

ETI EL=CTRONIC
 SPECIAL
 IENTION

HIFI, CONSTIEGTION . COMMUNICATIONS ... DEVELOPMENTS

BAHIDIB

main features

HIGH TEMPERATURE BATTERIES14Revolutionary new designs have applications for transport and power storageMODERN CRYSTAL OSCILLATORS23
Up-to-date guide to crystal oscillator circuits,TAPE SPEED IC'S30
How to use the TCA600/TCA900 and the TCA610/TCA910.38MAIL ORDER CATALOGUES
45
UNDERSTANDING COLOUR TV - PART 3
Get to know colour TV. This month, the PAL System.ELECTRONICS-ITS EASY - PART 1.457
The sources of power.
projects
ELECTRONIC IGNITION SYSTEM - PART 1 10
Reliable CDI, tachometer and rev-limiter - all in one unit.42
A simple, effective unit that could save your life.
51
CMOS BURGLAR ALARM
Modern technology used in ETI's new alarm system
news $\&$ information
NEWS DIGEST 6
PREVIEW OF MAY'S ETI 36
INPUT GATE 37
TECH-TIPS 64
THREE DANAMETERS TO BE WON 35
Enter our free Cross-Number Competition and you could win a digital Multimeter worth over f100!
Cover: most sophisticated ever published - see Part 1 on page 10

EDITORIAL \& ADVERTISEMENT OFFICE 36, Ebury Street, London SW1W OLW. Tel. 01-730 8282.

HALVOR W. MOORSHEAD
Editor
ROBERTC. EVANS
Advertisement Manager
STEVE BRAIDWOOD, G3WKE
Assistant Editor
JEAN BELL
Production
HELEN COHEN
Administration
VALERIE FULLER
Subscriptions \& Back Numbers
International Editions
COLLYN RIVERS
Editorial Director
Australia
BRIAN CHAPMAN
Technical Editor
BARRY WILKINSON
Engineering Manager

France
DENIS JACOB
Editor-in-chief
CHRISTIAN DARTEVELLE Editor

Published by: Modern Magazines (Hoidings) Ltd 36, Ebury Street, London SW1W OLW.

Electronics Today International is published on the second Friday in the month prior to the cover date.
Distributed by: Argus Distribution Ltd. Printed by: Alabaster Passmore \& Sons Ltd. London and Maidstone.

International Associates:
Australia: Modern Magazines (Holdings) Ltd, Ryrle House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia.
France: Electroniques Pour Vous International, 17 Rue de Buci, Paris, France.
USA: ACP, Room 401, 1501 Broadway, New York, USA.
European Nows Bureau: H. Dvoretsky, Manager, 107 Fleet Street, London EC4.

[^0]
NEWLOW PRICES!

Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.
it offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 21.55$ (including VAT).

And as a kit it costs under £15!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin.
cos and arccos.
tan and arctan,
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$, giving quick access to x^{Y} (including square and other roots).
plus, of course, addition, subtraction, multiplication, division,
and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you ve any queries or problems.

Of course, we'll happily supply the Scientific or the Cambridge already buit, if you prefer -they're still exceptional value. Use the order form.
(Was £19.95-save £5!)
Components for Scientific Kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Pinted circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a key board as simple as a normal arithmetic calculator's. Upper and lower case operation means basic arithmetic keys each have iwo extra functions

Scientific notation Display shows 5 -digit mantissa, 2-digit expo nent, both signable.

200-decade range 10-99 to 10 : 99

Reverse Polish logic Post-fixed operators allow chain calculations of unlimited length - eliminate need for $a n=$ bution .

25-hour batterylife 4 AAA manganese alkaline batteries (e.g. MN2400) give 25 hours continuous use. Complete independence from external power.

Genuinely

 pocketable $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$ Weight 4 oz . Attractively styled in grey, blue and white.
NEW LOW PRICES! Sinclair Cambridge kit
 (Was £14.95-save £5!)
 Components for Cambridge Kit

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch 10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refünd your money without question. All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)
Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price in kit förm $£ 14.95$ inc. VAT
Price built $£ 21.55$ inc. VAT.
Cambridge
Price in kit form $£ 9.95$ inc. VAT.
Price built $£ 13.99$ inc. VAT.

To: Sinclair Radionics Ltd, FREEPOST St lves.
Huntingdon, Cambs. PE174BR
Please send me
7 Sinclair Scientific kit at $£ 14.95$Sinclair Scientific built at $£ 21.55$ Sinclair Cambridge kit at $£ 9.95$ Sinclair Cambridge built at $£ 13.99$ |

All prices include 8% VAT
*I enclose a cheque for $£$. \qquad made out to Sinclair Radionics Ltd, and crossed:
*Please debit my *Barclaycard/ Access account. Account number

Delete as required.
Signed
Name
Address
ET1/4/75
Please print. FREEPOST - no stamp needed.

Sinclair Radionics Ltd,

FREEPOST St. Ives,
Huntingdon, Cambs. PE174BR

news digest

POCKET SIZED TEST METER

The new ICE Microtest 80 test meter combines several unique features in an accurate instrument no bigger than a pack of cigarettes. The meter covers 8 fields of measurement in 40 ranges, with a 20,000 ohm per volt sensitivity ($4 \mathrm{k} \Omega / \mathrm{V}$ on AC), giving 2% accuracy on voltage scales.

Design of the meter incorporates special automatic electronic regulation for zero ohms, and the movement is protected against an overload of 1,000 times in the ohmetric ranges before automatic cut out. Protecting the low ohmetric ranges is an internal fuse unit, easily repaired by winding on a new fuse from a minute, internal bobbin. The shockproof movement, with a compensated magnetic core, provides a closed magnetic circuit screened

ATOMIC FREQUENCY STANDARD

Two new miniature atomic frequency standards, each contained within the dimensions of a four inch cube, have been introduced by Racal for the accurate generation of frequency and time signals. Both models use the atomic resonance of rubidium to control the frequency of a quartz crystal oscillator. This technique gives particularly low ageing characteristics
against all external magnetic fields. The 20 components are housed on a printed circuit board, making part replacement easy, quick and without re-soldering the board.

Power is from a special 1.35 V mercury battery which, in normal usage, will last up to 3 years, and a complete range of accessories is available with the meter to extend its performance. The Microtest 80 uses the latest manganine and metallic film resistors to give high stability and 0.5% precision. The mirror scale gives an accurate reading. Each meter is supplied with an instruction manual and a protective case incorporating the leads. The size is $90 \mathrm{~mm} \times 70 \mathrm{~mm} \times 18 \mathrm{~mm}$. Electronic Brokers Ltd., 49 Pancras Road, London NW1 2OB, will supply the meter for $£ 12.91$ including VAT.
several orders better than even the best conventional crystal oscillators. In the case of model FRK-H long term stability is better than 1 part in 1011 per month.

Both models feature small size, low weight, modest power consumption, near instant warm-up, and operation over a wide temperature range.
Excellent spectral purity coupled with a high signal-to-noise ratio make the 10 MHz output ideal for multiplication into the microwave bands.

£15 DOLBY RADIOS SOON?

Even the cheapest of domestic radio receivers may soon have Dolby circuitry inbuilt according to Alan Gregory of the Signetics Corporation, manufacturers of the NE545 Dolby IC chip.

Gregory believes that the inclusion of the chip (which will be sold to manufacturers for less than a dollar will increase the price of domestic receivers by a pound at the most.

ELECTRONIC GUIDE FOR THE BLIND

Germany's Ernst Leinz GmbH are currently developing a lightweight optical device to enable blind people to detect obstacles in front of them.

The prototype units is about the size and shape of a torch. It converts optical signals into electrical signals the strength and frequency of which 'describe' the obstacle encountered.

At present the unit is in prototype form, but Leitz hope to have the devices in production by 1976. Prices it is hoped will not exceed $£ 150$ or so.

AUDIO IC LEAFLET

Chromasonic Electronics have a new eight page leaflet showing pin connections and circuits for 26 Audio ICs. The leaflet is available free to customers spending over $£ 1$, or for 10p otherwise.

Other leaflets currently available on the same basis are one for the Motorola IC's for decoding the CBS four channel SO system and one for the ZN414. Chromasonic are at 56, Fortis Green Road, London, N10 3HN.

MICRO-LASER

A microscopic laser designed for powering optical communication systems has been built by scientists from California Institute of Technology and Japan's Hitachi Limited.

The laser $-1 / 60$ inch long and $1 / 250$ inch thick - incorporates an artificial periodic corrugation built into the crystalline substance, providing for oscillation and eliminating the need for conventional end-mirrors. The laser is constructed by growing five alternate layers of gallium arsenide and gallium aluminium arsenide, with the process interrupted after growth of the third, central layer to produce the corrugations.

A new range of scientific construction kits for young people is being in troduced to the UK from Canada Ly Patterson Edwards Ltd. The toy in the picture is a miniature computer. The computer, which works on the same principle as a real one, comes complete with 112-page manual containing fifty programs. It is also possible for youngsters to make up their own programs. The computer comes in the form of a kit which retails for approximately $£ 18$.

NOVUS INTO SCIENTIFIC CALCULATORS

Ten new scientific and special-pṻpose calculators are about to be introduced by the Novus Division of the National Semiconductor Corporation.

Prices are believed to range from $\$ 5$ up to $\$ 170$. The new range is based on an IC technology in which all the basic scientific and computational functions are built onto a single p-channel chip. A second chip is used for the programmable functions.

DIGITIZED TV VIA FIBRE OPTIC LINK

Digitized TV pictures have been successfully transmitted via a 4 km fibre-optic link. The experiment was conducted by West Germany's Heinrich-Hertz Institute using equipment developed by Siemens AG.

The TV picture was conventional PAL $625-\mathrm{line}, 5 \mathrm{MHz}$ bandwidth, it wàs converted to binary-difference pulsecode modulation (24 megabits) second) and transmitted via multimode fibre by a special light emitting diode.

The receiver was an avalanche diode connected to the monitor via a pulse decoder.

US COLOUR TV SALES DROP

US sales of colour TV receivers fell drastically in November. Final sales were 30.6% down compared with the same month in 1973. The decline for the first eleven months of 1974 was approximately 14%.

TEXAS INSTRUMENTS CLAIM ROYALTIES FROM JAPAN

Texas Instruments are demanding retrospective royalty payments from Japanese calculator manufacturers.
The claims relate to the one-chip MOS IC's that most calculators now use. Industry observers are puzzled by the claim for whilst Texas have patented the process in the USA, as far as is known, it has no such patents in Japan.

ENZYME-POWERED BATTERIES SOON?

An enzyme battery for cardiac pacemaker implants appears to be in the offing, according to one of its develop. ©rs, Dominic C. Avampato of South Central Connecticut Community College, New Haven, U.S.A. The enzyme process produces a seven microamp current from five grams of maleic acid and five micrograms of NAD malate dehydrogenase.

NEW SUPERCONDUCTOR

A new superconductor that has zero electrical resistance at cryogenic temperatures and retains this ability in intense magnetic fields has been developed at the Massachusetts Institute of Technology's Magnetic Laboratory.
A combination of one part lead, five parts molybdenum and six parts sulphur remained superconducting in a magnetic field of 510,000 gauss at the temperature of liquid helium $\left(-268^{\circ} \mathrm{C}\right)$. At absolute zero, MIT scientists say, the material might withstand a field of 600,000 gauss.

FIRST GEOSTATIONARY SCIENTIFIC SATELLITE FOR EUROPE

Work goes ahead on the Geostationary Orbital Satellite (GEOS) development 'model' at the Electronic and Space Systems Group of the British Aircraft Corporation in Bristol. GEOS is being developed by the Satellites for Technology Application and Research (STAR) consortium of companies for the European Space Research Organisation under the prime contractorship of BAC.

The development model brings together for the first time the many sub-systems from the STAR consortium, together with the on-board experiment apparatus from the nine scientific groups in this multinational programme. Its purpose is to resolve problems of functioning and electronic compatibility in advance of buitding the satellite flight model.

GEOS is due for launch in the autumn of 1976 and will probe the nature of the electric, magnetic and particle fields in the Earth's magnetosphere.

In operation, data from the satellite's attitude in orbit is derived from on-board sensors and transmitted to the ground control station. Computed instructions sent to the satellite command its attitude and orbit control sub-system to release controlled bursts of hydrazine through small jet thrusters, the reaction from which is used to manoeuvre the satellite in attitude and position. To meet the needs of the scientists whose apparatus is carried by GEOS, it will be moved between positions of 150 W and $40{ }^{\circ}$ E while maintaining a constant geostationary orbit 35900 km above Earth.

ELECTRONICS OUTLOOK FOR 1975

The Chase Manhattan Bank's annual' outlook for selected industries is being circulated for the first time in the UK. The document tells the tale of the recession in the US economy. However our readers might find it useful to draw parallel forcasts for electronics in the UK! Here are some excerpts from the electronics section of the report:

In 1974, the electronics industry was strong through the first quarter of the year, continuing the upward trend of 1972 and 1973. Since then, however, many sectors, most notably semiconductors and consumer electronics, have weakened consider ably. Total U.S. factory sales of electronics equipment remained flat (at $\$ 31$ billion).

The industry's strongest and most consistent growth sector during 1974 was electronic data processing, which grew approximately 8% to $\$ 9$ billion. Especially strong were all forms of data entry and process control systems, with growth estimated at 20%. The semiconductor sector
showed growth of 12%, although most of this increase occurred in the first part of the year.

In the consumer product sector, calculator sales were up for the year, but by year-end the trend was down with severe price-cutting. The electronic digital watch market is becoming significant. Worldwide retail sales in 1974 totalled \$1:20 million with an average selling price of $\$ 150$. By 1980 , sales are projected at $\$ 1.5$ billion worldwide at an average selling price of $\$ 40$.

The overall outlook for the electronics industry in 1975 generally is unfavourable, both in the U.S., in Europe and in Japan - the three major electronics markets. Increasingly, these markets tend to move concurrently rather than in separatel cycles.

Although at the moment the electronic data processing industry remains relatively strong, a leveling trend should occur in 1975, and European computer equipment manufacturers in particular may be adversely affected. Minicomputer shipments are slowing, and a slowdown
in capital spending will affect large system installations. Data entry and process control should be less affected, but a general decrease in the growth rate will be evident.

Some communications systems and equipment such as satellites, microwave links, and data networks should continue to show steady growth through 1975. Facsimile is becoming a more important method of communication.

Sales of inexpensive consumer items (black and white TV sets, radios, and calculators) and inflation-fighting appliances such as small home freezers should continue to be relatively strong, although profit margins will remain under pressure.

Overall, the electronics industry should show little growth through the first six to nine months of 1975, with some possible recovery in the last quarter. Less inflation, an upturn in housing starts, improved consumer confidence, and increased capital spending will be the necessary ingredients for renewed strong growth.

NEW HOUSINGS

A new component housing suitäble for automotive or general use has been announced by Mentor Electronics. The 'Housing 300' can carry one or two printed circuit boards ($106 \times$ 60 mm) with a maximum of twelve $1 / 4$ " flat terminals on each.

No special plugs and sockets are needed to connect to the printed circuit board. Mountings are available externally on two faces. The unit is made from black polypropylene with external size $130 \times 65 \times 55 \mathrm{~mm}$. The box costs 49 p (inc. $\mathrm{p} \& \mathrm{p}$) from Mentor Electronics Limited, Ryefield Crescent, Northwood, Mddx.

DISTORTION-FREE AMPLIFIERS

For a long time negative feedback has been used to reduce distortion in amplifiers; this is effective but under certain conditions oscillation can occur.
A new approach to reducing amplifier distortion is currently being researched by the Royal College of Surgeons.
The technique involves two amplifiers, in the first the output is subtracted from the input. The noise and distortion signal is amplified in a second unit and again subtracted from the output in the first. The resultant output is virtually noise and distortion free.

POWER AMP FOR UHF TXS

Motorola have a new UHF power amp Module which will provide 1.5 W output from 400 to 470 MHz and is intended for use in portable FM transmitters operating from a 7.5 V power supply

Features of the new amplifier are a minimum efficiency of 40%, a minimum power gain of 40 dB and an input impedance of 50 ohms. All harmonics are at least 30 dB down and other spurious outputs are a minimum of 70 dB down Motorola, York House, Empire Way, Wembley, Middlesex.

MICRO TV CAMERA

A colour TV camera less than four millimeters in diameter has been developed by Philips!

The camera has been produced for medical use and is so tiny that it can be threaded through human veins. It can even obtain pictures from inside the brain.

Within the camera 3.5 mm diameter synchronous motor drives a mirror and prism/lens combination. This rotating assembly scans the target area.

The target area is illuminated via glass fibre leads. Similar glass fibre connectors pick up the scanned data and feed it out to associated photomultipliers.

The camera is not just a state-of-the art prototype - pre-production units have been built by Philips' Laboratoires d'Electronique et de Physique Aplique and satisfactorily tested in hospitals in France. As a result the cameras may soon be commercially available.

OUTDOOR LIQUID CRYSTAL DISPLAYS

A liquid crystal display that can be read in bright light - even outdoors has been developed by Tekelec (Oxnard, California).

The displays are field-effect devices with both transmissive and reflective properties. A small bulb is used to assist readability when ambient lighting is poor.

BYHCDD

 CHANTICLIER* READ: TIME \& ALARM
* ELECTRONIC 'BEEP' ALARM TONE
* TEN MINUTE 'SNOOZE' FEATURE
* BRIGHT, CLEAR DISPLAY
* NO MOVING PARTS
* EXECUTIVE STYLING
* SOLID STATE RELIABILITY

Digital clock

The heart of the CHANTICLEER is a tiny electronic package containing thousands of transistors which divide the 50 cycles/second mains frequency into precise time units. The clock "movement" in fact has no moving parts to wear out or tick or tock or hum or click.

RECOMMENDED PRICE

 + VAT.

COMPLETELY ELECTRONIC NO MOVING PARTS

Alarm

Has a.m. or p.m. setting with alarm on/off indicator. A gentle electronic 'beep' tone with special'snooze' feature that resets the alarm for ten-minute intervals. The snooze is activated by simply tilting the clock forward and then releasing. Upon cancelling, the alarm can be immediately reset for the same time next day.

ELECTRONIC IGNITION SYSTEM

PART ONE
Reliable CDI, tachometer and engine speed limiter - all in one unit!

by Barry Wilkinson.

THE CONVENTIONAL electro-mechanical engine ignition system has been with us virtually unchanged since its development by Charles Kettering over fifty years ago,
It is simple in concept and fairly reliable in operation, but even if maintained in impeccable working order it's performance is only just adequate in vehicles of average performance used in moderate climates.
The Kettering system has characteristics that are very far from ideal. The voltage supplied to the spark plugs, for instance, is low during starting and also at high engine speeds - just when high output is most needed. Contact breaker point and distributor cam wear is quite rapid and cause efficiency to fall off alarmingly.
Even when new, it is rare indeed to find a Kettering system that is working correctly, (that is the reason why many people obtain better results than should otherwise be expected when they fit a CDI or other electronic system to their car).
Now the system's deficiencies have become more serious - our world has too little oil and too much pollution. Good fuel economy and low engine emission have become of greater importance than original engineering cost.
At first sight it seems a relatively

[^1]simple job to convert a Kettering system to electronic operation. But there is far more to it than that, as many have found to their cost. And whilst there has been a plethora of electronic systems on the market for the past ten years, few indeed can even remotely match the conventional system's reliability.
As recently as Auguist of last year, one of our leading motoring magazines tested ten electronic systems màde by leading European manufacturers. Incredibly, five of those systems failed within an hour and a half of installation! The reasons for the failure of these systems is discussed later in this article.
Nevertheless though, it is possible to design and construct sound reliable electronic ignition systems and these do have many advantages over Kettering systems.
At this point we might as well debunk a few myths - and probably lose the odd advertiser or two as well!
Unless your original ignition system is grossly maladjusted, there is no way in the world that an electronic system will improve power or fuel consumption by the 20% plus that many of their manufacturers claim.
What you can realistically expect is about three to five per cent better consumption and about the same increase in top end power - especially with small high revving engines. There is rarely any measurable difference with big lazy V8s, except that starting may be easier on cold mornings.
Distributor point life is greatly extended, spark plugs will last longer and the system will remain in tune for much longer periods.

EARLY ELECTRONIC SYSTEMS

The first transistor systems came into use about ten years ago. These were rudimentary systems in which a transistor was used to switch the main current - so that a control current only passed through the contact breaker points.
These systems were effective in that they prevented point burning but were just as adversely affected by high-speed point bounce as the systems they replaced. Apart from that, only low-voltage rating (100 V)
transistors were generally available so special high ratio ignition coils were required. These special coils drew heavy current - as much as 12 amps was not uncommon.

The systems just described were not really electronic ignition systems rather they were transistor-assisted.

CDI

Capacitor Discharge Ignition (CDi') was introduced some three years later.
in this system a capacitor (normally between $1.0 \mu \mathrm{~F}$ and $1.5 \mu \mathrm{~F}$) is charged to 400 V or so, and, when triggered, is discharged into the spark coil thus inducing the required high voltage by transformer action.
CDI systems can be made to work very well indeed, they have excellent characteristics, such as low current drain and almost constant voltage output.
But whilst they can be very effective, many CDI systems are very unreliable due mainly to designers not appreciating that many of the components are being run way beyond their design limits.

DWELL EXTENDERS

A simple device called a dwell-extender made a brief appearance a few years ago. This operated by using an SCR to 'close' the points about half a millisecond after they opened thus allowing greater current build up in the coil. In effect, dwell extenders extended the 'effective rev range' of an ignition system by about 20\%.
At present the transistor assisted system is making a comeback and is just as common as CDI systems. There is also a trend towards breakerless (no contact points) systems - thus eliminating point bounce and ideally ensuring that each cylinder is fired precisely at the correct time something that rarely happens with Kettering systems due to manufacturing errors in the distributor cam.

THE ETI SYSTEM

Many readers have asked us to design and publish a reliable up-to-date CDI system, so over the past year we have investigated very many different types to see which would provide the optimum in performance and cost combined with total reliability.

Typical dwell-extender circufiti

Since electronic components can fail suddenly and unexpectedly (usually at the most inconvenient times) we opted out of a contact-breakerless system or any system which could not be changed rapidly back to standard.
This latter constraint ruled out transistor assisted systems since these normally require a low inductance ignition coil which cannot be used with standard points.
Eventually we came back to the CDI technique, but then set about eliminating those aspects of earlier designs that compromised reliability.
Our starting point was to study existing CDI systems - to see just why they fail.
The circuit diagram of a conventional CDI system is shown in Fig. 1.
In this circuit the most likely component to fail is the discharge capacitor since peak currents of 10 to 20 amps flow during each cycle. Few capacitors will withstand this sort of treatment for long. To make matters worse, the charging voltage may under certain conditions reach 500 volts or more., Since $300-350$ volts is really all that is required, this higher voltage causes the capacitor to operate at twice the energy density needed -
thus stressing the capacitor unnecessarily.
The SCR is also subjected to high current peaks and unless of adequate rating (as few are) it too may soon fail.
The inverter used to provide the high input voltage required by the CDI system is normally a self-oscillating saturating core circuit of the type shown. This type of circuit too has inherent failings. High currents are drawn at the moment of switching, thus causing high peak power dissipation in the transistors themselves, and as the output from the inverter is a square wave the rectifier diodes are subjected to very rapid changes in polarity.

Diodes such as the 1 N 4001 or the IN4007 (which are commonly used) need 10 microseconds in which to turn off, so that in the inverter circuit shown, opposite pairs of diodes may be on simultaneously, thus creating a momentary short circuit across the output every half cycle.

Another failing common to many commercial units is that if the inverter? is sufficiently powerful to deliver full power up to 5000 rpm to a V8 engine (i.e. operating frequency of plus 2 kHz) the power dissipated in the diodes may eventually destroy them.
A final most annoying characteristic of otherwise satisfactory CDI systems is the hard-to-quieten whistle from the inverter transformer.
The new ETI unit is more complex than most CDI's currently available - but all the above problems have been eliminated - and it has two further features that make it fwe believe) unique.
Besides being a very good CDI unit, the circuit includes a tachometer output and an adjustable rev-limiting circuit.
The tacho has been included because most eiectronic tachos cannot be used in conjunction with a CDI system (to use the tacho function all that is

Transistor assisted ignition
needed is a suitably calibrated $0-1 \mathrm{~mA}$ fsd meter).
The rev limiter circuit is intended for engine overspeed protection only. It is of particular value with sporting cars in which safe engine rpm may be inadvertantly exceeded - and also in high power motor boats which frequently suffer engine damage due to the propellor jumping out of the water, thus unloading the motor sufficiently for engine speed to exceed a critical level.
Engine speed limiters are already fitted to a few vehicles (some Lotus cars for example) but these usually consist of a mechanically controlled electrical ignition cut-out. They work quite reliably but are prone to a 200 rpm or so hysterisis. If they cut out at, say 6500 rpm , then ignition will not be switched on again until the engine speed has fallen to 6300 rpm . In the meantime unburnt fuel has collected in the silencer where it will be ignited (with a bang) when ignition re-occurs.
The ETI electronic unit has virtually no hysterisis and operates smoothly and effectively.

ELECTRONIC IGNITION SYSTEM

A full description of how the ETI unit operates will be published in the second (and final) part of this article next month. Briefly however the tacho/rev limiting circuit uses a dual timer (NE556). The first half of this IC operates as a monostable which is triggered when the ignition contact points open. This provides the tacho drive.
When the first delay period ends, the second monostable is triggered and this sets the limiter. If the next pulse from the points occurs before the completion of the second delay, the SCR is inhibited thus switching off ignition until the speed has fallen below the preset limit.
As the limiter has no real hysterisis, the motor will usually fire every second or third cylinder.
Any back firing that may occur takes place in the exhaust pipe near the cylinder head - not in the silencer.
We would like to emphasise once again that the limiting circuit is intended for motor protection only. It should not be used as a road speed limiter or governor.

EARLY IGNITION SYSTEMS

The very earliest gas and oil engines used a flame or hot tube ignition system. The systems were basic yet reliable and effective. When ignition was required, a port in a reciprocating slide valve provided a passage between the burning flame and the mixture in the combustion chamber. Once the mixture was ignited, the port was mechanically closed.
The first electrical ignition system was devised by Sir Dugeld Clerk in the mid-1800's. The principle was similar to that of flame ignition except that an electrically heated platinum wire replaced the flame or hot tube. (This system is described in Sir Dugeld Clerk's classic work 'The Gas, Petrol and Oil Engine, Vol II.)

Break-spark ignition was used for a short time in the early days of motoring. In this system, a low voltage generator produces current in an inductive circuit. A spark is established within the combustion chamber at the required moment simply by mechanically separating two normally closed contacts. (This system is still used in a number of slow-speed stationary engines.)
The first high tension spark gap ignition was developed in France by Lenoir in 1860. Ten years before, a French mechanician, Ruhmkorff, had started to produce induction coils on a commercial scale. Lenoir based his system on the Ruhmkorff coil. His circuit was virtually identical to present day practice except that he used a trembler make and break on the primary side of the induction coil, instead of the mechanically operated synchronous switch used today.
The so-called 'trembler' ignition system was fitted to early Model 'T' Fords, and a few other (mainly American) vehicles, prior to 1920 or so. In this system, sixteen or so magnets were located around the engine flywheel. When the flywheel revolved, the magnets caused an alternating flux change in sixteen coils fixed to the engine main flywheel housing.
All sixteen coils were connected in series and provided an ac input to four separate trembler coils which in turn provided a high tension output, via a rotating distributor, to the spark plugs.

The system was not very reliable and later models used an orthodox Kettering system.

HOW THE ETI UNIT WORKS

The block schematic drawing shows all functions of the ETI system.
The oscillator is based on a TTL device and runs at approximately 36 kHz . The output is frequency divided down to 9 kHz and can then be gated on or off by either of two control lines.
The output of the oscillator is used to drive an inverter which is simply a set of power transistors driving a centre-tapped transformer (no feedback windings are used).
The output of the transformer is rectified by high-speed diodes to provide about 500 volts with 14 volt input. This output is monitored by a detector. If the voltage rises above 350 volts the oscillator output is gated off which in turn shuts off the inverter. The oscillator restarts when the voltage drops below 325 volts. This circuit ensures that the output voltage (i.e. across the capacitor) is maintained at a constant level for input voltage changes from eight to 16 volts.
High voltage components consist of a $1 \mu \mathrm{~F}$ or $1.5 \mu \mathrm{~F}$ capacitor and a 16 amp SCR. Due to the closely controlled drive voltage from the inverter, stress on these high voltage components is greatly reduced.
When the distributor points open, a $50 \mu \mathrm{sec}$ delay is initiated. This approximates the delay inherent in the normal mechanical system, thus the original distributor timing is maintained.
At the end of this $50 \mu \mathrm{sec}$ period, a monostable (half a NE556) is triggered. Its output is used for several purposes. The complete pulse is used to drive the tachometer (1 mA fsd) and the leading edge of the pulse triggers the SCR via a short monostable and signals the oscillator to switch off and remain off for a period long enough for the SCR to discharge the capacitor and turn off again. This prevents the inverter looking into a short circuit.
The trailing edge of this monostable output pulse triggers a second monostable comprising the second half of the NE556. This latter monostable is used for the rev limiting function. If its output has not returned to 'normal' before the contact breaker points re-open, the firing pulse to the SCR will be inhibited.
The rev limiting function is adjusted by simply connecting the output of the second monostable to the input of the first. The tacho meter will now indicate the maximum rpm before limiting occurs. Then, by adjusting the second delay, the desired rpm limit can be set.

To be continued with the second land final) part next month.

Wilmslow Audio

THE firm for speakers!

Baker Group 25.3.8 or 15 ohm Baker Group 35.3.8 or 15 ohm Baker Deluxe. 8 or 15 ohm Baker Major. 3.8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Supert. 8 or 15 ohm Celestion PST8 (for Unilex)
Celestion MH 1000 horn 8 or 150 hm
Celestion MH 1000 horn. 8 or
EMI $13 \times 8.3 .8$ or 15 hm EMI $13 \times 8.3 .8$ or $15 \mathrm{ohm} \ldots .$. EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm
EMI $13 \times 8.450 \mathrm{t} / \mathrm{tw} 8 \mathrm{ohm} \ldots .$. EMI $13 \times 8.350 .8$ or 150 hm EMI 13×8.20 wattbass
EMI $2{ }^{2 \prime}$ tweeter 8 ohm
EMI 8×5. 10 watt. dic. roll/s 8 ohm Elac 59RM 10915 ohm. 59RM1 148 ohm Elac $6 \frac{1 \pi}{2 \times}$ d cone. roll.s 80 hm
Elac TW4 4" tweeter
Fane Pop 15 watt $12^{\prime \prime} 8 \mathrm{ohm}$ Fane Pop $255^{\prime \prime} 12^{\prime \prime} 8$ ohm Fane Pop 50 watt. $12^{\prime \prime} 80 \mathrm{hm}$ Fane Pop 55. $12^{\prime \prime} 60$ wart 8 ohm Fane PoD 60 watt. $15^{\prime \prime} 8 \mathrm{ohm}$ Fane Pop 100 war. $18^{\prime \prime} 8$ ohm Fane Crescendo 12A or B. 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane Crescendo 18.8 or 15 chm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s. 8 ohm Goodmans 8 P 8 or 15 ohm Goodmans IOP 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27
Kef T15
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN 12
Kef DN 12
Kef DN 13
RichardAllan CG8T8 d/croll/s STC4001G super tweeter Fane 701 twin ribbon horn
Baker Maior Module each
Goodmans Mezzo Twin kit
Goodmans DIN 204 ohm each
Hetme XLK2 5 (pair)
Helme XLK30 (pair)
Helme XLK50 (pair)
Kefkit 1 each
Kefkit 3 each
Peerless 3-15 (3 sp. system) each Richard Alfan Twinkit each
Richard Alan Triple 8 each Richard Allan Triple each Richard Allan Super Triple each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit (pair) Wharfedale Dovedale 3 kit (pair) Super 10 RS/DD

PRICESINCLUDE VAT
Cabinets for PA and HiFi, wadding. vynair. etc.
Send stamp for free booklet "Choosing a Speaker"
FREE with orders ovar f7-"HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect.

Prompt despatch.

Carriage: Speakers 38p each. tweeters and crossovers 20 p each, kits 75 p each (pair $£ 1.50$)

WILMSLOW AUDIO

[^2]10 Swan St. Witmslow.

- Genuine E-silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stabillty.
- Search head fitted with Faraday screen to eliminate capacitive sffects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit.
- Kit can be built in two hours using only soldaring iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 2202; handle knocks down to 17" for transport.
Send stamped, self-addressed envelope for literature.

Complete kit
with pre-buit
search coil
Plus 60p P\& P

Built, tested and
Guaranteed
Plus 600 P\&P
South Africa, Rhodesia etc: Send $£ 14.00$ for kit, E 18.00
buit, both inctude Air Mail MINIKITS ELECTRONICS, 6d Cleveland Road, South Woodford, LONDON E 18 2AN (Mail order only)

HIGH TEMPERATURE BATTERIES

Batteries using liquid electrodes and electrolyte have been under development for the past ten years. Their very high temperature operation has caused problems but now they are about to be made commercially.

Here, Dr. Sydenham reports on European and American developments in the design and projected use of high-temperature batteries for transportation and power system storage.

A LARGE PROPORTION of our energy needs can be met with direct heating - coal, oil and gas being burned to produce heat - nevertheless the flexibility of energy in electrical form takes some beating. Electricity, being easily controlled, suits a large variety of needs better than the other basic forms of energy. Electricity, however, suffers one great disadvantage: it is generally uneconomic to store. This problem has been with us since the dawn of electrical knowledge and has still not been solved entirely adequately.
When very large amounts of energy are involved, the only really satisfactory storage method is to use the electricity to pump water to a higher elevation. When the energy is needed again, the water is used to drive turbines as it descends, thus regaining the electricity available earlier (but with some loss in the overall process).
Clearly, although on economic grounds pumped-storage is the cheapest and most efficient way to store electric power, it is only practical where the amount of energy is extremely large and where suitable geographical places exist to store water at two levels.
On the face of it, it would seem
better to generate power only as it is needed - but economic factors dictate that power generators should run at quite high outputs all the time. Unfortunately the demand for electric power fluctuates widely throughout the day and season. To obtain cheapest operation of the system, power system operators ideally desire economic storage facilities to absorb and smooth out fluctuations, and with (virtually) only pumped-storage being feasible at this time they are generally forced to make do with machine switching and variable loadings.
A better solution, if it could be found, would be to add electrical storage batteries to the transmission system at the points where the load needs smoothing. As yet this is not done in any significant way because the cost of storage batteries is prohibitive, nevertheless some developments have been made and the concept is now well worth serious consideration.
The advantages of such a scheme are manyfold, modules of batteries could be placed just where the load problem exists; the capacity can be changed with comparative ease by adding or removing units. A second and quite relevant parameter in favour of battery energy storage is that a battery can be

Fig. 2. Electrical cells can also be made with liquid electrolyte but means are needed to depolarise the electrode if it is to work for long.
vehicles where low cost is not vital, are now available but the main problem still holding up serious consideration of electric transportation with inboard storage is the cost of the battery, and its sheer weight.
Each year the margin by which stored electricity fails to be economic ,in transport is reduced a little further. Lighter batteries resulted when more exotic materials - silver-zinc, nickel-cadmium, for instance, are used, but the cost has risen sharply to achieve this. If you can afford ten times the price of a lead-acid battery you can gain a very considerable reduction in weight - but only military and other vital needs where cost is not the prime factor can afford this solution.
A new generation of storage batteries is however emerging. These operate at high temperatures (up to $400^{\circ} \mathrm{C}$ in design) but offer about four times as much storage as lead-acid batteries whilst retaining the same weight and price.
High-temperature arrangements tried to date include lithium and sulphur electrodes, sodium and sulphur, and lithium and chlorine. Of these the sodium-sulphur $\mathrm{Na}-\mathrm{S}$ combination appears to be gaining favour now that one group has produced large-size cells that can be made and used commercially. Before we look into the technology of these recently
developed storage cells we need to understand how an electrical cell produces electricity.

Electrochemical batteries
 come in different forms

The discovery and invention of the first electrochemical battery was the result of Alessandro Volta's work of 1800. Volta was inspired by the findings of Galvani who had previously demonstrated that chemistry and electricity were compatible concepts. Volta first discovered that two dissimilar metals touching together produced a voltage difference across them. Later he realised the very significant fact that certain solutions (he used brine and acidulated water) placed between the two different metals greatly increased the potential. Armed with this new knowledge he went on to build a battery of cells (depicted in Fig 1), made from zinc and copper disks which were separated with common-salt solution soaked paper. These were stacked to form a 'pile' of disks. This seems simple to us now, but in Volta's time it had not yet been fully appreciated that electricity could be produced by any other means than by frictional generation... the invention of a battery revolutionised man's thinking.
Volta also built cells (we do call a single cell a battery but strictly a battery is a collection of cells) using

HIGH TEMPERATURE BATTERIES

also results in the material of one electrode being plated upon the other - zinc onto the copper in the Voltaic cell. Consequently, even though depolarising a cell enables the reaction to continue longer, the cell eventually stops producing electrical energy due to the lack of material on one electrode.
The so-called dry-cell that is used commonly in a flash-light or transistor radio is similar to the wet cell. The difference is that the electrolyte is used in a paste form. A central carbon rod (see Fig 3), surrounded with a manganese dioxide depolariser, is placed into a zinc cylinder filled with ammonium chloride paste. This is a modified form of a cell originally devised by Georges Leclanche in the latter part of the nineteenth century.
Other forms of battery cell exist the Daniell cell (which is a Voltaic cell with added copper sulphate to depolarise the hydrogen), the Clerk cell (that uses zinc, mercury sulphate and mercury), and the Weston Standard cell are each historically important.
Cells incorporating depolarisers are not usually rechargeable in an efficient way because the depolarising action is not reversible. If a secondary rechargeable cell is desired, the design consists generally of little else than the two suitable electrodes immersed in an electrolyte. The lead-acid storage battery shown schematically in Fig 4, uses lead and lead-dioxide plates with dilute sulphuric acid as the electrolyte. The negative plate is made of a spongy form of lead to increase its surface area; the positive plate is coated with lead dioxide. When the cell is discharging, the lead and lead dioxide plates combine with the sulphuric acid to form lead sulphate, liberating water to the electrolyte, and removing
sulphuric acid from the electrolyte. Eventually both plates become totally coated with lead sulphate and energy production ceases. The process is reversed in recharging - lead and lead dioxide reform on the plates and sulphuric acid is remade in the electrolyte.
Another commonly used storage battery is the nickel-iron cell invented by the Edison company. Its plates are oxides of nickel and iron immersed in potassium hydroxide electrolyte. Its advantages are lighter weight for a given energy stored and it is more robust than the lead-acid battery. Another feature is that its chemical cycle can be sealed - no vents are needed to allow gases to escape. It is, however, more expensive.
The lead-acid battery is so common that it is easy to assume that batteries of all forms would be similar. Nothing is further from the truth now that the high temperature batteries have been developed. They must operate at high temperature ($300-500^{\circ} \mathrm{C}$), are sealed and can have a solid electrolyte with liquid electrodes - an inside-out battery by the standards we have grown to accept over the past century of battery use.

Enter the high temperature storage battery

Just what prompts designers to breakaway from traditional ideas is always hard ,to define, but the idea to try storage batteries running at greater than ambient temperature probably arose out of experience with thermally regenerative calls which began back in 1961 in the U.S. Atomic Energy Commission, (AEC). It is also known that improved chemical reaction occurs at higher temperatures. Standard Oil, Ford Motor Co., General Motors and Argonne National

Laboratory were each actively involved in high-temperature battery development from 1966 onward. These, plus a number of other groups who entered the field later, invested considerable finance into research for ways to provide more punch from a given weight and size of battery with the view to power-system smoothing and vehicle transport power applications.
A number of early design ideas were reported in glowing terms but few have resulted in continued interest right through to the marketing stage. Today the only battery now being considered seriously appears to be the sodium and sulphur electrode arrangement - it is the only one developed, rigorously tested in an electric vehicle, and about to be commercially produced at this time.
Most, but not all, high-temperature cells are electro-chemical arrangements involving chemical reactions but there is one approach - that of ESB Inc. in the U.S., for instance - that makes use of porous carbon plates to form a very large capacity capacitor when fused salts are run between the plates. Each specially made carbon plate, measuring about 150 by 300 mm , has an effective area of $10^{5} \mathrm{~m}^{2}$! This design runs at around $250^{\circ} \mathrm{C}$ in order to keep the electrolyte (really a dielectric material) fluid in order that mobile ions are available.
The main cortenders for large-scale battery storage are the traditional ambient temperature lead-acid units, nickel-cadmium, silver-zinc and zinc-air, and the sodium-sulphur, lithium-sulphur and lithium-chlorine high temperature designs. Figure 5 shows the theoretical merits of each type. Although there seemed the possibility that batteries using relatively exotic and specially compounded materials might provide a greater economic yield -lithium-selenium cells with sulphur and thallium additives in the cathode plates is one example - the cell that appears to have made it turns out to be one that is straightforward and uses abundant and easily refined elements; sulphur which is mined in an almost pure state and sodium that is extractable from sea water at a mere $12 p$ per kilogram.

The lithium sulphur cell

Originally the greatest emphasis was on lithium-sulphur battery research. This was largely because on theoretical grounds it can pack the greatest amount of energy on a weight for weight basis. Estimates of the need for raw materials to make the batteries

Fig.5. Comparative chart of the main forms of high-temperature battery designs.

Fig. 6. Rudimentary lithiumsulphur cell design for use in laboratory test chambers it is unsealed and lithium reacts with moisture explosively. (Argonne Lab.).
required ran to 180000 tonnes of lithium against a known supply of 24 million, so there would be no supply problem. It must, however, be extracted from rock mineral and current supply runs at only 3000 tonnes per year.
A typical early Li-S experimental cell is shown in Fig 6. Its design uses a molten salt electrolyte and special electrodes that are designed to hold the electrode materials when they become molten at the elevated $400^{\circ} \mathrm{C}$ temperature used.
Another design of so-called "super battery" with these electrodes is shown in Fig 7. It is how the production version might look.
An Argonne National Laboratory advanced design of cell is shown in Fig 8. It is a sealed cell, a must in practice - for lithium reacts explosively with water vapour - in which the lithium cathode is enclosed in a quite complex electrolyte. It shows the sophistication that was found necessary to obtain a workable cell with long life and close to theoretical power storage ability.

Plans currently exist to use these cells in mammoth arrays to act as mains power back-up supplies.

Chlorine cells

Heading the chart of potential high-temperature cells given in Fig 5 are those using chlorine gas as the positive electrode. This is because chlorine has a great affinity for electrons. In practice, although chlorine cells have been made and
demonstrated - such as in the Vega Hatchback test car which used the Udylite Co. system shown in Fig 9 chlorine is particularly nasty to handle due to its toxicity. Pumps and other ancillary equipment are also needed to circulate the gas through the zinc plates and this considerably adds to the cost and spoils the modular concept that is enjoyed with the lead-acid battery.

Sodium sulphur wins through

Although the $\mathrm{Na}-\mathrm{S}$ cell combination is, in theory at least, less attractive to chlorine or lithium electrodes, the practice has now yielded a cell that will be cheap to build - the same cost for a lead-acid cell of the same weight but with as much as four times the storage capability. It uses cheap materials - stainless steel, sulphur, fibrous carbon and sodium.
In 1966 Ford Motor Co. reported that a $\mathrm{Na}-\mathrm{S}$ cell had been produced in a laboratory glassware form. The following. year the Electricity Council Research Centre, ECRC, situated near Liverpool, began its own programme of research leaning somewhat on what Ford had found. By 1970 their efforts had produced a prototype research design that could be further developed into a large-size traction battery. Two years after this an electrified Bedford delivery van see Fig 10 - was used to put the Na -S traction battery through its paces. An authoritative report (made by Argonne staff and listed at end) of world effort compiled in late 1972 on super-battery research credited the ECRC work as the most advanced Na -S programme (and perhaps the best of all types?) for ECRC research workers had produced and used high-temperature cells in a practical situation. The ECRC battery was subsequently reduced in size in 1973, retaining the same storage capacity. This year (1974) they combined with the Chloride Group Ltd. to form a company, Chloride Silent Power Ltd., who will ready the first production line for the manufacture of commercial $\mathrm{Na}-\mathrm{S}$ cells by licensed companies in a year or so.

Fig.7. Envisaged production version of Li-S cells for modular use in power system load-levelling.

HIGH TEMPERATURE BATTERIES

Fig.9. Layout of chlorine-zinc battery installation in a vehicle.

Fig. 10. This modified Bedford van was run around the streets of London to prove the first large battery of Na -S high temperature cells.

Chloride Silent Power

 design is inside-outMost batteries use a liquid electrolyte and solid electrodes. Not so the $\mathrm{Na}-\mathrm{S}$ batteries to be marketed by Chloride Silent Power. Figure 11 shows a schematic cross-section of the cell. A stainless-steel case, the current collector, contains sulphur which is absorbed in fibrous carbon material. In the middle of this is a tube of Beta-alumina ceramic which contains pure sodium.
The ceramic tube serves to separate the sodium from the sulphur and performs as an electrolyte enabling ions to be transferred between the electrodes and preventing the electrode liquids mixing. Although the highest melting point of either of the electrodes is only $119^{\circ} \mathrm{C}$ the unit must be operated at at least $250^{\circ} \mathrm{C}$ to ensure that the reactant product (sodium sulphide) remains molten. If this is not kept fluid the electrical action ceases due to onset of polarisation because of the solids formed on the electrode surface.
Porous carbon is used to contain the molten sulphur (sulphur is a good insulator) and provides better electrical contact.
Another practical problem to be considered was that the amount of sodium needed requires more volume for a given amount of sulphur so a reservoir has been engineered to accept the excess sodium as it is liberated back from the sulphur on discharge. Figure 12 shows a typical cell used to drive the Bedford van. An efficient seal is vital for sodium is also explosive when contaminated by moisture.
The open-current voltage is 2.08 volts falling to 1.75 volts with an average load. The cell shown weighs 330 gm and stores 30 Ah (52.5 Wh). Discharging at 10 amps it holds up at 1.75 volts for close to 3 hours.

In the first demonstration battery 24 (later up to 48 in the same space) such individual cells were packaged into a module, as shown in Fig 13. Forty modules were then wired together to provide a unit delivering 100 V with $.50 \mathrm{~kW} / \mathrm{h}$ capacity in a volume of 1.52 m^{3} (including heaters and insulation). The all up weight was 800 kg . The unit thus provided $63 \mathrm{~W} . \mathrm{h} / \mathrm{kg}$ and 33 $\mathrm{kW} . \mathrm{h} / \mathrm{m}^{3}$.
At the time of our visit to Chloride Silent Power (August 1974) some details of a new projected design had just been released. It will use larger individual cells that lie horizontally as shown in Fig 14. It is envisaged that this unit (for which many of the details are closely under wraps) will store the same $50 \mathrm{~kW} / \mathrm{h}$ but with a
weight of 250 kg and a volume of $0.25 \mathrm{~m}^{3}$.

Keeping the batteries hot

Maintaining these batteries at the $250^{\circ} \mathrm{C}-400^{\circ} \mathrm{C}$ needed may seem a formidable waste of power. In practice, however, the heating only consumes 500 W of the 50 kW

SODIUM SULPHUR CELL

LOUID REACTANTS, SOLID ELECTROLYTE

 CURZENT IS CARRIED BY SODIUM IONS (NI°) WHICH GIVE WO ELECTRONS (e) TO THE EXTERNAL CIRCUIT, PASS SURPHUR (S)Fig.11. Cross section schematic of the inside-out $\mathrm{Na}-\mathrm{S}$-cell.

Fig. 12 Actual cell of ECRC Na-S cell showing the Beta-alumina tube used as a solid electrolyte.

Fig. 13. Three stages of development increased packing density of the ECRC cells into the battery module. They must be electrically insulated from each other at an operating temperature of around $350^{\circ} \mathrm{C}$.
available. Quite thin thermal insulation is adequate.
Once the unit is hot and operating, its own losses provide enough heat to keep the temperature up (and even provide some external heating if need be). To get the system going, however, an auxiliary heater is needed inside the insulated container. This is used to heat up the unit from the mains, usually via the charger provided to charge the cells. When the cells go cold the electrical action ceases without defect. Upon heating the energy again becomes available. A newly made cell is a primary cell and, therefore, can provide the current on demand once heated - eliminating the need to precharge it before use.
Although there was some initial concern that the cells in a module would not share the heat loss evenly, tests have since shown that there is no fear of thermal instability and that the cells can be packed as close as is electrically convenient. Interconnections are made using series paths for safety reasons: cells can fail in the short circuited condition which could damage the bank.

Safety

Due to the high temperature and toxic nature of sodium the designers have been careful to study the various mechanical failure mechanisms of a unit. Although risk does exist - as it also does with the lead-acid unit - the $\mathrm{Na}-\mathrm{S}$ cells appear safer than currently acceptable lead-acid units. The main safety risk of a car battery is not considered to be the material toxicity but the sheer mass of the battery in high-g collision conditions.

The future

The projected design of this battery reaches the 200 W.h/kg estimate needed for economic power-system purposes so we might well see the new batteries being deployed on power systems in the not too distant future.

The case for the electric car is also made stronger. Once the production volume rises the cost of a given energy capacity will fall to less than for lead acid batteries.
Clearly, high temperature batteries offer little for small energy needs, especially where the demand is for infrequent on-off use, but in transport and power uses the potential is vast.

Further reading.

"Lithium/sulfur batteries for off-peak energy storage." M.L. Syle et al. Argonne National Laboratory, Argonne, Illinois, 1973 - available from National Technical Information Centre, U.S. Department of Commerce, 5285 Port Royal Road, Springfield. Va. 22151.
"Sodium sulphur batteries for electric vehicles." Research Council Research Centre, Capenhurst, Chester. CHI 6ES. 1974.
"Battery power for electric vehicles." M. Barak "Electric Vehicles" part 1 . Dec. 1973, part 2, March 1974.

Fig. 14. Design model of projected 50 kWh Na -S module.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

 -0000 	
앵ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 	
 Gid 000000009009900090000000000000000 	

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS New Bu,Pak uniteste SEMICONDUCTORS

		Descriphon	Price
U			0.55
2	50	Mixed Germanium Transistors AF/RF	0.54
U 3	75		0.54
-	Sus		0.54
	6.11		0.54
18.5	:III	shl. Mianar Traph, Nex like lisy95A. 2NTuti	0.54
0	16		0.54
$1 \cdot$	5		0.54.
119	20	Mixal Valtagem, I Watl \%eller bindes	0.54
11	4		0.54
T:11	20		0.
413	紬	PSAP-NPN Sti, Transinturn ($\mathrm{K}^{2} 210$ \& 288104	0.54
UTS	1		0.5
U15	3	NPS 8ircplatar Trana Tu-5 like bry	0.54
U1i			0.54
0.7	: 5		0.5
1118			0.54
9		Siticon NPN Transistors like BC108	
1		1.5 Ami Silicin kevtifiers Top liat un to 1000 Pis	0.54
\%121		AF. (ierimanium Atloy Transivtore 26 (iston Serien in Oril.	0.54
23		MADTa like 3 Hz Series PNP Trangietars	0.54
424	20		
102	25		0.5
1:24;	30		
U240		1 Atwp BCK'н Tu-5 can. up to nim PlV CRM1/25.600	1.0
U332	25		0.5
T33	15		1.5
प13		-	0.54
35			0.5
36			
1837		Silicon Alloy Transisturn SO-2 PNP OC200. 28122	0.54
C38		Fast Switching silicon Trans. NPN \#Hz 2N3011	0.54
139	30	Rr- Sirmi. PNP Transtalonk 2 N1303.5 TO-9	
U 40	10		
U 53	23	sil. Trase pluntic T0.18 A,F. BCL13/114.	0.54
UF4	20	Sil. Trank Plantic 'TO-S BCilsinp	
F 15		3K ECR. TU66 up tin finfiv	
1.96		Unijuxtion tmaris Lore simitar 6 T188:3	0.54
$\underline{4} 72$		T0220 AB plastic triacs 50 V VA.	1.08
(4x		NPN sil power transintiors like 2N30.5s	. 0
[43			1.08

QUALITY TESTED SEMICONDUCTORS Ho.

```
Ked apot trumalatorn PNP
    While mpot R.F., trankims
```


AF 117 type transibtora
CN 171 H.F tankintorn
171 H.F. type trausiotion

K OA M1 dioden

3 Sillcon NPN trandistorx 2Nizil

2N3846 TO-18 platic 3u\% y Hz

POWER TRANS BONANZA!

 10 amp POTTED
BRIDGE RECTIFIE BRIDGE RECTIFIER
t00PIV. 99p aich

EEW LIEE

Platic Enoapralatiog
2 Amp. BRIDGE RECTS.
50 v . $\begin{array}{ll}2 \mathrm{AmD.} \text { BRIDGE RECTS. } \\ 50 \mathrm{~V} \text { RMS } & 35 p \text { each } \\ 1000 \mathrm{RMS} & 40 \mathrm{D} \\ 200 \mathrm{RMG} & 45 \mathrm{p} \\ 000 \mathrm{MMS} & \end{array}$ $\begin{array}{ll}1005 \mathrm{RYS} & 40 \mathrm{D} \\ 200 \mathrm{RMS} & 45 \mathrm{P} \\ 4007 \mathrm{MPM} & 500 \\ 1,000 \mathrm{VMR} & 550 \\ \text { Bize } 15 \mathrm{~mm} & \times 5\end{array}$ Bize $15 \mathrm{~mm} \times 6$
 EqVL TIA, BEN3000
30p ERch, $25-99$ 28p
100 UP 229. CADMIUM CELLS

 FREE One 50 p Pal of yoar
own choice tree mith RRAMD NEW TEXAB

2N2060 NPN SII. DUAL
 120 FCR MTRIE DRIVEE
 190 ceach. TU. $\overline{0}$
25 up 170 cxch.

[^3]the pak. The devires themeelvce are normally urmarted. NEW COMPONENT SHOP NOW OPEN WITM A WIDE
ALARGERANGE OF TECENICAL BI.PAKS NEW
A LARGERANGE OF TECEMICAL
AND DATA BOOES ARE NOW
RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT
COMPETITIVE PRICES-

－the lowest prices！

NOW WE GIVE YOU 50W PEAK（25W R．M．S．）PLUS THERMAL PROTECTION！
The NEW AL60 Hi－Fi Audio Amplifier
－Max Heat Sink temp 90°
－Thermal Feedback
－Frequency Response 20 Hz to
100 KHz －Latest Design Improvements Load $-3,4,8$ or 16 ohms －Signal to noise ratio 80 dB －Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$
－Distortion better than 0－1\％ at 1 KHz

－Supply voltage $15-50$ volts

Overail
$\times 13 \mathrm{~mm}$
Espacially designed to a strict specification．Only the finest components have been used and the latest solid state circuitry satisfy the most critical A．F．，enthuisiast FULLY BUILT－TESTED and GUARANTEED

STABILISED POWER

MODULE SPM80
保 15 watt（r．mse）per cstannel so power 2 of the AL60 Amplifiters．up to circuit protection．With the addition of the Ming Trans complete short the unit will provide outputs of up 1013 amps al 33 volss．Sire：
 deal for many other applications tncluding：Disco Sysems．Public
TRANSFORMER BMT80 £2．75p．\＆p．40p

INTEGR ATED CIRCUIT PAK

LINEAR I．C＇－FULL SPEC．			
Type No．	1	25	100
72702	050	0.48	0.45
72709	0.25	0.23	020
72709 P	020	0.19	0.18
72710	0.35	0.33	0.30
72741	0.30	029	028
72751 C	0.28	0.27	026
72741 P	0.30	0.29	0.28
72747	0.85	0.80	0.75
72748P	038	0.36	0.34
SL201C	0.50	0.45	0.40
SL701C．	0.50	045	0.40
SL702C	0.50	0.45	0.40
TAA263	0.80	070	0.60
TAA293	\＄1．00	0.95	0.90
TAAB50a	51.85	¢1．80	11．70
－A 703 C	0.28	0.26	0.24
－ 1709 C	020	0.19	0.18
乡山lli	0.35	0.33	0.30
3 4712	035	0.33	0.30
TBA800	0.95	0.93	0.90
7600 ？	$\underline{1.50}$	11．45	F1．40
76023	11.50	£1－45	1140
76660	0.95	0.93	0.90
L．M380	£1．00	0.97	0.95
NESSS	0.65	0.63	0.60
NF556	0.95	0.93	0.90
$\geq \mathrm{NSI4}$	¢1－20		

STEREO PRE－AMPLIFIER TYPE PA100
Build to 3 srecification and NOT a price，and yet still the greatest value on the marke
the PA100 stereo pre amplifict hias heen conceived from the latest circuit techriquc 1）estgned for use with the Atho power amplifier system．this quality made unnit incor low noise NPN devices for use in the input stsges which also has a STEREO／MONO switch，volume，halance and continuourly variable

SPECIFICATION：

Prequency responae
Harmonic dintortion Inputa：1．dapertion $\begin{array}{ll}\text { 2．Radio．Tuper } & 3.25 \mathrm{mV} \text { Into } 50 \mathrm{~K} \Omega \\ 3\end{array}$ All input voleagetc are for an 1.5 mV into $50 \mathrm{~K} \Omega$ Tape and PT inpura for an output of 250 ml ． thin $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz ．

Bus control
Fliters：Rumble（hgt pasu）
 Inpualinoveriond 8upply
D！ment！
$\pm 15 \mathrm{~dB}$ at 20 ER $\pm 15 \mathrm{~dB}$
100 Hz
1 KHz
better than $\div 65 \mathrm{~d}$ B +281 B
+35 volise 9
+35 volur at 20 m
$292 \times 88 \times 25 \mathrm{~mm}$
only $£ 14.25$

AL10／AL20／AL30		IFIER M AL20 and helf appearance cilleathon． Lhe plantie po range $8 . M .8$. y of thelr de a record playe In the ear and	DULES I．30 anits are and in thelr wever．carefol er devices han m make them Lsperecorders， end cartridse t home．
Parametor	Condition		Fartormaseo
HABYONIC DIBTORTION	Po－sw	8 1－3EHz	0．28\％
LOAD IMPPDANCE			8－168
InPUT IMPEDANCE			100 ER
FREQUENCT BESPONSE AS 3dB	Po $=2$ FATTS		
EENBITYiTY Lor Rated ofr			7 mmV ．RM8
DIMENSIONS			$9^{4} \times 24^{40} \times 1^{4 \prime}$
The above table relakes to the AL10，AL20 and AL30 modules．The following table outinea the differegces in their working conditiona．			
Paramelor	AL10	ALso	Also
Maxionom 8appls Voltage	25	30	30
$\text { Power outpent for } 2 \% \text { T.F.D. }$ $\left(\mathrm{ZL}=8 \Omega f=1 \mathrm{~K} \mathrm{H}_{3}\right)$		$\begin{aligned} & 5 \text { valta } \\ & \text { RMB Min. } \end{aligned}$	$\begin{aligned} & 10 \text { watte } \\ & \text { BY8 Y the } \end{aligned}$
PrICE	52.50	E285	5320

FRONT PANEL innobs，Headphone Socket．
onfof switch and neon for PA $100 / \mathrm{MK} 50$ ．
FPK $100[8.95$ ．

TRANSFORMERS

T461（Use with AL 10） $51-60 \mathrm{P} \& \mathrm{P}$ 22p T5
BMT80（Use
（Use with AL20 AL60）

POWER 8UPPLIEB

PS 12 （Use with AL10．AL20 \＆AL30）
SPM 80 ．（Use with AL60）

 CAPACITIVE DISCHARGE ELECTROHIC IGIITION KIT
 Smarkrite MK2 is a high performance, hig tive discharge. olectronic ignition system.
 ,ivo distharge, olectronic ignition system. Bocause of the superh design of the Sparknite circuin it completely eliminates problems of the contact breaker. minatod alctronically ty a pulse suppression circuit which provents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted Doints and is not dependent upon the dwell time of the contact breakers for recharging the system. Soarkrite incorporates a short cirCuit protacted inverter vachich eliminates the problems of Slowing the ruansistors or the SCR (Many capscitive discharge ignitions are nol completely foolproof in this respect.)
 Sparksite can therefore give vou:-
 up to 20% better fual consumption. instant all weathor starting. claaner qlugs - they tast up to 5 times longer without attcrition, foster secelerstion, higher top speeds, onger coir und bartory mir. circhion hat but and icss air pollution, smoother running. continust pesk perfor-
 NO - FUEL CONSUMPTION
 the ritting of a Sparkrite MK2 should reduce fuel conA fair estimate of the savings which could be expected A fair estimate of the sovings which could be expected,
 aperience. ard as follows.
 4 crlinder vehicte 1096 improvernent 6 cylinder vehictee 15% improvement 8 cylinder vehicle 20\% improvement it is worth remembering that while fuel saving is importani there are many orthet advantages to be gaincis firting a Sparkrite ignitiun systicm.
 THE KIT COMPRISES EVERYTHING NEEDED
 Rescty drilled pressed stes: case caated in mott black ejonxy resin, ready drilled tase and ticatsink, top quality -5 yeat guaranteed transtormer and components, cables. coil connecrors, printed circuit buard, huts, boirs. sillcon grease. full instructions to mike the kit negat WE SAY IT IS THE BEST SYSTEM AT ANY PRICE
 OPTIONAL EXTRAS
 Electronic R.P.M. limitation
 This can be included in the unit to prevent over revving, an afvantage io most companies. hire firms, high performance drivers etc.
 Givertronie/ronventional ignition switch.
 Gives instant changeover frum Suarkrte" Ignition zo con- ventional ignition for performance comparisons, szatic timing etc., and will also switch the ignition off ccmpletely as a security device. Incluries: switch, connectors, mounting
 PRICES
 D.1Y. assembly kit $£ 10.93$ incl. VAT. post and packing Reaty buils unit E 13.86 incl. V.A.T. Dosi and packing Both to fit all vehcles with coilvistributor ignition up to 8 cylintsers?
 witch fur instiont changeaver From "Sparkrite" ignition to conveationat ignition $£ 2.79$ incl. VAT. post and packing RPM. limiting controt $£ 2.42$ incl. VA.T. post and packing Firterf in case on teady built unit, dashboard mounting on kicl
 We can supply units for any petrolengired vehicle (boat, motorcycle, etc.) with coiVcontact breaker ignition. Detrails On request.

ELEHTPOITHO TIEMIHI RF\%OHIRIES of waISALL

Aluminium

boxes

Fluorescent

fight kit

I

You ran build this reverse polarity protoeted 12 voit 8 watt fluorescent kight You will receive all of the nccossary parts:whinted eircuit board. high quality components and transformer, printed circuit board. high quality components and transtormer,
end raps and cable, the fluorescent tube, nuts bolta and washers end raps and cabls, the fluorescent fube, nuts boltin and washers When complete the light has wide variety of uses such as workshop and workbench illumination, garege lighting. emergency lighting, lighting for camping caravaning or boating, as an inspertion lamp and many more.
If you can't spare ! hout to put the light together then we will supply it ready built (for a fow extra ponce)
PRICES
$\begin{array}{lll}\text { Assembly kit } & \text { E3.19 } \\ \text { Rearty buils } & \text { finc. V.AT. post and packingl }\end{array}$
(II.c. VA.J. post and packing) $\begin{array}{lll}\text { Reariy built } & \text { f3.78 } & \text { (iric. VA.I. post and packing) } \\ \text { Dittuser } & 59 p \text { extra } & \text { (floc. VA.T. post and packing) }\end{array}$

ORDER NOW
TO ELECTRONICS OESIGN ASSDCIATES DEPT ETL:
32 gath Street. Wisanl. WSI IDE Phoon 33652
fROM Name
nome

Oty Prous Supply
SPARKRIIE MK 2 DIY Assembiy kits $\boldsymbol{-}[50.93$
SPAGKIKRITE SiK 2 Ready Boint Nogative santh - E13.66
SPARKRTE MK 2 Rucht Buit Possitive eanh = E13.86
Igeĩön changeover switches - $\mathbf{E 2} .79$
R.P. M. Linat syzterns in the atove crits 62.42 .

Fluerescensl light baite units - 53.78
Dittusars for the abora $=59 \mathrm{p}$

	ol number	aluminium toxes
	of number	altuninium boxes
	of number	aluminium boxes

I enclose cheques P. 0 s for
Cheque No
(Semi SAE \& brochure only required)

1974-1975 TRAMSISTOR COMPARISON TABLES

A true pocket book ($53 / /^{\prime \prime} \times 4^{\prime \prime}$) which gives equivalents of over 2,500 types several alternatives are given for each. Originally a German publication, this book gives the information in English, French, German and Italian. 24 pages are devoted to transistor lead connections and over 130 to the equivalents section giving basic construction, lead details and manufacturers:

Send a cheque or P.O. for $£ 1.25$ (includes postage) to ETI to receive this truly up-to-date reference book.

TO: TRANSISTOR COMPARISON TABLES
ETI,
36 Ebury Street,
London SW1W OLW.
Pleäse find enclosed my cheque/P.O.
for $£ 1.25$.
NAME
ADDRESS 1

MODERN CRYSTAL OSCILLATORS

Roger Harrison looks at Circuits for Radio Amateurs

CRYSTAL OSCILLATORS, in one form or another, are fundamentally associated with virtually all transmitting and receiving equipment. Basic circuitry and circuit techniques, and the fundamentals of quartz crystals are discussed at various length by both the ARRL and RSGB handbooks, Pat Hawker's 'Amateur Radio Techniques', the various VHF handbooks by Jessop (RSGB) and Tilton (ARRL) as well as 'The Radio Handbook' by Bill Orr (Editors and Engineers). A useful, and more recent discussion on the subject of crystals and crystal oscillators is contained in the 'Ham Notebook' from the editors of the American journal 'Ham Radio'. For a deeper appreciation of the subject, references (1) to (4) are recommended.
Basic solid state crystal oscillator circuit techniques are by now well established, most circuits being
adaptations of the well-known vacuum tube technology such as the Pierce, Hartley, Clapp and Butler oscillator and use both bipolar and FET devices. Whilst these circuits basically fulfil their intended purpose, there are many applications which require something different or where performance needs to be reiiably characterised.
Presented here are a variety of circuits, for a range of applications from LF through the VHF range, that are not commonly found in current amateur use or literature.

MODES OF OPERATION

A point not often appreciated, or just forgotten, is that quartz crystals can oscillate in a parallel resonant mode and a series resonant mode. The two frequencies are separated by a small amount, typically $2-15 \mathrm{kHz}$ over the frequency range. The series resonant frequency is lower in

Fig. 1. Aperiodic Butler oscillätor (series mode)
frequency than the parallel. A crystal specified and calibrated for use in the parallel mode may be satisfactorily used in a series resonant circuit if a capacitor equal in value to its specified load capacitance (usually $20,30,50$ or 100 pF) is connected in series with the crystal. Sadly, you can't invert the process for series resonant crystal in parallel mode circuits. The series mode crystal will oscillate higher than its calibrated frequency in this case and it may not be possible to capacitively load it down sufficiently.
Overtone crystals operate in the series mode usually on the third, fifth or seventh overtone, and the manufacturer normally calibrates the crystal at the overtone frequency. Operating a crystal in the parallel mode and multiplying the frequency three or five times produces quite a different result from operating the same crystal in the series mode on its third or fifth overtone. When ordering overtone crystals avoid confusion and specify the frequency you want, not the apparent fundamental frequency. Reference (4) makes this point quite clear.
Fundamental crystals in the range 500 kHz to 20 MHz are usually specified for parallel mode operation but series mode operation can be requested. For low frequency crystals up to 1 MHz , either mode can be specified. Overtone crystals generally cover the range 15 MHz to 150 MHz s

WIDE RANGE or
 APERIODIC OSCILLATORS

Oscillators that do not employ tuned circuits can be very useful, whether they are simply used as 'crystal checkers' or some other purpose. Particularly for LF crystals, tuned circuits can be bulky. However, they aren't without their traps. Some crystals are prone to oscillation on unwanted modes, particularly the DT and CT cut crystals used for LF quartz oscillators. It is wise to check that the output is on the correct frequency and no mode instability is evident. Reducing feedback at the higher frequencies usually cures this. In extreme cases, the idea has to be abandoned and an oscillator having a tuned circuit used instead, (LF crystal oscillators are discussed later).
The first circuit is an emitter-coupled oscillator, a version of the Butler circuit. The basic circuit first appeared in VHF Communications in 1970 (p .240) as portion of a VHF-UHF calibration spectrum generator. Versions have subsequently been published in the 'VK5 Bulletin' (S.A. Div. WIA) in 1972 and 6UP, August issue, 1974. Lane (3) discusses a variation of this circuit (Fig. 2).
The output of the circuit in Fig. 1 is

essentially sine wave; reducing the emitter resistor of 02 increases the harmonic output. By doing this, a 100 kHz crystal produces good harmonics through 30 MHz . It is a series mode circuit.
A variety of transistors may be used. For crystals above 3 MHz , transistörs with a high gain-bandwidth product are recommended. For crystals in the 50 kHz to 500 kHz range, transistors with high LF gain, such as the 2N3565 are recommended. Also, for crystals in this range, permissable dissipation is usually less than 100 microwatts and amplitude limiting may be necessary, Low supply voltage, consistent with reliable starting, is recommended. Modifying the circuit by the addition of diodes - as shown in Fig. 3 - is a better method, and starting perform= ance is improved. The circuit will oscillate up to at least 10 MHz with appropsiate transistors and emitter resistor
values. Ān emitter follower or source follower buffer is recommended. Simi= lar comments to the above apply to Fig. 2. An emitter follower buffer is included in this circuit. Both circuits are slightly frequency sensitive to power supply voltage changes and load variations. A load of 1 k or greater is recommended.
TTL IC can be used in crystal oscillator circuits but many published circuits have poor starting performance or suffer from non-repeatability owing to wide paramater spreads in IC's. The circuit in Fig. 4. is by K1PLP from QST, Feb. 1974 (5) and is after Weggeman (6). This circuit has been tried by the writer over the range 1 MHz to 18 MHz and can be recommended. It is a series mode oscillator and suits AT-cut crystals. The output is about 3 volts peak to peak, square wave up to about 5 MHz beyond which it is becomes
more like half-sĩne pulses. Starting performance is excellent, often a critical factor with TTL oscillators.

LOW FREQUENCY

CRYSTAL OSCILLATORS

Crystals in the range 50 kHz to 500 kHz require special considerations not encountered with the more common AT or BT cut HF crystals. The equivalent series resistance (which determines 'activity' - that figure of merit of days of old) is much greater and their permissable dissipation is limited to less than 100 microwatts, preferably 50 microwatts or less.
The circuit in Fig. 5. is a series mode oscillator described by Lane (3). It has the advantage of ot requiring a tuned circuit, and has a choice of sine or square wave outpuit. For crystals in the range $50.150 \mathrm{kHz}, 2 \mathrm{~N} 3565$ transistors are recommended although the author has found BC107's satisfactory. Either type will suffice for crystals in the range 150 kHz to 500 kHz . If you find the crystal will not start reliably, most likely the crystal has a very high equivalent series resistance, in which case increase R1 to 270 ohms and R2 to 3.3 k (as recommended by Lane). For square wave operation, C 1 is 1 uF (or a value close to, or above it). For sine wave output, C 1 is not in circuit. Amplitude limiting is unnecessary. Sine wave output is about 1 V rms, square wave output about 4 V peak to peak.
The circuit in Fig. 6 is also described by Lane (3) and can be recognised as a modified form of the Colpitts oscillator, with the addition of resistor Rf to control feedback (it works the sàme way as Eno's). Capacitors C1 and C2 should be reduced by preferred values as the frequency is increased. At 500 kHz , values for C 1 and C 2 should be around 100 pF and 1500 pF respectively.
The circuit as shown gives sine wave output with the second harmonic

Continued on page 27.

Fig. 4. Reliable TTL crystal ascillator.

Complete the couponand wells send youour new catalogue.Completely free.

Thenew Heathkit catalogue is now out. Full as ever with exciting. new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'llalso get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your free copy to browse through.

With the world's largest range of electronic kits to choose from. there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And. if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Gloucester) Limited, Dept. ETI-45 Bristol Road. Gloucester, GL2 6FE. Tel: Gloucester (0452) 29451.

A new uscilloscope from the Heathkit range. Marine direction finder with digital read-out. Stereo cassette deck with built-in Dolby.

New. Sinclair IC20. 20 watts stereo amplifier kit

A build-it-yourself stereo power amplifier with latest integrated circuitry... 10 W RMS per channel output... full short-circuit and overheat protection.

Latest from Sinclair - the brand new IC20 power amp. It incorporates state-of-the-art integrated circuits 2 monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4 s? speakers. And the IC20 has integral short-circuit protection and thermal cut-out-it's virtually indestructible!

A complete kit!
6 resistors
15 capacitors
21 Cs
2 heatsinks
Printed circuit board Nuts and bolts

How should I use the IC20? Use the IC20 for converting your mono record player to stereo... for upgrading your existing stereo ... for improving your car radio/tape player. The IC20 runs off a $9-24 \mathrm{~V}$ power supply. If you're running the IC20 off the mains. simply add a Sinclair PZ20 power supply ($£ 4.95$ plus VAT).

Using the IC20 to improve your car radio/tape player's quality and volume? Run the IC20 off the car battery direct. You don't need a separate power supply, and you're reducing the drain on the player's dry batteries.

Improve your audio equipment - today

Both the IC20 and the PZ20 are covered by the Sinclair one-year, no-quibble guarantee - if absolutely any defect arises, Sinclair will replace the whole unit - unconditionally.
You can find both the IC20 and the PZ20 at stores like Laskys and Henry's. But if you have any difficulty, send us a cheque direct and we'll send you an

IC20 and/or a PZ20 at once. 14-day money-back undertaking, naturally.
Sinclair Radionics Ltd,
London Road, St lves,
Huntingdon, Cambs., PE174HJ. Tel:Stives (0480) 64646 ETV/4/75
VAT Registration number: 213817088.

MODERN CRYSTAL OSCILLATORS

about 40 dB down (or greater). This can be reduced by careful trimming of Rf and C1. Note that, at the reduced level of feedback necessary to achieve this, it takes some 20 seconds for the oscillator to reach full output. Output is about 2 to 3 volts peak to peak.
If you need an output rich in harmonics, the simple addition of a 0.1 uF capacitor across the emitter resistor will achieve this. Output then rises to about 5 V peak to peak. Power supply voltage can be reduced in this case to lower crystal dissipation.
Other transistors can be used, but bias and feedback may have to be adjusted. For cantankerous crystals determined to oscillate in modes other
than those you wish, the circuit of Fig. 7 is recommended. Feedback is controlled by tapping down the collector load of Q1. Amplitude limiting is necessary to keep the crystal dissipation within limits. For 50 kHz crystals the coil should be 2 mH and its resonating capacitor 0.01 uF. Output is about 0.5 V rms, essentially sine wave. The use of an emitter follower or source follower buffer is recommended. If a parallel mode crystal is used the 1000 pF capacitor shown in series with the crystal should be changed to the crystal's specified load capacitance (usually 30,50 to 100 pF for these crystals).

Fig.7. 100 kHz crystal oscillator (with tuned sircuit).

HF CRYSTAL
 OSCILLATOR CIRCUITS

Solid state circuits for the popular AT-cut HF crystals are legion. However, results aren't always what one would expect. Most fundamental crystals up to 20 MHz are, usually specified for parallel mode operation. However, such crystals can be used in series mode oscillators by putting the specified load capacitance in series with the crystal as mentioned previously. Both types of circuit are detailed here.
A useful oscillator for the range 3 to 10 MHz that does not require a tuned circuit is given in Fig. 8 (a). It is, of course, the same circuit as Fig.6. The circuit can be used down to 1 MHz if C1 and C2 are increased to 470 pF and 820 pF respectively. It can be used up to 15 MHz if C 1 and C 2 are reduced to 120 pF and 330 pF . Respectively. This circuit is recommended for non-critical applications where high harmonic output is wanted, or not a consideration.
The addition of a tuned circuit as in 8 (b) reduces harmonic output considerably. A tuned circuit with as high a Q as possible is recommended. In a 6 MHz oscillator, I have obtained the following results. With a coil Q of 50 the 2 nd harmonic was 35 dB down. With a Q of 160 , it was -50 dB ! Resistor Rf can be adjusted (increase slightly) to improve this. The output is also increased with a high Q coil. As previously noted, with reduced feedback it takes some tens of seconds to reach full output from switch on, however, frequency stability is excellent.
Operation at other frequencies is accomplished by changing the capacitors and coil appropriately.
This circuit (Fig. 8) can also be turned into a very effective VXO. A small inductance is placed in series

Fig.8b. Adding a coil to the circuit shown in Fig. 8.
with the crystal and one of the capacitors in the feedback circuit is made variable. An ordinary two-gang 10-415 pF (or thereabouts) broadcast tuning capacitor will do the job nicely. Both gangs are paralleled. The tuning range depends on the crystal used, the inductance of L1 and the frequency. A greater range is usually obtainable with the higher frequency crystals. Stability is excellent, approaching that of the crystal.
Another variation of this circuit is shown in Fig. 10. This circuit may allow more 'pull' on the crystal, but stability is poorer. For both Fig's 9 and 10 the trimmer is to set the nominal frequency at some position of the tuning capacitor. For both circuits also, especially for Fig.10, the output varies across the tuning range.

A vHF

OSCILLATOR-MULTIPLIER

The circuit in Fig. 11 is a modification of the 'Impedance Inverting' overtone oscillator discussed by Rankin (4), who also describes a similar circuit. Normally, with the impedance inverting circuit, the collector is either untuned or grounded for RF. The collector can be tuned to twice or three times the crystal frequency To reduce the output at the crystal frequency, a double tuned circuit is recommended. DO NOT tune the collector to the crystal frequency, otherwise the circuit will oscillate at a frequency not controlled by the crystal. It is advisable to keep the collector lead as short and direct as possible.
Results with this circuit are excellent. All outputs other than the wanted output were at -60 dB or greater. Noise output is at least 70 dB below the wanted output. It makes an excellent conversion oscillator for $\mathrm{VHF} / \mathrm{UHF}$ converters. Almost 2 V of RF is available at the hot end of L3

Fig.9. VxO

Fig 10. Alternative version of circuit shown in Fig.9.

MODERN CRYSTAL OSCILLATORS

（author＇s prototype at 30 MHz ）．A Zener regulated supply is recommended．As indicated on the diagram，different circuit values are necessary for different transistors． Strays in individual construction may also necessitate variations．L1 can be used to pull the crystal onto frequency．
Slight variations in frequency（about 1 ppm）occur when tuning L2 and L3 and also with load variations． However，in practise，these turn out to be of no consequence．

REFERENCES

（1）＇Radio Transmitters＇，L．Gray \＆ R．Graham（McGraw－Hill）
（2）＇Electronic Fundamentals \＆ Applications＇，J．D．Ryder （Pitman）
（3）＇Transistor Crystal Oscillators to Cover Frequency Range from 1 kHz to $100 \mathrm{MHz}^{\prime}$ by M．Lane， Australian Post Office Research Laboratories，Report No． 6513.
（4）＇Overtone Operation of Quartz Crystals＇D．Rankin（VK3QV）， Amateur Radio，March and May 1967.
（5）＇A TTL Crystal Oscillator＇， K1PLP，OST February 1974， p． 34.
（6）＇IC＝Compatible Crystal Oscillator＇， The Electronic Engineer，May 1969.

65 MHz Xtal 130 MHz OUTPUT $L 1$－NEOSID AZ ASSEMBLY
（4mm FORMER \＆F29 SLUG） 14mm FORMER \＆F29 SLUG）
WOUND WITH 12 TRNS OF 4.55 mm
ENAMEL WIRE，CLOSEWOUND
L2／3＝NEOSID，DOUBLE ASSEMBLY
730 CAN，TWO $722 /$ FORMERS，
F29 SLUGS，WOUND WITH 5TURNS，
O．63mm ENAMEL，CLOSEWOUND C1 $=33$ OR 39 pF

43 MHz Xtad $\quad 130 \mathrm{MHz}$ OUTPUT
L1＝ 20 TURNS 0.4 mm AS ABOVE L2／3＝AS ABOVE
$\mathrm{Cl}=56 \mathrm{pF}$
\(\left.\begin{array}{|r|c|c|}\hline \mathrm{XL} \& \mathrm{C} 2 \& \mathrm{C} 3

\hline 65 \mathrm{mHz} \& 8.2 \mathrm{pF} \& 5.6 \mathrm{pF}

43 \mathrm{mHz} \& 15 \mathrm{pF} \& 10 \mathrm{pF}

38 \mathrm{mHz} \& 22 \mathrm{pF} \& 18 \mathrm{pF}

\hline 65 \mathrm{mHz} \& 18 \mathrm{pF} \& 12 \mathrm{pF}

43 \mathrm{mHz} \& 33 \mathrm{pF} \& 18 \mathrm{pF}

38 \mathrm{mHz} \& 56 \mathrm{pF} \& 39 \mathrm{pF}

\hline\end{array}\right\}\)| |
| :--- |

$38 \mathrm{MHz} X$ tal 116 MHz OUTPUT
 $\mathrm{Li}=24$ TURNS 0.4 mm AS ABOVE
 $L 2 / 3=9$ TURNS 0.63 mm AS ABOVE

C $3=68 \mathrm{pF}$ OR 100pF

transistors								TESTED S．C．R 50 PIV ЗAMP TO－66 CASE 0.26		106ic las	$\begin{aligned} & M C 945 \\ & M C 948 \end{aligned}$		BONANZA $\frac{1}{2}$ MILLION CAPACITORS							
AC10）	0.26	Ac159	0.13	Clle	0.55	16217	0.30													
AC178	033	RC， 71	0.18	cvs：44	0.27	Van5a	0.25	100 PIV 3AMP TO 68 CASE 025		Trpf		0.14								
${ }^{\text {AC }} 127$	0.13	$\mathrm{BCl} / 2$	0.18	CV7464	0.10	V10 50	0.40	200 PIV ЗAMP TO－66 CASE 0.30		MC930 0.15	MC948	0.25	we cannot name the well known maker due to the low PRICE THEY ARE OF THE VERY LATEST DESIGN ANO TYPE							
\triangle－ 178	0.12	BC． 173	0.16	cv7594	0.25	Y25	0.10	400 PIV ЗAMP TO－66 CASE 0.40		MC932 Q．15 MC962 0.15										
AC138	0.20	BC184	0.18	548	0.30	2116	0.75	600 PIV 3AMP TO． 66 CASE 0.50S00 PIV ЗAMP TO－66 CASE 800		$\begin{aligned} & \text { MC933 Q15 } \\ & \text { MC944 } 0.15 \end{aligned}$	C9093	$\begin{aligned} & 0.40 \\ & 0.40 \end{aligned}$	price they are of the very laiest oesign and trpe． 100 MIXEO VQLUES ANO TYPES VALUED AT OVER ES 00 YOURS FOR							
AC1： 1	0.20	nC． 208	0.12	CV8762	0.40	10	0.12			mCsos？	ONIY 51.50 NO MDAE TO PAY（WHAT A BARGAIN？									
${ }^{\text {achen }}$	0.20	HC209	0.13	Mnsaz	0.30	27×302	0.17	zener diodes			74 SERIESICS									
AC1	0.22	AC2 12 L	0.14	MEA102	0.12	11×507	0.17	CV77OS IIV STUD TrPE A．60		Potyester 1500 if W 400 V 0.0015 pf 4400 v 000680 f 400 v ．										
AC176	0.15	BC301	30	NKT16？	0.25	2G105	0.21	TMYRISTOR BT 109		Cenmic plote 82ple 100 22000pf 40 v 4700 pfin 40 vetc ．										
AC．176	MP	HC336	0.15	NK1154	25	26，306	0.44			SN74t 0.45										
AC128）	0.25	RC337	0.15	NKT212	0.20	154	． 18	CON BRI 0.75							SN7400 0.18 SN7405 0.18 SN7401 0.18 SN7406 0.39 SN7402 0.18 SN7490n 0.74				tet．．．elc．．ete	
AC1 18 ACY17	25	日C211 H1）131	0.28 0.40	NKT22	0.15	2N526	0.48	OPTOELECTRONICS $\begin{array}{llll}\text { ORP } 12 & 0.48 & \text { OCP } 71 & 0.48\end{array}$		SPECTAL OFFERIC： BULK PURCHASE BRANO NEW is PIN DECADE COUNTEK SN 74902 FOR ONLY $£ 1.00$	SPECIAL OFFER BULK PURCHASE BRAND NEW aC 337 TRANSISTORS NPN TO 84 case 20 FOR $\mathbf{5 1 . 0 0}$									
ACry ACY 19	0.28 0.22	\％ H 132	0.40	NK1270	0.15 0.15	2NB91	0．46													
achio	0.22	BD134	MP	NK17＞8	0.15	2N715	0.35	JETa SUPER BARGAIM PACK5												
ACY21	0.22	H131321	0.75	（acz）	0.50	2N726	0.25													
AD161	0.38	BD139	060	C）8	0.50	2N753	0.55		1 Pre－amp component kit porn					0.55		SPECIAL OFFER DIODES				
AD162	0.38	คก14	0.60	C35	0.46	2N1304	0.18		1 Pre－amp component kit dus data3 Transistors 4 il 15 new a matheo			SPECLAL OFFER RESISTORS CARRON FILM CR 25 TYPE								
AD1611	mp	日F167	0.24	C36	0.55	2N1305	0.19		10 Transestors Y 25 new 8 markert				0.55 0.55	IN 4148 BRANO NEW						
AD1621	0.75	H\％ 194	0.12	45	0.14	2N1309	0.25						0.55	6PECIAL OFFER 1．C 97						
AFII！	0.26	85196	0.15	C70	11	7N1754	0.20	15	4 Tranjistors 2 N 728 new \＆marked．			0.55 0.55	1／n2 2 m 2 1alic 10120470 k 5 Y netc ．etc．etc							
AF	0.25	HF141 Br274	0.38	ก¢7\％	0.15	2N2484	0.14		8 zener diodes top hat twpe 75 volk．		75 Disdes mised new 8 marked	0.55	200 MIXED FOR ONLY $£ 1.00$	TCA 27OH ONLY E300						
ASY57	22	RFX 79	0.30	C81	0.17	2N30S5	． 50	178	50 Metrec con witre rnised colourt，25 Metres coniwire a Matras soktal			0.55 0.55	Look．I w．resistors box of 50－new．75p	SPECIAL OFFER$10-2 N 6027 £ 1.00$						
BC． 107	0.09	¢10885	0.33	201	0.30	N3102	0.12					0.55 0.55								
нCIos	0.09	ferso	20	5 K	0.25	2n3703	0.12		100 Resistors Hi／Stala Iw mixed values			0.55	MAINS TRANSFORMER 240 v INPUT 12 v gomps 25 v 1.1 amps 30 v							
ค¢109	009	BFrb 1	0.20	srisz6920	15	2N，3704	0.14		15 \％0\％inches aprox Copoer clad verectiona			0.55								
BC14］	0.30	Hivs？	0.20		2.14	371	0.10					0.55	15 amos C CORF 6250 pric 25 p ．							
$\mathrm{BCP}^{12.13}$	0.30	A－rgi	5	5csesf	． 15	7N318	． 90	113	150 Polvsity ene capatitors	fo 300p		0.550.55	AMPLIFIER 9 wott $500 \mathrm{~m} / \mathrm{w} 0.06$ pRp $5 p$ ．							
RC．147	0.10	n5Y38	020	\＄rs57	18	371	0.20	144	100 Capactars minatute mized values											
BC 148 $8 \mathrm{Cl}, 59$	0.10	BSY39	20	TK100	0.85 0.75	25322	0.48	15.	5 Terminal blocks 12 way brand new．			0.55	RELAY KEYSWITCH 2\＆V 1 POLE 2 WAY NEW \＆BOXED 0.55 ． RELAY TM．C MINATURE 3.300 ohms 2 POLE 4 WAY 0.55							
8C15；	0.11	BSY41	0.31	TIS50M	0.33	17	0.46	316	4 Trogir switches assorted			$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$								
AC． 158	0.11	¢口	050	tesatm	0.33	25745	0.48	117				TELEPHONE DIALS BRAND NEW £ 1.00 EACH p\＆sp FREE ELECTROLYTIC8 0.1 uf 250 v 9 p ．25uf 50 v 8 p ． 40 ul 16 v 4 p ．								
								118	12 Standaric crocodile cipe				0.55	ELECTROLYTIC8 0.1 ut 250 v 9 p ． 25 vf 50 o 8 p ． 40 ul 16 v 4 p ． 16－16ut 500 CAN TVPE 350.37 － 32 uf 450 CAN TYPE 35p．						
									12 Scrawitrvers 5inctes in length			0.55								
Oiodes		my 100	0.98	Dazoz	0.08	1ns003	0.05		1 Pack murs F holts，solder rags etc．etc．7 Solonoids 24 votr pull ea－new equipment			0.55 0.55	16－16uf 500 CAN TVPE 35p．32－32 uf 450 CAN TPPE 35p． CAPACTIORS 0.047 uf 400 v 8 p .125 uf 10 V 7 p ． 100 ut 10 v 8p							
AA119	006	BYİl	0.36	in34A	0.08	1N：004	0.06		2 Solonoinds 24 volt pull ea－new equipment			0.55	free offer one j pack of your own choice with all orders							
2 AALL3	0.18	avis4	0.55	iN20）	0.10	IN3005	0.07					0.55	free offer one j pack of your own choice with all orders VALUER AT F5．CO AND OVER．							
AATIS	0.11	8YX 38		IN252	0.10	LNs006	0.08		75 Sri nubier grommes mizent sires			0.55	PLEASE ADD 10% TO ALL TOTAL ORDERS FOR POST AND PACKAGE							
B890	0.10		0.46	IN98s ${ }^{\text {a }}$	0.10	IN400	009		20 Sorrw on rubber feet ${ }^{\text {a inctid dia．apror．}}$			0.55	MAIL ORDER DEPT．							
BA11］	0.20	AY7 13	0.28	（N112：	0.10	4158	0.06													
8， $1: 2$	020	H2COS	0.15	33064	0.12	（N．1148	0.0	J218	51 merpths of fetrite rod			0.55	ONLY							
Bay31	0.16	（14B1	0.08	INAOM1	0.05	9744	0.07					$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	（Callers by appointment）							
Bayl4	0.18	（3AJOK	0.07	iv1002	05	IS3036A	0.15		20 Tag sirps assorived lengths． 4 Micm swiches brand new				J．E．T．ELECTRONICS							
ZENER DIODES									2 Sets of 5 bank pursh switctes new20 Pie－set pots lin 8 log mixaet．			0.55								
				B7Y91C12		U TYPE	3.00					$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	9OA．MAWNEY ROAD ROMFORD＊ESSEX RM7 TOA TELEPHONE：ROMFORD 61486							
400 mW 733 v all 007 ratech I wil 5 2－33vall 0.96 vact						BZY91 C．33R STUO TYPE BZY91 CA3 STUD TVPE			3.00	132133	P0 canmetiors can tros mimen									
									3.00		50 Crosinic plate orpastiora inized．			0.55	SPECIAL OfFERS are available only whlle stock last					

Cassette Speed Regulator

by Brian Dance

The speed of a small cassette recorder can vary with the supply voltage, with the ambient temperature and with the torque applied by the tape to the motor spindle. Such variations of speed can produce a considerable effect on the sourd reproduction.
The extremely simple circuits described in this article can be used to stabilize the motor speed against variations caused by any of these effects. They can also be employed for the stabilization of the speeds of small dc motors used for other purposes.

THE INTEGRATED CIRCUIT

The circuits to be described employ one of four similar types of integrated circuit manufactured by the S.G.S.-Ates Company.

The devices coded TCA600 and TCA900 are suitable for use in portable cassette players operating from power supplies in the range of 5.5 V to 12 V . The types TCA610 and TCA910 are most suitable for the speed control of motors driven from a car battery, since they can operate from power supplies in the range of 9 V to 18 V . (The absolute maximum supply voltage is 20 V , but the normal maximum of 18 V allows a safety margin.)
The TCA600 and TCA610 are encapsulated in TO-39 circular metal cans, whilst the TCA900 and TCA910

Fig 1: Speed Variation using the circuit in Fig 3.

Fig 2: Typical Speed Control circuit of a cassette player running from batteries or mains.

Fig 3: A circuit for use in a car or where the supply voltage is 9 to 18 V .

TO-39 metal case for TCA600/610

TO-126 (SOT-32) plastic package for TCA900/910 Fig 4(b).

Pin 3 connected to metal part of mounting surface.
are in flat plastic packages known as the TO-126 type. Each of these devices has three connections which are numbered in Fig 4 and in the circuits to be discussed.
The maximum power dissipation of the TCA900 and TCA910 (0.8 W) is greater than that for the other two devices $(0.55 \mathrm{~W})$. A heat sink can be fitted if a greater power dissipation is required.

LOW VOLTAGE CIRCUIT

A circuit suitable for use in a typical battery or mains powered cassette player is shown in Fig. 2. The speed of the motor can be varied by the adjustment of RV1.
The power supply for the motor is obtained from pin 2 of the device. The output from this pin shows negative resistance characteristics. That is, if the motor takes an increased current (owing to an increase in the force resisting the rotation of the motor), the driving voltage from pin 2 will increase in proportion.
The maximum motor operating current is 150 mA , although approximately 400 mA can be supplied when the circuit is first switched on.

CAR BATTERY OPERATIONN

A circuit suitable for operation from power supplies in the range 9 to 18 V is shown in Fig. 3. The motor should produce a back emf of about 6 V , the internal resistance of the motor being typically 44 ohms.

The diode used in this circuit reduces variations of the motor speed with changes in the ambient temperature. However, this system of compensation
can be used only with motors producing a back emf greater than 4 V .
The typical variation of motor speed with the supply voltage when using this circuit is shown in Fig. 1

PERFORMANCE

The variations of the motor speed with temperature are around 2% for a $25^{\circ} \mathrm{C}$ temperature change in the circuit of Fig. 2. If, however, the diode is used in the circuit of Fig. 3, the speed variation is very small below $20^{\circ} \mathrm{C}$ and is about 1% for a rise in temperature from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

The variation of the motor speed with torque is typically little more than 2% when the torque changes by a factor of two; this applies to both the circuits of Fig. 2 and Fig. 3. This variation can be reduced by increasing the value of R1, but care must be taken to ensure that oscillations do not occur.
The minimum permissible back emf from the motor varies linearly from about 2.9 V when R1 is 40 ohms to 3.7 V when R1 is 290 ohms.

The capacitor C1 can be omitted if the power supply is well decoupled.

ADVANTAGES

These motor speed control circuits employ only four or five components. They are much smaller and simpler than speed stabilizing circuits which employ discrete components and this reduces the assembly costs. The circuits provide a high starting torque from the motor even at very low ambient temperatures.

It must be made quite clear that these circuits can be employed only to control dc motors; ac motors require a different type of speed control circuit.

MORE ETI

BACK ISSUES

Our back issues department can supply copies containing the following articles-

IC Power Supply(1.5V-15V) ZN414 Radio

in January. 1973
Trafficator Cancellor
Measuring Noise in
Amplifiers
in April 1973
Audio Frequency Meter
Earth Resistivity Meter
Getting a 4th TV Channel
in July 1973

Digital Alarm Clock

PA Speakers
Solar Power
in September 1973

Quad Amplifier
 SWL'sATU
 Using the TBA800
 Laser Experiments
 Lighting Effects Kits
 Review

in April 1974

Discrete SQ Decoder

Early Radio Patents (Pt 1)
Local Radio (Pt 2)
FM Tuner Kits Review
in June 1974

Digital Fault Finding Methods

Digital Servicing Tools
Early Radio Patents (Pt 2)
in July 1974
Articles in BOLD are PROJECTS
These articles are just a selection from the many printed in these issues. Many other back issues can be supplied. For a complete listing of articles before May 1974, see the Index in that month's issue. To order send $30 p$ for each issue plus P\&P ($10 p$ for one; $15 p$ for more than one) to Back Numbers Dept., ETI Magazine, 36 Ebury Street, London SW1W OLW, clearly stating the issues you require.
We cannot supply the following: April, May and November 1972 February and November 1973, March and September 1974

Ex BEA CONTROL UNITS by UNIVAC

A FREE STANDING, MODERN STYLE DIECAST CASE CONSISTING OF:

2-50way gold plated plug \& sockets; sub assembly with 3 multiway switch assemblies; 4 decade push button assembly with electrical reset; 2 decade push button assembly with electrical reset; single bank 8 push button assembly; 1 decade lamp assembly; 1-2 decade lamp assembly; 1-12 $\times 3$ lamp assembly; 4 decade thumb wheel assembly; 16 bit inline card code assembly; $6-15$ way plug \& sockets.

Limited stocks at $£ \mathbf{1 2 . 5 0}$ each. Plus $£ \mathbf{£ 2 0}$ carriage.

Also modern style typewriter keyboard with 21 separate function keys. Housed in slimline diecast case. Transistorised. No information but a 'BUY' at $£ 15.00$ each plus $£ 2.00$ carriage.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{v} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16 \mathrm{in}$. Suitable for Colour TV servicing. Price $£ 58$ each including copy of manual.

SOLARTRON CD1212 with DUAL TRACE PLUG-IN DC-24MHz

TB-100 nanosecs per cm . to 5 secs. per cm. in 24 calibrated ranges 20 nanosecs per cm . with times 5 expansion. $5^{\prime \prime}$ flat-faced tube. Trace locator. $0-2$ microsec. signal delay. Built-in calibrator. 1 KHz square wave Complete with manual, $\mathbf{£ 9 5}$ each.
 RELANCE P.C.B. mounting. 270: 470
500 ohms: 10 at 35 eea. ALL BRAND NEW. VENNER Hour Maters- 5 dioit. wall mount P. sealed 45
 $\mathrm{MA} .2 \times 6.3 \mathrm{~V} . \mathrm{E} 3 \mathrm{ea}$.

CAPACITOR PACK 50 Brand now compo-
hents only 50p. P. \& P. 17p.
P.C. MOUNT SKELETON PRE.SETS. Screwdriver adjust 10.5 and $2.5 M(2 p$ aa $1 \mathrm{M}, 500,250$ and 2 LK (a) 4 p es. Finger ad-
just 10.5 and $2.5 \mathrm{M} @ \mathrm{ea} 1 \mathrm{M} .500 .250$ ust 10.5 and 2.5 M @ $3 p \mathrm{ea} .1 \mathrm{M}$.
and $25 \mathrm{~K} @ 5 p$ ea. MinP. $\&$ P. 10 p .
1000.pf FEED TMRU CAPACITORS. Only
sold in packs of $10-30$ P.P. \& P. 10p.

RECTANGULAR JNSTRUMENT FANS American Exequ, Size $4 \frac{2}{2} \times 4 \frac{4}{2} \times 1 \frac{1}{2}$. 115 DELIVERED TO YOUR DOOR 1 cwt. of
Electronic Scrap chassis. boards. etc. No Rubbish. FOR ONLY E4. N. Iseland $£ 2$ exira P.C.B. PACK S \& D. Quantity 2 sq. t - no iny pieces. 50p pius P. \& P. 20p.

FIBRE GLASS as above f1 plus P. \& P. 20p
TRIMMER PACK. 2 Twin $50 / 200$ of ceramic 2 Twin 10/60 of ceramic: 2 min stips with $30 / 100$ pt on ceramic base ALL BRANO NEW $25 p$ the LOT. P. \& P. 100 .
ALMA precision resistors 200K: 400K: 497 K $998 \mathrm{~K}: 0.1 \%$ 27p es.: 3.25 K . $5.6 \mathrm{~K} .13 \mathrm{~K}-0.1 \%$ 20pes

RELAYS
RELAYS
Variey VP4 prastic covers 4 pole c/o i5K
33p: 5.8 KK -40pea.

HIGH-VALUE PRINTED POARD PACK

Hundreds of components, transistors, etc. - no two boards the tors, etc.-no two boards the
same-no short-leaded transistor computer boards. $£ 1.75$ post paid.
Vast quantity of good quality componenis
$\begin{aligned} & \text { - NO PASSING TRADE-SO We offer } \\ & \text { LB. of ELECTRONIC GOODIES }\end{aligned}$
of ELECTRONIC GOO
CRYSTALS: Colour 4.43 MHz . Brand Now.
TF Crystal Drive Unit 19 in rack
$\begin{aligned} & \text { Standard } 240 \mathrm{~V} \text { input with superb crystal } \\ & \text { by Labges (no crystals) } \mathrm{fS} \text { ea. Carr. } £ 1.50 \text {. }\end{aligned}$
OTARY SWITCH PACK-6 Brand New
$\begin{aligned} & \text { ROTARY SWITCH PACK-6 } \\ & \text { switches if ceramic: } 1-4 \text { pole } 2 \text { way etc.). }\end{aligned}$
$\begin{aligned} & \text { 3witches } 11 \text { cera } \\ & 50 \text { p. P. \& P. } 20 \mathrm{p} \text {. }\end{aligned}$
$\begin{aligned} & \text { CONSTANTVOLTAGE } \\ & \text { TAANSFORMERS }\end{aligned}$
TAANSFORMERS
S.A.E. with requirement.
BRAND-NEW 12m.
LONG PERSISTENCE TUBES
New slocks- new price. Onty $28-50$
for SSTV: educational purposes.
Ype 12DP7A. connections, voltages etc.
\longrightarrow

LOW FREQUENCY WOBBULATOR

DON'T FORGET
 YOUR MANUALS
 S.A.E. WITH
 REQUIREMENTS

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for $\mathbf{1 0 . 7}$ or TV if alignment, filters, :eceivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6 - 7 5}$. P. \& P. 25p. (Not cased, not calibrated.)

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6V max square outputs. Completely assemhled P.C. Board. ready to use. 9 to 12 V supply required. $\mathbf{£ 8 5} \mathbf{8 5}$ each. P. \& P. 25 p. Sine Wave only f6. 85 each. P. \& P. 25 p.

TRANSISTOR INVERTORS

TYPE A

input: 12 V 0 C
Qutput: 13 kV AC 1.5MA

TYPE B
input: 12V DC Output: 1.3kV OC 1.5

TYPE C
Input 12 V to $24 \mathrm{~V} D C$ Price $£ 4.70$

Post
: 1.5 kV to 4 kV AC 0.5 MA
Price $£ 6.35$
\& Packing 36p

TYPE D
Input 12 V to 24 VDC
Butput: 14kV DC 100 micto amps at 24 V
Progressively reducing for lower input voltages
Price $£ 11$

Unless stated - please add $£ 2.00$ carriage to all units
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)
\qquad
Post

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH.
2 HZ to 8 MHZ . Hook up a 9 volt battery and connect your scope and have two traces for ONLY £6.25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at
£9.75. P. \& P. 25 p.

Price $£ 3.45$
-
-

BIRTHDAY SPECIAL

This issue marks the start of eit's fourth year. We've grown a lot since April 1972 and are growing faster now than ever before. This, unfortunately, means problems for some of our readers. As more and more people buy eti the quicker the newsagents sell their copies, so people are dissapointed.

Fortunately there is an easy solution for those who want regular copies . . . they can take out a subscription and receive their magazine through their letterbox as soon as it is published. If you want a subscription just fill in the coupon at the bottom of the page and send it to eti with a cheque for $£ 4.25$ (or $£ 4.75$ overseas) which will cover postage, too.

And as it is our birthday we are going to be especially generous. Those of you who send in for a Top Projects book as well as a subscription will only have to pay the subscription fee. THE PROJECTS BOOK WILL'BE FREE! Just send in the voucher attatched to your coupon.

This offer expires on 30th April 1975 and applies only to new subscriptions taken out before then and using the special coupon. This offer is also being made to existing subscribers whose renewals fall within the offer period.

ON SALE AT YOUR NEWSAGENTS FOR

MAY BE OBTAINED FROM ETI USING THE COUPON ON PAGE 62 FDR 75 P PLUS 10P POSTAGE

	Radio CA3089E $£ 1.94$ CA3090AQ $£ 3.75$	P11 NE561 $£ 3.19$ NE567 $£ 2.75$	
Audio LM380 LM381 LM1.00 £			$\begin{array}{ll} \hline \text { Power } & \text { Supply } \\ \text { 7805 } & £ 1.75 \\ \text { 78L12 } & \text { £0.45 } \end{array}$
Ambit are electronics specialists. We don't believe in selling a device if we don't Know how it works - if your present suppliers cannot help with data and advice on all the items that they sell, then isn't it about time you got aquainted with us ? Our personal service is strictly by return for all in-stock items. Our new looseleaf catalogue/data folder costs 35 p (Inc VAT and post). All other prices $+15 p+8 \%$ FM Radio : CA3089E with 8 page data f 1.94 , the two CA3089E coils 15 p and 30 p CA3090AQ £3.75, coil for CA3090AQ 30p, full kit $£ 5.40$, Built $£ 6.60$ Ceramic filter CFS 10.740 p , uA753 99p, CA3053 52p, TBA120A £1.00 Tuner Heads: EF5603 TOKO ultimate varicap tunerhead f 8.40 , with AFC/AGC EF5600. £9 8319 Larsen tunerhead £7.74, ET703 Mechanical tuner + AM Gang £3. 30 7252 Larsen complete tunerset, RF to Audio, full details, $£ 20.00$ Audio : LM380 2 watt universal audio amplifier £1.00 Full kit (stereo) £3.80 LM381 preamp $£ 1.85$, Applications notes 35 p, Applications PCB 50p TBA810S 7 watts $£ 1.50$, Genuine 810 S Heatsink 15p, Full kit $£ 2.75$ Specials : ICL8038 Audio sine/square/triangle voltage controlled osc. R, C, and a voltage gives unique audio generator. +8 page data $£ 3.10$ 7805 Voltage regulator. 3 terminal. IC alone gives 5 v IA but two R^{\prime} s and a C give adjustable output 5-20 volts. £1.75 plastic £2.05 TO3 NE560/1/2 P11 £3.19, NE565/7 P11 £2.75,NE555v 78p, uA74lcv 40p			
AMBIT INTERNATIONAL 37 HIGH STREET, BRENTWOOD, ESSEX TEL: 0277 216029 TLX: 995194			

\qquad
GIRO NO. 3317056
C.W.O. only P. \& P. 10D on orders below 65 Export: Order $10-10 \%$. $\mathbf{6 2 0 - 1 5 \%}$ lexcept net rems Official Orders accepted from ALL PRICES INCLUDE VAT
SPECIAL RESISTOR KITS (Prices include DOst \& Dacking
OE12 : W KIT. 10 of each E12 value. 22 onms-IM. a cotal of $570(C A R B O N$ FILM 5%). C3 65 net
OEI2 WW KIT: 10 of eath EI2 value. 22 ohms-IM. a rotal of 570 CARBOIJ FILM 5°. ©3. 85 net
$25 E 12$ IW KIT 25 of each E12 value. 22 ohms-IM. a cotal of 1425 (CARBON FILM 5%), CE- 35 net
$25 E 12$, W KIT. 25 of each EI2 value. 22 ohms-IM. 2 roial of 1425 (CARBON FILM 5%. C8 A5 net
ALL QUANTITIES SPECIFIED ABOVE ARE APPROXIMATE.

MULLARD POLYESTER CAPACITORS C280 SERIES
250V P.C. Mounting: $001 \mu F$. $0.015 \mu \mathrm{~F}, 0022 \mu \mathrm{~F} .0033 \mu \mathrm{~F} .0 .047 \mu \mathrm{~F}, 3$ 3p. $0.068 \mu \mathrm{~F}$
 15p 1.5 1 F. 23p. 2-2 2 F. 26 p.
MULLARD POLYESTER CAPACITORS C296 SERIES
 $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0033 \mu \mathrm{~F}$. $31 \mathrm{D} .0047 \mu \mathrm{~F} .0068 \mu \mathrm{~F}$. 0 1 1 FF . $4 \frac{1}{1 \mathrm{D}}$. $0 \quad 15 \mu \mathrm{~F} .63 \mathrm{D}$. $0.22 \mu \mathrm{~F} .8_{3 D} 0{ }^{33 \mu F}$. 12p. $0 \cdot 47_{\mu} \mathrm{F}, 14 \mathrm{D}$

MINIATURE CERAMIC PLATE CAPACITORS
50 V : ($\mathrm{p} F) 22.27,33,39,47.56 .68,82,100.120 .150,180.220,270,330.390 .470$. $560,680,820,1 \mathrm{~K}, 1 \times 5,2 \mathrm{K2}, 3 \mathrm{~K} 3,4 \times 7,6 \mathrm{K8},(\mu \mathrm{~F}) 001,0015,0 \quad 022,0 \quad 033,0.047$, POIYSTYRENE CA
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(DF) $10,15,22,33,47,68,100,150,220,330,470,680,1000.1500,2200,3300$

PRESET SKELETON POTENTIOMETERS
MINIATURE 0 2SW Versical or horizoncat 6p each $1 K, 2 K 2,4 K 7$. IOK. etc.
UPROMMR. O5WVersical 100Ω to 220K il so each
B. H. COMPONENT FACTORS LTD.

POTENTIOMETERS
 Slider Pors. $10 \mathrm{~K} .100 \mathrm{~K} .500 \mathrm{X}, 30 \mathrm{~mm} .34 \mathrm{p} .45 \mathrm{~mm}, 47 \mathrm{p} .60 \mathrm{~mm} .55 \mathrm{p}$. 15 semi log)

THREEDAMAmETERS MUST BE WON

OUR RECENT CROSS-NUMBER compet fion was such a success that we are setiting you another one. Again we are offering three prizes, but thls time every winner gets first prize! These are inree digital multimeters which were launched earlier this year by Dana Electronics, and are selling for E107.46 each (inc. VAT).

Look at the spec. on the right and you will see what a professional instrument the Danameter is. it comes in a $4^{\circ \prime} \times 7 y_{c}{ }^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$ plastic case which will protect it if it falls off the bench. It is electrically rugged too over wilt not hurt it! it is such a beautiful ranges witit mot hurt it! so simple to use that you will probably spend many nours playing around with it before you put it to any serious use.

SPECIFICATIONS

DC Volts Ranges: $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 1 kV with 1 mV resolution. Overload protection is 1000 V DC gr peak AC, any range. Accuracy: $\pm 1 / 2 \%$ to $\pm 3 / 4 \%$. Automatic polarity and 10 Mohms input resistance.

AC Volts Ranges: $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 1 kV with 1 mV resolution. Overioad protec tion is 1000 V peak $A C, 250 \mathrm{~V}$ DC, any range. Input resistance 2 Mohms and input
capacitance $40 p \mathrm{~F}$.

DC Current Ranges: $20 \mathrm{\mu a}, 2 \mathrm{~mA} 200 \mathrm{~mA}$
and 2 A with $0.01 \mu \mathrm{a}$ resolution. Accuracy $\pm 2 \%$ to $\pm 4 \%$. Overioad protection is 250 V C or RMS.

OHMS Ranges; $200 \Omega, 20 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$ and $200 \mathrm{M} \Omega$ with 0.1Ω resolytion. Accuracy $+31 / 2 \%=112 \%+34 \%$ and $+8 \%$. Accuracy $31 / 2 \%$, $112 \%,-342 \%$ and -8%. Overioads p to 250 V DC or RIMS.

Battery: one 9 V dry battery, Est. battery included. Weight: 1 lb

For further detalls from Dana Electronics td., Collingdon Street, Luton, Beds.

ACROSS

Well known '2N' transistor number with suffixes of colours.
5. When it's 2100 hours in Moscow, whats the time in Guyana?
8. $F M$ IF
10. Traditional date of founding of Rome.
11. One radian in degrees.

13: Four foot two inches in millimetres.
16. TTL decade counter.

This competition is open to all U.K. and Northern Ireland readers of Electronics Today International except employees of the magazine, their printers and distributors and employees of Dana Electronics Ltd.

All entries must be on the coupon cut from the magazine, photostats are not acceptable. As long as the correct coupon is used, readers may submit as many entries as they wish.

The prizes will be awarded to the first three correct entries drawn after the closing date. No correspondence can be entered concerning the competition. It is a condition of entry that the judges decision in all matters is regarded as final.

The winners will be notified by post. The answers and a list of prizewinners will appear in a future issue of ETI.

Entries should be sent to: ETI/Danameter Competition, 36 Ebury Street, London SWIW OLW to reach us by April 30th, 1975.

HOW TO ENTER

Solve the clues shown and enter them on the form alongside as though it were a crossword but you will be entering numbers. All figures, (where applicable) should be rounded off to the number of decimal points for which there is space. Decimal points need not be entered and are not applicable in the other direction. For numbers less than 1 , ignore the first zero. Therefore 0.025 will appear as 025 .

Some of the clues are tough - but they are not tricks and those which you cannot answer from your head will be available in common reference books.

MK50250N PCB KIT £2.45

MK50250N

End views clock less display
MK50250N PCB Kit: Chock and Driver PCBs (each 70 mm $\times 60 \mathrm{~mm}$) to drive muitiplexs d Common Cathode LEDs (DL 704, NSN33 etc.), plus flat cable for only necessary interconnections, $\&$ ocket, sircult suplled with order (or send component layout \& circult supplled with order (or send $9^{\prime} \times 4^{\prime \prime}$ sae).
LOGARITHMIC VOLTAGE CONTROLLED OSCILLATOR LG110K E5.25. (built and tested, uncased data included) LOG VCO with vast potential as basic building block for creative electronlc music production - frequency 100 Hz to 10 kHz . The external control signal can come from your own oscillator or function generator, or simply add 9 V battery and inexpensive loudspeaker and start experimenting (suggestions given on data sheet). A Log VCO is essential for creating electronic music.

	LG110K
External Control Signal	Internal § Control Y Voltage

LOW FREQUENCY FUNCTION GENERATOR FX 1100 £4.95. (built and tested, uncased - data included) This unit generates square and triangle waves - ideal for inating range of electronic music and sound effects.
SINTEL SOUND LAB KIT: LG110K plus FX1100 £9.95 With these two units, a $9 V$ battery and a loudspeaker you have all you need to start your own Sound Laboratory and immediately produce a wide range of sounds - Including "Dr Who', sirens, bird songs, jet engines, scores of sound effects limited only by your imagination and skili.

ADD 8\% VAT to all prices

SINTEL MONEY-BACK SATISFACTION GURANTEE: Return unit(s) within 1 month of purchase if not delighted with results.

$$
\begin{aligned}
& 1
\end{aligned}
$$

51w|affrt!

The one you've been waiting for. Our 4600 project run last year was extreme iy popular despite its high cost and version and is likely to be even more popular.

It's 20 years since the Quad ESL speakers were first demonstrated. We take a
new look at these magnificent speakers and also show you how to get an even better sound using two!

ON SALE APRIL 11th.

The features mentioned here are, at the time of this issue going to press, in an advanced state of preparation. However, circumstances, including highly topical developments may affect the final contents.

ETI 100W GUITAR AMP

I would be pleased if you could give me some information on how I could obtain certain parts for the guitar amplifier (in your Top Projects Book, ETI 413). These are the transformer56 volts CT at 1.5A (Repanco 0722) and the resistors 0.25 Ohm 2 W .

- R.C.F., Newcastle.

A suitable transformer is available from Doram (see the reply to the Stereo Amp letter) and Doram can also supply $0.27 \Omega, 2.5 \mathrm{~W}$ resistors which are okay for this circuit.

ETI's DODGEY WIREGAUGE

Re the "Colour Organ" project in the February issue of ETI could you confirm the gauge and type of wire used to wind the choke and pulse transformers. You quote 0.40 mm (30 swg) and 0.63 mm (26 swg). My wire gauge does not agree with these figures, for
enamel wire $0.40 \mathrm{~mm}=27 \mathrm{swg}$ and $0.63 \mathrm{~mm}=23 \mathrm{swg}$.

- R.K.M., Harrow.

The diameter of the wire we recommend in our projects is the correct figure. The SWG reference is worked out afterwards and in this case we made an error.

ETI 50W STEREO AMP

I have partly completed the ETI Stereo Amplifier (in ETI, August 1974) but I am having difficulty in obtaining the Mains transformer, 56 V CT, and the transistors, PN3643. Could you please tell me where these components are obtainable from?

- B.G., Glasgow.

A $30 \mathrm{~V} \cdot 25 \mathrm{~V} \cdot 0 \cdot 25 \mathrm{~V} \cdot 30 \mathrm{~V}$ transformer rated at 1.5 amps is available from Doram (order code 196-139) for $£ 4.75$ plus VAT. This will do if you use it as a 60 V CT transformer.

A common equivalent of the PN3643 is the $2 N+3643$ lavailable from Marshall's, amongst others).

LATCH UP WHEN DRIVING AN INDUCTIVE LOAD

With reference to the circuit in your feature concerning the NE555 timer chip, Figure 10 on Page 27 of the February ETI, it will be found that on the NE555 integrated circuit timer a negative voltage at pin 3 can cause a latch up. The solution is to add two diodes and a resistor as shown below; this circuit prohibits a negative voltage from reaching pin 3.

ELECTRONICS IN CRIME

1 am writing to correct and clarify some of the impressions given by your December issue on the subject of burglar alarms with particular reference to Volumetric devices.

It is true that there are many types of alarm systems which may signal either local audible alarms or a remote central station or police station. In any circumstance the prime objective of the alarm system is to deter and prevent crime, which is done by demonstrating to the potential intruder that the premises are protected by means of the outside bell unit with the alarm company's name on it. Without inside information the criminal then has no knowledge of the alarm nor the method of signalling and may well be deterred.

DETECTION AND DISARMING

The possibility of overcoming or bypassing the modern alarm is very much more difficult than the article suggests. In the first place all professional - systems operate with a standby battery facility to remove the problem of mains failure or disconnection. The most usual form of power supply today is the rechargeable gel cell or nickel cadmium battery which is left permanently "on line". with the mains prime source for recharging. There is no switching as such and fluctuations or interference
of the mains supply presents no problems. Second, the method of wiring used today employs double pole wiring throughout and either cutting or shorting of wires will create an alarm condition.

It will always be possible to overcome individual items of the "hard wired" or conventional type but it would take an amount of inside information plus considerable technical ability which would be as rare as someone attempting to pick a security lock - the more usual method being to kick in or jemmy the frame or weakest point.

The greatest weakness in the "hard drawn" or conventional system is that it is a method of protecting individual points and access routes, such as windows, doors, skylights etc., and these can be bypassed by coming through a ceiling, wall or floor which would not be cost effective to prevent by conventional methods. Also in large buildings conventional systems can become unwieldy by virtue of the number of access routes and therefore switched points to be protected. The situation is further aggravated by modern building methods e.g. asbestos clad roofs and walls, louvre windows, ceiling lights of poor construction and large expanses of glass.

VOLUMETRIC SYSTEMS

A great deal of research has gone into
protect by volume (hence volumetric) to overcome these problems and raise the level of security. In the early days many of these devices were underdeveloped and highly unstable leading to an unacceptable level of false alarms.

For several years now the writer's company has been dealing with an ultrasonic system known as Unisec. Each area to be protected has a transmitter and receiver head which are connected to a central control which contains the logic circuitry, control function, power supply and rechargeable gel cell. The receiver heads "see" any change in the transmitted frequency caused by movement of a person within the area but will not see any external or electrical noises. This change in frequency (the "Doppler Shift") can be accurately measured and provides the alarm signal. The protection is 100% by volume (not by a beam). The system is accurate and dependable giving a false alarm ratio below that of conventional systems, with the further advantage that all the components of the system are within the protected areas and therefore not accessible for tampering.

I trust that this fills in some of the gaps and provides a fuller picture of this aspect of Electronics in Crime.

- T.A. Hack., Wessex Intruder Alarms Limited.

EVEN READERS living in major cities usually have to buy some of their components by Mail Order. All companies who market components by mail order advertise (how do they get hold of their customers otherwise) but only a tiny fraction of the items stocked can possibly be listed.

At ETI we consider that a selection of mail order catalogues is as essential to the constructor as a soldering iron or a screwdriver. Mail order companies almost always have a far greater stock of components than local shops and as there is considerable competition between outlets, the prices are often lower.

When checking component availability, we at ETI make use of a number of catalogues and we publish here details of ten of the major ones.

We have not included the catalogues of companies who stock only specialised components or only surplus equipment and only those which have a good range.

We often hear objections from readers about the cost of some catalogues. Most catalogues (even the dearest) cost far more to print than their selling prices and a charge has to be made to recover part of the cost. Some of the companies provide vouchers so that the catalogue costs nothing or very little to regular customers.

We give details about what the catalogues contain, which items listed that are hard to obtain elsewhere, etc. We have not set out to compare merits as this is highly subjective but we have listed details of 'extras' that customers get. By this we mean details of circuits etc., that are nothing to do with the sale of components directly.

We consider a couple of pounds spent on mail order catalogues is money well spent. Even those catalos included here are excellent value, at least we have yet to come across one which has not been.

Good range of transistors and I.C.s with adequate listing of passive components. Listings and specifications are clear and well thought out. Large numbers of photographs illustrate the components but the reproduction is poor on some. The catalogue covers nearly all categories though the range is not always large, for instance there are only three transformers.

Some unusual items: RAMs, Mullard FM modules, for example. Few r.f. components. Arrow are part of a group which holds franchises for RCA, Siemens and Newmarket and can usually supply any components from these companies.

Bi-Pak are of course semiconductor specialists, so it is not surprising that over half their catalogue is devoted to transistors and IC's with much of that space carrying details of the 74 series digital devices.

Only two capacitors are listed and resistors are only available in 'Paks' but there are chassis, pots and some connectors with a good selection of slide switches.

ARROW ELECTRONICS LTD.
 7 Coptfold Road
 Brentwood,
 Essex, CM14 4BN.

Cost: 10p to cover despatch
Size: $210 \times 150 \mathrm{~mm}, 45$ pages.

BI-PAK,
 P.O. Box 6

Ware,
Herts.

Price: 10p
Size: 208x $148 \mathrm{~mm}, 36$ pages.

BI-PRE-PAK LTD.

222-224 West Road, Westcliff-on-Sea,
Essex SS0 9DF.

Price: S.A.E. with 5 p stamp $295 \times 210 \mathrm{~mm}, 22$ pages.

DORAM ELECTRONICS LTD.

 P.O. Box TR8,Wellington Road Industrial Est, Wellington Bridge,
Leeds, LS12 2UF.

Cost: 25p.
Size: $295 \times 208 \mathrm{~mm}, 64$ pages.

ELECTROVALUE LTD.
28 St. Judes Road,
Englefield Green,
Egham,
Surrey,
TW20 OHB.

Price 30p: (includes 25 p voucher for use on orders over $£ 5.00$).
Size: $209 \times 134 \mathrm{~mm}, 108$ pages.

A catalogue vhich doubles as a reference book. The transistor listings are unique and extremely useful. Semiconductors are listed conventionally with price but this cross-indexes to 63 charts which give spec and lists devices in the same group. For instance, Low Power Output, Medium Current Switching, NPN, Silicon is one such category which has seven types which can be compared for spec and price. A 'Near Equivalents' list is aiso given. Two pages of very clear semiconductor outlines are included.
Fair to good range of IC's but mainly in the 74 series. Good range of pots, resistors and capacitors. Nine pages are devoted to Siemens pot cores, including specs. Several transformers are listed covering a good range. Some unusual items: Speaker fabric and Hall effect probes.
Good value for money even if you ignore the mail order aspect.

HENRY'S RADIO LTD.

303 Edgware Road,
London W2 1BW.

Cost: 75p

NOTE: Due for printing Spring 1975. Details are based on previous catalogue (not currently available) and plans made available to ETI.

HOME RADIO (COMPONENTS) LTD.
240 London Road,
Mitcham,
Surrey,
CR4 3HD.

Price: 65p plus 33p post etc. (70 p worth of vouchers included) Size: $288 \times 200 \mathrm{~mm}, 244$ pages.

MAPLIN ELECTRONIC SUPPLIES.
P.O. Box 3_{i}

Rayleigh,
Essex SS6 8LR.

Marshallis

Price: 35 p (Fēb. 75 issue). Size: $245 \times 178 \mathrm{~mm}, 132$ pages.

An enormous catalogue covering a vast range of new and surplus equipment. Well illustrated with quite a number of circuits, etc., which in some cases are almost constructional articles.
A good range of semiconductors, though these are even better covered by their separate listings (available free).
Good range of test equipment and Hi-Fi gear as well as kits and components. Good range of r.f. components. Main criticism is poor index and bitty presentation making reference difficult. Henry's tell us that this is being much improved in the new edition.

Apart from this, there may be weak points in this catalogue, we just haven't found them!

This catalogue can best be judged by the postage charge - we've checked the weight and at 33 p , Home Radio are not making a profit out of that. 244 pages, crammed with components. Price list is separate making double reference necessary.
A very wide range of almost all components with the notable exception of semiconductors and IC's. Both are included but the range is small. Excellent range of chassis and cases, also of buit test equipment. Good for r.f. components.
Apart from the weakness of semiconductors, this is perhaps the most comprehensive catalogue with a good index.

A. MARSHALL (LONDON)

 LTD.42 Cricklewood Broadway, London NW2 3ET.

Price: 25p.
Size: $208 \times 108 \mathrm{~mm}, 100$ pages.

Unlike many other mail order catalogues, the one from Marshalls is not all-embracing: there is practically no hardware, no chassis, few tools etc., BUT this is made up for by the outstanding range of semiconductors including IC's, thermistors, triacs etc. The range of capacitors, resistors nd transformers is also good.
Little spec is given for the devices but there are some useful tables such as one for selecting a diode for various voltage/ current combinations. Few illustrations but those that are included are well chosen.

S.C.S. COMPONENTS: Price

List 1.
Northfield Industrial Estate, Beresford Avenue, Wembley,
Middlesex HAO 1 YY .
SCS make no claims to this being a catalogue - they refer to it as a Price List. Virtually all that is included is a list of transistors and IC's - but what a list! A quick tally shows that about 1200 different devices are included. Other items include a good selection of MOS and LED components.

We haven't actually counted, but this catalogue is possibly the most complete one on semiconductors available to the amateur.

Size: $210 \times 150 \mathrm{~mm}, 122$ pages.

The Sinclair DM2 Multimeter.
 Comprehensive. Accurate. Portable. And really rugged. Yet only £59. pusuan

State-of-the-art circuit design, incorporating high-quality components, has resulted in a professional, $3 \frac{1}{2}$ digit instrument of outstanding performance and reliability at a realistic price.
A custom-designed MOS LSI digital processing IC controls the auto-polarity dual-slope-integration A to D converter. The circuit built around this IC uses a MOSFET op-amp input buffer with 0.1% metal-film resistors. The result is excellent accuracy and stability with a very high basic input impedance.
The instrument reads to ± 1999 and has a basic accuracy on the 1 V DC range of $0.3 \% \pm 1$ digit. Four 8 mm LED displays provide excellent legibility and angle of view. Battery operation allows complete independence of mains supply.
The Sinclair DM2 has all the capability you need. Just take a look at its features and compare them with higher-priced multimeters. You'll find the DM2 is their equal in virtually everything - except price!

Features of the Sinclair DM2

5 functions giving 22 ranges
DC volts -1 mV to 1000 V AC volts -1 mV to 500 V
DC current $-0.1 \mu \mathrm{~A}$ to 1 A
AC current - $1 \mu \mathrm{~A}$ to 1 A
Resistance -1 S 2 to 20 MSz
Easy to use
Automatic polarity, bush-button selection for all ranges and modes from a single input terminal pair. Easy to read
Big, bright 8 mm LED display gives a quick, clear reading. $3 \frac{1}{2}$ digit display
Display reads from 000 to 1999.
Overload indicator.
Protected
Separate fuses for current and resistance circuits.

Accurate

Dual slope integration. High stability.

Rugged construction Tough metal casing takes the roughest treatment - try standing on it!
Two power sources
Supplied with a 9 V battery, giving 60 -hour typical life. Mains adaptor also available. Portable
Weighs only $2 \frac{1}{2} \mathrm{lb}$ approx.
including battery.
Measures only 2 in $\times 9$ in $\times 6$ in approx.
Optional extras
Mains ad aptor - $£ 2.43$ inc VAT.
Carrying case - $£ 5.40$ inc VAT.
12-month no-quibble
guarantee

Use it in your laboratory. The DM2 sits rigidly on its combined carrying handle/stand.

Use it on the move. Keep the DM2 in its carrying case -it's always ready for use.

All you need to use the DM2 . . . anywhere. Mains adaptor . . carrying case . . . multimeter. . . you're ready for quick, efficient metering - whatever the situation.

Take advantage of this money-back, no-risk offer today
Test the Sinclair DM2 for yourself. Simply send us a cheque. your Access/Barclaycard number, or an official company order, with the coupon below. And in the unlikely event you find it's not what you need, return it to us within 10 days and we'll refund your money in full.
Interested in a quantity discount?
Use the coupon to arrange a demonstration and get details of prices on 5 or more instruments.
Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon,
Cambs., PE174HJ.
Tel: St Ives (0480) 64646.
VAT Registration No : 213817088.

The Sinclair DM2 Multimeter: full technical story

DC Volts Range	Accuracy	input Impedance	Resolution
1 V	$0.3 \% \pm 1$ Digit	$>100 \mathrm{M} \Omega$	1 mV
10 V	$0 \cdot 5 \% \pm 1$.,	$10 \mathrm{M} \Omega$	10 mV
100 V	$0.5 \% \pm 1$ "	$10 \mathrm{M} \Omega$	100 mV
1000 V	0.5\% ± 1	$10 \mathrm{M} \Omega$	1 V
$\begin{aligned} & \text { Maximum overload }-350 \text { V" on } 1 \mathrm{~V} \text { range } \\ & 1000 \mathrm{~V} \text { on all other ranges. } \end{aligned}$			
AC Volts Range	Accuracy		
	Accuracy	Input Impedance	Frequency Range
1 V	1-0\% ± 2 Digits	$10 \mathrm{M} \Omega / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
10 V	1.0\% ± 2,	$10 \mathrm{M} \Omega / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
100 V	2.0\% ± 2	$10 \mathrm{M} \Omega / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-3 \mathrm{KHz}$
1000 V	2.0\% ± 2 "	$10 \mathrm{M} \Omega / 40 \mathrm{pF}$	$20 \mathrm{~Hz}-1 \mathrm{KHz}$
Maximum overload - 300 V on 1 V range			
DCCurrent Accuracy		Input	
$\begin{aligned} & \text { Range } \\ & 100 \mu \mathrm{~A} \end{aligned}$	Accuracy 2.0\% ± 1 Digit	Impedance $10 \mathrm{~K} \Omega$	Resolution 100 nA
1 mA	$0.8 \% \pm 1$	$10 \mathrm{~K} \Omega$ $1 \mathrm{~K} \Omega$	100 nA $1 \mathrm{\mu A}$
10 mA	$0.8 \% \pm 1$,	100Ω	$10 \mu \mathrm{~A}$
100 mA	$0 \cdot 8 \% \pm 1$,	10Ω	$100 \mu \mathrm{~A}$
1000 mA	2.0\% ± 1.,	1Ω	1 mA
Maximum overload-1A (fused).			
AC Curren Range	Accuracy		
	Accuracy	Frequency Range	
1 mA	1.5\% ± 2 Digits	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
10 mA	1-5\% ± 2 "	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
100 mA	1-5\% ± 2	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
1000 mA	2.0\% ± 2	$20 \mathrm{~Hz}-1 \mathrm{KHz}$	
Maximum overload-1A (fused).			
Resistance			
Range	Accuracy	Measuring	
		Current	
$1 K \Omega$	1.0\% ± 1 Digit	1 mA	
$10 \mathrm{~K} \Omega$	$1.0 \% \pm 1$ "	$100 \mu \mathrm{~A}$	
$100 \mathrm{~K} \Omega$	1.0\% ± 1 "	$10 \mu \mathrm{~A}$	
$1000 \mathrm{~K} \Omega$	1.0\% ± 1	$1 \mathrm{\mu A}$	
$10 \mathrm{M} \Omega$	2.0\% ± 1.	100 nA	
Overload protection-50mA (fused).			

[^4]
FLIP.FLOP FLASHER

by A.J. Lowe

This simple effective unit could save your life

A MOST DANGEROUS situation for a motorist is changing an offside wheel at night on a dark road. The FLIP FLOP FLASHER provides protection by flashing a 'bouncing' red light warning signal to other drivers. As can be seen from Fig 1, two red accessory tail lamps are mounted on an aluminium tripod about 500 mm high. They are fed through a long lead from the car's cigarette lighter socket.
The tripod may be folded for easy stowage as shown in Fig 2.
The flashing action is provided by a simple astable multivibrator timed to give a flashing rate of about 60 flashes for each lamp per minute.
As one side of each tail lamp is connected to the metal tripod and may be stood on the vehicle, it is necessary to provide two circuits one to suit cars with a positive earth system, and one for cars with a negative earth.
The circuit for positive earth systems uses NPN transistors and is shown in Fig 3. The other uses PNP transistors and is shown in Fig 4.
From these it will be seen that there is no danger of a short circuit if the tripod is in contact with the vehicle metal work.

CONSTRUCTION

The few components of the electronic part of the device can be easily attached to a single tag strip as shown in Figs 5 and 6 for the positive earth system, and in Figs 7 and 8 for the negative earth system.
The tag strip may be mounted in a suitable tin box attached to one leg of the tripod. Toffee tins, or other tin boxes with tight fitting lids are ideal for this purpose. The mounting of the prototype using the negative earth tag strip is shown in Fig 9.
The tripod is constructed from three strips of 20 mm aluminium angle. The front legs are bolted together with a bolt and wing nut. The rear leg of the front pair is shaped at the top corner so that, with the bolt in position, the

[^5]
legs can separate by an angle of only about 32 degrees. The third leg is attached to a small bracket made from the same aluminium angle, and shown in Fig 10. The bracket is attached to the front legs by the bolt and wing nut which holds them together. The rear view arrangement is shown in Fig 11,
and from this it can be seen how the rear leg is kept central.
The lamps used were inexpensive accessory tail lamps available from motor accessory shops. They are fitted with 12 volt 6 watt lamps. If you wish to fit more powerful lamps then the Main text continued on Page 44

Fig. 2 The unit with its legs folded

Fig. 4 Circuit of the POSITIVE earth version

Fig. 5. Tag sitrip connections of positive earth versione

Fig. 7. Tag strip connections of negative earth version.

FLIP-FLOP FLASHER

Fig. 8. Actual tag strip for negative earth version. Note the wire joining the two tags above the mounting feet,' and also the use made of the lower holes in the tags.

Fig. 9. The negative earth version mounted in a tin box.
circuits would need redesigning to cope with the extra current.

TESTING

It is important that, when the transistors are 'on', they should be fully on, i.e. saturated. This limits power dissipation to a proper level. To check this the voltage across each transistor in its on condition should be measured. It should not exceed about 1 volt. To keep a transistor on long enough to measure the voltage, all that is necessary is to remove one of the lamp bulbs. This holds on the transistor associated with the other bulb.
If you have a very low gain sample of transistor then the voltage may be excessive. In this case the base resistor of that transistor should be reduced until the voltage is satisfactory. If this changes the evenness of flashing, then the other base resistor should be reached to the same value.

PARTS LIST

POSITIVE EARTH VERSION R1 R2 Resistors 1500 ohms $^{-1 / 4}$ watt C1 C2 Capacitors electrolytic 470 Q1 Q2 NPN Transistors BFY52 or equivalent.
Tapstrip - 10 lug as shown Lamps - two 12 volt 6 watt bulbs Aluminium angle about 1.7 m
NEGATIVE EARTH VERSION R3 R4 Resistors 1000 ohms $1 / 6$ watt C3 C4 Capacitors electrolvtic Q3 Q4 PNP transistors TIP32A or equivalent
Other parts as above.

TRANSISTORS
The BFY52 is listed by several suppliers and should present no problem. The TIP32A is listed by Electrovalue and Marshalls.

Fig. 10. The bracket for mounting the rear leg. ∇

Fig. 11. Rear view of the the tripod joint.

UNDERSTANDING COLOUR TV PART 3 The PAL System
 by Caleb Bradley

THE SUBCARRIER which is added to the conventional monochrome television signal to convey colour information has to carry two streams of colour-difference information: (E_{R} $\left.-E_{Y}\right)$ and $\left(E_{B}-E_{Y}\right)$. This is achieved in the PAL colour television system, invented in Germany by Dr. Bruch of Telefunken as an improvement on the American NTSC system, by 'synchronous modulation in quadrature' of the subcarrier by the colour difference signals.

SYNCHRONOUS MODULATION

Like amplitude or frequency modulations, this is a way of using a high frequency carrier to convey a signal which might be speech, music, a television waveform or in this case the colour difference signals.
Synchronous modulation is achieved by feeding the carrier and the modulating signal into a balanced
modulator or signal multiplier. The output of this is at any time the algebraic product of the two input voltages. If either voltage is zero, e.g. when the carrier wave crosses zero or when there is zero modulating signal, the modulator output is zero hence the modulation is balanced or suppressed-carrier type. When the modulated carrier arrives at the receiver, the signal can only be properly recovered by demodulating the carrier in a second modulator, using a locally generated oscillation of exactly the same frequency and corresponding phase to the carrier source used at the transmitter. Although the frequency can be duplicated accurately by using a quartz-crystal oscillator, some form of synchronisation signal must be transmitted to ensure correct phase.
A simple system of synchronous modulation and demodulation is
shown in Fig.15. The carrier oscillator at the transmitter produces a sinewave whose instantaneous value we can call ' $\cos \theta^{\prime}$ i.e. the cosine of the angle θ whose value grows from 00 to 3600 during each period of oscillation. This signal can be represented by a vector pointing upward on a vector diagram. This type of diagram is an easy way of showing phase differences between oscillations of the same frequency. Amplitude is represented by the length of a vector.
If the synchronisation between transmitter and receiver is effective the receiver's reference oscillator also produces $(\cos \theta)$ and the original signal (S) is correctly recovered. Before accepting the statement it is worth seeing the trigonometry which describes the process:
Modulated Carrier $=S \cos \theta$
local oscillator $=\cos \theta$
\therefore demod product $=\mathrm{S} \cos \theta \times \cos \theta$

Fig. 15. Principle of synchronous modulation and demodulation. Correct demodulation is only obtained if the receiver's reference oscillator is synchronised in frequency and phase to the transmitter's carrier oscillator.

UNDERSTANDING COLOUR TV

 representation of subcarrier

$$
=1 / 2 S \cos 0^{\circ}+1 / 2 S \cos 2 \theta
$$

But as $\operatorname{Cos} 0^{\circ}=1$

$$
=1 / 2 S+1 / 2 S \cos 20
$$

Thus we have the original signal ($1 / 2 \mathrm{~S}$) plus an unwanted component at twice carrier frequency $(1 / 2 S \cos 20)$.
This reveals an unwanted high frequency output from the demodulator which has to be suppressed by the low-pass filter in Fig. 15.
It is particularly interesting to see what happens if the reference oscillator is not in correct phase.* Suppose it were out of phase by a whole 180°, i.e. generating $\cos (\theta-$ $\left.180^{\circ}\right)$. This is the same as $-(\cos \theta)$, a vector pointing downwards at 1800 to the $\cos \theta$ vector, and the signal would just be demodulated with wrong polarity. I his would have disastrous effect on a colour difference signal, e.g. if $\left(E_{R}-E_{Y}\right)$ is inverted, red colours (positive values) swap places with blue-green or cyan colours (negative values). This fault can occur!

[^6]Alternatively suppose that the reference oscillator is exactly 90° out of phase i.e., $\cos \left(\theta-90^{\circ}\right)=\sin 0$. Again using trigonometry:-

Modulated carrier $=\mathrm{S} \cos \theta$
Local Oscillator $=\sin \theta$
\therefore demodulation product $=$
$\mathrm{S} \cos \theta \times \sin \theta$
$=1 / 2 S \cos 90^{\circ}+1 / 2 S \cos \left(2 \theta-90^{\circ}\right)$
But as $\cos 90^{\circ}=$ zero

$$
=1 / 2 S \cos \left(2 \theta-90^{\circ}\right)
$$

Thus only the twice frequency component is generated and this is removed by the low pass filter. Hence there is no output if the reference oscillator and the modulated carrier are in quadrature.
This gives the clue that a synchronously modulated carrier can carry two different colour signals without interference if the $\cos \theta$ and $\cos (\theta-90$) phases are separately modulated, known as quadrature modulation. It is easiest to think of two carriers of the same frequency but 90° phase difference which are separately modulated, then added together. This is shown in Fig. 16 where, to remind us, the luminance signal E_{Y} is also brought into the addition.
When two signals of the same frequency but different phases and amplitudes are added together the
result is a signal of the same frequency with new phase and amplitude. This happens when the two parts of the modulated subcarrier are added together, and for any instantaneous values of the colour difference signals the amplitude and phase of the sum can be found by extending parallel lines (dotted) on a vector diagram as in Fig. 16 b). The quadrature-modulated subcarrier is called the chroma signal and appears as a fine 'fuzz' superimposed on the luminance waveform. Although the colour difference signals may seem inextricably mixed in the chroma-plus-luminance signal, a receiver with synchronous colour demodulation, as shown in Fig.17, can recover them perfectly.

hUE AND SATURATION

Returning to the vector representation of the chroma in Fig. 16 b, it can be seen that since ($E_{R}-E_{Y}$) and $\left(E_{B}-E_{Y}\right)$ can each have positive or negative values i.e. each vector may point either way along its axis, the chroma vector can have any phase or amplitude. Some examples to illustrate this are shown in Fig. 18.
The phase angle of the chroma vector depends only on the ratio between ($E_{R}-E_{Y}$) and $E_{B}-E_{Y}$) but this ratio also defines a particular hue in the colour triangle described in Part 1.

Fig. 17. A suitable receiver for the signal produced by Fig. 16. For correct colour demodulation the reference oscillator must be precisely phase-locked to the transmitter. The insert shows a full description of the $\left(E_{R}-E_{Y}\right)$ demodulator; the $\left(E_{B}-E_{Y}\right)$ demodulator works similarly.

Further, the length (amplitude) of the chroma vector can only be large if one or both $\left(E_{R}-E_{Y}\right)$ or $\left(E_{B}-E_{Y}\right)$ are greatly positive or negative, which implies colours far from white in the colour triangle i.e. strongly saturated colours. Thus a consequence of quadrature modulation is that the hue and saturation of a colour is directly
defined by the phase and amplitude respectively of the chroma signal. The actual phase and amplitude values for the primary colours are shown in Fig.19. From the foregoing one would expect blue to lie exactly along the horizontal axis but in practice it is necessary to multiply ($E_{R}-E_{Y}$) and ($E_{B}-E_{Y}$) by reducing factors of 0.877
and 0.493 respectively to prevent overmodulation of the subcarrier by certain saturated colours. These 'weighted' colour difference signals are referred to as V and U in the PAL system and cause some rotation of the colour phases from their expected positions.

PHASE SYNCHRONISATION

The system of simuitaneous colour modulation of a subcarrier or colour coding so far described was used for the first regular colour television broadcasts. It is the basis of the NTSC system developed by Radio Corporation of America and is still used there and in Japan. Provided the reference oscillators in receivers are accurately phase-locked to the transmitter's subcarrier oscillator, the colour difference signals are accurately decoded. This phase lock is provided by transmitting a short burst of unmodulated subcarrier just before each picture scanning line. Colour receivers use this burst to correct the phases of their reference osciliators. Unfortunately experience has shown that unless the receiver is sufficiently close to the transmitter to receive a very high quality signal, propagation effects can upset the accuracy of the phase lock. When this happens the effect on the viewer's picture is disastrous since all the chroma vectors are in effect rotated clockwise or anticlockwise by the angle of the phase error. People find these hue errors especially unpleasant when flesh tones veer towards biue or green!
When colour television was about to be introduced in Europe in the mid-60s the opportunity arose to standardise on a different colour system giving better colour under poor reception conditions. Unfortunately power politics prevented complete international agreement and a minority of countries, primarily France and USSR, opted for a system in isolation called SECAM. This has its own history of development and is briefly described in the insert; it is

Fig. 18. Typical chroma vectors (thin arrow) produced by various values of $\left(E_{R}-E_{y}\right)$ and $\left(E_{\mathrm{g}}-E_{\mathrm{y}}\right)$ modulated as in Fig. 16.

UNDERSTANDING COLOUR TV
 the lines where U and V are modulated

Fig. 19. Phases and amplitudes of primary colour vectors using practical modulation signals ' V ' and ' U '.
unlikely to be chosen by many other countries.

PAL (Phase-alternate-line)

This is the colour system adopted by most of Europe, Australia and South Africa, and is most likely to be chosen by other countries in the future. It uses the same synchronously coldour-modulated subcarrier as the NTSC system but with a simple trick
added by Dr. Bruch which prevents phase errors causing incorrect hues. The trick is to send the V signal with reversed Phase (polarity) on Alternate Lines - hence 'PAL'. The arrangement to do this is shown in Fig. 20.
The significance of this switching can be seen in Fig. 21 where for simplicity both U and V have positive values. Demodulation is straightforward on

$\overrightarrow{F i g}$. 21. Inversion of V signal on alternate lines in the PAL system.
normally. On the alternate lines where V is inverted, the U demodulation is unaffected but $-V$ needs to be reinverted in the receiver to $+V$. One way of doing this is to use a phase reversing switch similar to the one in Fig. 20 to invert the reference oscillator feed to the V demodulator. This switch in the receiver must change at the start of every line in synchronism with the switch at the transmitter, i.e. at half-line frequency $(7.8 \mathrm{kHz})$. This frequency is easily derived from the scanning circuits by a bistable. However it is necessary for the composite colour signal to contain information from which the receiver can ensure that its 'PAL bistable' is working in the right phase - if it happened by chance to start off on the wrong foot, V would be demodulated with the wrong polarity on every line giving grotesque colour errors. In fact the synchronisation is achieved as a result of the method used to lock the

Fig. 20. A PAL colour coder. The polarity of the ' $V \cos \theta$ ' component is reversed on alternate lines by an electronic switch which alternately inverts the subcarrier fed to the V modulator

Fig. 22. Effect on two successive lines of the same colour of a demodulation phase error in the receiver. For explanation see text.
receiver subcarrier oscillator to the right phase, to be explained next month.

PHASE ERROR

CANCELLATION

Why does this extra complexity of alternate-line V reversing make the colour subcarrier immune to phase errors? The vector diagram in Fig. 22 shows why.
Suppose a picture contains two successive tines of a particular colour whose hue and saturation are represented by the chroma vector a. Suppose there is a phase error present such that all colours are demodulated with slightly leading phase. Thus on the line of the pair where $+V$ is transmitted, the receiver demodulates the vector b. On the next line where $-V$ is transmitted the receiver, instead of demodulating c the V-inverted version of a, demodulates d which it V -inverts to d^{\prime}. Therefore there are hue errors on both lines since neither b nor d' correspond with a. But note that they are at equal angles either side of a. A person viewing a television from a reasonable distance cannot resolve the colours of small areas (the property of the eye which makes low

Abstract

SECAM This system also uses a subcarrier to convey both colour difference signals but to avoid the need for phase-sensitive demodulation the subcarrier is frequency modulated. Only one colour difference signal can be sent at a time in this way so $\left(E_{R}-E_{Y}\right)$ and $\left(E_{B}-E_{Y}\right)$ are sent on alternate scanning lines. The absent colour signal on each line is replaced in the receiver by the colour signal sent on the previous line (by means of a one-line delay unit) thus vertical colour resolution is halved. This does not matter and the system provides good pictures under reception conditions that would ruin NTSC colour. Objections to the SECAM system are its incompatibility with other systems, the small number of countries using it, and the highly specialized equipment needed to handle and record SECAM signals at the transmitter.

definition colour signals adequate) and in particular tends to see the average colour of a adjacent scanning lines. This colour-integrating action of the eye can be represented by taking the average of the vectors b and d^{\prime}. The viewer sees the colour e. This has exactly correct hue (angle) but is a little shorter than a. Thus phase errors cause only a slight loss of saturation of the coloured parts of the PAL picture and viewers are unlikely to notice this.
If phase errors are really gross, a critical viewer inspecting the picture
will notice the line-by-line errors. The interlaced scanning of two fields in each frame causes a stroboscopic effect such that pairs of differently coloured lines appear to crawl up the screen. These are known as Hanover blinds, named after the exhibition where they were first demonstrated. They can be completely eliminated by using a receiver decoder circuit with a refinement which integrates the colour of adjacent lines electrically instead of relying on eye resolution.
To be continued

Now Available riom ETI ...

Towers' International Transistor Selector

HOW THE INFORMATION IS GIVEN (SHOWN HERE REDUCED SCALE)

Thansistom	$\begin{aligned} & P M \\ & 0 A \\ & 18 \end{aligned}$	PACK-	$\begin{aligned} & \text { LEAD } \\ & \text { IMFO } \end{aligned}$	$\begin{aligned} & \text { yce } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { max } \end{aligned}$	$\begin{aligned} & \text { MEE } \\ & \text { MAX } \end{aligned}$	${ }_{\text {max }}^{c}$	$\stackrel{\mathrm{T}_{\text {max }}}{\mathrm{J}}$	tot	$\begin{array}{ll} \mathrm{F}_{\mathrm{T}} & \mathrm{C}_{0} \\ \text { MIN } & \text { MAX } \end{array}$	${ }^{\text {FE }}$	H_{FE}	use	MFR	$\begin{aligned} & \text { EuRO } \\ & \text { EOVT. } \end{aligned}$	HSA	Iss
2N438	NG	305	L	30 V	254	25 V	30	As	15 C	1500\% 25 P	20 m	50 ma	R M	085	45729	2 N 1304	0
2 A 4364	NG	103	204	25 V		25v	300 m	85 C	15 CMMF	1500k 250	20 mm	50 ma	QW 5	005	45729	2N1304	0
2n439	as	t05	15	25 V		25 V	300 ma	855	10 CmmF	$3 \mathrm{~m}^{28 \mathrm{~Pa}}$	30 m	Soma	RKS	ObS	A5Y29	2N1304	0
2N639A	NG	105	104	25v		25v	3004 4	856	150*uF	3 m 2 lP	30 mN	50 ma	Res	OBS	A5Y29	2N1304	0
24440	nc	105	L04	304	15	25v	300w ${ }^{\text {a }}$	85.	150mma	SM 15P	40nN	Soma	R"5	OES	45729	2N1304	0
204404	NG	ios	LC4	25 v		25v	300ma	85	15 cm	4 CH 18	40 m	50 ma	RMS	oes	45Y20	2N1304	0
2N441	PG	1036	113	40 V	25.	20v	4	95 C	50 mC		20/40	54	AHE	MOE	40212	2N1100	0
20442	9	103E	113	sov	304	$30 y$	$4{ }^{4}$	456	50 wc		20140	S ${ }^{\text {A }}$	AHG	nos	20212	2N100	0
$2 \mathrm{Na43}$	PG	1036	113	sov	454	sov	4	- 56	50 wc		20/40	54	AHG	mos	10212	2N1100	0
2N446	NG	105	404	158		10V	5m4	856	15 CMmF	400k 300	15 tp	IMA	4 LG	CB 5	1-176	242430	0
2nat6a	NG	105	L04	406		10v	25 ma	100C	15CMF	400 k 28 P	20/40	20 m	ALG	085	${ }^{\text {a }}$-176	2N2430	
2 N 445	AG	105	104	154		10\%	25m4	S5C	15 CNaF	2M 32P	357	1 mA	RHS	085	15×29	2N1304	0
2N465A	NG	105	L64	304		10y	>aEA	1006	150 mmF	2 c 28 P	40/1价	20 ma	RMS	cas	45Y29	2N1304	0
2n440	AG	ros	10^{4}	151		inv	364.		45	4 M 30 P	6018	1 MA	8 m	085	45729	2N13 ${ }^{\text {r }}$	
2N4n6a										8 8 288					asy		

When we saw 'Towers International Transistor Selector' we were so impressed that we have made arrangements with Technical Book Services to supply readers directly.

This 142 -page book gives comprehensive details of over 10,000 British, US, European and Japanese transistors including electronic and mechanical specifications, manufacturers and available substitutes.

ALL FOR

COS | PLUS |
| :--- |
| $25 p$ |
| POSTAGE. |

$=1+\sigma=-1 / 2$

Bargains in Semi-Gonductors, components, modules \& equipment.

TRANSISTORS

IN PACKS, ALL AT 50p EACH - TESTED AND GUARANTEED

B79 4 IN4007 Sil. Rec. diodes. 1.000 PIV 1 amp. plastic
B81 10 Reed Switches, $1^{1 /}$ long $\frac{1^{\prime \prime}}{3}$ dia. Mighspeed P.O. type
H35 100 Mixed Diodes. Germ. Gold bonded. etc. Marked and H38 30 Unmarked NPN Silicon Planar Ex Equipment

H39 6 integrated circuits 4 gates BMC 962, 2 flip flops BMC 945
H41 2 BD131/BD132 Complementary Plastic Transistors
H65 440361 Type NPN Sil. transistors TO-5 can comp. to H66
H68 440362. Type PNP Sil. transistors TO-5 can comp. to H65

- UNMARKED \& UNTESTED IN BARGAIN QUANTITY PACKS
8150 Germanium Transistors PNP. AF and RF
366150 Germanium Diodes Min. glass type
884100 Silicon Diodes DO-7 glass equiv. to OA200, OA202
B86 100 Sil. Diodes sub. min. IN 914 and IN9 16 types
H20 20 BY126/7 Type Silicon Rectifiers 1 amp. plastic. Mixed
H34 15 Power Transistors, PNP. Germ. NPN Silicon TO-3 Can
H67 10 3819N Channel FET's plastic case type

PLASTIC POWER TRANSISTORS

In two ranges
40W and 90W Silicon Plastic Power Transistors zvail. Sold under our dependable Tested and Guaranteed terms. Unbeatable value a our dese prices. For individual or quantity usars.
Rance 1. VCE. Min $15 . \quad$ Range 2. VCE. Min. 40 HFE Min $15 . \quad$ HFE Min. 40 $\begin{array}{cccccc}1-12 & 13-25 & 28-50 & 16 \mathrm{p} & 1-12 & 13-25 \\ 28-50\end{array}$ $\begin{array}{llllll} & \text { 18p } & 16 p & 40 \text { Watt 30p } & \text { 28p } & \text { 26p } \\ 90 \text { Watt 24p } & \text { 22p } & \text { 20p } & 90 \text { Watt 35p } & \text { 33p } & 30 p\end{array}$ lease state NPN or PNP on order

CROSS-HATCH GENERATOR MK. 2

- 4 PATTERNS
- ONLY $51^{\prime \prime} \times 3^{\prime \prime} \times 3^{n}$ - IMPROVED CIRCUITRY - rugged construction

Indispensable for aligning colour TV. Now with plug-in ICs and more ensitive sync. pick-up circuit. Reinforced fibreglass case. Pattern selector switch. Uses 3 U. 2 type batteries internally

OTHER ITEMS

LM380 AUDIO IC (numbered SL60745) needs only two capacitors and two pots to make an efficient, little 3 watt audio mp. With instructions
REV. COUNTER FOR YOUR CAR. The Tacho 8lock enables any 0.1 mA meter to be converted to an accurate linear rev. counter. Easily fits to any car with conventional coil ignition
TRANSISTOR IGNITION KIT for berter performance and petrol economy. Easy to fit. State if for + or - earth
8 RELAYS in a usetul assortment of various types.
UHF TUNING UNITS by a famous manufacturer. Brand new. UHF TUNING UNNTS by a famous manutacturers Brand new. METRICATION CHART. Thousands of cross ${ }_{\text {area. volume. .iquids, weight. Pocket size } 12 \mathrm{p} \text {. Wall chart } 18 \mathrm{p} \text {. }}^{\text {. }}$ area. volume. hiquids. weight. Pocket size 12 p . Wall chark 8 p .
$B O O K S!$. BOOKSI. BOOKS1 Dozens of titles in stock - reference instructional, constructional, etc. See the B.P.P. Catalogue.
8.P.P. FREE CATALOGUE - 20 large pages ($11 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 84^{\prime \prime}$) packed with bargains. Send large 6p stamped \& addressed envelope for your copy.

STIRLING SOUND AUDIO MODULES Come ro you as basic unis assamblad on P.C.Bs anabling you to add required components in layouts of your own choica. Modules are rested and boxed before disparched and include well printed instruction.

AMPLIFIER MODULES

Pre-amplifiers; tone control

SS. 100 Active tone control unit to provide bass. treble, balance and volume controls
SS. 101 Pre-amp for ceramic cantridge, tape and radio
SS. 102 Pre-amp for low output magnetic cartridge, tepe and radio. With R.I.AA. correction $\pm 1 \mathrm{~dB}$ at 1 K on P.U.

Power Ampfifiart
SS. 103 Compact I.C. amp. with 3 watts R.M.S. output. Ope ating voltage 6 to 22 . Size $3^{\prime \prime} \times 2^{\prime \prime}$

SS.103-3 Stereo version of above using one I.C. on each channe

SS. 105 A compact and useful all-purpose amplifier which will tun excellently on a 12 V supply. With 5 watt output, two make a good stereo amp. Size $2 \frac{1^{\prime \prime \prime}}{}{ }^{\prime \prime} \times 1 \frac{3{ }^{m}}{4}$
SS. 110 Similar in size to $\mathbf{S S} .103$ but with a 10 watt output. Ideal for many domestic and small-size PA. applicateans. Operates from 26 to 32 V .

SS. 140 Excellently designed 40 watt R.M.S. (into 4 orms) hi-fi amplifier. S/N ratio betzer than 75 dB . THO better than 0.2%. Power requirements -45 V . d.c. With $0.15^{\prime \prime}$ centre edge connections. Two bridged give 80 w . R.M.S. into 8 ohms

TUNER MODULES

SS. 201 Ganged tuning unit with accurately engineered slow-motion drive in rugged housing. Excellent sensitivity. Tunes $88-108 \mathrm{MHz}$

SS. 202 I.F. stage (with I.C.). Pre-tuned. A.F.C. connection. Operates from 4.5 to 14 V

SS. 203 Stereo Decoder. Designed essentially for use with SS. 201 and 2. this module can also be used by most mono FM tuners. A LED may be attached. Operating voltage $9-16 \mathrm{~V}$. d.c.
SS. 300 Power Supply Stabilizing Unit for adding to unstabilized units. Max. input voltage -65 V . d.c.: output adjustable from 12 to 60 V . Dependable rugged and money saving

- ALL MODULES TESTED AND GUARANTEED
- WITH WELL PRINTED INSTRUCTIONS

SINGLE-CHIP STEREO AMP

A fantastic bargain using a unique single chip
stereo l.C. to provide o 5 a 5 watt output into
8-ohm channeis. Assembled on P.C.B. With tone.
8 -ohm channeis. Assembled on P.C.B. With tone,
vol. and balance controls. Requires
$9-35 \mathrm{~V}$.d. $\quad \mathbf{E} .25$.

TERMS OF BUSINESS

V.A.T. Prices shown there do not include V.A.T. Piease add 8% to sotal value of you order including postage No VAT. on overseas orders.
POSTAGE Except where stated otherwise. add 15 p for postage \& packing for U.K POSTAGE ExceDt where stated otherwise, add $15 p$ or postage \& packing for
ordars. Overseas -add
. 1 . any difterence being charged or fefunded PAYMENT Cash with order, cheque or money order. Minimum value - £1. Also

SS.103-3
£1.60 £1.60 $£ 2.25$

$£ 1.75$
£ 3.25
£1.95
£2.40

 you can day by ACCESS.
IMPORTANT - Every eff
IMMPORTANT - Every effort is made to ensure accuracy of prices and descriptions at tirne of preparing shis adv
alteration without prioe notice.

222224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF: TELEPHONE: SOUTHEND (0702) 46344

To BI-PRE-PAK 222 West Rd. Westcliff-on-Sea, Essex
Please send tatest B.P.P. Catalogue. I enclose large S.A. envelope
Please send
(Write on more paper if necessary)
NAME
ADDRESS

INTRUDER ALARM

A simple burglar alarm with superior performance ${ }_{\text {. }}$

AT THE beginning of this century there were only three crimes a year for every one thousand people. By 1971 there were three for every one hundred - ten times as many. In the UK, statistics have shown that from 1964 to 1970 the number of indictable offences rose by 50% - and the rate is steadily increasing.
This increase in crime rate is common to the entire western world, and seems to be related to affluence rather than to poverty as was previously thought by many.
Hence, these days, the chances of your home being burgled are high indeed, and getting higher. Each householder should therefore give serious consideration to protecting his home by an effective alarm system.
A burgler alarm for the home should
preferably be battery operated (as it is quite easy to switch off the power from outside most houses), should be reliable over long periods and should not be subject to false alarms.

In the ETI Alarm the CMOS IC has sufficiently low power drain (less than 1 mA) to make battery operation feasible. And by virtue of the high noise immunity of CMOS (half supply voltage) the unit is not susceptible to false alarms due to lightning flashes etc. Add to this the inherent reliability of integrated circuits and you have the basis of a very simple, but very effective, system.
Three modes of operation are built in to the unit which functions as follows:

ALARMA MODE

Microswitches or reed relays fitted to

each window and door are arranged to have closed contacts when the door, etc, is shut. All contacts are wired in a series loop such that if any door or window is opened, the loop will be broken activating the alarm. The series loop should be wired between the 'external loop' and 'common' terminals shown in Fig. 4.

SILENT ENTRY

This mode of operation allows the owner, when leaving the premises, 30 seconds to open and close the front door before the alarm mode is activated. Additionally it allows the owner 30 seconds to disable the alarm after entering through the front door. Thus the front door microswitch is not included in the normal alarm loop but to its own 'silent entry' loop. The silent entry switch should be wired between 'silent entry' and 'common' see Fig. 4.

EMERGENCY

In this mode, any contact closure from a switch or sensor (eg fire, smoke or gas detector) will immediately sound the alarm. Wire switch/s across 'emergency' terminals (Fig. 4).

CONSTRUCTION

Assemble all components to the printed circuit diagram in accordance with the component overlay diagram, Fig. 2. Do not fit the CMOS IC until all other components are in place. Make sure that the diodes, the transistor and the tantalum capacitors are all orientated correctly before

SPECIFICATIONS	
Power requirements	12 volts
Current consumption	7 mA
Silent entry delay	30 seconds approx:
Alarm circuits	Normally closed
Emergency circuits	Normally open Relay change over contacts

INTRUDER ALARM

supply rails and their connection allows the internal-protection diodes to safeguard the gates against electrostatic damage. The remaining pins may then be soldered.
The completed printed circuit board should then be assembled into the box, together with the switches and terminal block, and the complete unit wired with reference to the component overlay and the wiring diagram Fig. 4.
The completed alarm unit should be located in a reasonably well concealed position close to the 'silent entry' door.
The alarm bell is best located in a high, well concealed and not readily accessible position. As very high voltages are generated across the bell 'make and break' contacts it is preferable to use a separate bell battery of suitable voltage rather than to connect it across the main system battery.

Fig 4. Wiring diagram showing connections from printed circuit board to switches and connector strip.

HOW IT WORKS

The alarm has three different modes of operation as described in the text. When power is tirst applied, i.e. normal alarm mode enabled, capacitor C2 initially has no charge. This momentarily lifts the inputs of IC1/1 to +12 volts. The capacitor then charges slowly via R1 and the voltage presented to $\mathrm{ICl} / 1$ falls exponentially to zero. The output of IC1/1 will be zero if the input is over 7 volts, and at +12 volts if the input is less than 5 volts. There is a small linear region, around 6 volts, in which the output changes from zero to +12 volts. With the values given to C2 and R1 a delay of 30 seconds is provided which may be altered, if required, by changing C 2 . During this delay opening or closing the silent entry door will not affect the level presented to pin 6 of $\mathrm{Cl} / 2$.
An RS flip-flop is formed by $1 \mathrm{Cl} / 2$ and IC1/3 in which the control inputs (pins 6 and 9) are normally low (zero volts). On first switch-on pin 9 is pulled up momentarily to +12 volts by C4 before retuming to zero. This presents a " 1 " to the input of IC1/3 and therefore its output will be low (see Table 1). Since pin 7 is at zero, and pin 5 is also at zero, (connected to pin 10) the output of IC1/2 will be high. Since this is coupled to the input of $\mathrm{IC} / 3$ the flip-flop will be locked into the state
where $\mathrm{IC} 1 / 3$ output is low.
The only way the flip-flop can be reversed is for the input to pin 6 to go high. However during the first 30 seconds, as explained above, the output of $1 \mathrm{Cl} / 1$ is low. Hence, opening or closing the silent entry door during this time will not set the flip-flop and activate. the alarm.
After this 30 second period, opening the silent entry door will present a " 1 " to pin 6 which will cause the flip-flop to change state. Closing the silent entry door will now have no effect and the flip-flop will remain set.
The high output of $\mathrm{ICl} / 3$ will allow C6 to charge slowly to +12 volts via R9. When this voltage reaches 6 volts (about 30 seconds) it will cause the output of IC1/4 to go low (assuming the normal alarm loop is closed). The low output of $\mathrm{IC} 1 / 4$, via emitter follower Q1, pulls in relay RL!
activating the alarm. When the relay closes contacts RLI/1 cause it to latch on, and only removing power by pressing PB1 will reset it.
If at any time the normal guard loop is broken, when the alarm is activated, a " 1 " is presented to pin 13 of the IC1/4 causing the output to go low and the relay to close.
When the emergency switch is closed the base of Q1 is taken to zero and the relay closes and latches. This action will take place regardless of whether the alarm is enabled or not. Diodes D1 and D2 discharge capacitors C2 and C6 respectively via SW1 when it is in the "off" position, thus ensuring that the 30 second delay is always obtained. Resistors R6, 7 and 12 protect the CMOS IC against voltages in excess of the supply rails. Capacitors C3, 5, 7 and 8 add further protection against false triggering due to lightning etc.

INPUT		OUTPUT
A	B	
0	0	1
1	0	0
0	1	0
1	1	0

Fig. 5. Front panel artwork.
Fig. 6. Rear panel artwork.

PCB, box, 10 way terminal block, two 6 V iantern cells, hookup wire, etc.

WHERE TO GET THE COMPONENTS

IC
SCS list the MC14001CP in their catalogue (55p).
TRANSISTOR
The BC178 is fairly easy to.find (15 p Marshalls; 16 p SCS; etc.).

RELAY

Anything with a resistance of 150Ω to 1 k will do, as long as it two changeover contacts (DPDT).

Doram do a suitable 290Ω PCB-mounting relay for $£ 2.40$, coded 349-197.

SWITCHES

Miniature DPDT Toggle switches are available from

Electrovalue for 48p; Doram for 94 p (code 316-715) and Marshall's 40p.

Miniature Push Button switches come from Doram at $44 p$ and Electrovalue at $23 p$.

SCS, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex, HAO 1 YY (add VAT \& 20 p\&p).
Marshall's, 42 Cricklewood Broadway, London, NW2 3ET (add VAT and 15p p\&p).
Doram, P.O. Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS12 2UF (p\&p 20p; add VAT to both price and p\&p charge).

Electrovalue, 28 St. Judes Road, Englefield Green, Egham, Surrey, TW20 OHB (add VAT \& 10p).

ELECTROVALIE
 IMPORTANT ANNOUNCEMENT price stabilization catalogue discounts

1975 is the year of challenge. Rather than sit back produced our own policy to help stabilize price structure and maintain the services which have made ELECTRO VALUE pre-eminent.
PRICES as shown in our latest catalogue (No. 7. issue 3) are being maintained at least until March 31st 1975 (except in severe cases of market fluctuation) and then held after review for further 3 -month periods instead of making day to day price changes.
CATALOGUE No. 7, ISSUE 3 is now ready with 108 pages of bargains and information. Price-30p post paid, including 25 p refund voucher for use on orders for $£ 5$ or more ISCOUNTS apply on all items except the few where prices are shown NETT. 5% on orders from $£ 5$ to $£ 14.99$; 10% on orders value $£ 15$ or more.
FREE POST \& PACKING in U.K. for pre-paid mail orders over $£ 2$ lexcept Baxandall cabinets). If under $£ 2$ there is an additional handling charge of 10 p .
QUALITY GUARANTEE-All goods are sold on the under standing that they conform to makers' specifications. No rejects, seconds or sub-standard merchandise.

SUPPLIERS OF QUALITY COMPONENTS AND SEMI-CONDUCTORS AT COMPETITIVE PRICES

ELEGTROVALUE LTD

28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OH8. Telephone Egham 3603. Telex 264475. Shop hours: 9-5.30 daily, 9-1 p.m. Sots. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 1NA Telephone \{061) 4324945 . Shop hours: Daily 9-5.30 p.m.; 9-1 pm. Sats U.S.A. CUSTOMERS are invited to contact EtECTROVALUE AMERICA. P.O. Box 27. Swarthmore PA 19081.

42 Cricktewood Broadway London NW2 3HD Tel: 01.452 0161 \& 85 West Regent Street Glasgow G2 20D Tet:041-332 4133

Everything you need is in our new 1975 catalogue. Available now price 25 p

Trade and export enquiries welcome

Our range covers over 7,000 items. The largest selection in Britain Top 200 IC's TTL, CMOS \& Linears

CA3018A		C04043	f1.80	NE565	4.48		$90 p$	57	
CA3020A	f1.80	CD4044	f1-80	SL414	11.80	SNT 7450	16 p	SN74160	f1.10
CA3028A	79	C04045	E2.65	SL610C	¢1.70	SN7451	16 p	SN74161	51.10
CA3035	f1.37	C04045	E2.84	SL611C	¢1.70	SN7453	16p	SN74162	11-10
CA3046	70 p	C04047	¢1-65	SL612C	f1.70	SN7454	$16 p$	SN74163	¢1.10
CA3048	£2.11	C04049	81 p	S1620C	52.60	SN7460	16 p	SN74164	¢2-01
CA3052	¢1.62	C04050	$66 p$	SL62) ${ }^{\text {S }}$	12.60	SN7470	33p	SN74165	¢2.01
C43089E	51.96	LM3014	48 p	SL623C	¢4.59	SN17472	26p	SN74167	¢4.10
CA30900	¢4. 23	LM308	f2.50	SL640C	¢3.10	SN7473	$36 p$	SN74174	f1.25
CO4000	$36 p$	1005	11.50	SN7400	16 p	SN7474	36	SN74175	90 p
C04001	36p	LM380	81.10	SN7401	16 p	SN7475	50 p	SN74176	¢1.44
C04002	369	LM381	¢2-20	SN7401AN	38 p	SN7476	35p	-SN74180	1.40 51.95
C04006	f1-58	LM702C	75 p	SN7482	$16 p$	SN7480	50 P	SN74181	11.95 $\mathbf{5} 2.30$
C04007	$36 p$	LM709	38p	SN14403	16 p	SN7481	¢1.25	SN74190	f2.30
C04008	11.63	LM8016	45p	SN1704	19 p	SN7482	75 p	SN74191	¢2.30
CO4009	£1.18	LM14012	40p	SN7405	19p	SN7483 SN7484	$95 p$ 95	SN74192 SN74193	fi-15 fi-15
C04010	¢1.18	LM710	47 p	SN7406	$45 p$	SN7484 SN7485	$\begin{array}{r}95 \\ \hline 1.25\end{array}$	SN74193	¢ 1.15 $\mathbf{1} 1.60$
C04011	$36 p$	LM723C	90p	SN7407 SN7408	$45 p$ 190	SN7485 SN7486	¢1-25 32 p	SN74196	¢1.60
CO4012	36p	LM741C	40 p	SN7408	$19 p$ 220	SN7486 SN7490	32p	SN74198	¢2.25
CO4013	$\begin{array}{r}659 \\ \hline 1.72\end{array}$	$\begin{aligned} & \text { LM80IL } \\ & \text { LM140H } \end{aligned}$	$40 p$ $38 p$	SN7409	22p	SN7491	$85 p$	SN74199	£2.25
CD4015	¢ 1.72	[M747	¢1.05	SN7411	25p	SN7492	45p	SN76003	£2.92
C04016	$66 p$	LM748	60p	SN7412	280	SN7493	$45 p$	SN76013N	11.95
C04017	¢1.72	LM1401L	73p	SN7413	35p	SN7494	$82 p$	SN76023N	51.60
CO4018	£2.55	LM3900	100	SN7416	35p	SN7495	12p	SN76033	f1.92
C04019	$86 p$	LM7805	f2-0	SN7417	35p	SN7496	75	TAA26	f1.10
C04020	¢1.9)	LM7812	¢2.50	SN7420	$15 p$	SN74100			
CO4021	¢1.72	LM7815	f2.50	SN7423	29p	SN74107	$\begin{array}{r}369 \\ \hline 1.00\end{array}$	TAA350A TAA550	f2.10
C04022	f1.66 368	LM7824 MC1303	f1.50	SN7425 SN7427	29p	SN74118	11.00 $\mathbf{f} 1.92$	$\begin{aligned} & \text { TAA550 } \\ & \text { TAA611C } \end{aligned}$	2.18
${ }^{\mathrm{CO}} \mathbf{C 0 4 0 2 3}$	$36 p$ $\mathbf{f 1} 1.24$	MC1303L	f1.50	SN7427	29p	SN74121	1.92 370	TAA621	f2.03
CD4025	- 32 p	MC1330p	90p	SN7432	28p	SN74122	50p	TAA661B	£1.32
CO4027	43 p	MCl 351 P	80	SN1437	$35 p$	SN74123	60.	T8A641B	¢2.25
CD4028	51.50	MC1352P	80 p	SN7438	35p	SN74441	$85 p$	IBA651	1.69
CO4029	f3-50	MC1466L	¢3-50	SN7440	16p	SN74145	90	184800	$1{ }^{1}$
CO4030	87p	MCI469R	f2.75	SN7441AN	85p	SN74150	f. 1.50	IBA810	¢1.40
C04031	f5-19	NE555V	10p	SN7442	$65 p$	SN7415]	85 p	T84820	f1.15
C04037	$f 1.93$	NE556	f1.30	SN7445	90	SN74153		TBA920	¢4.00
C04041	f1.85	ME560	f4.48	SN7446	95 p	SN74154	f1.50 $\mathbf{6} 1.50$		
CD4042	¢1.38		14.48	44	950	SN74155	£1.5		

Popular Semiconductors

2N695	22p	2N3773	£2.65	40143	68p	BC3U9C	20p	MEO	
2N697	16 p	2N3789	f206	AD161	50 p	BC327	23p	ME0412	p
2N698	82p	2N3819	37p	A0162	50p	8C328	22p	ME4102	$11 p$
2N699	59 p	2N3820	64p	AF106	40 p	8CY 70	17p	MJ480	950
2N706	14 p	2N3904	27p	AF109	40p	BCY71	22p	M 481	¢1.20
2N708	17p	2N3906	27p	AF115	35p	BCY72	$15 p$	M3490	¢1.05
2N916	28p	2N4037	42p	AF116	350	80121	¢1.00	M J491	¢1.45
2N918	32	2N4036	$67 p$	Af117	35p	80123	82p	M 29555	¢1.00
2 N 1302	¢1.85	2N4058	18p	afl18	35p	80124	67 p	MJE340	48 p
2 N 1304	26p	2N4062	15p	AF124	30 p	80131	40p	M EE370	65p
2N1306	31p	2N4289	34 p	AF139	65 p	80132	50 p	MUE371	75p
2N1308	47p	2N4920	¢1-10	AF239	65p	80135	43p	MUE520	60 p
2N1711	$45 p$	2N4921	83 p	AF240	90 p	80136	47p	MUJE512	70 p
2N2102	60p	2N4923	¢1.00	AF279	70 p	80137	55p	MJE2955	f1.20
2N2147	78p	2N5245	47 p	AF280	79 F	80138	63p	MJE3055	75
2N2148	94 p	2N5294	48p	Al102	£1.00	80139	710	MP8113	47p
2N2218A	$22 p$	2N5296	48p	8C107	14 p	80140	$87 p$	MPF102	$39 p$
2N2219A	$26 p$	2N5457	49p	BC.108	14p	dF115	36p	MPSA05	25p
2N2220	25p	2N5458	46p	BC103	14 p	$8 \mathrm{FF117}$	55p	MPSAD6	$31 p$
2N2221	18 p	2N5459	49p	BC1478	14p	BF154	$20 p$	MPSA55	31 p
2N2222	20 p	2N6027	45p	BC148B	15p	BF159	27p	MPSA56	31 p
2N2369	20 p	3N128	13 B	8C149B	150	8 FI 80	35p	0 C 28	$76 p$
2N2646	55p	3N140	f1.00	8C157A	16p	BF181	35	$0 \mathrm{OC35}$	60p
2N2904	22p	3N414	819	8C158A	15p	8F184	$30 p$	0C42	50p
2N2905	25	3N200	f2.45	8C1678	15 p	8F194	12 p	$0 \mathrm{C45}$	32p
2N2S06	19p	40361	40p	BC1688	15p	8F195	12p	TIP29A	49 p
2N2907	22p	40362	45p	8C169B	15p	BF196	13p	TIP29C	58 p
2N2924	20p	40406	44p	BC182	12 p	BF197	15 p	TIP31A	$62 p$
2N2326G	12p	40407	35 p	EC182L	12p	BF198	18 p	TIP32A	$74 p$
2N3053	$25 p$	40408	50p	BC183	12p	BF244	21p	TIP334	61.01
2N3054	60 p	40409	52p	BC183L	12p	BF257	47p	TIP34A	f1.51
2N3055	75p	40410	52 B	BC184	13 p	BF258	53 p	T1P35A	52.90 $\$ 3.70$
2N3391	28p	40411	$E 2.60$	BC184L	13 p	BF259	55 p	TIP36A	¢3.70
2N3392	15p	40594	74 p	EC212A	16 p	BFS61	27 p	IP42A	
$2 N 3393$	15p	40595	848	8C2121A	16 p	8FS988	$25 p$	TIP2955	98p
2N3440	59	40636	¢1.10	BE2131A	15p	$8 \mathrm{ER39}$	24 p	TIP3055	50 p
2 N 442	51.40	40673	13p	ABC2141B	18 p	BFP79	248	IIS43	28p
2N3638	15p	AC126	20p	BC2378	16 p	8FX29	30 p	21x300	13 p
2N3702	12 p	AC127	20p	8C238C	15 p	8FX30	$27 p$	21×301	13p
2N3703	13p	AC128	20	BC239C	15p	BfX84	24 p	21×500	$15 p$
2N3704	15p	AC151	$21 p$	BC257A	16 p	$8 \mathrm{BX85}$	30p	2TX501	13 p
2N3706	$15 p$	AC152	49p	BC259 B	16 p	BFX88	25	21×502	
2N3708	145	ACI53	35p	BC2598	17p	BFY50	f2.25	1N914 1月3754	78 $15 p$
2N3714	${ }_{51} 1.38$	${ }^{\text {ACI }}$ AC187K	30 p	${ }^{8 C 301}$	34 p	BFY51 BFY5	f2.05	1N3754	15p
2N3716	¢1-80 $£ 2.20$	AC187K AC188K	35p	$8 C 3078$ $8 C 308 A$	$17 p$ $15 p$	BFY52 $88 Y 39$	f2.05 48 p	iN4007 iN4148	${ }_{7 p}$

Prices correct at March 1975, but all exclusive of
V.A.T. Postage \& Package 20p

Join the Digital Revolution Teach yourself the latest techniques of digital electronics

 Digital Computer

 Digital Computer Logic and Logic and Electronics

 Electronics}

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$ and containing 48 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean aigebra, truth tables, de Morgan's theorem. flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you

Also available - a more advanced course in 6 volumes:

1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer.Order this together with Digital Computer Logic \& Electronics for the bargain price of $£ 9.25$.

Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which. as you can see from its contents. also covers many more advanced topics.

Designer Manager Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

A Self-instructional Course

$5 \square$
including packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

[^7]
ELECTRONICS -it's easy!

The sources of power.

Solar-cell powered buoy.

OUR COURSE, so far, has concentrated on developing basic electronic system blocks from combinations of passive and active components. You will have seen that, with each type of circuit, there is a requirement for some sort of power supply, although, there are some very rare circuits that may be powered by signal energy alone.
The provision of power for electronic circuits, is hence of primary importance. In the circuit illustrations used so far, power supplies have been of a very simple kind, but, in some circumstances, they may be quite complex and expensive. Hence, before developing our circuitry still further we must gain a better understanding of the types of supply and the methods of implementing them.

The most commonly used source of electrical energy is that provided by the power mains and this, as we know, is alternating current (ac). However electronic circuits, in the majority of cases, need direct current (dc) supplies. Hence a discussion of power supplies for electronic systems must cover firstly the production. and secondly the stabilization of dc voltages.

PROVISIDN OF DC

The source of dc power for electronic circuits, at any particular voltage, must be convenient, economic and easily started and stopped as required.
A wide range of basic power supplies is available to choose from - see Fig. 1

They range from tiny batteries to huge engine-driven generators. Each application has to be considered individually and the appropriate means chosen to suit the requirements of the circuit and the way it is to be used. Can the supply provide enough power. Does it provide the desired conditions of portability? - (in the field the weight of the supply may be critical). Is the method used economic? (batteries may be simple to use but their replacement can be costly). Is a non-portable supply already available for use? (such as the electricity mains). Sometimes a power supply already operating on some existing equipment may have adequate spare capacity.
There are many known methods of producing de power. Batteries use electro-chemical action; rotating generators move conductors in a magnetic field to generate electricity: the mains supply (derived by rotating generators) is rectified to produce dc, fuel cells combine chemicals (still an exotic way to produce energy): thermo-electric systems generate electricity from thermo-couples or solar cells.
However the two most common sources of dc are firstly from batteries and secondly transformer/rectifier systems driven from the mains ac supply.

BATTERIES

In 1792 Italian anatomist Luigi Galvani, whilst working on dead frogs, discovered that the frog's legs twitched when touched with two dissimilar metals. The same phenomena occurred when the frog's legs were attached to an electrostatic generator. He (wrongly) attributed this to an effect which he called "animal electricity".
However, another Italian professor, Alessandro Volta, investigated the effect in 1800 and, showed that it did not depend on the animal tissue, but upon electrical generation due to two dissimilar metals being separated by a conductive solution. He thus showed two important things - that animal muscle was activated electrically, and that electricity could be generated chemically. (Previously only static electricity was known.)
Volta produced the first practical battery, called at that time a voltaic pile, by placing moistened paper sheets

between alternate sheets of copper and zinc as shown in Fig. 2a. He also made cells in which the separating fluid (now called the electrolyte) was a liquid. His wet-cells used rods of zinc and copper, placed apart, in a diluted solution of sulphuric acid (Fig. 2b). Voita thought that the solution merely separated the electrodes without playing any vital role. We now know differently.
The fluid (it can also be a paste or solid) acts as an electrolyte. That is, the dissolved compound dissociates into positive and negative ions, however, the eiectrolyte has overall electrical balance.
When the copper and zinc electrodes are inserted an electric field is set up in the boundary layer between each electrode and the electrolyte. With the copper/zinc cell the copper is at a lower potential than the acid and the zinc is at an even lower potential.
The cell thus has an electromotive force between the electrodes which

This 1912 Baker Electric is now driven by solar energy! An array of 10640 silicon solar cells mounted on the vehicle's roof charge intermediate storage batteries. Final drive is via the Baker's original dc electric motor

VOLTTA'S PILE

VOLTA'S WET CELL

Fig.2. Cross sectional diagrams of the first electrochemical cells - VOLTA'S pile and wet cell.
depends on the difference in potential between the copper and the zinc.
When the electrodes are connected to allow electrons to flow, the dissociated ions move towards the electrode of opposite polarity. For example, in Volta's wet cell, the zinc electrode combines with the negative sulphate ions leaving the zinc electrode with an excess of electrons. These electrons flow through the external circuit to the copper electrode where they combine with the hydrogen ions to produce free hydrogen.
Many combinations of electrodes and electrolytes may be used to form cells in a similar manner. Some arrangements are more useful than others by virtue of higher energy capability, and hence many of the original systems developed have now been discarded as inefficient.

DEPOLARIZATION OF CELLS

The formation of gas on an electrode (hydrogen in the voltaic cell) becomes an effective insulator and may cause the cell to cease working efficiently or ${ }^{5}$ even completely. If the gas (or other product, eg solid in some cells) can be chemically removed, as it is formed, the cell will continue to produce
power until the negative plate material has been used up - it redeposits on the other plate. Such an additive, which maintains full cell efficiency, is known as a depolarizer.

PRACTICAL BATTERIES

The electrochemical process just described can be optimized to either produce electricity or to store it for reuse. Cells providing power from an initial chemical charge are called primary cells. Those that are made intentionally to store power are called secondary cells (also called accumulators in earlier literature). Some combinations and designs will act as both, but usually a primary cell is a throwaway item. A secondary cell usually requires charging (the process of storing electrical energy) after manufacture, and may be recharged as often as is necessary.

PRIMARY CELLS

The most commonly used primary cell is the well-known dry-cell for more correctly, the Leclanche cell, after the original developer who introduced it in 1877). It is made, as shown in Fig. 3, from a zinc can containing a central carbon rod
surrounded by, firstly, a depolariser (manganese dioxide) and then the electrolyte which is in paste form (ammonium chloride, zinc chloride, water and a filler material). The basic cell is made in many sizes and is also packaged as groups of cells connected in series and/or parallel to provide either greater capacity at the 1.5 V delivered per cell - or increased voltage. For example 90 V batteries (constructed from sixty 1.5 volt cells) were extensively used in the days of valve-circuit portable radios.
There are many alternatives to the basic Leclanche cell. All have characteristics which make them suitable for low power, portable applications. The characteristics of the different primary cells are given in Table 1.
The mercury cell, developed in the 40's, is far more rugged than the Leclanche cell and retains its voltage better over long periods of light use or storage - several years is typical. These use zinc and mercuric oxide (or graphite) electrodes with alkaline hydroxide electrolyte. A typical arrangement is shown in Fig. 4. They can be made extremely small in size and are ideal for powering very small equipment, such as hearing aids, or for equipment used intermittently such as photographic light meters.
Another cell available today is the alkaline-manganese battery. Its interior design consists of pellets of anode and cathode materials; zinc and carbon are used. The manganese dioxide depolariser is arranged to be more efficient than in the common dry-cell and the electrolyte is potassium hydroxide. This battery has an excellent shelf-life and is capable of sustaining a high discharge rate.
Several other primary cells will be encountered in electronic instrumentation - The Daniell cell 1836 (copper, zinc and sulphuric acid), the Clark cell 1872, and the Weston cell 1892 (mercury, cadmium amalgam and cadmium sulphate solution, as

Fig.3. The common dry cell was originally developed by Leclanche in 1877. It produces power for a limited period ana is then discarded.

Fig.4. Cross sections of a typical mercury cell.

ELECTRONICS -it’s easy!

Fig.5. The Weston standard cell delivers 1.0186 volts provided the load is minimal. It has found extensive use as a standard of the voltage unit.
shown in Fig. 5) are the three cells which were used internationally at various times to define the standard of voltage. The latest voltage standard has recently been changed to use the so-called Josephson solid-state effect, but the Weston cell is adequate for many voltage calibration tasks (1.086 volts). Standard cells are used only to provide accurately-known and time-stable voltage, but only at low current. They are not intended for power use.
A more recent development are zinc-air cells. These use a zinc powder anode in contact with potassium hydroxide electrolyte. The cathode is a porous arrangement that breathes to atmosphere making use of oxygen, via an intermediate process and a catalyst, to produce hydroxyl ions which enable current flow to occur.
The silver-zinc primary cell has high energy density and discharge rate but because of high cost, is restricted to exotic applications such as spacecraft electronics.
Each type of cell has its own particular merits. Figure 6. shows the voltage-time curves for an ideal loading condition along with comparative figures for the commonly used cells. Leclanche cells operate best in intermittent service, where high currents are needed, or continuously for low drains. Mercury cells especially suit low cutrent demands for very prolonged periods. Zinc-air batteries work best for high current loads maintaining voltage uniformly over considerable periods. Silver-zinc provides the highest available energy density.
The relative cost of each should be considered in selection along with the requirement. It may well be more economical, in the not too long a run, to use the more expensive alternatives.

Fig.6. Comparative chart showing voltage characteristics of similar size units of various types of dry cell battery.
school chemistry we know that, when zinc is dissolved in sulphuric acid, a large amount of energy is released as heat. In the voltaic cell this energy is released as electricity rather than as heat. If the reaction is not reversible the cell is a primary cell and is thrown away when exhausted.
There are however others in which the reaction is reversible and these are known as secondary cells. For the system to be reversible the electrolyte and electrodes must be capable of being converted back to their original state after discharge. This reversal is not spontaneous. The cell must have the electrical energy pumped back into it. That is - it must be charged.
The commonest arrangement (in use since the last century) is the lead-acid battery, such as is used to start cars and to power the auxiliary circuits. The second most commonly used is the nickel-iron cell.
The lead-acid battery consists basically of a plate of lead (negative electrode) and a plate of lead dioxide
(positive electrode) immersed in dilute sulphuric acid - as shown in Fig. 7. As the cell discharges, the lead electrode and sulphate ions in the electrolyte combine to produce lead sulphate plus electrons, and the lead-dioxide combines with sulphate ions, hydrogen ions and electrons to produce lead sulphate plus water. The insoluble lead sulphate adheres to the plates, finally shielding them from further electrochemical reaction - the cell is then discharged. The recharging process reverses the reactions, rebuilding the electrode material as the lead sulphate is removed from solutions to produce sulphuric acid and electrode. The nominal voltage produced is 2.0 V . As water is liberated the cell is usually vented but it can be made as a sealed cell.
The nickel-iron cell, invented by the Edison Company at the turn of this century, uses oxides of iron and nickel as the electrodes together with potassium hydroxide electrolyte. The electrochemical action is similar to the

Fig.7. Interior of lead-acid storage cell. Electricity is stored by virtue of chemical reactions induced by charging the cell with electricity.

ELECTRONICS -it's easy!

lead-acid battery - electrodes and electrolyte combine releasing electrons and the process is reversible. These cells can be sealed without difficulty, they are more rugged, give a longer life than lead-acid cells, but cost more.
In the search for more storage capacity for unit volume and weight, research has yielded some exotic battery designs. Silver and zinc are used in a design originated by Andre in the 1930s. Clearly the cost is higher but the considerable gains in weight reduction may make them attractive where weight is a major cost factor missiles, satellites and man-packed equipment.
As it is now clear that a new kind of storage battery will be in extensive use within this decade we include a brief description of the high-temperature batteries now approaching market production. These cells, also use electrodes and electroiytes, but run at temperatures up to $400^{\circ} \mathrm{C}$, and can provide at least four times the storage capacity at the same cost and weight as lead-acid cells. The need for high-temperature operation does, however, exclude them from low power applications. The two main contenders are the sodium/sulphur battery that uses liquid sodium and sulphur electrodes with solid alumina electrolyte (the more developed to date) and the lithium/sulphur battery that uses liquid lithium and sulphur electrodes with molten salt electrolyte (the more theoretically efficient cell). This latter type, will probably be more costly to produce. Both of these types, plus severa' other high temperature arrangements, have been used in prototype situations - powering electric cars is the dominant requirement, but large scale mains-power, system-float storage will be the main usage in the future.
The range of storage cell available for powering electronic circuits is therefore broad, and the type must be chosen to suit the application. For circuits having only medium demands, electronic flash units, calculator supplies - small rechargeable nickel-cadmium cells are best. These are made in the same shape as mercury or Leclanche cells allowing them to replace primary cells and be recharged when needed.
Table 2-Practical Secondary Systems

	SILVER-ZINC						LEAD.ACID SYSTEMS					
	SEALED NICKEL-CADMUIM			LowRateS2R(L)	$\begin{aligned} & \text { High } \\ & \text { Rate } \\ & \text { SZR } \end{aligned}$	Fast Activating SZFA	Auto	Motive Power	STATIONARY			Seniod Gelyte
	Cylindrical	Button	Rectangular						Antimony	Calcium	Plant	
Cap. Avail. (Ah)	$0.100 \cdot 7.0$	$0.02-0.50$	11.23	1. 140	1. 150	1. 180	$33 \cdot 340$	$180 \cdot 2175$	10.8000	$50-2550$ 2.06	$\text { 8. } 996$	$\begin{aligned} & 6 \cdot 9 \\ & 2: 10 \end{aligned}$
Open Circuit Voltage (V)	1.30	1.30	1.30	1.86	1.86	1.86	2.10		2.06		2.06	2.10 1.97
Nom. Operating Voltage (V)	1.25	1.25	1.25	1.45	1.45	1.45	1.98	1.94	1.94	2.17 @ Flo	2.17 (0) Float	1.97 2.55
Nom. End-ot Chg. Voltage (V)	1.48	1.48	1.48	2.05	2.05	2.05		2.55 . 110	70-90	70.90	70.90	$70 \cdot 90$
Recom. Dischg. Temp. (${ }^{\circ} \mathrm{F}$)	$65 \cdot 85$	65-85	$65 \cdot 85$	$50 \cdot 90$	$50 \cdot 90$							
Recom. Storage Temp., Wet.	$-40 \cdot 80$	-40 - 80	$-40 \cdot 80$	$32 \cdot 90$	32.90	32-90	-40 - 115	$30 \cdot 77$	$-40 \cdot 80$	-40.80	-40-80	0.50
Recom. Storage Temp., Diy	N/A	N/A	N/A	$32 \cdot 90$	$32 \cdot 90$	32:90	-40-115	$32 \cdot 100$	$-40 \cdot 115$	$-40: 115$	$-40 \cdot 115$	N/A
Solf-Dischg. Rate/Mo. at R. T.,	$10 \cdot 15$	5.8	5.8	$2 \cdot 5$	$2 \cdot 5$	5. 10	5. 11	7. 10	7. 12.5	1:0	3.0	7. 12
Wet Chg'd (\%) Watt Hr./Lb.	8.3 - 19.0	$10 \cdot 12$	7.4. 9.2	$32 \cdot 60$	$38 \cdot 66$	$36 \cdot 73$	12.7-21.8	8.6 - 11.0	4.8-9.7	$5.7 \cdot 9.7$	3.9-6.5	14.5
Watt Hr./Cu. in.	$0.85 \cdot 2.20$	$0.64 \cdot 0.90$	$0.62 \cdot 0.73$	$1.66 \cdot 4.20$	$1.95 \cdot 4.61$	2.20 - 5.22	0.79 - 1.6	$1.08 \cdot 1.37$	$0.27 \cdot 0.84$	$0.43 \cdot 0.84$	$0.22 \cdot 0.58$	$1.16 \cdot 1.50$
Cycle Life (nom. cyeles	$250 \cdot 10,000$	$250 \cdot 10,000$	250 - 10,000	$25 \cdot 50$	$10 \cdot 20$	$2 \cdot 5$	$150 \cdot 250$	1000 - 2000	N/A	N/A	N/A	$100 \cdot 1000$
expeciation) Calendar Life (nom. yr	N/A	N/A	N/A	N / A^{*}	N/A	N/A	N/A.	N/A	~ 15	$15 \cdot 24$	~ 24	N/A
expectation) f/Watt Hr. (approx)							0.006-0.012	0.02-0.04	$0.04-0.21$	0.04-0.14	0:05-0.27	0.11-0.15
£/Watt Hr. (approx) £/Watt Hr./Cycle (approx	$\begin{aligned} & 0.45 \cdot 5.0 \\ & 0.002 \cdot 0.02 \end{aligned}$	$\begin{aligned} & 1.75 \cdot 26 \\ & 0.007 \cdot 0.1 \end{aligned}$	$\begin{aligned} & 0.55 \cdot 0.72 \\ & 0.002 \cdot-.003 \end{aligned}$	$0.37-5.5$ $0.015 \cdot 0.22$	0.04-0.55	0.18-2.25	0.00004 0.00008	$\begin{array}{r} 0.000025 \\ 0.00004 \end{array}$	N/A	N/A	N/A	$\begin{gathered} 0.0011 \\ 0.0015 \end{gathered}$
Characteristic features	Operative in any position, no misint.	Operative in any position, no maint.	Operative in any position, no maint.	High rate capability. High energy density	High rate capability High energy density	High rate capability, High energy density	Inexpensive Excelfent high-rate capability	Excellent cycte life, Augged const.	Rugged Const. Wide range of available cap.	Lowest Hoat current. Excellent life	Long life, High Reliab.	No Maint. Inexpensive

ETI TOP PROJECTS

Shown below are the contents of the ETI TOP PROJECTS special 100 -page issue containing reprints of over 20 of the most popular projects from past issues of ETI.

75p

IN CASE OF DIFFICULTY, USE THIS FORM TO OBTAIN YOUR COPY DIRECTLY FROM US

TO: ETI TOP PROJECTS BOOK ETI Magazine, 36 Etury Street, London SW1W OLW.
| Please send me a copy of the ETI Top Projects Book. I enclose a cheque/P.O. for 85p (payable to Electronics Today Internationall which includes 10 p postage (applicable to surface mail worldwide).
NAME
ADDRESS \qquad
\qquad
\qquad
\qquad

SHORT WAVE MAGAZINE

BRITAIN'S LEADING AMATEUR RADIO MONTHLY

Published on the last Friday of the preceding month, price 30 p. Available from newsagents or by direct subscription ($£ 3.75$ per year).

We can also offer UK's most comprehensive range of Technical Books and Manuals for the Radio Amateur:

Aerial Handbook (Brlggs)	3p
Antenna Handbook. Volume 1	¢1.84
Anterna Round-Up, Volume 1	¢1.55
Antenna found-Up. Volume 2	f1.85
Beam Antenta Handbook. 4th Edition	f2.15
Vertical. Beam and Triangle Antennas (E. M. Noll - ${ }^{-73 " \text {) }}$	
	35

HANDBOOKS AND MANUALS

Amateur Radio DX Handbook ..
Electronic Circuit Handbook. Vol. $1 ~$ Electronic Circuit Handbook. Vol. 1.................................... 1.50 Electronic Circuit Handbook, Vol. 2 ... New RTTY Handbook...
Raclio Amateur Handbook 1975 (ARRL) RI) (Hard...................... Radio Amateur Handbook 1975 (ARRL) (Hard . $£ 1.90$ Radio Amsteur Operators Handbook. Radio \& Electronic Handbook. RTIY A Electronic Handbook Slow Scan Television Handlu..35 Stavision Inierterence Manual (G3JG0)25 Telcvision Inierference Monual (G3JGO).
 Advanced Communication Systems.

MAPS

DX ZONE MAP (GREAT CIRCLE)
In colour with Country/Prefix Supplement
Revised to September 1973. AMATEUR RADIO MAP OF WORLD
Mercator Projection - Much DX Information - in colour. Second Edition

RADIO AMATEUR MAP OF THE U.S.A. AND NORTH AMERICA
State boundaries and prefixes, size $24^{\prime \prime}$ by

30". paper.

RADIO AMATEUR'S WORLD ATLAS
In booklet form, Mercator projection, for desk use. Gives Zones and Prefixes (New Edition)

BOOKS FOR THE BEGINNER

Amateur Radio (Raver	£1.68
Beginners Guide to Radio 17th Edition)	£1.20
Beginners Guide to Electronics	£2.08
Better Short Wave Reception. 3rd E	£1.88
Course in Radio Fundamentals	£1.21
Foundations of Wircless and Electronics	£3.30
Guide to Amateur Radio	.95p
Ham Radio (A Beginners Guide) by R. H. Waring	f1.75
How to Become a Radio Amateur	70p
Leaming the RT Code	33p
Morse Code for the Radio Amateu	27p
Radio Amateur Examination Manu	95p
Simple Short Wave Receivers (Da	95p
Understanding Amateur Radio	¢1.47

GENERAL	
of Electronics (by Farl J. Waters) $£ 1.68$	
FM \& Repeaters for the Radio Amateur	£1.70
ABC of FET's.	£1.40
Easibinder (to hotd 12 copies of "Short Wave	
FET Principles. Experiments and Proje	£2.25
Guide 10 Broadcasting Stations 17th Edition	88p
Ham (Radio) Notehook	$£ 1.76$
110 Semi-Conductor Projects for the Home	
110 Integrated Circuit Projects for the Home	
Constructor (Hard Back)	£1.98
Practical Transistor Theor	£1.60
Practical Wireless Circuits	£1.41
Prefix List of Countries.	25p
Test Equipment for the Radio Amat	£2.10
Telecommunications Pocket Book (T. L. Squires)........ 11.38	
ctionary of Telecommunications $\mathbf{2} .45$	

TRANSISTOR MANUALS

[^8]Just some of the many titles we can particularly recommend: Vertical, Beam and Triangle Antennas; Amateur Radio (Rayer); Radio Amateur Examination Manual; Test Equipment for the Radio Amateur; ARRL Radio Amateur Handbook 1975; Radio Amateur Operators Handbook; Practical Wireless Circuits; Slow Scan Television Handbook; Teleprinter Handbook; Amateur Radio DX Handbook; Guide to Amateur Radio; Hints and Kinks (ARRL), etc, etc.
ALL PRICES INCLUDE POSTAGE \& PACKING. Many titles are American in origin.
Order from (cash with order, please):
SHORT WAVE MAGAZINE LTD
Publication Dept. M, 55 Victoria Street, London SW1H-OHF. 01-222 5341

techti $0=$

STABLE REFERENCE-VOLTAGE SUPPLY

This circuit was evolved to provide a highly stable and ripple-free voltage to act as the reference for the stabilised power-supplies of an electronic music synthesiser; the stability of its voltage-controlled oscillators depended directly on the constancy of supply rail voltages.

The 40 V unregulated supply is derived from conventional full-wave rectification and smoothing of the ac from a 25 V rms transformer winding, and pre-regulated by $\mathrm{Z1} ; \mathrm{C} 1$ provides some further smoothing. IC1 and IC2 are powered from the 27 V rail thus generated. IC1 drives a constant current of 5 mA through $\mathrm{Z2}$ by acting as a differential amplifier sensing the voltage-drop across R1. Z 2 is a 6 V zener since diodes of about this voltage have the lowest voltage/ temperature coefficient.

STEP FREQUENCY OSCILLATOR

This circuit will produce a continuous sequence of increasing frequencies (in steps) until the highest is reached. The system then resets itself and starts again.
Two unijunction relaxation oscillators are cross-coupled together. On switching on capacitors C1 and C2 start to charge up through R3 and R5. The time constant C2-R5 is shorter; Q2 fires first and discharges C2. As C2 charges up again it will draw current through R5 and R3-R4. This will shorten the Q2 time constant, and in progressive cycles, as C 1 charges up slowly, the 02 time constant will keep shortening till Q1 fires, at which stage C1 will discharge and the whole cycle begins again.
Various sound effects can be obtained by varying R3, R4, C1 and C2.

SINE/SQUARE WAVE CONVERTER

The stable voltage across $Z 2$ is then reduced to the desired value by the potential divider R2, R3. This network has a fairly high output impedance and so C2, although fairly small, has a large smoothing effect. C2 must be tantalum as a conventional electrolytic may inject more noise than it removes, in this application. The voltage across C 2 is then buffered by IC2 and TR1; R4 forms a simple but foolproof protection against shortcircuits. The prototype was designed for a maximum rated output of 30 mA .

The reference voltage provided by the circuit as shown above is 5.5 V . Different values may be obtained by altering the value of R2; if a voltage above 6.2 is required then R5 must be connected to a potential divider across the output.

Many audio generators only give a sinusoidal output. However a square-wave output is often useful too.
This circuit will square any sinusoidal input over the range of 20 Hz to 30 kHz with an output of about one volt, input signal should be about 400 mV .
The waveform obtained is of much better purity than obtained by a diode squaring circuit. The circuit is in fact suitable for use where square waves with a fast rise-time are required.
Transistors are germanium NPN types such as AC 127
The power supply is 1.5 V and consumption is in the region of one to 2 mA .

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor, Electronics Today International 36 Ebury Street, London SW1W OLW.

ASSIST THAT ZENER

The simple zener shunt of diagram (1) may not handle sufficient current if the zener available is of low wattage. A power transistor will do most of the work for the zener in circuit (2).

The output voltage is increased by 0.7 V but it is stabilisation rather than exact voltäge which is often required.

(1)

(2)

SUPPRESSED ZERO VOLTMETER FOR THE CAR

(1)

To make a meter cover the range 10 to 15 V or 10 to 20 V over its whole scale, then circuit (1) is often used.

The zener must be exactly 10.0 V and may not be available. In this case use the arrangement shown in (2).

SPEED CONTROL FOR MODEL TRAINS OR CARS

The following is a low voltage adaptation of the type of speed control popularly used to regulate power drills. It gives very good starting
torque and excellent speed regulation of the model. A reversing switch may be incorporated in the leads to the motor.

WHITE ANO PINK NOISE GENERATOR

A basic noise generator can be built using one trānsistor and a Zener diode.
The 10 volt Zener acts as the noise source and also stabilizes the transistor operating point. Adding capacitor C 2 will change the output from 'white' noise to 'pink' noise.
Output level for components specified will be about 15 V for white noise and about 14.5 V for pink noise.
The transistor should be a BC 108 or 2N3643 - other similar transistors will do.

SHARING THE LOAD

If two diodes are used in series to increase the voltage rating, then it is advisable to add two resistors as shown. In practice one diode would be found to be taking most of the voltage, but the resistors prevent this situation.

tech-tips

AVOIDING INSULATED HEAT SINKS

If a fairly heavy current is to be taken from the type of power supply shown in (1), then the diodes will be of the stud type on insulated heat sinks. By choosing stud anode diodes, and using arrangement (2), the chassis may be the heat sink without the need for insulation.

(1)

CHASSIS

(2)

INCREASED SENSITIVITY FOR HEAVY CURRENT THYRISTORS

A typical stud thyristor of 5A rating will need 10 mA or more for triggering into conduction. This can be reduced to 1 mA or less by using an additional 1A thyristor of T05 construction.

The value of R_{1} will depend on circuit voltage, ranging from 47Ω at 12 V to 1 k at $240 \mathrm{~V} \mathrm{R}_{2}$ and R_{3} are equal, and normally specified in the circuit, being typically 1 k or more. The small thyristor should have exactly the same voltage rating as the larger one.

MEASURING MICRO- AMMETER RESISTANCE

When it is required to measure the unknown resistance of a microammeter, then an ordinary multimeter on the necessary ohms range will send too much current through the meter coil, with the chance of causing damage. To avoid this, set up VR1 to give full scale deflection on the meter. Then shunt the meter with VR2 and adjust so that the meter reads exactly half scale. Remove the measure VR2, which, to a good degree of accuracy, will be equal to the meter resistance.

ELECTRONIC FUSE

1 max	R1.	82	Q1	02
5.0 A	100Ω	0.12Ω	BFY50	7N3+5
0.5A	1 k	1.0§	8 C 107	BHMEd
0.1A	4.7k	3.7Ω	BC107	B1790

Here is a circuit for protecting modern transistorised gear which requires a faster action than can be provided by an orthodox fuse.
Transistor Q 2 is saturated by base current supplied by Q 2 , which is itself turned on by R1. The overall voltage drop between input/output is in the region of 2 V . If a momentary surge in current or a short circuit in the load appears then the voltage drop across R2 will increase and when it reaches about $0.7 \mathrm{~V}, \propto 3$ will begin to conduct and its collector emitter voltage will drop to about 0.3 V . This in turn cuts off Q1 and Q. 2 thus breaking the supply current.
The tables gives circuit values for various currents. These are suitable for supply voltages up to 45 V .

BASIC ALARM

The basic alarm circuit uses the minimum of components, has a very low standing current (less than $50 \mu \mathrm{~A}$) and thus may be operated from small dry batteries. The circuit has a lock-out system which prevents the alarm being stopped, except by disconnecting the battery. Any break in the detector loop allows the current through the $100 \mathrm{k} \Omega$ resistor to switch on the transistors, pulling in the lock-out relay and sounding the alarm.

[^9]

PEAK DETECT AND HOLD CIRCUIT

If the voltage at the input becomes bigger than the voltage on the capacitor, then the output of the 741 goes positive, the diode conducts, and the capacitor is charged up to the input voltage-forward voltage drop of diode. When the voltage at the input is less than that on the capacitor, the
output of the 741 goes negative, and the diode cuts off. To prevent the capacitor from discharging through the input resistance of the next stage, a high input impedance buffer stage (IC2) is used. The circuit can be reset by means of a FET or similar high impedance device connected across the capacitor.

Fuzz Box

QUICK JFET TEST

A quick test of an N or P-channel JFET is possible using only a standard mulitmeter ohmmeter.

With the ohmmeter connected between source and drain (polarity unimportant) the channel resistance (about 200Ω) will be read. If the gate is now touched with a finger once or twice, the channel resistance should rise to about $10 \mathrm{M} \Omega$ indicating pinch off. If this does not happen the FET may be assumed not working. Electrostatic pickup from the "mains" charges the gate capacitance and pinches off the FET. The time it takes for the channel resistance to return to normal gives an indication of the gate leakage resistance of the FET.

The relatively low gate leakage resistance, and the high resistance between the finger and the mains helps to prevent destruction of the FET whilst it is being tested in this way.

FUZZ BOX

A quick look at a commercial one will show that fuzz-boxes are grossly overpriced for what they are. This general principle is that the input is split, and one part of it is distorted, then the two signals are mixed, variably, providing variable "fuzz". But why not cut costs again by simply varying the distortion of a onetransistor stage.

None of the components are particularly critical in value or quality, as distortion is the sole object!!

The transistor could be 8C107-8-9, 2N2926, etc. A PP3 battery completes the "fuzz-box" which fits easily into a small plastic box with two jack sockets for the input and output and an on-off switch. The unit could be made easier to operate by reducing the value of the "fuzz" control and adding two series resistors.

The unit costs around $£ 1$ to $£ 2$, depending what components the constructor has available, the case and sockets seem to be the most expensive items.

PICTURE-FRAME SPEAKERS
A picture which oscillates within its own frame, reproducing sounds as efficiently as most conventional speaker systems, has been launched by Omal. The speakers are made in Japan and are $11 / 2$ inches thick. They

The new Plessey PPC 522 low-cost broadband ceramic pyroelectric infra-red detector which comprises a detector element and J.F.E.T. preamplifier encapsulated in a TO5 transistor can, with a suitable cell window according to the required application. These devices are specifically designed for intruder detection, fire alarm and pollution monitoring applications.

MIRRORS FOR LASERS

Rofin Ltd., of Alston Road, Barnet, Herts, announce the introduction of a new range of super performance mirrors for use in CO_{2} high power laser systems. The mirror surfaces are based on a copper nickel substrate which is polished, pin-hole free and carefully etched and ultrasonically cleaned. A high reflectivity very hard gold coating is then put over the substrate. This yields a high damage threshold for both CW and
are designed for wall mounting in matching pairs.

A choice of over 60 different pictures handle 10 W and cover the range 40 Hz to 12 KHz through 180°.

The price is about $£ 50$ per pair, from Omal House, North Circular Road, London NW10 7UF.
pulsed CO_{2} laser beams.
The standard radii of curvature are $2,4,6,10,20$ metres concave and flat. Standard diameters are 25, 38 and 50 mm . Prices vary from £19-£27.

BALANCED MIXER/MODULATOR/ PHASE DETECTOR

Lithic Systems have introduced a much improved version of the 1596 Balanced Mixer, with guaranteed matching characteristics to permit untrimmed operation. The useful frequency range has been improved to 250 NHz and the device comes as a monolithic integrated circuit encapsulated in a $10 \mathrm{pin} \mathrm{TO}-100$ package.

Applications include balanced modulation and demodulation, frequency heterodyning and multiplication, multiplexing and demultiplexing, and phase detection in SSB, DSB, AM, FM and audio communication systems.

The LS1596A, which guarantees 2% internal matching is priced at $£ 3.22$ and the 1% matched LS1596B at $£ 4.05$ each for quantities of 100 and over. Both types are available from Adrian Electronics Limited, 28 High Street, Winslow, Buckingham MK18 3HF.

SILVER-COATED GLASS SPHERES FOR CONDUCTIVITY

Microscopic solid glass spheres coated with pure silver are being used for electrical conductivity in a wide range of polymer products with advantages in cost and processing. The spheres are produced and coated by PottersBallotini for use in such applications as electrically-conductive adhesives, gaskets, caulking compounds, in conductive inks, electroplating, printed circuit repair, component lead termination, in electro-magnetic shielding, and in the manufacture of prototype circuits and molding of conductive plastic parts.

Use of silver on a glass core provides excellent conductivity at relatively low cost. In processing, the spheres are easy to handle, easy to mix, and permit high loadings with minimal increase in viscosity.
Potters-Ballotini Ltd. are in Pontefract Road, Barnsley, Yorks, S71 1 HJ .

TWO NEW SOLDER PRODUCTS

Multicore's new solder-wick absorbs solder from tags and printed circuits wher used with a 40 or 50 W soldering iron. It is quick and easy to use and desoldering takes only a few seconds.

The solder-wick is packed in a 5 foot length on a handy plastic dispenser. Each dispenser comes on a card with full instructions printed on the reverse. There are 10 cards packed in a carton for a recommended retail price of 97p.

You will be able to buy solder in new packages too. A coil of 40/60 alloy is 18 gauge Ersin Multicore Five Core Solder is packed in handy to use dispensers with full directions for use printed on the side. The solder is suitable for general purpose soldering of all types of electrical joints and household metal repairs (except aluminium). When the dispenser is held in the hand the solder can be easily directed to the area where the solder joint is to be made. The cap has been designed with a hanging hole for convenient storage or display. 25 dispensers are packed in a carton for selling at a recommended retail price of $191 / 2 p$.

A new range of calculators has just been announced by Plustronics. The 908 (with accumulating memory) costs $£ 21.95$. The 508 (5-function, with $\%$ key) costs $£ 15.94$. The 808 (with stored memory) costs $£ 19.95$ The 308 is the four-function model for E14.50. The quoted prices are based on the average selling prices. The calculators are available from dealers.

TWO NEW SOCKET SETS

Hi-Way (Automotive) Ltd., of 226 Mary Street, Birmingham B12 9RJ, is offering two useful Socket Sets.

The first set is a 17 -piece, $1 / 4^{\prime \prime}$ drive Socket Set covering BA sizes and includes 11 sockets, from OBA to 10BA, two extension bars and one each ratchet handle, flexible handle, cross bar, and sliding bar. The carrying case of plastic has an integral carrying handle.

The second set, a 39 -piece $1 / 4^{\prime \prime}$ drive Socket Set, comprises 33 sockets from 0 to $10 B A, 4 \mathrm{~mm}$ to 12 mm , and $5 / 32^{\prime \prime}$ to $1 / 2^{\prime \prime} A F$ sizes. In addition there is a ratchet handle two extension bars, a sliding T bar, a flexible handle and one Tommy bar. The carrying case is of metal and is secured by two snap.on latches.

Prices, including VAT, ăre $£ 4.49$ for the 17 piece set and £6.99 for the 39 -piece set. Postal Orders are 35 p extra to cover carriage and packing. Hi-Way Automotive give you a "you break it, we replace it", guarantee with each set.

MINIATURE SOLID-STATE TV CAMERA

Use of charged-coupled-device technology allows the bulky Vidicon tube normaily used in TV cameras to be replaced by a compact solid-state image-sensing device which contains 10,000 photosensors on a standard 24-pin dual-in-line integrated-circuit unit. Fairchild have just introduced the MV101 which has a cylindrical body 3 inches in diameter and $17 / 8$ inches deep. The weight of the camera is 11 ounces.

The power consumption of the camera is 1.5 W . It responds to illumination levels as low as 2 lux (0.2 foot candles), making it suitable for low-light applications such as night security and surveillance. Other applications are made possible by the camera's small size, such as remotely piloted vehicles, space systems, periscopes and process control. The accurate registration of the CCD system allows its use in
scientific measurement, medical instrumentation and microscopy.

The spectral response extends into the near infrared range. The camera has a 100 -line horizontal resolution and a bandwidth of 1 MHz .

A 5 -inch TV monitor adapted to the 123 frames/sec sweep rate is supplied with the camera.

The camera can operate at a distance of up to 100 feet from the monitor. An optional battery pack is available when complete portability is required. The standard lens of the MV101 is a $25 \mathrm{~mm} \mathrm{f} / 1.4 \mathrm{C}$-mount type. Information from Fairchild Camera and Instrument Corporation, 464 Ellis Street, Mountain View, California 94042 USA.

VIDEO CASSETTES

Three video cassettes have been released in the UK by BASF. They are VC30, VC45 and VC60 cassettes (with 30,45 and 60 minutes' playing time respectively). The VC cassettes are made in Germany using high density chromium dioxide tape.

At present the supplies are limited, and, prices are $£ 11.00, £ 14.50$, and £ 17.00 plus VAT.

ELECTRONICS TOMORROW

Due to circumstances beyond our control we regret it has not been possible to include our Electronics Tomorrow feature in this issue. It will be back as usual next month.

leslie Welch, 'The Memory Man', is shown here, face to face with the latest competition - a 1 K CMOS RAM from Intel. The device, which draws only 15 microamps from a single 5 volt supply, incorporates fully DC stable circuitry in a 22 -pin package.

TELEX COMPATIBLE VEU

Automation and Technical Services Ltd (Bridge Road, Haywards Heath, Sussex) have introduced a VDU designed specifically for applications where direct compatibility with existing telegraph networks is necessary.

It has a 64 character per line, 16 line display. Information is generated in ASCII and is converted to CCITT Alphabet No. 2 (Telex) code before transmission to line. The unit is complete with a solid state bi-polar telegraph interface ($80 \mathrm{~V}-0-80 \mathrm{~V}$) for both transmit and receive. Line protection is also provided and the unit is approved for direct connection to Post Office lines. A hard copy printer output is fitted for local. verification.

A special feature of the unit is the Phrases and Word generating keyboard, which in addition to the standard (teletype) ASR33 keyboard has 16 keys which generate a preselected word or phrase from each single key operation.

The facilities offered on this visual display make it suitable for a wide range of applications such as compilation, recording and editing of telegraph messages before line transmission; automatic or semiautomatic password and phrase generation for terminal installations; common phrase storing for computer programming and for emergency services where data retention in the event of a power failure is vital.

BUILDING BLOCK CAMERA

As a cost-effective solution to the problem of widely differing requirements of industrial TV camera users, Marconi have developed a system of modules which produces the V327 family.

The skeleton is made up of the Camera Control Unit and the Camera (as shown in the 'photo in the back and foreground respectively), which can be remotely located or mounted together in an integral unit. The other modules are plug-in or screw-on and can be chosen from a wide range.

The tubes can be vidicon, lead oxide or silicon diode. The silicon diode tube provides for infra-red surveillance but requires auto-gain which comes on an optional pcb. The camera carries eight main boards which are low-mass types so that plugin mounting gives sufficient rigidity. There is spare capacity for two extra pcbs.

ANALOG TUTOR

An analogue computer which can be used in schools for teaching the basic principles of analogue and hybrid computation has been developed by Limrose Electronics.

An instruction book dealing with the subject from first principles accompanies the Analog Tutor which costs (from) £99.

One of these could be used for camera ID; a plug-in module will generate an alphanumeric code to show up in the corner of the picture (useful in multi-camera systems). Other special boards carry such features as gamma correction and aperture correction. The camera can be supplied for mounting in the user's housing or in one of the wide Marconi range. The lens and its mount form another building block and this can hold most types of lens.

To facilitate the plug-in method of design and maintenance the equipment needs very little setting up. Feedback and stabilisation circuitry overcome the need for internal adjustments (such as scan-linearity). Automatic black level control is another feature.

In its simplest form the camera will cost $£ 650$ (from Marconi-Elliott Electro-optical Division, Christopher Martin Road, Basildon, Essex, SS14 3EL).

DIGITAL ARITHMETIC TUTOR

This advanced logic trainer has been designed for teaching the principles of binary arithmetic and four-bit data word manipulation.

Prices, which include the Instruction Book, start at $£ 150$. From Limrose Electronics, 8 Kingsway, Altringham Cheshire, WA14 1PJ.

INFRARED DIODES FOR HEADPHONES

The wearers of headphones are chained to their radios and record players by trip cords that have caused many a domestic tangle. Siemens have tackled this problem by introducing a diode for cord-less transmission of entertainment sound in the home. Amplifier and headphones are linked by invisible infrared light, transmitted and received by these new diodes. The basis of the system is a new photodiode (BPW34) with an active area of $9 \mathrm{~mm}^{2}$ which is installed in the headphones and picks up the frequency modulated signals (over 100 kHz max.). The transmitter comprises a maximum of eight luminescent diodes (LD24I) capable of supplying a total power of 120 mW , which is adequate even for large rooms.

On account of its physical characteristics, infrared light is particularly suitable for the electronic "flooding" of rooms. Neither dark nor rough areas can absorb the radiation or distort the impressed intelligence signals. Protruding edges of furniture also remain without effect on the high fidelity quality of the reproduction. The infrared light is diffuse and stochastically distributed throughout the room. The headphones do not have to be trained in any particular direction.

CONDUCTIVE PLASTIC POTENTIOMETERS

Two new ranges of conductive plastic potentiometers are now available in the U.K. The P4100/4200 is rated at 1.8 watts and offers high resolution (0.003%), large electrical angle (3520), long life (50.10^{6} operations), good linearity (0.2%), and low operating torque (0.2 cmg).

The second range designed is a lower cost version known as the P4400. It has virtually the same specification as the other model, with a smaller electrical angle (3450) and a higher input torque (10 cmg).

Both models are manufactured in servo size 13 and can be supplied with up to 10 ganged cups from Variohm Components, The Barn, Wood Burcote, Towcester, Northants, NN12 7JR.

ELECTRONICS SUMMER SCHOOL FOR SCHOOLTEACHERS

The Department of Electrical Engineering Science at Essex University will be holding its annual Electronics Summer School for schoolteachers during the week of July 7 and, once again, two courses will be run simultaneously. The first course, ESS 8 - Linear Circuit Design, is concerned with the use of transistors and operational amplifiers in linear applications such as amplifiers, filters and power supplies. The-second course ESS 9 - Digital Circuit Design, concentrates on the use of the transistor as a switch and develops design using integrated logic circuits; this leads on to combinational and sequential logic concepts.
Further information can be obtained from Bob Mack (quote reference ETI) at the Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ.

CHARGE-COUPLED MEMORY

Fairchild have the first CCD memory in large-scale production. The CCD 450, is a 1 Kilobyte serial storage element claimed to be a significant advance in the density of solid-state memory. It is aimed at memory applications in terminal buffers, video display refresh, microprocessor-control data stores, smart terminals, and electronic switching in data-communication networks.

The device utilises a highperformance blend of Fairchild's proven NMOS and CCD technology, and is as easy to use as any MOS memory. The CCD 450 uses isoplanar, buried-channel, ion-implanted barrier structure in the storage registers combined with n-channel silicon-gate MOS structures for on-chip timing, charge detection and level conversion circuitry. The nine bidirectional data lines are TTL-compatible and have three-state output buffers for wired-OR application.

The device is organised as 1,024 words by 9 bits (9,216 bits). It contains nine 1,024-bit low-power CCD registers which are shifted in parallel to provide storage and retrieval of nine-bit words in a byte-serial mode. Each register is accessed by its own bidirectional data line, and all nine registers are serviced by comimon two-phase data transfer clocks and READ and WRITE control functions. The device operates in four modes: read, write, read/modify/write, and recirculate.

Power dissipation in the read and write modes is 250 mW maximum, and only 30 mW in standby recirculate mode. Average random byte access time is 200us. The device uses simple two-phase clocking, and is packaged in a standard 18 -pin ceramic DIP. Data rate is 50 kHz to 3 MHz . The device is not expected to.be available until the end of the year.

THEATRE MIXERS

A new range of high quality, transportable, stereophonic sound mixing. desks, specifically developed for theatre use, have been introduced by Cambridge Electronic Workshop, 8 Perowne Street, Cambridge, CB1 2AY.

Special features on the desk include: continuously variable presence frequency and gain, a bass tip-up filter, separate mic and line inputs and two auxiliary sends with pre/post switching on all ten channels; cue lights; show relay/intercom systems; comprehensive monitoring and PFL; loudspeaker switching; and two sets of tape remotes.

Thé desks have 30 dB internal headroom, distortion less than 0.1% and input noise better than -126 dBm . The standard desk has a $24^{\prime \prime}$ square base and is $11^{\prime \prime}$ high:

COMPONENTS MANUAL

One hundred and ninety seven pounds (and eighty pence) can buy you the 2026 pages of the comprehensive electronic components reference manual recently researched, compited and edited by the General Electric Company (USA). The 'Component Technology and Standardization Manual' is the result of 20 years' work by a team of 25 engineers and it comes in three volumes. Initially intended as an in-house reference manual, this encyclopaedia has now been made available to the whole electronics industry.

The material was checked and revised by 43 leading electronics companies to eliminate any possibility of a GE (USA) bias.

GE (USA) has appointed London Information as the sole distributor for 'Component Technology and Standardization'. London Information (Rowse Muir) Ltd., Index House, Ascot. Berks, SL5 7EU.

REMOTE BLACKBOARD

A low-cost remote "blackboard", which cán transmit writing and sketches along an ordinary telephone line for display on a TV set, has been developed by Open University technologists. This will enable students to look at diagrams, graphs and formulae drawn over the phone by tutors, and because it is a two way link the students can immediately ask questions and discuss what has been drawn.

The blackboard, and telephone tutorials in general, are being pionerred by the OU to overcome the practical difficulties of bringing some students and tutors together. Some of the university's higher level courses involve students scattered throughout the country, few of whom have a specialist tutor close at hand.

The device makes use of a pen and sketch pad which are wired so that the changing position of the pen is coded into a series of sounds. These can be transmitted and received by ordinary telephone handsets and then a device decodes the sounds into positions on a TV screen.

Inventors, Dr. John Monk and Chris Pinches, of the Technology Faculty, started work on the project as recently as last October, and have already produced an inexpensive prototype which will be used experimentally this year. "The first hundred receivers cost $£ 150-£ 200$, but next year we expect this to be down to $£ 50-£ 60$," said Mr. Pinches. "There has been other work in the field, in this country and aborad, but none has provided a facility anything like as cheaply as this."

PUSH-BUTTON KNOBS

Trampus Electronics, who stocked the special push-button switches for our 4-Channel Amplifier project in the April 1974 issue after a delay (not the fault of Trampus) supplied these with square knobs rather than the round ones suggested.

Readers who ordered these can now obtain a set of 9 of the correct round knobs Free of Charge from Trampus if they send a self-addressed envelope with the approximate date of the original order.

ERRATA
Courtesy Light Extender, Feb issue, page 51.
Q1 should be a BC328 in both circuit and Parts List, not BC338 as shown.

Hed Boosters: E3.20
 Can produce remarkable im

 provements on the picture and the sound in fringe or difficult areas. L11 for the VHF radio L12 for the VHF TV bands (please state band 1 and 3 channels). L45 tunable over the complete UHF TV range. P\&P 20p. Lancashire Mail Order Supplies, 6 William Street, Stubbins, Ramsbottom, Bury, Lancs.Bargain Untested Packs: VAT inclusive 80 transistors 54p, 200 diodes 54p, 50 400 mW zeners $54 \mathrm{p}, 40 \mathrm{2W}$ zeners $54 \mathrm{p}, 200$ Mixed Semiconductors.
Tested and guaranteed components: DL704 seven segment LED display 90p small red LED's 13 p each, 5 mixed LED's 60p, 741 op-amp 28p each, or four for $£ 1.50$ disc ceramics (our choice) 54 p, 30 mixed polyester capacitors $54 \mathrm{p}, 1 / 8,1 / 4$ and $1 / 2 \mathrm{~W}$ resistors E12 values 5%, at 1 p each. 100 mixed hi-stab resistors $£ 1.10$. Please include 15 p post etc. For latest lists send SAE (A4), or $10 p$ starrip. TAMAR ELECTRONICS, P.O. Box 17, Plymouth, PL1 1YJ.
LED's. Mixed bags Red Green Yellow.$^{\prime \prime}$
$.125^{\prime \prime} .16^{\prime \prime} .2^{\prime \prime} .50-£ 5100-£ 9$ inc $V A T$ $.125^{\prime \prime} .16^{\prime \prime} 2^{\prime \prime} .50-£ 5100$ - £9 inc VAT \& Postage. Larger quantitles by negotiation, CWO to Industrial Electronics Supplies
(Stockport) Ltd., 1813 Bramhall Lane, (Stockport) Ltd., 1813 Bramhall Lane, Stockport, SK2 6JA.
ELECTRONIC BOOKS, Cause \& Cure T.V.
inanuals. Free lists colis \& co. 33 inanuals . Free lists COLIS \& co. 33 Maple Avenue, MORECAMBE, LANCS.

AC12788		118	diac	20.	J40\%	140
AC1873/8		11p	723 Dil	550	7404	189
A19:7		120	7 7 18 BPIN	25p	12\% ${ }^{\text {c }}$	200
RCion/a		98	[CL9038	290;	410	15p
BC:Iosc.		10 p	1 M138	1000	7 ± 13	30p
bctav 3		10p	(M38)	150p	7430	150
BC184		$: 1 p$	maciaio	240p	7430	150
acriz/3		$11 p$	Stel312	2200	41	75p
Rezis		12p		2200	147	55p
nDi312		420,	NES67	250p	74.8	90^{0}
4-Y50/2		150	tramot	1000	3473	36p
Trpata		65p	Tea 810	1250	747:	340
TiPC2A		70.	teasyo	800	7475	52p
T1P2955		70p	7N474	110p	7478	37p
3, 26648		35 p	1 A Plastic frey		7.483	3400
- N2926		$8{ }_{8}$	78 5eries:	1400	7490	45 p
2N3056		40\%	512.15 .182	iv	7493	480
2N3702-1		11.	1 N934	4 p	74121	34 p
2N3713		220p	1 NaONA	6	75141	950
2 N 3 etg		20p	TH209	$16 p$	7286	410
7n120\%:		88p	400 mW W	98	U4P12	50.
10673		70p	Scen Cesiza	${ }_{60 p}$	30158	120p
Br. RFCT		2 A	$2 \mathrm{NAS44}$	175p	MAN3M	100p
100 PiV	21.	35p	TEXAS DILSKT		Litor	135 ${ }^{2}$
thial.	3A	6A	8 14 18 P		tr747	225p
4 CNPF 9	950 1	120p	12p 13p 14p			

TECHNOMATIC LTD.
54 Sanchurst Road. LONDON NWY 9LR

HARDWARE
 Screws, nuts washers etc.
 Sheet aluminium cut to size or in standard packs, plain or punched/ drilled to spec.
 Printed circuit boards for published designs or individual requirements, one-off or small runs.
 Fascia panels, dials, nameplates etc in etched aluminium. $6 p$ for details.
 Ramar Constructor Services, 29 Shelboürne Road, Stratford on Avon, Warwicks.

** FREE OFFER **

Send 9 " $\times 6^{6}$ " SAE marked "ETI Offer" for free sample 2 metres FP20 plastic optical monofibre, info. + short form list.

FIBRE OPTIC SUPPLIERS (ET)
2, LOUDOUN ROAD MEWS, LONDON NW8 ODN.
Offer open until 10th April 1975

PLEASE MENTION ETI WHEN REPLYING TO ADVERTISEMENTS

[^10]
COMPONENT BARGAINS

7473's 30p
22 V 11 Amp Trans. £2.50.
12K, 33 K Tin Oxide Resistors per 100 50p
2G302(SM) 2N1
Precision Timers £4.00.
Reed Relays S.P 2 N 1307 Min . of $\mathrm{C} / \mathrm{O} 12 \mathrm{~V} 4 \mathrm{~mA} 40 \mathrm{p}$. 10 5p each.
KEYBOARDS 4-octave with contact actuators (no contacts) $£ 16.00$ (carr. $\mathrm{£1.50)}$. Vast selection of hardware, nuts, bolts etc. good selection of high quality $£ 1.00 .0 .01400 \mathrm{~V}$ (min of 25) @ $2 p$ each. Mix of Tantalum Capacit ors $£ 1.00$. LED's (as they come) 18 p . 0.01250 V (min. 10) 4p each.

P\&P extra at 15 p unless stated. SAE for lists or requirements VAT included in above prices.
BARRY M. CHILDE, ELECTRONICS MART, 370 Charminster Road, Bournemouth BH8 9RX.

fibre optic suppliers
MARE'S TAIL FOR DECORATIVE DISPLAYS $7,000+$ Fibres, 22^{\prime} dlameter, immaculate finlsh
fi0.00 ea. FIGROFLEX SIZE 1 Flexlble 440 £10.00 ea. FIGROFLEX SiZE 1 Flexlble 440
strand glass Ilght Condult Bunde Dia. 1.14 mm . strand glass ilght conduit, Buncie Did. 1.14 mm .
400 per metre $110 \mathrm{~m} £ 3.00 ; 100 \mathrm{~m}$ £ 21.00)
FI日ROFLEX SIZE 42.28 mm Bundle Oia. $£ 1.50$ FIBROFLEX SIZE 42.28 mm Bundle Oia. $£ 1.50$
per metre CROFON 161064 strand plastic 1 ight per metre CROFON 161064 strand plastic ilght
conduit bundle dia. $1.8 \mathrm{~mm}, 0.0 .3 .3 \mathrm{~mm} £ 1.20$ conduit bundle dia. 1.8
PLASTIC OPTICAL MONOFIBRE Flexlble single
strand for multiple/internal illumination, displays, optical coupling. FP10 0.25 mm) $100 \mathrm{~m} £ 2.00$; FP20 $i 0.5 \mathrm{~mm}$) $100 \mathrm{~m} \mathrm{E} 4.00 \mathrm{FP} 40(1.0 \mathrm{~mm}$ dia.) $1 \mathrm{~m} 30 \mathrm{p} ; 10 \mathrm{~m} £ 2.20 ; 100 \mathrm{~m} £ 14.00 \mathrm{FP} 60(1.5 \mathrm{~mm}$
dia.) $1 \mathrm{~m} 60 \mathrm{p} ; 10 \mathrm{~m} £ 4.00 ; 100 \mathrm{~m} £ 30.00$ da.) YY RESIN T enspor 100 m E30.00
EPOXY RESIN Transparent, low viscosity. 30 ml
60p. FIBER-SRITE 'Polish' for plastic fibres 2 ml 50 p . OPTIKIT 103 contalins 2 m Crofon 1610 plus 5 m each FP20, FP40, FP6O +1 ml FiberBrite. A handy pack for the experlmenter and laboratory alike. E4.70. OPTIKIT L6 6 senses dla.
$7,14,21,26,47,51 \mathrm{~mm}$
E 2.90 . OPTIKIT RRS Five different retroreflectors $£ 2.00$. CIRCULAR POLARISERS Reduce glare on all types of instrument or display. Red/Amber/Green or Neutral. 50 mm square 70 : 75 mm sq . $£ 1.40$ i 150 mm sq. $£ 4.50$.
SEOSB-40T ULTRASONIC TRANSDUCERS For remote control, burglar/proximity detector. 40 kHz TX/RX pair $£ 3.50$.
OPTOELECTRONICS LIGHT SOURCES AND DETECTORS MV54 2 mm Red LED 20 D Red 300 XC209-R 3 mm Red LED $20 \mathrm{p} \times \mathrm{C} 209 . \mathrm{V}$ Amber 30p XCR209-G 30D $2 N 5777$ High Sensitivity Siltcon PhotoDarington 50p MRD150 High Speed silicon PhotoTransistor 40V 70 p MLS203 Light
Sensitive Thyrist or $60 \mathrm{~V}, 0.4 \mathrm{~A} £ 1.20$.
please add 8% VAT to prices above (p
Send $9^{\prime \prime} \times 6^{\prime \prime} 5 A E$ for full short form list.
FIBRE OPTIC SUPPLIERS (ET)
2, Loudoun Road Mews, London NW8 ODN.
L.E.D's Red Yellow Green . $\mathbf{2}^{\prime \prime}$ dia mounting clip for $1 / 4^{\prime \prime}$ panel hole. Only 17 pence each. Plastic BC107 (BC547) with guarantee. 12 pence each. CA3035 Ultrasonic/Audio Amp 1.C's with circuits and data 70 pence each:-
Solid State Modules VHF/UHF Equipment semi-conductors capacitors I.C's Relays Instruments Tools and Advice. Send S.A.E. Prices Incl. V.A.T. P \& P 15 Pence/Order

F.U.Q. COMPONENTS

10 Mayfield Avenue, Brighouse, W.Yorks, HD6 4EF.

INFLATION? PRICE INCREASES?

TBA810AS 7Watt IC, overload protected. Only 99p with data. Post 15p. P.C. Board for above:55p, Post 10 p .
7Watt I.C. kit inc. P.C.B. and all components: $£ 2.25$. Post 20p 7 Watt I.C. and mains kit inc. I.C., mains $T x$, rect., P.C.B. and all components: $£ 3.75$. Post 25 p. Ready built 7Watt I.C. Modules using SGS/Ates TBA810AS. Size $31 / 4^{\prime \prime} \times 2^{1} / 2^{\prime \prime} \times x^{3 / 4^{\prime \prime}}, £ 2.50$ each or $£ 4.60$ for 2 (Stereo), £8.50 for 4(Quad). Post 25p per order. Mail Order. Send to:
WATSON, c/o 131 Buxton Street, LONDON E1.

M.SC. COURSE IN ELECTRICAL ENGINEERING

with specialisation in
any one of the following:
Communication Systems
Electronic İnstrumentation
Control Engineering and Digital Electronic Systems
Design of Pulse and Digita
Circuits and, Systems
The Course, which commences In October 1975, may be taken on a Full Time, Part Time, Sandwich or Block Release basis, and is open to applicants who Science or Englneerlng or
who will hold equlvalent qualifications, by that date. The Science Research Council has sultable for the tenure of Its Advanced Course Studentships.
A Diploma Course, in some
of the above toplics or In of the above topics or In
Power systems, is also open Power Systems, is aiso open
to applicants wlth the to applicants with the
above, or slightly lower qualifications.

Research in

Electrical Engineering
Applications are also invited from similarly quall-
fied oersons who wish to fled persons who wish to pursue a course of research M.Pnil. or Ph.D. in any of the above toplcs.
Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref. M,Sc. 8). The University Birmingham B4 7PB.

Tix IHE UNIVERSTTY $=$ Of ASTON IN BIRMINCHAM

and now.

INDEX TO ADVERTISERS
Ambient Acoustics 55
Ambit 34
Aston University 73
Axial Products 73
B. H. Component Iactors 34
B.I.E.T. 75
Bi-Pak 20/21
Bi-Pre-Pak 50
Bywood 9/74
Cambridge Learning Linterprises 56
Chiltmead 32
E.D.A. 22
Electronics Maīt 72
Electrovalue 55
Eivins 74
Fibre Optics Suppliers 73
F.U.Q. Components 73
Heathkit 25
Henry's Radio 2
Island Devices 72
Lancashire Mail Order 72
J.C. Jones 73
J.E.T. 29
Maplin 76
Marco Trading 72
Marshalls 55
Minikits 13
Ramar 72
Shortwave Magazine 63
Sinclair 4/5/26/40/41
Sintel 36
Technomatic 72
Trampus 9
Watson 73
Wilnslow Audio 13
 you can build an organ to your requirements. which will compare with an organ commercially buill costing double the price.
\star Portable organ with 4 octave keyboard, $£ 145 \cdot 29$. \star Console organ with 5 octave keyboard, $£ 250.95 \star$ Console organ with 2×4 octave keyboards and 13 note pedal board. £470.65. \star Console organ with 2×5 octave keyboards and 32 note pedal board. $£ 680$. \star Console organ with 3×5 octave keyboards bald 32 note pedal board. $£ 960$. \star W/W Sound Synthesiser Kit. $\mathbf{£ 1 3 0} . \star$ W/W Touch Sensitive Electronic Piano. $£ 100$.
All components can be purchased separately, i.e., semiconductor devices. M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc.
Send 50 p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list, enclosing S.A.E. for quotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry 12 Brett Road, Hackney, London, ${ }^{\text {E }}$ E8 1JP. Tel. 01-986 8455

DIGITAL DISPLAYS

DL707 DL 704 DL701 DL747
DL750
DL746
3015F
3017 F
RDS1
RDM2
DG12
5LT01

Common-Anode 0.3" LED display
Common Cathode DL707
Common-Anode $0.3^{\prime \prime} \pm 1$
Common-Anode 0.6" LED display
Common-Cathode DL747
Common-A node $0.6^{\prime \prime} \pm 1$
Minitron filament 12.5 mm Minitron filament 17.5 mm toka filament $2.5^{\prime \prime}$ Itoka filament 5.0"
Phos-diode 12.5 mm Phos-diode 4 digit clock display
£ 1.70
£ 1.70
£ 1.70
£ 2.45
£ 2.45
£ 2.45
£ 1.25
£ 2.00
£ 8.00
$£ 24.80$
£ 1.20
£ 5.80

DIEITAL CIOCKS

Digitronic 116 six digit clock
£31.00 Digitronic IIK kit version
£29.00
£ 37.50 please ring for details and prices.
Digitronic III Time/date/alarm clock
E37.50
Chanticleer 4 digit alarm clock
Industrial and laboratory clocks - ring for details or give us your specification.

All prices on this advert exclude VAT.

IIGTAICI CICEX CHIPS

CLOCK CHIPS:
MM5314 Basic $12 / 24 \mathrm{Hr}, 6$ digit, $50 / 60 \mathrm{~Hz}$ chip. $£ 7.20^{*}$
7 seg outputs. Very popular, simple chip.
MM5311 As MM5314 but with additional BCD £ 9.00 outputs.
MK50250 6 digit alarm chip with alarm tone out- $£ 7.60^{*}$ put, Standard basic alarm facilities.
CT7001 Time, Date \& Alarm on one 6 digit
£ 9.80^{*} chip. The Alarm can be used in 3 modes including a time switch. Clock-Radio \& Snooze features. 7 seg outputs, $50 / 60 \mathrm{~Hz}$ or 100.8 kHz input frequency.
CTT0002
As CT 7001 but with BCD outputs not
£ 9.80 7 seg.
TMS3952 Stopwatch chip, most reqd, stopwatch $£ 10.50$ functions 6 digits (hhmmss or mmssss), 300 kHz input. 7 seg output. Special price
HEEC2 8 digit (HhMmSsss). stop/start/reset, 8.50 $50 \mathrm{~Hz} / 60 \mathrm{~Hz} / 100 \mathrm{kHz}$ input, BCD output hard-wired alarm with repeat (snooze). Can also be used as 8 digit decade counter.
CMOS chip for Liquid-crystal displays, $£ 15.00$ $12 \mathrm{Hr}, 1 \mathrm{~Hz}$ colon, input 32768 Hz or 65536 Hz . Runs on 1.5 V hearing aid battery for a year.
MM5376
4 digit non-mplxd alarm chip, will £15.00 direct drive l-c or phosphor-diode displays.

- Available in a MHI kit.

We advise the use of sockets for all ICs, 24/28/40 pin $£ 1.00$.
BYWOOD ELECTRONICS,
181 Ebberns Road, Hemel Hempstead, Herts. HP3 9RD. Tel: 0442-62757

Practical Radio \& Electronics Certificate course includes a learn while you build

3 transistor radio kit.

 Everything you need to knowOver 150 ways to
 about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

3
 CRE ETTPROL

BUILD AN ORGAN TO YOUR OWN SPECIFICATION!

Full construction details in our leaflets.

Leaflet MES 51 price 15p, describes a fully polyphonic basic organ which can be used later as the basis of a large sophisticated instrument.

Further leaflets issued at approx. 3 monthly intervals describing; more footages, solid state switching, foot pedal board, many more stops, special effects, rhythrn section, "Leslie" speaker etc.

At every stage in this organ we shall be using the very latest technology, to give you a really high quality instrument, that is not only on a par with, but probably in advance of most commercially available organs.

REDUCED COSTS!

Eventually you could be the owner of a highly sophisticated instrument and parts of it will still be using the original components you bought for the basic organ. Of course this means greatly reduced costs and the satisfaction of having "built it yourself.

* 표

We stock all the parts for this brilliantly designed synthesiser. including all the PCB's. metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available shortly in our booklet. S.a.e. please for specification and price lists.

- We shall be stocking all parts for the international 3600 Synthe siser, to be published shortly

*A GPAPHIG EQUALIZER for underf50!

Our fantastic 1975 Catalogue is much more than just a stock list. Inside its attractive glossy cover it is packed with; CIRCUITS YOU CAN BUILD . . . A 10 w stereo tuner-amp a MW/LW radio, a high quality pre-amp, a 10 w stereo power amp. a digital clock. Application circuits for our I.C's (e.g. a frequency doubler, audio amps and pre-amps, ilipflops power supplies, notch filter etc. etc. Detailed data on all our semiconductors. A comprehensive transistor equivalents list. Full data and hundreds of pictures of the thousands of lines we stock, including hundreds of new ones!
P.O. Box 3 . RAYLEIGH . ESSEX Telephone: Southend-on-Sea (0702) 44101

VAT. Please add

[^0]: CORRESPONDENCE: Readers querles can only be answered if they relate to recent articles bublished in the magazine and must be accompanied by a stamped, self-addressed envelope. We are rarely able to provide information in addition to that published. Answers may be subject to delays at certain times due to the production. schedule of the magazine.
 BACK NUMBERS: Back numbers of many issues are avaitable for 30p each plus IOp postage.
 SUBSCRIPTIONS: Great Britain, £ 4.25 per year, Overseas, £4.75 per year. (Air Mail £7.50).
 COPYRIGHT: All material is subject to worldwide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ET' cannot be held responsibia will be printed as soon as possible afterwards in the magazine.

[^1]: Normal (Kettering) ignĩtion system.

[^2]: Swan Works, Bank Square, Wismslow, Cheshire SK9 1 HF Tel. Wilmsiow 29599
 (Discourt HiFi, PA and Radio as

[^3]: Code No'* mentioned above are given an a guide to che

[^4]: To: Sinclair Radionics Ltd, FREEPOST, St ives,
 Huntingdon, Cambs., PE17 4BR.

 Please send me :
 .-.-.. Multimeters (a: $£ 63.72$ inc VAT.
 Mains adaptors (a, £2.43 inc VAT.
 Carrying cases (a £5.40 inc VAT.
 I am interested in 5 or more multimeters.
 ..-.-. Please arrange a demonstration.
 Please send details of quantity discounts.
 Name
 Address
 *I enclose a cheque for $£$
 *My Access/Barclaycard number:
 *I enclose an official company order - signed and dated.

 - Please complete or delete as applicable.

[^5]: N.B. There are certain legal limit ations governing the use of flashing lights on cars. Do not use them on a moving vehicle.

[^6]: * The phase delay along the transmitter-receiver path is ignored throughout on the assumption that it is the same for the carrier and the synchronisation signal.

[^7]: To: Cambridge Learning Enterprises,
 FREEPOST. St. Ives. Huntingdon, Cambs PE17 4BR
 *Please send me......set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each
 *or......set(s) of Design of Digital Systems at $£ 5.95$ each
 *or.....combined set(s) at $£ 9.25$ each.
 Name
 Address...

 * delete as applicable.

 No need to use a stamp - just print FREEPOST on the envelope.

[^8]: MORSE COURSES
 G3HSC Rhythm Method of Morse Tuition
 Complete Course with three 3 speed L.P. records with books including U.K. P.P.I. etc.
 Beginner's Course with two 3 speed L.P. records with books including U.K. P.P.I. etc.
 . $£ 3.65$
 Single 12" L.P. Beginner's with book. including U.K. P.P.I. etc...........................
 Single 12" L.P. Advanced with book.
 including U.K. P.P.I. etc.................................. $£ 3.02$
 Three speed simulated GPO test. $7^{\prime \prime}$ d.s. E.P. record, including U.K. P.P.I. etc....................... $£ 1.00$

[^9]:

[^10]: 7-Segment LED's. Red and Green, 21.30 ea 4 for $£ 4.50$ inc P\&P \& VAT. CWO to Industrial Electronics Supplies (Stockport) Ltd., 181 a Bramhall Lane, Stockport, SK2 6JA.

 VALVES AND TRANSISTORS - Valves $1930-1975$ 2,000 types stocked, many obsole . 10 isp. East Whittering. Tel: West Whittering 2023.

 PRINTED CIRCUIT BOARDS. PCB for any ETI project 60p per board. Individual patterns $£ 1$ plus $6 p$ per square inch. Add
 $10 p$ P\&P per PCB. Mail Order from TEC 241 Burnt-Oak, Brōadway, Middlesex

