Cirkit. Making it
bigger and better.

Bumper new edition of the Cirkit Catalogue out now, containing 128 pages packed full of electronic components and accessories. Available from your local newsagents or by post from us. The Catalogue includes:

BATTERIES BOOKS CABLE
CALCULATORS CAPACITORS
COMPUTER ADD-ONS PRINTERS CONNECTORS CRYSTALS FILTERS BOXES KNOBS AEROSOLS HEATSINKS INDUCTORS
KITS AND MODULES METERS
PCB MATERIALS
RELAYS
RESISTORS
SEMICONDUCTORS
MEMORIES
MICROPROCESSORS LEDs
LOUDSPEAKERS SWITCHES
TEST EQUIPMENT
SOLDERING IRONS
TOOLS
TRANSFORMERS

L
$\underset{\text { Device }}{\text { Linear ICs }}$
Device
TL081 TL082
TL084 7N414
LM380 LM380
CA3189 NE542 TDA2002
ULN3859 HA12017
Memories and Microprocessors

Z80A	26-18400	£240
Z80A PIO	26-18420	£2,40
Z80A CTC	26-18430	£2.50
Z80A DMA	26-18410	\$7.30
Z80A DART	26-18470	£6.10
Z80A S1O/2	26-18142	$£ 6.50$
Z80B	26-28400	\$7.80
Z80B CTC	26-28430	¢780
Z8671	26-08671	\$16.00
8251	26-08251	\$3.10
8253	26-08253	£3.25
8255	26-08255	¢290
6116P-3	26-36116	£325
6264	26-36264	\&7.40
Z6132-6	26-06132	\$1200
MC51L01P45	26-05101	£3 16
4116-15	26-24116	¢159
4164-15	26-24164	£4.50
uPD41256C	26-24256	¢7,00
$2764-450 \mathrm{nS}$	26-02764	\$350
2732-200nS	26-12732	\$4.90
2732-450nS	26-02732	\$3.00
2764-250nS	26-12764	£3.50
2716	26-02716	\$3.00
27128	26-27128	¢5.90
27256	26-27256	\$14.50

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We
reserve the right to vary prices in accordance with market fluctuation.
Just send for our catalogue or visit one of our three outlets at:
200 North Service Road, Brentwood, Essex. CM14 4SG - (0277) 211490;
53 Burrfields Road, Portsmouth, Hampshire. PO3 5EB - (0705) 669021;
Cirkit, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ - (0992) 444111.
To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ. 1 enclose $£ 1.15$. Please send me your latest catalogue and 4×1 discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name \qquad
Address \qquad

Gary Herman: Editor
lan Pitt: Assistant Editor
Paul Chappell: Project Editor
Jerry Fowler: Technical Illustrator
Paul Stanyer: Ad. Manager
Caroline Faulkner:
Classified Sales Executive
Debra Barrie: Copy Control
Dave Bradshaw: Group Editor

- Electronics

Peter Welham: Publishing Director
PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Golden Square, London W1R 3'AB.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Lid.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore.

ABC Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first friday in the month preceding cover date. \square The contents of this publication including all articles, designs. plans,
drawings and programs and all copyright and other indrawings and programs and all copyright and other intellectual property rights there in belong to Argus the Laiv of Copyright and other intellectual property rights and by virtue of international copyright conven. tions are specifically reserved to Argus Specialist Publications Limited and anv reoroduction reauires the prior written consent of the Company. (c) 1985 Argus Specialist Publications Ltd \sqcup All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normaily be published as soon as possible afterwards. All cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publ ishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.

- Subscription Rates. UK $£ 18.10$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
1 Golden Square, London W1 R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

DIGEST.
It's news to us.
READ/WRITE
.7

The write stuff.
16
DESIGNING TRANSISTOR
STAGES 19
Emitters can be so common, collectors so base.
RISC CHIPS. 22
Take the RISC and get a load off your mind.

AUTOMATIC TEST

 EQUIPMENT.30When a signature can tell you alabout your failings.
1985 INDEX 33
Your window on the year.
TECH TIPS 54
Ingenious not ingenuous.

PROJECTS

6809 SINGLE-BOARD

COMPUTER27

FLEX your muscles with this one.
MODULAR TEST GEAR 37
Provide pulses lentil the cows come home.

SPECDRUM DRUM

SEQUENCER
 41

This drum-synth controller gives a new meaning to the term 'battery back-up'.

DIRECT INJECT COMPRESSION
 GATE.............................. 46

 Asoundidea - or three soundideas in one - to trigger a new series of audio projects.We apologise for having to hold over the scheduled part of the Digital Sound Sampler. This has been due to circumstances beyond our control. We hope to bring you full constructional details next month.

ETCETERA

TRAINS OF THOUGHT 60
Roger Amos sounds off.
OPEN CHANNEL 60
Keep watBrindley.
ALF'S PUZZLE. 61
The stairway to heaven.
SCRATCHPAD62

INFORMATION

NEXT MONTH'S ETI 18
SPECIAL OFFER 40
READERS' SERVICES 55
FOIL PATTERNS 56
CLASSIFIED ADS 63
AD INDEX 66

OP POWER AMPLIFIER MODULES

PRICES INCLUDE VAT. \star PROMPT DELIVERIES \& FRIENDLY OMP POWER AMPLIFIER MODULES

Now enjoy world-wide reputation tor quality, reliability and performance at a realistic price. Four mode available to suit the needs of the professional and hobby market. ie. industry. Leisure power supply, Integral heat sink, Glass fibre P.C.B , and Drive circuits to power compatible Vo meter. Open and short circuit proof. Supplied ready built and tested.

OMP1000 Mk ! Bi-Polar Output power 110 watts R.M.S into 4 ohms, Frequency Res ponce $15 \mathrm{~Hz}-30 \mathrm{KHz}+3 \mathrm{~dB}$. T.H.D. 0.01% S.N.R. -118 dB , Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Res ponce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.002%, Input Sensitivity 500 mV , S.N.R -125dB. Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Res ponce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate $50 \mathrm{~V} / \mathrm{uS}, \mathrm{T} . \mathrm{H} . \mathrm{D}$. Typical 0.001%. Input Sensitivity 500 mV SN R - 130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE OMP/MF300 Mos-Fet Output power 300 watts RM.S. into 4 ohms, Frequency Res ponce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.0008%, Input Sensitivity 500 mV , S.N.R. -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $£ 79.99+£ 4.50$ P\&P.

NOTE: Mos-Fets are supplied as standard 1100 KHz bandwidth \& Input Sensitivity 500 mV) If required

VU METER Compatible with our four amplifiers detailed above. very accurate visual display employing 11 L.F.D diodes (7 green, 4 red) plus an additional on/off indicate or. Sophisticated logic control circuits tor very fast rise and decay times. Tough moulded plastic PRICE $\mathbf{f 8 . 5 0}+50 \mathrm{p}$ P\&P.

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS R.M.S. Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details

POWER RANGE
8 " 50 WATH R.M.S. Hi. Ri/ Disco.
20 oz. magnet. $11 / 2^{\prime \prime}$ ally voice coil, Ground ally fixing escutcheon. Res. Freq, 40 Hz . Freq, Resp to KHz Sens. 92 dB . PRICEf10.99Availa
$12^{\prime \prime} 100$ WA ${ }^{\text {R.M.S. Hi-Fi/Disco }}$
50 oz. magnet, $2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Die-cast chassis. White cone. Res Freq.
25 Hz. \qquad
McKENZIE
12" 85 WATT R.M.S. C1285 GP Lead guitar/keyboard/Disco
ally voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. to 6.5 KHz . Sens. 98 dB . PRICE E 28.76
$2^{\prime \prime} 85$ WA TH M. S. C1285TC P.A/Disco 2" ally voice coil. Twin cone
Res. Free, 4.5H2. -rec. Resp. to 14 KHz . PRICE f 29
5" 150 WAT R.M.S. CI 5 Bass Guitar/ Disco.
" 60 WATT R.M.S. 1060GP Gen. Purpose/Lead Guitar/Kept 5499 +ff 00 PeP dice coil. Res. Freq. 75 Hz Freq Resp to 75 KHz Sens 99 dB PRICEf/9id. P.A
200 WATT R.M.S.C10200 GP Guitar. Keyboard. Disco PRICE $£ 19.15+£ 2.00$ P\&P
voice coil. Res. Freq, 45 Hz . Freq. Resp. to 7 KHz Sens. 101 dB PRICE $f 51.00+£ 3.00 \mathrm{P} \& \mathrm{P}$
" 200 WATT R.M.S. C15200 High Power Bass.
S. Freq 40 Hz. Freq. Resp. to 5 KHz . Sens 101 dB . PRICE $£ 59.45+£ 4.00 \mathrm{P} \& \mathrm{P}$

400 WOHz Freq. Resp 404 KH Se 102 Bs

70 WATT R.M.S. Multiple Array Disco etc.
voice coil Res. Freq. 52 Hz Freq. Resp to 5 KHz Hz
150 WATT R.M.S. Multiple Array Disco etc
voice coil. Res. Freq. 48 Hz . Freq. Resp. to 5 KHz . Sens. 92 dB . PRICE $f 29.49+£ 1.50 \mathrm{P} \& \mathrm{P}$ ea
" 300 WATT R.M.S. Disco/S Sound re-enforcement etc
2" voice coil Res. Freq. 35 Hz Fret. Resp. to KHz. Sens. 92 dB PRICE f33. $49+£ 2.00 \mathrm{P} \& \mathrm{P}$ ea.
vice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRicE $41.49+£ 300 \mathrm{P} \& \mathrm{P}$ ea
OUNDLAB (Full Range Twin Cone)
60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc
" 60 WA TM RM.
voice coil, Res. Free. 56 Hz . Freq. Resp. to 20K Hz. Sens. 89 dB . PRICE $f 10.99+f 1.50 \mathrm{P} \mathrm{\& P}$ ea
50 WATT R.M.S. Hi-Fi/Multipile Array Disc
OO WATRR.M.S. Hi-Fi/Multipite Array Disco etc.
voice coil hes. Freq. 38 Hz Freq. Resp. to 20 KHz . Sens 89 dB . PRICE $f 12.99+£ 1.50 \mathrm{P} \mathrm{\& P}$ ea 60 WATT R.M.S. Hi-Fi,'Disco etc.
$1 / / "$ voice coil. Res. Freq. 35 Hz . Freq. Resp. 1015 KHz . Sens. 89 dB . PRICE $\mathrm{f} 16.49+£ 200 \mathrm{P} \& \mathrm{P}$
 hire printed circuit board and high quality M MICROTRANSMITTER (BUG) SO/105MHz with microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $f 8.62+75 \mathrm{p}$ P\&
3 WATT FM TRANSMITTER 3 WATT B5/115 MHz varicap controlled professional performance, Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ 12 voile Price: $14.49+75 p$ P\&
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27MHz. Range up to 500 metres. Double coded modulation Peceher output operates relay with 2 amp /240 volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price:
$f 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$
($9 / 12$

POSTAL CHARGES PER ORDER $£ 1.00$ minimum. OFFICIAL
ORDERS WELCOME. SCHOOLS. COLEGES. GOVERNMENT BODES. ETC. PRICES INCLUSIVE O
VISA/ACCESSIC.OD. ACCEPTED.

BURGLAR ALARM

Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units.
complete with interconnection cable. FULLY GUARANTEED
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control
Three position, key operated dacia switch - off - test Three position, key operated dacia switch Indoor alarm
104 dB output.
Outdoor Alarm Eactronis output. Housed in a tamper-prof heavy siren. 98dB case.
Both chargeable batteries which provide full protection during mains failure Power requirement $200 / 250$ Volt $A C 50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic buttons etc Complete with instructions
SAVE $\boldsymbol{E} \mathbf{3} \mathbf{8} .00$ Usual Price $f 228.85$

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit zodays hard wearing black vynide with protective cor ners, grille and carry handle. All models 8 ohms. Full range $45 \mathrm{~Hz}-20^{\prime} \mathrm{KHz}$ Size $20^{\prime \prime} \times$ $15^{\prime \prime} \times 12^{\prime \prime}$. Watts R M.S. per cabinet. Sensitivity 1 W .1 mtr . dB.
OMP 12-100 Watts 100 dB . Price $f 149.99$
per pair.
OMP 12-200 Watts 102 dB . Price $£ 199.99$
per pair.

Professional $19^{\prime \prime}$ cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 40 hms). Input Sensitivity 775 mv

MF200 (100 + 100)W. $£ 169.00$ Securicor MF400 $(200+200)$ W. $£ 228.85$ Delivery MF600 $(300+300)$ W. $£ 274.85 \quad £ 10.00$

1 K-WATT SLIDE DIMMER
 Control loads Compact Size
$43 /{ }^{\prime \prime} \times 1^{\prime \prime} \times 21_{2}^{\prime \prime}$
E Easy snap in fix $*$
ing through panel
she cabinet cut out
\star Insulated plastic \star Insulated plastic
case
Full wave con * Full wave con-
troll using 8 amp B5800 * Suitable for both resist ance and inductive loads In numerable applications industry, the home
disco's, theatres etc. PRICE $£ 13.99+75$ p P\& P

BR P295 ELECTRONICTURNTABL.E \star Electronic speed control $45 \& 331 / \mathrm{r} \mathrm{pm} . \pm$ Plus \star Electronic speed control $45 \& 33 /$ rpm. \star Plus,
Minus variable pitch control $\&$ Reit driven All
minium platter with strobe rim \star Cue lever \star Anti-
 Manual arm $*$ Standard $1 / 2^{\prime \prime}$ cartrige fixings
Supplied complete with cut Supplied complete with cut out
Operation $9-14 v D . C . \quad 65 \mathrm{~mA}$

ADC 04 mag. cartridge for above. Price 54.99 e

PIEZO ELECTRIC TWEETERS MOTOROLA

Join the Piero revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an dynamic tweeters. As a crossover is not required these units can be added io existing speaker systems of up to 100 watts
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A'IKSN2036A) 3" round with protective wire
 speakers. Price $£ 4.90$ each +40 p P\&P
TYPE 'B' (KSN1005A) $3 y_{2}^{\prime \prime}$ Super horn. For general purpose speakers, disco and P.A. systems etc. Price f5.99 each $+40 \mathrm{pP} \mathrm{\& P}$.
TYPE C' (KSN6016A) 2" $\times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc Price 56.99 each 40p P\&P
TYPE D [KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending Hi- ff systems and quality discos. Price f 9.99 each $+40 p$ P\&P
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $£ 5.99$ each +40 p P\&P.
LEVEL CONTROL Combines on a recessed mount ing plate, level control and cabinet input jack socket
$85 \times 85 \mathrm{~mm}$. Price $£ 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segment 5 Inputs with individual fader providing a useful combination of the following3 Turntables (Mag), 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor. Pan Pot. L. \& R. Master Output controls. Out put 777 V . Size $360 \times 280 \times 90 \mathrm{~mm}$

B. R. ELEGTROWIGS

UNIT 5, COMET WAY, SOUTHEND ON -SEA ESSEX, SS 6 TR TEL: 0702427.572

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

> 'Electronic weapons being used against us', Greenham women claim

Women peace campers at Greenham Common claim they are being attacked with electronic weapons from within the base.
They believe that some form of electromagnetic wave or other signal is being directed at them and is responsible for a series of illnesses they have suffered over the past year.
Symptoms range from mild headaches and drowsiness to bouts of temporary paralysis and; in one case, an apparent circulatory failure which required emergency treatment. Women have also complained of sharp pains and problems with speech coordination. A team of doctors from the Medical Campaign Against Nuclear Weapons are compiling a report on the condition of the women affected.
The women first noticed a pattern of illnesses emerging late last year. They discounted food or water poisoning as a cause and started to suspect interference from inside the base. They found that women at different points around the camp appeared to have experienced similar symptoms at the same time, even when they were not in contact with one another.
They believe there is a deliberate intent to make life difficult for them and so drive them away. Some of the worst affected women now find it impossible to stay around Greenham for more than a short period of time.

Electronic weapons are known to have been used by security forces on a number of occasions. The Americans are reported to have used ultrasound to disorient and demoralise their enemies during the Vietnam war and a number of American police forces are believed to have carried out trials with infra-sound generators mounted on the back of trucks. The high intensity, low frequency pressure waves these produce are said to cause vomiting, nausea and a range of other disturbances and to induce fits in those who are subject to them. American medical groups have
protested against the proposed use of these weapons for urban riot control.
Microwave radiation is also believed to have been used as a weapon at various times. The most celebrated instance was the irradiation of the US Embassy in Moscow during the 1950s, '60s and ' 70 s. It has never been made clear whether the Russians used the signal as a weapon or for surveillance, but a television documentary screened last year reported a high incidence of cancer amongst ex-Embassy staff and suggested that disorders of the blood and nervous system could also have been caused by the signal.
The women at Greenham Common suspect that more than one type or frequency of radiation is being used against them. They say that the symptoms vary from time to time and seem to reflect what takes place on the base. Large numbers of women have complained of sudden feelings of extreme tiredness shortly before major events such as the departure of a cruise missile convoy and on other occasions when their activities might have proved particularly awkward for the forces using the base.
ETI has carried out a number of tests around the base in cooperation with journalists from other organisations. Readings taken with a wide range signal strength meter showed marked increases in the background signal level near one of the womens' camps at a time when they claimed to be experiencing ill effects.
On another occasion previously low signal levels near the camp rose sharply when the women created a disturbance just outside the perimeter fence of the base. Whether this indicated an attempt to subdue the women by electronic means or merely the use of a radar surveit lance system it is impossible to say.
The signal levels measured were well above normal background levels but still within official safety limits. However, there is evidence from a number of sources that low levels of electromagnetic radiation can have harmful effects, especially where exposure takes place over a long period of time.
Ministry of Defence officials have denied that any form of electronic signal is being used against the women. Tests at the base are continuing.

A Graphic Display

Casio Electronics have introduced a full-function programmable scientific calculator which draws graphs and charts on an integral LCD screen.
The hand-held FX7000G features a $35 \times 52 \mathrm{~mm}$ screen with a resolution of 63×95 pixels. It can also display up to 8 lines of 16 characters. It is capable of up to 422 programming steps, utilising 26 memories and up to 10 separate program areas.

Twenty algorithms are built-in to draw graphs of standard mathematical functions and the FX7000G can draw bar charts and plot points. The calculator, say Casio, will be 'unbeatable' for the correlation of experimental variables. The RRP is $£ 99.95$ and the FX7000G is obtainable from Casio Electronics Co Ltd, Unit Six, 1000 North Circular Road, London NW2 7JD, tel01-450 9131.

FF rom the US company Reon Manufacturing comes a new range of wire stripping tools designed for a variety of different types and thicknesses of equipment cable.

All the units are housed in the same casing and different wire diameters and sleeving materials are catered for by changing the cutters. Cutters will handle wire in diameters down to $0.025^{\prime \prime}$ and can also cope with extruded, high-temperature sleeving up to 9/32" in diameter.

The tools are designed for ease ofuse, a rotating blade being used to cut sleeving to a controlled depth and a gripper anvil removing the cut sleeve. Priced at around $£ 42$, further details should be obtained from Kern Electrical Components Ltd., 2 Albury Close, Battle Farm Industrial Estate, Reading, Berks RF3 1BD (0734-596368).

ETI Printed Circuit Board Service

$\mathbf{R}^{\text {eaders firingot the apparent- }}$ ly never-ending saga of the PCB service may console themselves with the thought that the magazine staff are exhausted by it too.
The lack of a PCB Service page this month will not go unnoticed. Our humblest apologies. The situation, is quite simply, that legal complications have delayed the start-up of the service. As anyone who has ever bought or sold a house will know, the law takes not onlyits course but its time. Weare assured that the service will be onstream within a matter of days. Please write to us for further information or wait until our next issue.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Dial M For Money

The figure in the stripes and spots is not, contrary to appearance, Spiderman with a dose of the measles. Nor is it Superman after emerging from an ultra-modern phone booth. It is (short pause for the intake of breath) - Digital Man, dubbed 'the dots-and-dashes figure' and currently parading as 'the star of British Telecom's nationwide Faraday Lecture tour, "Beyond the Telephone - Or Intelligent Network'.' Or so it says in BT's publicity material.

Shown being cossetted by a bevy of lovely schoolgirls, Digital Man - although singularly lacking in eyes, ears, mouth ornostrils - is accompanying BT's Chief Executive of Technology, Mr. Bill Jones, as he makes his way about the country giving the 1985-86 series of Faraday Lectures.

The Faraday Lectures were inaugurated in 1924 by the Institute of Electrical Engineers to promote interest in their field. The IEE invites a major organisation each year to lecture on one aspect of the work of electrical engineers to an audience largely composed of school and college students. And jolly good fun they are, too (although not quite as fascinating as the annual Royal Society lectures).

For $B T$, only recently privatised and now threatened by the entry of Cable \& Wireless offshoot, Mercury Communications, into the Telecoms' game, the Faraday Lectures are a heaven-sent opportunity for public relations and recruitment. 'Young people, who may be about to choose a career, will be a particularly important part of the audience,' says Bill jones, noting that BT's aim is to 'stimulate a lasting interest in electronics and telecommunications'. Hence Digital Man, the NAND-gate incarnate. And hence BT's budget of $£ 750,000$ for the exercise.

This may look like a small fortune, but it's a trifling amount compared to BT's recently announced first quarter profit of $£ 443$ million before tax. With that

- Texas Instruments have published a European edition of volume 3 of the TTL Data Book series covering bipolar programmablelogic and memory devices, including PAL (programmable array logic) FPLAs (field programmable logic arrays) and Schottky TL memories. The volume is available from Texas Instruments Ltd., PO Box 50, Market Harborough, Leicestershire, at $£ 6.50$ plus $£ 1.50$ p\&p.

number of coins, you might think BT would start giving local calls away, like they do in a number of other countries.

But BT want more. In early October, they increased phone charges. In mid-October, they talked of putting them up again for domestic and small business users while reducing charges to the corporate users.

In between times it was revealed that they had introduced hidden pricerises. In theshape, for example, of a charge to all those receiving consolidated bills who want to see a call-by-call analysis. Digital Man could provide such an analysis with one hand tied behind his back. But I guess he's too busy telling the world how wonderful BT are.
$B T$'s future may be with Intelligent Networks, but the company itself seems like a most unintelligent network. It may need to look 'beyond the telephone' when Mercury flies on to the scene, happily connecting up its
'independent' network to BT's.
Could it be that the Oftel report (which has given Mercury the goahead to link-up with the existing telephone network) is the writing on the VDU for BT? Will Digital Man save them in the face of the looming Mercury monster? Or will they settle for the protection afforded by vast profits in the short time before the Mercury monster arrives? What does lie beyond the telephone?
Faraday lecture dates: November 6th: St. David's Hall, Cardiff; 13th: City Hall, Sheffield; 17th: Free Trade Hall, Manchester; December 4th: The Dome, Brighton; 11th: The Conference Centre, Harrogate; January 22nd: The Guildhall, Portsmouth; 30th: The Philharmonic Hall, Liverpool; February 4th-6th: Logan Hall, London; 12th: The Town Hall, Birmingham; 26th: Sir William Whitlaw Hall, Belfast; March 5th: The University Great Hall, Exeter; 12th: Colston Hall, Bristol; 19th: The Assembly Rooms, Derby.

- Philips have announced their intention to develop an add-on adaptor for TV sets enabling them to pick up MAC standard signals from satellites via a parabolic aerial. It should be on the market by early 1987 and is designed to handle any changes in TV picture aspect ratio which may be introduced. The MAC standard has been formulated to improve picture definition by separating chrominance and luminance signals. Better sound fidelity and multi-channel sound will also be ach ieved. Philips see the move as a commitment to 'future highdefinition TV'.
- Castle Associates have set-up a hire division specialising in acoustic test instruments. Among the instruments available on short-term rental are sound lēvel meters, environmental noise analysers, dosemeters and vibration meters. Customers may take up the option of purchasing a new instrument at 'a generous allowance'. Details from Castle Associates Ltd., Slater Road, Scarborough YO11 3UZ, tel 0723584250.

Called To
 The Bar

New 101 segment LED bar-
graph displays from Siemens and Hewlett Packard provide precision alternatives to mechanical meters.

The Siemens range (illustrated) features LEDs combined in groups of ten with common cathodes. One version of the display includes a yellow. luminous dot after every tenth segment for ease of reading. The HP range has been extended to include high efficiency red and high performance green devices, in addition to the standard red display. For details contact Siemens Ltd., Siemens House, Windmill Road, Sunbury-onThames, Middlesex TW16 7HS (09327-85691) and HewlettPackard Ltd., Miller House, The Ring, Bracknell, Berks RG1 21 XN, 0344-424898.

- ERA Technology have produced a report titled'Zinc Carbon and Alkaline Primary Batteries' which investigates the product range of the four leading UK suppliers: Duracell, Ever Ready, Varta and Vidor. Value-for-money comparisons are based on actual discharge rates. The report costs £65 (£55 to members) from Publication Sales, ERA Technology Ltd, Cleeve Road, Leatherhead, Surrey KT22 7SA.

E

1 Megabyte so

 80 Track Disc DrivesDouble Density Double Sided 2 or more ${ }^{5} 85.00$
ach $p+p$ free
5.25"

500K 40 Track Drives as above

250K 5.25"

 Disk DriveCABLE HARNESS FABRICATION
Send your drawing or specification
For Free Quote. Trade enquiries welcome.

ECHO Amplifier for Sinclair ZX Spectrum
Improve your saving, loading and sound on the Spectrum Complete with full fitting instructions. $\quad{ }^{\varepsilon} \mathbf{1 9 . 9 5} p+p^{\varepsilon} \mathbf{1 . 0 0}$

COMPONENTS
MAIL ORDER ONLY

${ }^{4070}$ MEMORIES ${ }^{0.20}$		10.738635 MHz	0.50
		1500 MHz	0.50
2710	250		
2732-45	2.00 300	1.C. SOCKETS - STD	
$2764-25$	300	20 pm	15
27:28-25	3.50		0.15
3764-20	250	28 FIN	015
$411 \mathrm{lb-3N}$	0.40	40 PIN	025
4804-2	2.00	I.C. SOCKETS - LOW PROFILE TI.	
${ }_{8}^{8204-2}$	2.00		
81256-15	5.00		
Various ic.s		${ }_{18 \text { PIN }}^{16 \text { PiN }}$	0.10
14LA-2CN	1.00	28 PIN	020
169i	8.00	40 PIN	0.25
1793	9.00	MODULATORS -	
${ }_{9216}^{2143}$	8.00 800	ASTEC	
6301-1N	1.00	UM1280(8. MHz)	1.50
${ }^{635141}$	1.50	UM1285-8(USA)	2.50
82523 825123	1.50	REGULATORS	
8845	500	UA7805CK=	0.25
LM1889	1.25	UA7812CK	0.25
SN76489	2.00	TRANSISTORS	
SY6551A	2.50		
TM59928	5.00	2N3904	012
TMS9929	3.00	2N3906	0.2
HAL4S35-5	200	BC107	015
Z80ACPU	1.50	${ }_{\text {T1P2953 }}$	0.50
z80ACTC	1.40	TLOBICP	0.35
INDUCTORS AXIAL		DIODES	
		in4004	005
		IN4148	0.02
4.7MH	0.05	IN5402	0.10
${ }^{22 \mathrm{MH}}$	0.05		0.05
33 MH 100 MH	0.05 0.05		0.05 0.05
100M	0.05	B2X79C12	0.05
CRYSTALS		BzX79CTVE	0.05
${ }^{1.8432 M H z}$	2.00	POTENTIOMETERS	
3.579545 MHz 400 MEz	0.50	ik hor Preset	010
4.433619 MHz	0.50	IK CERME:	025
106875 MHz	0.50	z2K HOR PRESET	0.12

switches		
ML3seytor 0.10		
	- off flp	P 015
	ins	0.75
	mputor	075
	E	0.15
	Pusif	0.25
RESISTORS O 25W		
Measured in OHMs Ail 001 each		
1	200	sk
H	220	39k
1.5	270	47K
1.6	300	51 K
	330	568
22	390	${ }_{60 \mathrm{~K}}$
2.4	430	75k
${ }^{2.5}$	430 MFF	${ }_{82 \mathrm{~K}}$
27	${ }_{4}^{470}$	9 K
33	560	110 K
36	620	
43	${ }_{750}$	
4.7	${ }^{329}$	150k
	90	${ }^{180 \mathrm{~K}}$
6.2	${ }_{1 \times \mathrm{L} M \mathrm{~F}}$	${ }_{220 \mathrm{~K}}$
4.8	1.1 K	${ }^{240 \mathrm{~K}}$
75	1.3K	${ }^{270 \mathrm{O}}$
${ }_{9}^{8.2}$	${ }_{5 k}$	${ }_{\substack{300 k \\ 330 \mathrm{~K}}}$
10	. 6 K	${ }_{360 \mathrm{~K}}$
1	${ }^{1.85}$	${ }^{3000}$
12	${ }_{2}^{22}$	${ }_{4}^{430 \mathrm{~K}}$
is	${ }^{2.4 \chi^{2}}$	$470 \mathrm{~K} 1 / 2 \mathrm{~W}$
16	27K	5:0k
18	338	Soax
	3.6 K	
24	${ }_{39}$	${ }_{750 \mathrm{~K}}$

CAPACITORS CERAMIC PLATE ${ }^{\text {4ill }} 10 \mathrm{NF}$ ea 2NF DISC
7NF DISC
7NF DIS
2 PF
15 pF
27 PF

ELECTROLYTICS - AXIAL

$470 \mathrm{MF} / 25 \mathrm{~V}$
ELECTROLYTICS RADLAL
MFIGV
10MF/B3V
22MFi35V
27ME16V
$10 \mathrm{ME} / 25 \mathrm{~V}$
10CMF/25V

$$
\begin{aligned}
& 22 \mathrm{~N} \\
& 100 \\
& 04 \\
& 47 \\
& 10 \\
& 10 \\
& 10 \\
& 20 \\
& 5 \\
& 3
\end{aligned}
$$

$2200 \mathrm{MF} / 25 \mathrm{~V}$

$$
4700 \mathrm{MFFl6V}
$$

$$
\begin{aligned}
& \text { 22NF } \\
& 100 \mathrm{NF} \\
& 047 \mathrm{MF}
\end{aligned}
$$

SIBITATS 47 NF
100 NF
IMF3

$$
\begin{aligned}
& \text { 1MF35V } \\
& \text { 10MF35V } \\
& \text { 22MF16V }
\end{aligned}
$$

$$
55 \text { A0P: TRIMMERS }
$$

MISCELLANEOUS

$$
\text { 3.5MM PCBMTG } \quad 0.12
$$

$$
\begin{aligned}
& \text { JAC: SOCKET } \\
& \text { FHONO SOCKET - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PHONOSOCKET } \\
& \text { NUT FXXING }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MUT FING } \\
& \text { ENC SOCKET }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENC SOCKET- } \\
& \text { CHASSIS MTG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CHASSIS MTG } \\
& 20 \times 5 M M \text { PCB } \\
& \text { FUSEHOLDER }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20 X SMM PCB MTG } \\
& \text { FUSEHOLDER COVER }
\end{aligned}
$$

$$
\begin{aligned}
& 20 \times 5 \mathrm{MM} 3.15 \mathrm{~A} \\
& \text { مurck Blow }
\end{aligned}
$$

$$
\begin{aligned}
& \text { QUICK BLOW FUSE } \\
& \text { APIN RJA PCCB }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GIN DIN RIA PCB } \\
& \text { MTG SOCKET }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MTG SOCKET- } \\
& 7 \text { PIN DIN R/A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7PIN DIN R/A PCB } \\
& \text { MTG SOCKET }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MTG SOCKET } \\
& 9 \text { WAY D TYPE R/A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PWAY' } \\
& \text { PLUG }
\end{aligned}
$$

Please add 15\% VAT to all orders.
Export orders VAT exempt.
Minimum order value $£ 10.00$
P\&P: components: 50 p per order Export orders carriage charged at cost

We reserve the right to alter prices and/or specifications without notice.

ELECTRO-MECH INDUSTRIES

Unit 23 Station Lane Witney Oxon OX8 6XZ Tel: (0993) 75827

Page 11

Missing

Page 12

Missing

DIARY

Cellular Communications International - November 5-7th
Wembley Conference Centre, London. For details see September 85 ETI or contact Online at the address below.
Electronics for Peace: London Group Meeting - November 7th London New Technology Network, Camden, London, 7.30 p.m. Discussion entitled'Are nucelarweapons a deterrent?'. For details contact Louis Barman on 01-541 1825.

Comex '85 - November 12/13th
Chesford Grange Hotel, Kenilworth, Warwickshire. Conference and exhbition devoted to mobile communication products. Conference topics include the development of radiopaging, the various issues surrounding the future of cellular radio and the re-allocation of the bands used until recently for 405 line television. For details contact Sarah Welch-Hawksby, Federation of Communication Services, PO Box 442, London SE19 3LT, tel 01-653 2657.
Programming In Ada: A Hands-On Workshop — November 12-15th London. For details see November '85 ET or contact ICS at the address below.

Compec '85 - November 12-25th
Olympia, London. For details contact Reed Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ, tel 01-643 8040.

Electronic Component Quality - November 22nd
Institution of Electrical Engineers, London, 10.00 a.m. Discussion meeting at which six papers will be presented. For details contact the Secretary at the address below.
Acorn User Christmas Show - November 22/23rd
Central Hall, Westminster, London. Tickets cost $£ 3.00$ (adults) and $£ 2.00$ (under 16 s) at the door or $£ 2.00$ and $£ 1.00$ in advance. Contact Edition Scheme Ltd at the address below.
6809 Show - November 23/24th
Royal Horticultural Halls, London. Tickets $£ 3.00$ (adults) and $£ 2.00$ (under 16 s) at the dooror $£ 2.00$ and $£ 1.00$ in advance. Contact Edition Scheme Ltd at the address below.
International Test And Measurement Exhibition - November $27-$ 29th
Olympia 2, London. For details see February ' 85 ETI or contact Network Events Ltd, Printers Mews, Market Hill, Buckingham MK181JX, tel 0280-815226.
Satellite Communications - December 3/4th
Tara Hotel, London. For details see November '85 ETI or contact Online at the address below.

The History of Sound Broadcasting - December 5th
IEE, London. Lecture by Dr. G.J. Phillips, formerly of the BBC. For details contact the Secretary at the address below.

The Which Computer? Show - January 14-17th
NEC, Birmingham. For details contact Cahners at address below.
Electronics In Oil And Gas - February 4-6th
Barbican, London. For details see November' 85 ETI or contact Cahners at the address below.
Electronic Production Efficiency Exposition - March 11-13th
Olympia, London. For details see November ' 85 ETI or contact Cahners at the address below:

Addresses:

Cahners Exhbitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Edition Scheme Ltd, HR House, 447 High Road, Finchley, London N12 0AF, tel 01-345-6566.
ICS Publishing Co (UK) Ltd, 3 Swan Court, Leatherhead, Surrey KT22 8AD, tel 0372-379211.
Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-868 4466.

DIGITAL ELECTRONICS

SUPERKIT
 SUPERKIT II £16.00
 ($£ 35.00$ if bought together)

The SUPERKIT series introduces beginners to practical digital electronics. SUPERKIT (SUP I) is the first kit, which contains an instruction manual a solderless breadboard, and components (7 integrated circuits, switch, resistors, capacitors, LEDs and wire). It teaches boolean logic, gating, flipflops, shift registers, ripple counters and half adders. SUPERKIT II (SUP II) extends SUPERKIT. It contains an instruction manual and components (10 integrated circuits, 7 -segment display, resistors, capacitors and wire), and explains how to design and use adders, subtractors, counters, registers, pattern recognisers and 7-segment displays.

DIGITAL COMPUTER LOGIC DIGITAL COMPUTER DESIGN MICROPROCESSORS \& MICROELECTRONICS
 £6.50

The SUPERKIT series is backed by our theory courses. DIGITAL COMPUTER LOGIC (DCL), the beginners' course, covers the use and design of logical circuits, flipflops and registers. DIGITAL COMPUTER DESIGN (DCD), a more advanced course, covers the design of digital computers both from their individual logic elements and from integrated circuits. MICROPROCESSORS and MICROELECTRONICS (MIC) teaches what a microprocessor is, how it evolved, how it is made and what it can do.

GUARANTEE. If you are not completely satisfied, return the item to us in good condition within 28 days for a full refund. All prices include worldwide surface postage lask for prepayment invoice for airmail). Orders despatched within 48 hours. Overseas payment by international credit card or by bank dratt drawn on a London bank.
CAMBRIDGE LEARNING LTD, Unit 17, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England. Telephone: 048067446.

VAT No. 313026022 Transcash No. 2789159 Reg No. 1328762

Please send me (initial letters used):

SUP I	@ $£ 22.00$	$\ldots .$.	DCL	@ $£ 7.00$
SUP II	@ $£ 16.00$	$\ldots .$.	DCD	@ $£ 9.50$
SUP I+ II	@ $£ 35.00$	$\ldots \ldots$	MIC	$@ £ 6.50$

Full details of all your courses (please tick)

I enclose a cheque/PO payable to Cambridge Learning Ltd. for $£ .$.

Please charge my
credit card,
No.
Expiry date
Telephone orders from credit card holders accepted on 048067446 (24 hrs).

Name

Address

Signature

CAMBRIDGE LEARNING LTD

Unit 17, Rivermill Site, FREEPOST,
St. Ives, Huntingdon, Cambs PE17 4BR
Englarìck

01-208 1177 Trehonatic Lid 01-208 1177
 BBC Micro Computer System

ACORN COMPUTER SYSTEMS

BBC Model B Special offer. BBC Model B+Econe
..... 8299 (a) BBC Model B+DFS …....................... $\mathbf{\Sigma 3 3 5}$ (a) BBC Model B +DFS + Econet BBC B Plus. UPGRADE KITS DFS Kit... $\mathbf{\Sigma 8 0}$ (d) Econet Kit... 555 (d) 1770 DFS Kit... 849 (d) ADFS ROM..玉29 (d)
ACORN ADD-ON PRODUCTS
Z80 2nd Processor............................ $\mathbf{2 3 4 8}$ (a) 6502 2nd Processor $\mathbf{\Sigma 1 7 5}$ (a) Teltext Adaptor................................... $\mathbf{\Sigma 1 9 0}$ (b) IEEE interface £282 (b) Music 500. \qquad

BEC FIRMWARE
Basic II ROM..22.50 (d) View 12.1 Worc Processor ROM.... 48.00 (c) Wordwise Plus 49.00 (d) BCPL ROM/Disc ...00 (b) Disc Doctor/Gremlin Debug ROM £26 (d) EXMON/TOOL KIT ROM 823 ea (d) Printmaster (FX80)/Graphics $\mathbf{\Sigma 2 8}$ ea (d) ULTRACALC spreadsheet ROM $\mathbf{8 5 0} \mathbf{e a}$ (c) VIEW STORE/VIEW SHEET 552 ea (c) ISO PASCAL/LOGO....................... 860 ea (c) Oxford PASCA/G-FORTH/LISP ROM 243 ea (c)
ACCELERATOR (BASIC Compiler)...... $\mathbf{5 6}$ (c) COMMUNICATION ROM
Termi II.. (d) Commstar.... £57 (d)

RH Light pen ..29 (c) DATABEEB..27 (d)
TORCH UNICORN products including the IBM Compatible GRADUATE in stock
For detailed specification on any of the BBC Firmware/Peripherals listed here or information on our complete range please write to us-

PRINTERS

 EPSON$\mathrm{RX} 80 \mathrm{~T}+\mathbf{\Sigma 2 1 0}$ (a)
LX80 the new NLQ printer $\mathbf{2 1 9}$ (a)
FX80TE315(a) RX100+£345(a)
FX100 £430 (a)
JX80 4 Colour Printer E 429 (a)
HI80 4 Colour Plotter $\mathbf{5} 375$ (a)
KAGATAXAN:
KP810 £235 (a) KP910 £339 (a)
DAISY WHEELS:
JUKI 6100 £295 (a)
BROTHER HR15 £315 (a)

Paper:

2000 Sheets Fanfold:
$9.5^{\prime \prime} \times 11^{\prime \prime} \mathrm{E13}$ (b)
$14.5^{\prime \prime} \times 11^{\prime \prime}$ £17.50 (b)
Labels: (per 1000)
$3.5^{\prime \prime} \times 17 / 16^{\prime \prime}$ Single row $\mathbf{5 . 2 5 (d)}$
$27 / 16^{\prime \prime} \times 17 / 16^{\prime \prime}$ Triple row $\mathbf{\Sigma 5 . 0 0}$ (d)

ACCESSORIES

EPSON

32K Internal Buffer Parallel $£ 75$ (b)
Serial interface: 8143 £28 (c):
8148 with 2 K £59 (c)
Paper Roll Holder $£ 17$ (d);
FX80 Tractor Attachment $£ 37$ (c)
Ribbons: FX/RX/MX80 $£ 5$ (d)
FX/RX/MX100 £10 (d)
RX/FX80 Dust Cover $\mathbf{£ 4 . 5 0 \text { (d) }}$
KAGA TAXAN
RS232 with 2 K Buffer $£ 85$ (c)
KP810/910 Ribbon $\mathbf{£ 6 . 0 0}$ (d)
JUKI 6100
RS232 with 2K Buffer $\mathbf{£ 6 5}$ (c)
Ribbon $£ 2.50$ (d)
Tractor Attachment $£ 129$ (a)
Sheet Feeder $£ 180$ (a)
BBC Parallel Lead $£ 7$ (d)
Serial Lead $£ 7$ (d)
BROTHER HR15
Sheet Feeder $£ 199$ (a)
Tractor Feed $£ 99$ (a)
Ribbons Carbon or Nylon $£ 4.50$ (a)

MODEMS

- All modems listed below are BT approved

MIRACLE WS2000:

The ultimate world standard modem coverail all common CCITT standards (BELL standards outside the UK) up to 1200 Baud. Allows communicatlon with virtually any computer system in the world. The opt|onal AUTO DIAL and AUTO ANSWER boards enhance the con-
siderable facialitios already provided on the siderable facialities already provided on the
modem. Mains powered \&i29(b). Auto Dial modem. Mains powered riz9(o), Auto Dial (awaiting BT approval) Sotware lead 54.50 . NEW WS3000 SERIES
WS3000 V2123 (V21E V23) 1295 (a) W 53000 V22 (as above plus 1200 baud fal! duplex E 495 (a)
Ask for details on WS3000

Buzz Box:
This pocket sized modem complies with V21 $300 / 300$ Baud and provides an ideal solution for communications betwean users, with main frame computers andic cost. Battery or mains operated, Θ conomic cost. Battery or mains operated BBC to Modem data lead E 7 .

Serial Test Cable
Serial Cable switchable at both ends allowing pin options to be re-routed or linked at either end configuration on site Avaitable as M/M or M/

These are fully cases and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.
Single Drives:
$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS :TS100 \qquad . 279 (b
Dual Drives: (with integral psu)
Stacked Version:
PD200 $2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS........................ 179 (a)
3.5^{n} Drives
TS35 $1 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS \qquad 285(b)
With integral psu
PS100 with psu. .599 (b)

Plinth Versions:

PD200.
.. 2205 (a)
PD800P
.$£ 238$ (a)

3M FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed forlife. Ten discs are supplied in a sturdy cardboard box.
51/4" DISCS

40 SS DD E13 (c)
807 SS DD 222 (c)
40T DS DD £18 (c)
31/2" DISCS

DRIVE ACCESSORIES

FLOPPICLENE DIsc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives ...£14.50 (c)

MONITORS

MICROVITEC 14" RGB:
1431 Standard Resolution... $£ 190$ (a)
1451 Medium Resolution... $\mathbf{2 4 0}$ (a)
1441 Hi Resolution ... 8395 (a)
1431 AP Std Res PAL/AUDIO..£205 (a)
1451 AP Med Res PAL/AUDIO... $£ 280$ (a)
1451 DQ3 Med Res for QL
.2239 (a)
1456 DI - IBM Compatible RGB Monitor. \qquad
MITSUBISHI 14" Med Res. IBM/BBC Compatible RGB 2299 (a)
Above monitors are now available in plastic or metal cases.
KAGA Super Hi Res Vision III RGB .. $\mathbf{2 3 2 5}$ (a)
Hi Res Vision II
.5225 (a)
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res.
.299 (a)
Kaga Amber KX1201 A Hi Res.
£105 (a)
Sanyo Green DM8112CX Hi Res $.190(a)$
.521 (c)
Swivel Stand for Kaga Monochrome.

SPECIAL OFFER
 2764-25
 \qquad $£ 2.40$
 27128-25 £3.20
 6264LP-15
 $\mathbf{.} 5.00$

Serial Mini Patch Box
Allows an easy method to reconfigure pin functions without rewiring the cable assy. without rewiring the cable assy.

ATTENTION

All prices in this double page advertisement are subject to change without notice. ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Test
Minitors RS232C and CCITT V24
Transmissions, indicating status with dual oolour LEDs on 7 mosts significicant ! Ines.
Connects in Line.
e22.50 (d)

E22.50 (d)

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight epromsata time and acceptsal single rail eproms up to 27256 . Can reduce programming time by 80% by using manufacturers suggested algorithms. Fixed Vpp of $21 \& 25$ volts display with alpha moving message $£ 395$ (b).

SOFTY II

This low cost intelligent eprom programmer can program $2716,2516,2532,2732$, and with an adaptor, 2564 and 2764 Displays 512 byte page be used as an emulator cassette interface. Softy II... Adaptorfor2764/2564. 825.00 (c)

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1 B erases up to 6 eproms at a time. .. £47(c) UV140 as above but 14 eproms at a time E59(c)

CONNECTOR SYSTEMS		
1.D. CONNECTORS	EDGE CONNECTORS	AMPHENOL CONNEGTORS
No of (Speedblock Type) ${ }_{\text {Header }}$		CONNEGTOL ${ }_{\text {Solder }}$
		${ }^{36}$ way plug $\quad 500 \mathrm{p}$
$\begin{array}{lllll}26 & 175 \mathrm{p} & 150 \mathrm{p} & 1240 \mathrm{p}\end{array}$		
		24 way skt
40		IEEE 5000 500p
DCONNECTORS		$\begin{gathered} \text { PCB Mtg Skt Ang Pin } \\ 24 \text { way } 700 \mathrm{~F} \quad \underset{36 \text { way }}{750 \mathrm{p}} \end{gathered}$
915	$\begin{aligned} & 1 \times 77 \cdot \text { way } \\ & 2 \times 50-w a y(S 100 c o n n) \end{aligned}$	GENDER CHANGERS 25 way D type
Ang.Pins 120180230350	EURO CONNECTORS	Male to Male. $£ 10$ Male to Female $£ 10$
Soider 6080851250	DIN 41612 Plug Socke	
FEMALE: ${ }^{175} 275$	2×32 way St Pin 230 p 275p	Female to Female...... $£ 10$
St Pin 100140210380	$\begin{array}{rl}2 & \times 32 \text { way Ang Pin } 275 \mathrm{p} \\ \times 32 & 320 \mathrm{p} \\ \times 32\end{array}$	RS 232 JUMPERS
Ang.pins 160210275440	(${ }^{3} \times 32$ way Ang Pin 375p 400 p .	
$\begin{array}{lrrl}\text { Solder } & 90 & 130 & 195 \\ 100 & 195 & 325 & 375\end{array}$		
Sthood 90.95100120		
Screw 130150175		
Lock.	spacing ($A+B, A+C$).	
	MISC CONNS 21 pin Scart Connector.200p 8 pin Video Connector.200p	DIL SWITCHES 4-way G0p 6-way 105p 8 -way 120 p 10 -way 150 p
28-pin c9.00 ${ }^{\text {a }}$		

RIBBON

igrey/metre)			
Q	40 p	34-way	160 p
0.way	${ }_{850}$	50-way	${ }_{200}$
20way	120 p	64-way	280p

DIL HEADERS	
Solder	IDC
40p	1.00 p
50p	110p
60p	-
$75 p$	-
100p	150p
160p	300p
200p	225p

TECHNOLINE

 VIEWDATA SYSTEM Using 'Prestel' type protocols for information and orders phone 01-450 9764. 24 hour service, 7 days a week.

READ/WRITE

Oldrad?

Dear Sir,
I am grateful for the opportunity to make known the devastating frustration ! experienced in my dealings with Newrad in the matter of the Linsley Hood amplifier.

I sent the firm my cheque for £49.49 from London on 10 September, 1984, for MA2 and MA3 kits plus air postage to South Africa. Delivery was to be six weeks from 21 September. I sent reminders in November and again in January 1985. I received an air parcel in mid-February.

The kits were incomplete in many respects. Some items were ridiculously unsuitable and others of very poor quality. As a result of further correspondence, I received a supplementary parcel, the contents of which were still incomplete and inappropriate. A third parcel attempted and failed to restore the order to specification.

At my instigation the firm sent me a cheque 'to cover interest on the money held for eight weeks.' The actual total delivery period in the end proved to be 22 weeks.

The contents of the parcels gave me the impression of an
organization unsuited to its undertaking and woefully lacking in quality control. My attempts at assembly have been unsuccessful as a result. I have over 55 years experience in this field backed by full instrumentation and I am extremely angry and frustrated as a result.

I am determined to bring the project to completion. It seems I was supplied with primitive prototype PCBs and unsuitable components. As I am not prepared to repeat this distressing experience, please tell me where I can find a competent supplier of kits or assembled power amp PCBs.

Yours faithfully,
Dr. A.H. Barzilay
South Africa.

Dear Sir,
In the June to September 1984 editions of your magazine, you printed a series of articles on the construction of an amplifier by John Linsley Hood, which was
called 'Audio Design'.
In this article it was stated that a kit was available from a company called Newrad Instrument Cases Ltd. I tried to contact them by post without success and when I phoned them I was given all sorts of strange stories and excuses but precious little information.

In the end, I decided to build the design from scratch - but l cannot get two types of component which are specified.

These are a small MOSFET (VN1210M) and the low ESR electrolytic capacitors of which there are quite a few.

I would be most grateful if you could send me the names of companies which supply these. Yours faithfully,
R.D. Wren

Bristol.

Oh dear! I'm afraid the staff at ETI Towers are as distressed and frustrated as our correspondents over the matter of Newrad (tired and emotional, some would say). And we haven't even been. constructing the kit! I am glad to say that things are looking up. First, for those of you interested in building the JLH system who have heard that Newrad have made changes to the PCBs, we are about to reprint the series with all necessary revisions in our sister magazine, Electronics Digest. This is a quarterly and the relevant issue will be appearing towards the end of the year.

As far as the companies are concerned: the VN1210M transistor (in fact, all the transistor types) are stocked by Hart Electronic Kits Ltd., Penylan Mill, Oswestry, Shropshire, SY10 9AF. Hart may also be able to supply the low ESR electrolytics, but to avoid disappointment - they suggest that any potential customers write to them first to check the stock situation.

I trust that this will be the end of correspondence on this unhappy affair. - Ed.

Artificial Intelligence

Dear Sir,
I am about to start an association for those interested in building robots. I would like you to help me through your magazine to get in touch with other associations in other countries.

I know of one association in Sweden:

Stockholm Robot Sallskab Leif E.K. Wikstrom
Bjorkhyttevagen 93a
71100 Lindesberg SWEDEN
Yours faithfully, Dansk Robot Forening Hans Ostergaard
Saekedammen 5
DK-3460 Birkerod
DENMARK.
Come on now, all you robots. Drop Hans a line. - Ed.

We are please to note that a number of readers responded to the letter from Rodney Dulce of the Philippines which appeared in October, 1985, issue of ETI. We will be able to provide a subscription to Rodney as soon as the paperwork is sorted out. And we will be replying to those of you who wrote to us individually. Just give us a bit of time.

We have also received a letter from an S. Davies of Leeds recommending what appears to be an audio repair company called KIA. We would like to be able to pass on their address to our readers - unfortunately S. Davies failed to supply it. Any chance of another letter?

ETI welcomes all queries, letters and contributions large or small. Any letter we receive is liable to be published unless marked 'Not For Publication'. We reserve the right to edit letters for reasons of space.

In general, please type your contributions using double-spacing and wide margins. Any diagrams should be neatly drawn in ink on plain paper and PCB foil patterns (if enclosed) should be at 2:1 scale. Please print any program listings at $41 / 2$ inch column width or (if more suitable to the listing) we may accept listings at 9 inches column width. The specifications for listings are meant to facilitate layout and avoid errors that may creep in if listings have to be re-typed. As a guideline, $4 \frac{1}{2}$ inches is most suitable for BASIC or other high-level language listings while 9 inches would suit hexdumps or annotated assembly language listings. Please send any letters and contributions to ETI, ASP Ltd., 1 Golden Square, London W1'R 3AB.

AUNTIE STATIC'S PROBLEM CORNER

Dear Auntie,

Can you please tell me why there are so many different types of capacitors? What is the difference between ceramics, polyester, polystyrene, mica and all the rest? S. Reed,

Exeter.
In an ideal world, capacitors would be capacitors and there would be nothing to choose between them. In the real world there is no such thing as a capacitor, in the sense of a device which obeys all the text book rules, and we can only hope that our assemblies of insulating and conducting sheets will behave more or less like one.

What we end up with is something like that shown in Fig. 1 , where L, R_{s} and R_{p} are extra circuit elements that arise because of the way the capacitor is constructed.

You couldn't cut the capacitor open and find them inside, but they are very real because the circuit you've soldered your capacitor into sees all the extra components and behaves accordingly. The effects can be minimised by making L and R_{5} as small as possible and R_{p} as large as possible, partly by paying attention to the construction of the capacitor and partly by the choice of dielectric material. The value of L depends on whether the capacitor is wound internally or constructed in flat layers, and \mathbf{R}_{5} results from dielectric losses as well as any physical resistances inside the capacitor. The different compromises that can be reached give rise to a variety of different types of capacitor, some of which are more suited to certain types of circuits than others.

Fig. 1 Equivalent of capacitor
The fact that capacitors are not entirely capacitors is just the beginning of the problem. Another little hiccup is that the value of any capacitor you use will keep changing. Take ceramics for instance. How long do you think it would take for the value of a high K ceramic capacitor to drop by 5%, just through the normal ageing process? Months? Years? I'm afriad not. A high K

Fig. 2 Variations in capacitance.
ceramic can change in value by 5% between 6 minutes and an hour after béing manufactured, and will continue to decline logarithmically thereafter, so that in 10 hours it will be another 5% down, after 100 hours (not much over four days) another 5% is lost, and so on. No wonder they are not recommended for use in tuned circuits and oscillators!

An even greater change in value occurs if the temperature changes. Take a look at the graphs in Fig. 2, taken from a manufacturers data sheet. A ceramic of this type (Mullard 629 series) will drop in value by 70% from its marked value at $25^{\circ} \mathrm{C}$ if the temperature drops to freezing point. Your 1n0 capacitor now has a value of 300p! Perhaps you don't freeze your circuits, but marked variations occur for quite normal household temperature variations, as you can see. If you have the audacity to wire the capacitor into a circuit, the value can change yet again. With a DC voltage of 60 V applied, you've got less than half the capacitance you thought!

We all know that ceramics are notoriously bad in many respects, but other types exhibit similar characteristics to a lesser extent. Capacitance will change with time, temperature and frequency. Losses and insulation resistance will vary and so on. The type you choose will depend on the kind of demand your circuit makes on it.

Ceramics, as we have seen, would be reserved for circuits where the value is not critical. (Having said that, there are fairly stable brands of ceramics made for circuits which make use of some of their more desirable characteristics.) For applications
requiring high stability -oscillators, tuned circuits, filters, etc - mica or ${ }^{\prime}$ polystyrene are particularly good. Polycarbonates are useful when a high insulation resistance is needed.

In some applications a low ESR or low equivalent series resistance capacitor (that is one having a low value of R_{s}) can be important. The resistance itself can directly dissipate heat (this is the reason for the maximum ripple current rating on electrolytics for use in power supplies) and will cause a shift in the ideal 90° phase relationship between voltage and current. The losses increase with frequency, so careful choice is needed for high frequency applications.

In pulse circuits the series inductions can be a prime consideration. This depends mostly on the way the capacitor is constructed. In sample and hold circuits, dielectric absorption will cause certain types of capacitor to fall in voltage as soon as the input is removed (this is quite distinct from any leakage that may occur), so low hysteresis dielectrics such as polystyrene or polypropylene would be used. And so it continues.

The study of materials used for capacitor dielectrics, or Dielectric Materialism as Marx called it, is a very involved subject. As with my earlier advice about transistors, it's a case of using general purpose types in noncritical applications, using general rules and your own experience in choosing components for more exacting needs, and resorting to manufacturers data sheets on the odd occasion when the right choice will make all the difference to your circuit. - Auntie.

Etienne Scrooge, known to his friends as Eti for sho
(he stood less than five feet in his wourried about the looked out of his window. People collars up to defend streets in the swirling snow, coll wind. Everywhere the themselves against the biting wrd - Carole King, Carol sound of Carols could be heard - Careavis, Caryl Bayer-Sager, J. Carroll Nash, Carrol Carol (after whom Neil Chessman, Carole Lombard., Ong). It was a glorious Sedaka had once written a songe world's first dyslexic sound. Eti had just invented NNP type), Christmas was coming, transistor (it was an NNP type), Chappily, had not yet the goose was getting fat - and he felt good! He been told about Christmas
gave vent to his emotions: 'Humbug! Bah! Humbug!' 'Humbug!' he cried. 'Humbug! Bah went off to read He felt even better for HTI - a magazine he felt a the Christmas edition of er a generous breakfast of strange kinship to - Eti turned to the ETI cornflakes and kidneys. Eti ured that it wasn't one of his ACTIVATOR, but soon turned to the ETI AUTOWIPER, but inventions. Then he turned the name for no good reason once again they had usesion or any sort of explanation. and without his permission orlishers, but first dashed off a He decided to sue the pubisles of operation behind the note explaining the principles was confronted by the NNP transistor. Suddenly, $\begin{aligned} & \text { ghost of Lee de Forrest. }\end{aligned}$ 'It'll never work,' said de Forrest. Wout about Gallium the new Barry Porter article, or fown to a short story by Arsenide. Or you co
'A short story by John Linsley Hood!' snorted Etienne. 'Humbug!' 'but it's not Brighton Rock, 'No,' said de For either.

And it wasn't...

The ETI Activator

The second in our series of sound processing units, this exciting device adds brilliance to your sounds. High fidelity buffs may murmur dïsapprovingly, but similar units to this one are all the rage in recording studios and those who've heard the Activator say that it reaches parts of the audio spectrum that even ultra-fi can't!

Autowiper

This engaging little circuit will control your car wind-screen-wipers at two touches of a button. Now you no longer have to be content with just two speeds - fast and jerky - but can determine the wiper rate by the magic of digital electronics.

Walkman Pal

The Walkman Pal is a combined amplifier, power supply and NiCad battery charger. Just plug your portable cassette player or stereo radio into the Pal, and you'll have hi-fi reproduction and more with this compact unit.

PLUS

Gallium Arsenide - The Fast One, Barry Porter on PCBs, Xmas Book Round-Up, a Christmas story by JLH and all our regular features.

THE SURPRISING JANUARY ISSUE OF ETI ON SALE DECEMBER 6th. CHRISTMAS IS COMING AND ETI IS GETTING FAT

DESIGNING TRANSISTOR STAGES

Les Sage looks at some variations on a common theme.

Having introduced the practical techniques involved in designing a common emitter transistor stage (ETI, November 1985), this month we'll concentrate on more general consideration of different configurations. Each circuit has been fully tested and its basic characteristics are given in the appropriate diagram. Component values have been calculated using similar techniques to those dealt with last month, involving emitter, collector and base voltages and currents and transistor gain. Two gain figures are used, one for signals (AC) and the other for notional DC levels (notional because most of the circuits are AC coupled). The DC gain figure, however, is an indication of circuit stability.

Bootstraps And Feedback

The main problem with the standard stabilized common emitter stage of last month (ETI, November 1985) is the rather low input impedance resulting largely from the base bias resistors shunting the input signal. A way round this problem is to use three bias resistors and include an extra 'bootstrapping' capacitor (Fig. 2). The principle of operation is that any input signal present at the transistor's base will, by emitter follower action, appear at much the same magnitude at the emitter. Since C2 (the bootstrap capacitor) is relatively large, it will act as a short circuit to the AC signal at the emitter and couple it without any attenuation to the junction of R1 and R2. Resistor R3 will have more-or-less the same $A C$ signal at both ends, so there cannot be anyAC current flowing through it and all the signal input goes into the transistor.

The input impedance is then that of the transistor stage and is not shunted by the bias chain. The DC bias conditions have not been altered significantly by the presence of R3 although, in practice, emitter follower action is not 100% and the junction of R1 and R2 is at a slighly lower potential than the input signal, meaning that a very small current still flows into the bias chain.

A second benefit of this configuration - and one not often realised - is that any noise on the supply lines will now be decoupled to the emitter through C 2 instead of being fed down the bias chain into the transistor's base. Since the emitter circuit has a very low impedance, it will remove the noise.

The un-bypassed emitter resistor, R5, adds to the input impedance of this circuit by introducing current feedback. The input impedance is approximately equal

Fig. 2 Bootstrapped common-emitter.

Fig. 3 Virtual earth common emitter.
to the $h_{\text {fe }} \times R 5$ (typically greater than 100 k). The output impedance is also quite high. This can be reduced - at the expense of also reducing input impedance - by a voltage feedback arrangement as in Fig. 3. In this circuit, a current proportional to output voltage is fed back to the input through R2, so that anytendency for the collector current to change is counteracted by an opposite tendency in the feedback current. This is a very economic arrangement, giving good stability at low cost and complexity. The circuit is probably most familiar for its DC stabilization characteristics, but among single transistor stages it is the closest thing to a virtual earth amplifier.

Ideally, the transistor should have a very high current gain, $h_{\text {fe, }}$ which is not too difficult with contemporary silicon devices. If R1 is large compared to the source

Fig. 4 Feedback decoupled common emitter.
resistance and the transistor input resistance (it's in the order of ten times Ql's input resistance as itstands), then the circuit input impedance will be roughly equal to R1 and the gain roughly equal to the ratio of R2 to R1. The output impedance is reduced by the ratio of closed-loop gain to open-loop gain. In an actual circuit, this worked out to be about three quarters, giving an output impedance of about 2 k 5 ($0.75 \times \mathrm{R} 3$).

For high gains (and it is only with high gains that the approximate values are really reliable R 1 must be quite low. Reducing R1, however, is also liable to upset the calculations and, in practice, a compromise is required. The circuit makes a good current-to-voltage converter, with output voltage equal to in put current multiplied by feedback resistance.

Figure 4 shows how to obtain a higher input impedance at high gains. Two feedback resistors - R1 and R2 - are used, their junction being decoupled to earth through C2. This gives a moderate input impedance (which can be increased by the addition of an input resistor as in Fig. 3) and high gain but at the cost of increasing output impedance against the Fig. 3 circuit. The effect is due to the action of $C 2$ in shunting signal frequencies to earth and avoiding AC feedback. The circuit may be considered the voltage feedback equivalent of the current

Fig. 5 Bootstrapped high impedance amplifier.
feedback common emitter with a bypass capacitor across the emitter resistor (Fig. 1, ETI November 1985, with R5 shorted out).

A refinement to Fig. 4 can be seen in the circuit shown in Fig. 5. Capacitor C 2 now shunts signal frequencies to the transistor emitter. By bootstrap action, R1 is now effectively an open circuit to AC signals, giving high input impedance and an associated reduction in gain. This configuration combines good DC stability with reasonable gain and high input impedance. The output impedance remains fairly high, due to the absence of direct parallel-derived AC voltage feedback. The circuit, however, finds an ideal use as a ceramic cartridge input stage where a high input impedance is required with not much gain.

Because of its high input impedance and very low
output impedance, the emitter follower (or, common collector) circuit (Fig. 6) makes an ideal buffer between stages. The low output impedance (in the order of 10R) means that it will drive almost anything current-wise. The circuit also has an input impedance which is higher than that of all the previous circuits we've seen, even though the emitter circuit impedance of around 500 k is shunted by the bias resistors. It therefore presents a very small load to any preceding stage. Add to this the fact that voltage gain is practically unity and it is clear why many engineers - unable or unwilling to design circuits fora particular purpose - just stick an emitter followerat the input and the output of some conventional amplification stages.

Fig. 6 Emitter follower.
In practice, many emitter followers can be omitted altogether - especially if circuits are custom-designed. Nevertheless, it remains a useful addition to the designer's armoury.

Ground To Base

So far, all the circuits described have been for low frequency applications. At the higher frequencies characteristic of radio and video, they will all show a distinct lack of gain. The responsibility largely belongs to the Miller capacitance effect. All transistors display a certain amount of capacitance between junctions. The capacitance between the base and collector is small and would not seem to be a cause for concern. However, the Miller effect says otherwise. A capacitance between the input and output of an inverting amplifier (for example, between the base and collector in a common emitter stage) appears to the input signal as having a value equal to the actual capacitance multiplied by the voltage gain. This is a form of negative feedback. What's more, the capacitance appears to shunt the signal to earth, so that base-collector capacitance multiplied by voltage gain is added to base-emitter capacitance. This produces a considerable reduction of input impedance at high frequencies and, in conjunction with input source resistance and the transistor's base layer resistance, a loss of signal amplitude and therefore of effective gain. For somewhat different reasons, emitter follower performance (which is dependent on current gain) also falls off at high frequencies.

One way of overcoming such effects is to operate the transistor in grounded (or, common) base mode. The transistor conducts DC as normal and component values are calculated as with a common emitter, but the signal is injected into the emitter and the base is held at ground potential to AC by a large-value capacitor. Any feedback signal due to internal transistor junction capacitance between collector and base is now shorted to ground by

FEATURE: Stage Design

the external capacitor (C2 in Fig. 7). In fact, the basecollector capacitance is no longer directly connected between input and output since the base itself acts as a screen. There is no Miller-amplified feedback capacitance, and the input signal feeds into the already low emitter impedance. Thus, voltage gain remains useful even at very high frequencies (up to the transition frequency f_{T}).

One characteristic worth noting is that the grounded base configuration is non-inverting since the signal is injected into the emitter and the output is taken from the collector. This is useful for video applications, as is the low input impedance of the circuit (suitable for terminating aerial feeder cables).

Non-inversion can also be achieved with a common emitter stage by taking an output from the emitter itself.

Fig. 8 Phase splitter.
Figure 8 shows a circuit commonly known as a phasesplitter, since output 1 and 2 are in antiphase - the first being equal in amplitude to the input but inverted in phase, the second being equal in amplitude and phase to the input. The amplifier has unity voltage gain. Strictly speaking, it only works as a phase splitter for a sine wave, since other waveforms may be degenerated. The main uses of this circuit are for driving balanced lines or as a means of obtaining variable phase for musical effects. R4 is included to ensure that both outputs are of equal impedance.

In the final part of this series we'll be dealing with some useful two-transistor stages. These will show how many of the compromises necessary in designing single transistor stages can be avoided.

REDUCED INSTRUCTION SET COMPUTERS

Carefully avoiding some of the obvious puns, Mike Bedford takes a look at RISC chips.

The most visible trend in the development of microprocessor technology since the release of 4 -bit processors in the early 1970's is a continual increase in the width of the data bus, a factor which is commonly used as a broad classification of processors. Today 8 -bit is the accepted type for home computers, 16 -bit tends to be used for small business machines and 32 -bit is found in scientific machines.

Hand in hand with this development has been an increase in the complexity of the instruction set. The earlier 4 and 6 -bit devices could only carry out simple logic and arithmetic functions such as AND, OR, ADD and SUBTRACT, various branches and subroutine calls and limited memory access consisting of LOAD and STORE instructions. As 8 -bit development continued, the number of addressing modes increased as did the complexity of the arithmetic functions. Multiply is included on the 6809 , for example, this being an 8 -bit processor which also offers some limited 16 -bit instructions. With 16 and 32 -bit processors multiply and divide are the accepted norm and many other advanced instructions such as loop constructions and

block moves are to be found. It goes without saying that increasing execution speeds accompanied the foregoing trends.
A few figures will help to illustrate these trends. The number of basic instruction types on the 8080, the first popular 8 -bit processor launched in the mid 1970 's, is 30 . The later 6502, also an 8 -bit device and extensively used in home computers, has a similar

> It has been suggested that by the end of the decade, virtually all computers for engineering applications will employ some degree of RISC architecture.

number, whereas the 6809, one of the latest and most advanced 8 -bit micros released about 1979, has 43. The 68000, a typical 16 -bit processor, has 61. Comparing, numbers of instructions between processors is not easy as one processor may have as different instructions what are merely different addressing modes of the same instruction on another device. The numbers above are not necessarily the numbers of instructions claimed by the manufacturers but would, for example, class all conditional branches as a single instruction.

What probably gives a more accurate picture of the complexity of the chip is a count of all the op-codes, a figure which gives a measure of the number of combinations of instructions and addressing modes. When these numbers are considered we see about 200 for the 8080,266 for the 6809 and over 1,000 for the 68000. Comparing performance numerically is once again difficult but it is quite clear that the 6809 is considerably faster than the 8080 or the 6502 and that the 68000 probably gives a 3 fold speed increase over the 6809 .
Even a quick glance at the above figures would lead to the conclusion that complicated instruction sets are
necessary to achieve high processing speeds, and indeed this has traditionally been the point of view throughout the development of computer architecture. The argument for this link is that if a particular function is not available as a processor instruction it will have to be replaced by a series of simpler instructions. For example, if multiply is not available it has to be replaced by a routine carrying out multiple additions and/or shifts, a process which

The Pyramid 90x is claimed by its manufacturers to give 8-10 times the performance of a similar machine with conventional architecture.

will usually be much more time consuming than a hardware implementation of the function.

Recent developments suggest that this trend of increasing complexity in microprocessors may be reversed. The RISC or Reduced Instruction Set Computer offers the possiblity of very high speeds coupled with an extremely simple yet innovative architecture.

Development Of RISC

It has been suggested ${ }^{1,2}$ that by the end of the decade virtually all computers for engineering applications, from PCs to multi-user mini-computers, will employ some degree of RISC architecture. Some advocates of RISC would indeed go as far as to suggest that all computers of the late 1980's will include RISC processors. Before going on to describe such a processor and how a simple approach can achieve impressive speeds, it will be useful to outline the development of this type of architecture.

This model is terrific for fast execution!

The project which is generally considered to represent the first work carried out on a RISC type architecture is the IBM-801, the design of a simplified instruction set being a result of statistical indications that the most commonly encountered instructions are simple ones such as LOAD, STORE, branches and simple arithmetic. Although this project has not, as yet, yielded a commercial product, preliminary results suggest that it has a performance comparable to the IBM 370/168 mainframe at almost 2 MIPS (million instruction per second) while other reports have claimed speeds as high as 10 MIPS. In view of the fact that the 801 is essentially a mini computer rather than a mainframe, this is a very impressive figure.

Another large company engaged in RISC research is DEC who are reported to have two such projects, code-named Nautilus and Titan. Once again, no commercial product has yet evolved and few details have been published. From those snippets of information that are available, we can say that Nautilus is intended as a general purpose machine which fits somewhere beteween the VAX and the System 10/20 machines and has a speed of about 10 MIPS, whereas Titan is an engineering workstation with some degree of VAX compatibility which should yield speeds in the region of 2 MIPS.

Other large ocmputer companies are known to be carrying out research in this field but so far only two RISC machines are on the market, both manufactured

Abstract

We have the promise of microprocessors with a much increased speed-to-cost ratio in the not too distant future.

by smaller companies. The Pyramid $90 x$ is a general purpose machine intended for both commercial and engineering applications. It is clearly intended to compete with the DEC VAX $11 / 780$ and is claimed by its manufacturers to give 8-10 times the performance of a similar machine with conventional architecture. The Ridge 32 , on the other hand, brings the power of a VAX to an engineering workstation for applications such as CAD and solid modelling. The claims for this machine are that it executes I/O faster than the VAX 780 and can execute linear equations faster than a VAX 750 with a floating point accelerator.

Although it is interesting to see the impact made by RISC in the realm of mini computers, the area which will be of most interest to readers of this article will be the development of RISC microprocessors. The first such device, RISC I, was completed in 1982 by a team of staff and graduate students at the University of California in Berkley. ${ }^{3}$ The team, led by Professor David A. Patterson, designed the chip from initial discussion to first silicon in a near record time of only 19 months. The fact that such timescales could be achieved and speeds in excess of those of commercial devices such as the 68000 could be demonstrated by a team with little previous knowledge of VLSI design can be attributed primarily to the simplicity of the architecture. Since impressive performance is possible with minimal design effort, we have the promise of microprocessors with a much increased speed to cost ratio in the not too distant future. In the following

Table 1. The instruction set for the RISC 1 Microprocessor.
description of RISC architecture the discussion will be based on the Berkley RISC I and later RISC II chips, although most of what is said could be applied to any machine using RISC philosophy.

Minimal RISC

The most obvious question to tackle first is how a simplified instruciton set can lead to high processing speeds. To put this another way, where is the fallacy in the usual argument that incorporating increasingly complex functions into the hardware decreases execution time by removing software overheads?

One problem with this conventional argument is that very often a single advanced processor function of a modern microprocessor may not be all it seems. Instead of a complex instruction being implemented fully in hardware, the situation is that such features are
actually translated to a series of micro-instructions, these being a low level of instruction within the device.

An implication of this is that single instructions on modern microprocessors can often take many cycles to execute. For example, on the 68000, the signed multiply instruction can take up to 42 cycles, 122 cycles are required for signed divide and even a commonly encountered instruction such as return from exception (interrupt return) can take 110 cycles. A closely related point is that, even for simple instructions, if a processor has a number of different variants and/or addressing modes the internal circuitry must be configured to suit each different requirement. This switching of gates is once again carried out by micro-coded instructions with the inevitable speed reduction.

The RISC I and RISC II processors are not microprogrammed and, with a couple of exceptions, are
able to execute all instructions in a single cycle. Table 1 shows the RISC I instruction set. It will be noticed that there are only 31 instructions and, in contrast to most modern 16 and 32-bit micro-processors, the device is totally devoid of the more esoteric instructions. Coupled with the fact that there are only two addressing modes, it is not difficult to see how all functions can be hardwired, hence obviating the need for micro-coding.

The RISC philosophy is that memory should only be accessed by LOAD and STORE instructions (these being the exceptions which take two machine cycles to execute) all processing being carried out from register to register internally. This limited memory access means, for example, that in order to add two memory locations together into a third, the processor would need to load the contents of the first two memory locations into registers, add the two registers together and finally carry out a store from the register containing the result into the third location.
An implication of this approach is that a large number of internal registers is essential. In fact, the register organisation is quite inovative and will be described shortly. Conveniently, it is because of the simplicity of the processor ALU and control logic (about 6% of RISC I compared to about 50% on many commercial processors) that it is feasible to devote a large area of the chip to the registers required by RISC architecture.

One possible argument against the approach outlined above is that, although it appears able to provide impressive speeds at a reasonable cost, the limited instruction set means that a much greater programming effort will be required. Since the programming time generally represents the greatest part of the cost of a system containing both hardware

Fig. 1 The register architecture of the RISC microprocessors.
and software, this could be a considerable disadvantage. It would undoubtedly limit the attractiveness of RISC processors if programming had to be carried out in assembler language, but RISC I is designed to be programmed in a high level language. Under these circumstances the limited instruction set is quite transparent to the applications programmer, being of concern only to the writers of the compilers.

The use of high level languages does not merely mask a possible disadvantage: indeed, the RISC

Single instructions on modern microprocessors can often take many cycles to execute. On the 68000, 122 cycles are required for signed divide....

processor was designed with high level languages very much in mind, PASCAL and C being the languages considered. As part of the initial design, statistical data on the frequency of occurrence of various constructions together with the corresponding numbers of machine instructions were analysed. The results led the Berkley team to the conclusion that the most time consuming parts of high level language programmes are concerned with subroutine calls and handling of local variables. As we shall see, the RISC register architecture addressed both these points, reducing their execution times considerably.

Registers

It has already been stated that the RISC I processor offers a large number of general purpose registers. The organisation of these registers and the way in which they greatly contribute to the fast execution of subroutine calls will now be described.

A conventional microprocessor has a relatively small number of internal registers. For example, the 6809 has only two general purpose data registers and two index registers; even the more advanced 68000 has only eight data registers and seven address registers. This means that, on entering a subroutine, all registers which are going to be used by that routine for its internal working must be saved on entry and restored on return to the calling code. This saving and restoring is carried out by means of a stack in memory, this also being the method used for passing parameters to and from the subroutine. It is the need for these PUSH and PULL instructions which so much slows down subroutine calls on conventional processors.

RISC I obviates the need for this time consuming process by using 137 registers which are arranged as a number of overlapping register windows. This scheme is illustrated in Figure 1. The left hand bank shows the internal numbering of the registers in the processor whereas the three banks on the right represent three separate register windows which map physically onto the total pool of 137 registers. Any subroutine has access to one window of 32 registers which are always referred to as R0-R31 irrespective of which physical registers they are mapped onto.

It will be noticed that each register window is split into four segments referred to as global, low, local and high. The global registers are used for values which are

likely to be accessed by a number of different procedures since these are common to all windows. The local registers are used for local working within a particular routine. Whenever a subroutine call or a return is executed, a new window is automatically selected and the local registers used by the calling routine became accessible, thereby obviating the need to save their contents on a stack.
As far as the passing of parameters is concerened, this is where the low and high registers are used. Since the low registers of one window overlap the high registers of a neighbouring window, the means of passing parameters to a procedure is to place them in low registers prior to issuing the call. Conversely, the called procedure will pick up the parameters passed to it in its high register area - once again removing the need for a stack.

Clearly this philosophy places a limit on the depth of subroutine calls which may be nested since there are only a finite number of registers from which to create new windows. To cope with this problem, the RISC ! processor recognises overflow and underflow conditions. Under these circumstances a trap takes place to a software routine which stacks the registers in memory in the conventional manner. If this condition were to happen frequently, the performance would clearly suffer. Research has shown that in average programms, such conditions occur relatively infrequently - if 8 windows are available it is suggested that overflows only happen on about 1% of subroutine calls.

Running The RISC

To conclude this introduction to RISC and to wet the appetite for what could be just round the corner, a comparison of the RISC I and RISC II processors against common 16-bit microprocessors of today will be made. Throughout this section it should be borne in mind that we are talking about a VLSI chip with 44,000 transistors. This compares to 68,000 for the Motorola 68000, and only 5% of the RISC chip is devoted to control functions (that is, the actual processing) compared to $30 \%-50 \%$ on most 16 bit processors.
The RISC I processor achieved a clock frequency of only 1.5 MHz compared to its design frequency of 7.5 MHz , a factor attributable mainly to the development
team's lack of experience in VLSI design. In spite of this poor circuit speed, RISC I showed up very favourably when compared with a number of commercial 16 and 32 -bit processors. Comparisons were made with the Intel 8086, Intel 432 and Motorola 68000, running benchmark tests in high level languages. Of the 4 programs, RISC I proved to be the fastest of the four processors for 3 of the tests and faster than the average for the fourth. The tests are not conclusive because different high level languages were used on the different micros, but the initial results were clearly encouraging.

The RISC II processor ran at 12 MHz , giving a cycle time of 330 nS which also implies an execution time of 330 nS for all but LOAD and STORE instructions. At the time of writing, the RISC II processor has not been built into a microcomputer system and the performance figures are therefore based on simulations. However, it is claimed that for C programs, an 8 MHz RISC II can outperform the 8 MHz iAPX 286, 10 MHz NS 16032, 12 MHz 68000 and 18 MHz HP 9000. Simulated comparisons have

RISC 1 proved to be the fastest of the four processors for three of the tests and faster than the average on the fourth.

also been made against the DEC VAX $11 / 780$ mini computer. Although this is not comparing like with like because the VAX is a multi user virtual memory machine, it is nevertheless impressive to report that a RISC \| running at 12 MHz is able to compile C programs 2 to 2.5 times faster than such a machine

Conclusions

It is difficult to know how to conclude an article on an aspect of micro electronics which is still in its infancy. Clearly the 'keep it simple' approach to microprocessor design has much to commend it, offering high speed processing at a potentially low cost. RISC advocates predict a rosy future for this type of processor and there is no reason to question the basis for their optimism. Nothing is certain in the electronics industry, however, as a look at the predictions made in the late 1970's regarding bubble memories makes clear. So, is the reduced instruction set computer another dream that will never come to fruition or will it be a major factor shaping the future? Only time will tell!

References

1. RISC Machines. Stephen Ohr. International Electronic Design. Jan 10, 1985. pp 175-190.
2. Technology Report. Computer Architectures. Ray Weiss. International Electronics Design. May 30, 1985. pp 83-92.
3. A VLSI RISC. David A. Patterson and Carlo H, Sequin. Computer 15 (9) 1982. pp 8-18.
4. RISC Chips. John Markoff. BYTE. Nov 1984. pp 191-206.

6809-BASED MICROCOMPUTER

In this, the first of a series of articles, G. Mills of Micro Concepts describes a new single-board microcomputer designed by Dave Rumball.

This article describes a single board, 6809-based microcomputer which incorporates a state-of-the-art graphics processor and other advanced features. It can be built at very low cost and is also available from Micro Concepts as a kit.
One of its features is the ability to appear as a Flex standard machine to the wide range of Flex software. This would be of interest to those who are involved in writing software for microprocessor controlled equipment, allowing the board to be used as an inexpensive but sophisticated software development system. In case you aren't aware, the Flex operating system has a wide range of cross assemblers and an elegant command set, and is widely used for this type of work. British companies currently using Flex based development systems for microprocessor software development include Dacom, Racal, and Westwood. Because of its advanced features, this board offers a more cogenial environment for software development than many more expensive systems. Companies currently using the Micro Concepts kit (known as the Microbox II) for software development include Thorn EMI and British Telecom.
The design should also be of interest to those who want a really useful computer for very little money. It runs serious word processing and data base software, has beautiful graphics, superb resolution, a completely soft character set and the prototype cost around $£ 450$ to build including discs, video monitor, keyboard, power supply and operating system (and the price is coming down).

By way of introduction, the following is a partial description of the hardware:

Central processor
 - Motorola 68B09E.

64K of dynamic RAM for the central processor. When running the board in the monitor mode, 8 K of this is mapped out by the monitor EPROM. When running the Flex operating system, only 4 K of the monitor EPROM is retained. This 4 K contains driver routines for the discs, serial ports and parallel ports, as well as interface routines for the graphics chip and terminal emulator.

A floppy disc controller that will support up to two $31 / 2$ or $51 / 4$ inch floppy disc drives, single or double density, single or double sided, 40 or 80 track.
One parallel keyboard port.

Two independent bi-directional RS232 ports with software programmable baud rates (50 to 19.2 k baud), parity, stopbits, etc.
One Centronics standard parallel printer port.

A buffered, fifty pin expansion bus.

All of the above will be familiar to anyone who has experience with run-of-the-mill Flex machines available from a number of manufacturers. The following features are unique to this design:

An additional 128 K of dynamic RAM partitioned into alphanumeric video RAM, graphic video RAM, and RAMdisk.

An alphanumeric display

 format of 108 columns by 24 lines when using the terminal emulator resident in the monitor EPROM. The terminalemulator and the associated character set are in software and therefore can be redefined if desired. Alternate memory resident emulators come with the kit. One gives a format of 84 by 24 and another 128 columns by 56 lines.

Exceptional monochrome

 graphics facilities generated by an NEC 7220A graphic display controller. The resolution of the display is 768 pixels by 576 pixels. By way of comparison, this is a resolution 2.7 times greater than the BBC Model B in its highest resolution mode. Graphics primitives (for example the Bresenham algorithm for arc and line drawing) are built into the 7220A, resulting in very fast drawing speeds.A RAMdisc facility, using a variable amount of the 128 K RAM. This RAMdisc looks exactly like a floppy disc to the operating system. The capacity of the disc can vary between 170 sectors (42.5 K) when

Fig. 1 Location of the principal components on the board.
using the full graphics capabilities of the machine, and 500 sectors (125 K) when the machine is being used with a serial terminal and no graphics output. Its mid capacity, when using the terminal capacities of the 7220 A , is exactly the size of a single density, single sided 40 track Flex disc. This enables the user to perform fast disc to disc copying with only one disc drive.

An EPROM based silicon disc

 which again looks to the DOS exactly like a floppy disc, but this time write protected. The EPROM disc is fabricated on its own small PCB which plugs into the main board. This allows the user to keep a number of these discs programmed for different applications. The capacity of this board is 4 EPROMS which can be $27128^{\prime} \mathrm{s}, 27256^{\prime} \mathrm{s}$, or 27512 's. These will give 64 K , 128 K , or 256 K bytes of disc space respectively.
An on-board EPROM

 programmer requiring only a programming power source (for 21 V EPROMS three 9 volt batteries stablized by a zener diode can be used).
PROJECT: Computer

Abstract

A battery backed-up real time clock and calendar. This is used by Flex to date stamp files. The clock chip also contains 50 bytes of nonvolatile RAM, some of which is used to maintain system parameters such as baud rates, floppy disc step rates, physical to logical mapping of disc drives and start-up parameters for the graphics device.

It should be apparent by now that the board has been designed with some thought. The combination of EPROM disc and RAM disk makes it very fast indeed and in most cases disc access time is not even noticeable.

The effect of the silicon discs and the fast graphics hardware is to make the machine compare favourably with the graphics on much larger machines (in one incarnation it was used by Imperial College as a graphics terminal for a VAX). Further, the terminal emulation software and the handling of the ROM and RAM discs so that they look like floppy discs enables the system to run Flex software with no more modification than would be necessary with any other Flex computer. In fact, it will boot any Flex operating system. It is in effect a superset of existing Flex computers, not an entirely new departure that leaves the software developers years behind.

Another interesting feature of the design is the low chip count. Fully populated, and including the EPROM disk, the board has only 68 chips of which 24 are memory and five are EPROM.

We hope this brief introduction has whetted your appetite! Next month Dave Rumball will describe the design of the board and the reasoning behind his choice of chips and facilities. Succeeding articles will cover construction and use and will include a list of available software. For those who can't wait that long, the kit is available from Micro Concepts at the address below and includes full construction details. Contact them for information on prices, etc.

Micro Concepts, 2 St. Stephens Road, Cheltenham,
Gloucestershire GL515AA, tel 0242-510525.

AUTOMATIC TEST EQUIPMENT

The writing's on the wall for signature analysis, says W.P. Bond.

The increasing predominance of VLSI, microprocessors and large memories has made the use of advanced techniques of automatic testing essential. Signature Analysis (SA) is such a technique and, although first developed over a decade ago, it plays an important part in modern ATE.

SA is a data-compression technique, introduced by Hewlett-Packard in 1970 as a field-service aid for fault-finding in microprocessor-based equipment, but with unexpected applications in functional testing. The theory is fairly complex - at least, if the maths is not taken on trust. If we accept the mathematical foundations as sturdy, the process is reasonably easy to understand.

Figure 18 shows a typical SA set-up. It is, in effect, a pseudo-random sequence generator with an external input connected to the circuit node at which system data is being monitored. The heart of the device is a 16 -bit shift register whose contents can be read out on a hex display. On successive clock pulses, the register will shift, producing a binary sequence at the output, X, and an associated sequence of hex numbers on the display. Assuming for the moment that the data input, W, is held low (that is, no data is entering the shift register), the device acts just like a pseudorandom sequence generator. The feedback loop through the exclusive-OR gate, XOR2, ensures that the shift register will cycle through all its possible states (with the exception of all bits zero) whatever the initial state (as long as it was not all bits zero). The proof of this derives from the theory of binary sequences and is connected with the fact the feedback loop is effectively generating a polynomial function whose value is determined by the state of the

Fig. 18 Signature analysis set-up.
shift register at any given time. The state of the shift register at a particular time can, in turn, be specified by reference to preceding stages. In the simplified diagram of Fig. 19 (which shows the Fig. 18 set-up with the data input and associated OR gate removed), the input at time r, X_{r}, is given by the expression:

$$
\mathrm{X}_{\mathrm{t}-16} \operatorname{xor} \mathrm{X}_{\mathrm{t}-12} \text { xor } \mathrm{X}_{\mathrm{t}-9} \operatorname{xor} \mathrm{X}_{\mathrm{t}-7} .
$$

This expression can also be written using what's called D-notation. This uses a particular operator, D (something like the differential operator of analytical calculus), to represent the effect of a delay of one clock cycle. The above expression becomes:

$$
D^{16}(X) \operatorname{xor} D^{12}(X) \quad \text { xor } D^{9}(X) \operatorname{xor} D^{7}(X)
$$

where $D^{n}(X)$ represents n successive operations on X.
If we wanted to generate the sequence of inputs

Fig. 19 A pseudo-random sequence generator.
into the Fig. 19 circuit, we could simply take any initial state of the shift register (except for all bits zero, which will never change) and work out successive values of the polynomial. We would get a sequence of ones and zeroes which would, eventually, start repeating. Starting from any single digit in the sequence and taking the next 15 digits (cycling round the sequence, if necessary) will produce states of the shift register.

It can be shown that the above polynomial will generate a sequence of 65535 digits before it starts repeating. Any device with n-stages which generates a sequence of $2^{n}-1$ ones and zeroes before repetition is called, for obvious reasons, a maximum length sequence generator. In the case of the circuit shown in Fig. 19, we talk of a maximum length sequence (or m -sequence) of period $2^{16}-1$. Using the technique of starting from one digit within the sequence and taking a string of 16 consecutive digits, we arrive at $2^{16}-1$ smaller sequences of 16 bits each. Since there can only be 2^{16} possible sequences of 16 bits (this time including the all bits zero option), and since the msequence doesn't start repeating until the 65536th bit,
the m-sequence clearly gives rise to every possible state of the 16 -stage shift register (with the familiar exception).

The useful thing about the m-sequence is that there is no evident structure to it. It appears to be random, although it is in fact rigidly determined by the initial state of the shift-register and the feedback (or transition) polynomial. By converting each of the states of the shift register into a decimal or hex number we can give another useful expression to this pseudo-random sequence. Table 1 shows the different ways of expressing the sequence for a 3-stage generator (Fig. 20):

CLOCK	I/P	A	B	C	HEX/DEC	O / P
1	1	0	0	1	1	1
2	1	1	0	0	4	0
3	1	1	1	0	6	0
4	0	1	1	1	7	1
5	1	0	1	1	3	
6	0	1	0	1	5	1
7	0	0	1	0	2	0
Table 1. Three stage shift register pseudo-random sequences.						

Check for yourself that the sequence now repeats.
In the above example, the decimal/hex sequence $1,4,6,7,3,5,2$ can be simply read out of the shiftregister as with the Fig. 18 circuit. Whatever the number that comes up, we know exactly which number will follow it.

Fig. 20 Simplified three stage sequence generator.
If we now go back to Fig. 18 and start feeding data in on W input, what will happen? Left to its own devices, the shift register will cycle through its sequence of 65535 numbers, one for every clock pulse. But as soon as the W input goes high (in other words, as soon as a data bit 1 arrives on the input), XOR1 will invert the bit on the feedback line. The shift register jumps out of its pre-ordained sequence. Since this sequence includes every possible number between 1 and 65535 already, all that will happen will be that the shift register lands somewhere else in its sequence and will carry on from there. Every data high will cause the shift register to jump to a different part of the sequence, so that a given sequence of data bits will generate a new sequence of numbers in the shift register. After a precise number of clock signals enough to cover all states of the unit under test - the shift register is stopped and a final number can be read out. This is the signature of the input sequence (also known as the cyclic redundancy code, or CRC). Assuming all the circuits concerned are properly initialised and the time window does not deviate, the signature will be the same each time the SA device sees the same data input. Clearly, any single bit error is certain to be detected, since such an error will cause one and only different jump in the sequence. Multiple bit errors will cause the sequence to jump several times, and it may end up where it would have been if no error had occurred. The chances of this
happening are very small - with a 16 -bit shift register, they amount to one in $2^{16}-2$. There is an approximate 99.998% chance that a multiple bit error will result in a wong signature and so be detected. This near certainty is possible because the original sequence is, in effect, random.

The main advantage of the signature analysis technique is that it is capable of detecting time related errors and can be used to test microprocessorbased systems, for example, or large memory configurations at full system speed. SA procedures require access to a test point for data input, access to a clock signal and the provision of start and stop signals to determine the time window (Fig. 21). The UUT's own clock is often used although it may be more convenient to use other bus signals (RD and WR), for example. Start and stop signals are often provided by a stimulus program built-in to UUT hardware.

Fig. 21 Data and control signals to signature analyser.
Figure 22 shows how SA can be applied to test an n-bit ROM. A counter is used to cycle through the ROM's address range and the outputs are monitored using the system clock as the SA clock. Start and stop signals are both taken from the MSB of the counter and therefore need to trigger on opposite edges. Using this method, there is no real limit to the size of memory that can be tested, which is particularly important with regard to newer devices and technologies like bubble memory with sizes upwards of one megabit.

The same principle can be used to test RAM, although a method of loading the memory with known data is required. In this case, the stimulus program which initializes the system, provides start and stop pulses and exercises all the test nodes may utilise RD and WR signals as clock inputs. Signatures arrived at when writing data to RAM using WR as a clock signal could simply be compared with signatures arrived at when reading data back using RD as a clock input. This is a less complicated procedure than one using the system clock of the UUT.

Fig. 22 ROM testing by signature analysis.

One difficulty in testing microprocessor-based bus systems is the presence of feedback loops. A bad signature may be propagated around the loop, for example on a data bus. In such a case, the presence of a fault could be detected but not isolated to component level. In the mpu system of Fig. 23, interrupts must first be disabled or masked if any meaningful and repeatable signatures are to be derived. The data bus must be broken by means of jumpers, switches or buffers and the processor should be allowed to freerun, cycling through its address range. This last can be achieved by putting an instruction on the mpu's now disconnected data inputs causing the program counter to increment and repeat as long as the instruction is present. Normally a no-operation (NOP) instruction will do the trick.

Signatures can be taken from the address bus. If these are wrong, either the micro is not free-running, or there is an address fault. Then the ROMs, RAM and I/O can be enabled in turn and their outputs verified on the data bus. Once again, the RAM must be loaded with known data. If the data bus cannot be isolated, one can often utilise tri-state buffers to isolate the mpu and then force an instruction on to it, vectoring it to a particular address in ROM containing an analysis routine. But such complications are enough to ensure that ATE only uses signature analysis to test large memories, circuits without feedback and easily controllable mpus.

Bus Emulation

There are other options for testing mpu and busstructured boards, of course. Bus Timing Emulation is a technique developed by Columbia Automation (now Zehntel) for use on their Columbia 2000ATE model. This is currently being used by Smiths Industries for testing complex modules.

Emulation is, in effect, a form of real-time simulation, originally designed as a microprocessor development tool. Uniike simulation testing, emulation is perfectly suited to the uncovering of dynamic faults even with the UUT being run at full system speed.

To use emulation to test mpu-based busstructured we must know the timing specifications and protocol of the bus - which are, of course, determined by the controlling mpu and are largely independent of any particular devices attached to the mpu bus. The timing emulator in the ATE is used to replace the mpu. It can be synchronized with the UUT clock and itself produces synchronous timing signals to different isolated areas of the bus.

Bus structure allows the functional grouping of sub-circuits into blocks like RAM, ROM and PIO so that the ATE can apply and measure data within each block simultaneously. For stimulation and monitoring to work, the ATE software needs to be able to manipulate data, check it instaneously and during a time window and tri-state circuit blocks and components - all in real-time.

Bus timing emulation may be combined with static (step-time) testing of read, write, buffer and control functions and with signature analysis of the UUT with the mpu installed. In this way, static faults, component dynamic faults and microprocessor faults can all be detected - the main drawback being the need to remove or tri-state mpus.

Memory emulation eliminates the need for processor removal. The technique was developed by Genrad inc. and approaches the problem of dynamic real-time testing from the other end. The UUT pro-
cessor is clipped with a header, allowing it to remain resident while being controlled by the ATE.

The ATE can selectively overdrive test signals and force a processor to redirect its activity from memory resident on the UUT to ATE-supplied memory, thus creating a memory overlay. On reset, the micro will go through its reset routine. Where an OPCODE FETCH is generated (as with the $Z 80$ and 8085), the program counter is reset to 0000 h - where the first instruction following reset will be stored. Other micros (such as the 6800 and 6502) load the contents of FFFEh and FFFFh into the program counter as the vector address of the reset routine.

If the mpu control signals (ALE on the $8085, \mathrm{VMA}$ on the 6800 or MREQ on the Z80, for example) have been overdriven by the ATE, the micro will - after reset - address ATE memory as though it was its own. This stage is known as 'capture mode' and the UUT memory is masked from the mpu.

Fig. 23 Bus structured circuit.
In the next stage of the process, the UUT can be tested by using 'target routines' stored in ATE memory. These are of two main types: the diagnostic test routine (DTR) and the idle routine. Tester memory is partitioned into segments which can be placed anywhere in the UUT processor address map, so that the mpu may still have access to parts of its memory or to talkable devices on the bus. DTRs are used to test functional blocks of the UUT, while an idle routine keeps the micro in a known condition under tester control during changeover from one to another test procedure.

In this way, the micro retains access to the system as a whole, while allowing selective real-time testing at full system speed. Stimulus and test measurements can be synchronized and the whole process closely duplicates the actual performance of the UUT, allowing the detection of interactive and component dynamic faults which might otherwise be hidden from a test procedure.

1985 PROJECT/ FEATURE INDEX

Listed below are all the major articles we have published in the last 12 months, including those appearing in this issue. We have not listed regular features such as News Digest, Read/Write and the various columns in the Etcetera section but we have included Tech Tips and Reviews and put each of them under separate headings. These sections are quite short so we have not bothered to crossreference any of the entries, but articles under the main Projects and Features headings are listed twice or even three times in some cases to make them as easy to find as possible. We have also listed corrections to projects where necessary.

FEATURES			
Article	Part	Month	Page
Analogue to digital and other data conversion process		Aug	
Automatic Test Equipment	part 1	Oct	43
	part 2	Nov	19
	part 3	Dec	30
Data conversion principles		Aug	24
Data Encryption		Sep	30
Defence contracts and reliability		Jan	49
Designing Memory		Feb	18
Designing Transistor Stages	part 1	Nov	22
	part 2	Dec	19
Design Integrated Circuits on Your Micro		Feb	52
Digivision Inside Out		May	16
Diodes (The Real Components)		Jul	18
Ear and brain - the final link in the audio chain		Apr	16
Electronics For Peace?		Apr	52
Final Link, The		Apr	16
Flat screen television displays		Sep	19
From A To D And Back Again		Aug	24
IC Reliability		Jan	23
Index 1984		Jan	73
Job Market, The		Jul	28
Linear ICs (The Real Components)		Aug	18
Logic ICs (The Real Components)		Oct	20
Noise About Noise		Jul	23
Number Jungle, The		Jul	30
Other End Of The Scale, The		Jan	33
Power supply noise in audio systems		jul	23
Reader Survey		Jan	37
Real Components, The resistors and capacitors	part 1	Mar	29
Real Components, The transistor development	part 2	Apr	29
Real Components, The contemporary transistor types	part 3	May	20
Real Components, The transistor design calculations	part 4	Jun	25
Real Components, The - diodes	part 5	Jul	18
Real Components, The - linear ICs	part 6	Aug	18
Real Components, The power switching devices	part 7	Sep	26
Real Components, The - logic ICs	part 8	Oct	20

Article	Part	Month	Page
Reduced Instruction Set Computers		Dec	22
Reliability in integrated circuits		Jan	23
Resistors and capacitors (The Real Components)		Mar	29
SAW devices		Nov	14
Secrets Of Telecine, The		Apr	41
Semiconductor device numbering		Jul	30
Serial microprocessors		Jan	33
Shape Of Things To View, The		Sep	19
Surface Acoustic Waves		Nov	14
System Failure		Jan	49
Telecine, The Secrets Of		Apr	41
Time Domain Analysis		Jun	20
Training For The Future?		Sep	23
Transistor design calculations (The Real Components)		Jun	25
Transistors, the development of (The Real Components)		Apr	29
Transistors, contemporary types (The Real Components)		May	20
Transistor stage design	part 1	Nov	22
	part 2	Dec	19
Women And Information Technology		Nov	25
TECH TIPS			
Annoying Alarm		Jun	53
Audio attenator		Sep	60
Automatic Car Aerial		Feb	29
Auto-Repeat For The Cortex		Feb	28
$B^{\text {BBC }}$ ' B^{\prime} A-D Buffer Amplifier		Dec	54
BCD To Binary Convertor		Aug	54
- Budget VU Meter		Jun	52
Cheap Hour Counter		Jun	52
Column Loudspeaker Design		Oct	53
Combined Practice Amplifier and Metronome		Sep	60

Article	Part	Month	Page
Enlarger Exposure Meter		Nov	54
EPROM board for the Spectrum		Sep	40
EPROM Programmer, Universal, MkII	part 1	May	35
	part 2	Jun	43
	part 3	Jul	48
	part 4	Aug	51
Equaliser, graphic/parametric	part 1	Feb	31
(ETI Paragraph)	part 2	Mar	49
Evaluation board, 6802		May	27
EX42 Interface For The BBC ' B^{\prime}		Aug	41
Framestore, television	part 2	Jan	44
	part 3	Feb	55
	part 4	Mar	59
	part 5	Apr	48
Heat pen		jun	48
	Errata	jul	27
Lamp brightener (Sunrise)		Oct	48
Large Digit Scoreboard		May	43
Loudspeaker, active, bass		Jan	15
Low Cost Audio Mixer		Jun	38
	Errata	Aug	62
Memory'Scope display		Nov	28
Metronome and beat counter (RhythROM)		Nov	33
Microprocessor evaluation board, 6802		May	27
Millifaradometer (Large value capacitance meter)		Nov	44
Modular Test Equipment - power supply		Oct	38
Modular Test Equipment - waveform generator		Nov	36
Modular Test Equipment - pulse generator		Dec	37
Noise gate		Jul	38
Oscilloscope memory display		Nov	28
Paragraph Equaliser	part 1	Feb	31
(parametric/graphic)	part 2	Mar	49
Parallel I/O For The Cortex		Sep	53
Power supply board (Modular Test Equipment)		Oct	38
Printer buffer	part 1	Jul	33
	part 2	Aug	48
	Errata	Oct	58
Pulse generator (Modular Test Equipment)		Dec	37
RCL Bridge		Aug	30
Regulator, switching, 5V@ 1A		Nov	40
Rhythm chip		Nov	33
RS232 For The ZX81/Spectrum		Apr	23
Sampler, digital sound	part 1	Oct	27
	part 2	Nov	63
Scoreboard, large digit		May	43
Second Line Of Defence, The (household alarm system)	part 1	Sep	36
	part 2	Nov	60
Second Processor For The Electron	part 1	jun	32
	part 2	Jul	43
Single Board Computer, 6809	part 1.	Dec	27
Single Board Controller, 6809		Mar	35
	Errata	jul	27
Sonneti combo unit		Mar	22
	Errata	Jun	51
Sonneti effects board		Apr	57
Sorcerer string synthesiser	part1	Aug	36
	part 2	Sept	48
	part 3	Oct	32
SpecDrum Sequencer		Dec	47
Spectrum EPROM board		Sep	40
Spectrum RS232 interface		Apr	23
Stereo simulator		May	50
Sunrise Lamp Brightener		Oct	48
Switching Regulator, 5V @ 1A		Nov	40
Telephone charge meter (Buzby Meter)		Apr	34
Television Framestore	part 2	Jan	44
	part 3	Feb	55

If you wish to order copies of any of the articles listed in this index, you can obtain backnumbers of the relevant issues from Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB, tel 0442-48432. The cost will be the present cover price of the magazine plus 50p to cover postage, etc. If on applying you find that Infonet have sold out of the issue you require, you can obtain photocopies of individual articles direct from us. The address is the ETI Photocopy Service, 1 Golden Square, London W1R 3AB. The cost is $£ 1.50$ per article including return postage to you, but note that, where an article appeared in several parts over a number of months, each part will be charged as one complete article. Cheques and Postal Orders for both backnumbers and photocopies should be made payable to ASP Ltd.

 164 8748 £1500

 Dry Fit MAINTENANCE FREE by Sonnenschein \& Yuasa A300 O7191315 12 v 3ah as RS $591-770$ NEW $£ 13.95$ A30007191312 6v 3ah as RS $591-360$ NEW £9.95 A300 071912

DISK DRIVES
 Japanese Half height, 80 track double sided

 Japheres by TEACC, TOSHIBA etc. Sold asdisk drives
NEW with 90 day guarantee ONLYE125.00. NEW with 90 day quarantee ONLYE 125.00 .
SUGART SA400 SS FH 35 TRK E55.00 SUGART SA4OO SS FH 35 TRK £55.00
SIEMANS FDD100 SS FH 40 TRK 75.00 SIEMANS FDD100 SS FH 40
carriage on 51/4" drives $£ 5.50$
carriage on $5{ }^{1 / 4}$ " drives $\mathbf{£ 5 . 5 0}$
Brand NEW metal ${ }^{2}$. for above drives, below cost!!!!
DSKC 1 tor 2 HH or $1 \mathrm{FH} 51 /{ }^{\prime \prime}$ drive $£ 39.95$ DSKC £29.95 $+\mathrm{pp} £ 4.50$
$8^{\prime \prime}$ Refiurblshed standard units
SUGART 851 DS $£ 25000+$ pp $£ 8.50$
PRGN190 SS complete with PSU etc, $£ 595.00$
8' $^{\prime \prime}$ DRIVE PSU for 2 drive units $£ 45.00$ Hard Disk Drive
DRE/DIABLO Series 302.5 Mb front load, £525.00, Exchangeable version £295.00 ME3029 PSU for above $£ 95.00$
DIABLO 44/DRE4000A, B $5+5$
DIABLO 44/DRE4000A, B $5+5 \mathrm{Mb}$ from
CDECARWK $5+5 \mathrm{Mb} £ 795.00$
CDC 976280 Mb RMO3 etc $£ 2500.00$ PERTEC D $34225+5 \mathrm{Mb} £ 495.00$
RODIME 10 MB ST506 Winchester NEW BASF 617223 Mb Winchesters, as seen 199.00

Carriage on other drives $£ 10.00$.
Unless stated all drives are refurbished with
90 day guarantee Many other drives and 90 day guarantee. Many other drives and
spares in stock-call sales office for details.

MODEMS

Join the communications revolution with ou super range of DATA MODEMS, prices and
specifications to suit all applications and specifica
BRAND NEW State of the art products DACOM DSL2123 Multi standard $300-300$ 1200-75 Auto answer etc.
DACOM DSL2123AD Auto dial, smart modem with multi standard AUTO' SPEED etc COM DSL2123GT The CREAM $\mathbf{E 3 6 5 . 0 0}$ intelligent modems, auto dial, auto call, index buffer etc etc
STEEBECK $S 81212$ V22 1200 baud FULL DUPLEX, sync or async, optional auto dial TRANSDATA 307 A Acoustic coupler 300 baud full duplex originate only,
RS232
*** Ex. BRITISH TELECOM full Spec CCITT, data Will work on any MICRO or system with RS232 interface.
DATEL 2B 300 Baud Modem see SPECIAL OFFER
MODEM 13A 300 baud unit, only $2^{\prime \prime}$ high fits MODEM 20-1.75-1 200 baud. Compact unit for use as subscriber end to PRESTEL,
TELECOM GOLD, MICRONET etc. E39.95 + Pp 6.50
MODEM 20-2 1200-75 baud. Same as 20-1 but for computer end, $£ 65.00+p p ~ £ 6.50$
DATEL 2412 Made by SE labs for BT this two part unit is for synchronious data links at 1200
or 2400 baud using $2780 / 3780$ or 2400 baud using $2780 / 3780$
protocol etc. Many features include 2 or 4 wire working self test, auto answer etc
COST OVER £800 Our price ONLY £199 +PPE8.00 4800 RACAL MPS4800 baud
model, EX Bt good working order, ONLY modem, EX B \dagger good working order, ONLY
$£ 295.00+\mathrm{pp} £ 8.00$ SUMMER OFFER
MODEM TG2393. Ex BT, Up to duplex over 4 wireor half duplex over2 wire line.
ONLY $£ 85.00$ PER PAIR th $\begin{gathered}\text { For more information } \\ \text { CONTACTOUR SALESOFFICE }\end{gathered}$

....... HOT LINE DATA BASE rald

응
:The ORIGINAL FREE OF CHARGE dial up data:
base. Buy, browse or place YOUR OWN AD for goods or services to sell. 1000's of stock items. Spares and one off bargains. Updated daily. For 300 baud modems call word, no parity. For 1200-75 baud modems call 01-679 6183

A MASSIVE purchatramull SCOOP.
A MASSIVE purchase of these attractive stand a one
terminalunits enables a SUPER BARGAIN offer. the US GENERAL ELECTRIC CORPORATION N GE GE MODEL 30 features a stannard OWERTY 80 key. electronic keyboard coupled to a quality built matrix
printer with variable $3^{\prime \prime} 1095^{\prime \prime}$ torms tractor Theprinter is printer with variable $3^{\prime \prime} 109.5^{\prime \prime}$ forms tractor: The printer is capable of continuous duty printing, with up to 120 ASCII data at 110,150 or 300 baud. Ideal for Terminals Data loggers local label printing or just as a printerí Sold TESTED with data ONLY £95.00. Also available with TWIN MAGTAPE CASSETTE unit for data capture data preparation etc $\mathbf{E 1 5 0 . 0 0}$ Carriage $£ 10.00$.

COOLINA FANF

our range of COOLING FANS
. 240 V 5 blade equipment fan
ETRI $88 \times 80 \times 38 \mathrm{~mm} \notin 9.95$
240 v equipment fan, complete with finger guard NEWE9.95
GOULD JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact
Very quiet running 240 operation.
NEWE6.95.
NEWE6.95.
reversible fan. Uses a brushiess servo miniature extremely high air flow, also silent running and guaranteed i0,000 hr life. Measures only $62 x$ ONLY £12.95 complete with data ONLY E12.95 complete with data
tans 110 V OR 240 V NEW at 110.50 or tested
EX EOUIPMENT 240 v 6.25 or 110 E 4.95 $1000^{\prime} s$ of other fans Ex Stock

OMRXTY REVCOARDS

Manufacturer's BRAND NEW surplus.
ALPHAMERIC $7204 / 60$ Full travel ASCII, 60 key with parallel output and strobe. E39.95
DEC LA34 Uncoded keyboard with 67 quality gold plated switches on X-Y AMKEY MPNK-114 Superb word processo AMKEY MPNK-114 Superb word processor
chassis keyboard on single PCB with 116 keys. Many features such as On board Micro, Single $5 v$ rail, full ASCli coded character set with 31 function keys,
Numeric keypad, cursor pad and 9600 baud SERIAL TTL ASCII OUTPUTI! ONLY £69.00 with data.

plesse
 YVUTEI

 PLESS PLESSEY Ltd thiscompact unit, only slightly targer than a telephone, features an 24×40 character CR
screen, VIEWDATA Screen, VIEWDATA
PRESTEL modem
 Keypad and electronics to run as a fully
fledged PRESTEL terminal or telephone Ready to plug direct into a BT 600 type jack PRESTEL etc. Many other features include Memory dialling, Recall button, Off line screen data storage, Picture expand Standard
Mullard LUCY chip set, Integral 5 , monitor, etc etc. Designed to sell to the EXECLATVE AT OVEI E6OO! But from only $£ 99.00$ tor DTMF tone dial or $£ 140.00$

SPECIAL 300 BAUD MODEM OFFER

Ano GIGAN. NEW or little used $2 B$ data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data
communications at an UNHEARD OF PRICE OF ONLY E29.95 Made the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base business or hobby communications. All this and more!!

- 300 baud full duplex - Full remote control - CCITT tone standards - Modular construction
senth
Brow onty - CALL. ANSWER and AUTO modes - Standard RS232 seria 240v Mains overation year full guarantee
Just 2 wires to comms. line

COLOUR AND MONOCHROME MONITOR SPECIALS

SYSTEM ALPHA' $14^{\prime \prime}$ COLOUR MULTI INPUT MONITOR

 made in the UK by the famous REDIFFUSION Co. for their own professional future monitor requirements. Two viceo inputs: RGB and PAL Composite Video, allow direct connection to the BBC and most other makes of micro computers and VCR's. An internal speaker and audio amplifier may be connected to your systems output or direct to a VCR machine, giving superior sound quality. Many front panel, S included PIL tube, Matching BBC case colour, Major controls on audio input, Separate Colour and audio controls for Composite video input BNC plug for composite input, 15 way 'D' plug for RGB input, modular constructionThis Must be ONE OF THE YEAR'S BEST BUYS
Supplied BRAND NEW and BOXED, complete with DATA and 90
AND NEW and BOXED, Complete with DATA And 90 day guarantee.
SUPLIED BELOW ACTUAL COST-ONLY \&149.00
DECCA $8016^{\prime \prime}$ COLOUR monitor. RGB input.
converted DECCA RGB Colour Video TV Monitor at a super low this special £99.00, a price for a colour monitor as yet unheard of!! Our own interface only modification and special $16^{\prime \prime}$ high definition PIL tube, coupled with the tried and tested DECCA 80 series TV chassis gives 80 column definition and picture
quality found only on monitors costing 3 TIMES OUR PRICE in fact WE quality found only on monitors costing 3 TIMES OUR PRICE. In fact, WE has to be seen to be believed. Supplied complete and ready to plug direct to a BBC MICRO computer or any other system with a TTL RGB output. Other features are: internal speaker, Modular construction, auto degaussing circuit,
Atractive TEAK CASE, compact dimensions only $52 \mathrm{~cm} \mathrm{~W} \times 34 \mathrm{H} \times 24 \mathrm{D}, 90$ day guarantee. Although used, units are supplied in EXCELLENT condition, ONLY DECCA 80, 16" COLOUR monitor. Compositve video input Same as above model but fitted with Composite video input and audio amp for COMPUTER, REDIFFUSION MARK 3, 20" Colour monitor. Fitted with standard 75 ohm composite video input and sound amp. This large screen colour display is ideal for shops, schools, clubs and other AUDIO VISUAL applications. Supplied in AS
NEW or little used condition ONLY $£ 145.00+$ Carr

BUDGET RANGE EX EQUIPMENT MONOCHROME video

 monitors.ill units are fully cased and set for $240 v$ standard working with composite video inputs. Units are pre tested and set up for 80 column use on BBC micro etc. Even $12^{\prime \prime} \mathrm{KGM} 320-1 \mathrm{~B} / \mathrm{W}$ high bandwidth input, will display up to $132 \times$
E32.95 EREEN SCREEN verston Of KGM 320-1 Only f39.95 9" KGM 324 GREEN SCREEN fully cased very compact unit Only $\mathbf{9} 55.00$ Carriage and insurance on
D.C POWFR SUPPLY SPECTALFE 240 V input BRAND NEW Only E14.95
GOULD GB-40A $5 V 40 \mathrm{amp}$ switch mode supply NEW £ 130.00
GREENDALE $19 A-B O E$ Switch mode 60 watt Open PCB with a fully regulated DC output of $5 \mathrm{~V} @ 6 \mathrm{amps}$ and three semi regulated outputs of $+12 \mathrm{~V}-12 \mathrm{~V}+15 \mathrm{~V} @$ upto 1
amp Dim only $11 \mathrm{~cm} \times 20 \mathrm{~cm} \times 5.5 \mathrm{~cm}$. Similar to RS $591-994.110$ or 240 v AC input TESTED ex equipment. Only £24.95. AC-DC Limear PSU for DISK drive and SYSTEM applications. Constructed on a rugged ALLoY chassis to continuously supply fully regulated DC outputs of $+5 \mathrm{~V} @ 3$ amps -5 V $@ 0.6$ amps and $+24 \mathrm{v} @ 5 \mathrm{amps}$ Short circu
AC input. Dim $28 \times 12.5 \times 7 \mathrm{~cm}$ NEW $£ 49.95$

$$
\begin{aligned}
& \text { NEW £49.95. } \\
& \text { Carriage on PSU's } £ 3.00
\end{aligned}
$$

VDU TERMINALS

Standard VDU data entry terminals at give away QUME QVT108. Current product, state of the art terminal with detachable keyboard, $12^{\prime \prime}$ green screen, 2 page RAM, TVI 825 emulation, 25×80,
Clock Swivel and tilt base, Printer port Function Keys etc 8RAND NEW and BOXED AT ALMOST HALF PRICE Only £425.00
AJ510 - EX RENTAL Z80 controlled, $15^{\prime \prime}$ green screen 24×80 display, graphics cursor
addressing, printer port etc Very good condition TESTED Complete with manual only $£ 225.00$. ADDS 520 - Dumb terminal, used, $12^{\prime \prime} \mathrm{b} / \mathrm{w}$ screen
RS232 interface and printer port. TESTED. ONLY $£ 125.00$

Carriage on terminals $£ 10.00$

[^0]
PULSE GENERATOR

Mike Meakin describes another of his low-cost test equipment modules, a versatile pulse generator board.

This instrument has been designed as one of a series of test gear modules and complements the power supply which was presented in our October issue and the waveform generator which appeared in the November issue. Each module is assembled entirely on one $P C B$, complete with all switches, potentiometers, sockets, and so on. This removes the need for cases and other hardware and so reduces the cost.

Further expense is avoided by using the power supply module to provide the operating voltages for the other modules, thus eliminating the duplication involved in providing separate power supplies. Ideally, therefore, the power supply module should be built and used to drive the pulse generator, but in practice there is no reason why another supply should not be used if you don't need all the facilities of the main PSU module.

The pulse generator provides output pulses with widths variable from 1 us to is at repetition rates from 1 Hz to 1 MHz . CMOS, TTL and open collector outputs are provided together with a sync output. The internal clock can be switched out when not required and the generator can then be driven from an external clock or operated in single shot mode. The design is inevitably a compromise between complexity and cost but it is felt that most of the facilities the average hobbyist is likely to require are provided.

The heart of any pulse generator is the monostable timing circuit, and a large number of 1 C devices are available to provide this function. However, obtaining a very wide timing range with sensible values of R and C limits the field.

The 555 timer would seem well suited to this application but the

practical minimum pulse width obtainable from this device is about 10 us. The 74121 series of TTL monostables require large values of timing capacitors and behave erratically at high duty cycles. The 74C 221 chosen for this circuit is a CMOS device with a performance which is superior to that of both the 4528 and 4538 monostables from the 400 series. A six decade timing range can be achieved with changes of capacitance only and it behaves well at high duty cycles.

Three outputs are available on the board. The TTL output is provided by five inverters in parallel and is capable of driving ten standard TTL loads. The input is driven from a 15 V CMOS output but protection is given by an internal diode. A Schottky device must be used in this position. The 0 to 15 V variable output is obtained from five paralleled CMOS buffers and a potential divider, giving a maximum source impedance of about 300 R. Some protection is provided by the $47 R$ series resistor. Finally a VMOS transistor provides an 'open
collector' or more correctly an open drain output. This sturdy device can sink up to 500 mA and withstand 60 V . It is ideal for use as a relay or LED driver.

Construction

Because the switches and potentiometers are all mounted directly onto the PCB, any labelling of functions and switch positions will also have to be done on the board itself. Various methods of doing this were described in the Waveform Generator article in last month's issue and will not be repeated here. However, if you want a particularly neat end result you will have to either screen print the board or use rub-down lettering, and both of these processes must be undertaken before any other constructional work on the board is started.

Installation of the components should begin with the wire links and progress in the normal fashion through hardware devices (switches, sockets, etc), passive

Fig. 1 Complete circuit diagram of the pulse generator. The board is intended for use with our earlier power supply module so no PSU circuitry is shown here.

HOW IT WORKS

The VCO section of a 4046 phase lock loop IC is used as a clock. This circuit gives a 50% duty cycle square wave output at pin 4 of IC1. The six decade timing capacitors are selected by SW1. For the lowest frequency range two 22u tantaium capacitors are connected back to back to give a non-polarized capacitor whose value should ideally be 10 u . The timing resistors R2 and R3 in conjunction with the voltage obtained from RV1 set a 1:10 frequency range.
SW3A selects either the VCO output or the external and single shot inputs. The section of the $\mathbf{4 0 4 6}$ normally used
as a phase comparator is connected as a Schmitt trigger to clean up the input pulses. These are obtained from an external clock via a transistor buffer whose input is protected by a series current limit resistor R5 and reverse polarity protection diode D2. The external clock input will operate either from a pulse source or an AC signal as long as it crosses the 0.6 V turn-on potentital of the transistor. The single shot or manual pulse is obtained by shorting the Schmitt trigger input to OV with SW2. It is de-bounced by the R6, C9 time constant.

Half of the 74C221 is connected as a
negative-edge non-retriggerable monostable. SW4 selects the timing capacitor and RV2, R9 alter the time period over a 1:10 range. The input pulse also triggers the other half of IC2 to give a negative going sync pulse of about 500 ns at SK5. This is coincident with the leading edge of the output pulse and can be used to trigger an oscilloscope. SW3B directs either a positive going pulse, a negative going pulse or the source signal to the output stage. The VCO square wave signal, the external clock or manual pulses can thus be sent directly to the output.

BUYLINES

The fixed resistors, the capacitors and the semiconductors are all widely available with the possible exception of the 74C221 which can be obtained from Cricklewood. The only supplier we know of for the carbon track presets is RS Components who will only accept orders from trade and professional customers. However, Crewe Allen \& Co of 51 Scrutton Street, London EC2 will obtain parts from them on pyament of a small handling charge. The stock numbers are 184-350 for the 10 k preset, 184 388 for the 100k preset and 184-322 for the 1 kO preset.

The DIL switches used on the prototype were an ERG DS16D 1-6 for SW1 and SW4 and an ERG DS16D 1-$3+1-3$ for SW3. ERG will not handle small orders but electronics clubs, schools and others prepared to order reasonable quantities could try contacting them at Luton Road Dunstable, Bedfordshire LU5 4LJ, tel 0582-62241. Unfortunately, we do not know of anybody who stocks similar switches or will supply the ERG switches in small quantities. The board has been laid out to accept eight position switches as well as six position ones and this would permit an

RS stock number 337-532 DIL switch to be used in the SW1 and SW4 positions. The extra switch positions would simply be ignored in use. RS do stock a two-pole DIL switch but the sections are ganged, making it unsuitable for use as SW3. A standard eight way DIL switch could be used but the operator would always have to make sure that only one switch in each group of four was selected at any one time. The only other alternative we can think of is to use standard rotary or slide switches and glue or bolt them to the board.

PROJECT: Pulse Generator

Fig. 2 The component overlay for the pulse generator PCB.

PARTS LIST

RESISTORS	
R1	G80R
R2	68k
R3	$1 \mathrm{M5}$
R4	100R
R5	15k
R6	4k7
R7, 9, 12	10k
R8	100k
R10, 11, 13	47R
RV1	10k carbon track preset with integral knob
RV2	100k carbon track preset with integral knob
RV3	1k0 carbon track preset with integral knob

components (resistors and capacitors) and finally the active components (the ICs, transistors and diodes). Take care that tantalum and electrolytic capacitors and the various active components are all inserted into the board the right way around. It is best to use sockets for the ICs but there is no reason why they should not be soldered directly into the board if you prefer and are careful. Since the DIL switches may suffer slight movement when operated, it is best to avoid sockets and solder them directly into place.

When the board is complete, connect up the +5 V and +15 V rails from the power supply module or from another regulated power supply. The current drawn from the main supply rail, the +15 V one, will be about 25 mA . Set SW3a to internal clock, the frequency control potentiometer to mid position and the frequency range to $0.1-1 \mathrm{kHz}$. Select source and then apply power to the board.

Both the variable and the TTL outputs can be monitored either with an audio amplifier or a piezo sounder. The positive and negative
going pulses should be checked with the width switch set to $0.1-1 \mathrm{~ms}$ to confirm that the monostable is operating. Finally, a LED in series with a 1 kO resistor should be connected between the VMOS output and the plus 15 V supply, observing the correct polarity of the LED. Select negative going output pulse, external clock and pulse width range $0.1-1 \mathrm{~s}$. If the single shot switch is pressed the LED should momentarily illuminate. Those who have access to a scope can of course test the board more comprehensively.

Available now - The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required.

Full details on request.
74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome. Non-Military Goverment \& Educational orders welcome. $£ 15$ minimum.

HAPPY MEMORIES (ETI), Newchurch, Kington, Herefordshire, HR5 3QR. Tel: (054 422) 618

Interak

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ +VAT; manuals £1-£5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name andaddress with a 21 pstamp and we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept. T12E), New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

Electronics - It's Easy

SPECIAL OFFER

Buried deep within the labyrinthine complex known as ETI Towers, we have come across a long-hidden supply of 'Electronics - It's Easy', the popular introduction to electronics we published in... well, sometime ago. We know (because we have to answer the phone calls) that this book is still in demand. We've a limited supply at an astonishingly low price. Only $£ 3$ will bring you a 276 -page course on electronics - theory, history and practice. Written by Dr. Peter Sydenham of the University of New England, New South Wales, Australia, and employing the systems approach, 'Electronics - It's Easy' covers everything from Ohm's Lawto Microprocessors, ADCs to Zener diodes. Get it -it's easy.

Cut out and send to:
'Electronics - It's Easy' Special Offer, ASP LTD, No 1 Colden Square, London, W1R 3AB.
Please forward copies of 'Electronics - It's Easy' at $£ 3$ per copy.
I enclose a cheque/Postal Order/International Money Order made payable to ASP LTD.
OR please debit my ACCESS/BARCLAYCARD No.

NAME
Valid from
to.
ADDRESS

SIGNATURE

DATE .

SPECDRUM DRUM SEQUENCER

Use a Spectrum to control your kit of drum synths - it's the only way to beat time, courtesy of Digisound.

The Specdrum drum sequencing package is a costeffective and highly flexible method of generating rhythmic structures using a Spectrum or Spectrum + computer, a simple interface and cassette software running to about 15 K of machine code. An external clock input is provided to allow synchronisation with tape machines or other devices and the hardware can also be used as a conventional joystick interface when not running the Specdrum software. It uses the Spectrum PSU and is compatible with Interface 1, microdrives and Sinclair-type printers.

The software incorporates a pattern editor (16 patterns of up to 32 events each), a chain editor (eight chains of up to eight patterns each), a sequence editor

Fig. 1 Specdrum trigger pulses.
(eight sequences of up to 12 chains each with or without repeats) and a track editor (two tracks of 24 combined sequences, chains, patterns and repeats). There is real-time pattern modification and the facility for interfacing microdrives and tape. The external sync operates on a 10 V p-p max. level. The interface allows around 60 events per second to be programmed and can store more than 70,000 events per track.

The events are trigger pulses intended to be sent to drum synthesizers under the control of the sequencer. There are four accented triggers and two unaccented triggers. Accenting affects the quality of the output of most drum synths. Data lines D0D3 produce trigger pulses whose
level (from 0 V to 5 V) can be controlled by four individual pots. All these pulses may be simultaneously accented by means of data line D6 - an accent effectively overriding the potentiometer setting and producing a 5 V pulse at the output whenever it occurs (Fig. 1). Data lines D4 and D5 generate unaccented triggers called O and X, respectively. The O trigger consists of an uninterrupted output at either +5 V or -5 V (hardware selectable) between two or more consecutive events. This allows the unit to provide open/closed hi-hat control - an inverted, -5 V , pulse being necessary to the hi-hat tacility offered by the Digisound 'ElCymb' unit (one of a series of Digisound Digi-Drum units which

The complete circuit diagram for the interface is shown in Fig. 2. It may be divided up into a number of circuit blocks: address decoding; trigger generation and accenting; joystick interface; and a master clock.
Memory address decoding is performed by IC4 and IC5a, d, e and f, which generate two hardware control signals, WRSEL and RDSEI. The decoding checks for A5, so that the hardware appears at addresses $1 \mathrm{~F}, 5 \mathrm{~F}, 9 \mathrm{~F}$ and DF (hex). This simplified $1 / O$ decoding is quite adequate in this application and does not conflict with other Sinclair hardware. In fact, the software is designed to make full use of microdrives if they are available.
The decoded RDSEL signal directly controls the two enable pins of an octal buffer (IC2), which is responsible for reading in the appropriate switch status from a standard Kempston joystick. With a logic 0 on the enable pins, the joystick position is passed to $D_{0}-D_{5}$ of the data bus. Data bit D_{7} is used to transfer the hardware clock which is responsible for timing duties, synchronization of the display and memory latching. This clock is built
around IC6, a 555 configured for astable operation. Potentiometers RV5 RV6 provide, respectively, fine and coarse speed/tempo control. The output of the 555 is taken to the break connection of jack socket J1. This allows an external clock to be used for synchronization. Any incoming clock signal is cut down by the resistor/zener diode network connected to the 11 'make' connection. The +5 V signal is buffered and inverted by IC5B and reinverted to generate CLK and CLK signals, switchable at $S 1$. This feature is included so that clock signals with extreme duty cycles may still be used. With such signals, inversion may be necessary to allow the software enough time to carry out the display routines. When there is insufficient time for the software, the display is drawn in stages. The third position of S1 grounds the clock, so that the hardware may be used as a conventional joystick interface. If this was not done, games software might mistake the ungrounded incoming clock signal for the fire button! The normal address location of joysticks in games software is 1 Fh , making them compatible with this unit.

The remaining hardware is concerned with generating the six trigger pulses. With a logic 1 on WRSEL, IC1 (an octal D-type latch) is enabled and data lines $D_{0}-D_{6}$ pass valid trigger information to the rest of the cirlcuitry. $D_{0}-D_{3}$ are the four channel triggers to which an accent control may be added. This information is generated by D_{6}, and accents all triggers simultaneoously by ANDing the accent pulse with the outputs on $\mathrm{D}_{0}-\mathrm{D}_{3}$. It is possible to individually regulate the level from 0 to 5 V on each trigger by means of pententionmeters RV1-4, which control the amount of feedback from the output to the indidivual channel inputs. The presence of an accent pulse takes all levels to 5 V . The trigger outputs are taken off the potentiometer wipers and each is buffered by one of IC8's four op-amps.
The O and X triggers are treated in a different manner in software and are not provided with an accenting facility. The X trigger on D5 is treated like a fully accented trigger, providing a positive-going 5 V pulse which returns to $0 V$ between two adjacent events. The O trigger on D4 is used to generate an uninterrupted output bet-

Fig. 2 Complete circuit diagram (positive 0 trigger)
ween two or more consecutive events. The O and X signals pass directly to output buffers configured around the two halves of IC 7 . The \mathbf{O} trigger buffer may be arranged to invert the incoming 0 to +5 V pulse, generating a 0 to -5 V signal. A negative voltage can be used to open and close the signal path between the drain and source pins of a 2 N 3819 FET in order to control certain units, like the El-Cymb. R29, the resistor between the drain pin and the decay pot, is responsible for setting the difference in decay characteristics and may be altered. The modification for the El-Cymb is shown in Fig. 2a. The diode that replaces R19 is included to block any positive voltages which if they occurred would probably result in the destruction of the FET.
The unit is powered by $+/ 5 \mathrm{~V}$ from the Spectrum PSU and draws around 80 mA on the positive rail. The Spectrum can withstand this for long periods of time even with Interface 2 and microdrives attached. Capacitors C2-C5 are for decoupling purposes and LED1 provides a power-on indication.

PARTS LIST

RESISTORS (5\%,	1/4 W carbon film)
R1-20	1 kO
R21, 23	3 k 3
R22	56 k
R24	4 k 7
R25	180 R
R26, 27	100 k
RV1-4	47 klin
RV5	100 k lin
RV6	$1 \mathrm{M0}$

CAPACITORS

C1-5
100 n polyester

SEMICONDUCTORS
${ }_{1 \mathrm{c} 1}^{\mathrm{cc}} \mathrm{Cl}^{2}$
74LS373
74LS244
74 LS08
74LS02
74LS04
NE 555
MC 1458
LM 348
5 mm Red LED
1N 4148
5 V6 400 mW zener

MISCELLANEOUS

$11-73.5 \mathrm{~mm}$ mono jack sockets, 9 -way D-Plug, Spectrum edge connector, 8way Molex sets (2 off), 16 -way ribbon cable (1m), case with printed and punched panel, K9 control knobs and caps (7 off), SW1 1 pole, 3 -way rotary switch, PCBs.

BUYLINES

The complete kit of parts, including software but excludng ordinary wire and solder, is available from Digisound Ltd., 14-16 Queen St., Blackpool, Lancs. FY1 1 PQ . The cost is $£ 43.47$ inclusive of p\&p and VAT. Digisound are also making available a set of PCBs and the software on cassette for $£ 18.40$ inclusive .

Fig. 3 Component overlay for main board.

Fig. 4 Changes to overlay for positive 0 trigger generation.
can be operated with this sequencer).

Construction

The component overlay for the main PCB (marked uP9) is shown in Fig. 3 - this arrangement generates an inverted O trigger. The changes needed to generate a positive O trigger are shown in Fig. 4, Figure 2a shows the circuit of the inverted O outut and the modifications necessary to the ' El Cymb' module to produce a variable decay. Assembly is a fairly simple matter and should proceed in the normal manner: links, resistors, IC sockets, capacitors and so on. When all of the components have been assembled on the main board, it should be thoroughly treated with a solvent cleaner and inspected for dry joints and solder bridges. Insert the 28-way edge connector into the PCB marked uP8 and with the PCB evenly towards the body of the connector solder the two parts together. Then bend the exposed ends of the pins so that they meet evently. Slide the edge connector PCB (marked uP2) between the two rows, ensuring that each pin lines up with a finger on this PCB and that the cut-out is in the correct location. Push the PCB against the rear of the connector and solder in place. Do not let solder flow closer than 1 cm from the exposed edge of this PCB, or it may interfere with the proper location of peripherals.

Using the available case and panel, the connections from the Spectrum edge connector

assembly to the interface are hardwired to the main PCB and made via Molex connectors on uP8. This necessitates the cutting of a small slot in the plastic case wide enough to pass the length of 16 -way ribbon cable through. Be sure not to reverse the Molex connections when plugging onto the edge connector assembly the easiest way to avoid this is probably to find (and if necessary mark) the earth connection on uP8 (two pads joined near the slot). Then, ensure that this is connected to earth on uP9 and the rest of the connections will follow in the correct sequence. The panel wiring is shown in Fig. 5 and is simply a matter of matching the connections on this diagram with the connections shown in Fig. 3.

Once construction is complete and fully checked, the unit may be connected to the Spectrum computer and the latter switched on. At switch-on, the TV/monitor display should be as usual and the power-on LED on the unit illuminated. If anything seems wrong, turn off immediately and recheck all wiring and soldering

Fig. 5 Panel wiring diagram.
until the error is located.

In Use

The users' manual which accompanies this package provides comprehensive information on how to use it. The unit will function with most analogue or digital percussion sound generators currently available. The sound generators may be connected to the triggers in any desired manner, bearing in mind the open/closed hihat function. As an example of the system's flexibility, it is possible to trigger two drum modules from a single output, adjusting the dynamic sensitivity of the modules so that one is triggered by an unaccented (low level) trigger and both by an accented (high level) trigger.

Fig. 6 Overlay of connector board.

DI COMPRESSION GATE

The first ETI Sound Processor is a unit combining compressor, noise gate and direct inject box, designed by Allan Bradford of Time Machine Sound Engineering.

The combination of compressor and noise gate is a useful one. The 'pumping' noise associated with high levels of compression can be eliminated by the gate, while the 'topping and tailing' facility afforded by the compressor makes the gate an excellent feedback-killer for PA systems. Comprehensive envelope shaping of sounds for special effects is also possible.

The compressor has a wide range exponential control characteristic which produces a smooth response in the management of 'peaky' signals, with full control over release or recovery time. Attack time is preset for general use, but a front panel screwdriver adjustment enables it to be slowed to allow 'punch-through' effects. Subsequent stages in the audio chain are still protected from overload by an independent fast limiter riding 12 dB above the compression threshold. Gain reduction and limiting are displayed on four LEDs.

The Noise Gate has an attack fast enough for drum kits (but can be slowed right down for 'violating' sounds) and release time is fully variable to suit the program material. An internal time constant eliminates modulation of the signal due to individual waveforms when short release times are employed. The depth of noisegating is preset at -60 dB but again a front panel screwdriver adjustment permits this to be softened.

Side-chain inputs are provided both for control of compression (for voice-over effects and 'deessing' and for triggering the noise gate. Two compression gates can be cross-linked for stereo operation.

Inputs are low impedance microphone level and outputs are line level. Inputs and outputs can be balanced or unbalanced via jack or XLR sockets. The unit uses an external power supply for reasons both of economy and hum prevention. Inputs are also provided for direct injection of instruments and of amplifier
loudspeaker outputs. The latter will be of particular interest to guitarists wishing to exploit the sound of valve amplifiers while maintaining complete isolation from other instruments. At 1 MO impedance the DI inputs place negligible load on any instruments plugged into them - particularly important if a guitar is to be plugged into the line input, in order to preserve the natural sustain of the instrument. A paralle! line jack is provided in order simultaneously to connect the instrument to a monitor amplifier.

A switch is provided to reduce the overall sensitivity of the unit by 10 dB . With the compressor RELEASE knob pushed in the compression gate is matched to -10 dBm line and mic level signals. With it pulled out the unit is
matched to 0 dBm line and mic levels.

Two parallel output jack sockets are provided, allowing simultaneous connection to more than one piece of equipment without the need for splitters. These outputs are line level and are unbalanced. A balanced XLR line level output is also provided.

Cold Compressor

The compressor controls the maximum signal level by reducing gain progressively above a certain fixed level known as the threshold. Most sounds fluctuate in amplitude and the effect of compression is to reduce the size of signal peaks and to boost average signal level relative to the peaks (Fig. 1). The dynamic range of the signal is therefore reduced, and this can have several important applications.

LIMITING: This means protection from overload by suppression of unacceptable transients. The ATTACK preset is usually set not quite fully anticlockwise (around 1 ms) - but for maximum overload protection in critical applications it may be turned fully anticlockwise,

PROJECT: DI Compression Gate

running the risk of LF distortion.
The GAIN/COMP control is advanced so that one or two green LEDs flicker on with the peaks of the music. The RELEASE control should be set about one quarter turn clockwise (about 0.25 s). Avoid simultaneous short attack and release times. Release time should be sufficiently long to avoid individual peaks modulating the signal as a whole, with a resultant rasping distortion.

LIFTING VOCALS: Human voices can have a very wide dynamic range and the average level may be substantially below the peak level. By compressing vocals the average level may be boosted so that they become audible in a mix. Compression should be applied to vocals subtly (around 10 dB). Too much can make them flat and lifeless.

RECORDING: The human ear can happily accommodate sounds with a dynamic range of 120 dB , while the dynamic range of tape recordings is often only 60 dB or so. To make maximum use of tape, without quiet sounds being lost in noise and loud sounds saturating the tape and distorting, some compression of signals with a large dynamic range is desirable.
'Thin' or 'peaky' sounding recordings can be salvaged, percussion, for example, often sounding more solid. 'Mix thickening' can be used to increase the average sound level and obtain the sort of impact demanded in modern commercial sound record-
ing. It's used particularly in recording advertising jingles and dico music.

SUSTAIN: The compressor may be used to add artificial sustain to instruments (Fig. 2). The gain is wound right up but the compressor clamps the output signal at compression thresholds. Only when the amplified signal falls below this level of the compression threshold will the signal resume its natural decay. RELEASE should be kept short and the GAIN/COMP control advanced to give the required degree of sustain.

It is also possible to combine sustain with a 'punch-through' attack by allowing the amplified signal to pass unattenuated for a short time before compression takes over. Set the ATTACK preset and RELEASE control to around mid-position. The fast limiter will prevent excessive excursions of the signal but 12 dB of punchthrough is still available to preserve naturally percussive sounds or add percussion to softer sounds.

Other Features

The four LEDS form a rever... driven bargraph. The right hand LED indicates up to 10 dB of gain reduction. With this LED on and the next LED flickering, gain reduction is in the region of 10 to 20 dB . Two green LEDs on and the yellow LED flickering indicate up to 30 dB of gain reduction. The leftmost

Fig. 1 Average and peak signal levels before and after compression.

g. 2 Using the compressor to add artificial sustain.
red LED shows that the fast limiter is working, handling transisents too fast to be controlled by the compressor (Fig. 3).

A two-pole jack socket is wired with the tip as a control input and ${ }^{\prime}$ the ring as a signal output for external connections to the compressor. A standard mono jack may be used. The socket may be used either as a control input or as an insert point. A line level signal fed to the EXT COMP socket will cause a reduction in the level of a music signal passing through the

Fig. 3 The compressor LED display.
compression gate ordinarily. This allows voice-overs or 'ducking'. effects to be achieved easily one signal controlling the level of one or more others.

As an insert point, the EXT COMP socket can be used to introduce equalisation into the control path for 'de-essing' and 'de-popping', which are dealt with below.

Noises off

A common hazard of recording and public address work is the inclusion of unwanted sounds in the mix, such as guitar amplifier noise, hum from keyboards, tape hiss, low level RF pick up or 'spillage' of sound from one microphone into other microphones. The problem is aggravated by the high gains associated with large amounts of compression.

BUYLINES

A complete kit of parts including the fully finished steel case and associated hardware is available from TIME MACHINE Sound Engineering for £68.00 including VAT, postage and packing. The double sided, legended PCB is available separately at $£ 9.00$ and the case at $£ 14.00$. The ready built power supply in a plug costs $£ 24.00$. A stereo pair with dual power supply and a cross-linking lead costs $£ 154.00$ in kit form. All prices include VAT, postage and packing. Contact:

TIME MACHINE Sound Engineering, Abbotsford, Deer Park Avenue, Teignmouth, Devon TQ14 91.J. Telephone 062672353.

PROJECT: DI Compression Gate

Softening the attenuation
makes the effect of gating more
subtle and also allows the noise
gate to be used as a 'two-level
device' for controlling monitoring
levels during recording.
Other Features
A tri-colour LED shows red for
closed, green for open and varying
 DEPTH preset, turning slowly from amber to green as this preset is
A two-pole jack socket is wired with the tip as a trigger input and

 used as a straightforward trigger
 point' - for example to introd equalisation into the control path so that the gate only opens to This latter technique will improve the ability of the noise gate to discriminate between wanted and

A signal passing through the
compression gate may have its
envelope substantially modified as
 ןоиецว о!pne әчд имор su!ұпия

 With a useful signal present, turn
 pue әן 9 !pne әшoวəq ו!і punos

 әчі spəәวхә ןeus!s e uayм suədo pot. When this is fully anti-
 asts of drum kits. For vocals, the
 ced to about one quarter turn se yग! pu!ef e suip!one pue kilys!! the gate opens. The speed with

 off, or advanced clockwise to procompliments the natural decay of
Depth is preset to give 60 dB closed, but may be adjusted with a screwdriver down to zero.
outlined above. The noise gate controls can be used to further modify envelopes. Slowing the gate ATTACK gives a gradual start to sounds while a fast RELEASE gives an abrupt finish to sounds. This latter technique is often used to cut off the 'flap' or reverbera-

Fig. 5 The parameters defining the shape of the sound envelope.
tion of drums, giving greater impact to the sound.

The parameters available are shown in Fig. 5 and resemble those of ADSR envelope shapers found on sound synthesizers.

Feedback Suppresion

If the overall gain of a PA system exceeds a critical level, the criteria for oscillation are met and

Fig. 6 Wiring of the lead required for stereo operation using two compression gates.
a loud tone is generated. PAs are often used in frequency-selective environments and the feedback generally occurs at a discrete pitch - the resonant frequency at
which system gain is highest.
Compression can help by getting rid of large pulses of sound pressure which would shock the system into oscillation. In the absence of a useful signal, however, the gain of a compressor rises and feedback can 'creep up', resulting in howl-round even during periods of apparent silence. The noise gate overcomes this

PARTS LIST

RESISTORS (1\% metal oxide)		CAPACITORS	
R1, 2	2k7	C1, 2, 7, 13, 14, 15	22 u 16 V minelect
R3, 4, 81	82k	C3, 5, 6, 8, 10, 11,	4 4 40 V minelect
R5, 7, 10, 27, 28,	10k		
51, 55, 58, 62,		C4, 20, 21	100n polyester
71, 75		C9	10p ceramic
R6, 8, 40, 56,	1M0	C16, 19	47 u 16 V tantalum
59, 61, 72, 73, 76		C17	47 u 16 V minelect
R9, 69, 74, 78	100k	C18	15 n polyester
R11, 21, 25	30k	C22, 23	10u 40v minelect
R12	15k		
R13, 16, 83, 87, 89	1k0	SEMICONDUCTORS	
R14	5k6	IC1	TL072
R15	180k	IC2	NE5532
R17, 20, 24, 90	12k	IC3	LM13700N
R18, 19, 22, 23,	470R	IC4, 5, 6	TL074
44, 45		Q1-9	BC212L
R26, 50, 77	4k7	D1-9	1 N 914
R29, 30, 31	100R	LED1, 2	Green standard
R32, 33, 34, 35, 36	47k		LED
37, 64, 65, 66,		LED3	yellow standard
${ }_{\text {R38, }}^{\text {67, }}$, 86	820R	LED4	red standard LED
R39	270R	LED5	Tricolour round
R41, 47	1 k 5		LED
R42	47 R	MISCELLANEOUS	
R43, 49	390 R		
R46 R48	33 R $\mathbf{1 k 2}$		remale panel mounting
R52	330 R		XLR
R53	270 R	SK2, 10, 11	Stereo break 1/4"
R54	68 R		
R57, 60, 63, 70	2 k 2	SK3, 4, 5, 6, 7	Mono $1 / 4^{\prime \prime}$ jack
R79, 80 R84, 85	${ }_{3}^{2203}$	SK8	Socket Male panel
R88 ${ }^{\text {d }}$	270k		mounting XLR
RV1	250 k lin pot	SK9	Prof 3-pin DIN
PR2, 3	100R min horiz		panel socket
	preset	SW1	see RV5
PR4	4 k 7 vert cermet preset	SW2	see RV6
RV5	100k log pot with push/pull SPST switch	Knobs (collet or PCB; case; stick-on PCB pillars (tapped	grub screw, 5off); cabinet feet (4 off);
RV6	10k log pot with	nuts, bolts and lock	king washers, 4 off
	DPDT switch	PCB linking pins (63	33 off); Veropins (35
RV7	47k log pot	off), self tap screw	(no $4 \times 6 \mathrm{~mm}, 4$ off);
RV8	2 M 2 log pot	6BA nuts, bolts and	locking washers (4
RV9	10k vert cermet preset	off); power supply \pm rail regulated.	$\pm 15 \mathrm{~V}$ at 120 mA per

problem and microphones may be operated with between 6 and 10 dB more gain than otherwise.

Special Patches

STEREO OPERATION: A pair of compression gates may be crosslinked for stereo operation using a stereo jack to jack lead wired as

Fig. 7 stereo 'de-essing' arrangement for removing excessive sibilance.

Fig. 8 Using the gate to provide sharply cut-off reverberation.
shown in Fig. 6, with one end being plugged into each EXT COMP socket.

STEREO DE-ESSING: Incoming left and right signals should be mixed and then passed through an equaliser. This equalised signal is fed into the EXT COMP input of each compression gate. A treble boost will cause low frequency components to be compressed most for suppressing 'rumble' or microphone 'popping'. In each case adjust the GAIN/COMP con-

Fig. 9 Component overlay of the compression gate PCB.
trol for the best results, keeping the compressor RELEASE time short so as not to compress the section following the offending sibilant.

GATED REVERB: With the gate RELEASE fully anti-clockwise, adjust the gate Trig Level so that the reverberation cuts off prematurely and abruptly. This is particularly effective on drums (Fig. 8).

EXTERNAL GATE: Sending a signal into the EXT TRIG socket enables that signal to trigger

whatever sound is passing through the compression gate. Softening the gate DEPTH by turning the preset anti-clockwise makes the nosie gate a 'two-level device'. This is the complement of the compressor voice-over patch, in which the presence of a signal at the EXT TRIG input switches the signal passing through the compression gate from attenuated to full (Fig. 9).

Construction

The PCB is double sided and linking pins are used to make the through-board connections, their positions being marked by stars printed on the component side of the board. Great care should be taken to ensure that every pin is soldered on both sides of the board - work systematically and check thoroughly as nine out of ten faults will be found to be due to a pin not being soldered somewhere, usually on the underside of the PCB.

Solder components in order of height: resistors, diodes, IC sockets, presets, transistors, capacitors, LEDs and pots. Take care to observe polarity of diodes and capacitors as marked. It helps if the LEDs are the correct way round, too. The LED leads should be bent at $90^{\circ}, 5 \mathrm{~mm}$ behind the plastic package and soldered so that the bends are 5 mm above the PCB.

Note that the Alps pots supplied with the kits solder to
pins in order to be the correct height above the board. Solder Veropins in the pot positions and attach the PCB mounting pillars to the board corners using the studded ends and nuts, then fix the PCB inside the case by passing four bolts through the mounting holes in the bottom of the case. Next cut the pot spindles to length (10 mm) and mount them on the front panel. The pot tags can now be soldered to their respective pins and perfect alignment is ensured. The whole assembly may

Fig. 11 Wiring of the switches on RV5 and RV6.
now be removed from the case for testing.

Pins should also be used for the off-board connections as well as the connections to the switches on RV5 and RV6 (Fig. 10). Connec-

Fig. 12 Wiring of the connectors on the rear panel.
tions to the sockēts are shown in Fig. 11 but it is probably wise to complete the setting up and to bench test the completed board prior to wiring it into the case.

The DI compression gate is designed to run from any regulated power supply providing $\pm 15 \mathrm{~V}$ at up to 120 mA per rail. A custom power supply built into a mains plug case and with a 2 metre lead terminated in a $3-\mathrm{pin}$ DIN plug is available from the kit manufacturers.

The only setting up required is of the two presets RV2 and RV3.

Using a voltmeter on its most sensitive range, adjust RV2 to set IC2 pin 7 to precisely $0 V$. Next set gate ATTACK and RELEASE at minimum and the DEPTH preset fully clockwise, then either feed a sine wave into a line input or use a microphone in order to trigger the Noise Gate - adjust the THRESHOLD control so that the gate opens and closes as the incoming signal goes up and down in volume. A click will be heard as the gate opens and closes and RV3 should be adjusted until this is minimized.

'She just kissed me and that was it!'

Ron Watt toyed for ages with the idea of joining Dateline.
'One or two of my friends suggested it would be a good idea,' said Ron, a House Sales Officer from Kidcalder, West Lothian. At 29, most of his friends were married. 'It's very hard to meet people because you don't really want to go to a disco or for a drink on your own - always assuming that you will meet the sort of people that you want to go out with. Dateline gets you through the first hurdle of asking people out because you can write to them.

Coincidentally, Ron joined Dateline on the very same day as Fiona Martin, a pretty 25 year old from Penicuik, Midlothian. Widowed at a tragically young age, Fiona found that, with a small daughter, it was very difficult for her to get out to meet people. In Fiona's case it was her sister who pushed her into joining Dateline.

In spite of joining on the same day, Fiona received her results before Ron and, having made up her mind to make full use of her membership, she wasted no time in writing to three of the names on her list - one of which was Ron's. 'I got three replies back - including Ron's - and I went out with the first two but they didn't really appeal to me. Then I met Ron.

Ron in the meantime, had received his first list of names from Dateline but he was destined never to use it. 'Before I got the list I got the letter from Fiona. I thought I would wait and see how that turned out before I met anyone else.'

Ron had written such a nice letter to Fiona, asking her to write again or to phone him, that she decided, 'being very brave,' to ring up. 'She squnded nervous,' said Ron, 'but I was impressed by the voice - she had a nice voice.

Fiona too liked the sound of Ron and aiter sorting out a babysitter for Jacqueline, Fiona's daughter, the couple arranged to meet. Ron picked Fiona up from her house and took her for a drink. Initially that first meeting didn't go particularly well. 'I wasn't disappointed when I met her - I liked her,' explained Ron, 'but communication was very difficult because we

FOR FRIENDSHIP, LOVE OR MARRIAGE Dateline

were both nervous and I did most of the talking. I got the initial impression that she didn't like me very much!'
'And I didn't think he liked me either,' laughed Fiona.

After a couple of hours Ron took her home but he had already decided not to ask her for another date. Fortunately, Scottish hospitality saved the day because Fiona invited him in for coffee and cheese toasties! Once inside her own home, Fiona became much more confident and relaxed. 'She was just as nice,' said Ron, 'but easier to talk to.'

The couple sat and talked until after midnight. 'I liked him very much,' confessed Fiona, 'and he ended up staying the night. On the couch downstairs,' she added hastily.

Ron was still not convinced that Fiona liked him enough to go out with him a second time and was happily surprised the next morning when she agreed to see him again. From then on their relationship snowballed and the couple spent every available moment together.
'From the second time I met her I realised that she was terrific,' said Ron. 'When I was driving her home I knew then I really wanted to make a go of this.'

Fiona too quickly began to feel that this was something special. 'I don't know why I was so attracted to him - it was just the sort of person he was. He's very kind and gentle.

Of course, Ron didn't only have to convince Fiona. Jacqueline also had to be won over. Not an easy matter, perhaps, for a single man with a limited experience of children. But Ron was a great success! My daughter took to him like...well, she can twist him round her little finger!' said Fiona.

To be honest I never really expected to meet a girl with a baby,' said Ron, 'but I must admit I really enjoy Jacqueline's company and it makes me feel...fulfilled I had no second thoughts about it because she's really a very nice little girl.'

Five weeks after they met, Ron skated warily around the subject of marriage. 'The night before we were engaged I just casually said that if I was to ask her to marry meone day, what would she say? She said she would think about it for a second and then say yes. So I left it at that!'

Less than 24 hours later, however, Ron returned to the subject. 'I simply said how would it be if this time next year we were married and she just kissed me and that was it!'

LONGEST ESTABLISHED

In the last 20 YEARS Dateline has created many thousands of love stories, the result of over half a million Dateline introductions each year.

WHO JOINS DATELINE?

Everyone! People of all ages from all professions and trades, from every walk of life. People just like you! Most importantly, when you join Dateline, YOU CHOOSE the sort of people you want to

meet.
 NATIONWIDE

Dateline members come from all over the country, and the number of members in each area is constantly being renewed and added to by local and national advertising. Dateline is also the only national computer dating company to allow you to choose where your dates should come from.

INEXPENSIVE

Dateline is certainly the best VALUE FOR MONE Y service, simply providing more people for you to meet

RESPONSIBLE

20 years of experience, and a caring approach, give us a justifiable pride in the professional, reliable and confidential service we provide.

MORE PEOPLE TO MEET

Dateline is the LARGEST computer dating agency in the world; and the more Dateline members there are, the more people we have for you to meet. However, size has not made us impersonal. We are not jusi a box number; our friendly staff are always happy to help you either in our Kensington office or on the telephone.

WE CARE

We want your membership of Dateline to be successful, whether it's friendship, love or marriage you are seeking, so our Dateline system and personal service are geared to cater for your individual requirements.

PROVEN SUCCESS

Fiona and Ron's love story is just one from our vast record of Dateline successes over the years. If you would like to join the many thousands of people all over the country who have been finding a new social life or love and happiness through Dateline, simply complete the questionnaire below. We will send you confidentially and completely free, full details about Dateline and how it works, and details of just one of the Dateline members who are compatible with you. Send today to: Dateline Computer Dating, 23Abingdon Rd., London W86AH. Tel: 01938.1011.

1 Do you consider yourself:	
\square Shy	\square Gencrous
\square Exirovert	\square Outdoor type
\square Adventurous	\square Creative
\square Family type	\square Practical
\square Clothes-conscious	\square Intellectual

Computer Test to Find Your Ideal Partner

I am over seventeen and would like you to send me completely tree and without obligation a description of my ideal partner. Plus a free full colour brochure and lots more information about Dateline. I enclose two first class stamps.
3 Your sex put M or F Your Height ft ins Your Age yrs Age you would like to meet Min. Max Christian Name
Surname. Address.

2 Indicate which activities and interesis you enjoy by placing a ' 1 ' (one) in the appropriate box. If you dislike a particular activity. write a' 0 ' (nought) in the appropriate particular activity, withe a (noughi) in you have no preferance. leave the column blank Pop music Politics Fashion Pubs Sport Pets Folk music Jazz Jazz
Travelling Cinema Good food

Classical music Art/Literature Art/Literature
'Live' theatre Science or technology Creative writingipainting Poerry

Nationality \qquad Religion Occupation.

Send today to Philosophy/Psychology/Sociology History/Archaeology

TECH TIPS

Buffer Amplifier For The BBC Microcomputer

D. Bush, Leamington Spa.

The four channel A to D converter on the $B B C$ micro is limited in use by its fixed input range of 0 to +1.8 V , its temperature drift and its susceptibility to damage by input voltages outside the range -1 to +5 V . The variable gain buffer amplifier shown here was designed to minimise these problems and allow school children to incorporate the BBC micro into their electronics and technology projects without difficulty.

IC1 is a non-inverting amplifier with a gain of $\times 2$, the output being limited by D1, ZD1 and R3 so that it cannot exceed the limits -0.7 to +2.1 V . These limiting components are placed within the feedbackloop so as to maintain linearity over the output range. Input attenuation is

provided by RV1 which can be calibrated for an input range of up to 30 V depending upon the potentiometer used. This circuit is repeated for the other three chañels.

IC2 is configured as an inverting amplifier with again of 0.5 x . It takes its input from the Vref line on the BBC and provides an output of one half of this voltage which can be
used to offset the buffer amplifiers. By switching this voltage in or out, the buffers can be set to accept inputs which range from either-FSD through 0 V to +FSD or from 0 V to + FSD only. In the - FSD to +FSD position, the buffer can be used to process input data for presentation in graphical form, with the graph axis remaining visually coincident with the 0 V input.

PA Tone Control

R. Eggleton,
 Catworth

Hi-fi tone controls commonly consist of the Baxandall circuit which provides maximum boost and cut at the frequency extremes; public address (PA) tone controls have different requirements.

For PA use only cut is required at the bass end to remove the proximity effect of close-up microphones
and to protect horn loudspeakers which have a limited response below about 200 Hz and may easily be damaged. At the treble end boost or cut may be required. However, this must be limited at very high frequencies to avoid speaker damage and amplifier overload.

The circuit shown provides the ideal response as can be seen from the accompanying frequency response graph. It uses a dual opamp powered from 9-30V DC and consuming approximately 25 mA . The first stage provides the bass cut at 12 dB /octave, the turnover fre-
quency being adjustable from 80 Hz to 500 Hz by means of the 50 k dual linear potentiometer. The second stage provides $\pm 13 \mathrm{~dB}$ of treble boost or cut at 6 kHz and is adjusted by means of the 100 k linear potentiometer.

To alter the frequency turnover points the two 330 n capacitors may be increased to lower the bass frequency or reduced to raise it. Similarly, capacitors C\$5 and C2 should be increased to lowerthe treble peaking frequency or reduced to raise it, mainting the ratio $\mathrm{C} 2=10 \times \mathrm{C} 1$.

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trast that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your.enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.
Subscriptions
The prices of ETI subscriptions are as follows. UK:
Overseas: ± 18.10
$£ 22.50$ Surface Mail
$\$ 29.50$ Surface Mail (USA)
$£ 49.50$ Air Mail
Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to heear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1 BB . Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is (0442) 48432. Please allow 28 days for delivery.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an arti cle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982, the 1983 index in January 1984, the 1984 index in January 1985 and the 1985 index in December 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 GoldenSquare, London W1 R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on atopic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work-hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write tothe supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplierwithin, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible foryou to obtain compensation. Fromtime to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Single Board Controller (March 1985)
There were a number of errors in the parts list. RP2 is listed as a 10 K SIL pack but is actually four separate resistors, and the same applies to RP3. RP4 is also listed as a SIL pack but should consist of seven commoned resistors. R13 is always required, not just when a cassette interface is used as stated.

The Real Components (May 1985)

In Fig. 1 on page 20, the connections for the Texas L and 2 N transistors are incorrectly shown. They should read B, C and E from the top.

Heat Pen (June 1985)

The instruction in the penultimate paragraph on page 49 should read ". . . adjust RV2 for 2.73 V ...", not 2.37 V as stated.

Low Cost Audio Mixer (June 1985)
In Fig. 6 on page 39, the PCB foil pattern has been incorrectly shown as though from the copper side. The board is shown correctly from the copper side in the foil pattern pages. In Fig. 10 on page 40, the positive power rail at lower left should be shown connected to pin 8 of the TL072s, IC1-5).

Noise About Noise (July 1985)
In Fig. 5 on page 24, no connection should be shown between the cathode of the diode and the negative side of the $470 u$ capacitor.

Printer Buffer (July 1985)
The case specified is actually larger than the one used for the prototype. It will, of course, work perfectly well, but if you want to a compact unit use a Verocase $202-21038 \mathrm{H}(180 \times 120 \times 65 \mathrm{~mm})$ rather than a Verocase 202-21035. The regulator IC17 should.be bolted to the back of the case to provide heatsinking or, alternatively, fitted with a TO220 heatsink.
Please note that the designer, Nick Sawyer, has been in touch to inform us that the refresh problem we mentioned in September ETI is dealt with in the printer buffer software. In this case there is no need to replace the TMS 4416 dynamic RAMs, although as far as we know the replacement parts mentioned (Hitachi HM48416 DRAMs) will cause no problems. The full text of Nick Sawyer's letter will appear next month. Meanwhile, our apologies for any confusion caused.

Intel 8294 Data Encryption Unit (September 1985) It should be apparent from the text, page 35, that an actual program has been omitted. This program is for use with the SDK 8085 kit only, and copies may be obtained from us on receipt of a stamped addressed envelope.

Tech Tips - Novel Input Stage (October 1985)
The caption against the lower figure should read "Lownoise output atminimum gain", not maximum gain.

Chorus Unit (November 1985)

IC3 is shown on the circuit diagram on page 49 connected to the 9 V supply. It should be connected to the 5 V supply. The foil pattern connectionstothis IC are correct.

Foil Patterns (November 1985)

The foil patterns for the Modular Test Equipment Waveform Generator and the Chorus Unit are shown from the component side rather than the copper side.

PCB FOIL PATTERNS

The foil pattern for the Specdrum connector board.

The Modular Test Equipment pulse generator board.

Page 57

Missing

Page 58

Missing

ELECTRONICS

13 BOSTON RD
LONDON W7 3SJ
Tel. Orders: 01-567 8910
Enquiries: 01-579 9794
Shop Hours: Mon-Fri. 9am-5pm
Sat. $10 \mathrm{am} \cdot 4 \mathrm{pm}$,

ORDERING INFORMATION:

ALL PRICES EXCLUDE VAT
FREE P\&P on orders over $£ 20$ (UK only), otherwise add 75p + VAT. Overseas P\&P: Europe $£ 2.75$. Elsewhere £6.50. Send cheque/PO/Barclaycard/Access No. with order. Giro No. 529314002
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME
GOODS BY RETURN SUBJECT TO AVAILABILITY

PLUS 2 YEAR WARRANTY
ALL MODELS FROM STOCK ALL MODELS FROMST
PRICES INCLUDEVAT

Master Diectronics-Microprocessors - Mow the Procticalwoy!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
Build an oscilloscope and master circuit diagram.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob?New Career? New Hobby? 'SEND•THIS COUPON NOW.

FRTV: COLOUR BROCHIURE
Please send your brochure without any obtigation to
OR TELEXMONE US 02758 (24 HR SERVICE) NAME _. I am interested in \square ELECTRONICS ADORESS S ADORESS ————
 MICROPROCESSORS

1 N尘 radio amateur licence Other Subjects. Exitish Mational Radio\&Electronics School P.O.Box 7,Tlignmouth, Devon,TQ14OHS

TRAINS OF THOUGHT

Those of us who model railways for nostalgic reasons know full well that the sounds of full-size railways, especially those of the steam era, were a major component of the atmosphere that we seek to recreate. The addition of sound effects therefore provides an immediate boost to the realism.
There are dozens of ways in which sound can be added to a model railway, and some demand no electronic skills at all. Hidden speakers can reproduce disc or cassette recordings of full-size railways, while a miniature speaker in a station building can broadcast station announcements recorded on cassette. Computer buffs cangenerate quite convincing train sounds using the complex sound facilities of the BBC Micro or Commodore 64.
But if looking primarily at electronichardware applications, train sound systems divide into two sorts: off-train and on-train reproduction.

In off-train reproduction the sound is reproduced away from the train, although it may be related to it. For example, the chuff rate of a steam train can be made proportional to the train speed as measured by a speedometer unit.
Many circuits for electronic chuffers and whistles have been published, sôme using discrete semiconductors and some using ICs. Some of the complex sound generator chips offer some useful facilities. The NS76477 and its 16-pin relative, the SN94281, offer hours of noisy experimentation. Sadly the SN94281 is hard to find nowadays - if any reader knows a source please let me know.

It is also possible to reproduce the sound on board the train. in O-gauge and larger scales it is usually easy to mount a small moving-coil speaker in a locomotive or tender - in HO and OO scales piezo-electric transducers of 20 to 25 mm diameter can provide reasonable reproduction. On-train systems divide into those where the sound is actually generated on board the train and those where it is generated remotely and transmitted to the train. On-train generation poses pro-
blems of space for the circuitry and of an adequate smoothed power supply. The track voltage can be monitored for a measure of train speed if needed.
Off-train generation solves the problems of space and power supply but leaves the questions of sound transmission to the train. The simplest method is through the rails, but this has its limitations. The controller must be a pure DC type or buzzes and hums will drown your sound, and the transducer must have a series capacitor to protect it from the controller voltage. Superimposing the audio on the traction voltage has its own special pitfalls for the unwary. I have used a special controller with complementary VMOS output which acted simultaneously as a DC power amplifier (controller) and audio power amplifier. Audio inputs were provided from both a cassette recorder and an SN94281-based electronic sound generator.

But beware the practical joker who swaps cassettes. You may find that, instead of chuffing and whistling, your 1930s' vintage GWR branch train delivers the latest $1980 \mathrm{~s}^{\prime}$ chart-busting hit!

Roger Amos

BRITAINS FOREMOST QUALITY CCMPONENT SUPPLIERS

OPEN CHANNEL

I'm constantly amazed at the time it takes organizations - particularly larger ones - to take in and adapt to a new technology. Take, for example, the Central Electricity Generating Board. The CEGB's national grid is a wonderful thing: it provides a source of electrical power to every household and business in the land. But it really has more potential (pun intended) than just that. In effect it is a cable network which reaches every building throughout the nation. Think about it.

To date, this network is only capable of providing one-way transmission, the distribution of electrical power from power stations to users. But true transmission networks must be more powerful (yeuch, another pun) than this. They should allow twoway transmissions.

Let's look at the national grid in another way. It can be simplified, at least for this illustration, and thought of as a length of wire which reaches every consumer. Now any length of wire is a transmission medium, and any transmission medium can be used to transmit more than one
individual point-to-point communication, merely by dividing the total communications spectrum available in the network up into a number of channels. Each channel is then used to transmit an individual communication. between source and receiver. The principle I'm talking about is known as multiplexing, and has been acknowledged and used in various forms since the early days of radio communications.

There is little to stop the CEGB using the national grid purely as a communications network, if the multiplexed channels can be piggy-backed on top of the mains supply voltages. In a very simple way, an example can be seen in the proliferation of mainspowered, cordless intercoms now available, which only need to be plugged in at each required position in a building to allow efficient and good quality communications. ETI itself has published a number of project designs which use a building's mains wiring in this way.
On a larger scale, the whole national grid could be used similarly, but is presently underutilised. The techniques and principles are all there and have been for many years. The only drawback remains the CEGB itself and its seemingly slow progress.

This Is The BBC

At the end of September BBC radio commenced using its first completely digital sound mixing desk. Reputed to be capable of the sort of tricks with sound that video paintbox-type machines can do with television pictures, the desk is computer controlled and 'totally' portable - it fits onto an outside broadcast trailer and so can be used around the country. No doubt, if you want it to, the desk will allow cricket matches on Radio 3 to sound that much more realistic in pure digital surreal sound, but are we talking of any significant advantage? The digital desk will presumably make better recordings of concerts, operas and other musical extravaganzas, but is that of any benefit to the listener? Face it, quality of reception on eitherAM or FM is limited by the transmission system, not by the equipment. Existing mixing desks are everybitas goodas they need to be to allow excellent sound reception. Even the UK FM transmission method doesn't allow the large signal-to-noise ratio which the digital desk will afford. The BBC might say they are taking the hiss out of radio broadcasts, but perhaps they are trying to take the hiss out of the licence payer.

Keith Brindley

ALF'S PUZZLE

Alf's dream

Alf is always keen to improve his education and over the last year he has been attending evening classes at the local Tech. He chose the United Education Guild combined diploma in circuit theory and basket weaving, with which you are no doubt all familiar. Last week, on the night before the final exams, he had a horrible nightmare.

In his dream, Alf entered the examination room and was confronted by a mass of resistors all woven together. The resistor 'tangle didn't stop at the bench, it trailed across the floor out of the
window and far into the distance. There was only one question on the exam paper: Find the resistance at the terminals of this IN FINITE resistor network.
Alf couldn't use the ohm meter the examiners had supplied because the electricity would take an infinite amount of time to travel around all the resistors. Nor did the idea of doing an infinite number of calculations appeal to him very much. What could he do? What IS the resistance of the network?
The answer to last month's puzzle:
Alf cheated a bit in describing the second waveform as a distorted 2 kHz square wave. If you look at it closely you'll find it repeats itself exactly every two cycles of the 2 kHz square wave

above, so it really has a frequency of 1 kHz . I think it's fairly obvious by inspection that the waves do, in fact, add up to give a 1 kHz sine wave. From a mathematical point of view, without going into details, the situation would look something like this:
sine wave components of 2 kHz square wave

PLUS
sine wave components of 180° phase-shifted square wave PLUS
the extra 1 kHz sine wave EQUALS
a 1 kHz sine wave by itself

The frequency components of the two square waves would cancel as they are 180° out of phase, leaving only the 1 kHz sine wave. The 'distorted' square wave could not, in fact, have been produced by feeding the square wave through any kind of linear circuit (in circuit theory, a linear circuit includes such things as filters and tuned circuits, which an amplifier designer would not think of as being very linear!) and could only have been produced by a sine wave being injected from somewhere else. Alf was leading you astray by describing it as a'distorted square wave'.

$$
\begin{aligned}
& \text { If an advertisement } \\
& \text { is wrong were here } \\
& \text { to put it right. }
\end{aligned}
$$

If you see an advertisement in the press, in print, on postersor in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.
ASA Ltd, Dept 3 Brook House, Torringtion Place; London WCIE 7HN

OSCILLOSCOPES
Delay Sweep wit 067. Dual Trace 50 MHz . Delay Sweep with manual.................. 25250 Solid State. Portable. $8 \times 10 \mathrm{~cm}$ display. With manual...£200 S.E. LABS SMIII. Dual Trace 18 MHz Solid State. Portable AC or External DC Operation. $8 \times 10 \mathrm{~cm}$ display. With manual... $£ 150$ TEKTRONIX 547 Dual Trace 50 MHz . Dual TB. Delay Sweep. With Manual £140 With manual. With manual.................................. E 100 Size $10 \times 10 \times 16$ ins. With manual 6MHZ.

PHILIPS DIGITAL MULTIMETERS 4 DIGIT. AUTO RANGING. Complete with batteries and leads (P\&P £5)

MULTIMETERS

AvO 8 MkIV and AVO 9 MkIV
Complete with Batteries \& Leads for AVOTEST SETNO. 1 (Similarto... Av5 Complete with batteries, leads \& Carrying Case Model $7 \times$ Complete with batteri.................................. AVO Model $7 \times$ Complete with batteries, leads \& carrying case...
AvO Model 73 AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batAvo 72 - Similar to above but no AC Current range. With Batteries \& Leads $£ 18$ AVO TRANSISTOR ANALYSER CT446. Suitcase style - battery operated. (Batthe mot supplied). ONLYf20 each AVO TRANSISTOR TESTER TT169 Handheld. GO/NOGO for In-situ Testing. Complete with Batteries, leads \& instructions (P\&P £)NOW ONLY £12
MARCONI RF MILLIVOLTMETER TF2603. 50 KHZ - 1500 MHZ ; 1 mV -3V.FSD....... E 175 MARCONI ELECTRONIC VOLTMETER TF2604. 20HZ-1500MHZ; AC/DC/OHMS
AC $300 \mathrm{mV}-300 \mathrm{~V}$ FSD AC 300mV - 300V. FSD 895 $10 \mathrm{HZ}-10 \mathrm{MHZ}$; $1 \mathrm{mV}-300 \mathrm{~V}$.FSD.......... 840°

NEW EQUIPNENT
HAMEG OSCILLOSCOPES 605, Dual Trace 60MHZ Delay Sweep. Component Tester HAMEG OSCILLOSCOPE 203.5 Dual................................... 20 MHZ Compontent Tester 270 BLACK STAR FREQUENCY COUNTERS. P\&P $£ 4$
Meteor $100-100 \mathrm{MHZ}$ \qquad ... 899 Meteor $600-600 \mathrm{MHZ}$
Meteor $1000-1 \mathrm{GHZ}$ $\Sigma 126$ BLACK STAR JUPITOR 500 FUNC..................... GENERATOR Sine/Square/Triangle 0.1 Hz -500 KHz P\&P £4. HUNG CHANG DMM 6010. $3^{1 / 2 / 2}$ digit Hand held 28 ranges Including 10 Amp AC/DC. Complete with batteries \& leads. p\&p £4 ... 33.50 x10 P\&PE2.
PROFESSIONAL 9" GREEN SCREEN
MONITORS made by KGM Ior RELREEN MONITORS made by KGM for REUTERS.
Gives qually 80×24 line display' ComGives quality 80×24 ine display Com-
posite Video In. Cased. Good Condition only £40 each
51/4" FLOPPY DISK DRIVES TANDON $1 / 2$ Height. Brand New Single Sided Double Density................ 1 MPI Double sided, Double Density 80 Track unused.................................... $£ 100$ DISK DRIVE PSU. 240 V 1N; 5V 1.6A ${ }^{\text {B }} 12 \mathrm{~V}$ 1.5A out. Size: W125mm, H75mm, D180mm. Cased. Un-used. Only $£ 15.00$ pap 82
200 Steps per rev. 4 Phase (5 wire) 12.24 V Torque 25 oz inch (will run on 5 V with reduced torque). Size 57 mm dia $\times 57 \mathrm{~mm}$. 6 mm shaft $£ 15$ ea. $6 / 12$ Steps per rev. 3 Phase. 12-24V (will work on 5 V). Size 44 mm dia $\times 41 \mathrm{~mm}$ shaft. $\mathbf{\mathrm { f } 2}$ ea. 5 off $£ 7.50$.
NORTH AMERICAN PHILIPS. 24 Steps per rey. 4 wire $5 \mathrm{~V} 3.3 A \mathrm{mps}$. 0.250 rpm 0.200 PPs. Size 70 mm dia $\times 41 \mathrm{~mm}$. E6 ea. 200 Steps per rev. 120 V (3 wire). Torque 25 oz inch. Size $60 \times 57 \mathrm{~mm}$. 6 mm shaft. $£ 4$ $\stackrel{0}{82}$.
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. VAT to be added to Total of Goods \& Carriage. Please allow 21 days for delivery.

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1 PL Telephone: 073468041
Callers welcome 9am to 5.30 pm Monday to Saturday inclusive

SCRATCHPAD

by Flea-byte

I confess that I find the game of international espionage as mystifying as Ian Botham's haircut. Despite its high profile, I can't for the life of me figure out how it works or why it exists in the first place.

No doubt, as the news media remind us from time to time, spying is dastardly wickedness which endangers the fabric of society in the free world. (So much for the tempting offer to join G.CHQ that I saw in' another electronics magazine' recently. Disabled people, the ad said, were welcome to apply - although if your disability consisted of being a trade union member, forget it!)

It must be just as true that we don't have any spies on our side of the pitch, At least we don't have any now. We used to have some during the war and in John Le Carre books, but most of them worked for the Russians, and the ones that didn't weren't terribly keen on spying so they gave themselves silly, endearing names like Mole and Smiley and The Third Man. Now they re all retired or dead, which makes the game distinctly unfair, because with them on our team the Russians arê
bound to win.
What disturbs this cosy little picture is the fact that nobody seems to win or lose at all. In fact, I've never been able to work out what earthly difference all this spying business makes to anything. Spies exist, occasionally they' re forced to take early retirement, a lot of hot air is emitted from the seats of power and things carry on much the same as before - with us knowing that they know that we know that they know that we know.
To take a case in point, there was the recent affair of Oleg Gordievsky's defection and the resulting poker game with 'undesirables' between Moscow and London. Apparently, Gordievsky had been what I believe is called a double-agent for some years. He would have been well able to tell his Western paymasters all about about the Soviet spies ferreting around among our secrets. Only the most cynical among you will have asked why the British government waited for so long to expel these spies and how it managed to feign such convincing shock when Gordievsky came in from the cold. (There I go again with the jargon.)

Among our boys to be thrown out of Moscowafter the faeces hit the ventilating machine was the local office chief of Quest Automation - a company that repre-
sents the interest of firms like the Apricot computer manufacturers, ACT, in the Soviet Union. His employers categorically deny the charge, but then (in the immortal words of Mandy RiceDavis) they would, wouldn't they? What I do know is that everybody says his expulsion will make no difference whatsoever to anything except the address on his headed notepaper. What I also know is that the government is apparently panic-stricken at the thought of British high technology finding its way to the Eastern bloc. The Customs and Excise have a thing called Operation Arrow going in order to bust the sanctions busters - the sanctions in question being embargoes on the sale of Western high-tech goods behind the tron Curtain. And the Americans (from whom our government takes most of its cues) are really hot on the hightech exports front. So, how come Quest Automation was in Moscow at all?

The kerfuffle is made even more pointed by a revelation, at around the time of the big spy-swap, that Operation Arrow had trawled the waters for sanctions busters and had arrested a number of people whose courtroom defence was that they couldn't be security risks because, while setting-up illicit high tech deals in Moscow, they were supplying the lowdown on the Russians to MI5 or

M16 back in London. Gives a new meaning to the concept of information technology, doesn't it? The serious point remains, however: what are we after - information to feed the already bloated and unaccountable security services or trade to protect and build industry and people's jobs? In case you need reminding, it was Mrs Thatcher who described Mikhail Gorbachov as 'a man I can do business with'.

Export System

It might be worth reflecting on a piece of news that was quietly announced earlier this year, in the light of my previous item. The Soviet Computer Import Corporätion said recently that it intended to import one million personal computer systems for use in technical training programmes in schools. The first 10,000 units will be supplied by Nippon Gakki (better known as Yamaha in this country) and, yes, they will be MSX machines. Another Japanese company, Star Micronics, hope to export 100,000 MSX-based systems, packaged with their own VDUs, printers and disk drives, at a unitprice of around $£ 250$. The Soviet electronic products import company, V/O Elec tronorgtechnica, has already agreed to take 4000 systems. Meanwhile, we were expelling Viktor Logush of Electronorgtechnica's British office.

HIGH QUALITY ELECTRONIC MODULES

- 100W Mono \& Stereo professional amplifiers shown in last months issue $\mathbf{\&} 98$ \& $£ 140$.
- Disco Lighting Module 750 watts per chan, 4 chan, forward reverse chase £15.40.
- Disco Sequencer Moduel 1024 sequnces, 1000 watts per çhan $3 / 4$ chan (selectable), zero cross and inductive load. £40.65.
- Amplifier Modules Mos-fet Low distortion. 008%, on board protection fuses and power supply requires only transformer \& heatsinks, saves £ex's.
Amplifier chassis from 100W Mono to 250W Stereo. Professional Mosfet for O.E.M. from £36.95. All amplifiers are fitted with redpoint black on Heatsinks for reliability. Input Impedance 47 K ohm, Inputsensitivity 0.775 volts, Total harmonic distortion . 008%, Damp factor >400, frequency response DC - 40 KHZ \& Slew rate $70 \mathrm{v} / \mathrm{us}$.
- Heatsinks Ex Stock. $2.1 \mathrm{c} / \mathrm{w}$ redpoint heatsinks $£ 2.50$.
- Send 20p and a large S.A.E. for specifications \& price list on above products and morell!
Send to:
TECHNOCROWNHTD
42 Fallowfield, Luton, Bedfordshire LU3 1PX
Tel: 0582-598167
Mail order only.
Postal charges per order £1. Welcome schools, colleges, and Trade. - Securicor $£ 10.00$ delivery.

JAPANESE COMPONENTS - Vast range of discrete's and consumer IC's
Mail order customers: Please send for our comprehensive price list, enclosing 75 pence in stamps. Cheque or postal order. This sum is refundable with a first order value of $£ 5.00$ or more.

Catalogue sent free or charge, when requested on official letterhead (without refund), to OEM's, Schools, Colleges, Universities, Government Institutions, Computer Firms, Electronic Repair Firms and Distributors. Special discounts and payment terms are available to above institutions.

Please enquire for quantity distcounts.
WE WELCOME TELEPHONE AND TELEX ENQUIRIESI

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:
45 p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.80 per sirigle column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699 Ext 323

Send your requirements to: Caroline Faulkner
ASP Ltd.,
1 Golden Square, London W1.

COMPONENTS

RESISTORS, CAPACITORS. 1,000 mixed carbon film $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}$, $1 / 2$ W, 2\%, 5\%, 10\% resistors $£ 2.95$ +50p P\&P. SAE for details to: D.J. Hooker, Romney Marsh, Electronics, Clark Road, Greatstone, New Romney, Kent TN28 8PB.

AIRLINK TRANSFORMERS manufacturer of Torodial and standard transformers. Phone Mike Dornan, Newmarket 0638 662989 for details.

VAST RANGE of science products, components, lasers, optics, computer supplies, chemicals, hardware and many hard to find or rare items. Unstocked items purchasing service. SAE with details of your specific requirements or for catalogue. Science \& Technology Products CET3, PO Box 192, Poole, Dorset BH15 4AL.

ESR ELECTRONL

- Fulll range of components
- Speakers and Accessories
- Audio Connectors \& Switches
- Amplifier Modules and Cases Free Price List available 13A STATION ROAD CULLERCOATS,NORTH SHIELDS TYNE AND WEAR NE30 4PO 091-251 4363

COMPREHENSIVE PLANS to build an electric shock machine, contains full explanatory text, diagrams, stickers and 0.68 uf capacitor. £1. 55 including post. P. Bartle, 3 Wood Nook, Norland, Sowerby Bridge, Yorkshire HX6 3RZ.

HUNDREDS of unusual items cheap! Send 68p for interesting samples and list. A.H. Electronics, 17 Beeley Rd, Grimsby, Humberside.

NEW AND SURPLUS components in stock. Spectrum Radio \& Electronics Ltd, 36 Slater St, Liverpool L1 4BX. Tel. 051-709 4628.

FMTRANSMITTERS. Who needs akit? Detailed circuit and plans for miniature transmitter using common components, fully illustrated, introductory price 99p! P\&P 25p. Mr. M. Kendall, 30 Dinorben Close, Fleet, Hants.

BRIDGE RECTIFIERS 600/35A. Ideal m/cycles, 44.20 . Electrolytics 400/4 10/25 1/63 10/63, 10p. 1500/2.5 1000/6.3 160/40 64/63 15p. 2500/2.5 1000/1020p. 3200/4 470/35 25p. 1000/16 640/ 25 470/40 250/64 30p. Polyester 0.47/250 10p. P\&P 30p per order. Robins Electronics, Greenway, West Monkton, Taunton TA2 8NQ.

BANKRUPT STOCK 10 MEG Oscilloscopes. 3" CRT. Working order £60. A. Gallagher, 22 Moretons, Basildon, Essex SS13 3LS. Tel: 0268 551562. After 7p.m.

KIA WISH YOU A HAPPY CHRISTMAS AND NEW YEARI! 200 WATT Fan-Slaves, £49.95; superb fan-cooled slave amplifier systems, 240V. Three freeZTX108 transistors . . . simply post us this advert and sae. 8 Cunliffe Rd, Ikley. LS29 9DZ.

TEKTRONIX OSCILLOSCOPES, superb condition, 4 or 2 trace 10$85 \mathrm{MHz}, £ 80-£ 175$; with delay sweep, £85-£285. Dual-beam 8, 4 or 2 trace 19-27 MHz, £120-£205; with delay sweep $20-50 \mathrm{MHz}$, £195-£425. 7B 50A Timebase, £325. LCR Bridges from $£ 75$. Storage and Sampling Oscilloscopes, Spectrum Analysers, Curve Tracers, manuals, plug-ins, spares, Nova 3 Mini Computer £165 ono. Ring 01-868 4221.

EVERYDAY ELECTRONICS, Hobby, TV, electronics and radio magazines for sale, very cheap. Ring after 7 pm for details 01-853-0940.

100W AMPLIFIER - $£ 9.95$ built or use the same board for 50W $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

TRANSAM TUSCAN 8k RAM 4 MHz , cased, 5 S100 slots. £200 ono. Phone 0491680169 evenings.

OFFERS INVITED for complete mintset of Hobby Electronicsin six binders. Crawley, Sussex (0293) 882740.

STEREOAMPS 120 WATT

 ($60+60$) . . . Case-D.I.N. sockets and controls . . $9.40 \mathrm{v} / \mathrm{sm}$ oothing . Protected outputs $3 / 150 \mathrm{HM}$ tested and diagrams. £10 inc. Catalogue 50p. KIA, 8 Cunliffe Road, likley.SINCLAIR 16K RAMPACKS for ZX81, £6, including VAT and postage Halbar, Unit 1, Long Walk Bedford, Beds.

ESR

13a Station Road Cullercoats - North Shields Tyne \& Wear - NE30 4PQ Telephone 0912514363

TRANSISTORS - RESISTORS - CAPACITORS DIODES - LED'S - SCR'S - ICS - VOLTAGE REGULATORS - DISPLAYS - AUDIO \& EDGE CONNECTORS - VERO/PCB'S - INSTRUMENT CASES \& BOXES - POWER AMPLIFIERS \& MODULES - MICROPHONES \& STANDS.

WRITE OR PHONE FOR FREE' PRICE LIST.

Flanger/Chorus parts re E.T.I.-Jan 84
Reverb Springs, Pedal Cases, Dummy Keyboards, 1 , bass effects pedal and many more items.
Send S.A.E. for free price list to:-
SOLAR SOUND LTD
18 Berton Way
Croxtey Green
Rickmansworth
Herts WD3 3OA

REPAIRS

ZXSPECTRUM.Vic20, C64, BBC, QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.

PRINTED CIRCUIT BOARDS one-offs and small quantities supplied. Artwork carried out. Fennel Industrial Electronics, 54 Watling Street, Nuneaton, Warks CV11 6JL. Tel: 0203382296.

LABELS

LABEL ITI

PROFESSIONAL QUALITY LABELS AND BADGES MADE TO ORDER Low cost • Various colours and styles . Engraved by us - Very hard-wearing waterproof plastic or metal Fast efficient service Write to fob Thomson for FREE details

THOMSON

Radio Communication Specialists Basemen! Otrice, 5 David Place, SL. Helier, Jersey. Tel: 0534-75170

JBA ELECTRONICS

Specialists in ,manufacture and design of:
Microprocessor, Telemetry, and Audio-based systems. UNIT 9 ,
BRECON INDUSTRIAL ESTATE, BRECON, POWYS, S. WALES Tel: (0874) 2563

PCB DESIGN AND LAYOUT. Contact Elpincrest Ltd, 46 Argyle St., London N18 2PP. Tel: 01-8079276.

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork. Prototype and small batch production. ALAB ELECTRONICS. Grantham (0476) 860089.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead. (0787) 477408.
P.C.B. DESIGN and Layout. Manually taped artwork professionally produced at competitive prices. James Gledhill. 01-674-8511.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

counses

CONQUER THE CHIP ... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure, now to: British National Radio \& Electronics School. P.O. Box 7, Teignmouth, Devon TQ14 OHS.

COMPUTERS

CORTEX Mk1 RS232 and centronics interfaces, $£ 150$. Pete Leah, Bristol. Tel. (0272) 559249.

\section*{J. Linsley Hood Designs
 | Distortion Analyser Kit. | £25.00 | £1.00 |
| :---: | :---: | :---: |
| Millivoltmeter Kit. | £12.25 | £0.75 |
| Case and Panel for above | $\Sigma 12.00$ | $\underline{1.00}$ |
| ETI Mosfet P.A. Kit. | ¢51.00 | £1.5 |
| Audio Signal Gen. (.02\%) Kit. | £28.50 | £1.50 |
| Audio Signal Gen. (.002\%) Made | $£ 46.00$ | $\underline{\%} .00$ |
| Fixed Freq. Sig/Gen. (.002\%) | £14.00 | ع0.50 |
| Case and Panel for abo | ¢9.50 | ع0.75 |
| Reg. P.S.U. 1.5/35 volts | | |

PRINTED CIRCUIT BOARDS. AND PLANS TO BUILD: Headlight activated switches, timers, metronomes, sirens etc. Two ready drilled boards $£ 2.85$ p\&p 50 p. Send to: Chataignes Product Green Lane, Great Horkesley, Colchester, Essex, CO6 4HO.

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$ range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 9 12v operation, broadcast reception. Super sensitive microphone, Pick-up on FM radio. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

MINIATURE TRANSMITTER

Transmits all voices and sounds to any HF/FM radio up to 5 miles away, size 21 n *1/2in, tunable $70-150 \mathrm{MHz}$, 9-volt operatlon, with vero £4.95, with P.C.B. $£ 5.95$. Advanced model $£ 9.95$ with P.C.B. all complete kits with ploans, sensitive microphones. Send cash/cheque/PO:
TECTRONIKS

22 Lambardes N.A.G. Nr Derlord, Kent DA3 8HX.
MAIL QRDER ONLY

BOOKS \& PUBS.

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×0 ㅇ, Poralab, Downton, Wiltshire.

We use only 10% of our mental potentials
Elnstein
These are the words of Albert Einstein, the greatest physicist of recent times. L. Ron Hubbard's discoveries in the field of the mind prove today that Einssein
was right. was right. book "DIANETICS: The Modern In his book "DIANETICS: The Modern
Science of Mental Health" LRon Hubbard takes one more giant step in this direction
He re

He reveals how anyone can use his discoveries to isolate the exact barriers that
have so far prevented people from using their mental potentials to the full. More and more people trom all walks of life including technicians, artists, GPs, use Dianetics technology today. The many written reports on their success are the best proct of the quality of
this book. this book.
Find our
this remarkable book toder Price $¥ 3.95$ paperback. $£ 17.50$ hard-
back. Make cheques and pos payable to back. Make cheques and POS payable to
S.H.F. Send to Church of Scientology Saint Hill Foundation, FREEPOST ETI I\} East Grinstead, Sussex RH19 4 ZAT
Stamp requirad). stamp required).

misc.

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewksbury, Glos. Tel: 0684 73127.

INSTRUMENT CASES in structural foam. Made to order in small lots. Write to Minnow Plastics, 6 Avonmouth St., London SE1 4NX. Tel: 01-407-0910.

POWER SUPPPLIES

NWOKOYE ELECTRONICS

'Power supplies with thermal, short circuit and reverse output voltage protection plus improved ripple rejection.
N.P. 01

Miniature stabilised variable p.s.u. (2.5 13 V) at up to 500 mA . £10.95 + £1.50 N.P. 02
2.5-30V (or switched 5 V) at over 1.A with separate selectable constant current source ($10 \mathrm{MA}, 100 \mathrm{MA}, 1 . \mathrm{A}$). also fused 40 V unstabilised output. £28.95.
N.P. 03
$A+1.25$ to $+10 V$ dual power supply with switched +5 V , excellent tracking qualities even with unbalanced loads and an unstablised fused 30V output. £25.95. S15
Quality function generator with separated sine, square and triangular outputs. $10 \mathrm{~Hz}-$ 1 MHz in 5 ranges separate amplitude controls independently variable sine, square/
triangular frequencies. £23.95.
T162
Analogue frequency meter. $100 \mathrm{~Hz}-1 \mathrm{MHz}$, in 5 ranges variable sensitivity. $\mathbf{5 2 6 . 9 5}$.

Cheques/P.O.'s + £2 p\&p to. NWOKOYE ELECTRONICS
52 Keslake Road, Kïburn,
London NW6 6DG

NEW ADJUSTABLE

1 AMP DC PSU

3 to 9 V or 9 to 15 V current limited. battery circuit, high quality, built and tested, $£ 14.50$. Remote switching option £1.50, case 2.50 . Please add 15\% VAT. RYD DESIGN LTD Railway Station
Rye. E. Sussex TN317AB

*** TANGERINE OWNERS *** 6809 CPU board, Flex O/S, 14K RAM card overlay Tanex, 32K-RAM-EPROM-BATTERY BACKED BOARD address switchable page selectable all available from STOCK also all the hard to get Tangerine chips in stock, loads of FLEX programmes, power supplies, Access/Barclaycard, s.a.e. fordetails. Ralph Allen Engineering, Forncette-End, Norwich, NR16 1HT. Tel: 095389420.

COLOUR GRAPHICS MEMORY
ARRAY. Professionally designed, fully buffered, on-board shift registers $4 / 8$ planes $64 \mathrm{~K} \times 16 / 8$ bits (4164). Unpopulated PCB + App. Circuits £125.00. SAE 65 Northgage St., Colchester, Essex C011EY.

FOR SALE

CORTEX for sale, built and fully working with twin half-height drive, RGB interface, RS232 centronics interface with microline 80 printer, green screen monitor, 300 board modem, ZDOF, games etc. All manuals, cables, disks, books. £500. Tel. 0703641945 .

SPECIAL OFFERS

CLEARANCE

 BARGAINIITHOUSANDS of components in stock. Led 7 Segment Display, Brand new 14 Pin Dil Red .43 inch, common anode display 0-9 with right and left decimal point. 9 pieces £1.50 (30p each); 10 pieces £2.50(25peach); 50 pieces $£ 10.00$ (20p each); 100 pieces $£ 15.00$ (15p each); 1000 pieces $£ 100.00$ (10p each). TELEPHONE YOUR ORDER TO 0296613816.

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over £10 send only £1 P\&P to WOODSIDE, DOWSETT LANE, RAMSDEN LANE, ESSEX CM11 1JHL:

FREE!! Electronic components plus catalogue send $£ 1.00$ to cover p\&p.E.C.P.S, 7 HARE HILL CRESCENT, WINGERWORTH, CHESTERFIELD, S426SS.

BRUEL + KJAER 1014 Beat Frequency OSC, £95. B+K 2305 Level Recorder, £155. BBC Waveform Monitor PAL + NTSC, line and field, £120. MUIRHEAD K134 Wave Analyser 3 Hz to $31 \mathrm{KHz}, £ 55$. Phone 01-739 5940.

27128 25ons Fujitsu, £4. Hitachi £4.75. 6264 - LP15 £5. All inc prices. $10+$ less $10 \%, 50+$ less 20%. Orders to K. Jones, 31 Padstow Avenue, Fishermead, Milton Keynes.

PLANS 'N DESIGNS

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA.
FM TRANSMITTERS. Who needs a kit? Detailed circuit and plans for miniature transmitter using common components, fully illustrated, introductory price 99p! P\&P 25p Mr M. Kendall, 30 Dinorben Close, Fleet, Hants.

MEMORY STORE

THE MEMORY STORE: Eproms, Rams, Drams, Sarams, now available at very low prices. Send for list to K-Squared Electronics, Breeson House, Sherington, Bucks NK16 9NW.

CLASSIFIED ADVERTISEMENT ORDER FORM

Rate 45p per word (min 15 words)
Post to: ETI, 1 Golden Square, London W1A 3RB
ADVERTISERS PLEASE ADD 15\% VAT

Please use BLOCK CAPITALS and include post codes.
Classificatlon
Name (Mr/Mra/Mles/Ms)
(detsto accoringiny)
Address

SIgnalure
Date
Daytime Tel. No.

ETI ADVERTISERS INDEX DECEMBER 1985

Armon Electronics 45
Newrad 61
Audio Electronics 59
BK Eleptronics
BNR\&ES 59
Cambridge Learning 13
Cirkit Holdings IFC
Cricklewood 45
Dateline 53
Display Electronics 36
Electromech Industries 10
Electrovalue 60
Greenbank 40
Happy Memories 40
ICS 61
Maplin OBC
Powertran Cybernetics 12
RAK Amplification 11
Rapid Electronics 8
Riscomp 21
SME 11
Stewart of Reading 61
Technical Book Service IBC
Technocrown 62
Technomatic 14-15
TK Electronics 59
Universal Semiconductor Devices 62
Watford Electronics 4-5
Wilmslow Audio 11

Its easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.
If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code. Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority.

If an advertisement is wrong, were here to put it right. ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN

electronics today international BOOK SEAVICE

How to order: indicate the books required by ticking the boxes and send this page, together with your payment to: ETI Book Service, Technical Book Service, Oak House, Cannon Hill Way, Maidenhead SL6 2EY. Make cheques payable to Technical Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change

ELECTRONICS

Gate Arrays

Edited by John Read
A review of the present state of the art in logic arrays covering hardware technology choices and the CAD
\square Microcomputer Handbook
Edited by J. A. McCrindle
A unique reference aid containing information on the profusion of microprocessors, systems, support chips, microcomputer boards, languages and development aids. £31.50.

Microcomputer Interfacing and Associated Programming Techniques

 Martin D. BeerA broad treatment of microcomputer interfacing and programming in increasingly important areas súch as robotics and speech recognition. \quad 99.70.

Cable Television

Jeff Maynard
An introduction to the background and requirements of a cable television system. $£ 13.70$.

$\square \begin{aligned} & \text { 16-bit Microprocessors } \\ & \text { I. R Whitworth }\end{aligned}$
 1. R. Whitworth

A comprehensive introduction to 16 -bit microprocessors

£21.45.

\square Single-Chip Microcomputers

 Edited by Paut F. ListerAn overview of single-chip microcomputers and their applications, with contributions from the major
manufacturers, both in Europe and the United States £19.00.

Microprocessor Data Book

 S. A. MoneyProvides data on all the most widely used microprocessor chips, memory chips and other support devices,
summarising their important characteristics, highlighting peculiarities, and comparing devices. $£ 19.50$.

\square Resilient Computing Systems

 Edited by T. AndersonAn examination of the theoretical issues in the
development of resilient computing systems, together with descriptions and analyses of currently commercially available systems. $\quad £ 26.50$.

COMPUTING

\square
The IBM Personal Computer
M. de Pace

Gives IBM 16 -bit personai computer users all the facts they need to use their machine immediately, and explains how to upgrade it to adapt to their needs. $£ 8.70$.

LISP - The Language of Artificial Intelligence A. A. Berk

By example and careful practical explanation the complexities of LISP and its AI applications are made accessible. $\quad £ 10.70$.

MICROPR

simple com language and its main application, including example £ 10.70 .

Amstrad CPC664 Computing

 lan SinclairA comprehensive beginner's guide to the CPC664, including the disc drives, CP / M, interfaces and printers. £10.70.

The Amstrad CPC464 Disc System

 lan SinclairA comprehensive coverage of the advantages, principles and operating details of this system, including CP/M. £8.70

Handbook of Procedures and Functions for the BBC Micro
Audrey Bishop and Owen Bishop
A useful ready reference of standard routines for the BBC Micro designed to save hours of programming time. £7.70
\square The BBC Micro ROM Book
Bruce Smith
For all serious BBC users, this reference book covers all aspects of using, designing and choosing ROM-based software. $\quad £ 10.70$.
$\square \begin{aligned} & \text { Introducing } C P / M \text { on the BBC Micro } Z 80 \text { Second } \\ & \text { Processor }\end{aligned}$ Processor
Bruce Smith
This practical guide is suitable for business and serious 8BC users. $\quad £ 10.70$

Advanced Commodore 64 Graphics and Sound Nick Hampshire
An invaluable mine of essential information on the graphics and sound capability of the Commodore 64. §11.70.
\square The Commodore 64 ROMs Revealed Nick Hampshire
A full annotated assembly listing of the 64 ROM software. £9.70.
\square The Commodore 64 Kemal and Hardware Revealed
Nick Hampshire
For programmers who wish to gain a unique insight into the operation of the Commodore 64. Contains useful hints on reconfiguring the keyboard, anti-tape copying security, and much more. £11.70.

- 68000 Machine Code Programming David Barrow
A wealth of information about 68000 assembly language programming, with many worked examples. $\quad £ 13.70$.

\square The Apricot Personal Computer
 M de Pace

Heips the user master the essentials quickly and achieve immediate results. $\quad £ 9.70$.
\square Introducing Macintosh
Francis Samish
A step-by-step guide to the key Macintosh facilities, including word processing. $\quad £ 8.70$.
\square The Automated Office
Joseph St John Bate and Rosș Burgess An expert vlew of the latest trends in office automation. £8.70.
\square Choosing Accounting Software For Your Microcomputer Gary Simon
Defines the elements of good software and shows how to compare the different packages avaliable for sales purchase and nominal ledgers. \quad £.70.

Get More from the Epson Printer Susan Curran
Describes simply and clearly what the Epson printers can do - and how to do it. $£ 8.70$.
\square Professional and Business Uses of the QL Colin Lewis
Describes the basic features and most common business applications of the four packages, together with a basic guide to the hardware and operating system. $£ 8.70$.

Working with dBASE II

M. de Pace

I have no hesitation recommending this book as an alternative to the standard dBASE II manual. Computer Talk.
£10.70.

Please send me the books indicated.
I enclose cheque/postal order for ε
Prices include postage and packing.
I wish to pay by Access/Barclaycard. Please debit my account.
signed
name
address

The new Maplin catalogue for 1986 is a real adventureland for the electronics enthusiast. With hundreds of new lines and details of Maplin's new low low prices, it's the one event in the electronics year that no-one should miss. Packed with data and information on all the latest electronic products. Pick up a copy from any branch of W.H. Smith for just £1.45. Alternatively you can order your copy by post for just $£ 1.85$. For overseas customers the prices are as follows: Europe surface mail $£ 2.50$; Europe air mail $£ 3.75$. Outside Europe surface mail $£ 2.50$; Outside Europe air mail depending on distance $£ 4.25 / £ 5.50 / £ 6.25$. For surface mail anywhere in the worid you may send elevén International Reply Coupons for payment in full.

[^0]: BT 600 Jack plug and cable £2.25 Carriage and Ins. $£ 10.00$

