

TRS-80 - CEENIE EPROM PROCPAMMER

SAVE ON THE PRICE OF YOUR COLOUR PRINTS! with the Everyday Electronics Colour Print Service
 While prices go up elsewhere.

Everyday Electronics makesa bargain offer in its Colour Print Service. Now you can have as many films printed as you like. including Giant Superprints. at only 12 p a prim. There is no developing charge and just 25 p towards postage and paching.

At this new price. the magazine Colour Prim Service. alreads used by hundreds of thousands of readers is as fast and eflicient as ever. Here's all you have to do to enjoy is advantages.

Send any make of colour print film. including dise film. inside the envelope enclosed with this issue. Or fill in the coupon below and send with your colour print film in a strongenvelope to: Everyday Electronics Colour Print Service IRI:EP()ST, READING RGil 1BR. No stamp is required.

SEND NO MONEY

We are so confident in the reliability of our service and the quality of our prints (each one date-stamped with the month and year of developing) that you dont pay until you ve seen them. LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of these prints. They have elegant rounded corners and are borderless to give you maximum picture area. And with the Giant Superprints, you ge! 30 per cent more picture area than the standardenprints at no evtra cost!
 Superprints can only be produced from Kodacolour II, C41 cassette, cartridge and dise film not hall frame. Prices correct at time of going to press.

UNBEATABLE VALUE
All you pay for the Colour Print Service is 12 p for each good print received plus 25p towards postage and packing. The most you would pay us for processing and printing a 24 -exposure film for example is 03.13 . Compare that with the price you would pay in the shops.

FREE ALBUM PAGES

With each film we process. you receive an album page voucher. Collect and return three vouchers. and you receive a set of FREE albuni pages to fit into our specially designed alhums for any size of print up to tin. by bin.

IIOW YOU BENEFIT

You benefil in three ways. Firstly you pay nothing for the actual processing-only for prints and postage and packing. Secondly. you enjoy a personal service with every care taken over each individual order. And thirdly, you pay only for what you get - with no credit wouchers as with many other companies. An invoice comes with sour prints. so it is a straight business transaction.
48 HOLRS IN-LAB SERVICE
Your films will be processed within +8 hours* of receipt . but please allow for postal delays.

The price of this offer is limited to the U.K

* C4I Process cissette and cartridgc film onls.

Use
this label if
you haveno envelope, or pass it to a lriend. It is used to pack your prints.

To: Everyday Filectronies Colour Prime Service
FREEPOSI, Reading RGil IBR

- Please print my filmSuperprint size \square

Standard Enprint siza \square
If film is being ordered - Please send meof 110 24 of $2624 \square$ of $3524 \square$ - of dise $15 \square$

From: Evervday Flectromics Colour Print Service FRIEP(OST REAI)INGRGIIBR

Mr Ms
Address

EVERYDAY and computer PROJECTS

VOL. 12 NO. 6 JUNE 1983

PROJECTS . . THEORY . . . NEWS
COMMENT . . POPULAR FEATURES

C IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

PROJECTS

EPROM PROGRAMMER by B. W. Terrell and J. W. Terrell 338
For TRS-80 and Genie. A useful tool for micro-based project development PUSH BUTTON COMBINATION LOCK by J. Hadley 352
Improved security for your home
CARAVAN POWER SUPPLY by T. R. de Vaux-Balbirnie 362
Auxiliary 12 V supply for amenity equipment
CARAVAN FRIDGE ALARM by T. R. de Vaux-Balbirnie 366
Early warning of failure
TEST GEAR 83-TRANSISTOR TESTER
by J. R. W. Barnes 370
For gain and leakage measurements
ENVELOPE SHAPER FOR BASS GUITAR by A. Niemiro 378
Provides colourful sounds for soul and funk music
SERIES
ELECTRONICS AND THE ELECTRON by J. B. Dance 356
Part 2: Conduction in Various Materials
FEATURES
EDITORIAL 337
Holiday Trail
JACK PLUG AND FAMILY by Doug Baker 348
Cartoon
LOGIC SYMBOLS 349
A change in style-basic gates and truth tables
SPECIAL REPORT by J.W. Terrell 350
Sinclair ZX Spectrum
CIRCUIT EXCHANGE 358, 384
A forum for readers' letters359
Smoke Detector Fire Alarm
FOR YOUR ENTERTAINMENT by Barry Fox 361
Computer Forecast; Video In A Spin; Hospital Radio
SHOP TALK by Dave Barrington 369
Product news and component buying
BOOK REVIEWS 376
A selection of recent releases
COUNTER INTELLIGENCE by Paul Young 376
A retailer comments
RADIO WORLD by Pat Hawker G3VA 382
SW Broadcasting; Sporting Ploy; Teletext 10
NEW PRODUCTS 385
Facts and photos of instruments, equipments and tools
READERS' LETTERS
387
Your news and views

elcaromize AUTO-EIECTRONIC PRODUCTS

wits or ready bult

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS
 YOUR CAR
 AS GOOD AS IT COULD BE?

* Is it EASY TO START in the cold and the damp? Tutal Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
t Is it ECONOMICAL or does it "go off" between senvices the ignition performance deterioratesi-fotal thergy Diectergens much more output and mainiains it from serviae to serfice.
* Has it PEAK PERFORMANCE or is it tol at high and fow revs. where the iprition outpua is mo cinal? Tonst Enelgy Discharge gives awore powerf Hy k fro adle to the encoines maximum feven with
\star
Torap ine OR MANCE SMOOIt The more powerfal spark of el harbin filter smquel) the effects of oontact zounce etc.
* Do the PLUAS and POINTS ghaters nead ehaiging to bring the engine bast to (is bat? Tatal Energy Discharge eliminates contact arcing and or osion by removing the heavy electrical load. The timing stays "spop onf ad the contact condition doesn't affect the performano wher. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market - $31 / 2$ times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140W, SPARKENERGY - 36 mJ SPARK DURATION - $500 \mu \mathrm{~S}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

50 pF load $-38 \mathrm{kV}, \quad 50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal

* All ELECTRONIZE electronic ignitions feature

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH. STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transtormer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

* 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code)
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
t 30 SECOND DELAY when system is armed allows owner to lack doars etc.
* DISABLES IGNITION SYSTEM when alarm is armed.
* IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everthing needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everthing down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES. SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNEGTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late ~
Fit one NOW!
fill in the coupon and send to:
ELECTRONIZE DESIGN Dept C Magnus Rd Wilnecote Tamworth B77 5BY - tel 0827281000

TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

\squareAssembled ready to fit
£26.70 $£ 19.95$ D.I.Y. parts kit £15.90 £14.95

CAR ALARM

\square Assembled ready to fit
\square D.IY. parts kit
\square D.IY parts kit
enclose cheque/postal order OR debit my Access/Visa card

Name
Address

TWIN OUTPUT for cars and motor cycles with dual ignition

Twin, Assembled ready to fit
Twin. D.I.Y. parts kit
£36:45 £29.95
£24.55 £22.95

ELESTRDTIUKTT FX-COMPUTER

Teach-Yourself Computer and Electronics Construction Kit
A complete introduction to the "How, Why and What" of Computers and Electronics in the most practical way ever devised
THE KIT IS BATTERY-OPERATED AND COMPLETELY SELF-CONTAINED. NO
TELEVISION OR OTHER EQUIPMENT IS REQUIRED. VERY EXTENSIVE MANUALS ARE INCLUDED

Ministry of Science and Technology, Japan Prize Winning Product
The FX-COMPUTER is the ideal introduction to the study and understanding of computers and electronics. The kit offers remarkable versatility because the components are interchangeable and circuits are constructed by simply plugging specified components into the board provided in accordance with the instruction manuals. You quickly understand the principles involved and new circuits can be easily devised, built and dismantled. No soldering or wiring is involved, no tools are required; the components themselves complete the circuits.

No previous knowledge is required - very extensive educational manuais have been provjded by English experts in computers and electronics. Working through the manuals you will soon be able to write programmes and "run" them and understand how computers work.
The following are just a few of the programmes in the Computer Manual (there are too many to-list here) and also a few of the projects in the Electronics Manual

How to instruct the Computer and Store Information into Memories. Use of different instructions and Programming Techniques. Adding, subtracting, multiplying, dividing, averagitig, counting up, counting down, etc, etc. - in Decimal and Hexadecimal. Converting Hexadecimal to Decimal, storing Random Numbes. Games: Tennis, Catch-the-Rat, Gun Fight, Slot Machine, etc. Using the Computer as a Musical Organ, storing and playing-back tunes, etc. OVER 100 PROGRAMMES SHOWN IN THE COMPUTER MANUAL PLUS EXPLANATIONS AND DEMONSTRATIONS OF ALL TECHNICAL TERMINOLOGY

Electronic Components and How they Work - batteries, conductors resistors, capacitors, diodes, transistors, lamps, photo-electric devices (CdS cell is included in the kit), oscillators, burglar alarms, control systems argan, le detector, etc., etc. OVER 65 PRACTCAL WORKING PRO JECTS SHOWN IN THE ELECTRONICS MANUAL

All this is in ONE kit, costing

about the same as the cheapest
"Basic" ordinary Computer
The price is only $\mathbf{£ 6 9 . 9 5}$ plus $\mathbf{£ 3 . 0 0} \mathbf{P \& P}$ (overseas rates quoted on request) Delivery within 21 days

TRADE \& EDUCATIONAL ENQUIRIES WELCOMED

Send cheque/PO/Access/Barclaycard to DEPT. EEFX. Electroni-Kit Ltd
It's not JUST a computer! ELECTRONI-KIT LTD 388 ST. JOHN STREET LONDON, EC1V 4NN (01-278 0109)

Castle House, 1 Castle Lane, Bedford

 MK40 30E
Telephone 0234214219

Please note our new address

All components brand new - Please add 35p P \& P plus 15% VAT. Please send cheque or P.O. with your order. Official orders are welcome from educational establishments, Government bodies and public companies. Credit accounts are available. Please ask for details.

LOW PROFILE SOCKETS

8 Pin	$\mathbf{9 p}$	22 Pin	$\mathbf{2 2 p}$	ORDER 12 OR
14 Pin	$\mathbf{1 0 p}$	24 Pin	$\mathbf{2 4 p}$	MORE OF ANY ONE
16 Pin	$\mathbf{1 1 p}$	28 Pin	$\mathbf{2 6 p}$	TYPE AND WE
18 Pin	$\mathbf{1 6 p}$	40 Pin	$\mathbf{3 0 p}$	WILL SUPPLY 13.

"A BAKERS DOZEN"
SPECIAL FOR JUNE-JULY '83
MEMBRANE KEYPADS. By F.S.T.
Multi-choice Graphics Keypad, 57 standard characters to choose from.
Blue or white as standard graphic options keypad complete with flexible backing with Berg connector.

PANEL DIMENSIONS

$3 \times 4-78 \times 98 \mathrm{~mm}$	$\mathbf{£ 5 . 9 8}$
$4 \times 4-97 \times 98 \mathrm{~mm}$	$\mathbf{f 6 . 6 9}$
$5 \times 4-116 \times 98 \mathrm{~mm}$	$\mathbf{£ 7 . 4 1}$

$5 \times 4-116 \times 98 \mathrm{~mm}$
¢6.69

TTL					
7400	11p	7427	18p	7474	19p
7401	11p	7428	25p	7475	26p
7402	11p	7430	13p	7476	25p
7403	12p	7432	20p	7480	45p
7404	12p	7433	20p	7482	65p
7405	14p	7437	23p	7483	30p
7406	19p	7438	24p	7485	60p
7407	19p	7440	14p	7486	19p
7408	13p	7442	30p	7489	180p
7409	13p	7444	85p	7490	19p
7410	13p	7446	58p	7491	34p
7411	15p	7447	36p	7492	24p
7412	17p	7448	43p	7493	24p
7413	17p	7450	14p	7494	33p
7414	23p	7451	14p	7495	33p
7416	19p	7453	14p	7496	38p
7417	19p	7454	14p	7497	86p
7420	14p	7460	14p	74100	78p
7421	19p	7472	22p	74107	22p
7422	19p	7473	24p	74109	24p
CMOS					
4000	10p	4020	42p	4042	38p
4001	10p	4021	40p	4043	40p
4002	12p	4022	45p	4044	40p
4006	50p	4023	16p	4046	40p
4007	14p	4024	33p	4047	35p
4008	36p	4025	12p	4048	38p
4009	24p	4026	75p	4049	21p
4010	24p	4027	20p	4050	21p
4011	10p	4028	40p	4051	42p
4012	15p	4029	45p	4052	48p
4013	20p	4030	14p	4053	48p
4014	45p	4031	125p	4054	78p
4015	40p	4034	140p	4055	80p
4016	20p	4036	249p	4059	430p
4017	30p	4039	280p	4060	42p
4018	45p	4040	40p	4063	80p
4019	25p	4041	40p	4066	22p

Free - Satin Gold Biro
With all orders over $£ 3.00$ in "June and July" '83

MICROCOMPUTER

uses FORTH which executes about 10 times faster and requires less program meriory than a comparable program using basic. Features 8 K ROM, 3 K RAM, built in speaker. 40 key keyboard and a 32×24 line-flicker free display on TV. Comes supplied complete withleads, mains adaptor, a comprehensive easy to-follow manual on Forth programming + FREE cassette
 JUPITER ACE SOFTWARE 83.90 $J 5$
$J 7$ 5 DOT MAN 17 ZA SHOOT (ASTEROIDS) DUCK J3 SPACE INVADERS
J4 SWAMP MONSTERS $£ 3.90$

COMPONENT PACKS

PACK 1650 Resistors 47 chm to 10 Mohm - 10 per

 value $£ 4.00$ PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to PACK 360 Polv- 5 per value $£ 3.25$5 per value $\mathbf{5 5 . 5 5}$ Capitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}$
PACK 445 Sub-miniature Presets 100 ohm to 1 Mohm 5 per value $£ 2.90$
PACK 530 Low Profile IC Sockets 8, 14 and 76 - pin
PACK 625 Red LEDs (5 mm dia,) 1.25
ρ
\int 3-NOTE
DOOR CHIME $\&$
Based on the SAB0600 IC the kit is supplied with all components, including loudspeaker. printed circuit board, a pre-drilled box ($95 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires only a PP3 9 V battery and push-switch to complete. AN IDEAL PROJECT FOR BEGINNERS. Order as XK 102

Have you got our FREE ORANGE CATALOGUE vet?
NO?! Send S.A.E. $6^{\prime \prime} \times 9^{\prime \prime}$ TODAY!! including CMOS, LS TTL, linear, microprocessors and memories; full range of LEDs, capacitors, resistors, hardware, relays, switches etc. We also stock VERO and Antex products as well as books from. Texas Instruments, Babani and Elektor. ALL AT VERY COMPETITIVE PRICES. ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CANT FORGET FOR PRICES YOU CANT RESIST.

Answering
5-6-7 8-9-10
service evngs and give us your Access or Barclaycard No. or write enctosing service evngs

LCD $31 / 2$ DIGIT MULTIMETEP! 16 ranges including DC voltage $2000 \mathrm{mV}-1000$ v) and AC voitage. DC current ($200 \mathrm{~mA}-10 \mathrm{~A}$)
and resistance $(0.2 \mathrm{M})+$ NPN \& PNP transiator and resistance $(0.2 \mathrm{M})$ + NPN \& PNP transiator gain and diode check. Input impedance 10M.
5 ize
$155 \times 88 \times 31 \mathrm{~mm}$. Requires PP39N Batter Test leads included. Requires PP3NV OStIer
ONLY $\mathbf{E 2 9 . 0 0}$

ELECTRONIC LOCK KIT XK101 This KIT contains a purpose designed lock IC, 10 -way keyboard, PCBs and all components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 AA . Output: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will tions suost rel

ONLY £10.50

Electric lock mechanisms for use with latch locks and above kit
£13.50

DISCO LIGHTING KITS

 change, being variable by means of potentiometers and

OLZ100K

£14.60
A lower cost version of the above, featuring undirectional channel sequence with speed variable by means of a pre-set pot. Outputs to reduce radio interference to a minimum

Only $£ 8.00$
Optional opto input DLA1 60p

DL3000K

This 3 channal sound to light kit fatures zero voltage switching, automatic level control a buit in mic. No connections to speaker or amp required. No knobs to adjust (1Kw/Channel)

Only £11.95

SPECTRUM

24 LINE INPUT/OUTPUT PORT
£18.95
(motherboard not required)
MOTHERBOARD - SIX SLOTS
£26.50
MOTHERBOARD PCB ONLY
£6.50
SPECTRUM 28-WAY CONNECTOR
MALE CONNECTOR
£3.25
£1.90
34-WAY RIBBON CABLE
per metre $£ 1.80$

ZX81

40-KEY KEYBOARD
SPARE KEYS
MOTHERBOARD - TWO SLOTS
£20.00
MOTHERBOARD - TWO SLOTS .. $£ 15.00$
24-LINE INPUT/OUTPUT PORT £18.95
16K RAM PACK
£22.95
MUSIC BOARD
£18.95
23-WAY FEMALE CONNECTOR
MALE CONNECTOR
£2.50
24-WAY RIBBON CABLE
per metre
£1.60
GETTING ACQUAINTED WITH YOUR ZX81
PROGRAMMING FOR REAL APPLICATIONS
$f 5.95$

REAL APPLICATIONS TAPE
£6.95
MASTERING MACHINE CODE
£11:44

Prices are for built tems, Postage $40 p$ under $£ 4.00$. Export postage (surface) $£ 1.80$. Send SAE for full catalogue.

Cash with order or Access
REDDITCH ELECTRONICS
DEPT. EE5
21 FERNEY HILL AVENUE REDDITCH, WORCS B97 4RU

TECHNICAL TRAINING IN ELECTRONICS,

TELEVISION AND AUDIO

IN YOUR OWN HOME - AT YOUR PACE

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You
study in your own home, in your own time and at your own study in your own home, in your own time and at your own
pace and if you are studying for an examination ICS quaramtee coaching until you are successful.

City \& Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)
Certificate Courses
TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming TV, Radio and Audio Engineering Electrical Engineering,* Installation
and Contracting "Qually for IET Aseociate Momberahip
\qquad - Approved by CACC

Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest

Velleman electronic kits have gained respect for their high quality and the varied range which covers many applications in the vast field of electronics. All kits are designed and developed using the latest technology, giving them appeal, not only to the hobbyist and enthusiast but also to the experienced engineer.
The fully illustrated Velleman Kit Journal is available free of charge upon request and has full technical specification on each kit in the range. All kits are graded by difficulty from 1 to 3 and can be purchased direct or from the stockists listed below.
and remember, we have a 'rescue service' for instances where enthusiasm exceeds ability!

Itiming from I sec
to 99 mins 99 secs.)
Actual size: $235 \times 110 \mathrm{~mm}$

K2586-Serial Controller/ Emulator (designed primarily for use with $K 2578$ Velleman Eprom programmer) Actual size: $100 \times 160 \mathrm{~mm}$.

T.V, SOUND TUNER

 EIVO In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV compan ies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction. The unit is mains operated. This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunct224.95 $\begin{gathered}+ \text { £2.00 p\&op } \\ \text { E.T.I. Kit }\end{gathered}$ ion with your video recorder. Dimensions: i $1 \frac{13 / 4^{\prime \prime} \times 81 / 2^{\prime \prime} \times 314^{\prime \prime}}{}$

PERSONAL LS AMP KIT

Parts: Stereo power amp PCB with all components, $\mathbf{£ 3 . 5 0}$ + $75 p$ p\&p. Power supply unit, $\mathbf{f 1 . 9 5 + \mathbf { f 1 } . 5 0} \mathbf{p \&}$ p. Pair of $41 / 2$ ' eliptical speakers, $\mathbf{f 1 . 5 0}$ the pair, $\mathbf{+} \mathbf{£ 1 . 0 0} \mathbf{p} \& \mathrm{p}$. Input $\&$ output sockets \& plugs, $\mathbf{f 1} \mathbf{5 0}$. Recommended case (for the power supply and amp only), $£ 2.95+80 \mathrm{p} p$ \& p

VHF STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practicat Electronics (July 'B1 issue). For ease of construction and alignment it incorporates three FEATURES: VHF MW LW Bands inter AFC on VHF Tuning meter Two back printed PCB ing and made chassis and scale. Aerial. AM - ferrite rod FM 75 . Ready 300 ohms. Stabalised power supply with ' C ' core mains trans former. All components supplied are to strict P. E. specification, Front scale size $101 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx. Complete with diagram and instructions.

* SPECIAL OFFER! *
cabinet sleeve to suit tuner wood
Finish size: $11^{1 / 4^{\prime \prime} \times B^{1} / 2^{\prime \prime} \times 31 / 4^{\prime \prime} .}$

SPEAKER KIT

2 WAY 10 WATT
$8^{\prime \prime}$ bass $/ \mathrm{mid}$ range and 3%
tweeter. Complete with screws wire, crossover components and cabinet. Cabinet comes flat pre-mitred D.I.Y. form. Finish chipboard covered wood simulate, size $14 \frac{1}{2}{ }^{\prime \prime} \times$ 8% " $\times 4$ ". PAIR for ONLY
£12.50 plus f 1.75 p\&p
E12.50 pus 1.75 pap

125W HIGH POWER AMP MODULES
 $£ 10.50 \quad £ 14.25$

The power amp kit is a module for high power applications disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open cir cuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use
Supplied with all parts, circuit diagrams and instructions.
ACCESSORY: Stereo/mono mains power supply kit with transformer. $\mathbf{£} 10.50$ plus $\mathbf{£} 2.00$ p $\&$ p.

SPECIFICATIONS:
Max. output power (RMS): 125W
Operating voltage (DC): 50-80 max
Loads: 4-16 ohms
Frequency response measured @100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$
Sensitivity for 100 watts: $400 \mathrm{mV} @ 47 \mathrm{~K}$
Typical T.H.D. 50 watts. 4 ohms: 0.1%

STEREO CASSETTE DECK

Stereo cassette tape deck transport with electronic brand new and operation sold withour warranty
f11.95
plus $\mathbf{£ 2 . 5 0} \mathbf{p \&}$.
Just requires mains trans former and inputfoutput sockets and a volume control to complete.

Supplie
details.

MONO MIXER AMP

Ideal for Church halls $\&$ Clubhouses. n

50 WATT Six inctividually mixed inpurs for wo pick ups (Cer. or mag.), two moving coil rgans eic Eight slider conrols six funer and iwa for master bass and use for level treble controts for mic and auy inputs Size $13^{\circ} 1 / /^{\prime \prime} \times 61^{\prime \prime} \times 3 \%{ }^{\prime \prime}$ app. Power output 50 watts R.M.S. (cont.) for use with 4 to 8 ohm speakers. Attractive biack vinvi case with matchıng

Matching AKG Microphone to suit (with speech and mustc filter). Complete with lead. ONLY $£ 9.95$ plus 754 p pep. Telephone or mail orders by ACCESS welcome.

EVERYDAY ELECTRONICS and computer PROJECTS

Editor

F. E. BENNETT

Assistant Editor
B.W. TERRELL B.Sc.

Production and News Editor

D. G. BARRINGTON

Projects Editor
G. P. HODGSON

Technical Sub-Editor
R. A. HOOPER

Art Editor
R. F. PALMER

Assistant Art Editor
P. A. loates

Technical Illustrator
D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE

Editorial Offices

KINGS REACH TOWER
STAMFORD STREET
LONDON SE 1 ILS
Phone: 01-2616873

Advertisement Manager
R. SMITH

Phone: 01-2616671

Representative

R. WILLET

Phone: 01-261 6865
Classified Supervisor
B. BLAKE

Phone: 01-261 5897
MakeUp and Copy Department
Phone: 01-2616615
Advertisement Offices
KING'S REACH TOWER
STAMFORD STREET
LONDON SE 1 9LS

HOLIDAY TRAIL

Thoughts of summer and holidays to come have prompted two projects for caravan users and campers which are featured this month.
In the months ahead we can confidently expect car-caravan combinations to become increasingly commonplace on our roads as motorists and their families feel the urge to get away from it all and explore remote off-beat places. It is one of life's little oddities that such intrepid travellers usually like to bring along with them some of the amenities of civilised life. This is not difficult in fact, since there are many examples of portable electrical and electronic equipment suitable for such trips and capable of being powered from a 12 -volt supply.

It is not wise of course to impose excessive additional load on the car battery and the best course is to use a separate car battery installed inside the caravan to power equipment such as interior lights, refrigerators, cassette players, radios, TV sets or personal computers during overnight stops. (This arrangement is not suitable for long stays at holiday sites.) The extra battery can be recharged from the car generator whilst travelling. Circuitry to permit this kind of operation without any harm to the car's normal electrical system is described in the article Caravan Power Supply.

Many caravanners as well as tent campers take with them a small absorption-type refrigerator powered from a gas cylinder. There is always the possibility of the gas supply becoming exhausted unexpectedly or some other fault developing with the resultant loss of foodstuff. A simple warning device powered by its own 9 V battery will eliminate this danger. The Caravan Fridge Alarm may be built with either a visual or audible alarm and is operative when touring or at a fixed site.

Security is a matter for concern the whole year round, and electronic devices are being resorted to more and more in order to frustrate attempts at unauthorised entry. The Push Button Combination Lock described in this issue, when used with the recommended electrically operated lock release, will provide alternative means to unlock a cylinder-type lock whilst retaining the normal key operation. It will meet various needs, for example where a number of persons require access to premises but the issuing of keys to all individuals is not practical nor desirable. Being battery operated, the combination lock and associated release mechanism are immune from mains failures.

A word about next month's Everyday Electronics. Our new series Microcomputer Interfacing Techniques will be a must for all computer enthusiasts. This important series will explain how to get the most from your computer by linking it to the outside world. Appropriate electronic hardware will be described in each part. As each part will be vital to the whole do make sure of your copy every month by placing an order with your newsagent.

Readers Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price £ 1.00 inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE 1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worldwide. Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: £12.00. Overseas: $£ 13.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE 19 LS.

EPROM PROCRAMMER TRS-80 6 CENII

A PORT-BASED SYSTEM DESIGNED FOR USE WITH A HOST COMPUTER TO PROGRAM +5 V RAIL $1 \mathrm{~K}, 2 \mathrm{~K}$ AND 4 K BYTE EPROMS

BY B.W.TERRELL B.S.c. \& J.W.TERRELL M.S.c.

The EE124 Eprom Programmer has been designed to be used with a host computer to program single supply rail eproms. Two versions are described in this article (i) for use with the TRS-80 Model 1 Level II microcomputer (ii) for use with the Video Genie, Genie I and II microcomputers. The construction of the units has been tailored to allow them to be easily connected to the computer using the system bus expansion cable. The prepared software is suitable only for these machines.

Although specifically designed for use with these models, the hardware may be used with other computers providing certain system signals are accessible and that suitable software is developed. It is expected that the only hardware modification needed for use with other Z80 based computers is to configure the finger sets, by means of an adaptor or a custom built cable/connector to align with the configuration of the system bus of the chosen computer. The signals that need to be accessible are: D0 to D7, A0 to A7, $0 \mathrm{~V}, \overline{\mathrm{IN}}$, OUT for use with the TRS-80 version. If IN and OUT are not available, but $\overline{\text { IORQ, }} \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ are, then the Genie version can be used. Users will of course have to develop their own software.

The EE 124 plus TRS-80 or Genie can program the eproms listed in Table 1 which also gives the required setting of the MODE switch.

The pinning details for the eproms in Table 1 are given in Fig. 1.

SYSTEM DESCRIPTION

The EE Eprom Programmer comprises:
(i) Programmer Logic Unit (PLU)
(ii) EE124 Software cassette (T004)

Programmer Logic Unit

Access to the PLU is through a double sided p.c.b. connector set projecting through a slot in the front panel. The 20 +20 (TRS-80) and $25+25$ (Genie) fingers allow direct connection to these computers using the system bus expansion cable.

The PLU is equipped with the following facilities:
(a) A 24-pin Zero Insertion Force socket. This allows an EPROM to be inserted or removed from the socket without applying any pressure to the pins. The EPROM should be placed in the socket with the lever in the vertical position. Moving the lever to the horizontal position causes the socket contacts to securely grip the EPROM pins and make good electrical contact with all pins. To remove an EPROM, return the lever to the vertical position. It may then be easily lifted out of the socket.
(b) An EPROM power supply isolating switch. This is labelled hot-safe. When in the Safe position the $0 \mathrm{~V},+5 \mathrm{~V}$ and +25 V supply lines to the socket are interrupted to allow the ЕРROM to be safely removed or inserted. If an EPROM is removed from, or inserted into, а нот
socket, it may become permanently damaged.
(c) A two position mode switch. When programming or reading EPROMS, the mODE switch must be set to a or b according to the EPROM type, see Table 1.

SOFTWARE

The EE124 Software is written in Z80 machine code and is suitable for use on the TRS-80 Model 1 Level II and Video Genie, Genie I and II microcomputers. It has many powerful features. Editing is particularly easy, with 256 -byte page display, single interpage keystroke and full cursor control. The software is compatible with EDTASM so that object code prepared by EDTASM can be loaded and programmed quickly.

The commands provided are:
BURN COPY EXIT FILL LOAD MEMORY NEW PAGE READ SAVE TEST ZERO

PRINCIPLE OF OPERATION

A block diagram illustrating the principle of operation of the EE124 Eprom Programmer is shown in Fig. 2.

It can be seen that the system is port based and has three latched OUT ports (252,253 and 254) and one $\overline{\mathrm{IN}}$ port (253). Once the mode has been manually selected, the system is completely under software control. The mode referred to above has no connection with the two EPROM modes of operation described below.

Read Mode

In the read mode, the address and control data are clocked into the appropriate latches via the host computer data bus. Latch 253 output is dis-enabled by a control line from latch 252.

When an IN signal is generated (active low), the IN port is enabled and the corresponding EPROM data read into the host computer. Successive EPROM locations are read until halted by software.

Program Mode

In the program mode, both the EPROM address and the data to be programmed reach the EE124 via the host computer data bus. The low order address, high order address plus control data, and program data are sequentially clocked into the port latches.

A number of control cycles are then executed in which control data is sequentially clocked into port latch 252 to produce the following order of events:
(1) +25 V to V_{pp}
(2) PGM pin to appropriate program level
(3) maintain this level for 50 ms
(4) return PGM pin to previous level
(5) remove +25 V from V_{pp}
(6) read and verify

The above steps are repeated until either the last location is programmed or a verification error occurs, whereupon the system returns to command mode.

The assignment of the bits for each port are detailed in Table 2.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Programmer for use with the TRS-80 computer is shown in Fig. 3b. The signals from the computer expansion slot reach the circuitry via the 40 -way expansion cable.

The TRS-80 (and Genie) employs the Z80 microprocessor. Besides being able to address up to 64 K memory locations, the Z80 also produces control signals and addresses to service up to 2568 -bit wide I/O ports.

The four Z80 signals for providing these and other control signals are MREQ (memory request), $\overline{\text { IORQ }}$ (input/ output request), RD (read) and WR (write). Only four combinations of these outputs are allowed:

It is the latter, $\overline{\mathrm{IN}}$ and $\overline{\mathrm{OUT}}$ which are used in this design. In the TRS-80, these two signals are generated on board and made available at the expansion slot. These signals are active low (indicated by

Table 1. Eproms accommodated by the EE124 Eprom Programmer

Type No.	Manufacturer	Organisation	Mode
TMS2758-0	Texas	$1 \mathrm{~K} \times 8$	A
TMS2508	Texas		A
2758	Intel		A
TMS2516	Texas	$2 \mathrm{~K} \times 8$	A
2716	Intel		A
S4716	AMI		A
2716	AMD		A
MB8516	Fujitsu		A
HN4.62716	Hitachi		A
MK2716	Mostek		A
MCM2716	Motorola		A
MM2716	National		A
uPD2716	NEC		A
2716	Signetics		A
SY2716	Synertek		A
TMM323	Toshiba		A
M5L2716	Mitsubishi		A
TMS2532	Texas	$4 \mathrm{~K} \times 8$	A
TMS25L32	Texas		A
HN462532	Hitachi		A
MCM2532	Motorola		A
2732	Intel	$4 \mathrm{~K} \times 8$	B
HN462732	Hitachi		B
M5L2732	Mitsubishi		B
MB8532	Fujitsu		B

Fig. 1. Pinning details for the various EPROMS accommodated by the Programmer.

Fig. 2. Block diagram showing system operation.

Table 2. Selecting ports

Address bus during I/O cycle			Port Selected
AO	A1	A2 to A7	
0	0		
0	1		252
1	0	$A l l$	
1	1		253
1		254	

Table 3. Truth table for 74LS139 (IC2)

$\underset{A}{\text { Select inputs }}$	Output control (OE)	$\overline{0}$	$\frac{\text { Outputs }}{\text { Q1 }}$	$\overline{03}$
$\times \quad \times$	1		Hi-Z	
00	0	0	11	1
01	0	1	01	1
1.0	0	1	10	1
11	0	1	1	0

X means don't care.
the "bar"), which means that when they are selected they are set to logic 0. Every time a port is selected, either IN or OUT goes to logic 0 (depending on direction of data transfer). At all other times they are at logic 1 .

During an $\overline{\mathrm{IN}}$ and $\overline{\text { OUT, }}$, the port address is placed on the lower half of the address bus (A0 to A7) and data read from or written to the port via the data bus in the usual way.

The ports chosen for this design are 252, 253 and 254 which allows a very simple and unique decoding to be implemented, and these are of course not in use by the TRS-80 or Genie systems.

When ports 252 to 255 are addressed, bits A2 to A7 are at logic 1. These six signals reach the inputs of IC 1 , an 8 -input nand gate. Only when all inputs are at logic 1 does the output go to logic 0 . For all other combinations the output remains at logic 1. IC1 output is used as a control signal for IC2.

The precise port being addressed in this range is determined by the levels on A0 and A1, see Table 2. These address lines reach the select inputs of IC2, a 2 -to-4-line decoder. This chíp has 3 -state outputs: the two logic levels 1 and 0 and a third high impedance ($\mathrm{Hi}-\mathrm{Z}$) state which produces the same effect as physically disconnecting the outputs ($\overline{\mathrm{Q} 0}$ to $\overline{\mathrm{Q} 3}$) from the circuitry.

IC2 outputs are in the $\mathrm{Hi}-\mathrm{Z}$ state when its OE control is at logic 1. Taking this pin to logic 0 allows the outputs to assume the logic levels selected by A0 and A1. The truth table for IC2 is given in Table 3. Port 255 (Q3) is not used.

The three outputs from IC2 reach in puts of NOR gates (IC3); $\overline{\mathrm{IN}}$ and OUT also reach the appropriate IC3 gates. The outputs from IC3 provide the control signals for the following latches and buffer (IC5 to IC7 and IC8).

IC5, 6 and 7 are octal D-type latches. The information reaching the eight inputs is transferred and latched into the eight outputs by a positive going (low-to-high) pulse edge to the clock (CK) input. All inputs receive information from the data bus.

Suppose for example the CPU is OUTputting to port 252 . The port address appears on the lower half of the address bus with data to be sent out on the data bus. As A 0 and A 1 are at $\operatorname{logic} 0$, output Q 0 is selected. A2 to A7 are all at logic 1 so IC1 output drops to logic 0 and this enables the outputs of IC2. OUT goes low later in the output cycle after time has been allowed for the data and address buses to stabilise. So initially a logic 0 reaches IC3a pin 12 and a logic 1 is on pin 11. Consequently the output of IC3a is at logic 0 .

When OUT goes low, the output of

Table 4. Assignment of the ports

Host Computer Data Bus	$\begin{aligned} & \text { Port } 253 \\ & \text { Data } \\ & \text { (IN \& OUT) } \end{aligned}$		Port 254 Low order address (OUT)		Port 252 (OUT) High order address and control									
			Mode A	Mode B$4 K \times 8$										
			$1 \mathrm{~K} \times 8$			$2 \mathrm{~K} \times 8$		$4 \mathrm{~K} \times 8$						
bit 0		(9)			AO	(1)		(23)		(23)	A8	(23)	A8	(23)
bit 1		(10)			A1	(2)		(22)		(22)	A9	(22)	A9	(22)
bit 2		(11)	A2	(3)	VOL	(19)	A10	(19)	A10	(19)	A10	(19)		
bit 3		(13)		(4)	PGM	(18)	PGM	(18)	A11	(18)	A11	(21)		
bit 4		(14)		(5)										
bit 5		(15)	A5**											
bit 6		(16)	A6	(7)		(20)		(20)	$\overline{\text { PGM }}$			(18)		
bit 7		(17)	A7	(8)	$V_{\text {pp }}$	(21)	$V_{\text {pp }}$	(21)		(21)		(20)		
									Texas	532	Intel	2732		
Notes														
Numbers in parentheses are EPROM socket pin positions. ** Not used * Controls OE of OUT PORT 253.														
PGM 50 millisecond high pulse, \qquad with $V_{p p}$ on PGM 50 millisecond low pulse, $V_{p p} 25 \mathrm{~V}$ supply: 0 - off, 1 - on with $V_{p p}$ on														

IC3a then goes high. This reaches the CK input of IC5 and the data bus information is clocked through and latched into the outputs of IC5. IC6 and IC7 operate in a similar manner.

Port 253 is wired as a bi-directional port, that is to say the CPU is able to read from (IN) and write to (OUT) this port address. The OUT section is IC7 with decoded control, and IC8 provides the $\overline{\mathrm{IN}}$. IC 7 and IC8 are wired in anti-parallel.

Fig. 3a. Expansion bus contacts and additional circuitry (IC 10) required by the Genie microcomputer.

IC8 is connected as an octal buffer with tri-state outputs. Its outputs are enabled by providing a logic 0 to its $\overline{\mathrm{OE}}$ pins (1 and 19). Similar circuitry to the OUT ports is employed but here the decoded address signal and $\overline{\mathrm{IN}}$ reach NOR gate IC3d. What is really required here is an OR gate to give a logic 0 to pins 1 and 19 when IN253 is requested. To make convenient use of the local "spare" NOR gate in the IC3 package, an inverter is used to follow IC3d to construct the required $O R$ function. Thus when the decoded address control signal goes to logic 0 and $\overline{\mathrm{IN}}$ falls to logic 0, IC8 is enabled and connects the EPROM data outputs to the computer data bus.

To program (burn) an EPROM location, the address of the location and the data to be burned must be presented to the appropriate EPROM address and data pins. Next +25 V needs to be connected to the V_{pp} pin and then a 50 millisecond pulse of the correct polarity fed to the programming pin.

Bit 7 of port 252 controls the +25 V supply line, a logic 1 turns it on, a logic 0

Fig. 4. Looking directly at the expansion slot on the Genie (upper) and TRS-80 (lower), viewed from the rear.
turns it off. The address is sent to the eprom via IC6 (A0 to A7), and IC5 (A8 to A11). The data is sent via IC7. Control signals to present the 25 V and programming pulse are sent via IC 5 upper half.

The control signals for the EPROMS listed in Table 1 vary in several respects as can be seen in Fig. 1. To accommodate the different organisations and memory
size it was found necessary to include a manually operated mode switch, S1, in the design. The position of S1 in conjunction with software produces the required result.

To read an eprom location, IC6 and IC5 provide the address and control information and IC8 provides the link to the data bus.

Fig. 3b. Circuit diagram of the TRS-80 version of the Programmer.

An EProm should not be removed from or inserted into a powered up socket (hot socket). S2 functions as a hot-SAFE switch. In the safe position the $0 \mathrm{~V}, 5 \mathrm{~V}$ and 25 V supply lines to the socket are interrupted. Light emitting diode D3, lit when the socket is HOT, provides an immediate visual indication of the switch position.

The Genie microcomputers (Video Genie, Genie I and II) do not provide IN and OUT at their expansion slots. They do provide the CPU signals, $\overline{\text { IORQ }}, \overline{R D}$ and WR which allows IN and OUT to be derived. The circuitry for doing this is given in Fig. 3a. The $\overline{\mathrm{IN}}$ and OUT outputs are to connect to the $\overline{\mathrm{IN}}$ and OUT inputs in the main circuit diagram, Fig. 3a, to produce the complete circuit diagram for use with the Genie microcomputers.

The edge contacts for the two computer types are given in Fig. 4.

POWER SUPPLY

The power supply section of the Programmer is shown in Fig. 5. It
produces +5 V and +26 V and is mains powered.

The 240 V a.c. mains voltage enters the unit and appears across T1 primary. There are two secondary windings, each rated at $9.5 \mathrm{~V} \quad 320 \mathrm{~mA}$. One voltage winding is half-wave rectified by D8 and then smoothed by C5. This provides a raw d.c. input to monolithic voltage regulator, IC9. The output from this device is a stabilised +5 V with in-built short circuit protection.

The other secondary winding feeds a voltage doubling and smoothing circuit composed of D6, D7, C3 and C4. This produces a raw d.c. level of about 30 V at maximum V_{pp} load. This is applied to the collector of TR1 and feeds Zener diode D4 (27V) through its series resistor R3. The base emitter drops approximately 0.7 V to give about 26 V at its emitter. This is the supply to V_{p} through S2 and S1.

This output stage is turned on (supplying 26 V) or turned off (output is 0 V) by the electronic switch composed of TR2 and TR3 and local components. The control signal for the switch comes from the software via bit 7 of IC5. A logic 1 to $V_{p p}$

Fig. 5. Circuit diagram of the mains derived power supply of the Programmer.

CONTROL turns on TR3 and its collector drops to near $0 V$. TR2 is therefore off and is effectively disconnected from D4.

If now a logic 0 is presented, then TR3 is turned off. TR2 is now free to turn on via base bias resistor R4 and TR2 collector falls to near 0V. D4 is thus shunted and TR1 is held off so there is no voltage at TR 1 emitter. R 2 straps TR 1 emitter to 0 V in this condition.

HARDWARE

Both versions of the Programmer described here are constructed using two printed circuit boards. The larger board in each case is a double-sided type, that is to say, there is a track pattern on each side of the board. Interconnections are required between the two sides at numerous places. Track pins are made specially for such a connection and their use is strongly recommended for this project. These pins are tapered with heads. The board should be drilled 1 mm diameter at these positions for the specified pin.

The through-the-board connections are at each of the pad positions seen on the board topside. Track pins are used in all but four places, where the component lead is used instead. These are the decoupling capacitors C1 and C2 which of course must be soldered on both sides of the board.

The p.c.b.s, supports and components have been tailored to suit the inexpensive but robust Vero General Purpose Plastic Box size $180 \times 110 \times 55 \mathrm{~mm}$.

The board is supported on snap-fixing 6 mm long plastic stand-off pillars fitted to the base of the case. These require a 3.8 mm diameter hole drilled in the board and a 5 mm diameter hole drilled in the case.

A slot is required in the front end of the case to accommodate the protruding finger set. A shaped hole is needed in the rear end to allow the mains cable to pass to the board via a strain relief bush. This securely grips the cable and prevents any strain being exerted at the soldered connection to the board.

The second smaller p.c.b. is a singlesided board. It holds the two switches and the z.i.f. socket and local components and is screwed to the underside of the lid using four 6BA fixings. Three rectangular cut-outs are required in the lid to suit the z.i.f. socket and the switches. A hole is also required to accommodate the panel mounted l.e.d.

Begin construction by preparing the case. Full details are given in Figs. 6 to 8. The plastic is very easy to cut and file.

PRINTED CIRCUIT BOARDS

It is assumed that the drilled printed circuit boards have been obtained from the EE Printed Circuit Board Service with all holes drilled to suit the specified components.

Remove the two top corner cut-outs using a small hack-saw and then file smooth up to the border line so as to just remove it. Position the board (right-way
up) on the underside of the case and use the four board fixing holes to drill pilot holes in the case for the corresponding base fixing holes. Enlarge the case holes to 5 mm diameter. Slightly countersink both sides of these four holes.

Push the plastic pillars into the case holes and then check that the board fits onto the pillars and the finger set protrudes through and clears the slot. If all is well remove the board and make ready for assembly.

ASSEMBLY

All components are fitted to the board topside as can be seen in the layout diagrams, Fig. 9 (for TRS-80 version) and Fig. 10 (for Genie version). Begin by inserting all the track pins. You will find it easier to push these in from the topside as all topside pad positions are through-theboard interconnection points.

Remember to leave the four holes for C1 and C2, to be fitted later. Push the pins firmly into the board. Solder all pin topsides, turn over and solder all pin undersides. A small diameter bit is recommended for most of the soldering on this board, about 1.5 mm diameter.

Next insert the i.c. sockets and solder. Check for solder bridges as you proceed. An eye glass will be especially useful for this purpose.

Now position and solder all other low profile components: resistors, diodes and IC9 followed by the transistors and decoupling capacitors, C1, C2 and C6. Remember to solder C1 and C2 to top and underside. The electrolytic capacitors may next be inserted paying attention to polarity and finally fit and solder in T1. Prepare a length of mains cable 3-core and connect to the board according to layout diagram.

POWER SUPPLY CHECK

The assembly should now be thoroughly inspected, checking for possible solder bridges, unsoldered pins, correct orientation of diodes, transistors and capacitors. When you are satisfied, the power supply section should be checked. It is a good idea while testing to sit the board in its case with finger set protruding through the slot. This lessens the possibility of inadvertently touching the p.c.b. underside tracks carrying mains voltage.

Plug in and switch on at the mains. Identify the 0 V and +5 V rails and check that the voltage is at or very close to +5 V .

Attach a short length of fine wire to your voltmeter probes and check that there is 5 V between each V_{cc} and GND pin position at each socket. Too stout a wire has been found to excessively open the socket contact such that it is unable to make contact with the i.c. pin when inserted.

You should measure about 30 V or more between 0 V and TR1 collector. There should be no output at TR 1 emitter. A lead connected between the free

Fig. 6. Slot to be cut in the case front panel to suit the Genie version p.c.b. (830602).

Fig. 7. Slot to be cut in the case front panel to suit the TRS 80 version p.c.b. (830601).

Fig. 8. Cut-out dimensions of the case lid to suit the p.c.b. (830603) and'specified components. Note the orientation of the switches.

TRS-80 EPROM PROCRAMMER

COMPONENTS

The fitted top board fully populated showing ribbon cable running to lower board through a cable gripper.

Resistors

R1	390Ω
R2	$2 \cdot 2 \mathrm{k} \Omega$
R3	$2.2 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R4, R5	$47 \mathrm{k} \Omega(2$ off $)$
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$ except	
stated otherwise	
Capacitors	
C1	$0.01 \mu \mathrm{~F}$ ceramic C2-C4 $470 \mu \mathrm{~F} 16 \mathrm{~V}$ elect. radial (3 off) C5, C6 $0.1 \mu \mathrm{~F}$ plastic or ceramic (2 off)

Semiconductors

D1, D2 1 N4148 small signal silicon (2 off)
D3 TIL220 red I.e.d.
D4 BZY88C27 27V
400 mW Zener diode 1 N4001 1A 50V rectifier (3 off) 1N4148 small signal silicon

TR2, TR3 2N3904 silicon non
(2 off)
TR1 BFY50 silicon npn
IC1 74LS30TTL 8-input NAND gate
IC2 74LS139 TL Dual
2-to-4 line decoder
(3-state)
IC3 74LSO2 mL Quad
2-input NOR gates
74LSOO TTL Quad
2-input NAND gates
IC5-IC7 74LS374 TIL Octal
D-type flip-flops (3-state) (3 off)
IC8 74LS244 TL Octal buffers (3-state)
7805 5V 1A
monolithic voltage
regulator TO-220
package
IC10 74LS32 TL Quad
2 -input or gates
(Genie only)

Fig. 9. Layout of the components of the topside of the TRS-80 version p.c.b. The black "dots" indicate the positions of the track pins to be soldered to both sides. Note that C5 and C6 are to be soldered top and underside.
 off); mains cable strain relief bush; 6BA countersunk screws and
nuts, washers (4 sets); 3-core mains cable, 1 m ; 10 -way flexible jumper link cable, 3×6 inch lengths (Verospeed type 22622549H).

Software

TOO4 cassette: EE124 Eprom Programmer (TRS-80 \& G̦enie)
Pinted circuit boards: double sided size $180 \times 104 \mathrm{~mm}$ Order Code: 8306-01 (TRS-80), 8306-02 (Genie); single-sided size $89 \times$ 89 mm Order Code: 8306-03; d.i.1. sockets: 20-pin (4 off), 16-pin (1 off), 14-pin (3 off, TRS-80), (4 off, Genie); plastics case Vero type 202-21391A; 1 mm track pins (66 off, TRS-80), (79 off, Genie); 6 mm long plastic stand-off pillars (Verospeed type 226-22549H) (4 off); self-adhesive rubber feet (4

Miscellaneous

S1, S2 4-pole 2-way d.i.l switches (type DS 16A 4-2) (2 off)
SK 1 24-pin di.i. Zero Insertion Force Socket (type W3924-10)
T1 Mains primary/0-9.5V $0-9.5 \mathrm{~V} 320 \mathrm{~mA}$ secondaries (type P0609)

Fig. 10. Layout of the components on the topside of the Genie version p.c.b. The black "dots" indicate the positions of the track pins to be soldered to both sides. Note that C5 and C6 are to be soldered top and underside.
end of R5 and +5 V should cause TR1 emitter voltage to become about 26 V . If the above results are not obtained, switch off, investigate and remedy before proceeding.

If all is satisfactory, unplug the unit from the mains and connect the interboard wiring cable. In the prototype, webbed 0.1 inch pitch ready-stripped and tinned cable was used. This is normally available in 10 -wide lengths, and is very flexible. The two additional pairs were cut from a third length. Trim off excess from board underside.

The i.c.s may now be inserted. They all face the same way. Fit rubber feet at each corner of the case and push the board firmly onto its supports. Feed the mains cable through its exit hole, but do not fit the strain relief bush yet.

Prepare the case lid to accept the top panel components, see Fig. 8. Use a round file to remove the section of the board to clear the l.e.d. when fitted.

Components are to be mounted on both sides of the upper board. Fit S 1, S2 and the z.i.f. socket on the top (uncoppered) side. Position the board so that the components fit into their apertures and then use the board fixing holes as a template to drill the fixing holes in the lid. Countersink the lid holes.

Use countersunk screws, huts and washers to fix the board secure. A dab of paint on the thread of the screw will prevent the fixing working loose in use. A label to identify the functions may now be attached. This will also conceal the fixing screws. Fit the l.e.d. clip. Insert the 1.e.d. and bend its leads carefully using a pair of pliers so that the leads make contact with the rectangular pads on the p.e.b. (Fig. 11). Check polarity before soldering.

Solder D1, D2 and R1 to the board, feeding the shortened leads into the pad holes. Attach the self-adhesive flat cable gripper to the lid immediately in front of the board as seen in the photograph.

It only remains for the 2×12-way flat cables to be soldered to the appropriate rectangular pads adjacent to the z.i.f. pins. Trim the tinned leads to about 3 mm before soldering. Double-sided tape will be found useful when carrying out this. Stick a short length of the tape onto the board immediately in front of each line of pads. Press each 12 -wide cable in turn and solder. Ensure that there are no "shorts". A small screwdriver blade was used to hold the wire in contact with its pad during soldering to give a good joint. A third hand would be useful at this stage. When both cables have been soldered close the cable-gripper arms to hold secure.

Manipulate the cables to run away from the transformer and screw down the lid.

TESTING

Plug into the mains. The panel l.e.d. should be lit when S2 is in the нот position and go out when set to SAFE. Set in Hot position. Check that the voltage between pin 12 of the socket (GND) and pin $24\left(\mathrm{~V}_{\text {cc }}\right)$ is +5 V . With Sl set to MODE A, pin 21 (V_{pp}) will read either 4.5 V or about 25 V depending on whether IC 5 bit 7 has initialised at turn on to logic 1 or logic 0 . In mode e $V_{p p}$ will read about 26 V or 0 V depending on bit 7 state. This unknown state of bit 7 (IC5) clearly illustrates the danger of powering up the Programmer with an EPROM in the
socket. When certain conditions exist with 25 V applied to V_{pp} the EPROM will be destroyed.

In normal use, this condition will not exist since the software correctly initialises the system before instructing the user to insert the EPROM. Full details later.

Connect the Programmer to the computer using the appropriate expansion cable. Do not apply power to the Programmer. Turn on the computer. It should function normally. Turn off the computer. Turn on the Programmer and then the computer. Again the computer should function normally. If not turn off both units, investigate and remedy.

If results are satisfactory, run through the "Setting-Up Procedure" but do not insert an EPROM when instructed to. Set to mODE A and type 4 in response to the prompt at instruction No. 9. You are now at No. 12.
Type $\mathrm{P} \#<$ ENTER $>$
Move the cursor to 00F0 and type in AA Press <BREAK>
Type B0000:00FF < ENTER>
Check that the voltage at pin 21 is approximately 5 V . Set your voltmeter to read 30 V d.c. f.s.d. and connect across pin 12 and 21. Observe the meter and type <ENTER>. The needle should deflect to 25 V for about 12 seconds and then fall back to its previous reading.

Check now that:
A0 to A3, A8 to A11, read logic 0
A4 to A7, read logic 1
D0, D2, D4, D6, read logic 0
D1, D3, D5, D7, read logic 1
Repeat the whole of this test procedure but this time set mODE $B . V_{p p}$ is now on pin 20. Before a "burn" takes place, this
pin should read 0 V , and during the burn it should read 26 V approx. and return to 0 V after about 12 seconds. Check all data and address pins to read the same logic levels as before. If so the unit is functioning normally and is ready for use.

SETTING-UP PROCEDURE

Users are advised to read all of this section before attempting to wise the system.

The EPROM socket should be empty and all equipment should be "off" before commencing the setting-up procedure which should then be carried out in the following sequence.

1. Connect the PLU to the computer using the system bus expansion cable.
2. Set the hot-safe switch to safe.
3. Connect the PLU to a 240 V a.c. mains supply and switch on.
4. Switch on the TRS-80/Genie and enter BASIC in the usual way by pressing the $<$ ENTER $>$ key.
5. EE124 is a machine code program which can only be loaded via the SYSTEM command. Type
SYSTEM < ENTER >
and the SYSTEM prompt *?- will be displayed.
6. Depress the play button on the cassette recorder and check that the volume control is set between 5 and 6. Type the filename EE124<ENTER>
The cassette motor will start and the program will load in the usual way.
7. Once the load is complete, the SYSTEM command prompt will again be displayed. This time type /<ENTER>
The following message will be displayed

EE 124 SOFTWARE $1 \cdot 1$ COPYRIGHT EVERYDAY ELECTRONICS 1983
SELECT MODE SWITCH
8. Refer to Table 1 and identify the MODE (A or b) for the EPROM which is to be programmed. Set the MODE switch accordingly and type
<ENTER>
The following message will be displayed

SELECT 1, 2 OR 4 ?-

9. The same EPROM socket is used to program three different sizes of EPROM. They are $1 \mathrm{~K} \times 8,2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} \times 8$. Thus, type
1 <ENTER> for $1 \mathrm{~K} \times 8$
2 <ENTER $>$ for $2 \mathrm{~K} \times 8$
$4<E N T E R>$ for $4 K \times 8$
The following message will be displayed

INSERT EPROM_

10. Move the socket lever to the vertical position and insert the EPROM paying particular attention to polarity. Lock the EPROM into position.
11. Set the ноt-Safe switch to hot.
12. Type
<ENTER>
and the system is ready for use. The command prompt $\quad+$ will be displayed and any of the commands on page 348 will be accepted.

The Eprom Programmer in use with the Genie II microcomputer. The screen shows that a 4 K -byte eprom has just been successfully 'burned'

To remove an EPROM from a powered up Programmer
A. Set the hot-Safe switch to Safe.
B. Move the socket lever to the vertical position and lift out the EPROM.

At the end of a programming session, do not turn off any mains supply without having first removed the EPROM. Follow steps A and B with:
C. Switch off Programmer.
D. Switch off computer.

The fully assembled p.c.b. for use with the Genie microcomputer, removed from its case. Left shows completed unit with lid pushed to far end.

COMMANDS

All items appearing in ruled boxes are automatically dis played on the screen.

All commands are vetted by the syntax analyser. This is a routine which checks the structure of commands. If the structure of a command is incorrect, a SYNTAX ERROR message will be displayed.

Commands are of a particularly simple form and are checked against the following production rules:
<Command> <Command letter><Parameters>
<Command letter> $\mathrm{B}|\mathrm{C}| \mathrm{F}|\mathrm{L}| \mathrm{M}|\mathrm{N}| \mathrm{P}|\mathrm{R}| \mathrm{S}|\mathrm{T}| \mathrm{X} \mid \mathrm{Z}$
<Parameters> <Address>|<Address>:<Address>|
<Null string>
<Address>
\#**|. < HHHH>
$<\mathrm{H}>$
$011|2| 3|4| 5 \mid 6$
$8|9| A|B| C|D| E \mid F$
\# * and . are shorthand notations for first, last and current address, respectively. Spaces are ignored by the syntax analyser

Example
(a) \#:* (b) * (c) . (d) 2410:* (e) .:* (f) $2410: 2490$

The above parameters are not considered by the analyser to be syntactically incorrect but may be described as BAD PARAMETERS when used with certain commands. The following are considered to be syntactically incorrect:
(a) \#* (b) 2410.2490 (c):2490 (d) 2410 . (e) .:

All commands must start with a bona fide command letter otherwise an ILLEGAL COMMAND message will be displayed. If the syntax of a command is correct, the legality of any parameters will be determined by the nature of the command

A complete explanation of the commands and examples of their use will accompany the T004 software cassette available from the EE Software Service.

ENHANCING THE SOFTWARE

The authors feel that the set of 12 com mands is sufficient for most needs but that there may be some users who wish to erihance the software by adding extra commands. This can easily be done.

The command table is situated from 5318 to 533 B ; each command cell of 3 bytes consists of

COMMAND LETTER LSB \mid MSB

Space for four extra commands has been left from 533C to 5347. Simply type
in the three elements of a new command cell. The syntax of the new command will automatically be checked and on jumping to the command address, the top of the stack will hold the BAD PARAMETER(S) address.
CALL 58DO returns HL, DE with command parameters. returns HL, DE with buffer addresses, i.e. command addresses which have been adjusted for origin of EPROM and position of

Table 5. Summary of commands

Command	Description
B	Burns bytes from the buffer to the EPROM
C	Copies bytes from the EPROM to the buffer
F	Fills buffer locations with FF
L	Loads SYSTEM tape into the buffer
M	Memory sets origin
N	New executes a cold restart
P	Page displays 256 bytes from the buffer
R	Read displays 256 bytes from the EPROM
S	Saves contents of buffer locations
T	Tests EPROM locations for FF
X	Exits to Basic
Z	Zeros buffer locations

buffer. ($4300 \leqslant$ HL \& DL $\leqslant 52$ FF.)

COPYING SYSTEM TAPES

SYSTEM tapes can be easily copied, edited and created using the $\mathrm{M}, \mathrm{L}, \mathrm{P}$ and S commands. However, it must be remembered that although programs appear to be in main memory, they are actually stored in the buffer. They can only be run by first saving them onto cassette using the S command and then by loading them into main store from Basic using the SYSTEM command.

logic Symbols

Fast acting "Schmitt" versions of the NAND and inverting gates are also available and these are identified by a "hysterisis loop" symbol. Fig. 4 shows a Schmitt inverter and nand gate. They obey the truth tables for the INVERTER and NAND gates, respectively.

YOU will have noticed this month that we are using a different set of symbols in circuit diagrams to represent logic gates. These changes have been made to agree with those symbols found in manufacturers logic i.c. data books and application notes, as well as logic and microprocessor books (especially those titles from America) and other journals.

The symbols for the gates need no qualifying letter inside the symbol outline, it is the shape of the symbol which conveys its logic function. In Fig. 1 you can see the "old" symbol followed by its logic description and the "new" symbol for each of the different types of gate. These apply to both TTL and CMOS families.

All gates with the exception of the Buffer and Inverter types, are shown as 2input gates. For example, the first one in the list is fully described as a 2-input and gate. AND gates with more inputs would be represented by drawing the elongated "D" with a number of lines equal to the number of inputs, into the flat of the " D "; Fig. 2 shows a 3 -input and gate. Other 3-input gate types are drawn similarly.

For a large number of inputs, the symbol is not made larger, but its input face is, see Fig. 3, which shows an 8 -input NAND gate and an 8 -input or gate.

The difference between AND and NAND, and OR and NOR symbols is the small circle at the output. This is a negating sign. A logic 1 produced on the gate-side of the circle becomes a logic 0 at the other side. Similarly a logic 0 becomes logic 1. This can be seen in the truth tables.

AND		
Inputs		Output
A	B	C
0	0	0
0	1	0
1	0	0
1	1	1
NAND		
Inputs		Output
A	B	C
0	0	1
0	1	1
1	0	1
2	1	0

Output

TRUTH TABLES

Inputs		Output
A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

EX-OR

Inputs		Output
\mathbf{A}	\mathbf{B}	C
0	0	0
0	1	1
1	0	1
1	1	0

EX-NOR

Inputs		Output
A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

(Top) The Sinclair ZX Spectrum is supplied complete with 1.2 A mains adaptor manual, and all the necessary leads to connect it to a TV and cassette player. (Above) The printed circuit board assembly showing the edge finger set at the rear which provides access to the control, data and address buses for expansion purposes.

THE ZX Spectrum package comprises the computer, a 1.2 A mains adaptor, a TV aerial lead, two cassette recorder leads, an introductory booklet and a comprehensive user's manual.
'The computer is housed in an attractive plastic case, slightly longer than the ZX81 and measures 233 mm wide by 144 mm deep by 30 mm high. A 29 -way double-sided finger set is situated at the back from which full data, address and control busses can be accessed, and the system is controlled by the Z80A microprocessor, a faster version of the well-known $\mathrm{Z} 80 \mu \mathrm{P}$.

The mains adaptor connects to the Spectrum via a female cassette power connector, which is an improvement on the male miniature jack plug used on the ZX81. The adaptor is sufficiently powerful to run the ZX printer, unlike the standard 0.7 A adaptor which accompanies the ZX81. However, the printer also comes with a $1 \cdot 2 \mathrm{~A}$ adaptor, and ZX Spectrum owners who buy the printer will have paid for a spare $1 \cdot 2 \mathrm{~A}$ adaptor!

KEYBOARD

The keyboard is made up of 40 "moving" keys with full upper and lower case, and is a significant improvement on the ZX81's touch-sensitive keyboard. All keys are at normal typewriter pitch, but the keyboard is not suitable for touch typing. For a non ZX81 user who is used to single character entry on a full-size QWERTY keyboard, the Spectrum keyboard will take some getting used to.

There are many good points, however. All keys have auto-repeat which makes input and editing so much easier than the ZX81. If the cursor is positioned at the end of a long program line, for example, it can quickly and painlessly be moved back to the beginning of the line simply by holding down the CAPS SHIFT and key. Every time a key is pressed, a click (albeit barely audible) can be heard from the internal loudspeaker.

All BASIC words can be obtained by pressing a single key, as with the ZX 81 . However, accessing the set below the keys requires practice. For example, to access the keyword CIRCLE, both shift keys, CAPS SHIFT and SYMBOL SHIFT, need to be pressed to change the K cursor to the E cursor. Then the SYMBOL SHIFT and the H key need to be

pressed for the word CIRCLE to appear. This sounds a rather long and complicated process, and indeed the number of keystrokes required to access some words is more than the number of characters in the word itself! Nevertheless, this is something that can be easily mastered.

DISPLAY

Users with black and white only TV's could be excused at times from thinking that the ZX Spectrum is just a ZX8.1 in a different case, for the screen format is identical to the ZX81. The main display, excluding the border which is unused on the ZX 81 , is split up into 24 rows of 32 columns. The bottom two rows (at least) are reserved for all program and run-time input. While this is fine for the beginner, it can be a limitation and a source of irritation to the more advanced programmer.

The main display of 22 lines of 32 characters is made up of 176 by 256 dots (called pixels), each of which can be controlled individually. The trade off between resolution and memory is a difficult one but one which the Spectrum designers seem to have got right.

Eight colours are available and are good on the whole, although certain combinations of colours in adjacent character positions give rise to blurring and instability along vertical boundaries. The colours have been sensibly arranged so that users with black and white televisions see ordered shades of grey ranging from white (colour code 0) to black (colour code 7). Pixels within each character position (and there are 64 of them arranged on an 8 -by -8 grid) can only be one of two of the eight available colours and are aptly named PAPER (background) and INK (foreground). This could be considered a limitation, but is another instance where extra memory would be required to store the colour attributes of the pixels if more than two colours per character position were allowed. Again, they have got it right.

Furthermore, each character position can be set to flash and/or to be extra bright using the FLASH and BRIGHT commands. Together with BORDER, which sets the border colour, INVERSE which gives inverse video (that is PAPER colour becomes INK colour and viceversa) and OVER which superimposes any printing or plotting that is already on
the screen, these all add up to a comprehensive and impressive range of colour graphics.

BASIC

The Spectrum uses what is essentially a super-set of ZX81 BASIC. The interpreter and operating system are stored in 16K of rom and the system runs at the speed of the ZX81 in FAST mode with the steady non-flicker display of the ' 81 in SLOW mode.

The instruction words READ and DATA, which were missing from the ZX81, have been included together with the very useful RESTORE n, which restores the data pointer to program line n . Dummy reads of data are no longer necessary to reposition the data pointer.

The instruction IN and OUT are very useful additions so that port boards and other devices can be controlled directly from BASIC without recourse to machine code. A powerful feature of the Spectrum BASIC is the ability for users to define their own functions using the DEF FN instruction.

For example, DEF FN LS(a£,n) = $\mathrm{a} \$(\mathrm{TO} \mathrm{n})$ returns the first n characters of a\$ so that L\$("PUTTY",3) = "PUT". Those of you familiar with Microsoft BASIC will recognise that this function is equivalent to LEFT£. Functions may use up to 26 numeric and 26 string arguments and can be mixed, as in the above.

Another powerful and unusual feature of Spectrum BASIC is the full expression evaluator which is called during program execution whenever an expression, constant or variable, is encountered.

Graphics commands are comprehensive. PLOT controls the INK of a pixel and DRAW draws lines as well as parts of circles if an additional parameter is supplied.

SOUND

Tucked away inside the bottom righthand corner of the Spectrum is a small loudspeaker. Under command of the instruction BEEP, notes of varying pitch and duration can be generated. Unfortunately, the sound is barely audible, which is a pity. BEEP also ties up the CPU for the duration of the tone and it is not possible to break into the system at this time. [An amplifier to increase the
volume of BEEP and other sounds was featured in the April ' 83 issue of EE. Full constructional details were given.]

TAPE STORAGE

The ZX81 cassette interface, as many users will know, is very unreliable. How many times have users waited for several minutes to load a long program only to find at the end, for some unexplained reason, that the data has not been accepted? These problems are well-known to ZX81 users, and so it comes as no surprise to find that a new cassette interface has been designed for the Spectrum. It is very reliable and fast. The Baud rate (number of bits transferred per second) has been increased six-fold to 1500 and a 16 K program now takes only 100 seconds to load.

Not only is the system more reliable, but a VERIFY command has also been included so that a saved program can be compared with what the computer intended to be saved. Also, two programs, one stored in memory and the other on tape, can be combined using MERGE.

There are a number of other features which enable data files, other than programs, to be stored on tape. Blocks of machine code can be saved and loaded from BASIC and arrays can be transferred and merged individually. The contents of the entire screen can be stored using a single command and loading is equally as simple.

CONCLUSIONS

The 16 K version is priced at $£ 125$ and the 48 K version at $£ 175$. Undeniably, both represent superb value for money. Each microdrive will sell for under $£ 50$ and the RS232 for about $£ 20$.

Readers seriously considering buying a computer for the first time would not go far wrong it they bought the ZX Spectrum. The machine is not only a good one but it is well supported by software houses and add on manufacturers, which is a very important point for a potential buyer to consider.

Early supply and production difficulties brought Sinclair Research much criticism from the computing press, but these problems are now behind them and the ZX Spectrum looks set to be an even bigger winner than the ZX81.

PUSH BUTTON combination LOCK
 BY J. HADLEY

THe Push Button Combination Lock provides a convenient alternative to a key operated lock, especially when a number of people use the same door. This system is designed to use a lock release mechanism which can easily be fitted in place of the door frame mounted part of a cylinder lock, and which allows the lock to be used with a key, if required.

The circuit is battery powered, making for simpler installation and allowing operation during mains failure. Provision is made in the design to cater for the situation when the battery voltage eventually falls to a level at which the lock release fails to operate.

PRINCIPLE OF OPERATION

A number of designs for push button locks have been published which rely on relatively complex digital circuitry. The design to be described here makes use of the principle of transferred charge using the basic concept shown in Fig. 1.

When switch S1 is momentarily closed, capacitor C1 is charged to the supply
voltage. When switch S 2 is momentarily closed, the charge on Cl is shared between C1 and C2. Similarly switch S3 transfers charge to C3; this stored charge is used to operate the lock release circuit by momentarily closing switch S 4 .

Switches S1, S2, S3, and S4 are selected from a keyboard of twelve or sixteen keys to provide the sequence of numbers required. Unused switches are connected through a common line, such that, if any incorrect key is pressed all charged capacitors are discharged via diodes D1, D2, and D3, and the sequence will then have to be restarted.

The simple arrangement of Fig. 1 has two disadvantages. The first is that the voltage falls at each transfer. If the values of the capacitors are equal the voltage is halved at each transfer and the voltage on C3 is only a quarter of the supply voltage. Secondly, the switching arrangement precludes the use of commercially available keyboards which usually have a common connection to one side of the switches.

Fig. 1. Circuit of the transfer charge principle used in the Push Button Combination Lock.

THE CIRCUIT

The circuit shown in Fig. 2 overcomes these disadvantages by using CMOS NAND gates, as buffer stages, between each capacitor. This allows almost the full supply voltage to be transferred between each capacitor.

The operation of the circuit is as follows: when switch S1 is closed, C1 is charged through R1 and when released the voltage on Cl decays exponentially. Providing that this voltage is still greater than half the supply voltage, closing switch S 2 will cause the output of gate IC la to go low, which in turn causes the output of gate IC1b to go high.

C2 then charges through D3 and R4. The second pair of NAND gates (IC Ic and ICld) perform the same function by charging C3 when switch S3 is closed. The lock release is operated when switch S4 is closed, causing the output of gate IC2a to go low, switching on transistor TR3 which provides sufficient base current to cause TR4 to go into saturation.

LOCK RELEASE

The lock release coil is connected between the positive supply and the collector of TR4 via a 2.2 ohm resistor. This resistor limits the coil current when the battery voltage is high.

When the battery voltage has fallen to a level where the lock release fails to operate, the 2.2 ohm resistor can be bypassed by closing switch S 5 at the same time as S 4 is closed. The output of gate IC2d goes low when S5 is closed and this switches on TR1 and TR2. Since the collector of TR2 is connected directly to the coil, the full supply voltage, less the saturation voltage of TR2, appears across the coil.

The normal sequence of operation is to momentarily close S1, then S2, then S3 and finally $S 4$ to operate the lock release. When the lock fails to operate, because the battery voltage is too low, the sequence is repeated but S 4 and S 5 are closed simultaneously.

This will allow the door to be opened in spite of the low battery voltage, but is also an indication that the batteries should be replaced before their voltage falls to a level at which the lock release
will fail to operate even when the override switch is used.

The value of the charging resistor used in the circuit requires that the push button switches S1, S2 and S3 are held closed for about half a second to ensure that the capacitors are fully charged. This slows down the maximum keying rate and provides added security against random keying.

Any switch not used in the selected combination, or for low battery operation, is connected as shown between the positive supply and the input to gate IC2b. Operating any of these switches causes the output of IC2b to go low and
as the door is opened. As can be seen from the graph in Fig. 3, the battery voltage on load has fallen to 6.2 V after 4000 operations and that a further 200 operations are possible using the override switch, before the battery voltage has fallen to $5 \cdot 2 \mathrm{~V}$

Knowing the average daily use will enable the battery life to be estimated. Over an extended period there will be an additional loss of capacity due to storage effect which can amount to about 10 per cent per annum. For this reason it is not economical to use the higher powered HP2 cells, which have twice the capacity of HP11s, unless justified by frequent use.

Fig. 3. Battery deterioration graph of voltage against number of operations.

Fig. 2. Complete sircuit diagram for the Push Button Combination Lock. The push switches S1 to S5 and the unused switches make up the keyboard and are housed in a separate case.
this discharges any of the capacitors (C 1 , C2 and C3) which have a charge. Pushing any wrong button therefore requires the correct sequence to be restarted at S1.

CHOICE OF BATTERIES

The lock release is designed to operate on a nominal 12 V , but will operate down to about 4 V , providing that pressure is not applied to the release, by pushing against the door, until the lock release has been activated.

With the 2.2 ohm resistor, the circuit and lock release will operate down to 6 V or less. Using eight $1 \frac{1}{2} \mathrm{~V}$ cells to provide an initial voltage of 12 V allows a long battery life to be realised. Current drain is negligible on standby and 800 mA when the lock is operated. HP11 batteries are capable of supplying this current and to check that a reasonable life can be expec ted, the manufacturers data has been supplemented by an accelerated life test.

The test used a time switch to operate the circuit for two seconds every 15 minutes. Two seconds is typical of the time for which the peak current is drawn

Foreground shows the keyboard housing, lock release mechanism and a typical cylinder lock. The control unit is partially obscured by the keyboard case.

COMPONENTS

Resistors

R1,4,7 $27 \mathrm{k} \Omega$ (3 off)
$R 2,5 \quad 270 \mathrm{k} \Omega$ (2 off)
R3,6,9 $22 \mathrm{k} \Omega$ (2 off)
R8 $390 k \Omega$
R10
$2.2 \mathrm{k} \Omega$
R11,12
R13
$8.2 \mathrm{k} \Omega$ (2 ff)
R16,19 120Ω (2 off)
See
220Ω (2 off)
(2)

R18 $2.2 \Omega 3 W$ wire wound $\pm 5 \%$
All $\frac{1}{4} W$ carbon film $\pm 5 \%$ unless
otherwise stated

Capacitors

C1,2,3 $4.7 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum (3 off)

Semiconductors

D1-5 1N4148 silicon (5 off)
D6 1N4001 silicon
TR1,3 BC214L npn silicon (2 off)
TR2,4 BD131 npn silicon (2 off)
IC1,2 4011 B cmos quad 2 -input NAND gate

Miscellaneous

S1-12 12-way (or 16-way) keyboard with common connection (not matrix type)
B1-8 HP111.5V battery (8 off) Diecast or plastic case, $112 \times$ $62 \times 31 \mathrm{~mm}$ (for main circuit); plastic case $190 \times 110 \times 60 \mathrm{~mm}$ (for batteries); 0.1 in matrix stripboard, 19 strips by 41 holes; surface mounted electric lock release; battery holder for $4 \times$ HP11 (2 off); 14-pin i.c. holder; Veropins; $7 / 0.2 \mathrm{~mm}$ wire; 2 -core mains cable; mounting hardware.

Approx: cost
 Guidance only

E 10 oxciuding excluding lock $\&$ cases.

Fig. 4. Component layout, underside showing breaks in the copper and interwiring cables of the main lock control board. Pay special attention to the small links on the underside of the board.

Fig. 5 (Right). Wiring to the individual push-switches which make up a 12-way keyboard unit. The combination shown is 1740 with 6 as the low voltage key.

Fig. 6 (Left). Suggested mounting arrangement of the various units around the door and door frame.

* = GO TO UNUSED SWITCH TERMINALS ON CIRCUIT BOARD

The main lock circuit board mounted in the control unit.

Wiring to the push button combination switches and the exterior of the keyboard box showing "coding" of the push switches.

The two 4-way battery holders mounted in the battery housing box.

Front and rear views of the lock mechanism. The lock "solenoid" coil is shown on the right.

KEYBOARD

Keyboards are available commercially with 12 or 16 buttons and the single pole, not the matrix version, is required in this application. Alternatively, one can be made up from the wide selection of momentary action push button switches available from suppliers.

The circuit does not allow the use of repeated numbers so that the sequence 8593 , for example, can be used but 8595 cannot. Because one button is used for low battery voltage, a 12 -way keyboard will have $11 \times 10 \times 9 \times 8$ combinations and a 16 -way keyboard will have 15×14 $\times 13 \times 12$ combinations.

These are equal to 7920 and 32,760 , respectively. To anyone trying to operate the lock by pushing buttons at random, the chance of success at the first attempt is 1 in 20,736 (that is 1 in 12^{4}) for the 12 way keyboard, and 1 in 65,536 (1 in 16^{4}) for the 16 -way keyboard.

CIRCUIT BOARD

The main lock circuit was built on a piece of $0 \cdot 1$ in matrix stripboard, 19 strips by 41 holes and this is shown in Fig. 4. All wired connections to the keyboard must be made to Veropins as this facilitates the changing of the combination at a later date.

The usual care should be taken when inserting polarised components (tantalum capacitors and diodes) and to note the orientation of the semiconductors.

The layout requires a number of links, some of which are beneath the i.c. holders and also on the trackside of the board. These latter links are shown on the trackside view in Fig. 4.

The finished board is housed in a plastic or diecast box, $112 \times 62 \times 31 \mathrm{~mm}$.

The wiring of a keyboard made from individual switches (a 12 -way is shown) is given in Fig. 5. This is made from 12 momentary action key switches in a plastic or diecast box, $120 \times 65 \times 40 \mathrm{~mm}$. Alternatively, a proprietary keypad can be used and this will have one side of the switches already commoned up.

INSTALLATION

The actual positioning of the units around the door will be determined by the available space. It is probably more convenient to install the batteries in a separate box and one arrangement is shown in Fig. 6.

An alternative would be to fit the keyboard and circuit box on the door and feed the lock release with a cable to the hinge side of the door and around the door frame.

The HP11 batteries are housed in a plastic case, size $190 \times 110 \times 60 \mathrm{~mm}$, using two, 4-way battery holders, one screwed to the base and the other to the lid of the box. Connections from the batteries and to the lock release should be made with 2 -way mains cable.

SETTING THE COMBINATION

A wire from each switch, together with the common switch connection, is brought through the wall or door to the circuit box. The required sequence of digits is selected from the 12 or 16 switches of the keyboard and the wire from the first switch is wired to the pin marked S1. Similarly the second, third and fourth selected switches are wired to the pins marked S2, S3 and S4.

A fifth switch is selected to function as the low battery voltage switch and this is connected to the pin marked S 5 on the circuit board layout. All switches not used in the sequence are connected to the row of pins marked. There are sufficient pins shown for a 12 -way keyboard. If a 16-way keyboard is used four more pins can be added or two wires can be connected to a single pin. Finally the common lead is connected to the pin shown.

CONDUCTION is the flow of an electric current through a material; it can occur in solids, liquids and gases. Indeed, an electric current can even flow through a vacuum.

CURRENT FLOW

The flow of an electric current involves the movement of electric charge. The charges which move may be positive charges, negative charges or both types, depending on the material through which the current is flowing. The term "electric charge" signifies the amount of electricity present or the amount flowing per unit time.

In order to understand electric currents, we must look at matter on the atomic scale. We then find that the flow of an electric current consists of the flow of extremely minute charged particles. In a metal these charged particles are electrons, but in liquids and gases positive ions can also contribute to the flow of current. If all the charged particles in a material are held firmly in position, no current can flow.

Charged particles are known as ions. Electrons are a rather special form of charged particle and one does not usually apply the term ion to an electron. If a neutral atom containing a positive nucleus and a number of electrons loses one of these electrons, we have a positive ion. Similarly if a neutral atom gains an electron, it becomes a negative ion.

In order to cause a steady electric current to flow through a material an electric voltage or e.m.f. (electromotive force) must be applied across the material concerned. In general the greater this voltage, the greater the current which will flow through a given piece of the material.

The voltage may be regarded as the driving force which causes the current to flow through the material. It may be compared with the water pressure between two points in a water system which causes water to flow through the system.

OHM'S LAW

Ohm's Law states that the voltage across a conductor is directly proportional to the current passing through it.

That is:
$V \propto I$
In general we do not like proportional signs, so we change the proportional sign to an equals sign and introduce a constant, R_{i}

$$
V=I R
$$

This quantity R is the resistance of the material through which the current is flowing in ohms.

Most metals obey Ohm's Law; that is, the voltage across a given piece of the metal is proportional to the current flowing through it. However, there are many materials which do not obey this law. For example, in many semiconductor devices the current is not proportional to the voltage across the device.

Instead of saying that such materials do not obey Ohm's Law, one can say that the resistance of the material varies with the applied voltage.

CONVENTIONAL CURRENT

If one connects a battery to a small lamp, as in Fig. 2.1, current is said to flow from the positive terminal of the battery (which is known as the anode) through the bulb to the negative terminal (which is known as the cathode). In any external circuit which a battery feeds, current is said to flow from the positive to the negative electrode.

However, inside the battery the current must flow from the cathode to the anode in order to be able to continue flowing around the circuit. This matter concerning the direction of current flow can be quite confusing, so inexperienced readers should always be careful to give it an adequate amount of thought.

When the battery is being charged (Fig. 2.2), however, the current flows from the positive connection of the charger into the battery and through the battery to the cathode from where it returns to the charger. Thus it flows through the battery in the opposite direction to that shown in Fig. 2.1.

The battery charger in Fig. 2.2 must provide a voltage which exceeds the battery voltage by a small amount so that it can force the current through the battery against the,e.m.f. of the battery.

Fig. 2.1. The direction of the conventional current flow from a battery through a lamp bulb.

The direction of current flow to which we have been referring is known as the conventional current, since it is the direction of current flow accepted by most people. In actual fact the particles which carry the electric charge in any metallic wire are electrons. Electrons carry a negative charge and therefore flow from the negative to the positive electrode in the circuit external to the battery. It can be seen from Fig. 2.3 that the direction of the electron flow is opposite to that of the conventional current flow.

AN HISTORICAL MATTER

If the flow of electrons is from the negative to the positive electrode, why do we have a conventional current flowing in the opposite direction? This is essentially an historical matter.

When the terms "positive" and "negative" were given to the two types of electric charge and voltage a very long time ago, there was no particular reason why these terms should be allocated in one of the two possible ways and very little was known about electricity at the time. The electron had not been discovered.

It so happens that the anode of a battery was allocated the "positive" sign and the cathode the "negative" sign. When, much later, electrons were discovered, it followed that they had a negative charge on this convention. Hence these negatively charged particles flow towards a part of the circuit which is at a more positive potential, whilst current was assumed to flow from the positive through the external circuit to the negative connection of the battery.

Fig. 2.2. The current flow from a charger through a battery; note that the current flows in the opposite direction through the battery to the current in Fig. 2.1

From time to time authorities have suggested that we change the direction in which we consider a conventional current to flow so that it would become the same as the direction of the electron flow. However, if this change were made now, it would cause enormous confusion; for example, the arrow in all circuit diagrams containing diode or transistor symbols would have to be reversed in direction. When using a circuit one would have to think whether it had been published before or after the change.

In any case, positive ions flow in the same direction as our present conventional current. If we changed the conventional direction of current flow, we should meet the same problem with positive ion movement as we now have with electrons. One may note that the flow of current in the "metal" of antimatter, if it exists, is in the same direction as our conventional current, since charge carriers are positive positrons (the antiparticles of the electron).

Thus it appears we shall continue to regard conventional current as flowing from positive to negative electrodes in the external circuit of a battery.

MATERIALS

In some substances, such as metals, only a small voltage is required across a length of the material to produce a substantial current in it. Such materials are known as "good conductors".

In other materials, such as glass, the application of even a very high voltage across a thin layer of the material will produce only a very small current. Bad conductors are known as insulators.

Fig. 2.3 (above). In a metallic wire the current is carried by the minute electrons which move towards the positive side. However, the conventionally accepted direction of current flow is opposite to movement of the electrons.
Fig. 2.4 (below). A battery will produce (a) a high current in a metal bar (b) a moderate current in a bar of a semiconductor and (c) no detectable current in an insulating bar.

In addition to the good conductors and insulators, there is a third class of materials known as "semi-conductors" which pass only a small current when a moderate voltage is applied across a thin slice of the material. It is this class of nuaterials which makes modern electronics possible, since the flow of current through the material can be controlled by small input signals.

For completeness we will mention that a fourth class of materials can exist at very low temperatures which are known as "super-conductors". The resistance in a superconductor is almost zero, but the property of super-conduction disappears as the material is warmed only by a relatively small amount above the absolute zero of temperature.

METALLIC CONDUCTION

An atom consists of a central positively charged nucleus with electrons situated near to it. In a metal the inner electrons (those near to the nucleus) are fixed firmly in position, since the attraction between their negative charge and the positively charged nucleus prevents them from breaking away from the latter.

However, the outer electrons in a metal are free to move anywhere within that piece of metal. If a voltage is applied across the metal, electrons will flow towards the positive side and other electrons will enter the metal at the negative side. The battery which drives the electrons through the metal can be regarded as a pump which pumps electrons out of its cathode and receives a corresponding number back at its anode.

Thus it is the availability of huge numbers of electrons which are free to move in the metal which renders it a good conductor.

INSULATORS

In the case of insulators, the electrons are all fixed in positions by the electrical forces. The chemical bonds which hold electrons in position are electrical forces. A relatively large amount of energy is required to enable one of these electrons to break free and this amount of energy is not normally available for any one electron at room temperature. Thus there is nothing in an insulator which can carry an electric charge and any flow of current is extremely small.

In all solid materials the positively charged nuclei are held firmly in position by electrical forces and cannot contribute to conduction. It is only the movement of electrons which can make an appreciable contribution to the conductivity of any solid.

It is interesting to note that insulators will become conductors if their temperature is raised by an adequate amount. For example, if one applies a potential of about 200 V across a glass rod about 20 cm long by winding copper wires around each end and then heats the centre of the rod, a large current will pass when the temperature approaches red
heat and this current will be adequate to maintain the temperature of the rod.

The increase of conductivity is partly due to the heat energy enabling electrons in the glass to escape from the atoms to which they are normally fixed and partly due to the high temperature softening the glass so that ions can start to move as one approaches the liquid state.

SEMICONDUCTORS

In semiconductor materials there are a limited number of free electrons able to move in the material. This number is extremely small when compared with the number of free electrons in a metal. Thus the current which flows when a small voltage is applied across a semiconductor material is very much smaller than that which flows when a similar potential is
applied across a piece of metal of similar dimensions.

A semiconductor material is rather like an insulator, but the amount of energy required to release some of the electrons is far smaller. A few of the electrons acquire enough energy from the heat in the material for them to break away from the atoms to which they are normally attached and they can then contribute to conduction.

If the temperature of a semiconductor material is raised, the extra heat energy enables a much greater proportion of the electrons in the material to move. Thus the conductivity of a semiconductor material increases greatly with increasing temperature. The silicon semiconductor material used in most modern semiconductor devices cannot be used as a semiconductor above a temperature of
about 200 degrees C , since the number of mobile electrons is then too great for it to be regarded as a semiconductor material.

Modern semiconductor devices are made using extremely pure silicon to which certain elements have been added, but the early transistors were made using germanium. Silicon and germanium are elements, but certain compounds are also semiconductors; for example, cadmium sulphide is used in photoconductive cells, gallium phosphide in light emitting diodes and gallium arsenide in infra-red detectors and lasers.

Semiconductor products are often known as "solid-state devices" since the materials in them are solids, unlike the earlier radio valves in which electrons flow in an evacuated enclosure.
Next month we shall continue our discussion on conduction in various materials.

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised.

Payment is made for all circuits published in this feature.
Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

PROBELESS CONTINUITY TESTER

Continuity testers usually have two test probes. But in the present model, there is only one "touch point" instead of the probes. The device to be tested is held by one of its leads in one hand and the tester is held in the other. The other lead of the device is touched against the "touch point" (some metallic object about the size of a coin or even smaller. This is fixed on an insulated panel to isolate it from the tester case which is metallic.) The current flows from the metal body of the tester, through your body, the device and into the "touch point". This current is detected by the IC1 lighting up D1.

The "touch point" can be the head of a drawing pin. It should be insulated from the metal case, while mounting
J. Sreekumar, Cochin, India.

SIMPLE REACTION METER

THIS is based on the 4047 B multivibrator IC1 connected as an astable. S1 controls the frequency. When S1 is switched to $\mathrm{Cl}(0 \cdot 1 \mu \mathrm{~F})$ the frequency is 10 Hz . At $\mathrm{C} 2(0.01 \mu \mathrm{~F})$ the frequency is 100 Hz . Resistor R1 is 230 k (220 k and 10 k in series). This value is required in order to obtain fair accuracy. The pulse is fed into the 4510 B BCD counter. This feeds binary into the 4511 B which decodes it to drive a seven-segment common cathode display. The first 4510 B (IC2) feeds a pulse which has been divided by 10 into the second counter stage IC3, IC5, which operates in the same way. S 2 is push-to-break and resets both digits to 0 .

S3 is the latch which when in position 1 (connected to negative) allows the 4511 B to display the pulses being coun-
ted. When S 3 is positive (position 2) the 4511B displays the number which was being counted at the exact moment the switch was turned to positive.

How to time a person's speed: The subject undergoing test holds S 3 (which is in positon 1). Another person holds S2 pressed so the digits are at 0 . As soon as S2 is released the digits start counting the pulses, and when the person being timed sees the digits counting, he switches S3 to position 2, this latches the 4511 B so the time is displayed. To reset, S3 is returned to position 1 and $\mathbf{S} 2$ pressed. Timing can be accurate to $1 / 10$ of a second or $1 / 100$ of a second depending on what range S1 is set to.
Z. Karim, London E13.

PLANT cultivation

AUTOMATIC GREENHOUSE WATERING SYSTEM

SUITABLE FOR GREENHOUSE OR CONSERVATORY THIS SYSTEM ENSURES ADEQUATE WATERING OF PLANTS AND ENABLES THEM TO BE LEFT FOR LONG PERIODS WITHOUT PERSONAL ATTENTION. A BOON FOR HOLIDAY TIMES.

Microcomputer Interfacing Techniques PERIPHERAL CIRCUITS \& SOFTWARE

THIS IS THE FIRST OF A SERIES OF ARTICLES TO HELP THE ELECTRONICS EXPERIMENTER BUILD AND USE A RANGE OF SIMPLE PERIPHERAL UNITS WHICH CAN BE INTERFACED WITH 6502-BASED MICROCOMPUTERS. EACH PART WILL INCLUDE A CONSTRUCTIONAL PROJECT.

TRI BOOST

A tone correction unit for the guitarist to boost the treble, mid-range or bass sections of the audio spectrum. Footswitch operation.

DIGI ALARM

Using an electret microphone insert and a.f. amplifier, this will boost sound from any wristwatch alarm making it suitable for bedside use.

Computer Forecast

I've been doing some long overdue donkey work on computing. I wonder how many readers are in the same boat as I am? Too busy earning a living at work that doesn't involve computers to spend the time necessary to get to grips with computing.

With this in mind f'll make a public bet. I bet that within a couple of years there are word processors, and computer filing systems, on the market that requìre absolutely no knowledge of computing. You'll use them as easily as you use a typewriter. The software program will be in a dedicated chip inside the keyboard so that it's ready for action the moment you switch it on.

I'll also bet that the machines that make a killing on this market come from Japan. It will be the video boom all over again. While Western companies are still trying to sell equipment that requires the proud purchaser to make all manner of compromises, the Japanese will have quietly designed a range of computer equipment that is tailor-made for people who don't want to know anything about computers. Mark my words!

Medical Cure

Meanwhile, anyone who wants to use a computer as a working tool (for instance, I wanted to use one for indexing my files on audio and video topics) has got no choice. They have to learn a bit about computing or do without.

As a mixed blessing 1 ended up in hospital and convalescing for a couple of weeks. So 1 spent the time learning something about computers.

I'm not recommending that people who need to learn the rudiments get themselves into hospital, but if you are in the same unfortunate position I strongly suggest that you turn it to your advantage. Even if you aren't very interested in computing, it's better than watching someone else's choice of TV programme on the ward set.

To my surprise I found that modern hospitals now have mains power points by each bed. If you get on the right side of the ward nursing staff, they will let you bring in -a small computing system, like a Sinclair, and run it on the bedside table.

I was lucky in finding a couple of doctors on the ward round who were both computer buffs. They encouraged me to bring in a computer and the ward sister said: "All right, provided it doesn't make any noise".

Other hospitals, and other wards, may have a different policy. But all is not lost. Your answer here is to use a pocket computer, like the Sharp PC 1211 . The same model is also sold by Tandy.

The cost is well under $£ 100$ and although these units look like calculators, they are in fact full-blown computers, albeit with fairly limited memory. With a cassette interface you can write programs, dump them onto tape and load them again the next day.

The instruction book that comes with the Sharp is pretty clumsily written, and the Tandy version is much better. But with either, and some hard work, you can do some very useful ground work on basic computing and BASIC program language.

Bear this in mind if you have advance warning that you are likely to be laid up, in hospital or in bed, for a couple of weeks. It's a good opportunity to turn a stroke of bad luck to your advantage.

Hospital Radio

Here's another tip for anyone facing a stint in hospital. Unless you are very ill, you'll soon get bored. Even if you are learning computing, you'll want to listen to the
radio as well. But the radio systems in even modern hospitals leave a lot to be desired.

They use acoustic stethoscopes, like those in long-haul airlines, and you can only listen to a limited choice of channels piped through to your bed by the hospital distribution system. It's also likely to be in mono only.

The answer is to take along a personal stereo cassette player, or radio with headphones. However, da check that a tape player produces good sound while it is being shaken around, as well as while it is laying stationary on a shop counter.

Some of the cheaper models produce awful wow and flutter as soon as you use them on the move. It won't matter in hospital, but it will drive you crazy if you later try and use the player while you are walking or jogging.

By the way, if you are visiting someone in hospital and you can afford an expensive present, a personal cassette player or radio will probably be far more welcome than flowers or fruit.

Video In A Spin

The video games boom is levelling off. Atari in America has laid off a quarter of its workforce.

Personally, I'm not surprised, and I'm certainly not sorry, that the public is fast growing tired of blasting blips off a TV screen. The games manufacturers are trying to counter the loss of interest with ever more exotic cartridges.

One trend is to sell games that are "spinoffs" from feature films, like Tron, Star Wars and Raiders of the Lost Ark. Another trend is towards semi-sadistic games, like guiding chickens across a busy road. And in America, there are now pornographic games, from strip poker to all manner of unmentionables

All the signs are that all these are the desperate efforts of a dying industry. But there is growth in games programs for micros. Businessmen and househoiders are buying small computers because they think they ought to use them for accounting, calculation or word processing. As often as not the only programs they end up running are games programs.

Joystick

Accessory firms are also making money out of video games. For a little over f 10 each you can buy exotic joystick controls to replace those that come as standard with TV games.

Most hand controllers for home TV games use a separate joystick and firing button to steer and blast blips on the screen. Usually, only one shot is fired for each press of the button.

New add-on controls from American manufacturers Spectravision and DiscWasher do better than that. They come with a standard 9 -pin D-plug which fits straight into the control socket of an Atari game or Commodore computer. The firing button is on top of the joystick, under the player's thumb.

The makers reckon that this brings consistently higher scores. It also means that right and left handed users can for the first time compete on equal terms.

For really high scores you have to pay an extra f 8 and plug in a DiscWasher Constant Fire adaptor between the joystick plug and circuit. This contains an integrated circuit which is powered by spare d.c. from the games unit and generates a constant pulse fire cycle every time the thumb button is pressed. So on the screen there is a machine-gun effect.

Gadgets like these are selling well, partly because people just love to buy extra addon gadgets. But it's also partly because the hand controilers with TV games get very hard use, wear out and need replacing with new ones fairly frequently.

THE author is one who believes that caravanning can be made more pleasurable by the benefits of electronics. Fluorescent lights, electric water pumps, extractor fans and cooker hoods are convenient, while cassette recorders, television and, perhaps, a video game or personal computer, can be useful on wet days and in making a true home-fromhome.

POWER SUPPLY

The battery in the towing vehicle may be used to power any 12 V equipment but this ties up the car since it must be parked nearby. Some members of the family might wish to use it leaving the others behind. So there is much to be said in favour of a separate battery for the caravan. This is useful, even at home,
since the interior light may be used without having to couple up the car.

It will be noted that an auxiliary battery is only used for the interior equipment, the exterior lights on the caravan receive their power from the car system in the usual way.

CHARGER

Assuming the auxiliary battery to be fully charged before setting out on a trip, it could only be expected to give a short period of service without being recharged. The present system has been designed to keep the battery topped up with charge, at a rate of about 2 A on touring holidays. It is not designed for use on long-stay holidays at a fixed location. Since charging is effected by the generator in the car, the project is best
where stops are for a few days at a time, followed by periods of towing.

Readers wishing to keep a battery charged on fixed-site holidays would be advised to buy a commercial unit offering mains facilities and to choose a site with mains outlets.

The project described is for a negativeearth car. It is equally suitable for positive-earth systems and the simple modifications required are described later.

RESISTANCE

When driving along there will normally be about 14 V available from the car charging system. This will exist at the accessory pin on the drawbar socket. From here, current is directed through existing wiring to the caravan and used to charge the auxiliary battery.

Fig. 1. Complete circuit diagram of the Caravan Power Supply.

Above-The matrix board mounted relay in the car section. The two switches and 5 -way terminal block (not shown in this view) are mounted on the lid.

Left-The caravan mounted section of the Power Supply, showing the diode and fuse constructed on a piece of plain matrix board. Switches and terminal block are again assembled on the case lid.

Since the caravan battery is nominally 12 V , there will only be about 2 V available to drive current through the circuit. For charging at 2 A , using Ohm's law, we get:

$$
R=\frac{V}{I}=\frac{2}{2}=1 \text { ohm }
$$

From this it is clear that the resistance of all wiring must be kept low or a poor charge rate is to be expected. If a refrigerator is powered through the accessory cable, there is likely to be an excessive voltage drop due to the high current flowing. It is always much better to supply a refrigerator through a dedicated run of cable. This is difficult where the car is fitted with a single socket (the 12 N (Normal) system), because there is no spare connection.

On recent outfits (both cars and caravans manufactured since October 1979) there is a second socket fitted to the drawbar, the 12 S (Supplementary) socket. The 12 S socket has pin 6 reserved for refrigerators. When a refrigerator is fitted in an older outfit, it would still be wise to fit a 12 S socket. This is available from caravan accessory shops.

An alternative to fitting a 12 S socket would be to tape a supplementary wire to. the 7 -core cable and use a weatherproof connector for powering the refrigerator.

HOUSING

The Caravan Power Supply is built into two similar plastic boxes, each fitted with two switches. One part is located in the boot of the towing car and the other in a front locker of the caravan adjacent to the auxiliary battery. The circuit diagram of the entire system is shown in Fig. 1.

The car mounted case contains a relay, RLA1. This permits charging of the caravan battery only whilst the ignition of the car is on. This is necessary as there will be no chance of a well-charged car battery draining into a poorly-charged auxiliary battery.

The first switch, S1, switches off the system. This is useful to avoid mechanical wear on the relay during long non-towing periods. The second switch, S2, over-rides the relay for a reason to be explained later. When over-ridden, a warning light illuminates on the dashboard when the ignition is next switched on.

CARAVAN SECTION

The caravan section of the project carries a fuse, FS1, and diode D1. The diode directs current to the caravan system and, under no circumstances, the other way. An ordinary p - n junction diode would lead to a voltage drop of up to 1 V and a poor rate of charge. Instead, a Schottky barrier diode is used. This is more expensive than the conventional type but gives a more acceptable voltage drop of about 0.2 V .

Switch S4 on the caravan section selects either on charge (when driving along) or OFF CHARGE (when parked). When off charge the caravan equipment may be used. S3 is labelled car/aux. This selects the battery from which current is to be drawn. When the car is available there seems no point in draining the auxiliary battery.

To enable the car battery to power accessories it will be necessary to set S2 to oVER-RIDE, hence the purpose of this switch.

COMPONENT BOARD

The circuits for each panel are illustrated in Fig. 2 and Fig. 3. The diagrams should make the connections clear. Note that the specified relay is fitted with change-over contacts but only the "energise-to-make" (or normally open) contacts are used. The diode is secured by passing its negative connection through a hole in the panel and bending it. The polarity of the diode is important and the white band shows the cathode.

COMPONENTS

Semiconductors

, D1 VSK530 5A Schottky barrier rectifier

Strop

page 369

Miscellaneous

S1,2,3,4 d.p.d.t. toggle (4 off)
RLA miniature relay, 12 V , 130Ω coil with 30A rated contacts
LP1 $12 \mathrm{~V}, 2 \cdot 2 \mathrm{~W}$ panel lamp FS1 5A fuse
0.1 inch plain matrix board, 12 strips by 21 holes (2 off); plastic case, $76 \times 56 \times 35 \mathrm{~mm}$ (ABS case type MB1) (2 off); terminal block 6-way (2 off).

Fig. 2 (left). Diagram showing wiring details of the car section, consisting of a relay RLA1 and switches, S1 and S2.

Fig. 3 (above). Wiring details of switches, S3 and S4 in the caravan section, showing diode and fuse connections.

Fig. 4. Interwiring details for the car and caravan sections, note that the connections between the two sections are made via the 7 -pin (12 N or 12 S) socket. See Table 1.

Fig. 5. Graph showing the typical discharge rate for the caravan auxiliary battery, for various electrical appliances.

Solder 100 mm long wires to the components as indicated in the diagrams for connection to the terminal blocks. Drill the boxes for the switches and terminal strip fixings. Drill a small hole near each terminal strip to accept the wires from the circuit panels. Attach the switches and terminal blocks. Insert the circuit panels, pass the wires through the holes and wire up the terminal blocks.

For ease of ordering and uniformity of appearance, all four switches are specified as d.p.d.t. toggle switches. It would be possible, although hardly worthwhile, to make a small saving by using simpler switches for S1, S2 and S3. The switches must be of at least 3 A rating. Small brackets may be attached to the boxes to enable them to be fitted in position.

INTERWIRING

Refer to Fig. 4 for wiring details. Choose a convenient place in the rear for the car section. This should be close to the existing wiring to the 7 -pin drawbar socket. Remember that access is required to operate the switches.

Locate the wire which leads to the accessory pin on the drawbar socket. (See Table 1.) Break this wire and extend the free ends using "bullet" connectors. The end leading to the 7 -pin socket should be connected to TB1/3 and the other end to TB1/1. Two runs of light-duty auto-type wire should be made to TB1/2 and TB $1 / 4$. The former connects to a fuse which is live only when the ignition is switched on and the latter to one terminal of the warning light positioned on the dashboard of the car. The remaining connection, TB1/5 is earthed by being connected to the metal body of the car. The unused terminal of the warning light is also earthed.

The caravan section may now be wired up. The locker chosen for the box and auxiliary battery should be as close as possible to the inlet connections from the 7 -pin plug. These are often located in the locker itself or under the caravan. The wire leading to the accessories should be found, removed from its terminal, and connected to TB2/2.

The free terminal should be connected through a short length of wire to TB2/1. TB2/3 and TB2/4 are respectively the positive and negative connection for the auxiliary battery. TB2/4 is earthed by connecting it to the wire which leads to pin 3 on the 7 -pin plug. Proper connectors should be used for the auxiliary battery, do not rely on crocodile clips or other make-shift methods. (Note previous comment about refrigerators.) On no account may one be powered through the caravan section of the unit.

POSITIVE EARTH

For positive-earth cars, reverse the connections to the diode and the auxiliary battery.

TESTING

Note that all tests must be made with the caravan stationary as the law does

TABLE 1
7-Pin Socket Connections

Pin No 12 N (Normal)
1 Left indicator
2 Foglight (accessories if no 12 S fitted)
Earth
Right indicator

Right sidelights and number plate
Stop lights
Left-hand sidelights/ number plate

12S (Supplementary)
Reversing light and catch if fitted

Battery charging
Earth
Accessories
Warning lights

Refrigerator

Spare

Looking at sockets from the plug side, pins are numbered clockwise with No. 1 at the top. Pin 7 is in the centre.
not permit riding in a caravan. Satisfactory testing can only be carried out using a $0-5 \mathrm{~A}$ ammeter. First switch off all accessories and disconnect the wire from the positive terminal of the auxiliary battery. Connect the positive terminal of the meter to the free wire and the negative terminal to the battery terminal. Now set the switches in the following way:

Car Section:

S1 (ON-OFF switch)	ON
S2 (OVER-RIDE switch)	OFF

Caravan Section:

S3 (CAR/AUX switch)
TO EITHER POSITION

S4 (CHARGE switch)

 ONThe ammeter should give no reading. Switch the ignition on but do not start the engine yet. A click may be heard as the relay operates and a small reading may be observed on the ammeter. Run the engine at a fast idle. The ammeter should indicate a current depending on the state of charge of the auxiliary battery. It may be expected to be 2 A or so and higher for a very poorly charged battery.

Now check the circuit in the discharge mode. Remove the ammeter and reconnect the battery wire. Set the switches as follows and switch a caravan light on:

Car Section:

$$
\begin{array}{ll}
\text { S1 (ON-OFF switch) } & \text { ON } \\
\text { S2 (OVER-RIDE switch) } & \text { ON }
\end{array}
$$

Caravan Section:

S3 (CAR/AUX switch)

S4 (charge switch)
OFF
Assuming the auxiliary battery is charged, then the caravan light should be on. Now set the Car/aux switch to Car. The caravan light should stay on. This time it receives current from the car battery. Remember that the relay must be over-ridden, using $S 2$, before the car battery can supply current. Test by switching S2 OFF-the interior light should now go off. Test the warning light by setting the over-RIDE switch to ON with the ignition on.

AUXILIARY BATTERY

Any 12 V car battery will serve for the auxiliary supply. It is always wise to choose a battery of the same size and having the same fittings as the car battery. It may then be used as a spare battery in an emergency. Budget batteries are quite suitable and will have a long life since the auxiliary supply is only intended for light-duty use. Even a battery from a breaker's yard may be satisfactory but reject one if it shows signs of neglect or if it has been left in a discharged state for a long time.

During long periods of non-use the battery should be charged periodically to keep it in good condition. Alternatively it may be exchanged with the car battery from time to time. Always keep the terminals clean and tight and remember to charge it fully before setting out on holiday.

SWITCH FUNCTIONS

S1 To cancel the system for the winter months. When on, the relay operates each time the ignition is switched on whether towing or not. This is not harmful but causes unnecessary mechanical wear.
$\mathbf{S 2}$ To over-ride the relay. This is only needed when parked and the car battery is required to power caravan accessories.
S3 CAR/AUX-with S4 OFF set S3 to aux to operate equipment from the caravan supply. Set to CAR (with S2 ON) to operate equipment from car battery.
S4 Charge switch. Set to on when driving along to keep auxiliary battery charged. Set to OFF when parked. When S4 is on, S3 may be set in either position.

The warning light comes on if S2 is left at OVER-RIDE and the ignition is switched on. It would be bad practice to leave it this way.

AREFRIGERATOR is regarded as an es sential piece of caravanning equipment and can certainly simplify a holiday. Tent campers are also seeing the benefit of a well-stocked fridge. Unfortunately, refrigerators are prone to failure for the simplest reasons, a gas bottle running out or a poor electrical connection and this causes great inconvenience unless discovered in time.
This project is an alarm which will provide early warning of fridge failure. It gives a signal by means of either a lamp or a buzzer. The audible signal is useful when at a fixed site. The visible signal is more appropriate when towing.

In this case, the unit is placed in the front window of the caravan and the'lamp observed through a car rear-view mirror. It would be a simple matter to construct the project for buzzer-only warning if preferred.

PLASTIC BOX

The project appears as a small plastic box with two switches mounted on top. The first is simply an on-off switch. The second is used to select either lamp or buzzer warning. A terminal block is used
to connect the unit to the sensor on the fridge.

The box contains its own battery. One reason for this is because the most common cause of failure while towing is failure of the electrical supply. The alarm would also fail to work if it received current from the same source as the fridge.

Although the internal 9 V battery is small, excellent service may be expected even where the unit is switched on continuously for long periods. This is because the standby current requirement of the circuit is extremely low, about 15 microamps. When the alarm is actually operating the current rises to about 15 mA (buzzer) or 60 mA (lamp).

The Caravan Fridge Alarm was designed for use with absorption fridges of the type used in caravans and for camping. It may be used with certain compressor fridges of the household type but readers would need to make their own tests to find out if this is possible.

OPERATION

Previous designs have relied on the rise in temperature inside the fridge when it

Fig. 1. Main circuit diagram of the Caravan Fridge Alarm.

fails. Unfortunately, there may be difficulty inserting the sensor into the cabinet without disturbing the thermal insulation. This project, by contrast, works by sensing the fall in temperature of an easily-accessible part behind the fridge.

A small boiler is an essential component of an absorption fridge. This is maintained at a high temperature by means of either a gas flame or an electric heater. The sensor is applied close to this and if the electric or gas supply fails then the boiler will cool and the alarm trigger. An adjustment on the circuit panels allows this to happen at a suitable preset temperature.

Although nearly fool-proof, this method of detecting failure is not quite so. If the refrigerant itself were to fail then the boiler would stay hot but the fridge would not work. Circumstances like this are thought very unlikely.

CIRCUIT DESCRIPTION

The circuit for the Caravan Fridge Alarm is shown in Fig. 1. The sensor detecting the fall in temperature is a suitably protected bead thermistor, RTH1. VR1, R1, RTH1 and R2 form a potential divider across the battery. When the unit is switched on at $S 2$, a small current will flow continuously. This is too low to cause serious battery drain on account of the very high resistance involved.

When RTH 1 is hot and the refrigerator operating normally, its resistance will be comparatively low and the voltage at point A less than the 0.7 V needed to turn on TR1. When RTH 1 cools, its resistance rises and the voltage at point A will rise above 0.7 V so TR1, TR2 2 and TR3 will turn on.

These three transistors are connected in a very high gain arrangement called a "Darlington triple". The base current entering TR1 in order to operate the alarm at the end of the chain is exceptionally low. This leads to a very sharp response. The two-way switch, S1, allows current to flow to either the lamp, LP1, or the buzzer, WD1.

Switches S1 and S2 are specified as d.p.d.t. types since these are readily available. It would be possible to use a s.p.d.t. for S1 and a s.p.s.t. for S2 with a slight saving in cost.

VR1 is the adjustment whereby the alarm operates at a preset temperature within its range.

(Above). Prototype with the lid removed showing the internal layout and use of moulded guides to mount the circuit board.
(Left). The completed prototype Caravan Fridge Alarm showing the case mounted components.

COMPONENT BOARD

The circuit panel is constructed on a piece of 0.1 inch matrix stripboard 12 strips by 21 holes in size. Refer to Fig. 2 and solder all components into position. Any breaks in the stripboard should be made prior to inserting components. Check carefully that no soider bridges have been left between adjacent copper tracks. End by soldering connecting leads to Veropins as shown in Fig. 2.

COMPONENTS

Resistors

R1,2 $4.7 \mathrm{k} \Omega(2$ off)

Semiconductors

TR1,2,3 ZTX300 npn silicon (3 off)

Miscellaneous

S1,2 d.p.d.t. slide (2 off)
VR1 $4.7 \mathrm{M} \Omega$ horizontal skeleton preset
RTH1 GL. 16 glass bead thermistor
B1
WD1 6V buzzer
LP1 $6 \mathrm{~V}, 60 \mathrm{~mA}$ indicating lamp
0.1 inch matrix stripboard, 12 strips by 21 holes; plastic case, 76 $\times 56 \times 35 \mathrm{~mm}$ (ABS case type MB1); terminal block 2-way (2 off); metal spring clip.

TESTING

A test may now be made on the circuit panel before fitting it into its case. Set VR1 to about mid-position and connect the thermistor as shown in Fig. 2. Connect the 6 V bulb and then connect up the battery terminals. The lamp will probably light.

With the help of an assistant, warm RTH1 by holding a lighted match 50 mm below it for a few seconds. The lamp should go off and re-light when the thermistor cools. If this does not happen then some adjustment to VR1 is required. The final setting for VR1 can only be found at the end when the sensor is in position on the fridge.

CASE

Prepare the case by drilling holes for the switches, lampholder, the buzzer and terminal block fixings. A suitable layout is shown in the photograph. Drill a small hole next to the terminal block position for the wires which will pass through from the component panel. Drill a similar hole for the buzzer wires to pass through. Attach all remaining components and complete the wiring (Fig.3).

SENSOR

It is essential to use a thermistor of the same type as specified in the components list. Suggested positions for the sensor are shown in the photographs, these cover the

Approx. cost Guidance only $£ 9.00$

Fig. 3 (right). Diagram showing offboard wiring details. Note that TB1 and RTH1 are remotely mounted via a twin covered cable on a suitably positioned pipe (see text and photographs).

Fig. 4 (below). Diagram showing mounting details for the temperature sensor. Note that when soldering to a plated spring clip, the plating must be removed and the use of an additional flux may be required. To make good thermal contact ensure that the bead is located in the bend of the clip using epoxy resin.

Temperature sensor shown mounted on the Electrolux Fridge.

Temperature sensor shown mounted on the Camping Gaz Fridge.

Electrolux and Camping Gaz type refrigerators. Readers with other fridges should have no difficulty finding a suitable place.

The chosen position must feel very hot when the unit is at full operating temperature but warm enough to hold comfortably by hand about 15 minutes after switching off. On no account may the sensor be placed where it could disturb thermal insulation or interfere with the combustion of gas (inside the flue, for example).

The thermistor is very delicate and some protection is required. The method tried with the prototype is shown in Fig. 4. Alternatively, the thermistor may be secured to a small piece of thin sheet copper and this wired into position. Whatever method is used, it is essential that the sensor makes good thermal contact with the refrigerator.

Make sure that the thermistor leads cannot short circuit or the project will not work. The two thermistor leads are extended to reach TB1 which is attached to a convenient mounting point behind the fridge. Make certain that the wires are kept clear of all hot parts.

SETTING UP

Link TB1 at the refrigerator to TB2 at the unit using light-duty twin stranded wire. Run the fridge to operating tem-
perature. Switch the unit on at S2 and set S1 to Lamp. If the lamp comes on, adjust VR1 until it goes off. Allow the fridge to cool down. If the lamp comes on, readjust VR1 to keep it off. When the sensor feels just warm rather than hot, adjust VR1 so that the lamp is just on.

Check that the system works with the buzzer as well as the lamp. If the alarm operates continuously, suspect a break in the wire between the sensor and the unit. Note that it is normal for the warning, whether by lamp or buzzer, to begin gradually rather than suddenly.

When in position, the battery could cause short circuits to the copper strips of the circuit panel. To prevent this, place a piece of cardboard between the battery and panel. Use a little foam plastic to prevent the battery from moving around inside the case.

It is most important to allow for as large a drop in temperature as convenient to trigger the alarm. If this precaution is not observed the standby current consumption of the circuit will be higher than need be and the life of the battery reduced.

If a multimeter is available then this current may be checked with the sensor at full operating temperature. It should be about 15-20 microamps. When doing this, it is essential not to allow the alarm to operate since the increased current would damage the meter.

SHop TALK
 BY DAVE BARRINGTON

Catalogues

We have received just two catalogues this month. The first is the lavishly printed 48 -page "Instruments for Testing and Design" from Global Specialties Corporation.

This catalogue covers digital logic probes and meters to function generators and a new oscilloscope multiplexer. The new 8 -channel scope multiplexer, type 8001, extends the versatility of any single or dual channel scope by permitting viewing and comparison of eight channe! analog or digital display.

For the constructor, there is a range of solderless breadboarding systems.

Copies of the "Instruments for Testing and Design" catalogue may be obtained from: Global Specialties Corporation, Dept EE, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

For the Sinclair ZX81 and Spectrum home computer users, Redditch Electronics have just re-issued their accessories pamphlet.

This 16 -page pamphlet lists such items as a add-on keyboard, input/output port boards and a music board. Also listed are a range of multi-pin connectors and a small range of books and tapes covering programming and using ZX81 and Spectrum machines.

Copies of the Redditch ZX81 and Spectrum Accessories pamphlet may be obtained from: Redditch Electronics, Dept EE, 21 Ferney Hill Avenue, Redditch, Worcs. B97 4RU.

Self-Service Multimeter

The latest addition to the range of multimeters and component test equipment stocked by Alcon Instruments is the Miselco T50 Super Multimeter. It has an input sensitivity of $50 \mathrm{k} \Omega / \mathrm{V}$, large mirrored scale, switched ranges (39 in all) to measure resistance, d.c. and a.c. voltages and current, dB range and is fully protected against overload.

The p.c.b. and meter movement are factory calibrated such that any board will match any movement and maintain calibration. In this way the user is relieved of the worries of any repair or re-calibration problems.

The overall accuracy of the T50 Super is 2.5 per cent on all d.c. ranges and 3 per cent on a.c. The $16 \mu \mathrm{~A} 100$ degree movement incorporates an anti-parallax mirror.

The T50 SUPER Multimeter, housed in a two-tone brown plastics case, costs $£ 52.35$ plus VAT, without batteries. Included with the meter are a set of test probes/leads, instructions, circuit diagram and spare fuse.

Further information of the complete range of test meters may be obtained from: Alcon Instruments Ltd., Dept EE, 19 Mulberry Walk, London SW3 6 DZ .

CONSTRUCTIONAL PROJECTS

Caravan Powar Supply \& Fridge Alarm
The heavy duty relay used in the Caravan Power Supply should be rated at least 3A contacts. The type used in the author's model was a 12 V d.c. 30 A automobile type. This is stocked by Maplin and iisted as: YX99H (12V 30A Relay).

The 5A Schottky barrier diode D1, type VSK 530, should be ordered through a RS Components supplier. This carries the RS code 262466.

The thermistor GL16 used in the Caravan Fridge Alarm is sometimes listed as G16 and THB 11 types. These devices have a resistance of $1 \mathrm{M} \Omega$ at $20^{\circ} \mathrm{C}$.

The wiring for both models should be rated at approximately 5 A .

Combination Lock

The only source for the lock release mechanism for the Combination Lock we have been able to locate is: Altype Security Systems, Dept EE, 310 High Street, Watford, Herts. This is known as type 203 and costs $£ 11$ (including postage) plus VAT. If any readers know of a similar device we would be pleased to hear from them.

We do not envisage any component purchasing problems for the Transistor Tester or the Envelope Shaper for Bass Guitar.

Eprom Programmer
The Eprom Programmer p.c.b. has been designed to accept the P0609 (and C0609) transformer from Ambit. The top board (8306-03) has been laid-out to accept the Erg D16A4-2 d.i.I. switches; these are stocked by RS Components ($337-510$). The z.i.f. socket is manufactured by Wimslow and is also stocked by RS (402-232). RS Components only supply to account customers and not to the general public. You will have to order through your local electrical/electronic dealer. Verospeed supply the "webbed" ribbon cable (226-22549H)

EE PRINTED CIRCUIT BOARD SERVICE

The printed circuit boards (drilled and roller tinned) for the Eprom Programmer may be obtained from Everyday Electronics: 8306-01 (TRS80 version) $£ 6.95$; 8306-02 (Genie version) E6.95; 8306-03 E1.50. All prices include VAT and postage and packing. Remittances should be sent to Everyday Electronics PCB Service, Everyday Electronics, Editorial Offices, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques should be crossed and made payable to IPC Magazines Ltd.

Printed Circuit Master Copies

For those constructors who wish to make their own Eprom Programmer p.c.b.s, photostat copies of the printed circuit masters may be obtained by sending a stamped SAE (A4 size) to the address above.

EVERYDAY ELECTRONICS SOFTWARE SERVICE

The EE Software Service provides an easy and reliable means of program entry for our computer-based projects. All programs have been tested by us and consist of two good quality copies of the working program on cassette tape. Certain program listings are also available.

All prices include VAT, postage and packing. Remittances should be sent to Everyday Electronics Software Service, Editorial Offices, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques should be crossed and made payable to IPC Magazines Ltd.

PROJECT TITLE	$\begin{aligned} & \text { CASSETTE } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { CASSETTE } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { LISTING } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { LISTING } \\ & \text { COST } \end{aligned}$
ZX81 SPEED COMPUTING SYSTEM (Feb 83)	T001	£2.95	L001	£2.95
REAL-TIME CLOCK (Apple) (May 83)	T002	£2.95	L002	£2.95
REAL-TIME CLOCK (BBC) (May 83)	T003	£2.95	L003	£2.95
EPROM PROGRAMMER (TRS-80 \& GENIE) (June 83)*	T004	£3.95	N/A	-

[^0]THE TEST GEAR 83 SERIES CONSISTS OF:

DUAL POWER SUPPLY PULSE GENERATOR

T:he advent of solderless breadboard systems has made it possible to re-use electronic components many times. The circuit can be breadboarded and the final version is built with the same components.

It is inevitable, however, that some transistors may be destroyed by incorrect connections or a design error. So some form of quickly testing transistors (and diodes) is desirable to ensure that the final circuit functions as the prototype did.

SPECIFICATIONS

A second reason for making a Transistor Tester a useful piece of laboratory equipment is to check the specification of a particular device against that given in the transistor data book.

The current gain (h_{fe}) of a transistor is usually given as a typical value or specified as being between an upper and a lower limit. As this parameter is one of the most important design considerations, an accurate reading is desirable.

Bargain packs are a useful source of cheap transistors and the Transistor Tester will sort them into good/bad, $n p n / p n p$ and identify the leads of unknown types.

TRANSISTOR PRINCIPLES

Transistors have two major roles in electronic circuits; as switches (digital applications) and amplifiers (analogue electronics). In both of these spheres, the transistor is a current controlled and current controlling device. The voltages in
a circuit are determined by resistors using the Ohms law relationship.

The most frequently used connection for a transistor is the common emitter configuration, and it is this method of connection that is used by the Transistor Tester. (See Fig. 1a and 1b.)

The collector current (I_{C}) of the transistor is given by :

$$
I_{\mathrm{C}}=h_{\mathrm{FE}} \times I_{\mathrm{B}}
$$

where I_{B} is the base current and h_{FE} is the large signal (or static) current gain. In order to distinguish between the large signal current gain and the small signal (or dynamic) current gain, the former uses capital letters for the "FE" suffix on the notation.

The small signal current gain, h_{fe} (note the use of lower-case letters for "fe"), is given by:

$$
\begin{aligned}
& h_{\mathrm{fe}}=\frac{\text { change in collector current }}{\text { change in base current }} \\
& h_{\mathrm{fe}}=\frac{\delta i_{\mathrm{c}}}{\delta i_{\mathrm{b}}}(\delta \text { meaning "change in") }
\end{aligned}
$$

As this is a ratio of two currents, it has no units. It is sometimes known as the forward current transfer ratio. Note also the use of lower-case letters indicating that i_{c} and i_{b} are small signal values.

CHARACTERISTIC CURVES

The transistor characteristics can be plotted graphically as shown in Fig. 2. If the base current (I_{B}) is fixed and the collector-emitter voltage (V_{CE}) is varied, the collector current $\left(I_{\mathrm{C}}\right)$ can be measured

SPECIFICATIONS

Functions: measures the current gain (h_{FE}) of $n p n$ and pnp transistors. Tests diodes. Determines leakage current.
Gain ranges:
$0-100$
$0-500$
0-500
0-1000
Conditions: $V_{C E}=3.5 \mathrm{~V}$

$$
I_{b}=100 \mu A, 20 \mu A
$$ $10 \mu \mathrm{~A}$ réspectively

Leakage: $\quad 0-100 \mu \mathrm{~A}$
Power: $\quad 9 \vee$ PP6 battery
and plotted as in the diagram. This is done for a number of values of I_{B} to produce a series of curves.

It can be seen that the change in I_{C} compared with the change in I_{B} varies slightly as $V_{\text {CE }}$ increases. Therefore the gain is not constant throughout and this implies that h_{FE} is not equal to h_{fe} (as h_{FE} is constant).

However, for most purposes, this difference is too small to be of any consequence and in most applications they can be assumed to be equal. The Transistor Tester measures gain by fixing the base current and measuring the collector current.

CIRCUIT DESCRIPTION

Unlike all other units in the Test Gear 83 series, the Transistor Tester is battery powered since the current consumption is low and its use intermittent.

The Test Gear 83 Transistor Tester unit.

The actual current consumption is about 5 mA with no transistor connected and rises to around 15 mA dependent upon the gain of the transistor under test.

The use of an l.e.d. continually on to indicate power would be wasteful as the current consumption of the l.e.d. would be greater than that of the Tester!

Therefore, a small relaxation oscillator built around TR1 and TR2 pulses the l.e.d. about 90 times a minute thus reducing the average consumption to 0.9 mA . This was found to be particularly effec tive in indicating that the unit was on.

The constructor may replace the battery with a mains power supply unit in which case the flasher circuit would not be required. For this modification, it is recommended that R9 is increased to 820 ohms and TR 1, TR2, R6, R 7, R8 and C3 are omitted. The collector and emitter pads of TR2 will need to be linked if the original p.c.b. layout is retained.

REGULATOR

The voltage regulator, IC 2 , provides a current limited supply of 5 V . The low

Fig. 3. The complete circuit diagram for the Test Gear 83 Transistor Tester.

voltage will prevent damage to the transistor under test if the polarity switch ($\mathrm{NPN} / \mathrm{PNP}$) is incorrectly set. The current being limited to 100 mA will protect the meter in the event of a short circuited transistor being placed in the test socket.

The capacitors C1 and C2 ensure the high frequency stability of the supply.

The polarity of the transistor under test is set by S 3 . This simply reverses the polarity of the power supply. In order to keep this switching arrangement uncomplicated, twa bridge rectifiers are employed. The first, D1 to D4, ensures that the constant current generator (IC1) is always connected to the correct polarity power supply.

The second bridge, D5, D7, D8 and D9, avoids the necessity of having to switch the polarity of the meter, ME1.

Resistors R1, R2 and R3 are used to set the base current (I_{B}) of the transistor under test. R4 is a meter shunt resistor to set the meter sensitivity to 10 mA fullscale deflection.

For the purposes of measuring leakage current, the base current is removed and the shunt resistor (R4) open circuited to return the meter sensitivity to $100 \mu \mathrm{~A}$ f.s.d. This is done by depressing switch S2.

Note that most silicon transistors, including power types, should register very little leakage current and anything over $10 \mu \mathrm{~A}$ should be regarded with suspicion. Germanium transistors will have a slightly higher leakage current.

CIRCUIT OPTIONS

Depending on the degree of accuracy the constructor requires, there are two options for the values of resistors R1 to R4. Should the high accuracy be chosen, then a fixed value resistor is used in series with a preset (in parallel with a preset in the case of R4). The values are shown in Table 1.

Provision is made on the p.c.b. layout for the presets. If however, an accuracy of around 10 per cent (worst case) is sufficient, then the fixed value resistors also listed in Table 1 can be used without the presets. Three links will be required on the p.c.b.

If the high accuracy version is selected, then a digital multimeter with a $200 \mu \mathrm{~A}$ range will be needed to calibrate the base current.

Resistors
(High accuracy version)

Semiconductors
D1-9 1 N4148 silicon (9 off)
TIL2200.2in redl.e.d.
BC108E npn silicon
IC1 LM334Z adjustable current source
IC2 $78 \mathrm{LO} 5 \mathrm{~V}, 100 \mathrm{~mA}$ regulator

Miscellaneous

CIRCUIT BOARD

A single p.c.b. is used, and it is designed to be attached to the terminals on the back of the panel meter. If a different meter is used, the spacing of the mounting holes may need to be modified. It is wise to check this before etching the p.c.b.

Alternatively, the p.c.b. assembly can be mounted on the base of the Verocase.

The layout and full-size track artwork are given in Fig. 4. Solder all components to the board in the normal order, taking all usual precautions with the polarity of the diodes and the orientation of the semiconductors. Veropins should always be used for the flying leads.

If the preset resistors are not used, the wire links drawn as dotted lines on Fig. 4 must be fitted adjacent to R1, R2 and R3. Note that R4 does not require a link to be fitted in place of the preset as this is in parallel with R4.

FRONT PANEL

The front panel is drilled to suit the controls and meter as shown in Fig. 5. The large hole for the meter can be made by drilling a series of small holes and cutting out the connecting pieces. The rough edge is then finished with a halfround file.

The dimensions of this cut-out and all mounting holes should ideally be checked against the actual components to be used as some variation does occur between different manufacturers.

The transistor socket, SK 1 (T05 pin circle), is first mounted onto a piece of plastic or p.c.b. material and then fixed to the front panel from the reverse side with two screws.

Constructors may wish to fit other types of transistor sockets but in practice, the T05 type is suitable for most popular transistors.

The four 4 mm sockets are for use in testing diodes and larger transistors via flying leads.

The wiring is carried out with a flexible $7 / 0.2 \mathrm{~mm}$ equipment wire and the recommended length for each is about 150 mm .

Fig. 4. Full-size p.c.b. artwork and component layout. Note that the three wire links shown as dotted lines below VR1, VR2 and VR3 are only required if the low accuracy version is built and the presets are omitted. No link is required in place of VR4. The board is mounted directly onto the meter terminals and it is advisable to check the pitch of these terminals before etching and drilling.

Fig. 5. Front panel drilling details. Note that the meter cut-out may vary for different panel meters.

Fig. 6. Interwiring diagram with the p.c.b. shown from the trackside and folded down. All connections to the board are made on the component side.

The wiring diagram in Fig. 6 shows all interconnections but note that the p.c.b. is shown removed from the meter terminals for clarity.

Finally, the case is assembled, the front panel controls are labelled and the PP6 battery is secured to the base with a double-sided adhesive tab.

CALIBRATION

Before calibrating the instrument, it is advisable to run a quick test to check the basic circuit. Centre all presets (if fitted), connect the 9 V battery and switch on. The l.e.d. should flash about 90 times a minute (three times in two seconds).

The voltage across Cl should be 5 V . If so, a transistor of known polarity can be inserted into the test socket and the polarity switch set to the correct position. The meter should register a reading indicating that the circuit is functioning.

To set the base current, a digital microammeter is connected between the base and emitter sockets on the Transistor Tester, the positive lead to the base socket with the polarity switch set to NPN.

The range switch is set to the first position, labelled 100 on the front panel, and the preset resistor in series with R1

Front view of the prototype model showing the control labelling. Note that the meter full-scale deflection reading depends upon the position of the Range switch.
(marked VR1 on Fig. 4) is adjusted to read $100 \mu \mathrm{~A}$ on the microammeter.

The range switch is then set to the second position, labelled 500 on the front panel, and the preset in series with R2 (marked VR2 on Fig. 4) is adjusted to read $20 \mu \mathrm{~A}$ on the microammeter.

With the range switch in the third position, labelled 1000 on the front panel, the preset in series with R3 (marked VR3 on Fig. 4) is adjusted to read $10 \mu \mathrm{~A}$ on the microammeter.

The fourth and final calibration is to set the full-scale deflection of the panel meter, ME1, to 10 mA by adjusting the shunt resistor, R4. A one kilohm potentiometer is required and this is connected in series with a digital milliammeter between the collector and emitter sockets of the Tester. The positive probe to the collector with the polarity switch in the NPN position.

Adjust the one kilohm potentiometer for a reading of 10 mA on the milliammeter and then adjust the preset in

The front panel assembly viewed from the rear with the top and back panel removed. The battery is secured with double-sided adhesive foam tabs.
parallel with R4 (marked VR4 on Fig. 4) until the panel meter, ME1, reads fullscale deflection. Calibration is complete.

Using the Transistor Tester to measure the gain of a transistor is fairly straightforward. The device is inserted into the test socket and the polarity switch set to the correct setting (if known).

The meter will give a reading of static gain (h_{FE}). According to the position of the range switch, S 2 , the meter reading is multiplied by 1 (for the 100 setting), 5 (for 500) and 10 (for 1000).

The leakage current of a transistor is measured by depressing the leakage switch, S1, and the meter will give a reading in microamps ($\mu \mathrm{A}$).

Diodes are connected as indicated on the front panel, that is anode (a) to the diode socket and cathode (k) to the emitter socket, and a meter reading should register with the polarity switch in the NPN (FOWARD) position. The reading is unimportant, it just shows that a current is flowing.

When the polarity switch is changed to the PNP (reverse) position, all current flow should cease, indicated by no move-

ment of the panel meter. Any other result indicates a faulty diode.

To ascertain the reverse biased leakage current of a diode, the leakage switch, S 1 . is depressed and the meter will give a reading in microamps $(\mu \mathrm{A})$.

PROGRAM CONDITIONER

-for reliable cassette storage and cassette to cassette copying

ROCKTONE

--for setting up pop group gear

PERCUSSION MICROSYNTH

-an inexpensive versatile dual drum synthesiser

FUSION

-learn about a $£ 500$ million giant in Oxfordshire

Plus all the regulars; including Ingenuity Unlimited, Microfile, Semiconductor Circuits and Microprompt.

It's ALL in
PRACTICAL ELECTRONICS
June issue on sale NOW!

B00K REVIEWS

TOWERS' INTERNATIONAL DIGITALI.C. SELECTOR

Author
T. D. Towers, MBE, MA, BSc, C.Eng, MIERE
Price $\quad £ 9.95$ limp edition
Size $\quad 248 \times 174 \mathrm{~mm} .256$ pages
Publisher W. Foulsham \& Co Ltd ISBN 0-572-01179-2

FOR THOSE readers unfamiliar with Towers' previous semiconductor guides, including Transistors, Linear i.c.s and Microprocessors, they are comprehensive and painstakingly researched data tables listing all currently available type numbers. The Digital Integrated Circuit Selector is no different and gives electrical and mechanical data on over 13,000 American, European, British and Japanese devices.

The data is listed under type numbers in alphanumerical order and gives details on logic family (смоs, ттL and so on), application, description, packaging, some important specifications and a suitable substitute (should one exist). Perhaps the most useful information for day-to-day use is the pin-out diagrams for the dual-in-line versions of all the digitat i.c.s listed.

As digital electronics is becoming increasingly important with the advent of the cheap microprocessor, a guide of this nature is invaluable to the hobbyist, teacher, engineer and buyer alike and in many cases will invalidate the need for numerous manufacturers' data books.
G.P.H.

COUNTER INTELIGENCE

BY PAUL YOUNG

Changing Times

A short while ago, I read about an American, he was driving over the Hudson when he noticed that his watch had stopped. He opened his window, tossed it into the river and took a new one out of the glove pocket. In the USA electronic watches can be purchased for about three dollars, at that price it is not even worthwhile changing the battery!

I recently made a purchase which makes me think we may have already reached that stage in this country. My wife's watch stopped and our local horologist having closed down, I decided to buy her a digital one to tide her over. I bought her a dainty wristwatch, quartz controlled with the time and date functions. It was elegant to look at had a stainless steel bracelet and a twelve mońth's guarantee. All fairly routine, bu't the price, believe it or not was $£ 2.95$ including VAT!

This set me thinking. If you take off the VAT and assume that it must have passed through at least one pair of hands before it reaches the shop, what does the actual manufacturer receive for it, and equally important, what is the worker who assembles it paid?

The Government of the day is always urging manufacturers to be more competitive, but how do they compete with that? Robots? Yes, possibly, but there is one big drawback to replacing your workforce with Robots. Robots don't have wage packets, and taken to its ultimate conclusion, the manufacturer finishes up with no customers.

Fascinating Gift

I believe it was Einstein who came up with the theory, "That when sitting on a red hot stove, a few seconds would seem like half an hour, and conversely, when sitting next to a beautiful girl, half an hour would seem like a few seconds". Naturally whimsical Young wants to know how the time would compare between sitting next to a beautiful stove and sitting on a hot girl?
While pondering on these profound theories, I came up with one which is equally true, and which in the fullness of time you will be able to test out for yourself. It is this, as you get older, you will find that time passes more quickly. When you reach the status of senior citizen you will find it is whizzing by.

All of which brings me to a case in point. Earlier in the year I had been sent an amusing Christmas story by my brother, which 1 fully intended to pass on to you. Before I could sort it out and type it, we have arrived at the June issue. Here is his story, later than planned but blame it on Anno Domini (see above).
"Are children starting earlier these days? 1 am old enough to remember when little girls (that is under 10 years old) asked Father Christmas for things like dolls and prams. Apparently all that is changing. My boss's daughter just five years old and already getting to grips with computer programming decided she would like an electronic construction kit for Christmas.

We found a kit comprising of 150 different projects with a well produced 200page construction manual. At $£ 12$ it was excellent value, but the real point was this.

On getting the kit home, my boss who is a top flight electronic and computer boffin, decided to try out some of the experiments (after the children were packed off to bed). He admitted next day, that he found making up the circuits with discrete components, so fascinating that he was up 'till the small hours experimenting, I gather that the kit has proved so successful it has actually stopped young Hannah from chattering for hours on end. Almost a miracle I understand.

Well I don't know if any moral can be drawn, but at least it is a useful tip to Mums and Dads as to what to buy their childrenof either sex.

Do you think that designing and understanding electronic circuits is beyond you?

The summer edition of Electronics Digest, Gateway To Circuit Design, provides a step-by-step introduction for the newcomer to the art of circuit design. Firstly, you'll be introduced to the commoner electronic components - but not in a passive way. Electronics is a practical subject, so Gateway To Circuit Design will enable you to build simple circuits for yourself, and take measurements on them (along the way learning how to use a multimeter). Once these introductions are over, Gateway To Circuit Design shows you what goes into the design of a wide range of electronic equipment - for audio, computing and electronic music, for instance.

Gateway To Electronics is an occasional popular series in Electronics Digest, published by Argus Specialist Publications. Previous issues in the series have concentrated on projects; now we'd like you to design your own!

At all good newsagents now or available by post from Electronics Digest, 513 London Road, Thornton Heath, Surrey.

We'd like
 to show you that you're wrong

£ 1.85

The 2001 sweeps the board at only £110*

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TL square
 wave output. Plus high- and low-level main outputs. An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal A pushbutton activates the DC Offset control. which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard * price excluding P\&P and 15\% VAT Goods despatched within 48 hours.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (U.K.) Limited, Dept. 4HH Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AO Tel: Saffron Walden (0799) 21682 Telex: 817477

Global Specialities Corporation (UK) Limited Dept 4HH Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ

Model 2001 Sweepable Function Generator	£129.95 (inc. P\&P and 15% VAT)	Onty Reqd.		
Name				
I enclose PO/Cheque for $£$				For FREE catalogue
:---:				
nck box				

1 enclose PO/Cheque for $£$ exp date
Barclaycard/Access/American Express No

ENVELOPE SHAPER BASS GUITAR

BY A. NIEMIRO

THe Envelope Shaper is not the most common of guitar effect pedals, but nonetheless produces a distinctive and useful sound. Operating by varying the tone of the instrument in sympathy with the signal level, the shaper produces a sound reminiscent of a "Wah-Wah" unit, but does away with the need for a mechanical pedal, so leaving the musician free to concentrate on playing his instrument.

The prototype was designed specifically for use with electric bass guitar which, when used with the shaper, gives a colourful and prominent sound especially appropriate in Soul and Funk music. However, the addition of a range switch increases the versatility considerably and allows the unit to be used equally well with lead and rhythm guitar and electric piano.

The unit is built into a small case and foot-operated so that the musician may switch the effect in and out whilst playing.

FILTER DESIGN

The actual sound effect is obtained by feeding the instrument signal through a bandpass or resonant filter. Such filters give a frequency response as shown in Fig. 1.

It was decided to achieve this response by employing a multiple feedback circuit;
the basic form of which is shown in Fig. 2. If $\boldsymbol{R}_{\mathrm{IN}}$ is much greater than $\boldsymbol{R}_{\mathrm{A}}$ then the centre or resonant frequency of the filter is given by:

$$
f_{0}=\frac{1}{2 \pi \times C \times \sqrt{R_{\mathrm{A}} \times R_{\mathrm{B}}}}
$$

HOW IT WORKS

The input signal from an electric musical instrument is split up and fed through two separate paths in the Envelope Shaper.

The control signal passes through an active rectifier which converts the a.c. input signal (A) into a chopped d.c. signal as shown in B. This is then smoothed and filtered by a resistor-capacitor network which removes the high-frequency components to give a d.c. voltage that is the envelope or "outline" of the original signal (C). This voltage is then amplified to a suitable level to drive an l.e.d. The brightness of this I.e.d. is, therefore, dependent only upon the amplitude of the input signal.

The input signal also passes through a band-pass filter. This section only allows through a narrow band of frequencies close to the filter's resonant frequency which is determined by the resistance of the photocell. Since the photocell is placed opposite the l.e.d. the resonant peak of the filter varies in sympathy with the changing signal level (D).

The completed sound effects pedal showing the layout of the front panel.

Fig. 1. Frequency response of a resonant filter.

Fig. 2 (below). Diagram showing basic multiple feedback circuit.

Therefore, by varying R_{A}, the centre frequency can be swept across the audio spectrum. In the final design, R_{A} is replaced by a light dependent resistor illuminated by an l.e.d. placed next to it.

Since \int_{0} is also inversely proportional to C we can alter the frequency range swept by allowing different values of capacitance to be switched in. This not only changes the frequency but also affects the sharpness or Q (magnification factor) of the peak, thus allowing a greater variety of sounds to be produced.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Envelope Shaper is given in Fig. 3. From the d.c. blocking capacitor C 1 , the signal is split and fed to IC1a and IC2 via R1 and R4, respectively.

ICla gives some gain and also performs a half-wave rectification. Placing the rectifying elements D1 and D2, in the feedback path of IC 1 a allows rectification of very small signals well below the diode's normal forward voltage of 600 mV .

Capacitor C2 is charged via R3 to the instantaneous peak negative voltage at the input and this is amplified by IClb. VRI controls the unit's sensitivity by varying the gain of IC 1 b .

The l.e.d. D3 is driven from the output of IC 1 b via current-limiting resistor R 8 .

It is seen that the brightness of this l.e.d. varies with the envelope of the input.

The input signal is also taken, by R4, to IC2. The band-pass filter is built around IC2 which is wired in a multiple feedback configuration. Light dependent resistor PCCl determines the filter's resonant frequency and is arranged so that it is only illuminated by the light from D3.

Switch $S 2$ selects the value of capacitance in the feedback path of IC2 and thus alters the frequency range swept.

Fig. 3. Complete circuit diagram of the

ENVELOPE SHAPER
for BASS GUTTAR

Resistors	
R1	$47 \mathrm{k} \Omega$
R2	$120 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$
R4	$330 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$15 \mathrm{k} \Omega$
R7	680Ω
R8	330Ω
R9	$1 \mathrm{M} \Omega$
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$	

Capacitors

C1 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polyester
C2 $1 \mu \mathrm{~F}$ polyester
C3,7 1nF polycarbonate (2 off)
C4.8 $\quad 2 \cdot 2 \mathrm{nF}$ polycarbonate (2 off)
C5.9 $\quad 4 \cdot 7 \mathrm{nF}$ polycarbonate (2 off)
C6,10 $8 \cdot 2 \mathrm{nF}$ polycarbonate (2 off)

Semiconductors

D1.2	1N4148 silicon (2 off)
D3	T1L2200.2in red I.e.d.
IC1	MC1458 dual op-amp
IC2	741 op-amp

Miscellaneous

VR1 $100 \mathrm{k} \Omega$ lin carbon potentiometer
PCC1 ORP12 light dependent resistor
S1 d.p.d.t. foot switch
S2 2-pole, 6-way rotary
S3 d.p.d.t. miniature slide
SK 1,2 0. 25 in mono jack (2 off) B1,2 9V PP3 (2 off)
Single-sided printed circuit board, $95 \times 78 \mathrm{~mm}$; aluminium case $150 \times 120 \times 50 \mathrm{~mm} ; 6 \mathrm{BA}$ fixings; 8 -pin d.i.l. socket (2 off); rubber feet.

Approx. cost Guidance only
 $\mathbf{f 1 0 . 0 0}$

Fig. 4. Component layout and full size printed circuit board master for the Envelope Shaper.
(Left). Picture showing the components mounted on the printed circuit board.
(Right). Wiring details of front panel mounted components.

Fig. 5. Complete offboard interwiring details.

Picture showing the wiring details inside the case.

CASE

The selection of a case to house the Envelope Shaper is largely a matter of personal choice, but a metal case is preferable as this will prevent excessive hum pickup. Any case which measures about $150 \times 120 \times 50 \mathrm{~mm}$ should be suitable. Whatever housing is selected it must be completely light-proof or the circuit will not function properly.

COMPONENT BOARD

Construction is quite straightforward as most of the components are mounted directly on the printed circuit board. Etch and drill this in the normal way and then use the board as a template to mark out the mounting and control holes in the case (see accompanying photographs).

Next, solder the components to the board, paying particular attention to the orientation of the diodes, i.c.s, and electrolytic capacitor. VR』 and S2 should be mounted last as shown in Fig. 4. Note that D3 and PCC1 are mounted so that the l.e.d. shines directly on the sensitive face of the photoresistor.

Remember also, that the use of i.c. sockets lessens the risk of damaging the devices through overheating during soldering. The use of Veropins is recommended for connection to the p.c.b. since they ensure a reliable contact. Crop the leads on the back (solder side) of the p.c.b. as short as possible to prevent them shorting out to the case.

Finally, mount the switches and jack sockets in the case and finish the wiring between them as shown in Fig. 5. Note that the screened lead used for these interconnections need only be earthed at one end. The batteries should now be clipped in place and the case assembled leaving the unit ready for use.

IN USE

In operation, best results are obtained with the guitar bass, treble, and volume controls, all set at maximum. The range switch setting should be chosen by experimentation; noting that each range requires a different sensitivity. The optimum sensitivity is found by turning the control clockwise from minimum until the most pleasing effect is achieved.

Note that at some settings it will be necessary to turn down the guitar volume when the effect is switched out.

Since the quiescent and peak currents are quite high it is recommended that high-power batteries are used and the unit is always switched off when not in use. Alternatively, any mains power pack supplying between $\pm 7 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ may be substituted.

RADIO

BY PAT HAWKER G3VA

Short-Wave Broadcasting

For more than 50 years, most major countries have broadcast radio programmes on short-waves (h.f.) originally directed at expatriate audiences but more recently in the hope of influencing foreign citizens, either by crude propaganda or more subtly by presenting a favourable view of the local way-of-life. Such operations are not cheap-the British Government's "Grant-in-aid" to the BBC is heading towards $£ 80$ million per annum. The USSR not only spends money on external broadcasting but also incurs the expense of its large network of "jamming" stations.

There is little doubt that some of the overseas m.f. relays serve large audiences, and that in some parts of the world listeners still depend on h.f. But in countries such as the UK the number of listeners who seriously listen to programmes on h.f. (excluding the DX enthusiasts who seek to log rare or distant transmitters) must be very small indeed.

It is sometimes said the h.f. broadcasting is really "governments speaking to governments". One notes that the BBC is currently seeking f13-million to add some new satellite "ears" to its Government-paid-for listening post at Caversham Park near Reading.

I recall industry's efforts to interest British listeners in "all-wave" sets back in the 1930 s. Even today, from time to time, one reads of new receiver designs that will bring a boom in short-wave listening. But it never happens.

There are a number of reasons why listening to h.f. broadcasting continues to be a tiny, minority taste. Receivers that are easy to tune to a given frequency are available, but inevitably cost a lot more than medium and long-wave sets.

But the main deterrent is never likely to be overcome: the need for the listener to have ackess to a large amount of data on transmission schedules and frequencies and to understand the many variables that determine whether a given station will be heard at a given time in a given month on a given frequency. The h.f. broadcasters, including the BBC, do their best to advise listeners, through publications or programmes such as the World Service "Waveguide". which replaced the longrunning "World Radio Club" a couple of years ago.

It is usually only the DX enthusiast, or those interested in amateur radio as a hobby, who are prepared to absorb all the information needed to achieve consistent reception of a daily or weekly programme. This is assuming that they have a set that can be tuned to a given frequency, and they know the frequency they want

The logical answer to world broadcasting
is not h.f. but space satellites in the form of Direct Satellite Broadcasting (DBS), though so far all attempts to establish DBS radio services on 26 MHz or on microwaves during the past 15 years have floundered. The multi-channel digital sound systems to be used with television DBS are not a solution, as these will have "footprints" too limited for true intercontinental world coverage.

So it looks as though vast amounts of money will continue to be spent to broadcast, with limited success, on the $3 \cdot 9,6,7$, $9.5,11.8,15.3,17.8$ and 21.5 MHz bands. And listeners will still need an up-todate copy of World Radio TV Handbook to make sense of it all!

Teletext 10

With some one-million television sets containing teletext decoders installed in British homes, the Oracle and Ceefax services are now accepted as useful and wellestablished additions to television broadcasting.

It is surprising, even to those of us who were invoived with the system in its early, experimental and "struggling" days, to recall that it is now over ten years since the

Sporting Ploy?

The use of two-way radio communications for sporting events is becoming ever more sophisticated and devious. This Year's British challenger for the America's Cup yachting event is even adopting military techniques to reduce the chances of giving away useful information to its American rivals.

The 12 -metre yacht "Victory 83 " and possibly other British entries will carry Racal-Tacticom's Clansman-type military equipment rather than standard marine equipment. Clansman is a frequency-synthesised system that can operate on virtually any frequency, and radio operators with military experience will be aboard.

However, they do not disclose whether high-speed "burst" data transmissions will be used to further confound eavesdroppers, nor whether the equipment will be authorised to use nonstandard marine frequencies! But the Royal Burnham Yacht Club's "Victory Syndicate" are convinced that last summer their transmissions were constantly monitored by their rivals, who succeeded in obtaining vital performance intelligence.
first transmissions were made during broadcast hours, with "live" computer editing. These were based on the original Oracle system, and went out from the IBA's Crystal Palace transmitter to one or two prototype receivers!

The system, like the original Ceefax system, was indeed crude when compared to what became in 1974 the unified British teletext standard with its much higher data rate and far greater number of "pages". It was not until the beginning of 1977 that the first decoders reached the market in the form of a Labgear adaptor costing almost $£ 400$.

Teletext was basically what is called an engineer-led rather than a market-led development and it proved difficult for several years to interest the public in this new form of broadcasting cum information technology. Yet recent BREMA figures show that deliveries of teletext sets during 1982 reached 571,000 compared with 213,000 in 1981, about 80,000 in 1980, about 28,000 in 1979 and just 7,000 in 1978 -an impressive growth rate for a British developed technology.

But, the most impressive industry figures are still those for video recorders, over 2.2 million deliveries in 1982 and 1 million in 1981. More videos sold or rented in the UK than even in the USA.

Technology For Change

The progress of telecommunications from its earliest days of the pre-Morse electric telegraph, line telegraphy and telephony to the later development of radio communications, broadcasting and television and the latest data transmission and optical fibre systems already spans some 150 years. A new permanent exhibition at the Science Museum in South Kensington, London, opened on March 15, 1983 by Prince Charles, emphasises that this is "a technology for change" and successfully brings together in lively displays an absorbing selection of "historic" components, equipments, publications.

In this case "historic" does not exclude many items that will be familiar to most readers and some which are likely to recall vivid personal memories. For instance, it even includes a display of current amateur radio and citizens band transceivers, though my eye was caught more by one of the wartime National HRO communications receivers on which I spent many hours listening and the firm's National One-Ten receiver which was a pioneering superregenerative design with plug-in coils covering ' 1 to 10 metres (30 to 300 MHz) popular in the 1930 s with amateurs using the old 56 MHz and 112 MHz bands.

Substantial financial support for the new gallery has come from STC, a firm which this year marks the centenary of the setting up in London of the first office of Western Electric, the original parent company of STC, in 1883. But this does not imply that many of the exhibits are STC company-oriented-in fact they are drawn from many British and foreign firms.

Any reader of EVERYDAY ElECTRONICS should regard a visit to the new gallery as a must if they live near or visit London. It is by no means "dead" history. There are buttons to press and even a chance to test your Morse-copying ability at speeds from very slow to very fast. And some fascinating photographs of the early days of the telephone with all those thousands of overhead wires converging on the first telephone exchanges.

PREVIOUSLY ADVERTISED STILL AVAILABLE

Tape punch and reader
£22.50

Bench isolating transformer 250 watt
BOAC in-flight stereo unit
£ 7.75
BOAC in-flight stereo unit
£1.50

Flood lamp waterproof GEC

E11.50

Battery condition tester, tess box 61.75

Nicad chargers, mains
£1.75

Flourescent inventor 13 watt from 12 v
Casserte mechanism with heads
Ten digit stitch pad-pb phone etc
Uniselector 2 pole 25 way
Water valve mains operated
Luminous switch mains up to 20 amp
Counter 6 digit mains operated
ditto 12 v resettable
Double glazing clear PVC sheet, $23 \frac{1}{2}$ "wide-per running ft . Locking mechanism with 2 keys
Magnetic Clutch
Mouth operated suck or blow switch
Fire aiarm break glass switch
Solenoid with slug 8.12 v battery op
ditto 230 v mains
Jug heater 250 w at 230 v
Quick cuppa 250 w heater, mains
ditto, 100 w 12 v
Timer Omron STP NH 110 v AC Coik
Key switch with 2 keys dp mains
Air valve mains operated
Latching relay mains operated
Dry film lubricant aerosol can
Coin op switch, cased with coin tray
Auto transformer 1000 watts € 3.50 $€ 4.50$ £1. 95 £4.60 £2.50 £1.15 E1.15 £3.45 € 0.15 $£ 1.15$
$£ 4.50$ £2.30 E 3.75 f 1.82 f 2.30 £ 7.50 C 3.95 63.95
66.90 $£ 1.75$
$\mathbf{£} 3.75$ $£ 3.50$ 60.65 £4.60 $£ 19.50$

$£ 3.00$

MAINS POWERED UNIT
12 volt MOTOR BY SMITHS Made for use in cars, etc. these
wound and they become more
powertul as load increases. Size powertul as load increases. Size
$33^{\prime \prime}$ long by $3^{\prime \prime}$ dia. They have a good length of $144^{* \prime}$ spindle Price $£ 3.45$.
 Ditto, but double ended $£ 4.25$.
Ditto, but permanent magnet $£ 3.75$.

EXTRA POWERFUL 12v MOTOR

Made to work battery lawnmower, this probably develops up Kin.p., so it could be used to power a go-k
compressor, etc. etc. $£ 7.95+£ 1.50$ post.
(This is easily reversible with

BUILD A PASSENGER LOCO
Set of four 12 volt motors to drive passenger locomative - $\mathbf{£ 2 9 . 5 0}$

THERMOSTAT ASSORTMENT

10 different thermostats. 7 bi-metai types and 3 liquid types. devices against overioad, short circuits, etc., or when fitted say in front of the element of a blow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temperatures, others adjustable over a range of temperatures which
could include $0-100^{\circ} \mathrm{C}$ There is also a thermostatic pod could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which
can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproot heater etement, up in th loft could protect your pipes from freezing. Separately, these
thermostats could cost around $£ 15.00$. however, you can haver the parcel for $£ 2.50$.

LAST MONTH'S SNIP - STILL AVAILABLE The AMSTRAD Stereo Tuner
centre or an amplifier, it can also be quickly made into personal stereo radio - easy to carry about and which give you superb recept
Other uses are as a "get you to sleep radio", you could even
take it with you to use in the lounge when the rest of the family want to view programmes in which you are
interested. You can listen to some music insteal
Some of the features are: long wave band $115-270 \mathrm{KHz}$ medium wave band $525-1650 \mathrm{KHz}$, FM band $87-$
108 MHz , mono, stereo 108 MHz , mono, stereo switch, AFC switch, tuning meter
to give you spot on stereo tuning, optional LED wave band to give you spot on stereo tuning, optional LED wave band
indicator, fully assembled and fully aligned. Full wiring up data showing you how to connect to amplifier or head phones and details of suitable FM aerial (note ferrite rod aerial is included for medium and long wave bands. All made up on very compact board.
Offered at a fraction of its cost: only $\mathbf{£ 6 . 0 0}$

THIS MONTH'S SNIPE

DISCO PANEL
Make your party or disco more thritling - add to your record player or amp, a multi-coloured sound-enhanced lighting display. Made for Amstrad their ref. No. RP10. Mains operated stereo or mono controlled - has 48 coloured lamps (plus 4 spares) and light level control. Brand new and unused - offered at a never to be repeated price of $£ 5.75$ plus $£ 2.00$ post.

SUPER HI-FI SPEAKER
CABINETS CABINETS
Made for an expensive Hi -Fi outfit

- will suit any decor. Resonance free. Cut-outs for $8^{\prime \prime}$ woofer and 4. tweeter. The front material is Uacron. I he completed unit is mos
nleasing. Supplied in pairs, orice pleasing. Supplied in pairs, price than the original cost of one cabinet) carriage $£ 3.00$ the pair

GOODMANS SPEAKERS $8 / 2 \mathrm{ohm}^{25}$ watt £4.50. 21/2" 8 ohm tweeter. $£ 2.50$. No extra for postage
ordered with cabinets. Xover $£ 1.50$. DITTO but for $8^{\prime \prime}$ speaker and $4^{\prime \prime}$ weeter. $£ 7.50+£ 3.50$

2-WAY CROSSOVER NETWORK

4 or 8 ohm impedance - power inp
2 KHz with wiring diagram. 87 p each
3-WAY CROSSOVER NETWORK
700 kHz and 3500 kHz with wiring diagram. $\mathbf{£ 1 . 1 5}$.

TELEPHONE ITEMS:

ick-up coil-sucker attached
Phone plug - 4 pin GPO
Modern desk telephone - GPO typ
Heavy black old type GPO phone
Heavy black old type GPO phone
QUANTITY BUYERS - Plese phone for Bulk Buyers List - discount prices will amaze you e.g. $12 \mathrm{v} 1 / 2 \mathrm{a}$. and $6 \mathrm{v} 1 \mathrm{a} @ 50 \mathrm{p}$ each!

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily on and one off per 24 hrs. repeats daily
automatically eorrecting for the lengthenautomatically eorrecting for the lengthening or shortening dav. An expensive time
switch but vou can have it for only $\mathbf{£ 2 . 9 5}$ These are without case but we can supply
a plastic base $£ 1.75$ or metat case $\mathbf{£ 2 . 9 5}$. a plastic base $£ 1.75$ or metal case $£ 2.95$.
Aiso available is adaptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up to
12 on/offs per 24 hrs. This makes 12 on/offs per 24 hrs. This makes an
ideal controller for the immersion heat ideal controller for the immersion heater.
ise of adaptor kit is $£ 2.30$.

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms tester, A.C. amps meter, Alarm clock, Soldering ohms tester, A.C. amps meter, Alarm clock, Solder ing
iron minder, Two way telephone, Memory jogger, Live line rester, Continuity checker, etc. etc., and vou will st have hundreds of paris for future projects. Our 10 Kg
parcel contains not less than 1.000 items - panel meters, parcel contains not less than 1,000 items-panel meters, timers, thermal trips, relays, switches, motors, dritls, taps,
and dies, tools, thermostats, colls, condensers, resistors, and dies, tools, thermostats, coils, condensers, resistors,
neons, earphone/microphones, nicad charger, power unit multi-turn pots and data on the 50 projects.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored scale AC volts $10,50,250,1000$
$10,50,250,1000$

Continuity and resistance 0-1 meg ohms in two ranges. Complete with test prods
and instruction book showing how to measure capacity and inductance as well. Unbelievable value at only $66.75+60$ p EREE Amps range kit to enable you to read DC current from 0
10 amps, directly on the $0-10$ scale. it's tree if you purchase
quickly, but if you already own
Mini. Tester and would like one. Mini- Tester a
send $£ 2.50$.

J. BULL (Electrical) Ltd.

(Dept. EE), 34-36 AMERICA LANE,

Extablished
30 YERRS

HAYWAROS HEATH, SUSSEX RH16 3QU, 30 YEARS E 10 add 60 p service charge. Monthly account orders accepted from schools and public companies. Access \& 8/card orders accepted day
hight. Haywards Heath (0444) 454563 . 8uik prders: write for quote.

3 CHANNEL SOUND TO LIGHT

Complete kit parts for a three channel sound to tight controling over 2000 watts of lighting. Use this at home if wish but it is plenty rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controls for each channel, and a master on/oif. The audio input and output are by $1 / /^{\prime \prime}$ sockets and three panel mounting fuse holders provide connecting lamos. Special price is $\mathbf{£ 1 4 . 9 5 \text { in kit form or } £ 2 5 . 0 0}$ assembled and tested. Case $\&$ metal Chassis No. Fully punched and prepared.
EXTRACTOR FANS Mains operated
$5^{\prime \prime}$ extractor $5^{\prime \prime \prime}-\mathbf{£ 5 . 7 5 ,}$, Post $\mathbf{£ 1 . 2 5}$
$\mathbf{6}^{\prime \prime}-\mathbf{£ 6 . 9 5}$, Post $£ 1.25$ P6.50ir extracto
$4^{\text {". Muffin }} 115$. 11.25
f4.50. Post 75 p .
$\times 4^{\prime \prime}$ Muffin 230 N
$£ 5.75$. Post 750 .
American made
$£ 11.50$, post $£ 2.00$
volt $61 /{ }^{\prime \prime}$ extractor

MILLIONS OF HOMES WILL BE BURGLED Don't let vours be one of them. Install our burgar atarm. Install mains power unit control box with key switch 10 window/doo switches 100 vards of wire. With instructions $£ 29.50$

COMPUTER DESK

 Size approx $4^{\prime} \times 2^{\prime} \times 2^{\prime} 6^{\prime \prime}$ high. Thesewere made for hard work, the top were made for hard work, the top
being formica covered. Suitabie for being formica covered. Suitabie as
housing instruments or for use as housing instruments or for use as
office desks. Beautifully made, thes cost over $£ 100$ each, our price oniv £11.50 each, however, you must MINI MONO AMP
for a tone control shouid you require
it. The amplifier has three transistors and we estimate the output to be $3 W \mathrm{Wms}$.
More technical data will be included with the amplifier. Brand new, perfect condition, offered at the very low price
$\mathbf{£ 1 . 1 5}$ each, or 10 for $\mathbf{£ 1 0 . 0 0}$.

OTHER POPULAR PROJECTS

3 Channel sound to Light - with fullv prepared metal case $\quad \mathbf{E 1 4 . 9 5}$ Ditto - made up
c25.00
8ig Ear, listen through walls
Robot controller - receiver/transmitter
Ignition kit - helps starting, saves petrol, improves
performance
Car Light 'ieft on' alarm
Secret switch - fooks friends and enemies alike
3 - 30v Variable Power Supply
2 Short \& Medium Wave Crystal Radi
3 v to 16 v Mains Power Supply K
Light Chaser - three modes
Mullard Unilex Hi Fi stereo amplifier with speakers
Radio stethoscope . . fault finding aid
Mug Stop - emits piercing squark
Morse Trainer - complete with key
Orill controt kit
Drilt control kit made up
Interrupted beam Kit ,
Radio Mike
FM receiver kit - for surveitlance or normal FM
transmissions
Seat Belt Reminder
Car Starter Charger Kit
Soil heater for plants or seeds
Insulation Tester - electronic megger
Battery Shaver or Fluorescent from 12 v
Matchbox Radio - receives Medium Wave
Mixer Pre-amp - disco special with case
Aerial Rotator - mains operated
Aerial direction indicator
40 watt amp - hi-fi $-20 \mathrm{hz}-20 \mathrm{KHz}$
Microvolt multiplier
ordinary multitester
Pure Sine Wave Generator
Linear Power output meter
Power Supply for one or two 115 watt amps
Stereo 8ass 8ooster, most items
617.50
$\mathbf{6} .95$

CIRCUTT EXCHANGE

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised. Payment is made for all circuits published in this feature. Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

STABILISER FOR USE WITH LOW COST BATTERY ELIMINATORS

Mains 9 V battery eliminators are on sale for use with a wide range of electronic equipment. Although these devices are described as "9 volts" they are unstabilised usually consisting of simply a mains transformer, rectifiers and
electrolytic smoothing capacitor as shown in Fig. 1. With a simple circuit such as this the voltage varies with current drawn, at low currents the voltage can rise to 12 volts.

The circuit described and shown in

STRENGTH METER

THE circuit to be described can be used for comparing the strength of different persons; or rather as a "strength meter". Two hand grips (metallic rods) are held in the contestant's hands. As he squeezes the hand grips the l.e.d.s light up in sequence. The strength of the contestant is measured by the maximum number of l.e.d.s he can light up this way.

The hand grips are made of brass or aluminium tubes; 10 cm long and 2 cm diameter.

VR1 is adjusted with the hand grips gently placed in the contestant's hands until D1 is just "off". The strength at which each l.e.d. is lit up can be individually controlled using VR2, VR3, VR4 and VR5. These preset potentiometers should be adjusted so that D1 is

Fig. 2 can be used between the power supply and a 9 V circuit. It was designed for use with circuits normally powered by a PP3 size battery. The transistor AC176 is a low cost germanium npn type (a BFY5 I could be substituted).

If working with experimental circuits a 100 ohm resistor should be connected between the output of the stabiliser and the circuit to limit the current in the event of a short circuit. The stabiliser is suitable for low current only.

> R. Soar,

Denaby Main, Doncaster, Yorkshire.

IN more expensive audio devices, there may be a VU meter included in the unit. This can be very useful for recording to tell whether there is any overload.

In most portable, mono cassette recorders there is no such meter and as a simple alternative you can use your multimeter, set at the $100 \mu \mathrm{~A}$ (d.c.) range for recording. The diagram shows how it is set up, using just one diode, capacitor and potentiometer. The latter is adjusted to give f.s.d. at just below distortion.

Alex Clark, Lichfield, Staffs.
the first to light and D4 the last.
The circuit connections for IC2 through to IC5 are similar and more stages can be added in a similar manner. Although the i.c.s are marked 741 in the circuit, IC2, IC 3, IC 4 and IC5 can be replaced by a quad-op-amp i.c.
J. Sreekumar,

Cochin,
India.

VHS RE-RECORD TABS

WITH the increasing sales of video cassettes Bib Audio/Video Products have developed re-record tabs for use on VHS cassettes.

Some readers may not be aware that each video cassette has a safety tab, positioned at the rear of the cassette, which can be snapped out to avoid further recordings being made. This is a useful facility, particularly when precious recordings might be lent to friends, who may inadvertently erase the recording.

The Bib re-record tab enables further recordings to be made by taking up the space where the original tab was positioned. The new tab is re-usable and is removed by the use of a small screwdriver, or similar instrument.

The tabs are supplied in packs of 20 , with fitting details printed on the pack. The recommended retail price of the Bib VHS Cassette Re-Record Tabs is £1.47, including VAT.

Bib Audio/Video Products Lid., Dept EE, Kelsey House,

Wood Lane End, Hemel Hempstead,
Herts HP2 4RQ.

PACKAGE DEAL

ANew pack is being manufac tured by Cartados Pack aging, which has been specially designed to give protection to a wide range of electronic components during transit.

The pack consists of a white corrugated-board hinged carton, with profile foam on the inside of the lid and base. When the lid is closed and fastened into position. the foam sandwiches and holds the component firmly and accommodates all shapes and sizes of components.

This makes the cartons ideal for use as postal packs.

For more details and prices contact:

Cartados Packaging Ltd.,
Dept EE, King's Lane,
Englefield Green,
Surrey TW20 OTZ.

AUTORANGING CAPACITANCE METER

AHAND-HELD autoranging capacitance meter which features a degree of precision, range and flexibility normally associated with benchtop instruments, is now being marketed by Global Specialties.

The new meter, type Model 3002, which incorporates a $3 \frac{1}{2}$. digit liquid-crystal display and measures only $193 \times 95 \times$ 44 mm , provides direct readings of capacitance from $1 p F$ to $19,990 \mu \mathrm{~F}$. Eight automatically selected ranges remove the need for manual switching, and a dualthreshold measuring technique ensures a claimed accuracy within 0.2 per cent (\pm one count) from 1 pF to $199 \mu \mathrm{~F}$ and 1 per cent (\pm one count) between $200 \mu \mathrm{~F}$ and 19.99 mF .

The dual-threshold measurement technique is claimed to eliminate reading errors caused by dielectric absorption, and the use of d.c. charging characteristics to determine true capacitance means that the instrument can be used for measurements on cables, switches and other components as well as on capacitors.

The Model 3002 operates from six AA nickel-cadmium or
aikaline batteries, and the maximum current consumption of 75 mA ensures a long battery life. An optional a.c. adaptor/charger can also be used.

Global Specialties Corporation,
Dept EE, Shire Hill Industrial Estate, Saffron Walden,

Essex CBII 3AQ.

TALKING BOOKS

The company that first put speech into learning aids with "Speak and Spell" have just introduced books that talk. Called the Texas "Magic Wand Speaking Reader" the system uses bar codes coupled with speech synthesis microchips to produce an audible commentary.

Aimed at 4 year-olds and upwards, it's a true learning aid, adding excitement to a child's early attempts at reading. It guides the child's reading asking and answering questions prompted by coloured picture books.

As well as a story, books containing puzzles with multiple choice answers, simple spelling tests and early arithmetic are available. Sound effects and simple tunes are also included in the books.

A bar code reader or "wand" is connected to a lightweight
"talking computer" by means of a coiled flexi-cable. The wand is simply scanned across the bar codes and the computer proceeds to tell the story or ask questions.

The Texas Instruments "Magic Wand Speaking Reader" is ex-
pected to sell in the UK at around $£ 39.95$, books about $£ 7.95$ each, and more details can be obtained from:

Texas Instruments Lid.,
Dept EE, Manton Lane, Bedford, MK4I 7PA.

DIGITAL COUNTER

To meet the need of designers for a counter which can be mounted in a confined space, Eurovector have marketed the Sub-Cub digital counter.

The Sub-Cub comprises a 6 -digit $(500 \mathrm{kHz})$ 1.s.i. counter chip, oscillator, Schmitt trigger and I.c.d. readout in a single dual-in-line type package that can be directly mounted on a printed circuit board. A supply voltage of 2 to 6 V d.c. is required to power the unit, with supply current typically $15 \mu \mathrm{~A}$ at a counting rate of 10 kHz .
The display can be frozen at any time whilst the counter continues accumulating counts or is reset to zero in preparation for a new counting cycle. This allows it to be used as a frequency meter, tachometer and for period and pulse-width measurement.

Two modules are currently available; Sub-Cub I with 5 mm
high digits and Sub-Cub II with 9 mm digits. An optional bezel kit provides for panel mounting if required.
For further information contact:

Eurovector Ltd., Dept EE, Wessex House, Silchester Road, Tadley, Basingstoke, RG26 6PX.

ZX81 INPUT/OUTPUT PORT BOARD KIT

The RE98 I/O Port designed and available from Redditch Electronics provides bidirectional access for the ZX81 to the outside world. It thus provides a facility for monitoring and control of external equipment under software/keyboard control.

The unit is available in kit form and comes with full step-by-step

assembly instructions, test procedures and software test routines. Ideas for interfacing are also provided, such as using optoisolators to receive information, filament lamp and relay driver circuitry and others. We are presently building the unit and
plan to publish a technical report and suggest some application circuit ideas. For further information contact:

Redditch Electronics, Dept. EE, 21 Fernéy Hill Avenue, Redditch, Wores. $\operatorname{B97}$ 4RU.

INSTRUMENT CASE

The range of all metal instrument cases produced by Boss Industrial Mouldings has been increased with the introduction of another size model in their Bim 3000 Series.
Available in two sizes of $250 \times$ $167.5 \times 68.5 \mathrm{~mm}$ high and $250 \times$ $187.5 \times 78.5 \mathrm{~mm}$ high, they incorporate a rigid matt black stove

enamelled 18 s.w.g. chassis to which red, grey or orange stove
enamelled 14 s.w.g. top and bottom covers are independently attached.

The chassis design includes̀ integral brackets for supporting components, p.c.b.s and other assemblies and can be supplied with special ventilation slots, cut outs and punchings to individual customer requirements.

For more details and prices enquiries should be made to:

Boss Industrial Mouldings Ltd.,
Dept EE, James Carter Road.
Mildenhall, Suffolk IP78 7DE.

F227 SMOKE DETECTOR FIRE ALARM

THE F227 Ionisation Smoke Detector Fire Alarm is a highly sensitive instrument designed to sense the visible and invisible combustion of a fire. This type of detector gives the earliest possible warning of a fire, responding to the initial stages of combustion; and thus before visible-smoke or heat detectors. The extra seconds gained can be vital in allowing persons to escape from a developing fire.

The sensor utilises a tiny, harmless amount of radioactive material of $0.7 \mu \mathrm{Ci}$ which complies to international standards. The detector is powered by a single 9 V alkaline battery which can last for more than a year. When the battery runs low, the detector will emit a bleeping signal to indicate that the battery needs replacing. A test button is provided. Actuation of this button will cause the alarm to sound,
thus checking all electronic circuitry, the sensor, the horn and the battery. A weekly test is recommended by N.F.P.A.

The detector is housed in a circular white plastic case. The cover is hinged and can be easily released, giving access to all parts, also to the keyhole slots provided for the fixing screws. Since heat rises, the aerosol products of combustions are always carried towards the ceiling. The detector should therefore be located on the ceiling as close to the centre of the room or hallway as possible.

Advice concerning the location of one or more smoke detectors in domestic premises is included in the owner's manual supplied with each instrument.

The F227 Smoke Detector Fire Alarm is manufactured by Gamma Electronic PTe. Ltd., Singapore, and is available (UK only) from:

R.T.V.C. Ltd., Dept EE, 21A High Street, Acton, London W3 6NG.

See Bargain Offer to EE readers on page 359 of this issue.

Pen Pal

Sir-l am thirteen years old, I am interested in electronics and computing and I collect electronic valves, and I am looking for a penfriend. My address is:

Shaun Gandèr, 6 Deiaware Road, Winterbourne Lewes Sussex BN7 1LD

Test Gear 83

Sir-1 am building all the Test Gear '83 projects in Everydar Electronics. Unfortunately $/$ cannot get hold of some of the components for the Power Supply. Please could you tell me where I can get them and how much they will cost?

The components are: KBLO2 4A, 200 V bridge rectifier (2 off); $0.47 \Omega, 3 W$ wirewound resistor (2 off); 470 , 3W wirewound resistor (1 off); $0.1 \mu \mathrm{~F}, 160 \mathrm{~V}$ Siemens type capacitor (3 off; 2-pole, 6way midget rotary with adjustable stop and the 1 mA f.s.d. panel meter with 120Ω coil type ML52.
P. Greenfield, Taverham, Norwich.

In reverse order, the ML52 panel meter is available from Ambit International for $£ 5.98$ and the stock number is 3700521. They can also supply the midget rotary switch (stock number 53 21025) for $54 p$ and the $0.1 \mu \mathrm{~F}$ Siemens capacitors (stock number 04 10407) at 13p each. Prices are exclusive of VAT and please add 60p for postage.
Maplin also stock a suitable panel meter, order reference RW94C (2in Pan Meter 1 mA), for 66.45 but this meter will require a slightly different cut-out in the front panel. The Maplin order reference for the switch is FF74R (Rotary Sw6B) at 70p, and the capacitors are ordered as WW41U (Carbonate $0.1 \mu \mathrm{~F}$) for 11 p each. They also stock the $3 W$ wirewound resistors as W0.47 (WN Min 0.47S) and W470 (WN Min 470Ω) at $29 p$ each.

These prices are inclusive of VAT and orders over $£ 5$ are postage free. Orders under £5 require an additional 50 p for postage.

The KBLO2 bridge rectifier has been a little harder to locate. RS Components stock a suitable 4A, 200 V "in-line" device which is equivalent to the KBLO2 and the stock number is 262-113. However, RS do not sell directly to the public as they only supply to account customers. But most component shops will have an account with RS and can obtain this item on your behalf if you quote the stock number and the price should be in the region of $£ 2$ again.

Ambit International are at 200 North Service Road, Brentwood, Essex CM14 4SG (telephone $0277^{\prime 2}$ 230909) and Maplin Electronic Supplies Ltd address is P.O. Box 3, Rayleigh, Essex SS6 8LR (telephone 0702552911).

Pin Function Generator

Sir-Your help please! Could you advise me of the pin-out of a 14 -pin d.i.1. LM318N (IC3, Function Generator, April 1983).

The major suppliers do not seem to stock the LM318 and although the circuit simply specifies an LM318, I am advised that there is an " H " and " N " version.
was told that the N version was the correct one, but when supplied, turns out to be a 14 -pin d.i.i. I have searched literally hundreds of other circuits and magazines but cannot find a single design that uses an LM318 (98 per cent use the 741) and suppliers seem reluctant to answer such queries by telephone, hence the request.

Please note that Fig. 6 (calibration scale) is also missing from the article. I still hope to finish this unit and eventually the future units in the Test Gear 83 series.
R. S. Bareham,

Tunbridge Wells,
Kent.
Dealing with your last point first, Fig. 6, the calibration scale, was omitted from the text due to a lack of space and unfortunately the reference to it was left in. However, from the photographs showing the front of the Function Generator unit it can be seen that the scale runs from 1 to 10 around the travel of the potentiometer in an almost linear fashion.

It is not truly linear as the points are closer together at the beginning and end of the scale than they are in the middle but as it was not deemed to be important to achieve very accurate calibration, an estimation based on the photographs of the prototype model will be sufficient. We hope this has-not inconvenienced any readers.

As far as the LM318 goes, it is available in many versions. The LM318N is the 14pin d.i.., plastic packaged type (a "J" in place of the " N " indicates that it is a 14 -pin ceramic pack) and the LM318H is an 8-pin

TO5 metal can. The 8 -pin di.i. variant is denoted the LM318N-8 lagain, a J signifies ceramic package). This suffix " 8 " was inadvertently omitted from the components' list.

The pin-out diagrams given below show the pin functions of the three basic package types. Note that if pins 1, 2, 7, 8, 13 and 14 are ignored on the 14-pin version, the relative positions of all functions are identical to those on the 8-pin di.i. type.

It can also be seen that the pin numbers for both the 8 -pin d.i.I. device and the 8 -pin metal can are identical so that the LM318H could be preformed to the d.i.l. format to fit the p.c.b. lavout.

Greenhouse Monitor

Sir-The article on the Beehive Temperature Meter (February ${ }^{\prime} 83$) prompted me to make up the project and adapt it to monitor my greenhouse, frames, compost heap and solar heater. The Shop Talk feature suggested Maplin for the parts, but the Digitron meter (ME1) is not in their catalogue and nor can 1 find a local (Glasgow) supplier.

I made up the project on a breadboard and have got it working in the meantime with a digital multimeter in place of ME1. I had some bother as the millivolt readings were too high and I found the current through the LM335Z temperature sensor also too high until I altered the circuit more in line with the drawing given in the Maplin catalogue. This meant putting a 2.85 kilohm resistor between the positive supply rail and the positive terminal of the LM335Z. The schematic diagram (see also Fig. 2, page 83) of this modification is shown below

If you can get me the address of the manufacturer of the Digitron meter I should be most grateful. I have taken your paper now for some five years.
G. S. Wilton, Clarkston, Glasgow.

The Digitron 8000 meter is manufactured by Digitron Instruments Ltd., Merchant Drive, Mead Lane Industrial Estate, Hertford SG13 7BH. They can supply the meter used on the prototype Beehive Temperature Meter for $£ 34.25$ plus VAT plus $£ 3.50$ postage and packing (total $£ 42.90$). Please supply payment with order and specify that it is the Digitron 8000-01 digital voltmeter with 999 mV full scale deflection that is required.

However, as this is an expensive component, a suitable alternative is to fit a pair of sockets in place of the meter and use a portable digital multimeter when measurements are required. The 2 V range found on most d.v.m.s is ideal, remembering that 10 mV is equivalent to one degree Celsius. Therefore a reading of 270 mV (or 0.27 V) is equal to a temperature of $27^{\circ} \mathrm{C}$.

Sinclair ZX Spect

The growing range of Spectrum Software

rum-news!

16 Kow

48K now f129.95 Previously $£ 175$.

At last, a 16K colour computer with graphics for under £100!

Why have we done it?
Partly because the sheer volume of Spectrums sold (over 300,000 so far) has brought down unit production costs.

And partly, of course, because we hope you'll buy a Sinclair computer - and not some competitor's promise! We've all heard about colour computers breaking the £100 barrier. Here's the computer that's done it. A colour computer with advanced graphics that's fully supported, and widely available.

Right now, you can order a Sinclair Spectrum at these prices direct from Sinclair on the order form below. And to make it even easier to handle high-level computing at the
lowest possible price, we've cut the cost of the printer, too. At £39.95, it's almost unbelievable!

At prices like these, there's really no reason to wait.

ZXPrinternow £39.95
 Previously f59.95

How to order your ZX Spectrum
Access, Barclaycard or Trustcard holders - call 01-200 020024 hours a day, every day. By FREEPOST - use the coupon below. Please allow up to 28 days for delivery. 14-day money-back option.

ᄃir 디린 ZX Spectrum

Sinclair Research Ltd., Stanhope Road, Camberley, Surrey, GU15 3PS.
Tel: 0276 685311. Reg no: 1135105

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUĭ́5 3BR.				Order
Qty	Item	Code	$\begin{aligned} & \text { Item Price } \\ & \end{aligned}$	$\begin{gathered} \text { Total } \\ \Sigma \end{gathered}$
	Sinclair ZX Spectrum-16K RAM version	3000	99.95	
	Sinclair ZX Spectrum-48K RAM version	3002	129.95	
	Sinclair ZX Printer	1014	39.95	
	Printer paper (pack of 5 rolls)	1008	11.95	
	Postage and packing: orders under £90	0028	2.95	
	orders over $£ 90$	0029	4.95	
Please tick if you require a VAT receipt *1 enclose a cheque/postal order payable to Sinclair Research Ltd for £				
*Please charge to my Access/Barclaycard/Trustcard account no.				
*Plea	e/complete as applicable.			
Signature				PLEASE PRINT
Name: Mr/Mrs/Miss				
Address				
	1			EVE
FREEPOST - no stamp needed. Prices apply to UK only.			Export prices on application.	

E.E. PROJECT KITS

Make us your No. 1 SUPP LIER OF KITS and COMPONENTS for E.E. Projects. We supply
carefuly selected sets of parts to enable you to construct E.E. projects. Kits include ALL Careuly setected sets of parts to enabie you to construct E.E. projects. kits include ALL THEIELECTRONICS AND HARDWARE NEEDED. Plinted circuit boards (tulty etched Brticle, we even include nutš, screws and I.C. Sockets. PRICES INCLUDE CASES Unlest
otherwise stated. BATTERES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the instruction reprint at an extra 45 each

MODEL TRAIN CONTROLLER MaY 83
GUTAR HEADPHONEAMPLIFIER May 8 MW PERSONAL RADLO less case
LABORATORY AMPLFIER May
B3 MOISTURE DETECTOR May 83 FUNCTION GENERATOR Aprill 83 FLANGER SOUND EFFECTS April 83 NOVELTY EGG TIMER Apriil 83 less DUAL POWER SUPPLY March 83 MULTISTATION INTERCOM MAR

+ Exras slave

BuZZ OFF March 83
CAR THERMOMETER March 83 SPEECH PROCESSOR FEb. 8 MOTOR BIKE ALARM Feb. 83 DOUBLE DICE Jan. 83 ELECTRONSC V/I METE 2X TAPE CONTROL
PHOTO FINISH NOV PHOTO FINISH NOV. 82
G. P. PRE-AMP Oct. 8

LiGHTS ON ALERT O
CONTINUITY CHECKER Sept.
SOUND SP SOUND SPLITER Sept. 82
SOUND RECOMBINER Sep SOUND RECOMBINER S Spt. 82
SCREN WASH DELAY S SCREEN WASH DELAY Sept. 82
INSTRUMENT PRE AMP Aug 88 TWO TONE DOORBELL ALARM AU case and bell transformer CB ROGER BLLEEPER Aug. 82
2-WAY INTERCOM.
 REFLEX TESTER July 82 . SEAT BELT REMINDER J 57.07 EGG TIMER June 82. TWMO TONE TRAIN HORN WITH (CAR LED VOLTMETER less case. GH
V.C.O. SOUND EFFECTS UNIT Apr 8 ?

CAMERA OR FLASH GUN TRIGGER Mar 82, E12. 1 ess tripod bushes. POCKET TIMER Mar 82. $\sum_{\text {BU }} \cdot 71$. SIMPLE STABILISED POWER SUPPLY. Jan. 82. £24-58 MINPEGG TIMER. Jan. 82. £3. 94
BIREN MODULE. Jan, 82 , less speaker. BIREN MODULE. Jan, 82. Iess speaker,
6S57.
MODEL TRAIN CHUFFER.Jan. $82, \ldots 8.27$ MODEL TRAIN CHUFFER.Jan, 82, £8. 27 GUITARADAPTOR-Dec. ${ }^{\text {B1. }}$ E3. $76{ }^{27}$ ELE 98. BIMPLE INFRA RED REMOTE CON-
TROL NOV.BA. E16 9B
PRESSURE MAT TRIGGER ALARM. EXPERIMENTER CRYSTAL SET Nov. 81. Le 88 'aerial. $\mathbf{E 5}$. 99
CAPACITANCEMETER Oct 81 . E23.51. BUBTAIN UNIT, OCt, 81. E12.76. 'POPULAR DESIGNS'. Oct 81. HEADS AND TAILS GAME \& 52 HEADS AND TAILS GAME. E2 52 PHOTO FLASH SLAVE. £3.46. FUZZ BOX. 87.29.
OPTO ALARM. 66.78
BOIL MOISTURE UN
CEEALARM. E7. 89
-12V POWER SUPPLY. Sept. 81 E17.98
CMOB CAR SECURITY AB Sept. 81. E9. . . 8 . CMOB METRONOME. Aug. 81, E8 23. COMBINATION LOCK. July 81. Les case. 81958
BURGLAR ALARM SYSTEM. June 81 LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81. E5. 66
SOIL MOISTURE INDICATOR E.E. May 81. E4. 09 .
GUITAR HEADPHONE AMPLIFIER E.E.MAY 81. EA: ${ }^{23 \text {. }}$ REPEATER/BABY ALARM E.E. May 84. £5 66 .

INTERCOM. ADril B1. E22. 23.
SIMPLE TRANSISTOR \&
TESTERS. Mak 81. Ohmeter verśion version E2.02. Led version ${ }^{\text {E2 }}$ 2 7 MINI SIREN. Mar. 81 Es- m . LED DICE. Mar. 81. \&s 44 . LED FLASHER- Mar. 81 . 4.29 MODULATED TONE DOORBELL. Mar. 81. ©6 64.

POWER SUPPLY Mar. 81. . 53 -47. THREE CHANNEL STEREO MIXER. Feb. 81. 18189.
SIGNAL TRACER. Feb. 81 . $8: 17$ less probe.
Ni.Cd BATTERY CHARGER. FEb. 81. £13. 51.
ULTRASONIC INTRUDER DETEC. TOR. Jan. 81 less case. $£ 53 \cdot 47$.
2 NOTE DOOR CHIME. Dec. $80 . \pm 10.32$ LIVE WIRE GAME. Dec. 80. $£ 11$-70. GUITAR PRACTICE AMPLIFIER. Nov. 80 . 512 . 22 less case. Standard case
E3 88. High quality case 83. c3 $88 . \operatorname{High}$ quall
SOUND TO LIGHT. Nov. 80. 3 channel. E21. 34.
TRANSISTOR TESTER. Nov. BO.
\&11.63 Inc. test leads. AUDIO EFFECTS UN
AUDIO EFFECTS UNIT FOR WEIRD BICYCLEALARM. Oct. 80. $810 \cdot 35$ lese mounting brackets.
IRON HEAT CONTROL. Oct. 80. $£ 5$. 66. TTL LOGIC PROBE. Sept. 80. 55 - 18 ZENER DIODE TESTER. June 80. EE 66 . 4 STATION RADIO. May $80.1616 \cdot 29$ less LiGHTS WARNING SYSTEM. May 80 . $\mathrm{EA}_{4} 6 \mathrm{E}$. BATTERY VOLTAGE MONITOR. May $80.55 \cdot 16$.
CABLE \& PIPE LOCATOR. Mar. 80. KITCHEN TIMER. Mar. 80 . $£ 14$: 85. STEREO HEADPHONE AMPLIFIER. Mar. 80. £18-15.
MICRO MUSIC BOX. Feb. 80. £16:26. Grey Case ez-99 exira. SEb BL SHORT WAVE RECEIVER. SLIDE/TAPE SYNCHRONISER. Feb. B0. $\mathbf{E 1 2} 30$.
MORSE PRACTICE OSCILLATOR. Feb. bo. £4. 62 .
SPRING LINE REVERB. UNIT. Jan. bo. c25: 6
UNIBOARD BURGLAR ALARM. DEC. 79. 16.03.

BABY ALARM. Nov. 79. E9. 0 . CHASER LIGHTS. Sept. 79. $£ 23-40$ SIMPLE TRANSISTOR TESTER. Sept. 79. $\mathbf{1 7}$. 30
DARKROOM TIMER. July 73. $\mathbf{£ 2} \mathbf{2 9}$. ELECTRONIC CANARY. JUNe 79.E5. 86. MICROCHIME DOORBELL. FEb. 79 E15.85.
THYRISTOR TESTER. Feb. 79. £3.7E FUSE CHECKER. Oct. 78. £2.31. SOUND TO LIGHT. Sept. 78. 1 . 42. CAR BATTERY STATE INDICATOR. Re signal generat
R.F. SIGNAL GENERATOR. Sepit. 78.
E 26 ${ }^{26} 72$.
IN SITU TRANSISTOR TESTER. WEIRD SOUND EFFECTS GENERATOR. Mar. 78. E5. 58 .
ELECTRONIC TOUCH SWITCH. Jan. RAPID DIODE CHECK. Jan. 78. £2.74. PHONE/DOORBELL REPEATER. JUIY

MORE KITS AND ELECTRONICS COMPONENTS IN OUR LISTS
 Price fist included with orders or send wae (9 $\times 4$) CONTAINS LOTS MORE KITS, PCBS \& COMPONENTS

NEW

30 SOLDERLESS BREADBOARD PROJECTS
Clear verobioc layouts and circuit diagrams:
Clear verobioc layouts and ©trcuit diagrams. Includes fuzz box, radio, metroIntroduction gives basic information on components including resistors, capacitors, I.Cs, transistors, photocells etc. Ideal for beginners as well as those with some experience
Complete $k i t$ including verobloc, book and components (Ie
Less book $£ 22 \cdot 50$. less verobloc $£ 20-25$. Boak only $£ 2.25$.

SOLDERING/TOOLS

 ANT$25 W$
 25 W SOLDERING IRON STAND .. £4.98 SPARE BITS. Smali, standard, large, 65p each. For X5 + X25 SOLDER. Handy size SOLDER CARTON DESOLDER BRAID HEAT SINK TWEEZERS DESOLDER PUMP HOW TO SOLDER LEAFLET LOW COST CUTTERS LOW COST LONG NOSE PLIERS
WIRE STRIPPERS \&
CUTTERS
\& $5 \cdot 48$
4. 98

RECISION PETITE 12V P.C.B. Drill Drill Stand E11.67 Grinding stone Grinding wheel 50 p Saw blade 85p. Brass wire brush 50p Burr 50p.
VERO SPOT FACE CUTTER..... $£ 1.49$

 SET. 10 leads with 20 clips. CALCULATOR CONNECTING WIREPACKTYPE ${ }^{21}$

£2. 69 MULTIMETER TYPE 2. (YN360TR) 20K O.p.v. with transistor tester. $\mathbf{£ 1 4 . 7 5}$ llluminated magnifiers Small $2^{\prime \prime}$ diá. (5× mag.) ….. 5114 Large $3^{\prime \prime}$ dia. ($4 \times$ mag.) cast frón vice.
SCREWDRIVER SET POCKET TOOLSET DENTISTS INSPECTION MIRROR
Jewellers eyeglass.
plastic tweezers $\mathbf{5 1} 50$
PAIR OF PROBẼS WITH LEADS (c)

TEACH-IN 82
 INTRODUCING ELECTRONICS

All top quality components as specified by E.E. FREE COMPONENT IDENTIFICATION SHEET. Follow this educational series and learn about List 1 \& 2 £27.98. List $\mathbf{3} \mathbf{£ 5} .98$ ALL 3 TOGETHER f 33.48 . WOODEN CASE KIT \quad £11.98.

INTRODUCING ELECTRONICS 6 part series E.E. Oct. 82-Mar. 83 No soldering. Connections via screw terminal blocks. Very clear drawings showing how to connect compo-
nents. Covers the basis of electronics. nents. Covers the basis of electronics.
Components (less batteries) parts 1-6 £6-98. Reprints $45 p$ each extra.

80010	ADVENTURES WITH MICROELECTRONICS
SEMICONDUCTOR DATA BOOK	Similar to 'Electronics' below.
Newnes	Uses I.C.s. Includes dice, elec-
ELECTRONIC PROJECTS FOR HOME	tronic organ, doorbell, reaction
ELECT. PROJECTS IN PHOTOGRAPHY	timer, radio etc. Based on Bim-
	board 1 bread board.
	Adventures with Microelectronics
BASIC ELECTRONICS. Theory and	£2.98
	Component pack £29.64 less
ELECT. PROJECTS	battery.

ADVENTURES WITH ELECTRONIOS ByTam

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2.85$. Component pack $£ 18.98$ less battery.

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS E KITS. All products are stock lines and are new \& full speciffestlon. We give personal service \&

MAGENTA ELECTRONICS LTD.
 EL51, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS.
 DE14 2ST. 0283 65435. MON.-FRI. 9-5. MAIL ORDER ONLY
 ADD 45p P. \& P. TO ALL ORDERS. PRICES INC. VAT

Normal despatch by relurn of post
OFFICIAL ORDERS WELCOME.
OVERSEAS. Payment must be in sterling.
IRISH REPUBLIC and BFPO: UK PRICES.
IRISH REPUBLIC and BPDO UK PRICES. EUROPEE UK PRICES PIUS 10%
ELSEWHERE: WCite TO

TWO FABULOUS OFFERS FROM

星 L G
 (C) M

SUPER 20
20k $/$ /V a.c. \& d.c.
A SUPER
PROTECTED UNIVERSAL MULTIMETER
Undestructible, with automatic protection on all ranges but 10A.

ONLY £33.50

inc. VAT, P\&P, complete with carrying case, leads and instructions

This special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. dB from -10 to +61 in 5 ranges
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$

TESTER 5039 ranges
$50 \mathrm{k} \Omega \vee$ a.c. and d.c.

With protective diodes and quick-acting 1.25A fuse.
THE
PROFESSIONAL SOLUTION TO GENERAL MEASUREMENT PROBLEMS ONLY £36.30
incl. VAT, P\&P, complete with carrying case, leads and instructions Goods normally by return of post.
The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply,
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (off.s.d)
39 ranges: d.c. $V 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 10 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, d.c. $120 \mu \mathrm{~A}, 100 \mu$
$100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.

Ohms $5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

Instruments Ltd.

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY HERALD

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or
Access.
So make sure you get your copy of Hobby Herald by ringing

(04215) 62829.

WIY USE STRIPBOARD?

Make your own PCB. It's
easy:
"GET YOU STARTED" KIT 12V Mini Drill (takes $\frac{1}{2} \mathrm{~A}$),
1 mm Bit.
25 sq ins Copper Clad.
PCB Etchant for $\frac{1}{2}$ Itr.
Tweezers and Dish.
Fine Etch Resist Pen.
Instructions. Only £6.00.
'SUPER' KIT. As above with: 3 Pens, Fine-Medium-Thick.
75 sa ins Copper Clad.
3 Sheet Transfers - Etch Resist.
Only £8.50.

SIMPLE PCB DRILL
12 V Motor with chuck attached with 3 coliets 0.8 to $2.0 \mathrm{~mm} £ 4.50$.

PCB ETCHANT

Double strength to make $\frac{1}{2}$ ltr solution. £0.90.

ETCH RESIST PENS

Set of 3, Fine-Medium-Thick £1.80.
Cheques \& P.O.'s payable to POPS Components. Callers welcome to our new shop extension. Five times the size.

RESISTOR FILE

Std E12 VALUES $\ddagger w$ CARBON FILM 10Ω to $10 \mathrm{M} \Omega$ 73 PRINTED ENVELOPES EACH CONTAINING 10 FULL SPEC, 5\% RESISTORS COVERING THE E12 SERIES FROM 10Ω TO $10 \mathrm{M} \Omega$ IN A SMART FLIP-TOP FILE FOR YOUR WORK BENCH £8.50

CHEQUES \& P.O's PAYABLE TO: POPS COMPONENTS. PRICES ARE INCLUSIVE BUT ADD 60p P\&P TO EACH ORDER

REFILL ENVELOPES CONTAINING $10 \times \frac{1}{4}$ W RESISTORS ANY E12 VALUE FROM 10Ω TO 10MEG Ω 15p EACH CONTAINING $100 \times \frac{1}{4}$ RESISTORS ANY E12 f1.20 EACH Please allow 28 Days Delivery

[^1]

"BIG TRAK" MOTORIZED GEARBOX
These units are as used in the "Big Trak" computerized vehicle, and offer the experimenter in robotics the opportunity to purchase the electro-mechanical parts required in building remote controlled vehicles. The unit comprises:
(a) $2 \times 3 V$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle; (b) A gearbox contained within the black ABS housing reducing the final drive speed to approx. 50 rpm .
Data is supplied with the unit showing various options on driving the motors, as well as a direction controller circuit, enabling the unit to turn right, left or go straight ahead.

2N3055 SCOOP!!
Made by Texas - full spec devices 60 R each; 10 for $£ 4 ; 25$ for $\mathbf{£ 9} ; 100$ for $£ 34$; 250 for $£ 75$; 1000 for $£ 265$.

COMPUTER BATTLESHIPS'

 Probably one of the most popular elec-tronic games on the market. Unfortutronic games on the market. Unfortu-
nately the design makes it impractical nately the design makes it impractica although it may well function perfectly. instead we have tested the sound chip and sell the board for its component value only (PCB may be chipped or cracked): SN76477 sound IC; TMS1000 u-processor; batt clips, R's. C's, etc. Size book and circuit 30 p $£ 1.50$. instruction book and circuit 30 p extra.

SIMON GAME

is back again. Another supply of eady built PCB's for this flashing light pulsating tone computerised game is now with us. Supplied tested and working with speaker \& instructions. $£ 4.95$. REED RELAYS
Manufacturers rejects-DIL and other make break \& clo contacts Not tested may be only partially working or of etc, so very low price - pack of 10 assorted $£ 1 ; 25 £ 2.00 ; 100$ p7.00.

NOW

 REDUCED TO $£ 3.95$
ELECTRO-DIAL

Electrical combination lock-for maximum security-pick proof. I million combinations!! Dial is turned to the right to one number, left to a second number, then right again to a third number. Ony when chis has been comelectrical contacts close These can be used to operate a relay or solenoid Overall dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Only £3.95.

STABILIZED PSU PANEL
A199 A versatile stabilized power supply with both voltage ($0-30 \mathrm{~V}$) and curuses inc, bench PSU Variable. Many gen. purpose testng Panel ready buitt tested and calibrated. f7 75 . Suitabié ransformer and pots, $\mathbf{f 6 . 0 0}$. Full data supplied.

IN4006 DIODES
Special purchase of 1A rects, Russian made. Packed in boxes of $300, £ 8.50$ per ox. 4 boxes $£ 30$: 10 boxes $£ 75$
P.C. ETCHING KIT Mk V The best value in etching kits on the market - contains 100sq ins copper clad board, Ferric Chloride, Etch resist pen, abras all for $£ 495$,

COMPUTER SOFTWARE

 We now sell a range of tapes and books for DRAGON 32, SPECTRUM, ZX81, ing for which computer required or call in our shop.FERRIC CHLORIDE
New supplies just arrived - 250 mg 500 ml of water. Only $£ 1.15$. Also abra sive pólishing block 95 p.

LIE DETECTOR

Not a toy, this precision instrument was originally part of an "Open University" course. used to measure the change in emotional balance, or as a lie detector. and a circuit diagram. Supplied complete with probes, leads and conductive jelly. Needs $24 \frac{1}{2} \mathrm{~V}$ batts. Overall size 155 $\times 100 \times 100 \mathrm{~mm}$. Only $£ 9.95$-worth that for the case and meter atone!!
AA NI-CADS - 10 for $£ 9.95$ Brand new nickel cadmium batteries by GE, standard $1.2 \mathrm{~V} @ 450 \mathrm{~mA} / \mathrm{H}$. Profesends. Special price $£ 1.40$ ea; 10 for £9.95; Box of 80 £65. Ni-cad Charger: Charges uo to $4 \mathrm{AA}, \mathrm{C}$ or D selts + PP3. Only $£ 7.95$

1000 RESISTORS $£ 2.50$

We've just purchased another' 5 million pre-formed resistors, and can make a simitar offer to that made two vears ago, at the same price!!! K523-1000 mixed formed for PCB 50 , range of preferred values. 1000 for range of preferred values. 1000 fo
$£ 2.50 ; 5000 £ 10 ; 20 \mathrm{k} £ 36$.

GOODS NORMALLY DESPATCHED BY RETURN OF POST

443D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX
All prices include VAT - just add 50p post. Tel. (0703) 772501

TALK TOTHE WHOLE WORLD

Study now for the

RADIO AMATEUR'S

 EXAMINATIONWe have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence.

- FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name
Address

If you have trouble understanding chopper circuits and protection arrangements, want to know about flywheel line sync, are deeply interested in all things from pattern generators to satellite TV receiving techniques-well, have we got the magazine for you! What would you say to a unique specialist mell as electronics technicians on all aspects of TV and Video, including servicing, news and developments?...it's well worth a closer look... *June project: In situ transistor SCR and diode tester-simple and inexpensive-uses l.e.d.s to indicate polarity and device condition.

EFPAK

CATALOGUE

BI-PAKS NEW 1983 CATALOGUE IS OUT!

'IRRESISTABLE

RESISTOR BARGAINS' Pat No Ot, Description Price $\begin{array}{lll}\text { Sxil } \\ \text { SXII } & 400 & \text { Mixed "All Type" Resistors II }\end{array}$ Sxil 400 Preformed his watt Carbon Resistors
${ }_{3}$ watt Carbon Resistors
$\begin{array}{lll}5 \times 13 & 200 & 1 / 4 \text { wath Carbon Resistors } \\ 5 \times 14 & 150 & 1 / 2 \text { wat1 Resistors } 22 \text { atm }\end{array}$
n watt Resistors 22 ohm
2 m 2 Mixed
$5 \times 15 \quad 100 \quad 1$ and 2 watt Resistors 22 onm- 2 m 2 Maxed
Paks $\$ \times 1215$ contarn a range of Carber \quad I1 of assorted values from 22 ohms to 2.2 meg Sare pounds on these resistor paks and have a full range cover your propects
${ }^{\text {GH}}$ Guantities approximate. count by weight

6 Blach Heatsink will fit T0.3 and 10.220 Ready drilled Half price value
Sx53 L Power finned Heatsink This heatsink gives the greatest possible heatidissipation the smatlest soace owing to is unigue staggered tin design pre driled
10.3 Stre 45 mm squarex 20 mm high 40 p $5 \times 54 \quad 10.66$ size $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$ 5×55 Hear Eficiency \& we Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} x$. :imm High Dilled to take up to $4 x$ 10.3 derices [1.50 each

"CAPAELLE

 CAPACITORPAKS"
Pal No. Qt3. Description Pric

 $\begin{array}{lll}\text { SX16 } & 250 & \text { Capacitors Mixed Types } \\ 5 \times 17 & 200 & \text { El }\end{array}$ Ceramic Capactors Minature MixedMixed Ceramics lpf. 56ipt L1 Mixed Ceramics $6801-0.5 \mathrm{mi}$ E1 Assorted Polyester/Polystyrene Capacitors
Mixed C280 type capacitors metal foll Esectrolytics, ali sorts Quality Electrolytics $50-1000 \mathrm{mf}$$[1$

mate con Beads, mexed

Quannitues approx:mate count by weigh

BARGAINS

Sx42 20 small 125 Red LED's
Sx43 10 Rectangutar Green LED' 30 Assorted Zener Dodes 250mw. 2 watt mixed voltages. all coded New
Sx47 4 Black Instrument
Knobs-winged with panter Standard screw fit size 29 x 20 mm
Sx49 20 Assorted Sluder Knobs Blach/Chrome etc
Su80 12 Neons and Filament Lamps. Low voltage and mains - various types voluge and mains - varhous types
and colours - some panel mounting

SEMICONDUCTORS FROM AROUND THE WORLD
A Collection of Transistors. Diodes. Recturers. Bridges SCR's Triacs. IC's both Logic and Linear plus Opto's all of which are curient everyday usable devices

BI-PAK'S OPTO BARGAIN OF THE YEAR!

Walued at over £10-Normat Retal-we offer you a pach of 250 pto devices to include LED's Large and Small in Red Green Yellow and Clear 7 Segment Disolays both Common Cathode and Common Anode PLUS bubble type displays-like D. 33 . Photo Transistors-simi
OCP71 Photo Detectors-file MEL11.12 This whole pach ot 25

25 £4-00

AND we guarantee your money back if you are not Order Mo. \$X57.

TECASBOTY

he Esectronic Components and Semiconduc or Bargain of the Year A host of Electronic components including potentiomelers - rotary and slider presets - motizontal and vertical Resistors of mixed values 220 mms to 2 ML - 1 B to 2 Watt A comprehensive range of capacitors including eteclrolytic and polyester types plus disc ceramics eicetera Audio plugs and sockets of various tyoes plus swithes luses. heals:nks wire . nuts bolts gromets cable clips and tyes. mnobs and PC Board Then ado to that 100 Semiconouctors 10 include iransistors. diodes. SCA's opto's. all of whichare curfent everyday usable devices in all a Fantastic Parcel No fubbish all idenlifatle and valued in curfent catalagues at well over $£ 2500$ Our Fight Against Inflation Price
wn with Depression JUST E6.50.
Oino SX85

Send your orders to Depr EES Send your orders to oepr EES
BLPAK PO BOX 6 , WARE. HERTS SHOP AT 3 BALOOCK ST, WARE HEATS.

We revictear card aning us on ware 3188 nom onc cat per oder emen tasict Coods normaly sent inc Cless Mall
towi Posuge add buber fobl coce

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO

We hold vast Stocks "in stock" for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours 'ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone.

To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:

:TPDK Access 8 VISA ocsect Ring 09203182 for SOUND with SINCLAIR

MAKK AMAZZING SOUND EFFECTS

 WITH YOUR ZX 81 . TIMEX Sinclair 1000 or SPECTRUM

- The ZON SOUND UNIT is completely self-contained and especially designed for use with the ZX 81, TIMEX Sinctair 1000 and Spectrum Computers. It just plugs in - no dismanting or soldering
- No power pack, batteries, leads or other extras.
- Manual Volume Contrel on panel - ample volume from buit-in loud-speaker
- Standard Sinclair - 16 K Rampack or printer can be plugged into ZON \times Sound Unit without affecting normal computer operation
Huge range of possible sounds for Games, Music, Hericopters, So FI, Space Invaders, Explosions, Gun-shots, Drums. Pianes,
Organs. Bells. Tunes. Chords, etc. or whatever you deviset
- 8 full octaves. Uses 3-Channel sound chip giving programme control of pitch, volume of tones and noise ail with envelope

Easily added to existing games or programmes using a few simple "BASIC" lines or machine code
\Rightarrow No memory addresses used - 10 mapped
ULL instructions with many examples of how to obtain effects and the programmes, supplied. Fully guaranteed British Made
"Except with Spectrum, you need the Spectrum Extension Board Order No SE1 - PRICE $£ 6.80$ inc. VAT.
Payment may be made by Cheque, P.O. Giro No 388 7006. Postal Order or Credit Card.
Export orders:- Bank Cheque, Inter national Money Order, U.S. \downarrow or $£$ Sterling.

The Big Event for'83

Sponsored by Everyday Electronics, Practical Electronics and Practical Wireless

The first Electronic Hobbies Fair in 1982 immediately established itself as the foremost consumer electronics exhibition-the biggest attendance and the largest number of exhibitors

The 1983 Fair will build on the success and the experience of the first year. It will be 1983's largest and most influential
shop window for the whole range of electronic equipment and components for the electronics hobby enthusiast-constructional projects, home computers, amateur radio, video games, musical instruments and peripheral equipment-whether for the beginner, the specialist or the \geqq all-round enthusiast.

Make a date for 1983. October 27-30, Alexandra Palace, London. For more details contact: The Exhibition Manager,
Electronic Hobbies Fair, Reed Exhibitions, Surrey House, Throwley Way, Sutton, Surrey SM1 4QQ

Please send more information on Exhibition stand space
Please ask a salesman to telephone \square
Name
Position
Company
Address
Telephone Number

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
Build a modern oscilloscope

- Recognise and handle current electronic
components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic
electronic circuits used in modern
cquipment
数 Build and use digital electronic circuits
and current solid state 'chips'
Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer
 equipment
NewJob? NewCareer?NewHobby?Getinto Flectronics Now!

Receivers \& Components

AERIAL BOOSTERS trebles incoming signal. price £7.00. SAE leaflets. VELCO ELECTRONICS Ramsbottom, Lancashire BL0 9AG

BUMPER BOX OF BITS

WOW!!! We've got so many components in stock. we can't possibly list them all!! - So buy a box in it you'll find resistors, capacitors, displays. switches, panels with transistors, diodes, IC's etc, coils, pots and so on. All modern parts - guaranteed at leas 1000 items, minimum weight 101 bs . ONLY $£ 8.50$ inc.
'JUST OUT! 40 page catalogue ONLY 50 p . ELECTRONICS WORLD
1d Dews Road, Salisbury, Wilts, SP2 7SN (Prop: Westbrough Ltd)
TURN YOUR SURPLUS capaciors. transistors etc. into cash. Contact Coles Harding \& Co., 103 South Brink Wisbech, Cambs. 0945-584188. Immediate settlement.
NEW COMPONENTS DIL SOCKETS 8 pin $8 \mathrm{p}, 14 /$ 16 pin 9p, 1W Resistors 1p, 5 mm LEDs Red 8p, yell/ green 9p, Clips 2p, 400 MW Zeners 7 p , IN4148 2p, IN $4001 / 2 / 3 / 44 \mathrm{p}$, IN 40076 p . BCIO9C $10 \mathrm{p}, 2 \mathrm{~N} 3055$ 40p, $55516 \mathrm{p}, 74115 \mathrm{p}, 4001 \mathrm{~B} 10 \mathrm{p}, 4011 \mathrm{~B} 10 \mathrm{p}$, plus 30 p post to: G. Stone, 22 Mailers Lane Manuden, Bishop's Stortford, CM23 1DP.

PCB's

I AM PREPARED TO manufacture PCB's for the hobbyist and enthusiast on a one off basis. from your own actual size artwork, at very attractive rates. Interested? Then send S.A.E. for details and prices.

ROBINSON PCB'S,
62 Moor Road,
Orrell. Wigan, Lancs WN5 8RR.
ELECTRONIC COMPONENTS MERSEYSIDE, Myca Electronics. 2 Victoria Place, Seasombe Ferry, Wallasey, L44 6NR. Mail order. Send 50 p for price list refundable off first order. 051-638 8647.

Miscellaneous

BAFFLE YOUR FRIENDS with a Proximity Switch. Far more sensitive than Touch Switches, Triggers from a distance, no contact required. Switches mains at 480 W . Can be used in many fun projects for the Hobbist. £9:95 + £1.50 p\&p, make cheques \& PO payable to: Tout and Castle Components, 17 Rowallan Close, Caversham Park, Reading, Berkshire (Prop. P. S. Castle).

dIgital. watch rfplacement parts. Batteries displays, backlights, etc. Also reports, publications, charts. SAE for full list. PROFORDS. Copners Drive. Holmer Green, Bucks HP15 6SGA

ELECTRONICS WITHOUT SOLDER

Build electronic circuits without solder on a Roden S-Dec This has built-in
contacts and holes into
which you plug your components Suitable for all ages. Can be used
time after time ideal gitt to students or experimenters. Full instructions and 2 circuit diagrams with each S-Dec Send cheque or P.O. to hoden Products, Dep E

EVERYDAY and computer PROJECTS

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.24$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 31 pence per word (minimum 12 words), box number $60 p$ extra. All cheques, postal orders, etc., to be made payable to

Service Sheets

> ANY PUBLISHED, FULL-SIZE SERVICE SHEET by return $£ 2+$ LSAE. CTV/music centres $£ 3$. Repair data with all circuits, layouts. etc. your named TV or Video $£ 8.50$. Free 50 p mag. All orders, queries T.I.S. (E.E.). 76 Churches, Larkhall, Lanarkshire.

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd., Harrogate, N. Yorkshire. Tel: $0+2355885$.

Situations Vacant

Design Engineers Satellite Communications

Major expansion of our Space Division has created numerous opportunities for engineers to be involved in some of the most technologically challenging work on meteorological and communications satellites. Qualified Hardware and Software Design Engineers of various levels of experience are required for posts which vary from Engineering Manager/Group Leader to membership of a Design Team Disciplines include:

Spacecraft Systems

 Communications SystemsSalaries and benefits will reflect the importance we attach to the positions and relocation assistance is available if required
Please write or telephone stating your qualifications, recent experience and area of interest to Jack Burnie, Marconi Space \& Defence Systems Limited, Browns Lane, The Airport, Portsmouth, Hants. Tel (0705) 674019 Ref: BL 34.
(All posts are open to men and women)

Microwave Systems and Equipment Radar and Signal Processing Electronic Circuit Design Mechanical, Thermal and Dynamics Design Power Supplies Switch-Mode

AT YOUR SERVICE

Everyday Electronics and Computer Projects and crossed "Lloyds Bank Ltd" Treasury notes should always be sent registered post Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics and Computer Projects, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Security

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT
AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW for your copy
THIEFCHECK BURGLAR
ALARM D-HY SYSTEM

MAIN
DISTRIBUTOR

CATALOGUE OF BURGLAR
ALARM
EQUIPMENT
TOP QUALITY D.I.Y. SYSTEMS AND PARTS AT TRADE PRICES

SEND S.A.E. OR PHONE.
C-TEC SECURITY, Dept. EE, 60, MARKET ST, WIGAN (0942) 42444

ORDER FORM
pLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

ADDRESS

EVERYDAY ELECTRONICS

Classiffed Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5942
Hate:
31p per word, minimum 12 words. Box No. 60p extra.

\star BAKER \star GROUP P.A. DISCO

 AMPLIFIERS150 watt Output. 4 input Mixer illustrated 50 watt Ouput. Slave 500 mv . Input $50+150 \mathrm{wtereo}$ Slave 500 mm . Inputs
150 w P. Vocal 8 mputs. High/Low Mixer $150 w$ P.A. Vocal. 8 mputs. High,
100 watt Valve Model. 4 inputs. 100 watt Valve Model. 4 inputs.
60 watt Valve Model. 4 inputs
DRILL SPE Easy to build lit CONTROLLFR LIGHT DIMMER KIT $\times 3 \times 1 \frac{12}{2} \mathbf{5} 5$ less case up t.

STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high, medium or low gain per channel, with volume contro and PC
Board. Can be ganged to muke mutt-way stereo mixers. $£ 3.50$. Post 65 p SOUND TO LIGHT CONTROL KIT MK II
Completc kit of parts, printed circuit. Mam transformer. 3 channets. Up Suitable for home Hi-Fi or Discu \&19 Pus $£ 1$ OR COYPLIIE READY BUILT M CABINET 27.
200 Watt Rear Reflecting White Light Bulhs Idcal for Disco Lights.
Edison Screw 75 p each or 6 for $£ 4$ or 12 for $£ 7.50$. Post $£ 1$ in per six. MAINS TRANSFORMERS Primary 240 V A. $250-0-250 \mathrm{~V} 80 \mathrm{~mA} .63 \mathrm{~V} 3 \mathrm{AA} 1 \mathrm{~A}$
$350-0.350 \mathrm{~V}$ 250A. 63 V 6 Amp C 220 V 25 ma .6 V 1A 2 L 2.220 V 45 ma 6 V 2 $250 \vee$ roma $0 \cdot 3 \mathrm{~V}$
General purpose tapped outputs voltages availabl 1 amp to.8.10.12.16.18.20.24. $30.36,40.48 .60$ $2 \operatorname{amp} 6.8,10,12,16.18,20,24,30,36,40,48.60$ 3 amp 6.8.10.1216:1820.2+30.36.40.4860

 $9 \vee 3 a$ 9-0-9 $10-0 \mathrm{~s} 0 \mathrm{ma}$ $10-0-10 \mathrm{~V} 2 \mathrm{a}$
$10-30-402 \mathrm{a}$ $12-30-402 \mathrm{a}$ 12V 750 ma
 TOROIDAL $30-0-30 \mathrm{~V} 4 \mathrm{Amp}-20-0-20 \mathrm{~V}$ Amp
CHARGER TRANSFORMIERS RECTIFRS

LOUDSPEAKER BARGAINS. MANY OTHERS

 $\underset{25}{ } \mathrm{ohm} .3 \mathrm{i}$ in. 35 ohm .3 in .62 .50 . Many others in stock Speaker Covering Materiat Samples 32p. Stamps.
R.C.S. LOW YOLTAGE STABILIZED

POWER PACK KITS 90-100 mA
All parts and instructions with Zener divde prined circuit. Tectifiers and
double wound mains transformer input $200-240$ a.c Output voltages avanabie 6 or 7 Sor 9 or 12 d .c. up to 100 mA . State whage requred. PP BATTERY ELIMINATOR. BRITISH MADE
Baians Transformer Rectifier 9 wot 40 ma. Stabilised, with overload curout Plastic case size $5 \times 51 \times 2 \frac{1}{2}$ Suitable Radio/Cassetles. Fully Isolated and Smeuthed. THE "IVSTAVT" BUIK TAPE ERASER A. $200 / 240 \mathrm{~V}$ (120 y to order) , $\mathbf{I} \mathbf{9 . 5 0}$ Tapes. DIscs Cassettes.
HEAD DEMAGNETISER PROBE 55.00

ILUMINIUM CHASSIS $18 \mathrm{~s} .4 . g$. Undrilled, 4 sides, riveted corners. $64 \times 24 \mathrm{n} .61 .75 .8 \times 6 \times 24 \mathrm{in} .52 .20 ; 10 \times 7 \times 2 \operatorname{lin} .52 .75: 14 \times$ 2 Lin. $£ 3.20 ; 16 \times 10 \times 2 \mathrm{~km} £ 3.80$

 $8 / 450 \mathrm{~V}$
$32 / 350 \mathrm{~V}$

SINGLE PLAY
Turntables Large
240 volt AC. Post $£ 2$

Mahe	Model	Drive	Cartridge	Price
BSR	P171	Rim	Cerante	¢20
BSR	1232	Rim	Ceramic	c27
CARRARD	6200	Rim	Ceramic	¢2
RSR	P93\%	12 wolt	Magnetic	52.5
AL HoCHAVGERS 240 VOL.T				
BSR	Budges	Rim	Ceramic	416
FSR	Detux	Rim	Ceramic	418
BSR	Cll2	Rim	Maymetic	¢26
RADOCOMTOENE SNPECIALSTS				

Dept 4, 337, WHITEHORSE ROAD, CROYDON SURREY, UK. TEL: 01-684 1665
Post 65p Minimum. Callers Welcome.
Closed Wed. Same day despatch
Access-Barclay-Visa. Lis's 32p

RETAIL SHOP OPENING HOURS
Monday to Thursday 9.00-6.00 Friday 9.00-7.00 Saturday 9.00-5.30

ALL PRICES SHOWN EXCLUDE VAT. P\&P 60p per order.
AMBIT INTERNATIONAL DEPT. E.E. 6

The modern way of instant 2 way communications Just plug into power socket. Ready for use Crystal lear communications from room to room. Range -mile on the same mains phase. On/off switch. Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom. between office and warehouse, in surgery and in homes. Also available

NEW AMERICAN TYPECRADLE

 TELEPHONE AMPLTIER
atest iransistorised Telephone Amplifler facility detached plug-in speaker Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in calls: leaves the user's hands free to make notes, onsult files. No long waiting, saves time with longdistance calls. On/off switch. volume control

DOOR ENTRY SYSTEM

No house / business / surgery should be without a DOOR ENTRY SYSTEM in this day and age. The way to the caller and admit him only if satisfied by pressing a remote control button which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y kit with one internal Telephone, outside Speaker panel, eiectric door lock release (for Yale type surface latch lock); mains power unit, multicore cable, 50 t and wiring dagram. Price $\mathbf{f} 65.95$ including VAT \& P \& P. Extra phone $£ 10.95$
PLEASE ALLOW 10-15 DAYS FOR DELIVERY 10-day prlce refund guarantee on all liems Personal Callers Werd welcome. Personal Callers Welcome
WEST I.ONDON DIRECT SUPPLIES (EE6) 119 THE VALE. ACTON
nata ONDON W3 7RQ Tel. 01-740 9760

INDEX TO ADVERTISERS

Alcon.	1
Ambit	400
Audio Electronics	391
Bicc Vero	392
Bi-Pak	395
B.K. Electronics	Cover 3
B.N.R.E.S.	394, 397
Bull J.	383
Circuit Board Components	332
Cricklewood Electronics	331
Dziubas M.	392
Electronics Digest	377
Electroni-Kit	332
Electronize Design	330
Enfield Electronics	394
G.S.C.	377
Greenweld Electronics	394
I.C.S. Intertext	334
Magenta Electronics	390
Maplin Electronics	Cover 4
Pops Components	392
R \& TVC	336
Rapid Electronics	333
R.C.S.	399
Redditch Electronics	334
Sinclair Products	. 3888.389
Sparkrite	393
T.K. Electronics	334
Velleman U.K. ...	335
West London Direct Supplies	400

MULLARD SPEAKER KITS

Purposefully designed 40 watt R.M.S. and 30 watt R.M.S. 8 ohm speaker systems recently developed by MULLARD'S specialist team in Beigium. Kits comprise Mullard woofer $18^{\prime \prime}$ o Mullard 3" high power domed tweeter. B.K.E built and tested crossover based on Mullard circuit, combining low loss components, glass fibre board and recessed loudspeaker terminals SUPERB SOUNDS AT LOW COST. Kits supplied in polystyrene packs complete with instructions 8 " 40 W system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price $£ 14.90$ each $+£ 2.00$ P\&P
$5^{\prime \prime}$ 30W system - recommended cabinet size Price $£ 13.90$ each $+\mathbf{f 1 . 5 0}$ P 8 P.

Designer approved flat pack cabinet kits including grill fabric. Can be finished with iron on veneer or self adhesive vinyl etc
$8^{8 "}$ system cabinet kit $\mathbf{5 8} .00$ each $+\mathbf{5 2} .50 \mathrm{P}$ \& P
system cabinet kit $£ 7.00$ each $+\mathbf{£ 2} .00 \mathrm{P}$ \& P

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechanism coupled to one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, ready built and tested.
Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind, fast forward, play. stop and secondary inputs for stereo microphones. Input Sensitivity: 700 mV to 2 V . Input Impedance: 68 K Output level. 400 mV to both left and right hand channels. Output Impedance: 10 K . Signal to noise
ratio: 45 dB . Wow and flutter: 0.1% Power Supply ratio: 45 dB . Wow and flutter: 0.1%. Power Supply
requirements: 18 V DC at 300 mA . Connections: The left and right hand stereo inputs and outputs are via individual screened ieads, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $5 \frac{1}{2}$ in Supplied complete with circuit diagram and connecting Price $£ 26.70+£ 2.50$ postage and packing Supplementary parts for 18 V D.C power supply
(transformer, bridge rectifier and smoothing capacitor) ${ }_{f} .50$.

LOUDSPEAKERS

15 " 100 watt R.M.S. (HI-FI, "A.A., DISCO, BASS GUITARI Die cast chassis, $2^{\prime \prime}$ atuminim voice coif, white cone with aluminium centre dome. 8 ohm imp., Res. Freq. 20 Hz ., Freq. Resp. to 2.5 KHz ., Sens.
97 dB (As photograph). Price: $\mathbf{f 3 2 . 0 0 +}$ E3 carriage.
$12^{\prime \prime} \quad 100$
00 watt R.M.S. (HI-FI) Die cast chassis 8 ohm amp Res voice coil. Black cone. 80 hm imp , Res. Freq. 20 Hz ., Freq.
Resp. to 4.5 KHz . Sens. 95 dB (As
 8 watt R.M.S. (HI-FI, P.A.) $11 / 2^{\prime \prime}$ aluminium voice coil. White cone. 8 ohm
imp. Res. Frea 40 Hz . Frea Resp
and imp. Res. Freq. 40 Hz . Freq. Resp. to 6 KHz : Sens. 92 dB . Also available with black cone
fitted with black metal protective grile photograph). Price: White Cone f8.90, $12^{\prime \prime} 85$ wat M M M KENZIE
1285 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) 2 aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freq 45 Hz .. Freq. Res. 10.5 Hz . Sens. 98 dB . Price: f 22.00 + f 3 carriage.
$12^{\prime \prime} 85$ watt R.M.S. McKENZIE C1285TC (P.A., DISCO)

信 $15^{\prime \prime} 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) $3^{\prime \prime}$ aluminium voice Die cast chassis. 8 ohm imp ., Res. Freq. 40 Hz ., Freq. Resp. to 4 KHz . Price: $\mathrm{f} 47+\mathrm{f} 4$
carriage. carriage
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Plezo revolution. The low dynamic mass (no voice coll) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existıng speaker systems of up to 100 watts (more if 2 put in series) FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $£ 4.29$ each
TYPE 'B' (KSN1005A) 3立" super horn. For general purpose speakers, disco and P.A.

TYPE ' C ' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and

TYPE ' ${ }^{\prime}$ ' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2 KHz). Suitable for high quality Hifi systems and quality discos. Price $\mathbf{f} 7.99$ each
TYPE 'E' (KSN1038A) 3 3"' horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $\mathbf{£ 4 . 9 9}$ each
TYPE 'F' (KSN1057A) Cased version of type ' '. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $\mathbf{£} 10.75$ each. P\&P 20p ea. (or SAE for Piezo leaflets)

V10 80 LOUDSPEAKER
The very best in quality and value. Ported tuned cabinet in hardwearing black vynide with protective corners and carry handle. Built and tested, employing 10 in British driver and Piezo tweeter, Spec: 80 watts RMS; 8 ohms; 45 Hz 20 KHz ; Size: 20 in $\times 15$ in \times 12in; Weight: 30 pounds.
Price: $£ 49.00$ each. $£ 90$ per pair
Carriage: $\mathbf{£ 5}$ each. $\mathbf{£ 7}$ per pair
Prompt Deliveries
VAT inclusive
prices
Audio Equipment
Test Equipment
by
Thandar
and
Leader

1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW
- Compact size
- Easy snap in fixing through panel/cabinet cut out
- insulated plastic case
- Full wave control using 8amp Conf
- Conforms 10 BS800

Suitable for both resistance and inductive loads
industry, the home and discos theatres etc.
 Any quantity

BSR P256 TURNTABLE

MEMBRANE

manufactured from KEYBOARDS carbonate film mounted on 1 mm glass fibre printed circuit board contacts.
$16 \quad$ way numeric keyboard
 Standard keyboard providing 0-9 and A-F functions. Alpha Numeric Keyboard Full size 55 key non encoded keyboard with the
commonty required functions Owerty array Matrix output via a 16 pin DiL socket.

NEW OMP 100 Mk.II POWER AMPIIFIER MODULE
Power Amplifier Module complete with inte gral heat sink, toroidal transtormer power supply and glass fibre p.c.b. assembly incorporates drive circuit to power a compatibe LED Vu meter. New improved specification makes this amplifier ideal for P.A., instrumental and Hi-Fi applications. SPECIFICATION:
Output Power: 110 watts R.M.S
Loads: Open and short circuit proof 4/16 ohms.
Frequency Response: $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$ T.H.D: 0.01%
S.N.R. (Unweighted): $-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$ Sensitivity for Max Output: 500 mV @ 10 K Price: E31.99 + £2.00 P \& u Meter Price: $£ 7.50+50 \mathrm{p} . \mathbf{P}+\mathbf{P}$
Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 80 hms
Build a quality 60 watt R M.S system

* 10 " Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
\star " ${ }^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
* 5" Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
* 3-way crossover 6dB/oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ cutcheons atractive cast aluminum fixing es. emovable enabling a unique choice of cabinet styling Can be mounted directly on to battle will three whits have alum speaker tabrics dind rolled foam surround Crossover com Price $\mathbf{f 2 2 . 0 0}$ per kit $+£ 2.50$ postage and pack

1280 watt R.M.S loudspeaker
A superb general purpose twin cone loudspeaker 50 oz magnet. 2 aluminium voice coil. Rolled surround Resonant tre quency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB Impedance 8 ohm Attractive blue cone with aluminium centre dome.
Price $£ 18.49$ each $+£ 3.00$ P\&P

Sole UK Agents for Heathkit

NOW THE world-famous Heathkit range of superb electronic kits is available from Maplin - the newly appointed exclusive UK distributor. Kits range from a simple clock for beginners to a unique Robot (see pic) with which you can learn about robotics.

There is a range of training courses covering electronics and computing topics, many containing constructional projects. For full details, pick up a copy of the latest Maplin magazine or urite for a free copy of our Heathkit catalogue. Order As XH62S.

GREAT PROJECTS FROM E\&MM

OUR NEW book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator, Guitar Tuner. Hexadrum, Syntom, Auto Swell. Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. ORDER AS XH6IR. PRICE $£ 1$.

Maplin's Fantastic Projects

FULL DETAILS in our project books. Price 70 p each.

In Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier Universal Timer with 18 prograin times and 4 outputs - Temperature Gauge - Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter.

In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W MOSFET Amplifier - Doppler Radar Intruder Detector Remote Control for Train Controller.

In Booh 4 (XA04E) Telephone Exchange for 16 extensions o Frequency Counter 10 Hz to

600 MHz - Ultrasonic Iniruder Detector - I/O Port for 2X81 - Car Burglar Alarm - Remote Control for 25 W Stereo Amp.

In Book 5 (XA05F) Modem to European standard 100 W 240 V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC 20 •

25W Stereo

 MOSFET Amplifier* Over $26 \mathrm{~W} /$ channel into 89 at 1 kHz both channels driven.
*Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7

Module to Bridge two of our MOSFET Amps to make a 350 W Amp • ZX8I Sound on your IV Scratch Filter - Damp Meter Four Simple Projects.

In Book 7 (X1071I) * Modem Interface for ZX81/VIC20 \bullet Digital Enlarger Timer/Controller \bullet DXers Audio Processor - Sweep Oscillator - Minilab Power Supply • Electronic Lock - and others.

* Projects for Book 7 were in an advanced state at the time of writing. but coments may change prior io publication (due lith May 1983).

Computer Shopping Arrives

AS FROM June 1st you can place orders directly with our computer from your personal computer. The computer shopping revolution has arrived! To communicate, you'll need a modem (our RS232 compatible modem kit is LW99H price £39.95) and an intërface (our ZX81 interface LK08J price $£ 24.95$ is available already with many more for most popular micros coming soon).

Just dial us up on 0702552941 and you'll be able to interrogate our stock file then place your order, type in your credit card number and a few minutes after you hang up your order will print out in our warehouse ready for packing. And all without saying a word.

Try out the future way of shopping now! You'll see immediately what stock we've got available and you'll discoter how easy it is to ensure your order is exactly right. And you'll see precisely what the current price is for each item and what total amount will be charged to your credit card. It all helps to make buying easier. So give us a ring now!

MATINEE ORGAN

EASY-TO-BUILD, superb specification. Comparable with organs selling for up to $£ 1000$.

Full construction details in our book (XH55K). Price £2.50. Complete kits available. Electronics (XY91Y) £299.95*. Cabinet (XY93B) $£ 99.50^{*}$. Demo cassette (XX43W) £1.99.

Maplin's New 1983 Catalogue

Over 390 pages packed with
data and pictures and all completely
revised and including over 1000 new items. On sale in all branches of WH SMITH. Price $£ 1.25$.

POST THIS COUPON NOW:

Please send me a copy of your 1983 catalogue. I enclose $£ 1.50$ (inc. P\&P). If I am not completely satisfied I may return the cata| logue to you and have my money refunded. If vou live outside the UK send $£ 1.90$ or 10 International Reply Coupons.
wires (plus toroidal transformer and mains lead terminations). * Complete kit contains everything you need including predrilled and printed chassis and wooden cabinet.
Full details in Projects Book 3. Price 70p (XA03D). Complete kit only $\mathfrak{f} 55.20$ incl. VAT and carriage (LW71N).

Name

Address

All prices include VAT \& carriage. Please add 50p hundling charge to orders under 55 total salue.

[^0]: - Includes Command List with examples

[^1]: POPS COMPONENTS $38 / 40$ LOWER ADOISCOMBE RD CALLERS WELCOME © CROYDON SURREY CRO GAA TEL: 6882950

