNIFIERS
Small ${ }^{2}$ dia. ($5 \times$ mag)
Large
3 CORE TRIM TOOL
PRESET TRIM TOOL
FREEZER AEROSOL
FAEEZER AEROSOL
CONTACT CLEANER AEROSOL
CONTACT CLEANER AEROSOL
ELECOLIT CONDUCTVE PAINT
CIRCUIT TESTER
SCREWDRIVER SET
POCKET TOOL SET
POCKET TOOL SET
PCB ETCHING KIT
2X81 EDGE CONNECTOR
ZX SPECTRUM EDGE CONNECTO CRYSTAL EAR PIECE EUROBREADBOARD PLASTIC TWEEZER

DIY ROBOTICS AND SENSORS

DIY ROBOTICS \& SENSOAS BOOKS - with BBC 87.95 ; for the Commodore 6487.99
Components used in these books are in our
catalogue/price list. Catalogue 1 1. Price list onty cole
SAA 1027 driver $55.99 ; 8$ way darlington driver
(ULN2803) $2.38 ;$ TLO日1 $49 p_{\text {p }}$
ID35 STEPPER MOTOR, 48 Steps. 12 V . $£ 13.50$ OC MOTOR. $6-12 \mathrm{~V}$. Goad torque. Mounting

BBC TO 1035 STEPPER MOTOR INTERFACE
KKT
PCB, ariver IC, components. connectors 813 leads
included. Demonstration software listings, cirincluded. Demonstration software listings, cir
cuit diapram. pct lavout \& consiruction detai
given. Requires unregulated 12 V dc power supply
INTERFACE KTT (ref EE) $£ 13.99$
OPTIONAL POWER SUPPLY PARTS $£ 4.6$

COMPUTER ACCESSORIES

BBC TRACKBALL CONTROLLER. 2 ball. 2 fite
butons Analogue inout pon connector. $E 17$ s BBC DIGITAL JOYSTICK. 2 fire buttons 0 plug B8C DIGITAL JOVSTICK, 2 fire buttons 0 plus
connects to analogue inpur. ${ }_{36}$ BBC PFINTER LEAD. Contronics. 2 metres. ${ }_{\text {F9.98 }}^{26}$ COMPUTER CASSETTE PLAYER. Mains \log bit ter. Auto stop. Tape counter. Audibe monhor
ing during record \& playback Full remote

MULTIMETEA TYPE 2. (YN360TR) 2OK Q.p.V $\begin{aligned} & \text { with transistor tester, } \\ & A C\end{aligned}+$ DC volts DC eurrent. 4 very useful resis $\mathrm{AC}+\mathrm{DC}$ volts DC current. 4 very usetul
tance ranges We've used it and we like h.

PAIR OF PROBES WITH LEADS (oc MINIATURE VICE (Plastic)
BENT NOSE PLIERS

$t \rightarrow+t \rightarrow+\rightarrow+t+t$

NEW FOR 84/85
ELECTRONICS CATALOGUE

Abstract

Fully revised catalogue. Bries details of esen scription of eurs, and iliustrations and de nonte are all included. Plus circutt idess for you to bulid.

Up to date price list enciosed.
Price list included with orders or send sae
(9×4). All products are stock lines for fast deliven Make sure of your copy today

Free to schools/colleges requested on officia letterhead.
phices include vat

ADVENTURES WITH ELEGTRONIGS By Tom

 three radios, siren, metronome organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.Adventures with Electronics $£ 2.98$. Component pack $£ 20.98$ less battery.

EVERYDAY and computer Projects

VOL. 13 NO. 12 DECEMBER 1984

Edito

MIKE KENWARD
Secretary
PAULINE MITCHELL
Consultant Editor
FRED BENNETT
Assistant Editors
DAVE BARRINGTON (Production)
DAVID SHORTLAND (Technical)
Technical Editor
MIKE ABBOTT
Projects Editor
DAVID BRUNSKILL
Technical Sub-Editors
RICHARD BARRON
BRIAN BUTLER

Art Editor

JACK POUNTNEY
Assistant Art Editor
KEITH WOODRUFF
Senior Technical Illustrator
JOHN PICKERING
Techinical lllustrator
ISABELLE GREENAWAY

Editorial Offices

EVERYDAY ELECTRONICS EDITORIAL
WESTOVER HOUSE
WEST QUAY ROAD, POOLE, DORSET BH15 1JG
Phone: Poole (O202) 671191
We regret that lengthy technical enquiries
cannot be answered over the telephone
Advertisement Manager
DAVID TILLEARD 01-2616676
Secretary
CHRISTINE POCKNELL 01-2616676
Advertisement Sales Executive
RICHARD WILLETT 01-2616819
Classified Supervisor
BARBARA BLAKE 01-2615897
Advert Make-Up and Copy Department
JULIEFISH O1-2616615

Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS
KING'S REACH TOWER
STAMFORD STREET
LONDON SE1 9LS
Telex 915748 MAGDIV-G

WITH O/A level and college courses starting to peak again we note the increase in our postbag for information on certain projects or requests for p.c.b. and component supply. It is worrying to us that many requests made show a complete lack of understanding of the subject being dealt with, which does not lead one to have confidence in the future of high technology related industries in the UK.

Sad to say that as a nation we appear to have progressed little from my school days in the early sixties when the most we were taught was basic electricity and perhaps ohms law at ' O ' level. Even the introduction of electronics as a recognised GCE subject has not brought forth floods of new recruit apprentices with a basic understanding of the subject. This is probably due to the fact that we have yet to train teachers in electronic theory and constructional techniques. Once again we have had no coherent policy to implement a new subject; 'a policy which should have been rooted in the development of electronics in the sixties, not twenty years later.

Of course it is easy to criticise with hindsight, but we must take urgent steps to overcome the problems now. I am sure that in many secondary schools students of electronics and computing are dragging their teaching staff into the eighties. My sympathy is with those staff members who have probably been forced to take a subject completely alien to their academic upbringing, staff that have to learn with their students, staff that have been illprepared for such subjects by the training colleges they attended.

During my days at school I knew the science master could not help me with the valve amplifier that failed to function or the transistor radio that oscillated, but modern youth should be able to call on such abilities from their tutors. The system has failed the students and the teachers.

We must put it right quickly. We must never go back to being a nation of shopkeepers, selling the world's high technology products. We must make sure that, while we interest our offspring in 'playing' with high technology product we also fire in them the search for understanding of the technology involved. Only with that interest, that investigative quest, that thirst for knowledge and the inventiveness it generates will our future in the progressive world be assured.
I hope that by publishing our various courses on electronics in EEcourses that have been running since 1971-we are playing our part in assisting the education of all students of electronics, be they teachers or pupils.

FORUM

Should there be any area where you feel we can do more, or should you simply wish to express a view on this subject, please write to EE. We would like our pages to provide a forum on electronics education which will hopefully benefit everyone.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped seff-addressed envelope or international reply coupons.

We cannot undertake to engage in lengthy discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for bullding the projects featured in EVERYDAY ELECTRONICS, bu: these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press

Back Issues
Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.
Binders
Binders to hold one volume (12 issues) are avallable from the above address for $£ 4.60$ inclusive of postage and packing worldwide. Please state which Volume.
Subscriptions
Annual subscription for delivery direct to any address in the UK: $£ 12.00$. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

THIs month we take a look at the way in which Alfred's lower arm is assembled; that is, the revolving carriage with its four servomotors, and the fifth servomotor concealed within the base to provide rotation. Also we reveal the circuit diagram of the interface, along with the p.c.b. and its component layout.

CARRIAGE AND BASE UNIT

The carriage gear assembly is illustrated in Fig. 2.1. The exact 'nuts and bolts' details are not given here because these will depend upon the mouldings supplied with the kit. Indeed, the use of new 'snap together' moulded gear/pulley mouldings has greatly simplified the assembly procedure of Alfred's wrist over and above that described in Part One.

Alfred's carriage revolves on a sturdy ball-race. The carriage itself comprises two metal ' H ' pieces held at a fixed distance from each other by two alloy crossmembers, one of which is fixed to the ball-race. (See photographs.)

The printed circuit board mounts on four spacers inside the base unit. The board incorporates voltage regulators but no PSU proper, therefore it requires an unregulated low voltage ($9-12 \mathrm{~V}$ d.c.) supply. All connections to the board are made directly via p.c. mounted connectors. There are no plugs or sockets mounted on Alfred's metalwork.

INTERFACE

A block diagram of the interface electronics is shown in Fig. 2.2. The servomotors are driven in very similar fashion to that of radio control, in which pulse width defines servo position. Very often, when servomotors are used in a robot interface, linear circuitry is used to compare voltages generated by a DAC and the potentiometer within the servomotor unit to generate an error signal. Alfred's system is entirely digital and uses the servo's feedback potentiometer to generate a pulse of duration proportional to the servomotor's position. The error signal generating circuit and motor driver is incorporated in the servomotor housing so that the motor will automatically run in the right direction until the error signal is cancelled. All Alfred's interface board has to do is provide the motor units with pulses of width representing the positions selected by the user, through the controlling computer. RAM is needed to store the selected position for each axis.

You will notice that Alfred's gripper is likewise under this proportional control so that it may be fully opened, closed, or set partially to any position.
The full circuit diagram is shown in Fig. 2.3. Data is latched in to the 16 bytes of RAM (two 4 -bit 40114 s in parallel) to represent the position of each axis, these being divided into numerical positions in the range 1 to 255 . Counting circuitry is used to cycle through the axes and generate the correct pulse widths for delivery to the servomotors themselves. An 8 MHz crystal controlled clock signal is divided down to 800 kHz and the counter outputs are used as one input arm to the comparator formed by IC11 and IC12. The 8 -bit addressable latch, IC15, signals the servo's with pulses made up of ten microsecond steps, and set approximately 20 ms apart. The nominal, or midway pulse, representing 128 numerically, is about 1.5 ms in length.

The interface has a number of additional facilities; for example, there are eight servo lines which means two are

Fig. 2.1. Carriage gear assembly showing location of the elbow, wrist and shoulder elevation servomotors together with the wrist rotation servo.

COMPONENTS

Diodes

D1
1N4148

Miscellaneous
XLI

8 MHz crystal (HC18/U can) PL1 20-way right-arigle header (F145-028) PL2 5-way angle plug 5-way angle
(MS 1378) PL4 4-way pin header (MS 1605
PL5-10
8-way pin header
(MS 1608) (6 off) Wire wrap pin 1/100 (RS 434 093)

Sockets 16 -pin d.i.l. (12 off) 14-pin di.i. (3 off) 24 s.w.g. tinned copper wire P.c.b.

AIFPED CARRIAGE CONSTRUCTION

Fig. 2.6. Printed circuit board component layout. (P.c.b. copyright Robot City Technology Ltd.)
spare since Alfred only needs six of them. Also there are three spare control bits available at IC4. At IC5 there are four spare input bits and these, along with the other spare controls, will find applications in Alfred's planned mobile base, vision system and other add-ons.

PRINTED CIRCUIT BOARD

Construction of the printed circuit board is straightforward (see Figs. 2.4, 2.5 and 2.6). The order in which components are soldered is unimportant since i.c. sockets are used throughout. The i.c.s should be inserted last of all, after the board has been powered up to check that the supply voltages are correct. Take the usual precautions when handling the CMOS devices, and watch out for the polarity of i.c.s and tantalum bead capacitors. Also do not forget to solder the top-sides of components where necessary.

Note that if you intend to order the complete kit of parts from RCT you will receive a built and tested p.c.b.

NEXT MONTH: we describe some very useful and convenient-to-use software for Alfred that allows his movements to be programmed and edited. Also, full details of how to order a complete Alfred Kit.

FOR YOUR ENTERTAINMIENT
 BY BARRY FOX

Electronic Scribe

We hear a lot about computer literacy in schools. We are breeding a generation which is as at home with keyboard and screen, as pen and paper.

This may not necessarily be a good thing. Several journalists I know are now using a portable computer with solid-state memory instead of pen and paper to make notes at press conferences. Although I own this equipment, and use it to send articles by electronic mail from abroad, I reckon there is still no substitute for pen or pencil and a wire-bound notebook.

I defy anyone to type as quickly as they can scribble, and think while they are doing $i t$. The silent keyboards on these portables just aren't silent. They run out of memory and eat expensive batteries.

If the world had begun with portable battery powered computers and solid-state memory, we would now be heralding the invention of paper notebooks as a major breakthrough. No computer can give faster access than flipping through the pages of a notebook.
You save data by tearing out a page and keeping it; and erase data by tearing out a page and throwing it away. If you regret erasing something, you just rummage through the rubbish bin. If you run out of memory space, you can write on the backs of the paper pages or up the side margins. If a pencil breaks, you sharpen it.
cannot remember the names of the people involved in an obscure case from donkey's years ago. So they have to search by tort.

Usually the only text stored is the judge's decision. Unfortunately, some judges have a warped sense of humour, which in this context is proving to be decidedly unfunny. Sometimes they refuse to use the standard legal jargon, and coin a new word of their own. So a search by normal keywords will fail to find the precedent.

Exactly the same thing will happen in the future If scientlfic discoveries are described in new words which the researcher has coined. Anyone writing a research report should think about this kind of problem now, because what you write today will end up in a data base of the future. No-one will have time to vet the text retrospectively, to make sure it includes logical keywords.

Track Record

If you are browsing in hi fi shops you may see an odd-looking turntable from NAD, the Massachusetts hi fi firm. NAD modestly called it L'GAT, the last great analogue turntable.

Although not too popular with hi fi buffs it has an interesting history. It was designed in Czechoslovakia, analysed by a Boston think-tank, refined by a German
designer living in America and is being manufactured by the Tesla factory at Litovel, Czechoslovakia. The production tools were made in Yorkshire. And the technology in L'GAT is as confusing as its pedigree.

All hi fi gramophone designers face the same problem. The pick-up stylus must faithfully track groove undulatlons which are smaller than the wavelength of light. To stop the turntable behaving like a seismograph, it Is suspended on isolating springs. But these have a natural resonant frequency and if it matches a natural resonance of the pick-up arm, there is a disastrous amplification of background noise.

To be really effective the turntable suspension should have a very low reonance, around 4 Hz . The arm resonance varies with the compliance, or springiness, of the pick-up cartridge which the hi fi enthusiast fits. With bad luck the resonances match and interact.

Traditionally hi fi designers have used a rigid tube as the pick-up arm, to curb flexing. But good tubular arms are very expensive. In Czechoslovakia, where there's not much exotic hi fi avallable, enthusiast Jiri Janda designed a budget alternative. He used a thin flat arm that is laterally stiff but vertically flexible.
In Boston NAD came up with a sprung counterweight that can be adjusted to cancel the vertical resonance of the arm. The owner uses a calibration record supplied by NAD to fine tune the arm to a chosen cartridge.

L'GAT is being made by Tesla in Czechoslovakia which, says NAD. makes it the first East-West collaboration on a consumer electronics product. L'GAT costs $£ 100$, which is quarter the price of the best hi fi turntable. Audio experts are suspicious of the design theory.

Password

The British Library has woken up to the risk of training children in computer skills, but not following through with the necessary re-education on how to store and access data. The BL met recently with the American National Commission on Libraries and both bodies are now lobbying their governments to fadopt a completaly new approach to the school curriculum.
The libraries claim that knowing how to access a data base efficiently, instead of searching through paper, can double productivity. The obvious snag, of course, is that you have to know how to search a computer data base, rather than go to the library and take books off the shelves.

The hidden snag is that data base searching is by keyword. Even a seminal artlcle will be lost forever in a digital memory If it does not contain a keyword that future searchers are likely to use.

But in true chicken and egg situation, the searchers cannot know what the crucial keywords are, without seeing the text. Journallsts, scientists and academics will have to learn to use several obvious keywords, at least once, in each new text they wrlte.

The legal profession already knows some of the pitfalls to its cost. It already has avallable a data base of legal precedents, for instance, who sued who over what tort and who won and lost.
The data base can be accessed by keywords, like name of the litigants or the legal tort at issue. Often, of course, lawyers

Mind Bender

Earlier this year I was in Chicago for the Consumer Electronic Show (see October 1984 issue). Atari were drawing crowds and generating press and TV coverage with a very odd new video game.

The crowds round the Atari stand were queueing to play "Mindlink", Atari's new video game gimmick. Chicago television ran a news item on Mindlink; the Wall Street Journal wrote a report. I did not like what I saw.

Mindlink is a thick black band which clamps with Velcro touch-and-close fasteners round your forehead. A wire from the band plugs into an Atari video games unit, with some extra control software. The Mindlink system will sell at around 80 dollars and according to the Atari brochure "sends electronic impulses from your mind to your computer".

The demonstrator at Chicago, who claimed also to be the designer, said it worked by "EMG or electromylography". Atari's brochure says Mindlink "looks like magic, but works by relaxation" and lets users control their Atari video game "by the power of your mind alone".

What you do is look at the screen, pucker your forehead or eyebrows, and watch the graphics move as if under joystick control. This says Atari's literature "can reduce stress with biofeedback programs".

Under Pressure

Frankly, I doubted that Mindlink worked as claimed. So I queued to play the game and then, while the demonstrator was not looking, took off the headband and fiddled around with it. Inside the band there are metal pads on soft squashy mounts. I found that if I put my hand across the metal pads, presumably to make electrical contact through my skin, and then squashed the mounts, the graphic pictures on screen dutifully moved.
At this point the demonstrator saw what I was doing and tetchily demanded that I stop. I suggested to him that Mindlink worked by straightforward electrical contact and mechanical pressure, rather than power of mind alone.

The demonstrator-designer vehemently denied this and promised to send full details, including patents, to prove that Mindlink works by sensing electronic impulses from the brain. Obviously the Wall Street Journal was convinced because its reporters wrote "positive and negative impulses from muscles in the forehead 'tell' the computer to move a playing figure . .:"

Despite reminders, I still have heard nothing from Atari and await with interest any attempt by the company to launch the product in Britain with a technical description as exotic as that spouted in Chicago.

MInI WORKSHOP POWER SUPPLY

WILLIAM LEUNG

A variable-voltage power supply is a basic requirement for the home constructor. This design offers output continuously variable from 3 to 30 V , with built-in current limiting at 550 mA .

THIS POWER SUPPLY UNIT is relatively cheap to build, and allows continuously adjustable output up to 30 V , with current limiting. This means that the power supply is short-circuit protecteda useful feature. Thermal overload protection is also included.

The panel meter is switchable to read from 0 to 30 V output, or 0 to 10 V ; alternatively, current can be measured on a scale from 0 to 1 A .

THE CIRCUIT

The mains voltage is stepped down by transformer TI to about 30 volts a.c. when both the secondary windings are connected in series. This is fed into the bridge rectifier REC1 which converts the alternating current into a pulsating direct current. See Fig. 1. Capacitor Cl smoothes out the pulses to give a nominal voltage of about 42 volts d.c.

The heart of the project is IC1, a 5terminal adjustable voltage and current regulator, the output voltage of which is determined by the resistance of VR1:

$$
\mathrm{V}_{\text {out }}=2.77\left(1+\frac{\mathrm{VR} 1}{\mathrm{R} 2}\right) \text { voits }
$$

Hence it can be seen that the higher the resistance of VR1, the higher the output voltage.

CURRENT LIMITING

The regulator features overload protection in the form of current limiting. To explain what current limiting is, an example is probably best. Suppose the output of the regulator was limited to a maximum of 500 mA , and it was set to deliver 10 volts into a 100 ohm resistive load. By applying Ohm's Law:

$$
\begin{aligned}
V & =I \times R \\
10 & =I \times 100
\end{aligned}
$$

therefore $I=0.1 \mathrm{~A}$ or 100 mA flows through the resistive load.

Now suppose that the load is changed to 5 ohms, then theoretically the current
flowing through this load would be:

$$
\begin{aligned}
V & =I \times R \\
10 & =I \times 5
\end{aligned}
$$

therefore $I=2 \mathrm{~A}$. However, because the maximum current allowed by the regulator is 500 mA , the current which is actually delivered is in fact the preset 500 mA . Hence the voltage across the load is:

$$
\begin{aligned}
& \mathbf{V}=\mathbf{I} \times \mathbf{R} \\
& \mathbf{V}=0.5 \times 5
\end{aligned}
$$

therefore $\mathrm{V}=2.5$ volts and not 10 volts as set. Referring back to Fig. 1, the combined value of R1a and RIb governs the maximum current which can be drawn from the power supply.

LIMITATIONS

Although the L200 regulator is capable of handling up to 2 amps as stated in the manufacturers' data sheets,
it is not however capable of delivering 2 amps over the entire range from 3 to 30 volts output for a given input voltage (e.g. 40 volts) into the regulator. (Likewise with any other similar voltage regulator.)

Even for 500 mA flowing through the regulator, the maximum recommended voltage drop across the L200 according to the manufacturer's data sheet is about 25 volts for the regulator to operate properly. For our purposes, in order to cover the full 3 to 30 volts output at around 500 mA , the input voltage would have to be at least 33 volts to cater for the maximum output voltage of 30 volts. At the other end of the scale, at 3 volts output delivering 500 mA for the 33 volts input, there would be a voltage drop of about 30 volts across the regulator which obviously exceeds the maximum recommended value for the given current. However, the heat dissipated within the regulator will then cause the thermal

overload protection to trip in and thus shut down the regulator.

THERMAL PROTECTION

The remaining parts of the circuit are there to serve two inter-related purposes. The first is to solve the above problem by ensuring that at whatever output voltage, the voltage drop across the regulator will be around 4 to 4.4 volts. At such a low voltage drop across the regulator, the maximum dissipation which IC1 will experience is about 2.5 watts which can be handled quite easily. Hence IC1 does not require a large heatsink as most of the work in dissipating the heat is done by the series connected power transistor TR1.

This also means that the voltage reference at pin 4 of IC1 is unlikely to drift, causing the output voltage to drift in proportion, due to the excessive heat which 1 Cl would otherwise have had to deal with. Secondly, there is less likelihood of the regulator being damaged by an excessive voltage at its input when operating at 30 volts output. (The maximum continuous voltage input is 40 volts for the L200.)

The circuitry involved in carrying out the above task is fairly simple. D2, D3, TR3 and R3 form a simple constant current generator, whereby a constant current of about 3 mA appears at the collector of TR3. This is sufficient to drive the Darlington configured pair TR 1 and TR2 in addition to providing a suitable bias current for the Zener diode D1.

Because of the action of D1, the collector of TR3 will always be about 5.6 volts above the positive output terminal; and if the voltage difference between the base of TR2 and the emitter of TR1 is around 1.2 volts, then the input of IC1 will be about 4.4 volts $(5.6-1.2=4.4)$ above the positive output terminal.

construction

PRINTED CIRCUIT BOARD

Begin construction with the printed circuit board. See Figs. 2 and 3. Remember to insert the link, and to use Veropins for
"off board" connections. For the current limiting resistor(s), two O $\Omega 33$ wirewound resistors in series can be used. If these are unobtainable, then a single $O \Omega 68$ will suffice, with a link bridging the points where the other resistor would have gone. When inserting the semiconductors, make sure that they are fitted the correct way round, the same applying to the two electrolytic capacitors.

Once the circuit board has been completed, a suitable heatsink can be fitted to IC1 with a mounting kit smeared with heatsink compound.

METERING BOARD

For the specified panel meter, the two holes drilled in the board are correctly spaced for fixing to the terminals on the rear of the meter. Once the holes have been drilled and checked to see that they will actually fit onto the terminals, make the appropriate breaks and linking together of neighbouring tracks as illustrated in Fig. 4. Depending on whether

R1 consists of a single 0.68 ohm or two 0.33 -ohm resistors, the value of R10 should be chosen to be either 2 k 7 or 2 k 4 , respectively.

PANEL METER

With the specified panel meter, unclip the acrylic cover and carefully remove the two screws holding the faceplate in position. To add the "customised" scale, simply stick a white self-adhesive label over the original faceplate. (You should still just be able to make out the original scale markings beneath the label.) Then using a scalpel or something similar, carefully cut out as closely and as neatly as possible, the curved strip to reveal the graduations of the original scale underneath.

Once having done this, all that is now necessary is to use dry transfers to make up the new scale, and then to refit the revised faceplate and cover. Details of the customised scale used can be seen from the photograph. Finally, check that the meter movement is not obstructed.

HARDWARE

The case is a simple and inexpensive aluminium box of two "U"-shape pieces (150 mm width, 100 mm depth, 75 mm high). For this case, the appropriate mounting holes for the front panel should be drilled as detailed in Fig. 5. If a panel meter other than the recommended one is used, and has a face larger than 50 mm width by 45 mm high, it will be necessary to alter the mounting positions of VRI and S3 to allow for the same finger room between the control knob for VR1 and the panel meter.

The mounting position of the main circuit board, transformer and the rubber feet are shown in the final photograph.

Once all the appropriate holes have been drilled, including a suitable hole for passing the connecting leads from the power transistor TRI to the main circuit board, follow the wiring diagram (Fig. 6) to complete the project. It is advisable to start with the "mains" potential wiring through to the main circuit board and finally the metering board. TR1 was mounted on the heatsink with a mounting kit smeared with heatsink compound.

The earth tag is connected to the case by fixing it to the nearby bolt which also fixes a rubber foot in place.

From the photograph of the inside of the power supply, it can be seen that the interconnecting leads are longer than actually necessary, so as to facilitate in the partial removal of the boards without having first to de-solder several leads from the board.

TESTING

Having completed all construction, recheck all interconnections paying particular attention to the mains wiring and to power transistor TR 1. If satisfied, turn VRI fully anti-clockwise, all internal presets fully clockwise and the "meter" switch set to VOLTS. Then connect a multimeter set to measure volts to the

Fig. 2. Component layout.

Fig. 3. Printed circuit board design.
output terminal posts and switch on the power supply. LP1 should light up and the output voltage should be of the order of 2.7 to 3 volts, the panel meter reading slightly lower. If anything but this is obtained, immediately switch off the power and re-check your construction.

If all is well at this point, then slowly turn the voltage up by turning VR1
clockwise. The output voltage at fully clockwise position must NOT be greater than 34 volts, otherwise, damage to ICI may result due to an excessive input voltage. To reduce the maximum capable output voltage, simply solder a resistor of around 100 k across the two pins on VR1 which should already have connecting leads coming off them.

Fig. 4. Drilling details and component layout for matrix stripboard.

COMOONENTS

Resistors
-R1a,b OR33 (OR68) (2 (1) off) 1 watt wirewound
R2 820 R7 120k
R3 220 R8 270 k R4 180 R10 $2 k 4$ (2k7)
R5 15k R9 220

All $\frac{1}{2} W$ carbon $\pm 5 \%$ except R1

Potentiometers

VR1 10k linear
VR2,3 47k (horizontal) sub miniature carbon preset (2 off)
VR4 1 k (horizontal) sub
miniature carbon preset preset

Capacitors

C1 $2200 \mu / 63 \mathrm{~V}$ axial electrolytic
C2 $1 \mu / 63 \mathrm{~V}$ radial electrolytic
C3 100 n polyester

Semiconductors

D1 BZY88C5V6 400 mW Zener diode
D2-5 1 N4148 signal diode (4 off)
D6 1 N4002 rectifier diode
REC1 W04 bridge rectifier
TR1 2N3055 transistor (non)
TR2 BD139 transistor (npn)
TR3 BC556 transistor (pmp)
TR4 BC546 transistor (npn)
IC1 L200 voltage regulator

Miscellaneous

T1 25VA: 0-15V, 0-15V transformer
S1,2 d.p.d.t. miniature toggle switch (2 off)
S3 push-to-make switch
ME1 $100 \mu \mathrm{~A}(3 \mathrm{k} 5)$ panel meter (ALTAI)
LP1 mains neon indicator aluminium box (2B12), terminal posts (red, black, green), knob (VR1), heatsink for TR $1\left(4^{\circ} \mathrm{C} / \mathrm{W}\right)$. heatsink for $\mathrm{IC} 1\left(17^{\circ} \mathrm{C} / \mathrm{W}\right)$, main printed circuit board, Veroboard (10 strips of 24 holes), TO3 mounting kit, TO220 mounting kit, rubber feet (4), cable grommet, plus cable and mounting hardware.

Approx. cost
 Guidance only
 £25

Fig. 5. Front panel dimensions.

Once it is established that the desired voltage coverage is possible, then reconnect the multimeter to measure the input voltage of IC1 (connections to 0 V terminal and the Veropin next to C2). Depending on the setting of VR1, the output voltage should be within the range 7 to 38 volts.

If all is still well, at this point, with VR1 fully anti-clockwise, connect the 10 ohm test resistor across the output terminals with a multimeter set on volts connected across the resistor. Advance VR1 slowly and at about 5.5 to 6 volts, however further VR1 is advanced, the voltage reading should remain constant. TR1 should also start warming up. If TR2 starts heating up, then switch off power immediately and check the connection between TR1 collector and the circuit board. (TR2 will probably need replacing.)

If no problems are experienced, then this test shows that the current limiting is working satisfactorily. If the value of the constant voltage obtained is significantly different from the value already mentioned, re-check your wiring and the physical condition of the current limiting resistor(s).

METER CALIBRATION

With the "meter" switch set to VOLTS and a multimeter connected across the output terminal posts set also to measure the voltage, adjust VR3 until the output voltage corresponds to the reading obtained on the upper scale of the panel meter. Next, ensuring that the output voltage is less than 10 volts, hold PB1 down and at the same time, adjust VR2 to calibrate the lower scale of the panel meter with the actual output voltage.

Finally, change the "meter" switch over to AMPS and with VR1 fully anti-

Photograph showing the internal wiring of the Mini Workshop Power Supply unit. Note that the Veroboard is mounted directly on the rear of the panel meter.
clockwise, connect the test resistor in series with your multimeter set to read up to 500 mA , and adjust VR1 so as to obtain a suitable test current from which the lower scale of the panel meter can be calibrated by adjustment of VR4. If a suitable multimeter is not available, then
a similar technique used to check the current limiting of the power supply can be used, i.e., use Ohm's Law to calculate the actual current flowing through the test resistor. (Note: the accuracy of this method is also dependent on the tolerance of the test resistor used.)

PLEASE
 TAKENOIE

Teach In '84, Part 12 (Sept. 84)
On page 557, under COMPONENT CHECKING, the sentence in brackets in the second paragraph should read:
${ }^{\text {"For }}$ an old-fashioned germanium transistor the deflection is greater." (Not "less".)
Capacitance Comparator (July '84)
Owing to slight differences in the characteristics of i.c.s it may be found that the delay introduced by R7 and C4 is not great enough, causing D5 to light for any setting of VR1. If this is the case, the value of either R7 or C4 should be increased.

Vic-20 Light Pen (Ctrcuit Exchange)

(September 1984)
The program and lines on page 565 should read: Program 1; 20 PRINT Y
Program 2; $10 \mathrm{X}=\mathrm{INT}((\operatorname{PEEK}(36870)-49) / 4)$:
$\mathrm{Y}=\mathrm{INT}((\operatorname{PEEK}(36871)-32) / 4)$
30FOT T=1 TO 20: NEXT T

BOOK REVIEWS

MICRO INTERFACING CIRCUITS BOOK 1

Author R. A. Penfold Price
Size
£2.25
$177 \times 112 \mathrm{~mm} .96$ pages
Publisher
Bernard Babani ISBN
0-85934-105-4

T
-his is a perfect starter book for amateurs in the electronics field wishing to build computer peripheral devices and addons. Despite being quite a small book, there is plenty of useful information on all aspects of interfacing techniques with many practical circuits described in detail.

Although some previous knowledge of electronics is necessary there is a fair amount of background information on computer hardware and digital circuitry included, which should enable most people to build simple interfaces without too much difficulty.

There are many aspects of interfacing which are often overlooked by newcomers to electronics, such as the use of magnitude comparators in address decoding and the intelligent use of control lines in device selection. All in all a very useful and interesting little book, but may be a little over-priced at £2.25.
R.M.B.

DHITFIE ELELTRUNHES D.W.GRABTREE BSc Tech Eng(CEI) FMETVTMEE

N the last article, we looked at how circuits could be created in their minimised form using techniques such as Karnaugh Mapping, by use of DeMorgan's laws and by use of "don't care", "zero-mapping" and Exclusive-OR implementation.

We will now continue with combinational logic methods using Medium and Large Scale Integration devices (MSI and LSI) instead of Small Scale Integration (SSI) devices.

MULTIPLE OUTPUT SYSTEMS

So far we have only dealt with systems where one output is required. If more than one output is required, that is, a multiple output system, and we are using the SSI chips that we have already looked at, then the design methods are exactly the same as before, with each output requirement being looked at individually but, where possible, using common inputs.

Here, however, great care must be taken to ensure that, where an input combination is designed to give one output and, at the same time, that combination has been part-utilised to give another output, no mal-operation occurs to give outputs when no outputs should be available.

Suppose we have a system that has four inputs, A, B, C and D, and four outputs, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z . Now the requirements of the system may be as shown in the truth table below:

INPUTS				OUTPUTS			
\mathbf{D}	C	B	A	W	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	1	0	0
0	1	0	0	1	0	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	0	1	0
1	0	0	0	1	0	0	0
1	0	0	1	0	1	0	0
1	0	1	0	0	1	0	0
1	0	1	1	0	0	1	0
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	0
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

This is just a suggested system but if observation is made of the truth table it can be seen that W has an output whenever there is just one input on A, B, C or D, X has an output with two inputs available, Y has an output with three inputs available and \mathbf{Z} has an output with all four inputs.

It is a circuit that counts the inputs available and outputs the number of "true" inputs. It may or may not have any real applications but, nevertheless, is a good example of a multiple output systém. Let us plot the outputs described above on Karnaugh maps, direct from the truth tables:

$W=A \bar{B} \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+$ $\bar{A} \bar{B} \bar{C} D$
$X=A B \bar{C} \bar{D}+A \bar{B} C \bar{D}+\overline{A B C} \bar{D}+$
$A \bar{B} \bar{C} D+\bar{A} B \bar{C} D+\bar{A} \bar{B} C D$
$Y=A B C D+A B \bar{C} D+A \bar{B} C D+$
ABCD

$Z=A B C D$

Note that, after the last article in this series, when I discussed the use of Exclusive-OR gates, it should be possible to recognise that the Exclusive-OR pattern occurs, to some extent, in the map for X output. This can be shown thus:

Cद्रा3]:
which is identically equal to:

therefore

$$
\mathrm{X}=\overline{\mathrm{A} \oplus \mathrm{~B} \oplus \mathrm{C} \oplus \mathrm{D}} \frac{[(\mathrm{ABCD})+(\overline{\mathrm{A}} \overline{\mathrm{~B} C D})]}{}
$$

If the circuit for X is implemented using all-NAND components, the circuit becomes that shown in Fig. 1, which is seen to use four NAND packages. In order to obtain the "NOT" function, one hex-inverter package would be required, to give a total of five packages being used.

Now, if the circuit were to be implemented using Exclusive-OR functions as described above, there would be a total usage of only four packages, the circuit being as shown in Fig. 2.

Fig. 1. All-NAND.

Fig. 2. Exclusive-OR. This saving of one package for the circuit may not be important for the one-off production of a board, but to a manufacturer considerable saving could be made.

LSI AND MSI DEVICE IN COMBINATIONAL LOGIC

So far we have only considered SSI chips-those chips which contain about 1 to 10 gates per chip. We should also be aware of MSI-those chips with about 10 to 100 gates per chip; LSI-those chips with more than 100 gates per chip, and VLSI (Very Large Scale Integration), which have over 1000 gates per chip.

We are now concerned with using MSI and LSI packages which can be used in combinational logic circuits and can be seen to have certain advantages.

Let us look again at the expression for X output previously considered. Now X was one of four outputs from a multiple output system but, for the purposes of this example, let us consider that it is just a single-output system, dependent upon four variables A, B, C and D. The logic expression is:

$$
\begin{array}{r}
\mathrm{X}=\mathrm{AB} \bar{C} \bar{D}+A \bar{B} C \bar{D}+\bar{A} B C \bar{D}+ \\
A \bar{B} \bar{C} D+\bar{A} B \bar{C} D+\bar{A} \bar{B} C D
\end{array}
$$

Now what is the decimal equivalent of each part of the above expression, if each part is taken in turn and converted into numerical form?

$$
\begin{aligned}
& A B \bar{C} \bar{D} \equiv 1100 \equiv 3 \\
& A \bar{D} C \bar{D}=1010 \equiv 5 \\
& \bar{A} B C \bar{D} \equiv 0110 \equiv 6 \\
& A \bar{B} \bar{D} D=1001 \equiv 9 \\
& \bar{A} B \bar{C} D \equiv 0101 \equiv 10 \\
& \bar{A} \bar{B} C D=0011 \equiv 12
\end{aligned}
$$

Therefore X has to have an output whenever decimal $3,5,6,9,10$ or 12 appears numerically on the inputs \mathbf{A}, \mathbf{B}, C and D, remembering that A is the least significant bit.

Now, this is all very well, but where has this got us? Well, let us look at the data selector or multiplexer chip, say the TTL device 74150 (below).

We can see that this chip has 16 inputs (0 to 15) and one output. Any one of the inputs can be "addressed" (i.e., selected) using four control input lines and whatever state is present on the addressed input will appear on the output.
For example, if the control lines have

0000 present on them, then input 0 will be selected and whatever is present on that input, say a "l", will appear on the output. In this example, " 1 " would be present on the output. Similarly if the control input has ABCD present (representative of decimal 7, numerically) then input 7 will be selected and its input state will be given at the output.

So how do we use the chip for our purpose, for the expression X? Well, in the example, we require an output with inputs of decimal $3,5,6,9,10$ and 12 . So we can therefore tie all these chip inputs to logic " 1 " and tie the remaining inputs $(0,1,2,4,7,8,11,13,14$ and 15) to logic "0".

If we then connect our system variables $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D direct to their corresponding control input terminals on the chip, we have the facility to switch the multiplexer output to the states that exist on the inputs when any of these inputs are addressed using the actual system variables connected to the control inputs on the chip.

Thus we will have a certain output from the system with the required variable combinations. However, the 74150 chip gives an inverted output, therefore an inverter must be used, as shown, to give the output X, otherwise $\overline{\mathrm{X}}$ would be obtained. (Note, however, that in many cases the \mathbf{X} would probably be used in any following circuits, thus saving the inverter.)

The advantage of using this system is that we have a way to implement the network using just a single package (or two packages if the \mathbf{X} output needs to be inverted). In the above example, four packages were previously used to implement the function. This represents quite a saving in space on a printed circuit board and a saving in costs.

One disadvantage is that glitches may be generated on an address change but by using the "strobe" function on the chip (see data books for further details) this problem can be eradicated. The "strobe" function can be used to only look at the control input word after it has been changed, not when changing.

To assist learning in the use of multiplexers for combinational logic purposes, it would be an idea to do an exercise in practical design, using such a device. The pin details given here are for use with Exercise (1).

Exercise (1):

Design a circuit to implement the following expression, using a $74150 \quad 16$ line multiplexer (pin details given).

$$
\overline{\mathrm{W}}=\mathrm{A} \overline{\mathrm{~B}} \bar{C} \bar{D}+\frac{\bar{A} B \bar{C} \bar{D} \overline{\mathrm{~A}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C} \bar{D}+}{}
$$

Note:

(1) Vcc requires a 5 -volt supply with respect to ground.
(2) Strobe input requires to be a " 0 " to "enable" the inputs. Set the strobe to " 0 " and ignore any possible problems with glitches for this exercise.
(3) Note that the output is inverted. This is the required output in this case.

The answers to exercises are given on the next page.

USE OF 8-1 LINE MULTIPLEXERS

We have looked at the use of a $16-1$ line multiplexer, the 74150. (This is called a $16-1$ multiplexer because it selects one only of 16 input lines and puts that line's logic level to the output line.) We should also be aware that other similar devices exist. For example, the 74151 is an $8-1$ line multiplexer and can be used in exactly the same way as the 74150 in cases where eight or less inputs need selecting.

As stated previously, if, on the 74150, an inverted output is required, a separate inverter must be used. On the 74151 chip, this facility is already present since the device has two outputs, Y (which is the uninverted output) and W (which is the inverted output, equivalent to \bar{Y}).

ADDING FURTHER SELECT INPUTS TO MULTIPLEXERS

We will now look at another use for the multiplexer. Suppose that we need to use a $74151,8-1$ line mutiplexer, which has three control inputs, A, B and C, but our control word for the function in our expression has, say, four variables A, B, C and D . Then it would seem that the 74151 cannot be used. This is not the case and, in fact, it is still quite advantageous to use the 74151. Let us look at the truth table for the function \mathbf{X} in our previous multiple output system.

$\mathbf{X}=$	$A B \bar{C} \bar{D}+A \bar{B} C \bar{D}+\bar{A} B C \bar{D}+$			
	$A \bar{B} \bar{C} D+\bar{A} B \bar{C} D+\bar{A} \bar{B} C D$			
C	B	A	D	X
0	0	0	$(0$ or 1$)$	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	$(0$ or 1$)$	0

As always, we put into the " D " column of the truth table the required state of " D " that would give the function output. For ABC all set to " 0 ", or all set to " 1 ", we would not require an output from X anyway, so it does not matter if \mathbf{X} is a " 0 " or a " 1 " at that time (i.e., it becomes a "don't care" condition).

Using the 74151, we now have an easy way of implementing the function \mathbf{X}, using only one inverter "extra" to give the \bar{D} function that is required in certain states of A, B and C .

Again it can be seen that a multiplexing device like the 74151 can be used to save much inter-gate wiring that would otherwise have been necessary. In this example, the bulk of the wiring is between the pins of just one chip, the 74151 , and it is likely that, in any real application, this would be in the printed circuit board design anyway.

DEMULTIPLEXER (DATA DISTRIBUTOR) USE IN COMBINATIONAL LOGIC

Sometimes in combinational logic we need a circuit that has the ability to interrogate a "control word" and, dependent upon the state of that word, select just one output. The demultiplexer chip fulfils that requirement. It is a "decoder" that looks at several input functions and gives a decoded output (i.e., the selection described above) that is representative of those input functions. It follows that only one output is available at any one time because one organisation of inputs is available at any one time. For example, a unique output for a unique input configuration.

A typical demultiplexer chip is the 74138 (TTL) which is a 16 -pin

decoder/demultiplexer. Of these 16 pins, it carries two supply connections (VCC and ground), three "control" inputs (A0, A1 and A2) and eight output connections (inverted). The remaining three connections are "enable" pins and can be used to ensure that only steady state information is available on the control word inputs before interrogation of these inputs is carried out. Of those three enable lines, two are active low and one is active high.

Let us look at a possible use of the demultiplexer described above, using the 74138. Suppose we have an alarm system that is monitoring, say, some control process. If we have three outputs, from the process, on which a "fault signal" may be sent, it may be that we only wish to give an audible alarm (say a bell) when we get more than one alarm signal. To decode this information we may need to use many gates. With the 74138 we could reduce this number of gates as shown below:

Truth Table			
A2	A1	A0	ALARM
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Let us now look at some more examples of system design by doing two more exercises:

Exercise (2):

A system is required to monitor a counting circuit, the counting circuit counts items in boxes as they pass along a conveyor belt. An alarm is given if there are five or more items in a box. The output from this counting circuit is in the form of a 3 -digit binary code with " AO " being the least significant bit and "A2" being the most significant bit. Using a 74138 , design such a system to monitor the code and give the required output when five or more items are counted (ignore the "enable" pins of the 74138).

Exercise (3):
Modify the above circuit so that an alarm is given when there are three or less items in each box.

Answers to exercises

Exercise (1):

Exercise (2):

Exercise (3):

In the next article in this series, we will look at the basis of clock systems used in some digital electronic systems, giving definitions and descriptions of the timing characteristics that may be encountered when looking through various data books. Types and uses of bistable circuits will also be discussed.

SHOP TALK

 BY DAVE BARRINGTON

Catalogue Received

With well over 200 pages, all fully illustrated and containing item prices, the first components catalogue from Cirkit certainly keeps up the traditions of excellence associated with its predecessor, namely Ambit.

Most ranges have been expanded and many new lines added to their already vast stocks of components. Amongst these are tool kits, car speakers, connectors, printer mechanism, specially designed switched mode power supplies and the very latest Modem for linking the computer and telephone.

Having now settled in their new premises at Broxbourne, Hertfordshire, Cirkit aims to offer customers a high degree of exclusivity. Many of the products listed in the new catalogue are not available from other sources, such as Toko coils and Alps switches.

Also, through its in-house resources it is developing a range of products to meet customers future requirements. Typical of this research is the Modem mentioned above and radio tuning and audio modules. They were also deeply involved in the design work for the Amstrad CPC-464 home computer.

The catalogue is being released through leading newsagents, such as W.H.Smith, and costs 85p. It is also available, of course, from their three sales counters at Brentwood,

Portsmouth and Broxbourne. Each Cirkit catalogue contains three $£ 1$ redeemable discount vouchers for use with each order in excess of $£ 15$; one per order.

CONSTRUCTIONAL PROJECTS

Mini Workshop PSU

Difficulty may be experienced in purchas ing some of the components for the Mini Workshop PSU project.

The panel meter used in the prototype is currently listed by Electrovalue and Greenweld Electronics. The latter is also able to supply the case.

The L200, 5 -terminal adjustable voltage and current regulator, can be purchased from Maplin or Cirkit. The heatsink for the regulator is one of the commonly available iwisted vane variety. The large $3.8^{\circ} \mathrm{CM}$ aluminium heatsink for the power transistor, TR1, is available from Electovalue: quote type 2P1

TV Aerial Pre-Amp

The only component that will cause buying problems when constructing the TV Aerial Pre-Amp is the "hybrid amplifier" IC2.

This device consists of a mixture of miniature components connected together on a ceramic base and encapsulated in insulating material in a s.i.l. package form. It contains three transistors, fourteen resistors and seven capacitors.

The OM361 is available from Magenta Electronics. They are also able to supply a complete kit of parts for this project for the sum of $£ 12.36$. A 12 V power supply will
cost $£ 2.03$ and a mains version will cost £9.86

The printed circuit boards (main board and three pieces of "screening" laminate) may be purchased separately for the sum of £1.60.

All prices include VAT, but an extra 50 p per order will have to be added for post and packing. They will, of course, sell ail parts for this project individually as required.

For full details readers should contact Magenta Electronics, Dept EE, 135 Hunter Street, Burton-on-Trent, Staffs DE14 2ST.

Digital Multimeter

The $3 \frac{1}{2}$ digit liquid crystal display used in the Digital Multimeter is a fairly common item and should be stocked by most of our advertisers. The display should be mounted on the circuit board by means of Soldercon pins. The printed circuit board is available through our PCB Service, see page 762.

The Range and Mode switches are not available as single items, a system called "Maka-switch" is used where the switch mechanism and wafers are purchased as separate components. When purchasing the wafers you should specify: 2 -pole 6way (3 off) and 2 -pole 6 -way (2 off) wafers for S1 and S2 respectively. Maka-switches are held by Electrovalue and Maplin.

The precision resistors are specified as 0.5 per cent tolerance and should be purchased if reasonable accuracy is to be obtained. However, it is quite in order to use lower tolerance resistors, meaning about 1 per cent, provided, of course, a reduction in overall performance is acceptable.

Alfred

A complete kit of parts for Alfred would normally cost $£ 170$, plus VAT. However, special arrangements have been made with Robot City Technology whereby readers of EE may purchase a kit for the sum of $£ 160$, plus VAT. A saving of over $£ 10$.

Robot City Tech are also prepared to supply all components as individual items. This includes mechanical mechanisms and pulleys, servo motors and interface board.
For full details, readers should write to: Robot City Technology, Dept EE, 437 B Midsummer House, Midsummer Boulevard, Central Milton Keynes, MK9 2 HE .

We do not anticipate any component buying problems for the Doorchime.

Synchronise mains-powered coloured lights to the words and music of songs, under the control of your computer. Ideal for parties, discos, or stage shows, new effects can be achieved simply by changing the program data.

This simple timer was originally used to prevent arguments between contestants, whilst playing games, but has many other useful applications.

JANUARY 1985 ISSUE ON SALE FRIDAY, DECEMBER 14

TU aERIal PRE-AMP

MARK STUART

This Antenna Pre-Amp. provides a high gain over the v.h.f. and u.h.f. bands. It requires a 12 V d.c. power source at 50 mA , so a car battery could be used. This makes it particularly suitable for use with portable TV sets in caravans and boats. An optional mains power supply allows the Pre-Amp. to be used with domestic TV sets. The Pre-Amp. may be used at the masthead with power supplied via its coaxial downlead. One further use of the Pre-Amp. is to allow several TV sets to share a common aerial.

Fig. 1. The Masthead Amplifier.

THE CIRCUIT

The circuit diagram of the preamplifier is shown in Fig. 1. All of the

Aerisl shown in our front Covar picture is by courtesy of TANOY

amplification is provided by the hybrid l.c., OM361. A hybrid i.c. consists of a mixture of miniature components connected together on a ceramic base and encapsulated in insulating material. It is completely different from the more commonly used i.c.s in which the components are made in a single chip of silicon.

The advantage of a hybrid i.c. is, that it is capable of better high frequency performance than standard i.c.s. Fig. 2 shows the internal circuit of the OM361. The difference between this hybrid circuit and
two stages are powered via pin 8 which is also the output pin. The mixing of power and output slgnals is easily achieved by the use of r.f. chokes (inductors) and capacitors. Capacitors will pass the output signals but not d.c. Chokes will pass the d.c. power supply currents but not the output signals.

In Fig. 1, C5 and C4 couple the input and output signals respectively to their sockets. Chokes L2 and L3 provide d.c. supplies to pins 4 and 8 of the i.c. from
the coaxial cable.

Fig. 2. Internal detalls of the OM361.

CONSTRUCTION

The construction of the Pre-Amp. as with any circuit working at u.h.f. frequencies must be carried out carefully. The method of construction used proved to be completely stable. It was arrived at after a number of other designs had been rejected because of instability.

Begin construction by assembling the small double-sided main circuit board (Fig. 3). Be very careful to get the i.c. the right way round (pin 1 is identified on the side of the i.c.). The i.c. is inserted from the blank side of the board.

Ensure that the copper around pins 1, 4 and 8 has been cut away to avoid short circuits, and the grounded pins ($2,3,5,6$ and 7) must be soldered on both sides of the board. Then fit L3 in position, exactly as shown in Fig. 3 and Fig. 5. The other components are fitted later.

Fig. 5. Constructional details of the Amplifier housing (above and right).

Next drill the two end panels to suit the coaxial sockets that you are using. The two outer tags pass through the board and are bent over and soldered on the copper side. The centre tag should pass through the board without danger of short circuiting to the copper foil. It is advisable to slightly countersink this hole on the copper side just to be sure. Note some sockets have just one outer tag and the ends should be drilled accordingly. Fit both sockets and then assemble the two end panels to the base. The end panels should be fitted so that they are at right angles to the base with exactly the right gap between them for the main p.c.b. as shown in Fig. 5. To simplify this alignment it is best to just "tack" the two ends into place with a small amount of solder. When the ends are properly aligned the main p.c.b. should be fitted into position as shown in Fig. 5. The joints between the base, ends, and main board should be soldered along all edges to produce a good strong assembly.

Complete the assembly by fitting C4, C5 and L2 exactly as shown and the PreAmp. should now be mounted inside its case. The ends of the case should first be marked out and drilled with the large centre holes for the coaxial sockets. Insert the Pre-Amplifier chassis and check for alignment before drilling the socket mounting holes. The sockets are mounted with self-tapping screws. Washers should be fitted on the screws between the inside of the case and the sockets so that the sockets are not pulled away from the chassis when the screws are tightened.

POWER SUPPLY

As it stands the Pre-Amplifier requires a supply of $12 \mathrm{~V}, 50 \mathrm{~mA}$ via its output coaxial cable (positive inner). The circuit of a suitable mains supply unit is shown in Fig. 6. Power is fed out to the coaxial via the choke L1 which passes d.c. but blocks the incoming signals which are a.c. Capacitor C3 blocks the d.c. and couples the signals to the TV output socket SK2. The power supply is a conventional centre-tapped transformer design using a standard 12 V regulator i.c., type 7812 . Diodes D1 and D2 rectify alternate halfcycles from the transformer to provide a full-wave rectified output which is
smoothed by C1 and fed to the regulator input. The output capacitor C2 is necessary to prevent high frequency instability in the regulator.

The whole power supply is built in an ABS case with internal p.c.b. slots. All of the small components are mounted on a piece of tagboard which is cut to fit in the slots across the box. Fig. 7 shows the component layout. It is important to

[1 IT 16
Fig. 4. P.c.b. (underside) design of the Pre-Amp.

Fig. 4a. P.c.b. design (topside) of the Pre-Amp.

C
Fig. 3. Component layout of the Pre-Amp.

mount the two sockets SK1 and SK2 next to each other and to connect C3 as directly as possible between them.

To ensure safety, make sure that a good quality cool running transformer is used. Also ensure that the mains primary and secondary connections are well separated. The secondary circuits of the transformer are not earthed so be very careful with the wiring layout.

If the Pre-Amp. is to be used from a car battery, use only L1, C3, SK1 and SK2. The 12 V supply is connected to points X (positive) and Y (negative). The whole unit can then be built into a small plastic case mounted on the rear of the TV if desired.

INTERFERENCE

As was previously stated, the p.c.b. and the Pre-Amplifier housing was carefully designed and modified to prevent the effects of interference. With this in mind, great care must be taken if a slightly different p.c.b. design is to be used. The housing of the unit is also important to its correct operation, and should be screened as shown in Fig. 5.

Fig. 6. Circuit diagram of the Power Supply.

Fig. 7. Wiring details of the Power Supply.

COMPONENTS

Inductors

Li-L3
47μ coaxial lead, mini choke (3 off)

Capacitors

C1 $\quad 1000 \mu 25 \mathrm{~V}$
C2 $10 \mu 16 \mathrm{~V}$
electrolytic radial
$3 \quad 270 \mathrm{pmini}$ ceramic
plate
C4,C5 1n mini ceramic (2 off)

Semiconductors

IC1	781212 V regulator
IC2	OM361 hybrid
D1,D2	amplifier
IN4001 (2 off)	

Transformer

T1 12V-0V-12V
secondary

Sockets

SK1-SK4 plastic flush mounting coaxial (4 off)

Miscellaneous

Tagboard, wire, cable clip, screws and washers; plastic box, 80×62 $\times 60 \mathrm{~mm}$; p.c.b.; laminates $50 \times$ 30 mm (2 off), $50 \times 50 \mathrm{~mm}$ (1 off)

Approx. cost
Guidance only
$£ 28.00$

TESTING AND USE

It is best to test the Pre-Amp. next to the set first, before embarking upon any ladder climbing. The effect of introducing the Pre-Amp. can be observed on any TV set. With a modern set and a good antenna there may not be much room for improvement. Older sets will show an instant improvement and it may be found to be possible to tune to other previously unobtainable TV regions.

Once it has been established that the circuit is working it can be moved nearer to the aerial and mounted in the loft, or even outside on the aerial mast. Good weatherproofing will be required for masthead mounting, which can be achieved by the use of suitable plastic rainwater components. It is probably better to mount the Pre-Amp. in the loft if this can be arranged. The slight compromise in performance will not be noticeable, and the need to weatherproof is avoided.

ANYONE who is considering buying a home computer will want to know what software is available for it. A magazine such as Software Index will allow the prospective buyer to evaluate the amount and type of software available for different machines, and the dealer will also have information.

CASSETTES

The program may be educational, or a game, or a business package. Whatever its purpose, the program itself will probably be supplied as a cassette tape (or perhaps a disc), which will need to be loaded into the computer.
Once the program is loaded and running, the actual tape can be removed from the cassette recorder. The program then exists as a sequence of instructions which the computer is currently carrying out, and also, in more permanent form, as a recording on the tape.
If the tape is played on the cassette recorder (as music is), a sequence of tones can be heard. There are a number of different ways of recording a program on tape, but all reflect the fact that the computer is a binary machinethe electronic circuits of which it is made are capable of responding only to a "high" or a "low" voltage level ("I" or "0").
As a result, what is recorded on the tape will probably sound like two different tones, alternating. The "interfacing" circuits built-in to the computer convert these tones into "high" and "low" voltages and store them in the computer's memory. The program is then loaded and ready to run.

BASIC

The majority of readers will have some familiarity with BASIC, and certainly there can be few who have not heard of it. BASIC is only one of dozens of "high-level languages" (see Table 1) and additionally there are many versions (or "dialects") of BASIC.

The new feature in EE, Computer Club, which begins this month, will be helpful to those who are writing their own programs, as different aspects of the language are developed and explained.
A program in BASIC (or any other highlevel language) is a long way removed from the noises on the tape explained above. For example, to add two numbers from the keyboard, and print the sum, one might type in:

10 INPUT A
20 INPUT B
30 LETC $=A+B$
$4 \emptyset$ PRINT C
50 END
This very simple program could then be saved on tape, or it could be run.

TRANSLATION

The Central Processing Unit (CPU) of the computer is a piece of electronic hardware which only responds to electrical signals. There is a need, then, for any program written in a high-level language to be "translated" into a sequence of electrical signals.

There are two ways of doing this. The first way, and the way all home computers achieve this translation, is by means of an "interpreter". The alternative method is by means of a "compiler".

An interpreter is itself a program, which takes each character input from the keyboard (including line numbers) and stores them in the computer's memory. However, this cannot be done immediately. The character "A", for example, is meaningless to the computer hardware. So between the keyboard and the CPU is hardware which converts each key pressed into an internationally-agreed pattern of "highs" and "lows".

The character " A ", when pressed on the keyboard, causes the bit-pattern 01000001 to appear. This bit-pattern, as well as all the others corresponding to the letters and numbers in the BASIC program, is stored in the computer's memory.

When the program is run, each bit-pattern has to be retrieved, in the right sequence, and interpreted into signals to enable the CPU to do the job that the programmer wants it to do.

The bit-patterns stored are not checked to ensure that the program is correct. Any errors will only show up when the program is actually run. For example, if line 10 of the program above read "IBPUT A" instead of "INPUT A", then some kind of error message would be output when the program was executed. That is, the interpreter translates and checks the stored program at run-time.

An interpreter is obviously not a simple program; further, it has to be permanently "inside" the computer, whether the machine has power applied to it or not.

It normally resides as a sequence of bitpatterns in a Read-Only Memory chip (ROM). These chips are essentially grids of switches in which any given switch is either open or closed. Once set, the patterns are permanent. The sequence of preset bit-patterns is the "interpreter". Such "software held in hardware" is often referred to as "firmware".

OPERATING SYSTEMS

Any computer has to have an "Operating System" (OS) to enable it to accept input (usually from the keyboard), and provide output to the TV or printer.

When it is first switched on, the computer will go through a pre-determined sequence of operations, of which the user may be unaware-for example, there may be a routine (held in ROM) to check that the memory circuits are functioning properly.

The user will then see some kind of "prompt" character on the TV screen, such as ">" or "-", or a message such as "Insert disc into drive $A^{\prime \prime}$. All these functions are part of the O.S. The O.S. is the whole program, written as a sequence of bit-patterns, and permanently stored in ROM, which allows the user to input a program in BASIC, edit it, and run it.

STANDARDS

Because of the problems caused by different O.S.s, business users have opted to buy machines which use a "standard" O.S. This means that a program written in BASIC, or another high-level language, on one machine, can be saved on tape or disc, and then loaded into a completely different machine, and run, so long as both machines have the same O.S.
Inevitably, there is competition among software manufacturers, and there are at present three different "standard" O.S.s, as well as dialects of them. However, it does mean that a business can decide on a particular O.S., and then ensure that every machine runs it.

COMPILERS

It was mentioned above that the alternative to an "interpreter" is a "compiler". The compiler does essentially the same job as the interpreter, but it does it differently.

A compiler converts the high-level language into bit-patterns, but it also checks for errors in syntax or logic, and informs the user. The program cannot be run until it is error-free. This means that a program may have to be compiled several times, until all the errors are corrected. This process can be tedious: however, once the program has been successfully compiled; there is an excellent chance that it will run properly on the computer.

SYSTEMS

Any computing system is made up of the hardware, the software, the firmware, and the person operating the machine. Some high-level languages are easier to use than others, and some are more suitable to a particular application than others. However, all programs, ultimately, can be expressed as patterns of very simple electrical signals.

Table 1: Some common high-level languages

ALGOL

BASIC

COBOL

FORTRAN

ALGOrithmic Language. Used by scientists and mathematicians for problemsolving, as it is particularly well-suited to expressing mathematical formulae. Beginner's All-purpose Symbolic Instruction Code. See main text.
COmmon Business Orlented Language. Designed for such purposes as payroll calculations, and looks very much like ordinary English. FORmula TRANslation. As the name suggests, this language

Is used by mathematicians, especially, for problemsolving.
PASCAL
Named after the mathematiclan Blaise Pascal, the language was originally designed to teach people how to write readable programs which had a lower probability of error than those written in BASIC.
FORTH, MODULA-2, and PROLOG may also become popular, and there are many other high-level languages, some designed for a particular purpose, such as programming a telephone exchange.

EMERYDAY news
 \square

Golden Age of Droitwich

On September 6, 1984, the BBC commemorated the 50th Anniversary of the start of broadcasts from its Droitwich long-wave transmitter.

Derek East, the BBC's Chief Engineer, Transmission, sald: "In the 30 s Droitwich was a name on the listeners' radio dials. They knew the name Droitwich for its radio service as well as for its Spa. Numbers like Radios 1, 2, 3 and 4 do not
have the same local personality. but Droltwich continues as an honoured name in the transmitter world.

He went on to say, "This anniversary is especially appropriate at this time when we are installing only the second replacement transmitter since 1934. All three transmitters have been supplied by Marconi indicating the long association with British industry."

Top Jobs for Women

Women in London will have the opportunity to train for top engineering jobs in new technology thanks to $£ 350,000$ in grants from the Greater London Enterprise Board, the Greater London Training Board and the European Commission.

The grants are in recognition of the work being done by the GLEB-sponsored London New Technology Network (LNTN) based in Camden and will finance training courses for women to be supervisors and trainers in micro-electronic engineering.

TIMELY AWARD

The Federation of British Audio have presented their 1984 prestigious Hi Fi Accessory of the Year Award to The TEK Group of Cambridge for their Model T31 Timeswitch.

Awarded for the precise recording of programmes off the radio, TEK are keen to point out that the timeswitch is a versatile device with other applications. High on the list is that of security lighting and Economy 7 timeshift for dishwashers and washing machines.

A feature of the timeswitch is that it has a battery back-up for its electronic memory so that should there be a power failure, both clock and program settings are retained without need for adjustment. The unit is easy to set using four push-buttons and is claimed to be precise to the minute.

M SX Reaches UK

The UK manufacturing and marketing division of Mitsubishi has announced its versions of the MSX range of home computers. Developed in conjunction with Microsoft in America, the MSX system was concelved to provide a common standard in home computing so that other manufacturers' accessories/products are interchangeable.
Costing $£ 249$ the ML-F 48 has 32 K byte of ROM and 32 K byte of RAM. A range of software is now available, including home office programs-word processing, budgeting and database, language courses, educational programs and games.
Peripherals for the ML-F 48 include joysticks and a range of socket connectors allows the computer to be connected to a number of other units.
Mitsubishl is the only MSX supplier offering a choice of computers; the other is the ML-F 80 at $£ 299$, offering 64 K byte of RAM. Both systems will be available from November.
mporters of computers and related peripherals face a new threat this autumn. From October this year VAT on imported goods must be pald at the docks.

It is claimed that the Chancellor's decision to abolish the VAT postponed accounting system (PAS) has seriously weakened importers' cash flow and could add a six-figure sum annually to their distribution bill.

A Rediffusion R2830 Telecentre system has been ordered by the London Borough of Brent for Its education department. The contract is valued at about £85,000.

The world's first single-chip i.c. for processing all National Television System Committee (NTSC) standard colour TV signals has boon developed by Mitsubishi Electric Co. of Japan.

The Ingersoll XK 510 television and radio alarm clock solves the problem of waking up in the morning. What could be more comforting than waking up to your favourite breakfast television programme and then staying in bed a few minutes more to watch the news?

This set can be programmed to wake you with either television or radio. It features a 4 in black and white TV, a m.w. and f.m. waveband radio, a digital clock with 12 -hour red l.e.d. display and indoor aerial.

The XK510 is truly portable
and has snooze and sleep facility. If you like watching late-night films in bed but normally fall asleep halfway through, the sleep button will switch the TV off at a pre-programmed time.

This set is ideal for the kitchen, playroom or even a caravan. The Ingersoll XK 510 is priced at approximately $£ 132.95$ retail.

For details of nearest stockists contact:

Heron Electrontes Lid.,
Dept EE, Heron House, 19 Marylebone Road, London, NWI 5JL.

CLEAN UP

THE Blb Audio/Video - Products Computer Care Kit, comprises, audio cassette head cleaner, with cleaning fluid, air duster for cleaning dust and dirt away from keyboard and printer,
together with anti-static screen cleaning fluid, with cleaning cloth, at a recommended retail price of £8.74, Including VAT. Bib Ref: BCC-9C.

Bib Audio/Video Producis Lid.,
Dept EE, Kelsey House, Wood Lane End, Hemel Hempstead, Herts HP2 \&RQ.

CASE FOR SLIMMING

ASLIM, modern design characterises the new "Manta" keyboard case now available from West Hyde.
The case is moulded in beige $A B S$ and incorporates a shallow ledge at the front which provides a hand rest for the keyboard operator. It has moulded bosses to support a p.c.b. and cable clamps for both circular and ribbon cables.

The base plate is zintec steel
which aids rigidity and provides extra weight to prevent unintentional movement.

The Manta keyboard case is available in three widths and is supplied complete with a cable grommet, feet and screws. For further details and prices write to:

West Hyde Developments Lud.,
Dept EE, Untt 9,
Park Street Industrial Estate,
Aylesbury, Bucks HP20 IET.

ON THE DOT

Arange of low-power Dot A Matrix Display Modules has recently been introduced by Lascar Electronles. All DMX series module types are complete with a display bezel and mounting kit, claimed to be the first time this feature has been available on this type of product.
The range runs from 16 character 1 -line-three different
modules-up to 40 -character 2 line displays. All displays feature 5 V operation, 4 or 8 -bit data bus and on-board character generation. Full upper and lower case characters, display "blinking", display shift left and right and "custom" symbol generation are available.

Lascar Electronics Lid.,
Dept EE, Module House,
Whiteparish, Sallsbury, Willes SP5 2SJ.

> INCLUDING VAT PLUS £1-50 P \& P

Just in time for Christmas we are pleased to make this special Everyday Electronics offer to readers. Using a proportional digital radio control system, the steering and speed of the car can be accurately varied, giving total manoeuvrability both going forwards and in reverse. The car measures $230 \times 115 \times 90 \mathrm{~mm}$ high (approx.)

The neat package contains the complete radio control transmitter, battery-operated car with bullt-in radio control receiver and aerial, bollards, decorative labels, a motoring handbook and a sheet of obstacles and road signs to cut out. In short, everything you need to practise driving, except the batteries, at a special price for EE readers.

You can also order by telephone using Access: Tel. 01-992 8430

To: RT-VC, 21 B High Street, Acton, London W3 6NG

To: RT-VC, 21B High Street, Acton, London W3 6 NG

COUNTER NTELCTENCE
 BY PAUL YOUNG

FINAL WORD TO THE NOVITIATES

In the last issue I dealt briefly with the best way of ordering components. As it is not the most inspiring subject to write about, I cut it down to a minimum, I would therefore like to add one or two further suggestions:
(1) If the firm you are dealing with supplles a form for ordering goods, always use it. because it will have been tailored to meet their own special requirements and help speed delivery.
(2) Write clearly, and if your longhand is anything like mine, and resembles a cross between Hieroglyphs and Cuniform, make sure you at least print your address in block capitals.
(3) Never write queries on your order form, it is the surest way of delaying your order, always send a separate letter.
(4) Plan ahead when it is practical to do so. That is, accumulating the parts for your next project while you are still working on the current one.

MURPHY'S LAW

Murphy's law about things going wrong is well known, but here is an extreme example. If my electric toaster goes wrong, it is always in mid summer. This means lighting our gas-operated grill, and while in the winter this gives a welcome added warmth to the kitchen, in summer with the temperatures up in the seventies, you feel in clined to settle for a toastless breakfast. Imagine my dismay, when halfway through July the element goes in my toaster. This happened once before about a year ago, and when I went to order a new one I was told it consisted of three parts, each one being different. To be on the safe side I or dered all three. I replaced the offending unit and kept the others as spares. Naturally I thought I had a two out of three chance, if the element goes again of having a replacement. I should have known better, it was the very same element that had blown again. I ordered one, and I am still awaiting delivery. Luckily, just as I was about to pass out from a combination of toast deficiency and dehydration an electrical friend came to my rescue and spot welded it for me.

CLIVE AND THE NEW COMPUTERS

I suppose in some degree the new fifth generation of computers are already with us. For example, there are now cars on the market, that, the moment you enter and switch on, start saying in a synthetic voice, sounding halfway between an off colour Dalek and a Nazi Interrogator, 'You have not fastened your safety belt". This is all very fine, but it keeps repeating it for three or four minutes after you have fastened it, driving the car occupants mad. Here in a minor way we have the shape of things to
come. Sir Clive Sinclair has already started designing the fifth generation, which he assures us, will be a friend of all the family. Even this announcement starts me grinding my teeth together.

It will, states Sir Clive, have a vast intelligence and be the family Doctor, Lawyer, Teacher and companion. Here is my scenario for a home of the future:
Morning, and Paul Young yawns, and half asleep staggers downstairs. As he enters the dining room a voice booms out, "Good morning Paul, and how are we today?" It is his new friendly computer, named Charles Cope. Paul opens one bleary eve and gives him a malevolent stare that would have blown the main fuse of many lesser computers, and mutters imprecations under his breath. "Oh! my, we are in a bad mood today. What, was it a heavy night last night Paul?" Paul glares at him with both eyes.
"Listen mate, not so much of the Paul, Mr. Young to you.'
"Very well Mr. Young," replies Charles adopting a sterner tone. "And by the way, last night you were inebriated and knocked off a policeman's helmet, if you plead guilty I can probably manage to get you off with a fine, but you better adopt a more concillatory tone towards me, or I won't defend you".

All right, Charles, you win this time, but don't forget," and Paul's hand moves towards the main switch. A roar of laughter is heard.

Come off it Paul, you know you would be lost without me. Now, speaking as your Doctor, you are putting on too much weight, lay off the beer and chips"
"Yes Sir." Paul stands up, salutes and at the same time sticks his tongue out at his friendly computer. Paul makes for the door, "Goodbye Charles, and don't, if you want to remain in one piece, tell me "To have a nice day".

I'm off now, I hope you can cope. Get it?"
"Ohl Paul, that's poor, even by your low standards of humour." Paul in an aside to his readers, "The truth is, that Charles is jealous of my talent, especlally my humour and wit and is hoping to take over my job."

Well au revoir till next month. By the way readers, Paul has just gone out, so if you notice a marked improvement in the quality of the articles shortly, you will know the reason why

Your sincere frlend Charles Cope.

Multicore makes soldering easy, fast and reliable

Ersin Multicore
Contains 5 cores of non-corrosive flux Uses: For all electrical joints. Handy Pack: Size 19A 60/40 tisn lead
1.22 mm dia £1.50 Tool Box Reel Size $60 / 40$ tin lead 1.6 mm dia $£ 4.37$

Multicore All Purpose Handyman Solder Pak
Contains three types of solder for
electrical, metal and aluminium repars. Handy Pak: Size 8 s 2.99
allin handy easy
Hensers.

Ersin Multicore
Contains 5 cores of non corrosive flux. Uses. Small transistors. componenis and hine wire. Handy Pack: Size PCI
$60 / 40 \mathrm{tin} / \mathrm{lead} 0.7 \mathrm{~mm}$ dia $\mathrm{f1} .61$ Tool Box Reel: Size 10 60/40 un/lead 0.7 mm dia $£ 4.37$

Bib Wire Serippers and Cutters With precision ground and hardened steel jaws. Adjustable to most wire sizes.
With handle locking catch and easy-grip With handle locking-catch and easy-grip plastic covered handles

Multicore Savbit
Increase the life of your soldering bir by 10 times. Uses: For all electrical work Reduces copper errosion handy Pack Size 121.2 mm dia $£ 4.37$

Mulicore Solder Wick Absorbs solder instantly from tags and printed circuits with
the use of a 40 to 50 watt soldering Iron. Quick and easy to use. Handy Pack: Size AB10 1.43

Multicore Solder Cream Mixture of powdered $60 / 40$ Uses: Micro electroniks and prinied circuits Handy Tube: Size BCR 10 §1.73

Bib Audio/ Video Producis Limited. (Solder Division).
House Wond I and End. Kelsey House. Word I and End.
emel Hempstead. Hertordshire.HP2 4RQ Hemel Hempstead. Herfordshire. HP2 4RQ
Telephone: $(1442) 61291$ Telex: $\mathrm{H2363}$ If you have difficulty in obraining any of these products send direct adding 515 p for postage and packing, For free coter
All prices stated are Rucummended Relail and include VAT

All brand now componenis GRANDATA LTD, 9 . 12 THE BROADWAY, . RESTONROA
WEMBLEY, MIDOLESEX. ENGLANO Tolophoon: $01.9042093 \& 9041115 / 6$ Toiex: 932885 Sunmh

DICITAL MULTIMETER

I. A. DUNCOMBE

PART TWO

For the beginner, the multimeter is fairly complex to construct but this is only confined to the wiring of the range and mode switches; however providing care is taken there should be little problems. It is suggested that the following procedure is adopted when constructing the multimeter.

1) Front and rear panel drilling;
2) Converter board construction;
3) Display board wiring;
4) Front panel and range/mode switch wiring;
5) Chassis drilling and final wiring.

FRONT/REAR PANEL DRILLING
Drilling details for the rear panel is shown in Fig. 14. The diameter of the holes depend on the type of components used.
The figures also shown are annotations and denote the mains fuse, the 2 A protection fuse and the mains/battery switch S3.

Drilling details for the front panel are shown in Fig. 14. Once again the diameter of the circular holes depend on the components used. The cut-out for the display bezel should be as accurate as possible, there is very little leaway if the rectangular cut-out is not precise.

Fig. 14. Front panel drilling and (below) rear panel drilling.

Fig. 15. Converter p.c.b. (actual size) and component layout.

It is best if the hole is made very much undersize so that the edges can be filed down in small steps. It is advisable therefore to have the display bezel to hand.

The lettering was done using Letraset, this includes the straight lines. If straightline Letraset is not available, then a fine tipped felt pen may be used, an ink pen cannot be used as the surface of the panel does not take ink readily. The entire panel was covered over with a fairly thick clear film to protect the markings.

The four sockets with the bezel can now be mounted. The bezel was fixed using small amounts of clear adhesive, the clear plastic window was removed during this operation. Once both panels have been completed they may be set aside for later.

CONVERTER BOARD

The a.c./d.c. converter and power supply components are mounted on a printed circuit board $76 \times 76 \mathrm{~mm}$. The underside foil pattern and the component topside are shown in Fig. 15. It is advisable to obtain a ready-made p.c.b. if possible, it is rather difficult to prepare this board using a Dalo etch pen. If the constructor has access to a photographic process then this can be used.

All component holes are drilled 1 mm , or as appropriate, for the component leads. The ten holes at the top of the board are drilled to accept, as a tight fit, 0.15 in Veropins, these should be singlesided and pushed through from the underside (copperside), at this stage insert and solder fully the two outermost pins, the pins between them can be inserted, but do not solder at this stage.

Note that several components are mounted side by side but have their positive ends opposite to each other. Note in particular the two small regulator i.c.s. Do not forget the single plain wire link at the top of the board.

There are 20 flying leads connected to the p.c.b. and all except the wire marked "A" should be lightweight standard connecting wire. The wire marked " A " should be a little thicker and capable of taking a current of 2 A . All leads can be about 6 in or so in length, and can be formed loosely in the position they will finally take. Do not insert the i.c., a socket is preferred for this device, and should be of reasonable quality.

Set the completed board aside for later.

DISPLAY BOARD

The display board, consisting of the logic i.c., IC3 and liquid crystal display and other components, is shown in Fig. 16. Here, both the copperside and component topside are shown. Once again it is preferable that a ready-made board is used, it cannot be made using a Dalo pen or even transfers. It is advisable before construction, that the ready-made board (if one is to be used), is free from defects, short-circuited tracks or open circuit tracks for example. For both the display board and the previous converter other forms of wiring are definitely not recommended.

There are eight plain wire links, four of these are under the i.c. and display, and these should be the first items to be soldered in place. A low profile socket is essential for IC3, Soldercon pins must not be used. Similarly, a low profile socket is required for IC2. Soldercon pins
should only be used in the liquid crystal display position, do not break the tops off at this stage. All components, especially the two large polyester capacitors should be mounted as close as possible to the p.c.b. surface. There are no Veropins or wire leadouts required on this board.

Before setting the board aside, take the l.c.d. and carefully offer it to the Soldercon pins, it may be necessary to bend either the pins on the l.c.d. (be very carefull), or the Soldercon pins themselves. Insure that the l.c.d. can be pushed into the pins with very little insertion force. A useful tip here is take a defective 16 -pin i.c. and push one side into the Soldercon pins several times. This will remove some of the compression force from the pins, making it easier to fit the l.c.d. Having checked that the l.c.d. will fit easy, it can be removed and returned to its protective package. Both i.c.s and the l.c.d. are not fitted until later.

RANGE/MODE SWITCH WIRING

Because of the high number of wire links and interconnecting wires, the range and mode switches are perhaps the most complex to wire, so be prepared to set aside a single session of construction and not to break overnight!

The complete wiring diagram for these switches and the front panel are shown in Fig. 18.

To begin, it is necessary to make up the switches as they are normally sup. plied disassembled. Rotate both control spindles fully anti-clockwise as viewed from the front, remove all the mounting hardware and set the ident to position six.

Fig. 16. Display p.c.b. (actual size) and component layout. This board is available from the EE PCB Service: Code 8412-03.

Fig. 17. Base drilling details.

Check that, with the spindle rotated, it stops after six positions, count the rest position as one. Providing the wafers have not been disturbed, it should be found they slip on the mechanism quite easily. They should take up the position shown in the diagram. On the mode switch leave off the rear wafer and mains switch. The wafers can be fitted by using 6BA hardware. Place the front wafers as near to the front as possible. It is not necessary to cut the mechanism. Finally, mount the switches on the front panel.

Before wiring the switches the following should be noted: Firstly, the leads emanating from the wafers labelled with a
letter, in fact go to the converter board and should not be connected at this stage. The tag to which the wire is attached should be left unsoldered. Secondly, the wires from the wafers labelled with numbers should be connected as they go to other parts of the multimeter. They should be 130 mm or so long, remember that the wires marked "A", must be of 2 amp rating, ordinary connecting wire is rated lower and should not be used. Begin with the range switch.

Start with the front wafer and connect the input resistors, note the diagram has been "opened out" for clarity, the photographs show how the components
should be positioned. Continue with the rear wafer. A semi-circle of 18 s.w.g. tinned copper wire is used for the common connection on both the ohms and current range resistors, and is positioned as shown in the photographs. The trimmer capacitor's leads may need bending slightly to fit between the tags of the wafer.

The mode switch can next be wired, however before this is done the rear wafer (as yet unmounted) can first be wired up. Just two small pieces of tinned copper wire are required and are common to several tags on both halves of the wafer.

Continue with the front wafer and the middle wafer. Do not forget the high voltage d.c. blocking capacitor, it is advisable to insulate the leads with sleeving. Also insulate any interconnecting wires between wafers.

No wiring is made as yet to the mains switch, and this is put to one side.

CHASSIS DRILLING

Drilling details for the chassis are shown in Fig. 17 and apply only to the specified Verobox. If other forms of housing is used then the constructor will have to vary the dimensions accordingly. The two holes marked " A " are for the transformer and their positions may need to be varied depending on the type used. As shown in the diagram, one mounting pillar needs to be removed completely. The brass insert can be heated to aid its removal, the remaining part of the pillar is

Fig. 18. Front panel switch wiring.

Fig. 19. Final wiring dlagram of the Digital Multimeter.
cut off using a sharp knife. The position of the converter board mounting holes may need slight adjustment to compensate for minor variations in the height of the l.c.d. from the surface of the display board. Thus either four 6BA clear holes are drilled or four slots are filed out.

Proceed with the mounting of the rear panel components and transformer. The display board can now be attached to the converter board. Place the display board up against the two Veropins and lightly solder each pin to the copper pad. Check to ensure that both boards are at exactly 90 deg. to each other, if not, reheat the pins in turn and adjust the boards accordingly. Once the correct position has been found the remaining pins can be soldered. Mount the assembly on the chassis using fin spaces, but do not fully tighten the nuts.

At this stage the assembly must be checked for any errors in wiring, etc. Carefully break off the tops of the soldercon pins, do not insert the i.c.s or l.c.d. Connect two PP3 batteries to the connectors and check that the following voltages appear as quoted: C14 positive lead: 5 V , C15 negative lead: -5 V, IC1 pin 7 : 5 V , pin 4: -5 V there should be little or no voltage on any other pin, IC2 pin 14: $-5 \mathrm{~V}, \mathrm{IC} 3$ pin 1: 5 V , pin 26 : -5 V , pin 36 (0.5 V): 1 V there should be little or no voltage on any other pin.

The pins of the l.c.d. should show no voltage on any pin. If the above results are not obtained then there is most probably a fault, the batteries should be removed quickly as possible and the fault found and rectified. If all is well all three i.c.s can be inserted, be extra careful with IC3, and be sure it is well pushed into its socket. The l.c.d. can also be plugged in as far as it will go, it should lie flat on the i.c. underneath and be parallel with the
board. Remove all power when inserting the i.c.s.

Insert the front panel into its slot and while keeping it upright, move the display board towards the bezel so that it touches the clear plastic window. Once the correct position has been found the nuts retaining the assembly can be fully tightened.

FINAL WIRING

The final wiring diagram is shown in Fig. 19. Begin by connecting the wires from the converter board to the range and mode switches. Form the wires neatly, and use a length of spira-wrap to hold together the wires. There should be at this stage 13 wires from the converter board going to the switches. It may be necessary to remove the front panel to gain access to the underside of the wafers

Having completed this part of the wiring, the rear wafer and the mains switch can be mounted. Continue by wiring up the rear wafer to both the converter board and the rear panel mounted slide switch, again spira-wrap can be used here. The mains wiring can now be completed as shown. Do not forget the three wires which connect to the transformer from the converter board. The final wiring is to connect up the wires to the 2 A fuseholder, FS1.

TESTING

Before connecting the batteries it is important that the completed multimeter is checked thoroughly for any errors. If there are mistakes, they may prove costly when power is first applied. All testing and calibration is carried out for safety reasons using batteries, although once the multimeter is working mains operation can of course be checked.

Begin by turning all three presets to
their mid-positions, the mode switch to off and the range switch to 20 V f.s.d. The slide switch should of course be in the battery (d.c.) position. Insert a 2 A fuse in the correct holder and connect two PP3 batteries to their connectors, do not plug in any test leads at this stage.

Rotate the mode switch to the d.v. position, immediately the l.c.d. should come to life and show some random number, obviously if it does not, there is a fault and the multimeter should be switched off and rechecked for errors. Assuming all is well, connect a pair of test leads to the " + " and "com" terminals, short the two leads together, the display should read as close to all zeros as possible. If it in fact shows a emall value, such as 0.8 V for example with the minus sign also showing, then this is perfectly acceptable. Rotate the mode switch through the remaining positions, the display should remain unchanged. Leave the mode switch in the ohm position and remove the test leads, the display should overrange and show just 1 . Remove the short and return the mode switch to the d.v. position.

CALIBRATION

If a second digital multimeter is available then the meter described here can be calibrated quite easy by comparing the reading of one to that of the other when connecting to various standard sources. However, if this is not the case, as it will most certainly be, the multimeter can be calibrated to quite good accuracy following the methods described below. The only item of test equipment required, will be a standard meter of reasonable accuracy covering both alternating and direct voltages up to 20 V f.s.d. A source of a.c. voltage is also needed and can be supplied from a small low voltage transformer. A signal generator covering 20 Hz to 50 kHz is an advantage when adjusting the frequency compensated input resistor network but is not essential if a slight loss of accuracy at high audio frequencies can be tolerated.

DIRECT VOLTAGE

With an external meter connect the leads between the "com" and the "junction test" terminals, the voltage between them should be around 1.283 V , the exact voltage will depend on component tolerances. Disconnect the leads, set the multimeter to the 2 V d.c. range and connect the junction test terminal to the " + " terminal, no other connection is required. Adjust VR3 (on the display board) for the voltage previously noted. Do this adjustment as carefully as possible as all other functions of the meter depend on this adjustment to be accurate. If possible leave the multimeter connected in this manner for a while and recheck that the voltage has not significantly changed.

If an accurate known d.c. voltage source is available then the other ranges can be checked.

ALTERNATING VOLTAGE

Most analogue meters, and here we are referring to the small "pocket" type meters, are only accurate when used on alternating voltages of 50 Hz , i.e., mains frequency. For this reason we must calibrate the multimeter at this frequency. Connect the output from the mains transformer to the terminals and set the range to the correct f.s.d. Also connect in parallel the analogue meter. Note the reading and adjust VR2 (nearest the back panel on the converter board) to show the same reading on the display.

The multimeter is now calibrated for alternating voltages at a frequency of 50 Hz . For other frequencies the accuracy falls off the higher the frequency. To compensate for this we must adjust the small trimmer on the input resistive divider network. Connect an audio signal generator set for 50 Hz and for a convenient output voltage, say 1.5 V , to the multimeter terminals. Set the range for 2 V f.s.d. Note carefully the reading on the display. Next re-adjust the signal generator to give an output of 5 kHz , the display should show a drop in voltage,

As explained earlier, this method is not the best, it does however increase the range of the a.v. ranges to cover most of the audio spectrum with reasonable accuracy. The meter is entirely accurate at 50 Hz and this should prove adequate for most purposes.

DIRECT CURRENT

This particular range has no calibration components, and relies entirely on the accuracy of the range resistors. All that can be done is to apply currents of various values and check that the reading is accurate.

ALTERNATING CURRENT

Similarly, as above, this range relies on the ranging resistors and also the calibration accuracy of the converter. Again, checks can be made with various alternating currents.

OHMS RANGE

The Ohms range is self-calibrating in a manner of speaking, and relies on the accuracy of the range resistors.

IN USE

The use of the multimeter should be apparent to all, however the following points should be remembered when using the instrument.

When using the meter to measure both direct and alternating voltages above 200 V the high voltage terminal must be used-and with care. Protection against accidental overload is provided by the current limiting resistor, R30. In the worst case where say, 1000 V is applied to the meter when switched to the 200 mV range, the resistor will limit the current to about 1 mA , but for only a short time as the resistor will eventually burn out and will probably result in a great deal of damage.

The current ranges, both direct and alternating are simple to use, and protection here is provided by a quick blow fuse which should give total protection in most cases.

The Ohms range is also self apparent, note as described earlier, it will not turn on transistor junctions. This makes it ideal for in-circuit resistance measurements. When measuring resistance, there is slight jitter effect, particularly on the $2 \mathrm{M} \Omega$ and $20 \mathrm{M} \Omega$ ranges. This is mainly due to the long test leads used but can easily be overcome by making the leads as short as possible. The effect completely disappears when a resistor is say, connected straight across the terminals. There is no protection for this range, so be sure to switch off the circuit under test.

JUNCTION TEST

For this mode, connect the junction test terminal to the " + " terminal, no other connection is required. Set the multimeter to read 200μ A d.c. Adjust VR1 (nearest the front panel-converter board) for a reading of $100 \mu \mathrm{~A}$. This mode need not be particularly accurate, and a variation of a few microamps is quite acceptable.
NOTE! Some constructors may find when adjusting the presets above that the correct results are not obtained, this may be particularly noticed on the alternating ranges. This is mainly due to the low values of the presets needed to ensure fine adjustment. To provide for correct adjustment, the values of the following resistors may be increased or decreased in value as required, alternating ranges: R23, junction test: R9, and although it does not need variation, R27 applies to the direct ranges.

For example, if the junction test current cannot be brought below say $120 \mu \mathrm{~A}$ then the value of R9 can be increased by an extra $800-1000$ ohms or so.

Finally, as a last check, the multimeter can be switched over to mains operation and all modes and ranges checked once again, after which the meter is ready for use.
adjust the trimmer to give the same reading as before. Return the signal generator to 50 Hz and re-check the reading.

Finally the signal generator can be tuned from 20 Hz to, say 20 kHz and the voltage reading at various points noted, they should be within the limits shown in the specifications. If not, then slight readjustment of the trimmer will be required to flatten out the various peaks and dips which may occur.

T.V. SOUND TUNER

SERIES II BUILT AND TESTED Complete with case. $£ 26.50+£ 2.00 \mathrm{p} \& \mathrm{p}$.
Ine cut-throat world consumer elecion world of of the questions designers apparently ponder over
we save money by chopping this out?" In the
domestic TV set, one of the first casualties seems to be the sound quality. Small speakers
and no tone controls are common and no tone controls are common
and all this is really quite sad, as the

Also available with built-in headphone
amp. ONLY $£ 32.50 \div £ 2.00$ p\&p. \checkmark companies do their best 10 transmit the highest quality sound. Given this background a compact and independent TV suner that connects direct to your Hi-Fi is a must for quality reproduction. The unit is mains-operated,
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. If can also be used in conjunction with your video recorder. Dimensions:
E.T.I. kit version of above without chassis, case and hardware. E 16.20 plus E 1.50 p 8 ip .
 BARGAINS

TOKUDEN - $8^{\prime \prime}, 8$ ohm full range $71 / 2 \mathrm{~W}$ iwin cone speaker. $\quad £ 3.50+E 1.10$ p\&ip.
7 ". 60 W Bass/Mid. speaker. 8 ahm impedance. Freq. res.: $40-6,000 \mathrm{~Hz}$. $4 \%^{\prime \prime} \times 1 \times{ }^{\prime \prime}$ magnet. £ $14.95+E 1.75 p \& p$ $41 /{ }^{\prime \prime}$ 25W Bass/Mid. speaker. 4 ohm impedanc With rolled surround. $£ 4.95+£ 1.50 \rho 8 \mathrm{p}$.

Tweeters: 8 ohm sofi dome radiator type.
 +E1.50 p\&o.

Full range $8^{\prime \prime} 20 \mathrm{~W}, 8$ ohm. Twin cone with rolled surround. $\mathbf{E} 6.95+$ E2.20 p\&ip Full range $6 Y_{2}^{\prime \prime} 15 \mathrm{~W}, 8$ ohm. Twin cone with
rolled surround.
$\mathbf{E 5} .95+£ 2.20$ p\&p Full range $4^{\prime \prime} 8 \mathrm{~W}, 8 \mathrm{ohm}$. With rolled surround. $£ 4.95+£ 1.50 \mathrm{p}$ \&p.

125W HIGH POWER

 AMP MODULES

SAFT/MAZDA BATTERIES
AX6 (HP7/AA slze) $£ 1.10$ ea. or 4 for $£ 3.50$. RX14 (HP1IC size) $£ 2.45$ ea. or $£ 4.10$ a pair A $\times 22$ (PP3 size) 9 volt. $£ 4,95$ ea., E 9.00 a pai
500 p 8 p per order on batteries. SAFT/MAZDA RX22 Charger £2.75 + 80p p\&
UNIVEASAL CHARGER, takes $4 \times A A^{\prime}$'s, 4 C 's or $\mathrm{D}^{\prime} \mathrm{s}+1 \mathrm{PP3}$. $\mathrm{E} 5.50+£ 1.40 \mathrm{p} 8 \mathrm{p}$.
BSR RECORD DECKS
Auto-Changer model takes up to 6 records ceramic cartridge. $£ 9.95$ plus $£ 1.75$ p\&p.

Manual and Auro-Changer record deck. Plays records Individually or play automatically up to 6 records.

Manual single play record deck with auto return and cueing
mic cartridge 2 speeds with 45 rom spindle adaptor ideally 13"×11" ${ }^{\prime \prime}$.

£ 14.95 plus $£ 1.75$ p\&p

All mail to: 21A HIGH ST, ACTON W3 6NG Callers: Mon - Sat 9.30 - 5.30. Half day Wed. Access phone orders on 01.9928430. Note Goods desparehed to U.K. postral addresses on $31 / 9 / 81$ and subject to chenge without notice. $31 / 9 / 8$ and subject to change without notice.
Please aliow 14 working davs from recetp of order lor despatch. RTVCC Limited reverve the right to up.
date ther producs without notice All enuiri seend
SA E. Teleohone or mail orders by ACCESS welcome.

SPECIFICATIONS: Max. outpur power (RMSI: 125 W . Operating
voltage (DC): $50-80$ max. Loads: $4-16 \mathrm{ohm}$. voltage (DC): $50-80$ max. Loads: $4-16$ ohm
Frequency response measured @ 100 watt Frequency response measured $25 \mathrm{~Hz}, 20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ $@ 47 \mathrm{~K}$. Typical T.H.D.@ 50 watts, 4 ohms: 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.
KIT $£ 12.00$ BUILT $£ 17.50$
\square PAIR 10W SPEAKERS Incorporates $4 \%^{\prime \prime} 10$ watt speaker. Finished in teak venee
simulate. Built, ready to use simulate. Built, ready to use
ideal extension spkis. $12 \% x$ $71 / 8 \times 41 / 4$ ins. $£ 14.95+£ 1.75 p 8$ p.
STEREO TUNER KIT
SPEECIAL OFFER!
£13.95

+ +2.50 p 8
+E2.50 p \& p. This easy to build 3 band stereo AM/FM tuner
kit is designed in conjunction with PE (tuly 81) kit is designed in conjunction with PE July 8
For ease of construction and alignment it For ease of consiruction and modules and an
incorporates three Mullard mole 1.C. IF System. Front scale size 10% " $\times 2 \%$ approx. With diagram and instructions.

MONO MIXER AMP

50 Wart, six individually mixed inputs for 2 phones and 2 auxillary for tave tuner, organs etc. Eight slider controls -6 for level and 2 For master bass and treble, 4 extra treble controls for mic: and aux, inpuls. Size:
 RMS (cont.) for use with 4 to 8 ohm
speakers. Altractive black vinyl case matching fascla and knobs. Ready to use. CALLERS TO: 323 EDGWARE ROAD. LONDON W2.

TWO FABULOUS OFFERS FROM

23 (5) M

The incredible 'MINI 20'

28 ranges

$20 k \Omega / V$ d.c. $814 \Omega / V$ a.c
(With protective fuse)
Accuracy: 2% d.c. and resistance 3% a.c.
28 ranges: d.c. $V 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$. $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}$, $600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 600 \mathrm{~mA}$. a.c. V 15 V , $50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. $130 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms $0-$ $2 \mathrm{k} \Omega, 0-2 \mathrm{M} \Omega$. dB from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operation is straightforward, just turn the selection switch to the required range.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $\mathbf{£ 1 0 . 0 0}$.

THE IDEAL INSTRUMENT
FOR THE CONSTRUCTOR

(complete with carrying case, leads and instructions)

'SUPER 20'

A SUPER PROTECTED UNIVERSAL MULTIMETER

Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\vee 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.

> (complete with carrying case,
leads and instructions)
ONLY £33.50
PRICES Our prices include VAT and postage and goods are normally despatched by return.

For details of these and the many other instruments in the Aicon range, including multimeters, components measuring, automotive and elec tronic instruments, please write or telephone:

 Instruments Ltd

```
19 MULBERRY WALK LONDON SW3 6DZ P TEL: 01-352 1897. TELEX:918867
```


MASTHR ㅍlectronics-Microprocessors-Now! The PRACHCAL Woy!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

RADI

BY PAT HAWKER G3VA

Clear-Faced Sun

For all those who are concerned with hat fascinating, yet often frustrating part of the radio-frequency spectrum-the "h.f." band between 3 and 30 MHz (traditionally the short waves) - the outlook for the next few years is less than cheerful. The "cloud" on the horizon is the latest sun-spot-cycle minimum.
This is now looming up rather earlier than expected, although this winter is almost halfway along the 11 -year cycle which last peaked in 1979-80. Indeed there was a period of some 12 days in late autumn when no sunspots could be observed on the usually blemished face of Old Sol.

The prime result of sunspot activity in so far as it affects professional communicators, h.f. broadcasters, radio amateurs "CB" enthusiasts and short-wave listeners is that it enhances the ionisation of the layers for more accurately travelling "clouds" of lonisation) in the upper at mosphere. This results in the long-distance reflection of the higher frequencies for a longer period of each day

Sunspots and H.F.

Around the sunspot maximum years (1937, 1947, 1958, 1969, 1979-80) at about 11 -year intervals, the daytime F2 layer, roughly 200-400 miles above the surface of the Earth, can often open longdistance paths on frequencies up to and beyond 50 MHz . However, in the periods of low sunspot activity very few long-distance paths are open above 25 MHz except very occasionally in a north-south direction towards southern Africa and South America.

Even the reliable 14 MHz band goes "dead" for many hours of the night. Similarly, at sunspot maximum periods, $27 \mathrm{MHz} C B$ channels can bring in voices from afar, whereas in the minimum years the only sky-wave signals are likely to be from Europe, brought about by daytime Sporadic E anomalous propagation which cannot be predicted with any accuracy and is less-directly linked with the sunspots.
This does not mean that h.f. "conditions" become unsuitable for long-distance transmission and reception, but rather that such paths require the use of lower frequencies. Short-wave broadcast listeners need to pay more attention at such times to the 90 -metre $(3.3 \mathrm{MHz}), 75$-metre $(3.9 \mathrm{MHz}), 60$-metre $(5 \mathrm{MHz})$ and 49 -metre $(6 \mathrm{MHz}$) bands (some reserved for "tropical broadcasting").
Radio amateurs tend to migrate to the 3.5 or 7 MHz bands although unfortunately the 7.0 to 7.1 MHz (41 metres) "exclusive" amateur band is still cluttered with highpower broadcasting stations.

Grey-Line Propagation

The concentration of so much activity, particularly by broadcasters, into the lower segments of $h . f$. instead of spreading out as high as the 11 -metre $(26 \mathrm{MHz})$ band mean that the usable bands become even more over-crowded than usual. Also the large directional aerial arrays tend to produce less gain at lower frequencies.

It also becomes increasingly difficult to transmit or receive across the night/day barrier due to the sharper difference between daytime and night-time maximum usable frequencies. Radio amateurs, whose transmitters are so much less powerful than those used for broadcasting, have come to recognise the importance of what is called "grey-line" propagation, particularly on the lower part of the h.f. spectrum.

This takes the form of the reliable but brief long-distance paths that open between places where the times of dawn and dusk, dawn and dawn or dusk and dusk roughly coincide, glving rise to the
possibility of extended "one-hop" propagation due to layer entrapment ("chordal hop"), etc., brought about by tilts in the F layer, as the lower F1 and higher F2 layers combine or separate.

Grey-line propagation can for example result in lower power transmissions on 1.8 , 3.5 or 7 MHz being received for short periods in Australia or New Zealand, but requires some careful study of the times of sunrise and sunset in the target areas.

Predicting Sunspots

The appearance of visible dark spots on the Sun has been observed and recorded for many centuries, initially by the Chinese but for some 300 years in Europe. Although the regularity of the sun-spot cycle of roughly 11 years (or 22 years if you take into account the magnetic cycle) is wellestablished, the shape and peak amplitude of each cycle varies widely.

Despite much speculation and many hypotheses, it is still not possible to predict future activity with any certainty, although for some 50 years efforts have been made to turn h.f. propagation predictions, like weather forecasting, into a more exact science. The fact remains however that just as our weather forecasters, even with the great help of satellite photographs, still cannot tell us with any certainty whether it will rain tomorrow, and can make little more than an educated guess whether this winter will be colder or warmer than average, so one has to take all propagation and pathopening forecasts lother possibly than for grey-line times), with more than a pinch of salt. I cannot be certain, as I write these notes, whether the transatlantic path on say 7 MHz will be good, very good, poor or impossible this evening!

-Bringing In The Pictures

For television broadcasters concerned with news and sports programmes a major problem is bringing the pictures from the event into the tudio centre. Whereas a radio outside broadcast can use "music lines" or normal telephone circuits, for video a broadband link capable of carrying frequencies up to about 5 MHz without too much phase-differential or amplitude-differential distortion is needed. This requires a special coaxial cable or microwave radio link since telephone circuits could only be used, even with equalisation, over very short distances, for such broadband signals.

Stadia and places from which television broadcasts are frequently made have permanently installed broadband facilities. Elsewhere, at distances up to about 30 miles from a studio centre or from a point at which pictures can be fed into BT's inter-city or EBU's Eurovision broadband circuits it is the usual practice to install temporary microwave links, but this takes time and planning.

The development of lightweight electronic cameras and portable video recorders in the 1970s still depends to a considerable extent on bringing the tape cassettes to the studios or nearest broadband circuit by motorcycle or car, although large cities, particularly in the USA, have sophisticated installations on the top of tall buildings for picking up temporary microwave links from communications vehicles, etc. To facilitate "live" broadcasts from portable cameras very short-range links between the cameraman and his vehicle use microwave frequencies around 13 GHz $13,000 \mathrm{MHz}$) and even 40 GHz where tiny "horn" aerials can be used.

To permit newsmen to roam further afield both ITN and BBC have made some use of transportable satellite up-links bouncing the news via space satellites. The design of these up-link terminals however has been made more demanding by the decision to permit satellites to be packed closer together in the increasingly crowded geostationary orbit.
At the recent International Broadcasting Convention at Brighton GEC-McMichael introduced some new ideas into the field of satellite news gathering, including the use of elliptical shaped reflectors that combine low height with high frequency. They can meet the new 2° satellite spacing requirement and in some versions can fit into the cargo hold of an aircraft.

By adopting bit-rate-reduced digital transmission much lower transmitter power is possible, permitting the use of solid-state rather than power klystrons. The satellite news gathering (SNG) unit operates at the low bitrate of $2 \mathrm{Mbit} / \mathrm{s}$ using the codec equipment developed for BT's video conferencing.

As demonstrated at Brighton surprisingly good pictures can be transmitted at $2 \mathrm{Mbit} / \mathrm{s}$ (digital studio bit rates can be over $200 \mathrm{Mbit} / \mathrm{s}$). Unfortunately there is a penalty that must be paid. A $2 \mathrm{Mbit} / \mathrm{s}$ system just cannot follow fast movement without severe blurring of the picture.

The system would thus be fine for talkinghead interviews, etc., but could not really cope with a fast-moving news or sporting scene. But the new design is virtually a world first and the firm hopes to sell into the tough American TV market, where being first with news pictures, even if less than perfect, is much prized.

FAULT FINDING E.A.Rule

AST month we introduced this series of short articles with a general introduction to fault finding and mentioned the three main groups of fault types. In this issue we are going to take a look at faults in group one: New equipment that has either never worked or only partly worked since it was constructed. It has to be assumed that the item has been constructed according to the instructions given, and that the fault is due to a genuine mistake or a faulty component, and not due to poor workmanship or failing to fully read the instructions. It must be said however, that many of the problems with new equipment are simply due to a failure on the part of the constructor to take care during the building process or failing to understand any special instructions. In view of this we shall make a few general points concerning newly constructed equipment.

SIMPLE CHECKS

Contrary to common belief, poor soldering is not the main reason for the majority of problems, in actual fact, most kits received for repair by the author have been built to a very high standard of workmanship. Of course there are always exceptions, but in the main, problems are generally due to faulty components or wrong components, there are also those components that are correct and in the right place but simply inserted into the printed circuit board the wrong way around, diodes, electrolytics etc. When a piece of equipment is finished and ready for its initial testing, this is a good time to stop work and take a very detailed look at the finished item. A few simple checks before switching on will avoid major problems, like burnt out components etc. First, check that there are no shortcircuits across the power supply lines. This check can be carried out with a simple Ohm meter. Depending on the circuit, a value of resistance will be obtained, this may be of a low value in a high current circuit but a study of the circuit diagram should give an indication of what to expect. The main thing is that you avoid switching on for the first time with a short circuit across the supply lines, because this could damage transformers, rectifiers and other components due to excessive current.

If all seems well, switch the meter to a suitable voltage range and connect it across the main supply rail, switch the equipment on and monitor the rise in voltage against what you expect it to be. If it is normal, testing can proceed, but if it is excessively high or low, switch off
and check the circuit for mistakes. A fairly common fault is when the centre tapped secondary of a mains transformer has been incorrectly wired, this can produce excessive voltage which could damage other components. Fig. 1 shows the correct and incorrect wiring to a secondary and how this produces excessive voltage. It is a good idea to disconnect the main part of the circuit from the power supply, until the voltages from the supply have been checked, then if there is a fault, damage to other components will be avoided. Often the supply can be disconnected simply by leaving a fuse out. Once you have established that the main supply voltage is satisfactory, a full voltage check should be made around the circuit and compared with any voltage table supplied by the manufacturer or author. Expect variations, it is not often that voltages agree exactly with the original design, for these are intended as a guide only. Depending on the type of circuit, variations of 25% can be found and these will not cause any problems. In other circuits a variation of 1% may be critical, only experience, or the instructions provided, will enable you to judge this. Once a piece of equipment is working satisfactorily, you should make up a table of the voltages found so that at a later date if a fault develops you can compare with what was actually present before the fault appeared.

Fig. 1. Correct and incorrect wiring to a transformer secondary. Incorrect wiring results in twice the voltage being present at the output. This could of course damage other components.

CAPACITORS

The next check is to measure the voltage present at each end of the electrolytic capacitors in the circuit. Check that the positive end of the capacitor is in fact positive compared with its negative end. In other words, if the chassis is negative, the positive end of all electrolytics will have a higher positive voltage than the negative end. Take great care when checking circuits using a 'splitrail' supply because, depending on which side of the supply rail you are checking, the chassis may be the positive or negative line. Fig. 2 shows an example of this. With one meter lead connected to chassis (common) the meter will indicate either positive or negative polarity depending what part of the circuit is being measured. Note in particular the polarity of C4 and C5. In one case the positive terminal is connected to chassis and in the other, the negative terminal. If C 1 was an electrolytic its polarity would depend on the input circuit as one end is to the common rail via R1 and therefore at zero volts.
Depending on the actual voltages present, an electrolytic capacitor may work for months or even years with its polarity wrong. It will however, steadily increase its leakage current until either it breaks down completely or causes damage to other components. In a power supply circuit the wrong polarity can cause an explosion due to the excessive leakage current within the capacitor. Excessive heating causes gases to be given off, these gases create a high pressure within the can which may explode. The author has witnessed a 14 s.w.g. steel front panel bulge out due to such an explosion, and has also seen a hole in the top of a cabinet where the metal top of a capacitor had blown through due to these internal pressures. Most modern capacitors have a safety vent which avoids dangerous situations like those mentioned, but the electrolyte which is discharged can cause corrosion problems to chassis and other components. Always check that electrolytics are correctly polarised and should you find a capacitor that is 'hot' to the touch, keep away until it has cooled down. The equipment must of course be switched off at once.

SETTING UP PROCEDURE

Having made these simple checks and found that all seems OK we can continue with the setting up procedure laid down in the instructions. Always carry these out exactly as specified, do not be tempted to

Fig. 2. The 'split-rail' supply.
take short cuts as often these procedures are arranged in a way that will expose faults in a section before passing on to the next step. Once these setting up procedures have been carried out we should have either a unit which is working satisfactorily or one that has one or more faults and needs further work carried out.

At this stage (assuming a faulty unit), recheck all the relevant components for correct type, value, and polarity. If the fault is known to be in one section of the circuit, then of course only that section need be given a careful check. Start by rechecking the voltages, note any that vary widely from those expected, look for clues as you proceed. For example, a higher than expected collector voltage may mean that the transistor is not conducting, check its Base and Emitter voltages, if these are correct, suspect the transistor, it could of course be a faulty or incorrect collector load resistor etc. Assuming that all the voltages are as expected and that all the components are correct (also wiring etc), we must now say that we are looking for a faulty component. One common fault, found with polystyrene capacitors, is that they are very easy to damage with excessive heat when soldering and the author has often found these with short circuits in many of the kits received for service. If these are in a signal path, the fact that they are short circuited may not affect any d.c. voltages present but could well prevent a signal voltage getting through. For example, Fig. 3 shows an i.f. amplifier stage, Cl is most likely a polystyrene type, and if it is shorted, it will prevent any signal being transferred. It may be possible to check it in circuit with an Ohm meter but often the coil resistance is very low so it is best to disconnect one end of the capacitor and measure across its ends. In Fig. 4 a similar short will prevent the circuit oscillating, and in Fig. 5 will short out the audio signal.

COMPONENT DEFINITION

Another common fault found in new equipment is due to the transistors having a different pin layout to those specified. Take as an example the BC184. This device can be obtained as a BC184 (TO18) or a BC184L (TO92) or a BC184-L-TO5 (TO5). The first has the connections the same as the last but with different spacing. The second has the Collector and Base connections interchanged, needless to say this change of connection can affect the results obtained! So do not just ask for a BC184, make sure you obtain exactly the type specified for the circuit layout. The same can be said for certain i.c.s. The same basic number is used for d.i.l. types and metal can types. It is important to know if (for example) a ZN459CP or a ZN459C or a ZN459 is specified. The ZN459 and ZN459C are metal can types with the same connections but the ZN 459 CP is a military specification and much more expensive (it has a wider temperature range) the ZN459CP is an 8 lead d.i.l. package. This type number is mentioned as an example because if for instance the letters ' CP ' were omitted from the parts list, great confusion could ensue. A simple error in itself but very confusing to a constructor who has an 8 lead d.i.l. socket in the p.c.b. and gets a 6 lead component with seemingly the correct number. This is an extreme case but it serves to show what can happen. The point is that this type of error can be the cause of a number of peculiar faults found in newly built equipment and should be watched out for.
Another fairly common fault is due to confusion between the colours Red and Orange. Resistors have a colour code and many manufacturers' idea of what is Red or Orange seems to differ. The author has had a number of faults due to these colours being confused and for example a 6 k 8 resistor fitted instead of a 68 k , or a 1 k instead of 10 k etc. If in doubt. measure a sample before fitting into

Basic IF ampllfier stage EE28M

Fig. 3. The basic l.f. amplifier stage. A short circuit in C1 prevents a signal passing, without affecting d.c. voltage measurements.

Fig. 4. Basic low pass filter stage.

Typical basic mixer stage found in many transistor radio's. [ETSOM

Fig. 5. Basic mixer stage. In this case a short circuit in C1 will prevent the circuit oscillating as well as preventing signal passage.
equipment. It is not something that is easy to spot when mounted on the p.c.b. Diodes can also be mixed up, it is easy to confuse a Zener with a normal diode unless you check the actual type number. Minutes spent checking components before assembly can save hours of frustration trying to find an obscure fault later.
In next month's issue we will continue the series with some actual faults on newly built equipment.

DOORCHIME

R.A.PENFOLD

ANUMBER of electronic doorbell designs have been published over the years, and these usually give either a simple two-tone effect or are of the microprocessor multi-tune variety. This circuit is a little different, and it produces a gong-like chime sound. Although the unit was primarily designed for its novelty value, it is nevertheless quite effective in practice. The circuit is battery powered, and as the unit will only be used intermittently each battery should have virtually its shelf life.

BLOCK DIAGRAM

Metallic chiming sounds consist of a complex set of component frequencies which are not all harmonically related. In other words, there is not just a fundamental frequency plus harmonics (multiples) of that frequency. A signal of this type cannot be generated using a simple tone generator as no matter what output waveform is generated, a repetitive waveform always gives only harmonically related output frequencies.
The block diagram of Fig. I shows the arrangement used in the Electronic Doorchime, and how the required nonharmonically related signals are generated.

There are two audio frequency oscillators, but they must operate at different frequencies if the right effect is to be obtained. The frequency of one oscillator is adjustable so that it can be set to give the best effect. The output of one oscillator is amplitude modulated by the
second oscillator, and in this case a fairly crude form of modulation is used with the output of oscillator 1 being switched on and off by oscillator 2. This gives the heterodyne effect where the sum and difference frequencies of the two input signals are generated at the output. For example, if the input frequencies are 500 Hz and 600 Hz , the new frequencies produced at the output are 1100 Hz and $100 \mathrm{~Hz}(500+600=1100$ and $600-$ $500=100$). In practice the input signals are not pure sinewaves and contain strong harmonics. These are also heterodyned to produce a very complex output signal.

Not only the new frequencies appear at the output, but the two input frequencies break through to the output quite strongly. A better effect can be obtained by balancing out one or both of the input signals. In this case oscillator 1 produces the strongest breakthrough, and it is this signal which is phased out. This is achieved by inverting the output of the modulator and feeding this signal to one input of a simple passive mixer circuit.

The other input is fed direct from the output of oscillator 1. Any breakthrough of oscillator 1 at the output of the modulator is therefore fed to the mixer out-of-phase with the direct output, and the two signals have a cancelling effect on one another. In practice the mixer has a balance control so that the level of breakthrough can be controlled, and reduced to practically zero if desired. The modulator, inverter and mixer, form what is really a sort of simple "ring modulator" type circuit.

In order to produce a reasonably realistic simulation of gong type sounds it is necessary to control the volume of the sound in the appropriate fashion. Very simple envelope shaping is adequate, and it is just a matter of giving a high initial volume level, and then gradually fading out the sound. This is achieved using a voltage controlled amplifier (VCA) plus a simple control voltage generator. The latter merely produces a falling voltage which gives the required decreasing gain from the VCA.

The final stage is a power amplifier which boosts the output of the circuit to a

Fig. 1. Block diagram for the Electronic Doorchime.
high enough level to drive a loudspeaker at good volume.

THE CIRCUIT

Fig. 2 shows the full circuit diagram of the Electronic Doorchime unit.

Both of the oscillators are standard 555 astables, and the frequency of the oscillator based on IC 1 can be adjusted by means of VRI. The oscillator which uses IC2 is used to switch TR1 on and off,

The voltage controlled amplifier uses transconductance operational amplifier IC4. The gain of this device is controlled by the bias current fed to the amplifier bias input at pin 5, but in this circuit R16 has been added in series with this input so that the input current is roughly proportional to the applied voltage, and voltage control is produced.

A suitable falling control voltage is generated by the simple $\mathrm{R}-\mathrm{C}$ timing network, C5 and R17. When the bell
as C5 charges via R17 the voltage developed across R17 (and fed to the control input of the VCA), falls. D1 ensures that C5 quickly discharges when the bell push is released so that the circuit operates properly if it is quickly operated again.

The power amplifier is a straightforward circuit based on the popular LM380N device. This gives an output power of around 500 mW r.m.s. into a 8 ohm loudspeaker, and around 1 watt

Fig. 2. Circuit diagram of the Electronic Doorchime.
while the output of ICl is fed to the collector of TR1 via R3. When TR1 is switched on it effectively places a short circuit from R3 to the negative supply rail, and cuts off the signal from IC I. When TR1 is switched off it has a very high collector-to-emitter resistance, and the signal from IC1 is allowed to pass through R 3 to the next stage of the circuit. In this way a crude but adequate form of amplitude modulation is obtained. The output waveform of both oscillators is roughly square. This gives signals which are rich in harmonics, and this gives excellent results in this application.

INVERTER AND MIXER STAGES

The inverter stage comprises IC3 and associated components, and this is a straightforward operational amplifier. In this application it acts as a unity voltage gain inverting amplifier. A passive mixer consists of just two resistors. This simple design is perfectly adequate for this project, and in this case it is formed by the two sections of VR2's track, and adjustment of this component enables the breakthrough from IC1 to be balanced out to the desired degree.
push is operated and power is first applied to the circuit, C5 will be uncharged and the full supply voltage will be fed to the control input of the VCA. However,
r.m.s. into a 4 ohm component. This should give more than adequate volume in most situations. VR3 is a preset volume control.

Component layout.

Fig. 3. Component side of stripboard.

Fig. 4. Drilling details of matrix stripboard.

Circuit and speaker mounted in case.

construction sterts here

ASSEMBLY

All the components are mounted on a 0.1 inch matrix stripboard which has 50 holes by 36 copper strips. Incidentally, this is a standard size (5×3.75 inches) in which the board is sold. Details of the board are provided in Figs. 3 and 4.
Start construction of the board by making the breaks in the copper strips. Ideally the special tool should be used when doing this, but a small, hand held twist drill bit can be used instead. Next the two mounting holes are drilled. These are 3.3 mm in diameter and will accept M3 or 6 BA bolts.
The board is then ready for the components and link wires to be soldered in place. Begin with the resistors, link wires and capacitors, and then add in the semiconductors. Be careful to connect the electrolytic capacitors and semiconductors the right way round, and note that IC1 and IC5 have the opposite orientation to the other three integrated circuits. As all the integrated circuits are fairly inexpensive types, and none are vulnerable to damage by static charges, it is probably not worthwhile using sockets for them unless you are a complete beginner. The two preset resistors must be the specified miniature horizontal types if they are to fit into the component layout properly. To complete the board add Veropins at the points where connections to VR1, LS1, B1, and the bell push, will eventually be made.

CASE

A case having dimensions of about $150 \times 100 \times 50 \mathrm{~mm}$ should be satisfactory unless a fairly large loudspeaker is used. An 8 ohm loudspeaker of about 75 mm in diameter will give sufficient volume for most purposes, but a 4 ohm impedance type of around 120 mm in diameter should be used if a high volume level is needed for some reason.

VR1 and the loudspeaker are mounted on the front panel. A speaker grille is required, and this can consist of a matrix of holes about 6 mm in diameter, but drill these carefully as it can be quite difficult to make a neat job of it. If a fairly large loudspeaker is used it will probably have provision for screw fixing, but with most miniature types it is a matter of gluing them in place using a high quality general purpose adhesive.

The component board is mounted on the rear panel, and if a metal case is used

COMPONENTS

Resistors	
R1,2,5,17	$10 \mathrm{k} \Omega$ (4 off)
R3, 11,12	$4.7 \mathrm{k} \Omega$ (3 off)
R4	$1 \mathrm{M} \Omega$
R6,7	$100 \mathrm{k} \Omega$ (4 off)
10,18 $R 8.9$	8.2 k ת (2 off)
R8,9 R 13	${ }_{1} 5 \mathrm{k} \Omega$
R14	220Ω
R15	$18 \mathrm{k} \Omega$
R16	22k Ω
All $\frac{1}{} \mathrm{~W}$ car	bon $\pm 5 \%$

Capacitors

C1,3	22 nF polyester (2 off)
C2,6	100 nF polyester (2 off)
C4.5	100uF 10 V radial elect.
C7	$220 \mu \mathrm{~F} 10 \mathrm{~V}$ radial elect.
C8	$330 \mu \mathrm{~F} 10 \mathrm{~V}$ axial

Semiconductors

IC1.2 555 timer i.c. (2 off)
IC3 741C op-amp
IC4 CA3080E transconductance op-amp
IC5 LM380N audio power amp.
Potentiometers
$\begin{array}{ll}\text { VR1 } & 470 \mathrm{k} \Omega \text { linear } \\ \text { VR2 } & 47 \mathrm{k} \Omega 0.1 \mathrm{~W}\end{array}$
horizontal preset
$100 \mathrm{k} \Omega 0.1 \mathrm{~W}$ horizontal prese

TR1 BC109C silicon npn
D1 1N4002 silicon rectifier

Miscellaneous

S1 bell push
B1 9 volt, PP9 or $6 \times \mathrm{HP7}$
in holder
4 or 8 ohm impedance loudspeaker, about
76 mm or more in diameter
Case about $152 \times 102 \times 51 \mathrm{~mm}$, battery connector, 50 holes by 36 strips, 0.1 inch matrix Veroboard, control knob, 2 -way connector block, wire, fixings, etc
spacers about 3 to 6 mm long should be used over the mounting bolts so that the connections on the underside of the board are not short circuited through the case. Even with a plastic case the use of spacers is advisable, as it avoids having the board buckle and possibly break (due to the protruding connections on the underside) when the mounting nuts are tightened.

Finally, the unit is completed by wiring the component panel to the rest of the unit. It is probably easiest to make the connections to the bell push by means of a 2 -way connector block. These are usually sold as 12 -way strips, but a 2 -way block can easily be cut from one of these using a sharp knife. An entrance hole for the lead to the bell push is made in one side of the case. The prototype is powered by six HP7 size batteries fitted in a plastic battery holder, and this is connected to the rest of the unit using a PP3-type battery connector. A large 9 -volt battery such as a PP9 can be used as the power source, provided the case used is large enough to accommodate them, but as the circuit has a fairly high maximum current consumption of more than 100 mA , small 9 -volt batteries are not suitable.

ADJUSTMENT

Satisfactory results should be obtained with VR2 and VR3 placed at a roughly mid-way setting. The best effects are ob-
tained with VR1 set so that the two os cillators are some musical interval apart, but just slightly off tune so that a beat note is produced. However, in practice, it is really just a matter of trying VRI at various settings to find the one that gives the effect which you like best. Quite a range of interesting sounds can be obtained, and if you get tired of one sound VR1 can be reset for a different effect.

The sound can be altered somewhat by adjusting VR2, and again, this is just a matter of trying various settings in order to determine which you find the most suitable. The other preset potentiometer; VR3, is adjusted to give the highest volume level which does not lead to overloading and severe distortion when the bell push is initially operated (which is when the output from the unit is at its maximum level).

EVERYDAY ELECTRONICS PRIITED CIRCUTT BOARD SERULE

Printed circuit boards for certain EE constructional projects are now avallable from the EE PCB Service, see list. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 iJG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers ordering both p.c.b.s and software cassettes may send a single cheque/PO for the combined amounts listed.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
```- JUNE '83 - \\ Eprom Programmer, TRS-80 \\ Eprom Programmer, Genle Eprom Programmer, TRS-80 \& Genie```	$\begin{aligned} & 8306-01 \\ & 8306-02 \\ & 8306-03 \end{aligned}$	$\begin{aligned} & £ 9.31 \\ & £ 9.31 \\ & £ 1.98 \end{aligned}$
$\qquad$   User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
- AUGUST'83 -   Storage 'Scope Interface, BBC Micro   Car Intruder Alarm   High Power Interface M.I.T. Part 2   Pedestrian Crossing Simulation   M.I.T. Part 2   Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308-02 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	£3.20   〔5.15   £5.08   £3.56   £4.56
- SEPTEMBER '83 -   High Speed A-to-D Converter   M.I.T. Part 3   Signal Conditioning Amplifier   M.I.T. Part 3   Siylus Organ   Distress Beacon   Distress Beacon Pocket Version	$\begin{array}{r} 8309-01 \\ \\ 8309-02 \\ 8309-03 \\ 8309-04 \\ 8309-05 \end{array}$	£4.53   £4.48   £6.84   $£ 5.36$   £3.98
$\qquad$   D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electronic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	£5.77   £5.13   £5.43
- NOVEMBER 83 -   TTLPower Interface for Stepper Motor   M.I.T. Part 5   Stepper Motor Manual Controller   M.I.T. Part 5   Digital Gauss Meter   Speech Synthesiser for BBC Micro   Car On/Off Touch Swltch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-03 \\ & 8311-04 \\ & 8311-05 \end{aligned}$	$£ 5.46$   $£ 5.70$   £ 4.45   $£ 3.93$   E3.11
- DECEMBER '83 -   4-Channel High Speed ADC (Analogue)   M.I.T. Part 6   4-Channel High Speed ADC (Digital)   M.I.T. Part 6   TRS-80 Twin Cassette Interface Environmental Data Recorder   Touch Operated Die (Dot matrix)   Touch Operated Die (7-segment) Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-04 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$£ 5.72$   £5.29   £ 7.43   £7.24   £4.34   £4.34   £3.41



- JANUARY'84 -   Central Heating Pump Oelay   Biological Amplifier M.I.T. Part 7   Temp. Measure \& Control for ZX Comprs Analogue Thermometer Unit   Analogue-to-Digital Unit   Games Scoreboard	$\begin{aligned} & 8401-01 \\ & 8401-02 \\ & \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & £ 3.33 \\ & £ 6.27 \\ & £ 2.35 \\ & £ 2.56 \\ & £ 9.60 \end{aligned}$
- FEBRUARY'84 -   Eprom Programmer/ROM Card for $\mathbf{2 X 8} 1$   Oric Port Board M.I.T. Part 8   Negative Ion Generator   Temp. Measure \& Control for ZX Comprs Relay Driver	$\begin{array}{r} \bullet 8402-01 \\ 8402-02 \\ \bullet 8402-03 \\ \\ 8402-04 \end{array}$	$\begin{aligned} & \text { £7.84 } \\ & \text { £8.56 } \\ & \text { £3.95 } \end{aligned}$
- MARCH ${ }^{\prime} 84$ -   Latched Output Port M.I.T. Part 9   Buffered Input Port M.I.T. Part 9   VIC-20 Extension Port Connector   M.I.T. Part 9   Commodore 64 Extension Port Connector   M.I.T. Part 9   Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \\ & \hline \end{aligned}$	£5.30   $£ 4.80$   £4.42   $£ 4.71$   £4.63
- APRIL'84 -   Multipurpose Interface for Computers   Data Acquisition "Input" M.I.T. Part 10   Data Acquisition "Output" M.I.T. Part 10   Data Acquisition :"PSU" M.I.T. Part 10   Timer Module   A.F. Sweep Generator   Quasi Stereo Adaptor	$\begin{aligned} & 8404-01 \\ & 8404-02 \\ & 8404-03 \\ & 8404-04 \\ & 8404-05 \\ & 8404-06 \\ & 8404-07 \end{aligned}$	£5.72 $£ 5.20$ $£ 5.20$ $£ 3.09$ £ 3.58 £3.55 f. 3.56
Simple Loop Burglar Alarm Computer Controlled Buggy M.I.T. Part If Interface/Motor Drive Collision Sensing Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \end{aligned}$
$\qquad$   ```Infra-Red Alarm System \\ Spectrum Bench PSU \\ Speech Synthesiser M.I.T. Part 12 \\ Train Walt```	$\begin{aligned} & 8406-01 \\ & 8406-02 \\ & 8406-03 \\ & 8406-04 \end{aligned}$	$\begin{aligned} & \text { £2.55 } \\ & £ 3.99 \\ & £ 4.85 \\ & £ 3.42 \end{aligned}$
$\qquad$   Ultrasonic Alarm System Atom EPROM Simulator Electronic Code Lock Main board Keyboard	$\begin{aligned} & 8407-01 \\ & 8407-02 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{array}{r} \text { £ } 4.72 \\ \text { £ } 3.08 \\ \text { £ } 2.70 \\ \text { £3.24 } \end{array}$
Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{array}{r} £ 4.36 \\ £ 2.24 \end{array}$
- SEPTEMBER 84 -Op-Amp Power Supply	8409-01	£3.45
- OCTOBER '84 -   Micro Memory Synthesiser Drill Speed Controller	$\begin{array}{r} 8410-01 \\ 8410-04 \end{array}$	$\begin{aligned} & £ 8.20 \\ & \text { £ } 1.60 \end{aligned}$
- NOVEMBER 84 BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{aligned} & £ 2.90 \\ & £ 2.65 \end{aligned}$
$\qquad$   DEC   TV Aerial Pre-Amp Digital Multimeter Mini Workshop Power Supply	-8412-01   -8412-02/03   8412-04	$\begin{array}{r} £ 1.60 \\ £ 5.20 \\ £ 2.78 \end{array}$

[^1]
## EVERYDAY an =ciRO CO Computer projects

## VOLUME 13 INDEX

JANUARY 1984 TO DECEMBER 1984

Pages	Issue	Pages	Issue
$1-72$	January	$417-480$	July
$73-144$	February	$481-544$	August
$145-216$	March	$545-600$	September
$217-288$	April	$601-656$	October
$289-352$	May	$657-712$	November
$353-416$	June	$713-768$	December

CONSTRUCTIONAL PROJECTS
ACORN ATOM, EXTRA 1 K RAM ACORN ATOM, EXTRA UTILITY PROM A/D CONVERTER
AERIAL PRE-AMP, TV
ALFRED by Alan Green
AMPLIFIER, LOW POWER STEREO
ANALOGUE THERMOMETER UNIT
ATOM EPROM SIMULATOR by R. A. Peenfold
AUDIO SINEWAVE SWEEP GENERATOR
by R. E. Liddiard
BBC MICRO AUDIO STORAGE SCOPE INTERFACE
by R. A. Penfold
BBC MICRO TEMPERATURE INTERFACE
by R. A. Penfold
BIOLOGICAL AMPLIFIER by J. Adams and G. M. Feather 54 BUFFERED INPUT PORT by Adams and G. M. Feather BUGGY, COMPUTER CONTROLLED
CAPACITANCE COMPARATOR by L. S. Cook 431,728
CARAVAN DIPSTICK by T. R. de Vaux-Balbirnie
431, 728
CAR LIGHTS WARNING by A. Burnett
CAR LIGHTS WARNING by H.B. Foster
CAR RADIO BOOSTER by R. A. Penfold
CB MINI POWER SUPPLY by T. R. de Vaux-Balbirnie CENTRAL HEATING PUMP DELAY by A. Gray
CHANNEL SELECTION SWITCH by P. Balley
COMPUTER-CONTROLLED BUGGY
by J. Adams and G. M. Feather
DATA ACQUISITION SYSTEM
by J. Adams and G. M. Feather
50
by J. Adams and G. M. Feather 244
DIGITAL MULTIMETER by I. A. Duncombe
DIGITAL MULTIMETER ADD-ON FOR COMPUTERS by R. A. Penfold
694, 748
DIN LEAD TESTER by L. A. Privett
DOORCHIME by R. A. Penfold
DRILL SPEED CONTROLLER by M. Stuart 610
DUAL MAINS SWITCH by M. Sales
ELECTRONIC CODE LOCK by Dr. W. D. Phillips
EPRO
EPROM PROGRAMMER/ROM CARD FOR ZX81
by B. W. Terrell and J. W. Terrell
EXPERIMENTER'S POWER SUPPLY by S. Niewiadomski 298
EXTRA 1K RAM for the ACORN ATOM by A. J. Presnall 326
EXTRA UTILITY PROM for the ACORN ATOM
by A. J. Presnail
FLUID DETECTOR by I. A. Duncombe 672 FUSE/DIODE CHECKER by L. A. Privett
GAMES SCOREBOARD by P. Dooley ..... 43. 268
GUITAR HEADPHONE AMPLIFIER by M. G. Argent ..... 554gUITAR TUNER by R. A. Penfold60
HOT WATER TANK INDICATOR by A. H. Robson ..... 394
INFRA-RED ALARM SYSTEM by I. F. M. Goult ..... 366
KITCHEN APPLIANCE TIMER by T. R. de Vaux-Balbirnie ..... 488
LATCHED OUTPUT PORT
by J. Adams and G. M. Feather ..... 180
LOUDSPEAKER PROTECTION UNIT by J. Duffy ..... 88
LOW POWER STEREO AMPLIFIER by D. J. Edwards ..... 192
MAINS CABLE DETECTOR by D. Corder ..... 644
MASTERMIND TIMER by L. A. Privett ..... 330MICROCOMPUTER DIGITISER by J. Howden Ph.D
MICRO MEMORY SYNTHESISER by M. Stuart ..... 550
MICROWAVE ALARM SYSTEM by l. F. H. Goult ..... 516MINI WORKSHOP PSU by W. LeungMULTIMETER, DIGITAL
694. 748MULTIPURPOSE INTERFACE FOR COMPUTERSby M. P. HorseyNEGATIVE ION GENERATOR by A. Flind260
NI-CAD BATTERY CHARGER by R. H. Marco ..... 82
OP-AMP POWER SUPPLY by T. J. Johnson ..... 563
ORIC PORT BOARD by J. Adams and G. M. Feather ..... 118,268
PIPE FINDER by George Hylton ..... 198
PROXIMITY ALARM by R. A. Penfold ..... 702
QUASI-STEREO ADAPTOR by R. A. Penfold ..... 270
QUIZ-MASTER II by S. Lyons ..... 250
RADIO BOOSTER, CAR ..... 504 ..... 302
RADIO, VARICAP A.M.
RADIO, VARICAP A.M.
ROBOT, ALFRED ..... 664,720
SCOREBOARD—JUDGES POINTS INDICATOR by L. A. Privett ..... 636
SIGNAL TRACER by R. A. Penfold ..... 126SIMPLE LOOP BURGLAR ALARM by C. Lare
SOUND OPERATED FLASH by M. G. Argent338574
SPECTRUM BENCH PSU by R. A. Penfold ..... 372,513

```
TEMPERATURE MEASUREMENT AND CONTROL
 SYSTEM FOR ZX COMPUTERS by M. Plant
THERMOSTATIC SEED PROPAGATOR by J. Lewis
10,106
MER MODULE FOR CENTRAL HEATING SYSTEMS
by S.lbbs
TRAIN WAIT by C. J. Bowes
2 7 4
737
TV AERIAL PRE-AMP by M. Stuart
ULTRASONIC BURGLAR ALARM by I. H. F. Goult
4 5 4
CIRCUIT EXCHANGE \(26,27,35,66,99,121,123,124,131\), \(132,191,200,276,277,345,407,410\) \(441,475,536,540,555,565,621,637,730\)
COMPUTER AIDED EXPERIMENTS by A. A. Chanerley 64, 134, 206
4: Capacitor charge/discharge with variable constant 64
5: V/I Characteristic of a p-n junction 134
6: Ohmic and noh-Ohmic conductors
COMPUTER CLUB by Thakery
740
DIGITAL ELECTRONICS by D. W. Crabtree 1: Basics
2: Karnaugh maps and DeMorgan's rules
\(618,669,732\)
618
3: Combinational logic using LSI and MSI
669
FAULT FINDING by E. A. Rule
692, 756
1: Routine procedures and fault analysis 692
2: Fault analysis on ready-built equipment
756
FUNTRONICS by Thakery
\(572,614,684\)
1: The Decibel
572
2: Current
3: The Battery
MICROCOMPUTER INTERFACING TECHNIQUES
\begin{tabular}{lrr}
by J. Adams and G. M. Feather & \(54,116,176,240\), \\
& 314,382 \\
7: Human and plant physiology signal processing & 54 \\
8: Direct Bus Interfacing & 196 \\
9: Direct Bus Interfacing & 176 \\
10: Data monitoring, acquisition and control & 240 \\
11: Computer control of small vehicles & 314 \\
12: Speech Synthesis & 382
\end{tabular}
```

signal processing
116
176
10: Data monitoring, acquisition and control 240
12: Sper 382

VARI-CAP A.M. RADIO by R. A. Penfold
WASHER FLUID MONITOR by A. R. Winstanley ..... 532
ZX81, EPROM PROGRAMMER/ROM CARD ..... 92
2 to 12V POWER SUPPY ..... 298
4-CHANNEL GAS AND SMOKE SENTINEL by A.R. Winstanley ..... 17

## SPECIAL SERIES

ANATOMY OF YOUR MICRO by Owen Bishop
1: Introduction-The Microprocessor
2: Data flow and memory
3: Video, disc and TV interfacing
448, 508, 566 448 508 566

OSCILLATORS by J. R. Davies
$400,463,524,593$
1: The Symmetric Multivibrator
2: Using the 555 and ICM7555
3: Digital CMOS Devices
463
524

4: Hysteresis Oscillators

SPECIAL REPORTS
28, 174, 622
BBC Microcomputer Model B by R. A. Penfold 28
Oric 1 Microcomputer by R. A. Penfold 174
Sinclair QL by R. Barron 622
SQUARE ONE $133,205,279,344,409,474,515,646$,
$\begin{array}{ll}\text { Equipment Wire } & 674,742\end{array}$
205
Capacitors
279
Logic Symbols
$\begin{array}{lr}\text { Truth Tables and Logic Circuits } & 309\end{array}$
Integrated Circults 474
CMOS Devices 474
EE Component Designations 646
Home Computers 674
Software
742
TEACH-IN 84 by George Hylton
$30,100,168,234,306$, $376,436,498,556$
4: Transistors and Capacitors
5: Audio Amplifiers
30
6: Operational Amplifiers
7: Waveforms and Distortion
8: Power in General
9: Raaio Systems
10: Digital Circults
11: New Developments
12: Aids to Design
556, 728
WHAT IS RADIATION? by A. J. Bentley
512,578, 638
1: Introduction, types of radiation
2: Fission and Fusion
512
578
3: Radiation Detectors
WHY NARROW BAND F.M. $?$ by E. A. Rule
1: Modulation systems compared
2: Different systems compared

638
266, 334
266
334

## GÉNERAL FEATURES

BACK NUMBERS
115, 209
BOOK REVIEWS
63, 99, 204, 337, 365, 730
BRIGHTIDEAS
197
CONSUMER ELECTRONICS CHICAGO by Barrh 648
COUNTER INTELLIGENCE 27,121,208, 239,346,
$395,446,530,580,640,746$
ECONOMICAL ELECTRONIC by L. J. Stean 25
EDITORIAL $9,81,153,225,297,361,425,487,549,605$,
ELECTRIC HAZARDS 663, 719
ELECTRONIC SURVEILLANCE SYSTEMS
by I. F.H. Goult
40, 112, 188,250,324,388, 362
EVERYDAY NEWS $40,112,188,256,324,388,452,502$
$586,632,686,743$
FOR YOUR ENTERTAINMENT by Barry Fox $42,91,186,249$, $312,398,442,507,577,641,688,725$
NEW PRODUCTS
$36,130,201,278,342,460,497$,
634, 744

PLEASE TAKE NOTE
268, 513, 730
Capacitance Comparator (Dec '84) 730
Games Scoreboard (Jan '84) 268
Oric Port Board (Feb '84) 268
Spectrum Bench Power Supply (June '84) 513
Teach-In '84 Part 12 (Dec '84)
VIC-20 Light Pen (Dec '84)
730
VIC-20 Light Pen (Dec 84) 730
PRINTED CIRCUIT BOARD SERVICE 59, 105, 165,280, $343,396,443,541,597,653,708,762$

RADIO WORLD by Pat Hawker G3VA
$49,114,190,258$ $329,408,462,523,576,616,707,755$

READERS' LETTERS
237, 332, 381
SCHOOLS COMPETITION
SHOP TALK by Dave Barrington
SOFTWARE SERVICE

588
16, 87, 164, 231, 313, 371 $434,560,642,690,735$
$59,131,156,239,387$

```
COMPONENT PACKS All brand new componems, price
r pack. if you order 12 Yoy yet one entra
 513 amp ring main sour boxer
 25 13 amo fuses for ring moins
 5surfice mounting switches suituble insulated for main
 voltage
 replace 10r 2 way switche
 5inflex ling switches
 4 in flex line swiches with noon.
 80 watt brass cased elements
 2 Mains srmsiormersw with 6v 1a secondaries
 Textension speaker cabiner for 6'%" speaker
 2 glass reed unviches
 OCP }70\mathrm{ photo rrmmistors
 5 asoored gemanium transistors OCA5 el
 4,pae heads, 2 record. 2erase
 Ulira sonic Tranomiturs, snd 2 ditro receiven
 2 llont dependen\t resittors similar ORP\
 8 diff micro switch
225 watt crowover cuppre
*)
8 POWERFUL MODEL
MOTORS
```



```
SOUND TO LIGHT UNIT
```



Compleert kir of parts for a three channel sound to light unht
 each chmenel, and a master onloth. The autio input ond output ere by "" sockets and three panel mounting tuse holden provide thyribtor protection. A tour pin plug end socker facilitate ease of
connecting lempa. Special price is 14.95 in kit form or $\mathbf{E Z 5 . 0 0}$ mbled and terted.
WANT A PART OF HISTORYY During the last wor, cars and army lorries were sbl to trevel withour lights. The driver G10oked

 bit rusty through long tiorage sid although unued, we connor
puar antee the cells sre in workkine order, al hough working cells can be obrained).
SOw 1 matre FLUORESCENT TUBES ides for polmet lighting otc. Large quantities wo cleer box of 25 for E12, carrigge
paid, or $£ 25$ per 100 you collect other wubes in stock olso chokes and accessories very cheso.
SUN LAMP ballart and condenser for 6' 100 watt UVA Tube REED RELAY KIT High inductsnce coil, on former to rake 4 reed di, operated by throe voltr DC or 12 me Could bo used to cio
4 circuits. or with ex ternal magnet you could have two normaly closed and two normaly open, it two changsoveris. An exceptions
bargein at 990 for the coil and tour reedr 100 tor $£ 79-100$ for E500.
Th different shermostast. 7 bimeral evoes snd 3 liguid fypes. Thero are the eurrent Ruats which will open the switch to protec
cievices spadiost overloed, ohort eircuits, etc., of when flitect wy In front of the slement of a bow haster, the heast woutd trip
the stat if the blower fuses; applisince stuts, one for high temp. the stat th the blower fuses, spliance sulss, one for high temp.
 Con be immersed, on oven sitat, a calibsated boiler stat, finglly ant
ice gas which, fited to our watuproof hesere stement, up in the
 lott could proteci your pipes from frasing, Separataiv, these
thermostats could cost around $£ 15.00 \rightarrow$ however, vou can have Thermoratazs could co
the parcel for $£ 2.50$.
MINI MONO AMP on p.e.b., size 4"K 2" (app.) Flteed volumn control end thole for \& it
trol should you reaute it. The empltior has three tronsistions end we estim.
nit the output 10 be 3 W ms . More technikal doat will be inctud. *owth the amp. Brand new,


- BARGAIN OF THE YEAR

The AMSTRAD Stereo Tuner.
This ceacty assembled unit th the toagal funer for a music centre or an omplifier, it can also be quickivy made into a
partional stereo radio - easy to carry about and which will persional stereo radio - ea
pive you superb reception
Other usos are as a "get you to sieep radio", you could ew pakk it with you to use in the lounge when the erste of
family went ro view programmes In which you are noe interested. You con listen to some music instead.
Some of the featuret are: long wove Dand $115-270 \mathrm{KHz}$
meodium weve bend $525-1850 \mathrm{KHz}$. FM band $87-$
 and fully aligned. Full wring up Hata showing you how to
connect 10 amplifier or headphones snd dezalls of sulizable ConMecrio thote ferrite rod derial s. included for mecium a
FM aeribl Iong weve bands. All made up on very compoct bo
Offered at a fraction of its coar: 0 only $£ 6.00$
only $£ 6.00$

JIGSAW PUZZLE USING THE MINIATURE UNISELECTOR Ideally y 30-piect puzzle should be thosen oft the probe mult be fouched to section 1. Thit would racther it along to be ready for the next more mhen the probe is touched o
section 2 and so on through the 30 positions. The lower set of contacta should de made so light lamps. First lamp 1, then hamp 2 .
3 right up to lamp
30 would be progressively
IIt
Lemp
30

CAR STARTER/CHARGER KIT Flar Burery! Don
 4/5A BATTERY CHARGER Transtormer and rectiffer C3.95 \& E1 Dost, 3 kity E 12 post paid
TELEPHONE ITEMS
luss only 4 pin or 5 oin pin or 5 pin

## 

Externit bell unit
Bell rinining power unit
Pisk

STABILISED POWER SUPPLY (Mains Input) By LAMOA (USA) - Iceal for computer mdd-ons, d.e. outpur


PRESTEL UNITS
These are brond new
and we undergtand


Wo lifer them


AGAIN AVAILABLE

- Compu AGAIN AVAILABLE - Computer desks -
$26^{\circ}$ nigh formicd eovered, cost over $£ 100$ each
from $£ 9.50$ to $£ 13.50$ depending on condition


## 50 THINGS YOU CAN MAKE

Things vou can make meclude Multi range meter, Low
ohms tester, A.C. ampas meter, Alarm elock, Soldoering ohms tester, A.C. amps metar, Alasm elock, Soldaering
Iron minder, Two way telephone, Memory jogger, Live


 ond dies, tools, thermostat, coils, condensers, resittors,
neons, eerphonedmictoohones, multit-urn ports and notes on the 50 projectu.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
FROZEN PIPES. Can be avoidad by winding our heating cable



MAINS TRANSFORMERS

4 vols	4 mmo	ع1.75	24	4 amp	85
6	1\% amo	${ }_{\text {c1. }}$	35 volt	${ }_{2} \mathrm{amp}$	E3.95
	\% ${ }_{\text {amp }}$	E1.55	38 volt		ce. 95
12 volt	1 amo	¢1.75	26 volt	10 sm	E9.95
${ }^{15} 5$ volt	2 mmp	${ }_{\text {c3. }}$	50 volt	2 am	L8. 50
18 val	4 amp	${ }_{\text {c1.95 }}$	${ }^{25.0 .25}$	2amb	${ }_{\text {E4.95 }}$
		0			
					65.75

STORE CLOSING SALE





## J. BULL (Electrical) Ltd.

(Dept. EE), 34 - 36 AMERICA LANE, Envolked
AYWARDS HEATH, SUSSEX RH16 $30 U$. 30 YEARS AIL ORDER TERMS: CmS PO. or chequ with order Orders un E12 ado 6 On service chorge, Monthiv sccount or ders accep ted from


EXTRACTOR FANS - MAINS OPERATED

 ir oullet, dual speed
E4. 60 . Pos $£ 1.50$.

TANGENTIAL BLOW HEATER
 3 Kw f6. 95 comple te heat switch, wifety cut out end coiniection diagre

for 3 for $E 20$ post pal

ROCKER SWITCHES Standard size fit $19.5 \times 28 \mathrm{~mm}$ cul
 chengever 200 exch with neon -36 p -100 , 1000 for $\varepsilon 180$.
ROCKER SWITCH DP/DT 18 amp 250 volis sulrable for MICRO SWITCHES V3 type all 25010 amp SDST 200
$1000-£ 100$ Spat $3001000-$ E150, very low tongua Sodr $1000-E 150$ Sodr 3001000
400100 for $E 220$.
MOTORIZED DISCO SWITCH These have $9 \times 10 \mathrm{mp}$ changeover switcher exh rated at 10 amps soa mhole etreet could
easily be lit with one. Swirenes aciustable and couid be set to opive
 E5. 75 exch or 1 Io
WALL MOUNTING ROOM THERMOSTAT
 250v contacti. Price 84.60
BLEEPERS 6 or 12 N Datravy or trantormer operated, ideal
 motor cycto aw. This Thase
1000 for $\mathbf{E 3 4 5}$. tap made.

## 4 <br> MINIATURE WAFER SWITCHES <br>  2 pole, 6 wey -1 pote, 12 wav. All at 25 p oach or 10 for $£ 200$

24 HOUR TIME SWITCH - Made for control at Rendall Cantral Heating Boilers there give 2 onfofts Def 24 hr . Equal
sultrobe for control of heaters of heating systems. $£ 4.60$.
CONNECTING WIRE PACK 96 lengiths of connecting wire, each 1 metre long and diffe enntly eolour coded, a muss to those difficult interconnecting jobs 85p the lot.
RED LEDS 10 for 69 p. 100 for $\mathbf{6 5 . 7 8} 1000$ for 852


VENNER TIME SWITCH

outom arically correcting for that lengather ing of thoutening day. An expensive time
iwitch but you cen hive it for only $E 2.95$, with out case, meat case - E2.95, odap tor
kit to convert this into
normal 24 hnt t time switen bui with the addeo esvantage of up to 12 on/ptots per 24 Ars. This makes on
 Ex.Electrikity Boaid.

## IONISER KIT

Refreih your home, office, thoo, work room, etc. with
 £ 11.95 plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

## 3 Channel Sound io Light - with fully prepared metal case $\quad$ E14.95

 Big Ear, llsten through walls .................50 Silent sentinel Ultras Sonic Car Light "left on' alarm$3-30$ Variable Power Supoly
2 Short \& Medium weve Crysual Redio 3v to 16v Meins Power Supply Kit Racio ste thoscope - Facult finding sic Mug stop - emiss piscring suuat t. Drill control kit .
Interrupled beam kit.
Radio Mike
F $M$ receiver kit - for survelliance or normei F $M$
Insulation Tester - electronic megger Battery shaver or fllorescunt from 12 v
Morchbok Radio - - eceives Medium Was 40 watt amp - hill 20 nz - 20 kHz
Power supoly for 115 watt amos
69.50
$\varepsilon 9.50$

63.50 | E9.50 |
| :--- |
|  |
| 3.50 |
| $\mathbf{~} 1.95$ | E1.95

E13.80 613.80
63.99 $\mathbf{£ 3 . 9 9}$
$\mathbf{8 1 . 9 5}$ $\varepsilon 1.95$
$\varepsilon 4.80$ $\varepsilon 4.80$

62.50 \begin{tabular}{l}
62.50 <br>
E2.99 <br>
\hline

 

$£ 2.99$ <br>
$\mathbf{\varepsilon 3 . 9 5}$ <br>
\hline

 

E3.95 <br>
E2.50 <br>
\hline
\end{tabular}

# EVERMDAY <br> ELECTRONICS AT YOUR and computer PROJECTS 

Reach effectively and economically to-days enthusiasts anxious to know of your through our semi-display and classified pages. Semi-display spaces may be booked at timetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 33 pence per word number 60 p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisetance, should be sent to the Classified Advertisement Department, Everyday Electronics and 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone

## Receivers \& Components

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settlement.

## NEED A SPECIAL MAINS TRANSFORMER?

Use one of our Transformer Kits SAE for details:
TIDMAN MAIL ORDER LTD (Dept EE) 236 Sandycombe Road, Richmond, Surrey. Phone 01-948 3702

## Services

## INVENTORS

Think of something new? Write it down! American industry offers potential royalties for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.
American Inventors Corporation 82 Broad Street. Dept. EV.
Westfield, Massachusetts 01086
United States of America
A fee based marketing company

## Service Sheets

FULL SIZE TOP QUALITY Service Sheets $\mathbf{£ 2 . 5 0 +}$ 1.s.a.e. CTV/Music centres $£ 3.50$ + I.s.a.e. Repair data almost any named TV/video $£ 10.50$ in circuits. L.s.a.e. brings any quite-free magazine/pricelists. TISEE, 76 Churches, Larkhall, Lanarkshire. Tel. 0698 883334.

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus S.A.E. Service Manuals on Colour TV and Video Recorders, prices on request. S.A.E. with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

## Tuition

## IMPROVE YOUR PROSPECTS

with skills that employers want - learn the easy way with modern home study courses from Ideal Sctools.

MODERN ELECTRONICS Train for success in the fastest ever growing industrial sector.
COMPUTER PROGRAMMING The demand for Programmers is increasing constantly - don't miss out! For free booklet write today to


##  ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next availble issue of Everyday Electronics
for ....... Insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Uoyds Bank Ltd. and made payable to Everyday Electronics)


HEADING REQUIRED:
NAME
ADDRESS

EVERYDAY ELECTRONICS and

## COMPUTER PROJECTS

Classified Advertisement Dept., Room 2612.
King's Reach Tower, Stamford Street, London SE1 9LS
Telephone 01-261 5942
Rate:
33p per word, minimum 12 words. Box No. 60p extra.
26. Registered Office: King's Reach Tower, Stamford Street, London SEI gL.

# SERVICE 

products and services £7.80 per single column cen(minimum 12 words), box and Computer Projects and ments, together with remitComputer Projects, Room 01-261 5942).

## For Sale

TERMINET PRINTER RS232. Fully working, $£ 70.00$. E.E. No. 1 to Vol. $9, £ 20.00$. Buyer collects. Phone 01-651 4885.

## Miscellaneous

FREE PARCEL OF COMPONENTS wort $£ 10$ Send only 80 p postage! D. HORSLEY, 113 Clare Road, Braintree, Essex.


The tracks and holes on stripboard are repro duced, lightly printed, on TRACKPAPER 10.1 in matrix).
Use TRACKPAPER to draw out component positions before using the board. Choose the best layout. Save time and space.
Order your TRACKPAPER now. Pack of 20 A5 sheets only $£ 1.55+20 p$ p\&p from:

> P \& S Supplies, Dept EE 51 Cambridge Road, Impington CAMBRIDGE CB4 4NU

Please make chequesIP.O. payable to P \& S Supplies.

SHEETMETAL FOLDERS, $18^{\prime \prime} £ 38,24^{*} £ 45$. Bench or vice held. Leaflet, 01-890 7838 anytime.

Learn to make your own Prined Circuh Boards EXPERIMENTER'S PRINTED CIRCUIT KIT
 and transistors 0.50 pap 50 p
Protect your premises with an efficient BURGLAR ALARM PHOTOELECTRIC KIT E5.50 p\&p 50 p ; INVISIBLE BEAM OPTICAL $K$ E E4.50 p\&p 50 p . Send SAE for details of all Kits \& Circuits, EXPERIMENTAL ELECTRONICS
London SW11
335 Battersea Park Road,


## $\star$ BAKER $\star$

 GROUP PA. DIISCO AMPLFERS Dost E2 2 150 wath Output, 4 input Mixer pre-amp. Hluatrated150 watt Output, Slave 500 mv . Input 3 Speaker O | $150+150$ wett Stereo, 300 wath Mono Slave 500 mv . Inputs 1825 |
| :--- |
| 150 wat |
| 12 | 100 wat Valve Model, 4 inputs, 5 Outputs. Heaw duty 60 watt Valve Model, 4 inputs. Low imp and 100 V line output $\mathrm{E69}$

60 watt Mobile 240 V AC and 12 VDC . 4.16 ohm +100 V line $\mathrm{CB9}$ MIKES Dual Imp E20, Floor Stand $£ 12.50$. Boom Stand $£ 22.00$, Post E2 BAKER LOUDSPEAKERS
PYPA./Disco/Group Pairasco/
Midrange
Hi.Fi Hi-Fi
PA/D
Hifi Hifi
Hi -fi
PA/Disco/Group PA/OIsco/Group

P.A/Oisco/Group Model | DG100/15 | 15 in | 100 | $8 / 16$ | 835.00 |
| :--- | :--- | :--- | :--- | :--- |
| 28.00 |  |  |  |  | OISCO CONSOLE Twin Decks, mixer pre amp e145. Cart E15.

COMPIETE OISCO 150 wAtr E380; Powered Console 120 wAI £ 199 . Carr E10.
DISCO MIXER. $240 \mathrm{~V}, 4$ stereo channela, 2 magnetic, 2 ceramic lape, 1 mono mic channel, twin v.u. meiers. headphone monitor tacia Tape outpur facility.
DELUXE
E54, Post $£ 1$. LE.D. V.U. displays 5 band graphic equaliser, tet/rioht fader switchable inputs for phonelline, mike/line.
Headphone Montor, Mike Talkover Swhich As above with 7 Band Graphic E138.

E124 pp E PA CABINETS lemply Single 12 £32; Double 12 £38. cart
WITH SPEAKERS 60 W E27; 75 W £54; SOW 773 ; 150 W E82 HORNBOXES 200 WAT $£ 30,300$ War $£ 35$. Posi E 4
WATERPROOF HORNS 8 ohms. 25 wall $£ 20,30$ watt $\mathbf{C 2 3 .} 40$ watt E29. 200 Plus 100 vOIt IINe E38. Post fZ.
MOTOROLA PIE 20 ELECTRONIC HORN TWEETER, 3 im Squar

$$
\frac{100 \text { watts No ciossover required } 48.16 \text { ohm. } 71 \times 3 \text { ion }}{\text { Chossovens. rwo Way } 3000 \mathrm{e} / \mathrm{s} 30 \text { watt } 53.80 \text { wart } \mathrm{E} 5.100 \text { watt } \mathrm{f6}}
$$






Make	Model	Sire	Wotts	Oh	Price	Pos
AUDAX	WOOFER				110.50	1
G000mANS	hifax	$7 x^{2} \times 4$ in	100	8	$f 30$	
G000MANS	he wOOFEA	8 m		8	[13.50	
WHARFEDALE	WOOFER	Bin	30	8	f9 50	
CELESTION	Discorgroup	10 m.	50	$8 / 16$	521	
AKAI	WOOFER	12 in	-		516	
goodmans	MPG/GROUP	12 in	120	8/15	129.50	
GOODMANS	HPO/OLSCO	12 n	120	8/15	f29.50	
GOODMANS	HP/BASS	15 in .	250	8	[72	
GOODMANS	HPD/BASS	18 n	230	8	f84	


RCS SOUND TO LIGHT CONTROLLER KIT
Printed Circuit Cabinet AEADY BUILT DELUXE 4 CHANNEL 4000 WATT with chaser * speed + programme controls $\mathbf{£ 6 9}$. Mik2 16 program, 4 channet
889. Post 2 . MAINS TRANSFORMERS
 350 V 60 V 250 mA 6.3V 6A CT E12.00 Shrouded $\begin{array}{r}\mathbf{6 7 . 0 0} \mathbf{C 2} \\ \mathbf{E 1 4 . 0 0} \mathbf{2} \\ \hline \mathbf{2}\end{array}$ $220 \mathrm{~V} 25 \mathrm{~mA} .6 \mathrm{~V} 1 \mathrm{Amp} £ 3.00220 \mathrm{~V} 45 \mathrm{~mA}$. 8 V 2 Amp $£ 4.75 \mathrm{f} 1$ ow voltage tapped outputs avaiable
1 amp $6,8,10,12,16,18,20,24,30,36,40,48,60 \quad £ 6,00$
 LOW VOLTAGE MAINS TRANSFORMERS 55.50 each post paid $9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 20 \mathrm{~V}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 14 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17.01 \mathrm{~N}$
$2 \mathrm{~A} ; 35 \mathrm{~V}, 2 \mathrm{~A}: 204060 \mathrm{~V}, 1 \mathrm{~A}: 120-12 \mathrm{~V}, 2 \mathrm{~A} ; 20-02 \mathrm{~V}, 1 \mathrm{~A}: 50 \mathrm{~A}, 2 \mathrm{~A}$.


AC/DC COMPONENT PACKS			
Pack	Oty	Description	Price
TF 11	12	RED 5 mm LED	00
TF 12	30	500 mz ZENERS 5\%	£1.00
TF 15	50	1 amp Rect. Diodes in 4000 series	£1.00
TF 16	6	1 amp Bridge Rect.	\$1.00
IF 17	100	Transistor pads	\$1.00
IF 18	20	A/S Fuses 20 mm	£1.00
TF 19	10	3A Rect. Diodes	\$1.00
IF 110	2	ORP 12	11.00
IF 111	5	BR 100 DIAC	¢1.00
TF 112	10	BC109B	¢1.00
IF 113	10	LC's all different	51.00
TF 114	50	BFR 86	¢1.00
TF 115	12	8 pin DIL. sockets	$\underline{1.00}$
TF 116	20	10 mm Horiz. Pre set (10 values)	11.00
TF 117	10	Slide Pots - 3K all the same	£1.00
TF 118	10	Mixed Pots	£1.00
IF 119	10	Fead throughs	E1.00
TF 120	25	Electrolytic Caps	c1.00
TF 121	50	Polyester Caps	£1.00
If 122	100	Mixed Resistors Incl. Wire Wound	¢1.00
TF 123	100	Mixed Transistor Hardware	¢1.00
TF 124	25	5 mm LED clips and rings	¢1.00
TF 125	10	BC 107	£1.00
TF 126	10	${ }^{\text {BC }} 108$	£1.00
$\begin{aligned} & \text { TF } 127 \\ & \text { IF } 128 \end{aligned}$	6	Green 5 mm LED Yellow 5 mm LED	£1.00 £1.00
TF 129	$150$	Mixed nuts/bolts/washers/ self tapper	f1.00
IF 130	25	Mixed Electrolytics Axial	£1.00
If 131	25	Mixed Electrolytics Radial	£1.00
IF 132	50	Mixed Polyester Axial	£1.00
TF 133	50	Mixed Polyester Radial	£1.00
IF 134	15	BC 337	£1.00
IF 135	20	500 MA A/S 20 mm Fuse	£1.00
IF 136	50	Mixed Ceramic Discs	11.00
IF 137	50	Mixed Ceramic Plates	$\underline{11.00}$
TF 21	200	47 pf 160V Polystone Cap	92.00
IF 22	10	LM 3900 N	$\underline{6200}$
IF 23	10	Mixed DTL	62.00
TF 24	5	4700 mf 25 V Tag Elect $2^{\prime \prime} \times 1^{\prime \prime}$	$\underline{7200}$
IF 25	10	1000 mf G3V Ax Elect	12.00
TF 26	50	. 022 mf 400 V RAD POLY	02.00
TF 27	10	100 mt 250 V Ax	52.00
	10	${ }_{\text {V }} 2.2 \mathrm{mf}$ 's 160 V Polyester RAD	${ }_{6}^{22.00}$
IF 210	10	Mixed TTL ( 74 series)	$\underline{62.00}$
IF 211	4	2N 3055 H(RCA)	02.00
TF 213	200	IN 4151 Diodes	02.00
TF 214	200	IN 4148 Diodes	62.00
TF 51	100	White/Red 5 mm LED	E5.00
TF 52	50	BC 108C	E5.00
TF 53	${ }^{2}$	10000 mf 63V Comp. grade	¢5.00
TF 54	${ }_{2} \mathrm{~K} G$	Reel 22 g ersin multicore	£5.00
TF 55	10	2N3055 HIRCA)	£5.00
TF 56	5 3	OCP71 10000 mi 40 V Comp grade	¢5.00
TF 57	3	$10,000 \mathrm{mf} 40 \mathrm{~V}$ Comp. grade elect	£5.00
TF 58	720	IW Carbon film $1 \Omega-10 \mathrm{M} \Omega$ ten values	£5.00
ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW \& NORMALLY DESPATCHED BY RETURN POST.   TERMS: Cash with order. POST \& PACKING: Please add 75 p to total order.			
AC/DC ELECTRONICS COMPONENTS DEPT E.E., 45 CHURCH STREET, ENFIELD, MIDDLESEX.			

## FRIE CAREER BOOKLET

Train for success, for a better job, better pay
Enjoy all the advantages of an ICS Diploma Course. training you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET todayno cost or obligation at all


## SUPER AUDIO EFFECTS KITS <br> NEWLY PUBLISHED

MONO-STEREO ECHO-REVERB (PF. SEP84) : 200 ms echo, infinite reverb
multi-tracking, mono \& stereo compatability
FILTER-SHIFT PHASER (PE OCT84) : Enhanced phasing with modulated fiter shifing
RING MODULATOR (PE NOV84) : With multi-waveform VC0 Noise Gate \& Auto-level Control

SET 2268K
£55.66

POPULAR FAVOURITES
CHORUS UNTT : A solo voice or instrument sounds like mor COMPRESSOR : Limits \& levels maximum signal strength
EOUALISER: Ten channels fully variable
FLANGER ; Fascinating resonance effects \& simple phasing FREQUENCY DOUBLER: Guitar octave raiser \& tone changer FUZZ: Smooth distortion, retains attack \& decay
GUTAR TO SYNTH INTERFACE. With voltage a qualities
GUSIC'MODULO: 8 variable tremoloe \&otrage wat effects outpu RHYTHM GENERATOR : Computer driven, 9 drum effects RHYTHM GENERATOR : 15 pre-programmed rhythms. 9 drum effects
$\begin{array}{llll}\text { ROBOVOX : Versatile robot type voice modifier } & \text { SET 1708K } & \text { E39.14 } \\ \text { STOT }\end{array}$ STORM EFFECTS: Auto \& manual wind, rain \& surf effects SET 1548 BK £19.36 SUSTAIN: Extends guitar note decay time, with noise gate SET 222BK £25.3 VOCODAVOX: Modular vocoder, 7 chànnels, extendable FOOT OPERATED STAGE UNITS
(MATCHED LINKING ROBUST DIECAST BOXES)

LINKAFEX CHORUS : Variable rate, depth, intensity, feedback SET 2040C £42.96 LINKAFEX DELAY: Delay $10 \mathrm{~ms}-450 \mathrm{~ms}$, plus repeat, feedback SET 2060 C £ 42.09 | LINKAFEX FLANGE : Variable rate, depth, intensity, feedback SET 2070 C |
| :--- |
| LINKAFEX PHASER |
| $£ 34.92$ | LINKAFEX PHASER : Variable rate, depth, intensity, feedback SET 2050C $£ 34.33$ ALL SETS INCI UDE PCBS, PARTS, INSTRUCTIONS, BOXES, WIRE, SOLDER, AND ARE FOR USE WITH 9 VOLT BATIERIES. MORE DETAILS \& KITS IN CATALOGUE SEND S.AE. WITH ALL ENOUIRIES. (OVERSEAS SENO \&1 OR 5 IRC's). DETAILS CORRECT AT PRESS. E\&OE.

ADD $15 \%$ \& 1 P\&P TO ALL ORDERS. (OVERSEAS DETAILS IN CAT.) PAYMENT CWO, CHO, PO, ACCESS, VISA, OR PRE-ARRANGED COLLECTION.

## PHONOSONICS

DEPT. EEAD, 8 FINUCANE DRIVE, ORPINGTON, KENT BR5 4ED ORPINGTON 37821 (STD 0689, LONDON 66), MON.-FRI. 10-7.


## INDEX TO ADVERTISERS

AC/DC Electronics ..... 767
Advance Security Products ..... 766
Alcon Instruments ..... 753
Bib Audio ..... 747
BK Electronics ..... Cover III
B.N.R.E.S ..... 754
Bull, J. ..... 765
C-Tec Security ..... 766
Cirkit Holdings ..... 715
Dziubas, M. ..... 768
Electrovalue ..... 716
Enfield Electronics ..... Cover II
Experimental Electronics ..... 767
Grandata Limited ..... 747
Henrys Electronics ..... 747
ICS Intertext ..... 768
Ideal Schools ..... 766
Magenta Electronics ..... 718
Maplin Electronics ..... Cover IV, 716
Phonosonics ..... 768
Proteus ..... 714
PS Supplies ..... 767
Radio Component Specialists ..... 767
Rapid Electronics ..... 717
Riscomp Ltd ..... 754 ..... 754
Roden Products ..... 767
R.T.V.C ..... 753
Skybridge Ltd ..... 724
Skywave Software ..... 716
Tidman Mail Order ..... 766
T.K. Electronics ..... 731

[^2]ON POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MÓDULES

Now enjoy a world wide reputation for quality. reliability and performance at a realistic price. Four models
avalable to suit the needs of the prolessional and hobby market i, Industry. Leisure, Ine,
Instrumental and Hi-FI etc. When comparing prices. NOTE all models include Toroidal power supply. Integrat heat sink. Glass fibre PC B and Drive circuits to power compatible Vu meter Open and short crrcuil proof Supplied ready built and tested
 OMP100 Mk II Bi-Polar Output power 110 watts R.M.S into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D $0.01 \%$, S.N.R. -118 dB , Sens, for Max output
500 mV at 10 K Size $360 \times 115 \times 72 \mathrm{~mm}$. PRICE $£ 32.99+$ E2.50 P\&P
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Res 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T. D Typical $0.002 \%$. Input Sensitivity 500 mV SNR -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE E39.99 + E2.50 P\&P. OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250. Slew Rate $50 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical $0.001 \%$, Input Sensitivity 500 mV . S.N.R. 130 dB . Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE
$[62.99+£ 3.50 \mathrm{P} \& \mathrm{P}$ c $62.99+\varepsilon 3.50$ P\&P


OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}_{2}-3 \mathrm{~dB}$. Damping Factor 350, Slew Rate 60V/uS. T.H.D Typical -130 dB . Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE
 Vu METER Compatible with our four amplifiers detatled very accurate wisual display employing 11 L.ED diodes 17 green, 4 red) plus an additional on/off indicator Sophisticated logic control curcults for very fast rise and decay tumes Tough moulded plastic
case, with tinied acrylic front Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE $88.50+$
$50 \mathrm{p} \& \mathrm{P}$ 50 p P\& P



## LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence

POWER RANGE
850 WAITR R.M. Hi.Fi/ Oisco
20 ot magnet $1 / \frac{1}{2}$ ally voice co
 6KHz Sens. 92dB PRICE C9.90 Avar
50 ox. magnet $2^{\prime \prime}$ ally voice coll Ground ally lixing escutcheon Die-cast chassis white cone Res
${ }^{25 \mathrm{~Hz}}$ Freq Resp 104 KHz , Sens 95dB PRICE $22600: \mathbf{6 3 . 0 0} \mathrm{P} \mathrm{B}_{\mathrm{I}} \mathrm{P}$ ea
0 or magnel 2 M.S. Hi-Fl/Disco


MCKENZE
$12^{\circ}$ g5 WA

$12^{\prime \prime} 85$ WATT R.M.S. C1285 GP Lead guitar/kevboard/Disco.
$2^{*}$ ally voice coll Ally centre dome Res Freq 45 Hz Frea Aesp to 6.5 Kzz Sens 98dB PRICE $\subset 24.99$

15150 WATT R.M.S. C15 Bass Guital/Disco.
$3^{\prime \prime}$ ally voice coll Die casichassis. Res Freq 40 Hz Freq. Resp 104 KHz PRICE $49.99+64.00$ P\&P ea
WEM
5.70
5. 70 WATT R.M.S. Multiple Array Disco etc.

1. Voice coil Res Frea 52 Hz Freq. Resp to 5 KHz Sens 89ab PRICE $\mathbf{C 2 0 . 0 0}+\mathbb{} 150$ P\&P ea

 voice coll Res Freq 35 Hz Frea Resp to 4 KHz Sens. 920 B PRICE $£ 3000+1200 \mathrm{PsP}$ ea oice coll Res Freq 35 Hz Freq Resp to 4 KHz Sens 94 dB PAICE $£ 3800+\mathrm{K} 3.00$ P\&P ea SOUNDLAB [Full Range Twin Cone)
 voice coll Res Freq 56 Hz Freq Reso 10 Disco etc.
60 Wity

##  printed circuit board and high quality components

complete with instructions.
FM MICROTRANSMMTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitlve
microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: microphone. Rang
WATT FM TRANSMITER 3 WATT 3 WATT FM TRANSMITTER 3 WATT $85 / 115 M H 2$ varicap controlled
 SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Recelver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ( $9 / 12$ volt). Price: $£ 17.82$
Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt). Price: £11.27 P\&P $+75 p$
 ORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMENT VISA/ACCESS/C.O.D. ACCEPTED


SEICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIEN BURGLAR ALARM
 SUE $f 148.00$ Usual Price $f 228$ 85
BKE's PRICE $£ 79.99+£ 4.00$ P\&P
OMP LINNET LOUDSPEAKERS
The very best in quality and value Made specially to suit todays
need for compactness with high sound output levels. Finished in hard wearing black vynide with protective corners. grille and carfy
 OMP $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 145.00$ per pair
OMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 169.00$ per pair

Delivery Securicor $f 8.00$ per pair

## STEREO CASSETTE DECK



STEREO CASSETTE DECK deal for installing into Disco and Hi-FI cabinet/Consoles. Surface mounting (Horizon all electronics including mains power supply - Metal top panel Black finish pause

- Normal/Chrome tape
switch Vu Vu Melers
- 3 Digir counter
* Slider Record Level contro

Size $171 \times 317 \mathrm{~mm}$ Depth
110 mm
RICE $\mathbf{f} 35.99+£ 3.00 \mathrm{P} \mathrm{\&} P$

1 K-WATT
SLIDE DIMMER
 conmol toa 1kw
Compacr Size $4 y,{ }^{1} 1 \quad 1 \quad 2 / 2$ Easy Snap in
ing through pane cabinet cut out - Full wave con

BS800 - Suitable for both resist ance and inductive loads. In numerable applications in dusco's, theatres etc
PRICE $\subset 12.99+750$ P, P (Any quantify)


PIEZO ELECTRIC TWEETERS MOTOROLA

 TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for bookshelf and medium sized Hi-f peakers Frice $\$ 4.90$ each $+40 p$ P\&P. TYPE 'B' (KSN1005A) $31 / 2$ " super horn. For general
purpose speakers, disco and PA systems etc Price 5.49 each $+400 \mathrm{Ps}, \mathrm{P}$ and PA systems etc. Price YPE 'C' (KSN6016A) horn For quality Hi-fi, systems and qualny discos eic Price 6.49 each $40 p$ P\& $P$
YPE 'D' (KSN1025A) 2" 天 6" wide dispersion horn. Upper requency response retained extendin $H_{1}-1$, systems and quality discos. Price 88.99 each $\begin{aligned} & 409 \text { P\&P. } \\ & \text { YPE } \\ & \text { 'E }\end{aligned}$ TYPE 'E' (KSN1038A) $3 y_{4}^{\prime \prime}$ horn atweeter whith attractive silver finish trim. Sultable for Hi-fi monuto
systems etc. Price $\mathbf{5 5 . 4 9}$ each +40 p P\&P. Systems elc. Price 5.49 each 4 40ppsip.
LEVEL CONTROL Comones on a recessed mount ing plate, level control and cabinet input jack socket

STEREO DISCO MIXER STEREO DISCO MIXER with 7 band graphic
equaliser and 10 segment L.E. D. Vu Meters. Many equaliser and leatures.
5 Inputs with individual lader controls:-
2 Mag. turntabie, 2 Aux. plus Mic. with talk- over switch. Headphone monitor. Master output control with Hi-L.Low outpuls. Compatiole with our OMP Power Ampifiers.

PRICE $£ 119.99+£ 3.00$ P\&P
B. K. ELEGTROTIGS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572


The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catalogue is the one essential piece of equipment they really need. And now with all our prices on the page the Maplin Catalogue is better value than ever.

On Sale From 10th November 1984.
Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue Price $£ 1.35+40 \mathrm{p}$ post and packing. If you live outside the U.K send $£ 2.40$ or 11 International Reply Coupons.
I enclose $£ 1.75$

Name


[^0]:    CRYSTAL CALIBRATOR
    Crystal reference calibrator for alignment of receivers, outputs at $4,2.1 \mathrm{MHZ}$.

[^1]:    d. M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.

[^2]:    Published approximately the third Friday of each month by IPC Magazines Lid., Kings Reach Tower, Stamford St., London SE1 9LS. Printed in England by Chapel River Press, Andover, Hants Sole Agents for Australia and New Zealand-Gordon and Gotch (A/Sia) Lid. South Africe-Central News Agency Ltd. Subscriptions: Inland £12.00, Overseas $f 13.00$ per annum payabie to IPC Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on cover, and that it shall not be lent, resold, or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial matter whatsocver.

