

DEDICATED DEVICES

SPECIAL PURPOSE ICs FOR:
MUSIC
COMPUTERS DOMESTIC AUDIO TIMING RADIO

1200 bps Full Duplex Modem

Description

The $\mu \mathrm{AV} 221200 \mathrm{bps}$ full duplex modes I.C. is fabricated in Fairchild's advanced Double-Poly Silicon-Gate CMOS process. The monolithic I.C. performs all the signal processing functions required of a CCITT V.22, alternative B compatible modem. Handshaking protocols, dialing control and mode control functions can be handled by a general purpose, single chip $\mu \mathrm{C}$. The $\mu \mathrm{AV} 22, \mu \mathrm{C}$ and several components to perform the telephone line interface and control provide a high performance, cost effective and ultra-low power solution for V. 22 -compatible modem designs.

The modem chip performs the modulation, demodulation, filtering and certain control and self-test functions required for a CCITT V. 22 -compatible modem, as well as additional enhancements. Both 550 Hz and 1800 Hz guard tones and notch filters and DTMF tone generator are on-chip. Switched-capacitor filters provide channel isolation, spectral shaping and fixed compromise equalization. A novel awitched-capacitor modulator and a digital coherent demodulator provide 1200 DPSK operation.

The receive filter and energy detector may be configured for call progress tone detection (dialtone, busy, ringback, voice) providing the front end for a smart dialer.

- Functions as a CCITT V.22-compatible modem
- Interfaces to Singie Chip $\mu \mathrm{C}$ Which Handies

Handshaking Protocols and Mode Control Functions

- DTMF Tone Generation and Call Progress Tone Detection for Smart Dialer Applications
- 1300 Hz Calling Tone Generator On Chip
- PIn and function compatible with the uA212A
- On Chlp Oscillator Uses 3.6864 MHz Crystal
- Fow External Components Required
- Operates from +5 and -5 Volt Supplles
- Low Operating Power: 35 mW Typlcal
- 550 Hz and 1200 Hz guard tones and notch filters are on-chlp

Absolute Maximum Ratings

V_{00} to DGND or AGND	7.0 V
$V_{\text {SS }}$ to DGND or AGND	-7.0 V
Voltage at any Input	$\begin{gathered} V_{\mathrm{DO}}+0.3 \text { to } \\ \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \end{gathered}$
Voltage at any Digital Output	$\begin{aligned} & V_{D O}+0.3 V \text { to } \\ & \text { DGND }-0.3 V \end{aligned}$
Voltage at any Analog Output	$\begin{gathered} V_{D O}+0.3 \mathrm{~V} \text { to } \\ V_{S S}-0.3 \mathrm{~V} \end{gathered}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Connection Diagram
28-Lead Dip
(Top View)

Order Information
Device Code Package Code Package Description
HAV22DC FM Ceramic DIP
μ AV22PC \quad Molded DIP
$\mu A V 22 Q C$ Molded Surface Mount
-Consult Factory

Volume 8 No. 1

Edited by:
Ron Keeley
Group Editor:
Dave Bradshaw
Editorial Director:
Ron Moulton
Managing Director:
Peter Welham
Typesetting by: KAMSET
Typesetting, Brentwood, Essex
Originated by: Argus Design
Printed by: Garden City
Press, Letchworth
(c) 1987

Subscription rates upon application to Electronics Digest, Subscriptions Dept., Infonet Ltd., Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB

Published by: Argus Specialist Publications, 1 Golden Square, London W1R 3AB.

Distributed by: Argus Press Sales \& Distribution Ltd., 12-18 Paul Street, London EC2A 4JS (British Isles)
© Argus Specialist Publications Ltd 1987. All material is subject to worldwide copyright protection. All reasonable care is taken in the preparation of the magazine content but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in the advertisements are accepted by us as correct at time of going to press. Neither the advertisers not the publishers can be held responsible, however, for any variations which may occur after publication had closed for press.

Welcome to the Summer of 1987. In this issue of Electronics Digest we present full data sheets for more than a dozen selected ICs. They have only one thing in common: each is a complete electronic sub-system on a chip, performing multiple functions that, not too long ago, would have required a circuit board of discrete elements. The selection ranges from relatively simple devices such as smoke and fluid detectors, through single chip $A M$ and $F M$ radios to a universal timer employing a 4-bit computer. Audio circuits include a digitally controlled graphic equaliser IC, a programmable compandor, and a number of sound synthesisers. The datasheets reveal the inner working of the various devices and provide all the information needed by an adventurous constructor to design and build a simple radio, tunes synthesizer, DC motor controller etc.

Contents

uAV22 V. 22 Modem 2
TDA7000 FM radio 4
$\mu A 7392$ DC motor speed controller 7
M112 polyphonic sound generator 10
NE572 programmable compandor 20
AY-3-1350 tunes synthesizer 24
LMC835 graphics equaliser 34
بA212 300/1200 board Modem 43
TMS1121 universal timer controller 50
ZN414 AM radio 63
LM1801 smoke detector 69
LM1830 fluid detector 71
AY-3-8910/8912 programmable sound generators 4
μ A2240 universal timer 86

Thanks to Mullard/Signetics, National Semiconductor, Fairchild, Texas Instruments, General Instrument, Ferranti, SGS-ATES, and Maplin, for their assistance in compiling this edition of Electronics Digest.

[^0]
FM Radio Circuit

description
The TDA7000 is a monolithic integrated circuit for mono FM portable radios where a minimum of peripheral components is important (small dimensions and low costs).

The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 $\mathbf{k H z}$. The I.F, selectivity is obtained by active RC filters. The only function which needs align. ment is the resonant circuit for the oscillator thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too-noisy input signals. Special precautions are taken to meet the radiation requirements
abSOLUTE MAXIMUM RATINGS

	SYMBOL AND PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage (pin 5)	12	V
V_{G-5}	Oscillator voltage (pin 6)	$V_{C C}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
	Totai power dissipation	See derating curve Figure 2	
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	0 to +60	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

N PACKAGE	
1	(18)
8	17
3	18
4	15
5	14
6	13
7	12
18	17
0	10
TOP VIEW	

FUNCTIONAL PIN DESCRIPTION

PIN NO	NAME AND FUNCTION
1	Muting capacitor
2	Audio frequency output
3	Noise source
4	Loop filter capacitor
5	Supply voltage
6	VCO
7	1st integrator capacitor (to pin 9)
8	2nd integrator capacitor
9	1st integrator capacitor (to pin 7)
10	IF filter capacitor (to pin 11)
11	IF filter capacitor
12	IF limiter capacitor
13	RF input
14	Mixer
15	Current source capacitor
16	Ground
17	Demodulator capacitor
18	Correlator capacitor

BLOCK DIAGRAM

Data supplied by Mullard/Signetics.
© Mullard/Signetics.

DC ELECTRICAL CHARACTERISTICS $\quad V_{C C}=4.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$: measured in Figure 3; unless otherwise specifioc

SYMBOL AND PARAMETER		TEST CONDITION	TDA7000			UNIT	
		Min	Typ	Max			
V_{CC}	Supply voltage		(Pin 5)	2.7	4.5	10	v
lce	Supply current	$V_{C C}=4.5 \mathrm{~V}$		8		mA	
I_{6}	Oscillator current	(Pin 6)		280		$\mu \mathrm{A}$	
V_{1416}	Voltage	(Pin 14)		1.35		v	
I_{2}	Output current	(Pin 2)		60		$\mu \mathrm{A}$	
$\mathrm{V}_{2.16}$	Output voltage	$(\mathrm{Pin} 2) \mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega$		1.3		V	

AC ELECTRICAL CHARACTERISTICS $\quad V_{C C}=4.5 \mathrm{~V}_{\mathrm{i}} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; measured in Figure 3 (mute switch open, enabled); $\mathrm{i}_{\mathrm{r}}=96$ MHz (tuned to max. signal at $5 \mu \mathrm{~V}$ e, m.f.) modulated with $\Delta f= \pm 22.5 \mathrm{kHz} \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$ $E M F=0.2 \mathrm{mV}$ (e.m.f. voltage at a source impedance of 75) ; r.m.s. noise voltage measured unweighted ($\mathbf{I}=300 \mathrm{~Hz}$ to 20 kHz); unless otherwise specified.

SYMBOL AND PARAMETER		TEST CONDITION	TDA7000			UNIT	
		Min	Typ	Max			
EMF	Sensitlvity (see Figure 2) (e.m.f. voltage)		-3 dB limiting; muting disabled		1.5		$\mu \mathrm{V}$
		-3 dB muting		6			
		$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$		5.5			
EMF	Signal handing (e.m.t. voltage)	THD $<10 \% ; \Delta t= \pm 75 \mathrm{kHz}$		200		mV	
S / N	Signal-10-noise ratio			60		dB	
THD	Total harmonic distortion	$\Delta f= \pm 22.5 \mathrm{kHz}$		0.7		\%	
		$\Delta t= \pm 75 \mathrm{kHz}$		2.3			
AMS	AM suppression of output voltage	(ratio of the AM output signal referred to the FM output signal) FM signal: $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 75 \mathrm{kHz}$ AM signal: $\mathrm{I}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{m}=80 \%$		50		dB	
RR	Fipple rejection	$\left(\Delta V_{C C}=100 \mathrm{mV} ; \mathrm{f}=1 \mathrm{kHz}\right)$		10		dB	
$V_{G-5(\mathrm{~ms})}$	Oscillator voltage (r.m.s. value)	(Pin 6)		250		mV	
$\Delta \mathrm{t}_{\text {oxa }}$	Variation of oscillator frequency	Supply voltage ($\left.\Delta \mathrm{V}_{\mathrm{Cc}}=1 \mathrm{~V}\right)$		80		kHzN	
$\begin{aligned} & \mathrm{S}_{+300} \\ & \mathrm{~S}_{-300} \end{aligned}$	Selectivity			45		dB	
				35			
Δt_{H}	A.F.C. range			± 300		kHz	
B	Audio bandwidth	$\Delta V_{0}=3 \mathrm{~dB}$ measured with pre-emphasis ($\mathrm{t}=50 \mu \mathrm{~s}$)		10		kHz	
$\mathrm{V}_{(\text {(ma) }}$	A.F. output voltage (r.m.s. value)	$\mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \cap$		75		mV	
A_{L}	Load resistance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			22	kn	
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$			47		

NOTES:

1. The muting system can be disabled by feeding a current of about 20 wA into pin 1.
2. The Interstation noise level can be decreased by choosing a low-value capscitor at pin 3. Silent tuning can be achieved by omitting this capacitor.

Figure 1. Powar Derating Curve.

Figure 2. AF output voltage $\left(V_{0}\right)$ and total harmonic distortion (THD) as a function of the e.m.f. input voltage (ENF) with asource impedance $\left(R_{s}\right)$ of 75 n: (1) muting systom onabied; (2) muting systom disabled.

Conditions: $0 \mathrm{~dB}=75 \mathrm{mV} \mathrm{t}_{\mathrm{H}}=98 \mathrm{MHz}$
for $S+N$ curfe: $\Delta t= \pm 22.5 \mathrm{kHz} \mathbf{I}_{\mathrm{m}}=\mathbf{1} \mathbf{~ k H z}$
for THD curve: $\Delta f= \pm 75 \mathrm{kHz} \mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$
NOTES:

1. The muting system can be disabled by feeding a current of about $20 \mu \mathrm{~A}$ into pin 1.
2. The interstation noise levili san be decreased by choosing a lew-value capacitor at pin 3. Silent tuning can be achieved by omitting this capacitor

Figure 3. Teat Clircult

DC Motor Speed Control Circuit

Description

The $\mu \mathrm{A} 7392$ is designed for precision, closed loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial and military control applications, e.g., floppy disc drive systems and data cartridge drive systems. The device is constructed using the Fairchild Planar Epitaxial process.

The μ A 7392 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by the tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the systern's negative feedback loop.

Thermal and over voltage shutdown are included for selfprotection, and a stall-timer feature allows the motor to be protected from burn out during extended mechanical jams.

- Precision Performance

- High Current Performance
- Wide Range Tachometer Input
- Thermal Shutdown, Over Voltage And Stall Protection
- Internal Regulator
- Wide Supply Voltage Range 6.3 V To 16 V

Absolute Maximum Ratings
Storage Temperature Range

Ceramic DIP
Molded DIP
Operating Temperature Range
Lead Temperature
Ceramic DIP (soldering, 60 s) Molded DIP (soldering, 10 s) Internal Power Dissipation ${ }^{1-3}$
14L-Ceramic DIP 1.36 W

14L-Molded DIP 1.04 W
Supply Voltage $(\mathbb{V}+)_{,} V_{9}$,
$V_{10} . V_{11}$
Regulator Output Current, I_{8}
Voltage Applied to Lead 6
(Tachometer Pulse Timing)
7.0 V
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$265^{\circ} \mathrm{C}$
1.36 W

24 V
15 mA

Connection Dlagram
14-Lead DIP
(Tap View)

Order Information
Device Code Package Code Package Description
μ A7392DV 6A Ceramic DIP
μ A7392PV 9.A Molded DIP

Voltage Applied Between Leads 3 and 5 (Tachometer Inputs) ± 6.0 V
Continuous Current through
Leads 11 and 12 Motor Drive Output ON
Repetitive Surge Curren: through
Leads 11 and 12 (Motor Drive ON)
Repetitive Surge Current through
Leads 10 and 11 (Motor Drive OFF) 0.3 A
Notes

1. T_{J} max $=150^{\circ} \mathrm{C}$ for the Moded DIP, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
2. Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature. derate the 14 L -Ceramic DIP at $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 14 L -Molded DIP at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Internally Limined.

Block Dlagram

MA7392
Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=14.5 \mathrm{~V}$, unless otherwise specified.

Symbol	Characteristic	Condition	Min	Typ	Max	Unit
Voltage Regulator Section (Test Circuit 1)						
Icc	Supply Current	Excluding Current into Lead 11		7.5	10	mA
$V_{\text {Reg }}$	Regulator Output Voltage		4.5	5.0	5.5	V
LINE $_{\text {Reg }}$	Regulator Output Line Regulation $\left(\Delta V_{8}\right)$	$V+=10 \mathrm{~V}$ to 16 V		6.0	20	$m V$
		$\mathrm{V}+=6.3 \mathrm{~V}$ to 16 V		12	50	
LOAD ${ }_{\text {Reg }}$	Regulator Output Load Regulation $\left(\Delta V_{8}\right)$	I_{8} from 10 mA to 0		40		$m \mathrm{~V}$

Frequency to Voltage Converter Section (Test Circuit 2)

$V_{\text {IN }}$	Tachometer (-) Input Bias Voltage			2.4		V
I_{N}	Tachometer (+) Input Bias Current	$V_{5}=V_{3}$		1.0	10	$\mu \mathrm{A}$
$V_{\text {DIFF }}$	Tachometer Input Positive Threshold	$\left(V_{5}-V_{3}\right)$	10	25	50	$m V_{p-p}$
V_{HY}	Tachometer Input Hysteresis		20	50	100	$m V_{p-p}$
R	Puise Timing ON Resistance	$\mathrm{V}_{6}=1.0 \mathrm{~V}$		300	500	Ω
$V_{\text {TH }}$	Pulse Timing Switch Threshold		45	50	55	\%V8
4	Output Pulse Rise Time			0.3		$\mu \mathrm{s}$
t_{1}	Output Pulse Fall Time			0.1		μs
$\mathrm{V}_{\text {Sat-LOW }}$	Pulse Output LOW Saturation (N_{7})			0.13	0.25	V
$V_{\text {Sat-HI }}$	Pulse Output HIGH Saturation $\left(V_{B}-V_{7}\right)$			0.12	0.2	V
Isourco	Pulse Output HIGH Source Current	$V_{7}=1.0 \mathrm{~V}$	-340	-260	-180	$\mu \mathrm{A}$
SVS	Frequency-to-Voltage Conversion Supply Voltage Stability ${ }^{1}$	$\begin{aligned} & V_{F V}=0.25 V_{8}^{2} \\ & V_{+}=10 V \text { to } 16 V \end{aligned}$		0.1		\%
TS	Frequency-to-Voltage Conversion Temperature Stability ${ }^{3}$	$\begin{aligned} & V_{F V}=0.25 V_{8}^{2} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		0.3		\%

Motor Drive Section

V_{10}	Input Otiset Voltage				20	mV
$I_{1 B}$	Input Bias Current			0.1	10	$\mu \mathrm{~A}$
CMR	Commoh Mode Range		0.8		2.5	V
$V_{\text {SAT }}$	Motor Drive Output Saturation	$I_{11}=300 \mathrm{~mA}$		1.3	2.0	V
$I_{\text {LEAK }}$	Motor Drive Output Leakage	$V_{11}=V_{10}=16 \mathrm{~V}$		5.0	$\mu \mathrm{~A}$	
I_{0}	Flyback Diode Leakage	$V_{10}=16 \mathrm{~V}, \mathrm{~V}_{11}=0 \mathrm{~V}$			30	$\mu \mathrm{~A}$
V_{0}	Flyback Diode Clamp Voltage	$I_{11}=300 \mathrm{~mA}$ Motor Drive Output OFF		1.1	1.3	V

Protective CIrcult

$J-\mathrm{T}^{\circ} \mathrm{C}$	Thermal Shutdown Junction Temperature ${ }^{4}$			160		${ }^{\circ} \mathrm{C}$
Over Voltage	Overvoltage Shutdown ${ }^{4}$		18	21	24	V
$\mathrm{~V}_{\mathrm{TH}}$	Stall Timer Threshold Voltage ${ }^{5}$		2.5	2.9	3.5	V
I_{TH}	Stall Timer Threshold Current ${ }^{5}$			0.3	3.0	$\mu \mathrm{~A}$

Notes

1. Frequency-to-voltage conversion, supply voltage stability defined is:

2. $V_{F V}$ is the integrated $D C$ output vollage from the pulse generator (Lead 7)
3. Frequency-to-voltage conversion temperature stability is defined as: $\frac{V_{F V}\left(85^{\circ} \mathrm{C}\right)}{V_{\mathrm{B}}\left(85^{\circ} \mathrm{C}\right)}-\frac{V_{\mathrm{FV}}\left(-40^{\circ} \mathrm{C}\right)}{V_{\mathrm{B}}\left(-40^{\circ} \mathrm{C}\right)}+\frac{V_{\mathrm{FV}}\left(25^{\circ} \mathrm{C}\right)}{V_{B}\left(25^{\circ} \mathrm{C}\right)} \times 100 \%$
4. Motor Drive circuiry is disabted when these limits are exceeded. It the condition continuas for the duration set by the extemal stall timer components, the circuit is latched ofl unil reset by temporanily opening the power supply input line.
5. If stall timer protection is not required, lead 14 should be groundec

Typical Performance Curves

Overvoltage Shutdown Voltage vs

 Junction Temperature

Supply Current vs
Supply Voltage

Tachometer Input Hysteresis vs Junction Temperature

Motor Drive Output ON Voltage ve Amblent Temperature

Stall Timer Threshold Voltage vs Junction Temperature

Regulator Output Voltage vs Supply Voltage.

Flyback Diode Current (D3) va Flyback Diode Voltage

Stall Timer Threshold Current vs Junction Temperature

Regulator Output Voltage ve
Junction Temperature

Motor Drive Output ON Current vs Motor Drtve Output ON Vottage

Typical Appilcation Using Magnetlc Tachometer

Polyphonic Sound Generator

- 8μ P PROGRAMMABLE SOUND GENERATOR ChanNELS
- 2 MHzCLOCK
- INTERNAL TOS WITH.POSSIBILITY OF EXTERNAL SYNCHRONIZATION FOR MULTICHIP USE
- 6 COMPLETE OCTAVE KEYBOARDS (72 KEYS)
- five homogeneous footages μ P programmable by adding a constant k to THE KEYBOARD SITUATION
- SEVEN octave related outputs enveloped without constant dC level ${ }_{4}$ FOOTAGESI
- SEVEN FOOTAGE RELATED OUTPUTS WITH DIFFERENT CONFIGURATIONS FOR FOOTAGES WITH ENVELOPE (WITHOUT CONSTANT DC LEVEL) AND FOOTAGES WITHOUT ENVELOPE (WITH CONSTANT DC LEVEL) AND VARIOUS SOUND CHANNEL DIVISIONS (SEE OPTION I, II AND III).
- possibility of excluding one or more sound channels from the non envel. OPED FOOTAGE OUTPUTS
- ONE MONOPHONIC OUTPUT NON ENVELOPED RELATED TO SOUND ChANNEL 1 WITh THE POSSIBILITY OF CHOOSING THE FOOTAGE (TWO ADDITIONAL MONOPHONIC OUT. PUTS ON OPTION III.
- 50\% DUTY CYCLE ON ALL OUTPUTS
- DIGITAL DRAWBAR CONTROL (32 LEVELS)
- attack-decay-sustain-release (adsr) envelope definition with digital con. TROL ON A.D.R. AND ANALOG CONTROL ON S
- additional analog control on release
- analog percussion input to envelope one footage (m2) on the octave re. lated outputs
- SPECIAL EXTERNAL ENVELOPE POSSIBILITY USING HOLD AND/OR RELEASE ∞. hold and relase ∞ are dedicated to decay and pedal effect.
- N-CHANNEL TECHNOLOGY-12V SINGLE SUPPLY.

The M112 is a polyphonic sound generator that combines eight generators with envelope shapers and drawbar circuitry in a single package.
This versatile circuit simplifies the design of a wide range of polyphonic instruments and, interfacing directly with a microcomputer chip, gives designers an unprecedented degree of flexibility.
The M112 is realized on a single monolithic silicon chip using low threshold N-channel silicon gate MOS tecnology. It is available in a 40 lead plastic pack age.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {OD }}$ "	Supply voltage	-0.3 to 20	V
V_{1}	Input voltage	-0.3 to $V_{\text {Do }}$	
$\mathrm{V}^{\text {O(otf) }}$	Off state output voltage	-0.3 to 20	v
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	500	mW
$\mathrm{T}_{\text {st9 }}$	Storage temperature	-65 ta 150	${ }^{\circ} \mathrm{C}$
Top	Operating temperature	0 to 70	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this' specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- All voltages are with respect to $V_{S S}$

MECHANICAL DATA (Dimension in mm)

PIN CONNECTIONS

RECOMMENDED OPERATING CONDITIONS

| Perameter | Test conditions | Values | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Nin. | Typ. | Max. |
| VOD | | 11.4 | 12 | 12.6 | V |

BLOCK DIAGRAM

Fig. 1

STATIC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{5 S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=0$ to $50^{\circ} \mathrm{C}$ unless otherwise specified)

Paramerer	Test conditions	Min.	Typ.	Max.	Unit

INPUT SIGNALS

$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	Pins 3, 6 to 11		2.4		$\mathrm{V}_{\text {DD }}$	V
		All other i		6		$V_{D D}$	\checkmark
$V_{\text {IL }}$	Input Low Voltage	Pins 3, 6 to 11		-0.3		0.8	\checkmark
		All other inputs		-0.3		1	\checkmark
VSA	Analog Ground	$\mathrm{A}<10 \Omega$	$\mathrm{C}=100 \mu \mathrm{~F}$	0	0	1	\checkmark
VT	ADR Control Time	A $=1 \mathrm{~K}$	$\mathrm{C}=1 \mu \mathrm{~F}$	0		$V_{\text {DO }}$	\checkmark
VAR	Analog Release	$\mathrm{A}=10 \mathrm{~K}$	$C=0.1 \mu$	0		VDD	\checkmark
$V_{\text {reg }}$	Control OFF Asymptote	A < 10Ω	$C=100 \mu$	0	0	1	\checkmark
$\mathrm{V}_{\text {Sust }}$	Control Level Sustain	$\mathrm{R}=1 \mathrm{~K}$	$C=100 \mu$	0		Vod	V
Perc. M2	Control Level Percussion	$\mathrm{R}=10 \mathrm{~K}$		0		VOD	V
${ }^{1}$ LI	Input Leakage Current	$V_{1}=V_{D D}$				$1{ }^{\text { }}$	$\mu \mathrm{A}$

OUTPUT SIGNALS (One key pressed)

${ }^{\text {I OL }}$	Output Low current	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\text {DD/2-1 }} \mathrm{V}$ (note 1)	10	30	50	$\mu \mathrm{A}$
${ }^{1} \mathrm{OH}$	Output High Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD} / 2+1 \mathrm{~V}} \mathrm{~V}$ (note 1)	10	30	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}$ (note 2)	100	300	500	$\Perp A$
		$\mathrm{V}_{\text {OH }}=10 \mathrm{~V}$	10	30	50	$\mu \mathrm{A}$
'o(ofi)	Off state output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}$ (all output pins)			1	uA
		$V_{O}=V_{S S} \underset{\substack{\text { (pins } \\ \text { state }}}{14-15-20 ~ i n ~}$			-1	$\mu \mathrm{A}$

POWER DISSIPATION

${ }^{1} \mathrm{OD}$	Supply current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			50

Noies: 1. Refers only to FL, FM1, FM2 (pins $20,15,14$).
2. Refers only to octave outputs with drawbar max.

DYNAMIC ELECTRICAL CHARACTERISTICS

Parameter	Test conditions	Min.	Typ.	Max.	Unit

CLOCK

| f_{1} Input Clock Frequency | | 250 | 200024 | 2.300 | kHz |
| :--- | :--- | :--- | :--- | ---: | ---: | :---: |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{l}} \quad$ Rise and Fall Times 10\% to 90\% | | | | 30 | ns |
| $\mathrm{t}_{\text {on },} \mathrm{t}_{\mathrm{off}}$ ON and OFF Times | | 150 | | | ns |

RESET

I_{w}	Pulse Width	Clock $=\mathbf{2} \mathbf{M H z}$	10		
If_{f}	Fall Time				

OUTPUT SIGNALS
Ion, Ioff Outptu duty cycle \square

GENERAL DESCRIPTION

The M112 contains a microprocessor interface, eight programmable sound generator channels, a top octave synthesiser, a divider chain and control circuitry. (see fig. 1). Each generator consists of logic to select the desired notes and harmonics from 96 frequencies obtained by division, an ADSR envelope generator and two voltage-controlled amplifiers. Programmable attenuators are included for drawbar control of the harmonic content of the sound
To simplify system design the signals generated in each channel are directed to octave separated outputs and footage outputs. Two voltage-controlled amplifiers are provided for each channel to keep the octave and footage outputs separate.
The attack time, decay time, release time and sustain level are set for all eight channels by common controls. Tone selection, the attack, decay, release parameters, drawbars and special effects are all software controlled.
In a typical configuration (fig. 2), one or more M112s are connected to a microprocessor which scans the keyboard and front panel controls in a matrix arrangement. When the microprocessor detects a key depression it chooses one of the sound generators and allocates it to that note. If another key is pressed the microprocessor allocates another sound generator and so on. This process can be repeated until there are no more free channels, i.e. when 8 N keys are pressed simultaneously where N is the number of M112s used
When one of the keys is released the microprocessor resets a control bit in the appropriate generator channel which will then be re-allocated to another key when needed.

Fig. 2

The M1 12 has 15 music output pins. Seven of these are octave outputs, seven are footage outputs and the last is a monophonic output from channel ore. This standard configuration can be changed under program control

The octave outputs, which are enveloped, are so called because there is one output for each octave, i.e. output signals from all eight channels that fall within the same octave are routed to the same output. These outputs are provided to simplify the generation of sinewaves from the squarewaves generated by the M112s digital circuitry. Since each of these outputs handles a limited range of frequencies - exactly one octave - a simple low pass or bandpass filter will do the job. The blend of harmonics sent to the octave outputs is controlled by the drawbar attenuators.
The footage outputs are related to the five footages generated by the M112. These are referred to as L, $\mathrm{M} 1, \mathrm{M} 2, \mathrm{H} 1$ and $\mathrm{H} 2(\mathrm{~L}=$ Low, $\mathrm{M}=$ mid, $\mathrm{H}=$ high) and can be programmed to give the three different ranges given in table 1 , adding a constant K (number of half tones) to the keyboard information.
All five footages can be obtained from these outputs but only four are mixed by the drawbar circuitry and routed to the octave outputs.

TABLE 1 - THE THREE FOOTAGE RANGES OF THE M112

	\longrightarrow Non Enveloped Footage Outputs \longrightarrow			.	
	L	M1	M2	H1	H2
0	16^{\prime}	$8{ }^{\prime}$	4^{\prime}	$2 \cdot$	$1 \cdot$
7	$10^{2 / 3}$	$5^{1 / 3}$	$2^{2 / 3}{ }^{\prime}$	$1^{1 / 3}{ }^{\prime}$	2/3
4	$12^{4 / 5^{\prime}}$	$6^{2 / 5}$	$3^{1 / 5^{\prime}}$	$1^{3 / 5}$	4/5 ${ }^{\circ}$

Fig. 3 - Example of octave related output "EVEN" and "OOD" with Percussion input.

In no case will the maximum frequency be higher than 7902 Hz (with a 2 MHz clock).
The output configuration for the octave and footage outputs can be changed under program control as mentioned above. There are three options, including the standard configuration, and these are:

- Option 1, the normal configuration gives four enveloped footage outputs, LE, M1E, M2E, H1E, and three non-enveloped outputs, L, M1 and M2. All eight channels are present on each output.
- Option 2 is a special cơnfiguration for sawtooth generation (sawtooth waveforms are frequently used in sound synthesis). In this case channels two and three appear only on the outputs FM1 and FM2 (footages M1 and M2) and are excluded from the rest. All five footages are available as enveloped outputs.
- Option 3 is intended for sophisticated automatic accompaniment circuits. All the channels appear on three non-enveloped outputs (FL, FM1, FM2) for chord generation and can be disconnected or command. Channels 4,5,6 and 7 appear on four enveloped outputs for arpeggi. The octave outputs are used for the bass and include only channel 8.

TABLE 2 - OUTPUT CONFIGURATIONS

Pin	Option 1	Option II	Option III	Option IV
15	FM2	FM2 (Channel 3)	FM2 All channels	FM2 (Ch. 3)
14	FM1	FM1 (Channel 2)	FM1 All channels	FM 1 (Ch. 2)
20	FL	FH2E	FL	FH2E (Ch. 4, 5, 6, 7, 8)
18	FHIE	FHIE	FHIE	FH1E
16	FM2E	FM2E	FM2E only channels	FM2E only channels
17	FM1E	FM1E	FMIE 4-5-6-7	FM1E 4-5-6-7
19	FLE For the	FLE	FLE	FLE
40	O1E 8 channels	OIE Only channels	OIE	OIE
36	O2E	O2E Only channels	O2E	O2E
35	O3E	O3E 1-4-5-6-7-8	O3E	O3E
38	O4E	O4E	O4E only channel 8	04E Only channal 8
39	O5E	O5E	O5E	O5E
37	O6E	O6E	O6E	O6E
34	O7E	O7E	O7E	O7E
21	Monophonic out (channel 1)	Mono (channel 1)	Mono (channel 1)	Mons (channe! 1)
	Standard use	Special for sawtooth generation etc.	Special for high class accompaniment	Only for information (no musical meaning)

- FL, FM1, FM2 are footage outputs not enveloped (with constant DC level)
- FLE, FM1E, FM2E, FH1E, FH2E are enveloped (wlthout constant DC level).

Notes: 1) H2 is available only in option 2 on FH2 enveloped outputs. It is not available on octave related outputs.
2) In the option 2 the Sound channels 2 and 3 are available only on pins 14 and 15 and consequently are excluded from the other outputs.
3) Each channel can be disconnected with commands NC1 to NCB (register 10).

DRAWBARS AND EFFECTS

One of the significant features of the M112 is the implementation of drawbar control circuitry. This consists of four programmable attenuators, one for each of the footages routed to the octave outputs, which are used to blend harmonics to produce the desired sound.

Other features of the M112 include hold, pedal and percussion effects, all of which are enabled/disabled under software control. Hold, when active, interrupts the decay of the ADSR envelope and Pedal interrupts the release curve. Hold and pedal permit external control of the envelope. This feature can be used, for example, to synthesize very realistic piano and harpisichord sounds.
A piano effect can be produced by suitably programming the envelope shapers but by using the hold and pedal controls and a few external components much greater realism can be obtained. Fig. 4 shows a simplified schematic of one of the envelope shapers together with the type of envelope generated. The envelope parameters are controlled by RA, RD, RR and Vsus (RA, RD and RR are programmed resistors controlling attack, decay and release). Disabling the natural decay and release and adding a handful of components a close approximation to the ideal waveform can be produced (fig. 5). R1 is a very large resistance (typically $3 \mathrm{M} \Omega$) to give the long (several seconds) time constant for the second decay.

Fig. 4 - With an external capacitor the M112's envelope shapers produce the standard ADSR envelope.

Fig. 5 - Disabling the normal decay and release and adding a few external components a realistic piano envelope can be produced.

INPUTS

Eight pins on the M112 are used to define the elementary time interval of the ADSR envelope shapers (Pins 26 to 33). Capacitors, nominally $1 \mu \mathrm{~F}$, are connected to these pins. Eight separate capacitors are necessary because the envelope shapers are independently triggered. Analog inputs are also provided to adjust the asymptotic release level ($\mathrm{V}_{\text {reg }}$ pin 24) and the charge/discharge current for attack, decay and release (VT pin 12) in order to compensate the differences of ADR time constant between several M112s used in the same instrument.
The sustain level is fixed by the voltage at pin 23.
The release time constant, digitally controlled by software, can also be fine adjusted by a trimmer connected at pin 25.

PROGRAMMING

The M112 is programmed using five basic commands:

- CHANNEL PROGRAM
- ADSR PROGRAM
- NON-ENVELOPED OUTPUT MASK
- LOAD CONTROL REGISTER
- DRAWBAR PROGRAM

These commands all consist of 12 bits transferred to the M112 (or one of the M112s) in two six-bit bytes through six data lines. Data is latched into the M112 synchronously by a strobe signal. The M112 can be connected directly to an M387X series microcomputer.
Each command contains the address of the Register in which data is to be memorized (there are 10 registers) and the data.

Channel program commands consist of the channel code (4 bits), octave code (3 bits), note code (4 bits) and a control bit, KP (key pressed). KP must be set if the key has just been pressed and reset if the note has just been released.

CHANNEL

PROGRAM

Resetting KP does not necessarily silence the channel because the sound continues after the key has been released if the release time is non-zero. To stop a channel completely the unused note and octave codes are used.

If an unused note code is programmed the channel is turned off with the output transistor in the ON state and if an unused octave code is used the channel is turned off with the output transistor in the OFF state. Six octave codes and twelve note codes are recognized, giving a keyboard span of 72 keys.
For example, to tell an M112 that channel three is to play F\# in the third octave the command is:

CHANNEL 3 CODE IS 0010
OCTAVE 3CODE IS 011
F \# NOTE CODE IS 0110
KP IS SET

The ADSR Program command sets the attack, decay and release times for all the envelope shapers. This command takes the form:
O1

1	0	0	0	$r 3$	$r 2$
$r 1$	$d 2$	$d 1$	$a 3$	$a 2$	$a 1$

ADSR
PROGRAM

The code 1000 selects the ADSR control register, a3/a2/a1 is the attack time, d2/d1 is the decay time and $r 3 / r 2 / r 1$ is the relase time. These times are all multiples of the time interval set by external capacitors. With the suggested $1 \mu \mathrm{~F}$ values this time interval is 15 ms . The release code 000 is used to enable the pedal effect.

The Non-Enveloped Output Mask command is used to select which channels are to be routed to the non-enveloped footage outputs. Any or all of the eight chanriels can be excluded by setting the appropriate bit.

The Load Control Register command selects the footage and output options and enables/disables the hold and percussion facilities.

LOAD CONTROL REGISTER
"NC1m" is a control bit that excludes channel one from all outputs except the three non-enveloped footages outputs. PO is the percussion disable bit, $\mathrm{m} 2 / \mathrm{ml} 1$ is the footage option select code for the monophonic output and OP2/OP1 the output configuration select code.
The drawbar-controlled attenuators are set independently for each footage using the Drawbar Program Command which has the form:

DRAWBAR PROGRAM

Footage is selected by addressing registers R12 to R15.
Attenuation is controlled in 32 linear steps which can be conveniently reduced to the conventional 16 or 8 -step logarithmic scale using a lookup table.

APPLICATIONS

The M112 is intended for a wide range of applications ranging from simple single-keyboard organs to 2-3 manual instruments with sophisticated synthesis and accompaniment facilities. It can also be used in electronic pianos, harpsichords, string synthesizers etc.

DESCRIPTION

Pin 1 - VSA Analog ground
Ground connection of all outputs. It is typically connected to $V_{s s}$. By adjusting its value with respect to $V_{S S}$ (plus/minus) it is possible to modify the output current and compensate the differences in current between several M112s used in the same applications.

Pins 2 and $13-V_{S S}, V_{D O}$
Power supply connections, $V_{D D}$ is hominally $12 \mathrm{~V} ; \mathrm{V}_{S S}$ is to be connected to GND.

Pin 4 - Reset input

It is used to synchronize various M112s in multichip use. The reset is activated when the input is at H Level. In this condition the chip is blocked.

Pin 5 - Clock input

It has to be connected to an external oscillator of 2 MHz .

Pin 6 to 11 - D1, D6 Data bus input

Pin 3 - STD Data Strobe input

These pins are used to transfer the 12 bits of data from the microprocessor to the registers of various M112s using a two phase procedure.
The first six bits of data are latched on the positive edge of STD, while the other six bits are latched on the negative edge of STD.

Each 2×6 bit of information contains the address of the register (4 bit/16 registers) and the data up to 8 bits to be memorized in the selected register

TABLE 3 - REGISTER SELECTION

A0	A1	A2	A3	Register ${ }^{\circ}$	Register function
0	0	0	0	1	
1	0	0	0	2	
0	1	0	0	3	
1	1	0	0	4	Note-octave etc.
0	0	1	0	5	For Sound channel
1	0	1	0	6	
0	1	1	0	7	
1	1	1	0	8	
0	0	0	1	9	
1	0	0	1	10	
0	1	0	1	11	
1	1	0	1	12	Control Commands
0	0	1	1	13	
1	0	1	1	14	
0	1	1	1	15	
1	1	1	1	16	Used for test *

Registers 1 to 8
There registers are related to the sound channels

PHASE 1	Bus Data		$\left\{\begin{array}{l} \text { must be " } 0 \text { " } \\ \left\{\begin{array}{l} \text { Sound } \\ \text { Channel } \\ \text { Selection } \end{array}\right. \end{array}\right.$
	D1	A3	
	D2	A2	
	D3	A1	
	D4	AO	
	D5	KP	
	D6	O 2	
PHASE 2	01	01	Key information
	02	00	
	D3	N3	
	D4	N2	
	D5	N1	
	D6	NO	

A0-A2: Sound channel selection with reference to table 3 , register 1 is related to channel 1 , register 2 to channel 2 and so on up to channel 8.

KP: $1=$ pressed key $0=$ relased key
O0-01-O2: Octave code of the note (Table 4).
TABLE 4

$\mathbf{O 0}$	O1	O2	Code	Octave	
0	0	0	0		Note OFF
1	0	0	1	1	
0	1	0	2	2	
1	1	0	3	3	
0	0	1	4	4	
1	0	1	5	5	
0	1	1	6	5	
1	1	1	7		Note OFF

NO-N1-N2-N3 = Note Code (Table 5)

Register 9 to 15

These registers are related to the various control commands

TABLE 6

Register 9 - R9 selects the ADR envelope parameters for ADSR control (see fig. 6)
Attack - a1-a2-a3 = 3 bit
Decay - di-d2 $=2$ bit 8 bit
Release - r1-r2-r3 = 3 bit

Fig. 6 - ADSR envelope control

Table 7 shows the various time constants for Attack, Decay and Release.
TABLE 7

$\mathbf{3}$	$\mathbf{a} 2$	\mathbf{s}	Attack		
	$\mathbf{d} 2$	$d 1$		Decay	
$\mathbf{r 3}$	$\mathbf{r} 2$	\mathbf{r}			Release
0	0	0	$T / 2$	$4 T$	∞
0	0	1	T	$8 T$	T
0	1	0	$2 T$	$16 T$	$2 T$
0	1	1	$4 T$	$32 T$	$4 T$
1	0	0	$8 T$		$8 T$
1	0	1	$16 T$		$16 T$
1	1	0	$32 T$		$32 T$
1	1	1	$64 T$		$64 T$

* In this case it is possible to obtain the pedal effect.
$\mathrm{T}=3 \mathrm{~ms}$ is the typical time constant unit with 8 external capacitors of $1 \mu \mathrm{~F}$ connected to pins 26 to 33 .

Register 10 -Contains 8 commands to exclude the corresponding sound channel from the non-enveloped footage outputs (FL-FM1-FM2)

$$
0=O N \quad 1=O F F
$$

Register 11 - Contains the following 8 commands: m 1 and m 2 select one of the four footages available for the monophonic output (C1m) according to table 8 .

TABLE 8

m1		0	1	0	1
m2		0	0	1	1
K	0 7 4	$\begin{gathered} 16^{\prime} \\ 10^{2 / 3} \\ 12^{4 / 5^{\prime}} \end{gathered}$	$\begin{gathered} 8^{\prime} \\ 5^{1 / 3} \\ 6^{2 / 5} \end{gathered}$	$\begin{gathered} 4^{\prime} \\ 2^{2 / 3} \\ 3^{1 / 5} \end{gathered}$	$\begin{gathered} 2 \\ 11 / 3 \\ 13 / 5 \end{gathered}$

OP2-OP3 - Select the four output options described in table 1 according to table 9 .
TABLE 9

OPTION	BIT	OP2
OP3		
II	0	0
III	1	0
IV	0	1

HOLD - If 0 , disconnects the external 8 capacitors of envelope ($1 \mu \mathrm{~F}$) and the $V_{\text {SUSTAIN }}$ pin (pin 23) in the decay phase.

PO (Percussion Off) - If 1, the percussion input is inhibited (see pin 22 description).
NC1m-If1, eliminates channel 1 from all outputs except the 3 footage outputs not enveloped (it can be eliminated from these outputs through the command NC1 of register 10).
N.B. NC1m command is inoperative on the monophonic output (C 1 m) where channel 1 is always present.

Registers 12-13-14-15
These registers contain the drawbar control for 4 footages on the octave related output.
Footages L, M1, M2 and H1 are controlled in 32 linear levels or for example, using conversion table in the microprocessor in 8 or 16 logarithmic levels.
Table 10 shows an example of footage L with 32,16 and 8 step control in dB .

Pin 12 - VT - ADR Control

It is used to adjust the ADR time constant for several M112s used in the same application. Using a single M112 it has to be connected to $V_{D D}$.

TABLE 10

$\begin{aligned} & L \\ & 5 \end{aligned}$	$\begin{aligned} & L \\ & 4 \end{aligned}$	$\begin{aligned} & L \\ & 3 \end{aligned}$	$\begin{aligned} & L \\ & 2 \end{aligned}$	$\begin{aligned} & L \\ & 1 \end{aligned}$	Attenuation in dB		
					32 steps	16 steps	8 steps
0	0	0	0	0	OFF	OFF	OFF
0	0	0	0	1	-29.8	-29.8	-29.8
0	0	0	1	0	-23.8	-23.8	-23.8
0	0	0	1	1	-20.3	-20.3	-20.3
0	0	1	0	0	-17.8	-17.8	
0	0	1	0	1	-15.8	-15.8	
0	0	1	1	0	-14.3	-14.3	-14.3
0	0	1	1	1	-12.9		
0	1	0	0	0	-11.8	-11.8	
0	1	0	0	1	-10.7		
0	1	0	1	0	-9.8	-9.8	
0	1	0	1	1	-9.0		-9.0
0	1	1	0	0	-8.2	-8.2	
0	1	1	0	1	-7.5		
0	1	1	1	0	-6.9	-6.9	
0	1	1	1	1	-6.3		
1	0	0	0	0	-5.7	-5.7	
1	0	0	0	1	-5.2		
1	0	0	1	0	-4.7		
1	0	0	1	1	-4.2	-4.2	-4.2
1	0	1	0	0	-3.8		
1	0	1	0	1	-3.4		
1	0	1	1	0	-3.0	-3.0	
1	0	1	1	1	-2.6		
1	1	0	0	0	-2.2		
1	1	0	0	1	-1.9		
1	1	0	1	0	-1.5	-1.5	
1	1	0	1	1	-1.2		
1	1	1	0	0	-0.9		
1	1	1	0	1	-0.58		
1	1	1	1	0	-0.29		
1	1	1	1	1	0	0	0

Pin 14 to 20 - FM1, FM2, FM2E, FM1E, FH1E, FLE, FL (Footages output)
The "wired-or" function is possible on all outputs.
The non enveloped outputs (with constant DC level) are push-pull current generators.
The enveloped outputs (with non constant DC level) are open drain sink current generators. Output duty cycle is 50%.
Pin 21 - C1m
Monophonic output of channel 1 (always present). Duty cycle of the waveform is 50%.
Pin 22 - Percussion M2
Using a specific signal on this input it is possible to have a percussion effect on M2 footage for the octa ve related output.

Pin 23 - $V_{\text {sustain }}$
This input defines the level of sustain (see fig. 6).
Pin 24 - $V_{\text {reg }}$
This pin controls the asymptote of $V_{\text {RELEASE }}$ through the gate of a transistor which discharges the en velope capacitor. If the performance at the end of release time is considered satisfactory, this pin must be connected to $\mathrm{V}_{\text {ss }}$. Otherwise this input can be connected to a voltage not higher than 1 V .

Pin 25 - VAR Analog release
This pin is intended for analog control of the release time constant when it is required in addition to the digital one controlled by software.

It allows intermediate values not included in table 7 (see explanation of register 9). In the case of pedal effect connect this input to $V_{\text {ss }}$.

Pin 26 to $33-\mathrm{CH} 1, \mathrm{CH} 8$ Envelope capacitor inputs
8 capacitors (typical value $=1 \mu \mathrm{~F}$) have to be connected for the AOSR envelopes.

Pin 34 to 40 -O1E, O7E Octave Outputs
Octave related outputs. Duty cycle is 50%.

Programmable Analog Compandor

DESCRIPTION

The NE572 is a duat channel, hlgh performance gain control circuit in which either channel may be used for dyamic range compression or expansion. Each channel has a full wave rectifier to detsct the average value of input signal; a linearized, temperature compensated variatle gain cell (دG) and a dynamic time constant buffer The buffer permits independent control of dynamic attack and recovery time with minimum external components and improved low frequency gain control ripple distortion over previous compandors.

The NE572 is intended for noise reduction in high performance audio systems. It can also be used in a wide range of communication systems and video recording applications.

FEATURES

- Independent control of attack and recovery time.
- Improved low frequency gali control ripple
- Complementary gain compression and expansion with external Op Amp
- Wide dynamic range - greater than 110 dB
- Temperature compensated gain control
- Low distortion gain cell
- Low noise - 6μ V typical
- Wide supply voltage range - $6 \mathrm{~V}-22 \mathrm{~V}$
- Syetem level edjuetable with external componente.

APPLICATIONS

- Dynamic nolee reduction eystem
- Voltage control ampilifier
- Stereo expandor
- Automatic level control
- High ievel limiter
- Low leval noise gate
- State veriable filter

PIN CONFIGURATION

BLOCK DIAGRAM

1. Supplied only in large SO (Small Outline) package.

ABSOLUTE MAXIMUM RATINGS

PARAMETER		Rating	UNIT
$v_{\text {cc }}$	Supply voltags	22	VOC
TA	Operating temperature range	0 to 70	${ }^{\circ} \mathrm{C}$
Po	Power dissipation	500	mW

AUDIO SIGNAL PROCESSING IC COMBINES VCA AND FAST AT-TACK-SLOW RECOVERY LEVEL

SENSOR

In high performance audio gain control applications it is desirable to independently control the attack and recovery time of the gain control signal. This is true, lor example, in compandor applications for nolse reduction. In hlgh end systems the input signal is usualIy split into two or more trequency bands to optimlze the dynamic behavior for each band. This reduces low frequency distortion due to control signal ripple, phase distorfion, high frequency channel overload and noise modulation. Because of the expense in hardware, multiple band signal processing up to now was limited to professional audio applications.
With the introduction of the Signetics NE572 this high performance noise reduction concept becomes feasible tor consumer hl fi applications. The NE572 is a dual channel gain control IC. Each channel has a linearized, temperature compensated gain cell and an improved level sensor: In conjunction with an external low noise op amp for current to voltage conversion, the VCA features low distortion, low noise and wide dynamic range. The novel level sensor which provides gain controi current for the VCA gives lower gain control ripple and Independent control of tast attack, slow recovery dynamic response. An attack capactor CA with an internal 10K resistor RA delines the attack time TA. The recovery time TR of a tone burst is defined by a recovery capacltor CR and an internal 10 K resistor $\mathbf{R}_{\mathbf{R}}$. Typical attack time of 4 MS for the high frequency spectrum and $40 M S$ for the low frequency band can be obtained with $1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ attack capacitors respectively. Recovery time of 200 MS can be obtained with a $4.7 \mu \mathrm{~F}$ external capacitor. With the recovery capacitor added in the level sensor, the gain
control ripple for low frequency signals is much lower then that of a simple RC ripple filter. As a result the residual third harmonic distortion of low Irequency signal in a two quad transconductance amplitier is greatly improved. With the $1.0 \mu \mathrm{~F}$ attack capacitor and $4.7 \mu \mathrm{~F}$ recovery capacitor for a 100 HZ signal the third harmonic distortion is improved by more than lodb over the simple RC ripple filter with a single $1.0 \mu \mathrm{~F}$ attack and recovery capacitor, while the attack tlme remains the same.
The NE572 is assembled in a standard 16 pin dual in line plastic package and in oversized SO (Small Outtine) package. It operates over wide supply range from 6 V to 22 V . Supply current is less than 6mA. The NE572 is designed lor consumer application over a temperature range $0-70^{\circ} \mathrm{C}$. The SA572 is intended for applications from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

NE572 BASIC APPLICATIONS

Description

The NE572 consists of two linearized, temperature compensated gain cells (JG) each with a full-wave rectifier and a buffer amplifier as shown in the block dlagram. The two channels share a 2.5 V common bias reference derived froni the power supply but otherwise operate independently. Because of inherent low distortion, low noise and the capability to linearize large signals, a wide dynamic range can be obtained. The buffer amplifiers are provided to permit control of attack time and recovery time independent of each other. Partitioned as shown in the block diagram, the IC allows flexibility in the design of system levels that optimize DC shift. ripple distortion, tracking accuracy and noise floor for a wide range of application requirements.
Gain Cell
Figure 1 shows the circuit configuration of the gain cell. Bases of the differential pairs
$Q_{1}-Q_{2}$ and $Q_{3}-Q_{4}$ are both tied to the output and inputs of OPA A_{1}. The negative feedback through O_{1} holds the V_{BE} of O_{1} Q_{2} and the V_{BE} of $\mathrm{O}_{3}-\mathrm{a}_{4}$ equal. The following relationship can be derived trom the transistor model equation in the forward active region.

$$
\Delta V_{\mathrm{BE}_{\mathrm{a}_{3}}-\mathrm{a}_{4}}=\Delta \mathrm{BE}_{\mathrm{a}_{1}-O_{2}}
$$

$\left(v_{B E}=V_{T} \ln \mid C /\right.$ is $)$
$V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}+\frac{1}{2} I_{0}}{i_{S}}\right)-V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}-\frac{1}{2} I_{0}}{I_{S}}\right)$
$=V_{T} \ln \left(\frac{1_{1}+\operatorname{lin}}{I_{S}}\right)-V_{T} \ln \left(\frac{l_{2}-I_{1}-\operatorname{lin}}{I_{S}}\right)_{-(2)}$
where $\mathrm{An}=\frac{\mathrm{VIn}}{\mathrm{R}_{1}}$
$\mathrm{R}_{\mathrm{i}}=6.8 \mathrm{~K}$
$t_{1}=140 \mu \mathrm{~A}$
$t_{2}=280 \mu \mathrm{~A}$
' O is the differential output current of the gain cell and I_{G} is the gain control current of the gain cell.
If all transistors O_{1} through O_{4} are of the same size. equation (2) can be simpifiec to:

$$
\begin{equation*}
I_{0}=\frac{2}{1_{2}} \cdot \operatorname{lin} \cdot I_{G}-\frac{1}{1_{2}}\left(I_{2}-21_{1}\right) \cdot I_{G} \tag{3}
\end{equation*}
$$

The first term of eqn. (3) shows the multiplier relationship of a linearized two quadrant transconductance amplifier. The second term is the gain control feed through due to the mismatch of devices. In the design this has been minimized by large matched de. vices and careful layout. Offeet voltage is caused by the device mismatch and it leads to even harmonic diatortion. The offset voltage can be trimmed out by feeding a current source within $\pm 25 \mu \mathrm{~A}$ into the THD trim pin. The residual distortion is third harmonic diatortion and is caused by gain control ripple. In a compandor syatem, avaliable control of fast attack and alow recovery improves ripple distortion significantly. At the unity gain level of 100 mV , the gain cell givee THO (fotal harmonic distortion) of 17% TYP. Output noise with no input signals is only $6 \mu \mathrm{~V}$ in the audio spectrum ($10 \mathrm{HZ}-20 \mathrm{KHZ}$). The output current lo must feed the virtual ground input of an operational amplifier with a resistor from output to inverting input. The non-inverting input of the operational amplifier has to be biased at VREF if the output curfent 10 is de coupled.

Rectifler

The rectifier is a full-wave design as shown in Figure 2. The input voltage is converted to current through the input resistor R2 and turns on either Q5 or Q6 depending on the signal polarity. Deadband of the voltage to current converter is reduced by the loop gain of the gain block A2. If AC coupling is used, the rectitier error comes only from input bias current of gain block A2. The input bias current is typically about 7OnA. Frequency response of the gain block A2 also causes second order etror at high frequency. The colliector current of Q6 is mirrored and summed at the colifector of 05 to form the full wave rectified output current I_{f}. The rectifier transter function is
$\frac{V_{I N}-V_{\text {REF }}}{R_{2}}$
(4)

If Vin is A.C. coupled. then the equation will be reduced to:

$$
I_{\text {RAC }}=\frac{\operatorname{Vin}(A V G)}{R_{2}}
$$

The internal blas scheme limits the maximum output current in to be around $300 \mu \mathrm{~A}$. Within a $\pm 1 \mathrm{~dB}$ error band the input range of the rectifier is about 52 dB .

Butfer Amplifler
In audio syatems, it is desirable to have fast atteck tine and slow recovery time for a tone burat input. The fast attack time reduces transient channel overload but also causes low frequency ripple distortion. The low trequency ripple distortion can be improved with the slow recovery time. If differ. ont attack times are implemented in corre. sponding frequency apectrums in a split band audio eyatem, high quality pertormance can be achieved. The butter amplitior is designed to make thie feature evailable with minimum external components. Relerring to Figure 3 , the rectifier output current in mirrored into the input and output of the unipoiar buffer amplifier A_{3} through Q_{8}, Q_{9} and Q_{10}. Diodes D_{11} and D_{12} improve tracking accuracy and provider common mode biaa for A_{3}. For a positive going input signal, the buffor amplifie: acto like a volt. age follower. Therefore, the output impedance of A_{3} makes the contribution of ca. pecitor CR to attack time insignificent.

Neglecting diode impedence the gain $\mathrm{Ga}(\mathrm{t})$ for 10 can be expressed es followe.

$$
\begin{aligned}
G_{0}(t)=\left(G_{\text {INT }}-G_{a f L}\right) & e^{\frac{-1}{T A}}+G_{a f N L} \\
& G_{a_{\text {INT }}}=\text { Initial Gain }
\end{aligned}
$$

where rA is the attack time constant and RA is a lok internal resistor. Olode O_{15} opens the feedback loop of A_{3} for a negative going signal it the value of capacitor CR is lerger then capacitor CA. The recovery time depende only on CR R_{R}. If the diode impedance is asaumed negligible. the dynamic gain $G_{R}(1)$ for ΔG ie expreseed as followe.
$G_{R}(1)=\left(\sigma_{R I N T}-\sigma_{R F N L}\right) 0^{\frac{-1}{T_{R}}}+\sigma_{R F N L}$
$T R=R_{R} \cdot C R=10 K \cdot C R$
where tR is the recovery time constant and R_{R} ta a 10 K intarnal resistor. The gain control current is mirrored to the oain cell through Q_{14}. The low lovel gasin arrors due
to input bias current of A_{2} and A_{3} can be trimmed through the tracking trIm PIN into A_{3} with current aource of $\pm 3 \mu \mathrm{~A}$.

Baslc Expandor

Figure 4 showe an application of the circult as a simple expandor. The gain expresaion of the syatem la given by

$$
\begin{equation*}
\left.\frac{V_{O U T}}{V_{I N}}=\frac{2}{I_{1}} \cdot \frac{A_{3} \cdot V_{I N}(A V G)}{R_{2} \cdot R_{1}\left(I_{1}\right.}=140 \mu A\right) \tag{5}
\end{equation*}
$$

Both the reaistors R_{1} and R_{2} are tled to internal summing nodee. R_{1} is a 6.8 K internal resistor. The maximum input current into the gain cell can be as large as $140 \mu \mathrm{~A}$. This corresponds to a voltage level of $140 \mu \mathrm{~A}$. $6.8 \mathrm{~K}=952 \mathrm{mV}$ peak. The input peak current into the rectifier is limited to $300 \mu \mathrm{~A}$ by the internal bias eystem. Note that the value of R_{1} can be increased to accommodate high. er input level. R_{2} and R_{3} are external resiators. It is easy to adjut the ratio af R3/R2 for desirable syetem voltage and current levels. A amall R2 resulta in higher gain control current and amaller static and dynamic tracking error. However, an impedence buffer A_{1} may be necessary if the input is voltage drive with large source impedance.

The gain cell output current feeds the summing node of the external OPA $A_{2} . R_{3}$ and A_{2} convert the gain cell output current to the output voltage. In high performance applications, A_{2} has to be low noise, high speed and wide band so that the high performance output of the galn cell will not be degraded. The non-inverting input of A_{2} can be biased ef the low noise internel reference PIN 6 or 10. Resistor R_{4} is used to biased up the output DC leval of A_{2} for maximum swing The output $D C$ level of A_{2} is olven by

$$
\begin{equation*}
v_{O D C}=v_{\text {REF }}\left(1+\frac{R_{3}}{R_{4}}\right)-v_{B} \frac{R_{3}}{R_{4}} \tag{6}
\end{equation*}
$$

V_{B} can be tied to a regulated power supply for a dual supply system and be grounded for a single supply syatem. CA seta the sttack time constant and CR seta the recovery time constant.

Basic Compressor

Figure 5 shows the hook-up of the circuit as a compressor. The IC is put in the teedback loop of the OPA A_{1}. The system gain expression is as follows

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\left(\frac{I_{1}}{2} \cdot \frac{R_{2} \cdot R_{1}}{R_{3} \cdot V_{\mathbb{N}}(\text { AVG })}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

RDC1. RDC2, and CDC form a dc feedback for A_{1}. The output $D C$ level of A_{1} is given by

$$
\begin{align*}
v_{O D C}= & V_{\text {REF }}\left(1+\frac{A_{O C 1}+R_{D C 2}}{R_{4}}\right) \tag{8}\\
& -V_{B} \cdot\left(\frac{R_{O C}+R_{O C 2}}{R_{4}}\right)
\end{align*}
$$

The zener diodes D_{1} and D_{2} are used for channel overload protection.

Basic Compandor System

The above basic compressor and expandor can be applied 10 systems such as tape/disc nolse reduction, digltal audio bucket brigade delay lines. Additional sys tem design techniques such as bandlimiting. band splitting, pre-emphasis, de-emphasis and equalization are easy to incorporate. The $1 C$ is a versatile functional block to achieve a high performance audio system Flgure 6 shows the system level diagram for reference.

ELECTRICAL CHARACTERISTICS. Standard Test Conditions (uniess otherwise noted) $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} T A=25^{\circ} \mathrm{C}$ Expandor mode (see test eircuit) Input signals at unity gain ievel (OdB) $=100 \mathrm{mV}$ RMS at $1 \mathrm{KHz}, V_{1}=V_{2}, R_{2}=3.3 \mathrm{~K}, R_{3}=17.3 \mathrm{~K}$

parameter		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VCC	Supply voltage			6		22	VDC
${ }^{\prime} \mathrm{CC}$	Supply current	No Signal			6	mA	
	Internal voltage reference		2.3	25	2.7	$v_{D C}$	
$\begin{aligned} & \text { THD } \\ & \text { THD } \\ & \text { THD } \\ & \hline \end{aligned}$	(untrimmed) (trimmed) (trimmed)	$\begin{aligned} & 1 \mathrm{kHz} \quad \mathrm{C}_{\mathrm{A}}=1.0 \mu \mathrm{~F} \\ & 1 \mathrm{kHz} \quad \mathrm{C}_{\mathrm{R}}=10 \mu \mathrm{~F} \\ & 100 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} .2 \\ .05 \\ .25 \\ \hline \end{gathered}$	1.0	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$	
	No slignal output noise	input to V_{1} and V_{2} grounded (20.20 kHz)		6	25	uV	
	DC level shitt (untrimmed)	input change from no signal to 100 mV RMS		± 20	± 50	MV	
	Unity gain level		-1	0	+1	dB	
	Large signal distortion	$V_{1}=V_{2}=400 \mathrm{mV}$		0.7	3.0	\%	
	Tracking error (measured relative to value at unity gain output) $=$ $\left[V_{\mathrm{O}}-\mathrm{V}_{\mathrm{O}}\right.$ (unity gain)] $\mathrm{dB}-\mathrm{V}_{2}$ (dBm)	Rectifier input $\begin{aligned} & V_{2}=+6 d B_{1}, V_{1}=0 \mathrm{~dB} \\ & V_{2}=-30 d B, V_{1}=0 \mathrm{CdB} \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{array}{r} -1.5 \\ +8 \\ \hline \end{array}$	dB	
	Channel crosstalk	200 mV RMS into channel A, measured output on channel B	60			dB	
	Power supply rejection ratio	120 Hz		70		dB	

TUNES SYNTHESIZER

features

- 25 Different Iunes PJus 3 Chimes
- Mask Programmable with Customer Specified Tunes for Toys, Musical Boxes, etc.
- Minimal External Components
- Automatic Switch-Off Signal at End of Iune for Power Savings
- Sequential Tune Mode
- Envelope Control to Give Organ or Piano Quality
- 4 Door Capability When Used as Doorchime
- Operation with Iunes in External PROM if Required
- Single Supply Operation

DESCRIPIION

The AY-3-1350 is an N -ChanneJ MOS mıcrocomputer based synthesizer of preprogramed tunes for applications in toys, musical boxes, and doorchimes. The standard derice has a set of 25 different popular and classical tunes chosen for their international acceptance. In addition there are 3 chimes making a total of 28 tunes.

The chip is mask-programable during manufacture enabling the quantity user to select his own music. Up to 28 tunes of varying length can be chosen.

TUNES

The standard AY-3-1350 contains the following tunes:
AD Toreador
B0 WiJJıam Iell
C0 HaJJelujah Chorus
D0 Star Spangled Banner
EO Yankee DoodJe
A1 John Brown's Body
B1 Clementine
C1 God Save the Dueen
D1 Colonel Bogey
E1 MarseilJaise
A2 America, America
B2 DeutschJand Leid
C3 Wedding March
D2 Beethoven's Sth
E2 Auqustine

BO WiJJıam TeJJ
CO HaJJelujah Chorus
D0 Star Spangled Banner

A1 John Brown's Body
B1 Clement ine
CI God Save the Dueen
D1 Colonel Bogey

A2 America, America
B2 DeutschJand Leid
C3 Wedding March
E2 Auqustine

PIN CONF IGURATION

28 LEAD DUAL IN LINE

A3 0 Sole Mio
B3 Santa Lucia
C3 The End
D3 BJue Danube
E3 Brahms' LuJJaby

A4 Hejl's BejJs
B4 JinqJe BelJs
C4 La Vie en Rose
D4 Star Wars
E4 Beethoven's 9th

Chime X Westminater Chime
Chime Y Simple Chime
Chime Z Descending Octave Chame

Pin ${ }^{\text {F }}$'s	Signal	Function
1,4,3	GND	Firound.
2, 3	$V_{\text {DD }}$	Primary supply voltage.
6	Play 1	When activated by a logic low, it generates Decending Octave Chime.
7	Play 2	When activated by a logic low, it nenerates one of the five tunes dependinn upon selection of lune Select A throurh June Select E pins (lunes Afl-f \boldsymbol{A}). If lune Select A thru lune Select F is mot selected, simple chime is playrd.
8	Captest	Works in conjunction with signal DISCR to determine the spered of the lunfo. nependinn upon the rise time of the voltage at this pin, the tune will pliav faster or slower.
$20,19,18,9$	June Select I thru lune Select 4	When power is applied to pin 2, the chip scans Play 1, Play 2, June Select A thru F and tune Select 1 thru 4 (Ref. Jable 2, 3, \& 4) and plays the tuns
21,22,23,	Iune Select A	as selected by these pins.
24,23	thru lune Select E	
10	Next Tune	Scanned externally hy lune Select 4 (Pin 9): If Fin \#10 is at a lonic low, then the next tune selected will play.
11	DISCRG	Works in conjunction with Captest (Pin 8). Contrals the speed of the time.
12	On/Off	At power on, it is logic low voltage. At the end of the lume, it me: to oren. This pin can he used to control the power of the chip.
13	Fnvelope	Controls overall volume and quality of the turne. Relates to the laprring of the musical notes.
14	Iune Output	Out puts the tune.
13	lune Select Strohe	Detects selection of lune Select 1-4. If none is selected, rune Seloci χ is assumed.
16	Switch Groun Select	Rased upon the connection of this pin to lume Select 1-4, one of the five tunes will he played. The tunes selected are based thon the position of thr lune Select A thru f (Reference lable i).
17	$\overline{\text { RE SIARI }}$	Scanned externally by lune Select 4 (Pin 9). If $\overline{\operatorname{RESIART}}$ is at a lofic low, then the same tune will play providing power is continued to the aplied to the chip.
26	$\begin{aligned} & \text { CL.KOUI } \\ & \text { (output) } \end{aligned}$	Signal timing of frequency equal to oscillator frequency (Pin 27) divided by four. May be used by external devices to synchronize to the asrillator timing.
27	OSC (input)	Oscillator input. This signal can be driven by an external rsicillalior if is precise frequency of operation is required or an external ki networt can in used to set the frequency of operation of the internal clock eremeralor. Ihis is a Schmalt trigqer input. Dscillator frequency detemines the fution of the tune.
2 B	$\overline{\text { RESE I }}$	Resets the system and initializes it.

OPERATION SUMMARY

Use of the AY-3-1350 can be split into three groups which are described in detail in separate sections:

ONE CHIP STANDARD AY-3-1350 SYSIEM qenerating 25 tunes plus 3 chimes which have been preprogramed into the standard device.

ONF. CHIP CUSIOM IUNES SYSIEM qenerating any number of tunes desired. This involves mask programing during manufacture and is usually not suitable for small quantity production.

TWO CHIP SIANDARD AY-3-1350/PROM SYSTEM generating any tunes desired as ahove, but using the standard device so that applications, including small quantities, become feasible.

ONE CHIP STANDARD AY-3-1350 SYSTEM

Typical Implementation

There are many ways to connect the standard device depending on the exact application. Figure 1 shows just one implementation of the device in a doorchime. This circuit gives access to all 25 tunes from switch A and one of 5 tunes from switch C as well as the descending octive chame from switch B. The tune selected for switch A follows the tunes Jist according to the setting of the two tune select switches ($A-E$ and $0-4$). The tune selected from switch C in Figure 1 is one of the five tunes AO through $E O$ depending on the setting of the Jetter switch. Switch B always selects Descending Octave Chime independent of Tune Select switches. For example, wath the letter switch set at E and number switch set at 4 , the tunes available will be:

Switch A: Beethoven's 9th (E4)
Switch C: Yankee Doodie (EO)
Switch B: Descending Octave Chime (Chime Z)

When the letter switch is in position F there will be chimes on all doors indefendent of the number switch setting as follows:

> Switch A: Westminster Chime
> Switch C: Simple Chime
> Switch H: Descendinq Inctave Chime

There is virtually no power consumption in the standby condition (external transistor leakages only). When any door switch is activated the circuit powers up, plays a tune, and then automatlcally powers down again to conserve the battery, even if the operator keeps his finger on the switch to the end of the tune. He must release it and repress to play again with the circuit in Figure 1. Activating any of the door switches will pull point A to ground turning on the PNP transistor in the power supply Jine. This causes +5 V to be applied to the AY-3-1350 and the first operation of the
chip is to put $0 N / O F F$ (pin 12) to $\operatorname{logic} 0$. This maintains the power through the PNP, even after the switch is released. The device can turn off its own power at the end of a tune by rassing ON/OFF to \log ic 1.

Figure 1 shows only a typical one-chip implementation. Further options come from use of different switching and/or from use of the next tune facilities built into the chip. These will now be considered in turn.

Switching Options

In figure 1 the Switch Group Select pin (16) is not connected, and one of the five tunes (AD through EO) will play if switch C is activated. Other number groups can be chosen by connecting the Switch Group Select pin as foljows:

TABLE 1

Switch Group SeJect pin (16)	
is connected to:	Tunes
no other pin	AO-EO
Tune SeJect 1 (pin 20)	A1-E1
Iune SeJect 2 (pin 19)	A2-E2
lune Select 3 (pin 18)	$A 3-E 3$
Iune Select 4 (pin 9)	$A 4-E 4$

Which of the five possible tunes will be played depends on the current setting of the letter switch A-E.

Switch Group Selection can be made by hard-wire connection for a permanent selection or a third switch can the added for an additional groul selert ion feature.

Next June Facilities

At the end of tune play, the circuit of Figure 1 powers down because ON/OFF (pin 12) is raised to a logic 1, The simplified flow diagram in Figure $\}$ shows that before the power down there is a test for connection between NEXI IUNE (pin 10) or $\overline{\text { RESIART (pin 17) with FUNE SELECI } 4 \text { (pin 9). At }}$ this time NEXT IUNE (pin 10) then RESIARI (pin 17), which are normally at $\operatorname{logic} 1$, output a $\operatorname{logic} 0$. Ihis is looked for at input IUNE SELECI 4 (pin 9). If neither is found the powér down system is reached as in Figure 1.

A NFXI IUNE (pin 10) - IUNE SELECI 4 (pin 9) connection at the moment of test causes the next tune in the list to be played after a short pause (equal to a musical breve - the actual time depends on the setting of the tune speed control). The order of the tunes is An to E4 as qiven in the Iisting of standard AY-3-1ss0 tunes. If the last tunp (E4) was played then the circuit will go on to play the first tune $A O$ (and then successive ones). The chimes are not included in the cycling sequence.

Fig. 1 SYSTEM DIAGRAM

Reference	Resistors	Iransistors	
	Value	Reference	Value
RI	$100 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$	01	PNP Iransistor
R2	$25 \mathrm{~K} \Omega$ (POT)		(MPS 2907)
R3	$4 k \Omega(1 / 4$ or $1 / 2 w)$	Q2, 3	NPN Iransistor
R4, 16	$10 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$		(MPS 3904)
RS, 6, 7	3. $3 \mathrm{~K} \boldsymbol{\Omega}$ (1/4 or $1 / 2 w)$	04	Darlington
R8	$47 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$		Iransistor
R9	$2.2 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$		(MPS A13)
R10	$1 \mathrm{M} \Omega$ (PO1)		
R11	$330 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$		
R12,13,14	$33 \mathrm{~K} \Omega(1 / 4$ or $1 / 2 w)$		Diodes
R15	$27 \Omega(1 / 2 w)$		
		D1	$\begin{gathered} \text { Zener Diode (5.1V) } \\ \text { (IN4733) } \end{gathered}$
	rapacitors	D2,1)3, 04	$\begin{aligned} & \text { Dıodes } \\ & (\text { IN9/4 }) \end{aligned}$
C. 1	0.1 uf (ceramic)		
C2	47 pF		
C3	$0.22 \mu \mathrm{~F}$		
C4, 5	$10 \mu \mathrm{~F}$	Speaker	8 ohms

A $\overline{\text { RESTARI }}$ (pin 17) - IUNF SELECI 4 (pin 9) connection at the moment of test at the end of a tune causes the same selected tune to be played aqain. Figure s shows that in this case the tune sensing mechanism is passed through once more so the tune would be different the second time if the switches were altered while the first tune was playing.
The connections referred to cannot be permanent because otherwise the circuit would never stop playing tunes. Figure 2 shows how transistors are used to make the connection in a practical application.

ONE CHIP CUSTOM TUNES SYSIEM

Customizing the Iunes

The AY-3-1330 has pre-programmed tunes, hut the device is mask programmable during manufacture with any music renuired. A minimum of 1 tune to a maximum of 28 tunes can be incorporated. Fxamples as follows:

Tunes	Total No. of notes, all tunes together	Average notes per tune
1	232	232
2	231	126
3	248	30
10	245	24
20	233	12
23	228	9

(The qeneral formuls is lotal No. of notes $=253-$ No. of tunes.)

Fig. 4 note lengit table

Name	Musical		
	Notation	Octa]	Binary
Sixteenth note	-	0	n00
Etghth note		1	001
lhree-sixtgenth note	.	2	010
Muarter mote		3	011
three-erghths mote	.	4	100
Half note	0	5	101
Three-quarter note	d.	6	110
Whole note	\bigcirc	7	111

Fig. 5 PROM Memory Allocation

Fig. 6 STAR SPANGLED BANNER - MUSIC

Fig. 3 SIMPLIFIED FLOW DIAGRAM

IABLE 2

SELECIION OF CHIMES

	IUNE SELECI				IUNE SELECI				PLAY 1	PLAY 2	IUNE PLAYED
A	B	C	D	E	1	2	3	4			
1	1	1	1	1	x	x	x	x	1	1	Westminster Chime
1	1	1	1	1	X	X	x	x	0	1	Descending Octave
1	1	1	1	1	x	X	x	x	1	0	Simple Chime

IABLE 3

SELECIION DF JUNES*

A	IUNE SELECI*				IUNE SELECI				$\text { PLAY } 1$ 1	$\text { PLAY } 2$ 1	IUNE PLAYED	
	H	c	D	E	1	2	3	4				
0	1	1	1	1	1	1	1	1	1	1		A®
0	1	1	1	1	0	1	1	1	1	1		A1
0	1	1	1	1	1	0	1	1	1	1		A2
0	1	1	1	1	1	1	0	1	1	1		As
$1)$	1	1	1	1	1	1	1	0	1	1		A4
1	0	1	1	1	1	1	1	1	-	1		Bø
\bullet												
-	-	-	-	-	-	-	-	-	-	-		-
1	1	1	1	0	1	1	1	0	1	1		E4

*These tunes are activated when power is applied to the chip. In Fig. 1, it is achieved when switch A is depressed. Also, switch $B=$ PLAY 1 and switch $C=P L A Y 2$

TABLE 4

SELECTION OF TUNES

A	IUNE SELECI				IUNE SELECI				PLAY 1	PLAY 2	IUNE PLAYED
	B	C	D	E	1	2	3	4			
1	1	1	1	1	x	x	x	x	1	0	Simple Chime
0	1	1	1	1	x	x	x	x	1	0	AD
1	0	1	1	1	x	x	x	x	1	0	80
1	1	0	1	1	x	x	x	x	1	0	CD
1	1	1	0	1	x	x	x	x	1	0	O 0
1	1	1	1	0	x	x	x	x	1	0	E®
x	x	x	x	X	x	x	x	x	0	x	Descending Chimes

[^1]As an indication, about 90 seconds of music can be incorporated. All musical rests are counted as one note. Semiquavers, quavers, dotled quavers, crotchets, dotted crotchets, minims, dotted minims and semibreves can all be accommodated. the range is about $21 / 2$ octaves. The position of these octaves can be chosen by the user 40 to a maximum pitch of $A=1760 \mathrm{HIz}$.

Applications for Customized Tunes

If the number of tunes is less than the number of switch positions then the circuit will automatically proceed directly to power down if this power down mode is being used, or will find the nexl available tune if in the sequent ial mode.

All the different facilities described are still available when user tunes are masked into the device.

For toys, sequential tune playing adds variety and reduces the number of switches required, kequing, costs lo a minamum.

For musical boxes, playing the same tune reppaterly preserves the traditional features.

TWO CHIP STANDARD AY-3-1350/PRDM SYSTEM

Introduction

With the addition of an external ROM or PROM the standard AY-3-1350 will play almost any tune or tunes desired. 28 tunes averaging 9 notes each or one tune of $4 p$ to 252 notes 13 avallable, providing in all, about 1 to 2 minutes worth of music. General Instrument can later inteqrate the external tunes into the main synthesizer to qive a one chip system.

Dveraj] Coding Scheme

The external PROM should be 256×8 bits and of any static IIL compatible type.

It can have more words, but. the tunes synthesizer will only use 256×8 bits at a time, f.g. If PROM type 2716 is used ($2 \mathrm{~K} \times 8$ bits), the three higher order address lines should be connected to pround or switches put on them to quie 8 times the amount of mustc (see logic diagram Figure 9). The rest of this article will assume a 256×8 bit PROM, and the addresses will be referred t.0 as 000 to 377. Octal notat ion is used throughout.

The PROM address 000 murt contain data 377 and address 377 must contain data 125 which is a key to open up the external PROM features. All other addresses can contain tune data.

[^2]Fig. 7 note pitch table

NAME	$\begin{aligned} & \text { FREQUENCY } \\ & (\mathrm{Hz}) \end{aligned}$	OCTAL	BINARY
F	175	00	00000
F\#	185	01	00001
c.	196	02	00010
Cill	208	03	00011
A	220	04	00100
A ${ }^{\text {A }}$	233	05	00101
H	247	06	00110
r (middle C)	262	07	00111
CH	277	10	01000
1)	294	11	01001
D\#	311	12	01010
E	330	13	01011
F	349	14	01100
F	370	15	01101
6	392	16	01110
lill	415	17	01111
A (international A)	440	20	10000
All	466	21	10001
B	494	22	10010
r	523	23	10011
i: 1	554	24	10100
$1)$	587	25	10101
D	622	26	10110
E	659	27	10111
f	698	30	11000
fil	740	31	11001
G	784	32	11010
fill	831	33	11011
A	880	34	11100
A ${ }^{\text {I }}$	932	35	11101
B	988	36	11110
Rest	Si lent	37	11111

Fig. 8 STAR SPANGLED BANNER - CODING

OCTAL DATA	BINARY DATA
232	10011010
200	10000000
143	01100011
203	10000011
233	10011011
305	11000101
377	11111111

* The last 377 is the end of tune code
marker. The memory allocation is shown diaqrammat lcally in Figure 5. lunes can be of miy length and there can be any number of them subject only to the memory limit. (28 max.).

Fach note of a tune occupies 1 hyte (8 bits) of PROM, and this can be considered as split into two fields:

7	6	5	4	3	2	1

pitch
length

The three least siqnificant bils specify the length (half note, quarter mote, etc.) and the five most smulificant bits specify the putch. this gues $2^{5}=32$ different pitches and $2^{3}=8$ different
lenoths. In practice one pitch code is allocated as silence to allow musical rests of different lenaths to he implemented. Fiqure 4 qives the length table and Fiqure 7 the note pitch table. It can be seen that the Jengths from a sixteenth to a whole note, and $21 / 2$ octaves of notes can be produced. The pitches shown assume that the on-chip clock of the AY-3-1350 is trimmed to 1 MHz . The pitches can be made lower by using a slower elock. Every reduction by 5.61257% decreases the pitch by a semitone. The note pitches produced by the AY-3-1350 are approximately equi-tempered. It should be noted that. codes 377 and 376 are used as end of tune markers and are illegal as notes. they correspond to whole and three-quarter note rests which can, however, be made up by combining two smaller rests in place of the requared 377.

Fig. 9 PLAYING YOUR ONN TUNES MITH EXTERNAL PROM (OR INTERNAL TUNES)

ELECTRICAL CHARACTERISTICS

Standard Conditions (unless otherwise stated):

DC CHARACIERISTICS

Operating remperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for desıgn guidance only and is not guaranteed.

Characteristic	Sym	Min	Iуp*	Max	Units	Conditions
Primary Supply Voltage	$v_{\text {DD }}$	4.5	-	7.0	\checkmark	
Pranary Supply Current	${ }^{\text {D }}$ D	-	30	50	m m	All $1 / 0$ pins @ $\mathrm{V}_{\text {D }}$
Input Low Voltage	v_{IL}	-0. 2	-	0.8	v	
Input High Voltaqe (except RFSET, DSC, \& pins 6, 7 añ 8)	${ }^{1}$ IH	2.4	-	V_{DD}	v	(Note 2)
```Input Low-to-High Ihreshold Voltage (RESEI & OSC)```	$V_{\text {ILH }}$	$\mathrm{V}_{\mathrm{D}}{ }^{-1}$	2.6	$V_{D D}$	$v$	
Out.put High Voltage (Note 3)	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 2.4 \\ & 3.5 \end{aligned}$	-	$v^{\prime}$ $v_{D D}$ $v_{D}$	$v$	$\begin{aligned} & I_{O H}=-100 \mu \mathrm{~A}(\text { Note } 1) \\ & \mathrm{I}_{O H}=0 \end{aligned}$
Out.put Low Voltage	$\mathrm{v}_{\mathrm{OL}}$	-	-	0.45	v	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{v}_{\mathrm{XX}}=4.5 \mathrm{~V}$
```Input l.eakage Current (\overline{RESET,} pins 6, 7, & 8)```	${ }_{1 . C}$	-5	-	+5	$\mu A$	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {D }}$
Output leakage Current (open drain $1 / 0$ pins 12 \& 13)	${ }^{1} \mathrm{OLC}$.	-	-	10	$\mu \mathrm{A}$	$V_{\text {SS }} \leq \mathrm{V}_{\text {PIN }} \leq 10 \mathrm{~V}$.
Input. Low Current (aJJ 1/0 ports)	IIL	-0.2	-0.6	-1.6	mA	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$ internal pullup
Input High Current (all 1/0 ports)	${ }_{1}{ }_{1}$	-0. 1	-0.4	-1.4	mA	$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$

*rypical data is at $T_{A}=25^{\circ} \mathrm{C}, V_{D D}=5.0 \mathrm{~V}$

NOIES:

1. Positive current indicates current into pin. Negative current indicates current out of pin.
2. Pans 6,7 and 8 have open drain inputs (no internal pullup resistor).
3. Except pins 12 and 13 which have open drain outputs.

Hardware Implement ations

la play the 28 internal tunes of the AY-3-1350 lunes Synthesizer, the device should he connected un as shown in the Une Chip Standard AY-3-1350 System section. Io play tunes which you have written into the PROM in the manner descrithed ahove, the AY-3-1350 and the PROM should be interconnected as shown in Figure 9. Ihis can he used for demonstrations, on-off implementations or small scale productions. This circuit will also play the internal tunes (See internal/external switch).

One Chip Implementation

For manufacturing purposes, send PROM and code Iasting to General Instrument and we will incorporate your lunes into a sperially made one chip lunes Synthesizer in place of the standard $2 B$ tunes.

As a specific example, the music for the first part of Star Spangled Banner is shown in Figure 6 with the notes coded in octal below the music. Figure 8 represents just one of the tunes shown in the overall memory scheme of Fiqure S and it shows the actual data that would have to be incorporated into the external PROM to get a tune consisting of these 6 notes.

Digital Controlled Graphic Equalizer

General Description

The LMC835 is a monolithic, digitally-controlled graphic equalizer CMOS LSi for Hi-Fi audio. The LMC835 consists of a Logic section and a Signal Path section made of analog switches and thin-film silicon-chromium resistor networks. The LMC835 is used with external resonator circuits to make a stereo equalizer with seven bands, $\pm 12 \mathrm{~dB}$ or ± 6 dB gain range and 25 steps each. Only three digital inputs are needed to control the equalization. The LMC835 makes it easy to build a μ P-controlled equalizer.
The signal path is designed for very low noise and distortion, resulting in very high performence, compatible with PCM audio.

Block Diagram

Features

- No volume controls required

2 Three-wire interface

- 14 bands, 25 steps each
- $\pm 12 \mathrm{~dB}$ or $\pm 6 \mathrm{~dB}$ gain ranges
- Low noise and distortion
- TTL, CMOS logic compatible

Applications

- Hi-Fi equalizer
- Recoiver
- Car stereo
- Musical instrument
- Tape equalization
- Mixer
- Volume controller

Connection Dlagram

[^3]Electrical Characteristics (Note 2) $\mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{~A}, \mathrm{GND}=0 \mathrm{~V}$
LOGIC SECTION

Symbol	Parameter	Test Conditions	Typ			$\begin{gathered} \text { Unit } \\ \text { (Limit) } \end{gathered}$
IDDL IssL IDDH $I_{\text {SSH }}$	Supply Current	Pins 14, 15, 16 are $0 V$ Pins 14, 15, 16 are OV Pins 14, 15, 16 are 5 V Pins 14, 15, 16 are 5 V	$\begin{array}{r} 0.01 \\ 0.01 \\ 1.3 \\ 0.9 \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ 0.5 \\ 5 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 0.5 \\ 5 \\ 5 \\ \hline \end{gathered}$	mA (Max) mA (Max) mA (Max) mA (Max)
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage	©Pins 14, 15, 16	1.8	2.3	2.5	V (Min)
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	@Pins 14, 15, 16	0.9	0.6	0.4	V (Max)
10	Clock Frequency	@ Pin 14	2000	500	500	kHz (Max)
$\mathrm{l}_{\text {w (STB) }}$	Width of STE Input	See Figure 1	0.25	1	1	$\mu \mathrm{S}$ (Min)
tsetup.	Data Selup Time	See Figure 1	0.25	1	1	$\mu \mathrm{S}$ (Min)
thold	Data Hold Time	See Figure 1	0.25	1	1	$\mu \mathrm{S}$ (Min)
4 cs	Delay from Rising Edge of CLOCK to STB	Seo Figure 1	0.25	1	1	$\mu \mathrm{S}$ (Min)
IIN	Input Current	@Pins 14, 15, $160 \mathrm{~V}<\mathrm{V}_{\mathbb{N}}<5 \mathrm{~V}$	± 0.01	± 1		$\mu \mathrm{A}$ (Max)
G_{N}	Input Capacitance	(GPins 14, 15, $16 \mathrm{f}=1 \mathrm{MHz}$	5			pF

Note 1: Pins 2, 3 and 28 have a maxomum input voltage range of $\pm 22 \mathrm{~V}$ for the ypical epplication shown in Figure 7 .
Note 2. Bold numbers apply at temperature extremes. All other numbers apply at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DO}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{D}, \mathrm{GND}=\mathrm{A} . \mathrm{GND}=\mathrm{OV}$ as shown in the test crircul Figurss 3 and 4
Note 3: Guaranteed and 100\% production tested.
Mote 4: Guaranteed (but not 100\% production tested) over the operating temperature renge. These limits are not used to calculate outgoing quality levels.
Timing Diagram

Note: To change the gain of the presently selected band, it is not necessary to send DATA 1 (Band Setection) each time.
FIGURE 1
Test Circuits

Electrical Characteristics $($ Note 2$) \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{S S}=-7.5 \mathrm{~V}, \mathrm{D} . \mathrm{GND}=\mathrm{A} . \mathrm{GND}=\mathrm{OV}$ SIONAL PATH SECTION

Symbol	Parameter	Test Conditiona	Typ	$\begin{aligned} & \text { Teated } \\ & \text { Limit } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	Design Limit (Note 4)	$\begin{aligned} & \text { Unit } \\ & \text { (Limit) } \end{aligned}$
$A^{\prime}{ }_{V}$	Gain Error	$A_{V}=0 \mathrm{~dB}$ © $\pm 12 \mathrm{~dB}$ Range $A_{V}=0 \mathrm{~dB} \otimes \pm 6 \mathrm{~dB}$ Range $A_{V}= \pm 1 \mathrm{~dB}$ © $\pm \mathrm{dB}$ Range ($\mathrm{R}_{\mathrm{b} 5}$ or $\mathrm{R}_{\mathrm{c} 5}$ is ON) $A_{V}= \pm 2 \mathrm{~dB} \Theta \pm 12 \mathrm{~dB}$ Range (R_{b} or R_{c} is ON) $\mathrm{Al}_{\mathrm{V}}= \pm 3 \mathrm{~dB}$ * $\pm 12 \mathrm{~dB}$ Range (R_{63} or R_{CG} is ON) $A_{V}= \pm 4 \mathrm{~dB}$ § $\pm 12 \mathrm{~dB}$ Range ($R_{b 2}$ or $R_{C 2}$ is $O N$) $A_{V}= \pm 5 \mathrm{~dB}$ e $\pm 12 \mathrm{~dB}$ Range ($R_{b 1}$ or $R_{c 1}$ is ON) $A_{V}= \pm 9 \mathrm{~dB} * 12 \mathrm{~dB}$ Range ($R_{b 0}$ or $R_{c o}$ is $O N$)	0.1 0.2	$\begin{gathered} 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.7 \\ 1.3 \end{gathered}$	dB (Max) dB (Max) dB (Max) $d B$ (Max) dB (Max) dB (Max) dB (Max) $d B$ (Max)
THD	Total Harmonic		$\begin{gathered} 0.0015 \\ \\ 0.01 \\ 0.1 \\ 0.01 \\ 0.1 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & \\ & 0.1 \\ & 0.5 \end{aligned}$		\% \% (Max) \% (Max) \% (Max) \% (Max)
$V_{\text {OMax }}$	Maximum Output Voltage	$\begin{gathered} A V=0 \mathrm{~dB} \pm 12 \mathrm{~dB} \text { Range } \\ T H D<1 \%, f=1 \mathrm{kHz} \end{gathered}$	5.5	5.1	5	$\mathrm{V}_{\text {ms }}$ (Min)
S/N	Signal to Noise		$\begin{aligned} & 114 \\ & 106 \\ & 116 \end{aligned}$			dB dB dB
leak	Leakage Current	$A_{V}=0 \mathrm{~dB}$ © $\pm 12 \mathrm{~dB}$ Range (All internal switches are OFF) Pin 2+3, Pin 26 Pin $5 \sim \operatorname{Pin} 11$, Pin $18 \sim \operatorname{Pin} 24$		$\begin{gathered} 500 \\ 50 \end{gathered}$		nA (Max) nA (Max)

Note 1: Pins 2, 3 and 26 have a maximum input voltage range of $\pm 22 \mathrm{~V}$ for the typical application shown in Figure 7.
Note 2; Boldtece numbers apoly at tempersture extremes. All other numbers apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\infty 0}=7.5 \mathrm{~V}, \mathrm{~V}_{S S}=-7.5 \mathrm{~V}, \mathrm{D} . \mathrm{GND}=\mathrm{A} . \mathrm{GND}=0 \mathrm{~V}$ as shown in the lest crouith Figures 3 and 4.
Note 3: Guarenteed and 100\% production tested.
Note 4: Guaranteed fout not 100\% production tested) over the operating temperature range. These limits are not used to calculate outgoing quality levels.
Timing Diagrams

FIGURE 2
Test CIrcults (Continued)

Truth Tables

D7	D8	D5	D4	D3	D2	D1	D0
H	X	L	L	L	L	L	L
H	x	L	L	L	L	L	H
H	X	L	L	L	L	H	L
H	x	L	L	L	L	H	H
H	X	L	L	L	H	L	L
H	X	L	L	L	H	L	H
H	x	L	L	L	H	H	L
H	x	L	L	L	H	H	H
H	X	L	L	H	L	L	L
H	x	L	L	H	L	L	H
H	x	L	L	H	L	H	L
H	X	L	L	H	L	H	H
H	x	L	L	H	H	L	L
H	x	L	L	H	H	L	H
H	x	L	L	H	H	H	L
H	x	L	L	H	H	H	H
H	x	L	H	Valid Binary Input			
H	x	H	L	Valid Binary Input			
H	X	H	H	Valid Binary Input			
$\begin{aligned} & \uparrow \\ & \oplus \end{aligned}$	\uparrow	\uparrow	$\begin{aligned} & \uparrow \\ & \oplus \end{aligned}$	4	Band	Code	\rightarrow

(1) DATA 1
(2) Don't Care
(1) Ch $A \pm 6 \mathrm{~dB} / \pm 12 \mathrm{~dB}$ Range
(1) Ch $\mathrm{B} \pm 6 \mathrm{~dB} / \pm 12 \mathrm{~dB}$ Range

This is the gain if the $\pm 12 \mathrm{~dB}$ range is selected by DATA I. If the $\pm 6 \mathrm{~dB}$ range is selected, then the values shown must be approximately halved. See the characteristics curves for more exact data
(1) DATA II
(1) Bcost/Cut
(Ch A: Band 1~7, Ch B: Band 8~14)
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, No Band Selection
$\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 1
$\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, Band 2
Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 3 Ch $A \pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band 4 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 5 Ch $A \pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band 6 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 7 Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, Band 8 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, Ch $\mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 9 Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 10 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 11 Ch $A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, Band 12 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} \mathrm{B} \pm 12 \mathrm{~dB}$ Range, Band 13 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, $\mathrm{Ch} B \pm 12 \mathrm{~dB}$ Range, Band 14 $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, No Band Selection $\mathrm{Ch} A \pm 12 \mathrm{~dB}$ Range, Ch B $\pm 6 \mathrm{~dB}$ Range, Band $1 \sim 14$
Ch $A \pm 6 \mathrm{~dB}$ Range, Ch B $\pm 12 \mathrm{~dB}$ Range, Band $1 \sim 14$
Ch $A \pm 6 d B$ Range, $C h B \pm 6 d B$ Range, Band 1~14

DATA II (Gain Selection)

D7	D8	D5	D4	D3	D2	D1	D0
L	X	L	L	L	L	L	L
L	H	H	L	L	L	L	L
L	H	L	H	L	L	L	L
L	H	L	L	H	L	L	L
L	H	L	L	L	H	L	L
L	H	L	L	L	L	H	L
L	H	L	H	L	L	H	L
L	H	H	L	H	L	H	L
L	H	L	H	L	H	H	L
L	H	L	L	L	L	L	H
L	H	H	L	H	L	L	H
L	H	H	L	H	H	L	H
L	H	H	L	H	H	H	H
L	L	Valid Above Input					
$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{aligned} & \uparrow \\ & (1) \end{aligned}$		\leftarrow	Gain	ode	\rightarrow	

FIGURE 6. Simple Word Generator

Typical Performance Characteristics

Typical Applications

FIGURE 7. Stereo 7-Band Equallzer

$Q_{0}=3.5, Q_{12 d \mathrm{~d}}=1.05$					
21	$\mathrm{fo}_{0}(\mathrm{~Hz})$	$C_{0}(F)$	$C_{L}(F)$	$\mathrm{R}_{\mathrm{L}}(\Omega)$	$\mathrm{R}_{0}(\mathrm{n})$
21	63	1μ	0.1ر	100k	680
Z2	160	0.47 μ	0.033 μ	100k	680
Z3	400	0.15 μ	0.015 μ	100k	680
24	1k	0.068μ	0.0068μ	82k	680
Z5	2.5k	0.022μ	0.0033μ	82k	680
Z8	6.3k	0.01ر	0.0015μ	62k	680
27	16k	0.0047μ	680p	47k	680

TL/H/6I53-12
FIGURE 8. Tuned Circult for Stereo 7-Band Equallzer (Figure n)

Performance Characteristics (Circult of Figure 7)

Typical Applications (Continued)

FIGURE 10. Tuned Circult for 12-Band Equalizer (Figure 9)

TABLE II. Tuned Circult Elements

$Q_{0}=4.7, Q_{12 \text { dB }}=1.4$					
	$\mathbf{f o}_{0}(H z)$	$C_{0}(F)$	$C_{L}(F)$	$R_{L}(\Omega)$	$R_{0}(\Omega)$
$Z 1$	16	3.3μ	0.47μ	$100 k$	680
$Z 2$	31.5	15μ	0.22μ	$110 k$	680
$Z 3$	63	1μ	0.1μ	$100 k$	680
$Z 4$	125	0.39μ	0.068μ	$91 k$	680
$Z 5$	250	0.22μ	0.033μ	$82 k$	680
$Z 6$	500	0.1μ	0.015μ	$100 k$	680
$Z 7$	$1 k$	0.047μ	0.01μ	$82 k$	680
$Z 8$	$2 k$	0.022μ	0.0047μ	$91 k$	680
$Z 9$	$4 k$	0.01μ	0.0022μ	$110 k$	680
$Z 10$	$8 k$	0.0068μ	0.001μ	$82 k$	680
$Z 11$	$16 k$	0.0033μ	$680 p$	$62 k$	680
$Z 12$	$32 k$	0.0015μ	$470 p$	$68 k$	510

12 Band Eqi dlzer Application LM835 Galn vs Frequency (3) $\pm 6 \mathrm{~dB}$ Range

LM835 12 Band E.Q. Application
Galn vs Frequency
(4) $\pm 12 \mathrm{~dB}$ Range

12 Band Equallzer Application LM835 Galn vs Frequency

LM835 12 Band E.Q. Application
Gain vs Frequency
(a) $\pm 6 \mathrm{~dB}$ Range

Typical Applications (Continued)

FIGURE 11. Single Supply Stereo Equallzer

FIGURE 14. LMC835-COP404L CPU Interface

Application Hints

switching noise

The LMC835 uses CMOS analog switches that have small leakages (less than 50 nA). When a band is selected for flat gain, all the switches in that band are open and the resonator circuit is not connected to the LMC835 resistor network. It is only in the flat mode that the smail leakage currents can cause problems. The input to the resonator circuit is usually a capacitor and the leakage currents will slowly charge up this capacitor to a large voltage if there is no resistive path to limit it. When the band is set to any value other than flat, the charge on the capacitor will be discharged by the resistor network and there will be a transient at the output. To limit the size of this transient, R Reak is necessary.

TL/H/6753-19
FIGURE 13. Stereo Volume Control, Very Low THD

 (THD is not as low as equalizer circult)

HOW TO AVOID SWITCHING NOISE DUE TO LEAKAGE CURRENT (Refer to Figures 7 and 8)
To avoid switching noise due to leakage durrents when changing the gain, it is recommended to put $\mathrm{R}_{\text {LEAK }}=100$ $\mathrm{K} \Omega$ between Pin 3 and Pin 5-11 each. Pin 26 and Pin 1224 each. The resistor limits the voltage that the capacitor can charge to, with minimal effects on the equalization. The frequency response change due to R LEAK are shown in Figure 15. The gain error is only 0.2 dB and Q error is only 5% at 12 dB boost or cut.

Typical Applications (Continued)
Sampte Subroutine Program for Flgure 14, LMC835-COP404L CPU Interface

HEX				
CODE	LABEL	mammonics		COMMENTS
3F	LiC835:	LBI	3 F	;POINT TO RAMADDRESS 3F
05	SEND	LD		;Raxdatatoa
22		SC		; SET CARRY
335\%		OGI		;SET PORT G= 1111. OPEN THE AND GATES
4 F		RAS		;SWAP A AND SIO, CLOCK START
05		LD		;Raidata to a, Make sure a d data
07		XDS		;STAP A AND RAMDATA, RALADDRESS=RAMADDRESS-1
05		LD		;Ramdata toa
4 F		XAS		;SWAP A AND SIO
05		LD		;RADDATA TO A, MAKE SURE A=NEWDATA
07		XDS		;STAP A AND RAMDATA, RAMADDRESS=RAMADDRESS-1
32		RC		;RESET CARRY
4 F		ras		;SWAP A AND SIO, CLOCK STOP
335D		OGJ	13	;SET PORT G=1101, MAKE STROBE LOW
335B		OGI	11	;SET PORT G=1011, MAKE STROBE HIGH, CLOSE THE
				GATES
4 E		CBA		; BD TOA
43		AISC	3	;RAMADDRESS < 3C THEN RETURN
48		RET		
80		JP	SEND	

	RAM	
	ADDRESS	COMOENTS
3C	DATA	;GAIN DATA D4-D7
3D	DATA	;GAIN DAİA DO-D3
3E	DATA	;BAND DATA D4-D7
3F	DATA	;BAND DATA DO-D3

Application Hints (Continued)

REDUCING EXTERNAL COMPONENTS

The typical application shown in Figure 7 is switching noise amps. Selecting a low $I_{\text {bias }}$ and $V_{\text {offisel }}$ op amp can minimize tree. The DC-coupled circuit in Figure 16 is also switching the switching noise due to the $12 \mathrm{~dB} / 6 \mathrm{~dB}$ switch. The DCnoise free, except at $12 \mathrm{~dB} / 6 \mathrm{~dB}$ switch turn ON/OFF. This coupled application can also eliminate the $\mathrm{F}_{\mathrm{F}}=100 \mathrm{k}$ resis switching nolse is caused by the lbies and $V_{\text {offaet }}$ of the op tors with only a 0.5 dB gain error at 12 dB boost or cut.

AC COUPLING

DC COUPLING

FIGURE 16. Reducing External Components

FIGURE 15. Effoct of Rleak

1200/300 bps Full duplex Modem

Description

The $\mu \mathrm{A} 212 \mathrm{~A}$ and the $\mu \mathrm{A} 212 \mathrm{AT} 1200$ bps modem circuits are fabricated in Fairchild's advanced Double-Poly SiliconGate CMOS process. Either monolithic chip performs all signal processing functions required for a Bell 212A/103 compatible modem. Dlaling, handshaking protocols, and mode control functions can be provided by a general purpose single-chip $\mu \mathrm{C}$. The $\mu \mathrm{A} 212 \mathrm{~A}$ or $\mu \mathrm{A} 212 \mathrm{AT}$ and $\mu \mathrm{C}$; along with several components to handle the control and telephone line interfaces, provide a high performance, cost-effective solution for an intelligent Bell 212A-compatible modem design.

Either modem chip performs the modulation, demodulation, filtering and certain control and self-test functions required for a Bell 212A-compatible modem, as well as additional functional enhancements. Switched capacitor filters provide channel isolation, spectral shaping and fixed compromise equalization for both high and low speed modes.

A novel switched-capacitor modulator and a digital coherent demodulator provide 1200 bps QPSK operation while a separate digital FSK modulator and demodulator handle the $0-300 \mathrm{bps}$ requirement. The $\mu \mathrm{A} 212 \mathrm{AT}$ includes an integral DTMF tone generator on-chip. The μ A212A without DTMF generator, is cost optimal for answer-only applications or if an external dialer is present. The $\mu A 212 A$ and $\mu A 212 A T$ are otherwise pin and firmware compatible. Existing μ A212A applications can be easily upgraded to the MA212AT with minor software changes (see technical bulletin M-1 appended.) The receive filter and energy detector may be configured for call progress tone detection (dialtone, busy, ringback, voice), providing the front end for a smart dialer on either the $\mu \mathrm{A} 212 \mathrm{~A}$ or $\mu \mathrm{A} 212 \mathrm{AT}$.

- Functions as 212A and 103 Compatible Modem
- Performs all Signal Proceselng Functions
- Interfaces to Single Chip $\mu \mathrm{C}$ Which Handies Handshaking Protocols and Mode Control Functions
- DTMF Tone Generation (μ M212AT)
- μ A212A is Pin and Firmware Compatibte with the MA212AT for Easy Upgrade
- Call Progress Tone Detection for Smart Dialor Appilcations
- On Chip Oscllator Uses Standard 3.6864 MHz Crystal
- Fow External Components Required
- Industrial Temperature Range Option $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
Operates from +5 and -5 Vott Suppllese
- Low Operating Power: 35 mW Typlcal
- 28-Lead Ceramic DIP, 28-Lead Plastic DIP, and 2e-Lead Surface Mount Packuges
- A ma212A Destgner's Kit is Avallabte

Pin No. Pln DescripHion
$28 \quad V_{D D} \quad$ Positive power supply $V_{D D}=+5 \mathrm{~V}$
26
18
27
RXIN Lińe signal to modem. From active or passive Hybrid output.
25 TXO Line signal from modem. To active or passive Hybrid input.

24
O/A Orig/answer Mode Select. Assigns channels to XMTRS/RCVRS $1=$ Originate mode, $0=$ Answer mode. (Note)

23
TXSQ Squelch XMTRS in date mode. $0=$ Both XMTRS off; $1=$ furns on XMTR selected by HS pin. بA212AT: In dialer mode, $0=$ DTMF generator OFF/call progress detectlon. 1 = DTMF generator ON.䒑A212A: In dialer mode call progress detection only. TXSQ must be set to 0 .

Connection Dlagram
28-Lead DIp
(Top View)

Order information

Type	Temperature Range	Code	Package
μ A212ATDC	0 to $+70^{\circ} \mathrm{C}$	FM	28-Lead Ceramic DIP
$\mu A 212 A T D V$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	FM	28-Lead Ceramic DIP
μ A212ATPC	0 to $+70^{\circ} \mathrm{C}$	-	28-Lead Molded DIP
MA212ATOC	0 to $+70^{\circ} \mathrm{C}$	-	28-Lead Molded Surface Mount
$\mu \mathrm{A} 212 \mathrm{ADC}$	0 to $+70^{\circ} \mathrm{C}$	FM	28-Lead Ceramic DIP
$\mu A 212 A D V$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	FM	28-Lead Ceramic DIP
MA212APC	0 to $+70^{\circ} \mathrm{C}$		28-Lead Molded DIP
-Coneut factory			

Absolute Maximum Ratings

$V_{D D}$ to DGND or AGND	7.0 V
$V_{S S}$ to DGND or AGND	-7.0 V
Voltage at any Input	$\begin{gathered} V_{D O}+0.3 \text { to } \\ V_{S S}-0.3 \mathrm{~V} \end{gathered}$
Voltage at any Digital Output	$\begin{aligned} & V_{D O}+0.3 \vee \text { to } \\ & \text { DGND }-0.3 \mathrm{~V} \end{aligned}$
Voltage at any Analog Output	$\begin{gathered} V_{\mathrm{DO}}+0.3 \mathrm{~V} \text { to } \\ V_{\mathrm{SS}}-0.3 \mathrm{~V} \end{gathered}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-85^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s)	$300^{\circ} \mathrm{C}$

Pln No. Pln Description

9	SCRM	Scrambler, " 0 " disables scrambler and descrambler for testing purpcses.
12	XTL1	Frequêncy control. 3.6854 MHz
11	XTL2	XTAL oscillator, operating parallel mode. Provides timing, sample clocks and L.O.'s.
8	HS	Selects modem speed. 1 selects 1200 bps. 0 selects 300 bps. (Note)
6	SYNC	Selects CHAR ASYNC or BIT SYNC mode. 1 = ASYNC mode: enables XMIT \& RCV butfers, sats character length according to MOD1, MOD2 pins. $0=$ SYNC mode: disables buffers, selects TX clock source according to MOD1, MOD2 pins. Active only if $\mathrm{HS}=1$.
21	MOD1	Selects character length (ASYNC) or

Note
For mA212AT in dialer mode. JIX. HS. MOD1 and MOD2 select the DTMF to be generated (see Table 2).

Pin Description
MOD2 TX clock (SYNC). In ASYNC mode, selects 8, 9, 10 or 11 bit character length; in SYNC mode, selects inter nal, external or recovered RCV clock as XMTR data clock source. Active only if $\mathrm{HS}=1$. (See Table 1) (Note)
XMIT Data. Serial data from host. Disconnected when in digital loop

RXD RCVD Data. Serial data to host, in ternally clamped to mark $(=1)$ when modern is in digital loop or EDET is inactive $(=1)$.
Serial Clock Transınit. 1200 Hz clock providing XMTR timing in SYNC mode. SCT source (INT., EXT., SLAVE) selected by MOD1, MOD2 pins. TXD changes on negative edge, sampled on positive edge. Internal clock provided in ASYNC mode.

ETC External Transmit Clock. 1200 Hz external clock providing XMTR timing in SYNC mode, selected by MOD1, MOD2 pins. TXD changes on negative edge, sampled on positive edge. Provided on SCT pin if selected. Remote Loop Status, used in RDL mode. Responding modem: sets $\overline{\mathrm{RLS}}{ }^{\boldsymbol{T}}=0$ upon receipt of unscrambled mark for 154-231 ms. initiating modem: asserts $\overline{\mathrm{ALST}}=0$ upon receipt of scrambled mark for 231-308 ms. (See Table 3).
SLIM Soft Limiter Output. Connect external $0.033 \mu \mathrm{~F}$ capacitor here.

Comparator input. Connected exter nal $0.033 \mu \mathrm{~F}$ capacitor here.
If $\mathrm{HS}=1$, forces a 1200 bps dotting pattern on the transmit path, for use when programming the 212AT high speed self-test mode. Both RCV and XMIT paths are in SYNC mode during dotting transmission, overriding the setting of SYNC, and of HSK1, HSK2. If HS = 0, DOT forces a 155 bps dotting pattern for use in lowspeed self-test mode. 1-Normal Path, $0=$ Dotting. When the TEST pin is inactive (high), HSK1 and HSK2 select one of four transmit conditions, for use when programming the Handshake sequences. (See Table 1). When TEST is active (low), the HSK1 and HSK2 pins select one of three test conditions, or, alternatively, the dialer mode used for call progress tone detection and DTMF tone generation, μ A212AT only.

Functional Descriptlon*

Refer to Figure 1.

Transmitter

The transmitter consists of high-speed and low-speed modulators, a transmit buffer and scrambler, and a transmit filter and line driver. In high-speed asynchronous mode, transmit data from the Data Terminal Equipment enters the transmit buffer, which synchronizes the data to the internal 1200 bps clock. Data which is underspeed relative to 1200 bps periodically has the last stop bit sampled twice resulting in an added stop bit. Similarly, overspeed input data periodically has unsampled - and therefore deleted - stop bits. The MOD1 and MOD2 pins choose 8, 9, 10 or 11 bit character lengths. In synchronous mode the transmit buffer is disabled. The transmitter clock source may be chosen by MOD1 and MOD2 internal, external or derived from the recovered received data. A scrambler preceeds encoding to ensure that the line spectrum is sufficiently distributed to avoid interference with the in-band supervisory single frequency signaling system empioyed in most Bell System toll trunks. The randomized spectrum also facilitates timing recovery in the receiver. The scrambler is characterized by the following recursive equation:

$$
Y_{i}=X_{i} \oplus Y_{i-14} \oplus Y_{i-17}
$$

where X_{i} is the scrambler input bit at time i. Y_{i} is the scrambler output bit at time i and \oplus denotes the XOR operation.

212A-lype modems achieve full-duplex 1200 bps operation by encoding transmitted data by bit-pairs (dibits), thereby halving the apparent data rate. The resultant reduced spectral width allows both frequency channels to coexist in a limityd bandwidth telephone channel with practical levels of filtering. The four unique dibits thus obtained are graycoded and differentially phase modulated onto a carrier at either 1200 Hz (originate mode) or 2400 Hz (answer mode). Each dibit is encoded as a phase change relative to the phase of the preceding signal dibit element:

Dibit	Phase Shift (deg)
00	+90
01	0
11	-90
10	180

At the receiver, the dibits are decoded and the bits are reassembled in the correct sequence. The left-hand digit of the dibit is the one occurring first in the data stream as it enters the modulator after the scrambler. The lowspeed transmitter generates phase-coherent FSK using one of two programmable tone generators. Answer mode mark $(2225 \mathrm{~Hz})$ is also utillzed as answer tone in both low and high speed operation.

In Diaier mode, both tone generators are employed to generste DTMF tone pairs. The summed modulator outputs drive a lowpass filter which serves as a fixed compromise amplitude and delay equalizer for the phone line and reduces output harmonic energy well below maximum specified levels. The filter output drives an output buffer amplifier with low output impedance. The buffer provides 700 mV rms in data mode, for a nominal -9 dBm level at the line, assuming 2 dB loss in the data access arrangement.

DTMF Tone Generation

The μ 2212AT includes on-chip DTMF generation, using two programmable tone generators. Dialer mode must be selected on TEST, HSK1 and HSK2 for DTMF dialing. The O/A, HS, MOD1 and MOD2 pins are used to select the required digit according to the encoding scheme shown in Table 2, and the tones are turned on and off by the logic level on TXSQ. The generated tones meet the applicable CCITT and EIA requirement for tone dialing. DTMF output levels are 1.0 Vrms (low group) and 1.25 Vrms (high group).

[^4] "Theory of Operation - HA212A" and Tectricical Bullotins M1, M3 \& MA.

Figure 1 Block Dlagram

- $\mu \mathrm{A} 212 \mathrm{AT}$ only

Recelver

The received signal from the line-connection circuitry passes through a lowpass filter which performs anti-aliasing and compromise amplitude and delay equalization of the incoming signal. Depending upon mode selection (originate/answer) the following mixer either passes or down converts the signal to the 1200 Hz bandpass filter. In analog loopback mode, the receiver originate and answer mode assignments are inverted, which forces the receiver to operate in the transmitter frequency band. The 1200 Hz bandpass filter passes the desired received signal while attenuating the adjacent transmitted signal component reflected from the line (talker echo). The chosen passband shape converts the spectrum of the received high-speed signal to 100% raised cosine to minimize intersymbol interference in the recovered data. Following the filter is a soft limiter and a signal energy detector. An external capacitor is used to eliminate offset between the soft limiter output and the following limiter.

The energy detector provides a digital indication that energy is present within the filter passband at a level above a preset threshoid. Approximately 3 dB of hysteresis is provided between on and off levels to stabilize the detector output. In dialer mode, the detector output is used to provide logic level indication of the presence of call progress tones.

The limiter output drives the QPSK demodulator and the carrier and clock recovery phase-locked loops. The low speed FSK demodulator shares part of the clock recovery loop. The QPSK demodulator and carrier loop form a digital coherent detector. This technique offers a 2 dB advantage in error performance compared to a differential demodulator. The demodulator output are in-phase (I) and quadrature (G) binary signals which together represent the recovered dibit stream. The dibit decoder circult utilizes the recovered clock signal to convert this dibit stream to serial data at 1200 bps .

The recovered bit stream is then descrambled, using the inverse of the transmit scrambler algorithm. In synchronous
mode the descrambler output is identically the received data, while in asynchronous mode the descrambler output stream is selectively processed by the recerve buffer. Underspeed data presented to the transmitting modem passes essentially unchanged through the receive buffer. Overspeed data, which had stop bits deleted at the transmitter, has those stop bits reinserted by the receive buffer. (Generally, stop bit lengths will be elastic). The receive buffer output is then presented to the receive data pin (RXD) at a nominal intracharacter rate of 1219.05 bps.

Master Clock/Oscillator/Divider Chaln

The $\mu \mathrm{A} 212 \mathrm{~A}$ or $\mu \mathrm{A} 212 \mathrm{AT}$ may be controlled by either a quartz crystal operating in parallel mode or by an external signal source at 3.6864 MHz . The crystal should be connected between XTL1 and XTL2 pins, with a 30 pF capacitor from each pin to digital ground (see Figure 1). Crystal requirements; $\mathrm{R}_{\mathrm{S}}<150$ ohms, $\mathrm{C}_{\mathrm{L}}=\mathbf{1 3} \mathrm{pF}$, paraliel mode, tolerance (accuracy, temp, aging) less than ± 75 ppm. An external TTL drive may be applied to the XTL2 pin, with XTL1 grounded. Internal divider cheins provide the timing signals required for modulation, demodulation, filtering, buffering, encoding/decoding, energy detection and remote digital loopback. Timing for line connect and disconnect sequences (handshaking) derives from the host controller, ensuring maximum applications flexibility.

Control Considerations

The host controller, whether a dedicated microcontroller or a digital interface, controls the $\mu \mathrm{A} 212 \mathrm{~A}$ or $\mu \mathrm{A} 212 \mathrm{AT}$ as well as the line connect circuit and other IC's. On-chip timing and logic circuitry has been specifically designed to simplify the development of control firmware.

Operating and Tost Modes

Table 1 indicates the operating and test modes defined by the eight control pins. The $\mu A 212 A$ and μ A212AT (together with the host controller) supports analog boopback, and local and remote digital loopback modes. Analog loopback forces the receiver to the transmitter channel. The controller forces the line control circuit on-hook bulf continues to monitor the ring indicator. This mode is available for low-
speed, highspeed synchronous and highspeed asynchronous operation. In local digital loop, the modem I.C. isolates the interface, slaves the transmit clock to SCR (high-speed mode), and loops received data back to the transmitter. In remote digital loop, local digital loop is initiated in the far-end modem by request of the near-end modem, if the far-end modern is so enabled. The μ A212A and μ A212AT includes the handshake sequences required for this mode; the controller merely monitors RLST and controls remote loopback according to Table 3. Remote loop is only available in high-speed mode.

Answer ToneIn this mode, 2225 Hz answer tone is transmitted provided TXSO is inactive high $(=1)$. Receive speed is selected as normal with the HS pin. This permits the speed of the originating modem to be determined while answer tone is continuously transmitted.	
	Disconnects TXD pin from the transmitter
Force	
Continuous	
and forces the signal internally to a mark	
(logic 1).	

(TEST $=$ HSK1 $=$ HSK2 $=1$), RLST is set to 0 . Upon detecting this the controller responds by setting TEST and HSK2 to 0 , and the modem I.C. isolates TXD, clamps RXD to 1, and transmits a 1200 bps scrambled dotting pattern. At this point, upon receipt of a scrambled mark signal, the modem I.C. internally loops RCVR data and clock to the XMTR, and sets RLST back to 1. (See Table 3)

Dialer Mode The mA212AT provides DTMF tone generation and energy indication at EDET pin to identify call progress tones, i.e. dial, busy and ringback. The DTMF digit is selected by the levels on O/ \bar{A}, HS MOD1 and MOD2 according to Table 2. Tone generation is turned on and off by the level on TXSO. $1=0$ on, $0=o f f$. The $\mu \mathrm{A} 212 \mathrm{~A}$ provides call progress indication only. TXSO must be set to 0 .

Table 2 DTMF Encoding ${ }^{2}$ (μ A212AT only)

$\mathbf{O / \overline { A }}$	HS	MOD1	MOD2	DTMF Digit
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	0
1	0	1	1	3
1	1	0	0	A
1	1	0	1	B
1	1	1	0	C
1	1	1	1	D

Notes

1. DTMF digit is selected according to Table 2 for the μ M212AT. TXSO enabies the tone generator: $1=O N, 0=O F F \overline{T X S O}=0$ allows energy detection of call progress tone in both the $\mu A 212 A$ and $\mu A 212 A T$.
2. For DTMF to operate dialer mode must be assented. TEST. HSKI and HSK2 must be $=0$

Electrical Characteristics Unless otherwise noted: $V_{D O}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=-5.0 \mathrm{~V} \pm 5 \%$, DGND $=A G N D=0$ $\mathrm{V}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, typical characteristics specified at $\mathrm{V}_{\mathrm{DO}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.0 \mathrm{~V}$, $T_{A}=25^{\circ} \mathrm{C}$; all digital signals are referenced to DGND, all analog signals are referenced to AGND.

Table 1 Operating and Test Modes

DOT	HS	SYNC	MOD1	MOD2	TEST	HSK1	HSK2	Description	SCT
0	-	X	X	X	1	1	1	Dorting Pattern (155 or 1200 bps)	INT
1	-	-	-	-	1	0	0	Answer Tone	X
1	-	-	-	-	1	0	1	Force Continuous Mark	X
1	-	-	-	-	1	1	0	Force Continuous Space	X
1	1	1	0	0	1	1	1	ASYNC, 8 Bit	INT
1	1	1	0	1	1	1	1	ASYNC, 9 Bit	INT
1	1	1	1	1	1	1	1	ASYNC, 10 Bit	INT
1	1	1	1	0	1	1	1	ASYNC, 11 Bit	INT
1	1	0	1	1	1	1	1	SYNC, Internal	INT
1	1	0	1	0	1	1	1	SYNC, Slave	SCR
1	1	0	0	1	1	1	1	SYNC, External	ETC
-	-	-	-	-	0	0	1	Analog Loop	ETC
1	-	X	X	X	0	1	1	Local Digital Loop	SCR
1	1	X	X	X	0	1	0	Response to Far End Request for RDL	SCR
1	0	X	X	X	-	-	-	Low Speed Mode	X
1	X	X	X	X	0	0	0	Oialer Mode, Note 1	X
1	1	-	-	-	0	1	0	Remote Digital Loop Initiate	X

Ker:
SCT - TX Butter and PSK Modulator Clock
SCR - Receive Chock
ETC-External Clock Inpu

```
NNT-Internal 1200 Hz Clock
x-Don:t Care
- -Set as appropriate for desired operating condition.
```

Table 3 Remote Digital Loopback (RDL) Command Sequences

\begin{tabular}{|c|c|c|c|c|c|}
\hline Modem Action \& Controller Action \& TEST \& HSK 1 \& HSK2 \& RLST \\
\hline Data Mode \& \& 1 \& 1 \& 1 \& 1 \\
\hline \begin{tabular}{l}
Initiate ROL: \\
Disable scrambler \\
Disconnect TXD \\
Force 1 on \(\overline{\text { RXD }}\) \\
Transmit unscrambled mark (U.M.) \\
Recognize Dotting for 231-308 ms \\
Enable scrambler \\
Transmit scrambled mark (S.M.) \\
Recognize S.M. for 231-308 ms \\
Connect TXD \\
Unclamp RXD \\
"RDL ESTABLISHED"
\end{tabular} \& "INITIATE RDL" \& 0 \& 1 \& \begin{tabular}{l}
0 \\
0
\end{tabular} \& \begin{tabular}{l}
1 \\
0
\end{tabular} \\
\hline \begin{tabular}{l}
Response to far end request: \\
U.M. recognized for \(154-231 \mathrm{~ms}\) "RDL REQUESTED" \\
Disconnect TXD \\
Force 1 on RXD \\
Force Sync Slave Mode \\
Transmit Dotting \\
S.M. recognized Internally loop Receiver to Transmitter "ROL ESTABLISHED"
\end{tabular} \& 'RDL RESPONSE OK" \& 1
0

0 \& 1 \& 0 \& 0
0

1

\hline | Terminate RDL: |
| :--- |
| Reset to Data Mode | \& TXSQ active 80 ms \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1^{*} \\
1
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 1
\end{aligned}
$$
\]

\hline
\end{tabular}

-TEST $=$ HSK1 $=$ HSK2 - 1 may be asserted at anyume after "ROL ESTABLISHEO" and betore terminating

Energy Detector

Symbol	Characteristic	Condition	Min	Typ	Max	Units
$V_{\text {thon }}$ $V_{\text {thotf }}$	OH/On Threshold On/Off Threshold	Voltage Level at RXIN Pin In Data Mode		$\begin{aligned} & 6.5 \\ & 5.2 \end{aligned}$		$\mathrm{m} \mathrm{V}_{\text {rms }}$
$\begin{aligned} & \text { Con } \\ & \text { Corf } \end{aligned}$	```Energy Detect Time Data Mode Loss of Energy Detect Time```	at EDET Pin	$\begin{array}{r} 105 \\ 10 \end{array}$	$\begin{array}{r} 155 \\ 17 \end{array}$	$\begin{array}{r} 205 \\ 24 \end{array}$	ms ms
$V_{\text {thon }}$ $V_{\text {thon }}$ V thon	Dialer Mode OH/On Threshold Dialtone OH/On Threshold Busy/Ringback	Voltage Level at RXIN Pin in Dialer Mode		$\begin{array}{r} 10 \\ 4.6 \end{array}$		$\mathrm{m} \mathrm{V}_{\mathrm{rms}}$
ton	Energy Detect in the Dialer Mode (Detecting Call Progress Tones) Energy Detect in the Dialer Mode (Detecting Call Progress Tones)	At EDET Pin	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	30 36	35 42	ms ms

System Performance

Symbol	Characteristic	Condition	Min	Typ	Max	Units
BER	Bit Error Rate: SNR required for BER $=10^{-5}$ (a) 1200 bps on a $3002-\mathrm{CO}$ line, with 5 kHz white noise referred to 3 KHz . Figures shown are for originate mode. (Note: Pline values assume 4 dB net gain from line to RXIN)	$\begin{aligned} & P_{\text {line }}=-30 \mathrm{dBm} \\ & P_{\text {line }}=-44 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 13 \\ & 14 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
	Telegraph Distortion	Back-to-Back, 300 bps (Low Speed Mode)		10		\% Peak

Analog Line Interface

Symbal	Characteristic	Condition	Min	Typ	Max	Units
$V_{\text {line }}$ $V_{\text {tonn }}$ $V_{\text {tonl }}$ $V_{\text {TXSO }}$ $P_{\text {ext }}$ v_{∞}	Output Level at TXO: Data Mode Output Level at TXO: DTMF HIGH Group Output Level at TXO: DTMF LOW Group Output level at TXO: Extraneous frequency output relative to DTMF power. Output Offset at TXO	Any DTMF digit		0.7 1.1 0.9 0.5 5.0	-20	$V_{\text {rms }}$ $V_{\text {rms }}$ $V_{\text {rms }}$ $\mathrm{m} \mathrm{V}_{\mathrm{rms}}$ dB $m V$

Masterciock Input

Symbol	Characteristic	Condition	Min	Typ	Max	Units
$F_{\text {clock }}$	Clock Frequency		3.6864		MHz	
$T_{\text {otclk }}$	Clock Frequency Tolerance	-.01		+.01	$\%$	
$V_{\text {exth }}$	External Clock Input HIGH	XTL2 driven and XTL1 grounded XTL2 driven and XTL1 grounded	4.5			V
$V_{\text {extl }}$	External Clock Input LOW			V		

Digital interface

Symbol	Characteristic	Condition	Min	Typ	Max	Units
$V_{\text {IL }}$	Input Voltage LOW				0.6	V
$V_{\text {IH }}$	Input Voltage HIGH		2.2			v
Vol	Output Voltage LOW	$\mathrm{L}=2.0 \mathrm{~mA}$			0.6	\checkmark
V_{OH}	Output Voltage HIGH	$\mathrm{L}_{\mathrm{L}}=-2.0 \mathrm{~mA}$	3.0			\checkmark
L	Input Current LOW	$\text { DGND } \leqslant V_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{IL}},$ All Digital Inputs	-100			$\mu \mathrm{A}$
IIH	Input Current HIGH	$V_{I H} \leqslant V_{I N} \leqslant V_{D D}$	-50			$\mu \mathrm{A}$
100	Operating Current	$V_{D D}=5.0 \mathrm{~V}$ No Analog Signals		4.3	10	mA
Iss	Operating Current	$V_{S S}=-5.0 \mathrm{~V}$ No Analog Signals		-2.7	-5.0	mA

Tiansmit Buffer (Character Asynchronous Mode)

Symbol	Characteristic	Condition	Min	Typ	Max	Units
Lrxerar	Input Character Length	Start bit + data bits + stop bit	8		11	bits
R ${ }_{\text {uchar }}$	Intracharacter Signaling Rate	At $\overline{\text { TXD }}$ pin	1170	1200	1212	bps
$L_{\text {brak }}$	Input Break Sequence Length	At $\overline{T X D}$ pin	23			bits

Recelve Buffer (Character Asynchronous Mode) Carrier Frequencies and Signaling Rates

Symbol	Characteristic	Condition	Min	Typ	Max	Units
$R_{\text {txchar }}$ $F_{\text {cxI }}$ (ORIG) $\mathrm{F}_{\mathrm{cxr}}$ (ANS) Baud	Intracharacter Signaling Rate HS Cxr Freq. (Orig. Mode) HS Cxr Freq. (Ans. Mode) Dibit Rate	At $\overline{\mathrm{RXD}}$ pin Unmodulated Carrier Unmodulated Carrier High Speed Mode		$\begin{array}{\|r\|} 1219.05 \\ 1200 \\ 2400 \\ 600 \end{array}$		bps Hz Hz Baud
$F_{\text {mark }}$ (ORIG) $F_{\text {space }}$ (ORIG)	Mark Frequency Originate Mode (1270) Space Frequency Originate Mode (1070)	Low Speed Mode Low Speed Mode		$\begin{aligned} & 1269.42 \\ & 1066.67 \end{aligned}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$F_{\text {mark }}$ (ANS) $F_{\text {space }}$ (ANS)	Mark Frequency Answer Mode/Answer Tone (2225) Space Frequency Answer Mode (2025)	Low Speed Mode Low Speed Mode		2226.09 2021.05		Hz Hz
Ftomi	DTMF Low Frequency Tone Group	Dialer Mode		$\begin{aligned} & 698.2 \\ & 771.9 \\ & 853.3 \\ & 942.3 \end{aligned}$		Hz
Ftonn	DTMF High Frequency Tone Group	Diaier Mode		$\begin{array}{l\|} 1209.4 \\ 1335.7 \\ 1476.9 \\ 1634.0 \end{array}$		Hz
T_{Ot} bps	Tolerance of all above Frequencies/Data Rates Data Rate	Low Speed Mode	$\begin{array}{r} -0.01 \\ 0 \\ \hline \end{array}$		$\begin{array}{r} +0.01 \\ 300 \end{array}$	$\begin{gathered} \text { \% } \\ \text { bps } \end{gathered}$

Figure 2 Bit Error Rate vs Signal-to-Noise Ratio

Note
BER measured in synchronous mode, using an AEA S3A channel simulator.

DTMF Dialing, the $\mu A 212 A$ and $\mu A 212 A T$

The $\mu \mathrm{A} 212 \mathrm{~A}$ - the world's first and lowest power $1200 /$ $300 \mathrm{~b} / \mathrm{s}$ single-chip modem - will be joined, at about midyear, by the $\mu \mathrm{A} 212 \mathrm{AT}$. The second in a series of Fairchild modem IC products, the μ A212AT is pin-compatible with the μ A212A with the addition of an integral DTMF tone generator. This Bulletin summarizes factors to be considered in current $\mu \mathrm{A} 212 \mathrm{~A}$-based modem designs for migration to the μ A212AT.

DTMF Access

The μ A212AT DTMF tone generator is accessed via the Dialer mode, which is asserted by setting
TEST $=$ HSK1 $=$ HSK2 $=0$. In the $\mu A 212 A$, Dialer mode offers only call-progress tone detection, but, in the $\mu A 212 A T$, both call-progress tone detection and DTMF tone generation are provided. The DTMF output is enabled by $\overline{T X S Q}=1$ and disabled by $\mathrm{TXSQ}=0$; EDET should be ignored when DTMF tones are being generated. See Table 1.1.

Table 1.1. Dialer Mode

| TXSO μ A212A μ A212AT
 Call-progress
 1 Call-progress Call-progress
 DTMF generation |
| :---: | :---: | :---: | :---: |

DTMF Tone-Pair Selection

The uA212AT employs 4 pins (O/ $\bar{A}, H S, M O D 1$, and MOD2) to generate 1 each of the 4 LOW and 4 HIGH group DTMF tones; nominal tone frequencies are shown in Table 1.2. Table 1.3 displays the DTMF Encoding matrix.

Table 1.2 Tone Frequencles (Hz)

Low Group		High Group	
F (Nom.)	F (Act.)	F (Nom.)	F (Act.)
697	698.2	1209	1209.4
770	771.9	1336	1335.7
852	853.3	1477	1476.9
941	942.3	1633	1634.0

Output Characteristics

Table 1.4 summarizes nominal output levels at the TXO pin for Data mode, and for the DTMF Low and High tone groups. Absolute values and values relative to Data mode are shown.

Mode	$\mathbf{V}_{\text {txo(ma) }}$	Relative (dB)
Data	0.70	0
DTMF Low	0.88	+2
DTMF High	1.11	+4

Therefore, if Data mode output power to a 600Ω load is -9 dBm , tone output power is -7 dBm (Low group) and -5 dBm (HIGH group). These levels, as well as harmonic and out-ot-band energy values conform to the requirements of EIA RS-496.

ha212AT Design-In Considerations

The $\mu A 212 A$ and $\mu A 212 A T$ are pin-compatible and functionally identical for all modes except DTMF tone generation. The $\mu \mathrm{A} 212 \mathrm{AT}$ can therefore replace the $\mu \mathrm{A} 212 \mathrm{~A}$ in all current and future designs, provided that the following considerations are observed:

- Ensure Proper Control Of The TXSO Pin When in Dlaler Mode. See Table 1.1.
- Provide μ Controller Lines For The O/ \bar{A}, HS, MOD1 And MOD2 Pins, if any are not presently provided.
- Plan For Replacement of The Present Tone Dialing Scheme. Current μ A212A designs with DTMF dialing often employ a dialer chip or a DAC. Ensure that downstream removal of such parts will not affect the design.
- Allow ROM Space. Since DTMF contrcl code replaces the previous scheme, this should not usually be a problem.

Table 1.3 DTMF Encoding Matrix
(TEST $=$ HSK1 $=$ HSK2 $=0, \overline{\text { TXSQ }}=1$)

$\mathbf{O} / \overline{\mathbf{A}}$	\mathbf{H} / \mathbf{S}	MOD1	MOD2	DTMF DIglt
0	0	0	0	0
		0	1	1
		1	0	2
	1	1	3	
0	1	0	0	4
		0	1	5
		1	0	6
		1	1	7
1	0	0	0	8
		0	1	9
		1	0	$*$
	1	0	1	$\#$
1		0	1	A
		1	0	B
		1	1	D

1. TMS 1121 UNIVERSAL TIMER CONTROLLER INTRODUCTION

The TMS 1121 Universal Timer Controller is a mask-programmed version of the TMS 1000 Family 4-bit single chip microcomputer providing the function of a programmable time of day, day of week controller. When the TMS 1121 is used to implement the general purpose timer controller function, as shown in Figure 1, the system features:

- $\quad 18$ daily or weekly programmable timer sets
- Memory display of programmed timer sets for switches and day of week
- 4 independent switch outputs with buffer
- Display day of week, AM/PM, switch, clock, ON/OFF/SLEEP status
- Key entry for clock set and timer set
- 50 Hz or 60 Hz clock synchronization

The system is configured with a keyboard for user inputs, a 4 -digit LED clock display, and LED's to indicate AM/PM, day of week, switches, and ON/OFF/SLEEP status. The device operates from a 9 -volt power supply, and is packaged in a 28 -pin plastic package. A system incorporating the TMS 1121 is capable of performing both as a digital clock and as a timer/controller.

CLOCK OPERATION

The TMS 1121 operates as a real-time clock which displays the time of day. AM or PM, and the day of the week. The accuracy of the clock is defined by the variation of the $50 / 60 \mathrm{~Hz}$ signal supplied to the device. Time of day and day of the week are entered through the keyboard and displayed on a 4 -digit LED display.

TIMER/CONTROLLER

The TMS 1121 is capable of retaining up to 18 timer sets (programs) which are entered through the keyboard. Each of these timer sets can control one of four independent output switches which, in turn, can be used to control external devices.

Timer sets can be segregated into two types: (1) Fixed time programs which toggle an output switch at a specific time, and (2) Interval programs which toggle an output switch after a specified interval of time has elapsed. Each timer set will toggle only one switch. The SLEEP function (SLP) is used to turn a switch ON for one hour and then OFF, thereby using one timer set to perform two functions and thus saving one timer set. Interval programs are automatically deleted from memory upon execution. Fixed-time programs will be retained in memory and repeatedly executed.

The TMS 1121 has been designed so that the user can easily interface with the system via the keyboard (Figure 2). For example, using the keyboard the user can turn any output switch ON or OFF without programming the action into memory, thus providing direct control of the switches. Additionally, the user can change the timer settings by either selectively deleting all the timer sets which refer to one day or one switch, or by deleting all timer sets in order to start programming into a cleared memory. Finally, any program in memory can be called to the display with the proper keyboard sequence in order to verify that the TMS 1121 had been programmed correctly.

2. OPERATION

2.1 POWER-UP

When the TMS 1121 is powered up, the internal clock is automatically initialized to 12:00 PM on Sunday with all switches OFF and no programs stored. If the AC signal is 60 Hz , the clock setting is displayed immediately, if the AC signal is 50 Hz , the CLK key must be pressed to start and display the clock. After power-up the clock setting may be changed to a new value at any time.

Double functions key inputs

EDAY/0 - Evervday or Numeric 0
SUN/1 - Sundav or Numeric 1
MON/2 - Mondav or Numeric 2
TUE/3 - Tuesday or Numeric 3
WED/4 - Wednesdav or Numeric 4
THU/5 - Thursday or Numeric 5
FRI/6 - Friday or Numeric 6
SAT/7 - Saturday or Numeric 7
SW/DISP - Switch or Display of memory for switch
WEEK/DISP - Week or Display of memory for day of week and everyday

Single function kev inputs	
8	- Numeric 8
9	- Numeric 9
AM	- AM setting
PM	- PM setting
ON	- ON setling
OFF	- OFF setting
SLP	- SLEEP setting
CLR	- Clear entry and error
MEM CLR	- Clear Memory
CLK	$-C l o c k ~ S e l t i n g ~$

FIGURE 2. KEYBOARD FOR THE UNIVERSAL TIMER CONTROLLER

2.2 SETTING THE CLOCK

A typical key sequence for setting the clock would be:

which would start the clock at 5:00 PM on Monday. The pattern for the key sequence is always the same. A day of of the week is registered with WEEK key. An AM or PM key is pressed and the desired time is entered, then the CLK key is pressed. Because the clock js not actually started from the new value until the CLK key is pressed, the timer clock may easily be synchronized with another clock. The value of the clock will only be changed if the key sequence has been correct, otherwise, the CLK key returns the display to the previous value of the clock, updated to the time the $C L K$ key is pressed.

Errors in the key sequence may also be corrected before the $C L K$ key is pressed. Correction Procedures are explained in the ERRORS section (2.5).

2.3 PROGRAMMING THE TIMER

2.3.1 FIXED-TIME PROGRAMS

Fixed-time programs change the state of a switch when the clock reaches a preset time. A typical key sequence for entering a fixed-time program would be:
 , which would turn on switch number one on Monday at 5:10 PM. Keys $1,0,2,3$, or 4 select the switch affected when followed by the SW key. The day and time are entered next, in the same order as the clock setting entry (section 2.2). The last key assians a function to the program: \quad ON, \quad OFF , or \square SLP . \square ON or \square OFF turns the affected switch on or off at the programmed time.

SLP causes the switch to be turned on at the time setting that has been entered, then turned off one hour later.

As the key sequence is entered, the digital readout and LED indicators display the program settings. The day of the week, time of day, switch number, and function of the program may remain on display without halting the operation of the timer; the clock runs and the switches are turned on or off regardless of the display status. Clock information may be redisplayed by pressing the CLK key.

If the next program is completely different from its predecessor, the above key sequence must be repeated in its entirety with the new parameters. If the switch affected and the day of the week are the same, a shortened key sequence suffices to store the program. An example of the shortened key sequence would be:

OFF

If this sequence followed the above long sequence, output number one would be turned off at $5: 15 \mathrm{PM}$ on Monday. The shortened key sequence must follow the lung one directly, without pressing the CLK key between programs. A succession of short sequences may follow each other, to program several actions of one switch on one day.

The EDAY key may be used in fixed-time programming in place of a day-of-the-week key. Programming an action with EDAY causes that action to occur at the programmed time on every day of the week.

2.3.2 INTERVAL PROGRAMS

In an interval program, the switch number, time interval (in hours and minutes) and function are entered. The function is performed after the time interval has passed. A typical interval program key sequence would be:

In this case, switch number three would be turned on two hours after the $O N$ key was pressed. Either the ON . OFF or SLP functions may be used with an interval program. If SLP is used, the switch is turned on after the programmed interval, then turned off one hour later. As with fixed-time programs, a shortened key sequence may be used for a succession of programs following one with the ordinary sequence, as long as the switch is the same. An example of the short sequence for interval programs would be:

Following the above entry, th is sequence would turn switch three aff two hours and ane minute after the OFF key was pressed. The maximum time length for any interval is 11 hours, 59 minutes.

2.3.3 OVERLAPPING PROGRAMS

Programs may be overlapped in time. When several functions are programmed to occut at the same time on the same day, all of them are ignored except the last one. For example, if the memory contained the following programs

the result would be to turn on switch one on Monday at 1:00 AM. Another example the set of proyrarns

4	SW	EDAY	WEEK	PM	6	4	$\boxed{5}$	ON
4	$W S$	SAT	WEEK	PM	6	4	5	OFF

turns switch four on at 6:45 PM every day of the week except Saturday. Finally, the set of programs

2	SW	FRI	WEEK	AM	\square	0	0
2	SW	FRI	WEEK	AM	7	0	SLP
			0	OFF			

would turn switch two off at 7:30 AM on Friday instead of 8:00 AM.

2.4 DIRECT SWITCH CONTROL

A switch may be operated directly from the keyboard. A sample key sequence would be

In this case, the SLP function would be immediately executed on switch number two. This switch would be turned on as soon as the SLP key is pushed and turned off one hour later. Ally of the three functions may be specified for any of the four switches in this manner. The direct manipulations are nut stored in RAM as programis.

2.5 ERRORS

The usual error indication is 99:99 on the display. This occurs if the key sequence is incortect or if a program is attempted with an invalid time. The timer will convert times from the 24 hour system to 12 hour tines for both clock setting and programming. The 12 hour time is found by subtracting 12 hours from d 24 hour time. If a 24 hour time. e.g. $22: 10$, is entered, it will be accepted as its 12 hour aralog. $10: 10$, but the AM/PM selection is not affected by this conversion. Time values incorrect in both the 12 hour and 24 hour systems result in the 99:99 error indication.

The time conversion also holds true in interval programs and for this reason the interval length is limited to 11 hours, 59 minutes. Intervals up to 23 hours, 59 minutes will be accepted but corrected to 12 -hour time-lengths. Again, interval programs incorrect in both systems will produce $99: 99$ on the display. The indication of $88: 88$ on the display occurs if an attempt is made to store more than 18 programs.

During program input, errors may be corrected by several methods. Depressing the CLK key will display the current clock setting and erase program or change of clock attempts that have not yet been stored, i.e. before keys ON , OFF, SLP , or MEM CLR are pressed. The CLR key clears the display, and may therefore be used to clear errors before a program is stored. When more than four digits are entered from the keyboard, the leftmost digit is rolled off the display. Only the digits shown on the display when a key sequence is completed will be stored.

2.6 PROGRAM DISPLAY

The programs stored in memory can be displayed by depressing the DISP keys twice. For example the key sequence

displays the programs for switch number one. One program is displayed for every two times SW/DISP is pressed. The programs for a day of the week are displayed in the same way but using the WEEK/DISP key. A key sequence for Wednesday would be:

Programs entered with the EDAY

> WEEK/DISP
are displayed using that key and the
WEEK/DISP key. For example,

WEEK/DISP

This key sequence only displays programs originally entered with
EDAY
Programs entered on a specific day of the week must be displayed with the key corresponding to that day.

When a program is displayed, the digital readout shows the programmed time of the switch state change and the LED indicators show the day of the week, the number of the switch affected, and the function programmed. Both fixed-time and interval programs (before execution) can be displayed. When an interval program is shown, the display shows the programmed time of its execution, i.e. the time of day and day of the week corresponding to the end of the interval.

When programs using the SLP function are displayed, the display changes with the progress of the program execution. For example, the following key sequence would be used to turn switch three on for one hour on Friday at 10:00 AM.

Before this program is executed, displaying it would show it as a SLP program. The LED's would indicate switch three, Friday, 10:00 AM, and SLP . Between 10:00 and 11:00 AM on Friday, however, when the switch is on, displaying the program shows the time when the switch is to be turned off. In this case the LED's would show switch three, Friday, 11:00 AM, and OFF. After this time, the program display returns to the SLP settings. Each time the switch state of a SLP program changes, the program display is updated to show the next change in the switch state.

2.7 PROGRAM DELETE

The memory may be cleared entirely or selectively using the MEM CLR key. When pressed twice, this key clears everything stored in the RAM. The programs for an individual switch or day of the week may also be cleared without disturbing other stored programs.

is an example of a key sequence for deleting all the programs for switch number one.

would delete the programs for Thursday. Programs stored specifically with the EDAY key are cleared using that key in place of a day of the week.

3. APPLICATIONS EXAMPLES

The TMS 1121 Universal Timer Controller can be used in systems designed for industrial, consumer and other applications. The four switches of the TMS 1121 can be used to control (turn ON and OFF) lights, sound signals, home appliances, etc.

The examples given below are intended only as illustrations to show how systems with TMS 1121 can be used and programmed. Design and implementation details are not discussed here and are left to the user's discretion.

3.1 TRAFFIC SIGNAL LIGHTS AT A SCHOOL ZONE (example)

Suppose it is desired that the timer control the signal lights at a street intersection near a school. For two hours in the morning and two hours in the afternoon, five days a week, the regular traffic signal at the intersection is to be turned off, to allow traffic to be manually directed, and special warning lights are to be turned on.

A block diagram of the system would be:

A set of programs for the TMS 1121 would begin by turning the traffic signal on initially with the sequence:

The operation of the normal traffic signal would be governed by the set of programs:

This program set would turn the traffic signal off between 7:00 AM and 9:00 AM and between 2:00 PM and 4:00 PM. Monday through Friday. The signal would operate normally on Saturday and Sunday. In order 10 minimize memory usage, overlapping programs are used to keep the signal from being turned off ovel the weekend

The operation of the special warning lights would be governed by the set of programs:

1	SW	EDAY	WEEK	AM	7	0	0	ON
				AM	9	0	0	OFF
				PM	2	0	0	ON
				PM	4	0	0	OFF
1	SW	SAT	WEEK	AM	7	0	0	OFF
				PM	2	0	0	OFF
1	SW	SUN	WEEK	AM	7	0	0	OFF
				PM	2	0	0	OFF

This set operates in the same manner as the previous one. In all, 16 programs are used.

3.2 HOME SECURITY (example)

The timer can be used to control the lighting in a home as a deterrent to potential burglars. The timer can be used to turn ori lights and other electrical devices and make the house seem occupied when the residents are away. One problem with the implementation of this idea is that patterns in the lighting control are recognizable; the TMS 1121 has an ad vantage in this respect because of the number of programs that can be stored, and the long weekly cycle.

A block diagram of a system to control lights and other devices in a house would be:

Programs operating the lights and television inay be spread through a week in any order. An example for one evening might be

1	SW	TUE	WEEK	PM		7	0	0	SLP
2	SW	TUE	WEEK	PM		6	1	7	ON
				PM	1	0	0	6	OFF
3	SW	TUE	WEEK	PM		6	3	3	ON
				PM		7	2	5	OFF
4	SW	TUE	WEEK	PM		8	1	1	ON
				PM	1	1	1	6	OFF

3.3 KITCHEN APPLIANCES (example)

A timer has numerous applications in the kitchen, In the control of an oven especially, timing is important. One example of connection to kitchen appliances is shown by the block diagram.:

In this example the sequence:

would turn the oven on when the $O N$ key was pressed and off 25 minutes later.
The sequence

entered at the same time as the oven program would sound the alarm for a minute after the oven has been turned off, The alarm could be stopped from the keyboard, before the minute was up, by the sequence

Turning the oven on for 25 minutes could also be accomplished with fixed time programs. They would turn the oven on between specific times of the day. The set of programs:

is an example for turning on the oven on Tuesday night between 6:00 and 6:25 PM .
A timed burner could be used in several ways. After turning it on the sequence

	SW	ON

the cook could wait until it came up to a desired temperature before starting the timer. After this period, the program

could be used to insure that the burner only remained on for thirty minutes, and an alarm could be sounded at the end of this period with

4. TMS 1121 ELECTRICAL SPECIFICATIONS

4.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless Otherwise Noted)*

Voltage appliet io any device termmal (see Note 1)	$-15 \mathrm{~V}$
Supply voltage, V $\mathrm{V}_{\text {d }}$	-15V to 0.3V
Data input voltage	-15V to 0.3V
Clock input voltage	-15 V to 0.3 V
Averarje output current (see Note 2)	
O outputs	-24 mA
R outpuis	-14mA
Peak output current: O outputs	$-48 \mathrm{~mA}$
R outputs	$-28 \mathrm{~mA}$
Continuous power dissipation: TMS 1121 NLL	400 mW
Operating tree air temperature range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

"Stresses bevond those listed under "Absolute Maximum Ratings" mav cause permanent damage to the device. This is a stress rating onlv and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods rnay affect device reliability.

4.2 RECOMMENDED OPERATING CONDITIONS

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {DD }}$ (see Note 3)		-8	-9	-10	V
High-level input voltage. $V_{I H}$ (see Note 4)	K	-1.0	-0.8	0.3	\checkmark
	INIT or Clock	-1.0	-0.8	0.3	v
Low-level input voltage, VIL	K	$V_{D D}$		-4	
	INIT or Clock	$V_{\text {DO }}$	-9	-6	
Clock cucle time. ${ }^{\text {c }}$ c (s)		$2: 8$	3	10	$\mu \mathrm{s}$
Instruction cycle time, ${ }^{\text {c }} \mathrm{C}$		17		60	$\mu \mathrm{s}$
Pulse widih, clock high. iw $(\Phi) \mathrm{H})$		1.2			$\mu \mathrm{s}$
Pulse width, clock low. ${ }_{w}(\phi \mathrm{~L}$)		1.2			$\mu \mathrm{s}$
Sum or rise time and pulse width. clock high, $\mathrm{r}_{\mathrm{r}}+\mathrm{i}_{\mathrm{w}}(\phi \mathrm{H})$		1.4			$\mu \mathrm{s}$
Sum of fall time and pulse width. clock low. if $+i_{w}$ (pL)		1.4			$\mu \mathrm{s}$
Oscillator frequency. ${ }^{\text {O }}$ Os		250		350	kHz
Operating free-air temperature, ${ }^{\text {A }}$		0	-	70	${ }^{\circ} \mathrm{C}$

NOTES: 1. Unless otherwise noted all voltages are with respect to $V_{S S}$
2. These average values apply for anv 100 ms period
3. Ripple must not exceed 0.2 volts peak to peak in the operating frequency range.
4. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification tor voltage levels oniv.

FIGURE 3. EXTERNALLY DRIVEN CLOCK INPUT WAVEFORM
4.3 ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless Otherwise Noted)

PARAMETER			TEST CONDITIONS	MIN	TYP*	MAX	UNIT
11	Input current, K inputs		$\mathrm{V}_{1}=0 \mathrm{~V}$	40	200	350	$\mu \mathrm{A}$
VOH	High-level output voltage (see Note 1)	O outputs	$10=-6 \mathrm{~mA}$	-1.1	-0.6		v
		R outputs	$10=-1.2 \mathrm{~mA}$	-0.75	-0.4		
${ }^{1} \mathrm{OL}$	Low-level output current		$V_{O L}=V_{\text {DD }}$			-100	$\mu \mathrm{A}$
${ }^{1}$ DD	Average supply current from V ${ }_{\text {DD }}$		All outputs open		-5	-10	mA
${ }^{P}(A V)$	Average power dissipation		All outputs open		45	100	mW
${ }^{\text {fosc }}$	Internal oscillator frequency		$R_{\text {ext }}=50 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{ext}}=47 \mathrm{pF}$	250	300	350	kHz
C_{i}	Small-signal input capacitance, K inputs		$V_{1}=0, f=1 \mathrm{kHz}$		10		pF
$\mathrm{C}_{i(\phi)}$	Input capacitance, clock input		$V_{1}=0, f=100 \mathrm{kHz}$		25		pf

- All typical values are at $V_{D D}=-9 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

NOTE: 1. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification for logic voltage levels only.

4.4 SCHEMATICS OF INPUTS AND OUTPUTS

TYPICAL OF ALL O AND R
TYPICAL OF ALLK INPUTS

OPEN-DRAIN OUTPUTS

The O outputs have nominally 60Ω on-state impedance.

4.5 INTERNAL CLOCK

TYPICAL INTERNAL OSCILLATOR FREQUENCY
vs
EXTERNAL RESISTANCE

CONNECTION FOR INTERNAL OSCILLATOR

To use the internal oscillator, the OSC1 and OSC2 ierminals are shorted together and tied to an external resistor to $V_{D D}$ and a capacitor to $V_{S S}$.

FIGURE 5. TYPICAL POWER SUPP̄LY FOR THE UNIVERSAL TIMER CONTROLLER

NOTE: RANDCARE CONTACT ARCING SUPPRESSOR
R: $10 \quad 20$: 2 (TYP)

FIGURE 6. TYPICAL A.C. OUTLET SWITCHING CIRCUIT FOR THE UNIVERSAL TIMER CONTROLLER
6. TMS 1122

These are the functional differences between the TMS 1121 and TMS 1122 TIMER circuits.

- POWER UP display by flashing LED, connected across 06 and R5 outputs.
- SET CLOCK by depressing "CLK" (across the matrix points K2/R4). AM/PM keks and LED's do not exist.
- MAXIMUM interval timer set remains at 11 hours 56 minutes.
- ERROR DISPLAY of 9999 when entry exceeds " 24 " hours.

FIGURE 7. TMS 1121 DISPLAY AND KEYBOARD DIAGRAM

ZN415E, ZN416E AM Radio Receivers

features

- Single cell operation (1.1 to 1.6 volt operating range)
- Low current consumption
- 150 kHz to 3 MHz frequency range (i.e. full coverage of medium and long wavebands)
- Easy to assemble, no alignment necessary
- Simple and effective AGC action
- Will drive crystal earphone direct (ZN414Z)
- Will drive headphones direct (ZN415E and ZN416E)

- Excellent audio quality
- Typical power gain of 72dB (ZN414Z)
- Minimum of external components required

GENERAL DESCRIPTION

The ZN414Z is a 10 transistor tuned radio frequency (TRF) circuit packaged in a 3-pin TO-92 plastic package for simplicity and space economy.

The circuit provides a complete R.F. amplifier, detector and AGC circuit which requires only six external components to give a high quality A.M. tuner. Effective AGC action is available and is simply adjusted by selecting one external resistor value. Excellent audio quality can be achieved, and current consumption is extremely low. No setting-up or alignment is required and the circuit is completely stable in use.

The ZN415E retains all the features of the ZN414Z but also incorporates a buffer stage giving sufficient output to drive headphones directly from the 8 pin DIL.

Similarly the ZN416E is a buffered output version of the ZN414Z giving typically 120 mV (r.m.s.) output into a 64Ω load. The same package and pinning is used for the ZN416E as the ZN415E.

[^5] of any use of it is accepted by Ferranti ple.

DEVICE SPECIFICATIONS $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$. Parameters apply to all types unless otherwise stated.

Parameter	Min.	Typ	Max.	Units
Supply voltage, $\mathrm{V}_{\text {CC }}$	1.1	1.4	1.6	volts
Supply current, I_{s} with 64Ω headphones ZN414Z ZN415E ZN416E	-	$\begin{array}{r} 0.3 \\ 2.3 \\ 4 \end{array}$	$\begin{array}{r} 0.5 \\ 3 \\ 5 \end{array}$	mA
Input frequency range	0.15	-	3.0	MHz
Input resistance	-	4.0	-	M Ω
Threshold sensitivity (Dependant on Q of coil)		50		$\mu \mathrm{V}$
Selectivity	-	4.0	-	kHz
Total harmonic distortion	-	3.0	-	\%
AGC range	-	20	-	dB
Power gain (ZN414Z)		72		dB
$\begin{array}{ll}\text { Voltage gain of output stage } & \\ & \text { ZN415E } \\ \\ \text { ZN416E }\end{array}$	-	$\begin{array}{r} 6 \\ 18 \end{array}$	-	dB
Output voltage into 470Ω ZN414Z Output voltage into 64Ω load before clipping $\begin{cases}\text { ZN415E }\end{cases}$ ZN416E	*	$\begin{array}{r} 60 \\ 120 \\ 340 \end{array}$	-	mVpp
Upper cut-off frequency of output stage,? No capacitor, (ZN415E and ZN416E) \} With $0.01 \mu \mathrm{~F}$ between pin 7 and OV (ZN415E) With $0.01 \mu \mathrm{~F}$ between pin 7 and OV (ZN416E)	20	$\begin{array}{r} 6 \\ 10 \end{array}$	-	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Lower cut-off frequency of output stage $0.1 \mu \mathrm{~F}$ between pins 2 and 3 for ZN415E $0.47 \mu \mathrm{~F}$ between pins 2 and 3 for ZN416E	-	50	-	Hz
Quiescent output voltage ZN415E (See page 5 for ZN414Z) ZN416E	-	$\begin{array}{r} 80 \\ 200 \end{array}$	-	$m V$
Operating temperature range	0	-	70	${ }^{\circ} \mathrm{C}$
Maximum storage temperature	-65	-	125	${ }^{\circ} \mathrm{C}$

ZN4142 CHARACTERISTICS - All measurements performed with 30% modulation, $F_{M}=400 \mathrm{~Hz}$

Gain and AGC characteristics

See operating notes for explanation of AGC action,

ZN4142 CHARACTERISTICS - (Continued)

Frequency response of the ZN4 142

Note that this graph represents the chip response, and not the receiver bandwidth.

Gain variation with supply volts

D.C. level at output

LAYOUT REQUIREMENTS

As with any high gain R.F. device, certain basic layout rules must be adhered to if stable and reliable operation is to be obtained. These are listed below:

1. The output decoupling capacitor should be soldered as near as possible to the output and earth leads of the ZN414Z. Furthermore, its value together with the AGC resistor ($R_{A G C}$) should be calculated at $\approx 4 \mathbf{k H z}$, i.e.

$$
C(\text { farads })=\frac{1}{2 \pi \cdot R_{A G C} \cdot 4 \cdot 10^{3}}
$$

2. All leeds should be kept as short as possible, especially those in close proximity to the ZN4142.
3. The tuning assembly should be some distance from the battery, loudspeaker and their associated leads.
4. The 'earthy' side of the tuning capacitor should be connected to the junction of the $100 \mathrm{k} \Omega$ resistor and the $0.01 \mu \mathrm{~F}$ capacitor.

OPERATING NOTES

(a) Selectivity

To obtain good selectivity, essential with any T.R.F. device, the ZN4 142 must be fed from an efficient, high ' Q ' coil and capacitor tuning network. With suitable components the selectivity is comparable to superhet designs, except that a very strong signal in proximity to the receiver may swamp the device unless the ferrite rod aerial is rotated to "null-out" the strong signal.
Two other factors affect the apparent selectivity of the device. Firstly, the gain of the ZN4 142 is voltage sensitive (shown on page 5) so that, in strong signal areas, less supply voltage will be needed tc obtain correct AGC action. Incorrect adjustment of the AGC causes a strong station to occupy a much wider bandwidth than necessary and in extreme cases can cause the RF stages to saturate before the AGC can limit RF gain. This gives the effect of swamping together with reduced AF output. All the above factors have to be considered if optimum performance is to be obtained.

(b) Ferrite aerial size

Because of the gain variation available by altering supply voltage, the size of the ferrite rod is relatively unimportant. However, the ratio of aerial rod length to diameter should ideally be large to give the receiver better directional properties. Successful receivers have been constructed with ferrite rod aerials of $4 \mathrm{~cm}\left(1.5^{\prime \prime}\right)$ and up to $20 \mathrm{~cm}\left(8^{\circ}\right)$.
(c) Trimmer

A suitable variable capacitor with a range of $10-120 \mathrm{pF}$ is available from Murata as the TZO3R1214.

1. Resistive Divider

Current consumption $=2 \mathrm{~mA}$
Note: Replacing the 680Ω resistor with a 500 n resistor and a 250 n preset, sensitivity may be adjusted and will enable optimum reception to be realised under most conditions.

2. Diode Drive

3825

Current consumption $\approx 1.5 \mathrm{~mA}$
$D_{1}=D_{2}=$ Any general purpose silicon diode
$R_{p}=$ Optional sensitivity control, a recommended value being 250 .

3. Transistor Drive

3626

Current consumption is virtually that which is taken by the ZN4 142 (0.3mA)

DRIVE CIRCUITS

Three types of drive circuit are shown, each has been used successfully. The choice is largely an economic one, but circuit 3 is recommended wherever possible, having several advantages over the other circuits. Values for 9 V supplies are shown, simple calculations will give values for other supplies.

RECOMMENDED CIRCUITS

(a) Earphone radio

The ZN4 142 will drive a sensitive earpiece directly. In this case, an earpiece of equivalent impedance to $R_{A G C}$ is substituted for $R_{A G C}$ in the basic tuner circuit. Unfortunately, the cost of a sensitive earpiece is high, and unless an ultra-miniature radio is wanted, it is considerably cheaper to use a low cost crystal earpiece and add a single gain stage. One further advantage of this technique is that provision for a volume control can be made. A suitable circuit is shown below.

$L_{1}=80$ turns of 0.3 mm dia. enamelled copper wire on a 5 cm or 7.5 cm long ferrite rod. Do not expect to adhere rigidly to the coil-capacitor details given. Any value of L_{1} and C_{1} which will give a high ' Q ' at the desired frequency may be used.
 emitter resistor provides an effective volume control.
(b) Domestic portable receiver

The circuit shown is capable of excellent quality, and its cost relative to conventional designs is much lower.

The complete circuit diagram of the Triffid receiver
(b) i

28 swg Wire
FERRITE ROD 6", */8" dia.

Coil winding details and waveband selection

ZN414Z
(c) Use in model control receiver

The circuit below shows a ZN414Z used as an I.F. amplifier for a 27 MHz superhet receiver.

Performance Details:
Sensitivity $=2.5 \mu \mathrm{~V}$ for a 5 V p.t.p. output measured at ${ }^{\mathrm{f}} \mathrm{C}=27.21 \mathrm{MHz}$.
100% modulated with 100 Hz square wave.
Selectivity: $\pm 5 \mathrm{kHz}$ for $<100 \mathrm{mV}$ p.t.p. output.
Input Signal Range: $2.5 \mu \mathrm{~V}$ to 25 mV (i.e. 80 dB)
Supply Current: $=4.5 \mathrm{~mA}$.
(d) Broadcast band superhet using ZN414Z

The ZN4142 coupled with the modern ceramic resonators offers a very good I.F. amplifier at modest cost, whitst maintaining simplicity and minimal alignment requirements. A typical circuit is shown below:

-6 dB Bandwidth $=6 \mathrm{kHz}$
-30 dB Bandwidth $=8 \mathrm{kHz}$
AGC Range $=40 \mathrm{~dB}$
(For 10 dB change in A.F. output).

FURTHER APPLICATIONS

The ZN414Z is an extremely versatile device and, in a data sheet, it is not possible to show all its varied applications. A comprehensive applications note on the device is available which gives full details of various radio receivers, I.F. amplifiers and frequency standards together with comprehensive technical information.

Fluid Detector

General Description

The LM1830 is a monolithic bipolar integrated circuit designed for use in fluid detection systems. The circuit is ideal for detecting the presence, absence, or level of water, or other polar liquids. An ac signal is passed through two probes within the fluid. A detector determines the presence or absence of the fluid by comparing the resistance of the fluid between the probes with the resistance internal to the integrated circuit. An ac signal is used to overcome plating problems incurred by using a dc source. A pin is available for connecting an external resistance in cases where the fluid impedance is of a different magnitude than that of the internal resistor When the probe resistance increases above the prese value, the oscillator signal is coupled to the base of the open-collector output transistor. In a typical application, the output could be used to drive a LED, loud speaker or a low current relay.

Features

- Low external parts count
- Wide supply operating range
- One side of probe input can be grounded
- ac coupling to probe to prevent plating
- Internally regulated supply
- ac or dc output

Logic and Connection Diagrams
Metal Can Package

Order Number LM1830H See NS Package H1OC

Applications

- Beverage dispensers	- Radiators
- Water softeners	Washing machines
- Irrigation	Reservoirs
- Sump pumps	Boilers
- Aquaria	

Absolute Maximum Ratings

Supply Voltage

Power Dissipation (Note 1)
Output Sink Current
Operating Temperature Range
Storage Temperature Range
Lead Temper ature (Soldering, 10 seconds)

28 V
300 mW
20 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics $\quad \mathrm{V}^{+}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current			5.5	10	mA
Oscillator Output Voltage Low High			$\begin{aligned} & 1.1 \\ & 4.2 \end{aligned}$		$\begin{aligned} & V \\ & v \end{aligned}$
Internal Reference Resistor Detector Threshold Voltage Detector Threshold Resistance		8 5	$\begin{aligned} & 13 \\ & 680 \\ & 10 \end{aligned}$	25 15	$\begin{aligned} & k \Omega \\ & m V \\ & k \Omega \end{aligned}$
Output Saturation Voltage Output Leakage Oscillator Frequency	$\begin{aligned} & I O=10 \mathrm{~mA} \\ & V_{\text {PIN } 12}=16 \mathrm{~V} \\ & \mathrm{C} 1=0.001 \mu \mathrm{~F} \end{aligned}$	4	0.5 7	$\begin{aligned} & 2.0 \\ & 10 \\ & 12 \end{aligned}$	V $\mu \mathrm{A}$ kHz

Note 1: The maximum junction tempereture rating of the LM1830N is $150^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the dual-in-line plastic peckage must be derated based on a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$.

Schematic Diagram

Data supplied by National Semiconductor.
(C) National Semiconductor.

Application Hints

The LM1830 requires only an external capacitor to complete the oscillator circuit. The frequency of oscillation is inversely proportional to the external capacitor value. Using $0.001 \mu \mathrm{~F}$ capacitor, the output frequency is approximately 6 kHz . The output from the oscillator is available at pin 5 . In normal applications, the output is taken from pin 13 so that the internal 13 k resistor can be used to compare with the probe resistance. Pin 13 is coupled to the probe by a blocking capacitor so that there is no net dc on the probe.

Since the output amplitude from the oscillator is approximately $4 \mathrm{~V}_{\mathrm{BE}}$, the detector (which is an emitter base junction) will be turned "ON" when the probe resistance to ground is equal to the internal $13 \mathrm{k} \Omega$ resistor. An internal diode across the detector emitter base junction provides symmetrical limiting of the detector input signal so that the probe is excited with $\pm 2 V_{B E}$ from a $13 \mathrm{k} \Omega$ source. In cases where the $13 \mathrm{k} \Omega$ resistor is not compatible with the probe resistance range, an external resistor may be added by coupling the probe to pin 5 through the external resistor as shown in Figure 2. The collector of the detecting transistor is brought out to pin 9 enabling a filter capacitor to be connected so that the output will switch "ON" or "OFF" depending on the probe resistance. If this capecitor is omitted, the output will be switched at approximately 50% duty cycle when the probe resis tance exceeds the reference resistance. This can be useful when an audio output is required and the output transistor can be used to directly drive a loud speaker In addition, LED indicators do not require de excitation. Therefore, the cost of a capacitor for filtering can be saved.

In the case of inductive loads or incandescent lamp loads, it is recommended that a filter capacitor be employed.

In a typical application where the device is employed for sensing low water level in a tank, a simple steel probe may be inserted in the top of the tank with the tank grounded. Then when the water level drops below the tip of the probe, the resistance will rise between the probe and the tank and the alarm will be operated. This is illustrated in Figure 3. In situations where a non conductive container is used, the probe may be designed in a number of ways. In some cases a simple phono plug can be employed. Other probe designs include conduc tive parallel strips on printed circuit boards.

It is possible to calculate the resistance of any aqueou solution of an electrolyte for different concentrations, provided the dimensions of the electrodes and their spacing is known.

The resistance of a simple parallel plate probe is given by:
$R=\frac{1000}{c . p} \cdot \frac{d}{A}$
where $A=$ area of plates $\left(\mathrm{cm}^{2}\right)$
$\mathrm{d}=$ separation of plates (cm)
$c=$ concentration (gm. mol. equivalent/litre) $p=$ equivalent conductance $\left(\Omega^{-1} \mathrm{~cm}^{2}\right.$ equiv. ${ }^{-1}$)
(An equivalent is the number of moles of a substance that gives one mole of positive charge and one mole of negative charge. For example, one mole of NaCl gives $\mathrm{Na}^{+}+$ Cl^{-}so the equivalent is 1 . One mole ot CaCl_{2} gives $\mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}$so the equivalent is $1 / 2$.)

Usually the probe dimensions are not measúred physically, but the ratio d / A is determined by measuring the resistance of a cell of known conceniration c and equivalent conductance of 1. A graph of common solutions and their equivalent conductances is shown for refarence, The data was derived from D.A. MacInnes, "The Principles of Electrochemistry." Reinhold Publishing Corp., New York., 1939.

In automotive and other applications where the power source is known to contain significant transient voltages, the internal regulator on the LM 1830 allows protection to be provided by the simple means of using a series resistor in the power supply line as illustrated in Figure 4. If the output load is required to be returned directly to the power supply because of the high current required, it will be necessary to provide protection for the output transistor if the voltages are expected to exceed the data sheet limits.

Although the LM1830 is designed primarity for use in sensing conductive fluids, it can be used with any varia ble resistance device, such as light dependent resistor or thermistor or resistive position transducer.

The following table lists some common fluids which may and may not be detected by resistive probe techniques.

Typical Performance Characteristics

Coivalant Resistance v Concentration of Several Solutions

Roforence Resistor ws Ambion Temperature

Detector Threshold Voltage vs Temperature

Output Saturation Voltage ve Output Current

Oscillator Frequency ve Ambient Temperature
ambient temperatuat (0
concentarion igram molecular

Normalized Oscillmor Frequency vs Supply Voltage

Threshold Resistance vs Supply Volrage

Power Supply Curent vs Supply Voltago

Application Hints (Continued)

FIGURE 3. Besic Low Levet Warning Device with LEO Indication

Typical Applications

Low Lovel Warning with Audio Output

Output is activated when $R_{p} \widetilde{>1 / 3}$ R REF FIgUAE 4. Direct Coupled Applications

Programmable Sound Generator

FEATURES:

- Full software control of sound generation
- Interfaces to most B-bit end l6-bit microprocessors
- Trree independent ly programable analog outputs
- One or two 8-bit 1/D ports
- Single 5 volt supply
- Full 0° to $70^{\circ} \mathrm{C}$ operation
- 40 pin or 28 pin package ontion

DESCRIPTIDM

The AY-3-8910A/8912A Programable Sound Generator (PSG) is an LSI circuit mich can produce a wide variety of complex sounds under software conerol. The AY-3-8910A/8912A is menuf ectured in the Generel Instrument Microelectronics W-Channel Ion Implant Process. Operation requires a single $+5 V$ power supply, Til compatible clock, and a microprocessor controller, such as the General Instrument 16bit CP1610 or orre of the PIC16SO series of 8-bit microcomputers.

The PSG is easily interfaced to any bus oriented system. .lts flexibility makes it useful in applications such as music synthesis, sound effects generation, audible alarms, tone signaling, and home computer usage. In order to generate sound effects while allowing the processor to perform other tasks, the $P S C$ can continue to produce sound after the initial commands have been given by the control processor. The fact that realistic sound production often involves more than one component is satisfied by the three independtly conerollable analog sound ourput channels avallable in the PSG. These analog sound output channels can each provide 4 birs of logaritnmic digital to analog conversion, greatly enhancing the dynamic range of the sounds produced.

All clrcuit control signals are digital in nature and may be provided directly by a microprocessor/ mıcrocumputer. inerefore, one PSG cen produce the full range of required sounds with no change in external circuitry. Since the frequency response of the PSG ranges from sub-audible at its lowest frequency to post-audible at its highest frequency, there are few sounds which are beyond reproduction.

PIM Functions

Data/Address Bits 7-0: Pins 30-37. (AY-3-6910A)
Pins 21-28 (AY-3-8912A)
These 8 lines comprim the B-bit bidirectional bus used by the microprocessor to send both deta and uddresses to the PSC, and to receive date from the PSG. In the address mode, DA3-DAO selact the internsl register sdtress $\left(0-17_{B}\right)$ and $0 A 7$-DMA in conjunction with adoress inputs $\overline{A 9}$ and $A 8$, form the chip select function. then the high order address bits are "incorrect", the bidirectional buffers are forced to aigh impedence state.

PIN con icuration

40 LEAD DUAL IN LINE

3-8910a Iop View	
$v_{\text {SS }}$ (GND) -1	$400 V_{C C}(+5 \mathrm{~V})$
No Connectd 2	39 No Connect
Analog Channel 8 C	38 PAnalog Channe!
Anelog Channel ${ }^{\text {a }}{ }^{4}$	37 Dad
No Conneet ${ }^{\text {S }}$	36 DAI
1087-6	35 Pdaz
$1086{ }^{-7}$	34 Das
108s ${ }^{\text {c }}$	$33 \mathrm{PDA4}$
1084 ${ }^{108}$	32 DaS
1083810	$31 P 0{ }^{3}$
1082811	300 DA7
10818	$29 \sim \mathrm{BC} 1$
1080] 13	280 BC 2
10A7-14	270801R
10A6 15	260 No Comect
IOAS 16	25 A8
$1044{ }^{\text {c }} 17$	$24 . \overline{\text { A9 }}$
1043 18	230 RESET
10A2 19	22-clock
	21010 O

28 LEAD DUAL IN LINE

AY-3-8912A Top View

Analog Channel col	280 dã
No Comect ${ }^{2}$	270 DAI
$V_{\text {CC }}(+5 \mathrm{~V}){ }^{3}$	$26 \sim$ DA2
Anslog Chamel 8.4	$25]$ DA3
Anslog Chamel abs	240 DAA
$V_{\text {SS }}$ (GND) 6	23 Das
IOATE7	22046
10A6 ${ }^{\text {a }}$	210077
10as ${ }^{\text {cos }}$	200881
10a4 10	19 BC2
10ase 11	189 BDR
10a2 12	17 Pa
101813	$16 \bigcirc$ RESE!
10AO- 14	150 Clock

[^6]High order address bits $\overline{A 9}$ and $A 8$ are fixed to recognite " 01 " code. They may be left unconnected, asech is proyided with either on on. chio pull-down ($\bar{B} 3$) or pull-up (A8) reaistor. In noisy anvironmants, however, it is recommended that $\overline{5}$ and 48 be tied to external ground and $\rightarrow 5 V$ respectively, if they are not to be used:

- This input is not evaileble on the ay-3-8912A.

MESET (Input): Pin 23 (AY-3-8910A) Pin 16 (AY-3-8912A)

For initialization/power-on purposes, mplying e low level input to the हESEी pin will reset all registers to O_{8}. The RESET pin is provided with on on-chip pull-up resistor.

Quck (Inqut)s Pin 22 (AY-3-8910A) Pin is (AY-3-8912A)
inis Til competible input eupplies the timing reforerce for the Tona, Noise, and Envelope Ganerators.
-DIR, EC2, EC1 (Inputs): Pins 27,28,29 (AY-3-8910A: Pins 18,19,20 (AY-3-8912A)
BuS Direction, BuS Control 2, Bus Control 1

Thase bus control signals are generated directly by the CP1610 microprocessor to control all bus operations internal and external to the PSG.

0	0	0	Mact	INACTIVE. See 010 (IAB) Delow.
0	0	1	noar	LATCH ADORESS. See lll (INTAK)
	1	0	IAB	below. INACTIVE: The PSG/CPU bus is
0				inective. DA7-DAO are in high impedance state.
0	1	1	018	READ FROM PSC. This signal
				couses the contents of the
				register which is currently
				addressed to eppesr on the PSG/
				CPU bus. DAT-DAO are in the
				output mode.
1	0	0	BAR	LATCH ADORESS. See lli (INTAK)
				below.
1	0	1	Dw	IMACTIVE. See 010 (IAB) above.
1	1	0	OwS	WRITE TO PSG. This sigual indi-
				cates that the bus contains
				register date which should be
				latched into the currently
				edrresend register. DA7-OMO
				are in the input mode.
1	1	1	INTAK	LATCH ADORESS. This signal
				indicates that the bus contains
				a register eddress mich should
				be latcted in the PSG. DA7--
				DAO are in the inout mode.

While interfacing to a processor other then the CP 1600 would simply require simulating the above decoding, the redundencies in the PSG functions vs. bus control signals can be used to advantage in that only four of the eight possible decoded bus functions are required by the PSC. This could simplify the programing of the bus control signals to the following, wich mould only require that the proceseor generate two bus control signals ($B 01 \mathrm{R}$ and BC , with BC 2 tied to +5 V):

Ps

0	1	0	IMACTIVE.
0	1	1	READ FROM PSC.
1	1	0	WRIYE TO PSC.
1	1	1	LATOT AOORESS.

Analog Chewiel A, B, C (Outputa):
Pins 4,3;38(AY-3-8910A)
Pins $5,4,1$ (AY-3-8912A)

Each of these signals is the output of its corresponding digital to malog converter, and provides iv peak-peak (max) signal representing the complex sound waveshape generated by the PSG.

Pine 2,5,26,39 (AY-3-0910A), Pine 2 (AY-3-8912A)

These pins are for General Instrument test purposes only and should be left open. Do not use as tie-points.

VCC' Pin 40 (AY-3-8910A), Pin 3 (AY-3-8912A)
Nominal 45 Volt power supply to the PSG.

VSS: Pin 1 (AY-3-8910A), Pin 6 (AY-3-8912A)
Ground reference for the PSG.

ARCHITEETURE:

The AY-3-8910A/8912A is a register oriented Programable Sound Generator (PSG). Communication betwean the processor and the PSG is based on the concept of memory-mepped $1 / 0$. Control commends are issued to the PSG by writing to 16 memory-mapped registers. Esch of the 16 registers within the PSG is also readadle so that the microprocessor can determane, as necessary, present states or stored dare values. All functions of the PSG are controlled through the 16 registers which, once programed, generate and sustain the sounds, thus freeing the system processor for other tasks.

REGISTER MRRAY:

The principal element of the PSG is the array of 16 read/write control registers. inese 16 registers look to the CPU as block of memury and, as such, occupy a 16 ward block out of 1,024 possible addresses. The 10 address bits (8 bits on the common data/address bus, and 2 separate address bits) are decoded as follows:

The four low order address bits select one of the 16 registers ($\mathrm{RO}-\mathrm{R} 17_{B}$). The six high order address bits function as chip selects to conerol the tri-atste bidirectional buffers (when the nigh order eddress bits are incorrect, the bidirectional buffers are forced to a higp impedance state). High order address bits 79 , A8 are fixed in the PSC design to recognize e "01" code; high order address bits DA7--DA4 are programed to recognize only a " 0000 " code. All addresses are latched internally. Ihis internally latched address is updated and modified on every latch address signal presented to the PSC via the BDIR, BC2, and BCI inputs. A latened address will remain velid until the receipt of a new address, enabling maltiple reeds and writes of the same register contents without the need for redundant re-eddressing.

Conditioning of the Register Address Lateh/Decoder and the Bidirectional Buffers to recognize the bus function required (Inactive, Latch Address, Write Data), is scomplished by the Bus Control Decode block.

SOUND EEMERATIMG ELOCKS:

The besic blocks in the PSG which produce the programed sounds include:

Noise Generator

Mixers Combine the outputs of the Tone
Generators and the Noise

Envelope Generator

Amplitude Control

D/A Converters
Produce the basic square wave tone frequencies for each channe $1(A, B, C)$.
Produces a pulse width madulat ed pseudo-random square wave output. Generator; per charnel (A, B, c).
mich can be used to amplitude

mixer. Mixer.
does the D/A Converters with either a fixed or variable amplitude pattern. Fixed amplitude is under direct [PU control. Variable molitude is accomplished via the output of the Envelope Generator.

- The three D/A Converters each produce a 16 level (max) output signal as determined by the Amplitude Control.

operations

[^7]| Operstion | Registers | Puction |
| :---: | :---: | :---: |
| Tone Generator | RO--RS | Program tone periods |
| Control | | |
| Noise Generator | R6 | Progran noise period |
| Control | | |
| Mixer Control | R7 | Ensole tane andor |
| | | noise on selected |
| | | channe ls |
| Amplitude | R10-R12 | Select fixed or |
| Concral | | variscle (envelope) |
| | | aplitudes |
| Enve lope | R13-R15 | Progran envelope |
| Generator | | period and select |
| Contral | | envelcpe pattern |

Tone Conerator Control
(Registers RO, R1, R2, R3, R4, RS)

The frequancy of each square wave generated by the three Tone Generators (one each for Channels A, B, and C) is obtained by first dividing the input clack by 16 then by further dividing the result by the programed 12 bit Ione Period value. Each 12bit tone period value is obsained by combining the contents of the respective Coarse and Fine Tune registers, as illustrated:

Maise Cerneretor Control

(Register R6)
The frequency of the noise source is obtained by dividing the input clock by 16, then by further dividing the result by the programed 5 bit moise Period value. Ihis S bit value consists of the lower S bits $(B 4--80)$ of register R6, as illustreded:

Noise Period
Register R6

Not Used 5-bit Noise Period (NP) to Noise Generator
Mixar Control - 1/0 Enede
(Register R7)

Register $R 7$ is multi-function ENABLE register which controls the three Noise/fone Mixers.

The Mixers, as previously described, combine the noise and tone frequencies for each of the three channels. The determination of combining neither/ either/both noise and tone frequencies on each channel is made by the state of bits $B 5=-80$ of register R7, as illustrated.

The direction (input or output) of the general purpose $1 / 0$ ports ($1 / 0 A$ and $1 / O B$) is determined by the state of bits 87 and $\mathrm{B6}$ of $\mathrm{R7}$, as illuatrated.

MIXER CONTROL PEGISIER - RT

$\begin{aligned} & \text { R7 Birs } \\ & \text { B5 } \mathrm{B4} \mathrm{B2} \\ & \hline \end{aligned}$			Noise Enabled on Channe!		
0	0	0	C	B	A
0	0	1	C	B	-
0	1	0	C	-	A
0	1	1	C	-	-
1	0	0	-	B	A
1	0	1	-	B	-
1	1	0		-	A
1	1	1	-	-	-

TONE ENABLE TRUTH TABLE R7 Bits Pone Enabled | 82 | $B 1$ | 80 | on Channe 1 | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | C | B | A |

0	0	0	C	B	A
0	0	1	C	B	A

0100 C A
$\begin{array}{lll}0 & 1 & 1 \\ C & C\end{array}$
100 - B A
$\begin{array}{lll}1 & 0 & 1\end{array}=B-$
$\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}=-A$

NOIE: Disabling noise and tone does not turn off a channel. lurning a charinel off can only be accomplisned by writing all zeros into the corresponding Amplitude Control Register.

Amplitude Control

(Registers R10, R11, R12)

The aplitude of the signals generated by each of the three D / A Converters (one each for Channels A, B, end C) is determined by the content of the lowers bits $(B 4-B O)$ of registers R10, R11, and R12 as illustrated.

These five bits consist of i-bit mode select (mMn bit) and a 4-bit "fixed" mplitude level (L3-LO). When the M bit is low, the output level of the analog channel is defined by the 4-bit "fixed" molitude level of the Amplitude Control Register. This amplitude level is fixed in the sense that the molitude level is under direct control of the systex processor. When the M bit is high, the output level of the enalog channel is defined by the $4-b i t s$ of the Envelope Generator (bits E3-EO). ithe moplitude .mode bit can also be thought of as an "envelope enable" bit.

Amplitude Control Register	Channel
R10	A
R11	B
R12	C

Amplitude	A bit fixed					
Mode	Amplitude Level					
0	0	0	0	0	\quad	Amplitude Defined
:---:						
1						

ENVELOPE GEMERATOR CONTROL

Io accomplish the generation of complex envelape patterns, two independent methods of control are provided: first, it is possible to vary the frequency of the envelope using registers R13 and R14; second, the relative shape and cycle pattern of the envelope can be varied using register Ris. ithe following paragraphs explain the details of the envelope control functions, describing first the envelope period control and then the envelope shape/cycle control. (See figure 1 and 2).
gnvelore merico cowira

(Registers R13, R14)

The frequency of the envelope is obtained by first dividing the input clock by 256 , then by further dividing the result by the progranad 16 bit Enve-

Envelape
Course Tune
Register R1A
lope Period value. Inie 16 oit velue is obteined by combining the contente of tre Envelope Coarse and Fine iune registers, a illunfrated:

Envelope
Fine Tune
Regiater R13

	87	BS	84	82	$B 1$		87	B6	85	BA	83	8281	80		
EP15	EPI4	EP13	EP12	EPII	EP 10	EP9	[PB	EP7	EP6	EPS	EP4	EP3	EP2	EP1	EPO

16-bit Envelope Pariod (EP) to Envelooe Generator
Thus the envelope period is given by:
$256 \times E P \times P$ Where $P=$ period of input clock

NOTE: If the Coarse and Fine fure registers we both set to 0008 , the resulting period will be minimum, i.e., the generated tone period will be is the Coarse Tune register wes ser to $000 \mathrm{O}_{\mathrm{g}}$ and the Fine lune register ent to COI_{8}.

ENELOE SMOE/CTCLE COMTRE

D/A CONVERTER DPERATION

Since the primaty use of the PSG is to produce sound for the nan-linear amplitude defection mechanism of the human ear, the D / A conversion is performed in logarithmic ateps with a normalized voltage range from 0 to 1 volt. the specific amplitude control of each of the three D / A Converters is eccomplished by the three sets of 4 bit outputs of the Amplitude Control block, while the Mixer outputs provide the base signal frequency (Noise andor lone). (See Fig. 3).

IIECTEICAL CMARACTERISTICS

Maximan Ratinge"
Storage iemperature................... $-55^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$
Operating Teperature................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
VCC end all other Input/Output
Volteges with Respect to VS5.... -0.3 V to +0.0 V
Stenderd Condstions (Unless ornerwise noted)
$V_{C C}=+5 V \pm 5 \%$
$V_{5 S}=$ OND
Operating femperature $=0^{\circ} \mathrm{C}$ to $\rightarrow 70^{\circ} \mathrm{C}$

Exceeding these ratings could cause permanent damage to the device. inis is atress rating only and functionsl operstion of this device at these conditions is not implied-operating renges are epecified in Stenderd Conditions. Exposure to absolute aximum reting conditions for extended periods may offect device reliability. Dara laoeled "typical" is prasanted for design guidance only and is not guaranteed.
© CMARACTERISTICS

Charecteristice	5 ya	Min	Typos	Max	Units	Conditions
All Inputs						
Low Level	$V_{\text {IL }}$	-0.2	-	0.8	v	
Migh Level	$V_{\text {IH }}$	2.2	-	VCC	v	
Dets Bue (OA7...DNO) Outpert Levels						
Low Level	V_{OL}	0	-	0.4	v	$I_{0}=1.6 \mathrm{ed}$, 150 pf
Migh Level	V_{OH}	2.4	-	${ }^{\text {VSC }}$	v	$\mathrm{IOH}_{\text {O }}=100 \mathrm{MA}$, 150pf
Dees 8us (Da7...DAD)						
Input Laskege	${ }^{1}$ IAL	-10	-	10	μ	$V_{\text {IM }}=0.4 V$ to $V_{\text {CC }}$
Araleg Chamel Dextects						
Output Volume	Vo	0	-	60	d	Test Circuit: Fig. 6
Power Supply Currant	${ }^{1} \mathrm{CC}$	-	70	90	\cdots	
1/0 Ports						
Pull up Current Lom	${ }^{1}$ IL	20	-	200	m	$V_{\text {IN }}=0.4 V$, Outputs diseoled
Puld up Current Migh	$1_{1 H}$	10	-	100	ma	$V_{1 N}=3.5 \mathrm{~V}$
Ae Outpute ($\mathrm{A} 7-\mathrm{AO}, 87-80$)						
Low Level	v_{0}	0	-	0.5	v	$I_{1 L}=1.604$
Mign Level	$\mathrm{Vam}^{\text {arm }}$	3.5	-	${ }^{\text {ch }}$	v	$I_{\text {arm }}=-10.4$ see
	$\mathrm{VOH}_{\mathrm{OH}}$	2.4	-	${ }^{\text {cc }}$	v	
Low Level	$v_{\text {IL }}$	0	-	0.8	v	
High Lavel	$\mathrm{V}_{1 \mathrm{H}}$	2.4	-	${ }^{\text {cc }}$	v	
As end Resat Input						
Pullup Current		-10	-	-100	μ	$V_{1 N}=0.4 V$
	$1_{\text {IMpu }}$	-10	-	-50	m	$V_{\text {IN }}=2.4 V$
Pull down Curtene	$1{ }_{1} \mathrm{mpd}$	10	-	100	$\mu \mathrm{H}$	$V_{\text {IN }}=2.4 V$
ET,BOIR, Clock Inputa Input Leakage	${ }^{1}$ ICL	-10	-	10	ma	$v_{\text {IN }}=0.4 V^{\text {co }} \mathrm{V}_{\text {CC }}$
Analog Outputs Max. Current (per chamel)	-	0.4	2.0	-	a	Vout $=0.7 v$, Amplitude Contral Set io f

- Prpical values are at $+25^{\circ} \mathrm{C}$ and nominal volteges.

NOTE 1:
The active pull-up auring on output operation will echiove a logic 1 of 2.4 volts in a time of typically 1 aicrosecond. However, from 2.4 volts to the high level of 3.5 volts the availeble pull

LLECTRICAL CHARACTERISTICS (contimad...)

AC CMANACTERISTICS

Charecteristics	Sym	Min	Typoe	Mex	Units	Conditions
Cleck Input						F-
Frequency	${ }^{f}$	1	-	2	MHz	
Rise Time	t_{r}	-	-	50	ns	Fig. 7
Fall Time	t_{f}	-	-	50	ns	
Duty Cycle	-	40	So	60	\%	
Bus Sigrale (BDIR, BC2, BC1) Associative Delay Time Reset	${ }^{\text {t }} 80$	-	-	40	ns	
Reset Pulse Width	${ }_{\text {thw }}$	500	-	-	ns	F29. 8
A9, AB, DA7..DAO (Addrese Mode) Address Setup 7 ime	$t_{\text {AS }}$	300	-	-	ns	
Address Hold Tine	${ }^{\text {t }}$ AH	65	-	-	ns	Fig. 9
OA7...DAO (Write Mode)						
Write Data Pulse Width	${ }^{\text {t }}$ D ${ }^{\text {d }}$	500	-	10,000	ns	
Write Data Setup lime	${ }^{\text {tos }}$	300	-	-	ns	Fig. 10
Write Data Hold Time	${ }^{t} \mathrm{DH}$	65	-	-	ns	
DA7...DAO (Resd Mocte) Date Access 1 ime from DTB	$t_{\text {ta }}$	-	-	200	ns	Fig. 11
DA7...DAO (Inective Mode) Tri-3tate Delay Time from DTB						
Tri-state Delay Time from DiB 1/O Ports ($A 7-A 0,87-80$)	${ }^{\text {tis }}$	-	-	100	ns	
Pull-Up Recuvery time	$t^{\text {P }}$	-	-	So	usec	$\begin{aligned} & V_{O H}=3.5 \mathrm{~V} \\ & C_{\text {LOAD }}=100 \mathrm{pf} \\ & \text { See Note } 2 \end{aligned}$

*Pypical values are at $+25^{\circ} \mathrm{c}$ and nominal voltages

NOTE 2:
Pull-up recovery time is defined as the time volts. This recovery time is conditional on the required for my $1 / D$ pin A7-AO or $87-80$ to chenge up to - 100pf capacitor load from 0.0 volts to 3.5
output function of Port A or Port B being deselected via Bits 87 and 86 of register R10.

Fig. 6 MMLDC CHANEL OUTPUT TEST CIRCUIT

STATE IIMIMG

White the state flow for man bacroprocespors can be somewhat invalved for certain aperations, the eequence of events necessery to control the PSG is simple and straightforwerd. Eech of the three asjor state sequences (Latch Address, Write to PSG, and Read from PSC) consists of eeveral onerations (indicated below by recterigular blocks), defined by the pattem of bus control signals (BOIR. BC1).

Ihe functional operation and relative timing of the PSG control mequences are described in the following paragraphs.

ADORESS PSC REGISTER SEQUENCE

The Laten Address sequence is normally en integral part of the write or read sequences, but for simplicity is illustrated here as in individual sequence. Depending upon the processor used, the program sequence will normally require four principal microstates: (1) send naCi (inactive); (2) send INiAK (laten address): (3) put address on bus; (4) send NACl (inactive).

WRITE DAIA TD PSC SEOUEMCE

The Write to PSG sequence, wich would normally follow immediately ofter an adress sequence, requires four principal microstates: (1) send NACP (inective); (2) put date on bus; (3) send DWS (write to PSG); (4) send NACI (inactive).

READ DATA FRDM PSG SEQUEMCE

As with the Write to PSG sequence, the Read from PSG sequence would slso normally follow immediately after an addreso sequence. The fout principal microstates of the read sequence are: (1) send NACf (inective); (2) send DIB (read from PSC); (3) read data on bus; (4) send NACl (inactive).

Fig. 7 CLOCX AND BUS SIGNAL TIMIMG

FIG. 8 RESET TIMING

BUS CONIROL

- boir bel
signals changing
11
\rightarrow SOns Max., Including Skew.

Fig. 9 Latch adoress IImimg

FIG. 11: READ DATA TIMIMG

Programmable Counter/Timer

Description

The $\mu \mathrm{A} 2240$ Programmable Timer/Counter is a monolithic controller capable of producing accurate microsecond to five day time delays. Long delays, up to three years, can easily be generated by cascading two timers. The timer consists of a time-base oscillator, programmable 8 -bit counter and control flip-flop. An external resistor capacitor (RC) network sets the oscillator frequency and allows delay times from 1 RC to 255 RC to be selected. In the astable mode of operation, 255 frequencies or pulse patterns can be generated from a single RC network. These frequencies or pulse patterns can also easily be synchronized to an external signal. The trigger, reset and outputs are all TTL and DTL compatible for easy interface with digital systems. The timer's high accuracy and versatility in producing a wide range of time delays makes it ideal as a direct replacement for mechanical or electromechanical devices.

- Accurate Timing From Microseconds To Days
- Programmable Delays From 1 RC To 255 RC
- TTL, DTL And CMOS Compatble Outputs
- Timing Directly Proportional To RC Time Constant
- High Accuracy
- External Sync And Modulation Capability
- Wide Supply Voltage Range
- Excellent Supply Voltage Rejection

Absolute Maximum Ratings

Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature	
Ceramic DIP (soldering, 60 s)	$300^{\circ} \mathrm{C}$
Molded DIP (soldering, 10 s)	$265^{\circ} \mathrm{C}$
Internal Power Dissipation $1^{\circ} 2^{\circ}$	
16L-Ceramic DIP	1.50 W
16L-Molded DIP	1.04 W
Supply Voltage	18 V
Output Current	10 mA
Output Voltage	18 V
Regulator Output Current	5.0 mA

Notes

1. T_{f} Man $=150^{\circ} \mathrm{C}$ for the Molded OIP, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP 2. Aatings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature derate the 16 L .Ceramic DIP at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. and the 16 L -Molded DIP at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Connection Diagram

16-Lead DIP
(Top View)

Order Information
Device Code Package Code
WA2240DC 7B Ceramic DIP μ A2240PC 9B Molded DIP

Block Diagram

Functional Description

(Figure 1 and Block Diagram)
When power is applied to the $\mu \mathrm{A} 2240$ with no trigger or reset inputs, the circuit starts with all outputs HIGH. Application of a positive going trigger pulse to trigger lead 11. initiates the timing cycle. The trigger input activates the time-base oscillator, enables the counter section and sets the counter outputs LOW. The tirfe-base oscillator generates timing pulses with a period $\mathrm{T}=1 \mathrm{RC}$. These clock pulses are counted by the binary counter section. The timing sequence is completed when a positive going reset pulse is applied to Reset, lead 10.

Once triggered, the circuit is immune from additional trigger inputs until the timing cycle is completed or a reset input is applied. If both the reset and trigger are activated simultaneously, the trigger takes precedence.

Figure 2 gives the timing sequence of output waveforms at various circuit terminals, subsequent to a trigger input. When the circuit is in a reset state, both the time-base and the counter sections are disabled and all the counter outputs are HIGH.

Figure 1 Logic Symbol

$V_{C C}=\operatorname{Lend} 16$
GNO - Lead 9

Flgure 2 Timing Diagram of Output Waveforms

In most timing applications, one or more of the counter outputs are connected to the reset terminal with S1 closed (Figure 3). The circuit starts timing when a trigger is applied and automatically resets itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the reset terminal (switch S1 open), the circuit operates in an astable or free running mode, following a trigger input.

Important OperatIng Information

Ground connection is lead 9 .
Reset (R) (lead 10) sets all outputs High.
Trigger (TRIG) (lead 11) sets all oulputs LOW.
Time-base output (TBO) (lead 14) can be disabled by bringing the RC input (lead 13) LOW via a $1.0 \mathrm{k} \Omega$ resistor.

Normal TBO (lead 14) is a negative going pulse greater than 500 ns .

Figure 3 Basic Circuit Connection
for Tilming Applications
Monostable: S1 Closed
Astable: S1 Open

Note: Under the conditions of high supply voltages
($\mathrm{V}_{C C}>7.0 \mathrm{~V}$) and low values of timing capactor
($\mathrm{C}_{\mathrm{T}}<0.1 \mu \mathrm{~F}$), the pulse width of TBO may be too narrow to trigger the counter section. This can be corrected by connecting a 600 pF capacitor from T3O (lead 14) to ground (lead 9).

Reset (lead 10) stops the time-base oscillator
Outputs $\left(\mathrm{O}_{0} \ldots \mathrm{O}_{128}\right)$ (leads $\left.1-8\right)$ sink 2.0 mA current with $\mathrm{V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}$.

For use with external clock, minimum clock pulse amplitude should be 3.0 V , with greater than $1.0 \mu \mathrm{~s}$ pulse dura tion.

Circuit Controls

Counter Outputs ($\mathrm{O}_{0} \ldots \mathrm{O}_{128}$, leads 1 thru 8)
The binary counter outputs are buffered open collector type stages, as shown in the block diagram. Each output is capable of sinking 2.0 mA at $0.4 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}$. In the reset condition, all the counter outputs are HIGH or in the nonconducting state. Following a trigger input, the outputs change state in accordance with the liming diagram of Figure 2. The counter outputs can be used individually, or can be connected together in a wired-OR configuration, as described in the programming segment of this data sheet.

Reset and Trigger Inputs (R and TRIG, 10 and 11) The circuit is reset or triggered with positive going control pulses applied to leads 10 and 11 respectively. The threshold level for these controls is approximately two diode drops ($\approx 1.4 \mathrm{~V}$) above ground. Minimum pulse widths for reset and trigger inputs are shown in the Performance Curves. Once triggered, the circuit is immune to additional trigger inputs until the end of the timing cycle.

Modulation and Sync Input (MOD, lead 12)
The oscillator time-base period (T) can be modulated by applying a DC voltage to MOD, lead 12 (see Performance Curves). The time-base oscillator can be synchronized to an external clock by applying a sync pulse to MOD, lead 12, as shown in Figure 4. Recommended sync pulse widths and amplitudes are also given.

Figure 4 Operation with External Sync Signal

The time-base can be synchronized by setting T to be an integer multiple of the sync pulse period (T_{S}). This can be done by choosing the timing components R and C at lead 13 such that

$$
T=R C=\left(T_{S} / m\right)
$$

where
m is an integer, $1.0 \leqslant m \leqslant 10$
Figure 5 gives the typical pull-in range for harmonic synchronization for various values of harmonic modulus. m. For $\mathrm{m}<10$, typical pull-in range is greater than $\pm 4 \%$ of time-base frequency

RC Terminal (lead 13)

The time-base period T is determined by the external RC neiwork connected to RC, lead 13. When the time-base is triggered, the waveform at lead 13 is an exponential ramp with a period $T=1$ RC.

TIme-Base Output (TBO, lead 14)
The time-base output is an open-collector type stage as shown in the block diagram, and requires a $20 \mathrm{k} \Omega$ pull-up resistor to lead 15 for proper circuit operation. In the reset state, the time-base output is HIGH. After triggering, it/produces a negative going pulse train with a period $T=R C$ as shown in the diagram of Figure 2. The time-base output is internally connected to the binary counter section and can also serve as the input for the external clock signal when the circuit is operated with an external time base. The counter section triggers on the negative going edge of the timing or clock pulses generated at TBO, lead 14. The trigger threshold for the counter section is

Figure 5 Typical Pull-in Range for Harmonic Synchronization

$\approx+1: 4 \mathrm{~V}$. The counter section can be disabled by clamping the voltage level at lead 14 to ground.

When using high supply voltages ($\mathrm{V}_{\mathrm{CC}}>7.0 \mathrm{~V}$) and a small value timing capacitor ($\mathrm{C}_{\mathrm{T}}<0.1 \mu \mathrm{~F}$), the pulse width at TBO lead 14 may be too narrow to trigger the counter section. This can be corrected by connecting a 600 pF capacitor from lead 14 to ground

Reguiar Output (VREG, lead 15)
The regulator output $V_{\text {REG }}$ is used internally to drive the binary counter and the control logic. This terminal can also be used as a supply to additional μ A2240 circuits when several timer circuits are cascaded (see Figure 6) to minimize power dissipation. For circuit operation with an external clock, $V_{\text {REG }}$ can be used as the $V_{C C}$ input terminal to power down the internal time-base and reduce power dissipation. When supply voltages less than 4.5 V are used with the internal time-base, lead 15 should be shorted to lead 16.

Monostable Operation

Precision Timing

In precision timing applications, the μ A2240 is used in its monostable or self-resetting mode. The generalized circuit connection for this application is shown in Figure 3. The output is normally HIGH and goes LOW following a trigger input. It remains LOW for the time duration (T_{O}) and then returns to the HIGH state. The duration of the timing cycle T_{O} is given as:

$$
T_{0}=n T=N R C
$$

whern $T=R C$ is the time-base period as set by the choice of timing components at RC lead 13 (see Performance Curves) and n is an integer in the range of $1 \leqslant n \leqslant 255$ as determined by the combination of counter outputs ($\mathrm{O}_{0} \ldots \mathrm{O}_{128}$), leads 1 through 8 , connected to the output bus.

Coumter Output Programming

The binary counter outputs, $\mathrm{O}_{0} \ldots \mathrm{O}_{128}$, leads 1 through 8 are cpen collector type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as any one of the outputs is L.OW. The time delays associated with each counter output can be added together. This is done by simply shorting the outputs together to form a common output bus as shown in Figure 3. For example, if only head 6 is connected to the output and the rest left open, the total duration of the timing cycle, T_{0}, is 32 T . Similerly, if leads 1,5 , and 6 are shorted to the output bus, the total time delay is $\mathrm{T}_{\mathrm{O}}=(1+16+32) \mathrm{T}=49 \mathrm{~T}$. In this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be $1 \mathrm{~T} \leqslant \mathrm{~T}_{\mathrm{O}} \leqslant 255 \mathrm{~T}$.

Figure 6 Low Power Operation of Cascaded Timers

$V_{c c}=$ Leed 16
GNO = Lesd 9

Ultra Long Time Delay Application

Two μ A2240 units can be cascaded as shown in Figure 7 to generate extremely long time delays. Total timing cycle of two cascaded units can be programmed from $T_{0}=256$ RC to $T_{0}=65,536$ RC in 256 discrete steps by selectively shorting one or more of the counter outputs from Unit 2 to the output bus. In this application, the reset and the trigger terminals of both units are tied together and the Unit 2 time base is disabled. Normally, the output is HIGH when the system is reset. On triggering, the output goes LOW where it remains for a total of $(256)^{2}$ or $65,536 \mathrm{cy}$ cles of the time-base oscillator.

In cascaded operation, the time-base section of Unit 2 can be powered down to reduce power consumption by using the circuit connection of Figure 6. In this case, the VCC terminal (lead 16) of Unit 2 is left open, and the second unit is powered from the regulator output of Unit 1 by connecting the $V_{\text {REG }}$ (lead 15) of both units together.

Astable Operation

The $\mu \mathrm{A} 2240$ can be operated in its astable or free running mode by disconnecting the reset terminal (lead 10) from the counter outputs. Two typical circuits are shown in Figures 8 and 9. The circuit in Figure 8 operates in its free running mode with external trigger and reset signals. It starts counting and timing following a trigger input until an external reset pulse is applied. Upon application of a positive going reset signal to lead 10, the circuit reverts back to its reset state. This circuit is essentially the same as that of Figure 3 with the feedback switch S1 open.

The circuit of Figure 9 is designed for continuous operation. It self triggers automatically when the power supply is turned on, and continues to operate in its free running mode indefinitely. In astable or free running operation, each of the counter outputs can be used individually as synchronized oscillators, or they can be interconnected to generate complex pulse patterns.

Binary Pattern Generation

In astable operation, as shown in Figure 8, the output of the $\mu \mathrm{A} 2240$ appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 2 which shows the phase relations between the counter outputs. Figures 10 and 11 show some of the complex pulse patterns that can be generated. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

Figure 8 Operation with Trigger and Reset Inputs (Note 1)

Flgure 9 Free Running or Continuous Operation (Note 1)

Figure 10 Binary Puise Patterns Obtained by Shorting Various Counter Outputs

- 3 LEAO Pattenn
 GND = Lead 9

Figure 7 Cascaded Operation for Long Delays

Figure 11 Continuous Free run Operation Exampies of Output

Recommended Range of Timing Component Values

Time-Base Perlod Drift vs Supply Voltage

Typical Periormance Curves
Supply Current va
Supply Voltage in Reset Condition

Minimum Trigger Pulse Width ve Trigger and Reset Amplltude

Normalized Change In Time-Base Perlod ve Modulation Voltage

Time-Base Perlod vs Temperature

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Characteristic		Condition		MIn	Typ	Max	Unit	
General Characteristic									
$V_{\text {cc }}$	Supply Voltage		For $V_{C C} \leqslant 4.5 \mathrm{~V}$, Short Lead 15 to Lead 16		4.0		15	V	
loc	Supply Current	Total Circuit	$V_{C C}=5.0 \mathrm{~V}, V_{T R}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}}=5.0 \mathrm{~V}$			4.0	7.0	mA	
			$V_{C C}=15 \mathrm{~V}, V_{T R}=0 \mathrm{~V}, V_{\text {RS }}=5.0 \mathrm{~V}$			13	18		
		Counter Only				1.5			
VREG	Regulator Output		Measured at Lead 15	$V_{\propto c}=5.0 \mathrm{~V}$	3.9	4.4		v	
			$V_{C C}=15 \mathrm{~V}$	5.8	6.3	6.8			
Time-Base									
$l_{\text {ACC }}$	Timing Accuracy ${ }^{1}$			$\mathrm{V}_{\mathrm{RS}}=0, \mathrm{~V}_{\text {TR }}=5.0 \mathrm{~V}$			3.5	5.0	\%
$\Delta t / \Delta T$	Temperature Dritt		$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 75^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V}$		200		ppm $/{ }^{\circ} \mathrm{C}$	
			$V_{C C}=15 \mathrm{~V}$		80				
$\Delta t / \Delta V$	Supply Drift			$\mathrm{V}_{C C} \geq 8.0 \mathrm{~V}$ (See Performance Curves)			0.08	0.3	\%/V
$I_{\text {max }}$	Max Frequency		$R=1.0 \mathrm{k} \Omega, \mathrm{C}=0.007 \mu \mathrm{~F}$			130		kHz	
$V_{M O D}$	Modulation Voltage Level		Measured at Lead 12	$V_{C C}=5.0 \mathrm{~V}$	2.80	3.50	4.20	V	
			$V_{C C}=15 \mathrm{~V}$		10.5				
$\mathrm{R}_{\mathbf{T}}$	Recommended Range of Timing Components Timing Resistor			(See Performance Curves)		0.001		10	$\mathrm{M} \Omega$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Charactertatic	Condition	Min	Typ	Max	Unit
C_{T}	Timing Capacitor		0.01		1500	$\mu \mathrm{~F}$

Trigger/Reset Controla

$V_{\text {TR }}$	Trigger Threshold	Measured at Lead 11, $\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}$	1.4	2.0	v
$I_{\text {TR }}$	Trigger Current	$\mathrm{V}_{\mathrm{RS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {TR }}=2.0 \mathrm{~V}$	10		μA
Z_{T}	Trigger Impedance		25		k Ω
taspt	Trigger Response Time ${ }^{2}$		1.0		$\mu \mathrm{s}$
$V_{\text {RS }}$	Reset Threshotd	Measured at Lead 10, $\mathrm{V}_{\text {TR }}=0 \mathrm{~V}$	1.4	2.0	v
$I_{\text {R }}$	Reset Current	$\mathrm{V}_{\mathrm{TR}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}}=2.0 \mathrm{~V}$	10		$\mu \mathrm{A}$
Z_{R}	Reset Impedance		25		$\mathrm{k} \Omega$
thspt	Reset Response Time ${ }^{2}$		0.8		$\mu 8$

Counter						
TR ${ }_{\text {max }}$	Max Toggle Rate	Measured at Lead 14 $V_{\mathrm{RS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=5.0 \mathrm{~V}$		1.5		MHz
Z_{1}	Input Impedance			20		$k \Omega$
$V_{T H}$.	Input Threshold		1.0	1.4		V
4	Output Rise Time	Measured at Leads 1 through 8 $R_{L}=3.0 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$		180		ns
4	Fall Time			180		
10	Sink Current	$\mathrm{V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}$	2.0	4.0		$m A$
Icex	Leakage Current	$\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}$		0.01	15	$\mu \mathrm{A}$

Motes 1. Timing error solely introduced by μ A2240 measured as \% of ideal time-base periód of $T=R C$.
2. Propagation delay from application of trigger (or reset) input to corresponding change of state in counter output at lead 1 .

Tlme-Base Period vs
External RC

Minimum Trigger/Retrigger Timing ve Timing Capacitor

Tho-Base Period vs
Temperature

[^0]: Note: While every effort has been made to ensure that the data contained in this issue of Electronics Digest is accurate, neither the Publisher nor the Manufacturer will accept any liability in respect of the use of the consequences of the use of any data published here. All data © the manufacturer.

[^1]: KI Y: 0 = Switch activated
 $1=$ Switch not activated
 $X=$ Do not care

[^2]: Fach tune consists of a series of notes with one hyte of PROM for each. Every tune must have a tune end marker byte 377 after the last mote, and the final turie must have a byte 376 after the 377 end

[^3]: Data supplied by National Semiconductor. (c) National Semiconductor.

[^4]: For adsitional information contact sales office for Applications Note ASP. 1

[^5]: FERRANTI plc 198
 The copyright in this work is vested in Ferranti pic and this document is issued for the purpose only for which it is supplied. No cence is implied for the use of any patented feature. If must not be reproduced in whole or in part, or used for tendering or manufacturing purposes except under an agreement or with the consent in writing of Ferrantiplc and then only on the condition that this notice is included in any such reproduction. Information furnished is believed to be accurate but no liability in respect

[^6]: Addrees 9, Addreses 8
 A8 (inqut): Pin 25 (AY-3-8910A)
 Pin 17 (AY-3-8912a)
 $\overline{\text { A9* (input): Pin } 24 \text { (AY-3-8910A) }}$

[^7]: Since all PSG functions are processor controlled by writing to the internal registers, a detailed description of the PSG operation may best be accamplished by relating each PSG function to control of the corresponding ragistar. ithe furction of creating or programing a specific sound effect logically follows the control sequence listed:

