Easy to build projects for everyone surdays

AUTO-ELECTRONIC PRODUCTS

KITS OR READY BUIT

ELECTRONIC IGNITION

K Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
t Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more ofutput and maintains it from service to service.

* Has it PEAK PERFORMANCE or is it flat at high and low revs where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max (even with 8 cylinders)
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* Is the PERFORMANCE SMOOTH.The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark energy of ordinary capacitive systems, 3 times the spark duration.
Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

STANDARD CAR KIT
 £ $15 \cdot 90$
 Assembled and Tested $£ 26.70$

PLUS
P. \& P.

E1 (U.K.)
TWIN OUTPUT KIT
£ 24.55
For Motor Cycles and Cars with twin ignition systems
Assembled and Tested $£ 36.45$
Prices include VAT

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

- 2000 COMBINATIONS provided by an electronic key - a minature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit codel.
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switchest. Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed allows owner to lock doors etc.

Don't Wait Until Its too Late ~ Fit one NOW!

K DISABLES IGNITION SYSTEM when alarm is armed.
t IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS
AND CONNECTORS PLUS TWO KEY PLUGS
CAR ALARM KIT
£ 24.95
PLUS
P. \& P.

EI (U.K.)
Prices
include

(c) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
PROJECTS
MULTI-STATION INTERCOM by T. Rule 138
Keep in touch around the home
CAR THERMOMETER by M. Plant 150
Monitor the outside air temperature 154
A game for a steady hand
TEST GEAR 83-DUAL POWER SUPPLY 159
by J. R. W. Barnes
Variable output: 0 to 20V. Fixed output: 5V 1A for powering TTL
EXPANDED ADD-ON KEYBOARD FOR THE $\mathbf{2 X 8 1}$ 170
by J. M. Stejskal
For speedier program entry
EPROM PROGRAMMER FORTHE ACORN ATOM 178
by D. C. Grindrod
Part 2: Construction and software
SERIES
INTRODUCING ELECTRONICS by George Hylton 146
Part 6: Digital Electronics
THE ELECTRONICS OF INFORMATION 166
TECHNOLOGY by T. IvallPart 5: Information Units
FEATURES
EDITORIAL 137
Test Gear 83; A Gift For Constructors
SHOPTALK by Dave Barrington 145
Product news and component buying
WIRE BENDING GAUGE 156
How to use your free gift
158
158
FOR YOUR ENTERTAINMENT by Barry Fox
FOR YOUR ENTERTAINMENT by Barry Fox 165
COUNTER INTELLIGENCE by Paul Young
A retailer comment
CIRCUIT EXCHANGE 173
A forum for readers' ideas
ACORN ATOM USER'S REPORT by T. J. Johnson 174
Putting a home computer through its paces
EVERYDAY NEWS176
What's happening in the world of electronics
RADIO WORLD by Pat Hawker G3VA182The Electronics Epoch; Crystal-Ball Gazing
FREE WITH THIS ISSUE

[^0]
"BIG TRAK" MOTORIZED GEARBOX
These units are as used in the "Big Trak" computerized vehicle, and offer the experimenter in robotics the opportunity to purchase the electro-mechanical parts required in building remote controlled vehicles. The unit comprises:
(a) $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic dutch, thus emabling turning of the vehicle;
(b) A gearbox contained within the black ABS housing reducing the final drive speed to approx. 50 rpm .
Date is supplied with the unit showing various options on driving the motors, as well is a direction conerotter circuit, enabling the unit to tum right, left or go struight ahead.

SIMON GAME

is back zain. Anocher supply of ready buik ".is's's for this Anotines lighte/putating tone computerised ame is now with us supplied computerised grme is now with ur supplise. ciors. $\mathbf{1 4 . 9 5}$.

REED RELAYS

Manufacturers rejects - DIL and other PCB mounting types SP. DP and 4P - make, break \& clo comtares. Nor rested, may be only partially working or of eick, so very low price-
pack of 10 asorted $\{1 ; 25 \leqslant 2.06 ; 100$ C7.00
|N4148 - BEST PRICE EVER Supplied in packs of 100 , by Toshibat 12 per packi 3 packs $\mathbf{C 5 . 5 0 .} 10$ packs $\mathbf{C 1 5 ;} 25$ packs

FERRIC CHLORIDE
New supplies just arrived - 250 mg bags of Oramules. exaily disaohed in 500 ml of water.

LIE DETECTOR
Not a roy, thit procision instrument was origirally part of an "Open University" course, used to messure a change in emocional balance, or as a lie derector. Full detaist of how to use it are giver, and a circuit dizgram. Supplied complece ${ }_{2}$ wrth probes. leads and conductive idlly Noeds Onty c905-worth thot for the case and Only 29.95

AA NI-CADS - 10 for $£ 9.95$

 Brand new nickel cadmium batteries by GE. stenderd I.2V @ 450 mNH . Professional quat ity with solder caes boch ends. Special price, S1.40 ea; 10 for 89.95 ; Eox of 80 C65. Ni-cad Chargor: Charges up to 4 AA . C or D cells + PP3. Only C7.es.
BRAND NEW

VEROBLOC KITI!

 Just publishted by Babani, Mr. R A Penfolds new book, "30 SOLDERLESS BREADBOARD PROJECTS" - this book features 30 difierent proiects for assembly on a Verobloc. and the kit contains all parts necessary to make.Audio Amplifier
Lighe a Dirk Activeed Swinches
8 Alarms
Timers
Timers
Metronome
Warbling Door Bumer
Warbing Door Buzzer
Touch Switch
Reaction Game
Sound Activated Switch
Radio Receivers
Fuzz Unit . . . + lots more!!
The introduction shows al the different components and explains how to use the breadboard. The Verobloc layouk is shown for every project together with the circuir diogram and an explanacion of how it works. kieal for begimers in electronics, but also suritable for more advanced students.
plastic case which con te dined in an attractive plasicic case, which can be divided up into 15 compartments in which your componens may be stored.
Complete Kit, including book, Verobloc all parts C24.95; Book only C2.25; Kit withour Verobloc $\mathbf{2 1 0 . 4 5}$.

Electrical ELECTRO-DIAL
Electrical combiration lock-for maximum security-pick proof. I million combinations!! Dial is turned to the right to one number, left to a second number, then righx again to a third number. Only whan this has been completed in ucus close. These can be used co operate relay or solenoid. Overall diap $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Only 63.55.

STABILIZED PSU PANEL

 Als) A versatile stabilized power supply wich both wotage $(0-30 \mathrm{~V})$ and currere ($20 \mathrm{~mA}-2 \mathrm{~A}$) fully variable. Many uses inc. bench PSU. Ni-cad charger, gen. purpose cesting. Panel ready builk. tested and callorated. 67.75. Suitable transformer and pots. $\mathbf{6 . 0 0}$. Full data supplied.
GREENWELD

443D MILLBROOK ROAD, SOUTHAMPTON SOI OHX All prices include VAT - just add 50p post. Tel. (0703) 772501

SUPER 20
$20 k \Omega / V$ a.c. \& d.c.

A SUPER PROTECTED UNIVERSAL MULTIMETER

Undestructible, with automatic protection on all ranges but 10A.

ONLY £33.50

inc. VAT, P\&P, complete with carrying case, leads and instructions.
This special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.

Accuracy: d.c. ranges and $\Omega \mathbf{2 \%}$ a.c. $\mathbf{3 \%}$ (of f.s.d.)

35 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$. $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$.
$\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

TESTER 5039 ranges
$50 \mathrm{k} \Omega \mathrm{V}$ a.c. and d.c. With protective diodes and quick-acting 1.25A fuse.
THE
PROFESSIONAL
 SOLUTION TO GENERAL MEASUREMENT PROBLEMS

ONLY £36.30

incl. VAT, P\&P, complete with carrying case, leads and instructions. Goods normally by return of post.
The best instrument for the workshop, school, toolbox, TV shop and anywhere accurate measurement is needed quickly and simply.
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (off.s.d)
39 ranges: d.c. $\mathrm{V} 150 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; d.c. $120 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c. V $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.

Ohms $5 \mathrm{kR}, 50 \mathrm{k}$, 500 ld , $5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$.
dB from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.

For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:

MINI-MULTI TESTER Deluxe pocker size precision mo
ing coil instrument, Jewelled bearings -2000 op.v.v.mirrored sca DC vols $10,55,250,1000$
$A C$ volts $10,50,250,1000$ OC amps $0-100 \mathrm{~mA}$.

Continuity and resis tance 0.1 meg ohm in iwo ranges. Compiete with test prods and instruction book showing how 10
measure capacity and inductance as well measure capacity and inductance as well
Unbelievabte value at only $\mathbf{E 6} .75+60$ p and insurance.
FREE Amps range kit to enable
you to resd DC current from 0 10 amps, directiv on the 0.10 scale. It's free it you purchase
quickly, but it you already oum quickly, but if you already own

Mini. Tester and would like one. | Mind Ther |
| :--- |
| send |

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi-Fiourfit - will suit any decor. Resonance $2 h^{\prime \prime}$ tweeter. The front material is $2 k^{\prime \prime}$ tweeter. The front material is
Decron. The completed unit is mo pleasing. Supolied in pairs, price £6.90 per pair this is probably les than the original cost of one
cabinet) carrigege $c 3.00$ the pair GOODMANS SPEAKERS $6 \mathrm{~K}^{\prime \prime} 8 \mathrm{ohm} 25$ watt $£ 4.50 .2 \%$ " 8 onm wheter. ©2.50. No extra for postage
ordered with cabinets. Xover $£ 1.50$. OITTO but for $8^{\prime \prime}$ speaker and $4^{\prime \prime}$

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily -utomatically correcting for the lengthening of shortening day. An expensive leme These are without case but we con supply - plastic base $£ 1.75$ or metal case $£ 2.95$. Also available is actaptor krit to convers
this into a normal 24 hr , time switch this into a normal 24 hr , time switch
but wiet the added advontage of up to but with the sdded advontage of up to
12 on/ofts per 24 hrs. This makes an 12 on/offs per 24 hrs. Thus makes an
ideal controller for the immersion heater ideal controller for the imm
ce of odxptor kit is $\mathbf{~} 2.30$.
THERMOSTAT ASSORTMENT termostass. 7 bi meral ypes and 3 liquid iypes. dovicess against overload, shorich circuits, etc., or when fitted say in front of the element of a blow heater, the hest would trip the stat if the blower fusss; applisince stats, one for high temp. eratures, others adjustable over a renge of temperatures which
could inclucto $0-100^{\circ} \mathrm{C}$. There is atso a thermostatic pod which could inclucte $0-100^{\circ} \mathrm{C}$. There is atso a thermostatic pod which
can be immersed, an oven stat, c calibrated boiler stat, finally an
 thermostats could cost eround $£ 15.00$
the parcet tor $\mathbb{E} 2.5$

50 THINGS YOU CAN MAKE

Things vou can make include Multi range meter, Low
ohms tester, A.C. amps meter, Alarm clock, Sotuering iron minder, Two way telephone. Mermory jogger, Live itine tosser, Continuity checker, etc. etc., and you will still have hundreds of dar ts for future proiects. Our 10 Kg parcel contins not lest than 1,000 items - panel meters.
timers, thermal trips, relays, sumtches, motors, drills, teps. timers, thermal trips, relays, switches, motors, drills, tops,
ond dies, tools, thermostats, coils, condenses, ond
noonses, earphone/microphones, nicad cherger
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
EXTRACTOR FANS Msins operated
Woods extractor

ROTARY WAFER SWITCHES
5 smp siver plated contacts. "a shaft. " dias. water.
Single water types, 29p axch, as follows
1 pole 12 way
2 pole 6 way 4 pole 3 way

6 pole 2 way
Two wafer tro
3 pole 4 way
4 pole 3 way
6 pole 2 way
8 pole 3 way
4 pole 6 way
3 water rypes $99 p$ sach.
$\begin{array}{lll}9 \text { pole } 4 \text { way } & \begin{array}{l}5 \text { pole } 5 \text { way } \\ 120 ~ 3 ~ w a y ~\end{array} & \begin{array}{l}6 \text { pole } 6 \text { way } \\ 1802 \\ 2 \text { way }\end{array} \\ & \end{array}$

EXTRA POWERFUL 12v MOTOR
Made 10 work batiery I Ownmower, this probably develops up to

MINI MONO AMP

POPULAR PROVEN PROJECTS
MULTI-CHANNEL or ROBOT CONTROLLER This k two kitu . The 8 channel zransmituer kit ond the 8
channel reciver kit. Each kit comes with diagrams and notes. but no circuit boarch, the component lavout being left to vou
The data shoms how to drive, reverse and steer two or more motors. With spare channels to perform other functions. Price 59.50 for both kises.

3 CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you woused in an attractive two tone metal case and has controls for each channel, and a master on/olf. The audio input and output are by $1 /{ }^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and soc ket facilitate ease connecting lamps. Special price is $\mathbf{£ 1 4 . 9 5}$ in kit form or $£ 25.00$ assembled

WHY BE COLD - Build a tangential blower heater TANGENTIAL BLOW HEATER 2.5 Kw quiet,
efficient instan heating from
$230 / 240$ volt mains. Kit consus ts illustrated, 2.5 Kw

CAR STARTER AND CHARGER KIT
In an emergency you can start car off mains or bring you
250 wall charge in a couple of hours. The kit comprises switch and full instructions. You can assemble this in the evening bos it up or teave it on the shelf in the garage, whichever sults you best. Price $£ 12.50+£ 3.00$ post
TRANSMITTER SURVEILLANCE
up with FM radio. Can be made in a matchbox - all electronic parts und eircuit. $\mathbf{E 2} .30$. (not licenceable in the U.K.).
RADIO MIKE
Ideat for discos and garden parties, allows complete freedom of move ment, Play through FM radio
(not licenceable in the U.K.)

FM RECEIVER

Made up and working, complete with scale and pointer needs only
heactphones, ideal for use with our surveillance transmitter or nadio mike. $£ 5.85$. or kit of parts $£ 3.95$
3-30v VARIABLE VOLTAGE POWER UNIT With 1 amp DC output, for use on the bench, students, inventors. ion. In case with a volt meter on the front panel. Complete kit £13.80.
INTERRUPTED BEAM
This kit enables you to make a switch that will irigger when a steso belay photo trensistor resistors and capacitors, atc. Circuit diagram relay. photo trassistor,
but no case. Price f 2.30 .
IONISER KIT
Rotresh your home, office, shop, work room, etc. with a negative mains operated kit, case included. $£ 11.95$ plus $\mathbf{£ 2 . 0 0}$ post.
RADIO STETHOSCOPE
Easv to fault find-start at the aerisl and work towards the spea ker

- whien signal stops you have found the fault. Complate kit f4.95. INVISIBLE AND SILENT SENTINEL
Ulirs-sonic beam when broken coutd warn you of visitor
- transmitter \& receiver. To operate ligth or bell, $\mathbf{8 9 . 5 0}$.
BURGLAR ALARM
Complete kit inclucles $6^{" \prime}$ exirenal alarm bell, mains po wer unit, wire. With instructions. E29.50.
12v MOTOR BY SMITHS
Made for use in cars, these are ser
wound and they become more
powertul as load increases. Size
$3 / 2^{\prime \prime}$ long by $3^{\prime \prime}$ dis. These have
g " long by $3^{" ~}$ dis. These have
good length of $\%$ " spinctie -
pries E 3.45 .

Ditto, but permanent magnes, $\mathbf{E 3} 75$
WATERPROOF HEATING WIRE
00 ohms per Yard, this is a heating element wound on a fibre glas
coil and then covered with p.r.c. Dozens of uses - around

J. BULL (Electrical) Ltd.
 (Dept. EE), 34 . 36 AMERICA LANE.
 Erublimed HAYWARDS HEATH, SUSSEX RH16 3OU.' 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders u
f10 add 60 p service charge. Monthly sccount orders accepted from schools and public companies. Access \& $8 / \mathrm{card}$ orders accepted day night. Hay warch Heath (G444) 454563 . Bulk ordars: write for quote.
Delivery by return. Shop open $9.00-5.30$, mon to Fri, not Satur day.

SCHOOLS-LABS-STORES: WORKSHOPS-FACTORIES
Your chance to re-stock at less than cost pricesl!! LIGHTING \& POWER CABLES

BLEEPERS - SIRENS - BELLS - BUZZERS $\begin{aligned} & \text { Siren/Hooter - Deltu } 6 \text { or } 12 \mathrm{vNC} \text { or } 24 \mathrm{vAC} \\ & \text { Open vype buzzer, ex GPO, } 10.20 \mathrm{~V}\end{aligned} \quad: \quad: \quad .37$ Underdome bell, 4v-g
Fire alarm bell, i2 $2^{\prime \prime}$ gong, heavi cest iron construction COUNTERS
6 digit counter. Mains oderated. Not resettable Ditto, $8 u t$ even numbers only.
6 digit counter. 48 V OC, 115 v . Resetrable
SWITCHES - ROCKER, TOGGLE, ETC.
Rocker switches: white push in
10 amp. AC 250 volt. onloft
changeaver centre off
on/off with neon
on/oft with neon
push to make spring retum push to make spring retum
push to break spring return
Larger two circuit one on one with mounting plate
Pistol Grip Switch: with lock-on as in electric drills
Interlocking switch: blow hester, 3 rockers, 10 amp Micro switches. V3 types. $10 \mathrm{amp} \mathrm{c} / \mathrm{ocontactit}$
mains button opersted: $\quad 16 \mathrm{amp}$ c/o contacts 10 amp offion 15 amp offion Lever opersted sdd Lever with roller operation add Miniature types: Burgess V4T6 c/o
Two mounted with roller operator
Glass reed switehes:
60 watt $10 p$. Operating colls for reed switch multi voltage 3, 6, 9, or 12 Ceramic magnets Mullard MISCELLANEOUS ITEMS
Neon Mains indicators. Standerd
Mench isolation mains in $230 / 240 \mathrm{v}$ output. 250
Mains input. Porcetaln removable fuse
Light operated switch 12 volt. Encapsulated
Insulating board. srbe etc. ADorax 10 tons. Sheet size $4^{\circ} x$ i $^{\circ}$
or larger. Varrous thickness
Ditio, Tulnol, price per 1 b .
Aerciol can ICI fluon lubrica
Battery holder takes 6 U2 butteries
Car Battery clips, as for charger, t and - per pair
MAINS TRANSFORMERS

6 volt 1 amp	50	35 volt 2 amp	¢2.00
6.3 volt 2 amp	£1.00	38 volt $2 \% \mathrm{mmp}$	$\underline{2}$
12 volt * amp	75	26 volt 10 amp	¢4.00
12 volt 4 amp	¢2.00	50 volt 2 amp	E2.00
12 volt 1 smp	E1.00	12 - 0-12, 2 amp	
8.5 - $0 \cdot 8.51 \mathrm{mp}$	f1.00	12.0.12, 1 amp	
18 volt 1 amp	£1.50	100W auto 115 s o/p	
	f1.50		

MOTORS - MAINS \& BATTERY
3.6
3.12
$3-12$
volt battery motor, very motor

Mains motor with gear box $\quad 5$ rev minuite

SPECIAL TERMS. For items in this column, Order no less than 10 of any item. Then add VAT at 15%, and 20% for carriage in the case of transformers and electric motors. All other items in this column are free post $\&$ packing.

BI-PAK SOLDER
DESOLDERKIT DESOLDERKIT ighlwerath Sonoeunc iron 240 P mand

1 Oualuty Deso dutomatic eppction knur
casing ano tetion not/le
dispenser
1183 m I Resin Corea Sonder on Card 1 Heat Shunt tool tweezes Type OUR SPECIAL KH PRICE $\mathbf{~} 8.95$

The Third and

SIREN ALARM MODULE
American Police type screamer powered from any 12 volt supply into 4 or 8 ohm speaker Ideal for car burglar alam, reezer breakd and other security purposes. 5 watt, 12 v max
£3.85
Order No
BP 124.
allached to rod enas Sir ball \& socket joints give infonite var ation and posilions inrough magniser avirg 25 magnlican

RESJETOR BAROAIM

Slito Mi Oescripion preformed th wall Carbon $5112 \quad 200 \quad$ Resistors $\begin{array}{lll}513 & 200 & \text { wall Crbon Resustors } \\ \text { Sild } & 150 & \text { wall Resustors } 22 \text { ohm }\end{array}$ 2 m 2 Mised 1 und 2 watt Res Suls $100{ }^{2}$ Palls Sx12 15 contain a range of Caibon Film Restistor of assonted whues from 22 ohms 1022 meg Save cover your prorects - Quantipes appronimate count by merght

GUARANTEED TO SAVE YOU

 MONEYCrosspomt IPruthos 'screwdrivers
Oanot 1 Hex wey wenche
WRENCH SET
Sures $-4+555$ sano $6 \mathrm{~mm} \leq 1.75$
BUV ALL FOUR SE'S
HEXKEYSETFREE HEX MEV SET ON RING SX27A 60 Assorted Potystyrene Bead Capacitors Type 9500 Series PPO

BARGAINS

SI91 20 al large g' $^{\prime 2}$ REOLEO
S142 20 small 125 RediEO's S143 10 Rectangular Green LEO
SI44 30 Assarted lener Oioces $250 \mathrm{~m} \cdot 2$ wall mused voltages all coded New
S147 A Blach Instiument
hnobs-winged with pounter he Slandad screw Fil sure 29:
\$149 20 Assorted Slider Knobs Blach/Choome, elc
sueo 12 Meons and Filument Lamps Low puious types and colours - some panel mounting 41

115 5152

SINGLE SIOED FIBREGLASS BOARD
sxss I Power finned Heassinn Ins herisan in the smallest space ong to 's unique stagered fin design pre drilled
101 Sue 45 mm squate, 20 mm high 40 o SL54 T0 66 sive $35 \mathrm{~mm}, 30 \mathrm{~mm} \cdot 12 \mathrm{~mm} \quad 35 p$
su5s I Meat tlictency Pomel finned Healsinh
SIIICON POWER TRANSISTORS hand unil avalidole with or witheut magniter ut Price with magnitier as tliustrated OROEA No 1402 £5.50
Whoul magniter ORDER NO TADO 4.75

TECASBOTY

Ihe Electronic Components and Semicondactor Bargain of the Year A host of ElectronicResistors andiuding potentiometers rotary and shder presels - horizontal and Resistors of mixed values 220 mm to 2 M 2 - 18102 Wan comprenensive range on Audio pincluding etectrolyic and potyester types plus disc ceramics elceterd gromets gand sockels of various ty oes olus 5 wilches luses healsinks wite nuts bolls gromets cabie chips and tyes, knobs and PC Board inen add to tha! 100 Semicondictors 10 include transisiors diodes SCR's oplo s. all ot which are current everyday usable devices In alt a Fantastic Parcel No fuborsh all menthiable
over $f 2500$ Our Fight Against intlation Pice

$$
\text { Beal the Budget JUST } 56.50
$$

BHPAK BARCAINS

TRIACS - PLASTIC

SLIDER
POTENTIOMETERS ALL AT 563 Pas PEA PAK $5 \times 625 \times 470$ ohms lin $5 \times 675 \times 47 \mathrm{~L}$ Lin $\begin{array}{ll}\text { SXES } 5 \times 1 \mathrm{k} \operatorname{lin} & S \times 685 \times 47 \mathrm{k} \log \\ \text { SX65 } 5 \times 22 \mathrm{k} \mathrm{Lin} & S \times 605 \times 100 \operatorname{lin}\end{array}$ $\begin{array}{ll}\mathbf{S X} 5 \\ \mathbf{S X 6 6} 5 \times 22 \mathrm{k} \log & S \times 695 \times 100 \mathrm{ln} \\ & S \times 705 \times 1 \mathrm{meg} \mathrm{lin}\end{array}$
$\$ 340250$ Silicon Onodes-Smiching like IN4 $14800-35$ All good-uncoded Worth double our price 4Sv75mit 11.25 Sxal 250 Sulicon Onodes-General Purpose line $02000 / 202$ banil3 16 Uncoder 30.100 v 200 m 1007
 200y 21400 s Suder value less than

 200v ? a 400 v All cooed Biand new a -I fiveawayal

3

MINIATURE TOOLS FORHOBBYISTS

Minature found noss site curters
no Yous 3
 Mimature bane noso piwers - imulinem handies 5 f inch lengith Oider No rous Miniature ond mipoers - insulatiod nandias

All with insulatod handles
${ }^{\text {all at }}$
flexey dmiven

1.25
41.25

EXPERIMENTOR BOXES - ALUMINIUM plastic
 ALUMINIUM BOXES Made with Bright Aluminum foded SIZE. W W W
 $\stackrel{5}{512 \mathrm{E}}$

$\begin{array}{ll}167 & \text { \& } 1.12\end{array}$
879 51.8

Plastic Boxes

Foroured blach chose fitting
\qquad
Price
asp
Price
asp
83p
13p
ba mut oriver set
Set of 5 BA spannet shafts plus universal handle in roll-up wallet Sizes OBA 24.688 A Order no: T192
52.75 se
meom schewdriven

Clanennelap

 alwars been BI-PAKs GUARANIEE and it sill is All these Sale items are in sloch in quantity and we will despaich the same day as you order is recervedIC SOCKETS The lowest price ever. The more pou buy the chesper they clis
Pin 10 ofl 50 oll 100 oll

VOLTAGE REGULATORS T0220
$\begin{array}{ll}7805-500 & 7905-550 \\ 7812-505 & 7912-550\end{array}$ $\begin{array}{ll}7812-500 & 7912-55 \\ 7815-500 & 7915-55\end{array}$ $\begin{array}{rl}824-500 & 7924-550\end{array}$

81-PAK'S OPTO 83 SPECIAL
A setection of Large \& Small sire LED'sin Red Green, Yellow and Clear, plus shaped devices of ditferent types 7 Segment dispolays, photo rransistors, emiters and detectors
Types like MELII, FPTIOO etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 pieces.

$£ 5.00$

SEMICONDUCTORS FROM AROUND THE WORLD
 10 A Collechion of liansistors. Olodes. Rectifiers Bridges SCR's Iriacs. IC's both Logic and Linear plus Dpio's all of which are current everrady usable devices

1 Amp SILICON RECTIFIERS
 50 - 500 - uncoo.s - you setat bo viIS Mal pertect cences - NO owos un 50%
So lor $\$ 1.00$-onn कo.de OROFA MO Sx76 Silcon Cemeal Purpose NPN Trensiors 90.18 Case
 - BC 107- TTg9 ALL NEW VCE FON IC500mA
 sulcon Geneal Purpose Pexp Iransisiois 10.5 Case
 BFY30 VC 60 IC 500 ma Mm Mre 50 ALL NEW PACEE E2.50 $54.00 \times 19.00<35.00$

Silicon NPN'L'TypeTransitors

 Line BC $182 \mathrm{~L}-183 \mathrm{~L}-184 \mathrm{~L}$
VCBO 45 VCEO 30 IC:OOMA He $100-400$ i all dertect derices - uncoded OROER AS $\$ \times 183$ $\begin{array}{cccc}50 \text { off } & 100 \text { ofl } & 500 \text { ofl } & 1000 \text { ot } \\ \mathbf{\Sigma 1 . 5 0} & \mathbf{\Sigma 2 . 5 0} & \mathbf{\Sigma 1 0 . 0 0} & \mathbf{\Sigma 1 7 . 0 0}\end{array}$ PNP SILICON TRANSISTORS: Similar $77 \times 500-27 \mathrm{KPl14}$ - E. Line Bland Nem - Uncoded - Peleci Devices 50 off 100 off 500 ofl 1000 on $\mathbf{£ 2 . 0 0} \quad £ 3.50 \quad £ 15.00 \quad £ 25.00$

SILICON BRIDGE RECTIFIERS Comprising $4 \times 1 \frac{1}{2}$ amp rectifiers mounted on PCB.
VRM - 150 vits IFM - 1.5 Amps Size: 1 inch square 10 otl £ 1.00 50 OHE4.50 100 ot £ $\mathbf{E} .50$
Order No. As:4RI BRect.

MULTITESTERS

1.000 opr including lest leads a volts-0.15-150.500-1,000 OC cutrenis - 0.1 ma - 150 ma Resistance - 0.25 K onms 100 K ohms Dims . $90 \approx 61$ \& 30 mm
.0/No.1322.0UR PRICE E6.50 ONLY

DOME TWEETER

Dome Tweeter for systems up to 50 w . Impedence 8 ohms. Frequency Response $2000-20000 \mathrm{~Hz}$. Oims 98 mm dia $\times 31 \mathrm{~mm}$ deep. OUR PRICE £2.95. O/NO. OMT200

30000 opv Including test leads and case AC volis - $025 \cdot 10-25 \cdot 100 \cdot 250 \cdot 500 \cdot 1,000$ $0 C$ volls $-0.025 \cdot 1-25 \cdot 10-25 \cdot 100 \cdot 250 \cdot 1,000$ DC cullent - 0.50 ua 0.5ma-50ma 0.12 amps Resistance - 0.6 K ohms 70 K ohms. 6 meg ohms 60 meg onms
Decibels . 20do to plus 56ab
Short test - Internal bumer
Dims - 160×110 " 50 mm
O/No. 1315. OUR PRICE ONLY £24.75

SPECIAL OFFER OF STEREO AUDIO MODULES a complete set to gine you 70 watrs TOTAL 35 wants (ms) PER CHANNEL x POWER SUPPIY
Kit comprises
$2 \times$ ALBO Power Amplifiers $1 \times$ Front Panel - Black with whinet leanering
$1 \times$ SPM120/S Pown Supply
$1 \times$ PAZDO Stereo Pre-Amplifier $4 \times$ Bleck Knobs with White Pointers $1 \times$ Transtormer 5iv $2 \times$ Coupling Capacitors \& 1 Reservor

NORMAL RETAIL PRICE \&52. COMPLETE SAVING E14
Our SPECIAL OFFER Price For 1 MONTH ONL. Y
Order by phone NOW with your Credit Card
(Order as: SX70 watt AUDIO KIT)

MW398 NT-CAD CHAROER

Universal Ni-Cad Dattery charger All plastic
case with lift up lid Charge/ Test swilch LEO onlicators at each of the five chatging points Charges
PP3(9V) $\quad 220240 \mathrm{~V} \mathrm{AC}$ U12 115 V pentite) 0 ms $210: 100 \times 50 \mathrm{~mm}$ [6.95

POWER SUPPLY OUR PRICE £ 3.2 Power supoly hits directly uffo 13 amp socke Fuseo tor salety Polarity reversing socket Vollage swilch Lead wilh multi otug ingut 240 VAC 50 Hz Oulput
int

EHPAK Send your orders to Oept eg Bl-PAY po bow 6 WAGE HERTS
SHOP AT 3 BALDOCK ST. WARE MERTS
 aOO 15\% Vat and 7pp per dides postace ano packinc

222.95* 22000 obe

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV compan ies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction. The unit is mains operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunct ion with your video recorder. Dimensions: $113^{\prime \prime} \times 81 / 2^{\prime \prime} \times 31 / 4^{\prime \prime}$ E.T.I. kit version of above without chassis, case and hardware. $£ 12.95$ plus $£ 1.50$ p\&p

PRACTICALELECTRONICS

 STEREO CASSETTE
$\mathbf{£} \mathbf{3 2 . 9 5}+£ 2.75$ р\&р.

- NOISE REDUCTION SYSTEM - AUTO STOP - TAPE COUNTER - SWITCHABLE E.Q. - INDEPENDENT LEVEL CONTROLS - TWIN V.U. METER - WOW \& FLUTTER 0.1\% - RECORD/PLAYBACKI.C. WITH ELECTRONIC SWITCHING F FULLY VARIABLE RECOROING 8IAS FOR ACCURATE MATCHING OF ALL TAPES. Kit includes tepe trensport mechenism, reedy punched and beck printed quality circuit board and all electronic parts. i.e. semiconductors, resistors cepacitors, hardwere top cover, printed scale and mains transformer. You only supply solder and hook-up wire.
Featured in April issue P.E.
Reprint 50p. Free with kit. Seff msembly simulated wood

SPECIAL OFFER! eabinet $\mathrm{£} 4.50+£ 1.50$ p\&p. C31.00 plus E2.75 plap

BSRRECORD DECK

Manual single play record deck with auto return and cueing lever. Fitted with stereo corrmic cartridge 2 spoeds with 45 rpm disco.
$13^{\prime \prime} \times 11$ " approx. $\mathbf{E} 12.95+£ 1.75$ p\&p.

SPECIAL OFFER! Repiscment ttereo cmentte eape heads £ 1.80 es. Mono £ 1.50 ec . Erase 70p ee. Add 50p pepp to order.

Special Offer! AUDAX 45 WATT TWO WAY SPEAKERS
 £36.95 a pair

Originally made to sell for over £70. Unit comprises $8^{\prime \prime}$ bass/ mid range and $4^{4 "}$ soft dome tweeter and a 6 element crossover. Mirror image. Finished in rosewood. Size: 470 mm high x 264 mm wide $\times 225 \mathrm{~mm}$ deep. Empty cobinets available separ ately if required. $\mathbf{£ 9 . 9 5}$ pair $+\mathbf{£ 4 . 7 5} \mathbf{p}$ 思 p .

All mail to

21A HIGH STREET, ACTON W3 6NG.
Note: Goods despatched to U.K. postal addresses only. All items subject to availability. Prices correct at 30/10/82 and subject to change without notice. Please allow 7 working days from receipt of order for despatch. RTVC Limited reserve the right to up-

PERSONAL LS AMP KIT

Amplifier for your personal stereo cassette player as featured in January issue of Everyday Electronics. Turn your personal stereo into a mains power

Parts: Stereo power amp PC8 with all components, 83.50 + 75 p p\&p. Power supply unit, $£ 1.95+£ 1.50$ p\&p. Pair of 4% "elipticel speakers, f 1.50 the pair, +E 1.00 peip. Input a output sockets \& plugs, $\mathbf{£ 1 . 5 0 \text { . Recommended cese (for the }}$ power supply and amp only), $\mathrm{E} 2.95+80 \mathrm{p}$ pelp. P\&P inclusive price of $\mathbf{£ 1 . 7 5}$ for two or more articles.

P.E. STEREO TUNER KIT

125W HIGH POWER AMP MODULES
 £10.50
 BUILT
 £14.25

+ $\mathbf{6 1 . 1 5}$ p8ip
$+\mathbf{£ 1 . 1 5 p \& p}$
The power amp kit is a modute for high power applications disco units, guitar amplifiers, public address systems and oven high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open eir cuit condition. A large safety margin exists by use of generously rated components, result, o high powered rugged unit The PC board is back printed, atched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use.
Supplied with all parts, circuit diagrams and instructions ACCESSORIES: Suitable mains power supply kit with trensformer: $\mathbf{6 8 . 5 0}$ plus $\mathbf{E 2 . 0 0}$ p\&p
Suitable LS coupling electrolytic: $£ 1.00$ plus $\mathbf{2 5 p}$ psip

SPECIFICATIONS
Mex. output power (RMS): 125 W .
Operating voltege (DC): $50-80$ max Loads: 4-16 ohms.
Frequency response measured e 100 wat ts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity for 100 watts: 400 mV @ 47 K . Typical T,H,D. © 50 watts, 4 ohms: 0.1\%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

PHILIPS CARTRIDGE

Model No. GP. 397
Spacification: Output -2 mV . Separation -22 dB Srylus 0.6 mm diameter. Useful replacement cartridge for Audio Tachnice AT10, ADC OLM 30 Goldring G850/G800, Shure M30.
£3.95 each M708, Tenorel T200 iD. Plus 60p p8.

HI-FI SPEAKER BARGAINS

35 WATT MICRO 2-WAY SPEAKER SYSTEM Unit comprises one 50w (4"app.) Audax soft dome tweeter HD100. And one 5" Audax bess/midrange 35w driver HIFIIJSM. Complete with 2 lement crossover. Total impedance
of system 4 ohms.
E8.95
PERSET + £2.70 p8p

MONO MIXER AMP

halls \& Club houses
$£ 45.00$
50 WATT Six individually mixed inputs for two pick ups (Cer. or mag.), two moving coil microphones and two euxiliery for tape tuner, organs, etc. Eight slider controls-six for level and two for master bass and treble, four extre treble controls for mic. and aux, inputs. Size: $131 /{ }^{\prime \prime} \times 61_{2} " \times 3 \%^{\prime \prime}$ app: Power output 50 watt R.M.S. (cont.) for use with 4 to 8 ohm soenh ars. Atrective beck vinyl cose with metching lascia and knobs. Ready to use.
date their products without notice. All enquiries send S.A.E.

ALL CALLERS TO: 323 EDGWARE ROAD LONDON W2. Telephone: 01-723 8432.
(5 minutes waik from Edgware Road Tube Station) Now open 6 days a week 9-6. Prices include VAT.

Matching AKG Microphone to suit (with speech and music filter). Complete with lead. ONLY $\mathbf{c 9 . 9 5}$ plus 75p peip.

Editor

F. E. BENNETT

Assistant Editor B. W. TERRELL B.Sc.

Production and News Editor
D. G. BARRINGTON

Projects Editor
G. P. HODGSON

Art Editor
R. F. PALMER

Assistant Art Editor
P. A. LOATES

Technical Illustrator
D. J. GOODING Tech. (CEI)

Secretary

JACQUELINE DOIDGE

Editorial Offices

KING'S REACH TOWER
STAMFORD STREET
LONDON SE 1 9LS
Phone: 01-2616873

Advertisement Manager

R. SMITH

Phone: 01-2616671
Representative
R. WILLETT

Phone:01-261 6865
Classified Supervisor
8. 8LAKE

Phone: 01-261 5897
Make-Up and Copy Department
Phone:01-261 6615
Advertisement Offices
KING'S REACH TOWER
STAMFORD STREET
LONDON SE1 9LS

TEST GEAR 83

[T was as far back as 1974 that we published a comprehensive set of test instruments under the title EE Test Gear Five. This series proved to be very popular and instruments built to these designs will have been giving good service in workshops and dens up and down the country over the last nine years or so. Equipment of this kind generally has a long life. The devoted constructor or experimenter treats his equipment with respect and it is not likely to suffer misuse in the hands of others.

Electronic technology has of course been developing over these nine years and some different needs have arisen in regard to test equipment used in pursuance of our hobby. Such needs have been recognised and covered by individual items of equipment presented in our pages from time to time. Now the time seems right to present a new set of instruments. There is another reason also, that is to satisfy the needs of a new generation of readers. Over a period most hobbyists will acquire or build individual items of test gear, but acquisition on this casual basis is not the most ideal arrangement. Far better to have a set of co-ordinated units planned to give comprehensive facilities.

With the introduction of Test Gear 83 constructors now have the opportunity to build a set of matching instruments designed to meet practically all requirements of the average hobbyist in the light of the present state of the art. The first instrument is covered in this issue and the remaining instruments will be published one per month in the following issues of EE.

The completed instruments will add distinction to the hobbyist's workshop and provide lasting evidence of their builder's skill. But far more important, this collection of test gear will be of incalculable value in the years ahead. Test Gear 83 will prove a sound investment of time and money.

A GIFT FOR CONSTRUCTORS

Despite its simple appearance, the tool attached to our front cover will be an important accessory for the constructor's work bench. Anyone who assembles circuits will quickly discover how useful this wire bending gauge is in forming resistor and capacitor leads to suit horizontal or vertical mounting of these components and with a spacing to suit a selected number of holes on an 0.1 inch matrix board.

Readers Enquiries
We cannot undertake to answer readers letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.
Component Supplies
Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

Back Issues

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders

Binders to hold one volume (12 issues) are available from the above address for $£ 4.60$ inclusive of postage and packing worldwide.
Please state which Volume.

Subscriptions

Annual subscription for delivery direct to any address in the UK: £12.00. Overseas: £ 13.00 . Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613. King's Reach Tower, Stamford Street, London SE1 9LS.

THE unit to be described can be built to connect to any number of slave units via a two-wire interconnecting lead. Designed to provide private intercommunication between the master unit and any slave, it can also be used as a baby alarm or a general security system, and provides a means of listening into the slave units. For example, if a slave unit is mounted outside somewhere in the grounds of the property, it is possible to listen in on that unit for any intruders who may be nearby.

The basic unit described here has been built to supply four slave units and operate from a PP3 battery, and be used
for simple intercom purposes. If it is intended for use as a baby alarm or security system a simple mains power supply should be used instead of the battery, but with a suitable switch to change over in the event of mains supply failure. A circuit for this is suggested.

DESCRIPTION OF SYSTEM

The unit is simple to construct and all parts are available from a number of advertisers. Fig. I shows a block diagram of the basic circuit. One speaker (LS2) is connected to the amplifier input via the press to talk switch SI, and the other
speaker LS 1 is connected to the amplifier output. Pressing the switch to change over the two speakers enables communication from one to the other, depending on which one is used as the microphone at any time. The press to talk switch is mounted on the master unit. In the standby position the slave speaker is used as a microphone and can be listened into by the master unit.

With a intercom system it is important to be able to "call" a selected slave or conversely for a slave to be able to "call" the master unit. This is made possible here by connecting some of the output back to the input via a phase-shift

Fig. 1. Block schematic of the basic intercom circuit.

Fig. 2. Basic circuit when the master "calls".
network, so that oscillation at a suitable frequency takes place. Fig. 2 shows the basic arrangement when the master unit makes a call (no switching is shown).

When the slave unit calls, the circuit is slightly different and this is shown in Fig. 3. Closing the Call switch on the slave connects the positive supply to the basic amplifier via the speaker voice coil and the diode rectifier. This enables the unit to oscillate as before and as the speaker is in series with the supply under calling conditions there is enough output for the calling tone to be heard at the slave position.

Once a call has been made in either direction the switching changes the circuit back to the basic arrangement shown in Fig. 1.

IDENTIFICATION OF CALLER

With a multi-slave intercom system some means of identification is needed so that the particular slave calling can be selected. This is achieved by the use of thyristors, the gates of which are connected to the lines so that when a slave unit calls and the positive supply is connected it also connects to the thyristor and turns it "on". An l.e.d. in its anode will then light and indicate which slave has called.

If a call is already in progress and another slave calls, the l.e.d. for that line will light indicating that a call is waiting, and it will stay alight until the line is selected. These additional calls do not interrupt the conversation already taking place, further, it is impossible for any slave to listen in on other lines.

THE COMPLETE CIRCUIT

The complete circuit is shown in Fig. 4 and at first glance may seem complicated. However much of the circuit is repeated from each slave line used. The number of lines which can be used is only limited by the amount of switching available and the size of the case used.

The circuit of Fig. 4 shows four slave units and this was felt to be the most which the average household would require. The switches are shown in the "standby" position (S3 depressed) and in this position the supply is disconnected.

COMPONENTS

Resistors

R1	$1 \mathrm{k} \Omega$	R18	$10 \mathrm{k} \Omega$
R2	68kS	R19	$10 \mathrm{k} \Omega$
R3	$100 \mathrm{k} \Omega$	R20	10k§2
R4	$4 \cdot 7 \mathrm{k} \Omega$	R21	10k』
R5	$390 \mathrm{k} \Omega$	R22	$2.7 \mathrm{k} \Omega$
R6	47Ω	R23	$2.7 \mathrm{k} \Omega$
R7	$47 k \Omega$	R24	$2.7 \mathrm{k} \Omega$
R8	$4.7 \mathrm{k} \Omega$	R25	$2.7 \mathrm{k} \Omega$
R9	$100 \mathrm{k} \Omega$		
R10	39k		
R11	22Ω		
R12	820』		
R13	$2 \cdot 7 \mathrm{k} \Omega$		
R14	820Ω		
R15	820Ω		
R16	820Ω		
R17	820Ω		
All $\frac{1}{4}$	carbon fil	5\%	pag

Potentiometer

VR1 $10 \mathrm{k} \Omega$ skeleton preset

Capacitors

C1	$0 \cdot 22 \mu \mathrm{~F}$ polyester
C2	$0.047 \mu \mathrm{~F}$ polyester
C3	330 FF polystyrene
C4	$0.1 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C5	$22 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C6	$2.2 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C7	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C8	$100 \mu \mathrm{~F}$ polyester
C9	$0 \cdot 01 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C10	$100 \mu \mathrm{~F}$ polvester
C11	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
All electrolytics are the small	

single-ended p.c.b. type

Semiconductors

TR1 BC414, BC109 or similar npn transistor
IC1 LM380 a.f. amplifier, 2W output 8s
D1-5 TIL209 l.e.d. (5 off)
D6-9 1 N4148 diode (4 off)
CSR1-4 C103YY thyristor, gate current 0.2 mA (4 off)

Loudspeakers

LS1.2 miniature, $8 \Omega, 70 \mathrm{~mm}$ dia. approx. (2 off)

Sockets
SK1-5 jack socket, miniature (RS type 478-497) (5 off)
PL1-5 jack plug, miniature screened (RS type 478-380) (5 off)

Switches

S1,2 d.p.d.t. miniature pushbutton, momentary action (RS type 339-235) (2 off)
S3-7 d.p.c.o. push-button, break-before-make (RS type 388-434) (5 off) 5 -switch latching assembly for interlocking operation (see text) (RS type 388-614). Push-button knobs (7 off) (RS type 339-263)
S8 s.p. miniature pushbutton, momentary make (RS type 337-914)

Miscellaneous

B1 PP3 battery

Printed circuit board; support pillars 12 off) (RS type 543-737); terminal pins; master unit case $188 \times 110 \times 60 \mathrm{~mm}$ (RS type 509-585); slave unit case $120 \times$ $65 \times 40 \mathrm{~mm}$ (RS type 509-579); plastic feet (for spacing sub-panel from case) (4 off) 12.7 mm (RS type 543-327); connecting wire $7 / 0.2 \mathrm{~mm}$ p.v.c. covered; screws; nuts; washers; solder tag: speaker mounting clips; battery connector.

Fig. 3. Basic circuit when the slave "calls".

Fig. 4. Complete circuit diagram for the Multi-Station Intercom. All switches are shown in the standby position. The circuit for the slave unit is shown in the panel on the far right.

Switches S3 to S7 are interlocked push-button types and only one can be depressed at a time. Depressing a button automatically releases any other that may have been depressed.

The basic amplifier uses the LM380 integrated circuit IC1 but as this has a fixed gain an extra transistor stage TR1 has been added to improve the sensitivity.

If a slave is selected (assuming Slave 1) the speaker unit on that line will act as a microphone and is connected via S4a, S1b, and S2b to the input of TR1. The output of ICl connects to the master speaker via S1a and S2a.

When $\mathbf{S 2}$ is pressed to change over the connections the two speaker systems are reversed and the master speaker becomes the microphone and the slave the speaker.

CALLING A SLAVE

A slave is selected by pressing $\mathrm{S} 4, \mathrm{~S} 5$, S6 or S7. The slave is then called by
pressing switch S1. The power supply is then connected via S3b (now in the lower position) and some of the output of ICl is connected to its input via C7, Sla, Cl, R1, R2, C5, causing the amplifier to oscillate. At the same time the slave speaker is connected to the output of IC1 via Slb and S3a (now in its lower position). The master speaker is also connected to the output but via a limiting resistor R3 to reduce the volume of the calling tone.

Releasing S1 reverts the circuit back to its normal mode and two-way communication can take place. The press to talk switch S2 MUST be pressed each time the master speaks in order that its speaker becomes the microphone and the slave the loudspeaker.

SLAVE TO MASTER

With all switches in the standby position, if a slave calls the positive supply is connected to the amplifier 1 Cl via the
slave speaker voice coil, and D9 (assuming Slave 1 is calling). The supply is also connected to the gate of CSR1 via R18 turning it "on" and so lighting up D2.

As some of the output from IC1 is connected to its input via S3a in the "standby" position the circuit will oscillate and put a tone onto the master unit speaker. This tone will also be heard at the slave due to its speaker being in series with the supply to ICI.

The master unit then selects the line calling and the circuit again reverts back as shown in Fig. 1.

Selecting the calling line also disconnects the supply to the thyristor CSR 1 via S 4 b and switches off the l.e.d. indicator D2. An l.e.d. indicator D1 is also connected to the ICl supply and indicates when the unit is "on". To check that the whole system is "off" with no calls waiting it is only necessary to check that all the l.e.d.s are extinguished.

SENSITIVITY CONTROL

A preset potentiometer VRI is provided so that the sensitivity can be adjusted to a suitable level, however this control will normally be used in its maximum position if monitoring of a slave is desired.

The actual audio frequency of the calling tone will be dependent on a number of things, for example, the type of speakers used, state of the battery voltage, etc. The frequency can be modified by changing the values of C1 and/or R1. In any event the tone produced when called by a slave will be lower in pitch than when the master unit calls and C1 and/or R1 may need adjusting for the most suitable sound.

Note that R13 is shorted out when in the "standby" position. This enables the full supply voltage to be applied to ICI (for calling) via the line and slave unit. When the line is selected this resistor
maintains voltage on the line to operate the thyristors should another line call, but allows an "audio earth" via C10 for the slave speaker/microphone. If the audio earth was via the supply line, instability would result.

CONSTRUCTION

One printed circuit board is used and this carries the bulk of the components. The full-size pattern appears in Fig. 5. Be careful to maintain the correct polarity of all electrolytics and diodes and also check the position of pin 1 of the LM380 before soldering it into place or plugging into a socket.

WIRING

There is a considerable amount of hard wiring on this project and, although the actual layout is not critical, care should
be taken regarding connections to the various switches. It is suggested that suitable coloured leads be wired to the switches first and then the p.c.b. placed into position and its terminal pins connected up. Leave the leads long enough so that the board can be lifted clear for any servicing that may be required at a later date. The full interwiring is shown in Fig. 6.

SUB-PANEL

All components are mounted on a subpanel as shown in Fig. 7. Mark out the aluminium accurately but only pilot drill in the first instance with a 1 mm drill. By doing this the sub-panel can be used as a marking template for the front panel of the case, thus ensuring exact register of the two sets of holes.

Note that certain holes are NOT required in the front panel, these are holes lettered "A" and "E".

MULTI-STATION INTERCOM

Wiring and component layout inside the completed slave unit.

Fig. 6. Interwiring details for the master control and one slave unit. The case mounted components have been laid "flat" for clarity of wiring.

Fig. 7. Measurement and drilling details for the sub-panel.

Fig. 8. Details of the battery bracket.

Fig. 9. Drilling details for the end panel of the master unit case.

Fig. 10. Slave panel drilling details. A 6.2 mm hole should be made in the centre of the end panel for the slave jack socket.
Fig. 7

Fig. 11. Suggested subassembly for the five indicator l.e.d.s.

MATERIAL: 18 SWG ALUMINIUM ALL DIMNS IN mm

Fig. 8

4 'I' HOLES 6.2 mm DIA
Fig. 9

1^{\prime} D' HOLE 50 mm DIA
$2^{\prime} \mathrm{F}^{\prime}$ HOLES 3 mm DIA
1^{\prime} H' HOLE 7 mm DIA
1 JACK (SKS) HOLE 6.2 mm DIA
(IN CENTRE OF END PANEL)

Fig. 10

Fig. 12. Suggested circuit diagram for a mains/battery power supply.

Four plastic feet are fitted to the inside of the case to maintain the correct distance between the sub-panel and case. Two 6BA screws with nuts for spacers are also used to hold the sub-panel in position.

A small metal bracket holds the PP3 battery in place and this is made as shown in Fig. 8. This bracket is not required if a mains power supply is used.

CASE DRILLING

Fig. 9 shows the holes required in the end of the case for the miniature jack sockets and Fig. 10 shows the drilling required for the slave units. When cutting the 50 mm hole in the cases a " Q " Max cutter can be used but warm the case to about $20^{\circ} \mathrm{C}$ before cutting (warm the cutter as well); this will enable the plastics case to be cut cleanly without splitting. If cutting is attempted with the plastic very cold it will split.

LED ASSEMBLY

The l.e.d.s are held in place by first mounting onto a strip of plain perforated board, Fig. 11, and a strip of foam mounted along its back. This sub-assembly is then sandwiched between the case and sub-panel. Using a $0 \cdot$ lin. board the l.e.d.s will be spaced every seven holes, that is, six holes between each l.e.d. In any event the l.e.d.s should be a firm fit into the holes in the case, but the use of this extra

Completed prototype of the master unit. The plain perforated board has been replaced by a printed circuit board.

mounting strip makes for easy handling during wiring and assembly, or when servicing, as the five l.e.d.s can be handled as a single assembly.

The loudspeaker apertures are covered with a suitable fret before final assembly and this may be either a metal or cloth type. Metal is preferred as it will provide greater protection for the speaker units. The fret is held in place by the use of white Bostik (the writer uses Bostik 4 multi-tile adhesive).

The cases specified have special mouldings in the backs which can be knocked out to provide holes for fixing the units to a wall. Depending on the labelling, the units can be mounted either way round.

MOUNTING THE SUB-PANEL

When mounting the five-way pushbutton unit onto the sub-panel, space it away from the panel approximately 7 mm , by using 6BA screws with nuts as spacers. This ensures the actual buttons will be at the same height as the "call" and "PT" buttons. To ensure smooth operation of the buttons it is important that all burrs are removed from the holes in both the sub-panel and case.

INSTALLATION
 No problems

 should be encountered here as the "lines" are low impedance and only passing a very low current, a few milliamps. Standard type bell wire may be used for indoor wiring but if cable runs are made outdoors bell wire will be unsuitable as it is not weather-proof. For outdoor cable runs p.v.c. covered cable should be used. On NO account must any direct connection be made between these "lines" and the mains or telephonewires, they may however be laid alongside such cables if this is unavoidable. In this event some mains borne interference may be heard on the intercom system. Each end of a "line" should be terminated with a 3.5 mm miniature jack plug which is then plugged into the slave unit.

OPERATION

Select the line required, sounds should be heard from the slave unit (assuming that someone is there). Press the call button, a tone should be heard at both ends of the line. When the slave answers, press the press to talk button before speaking and release it to listen.

When on standby, a "slave" may be called by pressing the call button. Again a tone should be heard at both ends. Select the line that is calling and press the press to talk button to answer, release to listen again.

As each slave calls, the appropriate l.e.d. should indicate which line has called. If a conversation is in progress and another slave calls, the l.e.d. will indicate that a call is waiting, and this can be answered by selecting that line and either dealing with the call or asking them to wait until you can call back. If a conversation is already in progress, no tone will be heard if additional lines call in.

MAINS POWER SUPPLY

If several slave units are being used, it would be wise to operate the system from the mains. A suggested circuit for this is shown in Fig. 12. An extra jack socket should be fitted to the master unit and the battery connections taken to this with a suitable lead then going to the power supply.

USE AS A SECURITY UNIT

By using the circuit shown in Fig. 13 any number of extra "microphones" can be selected so that it is possible to listen in to a number of positions. It is not possible for these to call the master, although the master can call them if required and engage in normal two-way communication. This facility could also be useful where, for example, a number of children's rooms need to be monitored. Other uses will no doubt come to mind.

By Dave Barrington

Screened Plastic Boxes

The complete BIM 2000 range of plastic multi-purpose cases from Boss are now available internally coated with 0.05 mm thick, black EMI/RFI conductive shielding.

Having all the normal electrical screening protection facilities associated with steel or diecast aluminium enclosures, it is claimed that these ABS boxes also have the added advantage of light weight and easy drilling.

Available initially in black only, the deep profile lids are firmly secured to the base by screws running into brass hank bushes which not only ensure a good electrical connection for total screening but also provide protection against the ingress of moisture.

The cases are moulded in seven sizes ranging from $100 \times 50 \times 25 \mathrm{~mm}$ to $190 \times$ $110 \times 90 \mathrm{~mm}$. For further details of the complete range contact: Boss Industrial Mouldings Ltd., Dept EE, James Carter Road, Mildenhall Suffolk IP28 7DE.

Catalogue

A new shortform hobbyist catalogue featuring a wide range of products for the electronics enthusiast has just been issued by the Retail Division of BICC-Vero.

Products covered in the 6-page colour catalogue include circuit boards, solderless breadboards, boxes, tools and a wide range of accessories.

Copies of the "The Hobby Herald" catalogue are available Free from BICCVero Packaging, Dept EE, Retail Department, Industrial Estate, Chandlers Ford, Eastleigh, Hants SOS 3ZR. A large stamped addressed envelope would be appreciated.

Coloured Knobs

A new range of control knobs, with coloured caps and "skirts", are now being stocked by Ambit International.

These knobs are from the well-known Ritel of Switzerland range and at present consist of matt black bodies with a selection of different coloured caps, pointers, skirts and dials. They also feature push-fit brass collet fixing.

Another ten finishes are available to special order. For more details of the complete range contact: Ambit International.

CONSTRUCTIONAL PROJECTS

Car Thermometer

The most expensive item in the Car Thermometer is the temperature sensing device and could cause purchasing problems.

The case of this device is stamped with the type number 590 kH and as far as we have been able to establish is only stocked by RS Components (order code 308-809). This is an expensive item.

We would point out that RS Components will only supply to bona fide traders and readers will have to order through their local component supplier. If any readers are able to "throw" any further light on a source of supply, or equivalent, for the temperature sensor we will be pleased to hear from them.

This project has been specially designed to fit into a small hand-held case with sloping display panel. This case is available from Lascar Electronics Ltd., Dept EE, Module House, Whiteparish, Salisbury. It is also available from Verospeed, Dept EE, Boyatt Wood, Eastleight, Hants SO5 4ZY, and is listed as a hand-held case for digital panel meter (stock no. 89-25463J).

Dual Power Supply

The mains transformer used in the prototype Dual Power Supply was custom-made by Samson's (Electronics) Ltd., Dept EE, 9 Chapel Street, London NW1. A similar mains transformer with 24 V 1.5 A and 9 V 1.5 A secondaries could be used but, because of physical size, may require altering the layout within the case.
The heatsink and meter were purchased from Ambit International and the Sifram front panel knobs are stocked by Electrovalue and Marshall's.

It is quite in order to use $0.47 \Omega 3 \mathrm{~W}$ wire-wound resistors for RI and R8.

Multi-Station Intercom

The two-tone moulded plastics cases called for in the Multi-Station Intercom are Verobox types and should be available from most component suppliers. Stockists include Bi-Pak, Maplin, Magenta, Electrovalue, and Verospeed.

The sockets SKI to SK5 are 3.5 mm miniature types with normal closed contacts. All the interlocking switches (S3 to S7), mounting plate and knobs are available from Maplin.

The thyristors (CSRI to CSR4), type C103YY, appear to be only available from RS Components.

Expanded Add-On Keyboard for the 2X81

It is quite possible that many of the add-on keyboards now on the market could benefit from the Expanded Add-On Keyboard for the ZX81 project, however, these have not been investigated by us. The keyboard used in the prototype was obtained from Redditch Electronics (Dept. EE), 21 Ferney Hill Avenue, Redditch, Worcs B974RU.

The additional keyboard switches and switch "tops" are available from Redditch or Maplin. The Verostrip is available from Vero Electronics.

Buzz Off

The 12 V audible warning device used in the prototype of the Buzz Off? model was obtained from RS Components, stock number 248-808. However, most of the solid-state buzzers on the market are rated from 6 V to 20 V operation and could be used.

These devices appear to be about half the price of the RS item. Stockists of these buzzers include Electrovalue, Maplin, Magenta, TK Electronics and Ambit.

Selection of control knobs from Ambit International.

New range of "screened" plastic cases from Boss Industrial Mouldings Ltd.

IN THEs, the last of the present series, we'll take a quick look at digital electronics. Since this topic includes practically the whole of computing and much of modern communications, it will have to be a rather superficial look. However, interested readers can obtain more detailed knowledge, in a painless way, by following The Electronics of Information Technology now running in this magazine.

DIGITS: WE ALL KNOW THEM

There's nothing strange about digits. We have five on each hand. Most of us learn to count on them, thereby gaining our first practice in digital computing! We are also familiar with the idea of sending messages in Morse Code, an early form of digital communication.

BACON AND BINARY

It all started long before the electrical age. When the Spanish Armada appeared in the Channel, warning beacons were lit on hilltops to send the message across the country. A beacon is either lit or not. This on-or-off feature is characteristic of digital communications.

Of course, you can light one beacon
for an early warning, two for a more urgent one and three for imminent danger -but the on-off nature of the individual fire remains.

This is in distinction from analogue signals, where the intensity of the signal is varied in step with the information to be conveyed, as in a.m. radio where the strength of the transmitter is made to change in step with the sounds at the studio microphone.

The trouble with analogue signals is that they are very susceptible to interference. Imagine how difficult it would have been to signal with beacons by varying their brightness in an analogue way. Even if it could have been accomplished at the transmitting end, how difficult it would have been for a watcher many miles away to read the variations, perhaps through mist or haze, even though he had no doubt that a beacon was lit.

SIMPLER WITH DIGITS

The "all-or-nothing" nature of digital signals makes the problem so much simpler.

Morse Code is only partly digital. The lengths of the digits vary (dots or dashes) and this is an analogue feature. True digital codes, with all the elements or
"bits" the same length, are used in machine telegraph systems like teletype, but in fact the basic five-bit code of early teleprinters and teletypes pre-dates the electrical age by several centuries. It was invented by Shak espeare's contemporary, Francis Bacon, for use as a diplomatic code.

Bacon showed how a code message could be hidden in a plain language message. The example he gives shows how the sentence:

STAY TILL I COME TO YOU

can be made to conceal the very different one:

FLY!

The trick is to modify the letters of the plain message in some unobtrusive way; for example, to write some a tiny bit above the line and others a tiny bit below. Each letter can then have one of two positions, high or low. The intended reader then groups the letters of the plain message into lots of five and rewrites them as "highs" (H) or "lows" (L). So STAY TILL I COME TO YOU may become, say, HHLLH LHHLL LLLHH LLL.

The LLL at the end are spares, because the first three groups are all that are needed. The decoder looks up his code book and finds that HHLLH means "F", LHHLL = "L", and LLLHH = "Y". Message read, he packs his bags and leaves!

DIGITAL ELECTRONIC CODES

Bacon's code is a true binary code, with the essential "all-or-nothing" character of the individual elements. In transistor terms, we may agree to say that there is a "high" (H) when a transistor collector goes positive and a "low" (L) when it falls to zero.

These two states, which in practice correspond to, say, transistor off, and passing no current, and transistor hard on, passing so much current that all the supply voltage is dropped across a collector load resistance, can also be designated " 1 " and " 0 ". So HHLLH could be written 11001. This looks like a number and can indeed be treated as one. Thus, doing subtraction, we could say that $11110-01110=10000$.

We have now arrived at a strange state of affairs where 0's and l's can signify either letters or numbers, and having turned letters into numbers we can then add or subtract them! In fact, anything that can be turned into an electrical signal can be "digitised" and the digits manipulated.

If you watch TV, then practically every day you see some of the tricks which can be performed by digitising the TV picture then manipulating the digits as numbers. The picture can be made to expand, contract, change shape, split into several identical pictures, even fold over like the page of a book or wrap itself round a cylinder. All done by digits.

PULSE CODE MODULATION

In the communications field, an important development is the now widespread use of digitised speech. Many years ago, long before the transistor, a British engineer worked out the basic principles. Last month we noted how in an a.m. radio receiver the detector in effect produces a string of samples of the original programme. So long as there are enough samples, the gaps can be filled in and the original programme waveforms recreated.

In Pulse Code Modulation the speech is sampled at a high rate (at least 8000 times a second). This gives a sequence of samples whose size depends on the intensity of the speech at the instant of sampling (Fig. 6.1). Instead of transmitting these as variable-amplitude analogue signals, each sample is digitised, that is turned into a string of 0 's and l's. This is transmitted (with the usual advantages of a binary system) and turned back into analogue signals at the receiver.

Fig. 6. 1. Sampling an audio signal.
If the sampling time is short (say one microsecond), then the gap in time which comes before the next sample is due can be filled with samples of other speech waveforms. In this way a number of different conversations can be interleaved
in time. At the receiving end, accurate timing circuits sort them out again.

In this way, many speech channels can be interleaved in time, transmitted over the same cable, and sorted out again. In the new telephone exchanges, all the speakers' voices will travel along the same "highway". To connect two speakers together, timing "gates" will be opened just long enough to let through the samples of their voices, then closed to exclude every body else's.

NOT, OR, AND, NAND, NOR

The basic digital circuits are rather boring. They are either the equivalent of switches which open to let signals pass (Fig. 6.2) or "inverters" which turn l's into 0 's, and vice-versa.

A single npn transistor with a collector load resistance can act as an inverter. A large positive input to its base causes the collector voltage to fall from a positive value ($=$ " 1 ", say) to zero ($=$ " 0 ", say).

In computer jargon, a " 1 " at the input becomes a "not 1 " at the output. An inverter is often called a NOT circuit.

Fig. 6.2a is an OR gate because signals are passed on if switch A or B or C is closed. Fig. 6.2c is an AND gate because no signal is passed on unless A and B and C are closed.

The common transistor equivalents such as (b) and (d) also invert, so they are NOT OR (= NOR) gates and NOT AND (= NAND) gates. In this example they are 3 -input gates but other numbers of inputs can be catered for.

Gates in integrated circuits are more complicated but their function is the same. Combinations of these simple circuits are all that is needed to form the hardware of computers, capable, when programmed, of adding and subtracting binary numbers. Multiplication and division can be performed by repeated addition or subtraction.

It may be inexpressibly tedious for a human being to work out 7×3 as $3+3$ $+3+3+3+3+3=21$, but a computer never complains. Of course, there is no such thing as 3 in binary codes. But combinations of 1 's and 0 's can be made to stand for any number. Thus 3 becomes 11 in binary. It looks complicated, but that's merely because of unfamiliarity.

FLIP-FLOPS AND THINGS

Let's look at some slightly less boring binary circuits. In Fig. 6.3, provided the resistances are correct, TR1 is turned hard on when S1 is in position 1, and off in position 2. The l.e.d. lights or not, accordingly.

In real life binary circuits, the transistors are controlled mostly by voltages or currents from other circuits rather than by switches. The next circuit (Fig. 6.4) illustrates the point.

Here, each transistor is controlled by the collector voltage of the other. If TR 1 is on, its collector voltage is low so there is no voltage to drive current through R2 to turn on TR2. This in turn means that TR2 collector voltage is high, which is just what is needed to turn on TR1.

Unless you do something about it, the circuit will stay in this state for ever. What you do is move the bit of wire which serves as S1 from its central, neutral position to position 1 . This shorts out TR1 base current, turning TR1 off. Its collector voltage goes high and this turns TR2 on. The circuit has "changed state". It stays that way when S1 is returned to neutral (2). This is memory, of a sort. The circuit remembers what state it has been put into.

To reverse the state, move S1 to 3. And so on. You can also reverse the state by touching your switch wire on to the collector of whichever transistor is NOT conducting. In these ways the circuit can be made to "flip" out of one state and "flop" into the other, as often as you like.

Fig. 6.3. Simple "flip-flop" circuit and demonstration model wiring (right). Photo on the right shows TR1 being switched on by the "wire" switch S 1 .

Shorting out TR1 base to switch on TR2, see Fig. 6.4.

BISTABLES

Circuits like this, which can be put into either of two states and stay there are called bi-stable circuits, or just bistables for short. There is obviously something very binary about them, and they become of use for computing when modified so that they change state every time an input pulse is applied, even though it is applied simultaneously to both transistors.

You can do the trick by adding two capacitors and two diodes (Fig. 6.5). A diode allows current to pass only in the direction of its "arrowhead" triangle. With Sl open, whichever way current tries to flow it is blocked by one diode. But when S1 is closed, current can flow through both diodes, to the negative line. In effect, this connects the collectors to negative and turns off both transistors.

But with SI open, one collector is "high". Its associated capacitor charges.

It takes time to discharge a capacitor, as you know. If SI is given just a quick flip, some charge remains, and it is always of the correct polarity to reverse the state of the circuit. So, by repeatedly flipping S1 the state can be changed again and again. In a real-life circuit S1's job might be performed by another transistor, turned on by pulses to its base. These pulses could be derived from one of the collectors of another bistable.

Note that any one transistor, say TR2, changes state every alternate time Sl is closed. If output pulses are taken from TR2, there are only half as many output pulses as operations of S1. If S1 is replaced by a pulse-driven transistor, the bistable divides the number of input
pulses by two. Two bistables, one driven from the other, divide by 4. Three divide by 8 ... and so on. Chains of bistables like this form counters.

Such is the art of i.c. manufacture that a chain of 14 bistable or "flip-flops", each in fact containing several transistors, can be bought for about 50 pence. The i.c. also contains a circuit which resets the whole thing to zero when required. A four-stage counter, which is capable of counting up to 16 , is often arranged to reset every time it reaches 10 . This makes it into a decade counter.

Fig. 6.6. Circuit diagram for an "astable" oscillator which can be built from components from Fig. 6.5.

Bistables can also be connected in such a way that they act as stores or registers which remember a string of digits. The string can be moved along the chain, to emerge eventually at the other end. This is a shift register, or moving store. Bistables can also be used as static stores or memories. Most pocket calculators nowadays have such memories. Computers have very large ones capable of storing thousands of digits.

WINKER

If you want to experiment with computer i.c.s you will be well advised to buy one of the many excellent multi-socket "breadboards" now available for the purpose. I.C.s and components can be plugged in at will and linked up with pushed-in wires. For about $£ 8$ you can get a breadboard big enough for nearly all the projects you'll want to try out.

I hope you have enjoyed this series. If so, keep reading, because there are plans for some follow-up articles using the terminal-block solderless technique.

As a final experiment you might like to. convert your bistable into an astable, that is an oscillator (Fig. 6.6). I'll leave you to work out the changes in connections from the earlier circuit!

TODAY's driver could well profit from a knowledge of the air temperature around the car, especially if used to provide a warning of possible ice formation on the road surface.

So, what kind of thermometer would be suitable for use in a car to meet this need and yet also have sufficient range to measure anticipated maximum summer temperatures?

ANALOGUE OR DIGITAL?

To keep the thermometer small and rugged, a digital circuit design using l.e.d. or l.c.d. displays is called for, since a moving coil meter for an analogue display would make a bulkier and less durable thermometer. Digital design also makes the inclusion of an alarm function easier.

However, 7 -segment displays are expensive, and one solution is to use discrete l.e.d.s in a bargraph display of the type used for VU meters. Such a display of, say, ten l.e.d.s in a horizontal format functions as an analogue display but they light in discrete steps.

BARGRAPH

The 3914 i.c. is purpose-designed to drive a ten l.e.d. bargraph to give an analogue display of the voltage it senses. It is housed in an 18-pin package and the l.e.d.s are normally mounted in-line to give a bar or moving dot display. Its principal advantages compared with a con-

Fig. 1. Complete circuit diagram of the Car Thermometer. Note that the temperature sensor, IC1, is connected to the terminal
ventional moving coil meter are: it can be used in any position; it can be seen in the dark; it has a fast response; and it is unaffected by knocks and vibrations.

The device contains a precision voltage reference and internal logic which enables the user to choose bar or moving dot display operation. The 3914 also contains current limit resistors for the l.e.d.s.

VOLTAGE COMPARATORS

There are ten voltage comparators. The non-inverting input of each comparator is taken to a precision voltage divider chain made up of ten one kilohm resistors connected in series. All the inverting inputs of these comparators are connected together and taken to the output of the buffer stage which receives the input signal.

By using the internal voltage reference, a stabilised voltage can be set across the voltage divider chain so that an increasing step voltage is set on the non-inverting inputs of the comparators, from the lower one to the upper one. As the output voltage from the buffer stage increases in response to an analogue input voltage, the voltage on the commoned inverting inputs increases.

When the voltage on the inverting input of a comparator exceeds the voltage on its non-inverting input, its output voltage goes low and the l.e.d. connected to this output lights. Each of the ten outputs can sink a current of 30 mA and this

block by up to three metres of wire.
current is programmed by an external resistor.

CIRCUIT DESCRIPTION

Four i.c.s are utilised in the design of the Car Thermometer circuit shown in Fig. 1. The cmos op-amp, IC2, is wired as a non-inverting voltage amplifier with a voltage gain of about 11 , that is, the ratio of resistor values ($\mathrm{R} 3+\mathrm{R} 2$) to R 2 .

The temperature sensor IC1, acts as a high impedance current source which passes about $1 \mu \mathrm{~A}$ per Kelvin (1 Kelvin equals $1^{\circ} \mathrm{C}$), through resistors RI and VR1 when it is supplied with a voltage between 4 V and 30 V d.c. across it. Due to its high impedance, the sensor current is virtually insensitive to voltage drops which might occur on long cables connecting it to the amplifier.

RI and VRI are adjusted so that a voltage varying by about 0.91 mV per Kelvin occurs at pin 3 of IC2. This variation is set so that, after amplification, the voltage at pin 6 varies by $0 \cdot 1 \mathrm{~V} / \mathrm{K}$. This condition makes it easy to calibrate the thermometer, since voltage at this point may be read directly as Kelvin. For example, a voltage of 2.67 V occurs when the temperature of the sensor is 267 K , or $-6^{\circ} \mathrm{C}\left(273 \mathrm{~K}\right.$ corresponds to $\left.0^{\circ} \mathrm{C}\right)$.

Thus, over the full range of temperature measured by the thermometer, the voltage changes from 267 mV to $303 \mathrm{mV}\left(30^{\circ} \mathrm{C}\right)$. Note that a temperature of x degrees Celsius is equivalent to a temperature of $273+x$ degrees absolute or Kelvin.

The total variation in voltage at pin 6 of IC2 is, therefore, $0 \cdot 18 \mathrm{~V}$. A fraction of this voltage is applied to the input of IC3, pin 5, via the voltage dividers R5 (or R4) and R6 + VR2. The internal reference voltage of 3914 is available at pin 7 and is nominally equal to 1.2 V . Pin 6 is connected to pin 7 so that the voltage at the "top" end of the internal voltage divider is 1.2 V .

The voltage at the "bottom" end of the voltage divider is set on pin 4 by VR3 which selects a fraction of the internal reference voltage. Thus a stable voltage is set across the internal voltage divider which enables an accurate expanded scale thermometer to be designed using the 3914.

Capacitors C1, C2 and C3 are required to ensure that the 3914 is stable in operation. Resistor R7 is connected in series with the anodes of the ten I.e.d.s to reduce the power dissipation inside the 3914 by bringing its output transistors further into saturation.

ALARM CIRCUIT

The logic circuit which operates the flashing l.e.d. when the temperature of the sensor is below $2^{\circ} \mathrm{C}$ is centred on the cmos device, IC4. Three of the four 2 input Schmitt NAND gates are used.

When the temperature is $2^{\circ} \mathrm{C}$ or above, D5 connected to pin 15 of IC3 is on and the voltage drop across it lowers
the voltage at pin 15. TR 1, in association with the voltage divider R8 and R9, inverts this low and places a logic high on pin 12 of IC4a. Since the voltage on pin 13 is also high, the output at pin 11 is low. This low applied to pin 6 of IC4b ensures that its output stays high and TR2 holds off the alarm DII.

If D5 goes off, the voltage at pin 15 of IC3 goes high and transistor TRI switches off which places a logic low on pin 13, IC4. Thus, the output of this gate is now high and this high is placed on pin 6 of IC4b.

SCHMITT OSCILLATOR

Pin 5 of IC4b is connected to the output of a simple Schmitt oscillator designed around IC4c using C4 and R12. Thus pin 5 of IC4b receives square-wave pulses at a frequency of about 1 Hz .

Every time pin 5 receives a low from the oscillator, pin 4 goes from low to high. Thus pin 4 of IC4b passes a series of pulses to transistor TR2 which drives Dll on and off at the oscillator frequency.

To avoid the alarm operating at temperatures below $20^{\circ} \mathrm{C}$ when the selector switch Sla is on SUMMER, Slb holds the base of TR2 high hence preventing D1I from flashing.

ALL DIMENSIONS IN mm

ALL DIMENSIONS IN mm
Fig. 3. Drilling details for the display panel and switch label. Both are specifically designed for the Lascar hand-held case.

CIRCUIT BOARD

The p.c.b. layout shown in Fig. 2 makes circuit assembly of the thermometer straightforward. This board is designed to fit inside the lower half of the hand-held case. The l.e.d.s are soldered direct to the p.c.b., the height being chosen so that they just pass through holes drilled into the display plate when the unit is assembled.

The ice warning l.e.d. is mounted by the side of the $0^{\circ} \mathrm{C}$ l.e.d. The first four l.e.d.s which indicate below freezing on the WINTER scale are green and the rest red.

All the components except the temperature sensor are mounted on the p.c.b. There are a few problems which might arise in using the 3914 and these were anticipated in the component layout. One problem is that the l.e.d. currents sum at the 0 V terminal (pin 2) of this i.c. and any resistance between pin 2 and the battery terminal will cause voltage drops which can make the 3914 oscillate.

Oscillation in the 3914 is usually manifested by a slow turning on and off of the display. Thus the battery negative lead is taken direct to pin 2 and C4 decouples the power supply close to the 3914. Similarly, C1 between the l.e.d. anode common and pin 2 has a decoupling role and reduces the possibility of oscillation due to any resistance between pin 3 and anode common.

Resistor R4 has a calculated value of 1.34 kilohms, and is made up from two resistors connected in series, nominal values of 510 ohms and 820 ohms. The precise value of this resistor is determined by the value of the internal reference voltage of the 3914 and corresponds to the internal reference voltage of 1.26 V . The resistors were selected using a digital ohmmeter.

Constructors are advised to select a value close to 1.34 kilohms assuming

Fig. 4. Method of mounting the temperature sensor, IC1, in a plastic ball point pen tube.
their 3914 has the same internal reference voltage. Should, in subsequent use after calibration, the scale be inaccurate, a change to one of the two resistors making up R4 can be made.

The four external connections to the unit (to power supply and sensor) are made via a four-way terminal block, TB1. It is important to check that correct polarities are observed to the sensor. A pair of leads two or three metres long, if necessary, can be used to connect the sensor to the terminal block and care should be taken to ensure that the soldered joints close to the sensor are insulated from each other, and from any exposure to external water.

The sensor should be glued with epoxy resin into the end of a plastic ball point pen tube for protection as shown in Fig 4. Note that pin 3 (case) of IC1 is not used and should be cut off close to the case.

CALIBRATION

This exercise necessitates the adjustment of VR1, VR2 and VR3 with a possible change to the value of R4 or R5. However, the procedure is quite straightforward and you only need some glasses of water at $12^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, measured using an accurate thermometer, and some melting ice in another glass.

Connect the unit to a 9 V, PP7 battery or to a 12 V d.c. power supply and put the sensor in the water at $12^{\circ} \mathrm{C}$, using the thermometer to keep the water well stirred. Switch on the unit and select the SUMMER range. Use a digital voltmeter (if available) to measure the voltage at pin 6 of IC2 and adjust VR1 until a reading of 285 mV is obtained. This reading corresponds to an absolute temperature of $285 \mathrm{~K}\left(12^{\circ} \mathrm{C}\right)$. Move the sensor to water at $30^{\circ} \mathrm{C}$ and you should find that the voltmeter now reads 303 mV . VR1 should not now be touched again.

Note that the sensor, amplifier and digital voltmeter constitute a digital thermometer whose scale is linear and reads in degrees absolute (Kelvin).

Adjust VR2 until all the l.e.d.s are on making sure that D10 just comes on. Put the sensor in water at $12^{\circ} \mathrm{C}$ again, and adjust VR3 so that D1 just comes on. Move the sensor back to water at $30^{\circ} \mathrm{C}$ and once again check that D10 is just on. No further adjustment to VR2 and VR3 should be necessary. They have set the scale of the thermometer to a $18^{\circ} \mathrm{C}$ span.

Switch S1 to winter and put the sensor in melting ice at $0^{\circ} \mathrm{C}$. The first four (green) l.e.d.s should be on, and the ice alarm D11 should begin to flash on and off. Remove the sensor from the melting ice and allow it to warm up. As it does so D5 will light and the alarm will go off.

Place the sensor in the water at $12^{\circ} \mathrm{C}$ and the last l.e.d. in the scale will just come on. If it does not, a change to one of the resistors R4 or R 5 is necessary. Select another resistor to correct the error using the fact that reducing the value of R4 (or R5) causes the scale to over-read and increasing the value causes the scale to under-read.

COMPONENTS

Resistors

R1	$680 \Omega \pm 2 \%$	
R2.5	$1.5 \mathrm{k} \Omega \pm 2 \%$ (2 off)	
R3	$15 \mathrm{k} \Omega \pm 2 \%$	
R4	$1.34 \mathrm{k} \Omega$ (see text)	
R6	$820 \Omega \pm 2 \%$	See
R7	7.5Ω	
R8,10	$10 \mathrm{k} \Omega$ (2 off)	
R9	$4.7 \mathrm{k} \Omega$	
R11	470Ω	
R12	$100 \mathrm{k} \Omega$	
R13	$1.2 \mathrm{k} \Omega$	
Rll		

All $+2 \%$ resistors are metal oxide. all other types are $\pm 5 \%$ carbon

Capacitors

C1 $\quad 4.7 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum bead
$\mathrm{C} 2.4 \quad 10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum bead (2 off)
C3 $\quad 0.1 \mu \mathrm{~F}$ polyester
C5 $470 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Semiconductors

D1-4 TIL2210-2in. green l.e.d. (4 off)
D5-11 TIL220 0.2in. red I.e.d. (7 off)
TR1.2 BC478 silicon npn (2 off)
IC1 $\quad 590 \mathrm{kH}$ temperature sensor TO-5 package
IC2 CA3140 смоs op-amp
IC3 3914 linear bargraph display driver
IC4 4093 смоs quad 2 -input nand Schmitt trigger

Miscellaneous

S1.2 d.p.d.t. sub-miniature slide switch with chrome tang (2 off)
VR1,2 500Ω multiturn preset (2 off)
VR3 $1 \mathrm{k} \Omega$ multiturn preset
TB 1 4-way terminal block
Hand-held instrument case; single sided p.c.b. $70 \times 70 \mathrm{~mm}$; 18 -pin d.i.I. holder; 14 -pin di.i. holder: 8-pin di.i. holder; $7 / 0.2 \mathrm{~mm}$ wire; used ball point pen tube: epoxy resin adhesive.

INSTALLATION

The thermometer is now ready to use in the car. Connect the unit to the car battery via the ignition switch, carefully observing to polarity, and mount the unit in a position not illuminated by direct sunlight otherwise the scale will be difficult to read.

The sensor should be located away from engine or exhaust heat but able to sense the ambient air temperature without being directly exposed to the airstream; or to rain and road spray. A good position for the sensor is behind the front bumper guard but fit the sensor inside a short length of tube open at one end and mounted with its open end pointing earthwards.

by T. R. de Vaux-Balbirnie

$\mathrm{A}^{\top}$$T$ village fêtes up and down the country you will see this time-honoured game. No-one seems to know what it is really called but the idea is simple enough. If you can guide the hand-held loop around a bent wire obstacle course without touching it, you win. If you touch the wire with the loop a bell rings and you lose!

ORIGINALSYSTEM

The circuit normally used is extremely simple-just a battery and bell connected in series, Fig. 1. The bent wire and handheld loop form a "switch" so that the circuit is completed when the two touch.

WIRE
L00P

Although satisfactory, this system suffers from two defects. Firstly, if the player touches the wire momentarily then the bell might fail to ring due to its rather slow response time. Secondly, since the current required to operate the bell flows through the wire and loop, poor contact between the two will prevent the circuit from working. It is therefore necessary to keep the wire and loop very clean to avoid erratic operation.

RAPID RESPONSE

The author examined the basic circuit and improved it while still preserving the traditional form of the game.

The first improvement was to ensure that the device would sound for a definite time even after momentary contact between wire and loop. This avoids disputes
as to whether the player actually touched the wire or not. The second improvement makes sure that the circuit works reliably even where very poor contact exists.

In the prototype, the bell was replaced by an audible warning device. This consumes less current than a bell, is cheaper, more reliable and gives a louder sound. Experiments with the prototype were unsuccessful when an ordinary bell or buzzer was used.

CIRCUIT DESCRIPTION

The circuit diagram for the Buzz Off! is shown in Fig. 2.

The main part of the circuit consists of the ever popular 555 timer i.c. This is connected as a monostable-that means it remains off until triggered whereupon it switches on for a predetermined time then reverts to its original state. The trigger referred to is provided by contact between the wire and hand-held loop.

The time during which the circuit is on depends on the values of R1 and C1. Using the component values suggested this time will be about half a second and
this was thought appropriate. For a longer time, R1 could be increased and for a shorter time reduced.

The output of the i.c. is obtained at pin 3 and is connected to the base of TR1 which does the actual job of operating the audible warning device. VR1 matches the output from the i.c. to the transistor.

For the prototype, three type 1289 4.5 V batteries were connected in series, Fig. 3, and these gave excellent results. The suggested audio-warning device does not perform well on less than a 12 -volt supply although a 9 V battery will do for testing. The current requirement is about 10 mA on standby and 100 mA whilst actually sounding.

COMPONENTS

Resistors

R1	$5.6 \mathrm{M} \Omega$
R2	$47 \mathrm{k} \Omega$
R3	220Ω

All $\frac{1}{2} \mathrm{~W}$ carbon $\pm 5 \%$

Capacitors
C1 $\quad 0.01 \mu \mathrm{~F}$ polyester
C2 $0.1 \mu \mathrm{~F}$ polyester

Semiconductors

$\begin{array}{ll}\text { TR1 } & \text { BFY51 non silicon } \\ \text { IC1 } & \text { NE555 timer }\end{array}$

Miscellaneous

VR1 $1 \mathrm{k} \Omega$ miniature horizontal preset
S1 s.p.s.t. miniature toggle
WD1 12V buzzer (see text)
B1 $13 \frac{1}{2} V$ (see text)
0.1 inch matrix stripboard 9 strips by 22 holes; plastics case $115 \times$ $95 \times 37 \mathrm{~mm}$ (ABS box MB3); 8 pin di.i. i.c. socket; chipboard: $460 \times 110 \times 15 \mathrm{~mm} ; 100 \mathrm{~mm}$ tinned copper wire 16 s.w.g.; 800 mm flexible wire; connecting wire; wire coat hanger.

Approx. cost
Guidance only

Fig. 2. Complete circuit diagram for the Buzz Off!

CIRCUIT BOARD

The circuit is built on a small piece of $0 \cdot 1$ inch matrix stripboard 9 strips by 22 holes in size. Use an 8 -pin i.c. socket and do not insert the i.c. until all assembly work is completed. Cut the copper tracks in the places indicated on the underside diagram, Fig. 4, especially not forgetting the row between the pins of the i.c. socket.

Although any small plastics box may be used to house the project, the suggested one has convenient slots for easy mounting of the circuit panel.

POWER SUPPLY

The audio-warning device may be placed inside the box with only the top part protruding through a hole cut in the lid. If this is made a tight fit then no further support will be needed. Holes need to be drilled in the case for S 1 , external battery leads, and for connections to the loop and wire. If the box is large enough, the batteries may be placed inside, but a better plan is to use external batteries especially where heavy use is anticipated.

WARNING DEVICE

The alternative audible warning device will operate from a 9 -volt supply. It may be mounted on top of the case using small nuts and bolts. Although much smaller it is also quieter in operation so, for loudest results, the recommended audio-warning device should be used. Whichever device is chosen, it is essential to observe the polarity. The recommended audiowarning device has spade type connectors marked " + " and "-". The alternative has flying leads-red for positive and black for negative. Soldered connections may be made to spade connectors so long as they are made quickly. On the other hand, the proper connectors are cheap and may be obtained from a motor accessory shop.

The switch S 1 is mounted in the hole in the lid and wired into the positive battery lead. Some connections need to be made to the copper strip side of the circuit panel. These should be made with great care to avoid short circuits.

LOOP HANDLE

The hand-held loop consists of a piece of thick (16 s.w.g.) copper wire bent around a wooded dowel and twisted tightly around it using pliers or a vice. The diameter of the loop is left to the constructor since it is this which determines the difficulty of the game.

Fig. 3. Connecting three batteries in series to power the Buzz Off! circuit.

Fig. 4 (Above). Component layout, interwiring details and underside of the stripboard showing breaks (5 off) in the copper strips. Note that there should be 22 holes not 21 as shown.

Fig. 5 (Right). Suggested method of construction for the hand-held loop.

Completed prototype of the Buzz Off! The siren protrudes through a cut-out in the case lid. The circuit board slides into slots in the side of the

The handle consists of an old felt tip pen. After dismantling this and washing it out, the copper loop has a length of flexible wire soldered to it and adhesive used to secure the parts together, see Fig. 5. The wire is knotted and passed through a hole drilled in the base of the pen body. This knot will protect the soldered connection from the rough service which the loop is likely to receive.

The best wire to use is the "extra flexible" variety. This resists bending very well. If it is not available, ordinary stranded wire will give reasonable service. When the project has been finally tested, the body of the pen may be filled with Plasticine to give a pleasant feel to the handle. The free end of the wire is taken to point B on the circuit panel and soldered into position.

COAT HANGER

The wire obstacle course is made from
an old wire coat hanger mounted on a chipboard base. The baseboard used for the prototype was made from 15 mm thick chipboard about 460 mm long by 110 mm wide. After untwisting the coat hanger and bending the wire into a suitable shape, the hand-held loop is threaded onto it.

The ends of the wire are then secured through holes in the baseboard. If BA taps and dies are available, the ends of the wire may be threaded and secured using two nuts and washers at each end. A solder tag may be used at one end to make the connection to point A . The wire may also be secured in the holes by using epoxy resin adhesive. A soldered or tightly twisted connection may then be used for connection to point A.

If sharp ends of wire protrude through the baseboard, rubber feet may be used to keep it clear of the table. Finally, a spring clip on the baseboard may be used
to keep the hand-held loop tidy while the game is not being used.

CIRCUIT TEST

Testing may be carried out using a 9 V battery. Set VRI to approximately midtravel, keep the loop clear of the wire and switch on. The audio-warning device may give a single "bleep" which may be ignored. Now touch the loop against the wire for an instant. There should be a short bleep. Some adjustment to VRI may be needed for best results. If the circuit tends to trigger falsely-to bleep even when the loop and wire have not touched-then R2 may need to be altered in value.

If the length of the bleep is too short, RI may be increased in value and viceversa.

This game is certainly good for fundraising. You are sure to be in demand when word gets around!

The Wire Bending Gauge given free with this issue is intended to be used for beriding the leads on small components such as resistors and axial lead capacitors. It provides a quick, accurate and safe means of bending the leads to span an exact number of holes on perforated circuit boards. There are guides for both horizontal and vertically mounted components on 0.1 and 0.15 inch pitch boards. The numbers represent the number of holes to be spanned, including mounting holes.

Horizontal mounting. (1) Place the component in the notches to span the requisite number of holes for the appropriate pitch. Hold component body and bend one lead at a time to make the leads parallel; (2) ready for insertion. Vertical mounting. (3) Place component in slot and bend protruding lead through 90 degrees. Slide component along slot to required span guide lines and bend once again through 90 degrees over gauge edge as shown in (4). Move component to tip of gauge to remove.

APRIL 1983 ISSUE ON SALE FRIDAY, MARCH 18

Why Markets Are Lost

Over the last 15 years I've watched the British consumer electronics industry be decimated by Far Eastern competition. But I'm sorry to say that many firms, now out of business, have reaped no more than they deserved. They didn't plan ahead, they didn't keep in touch with what their customers wanted and they didn't keep up to date with technology, production efficiency and quality control. So they went out of business when better, cheaper and more reliable products from Japan started to flood in. Now exactly the same thing is beginning to happen to the motor industry.

Recently, partly out of national loyalty, I bought British when I needed a new car. I chose an MG Metro because 1 admired some of its elegant design features: Like, for instance, the way the driver's switch panel has a blanked off socket into which the owner can push-fit Leyland switches to add optional extras, such as front fog lamps. As the switch pushes home it mates with contacts on the edge of a printed circuit board which is connected to the main wiring loom. As the Leyland circuit diagram for the car shows, it is then only necessary to connect a relay and fog lights at the free end of the wire, near the front radiator.

The Missing Wire

Thinking to myself, at last we're learning from the Japanese, I bought and fitted the necessary switch, relay and fog lights. But then I found that, although the switch mated with the p.c.b., the fog lamp wire shown on the circuit diagram wasn't anywhere to be seen. The dealer who had sold me the car was puzzled and suggested I contact the service division of British Leyland. Two months later I had still not solved the problem but l'd learned an awful lot about the problems Leyland must face in the future. What I found out could also, incidentally, be very useful for anyone else who has recently bought a Metro car, and for dealers who are selling them.

The Supercover guarantee department of British Leyland referred my query to the

BL. Customer Service Department. Unfortunately they couldn't read a circuit diagram, and told me that the wire was missing because it was shown in the circuit diagram only as a dotted line, meaning that it was optional. In fact, it's clearly shown in Leyland's own circuit as a hard wire. I persisted and my query was then passed to another customer relations person at British Leyland. He ducked the issue altogether. "Your best course of action will be to consult your local dealer". So I wrote back again explaining that it was only because the dealer was puzzled that I had written to British Leyland for advice in the first place.

Do It Yourself

I heard nothing, so phoned British Leyland Customer Relations to try and sort things out once and for all. At first they tried to tell me that the wire was there but I couldn't see it. Then they finally owned up.

The wire which makes it easy for Metro owners to fit their own fog lights has been omitted from the wiring loom to save money. Dealers hadn't been told and the circuit diagram hadn't been changed. "It is necessary to supply and fit the necessary wiring yourself," wrote Leyland, enclosing a scrappy Xeroxed sheet showing where the missing wire should be fitted to the p.c.b.

My mind boggling, I asked the British Leyland Press Office how much money the company was saving by omitting one metre of low current wire at the production stage, and leaving the customer to rebuild it into the car after purchase. The press officer came back to me for more accurately waited until I got impatient and phoned her), to tell me that she had been assured by BL's electrical engineers and product planners that the wire wasn't missing after all!

After yet more phone calls and letters I finally got something approaching the full story. The wire in question was in all the original Metro range, but is now being omitted. With curious logic it's been omitted first from the most expensive cars, the MG Metro and the Van den Plas. No-one could say for sure who had made the decision.

Incomprehensible

So, if you want to fit fog lamps to a new Metro car by using the standard switches that interface with the p.c.b., then don't doubt your sanity if you can't find the wire that is shown on the circuit diagram.

Meanwhile, British Leyland is getting $£ 990$ million of public money over two years. That's nearly $£ 10$ million a week. This money is intended to help the company fight off Japanese competition. When I was in Japan recently, at a trade seminar, I told the story of the missing Metro wire. The Japanese press and businessmen present looked at me as if I was mad. The idea of treating a customer that way is totally alien to Japanese industry. And that's why they are winning the trade war.

Buying A Home Computer

The national press carried a report of boom sales in home computers in the last Christmas shopping rush. This is doubtless because home computers are now cheaper than a computer controlled home TV game.

Despite all the fancy talk about home computers making domestic life and business more efficient, there's no doubt that most people who buy them end up using them mainly to play games. A friend in America recently told me that although many businessmen now feel obliged to buy and install a computer system in their office, to look "on the ball", most of them only use their impressive installations to play exotic TV games.

I also heard recently of problems some users are having with their home computer disc drives. It's easy to forget that although the microprocessor inside a computer is a wonder of modern technology, and can in
theory last forever, the same is certainly not true of disc drives.

These are complicated mechanical beasts, that will eventually go wrong or wear out. In some cases they may only last a few months, and if the drive is built into the main computer housing, then you'll have to return the whole system for repair. The cost of the strip down and replacement of a drive can be well over $£ 100$.

Don't rely on the guarantee to help you. Often you'll find it offers only three month's free parts and labour. You may be able to contest this under the British consumer laws, but you could well end up with a fight on your hands.

So, before buying a computer ask yourself three questions. Do I really want one; how easy will it be to repair or replace a disc drive; and am I getting a good guarantee.

THE TEST GEAR 83 SERIES CONSISTS OF:

 DUAL POWER SUPPLY FUNCTION GENERATOR TRANSISTOR TESTER PULSE GENERATOR - LABORATORY AMPLIFIER - FREQUENCY METER

In 1974 Everyday Electronics published a series of articles, E.E. Test Gear Five specially designed for the constructor.

Since 1974 there have been many major advances in the world of electronics and we now introduce a new series of six instruments, under the title Test Gear 83.

TEST GEAR 83

This new generation of test equipment reflects the upward trend in technology. Of the original five, two have been kept, the Power Supply and the Transistor Tester, both being new and considerably updated designs. The A.F. Oscillator has been abandoned in favour of a Function Generator, and the R.F. Generator has gone completely. In addition, there is a Laboratory Amplifier, a Pulse Generator and Digital Frequency Meter.

The reasons for building your own test equipment, however, remain the same. Electronics is a craft, and with widely available integrated circuits, sometimes likened to building blocks, most of the old terrors of electronics have disappeared. The average man (or woman) in the street can be as happily engaged in building and experimenting, as the technically trained expert. It is the nature of electronics that allows useful and satisfying involvement at all levels.

Throughout the design of the Test Gear 83 projects, emphasis has been placed on two main areas; firstly, the price/performance ratio while at the same time designing units that will provide a sufficiently high specification, so they will be of use for many years. The other area of concern is on ease of construction.

All the units will be built on printed
circuit boards, whilst this adds to the construction time it has been the authors experience that constructional errors are less likely to occur, and the project works first time.

DUAL POWER SUPPLY

A power supply is a key component in any electronic system. Although batteries may be used to supply the finished project they are not flexible enough for development work. Also, with batteries becoming increasingly more expensive the idea of running projects from the mains becomes attractive. This unit has been designed to supply the essential requirements of a home constructor's workshop at a reasonable cost. It provides two stable, well regulated outputs, with low ripple.

The main output provides 0 to 20 V and has constant current overload protection which can be set in the range 0 to 1.2A.

The second output provides a fixed 5 V output and is primarily intended for experimenting with TTL logic. The maximum current available is fixed at $1 \mathbf{A}$.

A meter is provided for measuring the output voltage, current on the main output and the current drawn from the 5 V output. Both supplies are short-circuit protected.

CIRCUIT DESCRIPTION

The circuit diagram of the unit is shown in Fig. 1. The circuit can be split into sections, the main output and the secondary output. The secondary output will be considered first.

The circuit is very conventional in the fact that all the work is done by the three terminal regulator integrated circuit, IC1.

SPECIFICATION			
Variable output		Fixed output	
Range:	0 to 20 V d.c.	Output:	5 V d.c.
Max. current:	1.2 A	Max. current:	1 A
Ripple:	10 mV peak-to-peak	Ripple:	8 mV (supplying 1 A)
	(supplying 15 V at 1A)		1.5\% (between 0
Load regulation:	0.08% (measured at 20 V between 0 and 1A)	regulation:	and 1A)
Line	0.0065\% linput		General
regulation:	voltage varied	Meter:	3 ranges V(0-20V).
	between 230 V and 250V	Terminals:	/(0-20V), $(15 \mathrm{~V})$ 4 mm banana sockets

The a.c. input is provided by the transformer and is rectified and smoothed by the bridge rectifier D1-D4, and capacitor Cl , respectively. The low value resistor R1 is used to sense the output current for the meter.

With an output current of 1 A , half a volt is developed across R1. R2 is chosen to make the meter 0.625 V full scale. The
capacitors C2 and C10 are to prevent high frequency oscillations.

The main output is more complex, rather than use another monolithic regulator i.c. the higher stability of a LM723 was sought. The reason for this is because in a simple series regulated supply, a large amount of power is dissipated in the output transistor causing it to run hot. In a monolithic regulator this raises the temperature of the voltage reference and causes it to drift.

EXTERNAL AMPLIFIER

In a design using a discrete output transistor, the transistor and the reference are in thermal isolation. A very stable reference is provided by IC2. Readers familiar with the LM723 regulator will know of its inability to regulate at low output voltages, that is less than two volts. This limitation arises from the error amplifier, so in this design an external amplifier is used, a CA 3140 , IC3.

This amplifier will work with its input close to 0 V . The voltage reference from pin 6, IC2 is fed via the voltage control potentiometer VRI to the non-inverting input of IC3. A portion of the output voltage is fedback to the inverting input via the potential divider R10, R11. This feedback loop keeps the output voltage constant. The output of IC3 is used to drive the series pass Darlington pair made of transistors TR2 and TR3.

CURRENT LIMITING

The error amplifier in IC2 and its associated output transistor are used to limit the supply to IC3 to a maximum of 27 V . The output current is sensed by resistor R8, when the current flowing through this is $1.2 \mathrm{~A}, 0.625 \mathrm{~V}$ is developed across it. If this were directly connected to pins 2 and 3 of IC2 this would result in the supply to the op-amp being reduced thus keeping the output current constant.

The current limit circuit is biased by

Fig. 1. Complete circuit diagram for Unit One, the Dual Power Supply. The main output provides 0 to 20 V with constant current overload protection within range 0 to 1.2 A . The second output provides a fixed 5 V 1 A supply specifically for experimenting
with $T \mathrm{~L}$ logic. with TIL logic.

driving a constant current of 0.75 mA from the current source TR1 and its associated components, through VR2. The voltage across VR2 is added to that across the sense resistor, increasing the current limits sensitivity.

The sense resistor is also used by the metering circuit to display output current.

The d.c. is provided by the 24 V secondary from T1, bridge rectifier D5-D8 and capacitor C3.

CIRCUIT BOARDS

The prototype was housed in a Vero case type 202-21036C. This case will be used throughout the Test Gear 83 series

COMPONENTS -

Resistors
R1,8
R2.9
R3
R4. 11
All $\frac{1}{6}$ W carbon $\pm 5 \%$ unless otherwise stated
Capacitors
C1
C2.5.10
C3
C4
C6
C7
C8
C9

$2200 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

$0 \cdot 1 \mu \mathrm{~F} 160 \mathrm{~V}$ Siemens (3 off)
$2200 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
$220 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
470 pF disc ceramic
$4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum bead
$47 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
$0.1 \mu \mathrm{~F}$ ceramic
$1.3 \mathrm{k} \Omega$
$1 \mathrm{k} \Omega$
18kS
470Ω 3W wire-wound
$24 \mathrm{k} \Omega$

Semiconductors

D 1-4	KBLO2 200V, 4A bridge rectifier	
D5-8	KBLO2 200V, 4A bridge rectifier	
D9	1 N4002	In
D10	TIL220 red lie.d.	
TR 1	BC556 pnp silicon	
TR2	BC546 npn silicon	
TR3	TIP3055 non sificon plastic power	
IC1	$78055 \mathrm{~V}, 1$ A regulator	C3
IC2	LM723 adjustable voltage regulator	$\underline{35}$
IC3	CA3140 MOSFET Op-amp	

Miscellaneous

T1
mains transformer with $24 \mathrm{~V}, 1.5 \mathrm{~A}$ and $9 \mathrm{~V}, 1.5 \mathrm{~V}$ secondaries
ME1 1 mA f.s.d. panel meter with 120Ω coil (type ML52)
S
VR1
VR2
SK 1,3
SK2.4
2 -pole, 6 -way midget rotary with adjustable stop
d.p.d.t. miniature mains toggle
$10 \mathrm{k} \Omega$ control potentiometer
$1 \mathrm{k} \Omega$ control potentiometer
insulated terminal post red
Verocase type 202-21036C; single-sided p.c.b. size $120 \times 85 \mathrm{~mm}$ and $85 \times$ 75 mm ; heatsink size $89 \times 75 \times 51 \mathrm{~mm}$ rated at $1.5^{\circ} \mathrm{C} / \mathrm{W}$; control knob (3 off); l.e.d. holder; Veropins; $7 / 0.2 \mathrm{~mm}$ wire; $14 / 0.2 \mathrm{~mm}$ wire; mains cable; grommet; P-clip; 14-pin d.i.l. holder; 8 -pin d.i.I. holder; mounting hardware (M2.5 or 6BA).

Fig. 2. Component layout and full size printed circuit board master (opposite page) for the $0-20 \mathrm{~V}$ variable supply.

Fig. 3. Component layout and full size printed circuit board master for the 5 V fixed supply.

Fig. 5 (Left). Mounting details for transistor TR3. Note that no insulating kit is used on this transistor so the rear panel and the heatsink are connected to the collector and should not be "earthed".

Fig. 4 (Below). Drilling details for the front aluminium panel.

and should be available through the normal Vero distributors.

Begin construction with the circuit boards. If you are making the boards yourself pay special attention to their external dimensions. The prototype boards were laid out with etch resistant dry transfers. The p.c.b. artworks and component layout diagrams are shown in Fig. 2 and Fig. 3.

Solder the components to the board in the normal manner beginning with the passive components and the wire link, working through to the transistors and the diode. It will be found helpful if Veropins are inserted in the board where the flying leads leave it. Note that additional holes have been provided to allow for different sizes of capacitors, particularly Cl and C 3 the smoothing capacitors.

CASE

Once the circuit boards are complete, the case can be prepared. Remove the four screws at the corners of the base, allowing the two halves to be separated. Remove the front and rear panels. To assist in marking out and to protect the panels from scratches it is advisable to fasten a piece of graph paper with doublesided tape. Mark the centre of the holes according to the dimensions given in Fig. 4 and then lightly centre-punch them. Without removing the protective paper, drill the holes. For the large holes it is better to drill a small hole (about 3 mm) first and then drill the hole to the right size.

The large circular hole for the meter can be made two ways: either drill a series of small holes round the circumference and punch out the middle, then finish with a file; or use an Abra file in a hacksaw frame.

REAR PANEL

The rear panel holds the heatsink. The heatsink used on the prototype is available from Ambit International, Part 21-08030.

A 30 mm diameter hole was cut to be the centre of the heatsink in the rear panel to allow the transistor TR3 to be mounted, see Fig. 5. Note that no insulating kit is used on this transistor so the rear panel and the heatsink are connected to the collector of the transistor and should not be earthed. The 5 V regulator is mounted with a mica washer and an insulating bush. To aid heat transfer, a thin smear of heatsink compound should be applied to both sides of the washer and the power transistor.

Solder three wires to the leads of TR3, before mounting the rear p.c.b. on standoffs over the transistor. The rear panel assembly can now be replaced in the lower half of the case.

Screw all the front panel components in place having first cut to size the spindles on the potentiometers and the switch. At this stage it is best to attach wires to the panel mounting components, paying

Front panel layout and lettering.
(Left). Positioning of mains transformer, and circuit boards within the case. The boards are held "proud" by their mounting nuts and bolts.
(Bottom left). Circuit board and TR3 on the rear panel.
The heatsink mounted on the exterior of the rear panel.

attention to the two thick wires, see Fig. 6. These wires must be thick or poor regulation will result. Once this has been done the panel can be slid into its mounting slots and the other ends of the wires be soldered.

IN USE

The power supply can be used to replace the power supply of a circuit under test. Turn the METER switch to voltage $V(0-20 \mathrm{~V})$ and with no load connected and the current control turned up set the required voltage. Switch to the current setting I ($0-20 \mathrm{~V}$) and turn the current control to zero. The load can now be connected and the CURRENT LIMIT control can now be increased. When the current stops rising the power supply is then operating in the constant voltage mode.

Should the load try and draw more current than the threshold, the supply will limit the current by reducing the voltage, that is, go into the constant current mode. The supply may be used in the constant current mode for recharging Ni -Cad batteries, take care though, not to exceed the manufacturers rated current.

When the supply is delivering a small output, a large voltage is developed across the series transistor and it will dissipate a lot of power. To avoid overheating the supply should not be operated in this condition for excessive lengths of time. The prototype was short circuited for a quarter of an hour with no ill-effects, although this is not recommended!

Computer Holiday

Earlier this year I found myself, probably like the rest of you, bombarded with alluring holiday literature. There was no escaping it, the newspapers, the radio, the television, all combined to part you from your money in exchange for a fortnight's sunshine.

Unable to withstand the pressure I went to see my bank manager and tried to lull him into a sense of false security with talks of luxury cruises. 'Yes, Young. I agree with you in principal, but I think I would be a lot happier if you went for a row round the Serpentine, it would be more in keeping with your present financial status."

Encouraged by his friendly remarks I had another look at the brochures and the following caught my eye. It was a picture of a young man and a young woman sunbathing, and the caption below said, "Don't just lie there, do something". It was an advertisement for a holiday on the shores of the Mediterranean, and thrown in at no extra cost was a course on computer programming. The idea being that when you were bored stiff with doing nothing you
could learn something useful. Alas, the nearest I shall get to it is lying under my Solarium with my minicomputer, and trying to persuade my friends I have been away on one of these specials.

Paranormal

I think most readers will know I have a slight interest in the paranormal. I don't dabble in it but when a story comes along that has a slight electronic flavour about it, I unhesitatingly pass it on to my readers. Such an opportunity occurred recently and I seized it with both hands.

A short time ago I watched a programme on television. It concerned an old Inn situated in Wales. It had been there since before the Norman Conquest. Many people who had lived there testified that it was haunted, voices and footsteps, and even an organ had been heard playing.

An electronics expert became interested and examined the building, particularly the stone it was made of. It was a coarse local stone, but it had thin streaks running through it which he decided were metal or silicon.

Would it be possible, he thought, for these stones to act as a tape-recorder, and would it be possible to drive out the sound by applying a high voltage to the wall? With the permission of the Inn keeper, he and a friend drove long nails into the wall and arranged a time switch to apply a high voltage at 2.30 am . A tape-recorder was left running to record the results.

At this point in the programme the commentator said, "I will now play you the tape". For the next few seconds there was silence and then a babel of strange voices and an organ playing weird music. It was really eerie and quite uncanny to listen to.

I thought I would try this experiment myself. I was just about to drive a six-inch nail into the wall when my better half said, "I shouldn't do that if I were you". I expostulated that I was interested in science and wanted to hear these strange voices and language. My spouse came back, "If you knock that nail in you will hear some unusual language without any voltage being applied."

Oh well. perhaps she is right; anyway. one shouldn't dabble in this kind of thingthere may be something in it.

THE EIECTRONICS OF

WE encounter information as a measurable quantity most straightforwardly in storage systems. Their storage capacities are specified in units called bits (short for binary digits, to be explained below). A small random access memory, for example, might have a capacity of 1,024 bits. A magnetic disc store might have a capacity of 10 megabytes (where I byte is a group of 8 bits).

Another type of hardware for which a measure of information is used is data transmission equipment. Here, of course, we are concerned with a rate of flow of information from one terminal to another and this rate is measured in bits per second. British Telecom's Prestel service, for example, sends information over telephone circuits at 1,200 bits/second in one direction and at 75 bits/second in the other direction. A much faster system used by British Telecom, for data and other information, works at 2,048 kilobits/second.

UNIT OF INFORMATION

The need for a universally accepted unit of information is as important as the need for universally accepted units of length, mass, time, electric current and the many others derived from them.

Without agreement on these units throughout the world-even though conversions between different systems of units may sometimes be necessary-not only science and engineering but the practical affairs of everyday life would come to a messy halt.

In a telecommunications system, for example, to make sure that a physical channel like a coaxial cable will actually convey information at the rate you wish to supply it from a given type of terminal, you must be able to measure the transmission capacity of the channel and the generating capacity of the terminal in the same units.

ORIGIN OF BINARY CODE

But why have we chosen the bit, or binary digit, as the unit for measuring information?

Just as the foot as a unit of length originally came from the adult human foot, so there is an historical background to the newer unit as well. The whole history of signalling, whether by light, sound, mechanical movement or electricity, shows that methods using two opposing states have been both practical and effective. They are simple and unambiguous.

We have used light/darkness in lamps and heliographs, sound/silence in sirens and foghorns, left/right positions of galvanometer needles in telegraph instruments, hole/no-hole in punched paper tape and on/off in various electrical systems.

Samuel Morse devised his now famous code with its two symbols, long and short, to make use of the two positions of the armature, and the resulting black/white inked pattern, in his electromagnetic telegraph. In turn, the code was utilised in later signalling systems. In modern communications and electronics, of course, there are various techniques for providing the two states-for example, two different voltage levels of two different frequencies.

So the development over the years of a useful technology for sending information in terms of two states has been a strong incentive for us to consider information as being reducible to this simple binary form. But apart from the practical considerations there is also a good theoretical basis for the binary digit as a unit of information.

SELECTION OF SIGNS

The communication of information is fundamentally a selection of signs from a fixed and agreed set of signs. This is so whether we are concerned with selecting sounds from a vocabulary, letters from an alphabet or words from a dictionary.

When we write in English we successively select letters from a set limited to 26. In another language the total number in the set might well be different. One might invent a written language with an alphabet of only 12 characters, or 7 , or 4 -or only two, say and \triangle. It would be

Optical fibre cable (left) that will replace the old style metal conductor and metal sheathed coaxial cable (right) in modern telecommunications networks are shown for comparison in this British Telecom picture. Optical fibres have a much greater transmission capacity than traditional coaxial cables. Pulse rates in excess of 140 million per second have been achieved over distances of 100 km without intermediate amplification.
perfectly feasible to provide enough combinations of ${ }^{\text {Es }}$ s and Δ s to signify all the meanings we wanted (though most of the words would have large numbers of these signs).

Two signs are, of course, the smallest possible "alphabet". Below that no choice is available. Thus a selection from two possible signs-a binary choice-is the elemental choice. In the numeration of binary arithmetic the two signs are conventionally written as 1 and 0 , but the actual characters used are quite unimportant.

So, if the binary choice is the basic element of selection it is also the basic element of information, on the principle of selecting from a set discussed above. When we make a choice of one sign in a binary system of notation we are automatically implying "one out of two". For historical reasons the two written numerals of binary arithmetic have become well established, so it is now conventional to describe the choice as being one out of two digits. Hence the binary digit, or bit.

A store designed to hold binary information is a group of two-state elements (electronic devices or magnetic cells), one for each binary digit. The capacity of the store is simply the number of two-state elements available to hold the digits. But what about information that is not already in binary digital form, such as sound or vision signals?

SUCCESSIVE BINARY CHOICES

By making a succession of binary choices we can make selections from much larger sets than just two signs-as large as we want, in fact. Fig. 5.1 shows how a selection can be made of one sign (the letter F) from an eight-character
alphabet by a series of three binary choices. Therefore the number of bits of information contained in the knowledge that one letter has been selected from an alphabet of eight* is 3 . If this whole selection were made in, say, a tenth of a second the information rate would be 30 bits per second.

Now let us see how this principle can be applied to information in electrical signals. First, in place of the eight letters write a set of eight voltages on a scale. Then add a horizontal time scale to allow a signal to be represented as a voltage/time graph. The result is Fig. 5.2.

We can now select by a series of binary choices any one voltage from a group of eight voltages, and the information contained in the knowledge that this particular voltage has been selected is 3 bits. This signal is not actually drawn as a continuous voltage/time graph but is defined approximately by an invisible line passing through the points marked at the different voltage levels.

If we doubled the number of voltages in the set to 16 the signal would be defined more accurately by more points, as shown in Fig. 5.3, but because more binary choices would be required to allow this, the information content of any one point on the graph would become 4 bits.

In theory, to define any signal perfectly would require an infinite number of voltage level points, infinitely close together (see Part 1 on "Representing information electrically"). In practice, it does not have to be all that great; for example, a good quality television signal calls for a minimum of eight binary choices (8 bits) which means selections from a set of 256 voltage levels.

- The generalised formula is: number of bits $=$ $\log _{2} N$, where N is the number of signs in the set.

INFORMATION RATE

The information rate of the signal in Fig. 5.2 is determined by the time intervals between the voltage points defining the graph. This varies between 60 milliseconds (giving 16.6 bits/second) and 360 milliseconds (giving 2.8 bits/second).

In practice we have to allow for the highest information rate necessary for the class of signal we are dealing with. A television signal, for example, calls for a maximum information rate of about 11 million bits/second, while a telephone voice signal requires a maximum rate of about 8,000 bits/second.

INFORMATION CHANNELS

A channel is a means of transmitting an individual, recognisable signal or train of information-say a voice signal or telex message-from one place to another. Usually this transmission is in one direction only, but sometimes the term "channel" implies bi-directional transmission. The physical means of transmission ranges from a simple pair of wires, as used for the domestic telephone line, to coaxial cables, radio links, waveguides and optical fibres.

By using carriers (Part 3) or timesharing methods (Part 4) we can accommodate a whole group of channels within a single transmission system such as a coaxial cable, without the individual trains of information interfering with each other. This is multi-channel transmission.

What mainly matters in information technology is the capacity of a channel to convey information-the maximum flow rate in bits per second that it will handle. This depends on a number of physical quantities in the transmission system. One is the electrical power in the signal; another is the electrical power in the noise (unwanted random fluctuations) introduced by the transmission system itself.

Fig. 5.5. How a signal waveform may be analysed into a set of sine-wave components (Fourier analysis). Not all of the components that make up this signal waveform are shown here.

Fig. 5.6. Three-dimensional analogy in which the box is a quantity of information (bits). In transmitting a given quantity of information (the volume of the box), the time taken, bandwidth and signal-to-noise ratio may be exchanged with each other. These two examples illustrate an exchange of time and bandwidth (signal-to-noise ratio remaining constant).

SIGNAL-TO-NOISE RATIO

The presence of noise sets a limit to the number of distinct levels in a signal waveform that can be detected, Fig. 5.2 and Fig. 5.3). Sufficient power in the signal will make the effect of this noise insignificant, but there are practical limits to the amount of power that can be transmitted. The relationship of these two (average) powers-the signal-to-noise ratio-is therefore important in determining the accuracy of the information received at the end of the channel.

Another factor determining the accuracy of signal transmission is the ability of the channel to convey the variations of the electrical quantity (Part 1) that represent information-more specifically, the rate of change of these variations. For example, Fig. 5.4 shows parts of two signal waveforms, each of which is a transition between two steady voltages. In (a) the rate of change of voltage with time is higher than the corresponding rate of change in (b).

In a channel using, say, a wire cable as a transmission medium, the resistance and reactance of the wire together limit the rate of change of an electrical quantity that can be sent along it. Consequently, if the signal waveform at the input of the channel contains higher rates of change than the medium can transmit, the waveform received at the end will be distorted and hence the information will contain errors.

For example, the transition at (a) in Fig. 5.4 could be considered as part of a signal fed to the input of a channel. If the channel were incapable of transmitting this rate of change the transition as received at the end of the channel would be something like (b).

BANDWIDTH

The ability of a channel to convey such rates of change is determined by its bandwidth, measured in hertz (Hz). This term may require some explanation. Any signal waveform can be analysed into a number of sine-wave components of
different magnitudes, frequencies and phases." This is illustrated in Fig. 5.5 which shows some, but by no means all, of the sine-wave components which, when added together, constitute the signal waveform shown.

Each component has a maximum rate of change. A channel will convey a limited range of these sine-wave components, and the bandwidth of the channel is the extent of the continuous range, in Hz , over which the channel transmits a specified proportion of the original signal power. The bandwidth of a typical telephone voice channel, for example, is about $4,000 \mathrm{~Hz}$.

The channel's bandwidth therefore indicates the rates of change that can be transmitted and, as a result, the number of independent levels of a waveform that can be conveyed by it in a given time. It is therefore a factor in determining the maximum information rate in bits/second.

THREE QUANTITIES

So signal power, noise power and bandwidth together determine the highest rate at which a channel can convey information. The exact relationship of the three quantities to this maximum rate is given by an expression* which enables the channel to be matched to a given source of information, or vice-versa.

In some IT systems it is possible to adjust the rate at which information is generated at the source-to alter the length of time available to convey a given number of bits. This enables us to alter

[^1]the bandwidth and/or signal-to-noise ratio required. A graphical analogy of this inter-dependence is given by the "box" diagrams in Fig. 5.6.

The volume of the box, the triple product of time, bandwidth and signal-tonoise ratio, is proportional to a given number of bits of information. Obviously it is possible, as shown by the two examples, to change the time available, the bandwidth and the signal-to-noise ratio (actually it is $\log _{2}$), in various ways that will maintain constant the volume representing the quantity of information.

A good example of this, known to some experimenters, is slow-scan television. If you increase the length of time available to send a given quantity of information in a picture, you can transmit the picture in a channel of smaller bandwidth than would otherwise be possible.

To be continued

PRACTICAL

ELECTRONICS

MARCH 1983
FREE SCRATCH PAD

PROJECTS

Ice/Lights Alarm
Car Accessory Power Supply
$4 \frac{1}{2}$ Digit Frequency Meter
Case Alarm
FEATURES
Circuit Layout Simplified using the free Scratch Pad
Into The Real World-
Interfacing micros
Microfile: 1802 data
PLUS
Extra Ingenuity Unlimited
ON SALE NOW

BY J.M. STEJSKAL
the information on the column line is transferred to the appropriate row line(s).

The ZX81 keyboard routine uses the upper half of the CPU address bus to repeatedly shift a logic 0 along address lines A8 to A15. This strobing happens very rapidly. The information appearing on the KBD bus (0 to 4) when a key is pressed tells the system which key has been pressed. If no key has been pressed, all logic l's are on the bus resulting from the $10 \mathrm{k} \Omega$ pull-up resistors to +5 V .

If, say, the " 1 " key is pressed, then when All next goes low, KBD0 will also go low with the remainder of this bus staying high. This information is read into ICA by a scanning routine and the pressed key determined.

How the low gets on the KBD line happens in the following way. When the address line goes low, and the key makes contact, a series circuit across the +5 V and logic 0 is made with one of the $10 \mathrm{k} \Omega$ resistors and the diode. It is the junction of these two components which is read on the KBD line. Since the forward drop across a diode such as those in the ZX81 is about 0.7 V , it is below the logic 1 threshold and is thus read as a 0 as required.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Expanded Add-On Keyboard for ZX81 is shown in Fig. 2. There are three different circuit configurations according to the position of the switch on the keyboard matrix, see Fig. 1. The add-on keyboard is in parallel with this using KBDO to KBD4 and A8 to A15.

Fig. 2 (opposite). The complete circuit diagram for the extra keys to be fitted to the proprietary add-on keyboard.

THIS project describes the circuitry and its construction for extending the ZX81 add-on keyboard to provide a number of single stroke entry functions. These functions would normally be entered using SHIFT with another key. For example, to enter TO, SHIFT is held down while 4 is pressed.

The add-on keyboard seen here is that a vailable from Redditch Electronics. We expect that the additions described here will be suitable for use with keyboards from other suppliers. We have not tried these, however.

Since the ZX81 user is no longer obliged to hold down the SHIFT key for much of the time, the typing becomes more comfortable and speedier with these additions.

ZX81 KEYBOARD

The relevant section of the $\mathrm{ZX81}$ keyboard circuit is shown in Fig. 1. The 40 key -switch positions are arranged on a 5×8 grid. There is no contact between column and row until the key at their intersection is pressed. When doing this

Fig. 3. Two of the three different switch-circuits used in the design, re-drawn for clarity.

The operation of two of these three different circuit arrangements is best explained by means of the re-drawn sections in Fig. 3.

The circuit in Fig. 3a is for use with any, or all, characters on line KBD0 which connects them to the SHIFT key, but where their address lines are different.

COMPONENTS

Resistors
R1, R6.R7,
R12
R2,R3,R4,
R8, R9,R10
$1 \mathrm{k} \Omega$ (6 off each)
$22 \mathrm{k} \Omega$ (6 off each)
R5,R11
$3 \cdot 3 \mathrm{k} \Omega$ (6 off each)
All $\frac{1}{4}$ W or $\frac{1}{8} W$ carbon $\pm 5 \%$

Potentiometers

VR1,VR2 $4.7 \mathrm{k} \Omega$ sub-
miniature vertical skeleton presets (6 off each)

Semiconductors
D1-D12 1N4148, 1N914 or similar switching diodes (12 off)
D13-D20 1N4148 or similar (12 off each)
IC1-IC6
7432 miQuad 2 -input OR gates (6 off)

Miscellaneous
S1-S22 p.c.b. mounting momentary action push-to-make keyboard switch (22 off) Verostrip: 64 strips, 36 strips (2 off); fibre glass board (uncoppered, for board D) size 207 $\times 30 \mathrm{~mm}$; top caps for above switches: single (18 off), double (2 off), treble (1 off, or separate space bar, see text); 14-pin di.I. i.c. sockets (6 off); lightweight stranded p.v.c. covered wireselection of colours: metal for brackets and fixing hardware as required.

The characters that can be lised with this circuit are: $A, Q, 1,0, P, N E W L I N E$, SPACE. The following are used here: 1(EDIT), \quad (RUBOUT), \quad ('"), NEWLINE(FUNCTION). As an example, Fig. 3a shows the circuit for the DELETE key. Both switches, SHIFT and 0 , work independently as before, the two diodes D7 and D10 preventing any interconnections between the two. When the commoning key DELETE (RUBOUT) is pressed, then the logic levels on A8 and A12 are successively passed to KBD0, thus producing the same effect as a "SHIFTed 1", that is, DELETE.

As already mentioned, only the frequently used characters have been selected here: EDIT, DELETE, ", FUNCTION (E). Although there is no special arrangement for any delay, the SHIFT always comes on first, without fail, making the circuit reliable and cheap.

The other circuit, in Fig. 3b, is suitable for keys: $\mathrm{Z}(:), \mathbf{X}(;), \mathrm{C}($? $)$ and V() . Two of these have been selected here: $\mathbf{X}(;)$ and $V(\Omega)$. The example shown is for the division sign " $/$ ".

The circuit in Fig. 3(b) is similar to that in (a) but this time it is the address line which is common to two keyboard lines: A8 is commoneed with SHIFT and V to realise $/$. If when $/$ is pressed, a logic low is placed on A8 it will be transferred to both KBD0 and KBD4 which is the required condition for SHIFTed V .

Three of the extra key-switches are connected in parallel with existing keys, moving them to more convenient positions. Like all other extra keys, they can still be used in their original position. They are: SHIFT on the right-hand side of the keyboard, SPACE on a long spacebar and NEWLINE at the bottom lefthand corner. The space-bar shown here is from an old ASCII keyboard and is fitted with a key-switch at each end.

Although the remaining 28 keyswitches do not have a common line with SHIFT key, all or any may be connected for single shifted-key operation by using a pair of logic gates for each function. Twelve keys were selected to appear on the prototype keyboard, any of which may be substituted by those of the constructor's choice. The twelve are: 4(TO), 3(THEN), 0) , i((), ($), \mathrm{B}\left(^{*}\right), \mathrm{U}(), \mathrm{J}(-)$, $\left.\mathrm{K}(+), \mathrm{L}(=), \mathrm{H}^{(+*}\right) 9$ (GRAPHICS) G.

Two separate sections to produce TO and THEN are shown in detail in Fig 2. Each is made up from two OR gates and are seen to be identical.

The components in the other circuits are identical, the only difference being that the b and d gates in each pair of gates might be connected to a different KBD-line and/or A-line. One gate in every pair operates the SHIFT. VR1 and R5 arrange the delay required for SHIFT to operate first.

With S11 not pressed, a logic high (1) reaches one input of each of the two or gates IC 1 a and IC Ib causing each output to be at logic 1. The other input to each gate is held at logic 0 by the potential divide effect of R2/VR1 and R4/R5. When S_{11} is pressed the outputs of ICla and IC1b drop to logic 0 .

- Now each keyboard line is strapped to +5 V by its own resistor (in the ZX 81). The ZX81 internal circuitry looks for a logic 0 appearing on one of the lines at the appropriate time when being strobed by A8 to A15 outputs. When the output of 1 Cl goes low, a low is read in on KBD0. This, together with the low logic reaching A8 from pin 1, simulates SHIFT being pressed. ICib goes low also at the same time, with a logic 0 being placed on KBD3 and A11. The values of VR1 and R5 are chosen so that SHIFT acts before 3, giving SHIFTed 3. This is TO, the required result.
(To be continued)

This is the spot where readers pass on to fellow enthusiasts useful and interesting circuits they have themselves devised.

Payment is made for all circuits published in this feature.
Contributions should be accompanied by a letter stating that the circuit idea offered is wholly or in significant part the original work of the sender and that it has not been offered for publication elsewhere.

REAR-LIGHT
 FAILURE INDICATOR

THE question of whether or not the rear light is working is a constant worry for cyclists riding at night.

This simple circuit lights an l.e.d. if the rear-light battery is flat. The circuit uses the front-light battery as the power source for the l.e.d., and the l.e.d. is mounted on the steering column of the cycle. If the rear-light battery is flat there is a potential difference across the l.e.d. and it will

glow, informing the cyclist of the urgent need to change the battery.

Andrew Marshall,
Old Basford,
Nottingham.

SPEED CHESS AND DRAUGHTS TIMER

Stimulated by the Lightning Chess Buzzer featured in an earlier issue of $E E$, I have designed another timer based on the 4017 CMOS chip.

A NAND gate oscillator formed by IC1a and IC16 feeds the clock of the decade counter IC2. This causes the line of l.e.d.s D1 to D10 to light in sequence unless the reset switch $S 1$ is operated.

If a player fails to complete his move within the time set by potentiometer VR 1
then the yellow l.e.d. D 10 will light and an alarm will sound. This alarm is triggered by the oscillator IC1c/IC Id and indicates a time fault.

As shown, the maximum time is adjustable up to 15 seconds, by increasing the value of C 2 the time maximum may be increased in proportion.

Andrew Knight,
Langley,

QUICK POLARITY TESTER

N The prototype of the Quick Polarity Tester the connections to the battery were for negative earth vehicles, as shown in the circuit diagram, but for positive earth vehicles the connections to the battery must be reversed.

To test this, connect up the battery terminals to the car cigarette lighter (+ to pin, - to chassis). It was found best to use "Christmas Tree" bulbs as these were small, although other bulbs could be used. Alexis Landa, Ilfracombe, Devon.

THere are two basic versions of the Acorn Atom home computer and both are available as kits or ready made. The first, commonly referred to as the "minimum" system, has 8 K of rom and 2 K of ram. The second, often called the "expanded" system, has 12 K of rom and 12 K of ram. The one point to note is that the expanded system has the optional floating point rom fitted-a most valuable addition.

I purchased the minimum system in kit form for really only one reason, and that was to save money. I found that there was nothing particularly instructive about constructing the kit, so unless you have very shallow pockets it is better to purchase the assembled and tested version.

THE KIT

The Atom kit comes complete with concise and very compact assembly instructions, and was obviously written with the more experienced constructor in mind. Although the kit is remarkably easy to construct, it is definitely not recommended for beginners who lack experience in soldering.
I experienced no great difficulties in assembling the kit, and found that the Atom was complete and ready for use in a little over three hours. The one frustrating moment came when fitting the keyboard.

The construction of the keyboard is such that you have to insert the fine goldplated contact wires (over 100!) into the large diameter p.c.b. holes. This may sound easy but it can prove frustrating, especially when you think you have the keyboard fitted and are just about to solder the wires to the p.c.b., then you discover that a single contact wire has become trapped under the keyboard, with the result that you have to remove it and start all over again. This is the one major criticism I have with the kit.

A short lead also needs to be made which connects the Atom cassette interface socket with your recorder. The manual shows the required connections for the Atom end. For the recorder end
you should either refer to its manual and/ or solve the connections by trial and error.

When trying out the Atom for the first time, be sure to check each key, and every key, in turn. I found when power was first applied that, whichever key I pressed the figure " 8 ", appeared on the vDu. After much fault-tracing it turned out to be the " 8 " key at fault with a permanent short across it. The fault was cleared, of course, but it does illustrate the point earlier about the difficulty of fitting the keyboard.

EXPANSION

The expandability of the Atom is perhaps one of its major assets. The minimum system can be expanded in a variety of ways. For example: by adding extra RAM-here 10 K may be fitted on the board with a further 64 K as an additional "card"; a colour encorder card and extra rom in the form of two further i.c.s. All these additions may be mounted inside the case of the Atom.

The usual printer and floppy discs may also be connected to the Atom by way of the various expansion sockets on the rear. These expansion sockets also carry the Address, Data and Control lines of the CPU as well as various control signals which may be used for further expansion, for example, extra Ram and rom.
[The Atom is also equipped with latched ports. These have been employed in the design of an Eprom Programmer, see page 1781.

CASSETTE FILING

The cassette operating system of the Atom is exceptionally good, despite its very slow transfer rate of 300 bits per second, when compared with other machines. I use a Ferguson model 3240 recorder of some 10 years vintage and well-worn heads, and apart from the initial troubles when first setting the system up, have experienced no difficulties in saving or loading programs on tape.

The cassette operating system is very tolerant of input/output levels from the
recorder and thus probably makes it one of the better systems available.

THE LANGUAGE

The language used on the Acorn Atom is of course Basic-with a few variations on the "standard" Basic.

It would be impracticable in a short report such as this to list all the variations, and in the long run it would be of no practical use, unless you intend to translate one form of Basic program to another. If you have some sort of electronics background or a logical mind you should have no trouble in getting to grips with the language. I will confess that before I bought the Atom I had no previous knowledge of Basic apart from the many programs I had seen in magazines. Providing you have had a similar experience it will not be difficult to progress through the Basic manual supplied with the unit.

Possibly one area of programming which is difficult to understand is Assembler Programming using mnemonics. The Atom manual gives an introduction to assembler programming, but from my point of view is very lacking in detailed explanations of the various instructions.

GRAPHICS

Most home computers have some form of graphics capabilities, either black and white and/or colour. The Atom has both, providing the colour encoder card is used. In its lowest graphics mode the resolution is 64×48 pixels and in the highest mode is 256×192 pixels (slightly lower when colour is used).

I found the graphics quite difficult to grasp at first, particularly the fifteen PLOT commands, and also when incorporating these instructions in a games program. The graphics are, however, very good and should not prove difficult after a certain amount of practice.

It is worthwhile to point out that the VDU is memory mapped, that is, each of the 512 points on the screen may be POKED with any desired character, thus providing an additional graphics mode.

CONCLUSIONS

Obviously, since this is the first and only home computer I am likely to buy, I am slightly biased in favour of the Atom.

Since owning the Atom for some 12 months, I have had the opportunity to try several other machines, both "home" types and "commercial" types of computer. In nearly every case, I prefer the Atom for its simplicity and ease of use.

I believe the computing power of the Atom is somewhat under-estimated and consider the Atom a most worthwhile investment. It is very simple to use, its language is easy to learn, and it is very easily expandable. For a relatively small outlay I have a very powerful computing machine that I do not consider will be obsolete in ten years' time.

Everyday News

PERSONAL PAYPHONE

MAny small businesses would like to provide their customers or staff with a payphone service, but the current wallmounted model may not suit their particular situation. Now, British Telecom have introduced a push-button payphone only nine inches square and seven inches high and weighing less than 7 lb that also doubles as a private phone.
Called the Payphone 100, it can be left permanently coin-operated or, at the turn of a key, switched from a payphone to an ordinary phone and back again. When used as a payphone it accepts $2 \mathrm{p}, 5 \mathrm{p}, 10 \mathrm{p}$ and 50 coins and will refund unused coins at the end of a call.
The table-top payphone is particularly useful for small businesses who want to provide their customers or visitors with the use of a phone but who do not want to give away free calls. Typical users will be hairdressers, pubs, clubs, wine bars, garages, surgeries and shops. Another possibility could be for the person who has a "friendly neighbour".

Designed for use with the new socket system, it is ideal for those businesses who have only one telephone line. A single payphone allows this line to be used for both private and customer use.
When operating in the payphone mode, local trunk and international calls can be made but calls to or via the operator, except for 999 emergency calls, are not possible. When switched to "private" use all services are available.

The annual Leeds Electronics Show will take place from 5 to 7 July in the Departments of Electrical and Electronic Engineering, University of Leeds.

Training for the Micro

An advanced microprocessor training course, that can be used for "distance learning", has been developed at the IBA's Harman Engineering Training College, Seaton, Devon. The initial requirement was to provide theoretical and practical training for field engineers maintaining the microprocessor-based transmission equipment used in the new Regional Operations Centres and Channel 4 transmitting installations, including control and telemetry systems.

The programme is broken down into three stages: Microprocessor basics using a modified version of the M6800 D2 kit. Digital diagnostics for broadcast systems, including signature analysis. High-level language programming, using the Apple III microcomputer.

Inventer's Workshop

In a bid to attract local inventers with new ideas into the field of microelectronics, the Microelectronics Applications Research Institute (MARI), Newcastle upon Tyne, has set up a Microelectronics Innovation Workshop.

The innovation centre supports the use of the werkshop and individuals are closely supervised by MARI staff. It is claimed that this facility is unique in that individuals receive assistance at the early stages of the invention which, at present, no other organisation provides. People can experiment and test their ideas without having to set up their own expensive production facilities, and at the same time attract customers or backers.

Japanese Buy British

Logic analysers made by British instrumentation specialists, Thandar Electronics, are being exported to Japan.

The initial order, worth $£ 100,000$, is claimed to represent a classic "reverse technology coup" for the St Ives, Huntingdon-based company which exports over 50 per cent of its output.

SHIP-SHAPE
A contract to provide a combined radar and electro-optic weapons control system, to be installed in one of the Royal New Zealand Navy's Leander Class Frigates, has been awarded to RCA Missile and Surface Radar.

This contract is part of plans to modernise and improve the Royal New Zealand Navy ships capabilities.

In addition to weapons control, the radar can be used for navigation, surveillance, aircraft control, drone control, and in search and rescue missions.

CLUB SPOT

The ACC National Prestel Com mittee, acting in its role as the national body representing the computer hobbyist, has linked up with Micronet 800 to create Club Spot 800, a new service to involve ordinary computer enthusiasts in Preste editing.

Club Spot 800 will contain news and ideas about micros and micro clubs, plus programs, sales and wants, and general views.

To introduce the new service a conference is being held on February 26, starting at 2 pm , at the Institute of Grocery Distribution, Grange Lane, Letchmore Heath, Watford. Registration is free in advance or $£ 5$ for those turning up on the day (subject to space being available).

For more details contact: R. Steele, ACC National Prestel Committee Secretary, St John's College, Oxford OX1 3JP.

- The Pontefract \& District Amateur Radio Society is holding its annual "Component Fair" on Sunday, March 13, at the Carleton Grange Community Centre, Carleton, Pontefract. Time: llam to 4.30 pm (10.30am for the disabled).

For more information contact: Mr P. N. Butterfield, G4AAQ, Pontefract \& District ARS, 43 Lynwood Cres\& District ARS,
cent, Pontefract WF8
3QT.

from the World of Electronics

-ANALYSIS

BELTS AND BRACES

When the first experimental communications satellites, Telstar and Relay, flew into orbit in 1962 many experts forecasted that the days of submarine cable in international traffic were numbered. When, three years later, Early Bird was launched into geostationary orbit 23,000 miles out in space earlier fears seemed confirmed. The submarine cable was doomed.

What a pity, we thought, so soon after the big technological breakthrough in 1956, the year when repeater technology had improved to the point when it was possible to use telephony by cable across the Atlantic Ocean, 90 years after the laying of the first successful transatlantic telegraph cable.

And yet here we are in 1983, two decades after Telstar, with more submarine cables than ever and new ones being laid on the ocean beds every year. What the experts didn't see was that a mature technology was still capable of "stretch". Or that new, however exciting at first sight, is not necessarily better or even cheaper.

Two main developments saved the submarine cable from extinction. One was the development of solid-state wideband repeaters which enabled many more simuttaneous telephone conversations. Thus, in a single decade, cost per telephone channel fell by a factor of 20 . The other was the phenomenal growth of world telecommunications traffic now shared by both cable and satellite.

A political factor, not to be ignored, is that communications satellites are vulnerable to destruction by killer satellites which, for all we know, may already be deployed ready for action. Safety lies in both belts and braces to keep our communications trousers up, with terrestrial h.f. radio as an emergency piece of string in our pocket should beits and braces be shot away.

While cable has not only miraculously survived but actually flourished it is to have a change of character. Next year a UK-Netherlands cable will be completed at a cost of £85 million. It will carry 4200 simultaneous telephone conversations to bring the southern North Sea network to a total capacity of some 14,000 circuits. It will be the most up-to-date in the world.

But it is also expected to be the last of its type to find a land-fall in the UK, using analogue speech over wires. All subsequent submarine cables, say British Telecom, are being planned to use digital speech transmitted through optical fibre. This doesn't mean a threat to satellites. Both systems are needed and can live happily side-by-side, belted and braced in mutual support.

Brian G. Peck

INFORMATION DEGREE

British Telecom is to help two Universities produce information technology experts who will run the advanced telecommunications systems of tomorrow.

In partnership with the Universities of Aston and York, British Telecom will develop new degree courses for training 60 students to become electronic engineers with skills in telecommunications and computing.

British Telecom will pay the Universities $£ 100,000$ a year for new equipment and additional teaching staff. This support will be guaranteed for five years.

Most of the places on the courses will go to school-leavers with good " A " level grades, but some may be given to suitably qualified technicians already in Telecom's employment. The new courses will begin in 1984.

Lord of the Spectrum

The Hobbit, a full-colour adventure simulation based on J. R. R. Tolkien's fantasy land, is amongst new sofiware for the $Z X$ Spectrum and ZX81 personal computers announced by Sinclair Research.

The player assumes the role of Bilbo and undertakes a series of adventures in which he will meet and interact with all the novel's other leading characters.

Depending on his decisions each game will develop differently.

Compiled by Melbourne House to use the full potential of the 48 K Spectrum, features include original artist-designed graphics and a built-in 500 word "inglish" vocabulary to instruct the computer. The package, price £14.95, comes complete with a copy of the novel.

JUST THE TICKET

Government approval of British Rail's plans to invest $£ 21$ million in new ticket issuing machines will soon bring BR's ticket offices into the micro age. Up to $£ 17$ million of the investment is for a new all-purpose ticket issuing system and the remaining $£ 4$ million is for PORTIS, a portable version of the main system for use by guards on pay trains.

Subject to satisfactory evaluation of the prototypes, the new machines should come into operation in mid-1984 and be fully established by the middle of 1986.

ORIC GOES INTO PRODUCTION

A new computer named Oric I has just gone into mass production. Over 250,000 of these machines are expected to be sold in its first year. Its market will be that at present enjoyed by the ZX Spectrum and will be the first competitor to a Sinclair computer.

Based on our impressions of a pre-production model we received, the company responsible for the Oric, Oric Products International Lid. have a machine to be proud of in both appearance and performance.

The computer is equipped with a unique type of keyboard with space bar forming one of the 57 positive action keys on a qwerty arrangement, extensive colour, music and sound effects capabilities.

There is an r.g.b. output as well as u.h.f. The cassette tape in/out runs at 2400 Baud (!!!). There is access to the bus at the rear of the computer and an output suitable for driving a Centronics-type interface. Avallable with I6K and 48 K RAM. A Technical Review of Oric I

—EPROM PROCRAMMER FOR THE ACORN ATOM

PART TWO

BY D. C. GRINDROD

THE second and final part of this project deals with the construction, software and testing.

CIRCUIT BOARDS

Two circuit boards are used in the construction of the Eprom Programmer, one to hold the power supply components and the other for the EPROM socket and d.i.i. connection sockets for connecting to the Atom.

Begin with the power supply board, this is shown in Fig. 3. The layout of the components on the topside is shown together with the breaks to be made on the underside. The prototype used a p.c.b. mounting type transformer. If this is not available, a chassis mounting type may be used, suitably positioned on the case with its leads connected to T1 fixing location as shown.

Make the required breaks in the copper strips and then solder the components in place as shown in Fig. 3. The leads on the i.c.s need to be formed to fit the board.

A small piece of adhesive paper stuck to the board should be used to identify the pins on PL6. If the voltages become transposed, then the EPROM would become permanently damaged.

When you are satisfied that all components are correctly wired up the power supply board may be tested. Temporarily
connect a mains cable and plug across the primary of T1. Set VR2 to its midway position.

Fix a length of 4 -way ribbon cable to SK 5. Label the positions of the individual sockets in SK 5: 0V, $5 \mathrm{~V}, 25 \mathrm{~V}$ and B as appropriate. Plug into PL6 on the board and with a voltmeter, check that the +5 V supply is present. It may vary a little from +5 V but should never exceed 5.25 V else the EPROM will become damaged.

The 25 V supply at this time should read between 15 and 30 volts. Adjust VR2 until the reading is 25 volts, exactly. Next adjust VR1 until the voltage at B is about 22 volts with respect to the 0 V rail. It may be trimmed in later.

Since the 7805 regulator incurrs a 20 V drop it will get hot. If the Eprom Programmer is expected to be in use for prolonged periods at a time the use of a heatsink is recommended or use a reduced secondary tapping such as 9 V .

The topboard connects ports A, B and C to the EPROM socket and control switches.

Dual-in-line sockets were used for ports A and B due to their cheapness and reliability. A standard 5-way 270° DIN socket was used for port C. There is no reason why a different connector system could not be used.

The topboard is shown in Fig. 4. It has been drawn as in the prototype but a square piece of stripboard could be used.

In the prototype the SK 5 was a 24 -pin Zero Insertion Force (z.i.f.) socket. As its name implies it exerts no force on the pins of the EPROM being programmed or read. It drops into holes in the socket and moving the lever to a horizontal position causes the socket contacts to grip the eprom pins. Move the lever to a vertical position to release the grip and allow the EPROM to be removed.

The z.i.f. socket was plugged into a low profile 24 -pin socket soldered to the board, but it may be soldered to the board direct if desired.

Fig. 3. The layout of the components for the power supply section of the Eprom Programmer and the breaks to be made on the copper side of the board, with drilling details.

Fig. 5. Complete interwiring details and suggested component layout on the lid of the case.

Grey ribbon cable (Speedbloc cable) was used in preference to the "rainbow" type as it is lighter and more pliable.

TOP PANEL

First of all prepare the lid of the chosen case to accept the case mounted components. Make the cut-out to accommodate the z.i.f. socket. Fix all the components in place. Fit the board fixing screws to the case lid and hold in position with full nuts. These also act as spacers. Position and solder the sockets to the board, make the link wire connection on the board topside and then attach 120 mm lengths of 8 -way ribbon cable to the non-copper side as shown.
Now fit this board in place and secure. The remainder of the wiring to this board is soldered directly to the copper trackside of the board. The complete wiring of the panel mounted components is shown in Fig. 5. The wiring should all be carried out with p.v.c. covered lightweight wire. Note that R1 is directly wired between SK2 and S2, and R2 directly to the leg of D2. Sleeve all mains input connections for reasons of safety.

Do not attach the ribbon cable from the topside of the board to the underside until last. Carefully check all wiring and make sure there are no bridges across adjacent copper tracks. Attach SK6, check and label its connections.

LEAD SET

A set of leads need to be made up to connect the Eprom Programmer to the Atom. One will be terminated at one end with a 64 -way $(a+b)$ DIN indirect connector, with the other end fitted with two separate 14 -pin d.i.l. header plugs.

The second lead will have a 7 -way DIN plug at one end (Atom cassette port) and a 5 -way DIN plug at the other to

match with the socket on the Programmer. Full pinning details are provided in Fig. 2 to allow these leads to be constructed.

SETTING UP

The power supply board will not at this stage be mounted in the case. After all interconnections have been made check that there are no solder bridges between adjacent tracks on the upper circuit board.

Next check for continuity between the EPROM socket SK 5 and the input sockets, SK2, SK 3 and SK4. Check the routes for both positions of S1. Check also for continuity of the supply lines from SK6 to the SK 5 positions pin 12, 21 and 24, forall combinations of S1 and S2. Remember that All floats for 2 K EPROMs and that CB2 is on pin 18 for 2 K types and pin 20 for 4 K types.

Plug SK6 into PL6, plug the unit into the mains and switch on. The power on l.e.d. D2 should light up. The bi-coloured l.e.d. should be lit either red or green according to the setting of S2. Operate S2 and adjust VR1 until both green and red are of equal brightness. Check that the +5 V rail is still within limits as VRI does lift its level by 0.1 V or so. If all is well, switch off at the mains and secure in the case.

Switch on again and check the power supply pins on SK5. You should read 5V $(5.25 \mathrm{~V}$ max.) between pins 24 and 12 , and 25 V between pins 21 and 12 for S 2 in PROG mode and 5 V when in the READ mode.

A final check should be made using an ohmmeter between adjacent pins on SK 5 . Shorted tracks on the data or address busses could cause the 6522 (VIA) or 8255 to source too much current and possibly become damaged.

It is good practice to leave the MODE switch in the READ position until the program wants it changed. This prevents any accidental programming by erroneous port values before they are initialised.

SOFTWARE

The software for the Eprom Programmer is in two parts: Program A, the control program in Basic for programming the EPROM; and Program B, a machine
code program written in Atom Assembler form to read the EPROM. Any number prefixed by " $£$ " is in hexadecimal. Characters in lower-case represent inverse video characters.

TESTING

Connect the Eprom Programmer to the Atom and switch on the latter. The computer should function normally. Turn on the Programmer.

First of all load the byte £AA into RAM at say $£ 8200$, then enter the Basic control program, Program A. Set mode switch to PROG and run the program without an EPROM in place. When asked for EPROM start and end address, type in OOF. After "PROGRAMMING COMPLETE" message is received, measure address bus and data bus voltage levels at SK5. The voltage level from D0 to D7 should alternatively read $O \mathrm{~V}$ and 5 V or very near these values. A0 to A3 should read 5 V and the remaining address lines, 0 V . If not, find out why not before proceeding.

With the Programmer turned off, insert an EPROM. Set S2 to READ S1 to appropriate size and then switch on.

Load a small program into RAM at say $£ 8200$ then enter Program A. Now run the program and follow the instructions. On completion, remember to set mode switch to READ. Enter Program B and run it to get the program assembled.

As mentioned earlier the variables are passed to the machine code routine via the integer variables A, B and C.
$\mathbf{A}=$ EPROM start address
$\mathbf{B}=$ RAM start address
$\mathbf{C}=$ EPROM end address

If we want to load the EPROM contents into RAM at say $£ 8200$ then we type:

$$
A=0 ; B £ 8200 ; C=\text { end address of }
$$ eprom"; LINK £2890

followed by return. This address is given by the Basic control program.

The cursor will reappear almost instantly. (The execution times are $45 \mu \mathrm{~s}(2 \mathrm{~K})$ $165 \mu \mathrm{~s}(4 \mathrm{~K})$.) To check this set TOP (? $18=£ 82$) and type $E_{\text {.; }}$ RUN. If all is well then save the machine code on tape thus:

[^2](Left). Early stage of assembly. Power supply board in position in base of case. (Above). The completed unit.

$A 2$	$C 0$	$A 0$	00	$A 9$	$F F$	$8 E$	$O C$
88	$8 C$	02	88	$8 D$	03	88	$A E$
$3 D$	03	$A C$	$3 E$	03	$8 E$	02	$B 0$
84	81	86	83	$A E$	22	03	$A C$
23	03	$A 9$	00	85	80	$8 E$	01
$B 8$	$A D$	00	88	91	80	$A D$	$3 F$
03	$C 5$	83	$D 0$	05	$E C$	24	03
F0	14	$E 8$	$C 8$	$E 0$	00	$D 0$	05
EE	02	$B 0$	$E 6$	83	$C 0$	00	$D 0$
$D D$	$E 6$	81	18	90	$D 8$	60	

Hex dump of the program.

Table 2: Allocation of ports

PORT	ADDRESS	USE
PORT A	$£ 8800$	ADDRESS LINES AO TO A7
PORT 8	£B801	
DATA BUS TO/		
PORT C	EBOM EPROM	
EBO2	ADDRESS LINES A8 TO A11	

CONCLUSION

This article has outlined the essentials of programming EPROMs and reading their contents. If more serious applications are required the machine code routine could be modified to be called by the burning program, and compare memory and EPROM for verification by changing the STA instruction in line 100 to a CMP instruction and writing an error routine for mismatch of contents.

Erasure of the EPROM is achieved by exposure to ultraviolet light of wavelength $2537^{\circ} \mathrm{A}$ with minimum integrated dose of $15 \mathrm{~W} / \mathrm{sec} / \mathrm{cm}^{-2}$.

The author found an 8 W Sylvania germicidal lamp at 2 cm a suitable eraser. Erasure takes about 15 minutes. In the erased state each EPROM location contains 255.

By Pat Hawker, gзva

The Electronics Epoch

The development of radio and electronics over the past 100 years has had a profound effect on everyday life, though I am not sure that I go along with those who say that information technology will prove to be the coming of the second industrial revolution.

Despite the impact of electronics on our whole way of life-for better or for worsethe subject has not been very well served by the historians. There are few books that treat the subject analytically and dispassionately and too many that are concerned with claiming credit for particular persons and countries.

Baird did not "invent" television. Marconi, although he himself invented very little, still has the best claim to have developed radio communication despite the, in some ways, valid claims on behalf of Popov, Loomis, Tesla, Hughes, Jackson and others.

Watson-Watt certainly developed radar in the UK, but there were others working on similar lines in other countries, and it can be argued that the greatest British contribution was the 1940 development at the University of Birmingham by H. A. H. Boot and J. T. Randall of the cavity magnetron as a high-power generator of centimetric waves.

However, even this device owed something to the arrival in England, in May 1940, of the French scientist Maurice Ponte who brought across the Channel his resonating segment magnetrons which the British team recognised as having saved them six months of work.

International Help

The need for international co-operation on the writing of scientific and technical history has been brought home to me by receiving a much-appreciated copy of the magnificently-produced book "The Electronic Epoch". This has been written by the talented Elizabeth Antebi, a writer and producer with French broadcasting, supported by an impressive international team of scientific advisers. The UK is represented by Dr William Gosling, formerly Professor at Bath University and now research director of Plessey.

This large, heavily-illustrated book, printed in Japan, with the English-language version published by the Van Nostrand Reinhold Company, must be the first time that a serious attempt has been made to produce an international synthesis of the whole electronic epoch in both words and pictures. Subjects covered include communications, television, consumer elec-
tronics, medical electronics, radar and radio navigation.

Elizabeth Antebi has gone to enormous trouble to collect a vast number of historical photographs and to ensure that the text comes at least as close to historical truth as is possible in an industry where "not invented here" is still too often a reason for condemning new technology.

Electronic Umpiring

This year has seen the first live television transmission of a Test Match direct from Australia though once again the midnight start emphasised the unsolvable problem of large time differences. But the recent Test series also underlined the problem presented by instant slow-motion replay on television where the audience can see all-tooclearly that umpires sometimes make mistakes.

Clearly the ability of television to undermine confidence in umpiring decisions is something that needs to be considered
seriously. In tennis one has seen the growing tendency to question the judgement of linesmen, although this has not been entirely solved by introducing a degree of electronic instrumentation. Yet for horseracing few would dispute the value of the camera for close finishes-and the value of the special television recordings when objections are raised.

Action Replay

There would seem little logical reason why in cricket, the umpire in cases of doubt should not ask a clubhouse "referee" to advise him on the basis of an action replay. using perhaps a pocket radio. To prevent too many hold-ups to the game some rules would have to be worked out on how often. or just when, this facility could be used, otherwise we might have more attempts to intimidate umpires by players! But it seems absurd if the television audience can see so clearly that decisions made in good faith by the umpires are wrong.

Crystal-Ball Gazing

If at times historians get things wrong so do those who attempt to predict the future of developing technology. I have been amused to discover from various compilations (including R. L. Weber's "A random walk in science", published by The Institute of Physics) some predictions that the experts concerned must have come to wish they had never made:
"There is no plea which will justify the use of high-tension and alternating currents, either in a scientific or a commercial sense . . . I can see no justification for the introduction of a system which has no element of permanency and every element of danger to life and property"-Thomas Edison, 1889, in advocating d.c. mains.
"As far as sinking a ship with a bomb is concerned, you just can't do it"-US RearAdmiral Clark Woodward (I939) on bombing from aircraft.
"Wireless is totally unsuited for war; the enemy could either hear all conversations, or could jam transmissions so nothing can be heard"-an earlier American rear-admiral in 1903.
"That is the biggest fool thing we have ever done. The bomb will never go off, and I speak
as an expert on explosives"-yet another US admiral: William Leahy to President Truman, 1945, on the atomic bomb.

When in 1913, Lee de Forest, who first put a grid into a diode valve, was charged with fraudulently using the US mail to persuade the public to invest in his company, the District Attorney claimed: "De Forest has said . . . it would be possible to transmit the human voice across the Atlantic before many years. Based on these absurd and deliberately misleading statements, the misguided public has been persuaded to buy stock". It was only two years later, 1915, that the first radio transmission of speech across the Atlantic was accomplished!

On the other hand, it is easy to be a little over-confident. The French engineer Edouard Belin, in January 1926, said: "I am certain that before the end of 1926 an orator speaking into the microphone will have both his voice and his image transmitted simultaneously all over the globe". He was roughly 40 years out-the first genuine world programme by satellite on television was in 1965.

The Chinese have a proverb that the fish are the last to discover water; and Nicholas Butler once said: "An expert is one who knows more and more about less and less".

For a detailed booklet on remote control - send us 30p and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today.

HOME UGHTING KITS
These hive conman all neceevery componentiond the manet it and control up to 300 w . of lighting TDRSOOK Remote Control $£ 14.30$ $\begin{array}{ll}\text { MK } & \text { Trumbermeter for above } £ 4.20 \\ \text { TD3006 } & \text { Touch dimmer } £ 7.00\end{array}$
TEN
Extension kit for 2 wv $\mathbf{E} \mathbf{2 . 0 0}$
LD300K Rotary Controlled
$\mathbf{£} \mathbf{3 . 5 0}$

DVM/ULTRA SENSITIVE THERMOMETER KIT
This now design is based on the

 liquid erose display. This kit will meter lowly a few additional re-
mentors and switches are requirnd-decails supplied) or a sensitive digit at thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$ reading to 0.1 C. The basic kit has of sensitivity on diction and an ultra low power roquirement-giving odiention and an ultra how power requiremient-giving when used a hours a dey, 7 dove a week

Price $£ 15.50$
\int 3-NOTE DOOR CHIME $\delta \overrightarrow{ }$
Based on the SAB0600 IC the kit is supplied with all components. including loudspeaker, printed circuit board, a pre-drilled box $(95 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires only a PP3 $9 V$ battery and pushwitch to complete. AN IDEAL PROJECT FOR BEGINNERS. Order as XK 102
$£ 5.00$

XK113 MW RADIO KIT

Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components to make a sensitive miniature radio. Size: $5.5 \times 2.7 \times 2 \mathrm{cms}$. Requires PP 3 9V battery. IDEAL FOR BEGINNERS.
£5.00

COMPONENT PACKS

PACK 1650 Resistors 47 ohm to 10 Mohm - 10 per value $£ 4.00$
PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to $1000 \mathrm{pr}-5$ per value E 3.26
PACK 360 Polyester Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ 5 per value $E 5.55$
PACK 445 Sub-miniature Presets 100 ohm to 1 Mohm 5 per value $£ 2.90$
PACK 530 Low Profile IC Sockets 8, 14 and 16 - pin
PACK $6{ }_{25}$ Red LEOs (5 mm die,) £1.25

MON TEMPErATURE

CONTROUERTTHERMOSTAT
 tore ($800^{\circ} \mathrm{C}$ max.) and trisect to which
hemet. KW merasolid suite Relay Ides for switching motors, lights healer, we. from logic opec ionolod with zoo vorlage witching.
Supplied without risc Supplied without risc
Displays an analogue vokepe on linear to element LED display as: bar or single dot. ideal for thermemetre, lEvel indicators, etc. May be stacked to obtain 20 to 100 ghornem m 4 A PROPORTiONAL EASE TEMPERATURE CONTROUER Based on the SLAt zero voltege switch, this kit may be wired to form - "burst firs" power controlior, enabling the temperature of on en${ }_{0.5}{ }^{2} \mathrm{C}$. Max. loge 3 KW ES HES MALTS TIMED
Beaded on the ZN 1034E Timer IC this kit will switch a matins load on (or off) for a pret timpefrom 20 ming. 1035 be realized by minor component chances. Max. Hood 1 KW. 24.50

LCD $31 / 2$ DIGIT MULTIMETER 16 ranges including DC voltage $1200 \mathrm{mv}-1000$ 1 and AC voltage. DC currem (200 mA-10 A) pin and diode check. Input impedance 10 M Size $155 x 80 \times 31 \mathrm{~mm}$. Requires Pposiv benton. Test loses included ONLY 829.00

ELECTRONIC LOCK KIT XK101

This KIT contains a purpose designed lock IC, 10 -way keyboard, PCB and all components to construct a Digital lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a pre wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply 750 mA max. Hundreds of uses fo coors and garages car anti-thef device electronic equipment etc. Will dove, lest direct. Full instruct tons supplied. ONLY $£ 10.50$

Electric lock mechanisms for use with latch locks and above kit $£ 13.50$

DISCO LIGHTING KITS

DC. 1000 K

This valua-for-monoy kin features bidirectional sequence, speed of sequence and frequency of direction change, being variable by means of potentiometers and incorporates a'master dimming control. DLZIOOK
£14.60 ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST.

and give us your Access or Barclaycard No Answering service evngs or write enclosing cheque or postal order \& weekends ALL One tacking $+15 \%$
 Send S.A.E. tor further STOCX DETALS OPEN A lower cost version of the above, featuring undirectional channel sequence with speed variable by means of preset pot. Outputs to reduce radio interference to minimum.
Options l opto input DLA1 Only $\mathbf{8 8 . 0 0}$ Optional opto input DLA 60p Allowing audio ("bear

This 3 channel sound to light kit features zero voltage switching, automatic level control \& built in mic. No connections to speaker or amp required. No knobs to adjust - simply connect

Have you got our FREE ORANGE CATALOGUE yet?
NO? Send S.A.E. $6^{\prime \prime} \times 9^{\prime \prime}$ TODAY!!
with details of all our KITS plus large range of SEMICOND

CONDUCTORS including CMOS, LS TTL, linear, microprocessors and memories, full range of LEDs, capacitors, resistors, hardware, relays, switches etc. We also stock VERO and Antex products as well as books from Texas Instruments, Babani and Elektor. ALL AT VERY COMPETITIVE PRICES. to mains supply 圱 lamps.

Only £11.95
TEL: $01-5678910$ ORDERS
$01-5799794$ ENQUIRIES $01-5792842$ TECHNICAL AFTER BPM

FIST SERVICE•TOP QUALITY•LOW LOW PRICES

ELECTRONICS

DL3000K

 (tKw/Channol)ER
PRICES EXCLUDE VAT (tKw/Channoly -
Do you know anybody who can build a Digital Puller for only £18.00?

The answer is yes - its YOU!

With GSC's new DPK-1 kit, you can build a sophisticated portable test instrument for stimulus/response testing. It automatically delivers just the right signal for whichever logic family you're using - and it's equally suited to single pulses or pulse trains at a frequency of 100 per second. The fully featured DPK-1 kit includes all components, leads, circuit board and case - and is supplied complete with detailed assembly instructions and an operating manual.
Get rid of your digital hang-ups; send off for a DPK-1 straight away.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) LIMITED

UNIT 1, SHIRE HILL INDUSTRIAL ESTATE SAFFRON WALDEN, ESSEX CB 11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT. AX
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ

DIGITAL PURSER KIT DPK-1	©22.42	Quantity Read.	For FREE catalogue tick box

catalogue tick box \square Address
Name \qquad

[^3]
Sinclair ZXS

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics...

 From only t125!

First, there was the world-beating Sinclair $\mathrm{Z} \times 80$. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the $\mathbf{Z X} 81$. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white). Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the $Z X$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 /network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASJCincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing by providing mass on-line storage.

Each Microdrive can hold up to 100K bytes using a single interchangeable storage medium.

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberiey, Surrey, GUI5 3BR. Order

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

Sinciair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

ZX Spectrum software on cassettes - available now

The Spectrum software library is growing every day. Subjects include games, education, and business/ household management. Flight Simulation...Chess ...Planetoids . History...Inventions ...VU-CALC ...VU-3D ..Club Record Controller...there is something for everyone. And they all make full use of the Spectrum's colour, sound, and graphics capabilities. You'll receive a detailed catalogue with your Spectrum.

ZX Expansion Module

This module incorporates the three functions of Microdrive controller, local area network, and RS232 interface. Connect it to your Spectrum and you can control up to eight Microdrives, communicate with otfer computers, and drive a wide range of printers.

The potential is enormous, and the module will be available in the early part of 1983 for around $£ 30$.

TEST EQUIPMENT CENTRES OAle
RETAIL - MAIL DROER • EXPORT - INDUSTRIAL - EOUCATIONAL

OIGITAL MULTIMETERS GUKC/P FFOEI

HAND HELD
$\mathrm{K} 025 \mathrm{C}^{*} 13 \mathrm{range} 0.24$ OC 2 meg ohm
 KOSSC= 28 range 10A AC/OC 20 meg ohm $6010+22$ range $10 A$ AC/OC 20 m
$7030+$ As 6010 bul $0.1^{\%}, ~ b a s i c . ~$
 189 m 30 range 10 A AC/OC. 20 meg plus His

HAMO HELD GUTO RANGE

OM2350e?

MOSO 16 range $0.2 \mathrm{~A} \mathrm{AC/OC} 2$ meg ohm MD30/B As ibove plus Cont bued H031 22 riag 10 AC /OC ? meg onms ho3 22 riag to $\mathrm{AC} / \mathrm{CC}$? meg omms plus cont.
buser

FREQUENCY COUNTERS

PF M200a 200 mh2 hand held pockel 8 diglt LEO

861009 digil LEO bunch 2 ranous 600 MHZ £ 113.05 800049 dight LE 03 ranges I GHZ
 TF2000 B digh LCO 200 Mh Proscalers -Eritanded range al mosl counters

ELECTRONIC INSULATION TESTER YF $501500 \mathrm{v} / 0-100 \mathrm{~m}$ with carry case

MULTIMETERS
 (UK C/P 65p) Y7206 20K/Y.
 Y7206 20k/V. 19 range pocket meler
 SPECIAL PAICE
 C708150K/V 21 rangos
 Range doubler IOA DC SPELIAL PRICE ع 15.95 ETC5000/5001 21 rangess. 50K/V. Ronge doubler. 10 A 0 C doubler. 10A OC.
 TMK 50023 ranges 30K/V. 12A OC Dlus cont buzzer.
 WH56R $20 \mathrm{~K} / \mathrm{V}$. 22 ranpe poctiel EU102 14 range 2K/V pocket 830A 26 range $30 \mathrm{~K} / \mathrm{K}$. IOA AC/OC overibad protection, etc
 3 30TR 23 range $100 \mathrm{~K} / \mathrm{V}$. Large shale 10A AC/OC plus Hia
 tester 513031
 VARIABLE POWER
 SUPPLIES
 PP241 0/12/24V.0/14
 PP243 3 amp wersion $£ 59.95$
 |UKKC/P £1.00

OIGITAL THERMOMETER

TH 301 LCO $-50^{\circ} \mathrm{C}$ 10-750 with ther mocouple

LOGIC PROBES

 LP1010 Mn$$
\begin{aligned}
& \text { BENCH MODELS (} 3 \text { digil Uniless sal } \\
& \text { TM353-27 range LCO } 2 \mathrm{~A} \text { AC/OC }
\end{aligned}
$$TM

 TM 355 - 29 range LED 10A AC/OC
IM 351 - 29 range LCO 10A AC/OC
 Cap. Mater with case 108.00
 1503×4 digit LCD every ficility 100_{0}°) E 171.00 $1503 \mathrm{Ha} 0.03^{\circ}$ b basic vertion ol above \quad £ 189.00 *Optonal carty casa £2.95 -With Iree carrycias - Optional carry casa f6 84

EDUCAYIOMAL DISCOUNTS AVAILAELE FOR
ALL STOCKS PLEASE EMOURE

SIGNAL GENERATORS

FUNCTIOM : Nis sine/zquare/triangle/ITL. itc

TG100 I HZ - 100 NHZ IG10202HZ-2 MHZ $£ 166.75$
ULSE
4UO10 Marious iacilitites 5 HL-5 M HZ
aUO10: Muliband Sine/Square
Lag27 10 Hz to I MHZ
£97.75

AG2024 20 HZ 10 200 KHZ
286.00

AG202. 20 MZ 10200 KHZ E76.00
SG402 100 KHZ to 30 MHZ
SG17 100 KHZ 10150 MH2
LUDIO - RF - FUNCTIOM • PULSE
OSCILLOSCOPES

Full specilicalion any madel on requesl. SaE by post. - MM' Saries MAMEG: SC' TMANOAR: -CS' Series TAIO: '3' Series CRDTECH SIMGLETRACE
3030 IS MHZ 5 mV . 95 mm tubs plus componem Tasier C/P 53.00 PCoallife
MM 103 IS MH2 $2 \mathrm{mV} .6 \times 7$ display plus
 componenal carry case $\mathrm{CB} .84 \quad$ AC adaplor $£ 6.69$
Option Wicaos $£ 12.50^{\circ}$
OUAL TRACE (UX C/P fa.00)
MM203/4 Oual 2OMH2 plus componeni

CS 1566 Oual 20 WH2. All lacilitiles H mot 204 Oual

twetay. OPTIONAL PRDBE KITS lester ع419.75 $x 1$ \begin{tabular}{lrrr}
$\mathrm{X} 1-\mathrm{X} 10$ \& $£ 10.50$ \& $\mathbf{X 1 0}$ \& $\mathbf{X 1 0 . 4 5}$

\hline 16.95

STOCKISTS FOR TRIO: HAWEG: CROTECH:

SAFGAM'SCOPES. MOST MOOELS INSTOCK.

\hline
\end{tabular}

HIGH VOLTAGE METER

Oircet rading $0 / 40 \mathrm{Kv}$. 20K/Voll. 1 IUK C P 65 p E18.40 OIGITAL CAPACITANCE

TRANSISTOR TESTER Dirsct roiding PMP:MPM. at CCI
(UK C/P 650]

AUDIO ELECTRONICS Gumesed 301 edgware hoad. Lomddi wz 18M. TEL: 01-724 3564 al so at hembys radio.
404/405 EDGWARE ROAD. LOMDON WZ

PLASTIC CASES

black cases with black and silver eno panels. pcb bosses. top TYPE EXT DIMS $\underset{\substack{\text { SCREWS TO } \\ \text { EACH } \\ \text { TYPE }}}{\text { BOTOM. }}$

TYPE	EXT OIMS	EACH	TYPE	EXT DIMS	EACH	
110	$115 \times 74 \times 64$	2.47	220	$20 \times 140 \times 64$	4.81	
115	$115 \times 140 \times 64$	2.85	221	$220 \times 140 \times 84$	6.53	
116	$115 \times 14 \times 84$	4.52	222	$220 \times 140 \times 114$	7.68	
117	$115 \times 140 \times 114$	5.38				

Mail Order only. All prices include VAT and P\&P. Send large SAE for Catalogue of boxes, knobs, power supplies (from 5A to 150A), controllers and more.

A PRACTICAL DIGITAL ELECTRONIC KIT FOR设 LESS THAN $£ 20$ 设

CAMBrIDGE LEARNING

GSC

 SUPERKIT

Seff-Instruction Digital Electronic Kit
in sumber

- Soltum lor horious

DIL switches. reststors capacitors, and other components to thoroughly tested instruction manual (also available sepa rately). All this comes in a pocket size plastic wallet for only $f 19-90 p$ inc VAT and $p \& p$. This course is for true beginners - the only exira you need is a $4 \frac{1}{2} \mathrm{~V}$ battery.
needs no soldering iron.
asks plenty of questions, but never leaves you stuck and
helpless.
teaches you about fault-finding, improvisation. and
subsystem checking. This course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders Cheque with order to:
Cambridge Learning Limited, Unit 34 Rivermill Site, FREEPOST,
St Ives, Huntingdon, Cambs. PE 17 4BR. England.
or tel 048067446 with credit card details

SUITABLE FOR BEGINNERS

NO SOLDERING!

Learn the wonders of digital electronics and see how quickly you are designing your own circuits. The kit contains:
seven LS TTL integrated circuits, breadboard, LEDs, and all the Cambridge Learning

E.E. PROJECT KITS

I.C. TOOLS TMANSISTORS RESISTORS KITS CAPACITORS HARDWARE
Make us your No. 1 SUPPLIER OF KITS and COMPONENTS For E.E. Prolecta. We supply carefully selected sets of parts to enable you to construct E.E. propects. Kits inctude ALL THE ELECTRONICS AND HAROWARE NEEDED. Pirinted circult boarde (fully etchad, drifed and roler finned) or veroboard are, of course, included aEs specined in the original
article, we even include nuth, screw and I.C. sockeis. PRICES INCLUDE CASES unieas otherwlee stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the instructlon reprint at an extra $45^{\circ} \mathrm{p}$ each.

DOUBLE DICE Jan. 83 . $£ 10.82$ ELECTRONIC V/I METER | 82. |
| :--- |
| $2 \times$ | $2 \times$ TAPE CONTROL Nov 82. PHOTO FINISH NOV 82. SINE WAVEGEN Oct. 82.

G. P. PRE.AMP OCt. 22.
G. P. PRE.AMP OCt. 82 .

LIGHTS ON ALERT OCt. 82.
CONTINUITY CHECKER SED
CONTINUITYTHERCKER Sep
SOUND SPLITER Sept 82.
SCREEN WASH DELAY SeDt
SCREEN WASH DELAY Sept 82.
TWO TONE DOORBELL ALARM 82. less case and bell transformer. BRAKELIGHT RELAY JuIY 82. 2. WA YIHTERCOM July 82 .
ELEC SRONIC PITCH PIPE JUIY REFLEX TESTER JUly 82 . E4.91 SEAT BELT REMINDER JUNE B2. C3. 73 TWO TONE TRAI REMOTE TRIGGER OPTION May 8 IT CAR LED VOLTMETER less $11 \cdot \boldsymbol{z e}$ May 82 . V.C.O. SOUND EFFECTS UNIT EAT 20 CAMERA OR FLASH GUN TRIGGER
 POCKET TIMER Mar 82. \&3. 71. CAR OVERHEATING ALARM. Feb. A2 C8:61.
SIMPLE STABILISED POWER SUPPLY, Jan. 82. E24.5B
SUNIEGG TMER MINIEGG TIMER. Jan. 82. E3.94 81REN MODULE. Jan. B2. less speaker,
$\$ 5.57$.
MODEL TRAIN CHUFFER. Jan. 82. E8.27. ${ }^{27}$ SUARE SIX. Dec. 81. E4.70.
 REACTION METER. Dac. 81. E17. SS. ELECTRONIC IGNITION. NOV. BI. TROL Nov, 81. 81698. PRESSUREMAT TRIGGER ALARM. Nov. 81. EE 271 ess
EXPERIMEMTER EXPERIMENTER CRRYSTAL SET.

CAPACITA ACEMETER. Oct. 81, CZ3. 51 . SUSTAIN UNIT, OCt, 81. E12.76. 'POPULARDESIGNS'. OCt B1. TAPE NOISE LIMITORR EA. 57 , HEADS AND TAILS GAME. E2.52 PHOTO FLASH SLAVE. E3.46. FUZZ BOX. E7.29.
OPTO ALARM. E6.78
SOIL MOISTUPE UNIT, ES 31 . ICE ALARM. 57.89 .
 Sept. 81. CE. O2
CMOS DIE. Sept. 81, E7.99 LED SANDGEASS. AUO. 81. EE SJ. CMOS METRONOME. AUO. B1. EL. 23. COMBINATION LOCK. July B1. Less Cand. 19.58.
 TAPE AUTO START. June S1, 112.78. LIGHTS REMINDER AND IGNITION LOCATORE E.E. May B1 ES. 6. May 11 E4.O9 URDICATOR E.E. GUITAR HEADPHONE AMPLIFIER E.E. May 81. E4. 23 .

PHONE BELL REPEATER/BABY ALARM E.E. May 81 . C5-A6. SIMPLE TRANSISTOR ${ }^{\text {E }}$: DIODE

MORE KITS AND COMPONENTS IN OUR LISTS
 -
 1982 ELECTRONICS
 CATALOGUE

 FREE PRICE LISTPrice listlincluded with Price list Included with
CONTAINS LOTS MORE KITS. PCB
COMPONENTS

Illuatrations, product deseriptions, clrcuits all included. Uo-ko-date price liat enclosed. All products Send 80 p in atamps or add sop io

MORE E.E. NITS PLUS H.E. and E.T.I. PRO-
MAGENTA oIVE YOU FAST DELIVERY OF OUALITY COMPOMENTS E KITS. All producte are stock Hines and are new d full specifcation. We give personal sorvice a

MAGENTA ELECTRONICS LTD.

 EH48, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS., DE14 25T. 0283 65435. MON.-FRI. 9-5. MAIL ORDER ONLY. ADD 45p P. \& P. TO ALL ORDERS. PRICESINC. VAT\square

Normal despatch by return of post
OVERSEAS. Payment must be in sterling, ORERSEAS. Payment must be in sterling. EUROPE: UKLRICES Dlus 10\%.
ELSEWHERE: WrIte for quote.
TESTERS. Mar. 81. Ohmeter veraion M2.02. Led Version e2.73.
LED DICE. Mar. 81. C.4.
LED FLASHER. Mar. 81. E4.20.
MODULATED TONE DOORBELE.
EENCHPOWERSUPPLY, Mar. B1. ©53-47 THREE CHAMNEL STEREO MIXER. eb. 81. C1t 69
Signal tracer. Feb, al, ce 17 leas Cd battera charger. Feb si 513 -41.
ULTRASONIC IMTRUDE DETEC Mo, Jan. 81 less case. [53-47.
HOTE OOOR CHIME. Dec. 80. ©18. 32 NE WIRE GAME. Dec. 80. E11.76. Mov. 80. E12 PR less case standard caso c3. ti. Hloh qually case is. 33 .
SOUND TO LIGHT. Nov, so. 3 channel E21.34.
TRANSISTOR TESTER. Nov, 30 E11-k inc. testleads.
AUDIO EFFECTS UNIT FOR WEIRD BICYCLE ALARM. Oct. ©0. E14.35 lege BICYCLE ALARM.
IRON HEAT CONTROL. OCI. BO. E5.E TTL LOGIC PROBE. Sept. 80 E5. 18 . EENER DIODE TESTER. JUNe Bo. Es es. \& STATION RADIO. May 80 . E18-zelent LIGEHTS WARNIMG SYSTEm, May bo. c4.a.
BATTERY VOLTAGE MONITOR. ME CABLE $\&$ PIPE LOCATOR. Mar. 80 -11 less collformer.
KITCHEN TIMER. Mar. 80. E14.ES. STEREO HEADPHONE AMPLIFIER Mar. 80. E16 is.
MICRO MUSIC BoX. Feb, so. E16.z6 Grey Case 83.99 extra
SIMPLE SHORT WAVE RECEIVER

SLIDETTAPE SYNCHROMISER Feb morse
Fob bo practice oscillaton ©b. 80. C4.C.
SPR RING LINE REVERE. UNIT. Jan. 80
UNIBOARD BURGLAR ALARM. Dec. 76.24

CHASER LIGHTS. Sept. 79. 123.40 . SIMPLE TRANSISTOR TESTER. Sept. 79. EJ .3 S .
DAKKROOM TIMER. JUIY 79. E2.s9. ELECTRONIC CAMARY. June T9.C5. 0 EICROCHIME DOORBELL FED. Te. THYRISTOR TESTER. Feb. 79, as 7 Te FUSE CHECKER. Oct. Th. E2-3.
SOUND TO LIGHT, Sept. 73. Ee.te. CAR BATTERY STATE INDICATOR. Sept. Tr. Lena case. can.
R.F. SIGNAL GENERATOR. SEDI. TE 2
IN SITU TRANSISTOR TESTER June Tr. Ef 7 T
WEIRD SOUND EFFECTS GENERA AUDIO VISUAL METRONOME. JIN. 7 T ELECTRONIC TOUCH SWITCH. Jan. 78. C2. 73 leas case.

RAPID DIODE CHECK, Jan. 72. $\mathbf{E 2} \cdot 76$. PHONE/DOORBELL REPEATER. JUIY ELECTRONIC DICE. Mar. TT, ES ©

SOLDERING/TOOLS
 ANTEX X5 SOLDERING IRON

25W
SOLDERING IRON STAND £5.48 SPARE BITS. Small, standard, large, 65p each. For X5 + X25 SOLDER. Handy size SOLDER CARTON DESOLDER BRAID
HEAT SINK TWEEZERS DESOLDER PUMP HOW TO SOLDER LEAFLET LOW COST CUTTERS

WIRE STRIPPERS
CUTTERS

HELPING HANDS JIG $\mathbf{5 6} \mathbf{3 0}$

Heavy base. Six ball and socket jolnts allow infinite varlation of clips through 360°. Has $21^{\prime \prime}$ diametér (2-5 \times magniffer attached, used and recommended by our staff.
VERO SPOT FACE CUTTER PININSERTION TOOL... VEROPINS (pk of 100) 0.1 MET, 10 loads with 10 ($1,000 \mathrm{ODV}$) RESISTOR COLOUR CODE CALCULATOR CONNECTING WIRE PACK TVPE ED. 11 colours

MULTIMETER TVPE 2. (YN360TR) 20K o.p.y. with Transisior tester. 75
UMINATED MAGNIFIERS Small 2" dia. ($5 \times$ mag.)
Large $3^{\prime \prime}$ dia. ($4 \times$ mag.) CAST IRON VICE SCREWDRIVER SET POCKET TOOL SET DENTISTS INSPECTION MIRROR JEWELLERS EYEGLASS........ $\mathbf{1 1} 5$ PLASTIC TWEEZERS
 πp

TEACH IN 82

All top quality components as apecified by Everyday Electronics. Our kit comes Complete with FREE COMPONENT IDENT ICATION LIST 1 and LIST 2 together cit. 84. LIST 3 E5.ey

$$
\begin{aligned}
& \text { t } A \text { SPECIAL OFFER } t \text { t } t \\
& \text { LISTS } 1,2 \text { and } 3 \text { all bought together } E 33 \cdot 48 \text {. }
\end{aligned}
$$

WOODEN CASE KIT also avallable E11-8t-wood, formica, glue, ecrews etc. Cu $t 2$ part

LISTS 1, 2, AND 3 ALL AVAILABLE NOW ALSO WOODEN CASE KIT.

80015	ADVENTURES WITH MICROELECTRONICS
SEMICONDUCTOR DATA BOOK	Similar to 'Electronics' below.
Newnos	Uses I.C.s. Includes dice, elec-
SECURITY	tronic organ, doarbell, reaction
ELECT. PROJECTS IN PHOTOGRAPHY	timer, radio etc. Based on Bim-
110 ELECT. ALARM PROJECTS $\begin{aligned} & \text { E5 } \\ & \text { E.35 }\end{aligned}$	board 1 bread board.
MODEL RALWAYPROJECTS EI-IS	Adventures with Microelectronics
BASIC ELECTRONICS. Theory and	¢2.55
	Component pack $\mathbf{6 2 9}$-64 less
ELECT. PROJECTS ${ }^{\text {E1.So }}$	battery.

ADVENTURES WITH ELEGTRONIOS Butem

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Glves clear instructione with lots of pictures. 16 projects-including three radios, siren, metronome, argan, intercom, timer, etc. Helps you learn about electronic components and how circults work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $\mathbf{2 2}$.40. Component pack E18.2 less battery

ADVENTURES WITH DIGITAL ELECTONICS

New book by Tom Duncan in the popular 'Adventures' series. This book of entertalning and instructive projects is designed for hobbyists and students. It provides a stepping stone to the microprocessor.
The first part deals with the properties of some basic ICs used in digital electronics.
The second part gives details of how to build eight devicesshooting gallery, 2-way traffic lights, electronic adder, computer space invaders game, etc.
For each project there is an explanation of 'how it works' and also suggestions for "things to try
No soldering-all circuits built on 2 Bimboard 1 breadboards
Adventures with Digital Electronics book £3.25. Component pack E42•50, ref. EEDC. All the components needed including 2 breadboards and hexadecimal keyboard. Avilable lese breadboards £29•98, ref. EEDF. Both less battery.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
 You will do the following: - Build a modern oscilloscope - Recognise and handle current electronic components

- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern cquipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.
Newdob?NewCareer?NewHobby?Getinto:Tlectronics Now!

RESISTOR FILE

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS
AND MODULESIN THE WORLD \& THERE'S ONLY BOOM JOR A FRACTION EERE, GET THE CATALOGUEAND FIND THE REST.

ALWAYS USE STOCK CODE WHEN ORDERING PLEASE.

Receivers \& Components

NEW SURPLUS RELEASE

Ex GOVT Lead acio accumulators. Brand new 10 V 5oh famous manutacture. Easily tapped in iv stages. Sive only $7 \times 5^{\prime \prime} \times 2$. Ideal for omergency lightina and power suppliss. Burglar alarms etc. Must have cost Govt. over EO each. Our price $£ 5.50$ each, carriage $£ 2.50$. 2 for $£ 10$ carriage © $£ .504$ for fil carrige 56,8 for 832 carriage f 10 . All despatchad unflled. Robust wooden tray with carrying handles. Holds 8 accumula OR8 8
CORDLESS MOUCTIVE LOOP HEMOPHOMES. Self powered. Input via loop or extemel min BNC socket. Contans transistorised high gain amplifer. Operates from internal batheries Noise excluding mults. Switch on when placed on head Special olter while stocks last E6 PD. L2. 2 pairs for E12 post
tree. tree.
LIGHTWEIGHT HEAOSETS (Gov. release). Brand new 600 ohms impedance. A bargain at $£ 3.50$ p.p. $£ 1$. 2 pars for $£ 7$ post Tree.
RIDICULOUS RESISTOR SALE. Brand now I watt carbon film resistors. 5% tol. Migh quabliy resistors made to exacting specifications by autornatic machines. E12 Range IRO to 10M In lots of 1000 25 per valueg. Only es per 1000 . Lots of 5000 for E35. 1 RO to $10 M$. 1000 PCB type resistors 22.50. Builx purchase enables us to oher 1000 mixed pre-formed carbon film resistors. 5% 10. for PCB mounting. Huge range of preferred vilus. GENUINE AFS TANT HEAOSETS ANO MIRE E. 50 per par. p.p. E1. 2 pairs $£ 7$ post free. All headphones fitted with Exministry plug Standard lack plugs avaiable asp each 2 or $40 p$. Headphone extension sockets avalable at 25p each. 2 for 400 . Impedance of first two items 600 ohms All headphones in good condition.

SCOOP PURCHASE
PYE POCXET PHONE RECENERS TyPe PFI nomal feo 450 mHz . Supplied in used condition less battery. 84.50 each. Carrage 51.2 pars 59.00 post tree 4 pars $£ 15.00$ post tree. THE GOVT. SURPLUS WRELESS EOUIPMENT HANOBOOK. Gives detailed inforrnation and criccuit diagrams for British and American Govemment Surplus Recevers Transmutters and Test Equipment etc. Also suggested modification detals and improvements for surplus equipment. Incorporated is a Surplus/Commerciel cross referenced valve and transistors guide The standard reference work in this field. Only $£ 7.50$ D.D $£ 150$. No VAT on books.
New relose of MOOERN OYMAMIC MOVING COIL MICAOPHONES. 200 ohms impedance. Swith ncorporated. Most with lead and OIN plug. Used but nice condition. 3 designs of case housing. Price one mite our choce iz plus 50p p.p Bargain offer all 3 mikes $£ 4.50$ p.p. $\mathrm{E1}$
GEMUINE EX-GOVT COLLAPS B highly efficient whip aerial in 5 sections. Length 1f meatres Closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Govt Manpacks. Brand new in makers boxes $£ 2.50$ each, DD. 75p 2 for 55 post tree.
have you seen the green cat. $1000 \times$ of new components, radio, electronic, audio at unbelievably low pnces. Send 50 p and racenve catalogue and FREE RECORO SPEEO indicator.

MIMI JUMBO PACK (120 worth)
for E5 p.p. $\mathbf{£ 1} 50$
PLEASE ADO 15\% VAT to all orders including carriage and p.p.

MMENS 5 GGBROMIC DeMIGeS

Dept EE1, 12/14 Marper Streat, Leeds LS2 7EA. Leeds 452045. New retail premises at above address lopposite Corals). New retai premises at above address Lopposite Coras. appontment. GOVT. SURPLUS TTEMS ALWAYS IN STOCK.

Reach effectively and economically to-days enthusiasts anxious to know of your products and services through our semi-display and classified pages. Semi-display spaces may be booked at $£ 7.24$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 31 pence per word (minimum 12 words), box number 60p extra. All cheques, postal orders,

Receivers \& Components

ELECTRONIC COMPONENTS MERSEYSIDE, Myca Electronics, 2 Victoria Place, Seasombe Ferry, Wallasey, L44 6NR. Mail order. Send 50 p for price list refundable off first order. 051-638 8647.

AERIAL BOOSTERS trebles incoming signal, price £7.00. SAE leaflets. VELCO ELECTRONICS, Ramsbottom, Lancashire BLO 9AG

BUMPER BOX OF BITS

wow!!! We've got so many components in stock we can't possibly list them all!! - So buy a box, in it you'll find resistors, capacitors, displays, switches, younels with transistors, diodes. IC's etc, coils, pots.. panels with transistors, diodes. © s eic, coils, pots... 1000 items, minimum weight 101 bs . ONLY E 8.50 inc. ELECTRONICS WORLD
1d Dews Road, Salisbury, Wilts, SP2 7SN (Prop: Westbrough Ltd)

VERO BOARD 0.1 PITCH, $95 \times 292 \mathrm{~mm} £ 3.50$ each, $112 \times 177 \mathrm{~mm} £ 2.95$ each. Prices inclusive of VAT, p\&p 30p. Send cheque or PO with order to: Coxon Electronics, 47 Steepturnpike. Matlock, Derbyshire. DE4 3DP.

TURN YOUR SURPLUS capacitors, transistors etc. into cash. Contact Coles Harding \& Co., 103 South Brink Wisbech. Cambs. 0945-584188. Immediate settlement.

Service Sheets

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd., Harrogate, N. Yorkshire. Tel: 042355885.

ANY PUBLISHED, FULL-SIZE SERVICE SHEET by return $£ 2$ + LSAE. CTV/music centres $£ 3$. Repair data with all circuits, layouts, etc, your named TV or Video $£ 8.50$. Free 50 p mag. All orders, queries T.I.S. (E.E.), 76 Churches, Larkhall, Lanarkshire.

Miscellaneous

LEARN
 ELECTRONICS WITHOUT SOLDER

Build electronic circuits without solder on a Roden S-Dec
This has built-in
contacts and holes into
which you plug your components Suitable for all ages. Can be used time atter time. Ideal gift for
students or experimenters.
Full instructions and 2 circuit
diagrams with each S-Dec.
Send chequa or P.O. to
hateo Fratucts, Dep EE
High March Diventry.
£4.70
1
including pap

ORDER FORM please white in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for
Insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

NAME

ADDRESS

EVERYDAY ELECTRONICS

Classiffed Advertisement Dopt, hoom 2612
KIng's Reach Tower, Starnford Street, London SE1 9L8
Telephon 01-281 5942
Rate:
31 p per word, minimum 12 words. Box No. 60 p extre.

at YOUR SERDICE

etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Department, Everyday Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Miscellaneous Cont.

DIGITAL WATCH REPLACEMENT PARTS. Batteries, displays, backlights, etc. Also reports. publications, charts. SAE for full list. PROFORDS. Copners Drive, Holmer Green. Bucks HP15 6SGA.

FREE
 CATALOGUE OF BURGLAR ALARM
 EQUIPMENT

TOP QUALITY D.I.Y. SYSTEMS AND PARTS AT TRADE PRICES

SEND S.A.E. OR PHONE: C-TEC SECURITY, Dept. EE, 60, MARKET ST, WIGAN \pm (0942) 42444

INGERSOIL. PERSONAL STEREO FM/AM receiver features - individual volume controls. stereo beacon. fingertip tuning, feather-weight headphones. requires PP3 battery $£ 12.95 \mathrm{p} \& \mathrm{p}$ 80p. RADIO WATCH - normal size quartz L.C.D. watch combining AM radio complete with featherweight headphones, only $£ 11.95$ p\&p 45p. TAITS MAIL ORDER, 31 Lime Grove, Addlestone, Surrey.

SILVER OXIDE BATTERIES

Save pounds on silver oxide and alkaline button cells. Fully guaranteed. e.g.: LR44 for Pentax ME Super camera only 42 p each post free
For fREE EQUVVALENTS CHART and price list send s.a.e, to:
H. M. WHEELER \& CO.
(Unit 1), 15 Hawthorm Crescent,
Bewdley, Worcs. DY12 2JE.

Courses

CONQUER THE CHIP-master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept C3, Reading. Berks RGIIBR.

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority.
If an advertisement is wrong weire here to put it right.
ASA Lid. Brook House. lonngiton Place. London WCIE AHN

INDEX TO ADVERTISERS

Alcon. 130
Ambit 189
Audio Electronics
134, 135
B.K. Electronics Cover III
B.N.R. \& E.S. 188
Bull J. 132
C-Tec Security 191
Cambridge Learning 186
Cricklewood Electronics 131
Dziubas M. 192
Electrains 186
Electronics World 190
Electronize Design Cover II
Electrovalue 169
Enfield Electronics 191
G.S.C. 183
Greenweld Electronics 130
H. M. Wheeler 191
I.C.S. 192
Magenta Electronics 187
Maplin Electronics Cover IV
Myers Electronics Devices. 190
Pops Components 189
R \& TVC. 136
Rapid Electronics 133
Roden Products 190
Scientific Wire Co 191
Sinclair Products 84, 185
Sparkrite 175
Titan Transformers 191
T.K. Electronics 183
Wilmslow Audio 189

TITAN TRANSFORMERS DUNCOMBE STREET, GRIMSBY, SOUTH HUMBERSIDE DN32 7EG.

INVERTERS

12/24 volt DC input from car battery to 240 volt AC output at $100,250,500$ and 1000 VA.
Plus, powerlift, autocharger, powersaver, powermonitor, autochangeover and battery isolator as optional extras.

TRANSFORMERS

$12 / 24$ volt
 30/60 volt \{Range

Autotransformers, safety isolating equipment P.C.B's etc.
BATTERY CHARGERS - 2 volt.

ADAPTORS

6 volt to 7.5 volt to 9 volt switchable. 300MA regulated 6 volt to 7.5 volt to 9 volt switchable. 250MA unregulated Send SAE for prices and info. by return. Mail Order Prompt Service

Make the connection with Access

\star PROMPT DELIVERY * PRICES INCLUDE V.A.T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechanism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cab net or console of own choice. These units are brand new ready built and tested.
Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input Sensitiv 400 mv to both ift and Impedance- 10 K Signal to noise ratio. 45 dB Woutput Impedance. fluttor: 0.1%. Power Supply requirements: 18 VC a 300 mA . Connections: The left and right hand stereo inputs and outputs are via individual screened leads, al terminated with phono plugs (phono sockets provided) Dimensions: Top panel under top panel 2ain. Supplied complete with circuit diagram and connecting diagram. Attractive black and
silyer finish silver finish.
Price $£ 26.70+£ 2.50$ postage and packing.
Supplementary parts for 18 V D.C. power supply (trans
6 piano type keys

1 K-WATT SLIDE DIMMER

* Controls loads up to 1 KW .
*Compact Size $47^{\prime \prime} \times 1{ }^{\circ} \mathbf{z}^{\prime \prime} \times 2$ 2
* Easy snap in fixing through panel/cabinet cut out.
- Insulated plastic case
* Full wave control using 8 amp triac
* Conforms to BS800.
- Suitable for both resistance and inductive loads. Innumerable applications in industry, the home, and disco's/theatres, etc. Price $\mathbf{£ 1 1 . 7 0 \text { each } + 5 0 \text { p P\&P. (Any quantity.) }}$

 HOBBY KITS. PROVEN DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALTY COMPONENTS COMPLETE WTH NSTRUCTIONSFM MICROTRANSMITTER (BUG). 90/105MHz with very sensitive microphone. Range 100/300 metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt). Price: $\mathbf{E 6 . 5 8}$
$\left(9\right.$ volt). Price: $£ 22.94$ IER. $-9.9^{\circ} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$. LED display. Complete with sensor. $70 \times 70 \mathrm{~mm}$ 9 vott). Price: $£ 22.94$
W WATT FM TRANSMITTER. 3 watt. $85 / 115 \mathrm{MHz}$ varicap controlled. Professional performance Range up to 3 miles. $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt). Price: $\mathbf{f 1 0 . 6 4}$
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/RECEIVER. 27 MHz . Range up to 50 metres. Double coded modulation. Receiver output operates a relay with $2 \mathrm{amp} / 240 \mathrm{~V}$ contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt) Price: $\mathbf{£ 1 4 . 3 8 \text { . Transmitter } 8 0 ~}$ $\times 50 \times 15 \mathrm{~mm}(9 / 12$ volt $)$ Price: $\mathbf{£ 9 . 1 5}$. P \& P ALL KITS +50 p. S.A.E. for complete list.

B.S.R. P232 TURNTABLE

MULLARD SPEAKER KITS

12" 80 watt R.M.S. Ioudspeaker A superb general purpose twin cone loud-speaker. 50 oz . magnet. $2^{\prime \prime}$ aluminium voice coil. Rolled surround. Reso nant frequency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 8 ohm. Attractive blue cone with aluminium centre dome. Price: $£ 17.99$ each $+£ 3.00 \mathrm{P}$ \& P.

LOUDSPEAKERS

$15^{\prime \prime} 100$ watt R.M.S. (HI-FI, P.A., BASS GUITAR). Die cast chassis, 2 aluminium voice coil, white cone with aluminium centre dome. 8 ohm imp., Res. Freq. 20 Hz ., Freq. Resp. to 2.5 KHz ., Sens. 97 dB . (As

12100 watt R.M.S. (HI-FI). Die cast chassis. \boldsymbol{Z}^{2} aluminium voice coil. Black cone. 8 ohm imp . Res. Freq. 20 Hz ., Freq. Resp. to 4.5 KHz . Sens. 95 dB . (As photograph). Price: $£ 23.50+£ 3.00$ carriage.
$8^{\prime \prime} 50$ watt R.M.S. (HI-FI, P.A.). $1 \frac{1}{2 \prime \prime}^{\prime \prime}$ aluminium voice coil. White cone. 8 ohm imp. Res. Freq. 40 Hz ., Freq. Resp, to 6 KHz . Sens. 92 dB . Also available with black cone fitted with black metal protective grille. (As photograph). Price: White Cone $\mathbf{£ 8 . 9 0}$, Black Cone/Grille $£ 9.50 \mathrm{P}$ \& $\mathrm{P} £ 1.25$.
12" 85 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO). $z^{\prime \prime}$ aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freq. 45 Hz ., Freq. Resp. to 6.5 KHz ., Sens. 98 dB . Price: $£ 22.00+£ 3.00$ carriage
$12^{\prime \prime} 85$ watt R.M.S. McKENZIE C1285TC (P.A., DISCO). $2^{\prime \prime}$ aluminium voice coil. Twin cone. 8 ohm imp. Res. Freq. 45 Hz ., Freq. Resp. to 14 KHz . Price: $£ 22.00+⿷ 3.00$ carriage.
$15^{\prime \prime} 150$ watt R.M.S. MCKENZIE C15 (BASS GUITAR, P.A.) 3 ' aluminium voice coil. Die cast chassis. 8 ohm imp. Res. Freq. 40 Hz ., Freq. Resp. to 4 KHz .. Price: $\mathbf{f 4 7 . 0 0}+$ £4.00 carriage.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speakers systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE ' A ' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh, ideal for bookshelf and medium sized Hi-Fi speakers. Price $\mathbf{£ 3 . 4 5}$ each.
TYPE 'B' (KSN1005A) 3l" super horn. For general purpose speakers, disco and P.A. systems, etc. Price $£ 4.35$ each.
TYPE ' C^{\prime} (KSN6016A) 2 " $\times 5^{\prime \prime}$ wide dispersion horn. For Hi-Fi systems and quality discos, etc. Price $£ 5.45$ each.
TYPE ' ${ }^{\prime}$ ' (KSN1025A) 2 " $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range $(2,000$ c / s). Suitable for Hi-Fi systems and quality discos. Price $\mathbf{£ 6 . 9 0 \text { each. }}$
TYPE 'E' (KSN1038A) 37" horn tweeter with attractive silver finish trim. Suitable for $\mathrm{Hi}-\mathrm{Fi}$ monitor systems, etc. Price $\mathbf{£ 4 . 3 5}$ each. TYPE 'F' (KSN1057A) Cased version of type ' \mathbf{E} '. Free standing satelilite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $\mathbf{£ 1 0 . 7 5 \text { each. }}$
TYPE 'F' U.K. post free (or SAE for Piezo leaflets). 37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

[^4] applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

spechisyur Fos.2xetand

THE MAPL

* Allophone (extended phoneme) system gives unlimited vocabulary.
\star Can be used with unexpanded VIC20 or ZX81 does not require large areas of memory.
\star In VIC20 version, speech output is direct to TV speaker with no additional amplification needed.
\star Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LK00A (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH EIECTRONICS FOR ZX81

* Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in $\mathbf{Z X 8 1}$).
*Complete with electronics to make "Shift Lock" "Function" and "Graphics 2" single key selections. - Powered (with adaptor supplied) from ZX81's own standard power supply.
Full details in Project Book 3 (XAO3D) Price 60p Complete kit (excl. case) f19.95. Order As LW72P Case $\mathbf{6 4 . 9 5}$. Order As XG17T.
Ready built-in case $\mathbf{5 2 9 . 9 5}$. Order As XG22Y.

OTHER KITS FOR ZX81

3-Channel Sounds Generator (Details in Book 5) Order As LW96E. Price $£ 10.95$.
2X81 Sound On Your TV Set (Details in Book 6). Order As LKO2C. Price $£ 19.95$
ZX81 I/O Port gives two bi-directional 8-bit ports (Details in Book 4).
Order As LW76H. Price $\mathbf{£ 9 . 2 5}$
ZX81 Extendiboard will accept 16K RAM and 3 other plug-in modules.

PCB:

Order As GB08J. Price $\mathbf{£ 2 . 3 2}$
Edge Connectors (4 needed):
Order As RK35Q. Price $\mathbf{£ 2 . 3 9}$

HOME SECURITY SYSTEM

Six independent channels - 2 or 4 wire operation. External horn. High degree of protection and long term reliability. Full details in Projects Book 2. (XAO2C) Price 60p

MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Full construction details in our book (XH55K). Price $\mathbf{£ 2 . 5 0}$ Complete kits available. Electronics (XY91Y) $£ 299$ Cabinet (XY93B) $£ 99.50^{*}$ Demo cassette (XX43W) 1.99 .

25W STEREO MOSFET AMPLIFIER

* Over 26 W/channel into 8Ω at 1 kHz both channels driven * Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion. low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations).
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet. Full details in Projects Book 3. Price 60p (XAO3D). Complete kit only $£ 49.95$ incl. VAT and carriage (LW71N).

BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD. MAPCARD gives you real spending power up to 24 times your monthly payments. instantly.

MAPLIN'S FANTASTIC PROJECTS

Full details in our project books. Issues 1 to 5: 60p each Issue 6: 70p.
In Book 1 (XAO1B) 120W rms MOSFET ComboAmplifier Universal Timer with 18 program times and 4 outputs Temperature Gauge - Six Vero Projects.
In Book 2 (XA02C) Home Security System Train Contraller for 14 trains on one circuit Stopwatch with multiple modes Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Amplifier -Doppler Radar Intruder Detector Remote Control for Train Controller.
In Book 4 (XAO4E) Telephone Exchange for 16 exten sions Frequency Counter 10 Hz to 600 MHz Ulitrasonic Intruder Detector 1/O Port for ZX81 - Car Burglar Alarm - Remote Control for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard 100W 240V AC Inverter Sounds Generator for ZX81 - Central Heating Controller Panic Button for Home Security System Model Train Projects Timer for External Sounder.
In Book 6 (XA06G)" Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp $\mathbf{Z X} 81$ Sound on your TV ZX81 Interface for Modem -Scratch Filter Doorbell for Deaf - Simple FM Tuner* Damp Meter*.
-Projects for Book 6 were in an advanced state at the time of writing, but contents may change prior to publication (due 11th February 1983).

MAPLIN'S NEW 1983 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items On sale in all branches of WHSMITH Price $\mathbf{£ 1 . 2 5}$

MAPLIN ELECTRONIC SUPPLIES LTD. P.O. Box 3, Rayleigh. Essex SS6 8LR Telephone: Sales (0702) 552911 General (0702) 554155 Shops at: Shops closed Mondays
159 King St., Hammersmith, London W6. Telephone: 01-748 0926 Shops at:
159 King St., Hammersmith. London W6. Telephone: 01-748 0926 284 London Rd., Westclift-on-Sea, Essex. Telephone: (0702) 554000 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292

Post this coupon nowl
Please send me a copy of your 1983 catalogue. I enclose f 1.50 (inc $p \& \mathrm{p}$) If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.90$ or 10 International Reply Coupons. Despatched by return of post.
Name
Address

[^0]: Our April 1983 issue will be published on Fridey, March 18. See page 157 for details.

[^1]: * Mathematically inclined readers will know this as Fourier malysis. The sine-wave components are expressible mathematically as the terms of a Fourier series (named after the French mathematician and physicist J. P. J. Fourier).
 * Derived by C. E. Shannon. $C=W \log _{2}(1+S / N)$, where $C=$ maximum capacity of channel in bits/ second, $W=$ bandwidth in hert2, $S=$ mean signal power in watts, and $N=$ mean noise power in watts.

[^2]: "SAVE "EPROM READ" 2890 28DF

[^3]: 1 enclose PO/Cheque for ε
 \qquad

[^4]: SAE for current lists. « Official orders welcome. All prices include VAC. Mail order only. \star All items packed (wher

