

AUDIO.... COMPUTING ... MUSIC.... RADIO....EOROTICS.
T

Powertran's
"Hebot II" and "MicroGrasp" kits offer unrivalled value for money to

MicroGrasp is a fully
programmable Cortex ل11 Ofters the speed and power of electric robot arm with closed true 1 b-b processing at the same price loop feedback for positive thatyou might pay for some of the 8 -bit positioning. The roby games machines on the market can be driven from The standard kit has interfaces for TV, virtualy 54 micros. caese te and RS232 - others are available as optional extras. Add disc Robot kit power supply fledged business system.

colleges,
schools and
individual enthusiasts.
Put the kit together, olteg into your micro and oftyou go! Hebot H gan perform onewildering variely-of actions upfer the contrd of a sinple BASIC proofram. Features include flashing "eyes" twp-tone pootvand a retractable pen.
Complete kit $£ 39.95$ + VAT
Universal computer ipterface
board kit $£ 5.50$ +VAT

पाIBG

Powertran's range of quality audio products offers top quality at low, dors prices. All the products are finishoe in rugged metal cabinets suitable for 19" rack mounting or as free standing units. CYBERNETICS LMITED

MPA 200100 watt mixor-anmplifier Complete kit £40
SP2 200 2-chanmel 100 watt amplifier Complete sit 550 + VAT Chromatheque 5000
S-ethannel light show controler.
Complete kit $£ 40$ +VAT
Digital Eelan Line Stud Digital Delay Line Studio qually effects - up to 1.6 s d Jay $£ 95+$ VAT Patthbay 16 pajs of jacts - for tudio or stage. $120+$ ha

Synth Mix Stereo keypoard rixetwith 3 aux send on eadh ofts 6 inputs $£ 3$ +VAT (netal work and PdB's only) Headphone Ahp 2×3 sets of stereo phones from either one or two inputs $£ 20$
(metalwork and PCB's only)
\qquad
L and correct at time of going to press. Overseas customers - please conact our expo

Gary Herman: Editor
Ian Pitt: Assistant Editor Paul Chappell: Project Editor
Jerry Fowier: Technical Illustrator
Paul Stanyer: Ad. Manager
Caroline Fauikner:
Classified Sales Executive
Lynn Collis: Copy Control
Dave Bradshaw: Group Editor

- Electronics

Peter Welham: Publishing Director
PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Colden Square, London W1R 3AB.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore.

ABC | Member of the |
| :--- |
| Audit Bureau |
| of Circulation |

Electronics Today is normally published on the first friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans,
drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist
Publications Limited and anv reoroduction reauires the Publications Limited and anv reoproduction reauires the
prior written consent of the Company. $(9) 1985$ Argus prior writen consent of the Company. ©
Specialist Publications LId All reasonable carge is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally he published as soon as possible afterwards. All prices and data contained in advertisements are ac. cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be price or availability which mavy occur after the publicaprice ha vased for press
tion

- Subscription Rates. UK $£ 18.10$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST 7A news Jerusalem.
READ/WRITE 16
Dreaming of a write Christmas.18

Barry Porter gets down to co............... 8 tracks.

THE PRESENT AND FUTURE MACHINE22

JLH's Christmas gift to you.

THE FAST ONE. 24
AlGaAs and gates, by Stuart Smith.

TECH TIPS
Ideas whose time has come.

Due to the pressure on space, we have had to hold over the scheduled parts of our series on Transistor Stage Design and Automatic Test Equipment until next month. Our apologies to readers.

PROJECTS

THE ETI ACTIVATOR 30
Lively up your sounds, says Allan Bradford.

6809 SINGLE-BOARD

COMPUTER36

Dave Rumball and G. Mills on the design principles.

WALKMATE
Build a pal for your Walkman and stay indoors, says Ram Chandru.

DIGITAL SOUND SAMPLER. . . . 47
The analogue board begins here.

AUTOWIPE
50
Andy Armstrong's dreaming of a windscreen wipe Christmas.

MODULAR TEST GEARS4
Counting and timing made easy, thanks to Mike Meakin.

ETCETERA

OPEN CHANNEL. 67
'HDTV or not HDTV? Brindley.

ALF'S PUZZLE. 67
IC UR YY 4 ME.

1985 BOOKS 68
Keith Brindley breaks a few spines.

SCRATCHPAD
70
Flea-byte's awards for the year.

INFORMATION

SPECIAL OFFER 17
NEXT MONTH'S ETI 17
THE PCB SERVICE RETURNS. 59
FOIL PATTERNS 62
CLASSIFIED ADS 71
AD INDEX 74

WATFORD ELECTRONICS
250 High Street，WATFORD，WD1 2AN，HERTS
MAIL ORDER \＆RETAIL SHOP
Tel：（0923） 37774 TIx． 8956095 WATFRD
ALL DEVICES FULLY GUARANTEED．SEND CHEQUE，P．O．s，CASH，BANK DRAFT WITH
ORDERS．TELEPHONE ORDERS BY ACCESS／MASTER CHARGE ACCEPTED．GOVERN－
MENT \＆EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\＆P ADD E1
TO ALL CASH ORDERS．OVERSEAS ORDERS POSTAGE AT COST．PRICES SUBJECTTO
CHANGE WITHOUT NOTICE．

VAT Export orders no VAT，Applicable to U．K．Customers only．Unless stated othewise，

ELECTROLYTICCAPACITORS：（Vatues in uF）EOOV；10uf 52；47 78p；83V：0．47，1．0，1．5，2．2，3．3，4．78p 10 10p
 ＇ $33022 \mathrm{p} ; 47025 \mathrm{p} ; 680,100034 \mathrm{p} ; 150042 \mathrm{p} ; 2200 \mathrm{50p} ; 330076 \mathrm{p} ; 47008$

TAG－END CAPACITORS：84V：2200 120p；3300 145p；4700 245p；50V：2200 95p；3300 155p；40V：4700
160p；25v：2200 70p；3300 85p；4000，4700 75p；10，000 250p；15，000 270 pp；18v：22，000 200p．
 1000v： 1 nF 17p；10nF 30p；15n 40p；22n 36p；33n 42p；47n，100n 42p．

POLYESTER RADIAL LEAD CAPACITORS：250V				
10n， $15 n, 22 n, 27 n 8 p ; 33 n, 47 n, 68 n, 100 n 8 p ; 150 n, 220 n$	FEED－THROUGH			
CAPACITORS			10p：330nn，470n 15p；680n 19p；1u5 40p；2u2 48p．	CAPAC／FORS
:---:	:---			
1000pF／450V		35VIALUM BEAD CAPACITORS 1．0，1．518p． $22,3315 p$ 0．47，0．68， $1028 \mathrm{p} ; 1 \mathrm{18V}: 2.2,3.31 \mathrm{Bp} ; 4.7,6.8,10$ 95p；10v：15，22，28p；33，47 50p； 100 60p：5v： 100 55p．		

MYLAR FILM CAPACITORS
100V： $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 106 \mathrm{p} ; 15$ 130V： $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 106 \mathrm{p} ; 15 \mathrm{nF}, 22 \mathrm{n}$,
$30 \mathrm{n} 40 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}, 100 \mathrm{n}, 200 \mathrm{n} 9 \mathrm{p}$ Sov：47OnF 12p．
CERAMIC CAPACITORS 5OV：
 POLYSTYRENE CAPACITORS： $390.470,800,800,820$
$100,1200,1800,2200$ 2．8pF 2－10pF
2．25pF； $5 \cdot 65 \mathrm{pF}$

RESIS
0.25 W
0.5 W
1 W
1W
2\％Metal Film $100+$
mixed． 7 Commoned：（ 8 pins）
$10 \mathrm{~K} / 47 \mathrm{~K} 100 \mathrm{~K} 18 \mathrm{~B}$

${ }^{881058} 8$

SIEMENS pcb Type Miniature
poly Capacitors 250 V
$1 \mathrm{n}, 1 \mathrm{n5}, 2 \mathrm{n} 2$,
$3 n 3,4 \mathrm{n}, 6 \mathrm{n}$,
10,

Single Gang 5K－2M Single Gang Log L Lin 35 p 5 K
$-2 M$ Single Gang DP Switch $95 \mathrm{p} 5 \mathrm{~K}-\mathrm{c}$ SLIDER POTENTIOMETERS SLIDER POTENTIOM ETERS
$0.25 W \log$ and linear values 60 mm 5K－500k single gang
Graduated Bezels for above PRESET POTENTIOMETERS O．W Minialure Verticat o
Horizontal．to0R to 4 M 7 0.25 W Larger 100 R to 3 M 3 Horz $\quad \begin{array}{r}8 p \\ \text { 12p }\end{array}$ $0.25 W$ Larger 200 R to 4 M 7 Ve
$3 / 4$ cermet multiturn preset

SILVER MICA（Values in PFI
$2,3.3,4.7,6.8,8.2,10,12,15,18$, $2,3.3,4.7,6.8,8.2,10,12,15,18$,
$22,27,33,39,47,50,56,68,75,82$, $85,100,120,150,180 \mathrm{pF}$
$200,220,250,270,300,330,360$,
$390,470,800,800,820$.

MINIATURE TRIMMERS Capacitors

RESISTORS NETWORK S．II L
7 Commoned：（ 8 pins） 100Ω ， $680 \Omega .1 \mathrm{~K} 2 \mathrm{k} 2,4 \mathrm{~K} 7$,
8 Commoned：（9 pins） $150 \mathrm{n}, 180 \mathrm{n}, 270 \mathrm{n}, 330 \mathrm{n}, 1$
$2 \mathrm{~K}, 4 \mathrm{KF}, 6 \mathrm{~KB}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}$ \＆ $100 \mathrm{~K} \quad 20 \mathrm{p}$.
RANGE

15p each
$21 p$ asch 30p each 80p
22p
30 p
38p

かo
ER

 SFO354
SPO256
TCJIO1， TMS4 164
TMS4416 TMS4532
TMS5011
TMS9914 TMS9928
TMS929恄哿 NNE － जैच IDGE
IIFIERS

\section*{| $3 A 20$ |
| :--- |
| $3 A 4 C$ |
| $8 A 10$ |
| $8 A 4$ |
| $8 A B$ |
| $12 A 1$ |
| $12 A 4$ |
| $12 A$ |
| 12A |
| 16A |
| $16 A$ |
| $16 A$ |}

triac H2N
0.0
0.0
0

产

部

00000

 BC 108 C
BC109

BC 109 | BC |
| :--- |
| BC |

$B C 1$
$B C$,
$B C 1$
W

©

\section*{| θC^{2} |
| :--- |
| $B C_{2}$ |
| $8 C_{2}$ |
| $\theta C 3$ |}

领気気

 NNA

FRapid FElectronics

Fast component distribution

Unit 1,
Hill Farm Indistrial Estate Boxted, Colchester Essex C04 5RD

Telephone orderst 020636412 Telext 987756

The Rapid Guarantee -

* Same day despatch * Lowest prices
\star Brand new components * In-depth stocks

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Handheld Dual Trace DSO

 with DMMAdvance House of Instruments are distributing the Soaar 1000, a battery operated digital storage oscilloscope which uses a liquid crystal display and has a built-in digiral multimeter.

The Soar 1000 has a bandwidth of 3.2 MHz and nine ranges of sensitivity from $10 \mathrm{mV} /$ division to $5 \mathrm{~V} /$ division. The Y amplifier
frequency characteristic is $\pm 3 \mathrm{~dB}$ or less from $D C$ to 200 kHz . The timebase has twenty ranges from $5 \mathrm{us} /$ division to $5 \mathrm{~s} /$ division and features continuous-sweep and single-sweep measurement modes and positive, negative
and switcheable trigger slopes. The display unit is a $128 \times$ 160 dot-matrix LCD with a dot size of $0.55 \times 0.55 \mathrm{~mm}$ and an effective display area of 76 x 95 mm . A graticule divides the display area into ten divisions on the horizontal axis and four vertically on each trace.

A built-in battery backed-up memory allows storage of wave forms for later analysis and a waveform alarm function ensures correct operation. The rechargeable NiCad battery pack provides six hours of operation and the unit can also be powered by means of a mains adaptor.

The Soar model 1000 includes a seven function, 27range digital multimeter which offers both automatic and manual ranging. The unit comes complete with oscilloscope probes, multimeter probes,
batteries, rechargeable battery pack and an AC adaptor and costs $£ 995.00$ plus VAT.

Advance House of Instrument Raynham Road, Bishop's Stortford Hertfordshire CM23 5PF, 0279-55155.

3x-Rit Processor Multiplies In One Cycle dvanced Micro Devices claim their single chip 32-bit floating point processor (FPP) is the first in the world and can perform floating-point addition, subtraction and multiplication in a single 150 ns clock cycle.

The Am29325 FPP features a three-bus flow-through architecture, using two 32-bit input buses and one 32-bit output bus. The cycle time is 150ns in the flow-through mode
and 135 ns in the clocked mode. It can also be used in two other I/O configurations, a 32bit two-bus architecture and a 16-bit, three-bus format for use with 16-bit processors.

The device can perform arithmetic in either IEEE floating-point format standard P754 or DEC single-precision floating-point format. It can also perform conversions between the IEE and DEC formats and
between 32-bit integer format and floating-point format.

There are six flags to provide additional information on the status of the computation. These are invalid operation, inexact result, zero, not-a-number, overflow, and underflow. For maximum design flexibility, the input and output registers can be made independently transparent. This allows the designer to choose either the on-chip or external registers with no loss of system speed.

The

Am29325
is manufactured using AMD's IMOX-S ${ }^{\text {mu }}$ bipolar process, and comes in a 144pin pin-grid array package. It is the first member of their Am29300 32-bit microprocessor family to become available and is designed for use both with members of that family or with other microprocessors. AMD say the device will be in full production by the end of 1985 . They expect it to find applications as a floating-point accelerator for workstations, array and digital signal processors, high-end graphics, supercomputers, super minicomputers, spectrum analysers, radar and sonar equipment, cessing and systems for military use.

Advanced Micro Devices (UK) Ltd, AMD House, Goldsworth' Road, Woking, Surrey GU21 1JT, tel 04862 22121.

ETI PCB
 Service

Along, long last we are happy A to announce that this service has re-started. The contract with the new suppliers was signcá in mid-November and by the time you read this, work should have begun on clearing the backlog of orders.

A new pricing structure has been agreed and there will be a number of price changes as a result. We are hopeful that not all will be in an upward direction! We have also made use of the opportunity afforded by the change to revise the list of boards offered. Many boards which sold in small quantities or not at all have now been removed, and we hope this will enable us to offer an improved service on those that remain.

Because of all these changes, we were not able to prepare a full list of prices in time for them to be included in this issue. Readers who wish to obtain unpriced boards listed in the PCB Service page will have to contact us in order to find out the price. We hope to have the fill list prepared and checked in time for it to be included in the February issue.

Once again, we would like to thank out readers for their remarkable tolerance and understanding during this period of difficulties. We look forward to offering you a better service in the future.

合

Cirkit wishes all Electronics

 Today International readers a very happy Christmas
Ni -Cad Batteries

High quality Uni Ross nickel cadmium rechargeable batteries in sizes equivalent to the popular dry cell range; eg, $\mathrm{HP} 7=\mathrm{AA}, \mathrm{HP} 11=\mathrm{C}$, HP2 $=$ D. They can replace dry cell types in applications drawing medium to high current, but are not suitable for low current drain
applications.

		nom.	capacity	charge
AA	(mm) ${ }_{14.5 \times 50}$	1.2	0.5	50 mA
C	26x49	1.2	1.2	120 mA
D	33x61	1.2	1.2	120 mA
PP3	50x27x16	8.4	0.11	11 mA
type		Stock No. 01-12004		Price
AA				£0.80
C		01-12024		£2.35
D		01-12044		£3.05
PP3		01-84054		£3.70

WM12D

12 watt miniature lightweight pencil thin soldering iron, with a break-resistant stay cool handle. Designed for soldering where precision touch is essential, the WM12D weighs 7 ounces and measures $7^{\prime \prime}$ less tip. It develops tip temperature of $800^{\circ} \mathrm{F}$ and acommodates a choice of 3 Weller slide-in tips.

Stock No. 54-22911 Price $\$ 6.02$
Admate DP100 NLQ dot matrix printer

Newly imported, it is a compact Centronics interlace dot matrix printer designed to suit the requirements of office, personal or home use. As well as NLQ print mode it supports normal (Pica) and Elite characters, plus enlarged and condensed printing superscript and subscript ltalic and cond available for most print modes, as is underline The character sets are among the most extensive available; along with 192 ASClI characters (96 normal, 9 avalic) and IS characters the DP-100 supports 103 italic) and JIS characters the DP-100 supports 103 serni-graphic span the latter making this printer extremely useful for printing the latter making this printer extrem
out mathematical text without fuss.
The DP100 is Epson compatible and printer means of standard ESCAPE codes.
Print width is 80 columns in normal characters and the print speed is 100 characters per second, bi-directional and logic seeking. High resolution bit-image dot graphics are supported at 640 dots/line and the vertical resolution is tar better than that of many other printers - line spacing is programamable in increments of $0.118 \mathrm{~mm}(1 / 216 \mathrm{in}$), $0.35 \mathrm{~mm}(1 / 72 \mathrm{in}), 3.18 \mathrm{~mm}(1 / 8 \mathrm{in})$ or 4.23 mm ($1 / 6 \mathrm{in}$)
The printer accepts either fanfold, single sheet or rol paper, with adjustable sprocket and friction feed, a self-stacking paper basket is included. The Admate DP-100 is exceptionally good value for money, a printer with features worth much more than its price.

Stock No. 40-90100 Price $£ 155.00$

Type CX4/Multi Battery Charger

This unit will recharge AA, C, D and PP3 size cells with automatic voltage selection: it will also recharge the following combinations of cells: $4 \times D$, $4 \mathrm{xAA}, 4 \mathrm{xC}, 2 \mathrm{xPP} 3,2 \mathrm{xC}+2 \mathrm{xD}, 2 \mathrm{xAA}+2 \mathrm{xD}, 2 \mathrm{xAA}$ $+2 \mathrm{xC}, 2 \mathrm{xD}+1 \mathrm{xPP} 3,2 \mathrm{xC}+1 \mathrm{xPP} 3,2 \mathrm{xAA}+1 \mathrm{xPP} 3$ Power supply 240 V 50 Hz ; weight 0.475 kg ; dimensions $199 \times 109 \times 55 \mathrm{~mm}$.

battery	output	charge	charge
type	(V)	rate	time (hrs
AA	2.9	45	16
C	2.9	120	16
D	2.9	120	16
PP3	11	11	
Stock No. 01-02205			
	Price 57.4		
Prestel Link for your Amstrad			

The Modem

British designed Acoustic Modem, flexible coupling fits all standard and Herald telephones.
More reliable in operation than some direct connect Modems.
1200775 Baud operation allows access to PRESTEL, MICRONET, BT GOLD,etc.
1200 baud half duplex operation to swap programs and data over the telephone network with other users. Supplied with connection details and user manual Modem signals are RS323 compatible, allowing use with other computers and terminals.
other computers and terninais
Earpiece allows call monitoring
Earpiece allewr, and LED battery state monitor for trouble Battery power, and LED
free portable operation.
free portable operation.
Batteries ($4 \times \mathrm{A} A$ cells) give 40 hours of operation Batteries ($4 \times \mathrm{A}$ A
The Interface
Plugs into Disk Drive, through Bus Connector for Disk Drives and other peripherals.
Can be used to interiace to other RS232 devices, such as Modems, Plotters and Printers. Baud rates supported 75/1200, 1200/1200 and 300/300
INPUTS:- Data, one handshake - RS232 compatible. OUTPUTS:- Data, one handshake - +5 volt positive going. Works with all TTL level inputs and most RS232 devices. All interface features are software addressable, uses 8251 UART.
Supplied with full RSX drivers, which may be used in your own programs.
Not directly compatible with Amstrad CPM.
Extensive documentation about interface and RSX's Extensive documentation
supplied on the cassette.
supplied on the cassette.
*Cannot be used with Modem.
Cannot be use
Link Software
Full PRESTEL support, including up to 16 onscreen colours and dynamic frames. Information is displayed in real time, allowing page exit as soon as header details have been seen.
Available on tape or disk.
Terminal Emulation Mode, allows the Amstrad computer to act as a glass Teletype.
Allows access to BT GOLD and similar services.
File transfer allows data transfer from user-to-user over the telephone network.
Interlace Configure Mode allows changing of interface Baud rate and data lormat.
RSX drivers for all features, can be incorporated into other programs.
Supplied with extensive documentation.
41-50200 $£ 26.00+\mathrm{VAT}$ \& software on tape interface
此
$41-90150 \& 8.00$ +VAT Disk only

TI-30 III Calculator

sceral
Stock No. 40-90002 Price $£ 9.55$

TI-56 Calculator

A more advanced programmable scientific calculator with 122 different scientific and statistical functions, including two-variable statistics and eight data memories or 56 programming steps. Supplied with hard carrying case.

Stock No. 40-90007 Price $\$ 24.99$

Programmer II Calculator

Specifically designed for computer programmers, this versatile electronic abacus features calculations in hex, octal and decimal as well as base conversions and logical operations. Supplied with hard carrying case

Stock No. 40-90006 Price $\$ 38.50$

HT-320 multimeter

A high quality, high specification but reasonably priced meter. In addition to the usual functions, facilities are provided for measuring transistor parameters. The meter movement is fully protected against overloads, and has a 3-colour mirrored scale. Supplied with comprehsnive instructions, test probes, transistor test leads and batteries. Sensitivity: $20 \mathrm{k} / \mathrm{V}$ dc, $18 \mathrm{k} / \mathrm{V}$ ac. dc volts: $0.1,0.5,2.5,10,50,250 \mathrm{~V}, 1 \mathrm{kV}$. ac volts: 10,50 , $250 \mathrm{~V}, 1 \mathrm{kV}$. dc current: $50 \mathrm{uA}, 2.5,25,250 \mathrm{~mA}$. resistance: $2,20 \mathrm{k}, 20,20 \mathrm{Mohms}$. audio output: transistor parameters: lceo $150 \mathrm{uA}, 15,150 \mathrm{~mA}$; hfe $0-1000$ decibels: -10 dB to +22 dB weight: 410 g

Stock No. 56.83201 Price $£ 17.70$

HC5010 Digital Multimeter

High quality, high accuracy digital multimeter Accuracy on all DC volt ranges $\pm 0.25 \%+1$ digit Ranges: DC volts 200 mV to 1000 V . DC currents: $20 \mu \mathrm{~A}$ to 10 amps . AC voltage 200 mV -750V. AC currents $20 \mu A$ to 10 amps . Resistance $20 \Omega-20 \mathrm{M} \Omega$ and continuity and diode test.
Complete with battery and test leads. Stock No. 56-5018 Price $£ 48.00$

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $\$ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.
Just send for our catalogue or visit one of our three outlets at:
200 North Service Road, Brentwood, Essex. CM14 4SG - (0277) 211490
53 Burrields Road, Portsmouth, Hampshire. PO3 5EE - (0705) 669021;
Cirkit, Park Lane, Broxbourne,
Hertordshire. EN10 7NQ - (0992) 444111.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

- Two new signal generators from MS Components cover the frequency spectrum from 10 Hz to 450 MHz in overlapping ranges. The AF model generates' sine waves from 10 Hz to 1 MHz and square waves from 10 Hz to 100 kHz , with a variable $0-5 \mathrm{~V}, 600$ ohm output. An external sync input is provided. The RF model covers 100 kHz to 150 MHz in fundamentals, extending to 450 MHz on harmonics. The output is variable from 0 to 0.1 V (RMS) and modulation is provided by an internal $1 \mathbf{k H z}$ tone or an external tone of 50 Hz to 20 kHz . Further details from MS Components, Zepliyr House, Waring Street, West Norwood, London SE27 9LH, tel 01-670 4466.

O The results of the Thandar Frequency meter competition held in ETI, November 1985, will be announced next month.

O Aswe go to press, the Comdex showin Las Vegas should be hearing about Optimem's eraseable optical disc drive. We will be bringingyou further details of this development as soon as possible.

Lack Of
 Applicaťion

The disappointing sales of microcomputers in the last year were blamed on a lack of training in applications packages at a recent seminar on the state of the UK micro market sponsored by Barclays Bank. The accusation came from Philip Virgo, the Information Technology Manager of the National Computing Centre in Manchester.

Virgo pointed out the training was unevenly distributed about the country, with 69% of all public courses being held in London and the South-East. The availability of software, Virgo said, massively outstripped the availability of relevant training. For example, only two courses were run last year covering CAD packages, while 175 such packages were on the market.
The previously buoyant computer market in the UK will continue to sink, suggested Virgo, if the quality of applications training and instructional manuals did not improve.

WeePROM

H itachi, who claim to be \# Europe's leading supplier of memory products (with support for this contention from market researchers Dataquest), have introduced a miniature 64 K CMOS PROM with a maximum response time of 2 ns and power consumption of $40 \mathrm{~mW} / \mathrm{MHz}$ in active mode and $55 \mu \mathrm{~W}$ in standby. The HN27C64FP is configured as an 8 Kx 8 memory, is TTL

compatible in both read and write modes and is a 28 -pin device. It is distinctly unlike more conventional PROMs in other respects, being a surface-mounted chip just half the size of other 64 K devices in every dimension. It is plastic-packaged and lacks a window since, Hitachi argue, many manufacturers fail to utilize the eraseability of EPROMs for reasons of cost and convenience. The HN27C64FP is, therefore, one-time programmable for use with fully debugged systems.

1 MEGABYTE 80 Track Disc Drives 5.25"
Double Density Double Sided
£90.00 each plus $£ 2.50 \mathrm{p}+\mathrm{p}$
2 or more drives $£ 85.00$ each, $p+p$ free
500Kbyte 40 Track Disc Drives 5.25"
Double Density Double Sided
£75.00 each plus $£ 2.50 \mathrm{p}+\mathrm{p}$
2 or more drives $£ 70.00$ eqch, $p+p$ free
250Kbyte 40 Track Disc Drives 5.25"
Double Density Single Sided
£35.00 each plus $£ 2.50 \mathrm{p}+\mathrm{p}$
2 or more drives $£ 30.00$ each, $p+p$ free

Regulated Power Supply for 5.25" Disc Drives Textured black Dive Case takes one drive as above
PSU Drive Cable
Drive Interface Cable
5.25" 40 track DS/DD Diskettes by Memorex
$£ 9.50+£ 1.50 \mathrm{p}+\mathrm{p}$
$\varepsilon 9.00+£ 2.00 \mathrm{p}+\mathrm{p}$ $\mathbf{\varepsilon 1 . 0 0}+\mathbf{£ 0 . 2 5 p + p}$ $\varepsilon 5.00+£ 0.50 \mathrm{p}+\mathrm{p}$
£1.25 p+p free

Complete Case and PSU, comprising: Illuminated Mains Switch, Fuseholder; Interface cable, PSU Cable, Rubber feet, 2 m Mains Cable, Labels etc. Ready to take Half Height drive for direct link up to your disc controller board for immediate operation. Sensational price - only
$£ 29.95+£ 3.00 \mathrm{p}+\mathrm{p}$

* Uncased

All the above items - P+P FREE WHEN ORDERED WITH DISC DRIVE

еСНО Amplitier for Sinclair XX Spectrum Improve your saring. loading and sound on the Spectrum complete with full fitting instructions $\quad{ }^{\mathbf{1}} 19.95 \mathrm{p}+\mathrm{p}{ }^{\text {' }} 1.00$

CABLE HARNESS FABRICATION
Send your drawing or specification
For Free Quote. Trade enquiries welcome.

Centronics printer cables
1 metre long
ONLY ${ }^{5} 5.95+50 p p+p$

Electro-Mech Industries

Unit 23 Station Lane Witney Oxon OX8 6XZ Tel: (0993) 75827
CIRCLE 96 FOR FURTHER DETAILS.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

IEE and IERE To Merge?

The Insitution of Electrical Engineers and the Institution of Electronic and Radio Engineers may eventually be merged into one body. The proposal has been welcomed by the councils of both Institutions and their members will debate the merger at Special General Meetings to be held late in 1986.

The proposal was put forward by at joint IEE/IERE working party which felt that the combined body would speak with greater authority and would enhance the reputation of electrical and electronic engineering among the public. Other advantages include

OThe latest volume of the TTL Data Book, Volume 3, is now available from Texas Instrumerits. It covers bipolar programmable logic (PAL and FPLA devices) and schottky TTL mernories (PROMs, RAMs and mernory-based code converters'. It includes general information and a functional index and costs $£ 8.00$ inclusive from Texas Instruments Ltd, PO Box 50, Market Harborough, Leicestershire.
a rationalisation of the publishing and other services offered by the two bodies and the achievement of a common standard for Chartered Engineering status amongst electrical and electronic engineers. The existence of a single body would also simplify the accreditation of courses and training programmes in those fields.
For further details contact the Institution of Electrical Engineers, Savoy Place, London WC2R OBL, tel 01-240 1871, or the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel 01-388 3071.

Marston Palmer have published a 14-page brochure which describes their force cooled heat sinks. Full technical details are included and there is a guide to designing force cooled assemblies for particular applications. Copies of the brochure are available free-of-charge from Marston Palmer Ltd, Wobaston, Road, Fordhouse, Wolverhampton, West Midlands WV10 6QJ, 0902783361.

Sealed Push Button Smitches

Diamond H Controls have introduced a range of pushbutton switches which are sealed against dust and moisture and which are suitable for both lowlevel and power switching use.
The Otto P3 series are double pole and come in four different case styles. The maximum current rating is 10 A and the contact resistance is 25 m . The mechanical life claimed is 250000 cycles and the minimum electrical life is

25000 cycles at full load.
The switches are made from aluminium alloy with nylon buttons and are sealed with epoxy.A fully waterproof version is also available which can withstand up to three feet of water pressure. The terminals are suitable for both screw and solder connection.
Diamond H Controls Ltd, Vulcan Road North, Norwich NR6 6AH, tel 0603-45291.

PRICES INCLUDE V A T \& PROMPT DELIVERIES \star FRIENDL SERVICE ${ }^{-}$LARGE S.A.E. 28p STAMP FOR CURRENT LIST

ONP POWER AMPLIFIER MODULES OMP POWVER AMPLIFIER MODULES Nowe njoy a world-wide reputation for cuality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and hobby market. i.e. Industry. Leisure, Instrumental and Hi-Fi. etc. When comparing prices, NOTE all models include ferrital power supply, Integral heat sink, Glass fibre P.c.B.iled and Drive circuitt thend tested.
Vu meter. Open and short circuit proof.

OMP100 Mk II Bi-Polar Output power 110
 watts R.M.S into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01%. S.N.R. - 118 dB . Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $\mathbf{f} 39.99+£ 3.00 \mathrm{P}$ \& P .
OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250, Slew Rate 50V/uS. T.H.D. Typical 0.001%, Input Sensitivity 500 mV . S.N.R. -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE PRICE $\mathrm{f} 62.99+\mathbf{f 3 . 5 0}$ P\& P

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350, Slew Rate 60V/uS. T.H.D. Typical 0.0008%, Input Sensitivity 500 mV , S.N.R. -130 dB . Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $\mathbf{f} 79.99+\boldsymbol{f} 4.50$ P\& P.

NOTE: Mos.Fets are supplied as standard (100 KHz bandwidth $\& \ln$ int Sensitivity 500 mV). If required A. version (50 KHz bandwidth \& Input Sensitivity 775 mV). Order - Standard or PA.

Vu METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E. diodes (7 green, 4
red) plus an additional on/off indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic case, with tinted acrylic fro P . Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $\mathbf{f 8 . 5 0}+\mathbf{5 0}$ p P\&P.

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details.
 POWER RANGE
${ }_{20}^{\text {8" }} \mathbf{5 0}$ oz. WATT R.M.S. Hi-Fi/Disco.

12 " 100 WATTR R.M.S. Hi-Fi/Disco
50 oz magnat. 2 " ally voice coil. Grou
50 oz. magnet. $2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Die-cast chassis. White cone. Res.

McKENZIE

12" 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Disco.
$2^{2 \prime}$ ally voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. to 6.5 KHz . Sens. $98 d \mathrm{~dB}$. PRICE 128.76

 $10^{\prime \prime} 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard / Mid. P. A $2^{\prime \prime}$ " voice coil. Res. Freq. 75Hz. Freq. Resp. to 7.5 KHz . Sens. 99 dB . PRICE $19.15+\AA 2.00 \mathrm{P} \& \mathrm{P}$. $10^{\prime \prime} 200$ WATT R.M.S. C10200GP Guitar, Keyboard, Disco. $2^{2^{\prime \prime}}$ voice coil. Res. Freq. 45 Hz . Freq. Resp. to 7 KHz . Sens. 101 dB . PRICE $551.00+£ 3.00 \mathrm{P} \& \mathrm{P}$. 15 " 200 WATH R.M.S. C15200 High Power Bass.

$15 " 400$ WATT R.M.S. C15400 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB . PRICE $f 85.00+£ 4.00 \mathrm{P} \& \mathrm{P}$.
WEM
$5^{\prime \prime} 70$
WATT R.M.S. Multiple Array Disco etc.

sounDLaB (Full Range Twin Gone)

$10^{\prime \prime} 60$ WATT RM S HI-Fi/Disco
10" 60 WATT R.M.S. Hi-Fi/Disco etc
 fibre printed circuit board and high qua
components complete with instructions.
M MICROTRANSMITTER (BUG) $\mathbf{S 0} / 105 \mathrm{MHz}$ with very sensitive
nicrophone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt)
rice: $18.62+75 \mathrm{p}$ P\&
3 WATr. FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controhed professional performance, Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ AECEIVER 27 MHz . Range up to 500 metres. Double codad modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ($9 / 12$ volt). Price: $f 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt). Price: $£ 11.29$ PRP +75 p each. S.A.E. for complete list.

BURGLAR ALARM

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar
Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units.
complete with interconnection cable. FULLY GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control. Three position, key operated facia switch-

- armed 30 second exit and entry delay. - armed. 30 second exit and entry delay. 104 dB output.

IDEAL for Work shops, Factories Offices. Home etc. Supplied ready built.

Outdoor Alarm - Electronic swept freq. siren. 98dB output. Housed in a tamper-proof heavy duty metal case.
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mains failure. Power requirement $200 / 260$ volt duc $50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic
AC buttons etc. Complete with instructions.
SAVE $\pm 1 \overline{\mathbf{8}} .00$ Usual
SAVE $\pm \mathbf{1 3} \mathbf{8} .00$ Usual Price f 22 B .85
BKE's PRICE $£ 89.99+£ 4.00$ P\& P

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit todays need for compactness with high sound output levels. Finished in hard wearing black vynide with protective corners, grille and carry $15^{\prime \prime} \times 12$ " Watts RMS. per cabinge Sensitivity $1 W^{\prime} 1 \mathrm{mtr}$ dB OMP 12-100 Watts 100dB. Price $£ 149.99$ per pair
OMP 12-200 Watts 102dB. Price f199.99 per pair.

Delivery: Securicor $\mathbf{f 8 . 0 0}$ per pair

OVP 19" STEREO RACK AMPS

Professional 19". cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections MF600 Fan cooled. Three models (Ratings R.M.S. into 40 hms). Input Sensitivity 775 mv MF200 (100 + 100)W. $£ 169.00$ Securicor MF400 $(200+200)$ W. $£ 228.85$ Delivery MF600 $(300+300)$ W. $£ 274.85 \quad £ 10.00$

1 K-WATT SLIDE DIMMER
 \star Control loads to 1 Kw ${ }^{\star}{ }^{\prime \prime} \times 1^{\prime \prime} \times 21 / 2^{\prime \prime}$
4^{3} Easy snap in fix ing through panel cabinet cut out
\star insulated plastia case
\star
Full \star Full wave con-
trol using 8 amp ${ }_{\star}^{\text {triac }}$ Conforms ta \star Suitable for both resis ance and inductive loads. In numerable applications in industry, the hom PRICE 513.99 + 75p P\&P

BSR P295 ELECTRONIC TURNTABLE \star Electronic speed control $45 \& 331 /$ r.p.m. \star Plus/ minium patater witht strobedr rim \star Cue Cu lever \star Anti-
skate (bias device) \star Adjustable counter batance
 Manual arm \star Standard $1 / 2^{\prime \prime}$ cartrige fixings. ${ }^{\star}{ }^{*}$
Suopolied complete with cut out template \star D.C. Operation $9-14 v$ D.C. 65 mA

Price $£ 36.99-£ 3.00$ P\&P.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass ino voice coill of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watt
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER TYPE 'A' (KSN2036A) $3^{\prime \prime}$ round with protective wire mesh, ideal for bookshelf and medium sized Hi - f speakers. Price $£ 4.90$ each +40 p P\&P TYPE 'B' (KSN1005A) 3 $1 / 2$ ' super horn. For general purpose speakers, disco
$f 5.99$ each +40 p $P \& F$
TYPE 'C' (KSN6016A) 2" $\times 5$ " wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price $\mathbf{f 6 . 9 9}$ each + 40p P\&P.
TYPE 'D' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality
$+40 p$ P\&P. Suitable for Hi -fi monitor systems etc. Price f 5.99 each +40 p P\&P.
LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathrm{f} 3.99+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L. \& R. graphic equalisers and twin 10 segment 5 Inputs with individual faders providing a useful combination of the following: 3 Iurntables (Mag). 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor, Pan Pot. L. \& R. Master Output controls. Out
put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$. Price $f 134.99 \rightarrow f 300$ P\&P

UNIT 5, COMET WAY, SOUTHEND-ON:SEA ESSEX. SS2 GTR TEL: 0702-527572

NEWS: NEWS: NEWS

DIA底

Satellite Communications - December $3 /$ th
Tara Hotel, London. See November ' 85 ETI or contact Online at the address below.

The History of Sound Droadcasting - December 5th
IEE, London. Lecture by Dr. G.J. Phillips, formerly of the BBC. For details contact the Secretary at the address below.

Robots Can See - Dec 18th \& 19th
Institution of Electrical Engineers. Christmas Holiday Lecture by Professor A. Pugh of Hull University at 2.30 p.m. on each day. Free admission by ticket only, available from the IEE at the address below.

The Which Computer? Show - January 14-17th
NEC, Birmingham. Contact Cahners at the address below.
Electronics In Oil and Gas - February 4-6th
Barbican, London. See November' 85 ETI or contact Cahners at the address below.

Power UK'36 - March 4-6th
Kensington Exhbition Centre, London. Exhibition and conference devoted to power supplies and alternative power sources. Organised by the Power Supply Manufacturers Association. For details contact TCM Expositions Ltd, Exchange House, 33 Station Road, Liphook, Hampshire GU30 7DN, tel 0428-724 660.

Electronic Production Efficiency Exposition - March 11-13th
Olympia, London. See November' 85 ETI or contact Cahners at the address below.

Electro-Optics/Laser International - March 10-20th
Metropole Convention Centre, Brighton. Exhbition and conference on optics and lasers which includes a special focus on fibre optics. For details contact Cahners at the address below.

Low Energy Ion Beams - April 7-10th
University of Sussex, Falmer, Brighton. Conference on the production and use of ion beams, covering such areas as semiconductor processing and machining and material modification in metals and insulators. There will also be an exhibition of related equipment. For details contact the Meetings Officer, The Institute of Physics, 47 Belgrave Square, London SW1X 8QX, tel 01-235 6111.

Electrical Insuiation Conference - May 19-22nd.
Brighton. International conference described by the organisers as the premier event in its field. For details contact the British Electrotechnical and Allied Manufacturers Association, Leicester House, 8 Leicester Street, London WC2H 7BN, tel 01-437 0678.

Advanced Infrared Defectors And Systems - June 3-5th Institution of Electrical Engineers, London. Conference which aims to coverthe developments in infrared detectors, systems and techniques and their relationship to developments in the field of millimetre waves. For details contact the IEE at the address below.

Networks '86 - June 10-12th
Wembley Conference Centre, London. Exhibition and conference devoted to all aspects of data exchange networks. For details contact Online at the address below.

Northern Computer Show - June 24-26th
G-MEX Exhibition Centre, Manchester. Exhibition aimed at professional computer users, from professionals in user departments to computing specialists. For details contact Reed Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ, tel 01-643 8040.

Addresses:
Cahriers Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Institution of Electrical Engineers, Savoy Place, London WC2R OBL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Midclesex HA5 2AE, tel 01-868 4466.

ETI

HARDWARE SOFTWARE

Operative Systems

MDEX Professional Dev. System
£95
CORTEX POWER-BASIC disc extensions: CDOS

MDEX Extensions

FORTH with Screen editor assembler , £55

- Graphic extensions
£35
PASCAL by Pre Brinch Hansen
QBASIC Compatable with
CPM CBASIC - only complied! £150
WINDOW Full screen editor $£ 150$
CORTEX LISTINGS/CDOS DISCS
PENGO, BLUE-BIRD, GOLF
SPACE-BUGS, BREAKOUT, PONTOON, MICROPEDE £13
CDOS WORD PROCESSOR (DISC ONLY) E13
DRAWTECH (DISC ONLY
£43

DISC DRIVES

80 Track half height, double sided, double density IM £125 40 Track half height, single sided, double density 256K £110

E-Bus cards

9995 Processor Board
64/128k RAM Card
Floppy/Winchester Interface Card Joystick/Centromes/Timer Board

$\text { Blank }+$	PAL'S	£52
	Built	£175
Blank +	PAL	£42
Blank	Built	£145/245
		£32
	Built	£135
Blank		£13
Part kit		£36
Full kit		£43

LIMITED OFFER ONLY: 9909's Full kit
STATE DISC FORMAT \& ADD VAT TO ALL PRICES

MicroProcessor Eng Ltd
21 Hanley Road . Shirley
Southampton - SO1 5AP
Tel: 0703780084

\section*{Happy Memories

Available now - The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required.

Full details on request.
74LS series TTL, widestocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under£15 and VAT to total. Access orders by 'phone or mail welcome. Non-Military Goverment \& Educational orders welcome. £15 minimum.

HAPPY MEMORIES (ETI),
 Newchurch, Kington, Herefordshire, HR5 3QR.
 Tel: (054 422) 618

01-208 1177 Trichnomatic Lid 01-208 1177

BBC Micro Computer System

ACORN COMPUTER 8Y8
BBC Model B+Econet 5335 (a)
BBC Model B+DFS.......................8330 (a)
BBC Model B+DFS +Econetc375 (a)
BBC B Plus 64K839 (a)
(a)
UPGRADE KITS
DFS Kit...800 (d)
Econet Kit......................................c5s (d)
1770 DFS KH...................................c49 (d)
ADFS ROM....................................c. 59 (d)
ACORN ADD-ON PRODUC
Z80 2nd Processorc328
6502 2nd Processor8175
Teltext Adaptor190 (b)
IEEE Interface $£ 282$ (b)

BBC FIRMWARE

aslc II ROM..2280 (d) Vlew 12.1 Word Processor ROM....248.00 (c) Wordwlse Plus 849.00 (d) BCPL ROM/Disc 552.00 (b Disc Doctor/Gremllin Debug ROM $£ 26$ (d) EXMON/TOOL KIT ROMse3 ea (d) Printmaster (FX80)/Graphics :.......e2s ea (d) ULTRACALC spreadsheet ROM $\mathbf{E 5 0}$ ea (c) VIEW STORENIEW SHEETes52 ea (c) SO PASCAL/LOGO 880 ea (c) Oxford PASCALG FORTH/LISP ROM S43 ea (c) 843 ea (c)
ACCELERATOR (BASIC Compller)..... 556 (c) COMMUNICATION ROM

Termi II. \qquad Communlcator Commstar \qquad

DATABEEB...

IBM Compatible GRADUATE In stock
TORCH UNICORN products including the IBM Compaible GADCUATE Ited here or information on our complete range please write to us.

PRINTERS EPSON

RX80T $+\varepsilon 200$ (a)
LX80 the new NLQ printer\&210 (a) FX80+ $£ 309$ (a) $\mathrm{FX} 100+2429$ (a)
JX80 4 Colour Printer $£ 449$ (a)
H180 4 Colour Plotter E 345 (a)
KAGA TAXAN:
KP810 £235 (a) KP910 £339 (a)
DAISY WHEELS:
JUKI 6100 £295 (a)
BROTHER HR15(P) £310 (a)
HR15LX (Serial) $£ 365$ (a)
Paper:
2000 Sheets Fanfold:
$9.5^{\prime \prime} \times 11^{\prime \prime}$ £13 (b)
$14.5^{\prime \prime} \times 11^{11}$ £18.50 (b)
Labels: (per 1000)
3.5" $\times 17 / 16^{\prime \prime}$ Single row $\mathbf{8 5 . 2 5 (d)}$
$27 / 16^{\prime \prime} \times 17 / 16^{\prime \prime}$ Triple row $\mathbf{£ 5 . 0 0}$ (d)

ACCESSORIES

Printer Leads can be supplied to any length.

MODEMS

- All modems listed below are BT approved

MiRACLE 3000:

A new range of mlcroprocessor based modems otfering of upto '2400 baud, full duplex. Features Include 'HAYES' protocol compatiblity, auto answer, auto dial, speed buffering, printer port, data securlty optionetc. Malns powered. WS3000 V22 (as above plus 1200 baud fuil duplax) (b) WS3000 V22bis2400 (as above plus 2400
(b) baud full duplex). MIRACLE 2000
A world standard modem covering V21, V23 (Bell 103/113/108 outside UK) and including
$75,300,600,1200$ baud ratings. Optional Auto 75,300,600, 1200 baud ratings. Optional Auto computer keyboard. WS2000 \&129 (b)

Auto Dial Card.. 200 (d)
Auto Answere Card Auto Answere Card ... 110 (d)
BUZZ BOX: Pocket slze, direct connect 300/300 half and full duplex with originate and answer Data Cables for above modems available for most computers.

Serial Test Cable

Serial Cable switchable at both ends allowing pin options to be re-routed or linked at either end making it possible to produce almost any cable configuration on site. Availabie as M/M or M/F ع24.75 (d)

DISC DRIVES

These are fully cases and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

psu)
Dual Divess (with
PD800 $2 \times 400 \mathrm{~K}$ 80/40T DS............... $\mathbf{\Sigma 1 9 0}$ (a)
3.5^{n} Drives
TS35 $1 \times 400 \mathrm{~K}$ 80T DS 299 (b)
With integral psu
PS100 with psu. \qquad . 120 (b)

Plinth Versions:
PD800P.
.. .2240 (a)

3M FLOPPY DISCS

High quality discs that offer a reliableerror free performance for life. Each discis indivldually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.

$$
\text { 51/4" DISCS } 31 / 2^{3 \prime} \text { DISCS }
$$

40 DS DD \&18 (d)
40 SS DD ع13 (d)
$80 T$ SS DD $£ 24$ (d)
$80 T$ SS DD 830 (d)
$80 T$ SS DD $£ 22$ (d)
$80 T$ DS DD $£ 38$ (d)

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives .. 14.50 (c) Single Disc Cable.............................. Es (d) Dual Disc Cablo 88.50 (d)

MONITORS

MICROVITEC 14" RGB: \qquad
1431 Standard Resolution.. 8240 (a)
1451 Medium Resolution. .2388 (a)
1441 Hi Resolution \qquad
1431 AP Std Res PAL/AUDIO...
1451 AP Med Res PAL/AUDIO .2205 (a)
1451 AP Med Res PAL/AUDIO 2205 (a)

1451 DQ3 Med Res for QL
\qquad
1456 DI - IBM Compatible RGB Monitor \qquad 239 (a)
156 DI - IBM Compatble
MITSUBISHI 14" Med Res. IBM/BBC Compatible RGB 2249 (a)
Above monitors are now avallable in plastic or metal cases
KAGA Vision II.
$\varepsilon 225$ (a)
Vision III
.2360 (a)
Super Vision Ill...
MONOCHROME MONITORS 12
Kaga Green KX1202 G Hi Res
. .247 (a)
Kaga Amber KX1203 A Hi Res.. 24105 (a)
Sanyo Green DM8112CX Hi Res .. 887 (a)
Swivel Stand for Kaga Monochrome.. 21 (c)

SPECIAL OFFER

2764-25
 \qquad
 $£ 2.00$
 27128-25
 \qquad
 £3.00
 6264LP-15.............E4.00

Serial Mini Patch Box
Allows an easy method to reconfigure pin functions without rewiring the cable assy.
without rewiring the cable assy.
Jumpers can be used and reused.

ATTENTION

All prices In this double page advertisement are subject to change without notice.
ALL PRICESEXCLUDE VAT Please add carriage 50p uniess
indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Test
Minitors RS232C and CCITT V24
Transmissions, Indicating status with dual colour LEDs ransmisslons, Indicating status with dual colour LED
on 7 most significant lines. Connects in Line.

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight eproms at a time and accepts all single rail eproms up to 27256. Can reduce pro gramming time by 80% by using manufacturer's suggested algorithms Fixed Vpp of $21 \& 25$ volts and variable Vpp factory set at 12.5 volts LCD display with alpha moving message: £395(b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV - has'a serial and parallel $1 / \mathrm{O}$ routines Can be used as an emulator, cassette interface.
 Adaptor for $2764 / 2564$. 225.00 (c)

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1B erases up to 6 eproms at a time. E47(c) UV1 1 as above but with a timer : 559 (c) UV141 asases up to 14 eproms at a time. $£ 71$ (b)
UVO
UVI41 as above but with a timer.......... $\boldsymbol{2} 88$ (b)

CONNECTOR SYSTEMS

CONNECTOR SYSTEMS	
EDGE CONNECTORS	AMPHENOL CONNEGTORS
边	
	24 way $700 \mathrm{p} \quad$ 3eway
${ }^{1 \times 7 \times \text {-way }}$	GENDER CHANGER
EURO CONNECTORS	
DIN 41612 Plug Socket	Male to femaie........ 810
2×32 way St Pin ${ }^{2300}$ 275p	Female to Female...... 110

RIBBON

metre)			
$\begin{aligned} & \text { 10.way } \\ & \text { G.w.wy } \\ & 20 \text { wwy } \\ & 26 \text { way } \end{aligned}$	$\begin{gathered} 40 \mathrm{p} \\ \begin{array}{c} 609 \\ 8550 \\ 1250 \end{array} \end{gathered}$	$\begin{aligned} & 34 \cdot \text { way } \\ & \text { 40.way } \\ & 56 \cdot w a y \\ & 64 \cdot w a y \end{aligned}$	
DIL HEADERS			
${ }_{14}^{14} \mathrm{pin}$	$40 p$ $50 p$		
18 pin	60 p		
20 pin	75p		
24 pin	100 p		
28 pin	160 p		

TECHNOLINE

VIEWDATA SYSTEM

Using 'Prestel' type protocols for information and orders phone 01-450 9764. 24 hour service, 7 days a week.
若 8

${ }^{8050^{\circ}}$ LINEAR ICs
｜Lusess susp 2 ）Lusen

 N区茨荌 MS9980

CCMPUTER COMPONENTS Eatacky

＇Please note all prices are subject to change without notice．

Unbalanced

Dear Sir,
There is no way that a practical well-balanced, rational, noncontroversial answer can be given to Anna Paczuska (ETI, October 1985).

To attempt it, in detail, would take several thousand words and would lay open to every kind of accusation, from MCP to fascist.

It is probably the biggest redherring ever strewn in the path of an unsuspecting, largely male(?) readership.

Whichever way her problem is examined, a serious train of thought inevitably arrives at the starting point.

One way of achieving her aims - in part, at least, is to campaign for sexual equality. Then I can retire next year, together with all those hale and hearty sixty-yearold ladies who, the statisticians say, will be going strong when I am fertilizing the daisies.

Yours faithfully,
(Name and address witheld)
I'm not quite sure what your objection is to an article that takes a cool look at a topic of public interest - unless, that is you're opposed to the idea that electronics and related technologies should be as open to women as they are to men. As it happens, this idea in the form of the Equal Opportunities Act - is a matter of law and public policy in this country. While the vast majority of our readers are indeed male, that is no reason why they should not be concerned about the issues of sexual discrimination, as you yourself imply, nor is it a reason to discourage women from reading or contributing to ETI. - Ed.

Unbiased

Dear Sir
Thank you for producing an electronics magazine that has been enjoyed for many years. However, recently articles such as "electronic weapons being used against us" - Greenham women claim' (ETI, December 1985),
'Electronics for Peace?' (ETI, April 1985), etc, were included in ETI. But note that a politician may voice his opinions such as 'The Greenham women are liars,' 'The Greenham women recently visited Russia,' or 'What you said is all true

- so what?' It may surprise you to know, that to be fair, whatever politicans think is equally valid and has to be published (rightly or wrongly).

Such politics has little to do with electronics. It does not tell me how to bias my transistors. It does not tell me why Gallium Arsenide works faster than silicon. It does not tell me who has developed the latest high-speed op-amp. Many hours of politics are screened on television each day. Most daily newspapers publish enormous amounts of rubbish - all of which I may or may not wish to review. ETI is a safe haven from all these. Please don't turn it into a political battlefield.

Thank you,
Yours faithfully,
Joseph Michael BSc.
London.

Dear Sir,

I would like to cancel my subscription to Electronics Today International forthwith and my money's reamining owed to me to be refunded. I have enclosed the label from my last issue.

Yours faithfully,
Sgt. R. Hailstones
School of Signals
Blandford Camp
Dorset.
Nuff said! - Ed.

I Got Rhythm

Dear Sir,
I read Mr. Phillips article entitled 'The Rhythm Chip' in ETI, November 1985, with interest. Unfortunately I think that the designer has failed to fully exploit the potential of the look-up table' technique. His meter has a very limited range and resolution, requiring the necessity of a scale change to accommodate a modest selection of rates. In addition the power consumption of this device is probably about 250 mA making battery operation of this system unsatisfactory. A mains power supply can be seen in the photograph accompanying the article although this is not described in the text. From the arguments presented it would be
an advantage if a truly portable, low-power system could be designed.

Fortunately this has already been done! I have previously published such a design using the ROM look-up table conversion technique. This device was built using CMOS chips, has a three digit $L C D$ display and a single range of 30-300 pulses per minute with 1% or better resolution. It was intended for battery operation and using a CMOS ROM (27C16) consumes only 20 mA while having similar circuit complexity to Mr Philips' design but few discrete components and no presets! The only function that my rate meter fails to achieve is audible tone generation, although this is simple to add.

I am surprised that editorial review has allowed the wheel to be re-invented in an apparently inferior way.

Yours faithfully,
P.D. Coleridge Smith

Dept. of Surgical Studies
The Middlesex Hospital London.

Suppress your surprise and produce a project for us. Our contributors are our greatest asset and our readers our greatest inspiration and safeguard. Ed.

Back To Front

Dear Sir,
I would like to compliment and thank KIA for the specialaccordion amplifier AX68. The results are excellent, just as I had hoped for, and I consider it very good value for money.

I thank Mr. Lawrence at KIA for his interest and great patience in constructing my special order.
May I recommend KIA to any reader with amplifier problems and wish them continuing success in the future.

Yours gratefully,
J.T. Cormack

Suffolk.
The news has finally reached me after journeying all the way from the Classifieds at the back of ETI that KIA advertise with us. My apologies to them. Their address, for anyone interested, is 8 Cunliffe Road, Ilkley, West Yorks, LS29 9DZ. - Ed.

The Microamp

The third ETI sound processor is a high-performance bridgeable amplifier giving 20W per channel stereo and 40W per channel mono output. Uniform with the com-pressor-noise gate in the December issue and this month's Activator, the Microamp is the last link in a basic sound system of small proportions and great quality.

PLUS

Digibaro

Using a pressure sensor, analogue-to-digital converter and data stored in EPROM, this digital barometer is a model of environmental measuring techniques. The circuit includes full compensation for temperature drift and altitude and the neatly packaged unit will prove a boon to amateur meteorologists and anyone who suspects that the pressure is getting too much for them.

All our regular features, circuit ideas galore, Tech Tips,
Read/write, Digest and more.

Twin 31/2" 80-track Disc Drives

 Watford Electronics

 Watford Electronics}

For a limited period, ETI is able to offer these cased units at an astonishingly low price. Each unit contains two, high performance, double-sided, double-density $31 / 2^{\prime \prime}$ drives manufactured by:

\therefore mitsubishe electric

and supplied in a double-height steel case in cream finish with leads allowing immediate connection to a BBCModel B or B+ computer. The drives can, of course, be used with any suitable computer, but they come complete with a

FREE UTILITY DISC INCLUDING GAME

for the $B B C$.

Each unit offers astounding
TWO MEGABYTES CAPACITY (unformatted) which represents 327 KBytes per side (formatted).

ALL ON BOARD

The PCB has come to dominate contemporary electronics. If you still find it difficult to design your own, Barry Porter shows you how to cope with tracks and pads and all the paraphernalia. We might say, 'New readers, start here ...'

In basicterms, a printed circuit board is nothing more than a support for the component of a circuit, which happens to have built-in interconnections that enable the circuit to operate. In reality, it is something more than that. A well-designed board can have considerable aesthetic appeal, although most examples are guaranteed to send the average crow rushing out for a copy of 'The Nest Builders' Cookbook'. It also assists in keeping the blood pressure of anyone called upon to carry out repairs within tolerable limits, and provides additional boozing time by accelerating the construction of your latest masterpiece.

The only difference between bad and good circuit board layouts is care. There is no excuse for boards in manufactured products being second rate, but there is even less reason for one-offs produced by home constructors to resemble a windy nightata spaghetti factory. Time is money to the manufacturer, but the DIY enthusiast should not suffer from this constraint. Providing you were not short changed at birth in the patience department, and with a gentle nudge in the right direction from this Pulitzer prize-worthy epistle, you will soon be producing layouts that will be the envy of your sewing circle, and you could soon find yourself giving demonstrations to your local WI and Rose Pruning Society.

The Birth Of The Board

The object of the exercise is to guide you through the design and preparation of the necessary artwork to send
to a PCB manufacturer. Although it is possible to make your own boards, the expenditure of time and the amount of mess generated are unlikely to be justified by the end result, so unless youare prepared to invest a considerable amount of the folding stuff in specialised equipment, it is best to leave the difficult bit to a professional.

Circuit boards usually start their careers as circuit diagrams, and the stages necessary to translate a familiar schematic into a finished board begin as a number of very rough layouts, followed by one or more attempts to transfer these to graph paper at a defined scale. The successful graph paper layout is used as a master from which the various artwork layouts are generated. These consist of plastic drafting film masters for the copper tracks, a solder resist mask and the component identification screen. If the board is to be double sided, a separate artwork is normally provided for each side. The artwork will normally be produced at $2: 1$ scale with linear dimensions which are twice those of the final board - although for very large boards, it may be necessary to work' same size', and for very small layouts, a $4: 1$ scale is sometimes preferable.

To illustrate the various steps in the production of a set of artworks, we will start with a circuit for a high quality tape record amplifier (Fig. 1), and attempt to design a layout which fits a circuit board with the dimensions shown in Fig. 2. Any layout is made easier if you are free to choose the overall board size and the points at

Fig. 1 Circuit used for layout exercise.
which connections to the outside world are made. The rnost difficult tasks involve fixed board dimensions, such as the design of a replacement board for an existing piece of equipment. Life is further complicated if the external connections are made via an edge connector with pre-determined locations. Just to ensure that life retains some enjoyment, this is the situation that will be tackled during the course of this article.

Fig. 2 Circuit board dimensions and edge connections.
Before getting too involved with the design of a specific board, afew basic rules may not go amiss. Circuit diagrams are usually drawn in a way that can almost be taken as a worldwide standard. Signal normally progresses from an input at the left hand side, through various transistor or op-amp stages, to emerge at the right hand side. It is usually good practice to lay out a circuit board so that it bears a close resemblance to the original schematic.

Inexperienced PCB designers usually fall into one of two main traps - running low level inputs and high level outputs too close together, so that a circuit that worked in breadboard form becomes unstable, and getting the earthing arrangements in a cobble, which can result in so many nasty effects that there is a good chance that if alien beings ever pay this world a visit their first words will be 'Hum loop'. (My wife, who assures me that our $21 / 2$-year-old is an alien, has just pointed out that his opening statement sounded more like'Bo Derek').

Where possible, input and output signal paths should be well separated, particularly when there is more than about 15 dB difference in their levels. Providing the operating impedances are low, it is normally quite safe to allow the inputs and outputs of low level circuitry to be within $0.5^{\prime \prime}$ of each other. If an area of track at earth potential can be placed between them, it is quite possible to reduce the spacing to $0.25^{\prime \prime}$. Power amplifiers are a different ball game, and a minimum input to output spacing of $3.0^{\prime \prime}$ should beallowed, but 6.0" or even more is to be preferred.

Bad earthing practice can cause problems beyond your wildest imagination, yet perfectly good earthing can be achieved very easily by ensuring that the input to output earth path of any circuit simply follows the signal through the various stages. The impedance of all earth connections must be kept as low as possible, which means using large areas of copper track wherever space allows.

One very popular way of introducing instability is to place a continuous strip of copper track at earth potential around the outer edge of a board. This is often the most convenient place for the earth track to be positioned, but it is essential that the circle is broken at one point so that as far as possible, the earth path follows that of the signal.

In designing a printed circuit board, the aim should be to arrive at a layout where the components are neatly positioned without compromising the performance of the circuit. As far as possible, the components should be
placed in rows with correct spacing between the mounting holes. Before laying out any board, it is essential to have some examples of the components which will be used or obtain accurate dimensions from a data sheet. The appearance of many a board has been ruined because of an incorrect guess at the length of a capacitor, so pay special attention to your component sizes, as plenty of eager gremlins lie in wait for the unwary.

Some complicated circuits can only be laid out by using double sided boards, but the additional cost of these - about 25% for a small quantity - is usually a sufficient incentive to extract the necessary effort to achieve a single sided layout. Whenever possible, the use of wire links should be avoided, more as a matter of designers' pride than because of their effect on circuit operation. (With Herculean effort, author fights off desire to make rude comments about people who listen to bits of wire, and can tell the direction of the molecular structure at ten paces on a foggy night in a force 9 gale.)

Getting Down To It

Instead of rambling on randomly, let's get on with the job in hand - a layout of the circuit in Fig. 1. Before starting any design work, it is wise to make sure that certain items are at hand:

1. One each of the various circuit components, or accurate details of their dimensions.
2. Lots of scrap paper for the initial rough design. (Goodbye to another Norwegian Pine.)
3. Supply of graph paper, slightly larger than the finished artwork, with scale markings at $1.00^{\prime \prime}$ and $0.1^{\prime \prime}$. (None of yer metric stuff here - components invariably fit a $0.1^{\prime \prime}$ grid.)
4. Matt surfaced plastic drafting film, same size as graph paper.
5. Drawing instruments - pencils, pens, stencils, compasses, rule scaled in tenths of an inch.
6. Talcum power (fragrance unimportant):
7. Supply of circuit layout materials (details later).
8. Roll of red transparent adhesive tape.
9. Scalpel with selection of blades.

10 Pair of good quality $6^{\prime \prime}$ engineers tweezers with undamaged points.
Having collected together these 'tools of the trade', the time has arrived to leave the world for a few hours. Find somewhere where your concentration will not be disturbed, even if you have to send the family to Disneyland and gag the budgie.

> It is a rewarding experience to turn out a good, well-planned circuit board ...

The first step is to produce a very rough sketch of where the different parts of the circuit will fit onto the cir-cuit-board. If there are no constraints brought about by board dimensions or edge connectors, it is quite easy to arrange the circuit parts in a reasonably compact and symmetrical manner. Working to pre-determined dimensions, it is necessary to decide where various circuit elements should be placed to fit within the confines of the board, and if the external connections have been specified, these should be taken into consideration.

Figure 3 shows the first attempt to fit the Fig. 1 circuit on to the designated board. At this stage, the main consideration has been given to establishing a route for the signal input and output tracks, the placing of the three integrated circuits and connections to the multi-turn
potentiometers.

At first sight, getting a direct connection from the edge connector to the wiper of RV2 is likely to be a problem, but one that can be noted and dealt with as the design progresses.

Fig. 3 First rough layout.
The next task is to produce some rough layouts of separate parts of the circuit, this time putting in all components and the interconnecting tracks. At this point, it should be mentioned that most PCB designers produce their layouts and art work as it is viewed from the component side of the board. Some people prefer to work as though they are looking at the copper side, but this method can lead to problems, the most popular being ICs with reversed connections- easily idenitifed by the emission of grey smoke if not discovered before the board is built and tested. Throughout this article it will be assumed that all views are from the component side.
Fig. 4 Component spacing and layout

As the next layout rough is prepared, account should be taken of the component sizes and spacing, especially with regard to resistors and capacitors. In order that the final result is as neat as possible, one aim should be to keep the ICs and their associated components in straight rows, and not staggered as shown in Fig. 4b. The spacing between normal 0.25 or 0.5 W resistors is likely to be $0.15^{\prime \prime}$, and this does not leave sufficient space between the solder pads for the passage of a piece of track without the track becoming too narrow for comfort or the pads requiring modification with a scalpel.

Fig. 5 . First attempt at input stage layout.

Without getting too involved in pad and track sizes at this stage, while doing the rough layouts, keep in mind that tracks passing between $0.15^{\prime \prime}$ spaced pads may cause problems at a later stage, so avoid the practice if possible without damaging the appearance of the layout.

The first rough layout of the record amplifier board is shown in Fig. 5. Although this has several areas which need correcting - for example the input and 0V tracks will have to be reversed, and the output of RV2 is in danger of being trapped by the track going to R11-it is at least a starting point, and as such it forms a foundation of sorts on which to build.

Fig 6. First attempt at output stage layout.
The remaining circuitry is shown in Fig. 6. Again, it contains a few problem areas, such as the non-appearance of the 'Record Cal' track and the rather tortuous path from the bottom of C9 to pin 2 of IC3, but these can be sorted out at the next stage.

Slow On The Draw

Having produced a satisfactory rough layout with sufficient accuracy to establish that it is not necessary to use a double sided board, and that wire links will probably not be needed, it is possible to attempt a correctly scaled layout on graph paper.

> In designing a printed circuit board, the aim should be to arrive at a layout where the components are neatly positioned without compromising the performance of the circuit ...

From now on, everything must be related to the scale of the artwork - in our case, 2:1 - so care must be taken to double every dimension. Experience has shown that this is not always as easy as it sounds. It is quite easy to draw small components with correct dimensions, simply by counting squares on the graph paper, but with larger items such as electrolytic capacitors, it is very easy to make a mistake, and the distance between mounting holes should always be checked by measuring them with a rule calibrated in tenths of an inch. The time spent doing this should not be considered as wasted, especially if you have ever suffered the sinking feeling when you realize that a component will not fit a board because of your own lack of care.

If your board dimensions are not fixed, you should be able to estimate an approximate size, which will give you an idea of the size of graph paper you need. With an established board size, an outline of the board should be drawn - in ink - to the correct scale and any fixed components, mounting holes or edge connector details added using a fine felt tipped pen or similar.

In our example, the only restraint apart from the overall board size and edge connector positions is the placing of the three pre-set potentiometers which are required to line up with similar controls on other boards in the recorder. The outlines and mounting holes of these are therefore drawn in ink, and then using a soft pencil, an attempt is made to transfer the rough layouts of Figs. 5 and 6 on to the double sized graph paper grid.

Although this may be done freehand, keep everything as neat as possible. This is the best way to ensure accuracy. It's worth repeating that, unless absolutely necessary, all components should be in neat rows and not scattered haphazardly round the board. If your circuit uses ICs, these should lie along the same line, and should be placed in the same direction - which normally happens automatically if the power rails are run between the rows of IC mounting pads, and don't approach each device from a different direction. The sign of ultimate neatness is when groups of polarized components, such as diodes or electrolytic capacitors, all have their positive ends facing the same direction. Figure 7 shows some examples of how electrolytics and diode bridges maybe laid out, (d) and (f) illustrating how they should be positioned for the best appearance.

If you are having a good day, you will achieve a satis-

Fig. 7 Examples of diode bridge and electrolytic capacitor layout.
factory layout before your local graph paper factory has to start working overtime. Do not be surprised if it takes three or four attempts before you are happy. It can often be beneficial to get an electronically inclined colleague to give your layout the once-over, as this can often result in the discovery of glaring mistakes which would prove expensive if not corrected.
To be continued.
ETI

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.
If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code. Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

 ASA Ltd, Dept2 Brook House, Torrington Place, London WC1E 7HN
THE PRESENT AND FUTURE MACHINE

 A short story for Christmas by John Linsley Hood

 A short story for Christmas by John Linsley Hood}

In my experience, inventors all have one thing in common - they all think their latest idea is going to make them rich and famous, and that a life basking on the sands of the Bahamas or wherever is just round the corner.

Having said that, they come in two very different kinds. The first just have a bright idea in principle, and they would like someone with the right kind of technical knowledge to put their invention into practical shape, and make it work. This, they feel sure, willbe quite a simple job. The other kind, and they are vastly preferable, get the idea... and then become immensely secretive while they put it into practical form.

My old friend Fred, of the electronics components shop, happily came into the latter category. I call him'my old friend', because l've known him for years, well, practically as long as I have been interested in electronics, and r elets me come behind the counter of his shop, and up to his little workshop in the attic. Also, Peggy, his kindly and long-suffering wife, has brought us up innumerable cups of coffee while we have been busy tinkering with electronics - or simply setting the world to rights.
However, I also reflect that, in all the years l've known him, he's never knowingly let me have anything in the way of electronic gear at less than the full retail price! Still, I suppose that's just because he's a very good businessman: certainly his little shop is a treasure trove of bits and pieces of electronic kit, including quite a lot of fairly scarce components.

At the time I am thinking about, which was a very wet and dismal day in early November a few years ago, I had called at his shop on my way home from work, and Peggy had sent me up to his attic with the comment that he had hardly stirred from there all day and was busy on some project or other. The task on which he was engaged turned out to be the conversion of a rather grotty old 14 inch TV into an oscilloscope, and he' d got as faras getting a single line timebase scan across the centre of the screen, with a whopping great kink in the middle of the trace.
'You've got a problem there,' I observed, 'looks as though you are getting some breakthrough from your timebase into your ' Y ' axis.' At this Fred turned round to me with a seraphic smile. 'Your problem,' he remarked, 'is that you've got no imagination. What you see here is the beginning of a great technical discovery - the sort of thing which great brains have laboured to uncover for generations, and l've been the one to do it!'
'That loop in the trace is due to electrons travelling backwards in time. Time is linear across the screen, so any kink in the trace across the screen must be time going backwards.' He turned back to his brainchild with a look of triumph. 'Don't you see what that means?'
'Well, yes,' I said, 'I would agree with you if that was what was really happening, but l'd be prepared to bet that your scanning waveform has also got a kink in it.

After all, trying to get a linear timebase out of inductive deflection coils is a pretty tricky task.'
'I did think of that' admitted Fred,' but I checked on my other'scope' and he indicated his old standby, a 1940's portable job with a screen fully one inch across. 'As you can see, the waveform is perfectly OK, without a trace of kinkiness.'
'Whereabouts are you looking', I asked, thinking that a good magnifying glass would be a useful accessory. 'Is that the waveform at your timebase generator or actually on the deflection coils - because these probably interact.' N No,' said Fred,' 1 've checked, and the timebase waveform is quite clean. That's a real negative time effect.'

'Don't you see the implications of this? When l've modified the circuit a bit, to slow everything down, I can get from a millisecond, to a second, to a minute, and maybe to hours. Then all sorts of things will be possible, from TV cameras at airports or railway stations to record accidents before they actually happen so that they can be prevented, to letting me, before I tell anyone else about it, make a few millions on the pools or the stock exchange. Meanwhile, I'm afraid that I shall have to keep the details of my actual circuit pretty confidential. After all, we wouldn't want details to get out before I'd finished the design, would we.' And with that, he took mebythe elbow, and gently, but firmly, piloted me out of the room.

Downstairs, over a cup of coffee, 1 explained Fred's latest scheme to Peggy, and apologised for my unsympathetic attitude to Fred's discoveries. 'I'm afraid,' I added, 'that there are much more plausible explanations than time travel for the knots he has got in his timebase.'
'You know, he's made things much more difficult for himself by starting with an oid TV with a magnetic deflection system, simplybecause he happened to have one in his junk pile. In any case, if he wants a better'scope than that old museum piece of his, why doesn't he buy himself one. It isn't as though he can't afford it. Especially since I'm sure his accountant would allow it as a legitimate business expense.'

Peggy agreed, but gave me a thoughful look 'Never mind,' she said,' it's keeping him busy, and he's happier than he's been for months.'
I called at the shop, from time to time over the nextfew weeks, so that Peggy could give me periodic progress reports on the development of Fred's invention. 'He's got his time advance up to several seconds now' she observed, a week or two later. 'He's organised it so that photocells stuck on the TV screen trigger relays as the spot passes by them, and he's got them connected so that they can switch on other things, one before the other.
'I don't really understand the technical bits, but I think that what he is now trying to do is to connect up another TV, with the same kind of electronics, so that the first will switch on the timebase of the other before it has itself started, and that then switches on the first, and so on, building up quite a big time advance.'
'Then', she continued, 'you close a contact to get the first one going, and you choose whichever of the relays you want, depending on how farinto the future you want to go. Fred says that if you had enough TVs you could get as big a jump into the future as you wanted.'
'Of course,' she said;' he's onlygot two TVs to play with at the moment - l've refused to let him have our colour telly in the living room - and so, until he gets things organised, he can't make his time jump get very far. Do you think we could help him a bit?'
'I'm afraid that my problem here,' I commented, 'is that I think that the whole scheme is just a load of eyewash, which means that ! wouldn't be very enthusiastic as a collaborator. Besides which,' I added, 'I don't really think he'd let me in his workshop at the moment'.
'Neither do I,' grinned Peggy, 'that wasn't what was in my mind. I don't honestly have any more faith in Fred's latest invention than you do, after all, we've been this way before, but it keeps him happy, and I'd like it to last till Christmas';
'What he was telling me, last night, was that he was going to fix his gadget in series with the shop door bell, so that he can see on the closed circuit TV system who is going to come into the shop before they actually do. Then if he can get that working properly, he'll try getting a bit more ambitious.'
'Well, yes, that seems a fair enough test, so far, but where do I come in?' I asked. Peggy gave me a conspiratorial grin, and continued. 'At the moment, as you know, we don't actually have a contact on the door. Fred got fed up with the bell ringing continually if someone left the door ajar, and so what we have is a pressure switch under the door mat, which works when someone stands on it. What I'm wondering is whether we couldn't move it forward a bit, or perhaps have some kind of photocell system which I could move along, forwards or backwards, depending on whether Fred thinks he is rnaking progress.'
I looked at Peggy with new eyes. This was a degree of skullduggery of which I had never previously thought her capable. 'All right', I said, 'I'll help, but what's the long term intention?' - at which Peggy explained.

The necessary electronics for a reflex photocell system, which was not too conspicuous; and which Peggy could slide along a side window, which looked out on the passage leading to the shop door, were not too difficult to organise, and, on occasions over the following week or so, you might have noted Peggy and me in the kitchen poring over catalogues and specification sheets.

Fora while, Peggy's plan to keep Fred happy, even if his progress was more illusory than actual, worked quite well, but about a week before Christmas she reported that he was beginning to have doubts about his invention, and to feel that, perhaps, he might be on a wild goose chase. Still, she thought he might not give up quite yet, since he had, last night, thought of yet another scheme for organising his TV timebases which might just do the trick.
On Christmas Eve, which was a Saturday, Fred was feeling particularlyoptimistic, and happily accepted the suggestion that he should fix his closed circuit TV camera so that it would look right down the street. A midmorning phone call alerted Peggy, and I, as look-out, signalled to Peggy when to ring the door bell.'It works, it really works,' shouted Fred, as he dashed down the stairs - just in time to see the delivery man make his prearranged, second walk up the street, and hand Fred a fairly heavy parcel.
'Happy Christmas' said Peggy, and pointed to the photocell system in the window, and to her fellow conspirators. 'I'm afraid that they had to give a bit of help to your'future machine' but I think that the 'present' looks OK.' -and watched as Fred, with a mixture of astonishment and delight, unwrapped a shiny, new, twin beam, DC to $20 \mathrm{MHz}, 1 \mathrm{mV}$ sensitivity, storage oscilloscope.
'Now you'll really be able to sort out the kinks in your timebase waveforms that is if you still want to continue in the DIY oscilloscope trade.' said Peggy, as Fred poked buttons and twiddled knobs with a grin like a Cheshire Cat.
You know there are times when I wonder whether I have misjudged the old codger. As I said, all of this happened some years ago, and had largely passed out of my mind.
What reminded me was the occasion, just a few days ago, when I'd called in his shop to pick up some transistors he'd ordered for me, and Fred said that since it was coming up to Christmas, if I could find anyone interested in buying a 14 inch Black and White telly, partially converted for use as an oscilloscope, I could have another one, as a present.

MAKE YOUR INTERESTS PAY!

More than 8 million students throughout the world have found it worth their whille! An ICS home-study course canheip you get a better job, make more monev and have more fun out of life! ICS has over 90 vears experfence in home-study courses and is the largest
correspondence school in the worid. you leam at your own pace when and where you want under the guidance of expert 'persona!' tutors. Find out how we can help you Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

THE FAST ONE

It could be a GaAs, man, but we're not likely to see much gallium arsenide around outside of LEDs for quite a while yet. Stuart Smith investigates the wonder semiconductor.

To appreciate how Gallium Arsenide (GaAs) devices work, and why they are superior in many respects to silicon-based devices, it is necessary to under stand some of the fundamental physical properties of semiconductors. At the risk of covering already wellknownterritory, the next few sections will cover some of this ground.

Energy Bonds

It's a fact of life that electrons in an atom can have only certain energies. When the atoms are bonded together to make a crystal, the electrons can have energies within certain allowed bands, which may overlap. The 'band structure' (Fig.1) of solids determines whether they are conductors, semiconductors or insulators.

Electrons with energies within the valence band are attached to particular atoms in the crystal. They cannot move through the crystal and contribute to conduction. Electrons in the conduction band have sufficient energy to escape the attraction of the nucleus and can move through the crystal under the influence of an applied electric field.

Band Gap

The basic difference between insulators, semiconductors and conductors is the size of the energy gap between the valence and conduction bands, because this governs how easy it is for an electron to enter the conduction band. In metals the bands overlap-there are always conduction band electrons available, so metals are good conductors.

In insulators the gap is so wide (over 3 or 4 eV) that

virtually no electrons enter the conduction band at reasonable temperatures.

In a semiconductor the band gap is about 1 eV , which leads to a resistivity midway between insulator and conductor. At absolute zero temperature $\left(-273^{\circ} \mathrm{C}\right)$ the valence band is completely filled and the conduction band empty. At higher temperatures some electrons gain sufficient energy from the thermal vibrations of the crystal to leave the valence band and jump into the conduction band. The number of conduction band electrons
is exponentially related to temperature
There are several elements and alloys with band gaps in the 1 eV region but for various reasons not all of them are suitable for electronic devices. Table 1 shows the important electronic properties of Germanium (Ge), Silicon (Si) and GaAs. Some of these properties are discussed below.

Excitation And Recombination

It's possible to raise the energy of an electron in a crystal by several methods: heatingit, shining a light on it or applying an electric field to it. When an electron is excited from valence to conduction band it leaves behind a vacant energy level (or state) called a hole. The hole behaves like a positive charge.

Electrons do not stayin the conduction band for ever: they naturally'fall back' into the valence band-but they must fall into a hole. This process is called recombination, and it releases energy, the energy the electron originally gained to enter the conduction band. The energy maybe released as heat, light or both, depending on the type of material.

Doping

To make useful electronic devices, it's usually necessary to control the conductivity of the materials by altering the number of holes and electrons in the material which are available for conduction. This can be done by adding small quantities of other materials called 'dopants' to the pure (intrinsic) semiconductor. If the dopantadds electrons, it is adonor and the resulting semiconductor is called n-type. If it adds holes it is an acceptor and the semiconductor is p-type.

Temperature

The relatively high bandgap of GaAs means that at normal temperatures $\left(-20^{\circ} \mathrm{C}\right.$ to $100^{\circ} \mathrm{C}$ or so) the amount of free carriers (electrons or holes) is minimal compared with those introduced by doping. This is still true at high temperatures. Some GaAs devices are usable at up to $400^{\circ} \mathrm{C}$ and most will work at temperatures between $-200^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$. The range is much wider than for silicon devices.

Mobility

When subjected to an electric field, electrons accelerate towards the most positive point. In a crystal this does not continue forever, as the electrons eventually collide with the crystal atoms. Collisons may even cause the electrons to reverse direction. Overall the electrons can be said to reach a mean or drift velocity which is constant and proportional to the applied field. The ratio of electron speed to applied field is called the electron mobility, and it is much higher in GaAs than in silicon. Electron mobility governs the switching speed of transistors and GaAs devices are therefore much faster than their silicon counterparts. There is a limit to the drift
velocity attained as the applied field is increased, but this limit is higher in GaAs than in silicon.

Photoconduction And Photoemission

A quantum of light energy (a photon) can, if it has the right frequency, transfer all it's energy to an electron and cause it to jump into the conduction band. The relationship between photon frequency and energy is:

$E=h v$, where

E is energy in Joules ($)$) $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$,
h is Planck's constant, $6.63 \times 10^{-34} \mathrm{~J}$,
v is light frequency in Hertz.
Below a threshold frequency, $\mathrm{v}_{\mathrm{th}}=\mathrm{E}_{\text {gap }} / \mathrm{h}$, the electrons cannot gain sufficient energy to cross the band gap and will not be excited. At a frequency greater than $\mathrm{v}_{\text {th }}$ the light will cause excitation and generate electronhole pairs, so the conductivity of the material will increase with light level. Cadmium Sulphide (CdS) has a band gap of 2.42 eV which gives it a response to light similar to that of the human eye. Other semiconductors respond well to infrared or lower frequency electromagnetic radiation.

Light Emitting Diodes

As we have seen, electrons eventually recombine with holes, giving up their energy as heator light. Recombination in Si produces mostly heat. In GaAs, recombination gives off light in the infrared. By adding Phosphorus (P) to the GaAs the band gap is increased and the emission moves towards the blue end of the spectrum. Gap LED's emit green light.

An LED is a junction between p and n type GaAs (or CaAsP, or GaP). In the bulk of the diode, away from the junction, there are a lot of free carriers (Fig.2a). Application of a forward bias voltage (Fig.2b) makes it easy for electrons to leave the n region, cross the junction and enter the p region. Here there are many holes, which recombine with the electrons. The holes are continually replaced by fresh ones at the diode anode so the current

Fig. 2 PN junction with no bias applied (a) and with forward bias (b).
flow, recombination and light emission continue as long as the forward bias is applied.

Semiconductor Lasers

The semiconductor laser is a device of great importance in modern communications. Fiber-optic data transmission using a semiconductor laser as the light source allows the transfer of huge quantities of information over large distances at great speed.

To use an optical fiber at high speed over an appreci-

Gigabit logic - a dual precision D-Latch operating at 1 GHz (Pronto Electronic Systems Ltd. Ilford).
able distance (say several kilometers), a number of conditions must be satisfied:

1. The laser light must be capable of being modulated at a high rate;
2. The light must be of a single frequency to avoid spreading of pulse edges;
3. The light must be very intense to allow large spacings between repeaters (which pick up weak signals, amplify and retransmit them);
4. The light source must be very efficient, for low cost and power consumption.
Semiconductor lasers fulfil all these requirements.
The basic principle of the laser is quite simple. We have already seen that electron-hole recombination releases energy. In most cases recombination occurs randomly and spontaneously. Any photons given off in the process are in random phase with one another. The light so produced is said to be incoherent.

The presence of photons of the wavelength corresponding to the band gap energy can cause recombination, accompanied byemission of light. This'stimulated emission' is in phase with the photon which caused the emission. The light amplitudes add in phase and the resulting light is very intense and coherent (Fig. 3).

We also know that photons can be absorbed by the material, causing the electrons within it to be excited into the conduction band. In order for there to be a continuous output of coherent light, two conditions must prevail.

1. There must be a high density of photons in the material, so that more stimulated than random emission occurs;
2. There has to be an electron 'population inversion' - a greater number of electrons in a high-energy state than a low-energy state. This ensures that more emission than absorption takes place.

Fig. 3 Spontaneous and stimulated emission of radiation.
The first requirement is met by creating an optical resonant cavity - simply a bar of material with mirrored faces so that the light intensity builds up within the cavity by repeated reflections.

Population inversion occurs in the semiconductor junction's depletion layer. It is called the depletion layer because it usually lacks carriers (holes or electrons). At high currents, however, it is far from depleted. There is a continual stream of high-energy carriers being injected into the junction and swept away. Over a short distance in the junction there can be more conduction than valence band electrons.

The basic structure of a GaAs/GaAlAs injection diode laseris shown in Fig. 4. The laser action takes place at the junction between the p^{\prime} GaAs and the n-GaAlAs (gallium aluminium arsenide). The regions immediately adjacent to these perform two functions:

1. They confine the light to a narrow region because they have different refractive indices to the junction materials;
2. They keep the volume within which population inversion takes place small, so reducing the threshold
current at which laser action begins. The effect occurs because the band structure of the materials forces the carriers to recombine in the narrow region near the junction.

Fig. 4 Simplified diagram of GaAs/GaAlAs diode laser.
For optical fiber communications the GaAs/GaAlAs laser is being replaced by a GalnAsp (gallium-indium-arsenic-phosphide) diode on an InP substrate. Byadjusting the relative quantities of Ga, In, As and P in the diode it is possible to adjust the band gap so that the emitted light has the wavelength at which the fiber is most transparent. By the same means the lattice constant (the distance by which atoms are separated) can be adjusted independently of the band gap. This allows the growth of diodes directly matched to the InP substrate.

The present aim is for systems using 1.5 to $1.65 \mu \mathrm{~m}$ radiation modulated at 2 Gigabits $/ \mathrm{sec}$. With the latest optical fibers signals may be sent up to 100 km without repeaters.

The Gunn Diode

The Gunn diode is a two-terminal device used in microwave oscillator circuits. It has a variety of different modes of operation, but its basic principles can be understood with reference to resonant circuits.

A common LC circuit, when stimulated by step input voltage, will oscillate at a frequency $f=1 /(2 \pi \sqrt{ }$ LC.) The oscillations will die away exponentially, however, because of resistive losses (damping) in the circuit, (Fig. 5a).

Fig. 5 LCoscillator with damping (a) and with negative resistance applied (b).

In mostoscillators, these resistive losses are compensated forby feeding back an amplified version of the output to the input in such a way as to sustain the oscillation. Another approach is to use a device which exhibits negative resistance over part of its I-V charactersitic (Fig. 5b).

A real negative resistance would be very valuable! In practice, we find some devices for which a small increase in applied voltage causes a small decrease in current flow (Fig. 6). Strictly speaking, they have negative differential resistance and a suitably doped piece of GaAs exhibits this property due to its band structure.

Electrons in GaAs can be excited into the conduction band by an applied field. Up to a certain threshold field (about $3 \mathrm{kV} / \mathrm{cm}$) the electron drift velocity increases with field strength, since the mobility is constant. Above the threshold field the electrons gain sufficient energy to reach part of the conduction band where their mobility is much smaller because of the increased probability of collisions. The conductivity of the GaAs drops. Small increases in field cause more electrons to enter the lowmobility region and the current falls - this is the negativeresistance region. This property is utilised in Gunn diodes and makes the devices useful for circuits of the form shown in Fig. 5.

The Gunn diode (named after J.B. Gunn who discovered the principle of producing microwaves by the application of a steady voltage in 1963) is formed from a single section of n-type GaAs. The GaAs is unevenly doped so that, with the application of a suitable voltage, both high and low mobility electrons are liberated. The crystal becomes partitioned into areas of differentintensity electric field. In the negative-resistance region of operation, the existence of a highest-intensity area, in which electron density is greatest, will cause an increase in current flowing into the area and a decrease flowing out of it. The domain of high-intensity charge builds-up and is eventually attracted to the anode end of the GaAs crystal. It travels through the crystal, a packet of charge not altogether unlike a spark bridging two electrodes in the air, producing a spike of current at the anode. The process repeats itself, generating a microwave output which has reached 65 mw at 2 GHz continuous and up to 200w pulsed.

Transistors And ICs

Although GaAs transistors for microwave applications have been available for some time, the development and production of integrated circuits is still in its

Surface of microwave GaAs chip (GEC Hirst Research Centre).

Fig. 6 Negative resistance characteristic of doped GaAs.
infancy-commercial ICs have onlybeen on the market since early 1984.

GaAs integrated circuits are difficult to make: the raw material cost is high, defect-free wafers (circular slices of single-crystal semiconductor) are hard to obtain and the processing of them is difficult (Fig. 7). To take full advantage of the speed of GaAs, the devices need to be very small, stretching the limits of current technology. In addition, the wafers are brittle and have to be handled more carefully than silicon.

On the other hand, GaAs devices promise higher speed than silicon at lower power levels, which should allowhigher levels of integration before heat dissipation becomes a problem. As yet only MSI devices have been produced in commercial quantities.

Most of the work currently being done on GaAs integrated circuits concentrates on ultra-high speed digital circuitry. Results so far indicate that GaAs devices may rival superconductor Josephson junction devices for speed - and, more importantly, they are available now and developing quickly. Current commercially available logic circuits feature gate delays of around 300ps and maximum counter clock rates of around 2 to 3 GHz .

Fig. 7 Some defects in crystal structure capable of causing device deterioration.

It is useful to look at what makes an ideal transistor switch for digital integrated circuits. It should be small, so that large circuits can be fabricated in a small space. This reduces the likelihood of encountering a wafer defect and so increases the yield. It should consume very little power, so that heat dissipation at high circuit densities does not become a problem. It should require very little voltage change between the on and off condition. This reduces the switching time as less charge has to be put on to or removed from internal capacitances during switching. Finally, its control input should have low capacitance, again to reduce switching time.

Fig. 8 Cross-section of D-MESFET (not to scale).
Most current GaAs integrated circuits use depletionmode metal-semiconductor field effect transistors (D MESFETS), as these are the easiest devices to produce (Fig. 8). Unfortunately a negative gate voltage is required to turn these devices off, while the outputis positive (Fig. 9). They require two power supplies (plus earth), and level shifting circuitry between circuits (Figs. 11, 12 and 13).

Enhancement-mode FETS (E-MESFETs) have been produced, but they are not yet at the mass production stage. Their construction is similar to that of the DMESFET but the channel is very shallow and lightly doped so that the built-in potential of the metalsemiconductor junction keeps the channel pinched off with no external gate bias. Thus the E-MESFET is normally off. It requires only about 0.1 V gate potential to turn on.

This is a definiteadvantage for high speed and low power circuits, but requires verytight control over processing in order to keep the threshold voltages within a very narrow range, or else the devices become overly susceptible to noise. E -MESFETs are also difficult to fabricate as the channel is very lightly doped and surface defects can easily pinch off the channel - various structures and geometrics are being tried to avoid this.

Fig. 10 Cross section of High Electron Mobility Transistor (not to scale).
Other devices under development include the highelectron mobility transistor (HEMT) (Fig. 10) and the heterojunction bipolar transistor (HJBT). Up till now 1 have only mentioned field effect (unipolar) transistors. An NPN sandwich made entirely from GaAs does not work well as a transistor, partly because holes, which are the dominant carriers between base contact and active base region, travel rather slowly in GaAs. A much better transistor can be made with an n-GaAas emitter and a pGaAs base. Work on the HJBT is not as faradvanced as on the various FETs, but it could be the best device for very high speed VLSII. Single-transistor switching speeds of 1 ps and logic swings of 250 mV have been predicted.

The current dominant technology is the D-MESFET. Several logic structures are in use, just as silicon bipolar circuits are available in TIL,LSTTL, 1^{2} L and ECL Buffered FET Logic, Schottky-Diode FET'Logic and CapacitorDiode FET logic gates are illustrated in Figs. 11.12 and 13.

Even after a GaAs circuit has been produced, the problems are not yet over. To preserve reasonable pulseshapes at, say, 1 GHz , circuits have to deal with frequency

Fig. 11 Buffered FET logic (BFL) NOR gate.

FEATURE: Gallium Arsenide

components up to 3 GHz . The digital designer will have to utilise microwave design techniques such as impedance matching of chips to interconnections to avoid pulse reflections. Supply decoupling becomes vastly important, and the capacitors used have to behave properly at GHz frequencies. Testing is likely to become another large (and expensive) headache.

Fig. 12 Schottky-Diode FET logic (SDFL) NOR gate.

The Market

The major semiconductor manufacturers have, on the whole, stood back and waited to see where GaAs is going - after all, the market for high speed bipolar and MOS devices is not going to go away just yet. Also, there is a world shortage of engineers qualified to develop GaAs devices. This is probably a good reason for not spreading them too thin on the ground.

In this country there are only a few suppliers of commercial GaAs integrated circuits. GEC's Hirst Research Centre has produced several microwave amplifier chips with DC-12GHz response, and they are developing higher frequency and higher power circuits.

The two major UK suppliers of GaAs logic circuits are

Harris Semiconductors and Gigabit Logic. Both have a range of small scale integrated circuits (NOR gates, Dtypes, dividers and, for example, shift registers), which work at around 1 to 4GHz clock rates. Harris also market a range of discrete GaAs FETs for use at up to about 18 GHz . They have also released preliminary data on a 170-gate array. Both companies sell an evaluation kit for their ICs.

The Future

Future markets for GaAs integrated circuit include the Direct Broadcast bySatellite system, very high speed computers, optical communication and phased array radar. As for the future of the technology itself, researchers at Glasgow University have produced tiny

Fig. 13 Capacitor Diode FET logic (CDFL) NOR gate.
MESFETs with only 75 nm wide gates, while Sheffield University has demonstrated an all-optical switch in GaAs/GaAlAs which holds promise for all-optical logic (which may be very fast, indeed). Inevitably GaAs development will be largely determined by the military value attached to high-speed temperature and radiation resilient devices. The rest of us will have to wait to savour the benefits of this remarkable material.

THE ETI ACTIVATOR

Ultra-fi buffs should be prepared to have their illusions if not their best crystal glass-ware shattered as the second in our series of sound-processing units excites the airwaves and the eardrums, courtesy of Allan Bradford of Time Machine Sound Engineering.

Aural 'Exciters' have been around for some ten years. They have been used almost universally by up-market recording studios to improve the perceived clarity of recordings, giving an extra edge to their products. Since the idea of aural enhancement was first promoted by Aphex, much mystique has grown to shroud the technique - not surprisingly, because the promoters knew they were on to a good thing. In fact, this technique, which 'miraculously' cleans up dodgy recordings and adds sparkle to good ones, is astonishingly simple.

The Sound In Your Head

Psychoacoustics is the study of the perception of sound. The brain seems to rely on high order harmonics for much of our perception of detail in complex

Fig. 1 Harmonic generation.
sound structures. These harmonics, being of low amplitude, are the first to be lost in recording due to noise and poor high frequency response.

If there was a way of restoring these low level, high order harmonics, then much of the original clarity and detail of the recorded sounds would be recaptured. Improbable? Right. So let's cheat, and - surprise, surprise - we have the technology!

Harmonic Generation

Imagine that the sine wave of Fig. 1a is mixed with a small amount of third order harmonic (Fig. 1b). The result is shown in Fig. 1 c . Fourier symmetry tells us (as we physicists say) that we could bend a pure sine wave using some non-linear network to resemble the waveform of Fig. 1c, in effect creating a third order harmonic component added to the fundamental. There is no theoretical problem with complex sounds, since any waveform can in principle be reduced by Fourier analysis to component sine waves.

Now, we can bend a sine wave quite easily. Simply clipping it as in Fig. 1d will generate harmonics the heavier the clipping, the more harmonics are produced (the more it approximates a square wave). The amount of clipping and consequent harmonic generation are very much dependent on signal level. In the Activator, a sophisticated system is used so that the 'bending' is like that of Fig. 1 c and is independent of signal amplitude.

Doing it With Frequency

But wait a minute. What we are talking about is severe distortion,
isn't it? And distortion is the last thing we want in quality audio.

Well, yes and no. The difference between aural enhancement and mere distortion is one of degree and frequency, to coin a phrase. Firstly, clipping a sine wave is rather severe and generates very large amounts of harmonics. Secondly, the effect we seek only works at high frequencies. Thus the signal must be high pass filtered so that only frequencies above a few kilohertz are 'bent'. If you apply harmonic generation to the whole spectrum, the result just sounds like distortion. Also, the amount of harmonic generation must be kept low. Only then does the whole effect come to life.

This may all sound very strange on paper and if you aren't convinced, the only answer is to hear a unit in action. When an Activator is switched out, the result of suddenly hearing the original recording in an unmodified state is like putting a bag over your head. Once you've heard the difference you won't be able to live without it. It will do wonders for all your records and tapes, revealing details you never knew existed.

When recording individual instruments or voices the Activator will create a sense of presence in a way that old fashioned presence controls never could. The frequencies which are 'activated' also happen to be those which carry most stereo information - so a stereo unit like the Activator. enhances the stereo effect, too.

Dolby And Son

It's worth mentioning the beneficial effects the Activator will have on muddy sounding cassette tapes. If there is no treble in the
recording, then boosting the treble band with a graphic equaliser will achieve nothing but the amplification of tape hiss. Aural enhancement, however, does not require treble to be prèsent since it uses upper mid-frequencies to synthesize new high frequencies. This basic difference sets aural enhancement apart from any simple form of equalisation.

Dolby B was invented when the quality of cassette tape was very poor. The noise reduction it afforded made listening acceptable. Now cassette tapes are very good indeed and Dolby is (arguably) redundant since all it seems to do is kill the top treble end of your recordings. In fact, many people record tapes with the Dolby on to act as a treble boost and then play them back with the Dolby switched off. If you play tapes back through the Activator you can leave the Dolby on, taking advantage of the noise reduction without sacrificing prized high frequencies.

Active Design

A practical system is shown in block diagram form in Fig. 2. Notice that after the harmonic generator the resulting signal is mixed in antiphase with the signal emerging from the filter so as to cancel out the fundamental, leaving only the newly synthsized harmonics to be added in the desired proportion to the output. -There is very little change in overall signal amplitude when the harmonics are added. In the Activator, there is also a very slight reduction in high frequency level as the PROCESS control is advanced, which keeps the subjective volume constant.

The high pass filter used in the ACTIVATOR is voltage controlled with a 12 dB per octave roll off below a centre frequency which is variable between 2 kHz and 8 kHz . It also has variable resonance or SELECTIVITY. It is possible to tune and emphasize particular frequencies within the signal to be processed.

The Activator is designed so that whatever size signal you put in, the same size signal is output. Harmonic enrichment maintains the correct proportions. The relative level of different order harmonics is determined by a time constant rather than by signal amplitude, avoiding the use of separate 'Drive' and 'Mix' controls as on most existing designs. These
interact and their combined effect is largely to make the display function correctly.

The Activator display is designed to indicate the proportion of harmonics added to the original signal, independent of overall signal level. The display will not respond very much to signals peaking much below -10 dBm but, since -10 dBm is the standard domestic recording level, no problems are envisaged. The unit is equally happy with 0 dBm signals.

The Ins and Outs

Line level, balanced and unbalanced inputs and outputs are standard in this family of units. Phono sockets have been added
height, ensuring correct
orientation of diodes, LEDs and, where appropriate, capacitors. It is a good idea to bench-test the completed board prior to bolting it into the case and wiring it to the sockets (Fig. 3).

Use

With the Activator processing a signal (left-hand LED green) adjust the PROCESS LEVEL control so that the display peaks at about half full scale. The ultimate decision must be based on your listening judgement, but remember that excessive high frequency is very easy to get used to and you only

Fig. 2 Block diagram of practical enhancement arrangement.
to the Activator with the domestic hi-fi owner in mind. The unit will handle signals well in excess of +10 dBm before clipping, unlike some of its more prestigious and expensive cousins.

Construction

Few problems should be encountered in using the double sided PCB. The most important thing is to ensure that all the tracklinking pins are soldered on both sides of the board! Enough said. Assemble components in order of
find out about it when you come back to your recordings after a break. Suffice to say that if the display is constantly in the red, you are overdoing it!

The Activator will impart an upmarket, up-front quality to live sounds. In recording almost anything will benefit - dull guitars, lifeless pianos, drums and, in particular, vocals can be given a breathy and intimate quality.

The unit will also be found indispensible for cassette duplication, helping overcome the inevitable loss of quality.

To achieve this an analogue divider is left and right harmonics signals emerging from 11 and Q_{2} are summed by IC9a but the gain of IC9a is controlled
by IC10, which is in tum controlled by

Figure 4 is the complete diagram of the stereo circuit. Baianced,
inputs are debalanced by ICIc and d, while unbalanced inputs are buffered

 the output drivers, IC8, and the
circuitry. IC3a and b are dual operational trans-

 can be swept between $2 k H z$ and $8 k H z$
by the TUNE control, RV2. The SELECby the TUNE control, RV2. The SELEC-
TivITY control, RV3, enables the negassedpueq ay1 uoy ypeqpary aA! asuodsas ayi dn 8uipead snyt ${ }^{\text {posinpas }}$
aq ol 8 uid si pue tSI pe pndino anuas ayt punore gpZL pnoqe Rq The high pass filter output at IC3 feaulf-uou ayi ol sassed \angle pue L suld
 11.901 duy лор 1
 sapinord poчlวun s! 41 Heus oop sau!
 level and is superior to other methods employing diode networks or the non-
linear characteristics of OTAS, say.

 rect proportions (see by R25 and R27-
and by R65 and R67) through IC7 can-

 'before and after' comparisons. The
other half of SW1 switches the bottom led of the bargraph (LED6) from red (bypass) to green (process).
The rest of the circuitry concerns the display. The object of the exercise is to make the bargraph respond only to the
level of the generated harmonics, level of the generated hammonics,
rather than to the overall signal level.

Isn't it time you traded your micro for one of our home computers?

This is the RAF Tornado GR1, one of the world's most sophisticated fighting machines. And, naturally, it's packed with computer hardware and software.Everything from the weapons-aiming systems to thelow-level, terrainfollowing radar and the advanced fly-by-wire control techniques relies on on-board computers to deliver an accurate response at $1,400 \mathrm{mph}$.

If you have a talent for electronics, you could soon be working with technology as impressive as this.

The three-year RAF Apprenticeship will earn you internationally recognised qualifications and an RAF career in mechanical or electronic engineering.

RAF technical training is regarded by industry as the finest this country has to offer. So, naturally, we have high hopes for our Apprentices, many of whom will go on to become Officers.

Places are offered in spring and autumn to young men and women aged $16-181 / 2$ ((ith a minimum four ' O ' levels at Grade C or above, including Maths and an appropriate Science). But competition is fierce, so apply as soon as possible.

Don't let the thought of leaving school put you off, remember this isn't a typical apprenticeship. It pays well and you'll learn as much as you would at a college, with friends of your own age.

Cut the coupon for more details. Or call in at your local RAF Careers Information Office. (The address is in the phone book under Royal Air Force.)

APPLY NOW FOR ONE OF THE 120 PLACES NEXT SPRING.

[^0]
6809-BASED MICROCOMPUTER

Designer Dave Rumball takes us chip-by-chip through the circuitry of his single board,computer.

This is the second in a series of articles which describe the design, construction and use of a powerful, 8 -bit, single-board microcomputer based upon the 6809 microprocessor. The board uses the Flex operating system, giving access to a wide range of cross-assemblers and making it particularly suited to software development work. As well as having all the features usually found on a Flex standard machine, this design also offers very high resolution monochrome graphics, 128 K of graphics RAM, a RAMdisc system which uses a variable amount of the 128 K graphic RAM and appears to an operating system exactly as though it were a floppy disc, and an EPROMdisC system which consists of a small, plug-in board and again appears to the operating system as a floppy disc. Other features include a battery backed-up real time clock and an on-board EPROM programmer, and the complete package is available in kit form from Micro Concepts.

In this article we will look at the workings of the microcomputer section by section. In subsequent articles we will be describing the construction of the board and how to use it.

The CPU, Memory, Buffers And Decoding

The.-'core' of the Microbox II is formed by the processor IC1, the SAM chip IC2 and the memory IC3-IC12. IC2 has several functions. First, it takes the master 16 MHz clock from IC15 and generates the $1-2 \mathrm{MHz}$ processor clocks. The processor address is converted to the multiplexed eight-bit buss and control strobes necessary for the eight 64 K DRAMs, IC5-IC12. 22 ohm resistors in these lines damp any

signal reflections or undershoots which would disturb the DRAM operation. It also defines a threebit decoding buss which is used by the decoding logic. An 8 K EPROM, IC3 holds the monitor program and system service. IC4 buffers the DRAM read data onto the processor data buss, whilst IC13 is a bi-directional buffer between the processor and the peripheral data busses.

The low order address lines, the control strobes E and R / W, and the reset signal are buffered by IC18, which has its two enable signals grounded. The reset signal from SW2 triggers two time constants, the shorter of which resets the SAM chip by pulling VCLK low, whilst the longer resets the processor so that the SAM chip comes out of reset before the processor. Note that no use is
made of the SAM chip's video capabilities in this design.

The HS pin is tied low on the SAM chip. This frees up an extra RAM cycle per CPU cycle allowing operation at 2 MHz . However the SAM chip stops refreshing the DRAM at 2 MHz , so operation at this speed can only be for periods of less than 2 ms , or longer if the operation itself refreshes the memory as would a transfer of 256 bytes during a disc operation.

The memory system map is defined by IC65 and parts of IC14 and IC16. The memory map is filled with the 64 K RAM, except for the top 8 K section which is the monitor EPROM. This 8 K section is split into two, and the bottom 4 K may be switched between EPROM and RAM with the MAP signal from the system PIA. This is used in the current software to

Fig. 1 Circuit diagram of the CPU and memory stages.

Fig. 2 Circuit diagram of the decoding, buffers and master clock.

Fig. 3 Circuit diagram of the system interface.

Fig. 4 Circuit diagram of the serial ports.
switch out the diagnostics section of the monitor when Flex is loaded, freeing up an extra block of memory which is used for text drivers and character sets.

The top 256 bytes of memory (as defined by the SAM chip) are given over to three 32 byte $1 / 0$ slots and the addresses used to set the SAM chip control registers. The first of these I/O slots is used for on-board devices, and is further decoded to eight, four-byte slots by IC17. IC16a generates the RDS and WDS control strobes used by the non-Motorola peripheral devices. Because the NEC720 graphics controller does not have a separate CE line, there are separate strobe signals for this device. Finally, IC15 forms a standard crystal oscillator which generates the master 16 MHz clock.

The System I/O And Serial Ports

The keyboard and printer ports, together with a number of control signals, connect to the two parallel ports of a single 6821 type PIA, IC19. The centronics printer and parallel keyboard share the first port via two tristate buffers IC67 and IC68. The PIA port is normally set for input from the keyboard, with the keyboard strobe going to the CA1 line. When printing is in progress, the port is turned from input to output and a strobe signal is sent on the CB2 line. This operation is performed for each character sent to the printer - in between each character, the keyboard is examined so that keyboard characters are not lost whilst printing is in progress.

The other port of the PIA is given over to various system signals. There are four inputs from four switches which the software uses to set certain parameters when the computer is first switched on. The remaining four lines are four outputs, the MAP line for the decode section, the DRV select bit and DDEN line for the floppy disc interface, and a signal which enables a sounder to give a 'beep'.

The serial ports are provided by a single IC, a WD2123 DUART (IC20). The internal baud rate generators derive their timing from a 1.84 MHz crystal oscillator. The data and handshaking lines are buffered from TTL to RS-232 levels and back again by the obligatory 75188/75189 pair.

PROJECT: Computer

The Floppy Disc Interface and PROMdisc

The floppy disc controller is refreshingly simple: it consists of just three ICs, two of which are SSI buffers! The work is done by IC24, a WD1770 floppy disc controller, which connects directly to the peripheral data buss. Input signals from the drives are buffered by IC?25, whilst output signals are buffered by IC26. The two drive select lines are derived from a single signal. This means that one drive or the other will be selected all of the time, and its drive select light will be on. This causes no harm if the drive is set up to load its head with the MOTOR ON signal. The drive motor timing is set by the 1770 by counting index pulses. It will stop the drive nine index pulses after the last operation, and will delay any operation until six index pulses have occurred.

The EPROM disc is formed from an 8255 PIA, four EPROMs and an eight bit counter. The data lines from the EPROMs are connected to one of the ports of the PIA, IC28, and the high eight address lines for the EPROMs to another. Chip enables for the four EPROMs, the program line for one of them, and clear and count lines for the counter are connected to the last port. Because Flex only reads data from discs in chunks of 256 bytes, not every address line is needed and the low eight address lines can come from an eight bit counter. To read a 'sector', the processor selects the correct EPROM as a function of the 'track' and 'sector' numbers, then clears the counter and clocks it 256 times, moving each byte for the port to RAM as it goes.

EPROMS may be programmed by applying 21 V to the VPP pin, setting the address lines and data, and then pulsing the program line for 50 ms .

The operation of the remainder of the board will be described next month, when we also hope to bring you complete constructional details including board overlay and parts list. If you'd rather not wait that long, a kit of parts complete with full constructional details is available from Micro Concepts, 2 St. Stephens Road, Cheltenham, Gloucestershire GL51 5AA, tel 0242-510 525.

Fig. 5 Circuit diagram of the floppy disc controller.

Fig. 6 Circuit diagram of the EPROM disc interface and board.

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

AUDIO MODULES

- Hi-fi • Public Address • Disco • Rugged \& reliable - Immediate despatch - Very low distortion
- Metal (TO3) output devices - Powers quoted RMS into 8 \& 4 Ohms - Full data supplied

Type
Bi-Po
Bi-Polar Bi-Polar Bi-Polar Mos-Fet Mos-Fet Mos-Fet

Output	Kit	Built
50-100W	£8.75	£10.95
75-200W	£10.95	£14.95
200-300W	£19.50	£24.95
75-150W	N/A	£19.95
200-300W	N/A	£32.95
350-500W	N/A	£54.50

R.A.K.

Rosewood House, Bridge Road, Downham Market, Norfolk PE38 OAE Tel: (0366) 382614

KEF CONSTRUCTOR SERIES SPEAKER KITS

Based on the famous Kef Reference Series, these three DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-to-earth price!

With a Wilmslow Audio Total Kit it's so easy - no electronic or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, wadding, grille fabric, terminals, nuts, bolts etc.
Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and CS9 is based on the Reference $105: 2$ (but in a conventionally styled encl.). CS1 $£ 116$ pair inc. VAT plus carr/ins $£ 6$ CS3 $£ 138$ pair inc. VAT plus carr/ins $£ 10$ CS9 $£ 383$ pair inc. VAT plus carr/ins $£ 18$

We also offer a kit(less cabinet for Elector PL301
\int Lightning service on telephoned credit card orders! WILMSLOW AUDIO LTD. 35/39 Church Street, Wilmslow, Cheshire SK9 1AS Tel: 0625529599 Call and see us for a great deal on HiFi . (Closed all day Mondays)

DIY Speaker catalogue £1.50 post free (export \$6)

Master Electronics-Microprocessors -Now! The ProcticalWay!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment
NewJob? New Career? New Hobloy?

analogue

HM-102BZ

10ADC Range, 20 k 2 NDC , Buzzer, Battery Test
Scale ..00 19 meas
HM-102R
Low end vohage \& current ranges, Jack for Audio

.. $\mathbf{E 1 1 . 0 0}$
HM meas 1015
HM-1015
Rugged.
Rugged. Pocked sized meter, for general purpose 16 measuring ranges
Battery, Test Leads and Manual included when
model.

FULL DETAILS ON APPLICATION FRON

PLEASE ADD 15% to Your OLEPHONE 01-902 4321 TELEX 923905 , MIDDLESEX HA9 $8 A G$ PLEASE ADD 15\% to your order for VAT. P\&P Free of charge. Peyment by cheque whth order
Trade enquilies invited

DIGITAL
HC-7030 0.1\% Accuracy. Standard Model
HC-6010 0.25\% Accuracy. Standard Modes ${ }^{39.50}$ HC-5010T 0.25\% Accuracy. TR Test Facility ${ }^{533.50}$ DM-105 0.5\% Accuracy. Pocketable E39.50 All models have full functions and ranges and eature: $31 / 2$ digit $0.5^{\prime \prime}$ LCD display

Low battery indication

Auto zero \& Auto polarity
CG AC 10 Casing
Overioad Protection on all rances
Battery, Spare Fuse, Test Leads and Manual.

ETI WALKMATE

Do you have a personal (hi-fi) problem? Ram Chandru has a battery of suggestions to help you overcome it.

1n recent years, a new generation of miniature tape players and radios has appeared on the market. Popularly known as Walkmans, they are battery operated, have miniature headphones rather than loudspeakers and are designed for use anywhere at any time. The quality of the sound reproduction is usually pretty good and they have proved immensely popular.

They are not without their drawbacks, however. As anyone who has used one of these machines will know, the current consumption tends to be fairly high and a set of batteries doesn't last very long. Also, whilst at first sight they may seem ideal for use as the basis of a 'second' music system in the bedroom or elsewhere, in practice it is not easy to use them in this way. The output level is not suited to the inputs on most amplifiers, the problem of battery consumtpion remains, and while purpose-built miniature amplifiers and loudspeakers are available these too are battery-operated, pushing the overall running costs very high
indeed.

AMPLIFIER Output power	
	2W RMS per channel into 8 R (mains operation)
	1.5W RMS Per channel into 4R (12V DC operation)
Input sensitivity	80 mV RMS for full output
Bass control	ticaly
Treble control	$\pm 14 \mathrm{~dB}$ at 10 kHz
DC SUPPLY Output voltage Overload protection	
	adjustable over the range $1.5-9 \mathrm{~V}$ current limiting at 500 mA (at $25^{\circ} \mathrm{C}$ heatsink temperature; reduces by $2 \mathrm{~mA}^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) LED Indication of overload condition
BATTERY CHARGER Constant current output Overcharge protection	
	50 mA
	charging ceases when terminal voltage exceeds a preset figure, adjustable between 1.5 and 9 V LéD Indication of charging

The Walkmate has been designed to overcome these problems and allows a miniature tape player or radio to be used indoors with standard loudspeakers at minimum cost. It consists of a regulated DC supply, a constant current battery charger and a stereo amplifier with tone controls. The regulated supply is overload protected and offers 500 mA at between 1.5 and 9 volts, a range which accommodates

Fig. 1 Block diagram of the Walkmate circuit.
every type of personal stereo we have come across. The constant current charger can only be used with rechargeable batteries, of course, but offers the convenience of recharging whilst the unit is being used, ready for later use elsewhere. The stereo amplifier delivers up to 2 watts RMS per channel into 8 R , and the complete system operates either from the mains or from a 12 v car battery.

The Circuit

The circuit of the Walkmate is shown in block form in Fig. 1. The incoming mains is passed through the transformer and rectifier to produce an output with an average value of about 18 V . This is passed to the smoothing network via a switch on the $12 \mathrm{~V} D \mathrm{DC}$ input socket. Inserting a 2.5 mm power jack into this socket will disconnect the transformer and rectifier from the rest of the circuit.

A reference voltage is derived from the main smoothed supply to feed the regulator and the constant current generator. The reference is provided by a 1.22 V band-gap IC, but several stages of dropping and filtering are used to ensure as ripple-free an output as possible. This is important because

HOW IT WORKS

IC2b, Q6 and Q8 form the basic power supply circuit. Q6 and Q8 are connected as a darlington pair in order to supply a relatively large load current $(500 \mathrm{~mA})$ with only a small bias from C2b. The short circuit protection consists of R13, Q5 and Q7. When the load current through R13 reaches a value such that their product reaches a diode drop, (in this case 500 mA), Q5 conducts and turns Q7 on to divert the base current of Q6 to earth, thus limiting the power dissipated in Q8. Q4 turns on LED2 indicating a current limiting condition. The output voltage can be adjusted by varying RV2. C8 is included to reduce the ripple present at the output. The impedance through C8 is very small compared to the value of R16, so the ripple is bypassed to the op-amp input. C9 reduces the high frequency impedance of the power supply and C6 and C7 are there to suppress any loop instability.
One point to notice is that Q8 and Q4 are thermally coupled. This ensures that the short circuit current will decrease as Q8's junction temperature increases so that thermal runaway will never occur. As

and $V_{b e}$ is approximately 0.6 V at room temperature, the short circuit current will be about 500 mA . However $\mathrm{V}_{\text {be }}$ has a temperature coefficient of $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (the negative sign indicates that it decreases with temperature), so the short circuit current will decrease with increasing heatsink temperature at about

$2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\left(-\frac{2.1}{1.2} \mathrm{~mA}\right)$.

The maximum power dissipation in Q8 is roughly $9.0 \mathrm{~W}(0.5 \mathrm{~A} \times 18 \mathrm{~V}$). In order to maintian a junction temperature below $150^{\circ} \mathrm{C}$ a $7.8^{\circ} \mathrm{C} / \mathrm{W}$ heatsink is required giving a safety margin of about $60^{\circ} \mathrm{C}$ ambient temperature.
The IC used in this circuit is an LM358N dual op-amp. Other common dual op-amps such as LM1458 will not do the job because the reference voltage is too near to the earth potential. The common-mode input voltage range of the LM1458 is typically $\pm 12 \mathrm{~V}$ with a $\pm 15 \mathrm{~V}$ supply. That means the input voltage must be 3 V above the negative supply. In this case, the negative supply to the op-amp is 0 V and the reference must therefore be a minimum of 3 V in order for the op-amp to function correctly. However, since the design strategy is to provide voltages as low as 1.5 V , a small reference voltage must be used. The LM358N has a common mode input voltage range including the negative supply which suits our design.

The battery charger is basically a constant current sink. IC2a, Q3, R7 and $\mathbf{R 8}$ form the basic constant current sink circuit with the addition of Q1 and Q2 as the cut-off monitor circuit. The charging current is determined by the value of R7 and R8 in series. Since the reference voltage is 1 V 22 , the current is therefore 1.22 /24 which is approximately 50 mA . Q1 and ZD2 monitor the voltage across the battery under charge. When the battery voltage brings the potential at the wiper of RV1 to the zener voltage of ZD2 plus a diode drop below the supply voltage, Q1 will conduct and turn Q2 on to divert the base current of Q3 to earth. The cutoff is 'soft' since the zener voltage is current dependent, and this will enable the batteries to maintain their fully charged state. In practice, there will be a small current of around $4-5 \mathrm{~mA}$ still flowing through batteries when the cut-off circuitry is in action. D6 prevents the battery discharging into the circuit if the Walkmate is disconnected from the mains. The circuit loop formed by Q1 and Q2 will tend to oscillate when the battery terminal is left open circuit, and C3 and C4 are there to prevent this and maintain unconditional stability.

The charger has been designed to charge four AA size rechargeable batteries. However, the charging current can be altered by varying the values of R7 and R8. At 50 mA charging current, no heatsink is required by Q3. Its power dissipation will be at a maximum when the battery terminal is short circuit, which is $50 \mathrm{~mA} \times 18 \mathrm{~V}=$ 0.90 W . If the charging current is increased to 100 mA or above, a small heatsink should be fitted to Q3. The cut-off circuitry can be adjusted to monitor from a minimum of one battery up to a maxixum of six batteries. If less than three batteries are being charged ZD2 should be replaced by a single diode (installed so that it has the opposite polarity to ZD2, of course).
LED1 will light up when the batteries are placed in the charger and will switch off when the batteries are fully charged, indicating that the process is complete. With the cut-off circuit correctly adjusted, batteries could be left in the charger indefinitely without being damaged.

In order to generate a constant current sink and a constant voltage supply, a reference voltage is needed. The easiest way of generating a reference voltage is by means of a zener diode. The arrangement is adequate provided there is not much ripple in the supply voltage, but in our case the rectifier output will contain 100 Hz ripple of up to 4 V .

An improvement is to use a diode and capacitor as a peak detector which captures the peak value of the ripple according to the current drawn by the diode. Since the zener current is very small, typically 5 mA , the ripple seen
across the capacitor is very small. Another improvement is to use two zener diodes. The output of the first zener contains a small amount of ripple voltage which is then further reduced by the second zener.
The circuit used in this project is a combination of both improvements. The average current into ZD1 is about 4 mA and the current into IC1 is about 1 mA . The circuit provides a reference voltage of 1.22 V . The dynamic resis tance of ZD1 is a maximum of 30R and the bandgap reference IC1 has a maximum dynamic resistance of $2 R$. The ripple seen across C 2 is approximately 0.25 V (with $1=5 \mathrm{~mA}$, neglecting the leakage of D 5$)$. The ripple appearing on the V ref line is therefore estimated to be about $2 \mu \mathrm{~V}$. C3 is present to reduce the high frequency impedance of V ref.
The first stage in the audio section is the tone control. There are two basic types of control, the negative feedback type and the RC passive type. The RC passive type has been used here because it introduces less distortion. However, because of the insertion loss of this type of control, a voltage amplifier is needed to provide a gain equal to the maximum boost, in this case 20 dB (10 times). The amplifier is usually placed before the tone control If the input signal is small, so that the signal is amplified before being attenuated and is less likely to pick up noise and hum. Looking at the righ channel (the left channel is identical, of course), IC3a is connected as an inverting amplifier with an input impedance of 100 k . Since the op-amp is powered from a single supply, the non-inverting input is biased to the mid-point of the supply by C13, R20 and R27. D7 and C12 form a peak detector to filter most of the ripple present at the supply voltage. C10 and C14 isolate the DC level at the input and output of the op-amp.
The power amplifiers use LM380N ICs which have a fixed voltage gain of 50. The output DC voltage is set internally to approximately half the supply voltage. C28 and R34 bypass any high frequency oscillation which might occur. C26 is included to improve the PSRR (Power Supply Rejection Ratio) of the amplifier. RV7 provides the trimming of the output $D C$ voltage in order to obtain the maximum symmetric voltage swings. C30 is the output capacitor, and its value determines the low frequency roll-off of the circuit. With an 8 R load and a 2200μ capacitor, the -3 d 8 low frequency point occurs at about $9 \mathbf{H z}$.

The two LM380Ns share a high power twisted vane $10.5^{\circ} \mathrm{C} / \mathrm{W}$ heatsink. When the walkmate is powered from the mains, a 4 R load is not recommended because the ICs will be operating in the current limiting mode and power dissipation will become excessive.

any imperfections in the reference supply will be amplified in the regulator.

The constant current charger provides an output of 50 mA which is suitable for the AA-size cells used in most personal stereos. A circuit is included which monitors the voltage across the batteries under charge and removes the current when a pre-set terminal voltage is reached. An LED indicates when charging is taking
place.

When the audio output of a tape player is connected to the

Walkmate, the signal is first passed to a tone control stage built around anLF 353 dual op-amp. One half of the LF353 is used in each channel. Separate bass and treble controls are provided along with balance and volume controls. The outputs from this stage feed two LM380 power amplifier ICs each capable of delivering 2 watts RMS into an 8 R load when the unit is being operated from the mains. When operated from a 12 V DC supply, the outputs can deliver 1W RMS into 8R or 1.5 W RMS into $4 R$.

Fig. 3 Details of the regulator heatsink assembly.

Fig. 4 Component overlay for the Walkmate PCB.

The glue should be allowed an hour or so to develop its full strength, so carefully dismantle the assembly from the board and put it to one side while the rest of the components are installed. Begin with the resistors, the preset potentiometers and the sockets and also the smaller capacitors. The large smoothing and output capacitors should not be installed at this stage. The fuse holder should also be soldered into place now, along with the PCB connectors if these are to be used for the mains, loudspeaker and charging output connections.

Next install the diodes and the transistors (except Q5 and Q8, of course) and then IC2 1, 2 and 3. Sockets should not be used for any of the ICs because there is very little room on such a denselypopulated board. The LEDs can be installed at this stage if desired but you may prefer to wait until the board is ready for installation in the case so that they can be lined
up with the front panel holes. Solder the potentiometers into place, taking care that they do not interfere with any of the components already installed. Loosely re-assemble the $7.8^{\circ} \mathrm{C} / \mathrm{W}$ heatsink on the board, placing nylon insulating washers on the two self-tapping screws so that there is no connection to the copper track. This removes the need for a mica washer on Q8, although a smear of thermal compound here will not go amiss. Position the transformer and C1 on the board and make sure they clear one another and the heatsink. Tighten down the selftapping screws, solder the transformer pins and the transistor and capacitor leads and then install C34 and C35.

Loosely insert ICs 4 and 5 into the holes provided and place the $10.5^{\circ} \mathrm{C} / \mathrm{W}$ heatsink on top of them. Secure the heatsink with an M3.5 nut, bolt and shakeproof washer taking care not to
overtighten the bolt so as not to damage anything. The pins of the ICs can now be soldered on the underside of the board. With the heatsink in place, capacitors C30, C31 and C33 can be installed and the board is then complete.

The prototype was built into a $203 \times 127 \times 51 \mathrm{~mm}$ vinyl-covered steel box and the PCB dimensions were chosen to suit it. This is important since the edges of the PCB must be very close to the

Fig. 5 The twisted vane heatsink shown in position over IC4 and 5.

PARTS LIST

front and back panels if the onboard sockets and controls are to be accessible. This would have to be taken into account if a different size of case were used for any reason.

Drilling details are given in Fig. 6. The battery compartment, mains fuse, mains socket and loudspeaker terminals are not too critical in their positioning, and the potentiometer holes will be hidden by the knobs so it won't matter if they are a fraction off centre. The holes for the sockets, on the other hand, must be accurately positioned if they are to be accessible and the unit is to look good. If you have any doubts about your metalworking skills, try drilling a small hole first and then place the board in position to cherk it. If necessary, the hole can be centred with a small round file before final drilling out to the correct diameter.

Before installing the PCB in the case, carefully check it against the overlay diagram (Fig. 4) and pay particular attention to the orientation of transistors, ICs, diodes and electrolytic capacitors. Check carefully too that there are no breaks in the PCB tracks or solder bridges between adjacent tracks. In my experience, it is usually a good idea to go away and do something completely different
for some time after a board has been completed. The mind is then much cleared when it comes to checking the board and potentially expensive mistakes are easier to spot.

When you are convinced that all is well, loosely install the board in the case and then bend and fit
the LEDs so that they line up with the front panel holes. Remove the PCB, solder the LEDs into place and attach any flying lead connections to the underside of the board. These will not be needed if you have chosen to use PCB transition connectors for the mains, output and battery charger

Fig. 6 Drilling details for the metal case.

connections. When all soldering is complete, install the board in the case using four 10 mm metal pillars and connect up the mains socket and fuse, the loudspeaker output sockets and the battery connector. Don't forget to earth the metal case.

Testing And Setting-Up

Carefully check all the connections to the PCB, especially the mains wiring, and then set all the presets to their mid positions: Connect a voltmeter between FS2 and ground and plug in the mains. The voltmeter should show around 18-20 volts. If the voltage is significantly lower than this, check the polarity of the rectifiers and the smoothing capacitors. If either of the fuses blows, switch off immediately and check everything again.

When the voltage on FS2 is correct, remove the voltmeter and connect it across pins 4 and 5 of IC2 or some other point where the reference voltage is available. The reading here should be between 1.2 and 1.26 V . If the voltage lies outside of this range, check the orientation of IC1 and ZD1 and the components around them.

Connect a milliammeter across the battery charging terminals. LED1 should light up as soon as the meter is connected and a reading of $48-50 \mathrm{~mA}$ should be obtained. Remove the milliameter and connect in its place a set of
fully-charged or nearly fullycharged Nickel Cadmium cells and a voltmeter. The voltage across the cells should rise slowly. When it reaches the full terminal voltage (1.45V for each cell), carefully turn RV1 until LED1 extinguishes. Remove the cells, discharge them slightly and then connect them as before along with the voltmeter. Check that LED1 goes out when the intended voltage is reached, and if not, readjust RV1. This exercise may take a little time but you can leave the batteries charging or discharging while you carry on with the rest of the setting-up.

Connect a voltmeter across the regulated DC Output. A reading of about 2.5 should be obtained and this should increase and decrease if RV2 is rotated. Set the voltage to suit the personal stereo you plan to use and then connect an ammeter directly across the output. LED2 should light up and the ammeter should show a current which slowly decreases from an initial value of around 500 mA . If a much larger current is present, disconnect the ammeter immediately and check the circuit carefully, paying particular attention to the circuitry around Q5 and R13. Check also that there is no connection between the heatsink and the copper earth track via one of the fixing screws.

With the power supply and charger circuitry working correctly,
all that remains is to test and setup the audio stages. Check that the DC level across R21/C13 is around 9 V and that a similar voltage is present on the outputs of the two halves of IC3 (pins 1 and 7). Next, check that about 8 V . DC is present on the output pins of ICs 4 and 5 (pin 8). Connect an 8 R dummy load across one of the loudspeaker outputs and inject a 1 kHz signal into the
corresponding input. Connect an oscilloscope across the dummy load and adjust RV7 or RV8 as appropriate until the output swings are symmetrical above and below 0 V . It is advisable to turn the preset very slowly whilst making this adjustment. When the output symmetry is correctly set, transfer the dummy load, oscilloscope and signal generator to the other channel and repeat the procedure.

If you want to be particularly thorough you can check the operation of the bass and treble controls using signal frequencies of 50 Hz and 10 kHz . Those who do not have an oscilloscope will have to be content with setting the output DC level at 8 V as described above and using their ears to evaluate the operation of the tone controls.

BUYLINES

The fixed resistors, the capacitors and most of the semiconductors are available from a number of our regular advertisers and from the usual mailorder suppliers. The PCB-mounting potentiometers are available from Maplin, who can also supply the battery holder and clip-in compartment, the $10.5^{\circ} \mathrm{C} / \mathrm{W}$ twisted-vane heatsink and the PCB-mounting jack socket and DC Power sockets. The vinyl-covered metal case used for the prototype also came from Maplin and is known as type WB3. The mains transformer, enclosed horizontal presets, PCBmounting fuse holder and the BD230 can be obtained from STC Electronic Services, Edinburgh Way, Harlow, Essex CM20 2DT, tel 0279 26777. The 9491 bandgap reference and the $7.8^{\circ} \mathrm{C} / \mathrm{W}$ finned heatsink are available from RS Components who will only accept orders from trade and professional customers. However, most electronic dealers can order RS parts or you can obtain them by mail order from Crewe-Allan \& Co., 51 Scrutton Street, London EC2 or Trilogic, 29 Holme Lane, Bradíord, BD4 0QA, tel 0274 684289. The printed circuit board will be available from our PCB Service, for details of which see page 59. ETI

DIGITAL SOUND SAMPLER

In this (slightly delayed) article in our series on the construction of a sound sampler for use with the Spectrum, Paul Chappell finally gets around to describing the analogue circuitry.

The analogue signal path is the critical area in determining the quality of sound -reproduction that a sampler will achieve. Although it is possible to sample sounds with little more than an ADC, a DAC and a home computer, for reasons discussed in an earlier issue (ETI, September 1985) the sound will not be very pleasant. Refinements such as a sample and hold circuit before the ADC will help, but the most spectacular improvements are achieved by the inclusion of suitable low-pass filters before and after the conversion.

Figures 1 and 2 show the complete audio path of the project. The input filtering is incorporated in the circuitry around IC2 and IC5 and the output filtering is carried out by IC12, IC13 and IC16. It seems, at first sight, that the filtering should be the most precise and academic part of the circuit design: apply the correct formulae, use the right set of design tables and you've got a filter. As is often the case with circuit design, it's far from being so clear cut, and some of the considerations involved are worth a closer look.

Filter Considerations

Let's suppose that we are sampling at 30 kHz and so would like to remove any components of the input signal above 15 kHz . The most obvious compromise is that we can't have a filter that passes everything up to 15 kHz and nothing thereafter, so let's choose the -3 dB point to be 12 kHz and
see where it leads us. We could live with a bandwidth of 12 kHz it may not be quite hi-fi but, in comparison with TV sets, radios and walkpersons it's not too bad. We will also recognise that the signal above 15 kHz will not be zero, but if it was below -50 dB it would be pretty well inaudible, so we'll take that as a starting point.

The first shock comes when we see the size of filter needed to meet this specification. For a Butterworth filter response (one without ripple in the passband) we are going to need 11 Sallen and Key type filter sections (like the circuitry around IC2) all cascaded together. That is, 11 op-amps, 22 capacitors and 44 resistors. Some filter! With a Chebyshev response we are a bit better off - with a little over 1 dB passband ripple, we could manage with only 5 sections and still get to -50 dB at 15 kHz ; with a little more ripple, we could get it down to four sections, but for reasons l'll come back to later we can't allow too much ripple.

Switching To Capacitors

Because we want the filters to track the sampling and playback frequencies, switched capacitor types have been chosen (IC5 and IC13). These, in effect, sample the signal and hand it back at the output in the form of discrete steps. For this reason they are just as prone to 'alias' distortion as the A-D, D-A conversion process. It may sound odd, but we need to filter the input and output of the filters! As the clock rate, or
sampling frequency, of the mobile filters is 50 times the cut-off frequency, the filtering requirements are not too stringent. If the filters are set for 12 kHz , this means a sample rate of 600 kHz , and if we only attempt to remove signals that could give rise to beat products falling within the range up to 40 kHz , we are only asking that the fixed frequency filter should produce an insignificant output above 560 kHz . As it can begin to roll off anywhere above 12 kHz without interfering with the bandwidth of the sampler, a steep slope is not called for. Even allowing for the fact that we may wish to sample at rates below 30 kHz - maybe even as low as 10 kHz - we are still looking for a good attenuation at 160 kHz .

As we are expecting the best performance at a sample rate of 30 kHz , it makes sense to choose a cut-off frequency for the fixed filters that will assist in attenuating frequencies of 15 kHz and above. On the other hand, they can't have a cut-off frequncy of 12 kHz to match the mobile filters at this sample rate. If they were all independently designed to cut off at 12 kHz , that is to say the -3 dB point for each was 12 kHz , the consequence of cascading all five would be that the attenuation at 12 kHz would be $-3 \mathrm{~dB} \times 5=-15 \mathrm{~dB}$. Not quite what we are aiming for! A similar consideration applies to the passband ripple that can be tolerated - it can add from one filter to the next and there could be a good deal more at the output than was intended.

A third consideration is the desirability of applying a certain

Fig. 1 Analogue input circuit of the sampler.

The input signal from the microphone is first amplified by IC1. From the output of IC1 the amplified signal passes to IC2 and to IC3. Taking the main signal path first, IC2 and IC5 are lowpass filters included to prevent 'allas' distortion in the sampling process. IC5 is a switched capacitor filter with a cutoff frequency determined by the frequency of FCLK. FCLK is generated by the sample rate circult (to appear in a later issue) and is proportional to the -selected sampling frequency, so the cutoff frequency of IC5 tracks the sample rate. IC2 is a lowpass filter with a fixed cut-off frequency to prevent signals with a frequency above $1 / 2$ FCLK from reaching IC5.
The output from IC1 is also fed to IC3 where it is further amplified by an amount set by RV2. The function of ICA is to provide a signal SOUND to the control circuit when an input of a suifable level is detected. When no input is present the +ve input of IC4 is held at 0.7V by R19 and D3, the -ve input is at +0.7 V by the action of R20 and D4, so the open collector output of IC4 will be held high by R22. If the output of IC3 goes low, the +ve input
of ICA will be pulled low by D1 but the - ve input will remain at -0.7 V , and allowing for the drop across D1 this means the output of IC3 must go below -1.4 V . If IC3 output goes high, IC4 will similarly be swittched by D2 at +1.4 V or above. A signal of 2.8 V p-p at the output of IC3 will begin to switch IC4 on and off. LED2 indicates that this is happening and means that an audio signal large enough to trigger the sampler is present at the input. Adjustment of the signal level needed to trigger the sampler is made by RV 2 .
Overload indication is provided by LED1. If the output of IC3 goes high enough, current will eventually flow through D2, R18, LED1 and D3. If it goes low. enough, current will flow through D1, LED1, R18 and D4. The voltage level needed to begin to light LED1 is roughly 0.7 V (for D2) plus 2 V (for LED1) plus 1V (for R2, assuming that LED1 will just become visible at 1 mA plus 0.7 V (for D3), equals 4.4 V . Similarly, -4.4 V will be needed to begin to illuminate LED1 on negative peaks, so a signal of around 8.8 V p-p will begin to give an indication. The LED will get brighter as the signal

Increases above this level, and can thus be used to give a rough measure of higher signal levels.

To return to the main signal path, the output of IC5 is fed to the ADC circuit consisting of ICs $6,7,8,9,10$. The action of this circuit has been described in ETI, November 1985. The output of the ADC will be in a companded sign and magnitude format. IC11 buffers the output of the converter and drives the data lines D7 to D0 when STM is low.
There is no need for a sample and hold circuit prior to the ADC because this function is one of the duties of IC5. If the clock of IC5 is stopped, its internal state will effectively be frozen and the ouput will remain steady for several ms before the leakage of internal charges cause it to droop. The conversion time of only a few μ s is more than enough for a very effective sample and hold. When the control circuit issues the START CONVERSION signal (SCS) to the ADC, it simultaneously turns off the clock to IC5 and will not re-start it until the conversion has finished.

The circultry to retrieve the sound

Fig. 2 Analogue output circuit of the sampler.

Abstract

code from the data lines and turn it back to analogue form begins with IC19. This is an 8-bit latch which captures the data when it is clocked by §FM(1). The control circuit (to appear in a later issue) sends interrupts to the computer at regular intervals. The time between the computer receiving an interrupt and the digital sound code appearing on the data lines will depend on the point the computer has reached in its current instruction cycle when the interrupt is received. Unfortunately, this time is variable and unpredictable. If the output of IC19 was fed directly to the DAC, the irregular updating of the data would give rise to distortion of the audio signal. IC18 is included to even out the update rate and set it to match the sampler's requirements, not the computer's. From IC18, the digital sound codes are sent to the DAC, IC14. This IC produces differential current ouputs which are translated into a voltage level by IC15. From the ouput of IC15, the sound is filtered by IC12 prior to the

output tracking filter IC13. Once again, IC13 hias a low-pass cutoff point set to suift the playback frequency by variations in FCLK. This is, in fact, the same signal that clocks CI5 - if the sound is passed straight through the circuit for test purposes, we want IC5 and IC13 to cut off at the same frequency. If IC13 is being used to filter sound from the computer's memory, it doesn't matter what frequency IC5 is clocked at, so the same signal can be used for both.
IC16 provides the final low-pass filter to restore the step output from IC13 to a continuous audio signal. At the output of IC16 is a FET Q1, to turn the output signal on and off. Q1 is driven from the gate signal from the keyboard, "and besides allowing the sound to be turned on and off when a key is depressed and released, it also allows some control over the attack and decay rates of the sound.
From Q1 the signal passes to the amplifier IC17 which provides a suitable output level.
amount of pre-emphasis to the higher frequency components of the signal before sampling and deemphasising it afterwards. It's not good enough to tack an RC circuit to one of the op-amps to give a 6 dB per octave lift at the input and corresponding circuit for a 6 dB per octave cut at the output. Considerations of making life more difficult for the input LP filters aside, the more important point is that when the sampled sound is played back at a different pitch, the entire frequency spectrum will be shifted. The result is that the emphasised part no longer matches the deemphasis profile, so the upper frequencies will be amplified or attenuated in a way that was not intended. On the other hand, it does seem rather extravagent to use extra tracking filters just for the emphasis.

The Final Circuit

In the circuit presented here, the two mobile filters, IC5 and IC13, are considered as part of the same filter and component values chosen accordingly. This avoids the adding of the -3 dB attenuation, at least as far as these filters are concerned, and has one or two other advantages. The two high-Q sections are placed before the ADC which means that there will be a rise in the gain at frequencies approaching the cutoff point: pre-emphasis. The twoQ sections after the DAC, besides completing the filter profile, in effect provide de-emphasis. The hypothetical requirement for very steep filter slopes has been relaxed since it was based on the implicit assumption that the spectrum of an audio signal is flat, whereas the amplitued of higher frequency components will generally be very much less than that of lower frequencies. The filter requirements to achieve good sound quality are therefore not as strict as it would seem. There is the additional factor that filters with very steep cut-off slopes tend to have poor transient response and are prone to ringing, so it's a matter of chaosing the best compromise.

To complete the sound sampler, the articles to follow will describe the keyboard interface and the digital control circuit.

AUTOWIPE

> Andrew Armstrong sets the pace with a digitally-controlled variable delay unit for windscreen wipers.

You are trundling along the road in your car. A light drizzle starts. You switch on the windscreen wipers. SCRAPE-SCRAPE-SCRAPE. The rain is heavy enough to obscure your vision but not heavy enough to lubricate the wipers. You switch on the fixed rate intermittent wipe. SCRAPE-SCRAPE-SCRAPE. Not slow enough! Until now, your only solution was to turn up the radio very loud to drown out the sound of wipers on (almost) dry glass. Now you have an alternative.

The Autowipe is quick and simple to install. It requires just four connections to the motor wiring and no bodged holes in the dashboard - especially useful on the rear wiper of estate cars and hatchbacks. Installation typically takes 15 minutes. The connections are 0 V , the +12 V motor supply, and the normal speed motor wire, cut in two with both ends joined to the gadget.

The time period is set by triggering a single wipe of the screen, and another after the

BUYLINES

The resistors, capacitors and semiconductors are all widely available and should not present any problems, but note that Q1 should be a BC212 and not a BC 212 L . The relay is available from Cirkit. The PCB is available from our PCB Service, for details of which see page 59.
desired interval has elapsed. The unit remembers the interval and keeps on working at this rhythm (give or take 10%) until cancelled or reset.
The circuit described here is suitable only for negative earth cars, in which the switching to the wiper motor is in the supply side rather than the ground side. This includes the vast majority of cars on the road now. The circuit may be modified to cope with other arrangements, and some notes are supplied to help the experienced constructor who may wish to modify the design for different applications.

Principles

A timer starts when the switch is turned on briefly for the first time, and its state is stored on the second switch operation. The timer is then cycled repeatedly the windscreen wipers being operated once in each cycle. A third switch operation, if it occurs when the wipers are stationary, resets and restarts the timer. A fourth operation of the wiper switch stores the new time period (between third and fourth switch operations). If no fourth operation is received, the unit times out after about 30 seconds.

The timing is digital in nature, and uses a four bit binary counter. This provides 14 usable time periods, since both zero and terminal count are not valid time settings. In order that this quantisation of available timings is
not a nuisance, the speed of the clock oscillator is controlled by the state of the counter. The clock starts off fast when the time period is being set and slows as the period lengthens. In this way, the accuracy of the timer (expressed as a percentage of the required time period) remains constant. A limit is placed on the oscillator speed so that it does not use up too many possible states while the wipers are crossing the screen the first time the switch is operated.

Earlier designs used an analogue timer, but in damp weather leakage currents caused a significant timing drift over a period of five minutes. The digital design is much less susceptible to this, though condensation on bare tracks can cause problems.

Construction

The first job is to link the top and bottom sets of tracks on the PCB. The board is laid out so that none of the pads on the top of the board connect to components they are all simply links to the bottom. This simplifies both assembly and repair. The preferred method of joining the two sides is to use track pins. If these are unavailable, wire links may be used.

It's a good idea to spray the component side of the PCB with lacquer once the track pins are soldered on both sides. This will ensure that even the tracks which run underneath components are coated. This can prove to be

HOW IT WORKS

Fig. 1 Circuit diagram of the Autowipe.

When the wiper switch is switched on, a logic 1 is applied to the input of IC6a via R17 (which is there to protect the input). Because of the inequality of the time constants of R15/C6 and R16/C5, there is a brief period when both of the inputs of IC5c are at logic 1. This results in a brief negative going output pulse, which is inverted by IC6b and which then clocks the flip-flop, IC1a. The inequality of the time constants ensures that a transition from logic 1 to logic 0 on R17 will not cause a clock pulse.
The fact that both inputs to IC5c have RC time constants means that electrical noise is rejected to a large extent. Should electrical noise or switch bounce prove to be a problem in use, then both time constants may be increased in proportion.
The first clock pulse switches IC1a so that its Q output goes to logic 1. This enables the relay drive, via IC5d. The Q output goes to the reset inputs of IC1b, and the counter, IC2, via R10. The counter is therefore allowed to start counting up as soon as C7 has discharged to logic 0 via R10. We shall come to the purpose of C7 later.
The oscillator which clocks the binary counter is derived from a standard configuration, but it has been designed so that the discharge path of C1 is separate from the charge path, and is connected externally to the oscillator part of the circuit. This means that the cycle time of the oscillator can be controlled by the voltages applied to the discharge resistors.

These resistors, R5 to R8, are approximately binary weighted, and connected to the outputs of the binary counter. To limit the maximum oscillator speed to something useful, while leaving the slower speeds almost the same, an extra fixed discharge resistor, R3, is placed in series with the discharge path.

Clearly, if the counter is allowed to reach state 15 (1111) then there will be no discharge path for C1, and the oscillator will stop. This does not matter because when the counter reaches this state, the terminal (or carry) output, IC2, pin 17, switches tologic 0 . This resets the first flip-flop, IC1a, via IC6c, IC5b, and IC5a, which means that the unit has timed out.

There is only one further point to make about the oscillator and counter. IC3 must have a sufficient slew rate to clock the CMOS counter used. A 741, for example, will not work. Having tried one, out of curiosity, I can report that the counter will count up for a while, but normally stops when it is time for the third most significant bit to switch. TL081s and LF351s with a $13 \mathrm{~V} /$ microsecond slew rate are perfectly adequate.
Back to the main sequence of operation. If a second clock pulse is applied (the wiper switch is operated again) before the counter reaches terminal count, then IC1b is clocked. This has the effect of latching the counter output in the transparent latch, IC4. The counter up/down input is switched to down, and the counter now counts down from what-
ever number it has reached until the terminal count bar output switches over. This now occurs at zero, because the counter is in the down mode. The down count takes the same period of real time as the up count took, since the oscillator is progressively speeding up rather than slowing down. When terminal count is reached, the relay is energised for a period set by the time constant of R19 and C3. This starts a wipe of the windscreen, which is then completed by the park switch in the motor
While the relay is energised, the counter is parallel loaded with the latched count data, so that a new down count can be started from the same number. Any clock pulse generated on the output of IC5c as a result of the wipe, is prevented from reaching IC1a by IC6b during this period.
The terminal count output is prevented from resetting the flip flops by IC5b as long as IC1b is set.
If the wiper switch is operated when the wipers are stationary the resulting clock pulse from IC5 cis allowed through to the flip-flops, and it switches over IC1b. A reset pulse is applied to IC2 via C7, with R11 in series to limit the peak current in the input protection diodes when it switches back the other way. IC2 is now allowed to count up, and the circuit is in the state it was in after the first operation of the wiper switch. It is waiting for a new time setting.

Fig. 2 Component overlay for the Autowipe PCB.

PARTS LIST

important if the PCB is to be mounted in the engine compartment of a car, because condensation can sometimes occur under these circumstances.

The components may then be mounted on the PCB, starting with the passive components. The only one likely to be difficult is the relay, as some samples of these have pins which are very resistant to soldering. The most effective method of persuading them to

Fig. 3 Test harness circuit.
solder is to clean them up with a glass fibre brush. Another solution which has worked is to pre-tin the pins with the aid of a corrosive flux. The flux must then be cleaned off the pins very thoroughly, or else the board will fail due to the tracks being eaten through after a few months.

When all the components are correctly fitted, a bench test is in order. The best way to do this is with a test harness (Fig. 3). Switch on the supply, and wait ten seconds for C4 to charge up. With the aid of a digital watch operate the switch twice, at a ten second interval. Time the flashing of the LED, and check that its period is between nine and eleven seconds.

If it is far out, then check that R5 to R8 and D2 to D5 are properly fitted. If nothing happens, or if the relay just switched on, check that both parts of the flip-flop switch over as appropriate, and then move on to checking that the clock oscillator works, and that a pulse appears on
'IC5 pin 10 when the switch is turned on. It might also be worth checking whether Q1 is switching but failing to operate the relay such faults have been known.

Once the board is shown to be in good working order, a liberal coat of lacquer should be applied to the underside, and allowed to dry thoroughly.

Installation

There are two points requiring careful consideration. The first is to find a place to mount the PCB, within reach of the wiring of the windscreen wiper motor. The second is to discover which of the wires going to the motor is which.

The first of these depends on the individual car, so only general advice can be given. Any flat surface, at whatever angle, near to the motor, may be suitable. It should not be in direct line with any spray which may come in through the radiator grill, nor should it be somewhere where corrosion is obviously occurring. If there is a convenient access to the wiring inside the car, then this is a preferable mounting place, especially if there is also a convenient plastic panel to fix the PCB to.

The photographs of the board in situ show it on a removable plastic panel inside a Maestro, close to the position of the fixed slow wipe unit supplied with the car. I found the place by listening to the clicking when the slow wipe was in operation.

The only way to identify the wires non-destructively is to find a connector somewhere in the windscreen wiper motor wiring.

The positive connection can be found with the aid of a meter first of all, and then it should be possible to identify the standard speed connection to the motor by finding which one receives a continuous supply only when the wiper switch is in the standard speed position. This wire should be cut and connected to the unit (Fig. 4).

The positive supply may be obtained via a tap-in connector, and the $0 V$ connection may be

Fig. 4 Simplified wiring diagram.
taken to any convenient bolt which passes through the metallic structure of the car. A quick final test is now all that is needed before the unit is ready for use.

It has been used on a number of different cars, including an Austin Maxi, Austin Maestro, Morris Marina, Morris Ital, Jaguar XJS, Hillman Hunter and Triumph Herald. This last one was positive earth, and the design was modified accordingly.

Should the unit be used on any car in which the, switch wire is not grounded by the park switch in the motor, then an external pulldown resistor may have to be connected to the terminals, as shown in the test circuit (Fig. 3).

The operation sequence is: operate wiper switch to wipe screen once. Repeat after a delay. of x. The intermittent switch will now operate at a period of x $(\pm 10 \%)$, with the switch in the off position, until a third manual wipe is carried out, or the switch is turned on for several seconds continuously, or the ignition is turned off. It is always possible to switch the wipers on continuously (even if the accessory should malfunction), so there is no safety hazard.

The prototype installed in an Austin Maestro.

In the event of a fault which causes the wipers to operate continuously (for example, the relay remaining on all the time), it is possible to return to normal wiper operation by disconnecting just the positive supply to the unit, pending a proper repair.

Sniggles And Contrivances

There is one more important detail to mention. It is possible that, by mistake, a time period may be set which leaves the wiper stationary for only a small fraction of a second. If this happens, it is very difficult to flick the wiper switch during the stationary period to reset the circuit. If the circuit is allowed to run for a few seconds C4 will, on average, discharge rather than charge, and after a while IC1a will be reset via IC5a. This part of the device has been nicknamed the 'anti-knickers-in-atwist' circuit.

To improve reliability, the power supply connections to the

ICs are protected from spikes and reverse polarity connection by Ky, ZD1, and C2. If the circuit should accidentally be connected to the power the wrong way round, the only damage likely is that R9 may smoke mightily.

If the unit is to be used on a positive earth car, the circuit can be modified to work, provided that the wiper switch is in the power rather than ground side of the motor. Here are the steps required:

1) Exchange C 5 and C 6 .
2) Replace $R 9$ with a wire link.
3) Cut the negative track (labelled 0 V) and insert a 47R resistor.
4) Cut the track connecting the relay NO contact to + ve and reconnect it to the-ve where it enters the board before the 47R resistor.
5) Make sure that the power is connected so that the +ve is connected to chassis, and the 0 V board connection to the -12 V supply.

MODULAR TEST EQUIPMENT

Continuing his series on low-cost test equipment modules, Mike Meakin describes an un-enclosed counter of the 8 -digit kind.

This module measures frequency, period and time intervals and can also be used as a totalizing event counter. In common with the other instruments in our Modular Test Equipment series, it is designed for use as a free-standing board and thus avoids the hardware costs associated with cased equipment. To further reduce costs, the module is not equipped with a power supply but draws its current from the bench power supply module described in our October issue. Readers who do not wish to construct the bench supply should be able to find an alternative power source without too much difficulty.

The basic module has a sensitivity of 250 mV RMS and a maximum input frequency of 10 MHz . A plug-in prescalar module extends frequency measurements up to 150 MHz . Gate times of $10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}$ and 10 s can be selected in the frequency mode and either 1,10 , 100 or 1000 cycles can be averaged in the period and time interval modes. The reading displayed is in kilohertz in the frequency mode and in microseconds for period and time interval modes. With a 10 s gate time, the frequency can be

measured to 0.1 Hz resolution whilst in period and time interval mode the resolution is 0.1 us . Leading zero blanking and decimal points are automatically selected and overflow is indicated by the left-most decimal point being illuminated.

Simplicity is the keynote of this

On the pulse generator circuit diagram which appeared on page 38 of the December 1985 issue, R8 is shown as a 100R resistance. Its value should be 100 k as stated in the parts list.
It has been pointed out that the switch function labelling is not clearly visible on the photograph of the waveform generator (November 1985 issue) and the pulse generator
(December 1985 issue). Readers who require details of the labelling can obtain photocopies of the twice-up screen-print masters from us by sending a stamped, self-addressed envelope. We have included a flat-on view of the counter module in this month's article to forestall further complaints!
design and not all of the available functions of the IC are utilized. No provision has been made for frequency ratio measurements and the circuitry requires that time interval measurements are repetitive. Single shot events can only be measured by resetting the counter and initiating the event twice. The first pulse 'primes' the counter and the second pulse is measured and displayed. The polarity of the measured pulse can be selected by SW1 so that either negative or positive going pulses can be measured. In the eventcounting mode this switch determines the polarity of the edge on which the counter is incremented.

Both AC and DC coupled inputs are provided. The DC input

HOW IT WORKS

The clever bits are taken care of by IC2. The Intersil application note provides comprehensive information on this device and readers who wish to know more about its operation are advised to obtain a copy. IC1 amplifies and squares the input signal to provide the necessary digital signals for IC2.
It is unusual to use a digital CMOS IC as a linear amplifer and it is important that a National 74 HCUO 4 N is used in this position. This is an unbuffered high speed CMOS hex inverter and no other type will function correctly in this position. It is biased by RV1 and R4 to its linear operating region
giving an input impedance of 100k. R3 together with the internal clamp diodes of IC1e protect the input up to $\pm 25 \mathrm{~V}$. If input signals greater than this are anticipated then a suitable input attenuator should be constructed. IC7e amplifies the signal and IC1a and b form a Schmitt trigger to square it. IC1c and SW1 select the polarity of the pulse to be measured in time interval mode and the edge on which the counter is incremented in the eventtotalizing mode. The position of SW1 is unimportant for the other modes. SW2 is used in the event-totalizing mode to reset the counter

Fig. 2 Circuit diagram of the prescalar.
is mainly used for frequencies below 20 Hz and measurements of pulses from logic circuitry. The logic threshold levels and AC sensitivity are controlled by a bias preset allowing inputs from both TTL and and CMOS circuitry to be accepted.

An SP8629 is used as a high frequency prescalar. It operates with input frequencies between 10 MHz and 150 MHz and has a typical sensitivity of 100 mV RMS. The prescalar plugs into the main board from which it derives its power via the top pin of SK1. The manufacturers standard application circuitry has been used with extra input protection provided by R1, D1 and D2. As the device operates at high frequencies, the prescalar PCB has a ground plane on the upper side which is connected to 0 V via a track pin.

Because it is intended that the module be used without a case, all labelling of switch functions, sockets and so on will have to be done on the PCB itself. Various methods were described in the Modular Test Equipment article in the November issue, including the

Fig. 3 Component overlay for the counter/timer PCB.

PARTS LIST - COUNTER

use of rub-down lettering which can give a very neat end result. Another method which has since been suggested is to mark the necessary legends on by hand using drawing ink. The board would have to be thoroughly cleaned before starting, preferably with a suitable solvent, and when finished the lettering could be protected with a coat of clear lacquer. Whichever method you use, the lettering will almost certainly need to be completed before you assemble any of the components onto the board.

Construction

The board is double sided and for reasons of economy the holes are not plated through. The connections are made by track

PARTS LIST-PRESCALAR

SEMICONDUCTORS
C1 SP8629
D1,2 1N4148

MISCELLANEOUS
SK1
SK2
PCB

SEMICONDUCTORS
IC1
74 HCUO 4 N
ICM 7216A IJ
5882 or other $4 x$ $0.5^{\prime \prime}$ digit common anode display
misCELLANEOUS
SK1, 2 3-way Molex PCB plug with polarising post single-pole DIL PCB keyboard switch 1-pole 4-way DIL slide switch XTAL1

PCB; 2×16-way $0.1^{\prime \prime}$ pitch PCB plugs (for mounting LED displays); IC sockets if desired, 1 off 14 -pin and
off 24 -pin DIL; track pins or wire links for through-board connections; double-sided sticky foam pad tor xTAL1.

Fig. 4 Component overlay for the prescalar board.

PROJECT: Universal Counter

pins. These should be inserted in the board and carefully soldered on both sides.

Molex PCB plugs are used to mount the display and provide some of the throughboard connections. Prepare two sets of 16-way connectors made up from one ten way and another ten way cut down to six ways. Insert the longer side of the connectors into the board so that about 2 mm of each pin protrudes from the underside of the board. Turn the board over and solder the top connections. Use plenty of heat and allow the solder to flow around the pad

Inspect the board for solder splashes and good clean joints. The two displays should then be mounted on the pints and gently tilted at an angle of about 15 degrees above the horizontal. The holes on the displays are plated through and the pads need only be soldered on the top side. Care is needed to ensure that no shorts occur and again the board should be visually inspected after soldering.

The remaining components can now be soldered onto the board. Note that one end of R5 is used as

a throughboard connection and make sure that it is soldered on both sides. A socket should be used for IC2 and although the device is static protected the usual precautions should be taken. The crystal is attached to the board by a double sided adhesive foam pad As with any PCB it is a good idea to clean the board with a suitable organic solvent to remove the flux residue. Do remember that these solvents can attack the plastic of the DIL switches and the displays!

Construction of the prescalar module is very straightforward. A

BUYLINES

The ICM 7216A IJI and the 74 HCUO 4 N are both available from Farnell Electronic Components Ltd of Leeds and the 74 HCUO 4 N is also available from Maplin. Farnell will only accept orders from trade and professional customers but Trilogic Ltd of 29 Holme Lane, Bradford BD4 0QZ will obtain parts from them on payment of a small handling charge. The 74 HCUO 4 n is an unbuffered version of the standard high-speed CMOS (HC) device and offers a higher impedance and even higher speed. A 74HCO4 device would not perform as well in this circuit. The ICM 7216 is available in four versions, all of which are stocked by Farnell but only one of which, the 7216A, will work in this circut. (The 7216 B is a common-cathode version of the $7216 A$ and the $7216 C$ and D are respectively common-anode and common-cathode versions of a reduced function device which does not. include the counter-timer facilities). Incidentally, you should be prepared to pay quite a high price for this IC. As befits something which contains almost the entire circuitry of an 8digit, 10 MHz timer/counter/frequency meter, the 7216A will probably cost you in the region of $\mathbf{£ 3 0 . 0 0}$ by the time VAT and all the other extras have been added on.
The other IC, the SP8629, is available from a number of regular suppliers and none of the resistors or capacitors should present any problems. The
enclosed horizontal presets are avail able from Verospeed and Cricklewood Electronics and trimmer capacitors suitable for use in the CV1 position are sold by Maplin and Cirkit among others. Bradey Marshall stock the 5882 displays, although you may prefer to obtain these from Farnell if you are ordering from them anyway.
The DIL switches used for SW3 and SW4 in the prototype were obtained from ERG and are known as type DS16D 1-4. ERG are another company who will only deal with trade and professional customers, and we do not know of a dealer who can obtain parts from them. Farnell stock a 1 -pole, 8 way DIL switch (type DS16C 1-8) which will fit the board. In operation, the two outer positions at each end would have to be ignored and only the middle four positions used. An alternative is the DS16C 2-4, also available from Farnell, which has four ways and two poles. It will fit the board, but the two spare pads at either end of the top row of contacts on each switch would have to be separated from the adjacent pads to which they are presently connected. The switch will then have only four positions as required, but the switching sequence would be altered. On the range switch, for example, the sequence would then be $10,1,1000$, 100 instead of $1000,100,10,1$.
The PCB will be available from our PCB Service, for details of which see page 59.
track pin must be inserted in the position indicated on the overlay and soldered on both sides so as to connect the ground plane to 0 V . The only other point to note is that no IC socket should be used for the SP8629. Using a socket would probably upset the high frequency performance.

Testing

This module requires only a single 5 V supply capable of providing up to 250 mA . Adjust RV1 and CV1 to their midpositions, select the frequency mode and the 1 s gate time, then switch on the power. The right most LED should display zero. Apply an input signal of about 1 V peak to peak to the AC input and check that you get sensible readings on the display. CV1 should be adjusted to give a display of 10000.000 kHz when connected to a 10 MHz frequency standard, but for most uses can be left in its mid-position. The other functions and ranges should then be checked. A 555 connected as an astable can provide a signal suitable for checking the period, time interval and event totalizing modes. RV1 can be set to its optimum position by gradually reducing the amplitude of an AC input signal and adjusting the position of RV1 to obtain consistent readings

The prescalar module is tested by simply plugging it into the main board and connecting a suitable input signal. A short wire aerial can often pick up sufficient signal from low power transmitters or even the stray radiation from FM tuner local oscillators. Don't forget to multiply the display readings by one hundred to obtain the correct frequency!

Interak 1

A METAL

 Z80A COMPUTERColleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you canget your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.
\qquad

$\left.{ }^{\prime 280 a l}\right)_{\text {vou }}{ }^{\text {sim }}$
ExPatsion

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals £1-£5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your nameandaddress with a 21 pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank
Greenbank Electronics (Dept. T1E), New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

OSCILLOSCOPES

TELEQUIPMENT D67. Dual Trace 50 MHz . Delay Sweep with manual..................2250 COSSOR CDU 150. Duai Trace 35MHz Solid State. Portable. $8 \times 10 \mathrm{~cm}$ display. With manual.......................in The Solid S.E LBS Brale AC or External DC OperaState. Portable Ac or Exernananual... $\mathbf{\Sigma 1 5 0}$ TEKTRONIX 547 Duai Trace 50 MHz . Duai TB. Delay Sweep. With Manual 8140 TELEEOUIPNENT D43. Duai Trace 15MHZ. With manual....................................100
EX-EMNISTRY CT436. Dual Beam 6 MHZ. EX-MiNISTRY CT436. Dual Beam 6MHZ. Size $10 \times 10 \times 16$ ins. With manual

DIGIT. AUTO RANGING. Complete with batteries and leads (P\&P £5)
TYPE PM2517X (L.C.D.)
MULTIMETERS

AVO 8 MkIV and AVO 9 MkIV

Complete with Batteries \& Leads for only..585 AVO TEST SET No. 1 (Similar to Avo 8 MK3). Complete with batteries, leads \& Carrying AVO Model $7 \times$ Complete with batteries, Avads \& carrying case 840 AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batteries \& leads ..E25 AVO 72 - Similar to above but no AC Current range. With Batteries \& Leads \&1: AVO TRANSISTOR ANALYSER CT446. Sultcase style - battery operated. (Bat terles not supplled). With information AVO TRANSISTO................................tER TT169 Handheld GO/NOGO for In-situ Testing Handheld. GO/NOGO for in-situ Testing Complete with Batteries, leads \& instruc
tlons (P\&P $\$$)................NOW ONLY \&12

Please noter From 1st January 1986 we wli Pemse notet from ist January 1986 we win Mondays-Frldays 9 a.m. -5.30 p.m. (with late nights Thursdays until 8p.m.)

NEW EQUIPMENT
HAMEG OSCILLOSCOPES 605.Dual Trace HAMEG OSCILLOSCOPES 605.Dual Trace
60MHZ Delay Sweep. Component Tester HAMEG OSCILL...15 20MHZ Compontent Tester 2270 BLACK STAR FREQUENCY COUNTERS. BLACK
Meteor $100-100 \mathrm{MHZ}$ \qquad .. .899
Meteor $600-600 \mathrm{MHZ}$. .8126
Meteor 1000-1GHZ
\qquad BLACK STAR JUPITOR 500 FUNCTITION GENERATOR SINE/SquareI 500 FUNCTION -500 KHz PSP 54 HUNG CHANG DMM $6010.3^{1 / 2} / 2$ digit. Hand held 28 ranges Including 10 Amp AC/DC. Complete with batteries \& leads. p\&p C4 ..33.50 $\times 10$ P\&P£2
PROFESSIONAL $9^{\prime \prime}$ GREEN SCREEN MONITORS made by KGM for REUTERS. Glves quallty 80×24 line display' Composite Video In. Cased. Good Condition

51/4"FLOPPY DISK DRIVES
TANDON $1 / 2$ Height. Brand New Single Slded Double Density 860 Double Sided Double Density 100
MPI Double sided, Double Density 80 MP1 Double sided, Double Densi................................ DISK DRIVE PSU. $240 \mathrm{~V} 1 \mathrm{~N} ; 5 \mathrm{~V} 1.6 \mathrm{~A}$ a 12 V 1.5A out. Size: W12 mmm_{1} H75mm D180mm. Cased. Un-used. Only $\mathbf{£ 1 5 . 0 0}$

200 Steps per rev. 4 Phase (5wire) 12.24V Torque 25 oz inch (will run on 5 V with reduced torque). Size 57 mm dla $\times 57 \mathrm{~mm}$ 6 mm shaft 815 ea, $6 / 12$ Steps per rev. Phase. 12 -24 (willwork 5 ff $\varepsilon 7.50$. dia $\times 41 \mathrm{~mm}$ shat. 22 ea. 5 or 24 Steps per rey. 4 wire 5 V 3.3 Amps . 0.250 rpm 0.200 PPs. Size 70 mm dia $\times 41 \mathrm{~mm}$. $\mathrm{E6}$ ea. 200 Steps per rev. 120 V (3 wire): Torque 2 oz inch. Size $60 \times 57 \mathrm{~mm}$. 6 mm shaft. E | ez. |
| :--- |
| ea. |

This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists.
Please check availability before ordering. CARRIAGE all unlts $£ 12$.
VAT to be added to Tdtal of Goods \& Carriage. Please allow, 21 days for delivery

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: 073468041
Callers welcome 9am to 5.30 pm Monday to Saturday Inclusive

ORDERING INFORMATION:

ALL PRICES EXCLUDE VAT

FREE P\&P on orders over $£ 20$ (UK only), otherwise add $75 \mathrm{p}+$ VAT. Overseas P\&P: Europe $£ 2.75$. Elsewhere £6.50. Send cheque/PO/Barclaycard/Access No. with order. Giro No. 529314002.
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME
GOODS BY RETURN SUBJECT TO AVAILABILITY

ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third and fourth are the month and the number after the hyphen indicates the particular project.

Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until after we receive payment.

\square	E/8402-1 Speech Board Mini-Mynah 11.47
\square	E/8402-2 MP (Modular Preamp) Disc input (mono) \qquad
\square	E/8402-3 MP Output stage (stereo) 3.80
\square	E/8402-4 MP Relay/PSU. 3.80
\square	E/8402-5 MP Tone, main (mono) . . 3.80
\square	E/8402-6 MP Tone, filter (stereo) . . 3.80
\square	E/8402-7 MP Balanced output (st) . . . 3.80
\square	E/8402-8 MP Headphoen amp (st) . . 3.80
\square	E/8402-9 MP Mother Board P POA
\square	E/8403-1 Power Meters 6.93
\square	E/8403-2 Z80 DRAM. 10.24
\square	E/8405-1 Auto Light Switch 4.11
\square	E/8405-2 ZX81 EPROM Prog 11.00
\square	E/8405-3 Mains Borne RC X ${ }^{\text {mer }}$. . . . 5.70
\square	E/8405-4 Centronics Interface 4.06
\square	E/8405-5 Vario 7.95
\square	E/8405-6 Midi Drum Synth. 3.63
\square	E/8406-1 Oric EPROM Bd... 20.47
\square	E/8406-2 Spectrum Joystick 3.52
\square	E/8407-1 Warlock Alarm 9.45
\square	E/8408-1 Joystick Interiace 3.96
\square	E/8408-2 EPROM Emulator. 12.42
\square	E/8408-3 Infrared Transmitter. 3.96
\square	E/8408-4 Infrared Receiver 3.96
\square	E/8409-1 EX42 Kybd, Interface. 3.93
\square	E/8409-3 Dry Cell Charger. 2.82
\square	E/8410-1 Echo Unit 3.95
\square	E/8410-2 Digital Cassette. 10.25
\square	E/8410-3 Disco/Party Strobe. 5.31
\square	E/8411-1 AM/FM Radio (4 bds) . . 14.61
\square	E/8411-2 Control Port-controlbd . . 12.70
\square	E/8411-3 Control Port-1/O bd...... 6.62
\square	E/8411-4 Capacitance Meter....... 3.68

How to order:

Indicate the boards required by ticking the boxes and send this page, together with your payment to: ASP Readers' Services, PO Box 35, Wolsey Road, Hemel Hempstead, Hertfordshire HP2 4SS. Payment in sterling only please. Prices subject to change without notice.

Total for boards $£ . \ldots \ldots \ldots \ldots$. . Add $50 p \mathrm{p} \& \mathrm{p} \quad$ Total enclosed $£$.
Signed
Name
Address

PLEASE ALLOW 28 DAYS FOR DELIVERY

Due to the recent change of manufacturer, a large number of boards have not yet been priced. The above list does not include any boards from projects published before the beginning of 1984 although a number of these are still available. All queries as to price and availability should be directed by letter only please to the address shown on this order form.

Touscla Swich
 Ali Taalf
 Ringwood

This is a reliabletouch switch design with wide application, which uses only common or garden components. In the basic circuit, the output is normally at logic 0 . When the contact is touched, the output smartly switches to logic 1.

IC1a is used in an oscillator circuit which produces a frequency of approximately 200 kHz . All the time that the contact is not being touched this high frequency signal passes via CV1 and C2 to the input of IC1b. This Schmitt inverter switches at the signalfrequency and keeps C4 charged.

When a finger is placed on the touch plate, the signal reaching the input of $I C 1$ b is substantially reduced by the potential divider action of

CV1 and the capacitance of the finger. This in turn causes the output of IC1b to stop switching and remain at logic 0 . C4 discharges through R3 and the output of IC1c switches to logic 1 .

CV1 should be adjusted for optimum sensitivity. Some units may require a different value of C 1 from that shown owing to the tolerance on the Schmitt levels of the 74C14 - the approximate operating frequency is

$$
f=\frac{2}{R 1 \times C 1}
$$

C2 prevents hum pickup from causing IC 1 b to switch. If preferred, 4093 s wired as inverters may be used instead of the 74 C 14 s .

The second figure shows two touch switches used to set and reset a latch. Obviously the principle could be extended to many more ways, but still only one oscillator would be needed.

Anallogue
 Optomsolator

P. Cuthertson,

Inverurie.

This circuit accepts an analogue input and transfers it to the output faithfully without any electrical connection, the link being optical. It is more usual to see V to f convertors being used for this, but they demand more cumbersome circuitry and unless a train of pulses is required, the linear approach should be considered. Additionally, V to f convertors integrate or smooth out the incoming waveforms, which may or may not be desirable. With slight modifications (changing a few resistor values) this circuit will feed the A/D convertors of, for example, a BBC without introducing loops.

Linearity is maintained by using two optoisolators; these are both non-linear, but equally so, and the effect can be made to cancel out. Although not done on the original, a dual type could be used to obtain the benefits of equal temperatures. I don't think this is as important as it

Mufiti-Chamel
 Electromic Signal
 Sydichina

A. Armstrong, Leighton Buzzard

Thistech-tip shows how to use electronically latched switching of up to 8 signals. It is intended for use in home audio systems. Unlike many electronically latched systems, it can be made to remember which position it was in when last used. Indicator driving is no problem either.

The NAND gates shown in the first figure are arranged so that, as any switch is pressed, the outputs of the latches take up the binary number corresponding to the switch pressed. Five-input NAND gates are needed for eight way switching, so one can either use 4068 s and connect the extra inputs to logic 1, or five-input gates can be constructed from inverters and diodes as shown in the lower figure. In this case, the only pull-up resistors required will

would be on a V to f circuit, and besides, the isolators are dissipating approximately equal power.

The two halves of the circuit are powered from separate supplies. The network R1, 2, 3, 4 attenuates the incoming voltage and offsets it. This ensures that the LEDs always have a certain amount of current flowing in them. IC1 drives both LEDs and the voltages on its inputs are nearly equal. Current flows in R9, the offset is removed and the gain adjusted in the output circuit, IC4.

To get the best linearity, adjust RV'1 to the centre of its travel and take
two pairs of measurements of output versus input, one pair near the more positive end of the range of interest, the other pair near the more negative end of the range. Divide the differences between the adjacent pairs of inputs by the difference between the adjacent pairs of output values, giving two ratios which should be approximately equal. Adjust RV1, making a note of how far it has been adjusted, and repeat the measurements and calculation. Compare this new set of ratios with the previous lot. There are three possibilities: the error will
have diminished, in which case adjust further in that direction; it will have increased, in which case reverse the adjustment direction; or you may have adjusted past the point of linearity in which case you will note that the ratio which was the larger is now the smaller. In this last case reverse the direction of adjustment but don't adjust too far back again. Repeat until the linearity is acceptable.

In fact, the linearity is only a few per cent out with a 330 ohm resistor in place of R7 and RV1. If you can stand a certain amount ofnon-linearity substitute the resistor. If you possess a ramp generator and scope capable of XY display then you will be able to adjust the linearity by eye.

Adjust the gain and offset once the linearity is satisfactory. Do not be afraid to alter resistor values to suit other input values. C1 is not usuallynecessarybut I have included it as it stops any tendency to oscillation. The power supplies are simple 3 terminal regulators. The original circuit runs IC 1 at $\pm 15 \mathrm{~V}$ but one may get away with just plus 15 V , connecting pin 4 to ground. D1 would no longer be needed then since it only serves to protect the optoisolator LEDs from polarity reversal.
be the ones directly connected to the gates, a total of six instead of eight.

This scheme can be carried out using one hex inverter rather than six 4068 s , but it is untidy with all those diodes hanging on the board. If you only want four way switching, two triple, three-input gates can be used, leaving two gates spare. A 4052 would then be used to switch both channels of the stereo source.

Only one 4051 is shown in the diagram here, but in practice three would be used, with the address lines in parallel. Two of them would switch the signal and the third the indicator LEDs. It is quite safe to put 5 mA through this type of device, so the common input/output pin is connected to +7.5 V via about 1 k 2 and the LEDs are connected to the switched terminals. Then one LED will illuminate at a time, corresponding with the channel selected.

Battery backup can easily be added. The positive connections to all the CMOS gates and pullup resistors should be connected to the battery supply, but nothing else should be. The only thing to remember is that it is possible to change the state of the latch while only the battery supply is present. This circuit has. been tested and is in use.

ETI
ETI JIANUARY 1986

The foil patiern for the Walkmate board.

The top and bottom foils for the Sound Activator loard.

The foil patterns for the Modular Test Equipment Universal Counter: above and above right, the top and bottom foils for the main board and below, the underside foil and the upper side groundplane foil for the prescaler module.

 THPAKAADIIS GAVE OPCOMPUTEA AND ELEGTRONC EQUPMENI

 THPAKAADIIS GAVE OPCOMPUTEA AND ELEGTRONC EQUPMENI}
 4164200 ns DRAMS 8 Tor E 14.954116300 ns E 1.50

8748 \&15.00.
8748 £15.00.
Thousands of IC's EX STOCK send SAE for list.
 Dry Fit MAINTENANCE FREE by Sonnenschein \& Yuas A300 $0719131512 v$ 3ah as RS $591-770$ NEW
A300 $071913126 v 3$ ah as RS $591-360$ NEW E9.95
 A300 $07191202 \cdot 6-0-5 v$ 1.8ah as RS $591-382$ Ex Equip
£5.99 $3.6 v 100$ mah PCB mount as RS $591-477$ NEW $£ 10$

- HOT LINE DATA BASE
 -base. Buy, browse or place YOUR OWN AD tor: goods or services to sell. 1000's of stock items, spares and one off bargains. Updated daily.

For 300 baud modems call 01-679 1888
For $1200-75$ baud modems call 01-679 6183

A MASSIVE purchase of these attractive stand alone terminal units enables a supen Bancal the US GENERAL ELECTRIC CORPORATION the GE electronic keyboard coupled to a quality built matrix electronic keyboard coupled to a quality buit matrix capable of continuous duty printing, with up to 120 characters per line. Standard RS232' interface accepts ASCII data at 110, 150 or 300 baud. Ideal for Terminals Data loggers, local label printing, or just as a printer! Soid TESTED with data ONLY e95.00. Also avalable with TWIN MAGTAPE CASSETTE unit for data capture, data
preparation etc $£ 150.00$ Carriage $£ 10.00$.

COLOUR AND MONOGHROME MONITOR SPEGIALS

SYSTEM ALPHA' 14"' COLOUR MULTI INPUT MONITOR

 made in the UK by the famous REDIFFUSION Co. for their own protessiona computer system this monitor has all the features to suit your composite Video llow dontor requirements. Two video inpust RGB and mes of micro computers and VCR's. An internal speaker and audio amplifier may be connected to you astems output or direct to a VCR machine, giving superior sound quality Many ther features included PIL tube, Matching EBC case colour, Major controls on front panel, Separate Contrast and Brightness - even in RGB mode, Two types o audio input, Separate Colour and audio controls for Composite Video input, BNC plug toThis Must be ONE OF THE YEAR'S BEST BUYS
Supplied BRAND NEW and BOXED complete with DATA and 90 day guarantee 16" COLOUR monitor. RGB input
DECCA $8016^{\prime \prime}$ COLOUR Monitor. RGB input Little or hardly used manufacturer's surplus enables us to offer this specia 899.00, a price for a colour monitor as yet unheard of!! Our own intertace, safet modification and special $16^{\prime \prime}$ high definition PIL tube, coupled with the tried and ested DECCA 80 series TV chassis gives 80 column definition and picture quality found only on monitors costing 3 TIMES OUR PRICE. In fact, WE GUARANTEE You will be delighted with this product, the quality for the price has to be seen to be believed. Supplied complete and ready to plug direct to a BBC MICRO comper or anto degaussing circuit features are: internal speaker, Modurar cons only $52 \mathrm{~cm} W \times 34 H \times 24 \mathrm{D}, 90$ day guarantee. Atthough used, units are supplied in EXCELLENT condition, ONLY 299.00 + Carr. " COLOUR monitor. Compositve video input. Same as above CR or AUDIO VISUAL USe. ONLY $899.00+$ Ca
REDIFFUSION MARK 3, 20" Colour monitor. Fitted with standard 75 ohm composite video input and sound amp. for shops, schools clubs and other AUDIO VISUAL appications. Supplied in A BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors.
All units are fully cased and set for 240 v standard working with composite video inputs. Units are pre tested and set up ror 80 cola displays are unaffected. 25 . when MINOR screen burns exist - normal data displays are unafected.
$12^{\prime \prime} \mathrm{KGM} 320-1 \mathrm{~B} / \mathrm{W}$ high bandwidth input, will display up to 132×25 lines. द32.95 $\mathbf{9}^{\prime \prime}$ KGM 324 GREEN SCREEN fully cased very compact unit Only $\mathbf{8 5} 5.00$ 9" HITACHI VM-906E/K Black and White screen $£ 49.95$

Carriage and insurance on all monitors $£ 10.00$

D.C, POWER SUPPLY SPEGIALS
 \section*{GOULD OF443 enclosed compac 011 and $23 v$ @ 002 a Dim $18 \times 11 \times 6 \mathrm{~cm} 110$ o}

 $240 v$ input BRAND NEW Only E14.95GOULD GB-40A 5 V 40 amp switch mode supply NEW 1130.00 with a fully regulated DC
GREENDALE 19A-BOE Switch mode 60 watt open PCB with
 amp. Dim only 11 cm . 20 Only £24.95 . AC-DC Linear PS continuously supply fully regulated $D C$ outputs of $+5 \mathrm{~V} @ 3 \mathrm{amps},-5 \mathrm{~V}$ $@ 0.6$ amps and $+24 \mathrm{v} @ 5 \mathrm{amps}$. Short circuit and overvoltage protected. 110 or 240 V
AC input. DIm $28 \times 12.5 \times 7 \mathrm{~cm}$ NEW 49.95 .

Carriage on PSU's £3.00

VDU TERMINALS

 Standard VDU data entry terminals at give away QUME QVT108. Current product, state of the art termin PAC TVI 925 emulation 25×80 screen, 2 page RAMi base, Printer port, FunctionClock Swive and tilt keys etc. BRAND NEW and BOXED AT ALMOS
HALF PRICE Only E425.00 AJ510 - EX RENTAL Z80 controlled, 15'
green screen 24×80 display, graphics, cursor green ssieen addressing, crinter port etc. Very good condition addressing, erinter pont ect. Very good conly $£ 25.00$. ADDS520-Dumb terminalused, 12 " "b/w Screen RS2 32 interace
ONLYE 125.00

Carriage on terminals \&10.00
100 's of other terminals in stock
00 s of other terminals in stock

BT 600 Jack plug and cable £2.25. Carriage and Ins $£ 10.00$

OPEN
 CHANNEL

There have been a number of developments in the telecommunications arena since | last wrote. First, it looks as though British Telecom's bid to buy a 51% stake in Mitel is to be cleared by the Monopolies and Mergers Commission. The original £ 180 million bid - yes $£ 180$ million - was made in May of this year, and consequently referred to the Commission as many telephone equipment manufacturers like Plessey and GEC believe the acquisition would be harmful to them. And wouldn't it?
Let's think of the possibilities. If BT is allowed to buy the controlling share of Mitel, it can then press ahead with the manufacturer of small private automatic branch exchanges (PABXs) of the sort: Mitel already makes. it currently buys these exchanges from Mitel, of course, as well as buying similar exchanges from other manufacturers (such as Plessey and GEC) - the difference being that as BT will, in effect, be manufacturing its own exchanges, a greater profit will be made from the equipment than that from other manufacturer's equipment. In the long term, BT is

ARFS PUZZEE

To save a few pennies on our projects at ETI, we often buy cheat bags of mixed components. Last week we received a packi of assorted CMOS ICs from BI-A.BAG and set about testing and sorting them out. All went well until we came across an IC with no markings on at all. 'Don't throw it away,' said Alf. 'It's just what: I need to test my new IC. identifying machine.' He trotted off to his workshop and returned a few minutes later, proudly showing us the printout from his machine. This is what it said:

IC TYPE: MASK PROGRAMMED ROM, 256×1
PIN1 NC
PIN 2 Address line
PIN 3 Address line
PIN 4 Address line
PIN 5 Address line
PIN 6 NC
PIN: OV
PIN 8 NC
PIN $9 \quad$ Address line
PIN 10 Address line
bound to increase its manufacturing capabilities to reduce the intake from other manufacturers - that is an inescapable fact. So on the face of it, yes, the other manufacturers have the right to grumble.
On the other hand, BT is now committed, since privatisation, to providing the best service for its customers (theoretically, it was before privatisation, too, but that's another issue). It stands to reason, therefore, that BT would be entering the manufacturing side of the industry, anyway. And if it doesn't purchase the capabilities in one swoop, by buying a controlling stake in a company such as Mitel, it will inevitably setupits own manufacturing organisation in stages over the coming years. The difference between these two alternatives is simply the timespan, of course. Plessey, GEC et al, have no reason to assume they are the rightful suppliers of equipment to BT - if they can supply suitable equipment to BT at an economic price then I am sure BT will not wish to make the equipment itself.
The best outcome of the affair must be a recommendation from the Monopolies and Mergers Commission that BT can buy Mitel if it wants, but that for a limited timespan it cannot increase its market share because of the manufacturing advantage. This will give other manufacturers a

PIN 11 Address line PIN 12 Adress line
 PIN 12 Adress line
 PIN 13 Data out

PIN 14 +V
CONTENTS:
Locations 0 to 254 contain 1 Location 255 contains 0
We were most impressed until it occurred to us that there was a much more likely identity for the IC.

To test our idea, we gave Alf a certain 4000 -series CMOS IC to test on his machine. He soon returned with a puzzled look on his face and a printout exactly the same as the one above. Which IC did we give him? The answer to last month's puzzle.

Let's suppose you actually tried to build an infinite resistor network. You could start off with a single section of two $4 R$ resistors and a $5 R$, giving a resistance for the first section of $13 R$. Working from left to right, you could then add another pair of $4 R$ resistors and a $5 R$. The resistance at the terminals would have dropped slightly because the 4 R resistor of the first section is now in parallel with the second section.Adding a third section would reduce the resistance yet again, but by a much smaller amount than before.
chance to get their houses in order.

Wire We Waiting

In an unprecedented attempt to awaken public interest in the possibilities of cable television systems, the Department of Trade and Industry is allocating $£ 5$ million in the form of grants, to companies involved in interactive cable television demonstrations. Since the first rumblings of the cable television revolution were first heard, back in 1982, less than $£ 2$ million has been given in support - so the new sum represents quite a step forward,

Through the Support for Innovation scheme run bythe DTI, those ,eligible will receive up to 50% of the costs of providing the demonstration equipment. Equipment funded from this magnificent sum will, I am sure, persuade Joe Public that interactive cable television is all that it was originally cracked up to be and better! In reality, Mr Public probably feels, and still will feel, that interactive cable television is just anothergimmick to make him part with his money.

Wire-less Are We Waiting

The selection procedure to determine the organisers of proposed community radio stations is now underway.
Community radio is planned to
By the time you had 100 or so sections connected, you'd be hard pressed to measure any change in resistance at all from adding another section, and when you reached a billion sections, even your ultra sensitive meter with one single electron resolution would have given up long ago. For an infinitely long resistor network, you would not have any change in resistance at all byadding another section, not even in theory.

Instead of adding another section to the right hand side, 1 want you to add one to the left. I know that means an infinitely long walk to the other end of the
go on-air in the Spring, initially as part of an experiment lasting two years but eventually, it is hoped, on a full-time basis. If concluded and introduced satisfactorily community radio will provide an important new service not performed by existing radio broadcasters - ie, the BBC and the IBA. Rumours abound, however, that there are certain personnel on the advisory selection panel who (having very close links with these very same existing radio broadcasters) would not want community radio to take off without problems, or more importantly, would not want community radio to take off at all. I am convinced that the Home Office will look at all viewpoints most sympathetically and weigh up the situation thoroughly before allocating the franchises for the community radio station. Watch this space...

Why ARE We Waiting?

At the time of writing I've had no news from the CCIR meeting regarding the future of European television - ie, whether we're to go to the Japanese HDTV route, or the European extended C-MAC route. These things take time, I'm sure. It's taken us 50 years to get this far - we'll be damned if a few Japs can get us into a flap over what's best for our telly.

Keith Brindley
resistor chain, but it's all in a good cause. Let's call the resistance of the infinitely long resistor chain 'Alf', after its inventor. Adding another section at the left hand side gives a resistance at the new terminals of:

$$
(9 R+4 R) / / \text { Alf }
$$

Since the resistance of the new chain will be just the same as that of the old one, we have:

$$
\text { Alf }=(9 R+4 R) / / \text { Alf }
$$

This is an equation that we can easily solve for Alf, and we find that the resistance of the network is $12 R$.

REVOEWS - 1985 COOKS

CIARCIA's CIRCUIT CELLAR Vol IV

Steve Ciarcia. Price: $£ 18$
McGraw Hill Books Co. (UK) Ltd., Shoppenhangers
Road, Maidenhead, Berkshire SL6 2QL.

ELECTRONIC AND MICROPROCESSOR
 CONTROLLED SECURITY PROJECTS

Vaughn Martin and Dean Davis. Price $£ 14$
BUILD A PERSONAL EARTH STATION FOR
WORLDWIDE SATELLITE TV RECEPTION
Robert J Traister. Price: $£ 12$
EXPLORING LIGHT, RADIO AND SOUND
ENERGY, WITH PROJECTS
Calvin R Graf. Price $£ 9.45$
John Wiley \& Sons Ltd., Baffins Lane, Chichester,
West Sussex PO19 1UD
THE EXPERIMENTER'S GUIDE TO INTEGRATED CIRCUITS
Robert J Traister. Price: $£ 12.70$
THE EXPERIMENTER'S GUIDE TO SOLID STATE DIODES
Robert J Traister. Price: $£ 11.80$
Prentice-Hall International, 66 Wood Lane End, Hemel Hempstead, Herts HP2 4RG

EASY ADD-ON PROJECTS FOR THE

COMMODORE 64, VIC-20, BBC MICRO AND ACORN ELECTRON
Owen Bishop. Price: $£ 2.95$
Bernard Babani (Publishing) Ltd., The Grampians,
Shepherds Bush Road, London W6 7NF.
COST-EFFECTIVE ELECTRONIC CONSTRUCTION
John Watson. Price: $£ 5.95$
MacMillan Education, Houndmills, Basingstoke, Hants RG21 2XS

Not long ago I spent some time working on a journal for the British and Australian market which, to a large extent, was intended to be an editorial translation from American initiated text. I quickly realised that this idea wasn't possible. The American and British markets in electronics publications are quite different - it's not simply a matter of re-styling American text toa British manner, because the actual language used is very different, too, The outcome was that a virtual re-write of the journal
was necessary before we dare publish it.
The same differences exist betweenAmerican and British books on electronics: and are indeed amplified when the books are about electronics projects - not only is the language different, but components which are commonplace in America are sometimes difficult to obtain here. True, you can still find a large number of American books about electronic projects on the bookstalls - look for yourself - but that's not because they're particularly good;

it's just that the British counterparts aregenerally bad!

New books are continuously appearing and it's to some of these that I'm now going to turn my attention. Six of these are American imports but two are British thoroughbreds. I'll deal with the American books first.

Ciarcia's Circuit Cellar

Steve Ciarcia is a well-known and respected columnist and writer in America. In fact, this book is simply a collection of his columns published under this title in Byte magazine, so it will not be new to those who read the magazine.

There are 18 chapters in the book corresponding to those columns in the January 1982 to June 1983 editions of Byte. The subject matter is therefore not quite up-to-the-minute, but it is nevertheless quite interesting. Among projects described by Ciarcia are a computerised weather station, a simple speech recognition circuit, an infra-red remote controller, a real-time clock, a laser-disc controller, a computer-controlled sound effects generator and a build-ityourself IBM compatible computer.
Most of the projects are reasonably simple (with the notable exception of the IBM-compatible computer) and are generally based around one new, main IC with a handful of peripheral devices. Programs are included where required. In America, at least, the circuit boards and components for most projects are available mail-order, although this may not be true for the British reader.

Each project is accompanied by a chatty but fairly detailed explanation of operation which allows the reader to get to know the project before building it rather similar to the'How It Works' section in ETI projects. Where necessary, the author also gives any background information regarding the electronic principles. His long experience
as a project designer for magazines throughout the USA gives him a great insight into what readers want from do-ityourself electronic projects, and although the book is written in Americanese, even British readers may find it a good buy.

Finally, although I wouldn't particularly recommend the book as being the best example of electronics project books (it is American, remember), you should remember that most of the projects described are designed with computer interfacing in mind, so those readers with computers who go in for interface projects should find the book useful, if only for the ideas discussed. It is certainly one of the best written American books on electronic projects I have seen.

Electronic And

Microprocessor Controlled Security Projects
This book is all about home security systems - burglar alarms and such like - so it's specific in nature, which of course limits its own potential market. Some of the principles discussed, however, are general ones, so readers shouldn't rule it out before looking at it. And, although specific security projects are discussed, a large part of the book is given to discussing general security principles, so it could form part of a reference library on security topics. In content, the information is not particularly in-depth, but it does present an overview which may interest those readers who have never built security projects before and who require an easy introduction.
The first part of the book deals with security projects which are not microprocessorcontrolled, while the second part describes those which are. Rather than using a home-computer-and-interface-type of arrangement for the microprocessor controlled projects (which most other writers would have done) the authors have designed and built their own dedicated microprocessor controller board, details of which are given in chapter 4.
Each project (bar one) is designed on a printed circuit board (all patterns are given, same size), although this won't prevent the dedicated electronics enthusiast from designing his own or even building the project on breadboard. Some of the more complex projects in the book are accompanied by board layout diagrams, timing diagrams and fault-finding charts.

Build a Personal Earth Station

Chapter 1 of this book starts (and I quote) "Most of us on planet Earth have several things in common. One of these is the television age." and from then on the book gets worse.

Despite its title, the book gives no information at all on building your own satellite television receiving station, so it's a pity the UK's Trades Description Act doesn't apply to American books. The book only gives details on siting commercially available receiving equipment. In this respect it's abit like a 'Blue Peter' guide to making your own interplanetary spaceship!

The Experimenter's Guide

 to Integrated CircuitsAnother book from the pen of
Robert I Traister, this one provides much more meat for the electronics builder, albeit a little basic in parts. Mr . Traister describes the fundamentals of integrated circuits: how they are made, how they are packaged, how they are used, as well as some simple information regarding other components. General circuit and project building practices are also discussed, along with some of the author's views on safety in the electronics lab.
The differences between analogue and digital ICs are adequately covered and some of the many types of digital families are described. One area which is sadly lacking, however, is a description of CMOS ICs. The aluthor doesn't even mention them let alone use them in circuits! All regular ETI readers will know that CMOS ICs are an integral part (yes, a pun!) of the electronics scene nowadays so no electronics book of this nature should dare ignore them. However, this is an American book, and from it we can only presume that CMOS devices have not achieved the popularity in America which they have here.
A good selection of circuits for experimentation and project building are included in the book, but they are a little biased in favour of analogue ICs.

The Experimenter's Guide to Solid-state Diodes
What Robert J Traister did for ICs in the previous book, he now does for diodes in this book. The same major areas: manufacture, packaging, use, safety, construction techniques etc, are covered, this time in relation to the various forms of semiconductor diodes available to the electronics enthusiast.

With the ICs of the previous book, discussions of these areas can only be general because there are so many different types, but with diodes, on the other hand, much more specific information can be given. There are, after all, only a limited number of available types of diode. Mr Traister takes advantage of this and supplies some high quality and in-depth information. For example, Chapter 2 gives all the important specifications which will be needed by the average builder when choosing a diode for a particular circuit. It's not possible to give this type of information in a similar book on ICs.
A wide variety of projects is given in the book, ranging from simple diode protection and power supply rectification circuits to thyristor and triac control and LED meter applications.

This really is a most unusual book. It is packed with information about many aspects of electronic communications and transducers, but it's written in such a way as to confuse the reader into thinking that this is not what it's really about at all! And if you're not confused by that description of the book, then you'd better read the book itself.

The bulk of the book is about electromagnetic and sound phenomena. Via experiments the author takes the reader through some fascinating ideas that would normally be presented in more orthodox ways.

For instance, the reader is told how to use transducers and amplifiers to listen to a variety of things including LEDs and LCDs, heart pacemakers(!), and various sounds not normally heard from car engines such as the alternator turning, the distributor and the fuel gauge. Thunderstorms, aircraft vibration and fish are also covered.
Along the way, however, the principles involved in these experiments and projects are described, so that just by working through the book from start to finish you should pick-up (excuse the pun) a great deal of knowledge. It's an unusual book, and it's only a pity more can't be written like it. Other authors take note!

Easy Add-on Projects

At last, I feel I'm on home ground with the first British book, written in English. There's bit of a difference in price, too, from the American offerings.
Owen Bishop, as you may know, is a respected author in
the electronics world, and has written many other books of projects as well as several magazine articles. Recently, his attention has turned, like that of many electronics writers, to projects which interface to home computers. The home computer market has taken off nowhere as strongly as it has in the UK, so it seems only natural that UK authors could write about it well. Owen tackles the problem with his book in an authoritative way, describing projects which can be used with any of the home computers listed in the title.
The projects include a pulse detector, picture digisiter, model controller, bleeper, lamp flasher, light . pen, magnetic catch, photo-flash, and a weather station. All projects are fairly simple and inexpensive to build, so beginners as well as the more experienced constructers will find the book a useful source of ideas. .Sample programs are included to get the projects up and running.

Cost-effecive Electronic
 Construction

Where the American books I have reviewed so far fell down was in their presentation of the
projects to be built by the reader. The Americans view the construction of the project as being a boring, almost secondary concern; they are mainly concerned with blowing their own trumpets and singing the project's praises. The better books deal as much with the nitty-gritty topics such as how to actually build the projects in the first place.
This book is one of the best. It describes some simple but effective and useful projects in a step-by-step manner. Like those in Owen Bishop's book, reviewed above, each project's operation is described together with methods of construction and use. Photographs and illustrations are used to advantage. Where Bishop gives a considerable amount of background information on the principles involved in his projects, however, John Watson doesn't. This is the only area which could have been expanded.

Projects include an automatic porch light, a drill-speed controller, a stereo simulator, an xenon strobe, a freezer temperature alarm, a computer input/output port and a model radio-control system

Keith Brindley

Universal Semiconductor Devices Ltd.

17 Granville Court, Granville Road, Hornsey, London N4 4EP, England. Tel: 348 9420/9425* Tix: 25157 usdco g

We offer one of the largest ranges of semiconductors at highly economical prices. The following semiconductor types are available from stock. If we don't stock what you need then we can get it fast from our facilities in West Germany and USA upon request.
TRANSISTORS - Bipolars - Germanium and Silicon

Small signal
Power
Darlingtons - all shapes and sizes
VHF/UHF devices - all shapes and sizes
FETS - Power Mosfets Unijunctions

DIODES - Germanium and Sillcon Rectifiers and Bridges Opto-Electronic devices LEDs of all shapes and sizes THYRISTORS and TRIACS
 IC Sockets
JAPANESE COMPONENTS - Vast range of discrete's and consumer IC's Mail order customers: Please send for our comprehensive price list, enclosing 75 pence in stamps. Cheque or postal order. This sum is refundable with a first order value of $£ 5.00$ or more.

Catalogue sent free or charge, when requested on official letterhead (without refund), to OEM's, Schools, Colleges, Universities, Government Institutions, Computer Firms, Electronic Repair Firmis and Distributors. Special discounts and payment terms are available to above institutions.

Please enquire for quantlty distcounts.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

SCRATCHPAD

by Flea-Byte

The trick with this puzzle is not in doing the sums, butin deciding which sums to do in the first place. It would no doubt be possible to form a series of partial sums beginning with the first resistor section and progressively adding more sections, and to show that the series tends to a limit. Alf is much too lazy for the complicated mathematical manipulations involved with this approach.

Here in the gloomy recesses of ETI Towers it dawned on us suddenly with the force of revelation that what the world really needed at this time of the year was another award ceremony. Well, all of us make mistakes.

Undaunted, Flea-byte set about the task of drawing all the necessary threads together with a will. Sir Richard Attenborough was engaged to weep volubly; Princess Alexandra (or maybe it was Princess Michael of Kent, or even Princess David of SW7) was
engaged to smile condescendingly; even David Puttnam agreed to come and tell the guests how British Electronics is the best electronics in the world. We booked the Cafe Royale and invited everyone we could think of. Only at this point did it occur to Flea-byte or any of the toiling minions working on the project that nobody had been considered to receive an award.

Let me tell you, there was panic. A team of expert judges was hastily recruited and supplied with a year's back-copies of ETI, Electronics News and the Beano. They were locked in a room and told not to come out until the awards had all been agreed or they had all killed each other. In the event, only our very own Alf emerged unscathed to present what he said was a unanimously agreed list of award-winers. Of course, Flea-byte had no way of knowing whetherAlf was bending the truth a little or not, since all the other judges were by now assuming postures of extreme stillness and silence. Alf said they were practising a new form of Korean meditation called Be-Ing-Ded, but Flea-byte was not convinced.
As it turned out, we really needn't have bothered since due to a proof-reading error the invitations had all gone out inviting
people to attend 'An Away Ceremony To Present The ETI Draws for 1985, to be held at the Cafe Royale, Bremerhaven, on December 31 st, 1984. Needless to say, nobody accepted.

However, Flea-byte couldn't let all his hard work go to waste, to say nothing of the efforts made by Alf, the minions and the judges. So Scratchpad is proud to present the first annual ETI awards for 1985 on this page.
The Walt Disney award for contributions to artificial intelligence: Ronald Reagan.

The Joan Collins award for optimism in the face of overwhelming odds: Sir Clive Sinclair.
The Clive Sinclair award for promotion: Halley's Comet,
The Isaac Newton award for contributions to the study of gravitational effects: Boeing Aircraft.

The Most Promising Newcomer award (for the third year running): Gallium Arsenide.

The TINA (an award instituted by Margaret Thatcher to encourage resistance to change): $\Pi \mathrm{L}$.

The Input-Output award for services to amplification: Sara Keays.

The General Motors award for services to the British Economy: jointly awarded to Olivetti, IBM, Ian McGregor and Japan.

The Clark Kent award for the most original idea about telephone boxes: Cellnet.

Phone Phun

Some of the more amusing stores of 1985 centre on the new telephone services designed to create a demand-fuelled expansion in the current vogue arena of electronic development - com munications. One may dispute the rights and wrongs of deregulation, privatisation and the break-up of monopolies like BT and AT\&T in America, but there is no arguing that we are not prepared for the new freedoms we are being offered. In Bristol, for example, an experiment in itemised telephone accounts ran into near disaster when bills started arriving at private households featuring numerous calls to telephone numbers unrecognized by one or other member of the household. Curious wives or husbands were not slow in discovering that their partners were, often as not, hiding illicit relationships behind the unemotional front of a simple six-digit number. As a result, it was said that for the duration of the experiment divorce and separation statistics in the Bristol area rocketed.

ELECTRONICS TODAY INTERNATIONAL

Lineage:
45 p per word (minimum 15 words)
Semi Display: (minimum 2 cms)
£11.80 per single column centimetre
Ring for information on series bookings/discounts
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

CLASSIFIED

01-437 0699 Ext 323

Send your requirements to: Caroline Faulkner
ASP Ltd.,
1 Golden Square
London W1.

COMPONENTS

RESISTORS, CAPACITORS 1,000 mixed carbon film $1 / 8 \mathrm{WW}, 1 / 4 \mathrm{~W}$ $1 / 2 \mathrm{~W}, 2 \% ; 5 \%, 10 \%$ resistors $£ 2.95$ +50 p P\&P. SAE for details to: D.J. Hookier, Romney Marsh, Electronics, Clark Road, Greatstone New Fiomney, Kent TN28 8PB.

AIRLINK TRANSFORMERS manufacturer of Torodial and standard transformers. Phone Mike Dornan, Newmarket 0638 662989 for details.

VAST RANGE of -science pro ducts, components, lasers, optics computer supplies, chemicals, hardware and many hard to find or rare items. Unstocked items purchasing service. SAE with details of your specific requirements or for catalogue. Science \& Technology Products CET3, PO Box 192, Poole, Dorset BH15 4AL

> TRANSISTORS Guaranteed top-spec devices BC 107, hfe > 125 , Ic0.1A. 50 pc \& $\mathrm{BCl09}, \mathrm{hfe}>240$, Ic0. $1 \mathrm{~A}, 50 \mathrm{pc} \mathrm{f9}$ BC184C, hfe >450, ic0.2A, 50 pe $£ 5$ For $100+$ pc deduct 15% All orders add 15p P 8 P + 15\% VAT Ratby, Leicester LE6 OXU

COMPREHENSIVE PLANS to build an electric shock machine, contains full explanatory text, diagrams, stickers and 0,68 uf capacitor. .1 .55 including post. P. Bartle, 3 Wood Nook, Norland, Sowerby Bridge, Yorkshire HX6 3RZ.

NEW AND SURPLUS components in stock. Spectrum Radio \& Electronics Ltd, 36 Slater St Liverpool L1 4BX. Tel. 051-709 4628.

THE HUNT ELECTRONICS COMPONENTS CATALOGUE is FREE. Its full of top-quality components at excellent prices. Phone 0283703071 . P.O. Box 57, Derby DE6 6SN.

CHEAP, CHEAPI Mail order onty.			
LS138			
LS244			10
LS245	83 p	4164	ع1.10
-293	83 p	41256	E5.50
LS373	83p	2764	£2.40
Add $£ 1$ P\&P. Send $20 \mathrm{P}+$ S.A.E. 1 or price Hst.			

FOR SALE

LIQUIDATOR STOCK, must clear, Intel Bubbles, 300 -1061, 3001064 , . 300 1066, 300 1062, 300 1065, 400 1000, Nijo Properties, Charnwood House, Quorn, Leics.

POWER SUPPPLIES

BOOKS \& PUBS.

PARAPHYSICS JOURNAL

 (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. $4 \times 0^{\prime \prime}$, Poralab, Downton, Wiltshire.

SPECIAL OFFERS

CLEARANCE BARGAINII

 THOUSANDS of components in stock. Led 7 Segment Display Brand new 14 Pin Dil Red. 43 inch common anode display 0-9 with right and left decimal point. 9 pieces $£ 1.50$ (30p each); 10 pieces £2.50(25p each); 50 pieces $£ 10.00$ (20p each); 100 pieces $£ 15.00$ (15p each); 1000 pleces $£ 100.00$ (10p each). TELEPHONE YOUR ORDER TO 0296613816.FIEE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over $£ 10$ send only £1 P\&P to WOODSIDE, DOWSETT LANE, RAMSDEN LANE, ESSEX CM11 1JHL.

27128 250ns Fujitsu, £4. Hitach £4.75. 6264 - LP15 £5. All inc prices. $10+$ less $10 \%, 50+$ less 20%. Orders to K. Jones, 31 Padstow Avenue, Fishermead, Milton Keynes.

TOP PRICES PAID for surplus electronic test equipment. Always a good selection of SIG-GENS, METERS and SCOPES for sale. Phone (0438) 353828.

ESS
 13a Station Road Cullercoats - North Shields Tyne \& Wear - NE30 4PQ Telephone 0912514363

TRANSISTORS - RESISTORS - CAPACITORS DIODES - LED'S - SCR'S - ICS - VOLTAGE REGULATORS - DISPLAYS - AUDIO \& EDGE CONNECTORS - VERO/PCB'S - INSTRUMENT CASES \& BOXES - POWER AMPLIFIERS \& MODULES - MICROPHONES \& STANDS.

WRITE OR PHONE FOR FREE PRICE LIST.

PLANS 'N DESIGNS

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, uitrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye-Street, Ledbury HR8 2AA.

EPROMS

MEMORY STORE

THE MEMORY STORE: Eproms, Rams, Drams, Sarams, now avaliable at very low prices. Send for list to K-Squared Electronics, Breeson House, . Sherington, Bucks NK16 9NW.

REPARRS

ZX SPECTRUM. Vic20, C64,BBC,

 QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37° Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.
JBA ELECTRONICS

Speciatists in manufacture and design of:
Microprocessor, Telemetry, and Audio-based systems. UNIT 9,
BRECON INDUSTRIAL ESTATE,
BRECON, POWYS, S. WALES Tel: (0874) 2563

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, aiarm systems, PCB design and artwork. Prototype and small batch production. ALAB ELECTRONICS. Grantham (0476) 860089.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited. Tel: halstead (0787) 477408.
P.C.B. DESIGN and Layout. Manually taped artwork professionally produced at competitive prices. James Gledhill. 01-674-8511.

J. Linsley Hood Designs

Distortion Analyser Kit.	525.00	51.00
Millivoltmeter Kit.	£12.25	50.75
Case and Panel for above	£12.00	51.00
ETI Mosfet P.A. Kil.	¢51.00	E1.50
Audio Slgnal Gen. (.02\%) Kit.	¢28.50	$\Sigma 1.50$
Audio Signal Gen. (.002\%) Made	£46.00	$¢ 2.00$
Fixed Freq. Sig/Gen. (.002\%)	¢14.00	ع0.50
Case and Panel for ab	59.50	$\underline{0.75}$
Reg. P.S.U. 1.5/35 volts from from	£12.80	ع0.00

ELECTRONICS ORGAN KEYBOARDS. and other parts being cleared out. Special offer: Elvins Electronic Musical instruments, 40A Dalston Lane, London E8.

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. $£ 6.95$ inc; or ready built' $£ 8.95$: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

TO ADVERTISE IN ETI RING 01-437-0699

misc.

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewksbury, Glos. Tel: 0684 73127.

INSTRUMENT CASES in structural foam. Made to order in small lots. Write to Minnow Plastics, 6 Avonmouth St., London SE1 4NX. Tel: 01-407-0910.

ETI JANUARY

SINCLAIR 16K RAMPACKS for ZXB1, £6, including VAT and postage. Halbar, Unit 1, Bury Walk, Bedford, Beds.
KIA WISH YOU A HAPPY CHRISTMAS AND NEW YEARII Santa's Sale: 1000 amplifiers \& gifts . . . Hi-fi stereodecks - 240V (Woodeffect) £28 . . Poweramps; 100W/£7-200W/£15 ... Stereoamps, 120W $(60+60)$ Case \& Controls/ $£ 10$. . KIA - 8, Cunliffe Road, llkley LS29 9DZ. (FREEGIFT POST AD + 13p SAE).

100W AMPLIFIER - £9.95 built or use the same board for 50 W , 150W, 200W into 4 or 8 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

LABEL ITI

PROFESSIONAL QUALITY LABELS AND BADGES MADE TO ORDER Low cost - Varlous colours and styles Engraved by us - Very hard-wearing waterproof plastic or metal
Write to Rob Thomson for FREE details

THOMSON

Electronics
Radio Communication Specialists St. Helier, Jersey. Tel: 0534-75170

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.
27128 25ons Fujitsu, £4. Hitachi £4.75. 6264 - LP15 £5. All inc prices. $10+$ less $10 \%, 50+$ less 20\%. Orders to K. Jones, 31 Padstow Avenue, Fishermead, Milton Keynes.

SERVICES

SCOPES

Repaired \& recalibrated all makes, all models
Scopex Satgan, Older TEK, TQ MENDASCOPE LTD Otter House
Western Underwood, Oiney Bucks MK46 5JS
Tel: Bedford (0234) 712445

CLASSIFIED ADVERTISEMENT ORDER FORM

Rate 45p per word (min 15 words) Post to: ETI, 1 Golden Square, London W1A 3RB

ADVERTISERS PLEASE ADD 15\% VAT

Please use BLOCK CAPITALS and include post codes.
Classification
Neme (Mr/Mrs/MIss/Ms)
Addrese (dothe accoraingly)

Signiture \qquad
Date
Daytime Tol. No

COMPONENTS

ESR ELEç;

- Fult range of componenis
- Speakers and Accessories
- Audio Connectors \& Switches
- Amplifier Modules and Cases

Free Price List available 13A STATION ROAD CULLERCOATS, MORTH SHIELDS TYNE AND WEAR NE 30 4PQ 091-251 4363

RS AND FARNELL
 COMPONENTS

All RS Components/Farneil Components available to order. Please write/phone stating requirements to
TALLOGIC, 29 Holme Lane, Bradford BD400A. Tel: 0274-685928.

RESISTORS - $1 / 4 \mathrm{~W}$ carbon film tolerance. 10 ohms - 10 m E12 series. Any mixture of values. 50p for 40 . $£ 1$ for $£ 120$. $£ 2$ for 250 . Electronic Metronome ready built inc. battery £9.95, kit £8.50. VAT and post free. HÚNT ELECTRONICS, P.O. Box 57, Derby DE6 6SN.

TEKTRONIX OSCILLOSCOPES. 556 dual beam four trace 50 MHz delay sweep £375. 546 dual trace 50MHz delaysweep $£ 175.551$ dual beam eight trace 19 MHz £185. 581 A dual trace $85 \mathrm{MHZ} £ 155$. 545B dual trace 24 MHz delay sweep £135. Storage oscilloscopes, semiconductor curve tracers, manuals, plug-ins, spaces. Tel. (01) 8684221.

BEST PRICEDEVICES					
all the latest fastest devices not to be confused WITH SLOWER OLD STOCK OFFERED ELSEWHERE					
DRAM 5V NMOS 150 ns			EPAOM		
$416464 \mathrm{kx}{ }^{\text {a }}$		c0.90	27162k ${ }^{\text {c }}$		
$41256256 \mathrm{k} \times 1$		E3.50	27324 kxx		${ }^{2} 2.95$
441616 kx 4		E2.80	276488 kx 8		¢. 5.45
5046464 kx 4		¢5.90	$2712816 \mathrm{k} \times 8$		${ }_{8} 8.45$
SRAM			2725632 kxa		¢6.95
5VCMOS 250ns +			5 CMOSS 250 ns		26.95
$61162 \mathrm{k} \times 8$ $62648 \mathrm{c} \times 8$		E1.85	$27 \mathrm{C} 648 \mathrm{k} \times 8$		88.50
		E4.40	$27 \mathrm{C} 25632 \mathrm{k} \times 8$		£15.00
VERY SPECIAL OFFER 2716 Intel 450 NS (Ex-equip.) ONLY £1.60 EACH OR $£ 7.50$ FOR 5.					
Linear	Each	5	OTHER LINEAR	Each	5
BIFETS					
TL072CP	50p	82.10	NE555	20p	20.90
TL074CN	80 p	89.50	LM311P	40 p	E1. 80
TLo82CP	40p	81.80	LM324	40 p	\$1.80
TLO84CP	85p	\$3.50	LM348N	45p	E2.50
REGULATORS			LM358	45p	$\underline{2.40}$
(All ${ }^{\text {PO220 }}$	package)		SN75154N		¢4.50
7812	35 p	¢1.60	OPO7CP	81.20	¢5.00
${ }^{78 M 12}$	35 p	E1.60	OPOP		
LM337	£1.20	¢8.50			
ORDERS OVER E25 DEDUCT 10\% DISCOUNT ADD 15\% V.A.T. POST FREE ORDERS UNDER E25 ADD 15\% V.A.T. PLUS 50 P P\&P Lists of other offers processors etc. sent DESPATCH BY RETURN C.W.o.					
MICROKIT LIMITED Manor park raunds northants nng gpd					

SOFTWARE

YAESU FT 757 GX

CAT Control Program for BBC Computer. Full control of transceiver; with selectable freq, step rates, 300 memory storage per file. Split and A/B Vio selaction. In fact all the extras that are missing from Y aesu. This is a Yaesuinterface or we can supply one at less than half price. The prog is available on disc at $£ 10$ or 16 k ROM £15.00. We have thoughts on other programs for Yaesu 9600 and 8800 let us know your Interest regarding Other products ${ }^{2}$ TTT 2 Salters CI., Gor the BEC. AMTOR timing PC boards now available. Please SAE or ring: Mr. J. Melvin G3 LIV 2 Salters Cl., Gosforth. Newcastle,. Tyne \& Wear NE SBH. Tel: O91-284 3028.

5 You can depend on

ELECTROVALUE LTD 28 St. Jude's Road, Englefield Green, Egham Surrey TW20 OHB Phone Egham (0784) 33603. Telex 26447 North Branch, 680 Burnage Lane, Manchester M19 iNA

ELECTRONICS TODAY INTERNATIONAL ADVERTISERS INDEX JANUARY 1986

Armon Electronics 50
Audio Electronics 70
B.K. Electronics 12
B.N.R.\&E.S. 50
Cirkit Holdings 8
Cricklewood 74
Display Electronics 66
Electromech Industries 10
Electrovalue 74
Greenbank Electronics 58
Happy Memories 13
ICS 23
Maplin OBC
Micro Processor Engineering 13
Powertran Cybernetics IFC
RAK Amplifications 50
Rapid Electronics 8
Riscomp 11
Royal Air Force 35
S.M.E. 50
Stewart of Reading 58
Technical Book Service IBC
Technomatic 14 \& 15
T.K. Electronics 58
Universal Semiconductor Devices 69
Watiord Electronics 4 \& 5
Wilmslow Audio 50

electronics today international - BOOK SERMOE.

ELECTRONICS, PROJECTS, DATA COMMUNICATIONS

\square Handbook of Remote Control and Automation Techniques
2nd Edition John Cunningham, Delton Horn
Includes all new material on optolsolators, sensors, motor controilers, and analog to digital and digital to analog converters.
$1934 \quad 350$ pages 306 illustrations $\quad 13.20$Basic Integrated Circuit Theory and Projects Charles Adams W:Ill explained details of IC manufacture, functions: emphasises hands-on applications, 20 step-by-step projects.
$1984 \quad 266$ pages 250 illustrations $\mathbf{f} 11.35$Rohotics Anne Cardoza
A well explained and informative look at robotics from legend and fiction to factory worker with everyday robotics.
$1985 \quad 160$ pages $\quad £ 10.45$
\square Handbook of Data Communications - 2nd Edition NCC A comprehensive, and British, introduction to data communications principles and concepts. Covers telephony. transmission, switching, protocols, and network design.
$1982 \quad 500$ pages $\quad \mathbf{~} 20.50$
\square The First Primer of Microcomputer Telecommunications Jim Cambron
Aims to help you access data base services, commercial companies and user group bulletin boards. Contains the hows, whys, and whats
$1984 \quad 160$ pages $\quad 100$ illustrations $\quad £ 10.80$
\square Basic Radio Electronics Sam Kelly
A solid intro to radio and radio project construction. The history from the early days up to space probe radio communications; explains fundamental radio electronics laws; details many fascinating projects.
$1984 \quad 352$ pages $\quad 300$ illustrations $\quad 14.10$
\square Making Music with Microprocessors B.A. Paturzo
A hands-on guide to creating and producing electronic music. It's a source of electronic music circuits, computer experiments, a study of instrument synthesis, and a complete guide to making a music synthesizer.
$1984 \quad 294$ pages 190 illustrations \quad E11.35
\square Basic Transistor Course - 2nd Edition Stan Gibilisco
Fundamental concepts and trends in transistors in modern electronic equipment.
Devoted entirely to semiconductors, diodes, and transistors.
$1984 \quad 288$ pages $\quad 187$ illustrations $\quad \mathbf{f 1 2 . 7 0}$
\square Electronic and Microprocessor-Controlled Security Projects Vaughn Martin
For the experienced kit-builder who wants to really understand and build a home. office or business security system. Ten security projects, all proven in actual use, tan be built using standard, available parts.
1985 $\quad 228$ pages 120 illustrations $£ 14.10$
\square Build a Personal Earth Station for World Wide Satellite
TV Reception - 2nd Edition Robert Traister
Thorough revised and up-to-date. Select, assemble and install your own Earth
Station - capture global television.
$1985 \quad 370$ pages $\quad 200$ illustrations $\quad \mathbf{1 4 . 0 0}$
\square Exploring Light, Radio and Sound Energy, with Projects Calvin Giraf
For example, listen to a candle burning, or wing vibrations of a jet flying miles away. Describes scientific phenomena which can or cannot be seen, which have or don't have sound. Follow the project instructions to hear sounds few people have heard. Simple electronics skills to make antennas, solar cell units, hydrophones, a rain microphone and much more, to give a unique and fascinating record of the otherwise commonplace.
record of the othense con monplace
\square Second Book of Easy-to-Build Electronics Projects Editors of Elementary Electronics
New project ideas for completion in a few hours using low cost components Complete with parts list and circuit layouts.
$1984 \quad 192$ pages $\quad \mathrm{f} 13.75$

REFERENCE

\square Encyclopedia of Electronics Stan Gibilisco
A huge, comprehensive encyclopedia of essential electrical and electronics concepts and applications. The result of 4 years of research, it contains over 3000 key topics, each fully illustrated and includes all relevant formulas, charts. and tables. Provides extensive information on each topic. Complete index and cross referencing. More than 1300 photographs and illustrations.
1985 9883 pages Hardback $£ 43.95$
\square The Illustrated Dictionary of Electronics - 3rd Edition Rufus Turner, Stan Gibilisco
27000 electronics definitions, acronyms, abbreviations. A classic reference guide "Anyone in any way associated with the electronics field, whether beginning hobbyist, experienced amateur, or professional, will find this book invaluable.
$1985 \quad 595$ pages 415 illustrations $£ 20.40$
\square The Encyclopedia of Electronic Circuits Rudolf Grat
Nearly 1300 useful and versatile circuit designs, alphabetically arranged in 98 basic circuit categories. Ideas and answers for project builders; quick reference for professionals for answers to specific design problems.
$1985 \quad 760$ pages $\quad 1762$ illustrations $\quad 527.65$
\square Master Handbook of Electronic Tables and Formulas 4th Edition Martin Clifford
Provides instant answers for professionals and hobbyists alike.
$1984 \quad 392$ pages 246 illustrations $\quad \mathbf{1 1 3 . 2 0}$

MICROCOMPUTERS

\square Interfacing Your Computer To Virtually Anything Joseph Carr Contains invaluable design data and covers a wide range of IC devices. An ideas book with many projects.
$1984 \quad 336$ pages 224 illustrations $\quad \mathbf{1 3 . 2 0}$
\square Disk Basic for Microcomputers Michael Chadwick, John Hannah Explains the principles of using disks and applies them via example programs in Microsoft. Applesoft, Commodore and BBC. Use this book to liberate your micro. $1984 \quad 143$ pages $£ 8.50$
\square The Micro Cloak and Dagger Book Gareth Greenwood
Experiment directly with codes and ciphers to send and decode secret messages: an introduction to cryptology for anyone who revels in puzzes. Programs written in Sinclair Basic.
$1984 \quad 173$ pages 67.95
\square Build Your Own Expert System Chris Naylor
Artificial intelligence for the aspiring microcomputer. With listings for Apple II and Sinclair Spectrum. "This is an excellent book on a forbidding subject. Even if you don't build an expert system from it, your money won't have been wasted.'

Personal Computer News
$1983 \quad 258$ pages
67.95
\square Expert Systems and Micros Geoff Simons
Explores the proliferation of expert systems and associated software with particular attention to microcomputer trends. Explores implications of micro-based expert systems.
$1985 \quad 247$ pages $\quad 611.50$

Please send me the books indicated

i enclose cheque/postal order for \&
Prices include postage and packing.
I wish to pay by Access/Barciaycard. Please debit my account.[TD

The new Maplin catalogue for 1986 is a real adventureland for the electronics enthusiast. With hundreds of new lines and details of Maplin's new low low prices, it's the one event in the electronics year that no-one should miss. Packed with data and information on all the latest electronic products. Pick up a copy from any branch of W.H. Smith for just $£ 1.45$. Alternatively you can order your copy by post for just $£ 1.85$. For overseas customers the prices are as follows: Europe surface mail $£ 2.50$; Europe -air mail $£ 3.75$. Outside Europe surface mail $£ 2.50$; Outside Europe air mail depending on distance $£ 4.25 / £ 5.50 / £ 6.25$. For surface mail anywhere in the world you may send eleven International Reply Coupons

[^0]: To: RAF (AH) CAREERS (1001/01/01). LONDONROAD.STANMORE, MIDDXHA7 4 PZ. Please send me details.

 Name
 Addres:

 Wateotbirth

