An exciting hobby.... for everyone

## everyday electronics



everyday
electronics

## FREE INSIDE

CONSTRUCTIONAL PROJECTS
AUDIO FREQUENCY OSCILLATOR (E.E. T.est Gear Five) ..... 142
SPEED GUARD Helps to save petrol and a possible fine by Mike Hughes ..... 155
PLANT PROPAGATOR Temperature controlled seed tray by D. T. Goodwin ..... 160
GENERAL FEATURES
EDITORIAL ..... 140
BRIGHT IDEAS Readers' constructional hints ..... 146
PLEASE TAKE NOTE ..... 146
TEACH-IN '74 Lesson 6: Basic circuits by Phil Allcock ..... 148
RUMINATIONS by Mrs Sensor ..... 153
SHOP TALK Component buying problems by Mike Kenward ..... 154
JACK PLUG AND FAMILY Cartoon ..... 154
SEMICONDUCTOR PRIMER Facts and figures by A. P. Stevenson ..... 163
INTRODUCTION TO INTEGRATED CIRCUITS 2 by J. B. Dance ..... 164
DOWN TO EARTH Transistor gain by George Hylton ..... 173
READERS' LETTERS From you to us ..... 174
WHAT DO YOU KNOW? Ohm's Law ..... 174

Publisher's Annual Subscription Rate, including postage to any part of the world, $£ 2 \cdot 95$. International Giro facilities Account No. 5122007. State reason for payment "message to payee". Address to Everyday Electronics, Subscription Department, Carlton House, Great Queen Street, London, WC2E 9PR. Binders for volumes 1 to 3 (state which) and indexes for volume 1 available for $£ 1.25$ and 11 p respectively, including postage, from Binding Department, at the above address.

We are unable to supply back copies of Everyday Electron. ics or reprints of articles and caninot undertake to answer readers' letters requesting designs, modifications or information on commercial equipment or subjects not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles should be addressed to: The Editor, those concerning advertisements to: The Advertisement Manager, both at the address shown opposite.

CRESCENT man in $11 \& 40$ MAYES ROAD, LONDON N22 6TL 888 3206 10\% VAT TO BE ADDED TO ALL GOODS \& CARRIAGE PRICES

MAIL ORDER DEPT.
No. 11
MAYES RD.
LONDON
N22
6 TL ant. Manufactured by E.M. 1. for a wellknown hi-d net maker. Slze: 7 ln . $X$ 4 in . Irppetance: 8 obma. Plux 38,000 . Max. Free range: 90 Hz to
12 kHz . Power handling: BW . Unbeatable. Price: \&1-60. Free pontare on this Item
CRESCENT P.300. DISCO CONTROL PACK.
A control unil which when eonnec protestional quallity. We a disen of pootrosional swality. We aupply and input socketa.解 ncorporating, mixing. pre-amp and head-phone Ilatening ampliter tae power pack enablea this unit to work from the standard mains Mic. Tape, Each Deck and P.F.L. Full instructions are tncluded with every Pack, MONO $=114$ plum 20p PP. STEREO $=217$ plum 20 p PP. Bend a B.A.E. for more information
STEREO / MONO HEADPHONE
VOLUME CONTROL BOX
Plag Btereo phonem into thin control bos and you thed incorporate a rixht and keft hand voluine coutrol and a stereof mono switch. Complete with itereo jack lug and 2 m cable.

C E DIOITAL 24 Hoaf Nixis Digital Clock Kil Wo Supply

- A complete aet of components * A complete met of easy to follow Inatruction * Printed circuita made to make conntruction as simple an ponsible
- A cabinet and front panel to give s protessional Anich.
ponente.
Please (aforniation. $£ 29 \cdot 50$ Inc. $P$. A Bargaln at \&1. Plue 10p P. \& P.
 5 transiator amplifer complete plus 13p P. \& $P$

TWO WAY STEREO
ADAPTOR
stereo jack plug to ewir
atereo line sucketa con plete with 110 mm of cable. For plugging twis lith rolume control, is sultable (or 9 V d.c. and a.c. aupplies. Will give abous 1 W at 8 ohn ousput.
With high IMP input this am pllater will work an erecord te., mpliter etc., amplitier


## -

 TRI-VOLT BATTERT ELIMINATOR Enables you to work your transistor radio, amplifier, or caveette, etc. from d.C. Malts through this compact eliminator, Just by moving a plug yon can select the roltage you require - $67,7 \%$ or 9 volta. Thle meana sull your tranalator primer pack applicatioos can be handled by thin ope unlt
Appros. size: $21^{\circ} \geq 21^{\circ} \geq 35^{\circ}$. OUR PRICE $22 \cdot 75 \mathrm{p}+10 \mathrm{p}$. P. \& P. Satme morlel sultahis wiref for the Philips Cessette $-23.00+10 \mathrm{p}$. P , \& P .
"CRESCENT" 100 WATTR.M.S. ALL PURPOSE AMPLIFIER O.BUILD. IT We mupply the threr mombles for you w bulld thim Dimy. Group-P.A. amplitier into the cabinet of your eboice.

## * THE POWER AMP MODULE TP 100W

170W. F.m.n. mp. Wave s00W Thatantanernum peak into 8 ohn HinOW lith
tart. $45 p$.

## t THE PRE-AMP MODULE

 Four control pre-ansp, Int. Designeat to drive nume mompli. derm using F.E.T. hirul wage. £3.96 carr. 25p.* THE POWER SUPPLT HODULE PS100 la muppllet complete with the mairu trataformer. 89 68, carr. 50p. Complete finting Jhatrur: tions are supplied and non technical knowle, lige is reguirel to connect the three resily wired
modulem. A lantantic bargain. modulem. A fantantio bargaln.
If you purrhase all three If you purrhase all three
mondulen. 825 , carr. 75 p . Pend B.A. Fi. for further detalle ons


## 200/250V MAINS RELAY

Henty duty contacta, $2.500 \Omega$ cond. All bew and unued D.P.D.T. Pres. Epecial quantily price: 240 per 100 relayn.
 TRI-VOLT CAR CONVERTER Enable you to work Amplifier or Casentie etc. from the 12 voll ear oupply ponitive or neg. earth.
This converter supplies 6,71 or 9 volts and is (ransiator regulated. Ap: pros. nize $24^{\prime \prime} \times 34^{\circ} \times 2^{\prime}$ Very rany to ft and a for $22.50+10 \mathrm{p}$ P. P
$\qquad$

POTENTIOMETERS All typer $1^{\prime \prime}$ and lesa diameter SKGLES DOAL | $5 K$ |  |
| :--- | :--- |
| 10 K Lin Less or | 5 K |
| 10 K |  | 25 K Switch 25 K Less 50K Switch 120 K Less 100 K

250 K Double 100 K 250k 40 p. 250 K Double 250 K 40p.
s00K Pole 500 K each $\begin{array}{ll}1 \mathrm{M} & \text { Switch } \\ \mathrm{M} & \mathrm{IM}\end{array}$
4M24pea 2 connected in the output of a mound source fromit to 100 watta producen a puscherlelic light Ajmplay of up lo 1000 matts. control the undt in fumed and can not harro your atnplifier. a Bargain at E 7.50 plus 10 P. \& $\mathbf{P}$.

MAINS TRANSFORMER Fumed Primary 2400'. Aecondary 2:00 (a, B0ma. 6.3v (a) 1A. Thaste trannformer fory mawe to very high
ninndary and is a
 $24 \mathrm{in} \times 2!\ln$. 63 D plis 10 p P. $\& \mathrm{P}$.
 RELAYS Brand mex
Britinh inde Relayn. Size- $11^{\circ} \times 1^{\circ} \times 1^{\circ}$ All two chaggeovere with suitable for atting on sad Verohoard. Type Volt Current Ohms. $\begin{array}{llll}27 / \mathrm{A} & 12 \mathrm{v} & 17 \mathrm{M} / \mathrm{A} & 700 \mathrm{~A} \\ 21 / \mathrm{A} & 12 \mathrm{v} & 28 \mathrm{M} / \mathrm{A} & 430 \mathrm{~A}\end{array}$ $\begin{array}{cccc}21 / \mathrm{A} & 12 \mathrm{v} & 28 \mathrm{M} / \mathrm{A} & 430 \mathrm{O} \\ 12 / \mathrm{A} & 6 \mathrm{~V} & 33 \mathrm{M} / \mathrm{A} & 185 \Omega\end{array}$ 12/A 80 V each. Pleave include $5 p$ P \& $P$ np to

| PLUGS |  |
| :---: | :---: |
| Pack 1075 pin Din | 22p |
| Pack 1083 pin Din | 20p |
| Pack 135 "' Jack | 27p |
| Pack 130 t' $^{\prime \prime}$ Jack St | 50p |
| Pack 103 Loudspeaker Plug 17 |  |
| Pack 100 Phono Plue | 7p |
| Pack 2303 pin Socker 25p |  |
| Pack 2365 Pin Socket |  |
| Pack 234 L/spea |  |
| READY MADE LEADS |  |
| 3 pin to 3 pin Din ${ }^{\text {a }}$ (0p |  |
| 3 pin to open end |  |
|  |  |
| 5 pin to open end |  |
| 5 pin to 4 phono plugs | , |
| Speaker lead Din to spade 12 ft. |  |
| Extension lead Din plug to socket 12 ft . All leads approx. 6 fe. In lenpth. |  |
| OIAMOND STYLI |  |
| 8TA; 9TA: 9TAHC; GP91; |  |
|  |  |
| All at 80p each. |  |
| Double Diamond $\mathbf{f 1} \cdot \mathbf{2 5}$. <br> Diamond suitable for Orbit <br> NM22: G800; M3D 62.25 each |  |
|  |  |
|  |  |
| HEADPHONES |  |
| Sennheisser HD414 | ¢12.50 |
| AKG K50 | 66.50 |
| Beyer DT48S | ¢ 35.00 |
| RECORD CARE |  |
| Cecil Wares Dust Bug 41 . |  |
| Parastatic Dise Preener |  |
|  |  |
|  |  |
| Dust Bug Spares (Brush \& Roller) |  |

Prices inc VAT and Post.

CASSETTE TAPES
Audio-Magnesics 660
 Cassette Caddy $\mathbf{f 1} \cdot 20$ Cassecte Head Cleaner 35p

## ZONAL ILFORD TA'PE

5" Standard 600ft

## 250

$5 t^{\prime \prime}$ Standard 9001:
7" (Westminster Boxed)

## 1800ft.

\& 1.25
7" Reel of Leader Tape
(Blue or green)
75p

## MICROPHONES

AKG D109
AKG D202EI
111.50

AKG $\quad$ E39.50
AKG DI90E $\quad \mathbf{1 8 . 2 0}$
AKG D224 MD211N $\mathbf{4 5 0 . 0 0}$
$\begin{array}{ll}\text { Sennheisser MD2IIN } & \mathbf{4 5 . 0 0} \\ \text { Sennheisser MD4I3N } & £ 27.00\end{array}$ $\begin{array}{lr}\text { Sennheisser MD413N } & \begin{array}{l}\text { 27.00 } \\ \text { Sony ECM50 }\end{array} \\ \begin{array}{ll}£ 85.00\end{array}\end{array}$
Audio RMSTF Radio Mik
2210.00

## SPEAKERS

E.M.I. 350 Kit 8 ohms $\quad 68 \cdot 20$
E.M.I. 450 Kit 8 ohms $\mathbf{E 4 . 5 0}$

CARTRIDGES
Goldring Ge00
Orbit NM22

| Shure $75 / 6$ | $\$ 4.00$ |
| :--- | ---: |

Shure $75 / 6$ E6.00
$\begin{array}{ll}\text { Sonotone 9TAHC (Dia) } & \text { £2.00 } \\ \text { Sonotone 8T4A (Dia) } & \mathrm{Et} .50\end{array}$
Ronnette 105 (Dia)
81.50
61.25

## J. J. Francis (wood green) Ltd. MANWOOD HOUSE, MATCHING GREEN, HARLOW, ESSEX CMI7 ORS Tel: Matching 476

## YOU AIN'T HEARD NOTHIN' YET \& !

until you tune in to stereo perfection with the 'varicap'


## Approx. Size $8 z^{\prime \prime} \times 2 \frac{q}{}_{\prime \prime}^{\prime \prime} \times 6 \frac{1}{2 \prime \prime}$

Features include push buten "Spor On" tuning, with up to 5 pre-set stations (no difficult tuning dial and drive cord). Easy "no problem" construction, requiring, only a few simple setting up adjustments witha D.C. Volimeter few simple setting up adjustments with a D.C. Vormeter. circuit alignmens. High efficiency Integrated Circuit Phase Lock Loop Decoder for perfect stereo reception, wish stereo lamp indicator. TOTAL KIT price only $\mathbf{C 2 8} 50$ including V.A.T. and postage. With fibre Glass P.C. Board, neat slimiline teak vencered cabinet with brushed aluminium front panels, push buttons ete.
All parts available sedaracely.
IDEAL FOR USE WITH THE "TEXAN". "GEMINI" AND ANY GOOD QUALITY STEREO AMPLIFIER. Please send large S.A.E. for full details.
228, ECCLESALL ROAD, SHEFFIELD S 11 8PE Telephone No. (0742) 668888 THE COMPONENT CENTRE OF THE NORTH

## ELECTROD

es

KITS FOR PREVIOUS PROJECTS
 robtalnarl lixally．Alma batturlem are not included Kits inay ber refurfich for refund if conatruction han fint fren eterted．We remerve the right for mbatitute exhupminoty mhmalas delliveries protrerinitm as to avul nmiuc delag．
If reprint of date is required odd 10 p
 mequires．Kit if parta ites．
 wur uppment is blickinl alues matalije for पuiv ERCORD PLAYER，thmit funtity at a reamnali p parte es－10．
WIIDGCREEN WIPER CONTROL．Wet dirts


FOZZ BOE．Adil $x$ rifll null interesthue rfrect in
 PHOTOGRAPHIC COLOUE TEMPERATURE
 with natiral our Niudion lighthig．Kit uf pertn 88.0 ． AETRON M．W．RADIO．A simule M．W．refle REDOTE THPRERATURE COHPARATOR

 mafling RAE WARSIIG ALARE．Kory your wanlricy
 thrathon to ynur mumit： K it $\mathbf{8 8} 80$.
ELSERZO LADOR．lenghtrt munlet
sOLL MOLSTUBE 18ETER．Mary Mlante are killen through mer－watertis thim buter megnurem mail


 BABY ALAEM，K＇vilo as shrok oll the kidn thin

## Jiv，Kit $24 \cdot 40$ ．

gIIPPLE CALCOLATOR．Truthbug ati Pur mult
 biltager circilis a mimple．stabillimel mupply
 hit es． 20.
HETAL LOCATOR．I minuple cany t．munt rue

AUDIO TONE GEDERATOR．Makem elrctronic





 KEDIOM AND LONG WAVE RADIO TUMER． n！川⿲丶丶㇒⿻甲一⿺卜丿．
ImfRA RED BOBGLAR ALARE．
 CAgserte TAPE POWER BUPPLIEs．Tw＂unlı
 linttery－price $21-40$ ．
 ELECTROVIC wOUgE TRAP．I humbse m thwin in the jurk．Kit $28 \cdot 8$.
TRARBISTOR TESTER．
 Knnflapar．Kit 2815
BIT SAVER．Prulhting
firipnt pliting，Kit 210
ICE WARIITO DEVICE．
niugler teunmeratum

AUDIO COLOUE USIT．AlI $a$ mathur illmenalan tit



DAIP LOCATOR．Fhaily everriry in sump jwn－ke
 EGLLARGRE E EXPOSURE METER．N thathgrapher as．00． 2415.

THYRISTOR LIGHT DIMMER
 switam plate tos int in ghew of ataudard awlfeh．Sirtually in DISTRIBUTION PANELS Junt what you neell fur wort bench or lab． $4 \times$ is aun moketr in inetal bog to take


## co car igntion



Thim ayntell，which han pruver to be anazingly




## TEACH IN ${ }^{1} 74$




 Insall ento
MIGHTY MIDGET

## CONTROL <br> DRIL SPEEDS

 DRILL CONTROLLER NEW IKW MODEL
filectronically rhanges aperel forin approndinately 10 rina Kit ingimulen．Full puwer at all eyeede by finger－tip cont rul Kit inclulen all parim，came，everything anm fuil innirurthon－ al allable．te－95 julum 25p mint is p

## RADIO STETHOSCOPE


taule．Iim it ou Hedlo．TV
aruplther，anything－colu． pletektt cumbprisea two enpectal tranitators atids alf parta iuclu dine prolie tule and cryefa earplect． $8 \cdot 20$ twin stethio．
ant insteal uf earplece esp
entra unt and Int． 20 p ．


## SPEED GUARD PLANT PROPAGATOR A．F．OSCILLATOR



## GOOD COMPANION

7． 414 an gher



## STANDARD WAFER SWITCHES

| Sth of Prole＝ | $\because$ way | 3 way | 4 way | 5 way | 6 wns | ＊was | foway | 10way | 12may |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 juilm | 44p | 449 | 14p | 44P | 40 | 44 | 44p | 44p |  |
| 2 pulme | 44 p | 445 | $4{ }^{5}$ | 440 | 140 | 45 | $44 p$ | 77 p |  |
| 3 1pilem | 44 | $4{ }^{15}$ | 44p | 418 | 770 | 770 | 77 p | \＆1－04 | E1．04 |
| 1 prele | $4{ }^{4}$ | $4{ }^{4}$ | 44p | 78 | 779 | 77\％ | 77 p | 21－32 | E1－32 |
| 3 puter | 41p | $4{ }^{4}$ | 77 p | 77 F | 41.04 | 81．04 | 81.01 | 81．60 | 81.60 |
| ${ }^{3}$ putav | 44p | 73 D | 77p | 77 p | 11.04 | 12．04 | 81.04 | 1－87 | S1－37 |
| 7 yulas | 77p | 77 p | 77 p | 21．04 | 51.88 | －1．20 | ［11－32 | 22． 15 | －15 |
| A prolen | 77 p | 77p | 77 p | 21．04 | 81.28 | 81－82 | E1． 32 | 82.42 | 22．42 |
| 3 polu－ | 77p | 77 p | 81.04 | E1．04 | 11－60 | 21．00 | ¢1． 60 | 82． 70 | 52－70 |
| 111 prites | 770 | 77 p | 11.04 | 11．88 | sl－60 | －11．60 | 81.60 | 23．00 | 23．00 |
| If smilu． | 77 p | 21．04 | 81.04 | 81.82 | 11.87 | ¢1．87 | E1．87 | 23－25 | 23．25 |
| 12 peter | 77 p | 21．04 | 11.04 | E1－82 | $11 \cdot 87$ | ［198 87 | $81 \cdot 87$ | 23－85 | \＄3．52 |

SWITCH TRIGGER MATS



## MULLARD UNILEX STEREO SYSTEM

## There bo nu lonatht that it In a gimal mymern，we lelieve that


 ithone for thiw：

## I I＇nites Ampsilitur

 I I＇nilles Pressition niles Pre－Stu！Bef．EPP．soun T＇nilons Prower I＇nt Ref．HiP．Mo0 Ry Or the complete＂intit＇＂111－50 prot palis
 I＇air if 15 whan aprakern nime hy F．．M．I．arre alno asallable it required．

Theres：－Please add $10 \%$ V．A．T．anil aloo
enal mootesp where quoted．

KITS FOR PREVIOUS PAOJECTS CONT．FROM LEFT HAND COL MEOM hoVELTT．Interenting momern artiamental
 gunlinle waming dertere to car indication on davh



－GEMERAL PDRPOBE AMPLIMER，Nu aulion anglifier uf reammable yualts fir une with radin． Eultara，ret．Kit 4.90 ．
HOEM IMTERCOM．Keq，th twoth with this
 interenin．Kit 24．00 mulviral Arhd anil the Inluratory where and

 organ sualls anel kimply，
printiont cracult maril．Kit is． 75
RAII ALARM II．Mmula an andithr alarir at CABETTE A PDITEX
 K it E 4.50 ．
AUDIO GIOMAL MIYER．Where yru want to mix


AOTO FAi．A thernumeatle romernil hir car emgine
 SLAVE FLABR．Photo taketh with a single daelh

 Irikerrmi．K＇it 81 ．85． at electruake eifrent that jremluctan an unumad muluid when tlie button is premel．K＇lt \＆s－00． WAA WAA．Ath another manal illuellaton Yeur rulter ior urgan．Kit 81 －60．
I．C．RADIO．＇tanitantice werm nal radin umen a xuecial It．E．．In minall，eayy til builal．yet glven AQUAROM THERMOATAT

 Kit a8．85．
 wercothen thim problew anl makea wlow sjeed

Br｜REO HEADPHOTE ADAPTER．Bnahlen onr

 whipping ant mortual mediun wavehands．as OAB ALARM．A simple alarm detects game yapurarn antul sunke．es．00
a Pr JoAlese．Addn fun to any game which unve
 TREIELO UIIT SM．10，

## OUR 1974 CATALOGUE LISTING HUNDREDS OF BARGAINS．NOW AVAIL ABLE．PRICE 30p．POST PAID hecord playback heads （TRUVOX）

2 track record playhack hemin sop each
4 track recurd playhack huwd 7 tp each．
Eiraee hearin are glay vallahle ofluarmety

## 

## RESETTABLE FUSE

Buw lonig does It take you to renter a
fuse？Tlume youraclf when next one blows．Then reckenlag your thine al el per hour nee nuw quickly our reaettahle fume（auto elrcint breaker，
wally pay for It well．Price only $\mathrm{Cl} \cdot 10$ each


## HEATERS AND ELEMENTS plum 40 p pont，ete．Tanjental Heater Ünit， 3 Kw ，price 58.88 plun 40 p puat．tote． C＇ontrol 8 witch for above $44 p$ each． 300 watt Heat any Light Lamp．price 00p plun 25p jumt． 5 KW Blower Heater，price $\$ 1 \cdot 10$ ． 1000 watt lleat and Lleht Tube（Mullarl） With aperial holiter and terry eljps，priee 管． 20 plun 30 p post． 2000 watt Mouldable  Metal Clal EJetnent． Radiant Cimoler Ringe， 2000 watt，Bep ench Rafiant（＇imker Ringe， 2000 watt，B8p each 1000 watt Jire Spirals， Filat Filemunth， 888 esch．Hlack Heat Ficment Metal Clad 900 watt $14^{\prime \prime} \times 1^{\prime \prime}$－ abmeah．Oven Eleutuent Metal Ctad， 2000 ， 

NEED A SPECIAL SWITCH
NEED A SPECIAL SWITCH
Doublo Leel Contact．wery slight premoure clowen

 ANO G. W. SMITH \& CD. (RADIDI.


TMK MODEL TW5OK


## ALL PRICES EXCLUDE VAT



U4317 MULTIMETE

instructiona
OUR PRICE $£ 17.50$ PRP 25p

## TE65 VALVE VOLTMETER



AF E2.12. HVE2.60
TMK LAB TESTER


$$
500 / 1001010 \mathrm{C} \text {. } 10
$$


 OUR PRICE E19.95 PEP 25p

## MDDEL U4311 Sub-standare

Multi-range Volt-Ammeter

${ }^{\text {Actursey }} \mathbf{0 . 5 \%}$ Scile lengit: $0 / 30 / 70^{2}$ $1.3 / 37.5118 /$
$30 / 76150300 /$


## $180 / 300 / 7 \mathrm{som}$

 $30 / 7 / 150 / 300 / 730 \mathrm{~V}$ DC $0 / 1380 \mathrm{nV} /$
 Ined complote with timt leede, manusl OUR PRICE E49.00 PAP 5OP
LB3 TRANSISTOR TESTER
 trom oV bertery.
Completo with il OUR PRICE OUR PRICE
E3.95 PRP 200

## LB4 TRANSISTOR

 TESTERTevas PNP or NPN
tremeistors. Audio inanestors. Audio
 OUR PRICE

U4341 MULTIMETER

 with proberated. Supplied complate with grobet loods and gotel earving OUR PRICE £10.50

KAMOOEN HM350
TRANSISTOR TESTER Hrath quelity
ingtrument to ingirument to
teser reverve leak
curremt and DC curront. Amplt WPATion fector of
NPN. PNP. diodes. tranigner. SCR's ete. " "gyuse cipersitem from internil betterio Complete with
 eterving hande. OUR PRICE E12.50 PEP 300

S100TR MULTIME TER
TRANSISTDR TESTER
100,000opv. Mirror
ecal. Overlogd
protaction, 0/0. 121

$0.6 / 3 / 12 / 30 / 120 /$ | $0.6 / 3 / 12 / 30 / 120 /$ |
| :--- |
| 600 DC |
| $0 / 6 / 30$ | $600 \mathrm{~V} D \mathrm{C}, 0 / 6 / 3$

$120 / 800 \mathrm{AC}$ $12 / 500 \mathrm{~A} / 12 /$

$300 \mathrm{mAB12A}$ OC. | $0 / 10 \mathrm{M} / 1 \mathrm{Mm}$ |
| :--- |
| 100 Mme |

100 Mog
-20 to +50 dB
$0.01-0.2 \mathrm{MFO}$


Trenchior terter meaves Alpha, Beta
and ICD. Complete with instructuons, burteries and teed OUR PRICE E14.95 PAP 25p
Model 449A In Circuit
TRANSISTOR TESTER
Chacks true AC,
iCO. Checks diodel
in/out. Checks SCR in/out. Checks \$CA
 LO 2-60. 1c0
$240 \vee$ AC operation.
OUR PRICE $£ 17.50$ $\qquad$


TE22 SINE SQUARE WAV
AUOIO GENERATOR

| Sine 20eps |
| :--- |
| 80 |
| 200 H |

on 4 bandit.
Square 20
cquene 30
CH . Out
impoodence
$200 / 250 \mathrm{~V}$.
AC operation. Supplied brend now OUR PRICE E17.50 PRe 37p
ARF 300 AF/RF SIGNAL GENERATOR Alf eranctitorived
compet fuly compert fully
portable. AF sine portable. AF sine
wave 18 Hz to 220 WHz . AF \%quar Me. Outpuit squen
Sine wove 100 .
P.PAF 100 kHz to

200 NHz . Output
1V max inum.
with instructions and lioed.
OURPRICE £29.95 Pap 50p
OLronics, March 1974

Send sa.e. for 8 page list of Semi-Conductors \& Valves

NEW SINCLAIR PROJECT 80 HI-FI MODULES \& PACKAGES 240 Power Amplifier............... $\frac{\text { E5. } 45}{65.95}$ Stereo 00 Pre-Amplifie Active Fillter Unit... P26 Pown supply. PZ8 Power supply.


 POST \& PACKING 35p weth


BV05 Vernier TUNING OIAL


Knot and couplian.
YAMABISHI VARIABLE VOLTAGE TRANSFORMERS Excellent quality to tow 5022
All modets-input 2300
$50 / 80 \mathrm{Mz}$. MODEL S230 GENERAL PURPOS BENCH MOUNTING


OUR PRICE 4.9

[^0]
## SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Ounntity discounts available. Send for fully illustrated brochure.


EOGWISE MOOEL PETO


MOOEL EO107 EOUCATIONAL METER
A range of high quality moving coll instruments. iden for sehool maxper. applicationa. $3^{\prime \prime}$ mirror scale. The meter move:
mont is emily accessible to domonstryte internal work ing.

1000
$500.50 u$
1A DC
SADC
$5 V D C$
10V DC
150 DC
200 DC

## CLEAR PLASTIC MOOEL 85P

| 50 u A | c4.85 |  |  |
| :---: | :---: | :---: | :---: |
| 1004 A | ¢4.70 |  |  |
| 200ha | $\underline{54.45}$ |  |  |
| 800, ${ }^{\text {a }}$ | c. 3.30 |  |  |
|  | c4.70 |  |  |
| 500-0-500ua.. | C4.30 |  |  |
| ImA | [4.30 |  |  |
| 1.0 .1 mA | C4.30 |  |  |
| 5 mA | ¢4.30 |  |  |
| 10 ma .. | [4.30 |  |  |
| Soma | ¢4.30 |  |  |
| 100ma | ¢4.30 | 300 V DC |  |
| 500mA | ¢4.30 | 18VAC | 84.3 |
| 14 DC | ¢4.30 | 300 V AC ... ${ }^{\text {. }}$ | c4.35 |
| $5 A D C$ | ¢4.30 | SMorer ImA.. | ¢4.30 |
| 15A DC | ¢4.30 | VUMoter | c5.00 |
| 30A DC | ¢4,36 | 1A AC | c4.30 |
| 10 V DC | c4. 30 | SAAC | c4.30 |
| 200 DC | ca. 30 | 10A AC .. | C $¢ 4.30$ |
| BOV DC | ¢4.30 | 204 AC .. | - 84.30 |
| 150 V DC | C4.30 | 304 AC ... .. | - E 4.30 |

80
67.80
5705
87.0
$c 7.0$
05.5
0.6.

$$
\begin{aligned}
& 300 \mathrm{DC} \\
& 600 \mathrm{NEACO} \\
& 6 \mathrm{OH} / \mathrm{SOVDC}
\end{aligned}
$$

Syyy


CLEAR PLASTIC MOOEL 3BP
Sief: 42 m 42 mm


发


## $\begin{array}{lll}100 \mathrm{~mA} & . . & . \\ 150 \mathrm{~mA} & \text {.. } & \because \\ 200 \mathrm{~mA} \\ 300 \mathrm{~mA} & \text { I. } & .\end{array}$



CLEAR PLASTIC MOOEL 52P Sise: 6

$240^{\circ}$ Wida Anglo ImA METERS MW 1-8 $60 x+0 \mathrm{~mm}$ C3.97 P8P 15p NW 1-8 80x C 4.97 P\&P 150


AUTO TRANSFORMERS

| AUTO TRANSFORMERS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $0 / 115 / 250 \mathrm{~V}$. Step up or step down. Fully twouded. |  |  | 500\% | f6.95 |
|  |  |  | 1000w | $\mathbf{~} 8.50$ |
| 80W | £2.75 | PEP 189 | 1500w | ¢12.50 |
| 150 W | E3.50 | PtP 18p | 2250w | ¢20.95 |
| 300 W | ¢4.50 | Pap 23p | 3000w | ¢44.95 |

Pap 35p
PAP 30p
PEP 43p
PAP E1

ALL PRICES exclude vat


## CI5 PULSE OSCILLOSCOPE



SUPERVAUF tip dualitiv TRIO communications equipment
TRIO JR599 RECEIVER


Nime wouchane coverang $1.8-20.7$ sise cw, AM and FFM. AF output control. Bfo. Vote SMoroce. Equath


Our Price £132.50 वanab
TRIO 9R500S RECEIVER


Foue conde coverng ssoknz 1030 Froed on 10. 15, 20, 40, ind 20 mtr 8 *lve plas 7 diode sinuile 4 to OW ANDut and prone imk sse-

 Verivbe RF ond AF pin controle.
$115 / 250 \mathrm{~A}$ AC, with inetrictions
DurPrice IT2.50 capa
TRIO JR310 SSE RECEIVER

 Shen Am. Cryan controlled if moro
 OUR PRICE E75.00 Cerr. paid TRIO TR2200 RECEIVER Fully trametar
iud portible
Vif tranectiver
 vevive on mix Chenhtamis.
 impened or ox Onumin cher for Ni.Ced oult.
 owitholume
which, wullah conteol, chemen and Epeation sockoc Complote with misrophone act 14.4.4, TM. 72. OUR PRICE E79.50 Corr.peid UNR30 RECEIVER


Four trant coverins sso $\mathrm{KM} / 301 \mathrm{MH}_{2}$ 2201240 AC. AC. Brand now with intron. OUR PA

BELTEK W5400 CAR TRANSCEIVER


Solid graze mobrir trankenver for 12
volt DC nee. Tranmits end rucowen on any 12 of 28 channuls botivon end ind 146MHE. Powew ou tput IOW
 a. In. with dy nemic mic. PTT.
 OUR PRICE E75.00 Pap sop

 omical fintor, product depector, Noive
 OUR PRICE $£ 50.00$ PEPSOP SH628 STEREO HEAOPHONES Wubth solitem vilua divitrobe heotbend 20.000 Hz 2 m Complete with loed ind ritere OUR
OUR PRICE $£ 1.87$ PEP 30p
LHOZS STEREO HEAOPHONES Phont wewht haed 20 piecen 2011 Complete with ${ }^{\circ}$ OUR PRICE
£1.97


TE1018 Oduxe Meno High Impedence Headset. Senghive merneric
 Froouency rity
OUR PRICE E2.25


OH02S STEREO HEAOPHONE Wond excrull vent
and oxcellon!
combined. Adjusi
able heed bein. $20-12.000 \mathrm{~Hz}$.
loed ond plus.
OUR PRICE 22.25


OUR PRICE E2.25 PAP 30
BHOO1 HEAOSET snd 800m
Microphone
Movine zon. Ideel temhins
eammin.


OUR PRICE 55.95
SPECIAL BARGAIN ! STEREOSOUNO SPEAKERS matched peir of mewno bookyhif tomin wingere: $3{ }^{3}=22 \times$ 100 mm . 1 ohma Complote Complete OUR PRICE £12.05


HIGH QUALITY CONSTRUCTION
KITS
WE ARE APPOINTEO
STOCKISTS LLL BRANCHES

All huts are complete with compre honure bey to follow inntrue tions and covered by full gueranten.
Post and Packing 16p per kit
AF20 Mono amplitier...
AF310 Mono emplifie
ATs Auto lithi control AT30 Photo cen swituh unit ATSO 400W Lifh climmer/



ATGE 3 chonnel tigh control
HFBI MWW transiotor redio....
HF65 FH Traneminter....
HF75 Fil HF310 FM tunem unit...... HF325 DNuxe FMA tuned uni HF3 30 FW itterto decodion.
 cu330 Tromelo unit.

NTSU, $2 \times 30 \mathrm{~V}, 2.2$ n.........
NT30, Tranivic converer
$12 / 15 \mathrm{~A} / \mathrm{DC}$ to 6 V .
MT310 of SV DC...........
NT315 DCU ${ }^{24} 24$.
NT315 DU 24OV AC to 4.8
AE1 100 mW OU A 隹 stoge.......
AE2 Pre-mplifition.
AE3 Diode receivor...............
AES Antble multivibrator... AE7 AC onterle multwibrito AES Res filtor....
AETO CCIR fillow.
.KIT
NEW FROM JOSTY.
'Amateur Electronics"
The prolemional book for the arnatour caplest to adivanced al fctronic sechniop wot Complett whith cireuit boperd for OUR PRICE E3.30 (No VAT) PEP Exp plue VA

## FRUSTRATEO

EXPORT OROER !
Philce Ford 5245 Mains Tape
Recerder.
2 trach ESR doc
controls for seity
oppration. Tmp
countre
volume
contron
Completontr
Comd mierophon
toed $1.200^{\text {ram }}$ ref tupe and apere ree OUR PRICE E17.50 PAP 78. Philce Ford 5248 Mains Tape Recorder.
Four track
two mpeple
controle, trpe
counted recor
volume and
tone eontroh
tone eontrols eve.
hand, mieroftion lewe tor curcis res.
oretin. 1 gotr of teme and were red. OUR PRICE E27.50 PAP 75p KE830 3 Ststion INTERCOM


Menter ond two mbetationa Cen be uned on derk or moll mounted. Comp OUR PRICE E5.25

SIMCLAIR CAMBRIOGE CALCULATOR To buld yournif. with pretep by of pe inetructione to buil frull pecificetion pocket sized
OUR PRICE
E24.95


LSO AVAILABLE REAOY PUCO Aecommended Price Ez9.85 OUR PRICE E27.20 PRPZ Also mailable-
SINCLAIR EXECUTIVE
Recommended Price C3P.00
OUR PRICE E35.45 PR 25 SINCLAIR EXECUTIVE with MEMORY
Reomonnuld Frice $\mathbf{C 4} 9.00$ OUR PRICE E40.75 PAP 25p

SPECIAL PURCHASE! 8SR 8 Track PIryer Chastis Famous BSA an uned in
model TOAS complete with silve and black ascut.
cheon cheon, reacty cabinet. Output 125 mV
 OUR PRICE E8.85 Parsop MP7 MIXER.PREAMPLIFIER imputrepthone with individutur gein controls enallany formplition maing

 Men Output 250 mV 100 OUR PRICE ES.97 Pep 20p FM TUNER CHASSIS hifh outity
 onty 183 x
101
n
$\mathrm{x}=3 \mathrm{~mm}$ 3 IF itame
Double muned disteriminoter. Ample output to foed moet amplliver. pperptes on gy bettery. Covers 88 Fontutic value for money. OUR PRICE 55.95 A1018 FM TUNER spacirication chamieb bui
complons in compinet with onfolf maiteh.
 127 mm
 OUR PRICE E .6

PAP 30p Stereo multiplest adeptor $\mathbf{8 4 . 9 7}$
OT55B OIGITAL CLOCK MECHANISM

## 24 hour

atarm
antiny
wetting bun
Onoff
ond aute
ary dial with hours, minu thes end rot Onde Awtomatically turne off retio TV. Litht atc. snd with suto-wwiteh. 2 toV AC oppration. \%hen reg ration $250 \mathrm{~V}, 3 \mathrm{Amp}$
OUR PRICE E5.95 Pap 30p
BIMATONE OSIBO Oipital



## INCORPORATING LASKYS RADIO ANO G．W．SMITH \＆CO．（RADID）．

AUDIDTRDNIC AMR9000 Glohal AM／FM Portable Radio 10 weve benct $535-1605 \mathrm{~K}_{1} \mathrm{H}_{2}$
LW： $150-300$ LW：150－ $\mathbf{k B} 1 .{ }^{380}$ 4－H2 SWi：

0 SW2：8－1．6 Mhe．SW3： 158．${ }^{2}: 30-50$ MHz．PS82： $148-17 \mathrm{MHz}$ ．FM． 88 time rone Ar： $108-136 \mathrm{MM}$ ．Fontura
 mod penonil erpiece．Berrery］mmons OUR PRICE E36．00 PaP SOP

AUDIOTRDNIC DDLBY B
Noise Reduction Units
Ropuce tege him by 348 at 600 Hz ， dencien sbove 3000tr．Ske：460 $203 \times 70 \mathrm{~mm}$ AC 220／240V


PRDCESS 4
For use with momi－protemenal repe racordork frequency ruponse 30NL Full source／repe monitoring Swithth rebere multip
OUR PRICE E50．00 P最P 50\％ PROCESS 2
 switrochate mutuplas filler． 2 Dolty colibration motera．OH tepe monitor－ ime．S／N better then 70ds．Supplied DUR PRICE E34．50 P\＆ 50 p

CT5050 Casserte Racorder
instont recording and playing．Piano Buill－in apolker．Completed with rem． ote control microphones，carrying cme shoulder etricp． DURPRICE E8．50 PBP Sop

AUDIOTRONIC ACD660


A benutitully styled fout treek nteree defk with in outstanding tpecificetion offered at a remarkably low price． Incorporates a host of fagtures inclued， infrome tepe metector，twin VU metor slider record／playbuck leval controls， front ponel hepdphone wockot，recond， ingindicutor lamp，phono／Din tome in－
 －48d8．Crometict 48de．Separation： Comptate with eonnecting leeds． OUR PRICE E39．50 PEP Sop


OUR PRICE［24．95 pef pair P302 Two Channel 300mW OUR PRICE C52．50 per pair P1003 Three Channel 1 Wurt DUR PRICE £71．25 per pair P㓪P SOp per pert


## 1021 Stereo Listeming Station

 For balancing ond gain solectro of loudypeationt fecility for stere vain poin controls．
 dphone sockel．
DUR PRICE E2，25 PR P 15p
AUDIDTRONIC STERED HEADPHDNES L8H20 Individual
volume controh． Sterea／mono witch．दol ofme
$40-19000 \mathrm{~Hz}$ ．
E3．75 PRP 30 LSH 30 Open beck tone and yolume
controhe． e0ntrot． DUR PRICE C5．95 PEP 30

LSH4O Two wiy Indivicidual volume controle． Bohma
$20-20,000 \mathrm{~Hz}$ DUR PRICE £7．50 PGP 30p LSH60 $3^{\circ}$ apeoker Complets． 8 ofme． zipped carrying 20－20，000Hz． DUR PRICE E8．95 PEP 30p
LSH50 Elactrontatic
with self
powered energiner． and control unit， yoester sitecton． 2－32 otma
$20-2$ ． 000 Hz ． DUR PRICE
［18．85 Pe 30p
LOH400 4 channet
dyomic haed－ phones．Esch ear popice hat four 4rive unik． $20-20,000 \mathrm{~Hz}$ OUR PRICE E9．85
 <br> }

## S

## S



LINEAR 202 STERED AMPLIFIER


20 Watts RMS Stereo Amplitier with controls for wolsmet，balancic．bors and
troble，Monolstere switch，loudnes and terateh fillters．Unes 20 silicon transigtors．Inguts for memontic and OUR PRICE E22．50 PAP BOp SPECIAL BARGAIN！！ PHONIC 10 Two Wwy Speskers Masehed pair


LEAK TRUSPEED Mk3 RECDRD DECK
PACKAGE Incorpo
ing

## tow

## wipnethron：

## ous hysterm

## motor giving

constiont tuintable
intud． 33 and 45 rpm ．Cast Allum－ inmm furntabl．Fitted Goldring 1.75
 and $200-250 \mathrm{~V}$ ． DUR PRICE 835.95 PEP 75p AUDIDTRDNIC AMC50E STERED Magnetic CARTRIDGE Mmunt ${ }^{\text {The }}$

## AMCSOE

Alfors prof
of
esional per
ascional pert．
ormance at a ormence at a Frequency reqponse： $20 \mathrm{~Hz}-20 \mathrm{mHz}$ ．
6.6 mV ．Compliance $5 \mathrm{~m} 10-6 \mathrm{~cm} /$ dyne．Tructing force 3 so 2 grammot．
Stylus．Eliptical dimond $.6007^{*}$ ．
 <br> \section*{} <br> \section*{}

RECORD DECK PACKACES
DUR PRICE E4.50 PRP I2p

## SP25 Mk 3／ME5E．．．．．．．．．．．．．．．．．．．．．．．． SP25 Mk Module／M7S－6．．．

 AP76／G800． AP76／G800E， AP76／M44－7．AP76／M44E AP76／M44E．．．．
AP76／M55E．
AP76／M75ED． AP76／M75ED．．．
AP76／M75EJ．．．
GOLORING
GL72／GN00．
$\qquad$

## GL7WG00．

## G101／P／C／GEOO

## PHILIPS

GA103／GP200．．．．

## GA208．

RANK DOMUS
8 B 4000
808000．
WHARFEOALE
Linton W30 Teat．
Lintor W30 White

## AD．76K

## STERED

 MAGNETIC CARTRIDGE Frequincy
 5 mV （ikHz $\mathrm{Bm} / \mathrm{cme}) .0 .7 \mathrm{mul}$ consa
 200．Tracking Wiont $18-2 \%$ gms DUR PRICE f1．95

P思P120


6 watts per chamnal AM／FM Stereo Ond deck wititer，Garrord 2025 TC rec． ord dects whth pinth，cover and stereo cartrideme，SUP a fair of Kelotron LS50 DUR PRICE E48．50 \＆Ins．EI．2

## ALL PRICES EXCLUDE VAT

CALL INTO YOUR NEAREST BRANCH OR ORDER WITH CONFIDENCE BY MAIL ORDER

## CENTRAL LONDON

10 TOTEEMHAM CT．RD． $01+372132$ 27 TOTEMMAN CT．MD． $1+373115$ 33 TDTTEMHAN CT．RD．O1－33626es \begin{tabular}{ll}
42／4S TOTTENMAM CT．RD． \& $01+36045$ <br>
\hline 7 TOTTEMMAM CT．RD． \& 01.5403739

 

\hline 7 TOTTEMMAN CT．RD． <br>
$257 / 21.540 ~ 3739$
\end{tabular} 21010 COMPTOM ST． 3 LISE ST WO 34 LISLEST．WC2 01437 PISS

 103 EDCWME 既．W2 01.7236211 207 EDGWARE 明D W2 01．7233271 311 EDGWARE RD．W2 $01-2620397$ 340 EDGWAME RD．W2 $01-723453$ 3122 EDGWARERD．W2 01.7234194 105 FLEETST．EC4 01.3535812 152／3 FLEET ST．ECA 01．353 2033

## ESSEX

S SOUTH ST．ROMFOND 70．20218

## SURREY：

1046 WHITGIFT CENTRE，CNOTDON 27 EDEM ST．KIMGSTOM O1．5813027 32 HLL ST．RICHMOWO
01.546745

## KENT

5y／57 CAMDEN RD．TUMARIDEE WELLS

## LEICESTERSHIRE

as markei place，lefestes
0533－537676

## ALI BRANCHES OPEN FROM

HEAD OFFICE AND MAIL ORDER DEPARTMENT
a adotrionic house THE HYOE INOUSTRIAL ESTATE． THE HYOE．LONDON NWS［JS TELEPHDNE：01．205 3735 ह 551

## MAIL ORDER SPECIALISTS

We offer a speedy and efficient service by mall ordr：．V AT to
Remember to add 10 ．V total value of goods including
carriants and packing and send carrary and packing and office．
cash with order to head

TO A VOID DELAYS PLEASE PRINT NAME AND ADORESS | BARCLAYCARD |
| :--- | :--- |
| \＆ACCESS |

CHEQUES ACCEPTED FROM PEAS ONAL SHOPPERS ONLY WITH BANKERS CARO．
All PMCES coanect at 14.1 HEUY SUBJfCT 10 CMAMGE E 10 O


## DABAR MN3 MXXER KIT



INTRODUCING THE NEW OABAR MINI THREE CHANNEL MIXER KIT WITH THE FOLLOWING FEATURES:

* Three inputs easily adjustable to sult users input requirements, e.g. Mic., Tape, Oisc., elc.
* Uses advanced design with five Integrated circults
* Sllder lader volume controls mount directly on P.C. board
* Full range bass and treble controls.
- Guaranteed top grade components with Nbreglass printed circult board eady-drilled and (inned
* Battery operated (2 x PP3) not aupplled with hit.
- Easy to follow asembly instructions (avallable separately $\mathbf{2 5}$ p).

Atracilve ready punched facia plate, avallable at extra cost, glves that professional Anish to the unit

* Shze: $9 \cdot 5^{\prime \prime} \times 4 \cdot 8^{\prime \prime} \times 2^{\prime \prime}$

PRICE: KIT ONLY Eil: 00
FACIA PLATE EI. 5
AVAILABLEREAOY BULYINSTRUCTIONS 250
ALL PRICES INCLUOE V.A.T. \& POSTAGE IN U.K
S.A.E. ALL ENOUIRIES.

DABAR ELECTRONIC PRODUCTS
98, LICHFIELD STREET, Walsall, StaffS, wSI Iuz.

# $\square M \square \square \bigcirc 17$ ALBERT SO LONDON E15 IHJ 

## COMPONENTS

## ELECTRONIC COMPONENTS FOR E.E. PROJECTS

SPEED GUARD MAR. 74
SEE COST BOX
POWER SUPPLY UNIT FEB. 7\& £7.80
SLIDE TIMER FEB. 74 £2.10
FETSET JAN. 74 £2.00
TREMOLO DEC. 73
WAA-WAA SEPT. 73
£2.10

BETA FUZZ-TREBLE
(For Beta Fuzz-Treble, Component board components only).

BETA TRANSFORMER £1.85
MAIL ORDER ONLY S.A.E FOR ALL ENQUIRIES

learn how to become a radib-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

[^1]
## Amplify your interest in Electronics.

Now you can take an even greater and wider interest in electronics with the help of practical electronics, Everyday Electronics' associate magazine.
An authoritative pace-setter in the field of applied electronics, PRACTICAL eLECTRONICs is widely read by professional technicians and engineers as well as students who all find it an invaluable source of information relating to both practical and theoretical matters.

## Don't miss this New beginner's series

 First steps in Circuit DesignStarting in April This important new series will enable even the novice to start learning how to design circuits from scratch. This additional ability will double the enjoyment to be derived from the exciting hobby of electronics.

## Also one of the projects in the April issue... Liquid Crystal Alarm Clock <br> Mains operated clock with an attractive liquid crystal display - the very latest in readout systems. An exciting project for the more experienced constructor.

## Special pull-outfeature Camera Electronics

A special survey of electronic aids found in commercially available automatic and semi-automatic cameras. Well worth looking into!

## PRACTICAL GLECTRONICG

## April issue out mid-March*

Place a regular order for Practical Electronics and Everyday Electronics every month with your newsagent!
*Subject to the current national industrial situation at the time of going to press.

# The Sinclair Cambridge no other calculator is so powerful and so compact. 

## Complete kit-£24•95!

## The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5.50$ !

Truly pocket-sized With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.
Easy to assemble
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

## The cost? Just £27.45!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32 \cdot 95$ - so you're saving $£ 5 \cdot 50$ ! Of course we'll be happy to supply you with one ready-assembled if you prefer - it's still far and away the best calculator value on the market.


## A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours. Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick - film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

## This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'li get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.


How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations.

## Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair . Iso have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit!
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form : $\mathbf{£ 2 4 . 9 5} \mathbf{+} \mathbf{£ 2} \mathbf{5 0}$ VAT. (Total: $\mathbf{£ 2 7 . 4 5}$ )



## everyday electronics

## CLASS DISTINCTION

Things aren't always what they appear to be. This certainly applies in the case of electronic circuits. For example, when trying to classify projects into "simple" or "complex" just what criteria does one apply? A cursory inspection of a circuit diagram and a count of the components does not necessarily provide a true guide, especially where integrated circuits (i.c.'s) are included.

Clearly there are two different methods by which an electronic project can be "weighed." One is by considering, in its entirety, the electronic system involved. This provides an instructive insight into the fundamental principles upon which the project is based, and certainly is a rewarding exercise for the serious student.
The second method relies upon consideration of the purely material form of the project, and is based essentially upon the number and nature of the components employed. For the general constructor this is the more realistic yardstick to adopt. The degree of complexity in actual building terms is, after all, the most important factor he is concerned with, apart from cost.

But, in the end, is there any significant difference between these two methods of project appraisal, it might be asked. Well the difference is very real. And it is increasing by leaps and bounds thanks to the wider use of integrated circuits. More circuit complexity in fundamental design, but without corresponding increase in constructional work. It may seem impossible, but it is really true.

As a case in point, take a look at this month's Speed Guard. In purely electronic terms the system employed is of a reasonably complex nature, and the diagrams may be a little offputting to the less experienced. But further inspection reveals that the complexity lies mainly within the two i.c.'s. These components (complete circuits or building blocks in their own right) can be viewed quite simply as black boxes. Their internal operation can be taken for granted. To the constructor they are just other components.

The more theoretically minded may shrink from this pragmatic approach. But it makes sense for the average person who wants to utilise and enjoy electronics in the fullest manner possible.


[^2]

Shopper B learnt his lesson long ago-now he simply sits back and orders all his requirements from his Home Radio Components' catalogue. The worst that could happen to him is that, being so absorbed in the catalogue, he might burn his toast! That's a small price to pay though for the comfort, convenience and economy of ordering components this way.
Shopper A, enthusiastic to a fault, is determined to track down the components he needs for his next project. We'll overlook the fact that he'll probably end up with pneumonia!


You too can join the blissful " $B$ 's"--there must be about 100,000 of them. To get your catalogue (240 large pages packed with 6,800 items, 1,770 of them illustrated) simply post the coupon with your P.O. or cheque for 77p. (55p plus $22 p$ post and packing.) Every catalogue contains 5 vouchers, each worth 10 p when used as directed. Regularly up-dated price lists are supplied to you free, and full details of our popular Credit Account Service are given in the catalogue.

The price of 770 applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.


# audio FREQUEICY OSCILLATOR 

## Features variable output level and frequency continuously variable from 10 to $10,000 \mathrm{~Hz}$.

Practical construction projects often involve checking out various parts of the circuit to see if they are working properly. An Audio Frequency Oscillator and a pair of earphones can be used for testing circuits for amplification. Although the oscillator described in this article is very simple to build, it gives a very useful range of frequency and voltage. It uses any supply voltage between 18 and 30 volts, its output being virtually unaffected by the voltage of the supply. The Power Supply Unit described in last month's issue provides a suitable source. The unit employs an integrated circuit which gives a simple, but high quality oscillator.

## THE INTEGRATED CIRCUIT

The integrated circuit comprises a high gain amplifier with two inputs; pin 2 is a negative feedback input and pin 3 is a signal input, the negative feedback controls the gain. The principle of this amplifier is illustrated in Fig. 1.


Fig. 1. A fundamental configuration for the 741 when used as an amplifier.

The ratio of resistors $R_{1}$ and $R_{1}$ sets the gain which may have any value from 2 to 100 . according to the formula:

$$
\text { Gain }=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}
$$

Note: $R_{1}$ must always be greater than 500 ohms.
If both $R_{\mathrm{I}}$ and $R_{\mathrm{t}}$ were 1 kilohm, then the gain would be 2. However. if $R_{t}$ was increased to 100 kilohm then the gain would be 101. By this means the integrated circuit may be used in a variety of different circuits requiring an amplifier. On no account should any connection be made to pins 1 and 5 as they are connected internally.

## THE OSCILLATOR

The complete circuit diagram of the oscillator which incorporates the integrated circuit is shown in Fig. 2. This particular oscillator is called a Wien Bridge Oscillator. The ratio of R4 and thermistor RTH1 in series with R5 determines the gain according to the above formula.
The thermistor RTH1 is a vital component, without which the oscillator will not function. The thermistor in this circuit stabilises the out-



Fig. 2. The complete circuit diagram of the Audio Frequency Oscillator.
put oscillation, exchanging it for a resistor produces a distorted output signal.

With Sl in the x10 position the feedback from the output through C5, R6 and the twin gang potentiometer VR1 to pin 3 of the integrated circuit produces oscillation. With this network positive feedback occurs at one frequency only. The frequency corresponding to the minimum setting of VR1 is given by the formula below.

$$
\text { Frequency }=\frac{1}{2 \pi \mathrm{C} 5 \mathrm{R} 6}
$$

This is the higher frequency, 100 Hz , on this range of the switch Sl .
When VR1 is turned to its maximum resistance, the minimum frequency is given by

$$
\text { Frequency }=\frac{1}{2 \pi \mathrm{C} 5(\mathrm{R} 6+\mathrm{VR} 1)}
$$

giving 10 Hz .
On the other two ranges, (a) x100, (b) x1000 the minimum and maximum frequencies are (a) 100 Hz and 1000 Hz , (b) 1000 Hz and $10,000 \mathrm{~Hz}$ respectively.

Incorporating R1, C1 and R2 into the circuit enables the oscillator to work from a single supply, and so makes it possible to use the Power Supply Unit described in last month's issue. When using the latter to supply power to the Audio Frequency Oscillator be sure to connect the negative terminal to earth.
The oscillator output is coupled via C8 to potentiometer VR2 which adjusts the signal output from zero to about $4 \cdot 5 \mathrm{~V}$ r.m.s.

## Components....

## Resistors

| R1 | $5 \cdot 6 \mathrm{k} \Omega$ |
| :--- | :--- |
| R2 | $5.6 \mathrm{k} \Omega$ |
| R3 | $1 \cdot 1 \mathrm{k} \Omega 2$ |
| R4 | $2 \mathrm{k} \Omega 2$ |
| R5 | 1.5 ks 2 |
| R6 | $1.1 \mathrm{k} \Omega$ |

All $+W: 10 \%$ carbon
Potentiometers
VR1 10k』 10k』2 twin ganged semiprecision eg. Colvern CLR 4049/15 or /18
VR2 10ks2 linear

## Capacitors

C1 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 $1 \cdot 5 \mu \mathrm{~F}$
C3 $0.15 \mu \mathrm{~F}$
C4 0.015"F
C5 $1.5 \mu \mathrm{~F}$
C6 $0 \cdot 15 \mu \mathrm{~F}$
C7 0.015 $\mu \mathrm{F}$
C8 10, F 25 V elect.

## Miscellaneous

RTH1 thermistor type R54
ICI 741 differential operational amplifier 8 pin di.i.l.
S1 two-pole three-way rotary
SK1, 2, 3, 4 screw terminal/socket, one black, one green, two red ( 4 off) Veroboard $0 \cdot 1 \mathrm{in}$. matrix 24 strips $\times 44$ holes; Veropins ( 60 ff); 8 pin di.i.l. socket; knobs (3 off); aluminium sheet for dial; rubber grommet; 6BA nuts, bolts, washers and stand-of pillars.

## CONSTRUCTION DETAILS

The prototype Audio Frequency Oscillator was housed in an identical instrument case to that used for the Power Supply Unit featured in Everyday Electronics last month.

The unit is to be built on $0 \cdot 1$ in. matrix Veroboard and Veropins are used for flying lead connections. The layout of the components on the top side of the board and the breaks in the copper strips on the underside of the board are shown in Fig. 3.

Make the breaks on the underside of the board and drill the two fixing holes as detailed and then insert and solder the Veropins as indicated.

It can be seen that an 8 pin d.i.l. socket is used for ICl thus eliminating contact of the soldering iron with the integrated circuit and avoiding the risk of thermal damage. The use of a socket also simplifies replacement should the need arise. The i.c. should not be in the socket when the latter is being soldered in position.

Now position and solder the i.c. holder, resistors, capacitors and themistor as indicated in Fig. 3. Next prepare the front panel as indicated in Fig. 4 and secure all the panel mounted components in position as shown. Now wire up to the component board.

The two leads emerging from the front panel and labelled "supply leads" should be about 75 cm long and be terminated in banana plugs or spade terminals, one red and one black if being powered by the Power Supply Unit, or suitable battery connectors. Power supply to other


[^3]units may be obtained from the terminals SK3 and SK4. If a number of units are connected in this fashion the system could interact and oscillate, so one must watch for this fault and if in doubt connect each unit directly to the Power Supply Unit.

Now insert ICl in its socket, taking note of polarity-indicated by an indentation near pin 1 and then secure the component board to the inside base of case by means of two 6BA nuts. bolts and stand-off pillars.

## CALIBRATION

To make the dial for the frequency selector, cut a 55 mm diameter disc from a piece of thin gauge aluminium and drill a 7 mm diameter hole at its centre. Now glue a control knob at the centre of the disc aligning with the hole.

A full-size drawing of the frequency scale is shown in Fig. 5; this should be cut-out or copied and glued to the disc, the dial is then complete.


Fig. 5. Full-sized dial details.
Now mark the front panel with an arrow head pointing towards VRl spindle at about 32 mm from the latter, see Fig. 6. Turn VR1 fully antjclockwise, place the dial assembly on VR1 spindle and align the " 1 " on the dial with the


Fig. 6. Details of front panel labelling.


Fig. 4 (above). Wiring up details on the rear of the front panel.


Fig. 3 (left). The layout of the components on the topside of the Veroboard, and the breaks along the copper strips to be made on the underside.


# audo FREOUEICY osclilator 

arrow. At this position secure the dial assembly to VR1 spindle.
The calibration details for the output voltage level control are given in Table 1. Mark a zero in the approximate position to that shown around the control knob in Fig. 6 and then use a protractor to mark off the various levels, in a clockwise direction, according to Table 1.

Table 1: Output level calibration.

| Angle of rotation <br> (degrees of arc) | Output voltage <br> level (volts r.m.s.) |
| :---: | :---: |
| 0 | 0 |
| 6.6 | 0.1 |
| 66.6 | 1 |
| 133.2 | 2 |
| 199.8 | 3.5 |
| 233 | 3.5 |
| 300 | 4.5 |

These markings, as all the others on the front panel are best done with Letraset as on the prototype; this gives a very neat and professional appearance.

Turn VR2 fully anticlockwise and place the knob on the spindle; rotate the knob so that its pointer is aligned with the " 0 " of the scale and secure the knob in this position.

The three positions of the switch S1 and other markings should now be made, using Letraset, to complete the project.

## TESTING THE OSCILLATOR

First check the wiring very carefuly against the wiring up diagram of Fig. 4. Tick each wire and connection off on the diagram as you check it. Secondly, check each solder joint to see that it is clean and shiny and that the solder has run onto the component wire properly.

Check that all the Veropins have been soldered in position-a push fit is not enough. Finally, make sure that the integrated circuit is in the socket the right way round.

The power supply for the Audio Frequency Oscillator can be either batteries eg. two PP9 batteries in series, or use can be made of the Power Supply Unit described last month.

Whichever power supply system is used, connect to the Audio Frequency Oscillator and connect a high impedance set of earphones across the output sockets, SK1 and SK2.

Turning the frequency selector dial in a clockwise direction should increase the pitch of the tone heard in the earphones; switching S1 in a clockwise direction should also increase the pitch.

If VR2 is turned in a clockwise direction, the volume should increase for all range and dial settings.


An inexpensive and attractive indicator lamp can be fitted into an aluminium or plastic panel by simply drilling a hole of about 3 mm diameter and filling it with clear epoxy adhesive.
The front of the hole is covered with insulating tape before it is filled with the transparent adhesive such as Devcon Five Minute Epoxy. When this has hardened the tape is removed, leaving the finished "lens" flush with the panel and almost invisible until illuminated by a neon or filament bulb from behind. If desired the lamp can be embedded in the epoxy.
P. Albericii, Stockport, Cheshire.

When building electronic devices on Veroboard or printed circuit board, it is often necessary to leave the item for several weeks in an unfinished state due to lack of components etc.

During this time, the board which was initially bright and clean loses its clean appearance and sometimes becomes so tarnished (oxidation) that it is impossible to solder in any other parts until the board has been cleaned.
Since cleaning is difficult and dangerous, in so far as delicate components are concerned, I have found it convenient to use an aerosol of hair laquer to lightly cover the copper strips on the underside of the board.
Most brands of laquer if sprayed on thinly are sufficient to prevent oxidation of the copper, but do not prevent solder adhering, and a good sound soldered joint can be made.
C. Taylor, Ripley, Derbys.

## PLEASE TAKE NOTE

A potential construction hazard with the Power Supply Unit featured in last months issue has been brought to our attention.

With the type of transformer used in the prototype, where the windings are terminated on tags fixed to the front and rear of the transformer, it is possible to obtain a dangerous short circuit if the transformer is not positioned very carefully so as to provide adequate clearance between itself and the front and rear panel mounted components when the latter are bolted in position.

To avoid this, use a transformer with its connections taken to a tag panel on the top of the transformer or omit the neon indicator and mount the on/off switch in its place.

Values for RI and R3 were shown correctly on Fig. 2, not in the components list.


An inexpensive, easy to build unit that will save wear and sparking at the points and enable engine tune to be maintained for long periods.


# LIGHT POWERED RECEIVER 

A medium wave receiver that requires no batteries. Works off sunlight or room lighting.

## Special Pull-Out Feature TEST GEAR

## ele 3nd Пustrument ELECTRONIC <br> Iislemin lin 3rd. Fustrunent VOLTMETER

Subject to the current national industrial situation at the time of going to press

## eyeryiay <br> APRIL ISSUE ON SALE FRIDAY, MARCH 15

# IEMTH-II'74 FOR BECMWERS IV ELECTRONCS... THEORY AND EXPERIMEWTS 

## TUTOR: PHIL ALLCOCK* LESSON 6 Basic Circuits

This month we investigate some very useful circuits that are often used as parts of larger systems. Each circuit has a well defined function and a thorough study of each one will amply repay the time spent. Each circuit is treated essentially from an experimental point of view and can be built on the Tutor Board using the existing range of components.

The operation of each circuit is investigated and verified by actual measurements using the Tutor Board system. Future articles in the Teach-In '74 series may involve the purchase of certain additional components and these will be announced at least one month in advance of the actual requirement so that readers can obtain the necessary items in time.

## EMITTER FOLLOWER

Our first circuit, the emitter follower, is aptly named as it is really a single transistor stage in which the voltage at the emitter (output) point follows any changes that occur at the base


Fig. 6.1. Basic emitter follower.
(input). Fig. 6.1 illustrates the basic arrangement that we shall use.

The base voltage of TR1 ( BCl 107 ) can be varied by means of VR2 ( 5 kilohm). When the slider of the potentiometer is turned to point $F$ the voltage fed to the transistor is just the diode forward voltage of approximately 0.6 volts. This is about the same as the emitter-base voltage of a conducting transistor and so TR1 will be on the verge of conduction. If VR2 is turned in a clockwise direction the base voltage, measured with respect to battery negative point $A$, will increase from $0 \cdot 6$ volts to 9 volts. If we assume that the emitter-base voltage of TR1 is constant at 0.6 volts the increase in base voltage must be accompanied by the flow of emitter current so that an equal voltage drop appears across the 4.7 kilohm emitter resistor, R1.

For example if VR2 was set to give a base voltage of $5 \cdot 3$ volts the voltage across the emitter resistor would be 4.7 volts and the emitter current would be 1 mA . If the base voltage is varied by means of VR2 the emitter voltage will follow the changes produced at the base and it is this action which gives the circuit its name. As far as changes in voltage are concerned the voltage gain, or amplification, of this circuit is unity. Voltage gain is defined as the output voltage change divided by the input voltage change. Note that the base and emitter voltages are always offset by about 0.6 volt even though the gain is unity.

What value can there be in using such a circuit if the gain is only unity? To seek the answer it will be convenient to test the circuit out in a simple experiment.

## TEST CIRCUIT

Arrange the components on the Tutor-Board to match the schematic of Fig. 6.1. (By now you should be getting used to this transformation of the theoretical schematic diagram into an

[^4]actual experimental arrangement of components. If you are still experiencing some difficulty it will help to plan the layout on paper first, try to plan a layout yourself and then compare it with Fig. 6.3. Also build the $0-10 \mathrm{~V}$ voltmeter circuit and connect the negative side to point $A$.

Using the (red) probe lead for the positive side of the voltmeter measure the voltages $V_{\mathrm{EA}}$ and $V_{n A}$, for two different settings of VR2. Verify that your circuit behaves as described above. At this stage it is possible to check both the input-output offset, the "following" action and the voltage gain.

## SECOND PROBE

For the next part of the test, one end of a second 4.7 kilohm resistor should be connected to point $A$ and the other end should be joined to the spare (black) voltmeter probe lead. This lead is required so that the resistor can be connected to either the base or the emitter of the transistor whilst observing the meter reading. First, set VR2 to make $V_{B A}=5$ volts and then make a temporary connection with the resistor probe lead first to $E$ and then to $B$. The voltmeter connection must be left unchanged so that the value of $V_{B A}$ can be taken for each position of the resistor probe lead.

When the resistor is across EA the voltage $V_{B, A}$ will drop due to the loading of the 5 kilohm potentiometer by the extra 4.7 kilohm resistor. However when the resistor is connected at the emitter, the voltage $V_{m A}$ will barely change and it may be difficult to detect any movement of the meter pointer.

## VOLTAGE GENERATOR

The emitter follower output terminal behaves as a nearly perfect voltage generator having a very low effective internal resistance since any tendency for the emitter voltage to change will be counteracted by a change in emitter current. The emitter voltage will only alter if the base voltage changes and since the additional 4.7 kilohm resistor at the emitter only doubles the already small base current the base voltage will be almost constant.

The transistor supplies the extra current required by the added $4 \cdot 7$ kilohm resistor and 99 per cent (or more) of this extra current flows from the battery via the collector and emitter leads. The increase in base current, to account for the remaining $l$ per cent (say), has negligible effect on the base voltage. In fact, using these typical percentages the extra base current is seen to be approximately the current that would be required by a resistance of about 470 kilohm connected across EA. Thus any additional load resistance at the emitter appears transformed by the factor $(1+\beta)$, or $\left(1+h_{\mathrm{FE}}\right)$ when considered from the base.


Fig. 6.2. Emitter follower used as a voltmeter.

## ISOLATION

The emitter follower thus behaves as a buffer or isolating stage and can be used to supply voltages to relatively low resistance loads without incurring any excessive loading effects on the input source. In many applications the base of the emitter follower is connected directly to the source if a suitable "d.c. bias" voltage level exists. Fig. 6.2 illustrates a circuit example in which the emitter follower is used to make an electronic voltmeter that takes less than $1 \mu \mathrm{~A}$ from the source at full scale deflection.

The battery voltage for the emitter follower must be greater than the maximum voltage to be measured, which, in this case is 10 volts. The 5 kilohm potentiometer allows a fraction of the diode voltage drop to be used to compensate for the $V_{\text {be }}$ offset and can be set to give a zero meter reading with the input leads shorted. The compensation is only approximate since the value of $V_{b r}$ will change slightly over the $100 \mu \mathrm{~A}$ range of meter current

The 5 kilohm potentiometer is rotated in the direction shown by the arrow until the pointer just begins to move from its zero position. The circuit can be operated at 9 V , using the two 4.5 volt batteries of Tutor Board, to make a 0 to 5 volt electronic meter by connecting a second 100 kilohm $\pm 5$ per cent resistor in parallel with the 100 kilohm $\pm 2$ per cent meter resistor, see Fig. 6.5.

Try using this electronic meter to measure the voltage of a previously charged $1000 \mu \mathrm{~F}$ capacitor. If the capacitor is momentarily connected across one battery it will charge up to 4.5 volts. This voltage can then be observed using the electronic meter. Avoid touching the capacitor or voltmeter leads as moist skin will provide a discharge path. If the capacitor has good insulation it may take at least an hour for the capacitor to fully discharge due to the very small input current required to operate the meter. (If the $h_{\text {PE }}$ of your BCl 107 is, say,

400 the base current would be approximately $0 \cdot 25 \mu \mathrm{~A}$ for a 5 volt full scale reading. This corresponds to an effective input resistance of 20 menohms and a discharge time constant of 20,000 seconds!

## BISTABLE CIRCUIT

The bistable circuit derives its name from the fact that two distinct stable operating conditions exist (bistable = two stable states). A typical circuit is shown in Fig. 6.4 and can be built on the Tutor Board for experimental purposes. The circuit is symmetrical in that the components on one side of the circuit are the mirror image of those on the other side excepting the battery and switch. Each of the two possible states requires one transistor to be on whilst the other is off.

To indicate the state of the transistors we are using the 6 V lamps as "collector load" resistors. If the on transistor is made to pass sufficient current the lamp will light and this then indicates the on state for that transistor. The circuit can be made to change from one stable state


Fig. 6.4. Basic bistable circuit.
to the other by creating a suitable disturbance. To illustrate this process wire up the circuit on the Tutor Board, check all connections and then close the switch S1.

Only one of the two lamps should light. Using one of the probe leads connected to point $A$,


Fig. 6.3. Layout and wiring on the Tutor Board for the circuit shown in Fig. 6.1.
touch the base lead (bl or b2) of the on transistor briefly. The circuit should change state and the previously off lamp should now be lighted. The circuit can be made to switch back and forth by touching the probe on points bl and b2 in turn. Note that the circuit will only change state if the probe is connected to the base of the on transistor. This switching action can be compared with the action of a domestic light switch which has two stable positions and must be pushed in the correct direction if the toggle is to move to its alternative position.

It is not difficult to see how the circuit works. If TRI is assumed to be on, with the resistor values used the transistor must be saturated and hence its $V_{r . .}$ will be about 200 mV . This is insufficient to allow TR2 to turn on and so negligible current flow occurs in this transistor. Because of this, the base of TRI is effectively connected via the lamp (cold resistance) and the 4.7 kilohm to +4.5 volts which gives a base current of about $\operatorname{lmA}$. This ensures that TR1 is held saturated. The probe simply "shorts" the base/emitter junction of the on transistor
with 100 ohms and turns it off. The cross coupling to the other transistor base causes this transistor to switch to the on state.

More complex versions of this circuit are widely used in logic or digital systems, such as data processing or computing equipment, and are often made in the form of an integrated circuit. The basic behaviour is however very similar to that described above.

## SCHMITT TRIGGER

The Schmitt trigger circuit, illustrated in Fig. 6.6, is similar to the bistable but the switching action depends on the voltage applied at the input, $V_{111}$. Only one transistor is on at any time but the state of the circuit can be controlled by changing $V_{\text {Iu }}$.

Build the circuit on the Tutor Board and carefully check all wiring. Set VR2 so that $V_{\text {in }}$ is zero (slider E to end F) and set the control VR1 so that the emitters of TR1 and TR2 are joined together (slider B to end A). In this position the potentiometer simply acts as a 100 ohm resistor


Fig. 6.5. Tutor Board layout and wiring for Fig. 6.2.


Fig. 6.6. Basic Schmitt trigger circuit.
in parallel with R5, also 100 ohms, to give an effective emitter resistance of 50 ohms. Operate the switch S1 and check that the lamp LP1 lights.

Transistor TR1 will be ofl since the current in TR2 produces a voltage drop across the effective emitter resistance ( 50 ohms ) which makes point A positive with respẹct to C. Since $V_{\text {II }}$ is set to zero, the voltage $V_{A C}$ appears as a reverse bias across the base-emitter junction of TR1. Note that TR2 derives its base current via R3 and R4.

The usual $0-10 \mathrm{~V}$ voltmeter circuit should be used to measure the voltages at the various points in the circuit, to verify the above statements. Make a list of all the voltages so that they can be compared with other readings, taken at the same points later on. Table 6.1 illustrates one way of setting out the information derived from these measurements.

## SWITCHING

To demonstrate the switching action of the circuit hold the voltmeter (positive) lead to point E at the end of R1 and slowly rotate VR2 in a clockwise direction. The voltmeter should indicate the rising input voltage $V_{\text {iv }}$. At about 3.5 volts the lamp LPl will suddenly turn off and the meter reading will fall to approximately $3 \cdot 2$ volts. In this state TR1 is on and TR2 is off. Without disturbing the setting of VR1 measure the voltages at the points mentioned in Table 6.1 and record your results in the right hand column. A comparison of the "before and after" readings at each point will verify that the transistors have in fact changed states.

Reconnect the voltmeter to point E and slowly rotate VR2 anticlockwise towards its initial position. The lamp will remain off until $V_{i u}$ reaches a voltage of about +1.2 volts at which level the circuit returns to its former condition with LP1 and TR2 on and TR1 off.

What caused the circuit to change over? With $V_{19}$ set to zero we know that TR1 is reverse biased by about 3 volts and so $V_{11}$ must be

Table 6.1:
Schmitt Trigger Circuit Voltage Levels

| (1) <br> Test Point | (2) <br> Voltages <br> Note (c) | (3) <br> Voltages <br> Note (d) |
| :---: | :---: | :---: |
|  | (Typical values) |  |
| TR1 base | 0 V |  |
| TR1 collector | $+8.0 \mathrm{~V}$ |  |
| TR1 emitter | $+3.0 \mathrm{~V}$ |  |
| TR2 base | +3.6V |  |
| TR2 collector | +3.2 V |  |
| TR2 emitter | +3.0 V |  |
| Battery terminals | $+9.0 \mathrm{~V}$ |  |

Notes
(a) All voltage readings taken with 0.10 V voltmeter circuit, with respect to battery negative (C).
(b) VR2 set for maximum "feedback".
(c) Column (2) relates to $V_{10}=0$.
(d) Column (3) to be used for voltage readings measured, as per 'text, when circuit has just switched over.
raised to slightly more than this level before TR1 can conduct. Once TR1 starts to conduct its collector current produces a voltage drop across R3 which lowers the base voltage of TR2. The emitter voltage of TR2 "follows" the change at the base, just as in the emitter follower circuit, and as a result TR1 turns further on since the reverse bias voltage $V_{A c}$ is now less than the previous $3 \cdot 0$ volts. This process is regenerative and a rapid change over occurs. The increase in the base current of TRI causes the voltage at point E to fall slightly.

To restore the initial circuit conditions it is necessary to reduce $V_{\text {in }}$ to the point at which TR1 starts to turn off. Since the on current in TR1 is much less than that for TR2 and LP1, the voltage "threshold" at which the circuit restores to normal is much lower than the previous switching threshold at $3 \cdot 5 \mathrm{~V}$. Note that the lower on current in TRI is mainly due to the use of a 1 kilohm collector load whereas the load for TR2 is about 100 ohms due to the lamp (hot) resistance. Readers will probably have realised by now that the potentiometer VRI determines the amount of reverse bias fed back from TR2 to the base-emitter junction of TR1. The experiment can be repeated with VRl set mid way to give 50 per cent of the feedback voltage used in the first tests i.e. about 1.5 volts. The switching thresholds for this setting should be approximately $+2 \cdot 0$ volts (lamp turns off) and $+1 \cdot 1$ volts (lamp turns on).

## ACTION SUMMARY

The behaviour of the Schmitt trigger is summarised in Fig. 6.7 where the arrows indicate the direction of the various voltage or current changes. The "width" of the loop represents


Fig. 6.7. Summary of Schmitt trigger action.
the voltage difference between the two thresholds and is sometimes called backlash or hysteresis. Reducing the setting of VR1 to give less feedback mainly affects the right hand threshold.

The diagram illustrates an important feature of Schmitt trigger circuits namely that when $V_{\text {in }}$ is between the thresholds, the circuit can be in either state. Which state occurs in practice depends on the "previous history" of $V_{\text {in }}$. and this feature is a simple form of memory. The bistable circuit also exhibits a similar property and is widely used in digital systems such as computers for this reason.

The "block diagram" of Fig. 6.8 shows how a triangular shaped input voltage waveform can be connected to a rectangular pulse waveform by using a Schmitt trigger circuit as a voltage dependent switch.


Fig. 6.8. Typical application of Schmitt trigger.
Note: Some readers may find this month's work more difficult than that given in previous parts of the Teach-In ' 74 series. Do not try to rush the experiments; make sure that you understand each test before proceeding to the next stage. This is a good time to review all the work that has been presented so far. Concentrate on any topics that you find difficult and your efforts will be well worth while.

Why not write to us and let us know how you are getting on?

Next month we shall examine the operation of two more circuits known as the monostable and astable multivibrator.

# Ruminations By Mrs. Sensor 

## Sockets

Sensor is swotting and has asked me to stand-in for him. I wondered what to say, my ex. perience of electronics has receded into the dim and distant past, the breathtaking new inventions of my time are now the exhibits of the museums and I am lost in the modern world of transistors, integrated circuits and the like. No, my best idea is to speak as the beneficiary of years of d.i.y. electronics from the days of our first "hand-built" television set in our first home. to the present time of piped music for the "beef-on-the-hoof" in the farm buildings.

The t.v. was unique, requiring a good six square feet of floor
space, everything visible and handy to repair in times of need. I think I do remember the cabinet, some light-oak faced board and a few sticks of 1 inch by 1 inch tucked away in the spare room. Yes, it helped to make quite a reasonable bookcase eventually. Our son's arrival necessitated the encapsulation of the t.v. and it was surprising what a big sitting-room we had.

Eight years in the one house saw a marvellous transformation, I could stand anywhere in any room and plug in my vacuum without taking a single step. In the garage the story was the same, he could drill, solder, use his lathe, light up all corners and warm himself by the electric fire, all at one and the same time. But alas, came the day when there was no more space for sockets so we moved to a brand-new house where each room was provided with one socket, excepting the lounge which had two, one at each end.

## Dangerous Wires

There followed the years of the home-built radiogram, the electronic organ (never completed) and the radio transmission to all rooms. During that time a funny thing happened, I discovered that there were two d.i.y. enthusiasts in the house and the smaller of the two had very peculiar ideas about my height, there were dozens of gracefully draped wires all around the house, all at jugular vein height as far as I was concerned. But those days are in the past now, he can Sellotape his wires to the ceiling without recourse to steps.

The skirting of our second house filled up over the years and reading the house-agents blurb when we put it up for sale, one had the impression of lots of misprints regarding power points.

Now a third domain, crying out for attention. I thought the twofoot thick walls might have been a deterrent but no, here we go again.


WITh, we hope, the worst part of the winter behind us we can start looking forward to the spring and perhaps to a more settled industrial situation and fewer shortages. Perhaps by the time this is published we will be able to obtain "normal" amounts of petrol once again, however, it is unlikely that we will ever get it at the old price. This fact alone makes the Speed Guard a worth. while project, plus the fact that it could save an endorsement by drawing your immediate attention to excess speed within any limit.

## Speed Guard

The Speed Guard is the first project we have published that uses more than one integrated circuit and is probably near the limit of complexity for an EE project! Provided some care is
taken when handling the i.c.s, and that sockets are used to hold them, most constructors should have little difficulty with construction of this project.

The 555 i.c. is available under a number of different codes-see wall chart-but is usually listed by suppliers as the 555 . The type used in the Speed Guard is an 8 pin dual-in-line package and it will be easier to follow our layout if this type is obtained-the 7400 is a 14 pin dual-in-line package.

A 35 ohm or greater impedence speaker should be used (up to about 80 ohms) and a number of quite small types are available from various suppliers. It is also a good idea to include a 1 amp line fuse in the supply and a holder for this is available from car accessory shops. Ask for a line fuse holder as used for car radios.

## Audio Frequency Oscillator

Some components used in the Audio Frequency Oscillator are. as far as we can tell, only available from one supplier. Electro. value, 28 St Judes Road, Englefield Green, Egham, Surrey can supply the R54 thermistor, Home Radio can supply the Colvern twin gang potentiometer ( $\pm 2$ per cent tolerance).

The Wima capacitors are recommended as these are $\pm 5$ per cent tolerance, if you have difficulty getting these, Combined Electronic Services, Spare Sales Department, 604 Purley Way, Waddon, Croydon CR9 4DR can supply at 22 p each for $1.5 \mu \mathrm{~F}, 12 \mathrm{p}$ each for the other values, plus V.A.T., a 40 p handling charge is added to each order. As
mentioned last month the Olsen case type 25A with louvres is available for $£ 3.45$ including postage packing and V.A.T. from Olsen Electronics Ltd., 5 Long Street, London E.2.

Also last month we stated thal the knobs were available from Re-An Products, Burnham Road, Dartford, Kent. This is not in fact the case although Re-An do make similar knobs and a skirt with indicator line is available. The knobs are type R62 with black skirts with indicator, they cost 14 p each plus 20 p post and pack. ing, plus V.A.T. on total. Top cap colours available are red, blue, green, yellow and black-state your requirements with the order.

The actual knobs on the prototype units are made by Elma and are available from Farnell Electronic Components Ltd., Canal Road, Leeds LS12 2TU but they cost in the region of 35 p each plus a 25 p small order surcharge -for orders under $£ 5$. The large knobs are 70-21.14 inch, top caps are 1450-21, pointers 1451-21, small knobs $70 \cdot 14 \cdot 1_{4}$ inch, caps 1450-14 and the pointers 1451-14. Top caps are used for all knobs, pointers for most-the tuning dial does not have a pointer.

## Plant Propagator

All the electronic components for the Plant Propagator should be readily available-the heater wire may have to be obtained by buying a small bar element, they are fairly cheap.

There are a variety of seed trays available from hardware shops and flower shops but do not get one so big that the heater cannot heat all the soil.



## Gives an audible tone when preset speed limit is exceeded.

During times of fuel shortage this device is a useful aid to fuel economy for the motorist. Under normal conditions it can be extremely useful to the driver who constantly uses motorways and runs the risk of accidentally exceeding the 70 miles per hour speed limit-or as it is now during the fuel crisis, 50 miles per hour.

The device works from a signal picked up off a spark-plug lead and uses this to sense the rate of revolution of the engine-which is directly related to the car's speed when in top gear.

When a certain rate of revolution (set by a preset control within the Speed Guard) is exceeded, a small loudspeaker produces a shrill and uncomfortable wail inside the car's saloon. This warning cannot be ignored and the only way to stop the noise is to reduce speed.

## ENGINE SPEEDS

In theory any speed can be set ranging from a few miles per hour up to 70 or more; however, because the device is working from the engine's revolutions, it is a little inconvenient to set it for speeds less than 40 miles per hour because it could trigger when accelerating away in low gear. Obviously the minimum effective speed for which it can be used will depend upon the gear ratio range of the vehicle and whether or not you are a "quick off the mark" driver.

To some extent rapid acceleration is just as much a fuel waster as high speed driving hence a warning of excessive revs in low gear might be a useful reminder to some drivers.

As an example of the "tripping" speeds in different gears the author had the prototype
installed in a Zephyr 4 with the alarm set to sound at 50 miles per hour in top gear. The maximum speeds that could be obtained in lower gears without the alarm going off were approximately: 1st gear-12 m.p.h.; 2nd gear20 m.p.h.; 3rd gear-35 m.p.h.; Top gear-50 m.p.h.

In practice there is a slight delay before the unit switches in therefore a short duration of excess speed will not affect the alarm (about 2 seconds) but there is a penalty at the other end; because of hysteresis in the electronic triggering of the alarm, the driver must reduce his speed to about 15 per cent less than the trigger speed to shut off the alarm. There is, thus, a built in incentive to keep a steady speed just below the maximum set.

With the prototype unit the speed is set by an infinitely variable knob on the front panel and this is convenient for experimental purposes; however it is possible-for those of weak will-to cheat the alarm by manually increasing the setting of speed. Those who fall into this category ought to use a preset control that is lockable and only adjustable with a screwdriver.

## CIRCUIT THEORY

Not only is the project useful from its application but it contains some interesting circuitry which-on the face of it-is quite complex for the beginner but nevertheless is very straight-



Fig. 1. Block diagram of the Speed Guard. Waveform at point F only occurs if speed exceeds preset maximum.
forward to make because use is made of integrated circuits.

The complete system is shown in Fig. 1 in block schematic form. Engine revolution pick-up is effected by about six turns of insulated wire round one of the spark-plug leads. Every time this plug sparks, a very fast pulse is fed into the unit (signal $A$ ). When the pulse goes in a negative direction it triggers a monostable circuit which produces a positive going pulse of fixed time duration; this duration can be preset by VR1 which forms the speed setting control.

At slow engine revs the mark/space ratio of this signal will be small (signal B) but as the speed increases the amount of time this signal is at 0 V will reduce while the time at the positive level will remain the same; the mark space ratio thus increases. This signal is fed to a simple capacitor charge/discharge circuit, called an integrator, and depending on the respective mark/space ratio the capacitor will receive an average higher or lower charge, shown as a voltage which can be in the range of 0 to about +6 V .
To prevent any following circuitry affecting the controlled discharge rate of the capacitor, the voltage that is built up across it-as speed
increases-is fed to a high input resistance current amplifier (an emitter follower) the output of which is shown as a similar range of voltage swing (signal D). This voltage is used to trip a Schmitt Trigger that operates on an input voltage of about 2 V in the upwards going direction and reverts at a level of about $1 \cdot 8 \mathrm{~V}$. The output of the trigger will thus be in one of two possible states (a) +5 V if the signal $D$ is above +2 V and (b) 0 V if $D$ is below 1.8 V The signal $E$ from the trigger is used to switch an oscillator on and off and the latter drives the loudspeaker.

If the speed set control VR1 is fixed at some level, and the car's speed increases above this equivalent setting, the circuit is designed so that the voltage at $D$ exceeds 2 V and the output from the trigger point $E$ goes to +5 V which switches on the oscillator.

It takes a couple of seconds for the integrator to give a steady output at each speed hence there is a short delay before the alarm sounds. When the car's speed decreases there is again a short delay in the integrator but the voltage at $D$ has to fall below 1.8 V before the trigger reverts and switches off the oscillator. This is how the built in penalty comes about.

## Components....

| Resist | ors | SEE |
| :---: | :---: | :---: |
| R1 | 470ks |  |
| R2 | 1 ks |  |
| R3 | 22ks |  |
| R4 | 10ks |  |
| R5 | 1 ks |  |
| R6 | 470, |  |
| R7 | 2.7ks |  |
| R8 | 2.7ks |  |
| R9 | 120S |  |
| R10 | 100s2 $\frac{1}{2}$ |  |
| All $\pm$ | 10\% ${ }^{\text {d }}$ | othe |

## Capacitors

C1 680 pF polystyrene
C2 $0.22 \mu \mathrm{~F}$ (see text)
C3 47, F elect. 12 V
C4 $0 \cdot 1, \mathrm{~F}$
C5 $0.11 / \mathrm{F}$
C6 $1000 \mu \mathrm{~F}$ elect. 6 V
C7 $2 \cdot 2.1$ F nolvester or elect. 10 V

## Semiconductors

TR1 BC108 npn silicon
D1 IN4148
D2 IN4148
D3 IN4148
IC1 NE555 or MC1455
IC2 SN7400

## Miscellaneous

VR1 $100 \mathrm{k} \Omega$ linear carbon potentiometer
LS1 50 mm diameter with coil impedance greater than 35 ohms
SK1 coaxial socket PL1 coaxial plug
FS1 IA line fuse and holder Veroboard, $0 \cdot 1 \mathrm{in}$. matrix 40 holes $\times 19$ strips; i.c. sockets 8 pin d.i.l. and 14 pin d.i.l. ( 1 off each); tag post; rubber grommet; knob: grille for loudspeaker: metal case.

## CIRCUIT OPERATION

The complete circuit diagram of the Speed Guard is shown in Fig. 2 and might look rather unfamiliar to many readers; this is because of the fact that integrated circuits are used. The alphabetically designated points of Fig. 1 are repeated in Fig. 2 to help the reader.

The monostable is made from a very versatile integrated circuit known as the 555 shown as ICl . It draws its power through pins $1(0 \mathrm{~V})$ and $8(+12 \mathrm{~V})$. Note that this is desirable to connect pin 4 to +12 V as well. It is triggered by a negative going signal into pin 2 and this is provided by the coupling circuitry from the pick up coil.

Diodes D1 and D2 are there to prevent any very high induced voltages in the coil damaging ICl. The output from the monostable is taken from pin 3 at the bottom end of its output load resistor, R2. The monostable's dwell time is set by VR1, R4 and C2 (a note about the capacitor later).

Components R3 and C3 form the simple integrator circuit already mentioned and this is directly coupled to the base of TR1 connected as an emitter follower.

The integrated circuit IC2 is a standard SN7400 transistor transistor logic (t.t.l.) NAND gate-in fact there are four gates. This device is normally found in logic circuits and is used in an unusual fashion in this application.

The two left hand gates are cross coupled with R6 to form a very simple Schmitt Trigger. It is essential to use D3 in one of the input lines otherwise the circuit will not trigger reliably.

The value of R 6 is quite critical because it sets the hysteresis of the trigger; reduce its value and there will be a larger gap between the upwards and downwards triggering levels.
The remaining two gates in the package are capacitively cross coupled with C4 and C5 to make a free running (astable) multivibrator operating at a high audio frequency.

The oscillator will only work when the input at pin 12 is at +5 V and this is obtained from the output of the trigger.

It is important to note that IC2 requires a power supply of +5 V and this is obtained from the potential divide action of R9 and R10 in association with the reservoir capacitor C6. These two resistors must be of at least half-watt rating.
Drive to the loudspeaker is taken from the output of the oscillator at pin 8 through the coupling capacitor C7. Under no circumstances should a loudspeaker of less than 35 ohms be used otherwise the integrated circuit could be permanently damaged. To be safe it is preferable to use a miniature 75 ohm device. Provided this advice is adhered to the integrated circuit is quite capable of producing a high amplitude "squeal" without any further form of amplification.

## CONSTRUCTION

In the prototype, the circuit board and associated components were mounted in an aluminium case that can be screwed under the dashboard. Although a coaxial plug and socket is used to accept the lead from the pick-up coil,

Fig. 2. The complete circuit diagram of the Speed Guard.




Shows the method of wrapping the pick-up coil around the spark plug lead.

## SPEED GUARD

Fig. 4 (left). Wiring details in the case.


do not use screened cable for the lead. The internal capacity of the cable can, in some instances, shunt the induced signal to ground. Capacitor C7 was a polyester type in the prototype but an electrolytic will do just as well, but take note of its polarity.

The prototype Speed Guard was built on a piece of $0 \cdot 1$ in matrix Veroboard size 19 strips by 40 holes. The layout of the components on the topside of the board and breaks in the copper strips on the underside are shown in Fig. 3.

Begin construction by making the necessary breaks along the copper strips as detailed and then drill the four fixing holes. one near each corner as shown.

Now position and solder the i.c. holders and link wires followed by the resistors and capacitors. With the aid of a heatshunt, solder in position the diodes and transistor.

Next secure VR1 and LS1 with speaker grille in place as indicated below. Fix the rubber grommet, coaxial socket SKl and earthing tag in position and wire up all the components and component board as shown.


Photograph of the component board.

## CONNECTING TO CAR

Although primarily designed for a negative earth 12 V system, the unit can be converted to positive earth by returning the positive rail to the earthing tag inside the box and connecting the flying power input leads to the car's electrical system accordingly. The circuit is not suitable for 6 V systems.

Ideally the live power lead should come from a point that is automatically switched on when the ignition switch is turned thus the circuit is only active whenever the engine is running. The twin wire running to the pick-up coil should avoid as much of the other car wiring as possible -to avoid stray pick up of other signals-and in particular should be kept as far away as possible from other plug leads or the centre h.t. lead into the distributor. Working off the plug signal, removes any problem with four or six cylinder engines-a spark pulse is produced for
every second revolution of the engine (assuming four-stroke action).

Obvinusly different cars have a vast range of revolutions for given road speeds. Some cars may naturally rev too high for accurate adjustment of VR1. If that is the case C2 should be reduced in value to $0 \cdot 1 \leadsto \mathrm{~F}$.

## TESTING

When the unit is first installed it can be quickly tested for function at tick over revs by increasing the value of VRI to maximum while maintaining a constant engine speed. At some setting the oscillator tone will be heard in the loudspeaker. Reduce the value of VR1 slightly and the sound will stop but will then be found to start again if the throttle is opened slightly. Be prepared for the slight delay in responseas already mentioned.

To set the unit for a pre-set speed (say 50 m.p.h.) drive as steadily as possible at $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on the open road with VR1 set at minimum resistance and slowly increase its value until the alarm just triggers. Reduce speed to about 45 m.p.h. and the tone should stop; increase speed and it should trigger again at 50 m. p.h.

It should be stated that the unit is sensitive to temperature variations and the exact triggering speed could vary by up to 10 per cent in extremes of temperature; however, if the electronics are kept inside the saloon most cars reach a normal temperature within a few minutes of running and the error associated with temperature variation should not be excessive.

## PICK-UP COIL

Some experimentation might be worthwhile deciding on the best number of turns for the pick-up coil; for the prototype six turns were found to be ample but the number and position of them will depend on the efficiency of the ignition coil and the points.

If the car is badly tuned or misfiring there could be errors associated with this monitoring method but there again one object of the project is to effect fuel economy and first and foremost -to this end-is a correctly tuned engine!


Photograph of the compieted unit.

1T is a well-known fact that plants grow much better if their climate is stable and without the wide temperature fluctuations that can occur in this country. It would therefore seem sensible to provide some form of temperature control, especially when trying to raise seeds.

There are many plant propagators on the market but although these reduce the severity of the temperature fluctuations they do not remove them completely. With this simple heating system a fairly constant temperature can be maintained and more successful seed raising should follow.

## TEMPERATURE CONTROL CIRCUITRY

The control circuitry is shown in Fig. 1. The heart of the whole device is a glass bead thermistor RTH1. As the temperature increases the resistance of the thermistor decreases and so the potential at the base of TRI increases. When this value is greater than the potential at the base of TR2 then the current that is drawn by R2 passes through TR1 instead of TR2. This causes R3 to bias off TR3 which in turn switches off TR4 and consequently the heater.

As the thermistor cools down TR2 takes over and so the heater is switched on again. This


## Pbeant

 PROPAGATORBy D.T. GOODWIN в.Sc.

process will keep the propagator at a fairly constant temperature, the temperature being set by VR1 which determines the potential at which the two transistors TR1 and TR2 reverse rolls. With the values chosen quite a large temperature variation can be covered and this can be set to suit the particular plant types being cultivated.

The whole device runs off a 12 volt 1 amp (approx.) d.c. supply and, as this is a comparator type circuit, there is no need for elaborate stabilisation. Therefore the power supply shown in Fig. 1 is suitable for this device.

## HEATER

There are many heating elements readily available on the market that are suitable for this device but they all require adaption for use in a low voltage circuit. Insulation is not really of much importance in the heater as it is operated at such a low voltage.

Two elements that immediately spring to mind are the wire from an electric bar fire and a piece of electric blanket heater wire. The bar fire wire has the advantage that to provide a l amp heater current a reasonably long length of wire is required, but it is uninsulated, whereas the blanket wire is insulated and only requires about half the current for the same heat, its equivalent length is thus about half too; this means that it would need to heat twice the area. The fire wire also has the advantage that it is readily available and for this reason was chosen. The system is adaptable to most heaters.

A length of wire of approximate resistance 12 ohms should be unwound from a 1 kilowatt fire-bar (approx 1.7 metres). This should then be placed in the pattern shown in Fig. 2 on top of a layer of peat and small pebbles (it may be easier


A temperature controlled heated tray for raising seeds.



Fig. 1 Circuit diagram of the Plant Propagator. The components to the left of FS1 form the power supply, those to the right the control circuitry.
to straighten the wire before attempting this). The two ends of the wire are then soldered to two terminals mounted on the side of the seed tray, and the heater is then ready for use.

## MOUNTING THE PROBE

The thermistor probe should be mounted as near the centre of the tray as possible to ensure an overall reading, it should also be placed central with respect to the heating wires. The thermistor is held in a terminal block with two wires going to two terminals on the side of the tray. It is best to try and insulate this sensor from the possible effects of watering, etc.

## CONSTRUCTION

All the electronics (apart from the thermistor, heater, transformer and rectifier) can be mounted on a piece of 0.15 inch matrix Veroboard. The layout is shown in Fig. 3. This can then, together with the transformer, be mounted in the control box. The box can be any metal or plastic case that is large enough to house all the components. If a metal case is used this should be earthed with a three-core mains lead and fused three-pin plug-a lamp fuse is adequate.

## SETTING UP AND CALIBRATION

To set up the device simply connect the four wires from the control box to the seed tray and switch on, setting the required temperature with VR1. To calibrate it simply place a thermometer in the soil around about the centre of the tray (taking care not to disturb the thermistor) and read off the temperature for certain settings of the pot after allowing time for the soil to warm up. It is helpful to put a voltmeter across the heater when setting up and calibrating so that the temperature at which the heater switches off can easily be seen.

With the components shown a temperature range of about 60 degrees $F$ to 100 degrees $F$ should be attainable although the upper figure is dependent on the efficiency of the heater and on losses through the propagator.

## Components....

## Resistors

| R1 | $15 \mathrm{k} \Omega$ |
| :--- | :--- |
| R2 | $5 \cdot 6 \mathrm{k} \Omega$ |
| R3 | $560 \Omega 2$ |
| R4 | $560 \Omega 2$ |
| R5 | $10 \mathrm{k} \Omega$ |
| R6 | $2 \cdot 2 \mathrm{k} \Omega$ |
| All | $1 W \mathrm{~W} \pm 10 \%$ carbon |

## Capacitor

C1 1,000ر/F elect. 15 V
Semiconductors

| TR1 | 2N2926 (orange) silicon $n p n$ |
| :--- | :--- |
| TR2 | 2N2926 (orange) silicon $n p n$ |
| TR3 | BCY70 silicon pnp |
| TR4 | 2N3054 silicon $n p n$ |
| D1-D4 Any 50 p.i.v., $1 \cdot 5$ amp (or greater) |  |
| bridge rectifier |  |

## Miscellaneous

S1 d.p.d.t. mains toggle switch T1 240 V primary $12 \mathrm{~V}, 1 \cdot 5 \mathrm{~A}$ secondary transformer
FS1 1 amp fuse and holder
RTH1 THB12 bead type thermistor (Henry's Radio)
VR1 1ks carbon potentiometer
H1 heating element-see text
LP1 panel mounting neon indicator with built in resistor.
Veroboard 25 holes $\times 16$ strips $\times 0.15$ inch matrix, aluminium for TR4 heatsink, approx $70 \mathrm{~mm} \times 35 \mathrm{~mm} \times 22 \mathrm{~s}$. w.g., connecting wire, case, knob for VR1, plant tray, connecting terminals for tray ( 4 off), 2 way connector block.


Fig. 2. Seed tray layout and wiring.

Fig. 3. Veroboard layout and wiring (below) and transformer connections (above). TR4 is mounted on a small heat sink made from a strip of aluminium bent at one end with holes drilled to clear the emitter and base leads and for the mounting screws.


# SEMICONDUCTOR PRIMER <br> By A.P. STEPHENSON 

## 6 ■ CORRECT TRANSISTOR SUPPLY POLARITIES

## PROBI,EM

In each circuit shown. (Fig. 6.1 a-i), state if collector current is flowing or not.

Also state, in one sentence, the guiding points which directed your answers.
 วчł of pausna. aq ısnu dols!sad aseq ayt pue

 $\mathrm{ou}=$ (?) $\mathrm{ou}=(4) \mathrm{ou}=$ ( 6 ) $\mathrm{ou}=$ (f) $\mathrm{ou}=(\partial) \quad$ sə $\hat{K}=(p)$ sə $\hat{K}=(0) \mathrm{ou}=(q)$ sə $\hat{K}=(\mathrm{D})$

(a)

(b)

(c)

## 7 ■ HOW ATRANSISTOR AMPLIFIES

Consider the following arrangements. (Fig. 7.1). Note the arrows are showing electron flow.

The base material is $p$ type and is made very thin.

With no forward bias on base (switch open) no current flows at all, because the two diodes are back to back.
With forward bias on base (switch closed) electrons in the emitter are pulled into the base, forming base current. But any electron reaching the base is FAR MORE LIKELY TO TRAVEL ON TO THE COLLECTOR, SINCE IT IS AT A HIGHER POSITIVE POTENTIAL THAN THE BASE.
Thus only a few electrons turn "left", most of them carry straight on.

Thus, switching on a small base current has

(d)

(e)

(g)

(h)

(f)

(i)

Fig. 6.1. Collector current will flow in only some of these configurations.
released a large collector current.
The transistor is therefore a current amplifier!


Fig. 7.1. Electron flow in an non transistor.

## 8 - THE THREE CURRENTS IN A TRANSISTOR

The following equation describes the distribution of currents in a transistor.

Emitter current $=$ base current + collector current
or in symbols,

$$
I_{n}=I_{1}+I_{r}
$$

These currents flow as indicated in Fig. 8.1.
If the $I_{r}$ is 5 mA and $h_{1_{10}}$ is 100 , the base current $I_{\mathrm{b}}=\frac{8}{100} \mathrm{~mA}=0.05 \mathrm{~mA}$. The emitter current $=I_{\mathrm{b}}+I_{\mathrm{c}}=0.05+5$.

Therefore, emitter curent $=5 \cdot 05 \mathrm{~mA}$.


Fig. 8.1. Current flow in $p n p$ and npn transistors.


# Introduction to INTEGRATED CIRCUITS 2 

By J.B.DANCE m.sc

LAST month we looked at integrated circuits in general, this month we take a look at some i.c.s of particular interest to amateurs.

## AUDIO AMPLIFIERS

Many amateur enthusiasts make audio amplifiers from discrete components. Others may purchase ready made circuit boards containing a fully constructed audio amplifier suitable for their application. However, during the past few years more and more integrated circuit audio amplifiers have become available. They are ideal for the amateur constructor, being compact devices priced at about $£ 3$ or less. They are basically operational amplifiers which incorporate as many of the components as possible inside the integrated circuit.

At very low power levels (up to about $0 \cdot 1$ walt), integrated circuit audio amplifiers can be made on a minute silicon chip. At somewhat higher power levels (up to a few watts) the silicon chip must be specially mounted on a heat sink or on a piece of metal which protrudes from the body of the integrated circuit and which can be bolted to a heat sink. At still higher powers it As common practice to employ an integrated circuit pre-amplifier which drives an output slage employing discrete components.

At very low power levels integrated circuit audio amplifiers may employ output stages which operate in class A. The power supply current is then independent of the signal level. At somewhat higher power levels, class B operation is employed and the power dissipation then increases with signal level. Pulse width modulation techniques appear very suitable for use with integrated circuit audio amplifiers, since the power dissipated is low. However, this type of audio amplifier has not come into general use.
Almost all integrated circuit audio amplifiers require various external components, mainly capacitors. It is not possible to incorporate the large value capacitors required for use in audio amplifiers in a micro-miniature silicon chip of an integrated circuit and they must therefore be connected externally. Some types of thickfilm hybrid circuits are available in which subminiature capacitors are mounted inside the package.

## AMPLIFIER I.C.S.

We will now consider an audio amplifier which is much used by the amateur constructor, the SN76013 which is the same device as the Super IC12. This device can supply up to about 6 watts of power into an 8 ohm speaker.

The SN76013 is shown on the Integrated Circuit Data Chart presented free with this issue. It can be seen that a finned aluminium heat sink is fitted onto the back of the integrated circuit module. There are twelve con-
necting pins arranged in a dual-in-line configuration with a gap of two pins in the centre of each of the two lines of pins.

## CIRCUIT

The internal circuit of the SN76013 is quite complex and it is not necessary to understand its operation in order to use this amplifier, but the following brief notes may interest some of the more experienced readers.


Fig. 2. Circuitry of the SN76013.
Transistors TR1 and TR3, Fig. 2, form a Darlington amplifier which, together with the Darlington amplifier TR5 and TR7, forms a differential long-tailed pair input stage. Transistor TR4 (biased by TR8) forms the constant current source for the long-tailed pair.

The differential output from the long-tailed pair stage is fed to the emitter-base junction of TR6 and the output from the latter is fed to the Darlington pair TR14 and TR16, TR12 acts as a constant current load to this pair. Transistors TR19, TR21, TR18, TR20 and TR22 are connected in a conventional quasi-complementary class AB output stage.

Overall negative feedback is taken through R7 to the input of pin 16. In the external circuit a resistor is also used to apply more negative feedback from the output to pin 16.

A simple circuit with typical component values for use with the SN76013 is shown on the chart.

## OUTPUT POWER

The power output obtainable from the SN76013 depends on the speaker impedance and the power supply voltage. The maximum permissible power supply voltage is 28 V and the minimum recommended 8 V . The maximum output power for a 28 V supply is obtained with a 6 ohm load and is about $7 \cdot 6$ watts. The output power falls to 6 watts with an 8 ohm speaker and to 4.7 watts for a 15 ohm speaker, both with a 28 V supply. These maximum power levels can be obtained with a 30 mV input signal.

The sensitivity of the SN76013 is adequate for use with a high output crystal pick-up or a ceramic record player cartridge, even when one allows for the fact that an input of 250 mV is required to overcome the losses in the frequency compensation circuits between the pickup and the input of the amplifier.

## SL402D and SL403D

The Plessey type SL402D and SL403D audio amplifiers are somewhat smaller than the Texas SN76013, but they must be fitted to a heat sink. The SL402D can provide an output of up to $2 \cdot 5 \mathrm{~W}$ and the SL403D an output of up to $3 \cdot 5 \mathrm{~W}$. They are used as class AB amplifiers.
The shape of these amplifiers is shown on the chart. It can be seen that a 10 -pin dual-inline encapsulation is employed with brackets designed for bolting to an external heat sink.
An interesting feature of these amplifiers is the use of an internal silicon controlled rectifier to protect the unit against short circuiting of the output. If such a short occurs, the power supply must be momentarily interrupted to reset the silicon controlled rectifier. The maximum operating supply voltage for the SL402D is 14 V and for the SL403D 18 V .

The simplest type of circuit used with these amplifiers is shown in Fig. 3. Only four capacitors and a potentiometer (the volume control) are required.

## THE LM380N

Another integrated circuit audio amplifier which is ideally suitable for the amateur constructor is the National Semiconductor type LM380N. It has been designed so that a minimum number of external components are required and can provide 2 W into an 8 ohm loudspeaker when operated from an 18 V supply.

Fig. 3. Simple circuit employing an SL403D amplifier.


The LM380N device has thermal overload protection; that is, an internal circuit is included which will prevent damage from occurring if the components on the internal silicon chip become too hot. In addition, the LM380N includes short circuit protection; it will not therefore be damaged if the output is accidentally shorted to ground.

This audio amplifier has a 14 -pin dual-in-line encapsulation with the connections shown on the chart. If the input signal is fed to pin 2. the output voltage will be in phase with the input. However, the input signal may be fed to the inverting input at pin 6 , in which case the output signal will be 180 degrees out of phase with the input.

The LM380N includes internal feedback resistors which ensure that it has a fixed voltage gain of 50 (or 34 db ). Although this fixed gain reduces the versatility of the device somewhat. it does enable it to be used with a minimum number of external components and makes it more attractive for many purposes.
The LM380N can dissipate up to about 1-3W without any heat sink. If one wishes to operate it at its maximum power level for an appreciable time, pins 3, 4 and 5 and pins 10, 11 and 12 should be soldered to external heat sinks.

The circuit of a complete audio amplifier using the LM380N is shown in Fig. 4; it is outstanding for its simplicity. The components R1 and C2 (shown dotted) increase the stability at high frequencies. The minimum recommended operating voltage is 8 V and the absolute maximum operating voltage 22 V ; however, it is wise to regard 18 V as the upper limit to prevent possible damage to the device during voltage surges.

When the input is fed to pin 2, the other input at pin 6 may be left unconnected, but sometimes it is better to return it to earth either directly or through a capacitor or resistor. When the input is fed to pin 6, pin 2 should be returned

Photograph showing an integrated circuit being connected to the package pins.

to earth in one of these ways.
If the average input potential is the same as that of the negative line, no capacitor need be placed in series with the input. The input impedance is 150 kilohms.

If a mains power pack is used to supply a LM380N, any hum on the power supply line tends to appear at the output. This hum can be reduced by a very large factor (about 40 db ) by connecting a capacitor of about $5 \mu \mathrm{~F}$ from pin 1 to ground.


Fig. 4. Circuit using an LM380N.

## DUAL POWER AMPLIFIER

The National Semiconductor LM377N is a 14-pin dual-in-line device which contains two separate high gain audio power amplifiers in a single encapsulation. Each amplifier will provide an output of up to at least 2W (typically $2 \cdot 5 \mathrm{~W}$ ) into an 8 or 16 ohm loudspeaker.

This device is intended mainly for use in stereo radio receivers, stereo record players, tape recorders, etc. Both amplifiers are fully protected against accidental short circuiting of
Fig. 5. Circuit of a stereo amplifier using an LM377N.


## Styon Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORY

## POWER AMPLIFIER MODULES : <br> POWER SUPPLY UNITS

Better performance; better
value. In 3 useful sizes


## BRIEF

SPECIFICATION: OPEN AND SHORT CIRCUIT PROTECTION, plus
proof against over-dissipation and faulty inductive loads in the SA. 100. Response $15-40,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Olstortion $0-2 \%$ at 1 kHz Loads
Noise
Sto 16 ohms
Better than $=75 \mathrm{~dB}$

 (SA35/SA50) Circulte, (SA35/SA50) struction and application data tree with all modules.

35 watts RMS. Uses, transistors and 7 dl SA50

50 watt RMS. 7 transistors, 7 diodes.

## SA100 <br> 100 watts RMS. 11 translistors. 6 diodes. Carr. paid

Unstabilized supply for 2 SA35s or one SA50 PU45 £4.90
Unstabilized supply for one or two SA50 for $8 \Omega$ PA power amps
£7.75
PU70
Stabilized module for two SA $35^{\circ}$ s or one or 2 SAA 50
Carr. Tree
PS45 £3.50
Transformer lor above, heavy duty Carr. 30 p

MT45
$f 2.85$
Stabilized supply module for one or two SA50's (8 ) or SAl00's Carr. tree
PS70
£4.90
MT70
Transform
Carr, 40 p
£4.90
ALL ON GLASS FIBRE P.C. BOARDS, TESTED AND GUARANTEED

## SAXON CONTROL UNITS

MONO AND
EXCITING
NEW
STEREO
VERSION


Stereo verslon now has mic. override and case. Two decks, and tull headphone monitoring. Stereo model mains operated. $174^{\prime \prime}{ }^{13^{\prime \prime}}{ }^{14} 4^{\prime \prime \prime}$ deep. White on black lacla, Controls: Left/Right dzck-fader, volume, bass, treble. Headphone Selector Itlustrame. Miciophone volume, bass, freble, malns onlof Mono version COMPARABLE TO UNITS AT OVER TWICE THE PRICE,

MONO
For 9 V . operation
£6. 50
(Carr. 20p)

## STEREO MK. 2

With mic. override and case, For A.C. mains £19. 75
(Carr. 30p)

## MICROPHONE BARGAINS

A.K.G.
D.190C

General Purpose
A professional stand
ard
mic. Robust and


## TWO NEW UNITS <br> PA/MIXER CONTROL

Using grouped palrs o inputs and outputs (high $Z$ and low $Z$ inputs) with individua bass, treble and vol. ume controls on each pair, plus master control. These low-nolse Sexon units will feed all makes of amplifiers. making them ideal for clubs, discos. etc. Standard jack sockets Compact desion. in strong metal cases. All unlts puaranteed for 3 years.


120 \& 160 WATT MODULE
Rupged clast A driver stage, low distortion paralle push-pull output. Into an elght ohm load. \&TO3 stors.
Freq. response:


## $20 \cdot 20.000 \mathrm{~Hz}+2 \mathrm{~dB}$

 Input sensitivity: Module and 10 K £18-95

160 watt version whith power supply (Carr, 50p)
£27.90

## SOUND \& LIGHT UNITS

3 channel model handles up to 3 kW (3000 watts) of lighting and In tile sound control for protessional standards.

SINGLE CHANNEL
UNIT
Operates from 5 to 100 watt ampllfiers. Supplied for bass note operation reble eas adaptyd for cost of about $\& 7.50$


## 3 CHANNEL UNIT

 Bass, middle and treble as well as master con trols. 2 amplifier sockets Smartly finjehed stoel case. 30 ECarr. 30 . 75

## LOUDSPEAKERS

British-made bargains.

12* 25 walt $8 / 15$ ohms $£ 6$ earr. 30 p . 15-50 wall $8 / 15$ ohm $£ 14.50$ carr. 50p. 2* 40 watt 15,000 gauss magnet system $8 / 15$ ohm fit 50 carr. 40 p .

## V.A.T

Prices quoted do NOT Include Value Added Tax. $40 \%$ must be added to including postal or ear flage charges
S.A.E. brings latest Saxon Bargain List.

Please include S. A.E. with your enquiries.

Prices sublect to alteration without prior notice

## COMPLETE AMPLIFIERS



In black wyide case, represents better value than ever. dellvering up to 100 watts music power and individually controlled inguts wo watts RMS. Two and treble controls. Carr. tree $£ 34.90$


With an RMS output of 120 watts speech and music 100 watts continuous power, four individually controlled FET input stages and wide range base and treble controls, this amplofier offers qualliy and rellabillity at low cost. Carr. $£ 48 \cdot 50$

Orders and personal shoppers to:
SAXON ENTERTAINMENTS LTD., 33I Whitehorse Rd., W. Croydon, Surrey. CRO 2HS.

Telephone 01.6846385
Hours 9.30 a.m. $\mathbf{5 . 3 0}$ p.m.
TRADE \& EXPORT ENQUIRIES INVITED

## TERMS OF BUSINESS <br> Cash with order (C.W.O.) For C.O.D. please add 35p <br> extra, cash by regd. lecter. please

\title{

look I really

\section*{mastered

## mastered <br> <br> electronics 

 <br> <br> electronics}
no previous knowledge no unnecessary theory no unnecessary theory



RAPY

## 3/ CARRY OUT

 OVER40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEX WORK, including:

BUILD, SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

## 1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

## 2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS


as used currently in the various fields of electronics.
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit, servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test. service and maintain all types of electronic equipment, radio and TV receivers, etc.

## special free gift also to all our students

its output and, in addition, against overheating of the silicon chip.

The minimum recommended supply voltage is 10 V and the absolute maximum permissible supply voltage 26 V . Under no signal conditions the device requires about 15 mA , but this rises to about 1 A at high power levels.

The amplifiers have a high input impedance ( 3 megohms). The gain is set by the values of two external resistors.

The connections of the LM377N are unfortunately shown incorrectly on the chart, the base should be C. A single device of this type can be used in the circuit of Fig. 5 as the power amplifier stages of a stereo system. The gain is equal to $R 5 / R 1=R 6 / R 4=45$.

The bias supply from pin 1 must be used to supply both of the inputs at pins 6 and 9 . In Fig. 5 this bias is applied via R2 and R3 to the respective amplifiers.

The LM377N can also be used as the driver stage in high power audio amplifiers if it is employed to feed two suitable high power output stages.

## THE TBA800

Another well-known integrated circuit audio amplifier is the SGS-Ates type TBA800; it can feed up to 5 W of power into a 16 ohm loudspeaker when the circuit is operated from a 24 V supply.

The TBA800 is encapsulated in a plastic case which has its connecting pins in the quad-in-line configuration. Quad-in-line devices are like dual-in-line ones, but alternate pins are bent so that they are at different distances from the body of the device. Thus when one looks at one end of the device, one sees four separate lines of pins; hence the name quad-in-line.

In addition to its connecting pins, the TBA800 has two metal tabs at the centre of each side of the device. These cooling tabs (which should be connected to the negative line) enable the device to provide up to $2 \cdot 5 \mathrm{~W}$ of power to an 8 or 16 ohm loudspeaker without any additional heat sink. If a TBA800 is to be used at a higher power level for more than a very short time, the metal tabs should be connected to an external heat sink. They may, for example, be soldered to the copper of a printed circuit board.

## TBA810S and TBA810AS

The SGS-Ates TBA810S has the same type of encapsulation as the TBA800, but is a lower voltage, higher current device. It can drive up to 7 W into a 4 ohm loudspeaker when a 16 V supply is used and the cooling tabs are connected to a suitable heat sink.

The TBA810S is especially suitable for use in car radio receivers, since it can provide up to 4.5 W into a 4 ohm loudspeaker when it is operated from a 12 V car supply.

The TBA810AS is electrically similar to the TBA810S, but it has flat tabs with a hole drilled in each so that an external heat sink can be bolted to the tab.

A typical circuit for the TBA810S or TBA810AS is shown in Fig. 6. The minimum supply voltage is 4 V and the absolute maximum 20 V .


Fig. 6. Circuit for use with the TBA810S.
It should be noted that the TBA800 is suitable for 16 ohm loudspeakers, since it is a relatively high voltage device, whereas the high current output available from the TBA810 devices renders them more suitable for 4 ohm loudspeakers.

## HIGHER POWER DEVICES

SGS-Ates will soon offer a type TCA940 amplifier which can drive a 4 ohm loudspeaker at the 10 W level when fed from an 18 V supply. The company have also developed a 20 W amplifier which is expected to be produced in the fairly near future.

## DIODE PROTECTION

If the power supply is accidentally applied to an integrated circuit audio amplifier with a reversed polarity, the device will normally be destroyed within a few milliseconds. Constructors are therefore advised to put a diode in the positive supply line, since this diode will prevent appreciable reverse current from flowing if the supply is accidentally connected with the wrong polarity. Obviously the diode must be connected the correct way round and must be able to pass
a continuous current equal to the maximum current passed by the device.

The diode may be removed after the initial experiments if there is no longer any possibility of the power supply being applied with the wrong polarity.

## RF/IF AMPLIFIERS

Radio and intermediate frequency amplifiers using integrated circuits are now becoming more common. In general integrated circuits for high frequency amplification employ several transistors per stage. It is not easy to incorporate tuned circuits in a silicon chip and therefore possible alternatives are being investigated.

Many types of high frequency amplifier are available, such as the RCA type CA3053 and the Plessey type SL612. The Mullard TAD100 unit can be used in amplitude moduiated radio receivers for handling the signal from the mixeroscillator stage up to the audio driver stage when used with suitable external components.

Various manufacturers have designed integrated circuits for use in v.h.f. receivers. For example, the Signetics N511A is a 14 -pin dual-inline circuit which enables only one coil with a single winding to be used in the f.m. limiter and detector stages of a receiver. It can also be employed in television sound channels and in communication receivers, etc.

## THE ZN414

The ZN414 is one of the most interesting integrated circuits for the amateur constructor. It contains ten transistors in a miniature transistorlike case with three connecting leads.

When the ZN414 is connected to a ferrite aerial, a tuning capacitor, a bias resistor, two capacitors and a $1 \cdot 3 \mathrm{~V}$ battery, it provides a signal which can drive a magnetic earpiece. Full constructional details of such a receiver were given in the September 1973 issue of this journal and the device will therefore not be discussed in detail here.

The ZN414 can also be used as an i.f. amplifier in a.m. superheterodyne receivers. Further details are available in a booklet published by Ferranti Ltd., Gem Mill, Chadderton, Oldham, Lancs.

## OTHER RADIO DEVICES

The TBA651 is an integrated circuit which is used to carry out the whole of the radio and intermediate frequency processes in a medium/ long wave superheterodyne receiver.

The device combines the functions of r.f. amplifier, oscillator, mixer, i.f. amplifier and automatic gain control. It has been designed for use in both car radios and in high quality receivers.

The TBA651 will operate from supply voltages between 4.5 V and 18 V , consuming only 11.5 mA . The device is encapsulated in a 16 -pin quad-inline case.

Another well-known device is the TAA661B f.m./i.f. amplifier and detector which is suitable for use in television sound and in f.m. receivers. The use of this device enables the detector transformer to be eliminated, whilst the output signal can be used to drive an audio amplifier directly. Detector alignment is carried out by the adjustment of a single coil-a point which should appeal to the amateur constructor.

The TDA1200 is a recently developed devic̣e for use as an f.m. radio i.f. system. It is a complex integrated circuit which includes f.m. amplification and detection, inter-channel muting for silent tuning, automatic frequency control, delayed automatic gain control, switching of a stereo decoder and driving a field strength meter.

This 16 -pin dual-in-line device is suitable for use in high fidelity car radio and communications receivers.

Many other integrated circuits for radio and television use have come onto the market within the last few years. They will enable the cost of consumer devices to be kept lower than they otherwise would have been by minimising labour costs.

The Signetics integrated circuits types NE560B, NE561B and NE562B enable complete f.m. i.f. strips (including the demodulator) to be constructed without any inductors. They employ circuits known as phase locked loops.

## VOLTAGE REGULATORS

Another important use of integrated circuits is for voltage regulation in power supplies. One merely connects the circuit to the output of a smoothed power supply in order to obtain a highly regulated output with an extremely low hum level. These voltage regulators are themselves ideal for use in the very stable power supplies required to drive some types of integrated circuit.

## T/MER

A timer integrated circuit recently introduced by the Signetics Company is particularly versatile. It can be used to obtain delays of microseconds to hours and the delay is almost independent of the supply voltage. The type number is NE555V for the dual-in-line 8 -lead package.

Integrated circuits have made a very great impact on a wide variety of circuits, only a few of which have been mentioned in this article. The rapid fall of prices during the last few years make them components which can really appeal to the amateur experimenter as well as to the professional engineer.

## $B-1$

# Telephone Comer 

conplete TELEPHONES

ax, geo onise $\mathrm{C} \mid .05_{\text {p }}$
TELEPHONE DIALS

Tested and Guaranteed Paks

B79 4 | IN4007 Sil. Rec. dlodes. |
| :--- |
| 1,000 PiV Iamp plastlc. | .55 P

Be1 10 Reed Switches, $1^{\circ}$ long,
B99 200 Mixed Capacitors. 55 Approx, quantity.
counted by weight
H4 $250 \begin{aligned} & \text { Mifed Resistors, } \\ & \text { Approx. quantity }\end{aligned}$ Approx. quantity
counted by welgh Mixed Dlodes, Ge H35 $100 \begin{aligned} & \text { Mixed Diodes, Ger } \\ & \text { Gold bonded, etc. }\end{aligned}$ H38 Marked and Unmarked.
$\underset{\mathrm{P} \& \mathrm{P} 15 \mathrm{p}}{55}$
$3830 \begin{aligned} & \text { Shorl lead Transistors, } \\ & \text { NPN Slicon Planar type }\end{aligned}$
55p
6 Integrated Circuils. 4 Gales BMC 962 , 2 Flid
AFlos BMC Flops BMC 945
H41 $2 \begin{aligned} & \text { Sil Power transistors } \\ & \text { comp palr BD131/132 }\end{aligned}$

## A

 Unmarked Untested Paks| 81 | 50 | Germanium Transi PNP, AF and RF |  |
| :---: | :---: | :---: | :---: |
| 866 | 150 | Germantum Diodes | 55p |
| 884 | 100 | Sillicon Dlodes DO-7 glasse equlv. to OA200. | 55p |
| ${ }^{886}$ | 100 | Sil. Diodes sub. min. iN9t4 and IN916 types | 55p |
| H16 | 15 | Experimenters' Pak of Integrated Circulis, Data supplied | 55p |
| H20 | 20 | By126if Type Silicon Reetiners 1 amp plastic. Mixed volts. | 55p |
| H34 | 15 | Power Transistors, PNP. Germ. NPN Sillicon |  |

Make a rev counter
for your car
The 'TACHO BLOCK'. This encapsulated bloch will turn any 0-1ma meter Into a linea and accurate rev.
normal
system.
ElनीFrak LTO

# RANNIES 

(new mail order address)
4 Bush House Bushfair Harlow, Essex.

## All prices inclusive of V.A.T.

reg. office: 1 Dockyard, Station Road, Old Harlow, Essex.

Resistors
watt $5 \%$ carbon $1 p$ 1 watt $10 \%$ carbon 10 range 10 ohms to 4.7 auegohnis.
-walt m/o 2\% 3p
ange 10 oht

Minitron Digital Indicator
Type s01sfr reals 0-9


## CI BARGAIN PACKS

\&1 10 Silicon power transistors (2N3055) unmarked/tested TO3 case 30 Plastic 2N3055 unmarked/untested
30 Plastic FETS (like 2N3819) unmarked/untesced
10 General Purpose FET transistors fully tested.
20 silicon TOS eransistors NPN or PNP (state which) (like 2 N3053 BC301 etc.) unmarked/untested.
500 Carbon resistors $\frac{1}{4}, \frac{1}{4}, 1,2$ watt.
100 Electrolytic condensers.
250 Ceramic, Polystyrene, silver mica, ecc. condensers.
25 Porentiometers assorted.
250 High-5tab 1\% 2\% 5\% resistors
\&l 50 Assorted tagboards

- Any 5 Packs 44 plus 25p Post $\&$ Packing -


## Electrolytic Capacitors

| 4 VOLT |  | 10 VOLT |  | 16 VOLT |  | 25 VOLT |  | 63 VOLT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $47 \mu \mathrm{~F}$ | 61p | $22 \mu \mathrm{~F}$ | 61p | $1000 \mu \mathrm{~F}$ | 17p | $2200 \mu \mathrm{~F}$ | 39p | $1 \mu \mathrm{~F}$ | $6 \frac{1}{2}$ |
| 100\%F | 61P | $47 \mu \mathrm{~F}$ | $6 \frac{1}{2} P$ | $1500 \mu \mathrm{~F}$ | 25p | $5000 \mu \mathrm{~F}$ | 68p | $2 \cdot 2 \mu \mathrm{~F}$ | $6 \frac{1}{2}$ |
| 220, $F$ | 61p | $100 \mu \mathrm{~F}$ | $6 \frac{1}{2} p$ | $2000 \mu \mathrm{~F}$ | 43p |  |  | 4.7 $\mu \mathrm{F}$ | $6 \frac{1}{19}$ |
| $330 \mu \mathrm{~F}$ | 6yp | 220 $/ \mathrm{F}$ | 8 p | $3300 \mu \mathrm{~F}$ | 38p |  |  | $6.8 \mu \mathrm{~F}$ | $6 \frac{1}{2} p$ |
| $1000 \mu \mathrm{~F}$ | $13 p$ | $330 \mu \mathrm{~F}$ | 10 p | $6800 \mu \mathrm{~F}$ | 65p | 40 |  | $10 \mu \mathrm{~F}$ | $6 \frac{1}{2}$ |
| $4700 \mu \mathrm{~F}$ | 29p | $470 \mu \mathrm{~F}$ | 10 p |  |  | $6 \cdot 8 \mu \mathrm{~F}$ | 61p | $22 \mu \mathrm{~F}$ | $6 \frac{1}{19}$ |
|  |  | $1000 \mu \mathrm{~F}$ | $11 p$ |  |  | $15 \mu \mathrm{~F}$ | $6 \frac{1}{1} \mathrm{P}$ | $68 \mu \mathrm{~F}$ | 10p |
| 6.3 V | LT | $1500 \mu \mathrm{~F}$ | 20p | 25 V | T | $33 \mu \mathrm{~F}$ | 61p | $100 \mu \mathrm{~F}$ | 11p |
| $33 \mu \mathrm{~F}$ | 6.p | 2200 $/ \mathrm{F}$ | 24p | $10 \mu \mathrm{~F}$ | 61p | $47 \mu \mathrm{~F}$ | 61p | $150 \mu \mathrm{~F}$ | 13p |
| $68 \mu F$ | $6 \frac{1}{2} p$ |  |  | $22 \mu \mathrm{~F}$ | $61 p$ | $100 \mu \mathrm{~F}$ | $9^{9 p}$ | $220 \mu \mathrm{~F}$ | 19p |
| 150 $\mu \mathrm{F}$ | $6 \frac{1}{1} \mathrm{P}$ | 16 V |  | $47 \mu \mathrm{~F}$ | $6 \frac{1}{4} \mathrm{p}$ | $150 \mu \mathrm{~F}$ | 10p | $330 \mu \mathrm{~F}$ | 22p |
| $470 \mu \mathrm{~F}$ | 11p | $15 \mu \mathrm{~F}$ | 6 1p | $100 \mu \mathrm{~F}$ | 8 p | $220 \mu \mathrm{~F}$ | $11 p$ | 470 $\mu \mathrm{F}$ | 26p |
| $680 \mu \mathrm{~F}$ | $13 p$ | $33 \mu \mathrm{~F}$ | 61p | $150 \mu \mathrm{~F}$ | 8p | $470 \mu \mathrm{~F}$ | 19p | $1000 \mu \mathrm{~F}$ | 44p |
| $1500 \mu \mathrm{~F}$ | $18 p$ | $68 \mu \mathrm{~F}$ | $61 p$ | 220 $\mu \mathrm{F}$ | 10p | $680 \mu \mathrm{~F}$ | 25p |  |  |
| 2200 $\mu \mathrm{F}$ | 18p | $150 \mu \mathrm{~F}$ | 8 8p | 470 $\mu \mathrm{F}$ | 13p | $1000 \mu \mathrm{~F}$ | 25p |  |  |
| $3300 \mu \mathrm{~F}$ | 26p | 220 $/ \mathrm{F}$ | 9p | $680 \mu \mathrm{~F}$ | 20p | $2200 \mu \mathrm{~F}$ | 44p |  |  |
| $6800 \mu \mathrm{~F}$ | 40p | $680 \mu \mathrm{~F}$ | 17p | $1000 \mu \mathrm{~F}$ | 22p | $3300 \mu \mathrm{~F}$ | 65p |  |  |

## Mullard Polyester's

MULLARD POLYESTER CAPACITORS C280 SERIES
2 20V P.C. Inountiug: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 31 \mathrm{p}, 0.33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 4 \mathrm{p}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}$ $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 6+\mathrm{p}, 0.33 \mu \mathrm{~F}, 7 \mathrm{p}, 0.47 \mu \mathrm{~F}, 81 \mathrm{p} \cdot 0.66 \mu \mathrm{~F}, 12 \mathrm{p} .1-0 \mu \mathrm{~F}, 14 \mathrm{p}, 1 \cdot 5 \mu \mathrm{~F}, 22 \mathrm{p}, 2 \cdot 2 \mu \mathrm{~F}, 27 \mathrm{p}$

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0018 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{D}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.01 \mathrm{~B} \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$,
 $0-33 \mu \mathrm{~F}, 8 \nmid \mathrm{p} .0-47 \mu \mathrm{~F}, \mathrm{~B}_{\mathrm{tp}}-0-\mathrm{B} 9 \mu \mathrm{~F}, 12 \mathrm{p} .10 \mu \mathrm{~F}, 14 \not \mathrm{p}$.

## Popular Transistors and Diodes

## (Many other types stocked)






 | ACl76 | 15p | AFl17 | $15 D$ | BCL83 |
| :--- | :--- | :--- | :--- | :--- |
| ACl87 | $14 D$ | BC107 | 11 D | BC184 | Clis8 14D BCl08 110 BUN 12D OC44 14D 2 N 3706 11p 1 N 4002 4ip АС187K 5 B





By GEORGE HYLTON

> "Transistor data always gives current amplification, never voltage amplification. Yet in practical circuits it is voltage gain which matters. Can the voltage gain be derived from the current gain?"

The reason why no information about voltage gain is given in the transistor makers data is that you don't need it. Or, rather, it's assumed by the makers that you already have it, in your head.

Show a competent transistor circuit designer the audio amplifier of Fig. 1, and ask him what is the voltage gain. After about ten seconds, he'll say, "About $120^{\prime \prime}$, and he'll be right.

You can do it, too. The magic formula is: multiply the d.c. voltage drop across the collector load resistance (in kilohms) by 40. This is the voltage gain. In Fig. 1 , the voltage drop across the 1 kilohm emitter resistor is 1 volt, so the emitter current is 1 milliamp. The collector current must be nearly the same, so the drop across the 3 kilohm collector load R 3 is 3 V . Gain is $3 \times 40=120$.

## COMPLICATIONS

We don't propose to go into the rather complicated reasons for this very simple relationship. The important thing is that it is true of all bipolar transistors, whether $p n p, n p n$, silicon or germanium.

It's also true that it's only an approximation, and gives accurate results only when the transistor is used in normal circuits with only a few volts across the load resistance.

What's 'normal'? Well, Fig. 1 is normal, assuming that TR1 is an ordinary small signal audio transistor such as BC108 or 2N2926. But if the supply voltage were 50 V and the drop across R3 were 30 V the gain would not be 1200 , as predicted by the formula, but a lot less.
One has to be sensible, too. In Fig. 1 there's no external load resistance, only R3. If you short the output terminals (giving an external load of 0 ohms!) there can be no output voltage. So the external load, if used, matters, and will reduce the output and voltage gain.
If an external load of 3 kilohms were connected (i.e., equal to R3), then the a.c. part of the output current would divide itself equally between the two loads and the output and gain would be halved. (This implies that R3 and the external load are in parallel to the signal current.

That is so, because the two loads are tied together at one end by the output capacitor and at the other by the power supply.

In practice, the external load (let's call it $R_{1}$ ) may not be equal to R3. To find the gain for any value of $R_{1}$, first use the magic formula for the gain with no load then multiply the answer by $R_{1} /\left(R_{1}+R_{3}\right)$.

## MULT/ STAGE

In a multi-stage amplifier (Fig. 2), the "external load" on the first stage is the input impedance of the second stage. In practical circuits, this input impedance is so much smaller than the collector load resistance of the previous stage that to all intents and purposes the whole of the a.c. current from TRI goes into the base of TR2. It is then amplified $h_{\text {tra }}$ times ( $h_{\text {tow }}=$ current amplification factor of TR2) before passing through the final ( 3 kilohm) load resistance to set up the output voltage.

To calculate the overall gain we need to know the a.c. collector current of TR1 rather than its a.c. collector voltage. There is another magic formula which gives you the a.c. collector current: $40 . I_{c_{1}}, V_{\mathrm{tn}}$, where $I_{c_{1}}$ is the number of milliamps of d.c. collector current of TR1. This leads to an expression for the overall voltage gain.

Voltage gain $=40 I_{r_{1}} \cdot h_{\text {te }} R_{12}$ where $R_{1!}$ is the final load in kilohms (in, Fig. 2, 3 kilohms). If $h_{\text {tee }}=100$ and $I_{c_{1} 1}=100 \mu \mathrm{~A}$ or 0.1 mA , the overall gain is: $40.0 \cdot 1.100 .3=1200$.

Like the previous formulae, this is an approximation (and errs on the side of optimism).


Fig. 1. Single stage amplifier


Fig. 2. Two stage amplifier


## I.C.'s and valves

I have a complete set of Everyday Electronics and I am pleased with it although I would like to see a general broadening of your horizons in other fields past and future; in this I am referring to the lack of projects using integrated circuits and valves and also the lack of explanation of these devices.
Perhaps such devices could be explained in the next term of Teach-In '74. Also could you start a sound-effects series, in particular an "electronic echo". On the whole I like this magazine.
R. Leyland Zlitrm, Auckland, Australia.

You will be pleased to see that we are using integrated circuits in two of our constructional projects this month.

Detailed explanations of the functioning within the i.c. package however are not given and as a rule the i.c. will be treated as a black-box whose overall perform. ance and operation only are described. The reason for this should be made clear in the series Introduction in Integrated rir-
cuits which started last month.
At the other end of the line. i.e. valves, we cannot envisage using valves in any E.E. projectsalthough it is not an impossibility.

Your idea for a sound effects series has been noted and we shall be looking into this in the future.

## Veroboard

I have recently started reading your magazine, and wish to build some of the projects detailed. However, as a raw beginner, only knowing the basic theory learned at school, I wonder if you would explain to me Veroboard diagrams as I do not understand what copper strips should be removed, and which ones left in place. Also how do you remove the copper.

> D. Nicholson, Cardiff.

Constructional projects built on Veroboard usually show two views of the board, one from the topside showing component positions and a view of the underside showing the copper strips.

The enpper :"rips arre shourn as
white strips on a black background. Breaks are shown along the strips as white holes on a black background and these breaks can be made by using a "spot-face cutter" a tool made for this job, or a small drill bit of diameter larger than the width of the copper strip.

Other information given on the underside view is the solder point of a component or flying lead to the copper strip; this is indicated by a black dot along the strip.

## Inverter

I have been a regular reader of your magazine for some time now, and at present intending to build a d.c. to a.c. inverter as described in one of your earlier issues. However, I would like to build it so that the output would be around 240 volts 50 cycles and about 100 watts minimum (from 12 volt car battery).

As I am a newcomer to electronics through your magazine, I feel confident that you will be able to advise me as to where I might be able to obtain instructions to build such an inverter, or if possible how to modify your published design to meet the output required.
J. Henderson, Ayrshire.

The inverter you refer to was published in the July 1972 issuc of E.E. and cannot be modified easily to obtain the required power output.

However, a 100 watt inverter was featured in Practical ElecIrnnirs Frbruar" 1973

## What doy youknow? OHMS LAW

1. What would you expect the potential difference across a 3.9 kilohm resistor to be if 150 microamps were flowing through it.
2. What current would flow in R3 in Fig. 1.

3. What wattage resistors would you use for those shown in Fig. 1.
4. If R3 in Fig. 1 is removed what effect would it have on the current flow in R1.

## ANSWERS

' $\forall$ wig of $^{*} \forall \mathrm{w}_{6}$ wos, dosp
 eq pinom fuerans pue UYs.l aworaq pinom өэuełs!sed ఛ!



 -MSOt0.0
$=00 G \times z(\varepsilon-0 \downarrow \times 6)=y z$ l $=$ เท แ! uo!ped!ss!a ' $\varepsilon$
' $\nabla^{\text {m }}$ G.t.




## ELECTRONIC IGNITION KIT

SDATNNRIIEMK II

## COMPRISES

## Everything:-

Ready Drilled Case and Metalwork, Cables, Coil Connectors. Silicon Grease, Printed Circuit Board, 5 year guaranteed components and a full 8 -page instruction leafer.
WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY IS MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS: TO GIVE YOU:-
Instant all weather starting. Up to $20^{\circ}$. fuel saving, Longer batcery life. Higher top speed. Faster acceleration, Spark plugs last about five time longer. Misfire due to concact breaker, bounce electronically eliminated. Purer exhaust emission resulting in less air pollution, Contact breaker burn eliminated. Suitable for all petrol engines up to 8 cylinders

PRICE ONLY C 11.62
Ready Builc Unit E14-85
Unit for Motor
Cyeles with twin coils
and twin C.B. Points C23.24
(prices include VAT and post
Please state whether Positive or negative earth units are
g packing). required when ordering.
(NOT AVAILABLE IN KIT FORM)
SEND FOR YOUR UNIT OR FULL
BROCHURE NOW

> FROM
> ICE ELECTRONIC SYSTEMS DEPT E.E. IIAPARK FARM ROAD
> BIRMINGHAM B43 7QH

## KEEP WARMATA COOL PRICE.

## Slash central heating costs with AMKIT.

If you can put in electric wiring, you can install Amkit. The unique nylon pipe hot water central heating system, that you install yourself in hours.

Look at these advantages :
No soldering
No 'T' junctions
No special equipment
No leaks, no lagging, no corrosion
No structural upheaval
Just reliable, effective central heating (Guaranteed 25 years) at a saving of between £150 \& £250. This famous system has been successfully marketed since 1968.

Clip the coupon, and we'll tell you more.
「ToAutocon Manufacturing Co.
Spring House, 10, Spring Place, London, NW5, 3BH
Please send your brochure telling me all about Amkit.
Name
Address
1 EE 4
EE 4

or see for yourself at: THE AMKIT D.I.Y. CENTRE,
15, Procter St., London. W.C.1. (opp Holborn Undgnd). Open Mon-Fri $9.30 \mathrm{am}-5-30 \mathrm{pm}$. Sat $9 \mathrm{am}-1$ p.m.

PARKERS SHEET METAL FOLDING MACHINES HEAYY VICE MODELS

## With Bovelled Former Bars

No. 1. Capacity 18 gauge mild steel. 36in. wide No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$, wide
617.00 carr. 50p No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$, wide 612.00 carr. 38p Also new bench models. Capacities 36in $\times 18$ gave... 12.00 carr . 38p gauge 632.00. Carriage 75 p . Add $10 \%$ VAT to cotal price of machine carriage.
End folding actachments for radio chassis. Tray and Box making for 36 in . model, $27 \frac{10}{}$ p per If. Other models I7t p. The two smaller models will form flanges. As supplied to Government Departments. Universities. Hospitals.
One rear's zuarantee. Money refunded if not satisfied. Send for decails. A. B. PARKER, Folding Machine Works,

Upper Goorte St., Heckmondwike, Yorks. Heckmondwike 403997

## ENGINEERS



YOURSELF FORA BYTEB -1 1 штт


Do you want, promotion, a better job, you how to get them through a low-cost B.I.E.T home study course. There are no books to buy and ycourse. There are no on you. It could be the best thing you


# The largest selection 

BRAND NEW FULLY GUARANTEED DEVICES



Type
BF189

| Type | Price p | Tupe Price p | Typr |  |
| :--- | :--- | :--- | :--- | :--- |
| BF182 | 44 | MAT121 | 82 | 26308 |
| BP183 | 44 | MJE2953 | 95 | 26309 |
| BF164 | 28 | MJE3055 | 62 | 20339 |


 $\qquad$


2N3391A
 Typ
$2 N 406 \%$
$\qquad$


LINEARI.C‘-FULL SPEC. Type N

| 72702 | 80p | 48p | 480 |
| :---: | :---: | :---: | :---: |
| 72709 | 35 p | 33p | 30 p |
| 72710 | 45 p | 43p | 40p |
| 72741 | 400 | 387 | 35D |
| 727+1C | 450 | 43 p | 400 |
| 72741 P | 38p | 36 p | 34 p |
| 72748 P | 380 | 36p | 34 p |
| BL201C | 58 p | 45 D | 40D |
| 8L701C | s0p | 480 | 40p |
| 8L7020 | 80p | 46p | 40 p |
| TAA263 | 80 D | 70p | 80 p |
| TAA293 | 11.00 | 95p | 90 p |
| TAA350, | 11.85 | 21-80 | ¢1.70 |
| $\mu \mathrm{A} 703 \mathrm{C}$ | 280 | 26p | 24 p |
| HA709C | 38p | 33p | 30p |
| HA711 | 45p | 43p | 40p |

## NUMERICAL <br> INDICATOR TUBES

CD86
3015 F Mintifui
All side viewlng. full data for anolint.
typea avallable on requent.
7 N 414
I.C. Red
Redlo Rec. Inci. full cir. dater
RTI LOGIC IC
Price ench $\begin{array}{lcc}38 \mathrm{p} & 36 \mathrm{p} & 28 \mathrm{p} \\ 38 & 200 \text { u } \\ 38 \mathrm{p} & 38 \mathrm{p} & 20 \mathrm{p}\end{array}$
$\begin{array}{llll}\text { UL90 } & 38 \mathrm{p} & 36 \mathrm{p} & 29 \mathrm{p} \\ \text { UL914 } & 38 \mathrm{p} & 38 \mathrm{p} & 29 \mathrm{p}\end{array}$

DTL 930 SERIES
Locic 1.5


FOLTAGE REGULATORS
TO. 3 Platic 1.5 Amp



## DUALIN-LINE SOCKETS.

OUALIN-LINE PROFFR日IONAL \& NEW LOW CORT PROF, TYPE No. $1-04 \quad 23-99$ 100up $\begin{array}{llll}\text { ROO } 14 & 16 \text { pintsw } & 33 \mathrm{p} & 30 \mathrm{p} \\ 38 \mathrm{p} & 37 \mathrm{p}\end{array}$ BPA 14 10p 14p 12p

74 Series T.T.L. I.C's

## BI-PAK $\operatorname{stLLL}$ LOWEST iN PRICE. FOLL specification

 Tspe
# -the lowest prices! 

grand new texas GERM. TRANBISTORS pat No. Eiver
 T3 $\quad \mathrm{B} 121374$ OC75 T4 2 26381T



 ND 120 NIXIE DRIVER TRANSISTOR.
 $\begin{array}{lll}0.18 & 0.17 & 1018 \\ 0.18\end{array}$

Bil. Tratio. Rutatile fur
P.E. Organ, Melal TO. 18 Eivit. ZGX 300 6p onch Any 41

GP 100 TO3 METAL case oermanium I.C. 10 mmpe. Piot Heplaces the majority

 | 0.48 | 0.44 | 040 |
| :--- | :--- | :--- | :--- | GP 300 TO3 METAL oAse stlicon

| Veloo $=100 \mathrm{~V}$. V'emen ans |  |
| :---: | :---: |
| 113 W. hfe - 20. 1001 T .- |  |
| 19\%\%z. Sultable replare- | LOOK FOR OUR |
| ment fir in e 303\% |  |
| $00^{0.5}$ |  |
| $\begin{array}{llll}0 & 55 & 0.53 & 0.51\end{array}$ | ELECTRONIG |
|  | COMPONENTS |
| 8 th EDITION 250 pages | ADVERTISEM |
| TRANSISTOR EQUIVA- |  |
| LENTS BOOK. A crmo | in Practical |
| mile crast referelice and | ELECTRONICS |
| Jiurupean. Aruerican anal | RADIO CONSTRUCTOR |
| Jrparieme Tramintorn. |  |
| ticlustre ti | gILICON PHOTO TRAN- |
|  |  |
| a large range of | Men Shand Smw, roull |
| technical and data | data asalable. Wulty |
| BOOKS ARE NOW | guaranterel. |
| available ex stock. | Uty. 1-24 |
| SEND POR FREE LIST. | Price ea. 60p 44p 38p |

Yanuinethrers


Puk No. Content: Price Uル上00 $=12 \times 7400 \quad 0.85$ $\begin{array}{lll}11001-12 \times 7401 & 0.65\end{array}$ VIC02-12 $\times 7403 \quad 0.65$



 VIC10
V12 $2 \times 20=12 \times 7+10$
N U1C30 $=12 \times 7330$ VIC40- $12 \times 7440$
 $\begin{array}{ll}11 C 43-3 \times 7+42 & 0.83 \\ 1 / 1 C 4=5 \times 743 & 0.85 \\ 1\end{array}$


## 2 Amp. BRIDGE RECTS.




QUALITY TESTED SEMICONDUCTORS

|  |  | $\underset{\substack{\text { Price } \\ \text { PD }}}{ }$ |
| :---: | :---: | :---: |
|  | 20 ke |  |
|  | 18 White apot |  |
| Q3 | + Weis type |  |
| Q4 | Matcbe |  |
| Q5 | 75 |  |
| Q ${ }^{\text {d }}$ | OCJ\%tran |  |
| 98 | AC 198 tramaistor, PN |  |
| Q | AC 120 tranaintora P2 |  |
| Qy | OC ${ }^{\text {a }}$ |  |
| Q | Oc 71 |  |
| Q1 | - AC 1271": Complenientary pulro |  |
| Q12 | 3 Ar 116 type tramanturn |  |
|  | 3 AF -17 17 l |  |
| Q14 | 3 W: 171 H.F. tspe trausint |  |
| Q |  |  |
| Q1 |  |  |
|  | NPN $2 \times$ MT.1d1 ${ }^{\text {d }}$ |  |
|  | $\begin{aligned} & \text { MADT } 2 \times \text { MAT } \\ & 120 . \ldots . . \end{aligned}$ |  |
|  | MAITM: \& MAT 101 121 |  |
|  | OC 44 dermanfum |  |
|  | 4 AC 127 NPN Germaniun tr |  |
|  | mo NKT tranalitorn A.F. R.F |  |
|  | OA |  |
|  | Is IN914 silicon dioden 78 PIV 78 |  |
| Q $\mathrm{Q}^{\text {a }}$ | n OA9: fiermanint illoxden 1N69 ....................... |  |
|  |  |  |
|  | 2 Hilicon momer rectiters |  |
|  | 4 Blicua trambintore ${ }^{2} \times$ |  |
|  | 7 Hilicon wwitch tranelatorn NPN |  |
| 31 | a Mllicon wwith traunjat NPN |  |
| 43:2 | 3 'sivenlicont $1 \times 2 \times 1132$ |  |
|  | 3 Hillcon SPN transilutorn: |  |
| Q34 |  |  |
|  | , Hillcon PNP TO- |  |
|  | 2 N 304 T TO-18 |  |
|  | 2 N 3063 NPN Slicon trin |  |
| Q3* | 7 NPN trabiainturn $4 \times 2$ N3703, is |  |

## ELECTRONIC SLIDE-RULE

The MK Rlide lule, dealaned io mimpllis tilec ronto celculathon fentures the following acales:
Converalon of frequency and Wherlength. Calculation of L. ( and fo of Tuned Circults. Hemctaner and Helf Inductance. Area of Clrelen vinale of Cylnuers. Resinismee of Conductori Angle Frunctions. Natural Loge and 'e'runctions ad Bquare Kools. Conversion of kW and 1 fp A mant for every electronis englineer und eathual ant. Size: 2\% cm = term. "omplete with cane nid
Price each: $23 \cdot 60$
notruction.

## FULL RANGE

 ZERER DIODES VOLTAGE RANGE 2-33\%. 400 nIV (DO-3 Cane) 12 D en. ItW (TopHat) 18 pes en. 10Htud) 32 p .

KING OF THE PAKS Unequalied Value and Quality SUPER PAKS NEW BI-PAK UNTESTED
| NEW LOW PRICED TESTED S.C.R.'s
P

| IA 10 A | 16 A | 90 A |
| :---: | :---: | :---: | TOB TA

TO
TO
oney beck refund it nol satisfed
Pak No.
escription

IT 3 7b Clertientum Gold Booded Sub-Min. Like OA5, OA47

40 (iermandurn Tranmistora Ike OC81, AClizs 60 gooma sub-Min. Bulicon Diorlen

if 7 Bil. Rectifers TOP-HAT 750 mA VLTG. RANOE up Lo 1000 0.85

20 Mixed Voltages, 1 Watt Zever DJoden


$\overline{U 13} 30$ PNP-NPN AII. Trannlatorn OC220 \& 28104

$\frac{10}{} \frac{-3}{3}$ Amp Bilicon Rectitern Atud Type no to 1000 PIV
Ū17 30 Germanlum PNP AF Trandintore TO-S Ilke ACF $17-2$

1.1 .8 Amp Bulicon Rectifers Top Hat up to $\frac{1000 \mathrm{PIV}}{8}$


30 Mat̄T: like MUz Herlea PNP Tranatatorn
U2t 20 Germanlum a Amp Rectiftern OJM Berles up to 300 PiV 0.85

30 Fat Buitching Bilitenn Hioden like INO14 Mlero-3ing
In NPN Germanlumi AF Trangntori TO-1 Ilke AC127
$\frac{1290}{10 \text { A Amo BCR'o TO. } \bar{b} \text { ran, up to } 800 \text { PIV CR }}$

3235 Zener Dlodes 400 m W 50.7 cane $3-18$ volte mixed
133 TS Platic Came I Anp SUlicon Hectlderw IN 4000 Serlen

U136 25 Billicon Planar NPNTranslators TO. $\overline{5}$ BF Y80/b1/52
$\mathbb{1 1 3 7} 30$ Bilicon Allug Tranaletors 80-2 PNP OC200, 28322.


1 "so 10 Dü Transletors 6 leat TO-0 2N2080
C41 25 BF Germantum Trannintore TO-1, OC46, NKTi2



ica

## 



[^5] 85 $\delta$ 0.85 $\overline{58}$ 88 85 8 8
 odi No'g. mentioned abore are given an a gulde to the
the pak. The derices themarlve are normally unmasked.

SIL. RECTS. TESTED


Giro No. 388-7006

## 213055

115 WATTSIL
POWER NPN SSDEACII

## POST OFFICE

 TELEPEONEDIALS 800 CADMIUM CELLS ORP12 480
$\qquad$ $\begin{array}{r}750 \\ .880 . \\ \hline\end{array}$

## INTEGRATED CIRCUIT PAKS <br> INTEGRATED CIRCUI

which include Functiona
$\qquad$
UICHO Contente Pric
UIC1

D1698 NPN SHLCON DUAL TRANSISTOR $\begin{array}{ccc}\text { (Blmilar to } \\ 1 & 2.852060) \\ 0 & 100+\end{array}$

## -runct

## ragit <br> No

 Pak No. Contents Pric U'ICYO $=8 \times 7490$VIC91 $=5 \times 749$ HIC91-8 $\times 7491$
 $111093-8 \times 7403$
$11094-8 \times 7444$ $111094=8$
$11095=5$ IIC96 $=8 \times 7+95$
(I)C100 $=8 \times 7+106$ IIC100 $=8 \times 7+100$
U1C1 $21=5 \times 74121$
U1C141 $=5 \times 7+141$
 $\begin{array}{lll}\text { UICIS } & 5 \times 74154 & 0.85\end{array}$
$\qquad$

## 回Tric

## COMPLETE* STEREO SYSTEM



## £51-00

40 Watt Amplifier
Viscount III-R102 now 20 watts per channel. System I includes.
Viscount III amplifier - volume, bass. tteble and balance controls. plus switches for mono/ stereo on/oft function and bass and treble filters. Plus headphone socket. Specilication
20 watis per channel into 8 ohms Total distortion@ 10W@1kHz 0.1\%.P.U. 1 (for ceramic cartiridges) 150 mV into 3 Meg. P.U. 2 (for magnetic carlidges) 4 mV 万, 1 kHz into 47 K equalised within IdB R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power) Tape out faclitites: headphone socket, power out 250 mW per channel. Tone controls and fifter characteristics. Bass: $12 \mathrm{~dB} 10-17 \mathrm{~dB}$ © 60 Hz . Bass filter: 6 dB per octave cut. Treble control: treble - 12 dB 10 -12 dB a 15 kHz . Treble filler: 12 dB per octave. Signal fo norse ratio: (all controls at max.) -58 dB . Crosstalk better than 35 dB on all inputs. Overload chatacteristics better than 26 dB on all inputs. Size approx. $133^{*} \approx 9^{*} \quad 33^{3 *}$. Garrard SP25 deck, with magnetic cartridge. de luxe plinth and hinged cover,

Two Duo Type II matched speakers Enclosure size approx. $17^{\prime \prime} \times 10^{\frac{1_{2}^{\prime \prime}}{2} \times 6_{2}^{\prime \prime} \text { in }}$ simulated teak. Orive untit $13^{\circ} \wedge 8^{\circ}$ with parastite tweeter. Complete System $£ 51.00$

### 669.00

System li
Viscount III amplifier (As SystemI) Garrard SP. 25 (As SystemI)
Two Ouo Type IIIA matched speakers Enclosure size approx. $31^{\prime \prime} \times 13^{\prime \prime}$ * $11 \frac{1^{\prime \prime}}{2}$ Finished in teak veneer. Orive units approx. $133^{\prime *}$. $8{ }_{6}^{1 /}$ with $31_{4}^{\prime \prime} \mathrm{HF}$ speaker. Max. power 20 watis. 8 ohms. Freq. range 20 Hz to 20 kHz

Complete System $\mathbf{£ 6 9 . 0 0}$
PRICES: SYSTEM 1
Viscount III R 102 amplifies $\quad[24-20 \quad \mathrm{f} 1 \mathrm{p}$ \& p 2 Duo Type ll speakers $\quad$ [14.00 $\mid \mathbb{\$ 2} .20 \mathrm{p}$ \& Garrard SP25 with
MAG. cartridge de luxe plinth and hinged cover
$\$ 21.00$
© 1.75 p 8 p
Total $\mathbb{C 5 9 . 2 0}$
Available complete for only $\mathbf{£ 5 1 . 0 0 + £ 3 . 5 0 p . \& p . ~}$
PRICES : SYSTEM 2
Viscount R 102 amplifier $\quad \$ 24.20+[1 \mathrm{pbp}$ 2 Ouo Type Ill A speakers $\quad\{39.00+\mathbb{} 4,00 p$ \& p Garrard SP25 with
MAG. cartridge de luxe plinth $\$ 21.00$
[1.75 p 8 p and hinged cover

Available complete for only. $\mathbf{£ 6 9 . 0 0 + 1 4}$ p 8 p.

## STER



## QUALITY SOUND FOR LESS THAN£19.00

Stereo 21 easy to assemble audio system kit, - no soldering required. Includes:-
BSR 3 speed deck, automatic, manual facilities together with ceramic cartridge.
Iwo $8^{\prime \prime}>5^{\prime \prime}$ speakers with cabinets
Amplifier module, Ready built with control panel, speaker leads and full. easy to follow assembly insuructions.

For the technically minded:-

## Specifications:

Input sensitivity 600 mV : Aux. input sensitivity 120 mV : Power output 2.7 watts per channel: Output impedance $8-15$ ohms. Stereo headphone sockef with automatic speaker cutout. Provision for auxiliary inputs - radio, tape. etc., and outputs for taping discs. Overall Dimensions. Speakers approx. $15 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and eover in closed position approx. $15^{\frac{17}{2}} \times 12^{\prime \prime} \times 6^{\text {" }}$. Complete only $\mathbf{£ 1 8 . 9 5}$ Extras if required. Optional Diamond Styli $\mathbb{f 1} \mathbf{3 7}$

+ 11.60 p 8 p
Specially selected pair of stereo he adphones with individual level controls and padded earpieces to give optimum performance. $\mathbf{~} \mathbf{3} .85$.


## 8TRACK CARTRIDGE PLAYER*

Elegant self selector push button player for use with your own stereo system. Compatible with Viscount Ill system, the Stereo 21 and the Unisound module.
Technical specification.
Mains input. 240V. Output sensitivity 125 mV Comparable unit sold elsewhere at $\mathbf{f} 24.00$ approx.
Yours for only $£ 10.95+90 p . p \& p$
 BUILD YOUR OWN STEREO AMPLIFIER
For the man who wants to design his own stereo -here's your chance to start, with Unisound-pre-amp. power amplifier and control panel, No soldering-just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only. $\mathbf{f 7} \mathbf{7} \mathbf{6 4}+55 p . p \& p$

## DISCO AMPLIFIER

## Reliant Mk IV Mono Amplilier, ideal for the

 small disco or house partiesOutputs 20 watts R.M.S. into 8 ohms (sulable for 15 ohms).
Inputs ${ }^{5} 5$ Electrically Mixed Inputs. *3 Individual Mixing controls. "Separate bass and treble controls common to all 5 inputs. * Mixer employing F.E.T. (Freld Elfect Jransistors). "Solid State Circuitiy. Attractive Siyling. INPUT SENSITIVITIES

1) Crystal Mic or Guitar 9mV. 2) Moving coil Mic or Guitar 8mV. 3), 4), 5) Medium output equipment (Gram. Juner, Monitor, Organ, etc.) all 250 mV sensitivity. AC Mains 240 V . operation.
Size approx.12; inse 6 ins $/ 3 \frac{1}{2}$ ins $\mathrm{f} 13.50+60 \mathrm{p}$. postage \& packing.

PETAPE LINK CONSTRUCTORS


A suitable 3 speed tape deck. less heads. Caters up to $5 \frac{3}{3}$ ins. spools, 240 V AC mains. Unused but store soiled hence no
warranty. $£ 4.00+£ 1.00 p \& p$


Just write your order giving your credit card number
00 NOT SENO YOUR CARO

Mail orders to Acton. Terms C.W.O. All enquires Stamped Addressed Envelope. Goods not despatched outside U.K

Leaflets available for all items listed. Send stamped addressed envelope.


Radio and TV Components (Acton) Ltd.
21 High Street, Acton, London W3 6NG(E) 323 Edgware Road, London W2
Edgware: 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. Half day Thurs.
Acton: 9.30 a.m.- $5 \mathrm{p} . \mathrm{m}$. Closed all day Wed.

## Lemris UK'S LARGEST RANGE OF TRANSISTORS, IC'S RECTIFIERS, ALL SEMICONDUCTOR DEVICES <br> BEST PRICES <br> RETAIL•TRADE EXPORT \& INDUSTRIAL

FREE BOOKLET
All types of
 BRIDGES SCR's-TRIA
iNTEGRTED CIRCUITS F.E.T.-LIGHT DEVICES OVER 1500 DIFFERENT DEVICES ENTIRELY NEW EDITION SEND FOR YOUR FREE COPY

INTEGRATED CIRCUITS VERY IMPORTANT, ONLY branded IC's ALL $\cdots$ I.T.T... FAIRCHILD...SIGNETICS. So why buy allernatives or under spec. devices when
need we say morel

## 



TRANSISTORS

| AAZI3 | 10p | BC182 | 12p | 3YZ13 35p | OL36 | 65p | 7.TX108 10D | 2N3714 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC107 | 35p | $\mathrm{MC}^{\prime} \mathrm{Y} 32$ | 85p | Cl08D 55p | OC44 | 18p | 2TX 30014 p | 9N3771 | 1.75 |
| AC128 | $20 p$ | BCY39 | $2 \cdot 00$ | ( ETTII | $0 \mathrm{OC}+5$ | 18p | 2TX30! 18p | 2N3773 | 2.25 |
| $\mathrm{ACl}^{8} 8$ | 20 p | HCY55 | $2 \cdot 50$ | 55p | 0471 | 15p | ZTX500 15D | 2N3790 | 2.25 |
| ACY17 | 35p | BC'770 | 15p | GET115 75 | $0 \times 7$ | 25p | 20:301 40p | 2N3R19 | 35p |
| ACY39 | $65 p$ | HET71 | 20p | ${ }^{4} \mathrm{E}$ ET880 55D | $0 \times 77$ | 85p | 2N607 15p | 2N3846 | 75p |
| AD149 | 80p | B-Y72 | 13p | 1.M309K | 0 CLI | 28p | 2×706 100 | $2 \times 3003$ | 15p |
| AD161 | 39p | BD124 | 80p | 1.87 | 0C83 | 25p |  | 2 N 400 | $14 p$ |
| AD1f2 | 39p | HDI31 | 450 | MATİ1 25p | OC1 40 | 65p | $\because N 987$ 43D | 2N4126 | 15p |
| $A_{\text {A P1 }} 17$ | 20p | HP115 | 22p | MJ E340 50p | OC170 | 25p | 2N1132 25p | 2 N 4871 | $35 p$ |
| AF'll | 50p | Ar180 | 33D | MJ PE5 20 85 | 0 C 200 | 35p | 2N1304 22p | 2N5457 | 36p |
| AF139 | 33p | 13 F 194 | 13p | MJ E33055 | Oxsoz | 80p | 2N1613 200 | 28001 | 3.00 |
| AF186 | 40p | BrXI3 | $25 p$ | 75p | OCP71 | 1.00 | $2 N 1671100$ | $280 \% 6$ | $8 \cdot 80$ |
| A F 239 | 440 | 1洮X ${ }^{\text {X }}$ | 85p | MPF105 ${ }^{\text {468 }}$ | ORP12 | 55p | 2N2147 78p | 28303 | 70p |
| A8Y:\% | 30D | 8FX ${ }^{\text {B8 }}$ | 22p | NKT21745p | ORPifo | 45 p | 9N:160 69D | 40250 | 45p |
| BA115 | 10p | ArY50 | 20p | NKT40480p | P346A | 20p | 2N2926 10p | 40361 | $45 p$ |
| HAX13 | ${ }^{5} \mathrm{p}$ | BFY51 | 20p | OAS 60p | TILU09 | 25p | 2N3053 20p | $4036 \%$ | 400 |
| BC107 | 15p | Brytid | 45p | OA81 10p | T1P29A | 49p | 2N3054 450 | 40408 | 50p |
| BC108 | 15p | BPY90 | 750 | OAz20 8p | TIP30A | 38p | 2N3035 45p | 40468 | 75p |
| nC109 | 15p | BLY36 | 8.85 | OA:20\% 10p | TIP31A | 61p | $2{ }^{2} 3440500$ | 40836 | 1.00 |
| BC109C | 14p | 88X20 | 15p | OC16 85p | TIP4IA | 74 p | 9N3442 1-10 | 40, 30 | 85p |
| BC113 | 18p | BU105 | 2.20 | OC50 1-23 | TIP42A | 80p | [ N 3525 80p |  |  |
| BC147 | 120 | BY100 | 15p | OC:28 63p | T1843 | 28p | 2N3614 59p |  |  |
| BC169C | 140 | HY127 | 150 | 00.35505 | $-405 A$ | 25p | 2Nazus 11 |  |  |



2N414 1C
Integrated clrcuit radlo as
fealured by many magasines

## (PW Jan. 73 Reprini <br> Ref. No. 19 for 10p) E1-20

STROBE TUBE
ZFT4A/XTF2. Sult-
Bble Ior Dec. 73
Pract. Electronics
S2.50
ST2(D32) DIAC 25p
CRSI/40 SCR 450

Ultrasonle Transducers
Operate at 40 Khz up to 100 yds Ideal remote switching and slonalling. Complete with data transmitter and
Per palr $\mathbf{5} 5.90$
TA960 IC
3015F 7 SEG.
l.C.
dala price complete with 80 each
(digltal clock circuits
ref. No. 31, 15p)

TRANSISTORS SPECIAL OFFER

| 2 N 3055 |  |
| :---: | :---: |
| 25 | 47p ea |
| 100 | 42p |
| 500 | 39p |
| 1000 | .34p |
| BY127 |  |
| 25 | . 12p ea |
| 100 | . 10p |
| 500 | ..... 9p |
| 1000 | ...... 3p |

ZENER DIODES $400 \mathrm{~m} / \mathrm{w}$ 日ZY88/
BZX83. From $3 \cdot 3$ BZX83. From 3.3
volt $=33$ volts 10p volt
$\qquad$ ature Tubulars IN 4700 serles. From 3.3 volt - 33 10 watts. Sind Mounting. ZS erles $6 \cdot 8$ volts
100 volls $5 \% ~ 400$ 100 vor.
each.



LINEAR I,C. $\begin{array}{ll}702 \mathrm{C} \text { (T05) } & 75 p \\ 709 \mathrm{C} \text { (T05) } & 39 \mathrm{p}\end{array}$ 709C (D.I.L.) 39p 723C (T099) 90p 723C (D.L.L.) 90p 728C (D.I.L.) 45p 728 C (T099) 45p 741 C (T05) 50p 741 C (D.I.L.) 50p 741 C (D.I.L.) 50p
747 C (T099) $\mathrm{E1} \mathrm{\cdot 0O}$


TRIACS - Stnd mounting with accessoriet


## NEW RANGES BRIDGE RECTIFIERS

FEATURES SMALL SIZE AND

$$
\begin{aligned}
& \text { LOW COST SIzes. ape approx. } \\
& 250 \mathrm{M} / A \text { OUARTER AMP }
\end{aligned}
$$

$$
\begin{aligned}
& 250 \mathrm{M} / \mathrm{A} \text { QUARTER AMP } \\
& \text { B025/05 } 50 \text { PIV } 16 \mathrm{p}
\end{aligned}
$$

B025/10 100 PIV 18p

$$
\text { x \& } 1 \text { to dla. }
$$




SILICON CONTROLLED RECTIFIERS

| Type |  | 1-11 |
| :---: | :---: | :---: |
| ONE AMP (TOS) | P.I.V |  |
| CRS 1/10AF | Yoov | 300 |
| CRS 1/20AF | 200v | 350 |
| CRS 1/40AF | 400 | 458 |
| THREEAMP CTO |  | 550 |
|  | 50v | 400 |
|  | 100 y |  |
| CRS 3/20AF |  | - |
| CRS 3/40AF | 4000 | 559 |
|  |  |  |
| CRS 54000 |  | 60p |
| SEEEN AMP (TOA | 48) |  |
| CRS 7/100 | 100v | 60 p |
| CRS 71200 | 200\% | 678 |
| CRS ${ }_{\text {CRS }} 716000$ | 600\% | ${ }_{950}$ |

EDGWARE ROAD. LONDON W2

LenryPAMEL METERS - TRANSFORMERS - CONTROLS - RELAYS IRONS - TOOLS • VALVES - POT CORES MOST TYPES OF COMPONENTS

## TEST EQUIPMENT

MULTIMETERS

## LaRGEST RANGE OF KITS \& gadgets

(carr. etc. 30p)
M2to
TLH33D OK/Volt Slimline
437 RKIVolt Robust 7.75
U4324 OKM Nol with AC Co. AC up 1040 KHz 4 . 85
AFtos sokivolt with AC curremt ranges
U4313 20K/Volt AC current. Steel case Model 500 Plus Built in transistor tester11.
10
10.

## OTHER EQUIPMENT


New Revolutionary Supertester 680R C18

A SELECTION OF INTERESTING ITEMS
 output. All parts $£ 7$ : ese (baftery 22p), carr, otc. 32p.
EXCLUSIVE: SPECIAL OFFERS mW/LW CAR RADIO Rotel RA310 $15+15$ wa


pacho. SM CAR STEPEO Wein Ws00 Battery/Mains (.. Earth) with speakers in AKAI GXC40
Pods \& fixings. \&12.50 Stereo caseette recorder carr/packg. 40p. $\quad$ G50. 85 carr/packg. 50 p . Tape Player © 7 -25. Cassetto phones. Es © 5 carr/packo. Car Lighter Plug and adaptor 200.
for all casselte and radio PORTABLE CASSETTE width) ki.t each (atate TAPE PLAYER-
Rotel Stereophones RH630 RH700
RH430
carr/packg. 20p.

## Henrys ${ }^{\text {mano }}$

 EDGWARE ROAD, W2
## SPECIAL PURCHASES

 UHF TV TUNERS CHANNELS 21 TO 64 Brand new transis torised geared tuners for 625 line £2.50. Post 20p.
## EASY TO BUILD KITS BY AMTRONEVERYTHING SUPPLIED

```
Madio control receiver
```

Madio control receiver
Superhet A/C receiver
Superhet A/C receiver
AM signal generator
AM signal generator
Simole transistor tester
Simole transistor tester
8 watt Amplifier
8 watt Amplifier
12 watt amalifier
12 watt amalifier
Stereo control uni
Stereo control uni
Mono conirol unit
Mono conirol unit
Power supoly for 120
Power supoly for 120
Power supoly for 2 x 120
Power supoly for 2 x 120
AMIFM aerial amolifier
AMIFM aerial amolifier
Auto packing light
Auto packing light
Mic. preamplifier
Mic. preamplifier
LF generator 10Hz-1 mHz
LF generator 10Hz-1 mHz
Sa.wave generator 20Hz-20Khz
Sa.wave generator 20Hz-20Khz
SWR moter
SWR moter
NH-CAD Charger 1-2-12v
NH-CAD Charger 1-2-12v
STAB Power mupgly 6-12v 0.25-0-1A
STAB Power mupgly 6-12v 0.25-0-1A
Eloctronic Chaminch
Eloctronic Chaminch
Windsereen wipar timer
Windsereen wipar timer
Acoustic switch
Acoustic switch
*orat Detector (electronice only)
*orat Detector (electronice only)
Capacitive Burglar alam
Capacitive Burglar alam
Gular preamo.
Gular preamo.
軘. car alarm
軘. car alarm
(-Ve Earth)
(-Ve Earth)
Scope Calibrator
Scope Calibrator
Level indicato!
Level indicato!
Photo cell swltch
Photo cell swltch
Eloctronic continulty tester
Eloctronic continulty tester
hoto timer
hoto timer
|ide projector auto leed contro
|ide projector auto leed contro
M,
M,
Signal iniecto
Signal iniecto
Testakit
Testakit
Bufer Battery Charger
Bufer Battery Charger
Capacitive Contact Alarm
Capacitive Contact Alarm
Electronic Keyer (lectronic Digital Clock

```
    Electronic Keyer (lectronic Digital Clock
```

(LI
GUBJECT TOERED
sTOCK

Prices correct at Subiect to ehange without nolice.

## BUILD THIS TUNER

MW/LW Radio Turner to use with any ampliner. eaturas Mulinera RF/if module Ferrit Yaria, ${ }^{\prime \prime}$ All parts. $\mathrm{E} 4 \cdot \frac{55}{}$ cherr. 15 p .

```
MULTI-USE & RADIONIC KITS
```

MULTI-USE \& RADIONIC KITS
10-1 10 Prolocts
10-1 10 Prolocts
50-1 150 Prolect
50-1 150 Prolect
Telephone Communicator
Telephone Communicator
x20 20 (Elee.) { Prolect
x20 20 (Elee.) { Prolect
X40 40 (radio)
X40 40 (radio)
All transistor circuits with hand books All All typer offered sublect to avallability. $10 \%$ VAT TO EE AOOEO TO ALL OROERS. UK VAT TO EE AOOEO. TO ALL ORO

```
E4.50 HANIMAX BC8OB POCKET ES. 75 CALCULATOR WITH
E 30
SEE FACING PAGE FOR ADDRESSES

\section*{Everyday Electronics Classified Advertisements}

\section*{RATES：9p per word（minimum 12 words）．Box No．20p．extra．Semi－display－ \(\mathbf{8 6} \cdot \mathbf{0 0}\) per single column inch．Advertisements must be prepald and addressed to Classified Advertisements Department，＂EVERYDAY ELECTRONICS，＂I．P．C．Magazines Lid．，Fleefway House， Farringdon Street，London EC\＆A 4 AD．}

\section*{BOOKS}

WORLD RADIO TV HANDBOOK 1974， 23.15. How to Idsten to the World，\＆2．Deluvery and VAT included．Pleese send 3 p for full Yst，David McOarve．PO Box 114P．Edinburgh 5H1 LHP．

\section*{FOR SALE}

PROFESSIONALLY made Tutor Board． Varnish insulation．All main holes drilled．\(£ 1\) incl p\＆p．B，H．Malme， ＇Newhaven＇，Mill Lane，East Runton， Norfolk．

UNUSED DEMO DECK plus every issue of Everyday Electronics．Offers： 28 Sutton Drive，Cullingworth，Near Bradford，Yorkshire．

LOUDSPEAKERS－new from \＆1．Full range 8 in， \(4 / 8 \Omega\) ， \(10 \mathrm{WRMS}, 60 \mathrm{~Hz}\) Bass range \(8 i n, 4 / 8 \Omega, 15 \mathrm{WRMS}, 60 \mathrm{~Hz}\) Bass
Resonance，\(£ 2.75\) ．All components， Resonance，\({ }^{〔 2 \cdot 75 .}\) All components，
Catalogue 10 p ．L－State Electronics， Discove Cottage，Bruton，Somerset．

\section*{RECEIVERS and COMPONENTS}

MUST GO！Electronic components． Pots，resistors，capacitors，etc．Send large stamped，addressed envelope for list．P．FASOLI， 28 Middleham Street， Manchester M14 7NG．

7L ABSORTED COMPONENTB EA． 6 E．

ILICON DIODEE \(650 \mathrm{~V} 1+\mathrm{A}\) ． \(35 \mathrm{p}(5 \mathrm{p})\) ．
COMPUTER PANELS 5－BC108，DIodes 4－55p
（10p）．LANCE PANELS，average 40 tranelators， loads of hi－stabs，ote．該p（250）．

5゙＂\(\times\) 5＂
VA5LUPAKS－from 25 to 750 ．Send 100 for llete
of these and panels etc．Relund on purchase．
J．W．W．RADIO
Posfage in brecketent，Bale，Chashire M3s Maly
COMPONENTS GALORE．Pack of 500 mixed components manufacturers sur－ plus plus once used．Pack includes Resistors，carbon and W．W．capaci－ tors various，transistors，diodes，trim－ mers，potentiometers etc．Send \(\varepsilon 1+10 p\) p．and P．c．w．o．to CALEDONIAN COM－ PONENTS．Strathore Road，Thornton． Fife．

TUNBRIDGE WELLS，components from Teleservice， 108 Camden Road， Tunbridge Wells，Kent．Telephone 31803.

MISCELLANEOUS


BATTERY ELIMINATOR KITS．Our well－known Mini Mains Pack Kits now complete with drilled insulated base \(32 \times 55 \mathrm{~mm}\) ．Fits into space of most large transistor batteries．Easy wiring instructions．Safe，silent mains trans－ former，silicon rects，smoothing capa． citor，all top grade．For any ONE of these voltages（state which）： 3 V 300 mA max．； 6 V ． 180 mA ； 9 V ， 120 mA ； \(18 \mathrm{~V}, 60 \mathrm{~mA}\) ． 1.50 VAT included．By maif only，UK post 5p．Amatronix Ltd．， 396 Selsdon Rd．，South Croydon，Sur－ rey CR2 ODE．

BEGINNERS，we exist for you．ln－ struction，components，constructional kits．Send S．A．E．to Electrolern， Lyburn Lodge，Nomansland，Wiltshire．

CONSTRUCTION AIDS．Screws，nuts． spacers，etc．，in small quantities． Aluminium panels punched to spec．or plain sheet supplied．Fascia panels plain sheet supplied．Fascia pane aluminium to individual re－ quirements．Printed circuit boards－ masters，negatives and boards，one． oft or small numbers．Send \(6 p\) for list． RAMAR CONSTRUCTOR SERVICES， 29 Shelbourne Road，Stratford－on－ Avon，Warks．

DIRECT FROM MANUFACTURER－a comprehensive catalogue of UHF \＆ VHF／FM aerials，fixing brackets， chimney lashings，clamps，masts， amplifiers，cable，etc．，for the D．I．Y． enthusiast．Complete with useful in stallation hints．Send 3p stamp to CLAYDEW ENTERPRISES，（EE）， 261 Hardess Street，London S．E．24．

RADIO \＆TELEVISION AERIAL BOOS－ TERS \(£ 2.95 \mathrm{p}\) ，five television valves 45 p ． 50p bargain transistor packs，bargain £1 resistor and capacitor packs．UHF VHF televisions \(\mathbf{2 7 . 5 0}\) ，carr．£1．50p． S．A．E．for 3 leaflets．ELECTRONIC MAIL ORDER（BURY）LTD．，Bridge Street，Ramsbottom，Bury，Lancs．

\section*{DON＇T LOOK} unless you can resist the temptation to get these super＇attention－zetters＇： \(\star\) Pockec－sized MAXI－VOLT Bis tinch Spark Generator（instant 15，000 volts！）．Ready－made，needs no batteries．Carry it around any－ where．Only weighs abous 3 oz． （ 85 g. ）sand \(\mathrm{fl} \cdot \mathbf{3 5}\) for your Maxi－ Vole now！
＊Unique TRANSMITTER／RE． CEIVER Kit．No licence examina－ tions or tests required to operate this eransistorised equipment．Easy to build．Get transmitting．Send 65．90 for yours now！
＊Psychedelic MINI－STROBE Kit． Take a pocket－sized lightning storm to Disco＇s and parties．＇Brain－fraaze＇ ＇em with varispeed stop－motion flashes．Includes super case too． Send C2．20 now！
（All prices include V．A．T．，packing， and postage．）

\section*{Sond remiteance to \(^{\circ}\)}

BOFFIN PROJECTS，
1 CUNLIFFE ROAD
STONELEIGH，EWELL，SURREY （Mail order only）
Or for more details，send 15p for lists． plus free design project sheot．


\section*{SERVICE SHEETS}

SERVICE SHEETS for Televisions， Radios．Transistors，Tape Recorders， Record Players，etc．，from \(5 p\) with free Fault－Finding Guide，S．A．E．orders／ enquiries．Catalogue 15 p ．Hamilton Radio， 47 Bohemia Road，St．Leonards， Sussex Telephone Hastings 29066.

\section*{WANTED}

E．E．VOL． 1 \＆ 2 WANTED．－Andreas Follesdal，Bridge House，Wootton， Woodstock，Oxon．

TURNTABLE for Philips AG． 2121 Disc Jockey Record Player．Box No． 1

\section*{EDUCATIONAL}

CITY GUILDS FXAMINATIONS．Make aure you aucceed with an ICS home study course for \(C \& G\) glectrical installetions．Tele－ communications Techniolans and Radio Amateurs．Free detalls from：－International Correspondence Schools．Dept．7310．Interteat House．London SW8 40 J.

HOLIDAY FOR BOYS 14／16 years August 1974．Tuition and practical work in electronics，radio production and tape recording，engineering （Karting）and photography． 11 days in Norfolk－ 17.50 ．Write for free brochure：INTER－SCHOOL CHRIST． IAN FELLOWSHIP，c／o 1，Hubbard Road，London SE27 9PJ．

COLOUR TV SERVICING．Make the most a the current boom．Learn the technique of tervicing Colour \＆Mono TV eets throush new home atudy courses，approved by leadias． manulacturers．Also redio and eudio courin． dence Bchools．Dept．731D2．Intertext Howse． Lence schools．

TEAINNICAI. TKAININ(i. Get the qualificatlons you need to sucreed. Home study courses in Electronics and Electrical Engineering, Malntenance. Rudio. TV. Audio. computer Engineering Re Prngramming Als elf bulld fall Correspondence Scluev. Dept. i3103. Intertext House. London SW8 4UJ.


\section*{INSTRUMENTAL AUDO EFFETS}

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM iv BATTERY (not supplled). ALL COMPONENTS AND PRINTEO CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE; E2.E6 post pald.

CREATE "PHASE" EFFECT ON YOUR RECOROS, TAPES ETC.. UNIQUE CIRCUITRY enables you to create phase EFFECT AT THE TURN OF A KNOB. OPERATES FROM iv BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT GOARD \& FULL INSTRUC. TIONS. KIT PRICE: C2\&f post pald.

MAIL ORDER ONLY.
S.A.E. ALL ENOUIRIES.

\section*{DABAR ELECTRONIC PRODUCTS}

Ma, LICHFIELD BTREET, WALSALL, STAFFS. WBI IUz

\section*{A DEXTER
 ALLOWS COMPLETE \\ LIGHTING CONTROL}

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch it is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains \(200-250 \mathrm{~V} .50 \mathrm{~Hz}\). All DEXTER DIMMASWITCH models have buitt-in radio interference suppression. 600 watt \(£ 3.52\) Kıt form \(£ 2.97\) \(\begin{array}{lll}\mathbf{6 0 0} \text { watt } £ 3.52 & \text { Kit form } £ 2.97 \\ 300 \text { watt } £ 2.97 & \text { Kit form } £ 2.42\end{array}\) All plus 12 p post and packing
Prices include VAT. Please send c.w.o. 10


VEADBOARIS GIV A PROFFSEIDN:I FIIISH TO YOUR WOAK
\(0.1^{\prime \prime}\) and \(0.15^{\prime \prime}\) pitch, plain and copper clad universal circuit boards. AVAILABLE FROM YOUR LOCAL RETAILER.
TRADE DISTRIBUTOR N. Rove (Electriea) Lta, London, w.c. 1.

vino nitctmonics tio.



Z40 E4 25 (63p) PROJECT 605 E10. 00 ( \(22 \cdot 30\) ) \(200 \mathrm{CS} \cdot 3 \mathrm{~L}\) (74p) Stereo 80 Pre-amp Es. 44 (E1-05) Q18 ES. 9 (7pp) Proiect 80 Tuner E8. ©5 ( \(\mathrm{El} \cdot 10\) )




ZIPPY CABINETS
Attractive plasfic inatrument cabinets in 4 sizes. Pi \(80 \times 50 \mathrm{x} 30 \mathrm{~mm}\) - \(\mathrm{p}(25 \mathrm{p}) \mathrm{P} 2115 \times 85 \times 40 \mathrm{~mm} 37 \mathrm{p}(30 \mathrm{o})\) P3 \(155 \times 90 \times 50 \mathrm{~mm}\) हf:25 P4 \(210125 \times 70 \mathrm{~mm}\) Ef \(\cdot \mathrm{CD}\) (35p)
(45p)


OELUXE KIT FOR THE ICIz
includes all parts for the printed clrcult and volume, baser and treble controls needed to com . plete the mono version \(21-s s(200)\). Stereo model with balance control ह. \(5 \cdot 5\) (46).
ICIE POWER KIT
Supplites 28V 0.5 Amps 82.47 (50p).
LOUDSPEAKERS FOR THE TCI2

PREAMPLIFIER KITS FOR THE ICII
Type ifor magnetic pickups, mics and tunere. Mono model EI - 34 (24p). Stereo model Ez 34 (34p). Type 2 for ceramic or erystal plekups. Mono ebp (t 7p). Stereo EI. 20 ( \(23 p\) ).
SEND S.A.E. FOR FREE

CONOMICAL QUADRAPHONIC8
El.5 ( \(\mathbf{5 1} \cdot 30\) ) eff-contained matrix syatem in tizective capinet. Just foed ordinary \(\mathbf{g}^{\text {behennel}}\) etereo into it and connect outputs to 4 loudspeakers to obtain the latest experience in sound.

\section*{SWANLEY ELECTRONIGS}

\section*{32 Goldsel Rd., Swanley, Kent.}

Pianse add the sum shown in brachete after the price to cover the coat of post and VAT. Onicial credit orders from schools etc, welcome. Mall order only. No caliers, pletse. No VA
TRANSISTORS many typar simple diodes to \(I C s\) photovensiltue devices threshald switches, etc. etc.
MINITRON DIGITALINDICATORS
30151F Seven segment flament, compatible wion standard logie modules. 0-9 and decimal point 9 mm characters in 16 lead DIL \(£ 1-20\) Sulfable BCD decoder dilver 7447 E1. 15.
3015 G showing + or \(-\& 1 \&\) dec. pi. E1. 20
DALY ELECTROLYTIC CAPACITORS
in cans. plastic sleeved
\(1000 \mathrm{mF} / 25 \mathrm{~V} 28 \mathrm{p} 1000 / 5041 \mathrm{p} \quad 5000 / 100 \mathrm{E2} .91\) \(5000 \mathrm{mF} / 25 \mathrm{~V}\) 62p \(2000 / 5057 \mathrm{p}\) \(5000 / 50\) E1 is
POLYESTER CAPACITORS TYPE C. 280 Radial leads for P.C.B. mounting. Worming voltage 250V d.c.
\(0.01,0.015,0.022,0.033,0.047 \mathrm{ea}\) 3p
\(0.068,0.1,0.15\) ea. \(4 p\)
\(0.225 p: 0.3370: 0.478\)
0.22 5p: 0.33 7p:0.478p:0.6811p:1014p,1521p 2.224D.
SILVERED MICA CAPACITORS
Working rohage sou d.c.
Values in pFs-2.2 to 820 in 32 stages, each \(6 p\) 1000 , 1500 7p: 1809 8p: 2200 10n: 2700, 3600 12p
POTENTIOMETERS
ROTARY, CARBON TRACK, Double widers : good contact and long working llfe
P. 20 SINGLE linear 100 onms to 2.2 megohms P. 140 Single log. 4.7 Kohms 102.2 meqohms ea. 14 p .
DUAL GANG Ilinear 4.7 Kahms to 2.2 men. ohms, ea, ohms, ea. 4tp.
JP. 20 DUAL GANG Loglantllog 1OK, 22K, 47K 1 megohm only ea. \({ }^{6} \mathrm{D}\).
JP. 20 DUAL GANG antilog loK only, 48p
\(2 A D P\) mains switch with any of above 14p extra. Decades of 10,22 and 47 only avallable in ranges above.
SLIDER POTENTIOMETERS
Lthear or log. 10K to 1 meg. in all pooular values Es. \({ }^{\text {Efup }}\).
Control knobs blk/wht/red/yel/grn/blue/dk. orey/ it prey, ea, 6p.

\section*{ELECTROLYTIC CAPACITORS}

Axial Lead
\(A X\)
\(Q F\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline QF & 3 V & \(6.3 V\) & 10 V & 16 V & 25 V & 40 V & 63 V & 100 V \\
\hline 0.47 & - & - & - & - & - & & \(11 p\) & 8p \\
\hline 1-0 & - & 二 & - & - & - & 11p & - & 8 D \\
\hline \(2 \cdot 2\) & - & - & - & - & 11 p & - & \({ }^{1}\) & 9 p \\
\hline 4.7 & - & - & - & 110 & - & \({ }^{1} \mathrm{p}\) & 9p & 8p \\
\hline 10 & - & - & - & - & \({ }^{1}\) & 9 & 8 8 & 8p \\
\hline 22 & - & - & \% & - & \(9 p\) & 8 D & 8 p & 10p \\
\hline 47 & \(8{ }^{8}\) & - & 9 p & 1 P & \({ }^{9}\) & P0 & 10p & 13p \\
\hline 100 & 9 p & 8 8p & 3 P & 8 P & Pp & 10p & 12p & 19p \\
\hline 220 & \({ }^{10}\) & E & 9 D & 10p & 10p & 11p & 17p & 28p \\
\hline 470 & 9p & 10p & 10p & 11p & 13p & 17p & 24p & 45p \\
\hline 1,000 & 11p & 13p & 13p & 17p & 20p & 25p & 41p & - \\
\hline 2,200 & 15p & 11p & 236 & 26p & 37p & 41p & - & - \\
\hline 4.700 & 26p & 300 & 39D & 44D & 580 & - & - & - \\
\hline 10000 & \({ }^{42} \mathrm{D}\) & 45 n & & & & & & \\
\hline
\end{tabular}

\section*{Ihtis is Gu Service \\ \section*{DISCOUNTS}}

Available on all items except those shown with NETT PRICES. \(10^{\circ \prime}\), on orders from \(£ 5\) to \(£ 15.15^{*}\) PACKINGANDPOSTAGEFREE in U.K. For mail orders for \(£ 2\) list value and
under, there is an additional handling charge of 10 p. GUARANTEE OF QUALITY
All goods are sold on the understanding that they conform to manutacturers specification and
satistaction is quaranteed as such-no rejects. 'seconds' of sub-standard merchandise is offered lor sale.
V.A.T. Prices quoled do nol include V.A.T., for which \(10 \%\) must be added to tolal nell value of order. Prices subject to alleration without notice. S.A.E. with written enguirics p/casc

\section*{ELEGTRO/ALIE LTI}

28, ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY TW20 OHR Telephone Egham 3603

Telex 264475
NORTHERN BRANCH: 680, Burnage Lane, Burnage Manchester M19 1 NA Telephone (061) 4324945
Hours of business 9-5.30 p.m. 9-1.30 Sat. Manchester closed 1-2 p.m. dally.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27. Swarthmore PA 19081.



1 + VAI + 50p carr/packingl or (+ VAT - 50p car/packing) as illustrated
-ARN YOURSELF EASY
EARN YOURSELF EASY MONEY, WITH PORTABLE \(666 \frac{88}{68} \%\)

\section*{EQUIPMENT}

DISCO

DISCO MINI: A complete porzable disco. fitsed mixer/preamp, 2 decks all facilities.. As above bur with Slider Controls 100 wart amplifier for above
SDLS100: 100 wate mixer/amplifier with stider controls
100 100 wate mixer/amplifier
DISCO AMP: 100 wate mixer/amplifier

for up to 6-100 wast amplifiers)
SDLI (rotary controls):
(slider controls)
DISCO VOX (slider controls): The com-
plete disco preamp.
DJ100: 100 wate power amplifier for above D330L: 3 channel 3 kW sound to lisht D340L: as 30L plus buile-in microphone DIMAMATIC.IkW adjustable speed auto dimmer
Carisbro Neverberation Unit
SCENE STAOBE
SUPENSTMOBE
Disco anci-feedback microphone
Colt 150 wate liquid wheel projector I 50 wart Ol liquid wheel projecter 150 watt Q1 casserte wheel projector Spare Effecss and Liquid casserses, Iarge range of pacterns Mini spoe bank fieced 3 lamps Auto Trilite (mini with flashers) MIXERS/MICS/SPEAKERS/LIGBTING U.K.'s largest range of Disco lighting Gin liquid wheels AKG/hESLO/DS/CANLSERO/EAGLE CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURNTABLES PUBLIC ADDRESS COMPONENTS, MICS.


All prices carr. paid (UK) (VAT EXTRA) Barclaycard/Access call, write or phone your order \(01.7236 \% 63\) - easy tarms for callers.

\section*{EXCLUSIVE}

DECCA KELLY SPEAKERS

12 watt speaker Tweeter and Melinex Domed HF radiasor plus crossover 412.50 per pair of systems (carr/packg. 40p) or buile into ven. eerad cabinets, size \(10 \times 12 \times 61 \mathrm{in}\). C19.50 pair (carr. E1)

\section*{HI-FI TAPE}

EQUIPMENT

\section*{U.K.'s largest range} with discounts and
 demonstrations for
callers. Latast stock lists on request Phone 01.4024736 for Barclay/Access Card, Direct orders and latest prices.

\section*{TRANSISTORS}

SEMICONDUCTORS
U.K.'s largese range for every application. Small quantity discouns. Also Trade, Export and Industrial enquiries invited. Latest stock liss (Ref. No. 36). Including valves on request.

\section*{ELECTRONICS SUPPLIES}

5 pecialists in electronics for mare than 30 vears. Trade and industry and equipment.

SINCLAIR PROJECT 80


Stereo Preamplifier
Audio Fileer Unier Z40 is wate Amplifier Z60 25 watt Amplifier PZ5 Mod. for 1 or 2 Z40 PZ6 Mod. ( 5 Tab ) I or 2
PZ \({ }^{Z 40}\) Mod. ( 5 Tab) 1 or \(\ddot{2}\)

RAN
PZB
NEW FM TUN゙ER STEREO DECODEN All items post paid.
411.95 46.95 45.45 16.95 44.98 47.98 47.98
43.95
4.95
41.95
47.45
- VATTOBEADDED
\(10 \%\) VAT TO BE ADDED TO ALL ORDERS. EXPORT 5UPPLIED. Prices and deseriptions correct ar kime of proor. Subiect eo change without notice. Like a permanent job ar Henry's? Experienced and erainee salesmen required. Tel. \(01-402\) 6791.

EDGWARE ROAD, LONDON W2```


[^0]:    Everyday Electronics, March 1974

[^1]:    Ifree!
    Brochure, without obligation to:

    ## BRITISH NATIONAL RADIO \& <br> ELECTRONICS SCHOOL P.O. Box 156, JERSEY

    NAME
    ADDRESS

[^2]:    © IPC Magazines Limited 1974. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

    All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^3]:    Photograph of the completed component board and front panel.

[^4]:    * North Stafordshire Polytechnic (Any communications arising from the Teach-In 74 series must be addressed to Everyday Electronics, Fleetway House, Farringdon Street, London E.C.4).

[^5]:    ,
    0.85

