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ABSTRACT

The spectroscopy of the low-lying collective levels
of the odd-A nuclei terbium-159, holmium-léB and lutetium-
175 have been studied by detecting the deexcitation gamma
radiation following Coulomb excitation with oxygen ions up
to 65 MeV in energy. Information is presented both on the
level structures and on the reduced electromagnetic transition
probabilities between some of the states, and these are
discussed within the framework of existing collective models.
The most striking deviation from the usual axially-symmetric
quasi-rigid rotor model occurs in Tbl59, in the form of a
higher-order decoupling type term similar to the well-known
Coriolis decoupling term in intrinsic K=1/2 bands. An analysis
of possible mechanisms is presented and it is concluded that
elther band mixing involving a strongly decoupled band or
centrifugal stretching of the core can explain the form of
the energy perturbation. Although an experimental choice between
the mechanisms was not possible, it is concluded that the
stretching mechanism could account for the substantial part
of the decoupling which a band-mixing calculation using an
intrinsic matrix element computed from Nilsson wave functions
does not account fof. Magni tudes of the higher Coriolis and
the usual vibration-rotation type perturbations in the ground-
state bands are measured.

Gamma-vibrational states are located in.the three nuclei,
and reduced transition probabilities for their excitation,

referred to ground-state band Q, values, are given.
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I. Introduction

The collective model for nuclear motion has been found
to provide a quite adequate representation of empirical
features in the low-lying spectra in large numbers of nuclei
in the regions of the periodic table away from closed shells.
In particular regions in which nuclei execute low-multipole-
order surface vibrations about the spherical equilibrium shape
and regions in which nuclei are permamently deformed into
axially-symmetric nonspherical equilibrium shapes and undergo
rotations as well as quadrupole and octupole vibrations are
well-known experimentally and reasonably well-understood on
theoretical grounds. But, on the basis of certain conceptually
well-defined arguments, there arise possibilities for specific
kinds of deviations from the purely collective modes of motion,
arising from coupling to the other degrees of freedom. Because
of the exlistence of pairing energies, the single-nucleon—plus-
deformed-core model is expected to provide an accurate repres-
entation of low-energy nuclear phenomena in heavy odd-A nuclei
in the so-called rotational regions among the Lanthanide and
the Actinide elements. However, a certain amount of core
elasticity 1s expected, which should lead to vibrational states
~and also, in conjunction with the Coriolis force and wave-
function symmetrization for the axially-symmetric case, to
certain other higher-order decoupling effects similar in
character to the well-known [K|=1/2 Coriolis decoupling.

Various perturbations on the simple I(I+l)-dependent

level sequence of a pure rotator unsusceptible to elastic



deformation or Coriolis effects can be predicted for an isolated
rotational band, as can certain effects due to band mixing,
which is brought about by these same effects in the presence

of ﬁwo or more rotational bands based on intrinsic or vibra-
tional states. It is the purpose in the present thesis to
observe ground-state bands up to high-lying members, via

the process of E2 Coulomb excitation with heavy ions, in order .
to ascertain the presence or absence of the specific anticipated
pertprbations of the rotational motion among the odd-A rare-
earth nuclei, and to identify and study experimentally such
other features, especially the vibrational states, as may be
present. This would provide valuable experimental checks on
further implications than have previously been considered of
some of the reasoning behind the collective-model phenomenology,
especlally as i1t is applied in the odd-A case.

Section I describes the relevant theoretical consi-
derations regarding the collective models and explores their
relation to the more fundamental viewpoint of the internucleon
forces. In sections II, III and IV there are presented his-
torical profiles of the three nuclei investigated in this
study, Tbl59, Hol65 and Lul75. Section V contains a brief
description of the apparatus, targets and experimental con-
ditions, and section VI gives detalls of the data reduction
and of the cross-section calculations, based on available
single and muitiple Coulomb-exeitation theory, used in the
interpretation of the results. The results and their interpre-
tation are presented in section VII, and a summary and con-
cluding remarks are given in section VIII. Certain technical

details appear in the appendices (section IX).



A. Experimental

With the experlimental observation and subsequent utali-
zation of the Coulomb-excitation process for populating
exclted states of nuclel in the 1950's, a very useful tool
for experimental nuclear spectroscopy was realized. For
bombarding energles below the Coulomb barrier of the target-
projectile system, the only significant interaction is the
long-range electromagnetic interaction. Because the exact
form of this interaction is known from classical physics,
expressions for the exclitation cross sections, as functions
of scattering angle and incident energy, can be separated
into calculable "geometric factors"", and so-called reduced
electromagnetic transition probabilities or "B values" that
contaln information about nuclear matrix elements for known
operators, thus providing, in principle, a theoretically
unambiguous route to certain specific nuclear properties.

In Coulomb excitatlion the states most strongly populated
are the low-lying collective states connected by large
electromagnetic reduced transition moments, or large B(E2)
values. These collective states are arranged in rotational
or vibrational bands consisting of sequences of levels of
increasing angular momenta, whose higher-lying members are
not generally accessible to radioactive decay-scheme or to
nuclear-reaction studies, and are at the same time required to
obtain important information on the nuclear collective dyna-

mics. The Coulomb Qxcitation process provides a good
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complement to decay scheme work which preferentially populates
low spin states, usually the low-lying "single-particle"
states.

The connection of the B-value to the nuclear properties
can be illustrated by following Adler et al.l in their semi~-
classical treatment of the excitatlion process, in which the
Maxwell field is considered as a classical force field, and
the projectile relative orbit is taken as & known (hyperbolic)
trajectory. This treatment is accurate for the calculation
of cross sections as functions of projectile energy, charge,
and mass (but not scattering angle, for which quantal effects
of the field are significant) provided

. | 72:5_73.-_9%»/ (I-1)
& - hvg |
where Z, and Z, are the charge numbers of the projectlle and

target nuclel respectively, e is the electronic charge, and

vy is the initial projectile speed. The Rutherford cross

section is

' OIOE - —"O,ZSI'YFI’- Gm (1-2)

A T & 2

where 6, 1s the center-of-mass scattering angle, and a, half
the distance of closest approach in a head-on collision, can
be shown to be

a___.,_lx )7 (1-3)
where X 1s the rationalized da Broglie wavelength of the
"reduced-mass particle," |

mlml-g V, (I~4)
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The target nucleus alone is considered in a quantum context.
If the nucleus in its initial (ground) state, described by the
unperturbed Schrdinger equation

Hy | I, M= By | I, (1-5)
is subjected to the time-dependent interaction due to the
electromagnetic field of the passing projectile, then the
first-order time-dependent perturbation expression for the

probability of excitation of the state lIfo> is given by

b= ﬁffo\ B (6| Ty o'9Lft ar (1-6)

where

Ec-E
™1

Into this are substituted multipole expansions of the per-
turbing potentials of the Maxwell field (minus the point
Coulomb interaction responsible for the Rutherford scattering),
which are functions of the quantities)\,,A, characterizing

the multipolarity of the excitation process:jqp(t);izp(t),

and for magnetic excitations,.:p(t), spécifying the projectile
orbit parameters relative to the target nucleus mass center,
and the quantities M()’M)’ which are the nuclear multipole

moments :
M(Eh.p)=f/3’!,f(e,9)90i) dR (1-8)

i TN -
M= - [T @ L2 e,9)] ar.

Here L= -1R XV, and P(ii) and J(R) are nuclear charge and

current density operators. The results for the excitation
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cross séctions of an unpolarized collection of target nucleil

accompanying prbj‘ctilo scattering through angle 8, into dn,

2

are, for electric and magnetic 2*-polo excitations respectively,

&Zf - a-z)u-z B(EN) dfg, (6,8) (1-1
an "hv, v, Ry I-10)
!Q zZ, ) =22 5oy Afy(8,8)
' a.n

Here tx(ei,g) are tabulated functions of the scattering angle
and the paramotorgz)')f - Ny s With Qe being the N parameter
for the final projectile speed v, after the exciting colll-
sion. These functions are the values of certain integrals
taken over the classical projectile relative trajectories.

In these expressions all the nuclear information is contained

in the quantities (see also ref.2, p.599):
*» - A M K - >
B(E)\)zg g‘ ‘e_[\PIM (R Y, (8¢) WI\M.(ﬂo\ﬁl\ (I-11)

B(M)\)'—'ga\",ﬁ’\ %&fn Y“*(e P)v- [ (/7.)[__‘~\*:\,_M n.‘)]d\n.\

which are essentially matrix elements of known operators with
respect to the (unknown) nuclear wave functions, and are the
same quantities (apart from trivial numerical factors) that
appear in the expressions for the probability of radiative
decay of the excited nuclear state.

The periodic table contains certain "rotational" regions
characterized by large static quadrupole moments, large

electromagnetic E2 transition moments, and the "rotational
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sequence" in the level energies and spins. Tﬁ; use of heavy
lons as opposed to protons or alpha particles, which appreci-
ably excite only one or two levels of the ground state bands,
has some distinct advantages. The Coulomb barrier is much
higher, so that considerably more center-of-mass energy is
avallable for the excitation process, when operating at a
fixed amount of energy below some criterion for the barrier
height. A situatlon disadvantageous for the perfoming of
accurate calculations 1s that the process is no longer
adiabatic, so that perturbation treatments such as illustrated
above fall to yleld accurate cross sections, but 1s more in

the character of an lmpulsive shock to the nucleus:

= - ~ y, AE nuclear frequencygi (I-12)
g -nf ni 2ECM ~ collision time &L

However, the multiple excitation theory of Alder and Winthor,3
which then becomes & more applicable approximation, predicts
that at higher projectile energies, and preferentially for
backward projectile scattering angles, higher order multiple
excitation processes become present at detectable percentages,
providing a practical way to reach very high-lying members of
& ground-state band, and several members of higher bands based
on vibrational or single-particle excited states. Other
methods might be the use of (u,xn) reactions to high-spin
members of a band, or population of high-spin intrinsic states
~corresponding to two or three nucleons.

From considerations on these lines high-order excitation

processes were Jjudged to be both desirable and feasible for

study on a heavy lon linear accelerator such as the HILAC at Yale.



B. Theoretical

For the theoretical understanding of nuclei, aside from
the accidental discovery of an exact dynamical theory and a
practical means of applying it in the analogue of the classi-
cal many-body context, one must take recourse to accurate
phdnomonological models of nuclei. This may be thought to
constitute a basic limitation on the use of nuclear structure
as a probe of nuclear forces. But, noting that generally
reliable methods for solving n-body problems have not been
forthcoming even for such simple known interactions as, for
example, pure Coulomb forces, even with possession of know-
ledge of the nuclear force, nuclear properties probably
could not be calculated without considerable foreknowledge
of the results. Thus, even if the exact form of the nuclear
force were known, observations of nuclear properties and
their phenomenological description would still be prerequisite
to successful formulation of a complete theory of nuclear
structure. In the absence of such knowledge, the models
that adequately describe the data can be studied in relation
to their theoretical foundations in terms of fundamental
nuclear forces, to check such information as may be avalilable
about them. These considerations motivate experimental
studies in nuclear spectroscopy and the correlation of results
with the predictions of nuclear models.,

An indication of phenomena expected in heavy deformed
nuclel is obtained by noting that, irrespective of the nuclear
dynamics, if the Hamiltonian .s formally identical to the



rotating rigid-body Hamiltonian

Te= ; 3 Wl Wy (1-13)

or

“Mu

/
Tp=% 'ltwtz (I-14)

in terms of body-fixed principal-axis frame components, then
- the system will behave in a manner similar to an isolated,
rigid, asymmetric top. Here uyk are components of the angu-
lar velocity associated with the net rotational motion, and
Zﬂv are components of the usual rotational inertlia tensor.
The inertia moments will not necessarily have values charac-
teristic of a rotating rigid body or, at the other extreme,
the much smaller moments characteristic of irrotational flow
in an incompressible fluid body with a time-dependent
boundary like that of a rotating spheroid. The values of the
inertia moments can be considered as adjustable parameters
of the model.

Deviations from strict quasi-rigid-body behavior may be
interpreted in a manner dependent upon the specific model
employed. One approach consists of assuming a symmetric top
formalism for the nucleus but allowing for centrifugal
stretching by permitting the inertia moments to depend
parametrically on the collective angular momentum. A second
approach, pertinent to odd-A nuclei, 1s to separate out the
angular momentum due to the collective motion of the body as

a whole, ﬁ; from a residual angular momentum, present in the



Euler Rotations

Z=¢,
A
P: Frome#lcoordmotes
A (x,,y,,2)=(r,8,¢
® frame 2coordmotes
g \ (x%,02,) = (r,8/97)
\
’ \
-6 \ Y,
\
%
\
\ / _
- A ’17|-"72
7 NG °
> = Y,
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Y (67¢1=2D_, (®,6,¥)Y" (6,¢)
ml
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absence of any collective modes, attributable specifically

to individual nucleon motions,'j’ié'jiz J;(j;4"§i). Even~

* even nuclel always couple to'Tf 0 1n the ground states. For
odd-A nuclel i1t 1s generally considered that even-even cores
up to the last major closed shell couple to zero intrinsic
angular momentum, and'j'resides with the extra-core nucleons.
For low-lying states jsresides with the last odd nucleon.

In both these approaches there occur terms in the Hamiltonlian
which, in conjunction with the symmetry requirements on the
wave functlions, result in deviations from the usual gquantized
rotator energy spectrum including, for odd-A systems, terms
characterized by alternate elevation and depression of levels

in a rotational sequence.
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C. Formal Theory of an Axially-Symmetric Top

In order to understand the nature of anticipated
phenomena in odd-A nuclei in the collective regions, certain
theoretical developments were explored. Some of thlis material,
which was written primarily for my own edification, has not
appeared in the literature in this form.

1. Definition of Dy (3 ,®,¥)

The D-functions arise as coefficients in a transfor-
mation among the spherical-harmonic functions induced by
a redrientation of coordinate axes in the following manner.

Of two Cartesian frames with coincident origins but arbitrary
reléthe orientations, frame 1 may be taken into frame 2

by the sequence of rotations: first, a rotation through

the angle @ (in the right-hand screw sense) about the Zq
axig, into the frame (5,,y,,j;) (Fig. I-1); then a rotation

of @ about the ¥, axis, into the frame (f, »%, +4, ) and
lastly, a rotation of ¥ about the, axis, into frame 2.

This results in a transformation of the coordinates of a point

fixed in frame 1 which 1s given by:

/%, cos & sin¥ 0\ 058 0-Sind\ feosF sinG 0\ /%,
y, |=[-s5n¥ st off O | O j-sindaspojy, (I1-15)
2, o o (/\sin@ O cwsd/\ 0 O |(/\2Z,

If the Euler angles @ ,@, 'P which specify the reorientation
are restrictedt’> to the ranges 0< $ < 2T, 08 @<L T, 0P <€ 2T,
then there is a one-to-one correspondence between sets of
angles and relative frame orientations. It can be shown‘“t5 that

the same net reorientation results from the rotations: first,
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through ¥ about the z; axis, then through @ about the
original y; axis, and finally, through @5 about the original
2] axils.
For an isolated body whose square and z-component of

angular momentum are hJ)(Jj+1l) and *Hm:

IR Imy=a(34)R2 sy (1-16)

Jz |Jm)y=mh | jm) (I-17)

framé 1 may be identified as a space-fixed inertial frame and
frame 2, a body~-fixed frame, the coincident origins being at
the mass centrold. Then a reorientation of the body will
result in a transformation of its angular-momentum elgen-
functions:

[dm) = Jm)' =D =R|Jmy= |Jn') (Jun'|R{Jn),  (I-17)
where |me 18 the same function of the new body-frame coordi-
nates L' as | Jmy 1s of the original body-frame coordinates,
with the original body frame playing the role of the "space-
fixed" frame. The expansion is valid because the reoriented-body
wave function is stlll an eigenfunction of J2 with the same
eigenvalue, but no longer of Jg, and the .jm) form a complete
get over m for fixed jJ. The expangion coefficlents are by
definition the D-functions:*

Dptn(8,8,¥9) = (n'|R[Jn) (1-19)
Corresponding to the two equivalent sets of Euler
rotations taking frame 1 into frame 2, it can be shown4’5

that the transformation operator R takes on the two forms:

Rz e~1¥ Jz-7, 1@ 0y -1 9z 3 (1-20)
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R=e 190z o107, 1P, (1-21)
The latter form 1s convenient since it contains only space-
frame components of the angular momentum. In a representation
in which J, is diagonal, \Jz"3m>=m‘hjjm>, the D-functions are
Dp?n(3.8@,¥ ) = (in' |e71872 0~107; 0-197 | yu) (1-22)
—o~1(n'®+m¥P )<jm'| e‘i®77, Jmy = o~1(m'®+ m¥ )dm?m( ®)
in which the matrix formed from the matrix elements,
(im' 67189y [smp= a4 (@) (1-23)
1s not diagonal.

There has been considerable variation 1n the literature
on the exact definition of these functlons arising from
different phase conventions for the angular-momentum operators
and elgenfunctions and from different definitions of the

Euler angles. The form adopted in this thesis is that of Rose.

2. Rigid Symmetric Top

The Hamlltonlan of an isolated rigid body in terms of
Euler angles specifying 1ts orientation with fespect to an
inertial frame derived from Euler's geometrical equations
and the kinetic energy expressed in terms of the angular
momentum 1s derived as follows. These equations are simply
expressions for the body-axes components of the velocity field
wlth respect to the space frame of points fixed in the body

frame. The velocity field is glven by v=wxr (v'=*'= 0), or

v X 0 -~w, uwh\/X X
X . :Q y

v, |= Yyl =Wz 0 - JI Y= (1-24)
\ ) 2
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in terms of the space-frame components. The body-frame compo-

- -
nents of v, r and < are

)-aaon(y). (o), ()4(5) o

whence

0 —W; W / -

W oo w20 =ROR (1-26)
~wWy W 0

Here G{ is the product of the rotation matrices in eqn. (I-15).

It can be noted in passing that

Vi Vx X AN L ;
()4 -onpeamn(p=or(f).

showing the form-invarlance of this relation. With a little

manipulafoz?'l)]one (ha)s Q( > (RQ(B( ) = Of-lﬂ/(gfl) (1-28)

Since z const in time, one has therefore,

2®(389)= 41[“ (94, (64, (®)] a0’ ; (1-29)
ﬁ.a'a"é +oz.'j‘g* O+, w*%woﬂh &' Q. (1-30)

Multiplying on the left by 10{2<23 and applying the rule for
differentiation of matrices with respect to parameters in
thelr elements, one finds
0 -0s®  singsind\ . 0 0 cos¥ )\ |
} €05 @ 0 sin@cs® | ¢+ 0 0 -sin¥ |06
-sin @sind -sinBes¥ 0 -cos§ sing 0

| (1-31)
+<'° é 8 @ :_Q_’E(cf); ;JZ:},)
0 0 0 W, W P
which reduces to
g)' --sm@cosfi +sm!’@ (1-32)
w, = s.n@sms?é +<osP® ; (1-33)
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or more succinctly,

0 cosT sint O\/[-sin® O O ) (I-35)
wa = -sin® cos® O 0 1 0 @
035 0 0 1/ \cos@® O 1 3

These are FEuler's geometrical equations.

Now suppose the isolated body has rotational kinetic

energy given by

N = - | > = - = L
T L D7 -Z" Z;Zwﬂz.mwy (I-36)
where W = y W = W ) s and Z is the inertia tensor,
:Z Wy
:z=j1><ﬂ->(n"ff-/zﬂ.>0\n. 5
R
<) being the unit dyadic. In particular,
z.- Z y ?ny ;'sz (1I-38)
Z}'X ZY}' ZZ;YZ
zX 2zy 22
and
] ) ) ,
> “n e T Z o o (1-59)
- ) )
Tor T Inz |z 0 2 0 ).
\ ) 7 '
L1 T2 Zz ° 0
In terms of body components, then,
o2
Tp = % Zl L, W3 . (I-40)

Substitution from Euler's geometric equations results in
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TR = ¥% [1]'_ (-3 sin® cosT +®sink )2 (I-41)
+ ‘Zé (3 sin@® sin¥ + ®cos T )2
+ 2; (écos@+:‘i)2]

An interesting point may be noted in passing by writing

this as

1 ! L] (I-Ae)
TR=%(A21+BIZ +c%)
and setting
/=4 2,:Z+z., Z,:Z (1-43)
Z,-2,, Z):Z,- :z,‘> Z, -z, | (T-44)
This results in an alternative form of T:
Tp = }é[ii (sin2® B2 +@2) (I-45)
+ Eé (sin@® einT T+ cosT B )‘2
+ %' (cos@?-ri)e]
which is of the form,
— { — —_—1 (1_46)
TRz%(A%+BI2 +015)
but with the coefficients
(I-4T7)

XA=A+B, B=B, ©C=°¢C.

The dependence of the coefficients of the "1" component of

inertia on ¥,®, %,T,® and® is changed, and the numeri-
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cal value of the "2" component is altered, but the structure
of the Hamiltonian is unchanged. It is therefore important
to be careful what is meent in discussing deviations from
equality of the "1" and "2" components. One can note that
21 = ig if and only if E; = 0, or that the second form is

convenient for treating small deviations from axial

symmetry. A third form of writing TR is also possible:

T, =% A Z +BZ, +EE;) (I-48)
2 ~5(2 vz Zaed(z]-2) Z-Z (1-49)
2/ =Z+Z]  z[-Z-F; % -Z (1-50)

B-=A-B=4-B C=C=C . (I-51)

This again alters the values of the inertia tensor
components and the dependences of their coefficients in
Tp on 2,0,T, ﬁ,@ and-i » without changing the form of
TR’ and provides a form that w ould also be convenient for
treating small deviations from axial symmetry were it not
for the fact that the value of Ea’now depends on the

-
size of X

2 L

Returning to the symmetric top problem, €, ®, T are
now taken as generalized coordinates. Working with the
form of TR using the conventionally defined inertia tensor

1 b} 1
components Ji, ﬁé, ﬂ%, one has for the isolated rigid

body the Hamiltonian TR = H, wherein the generalized
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momenta are given by

Pg : amégmé@i) | ete. (I-52)
) ‘

It can be shown by performing the indicated differentiations

that

P‘h ~sn@D 0 cos® EE =n® O\, O © tosT s\n® O

z \ olo & o -sm& wsEo

Pe |=| © snd cx& 0% 2 > (I 55)
52 © %4

-S\h® © 0 . ' §
o o> ®/ = = @9 §@<@>
Cos®@ O\ D/ ad

. 334 i@@) ;
and hence, X

3 ¥ ' Pa
. - LR R PO ~ o~ - (I-54)
®\ @' T2 TGP |- ® T IO rg |,
] Pe Pz
where the properties Q“i ol ’ﬁ:'

for arbitrary
nonsingular matrices M; and where

- Iy 1 O
Gre o [t 0 cosb o [ 7 © (1-55)
T = | .
8B10® | o gin® O O & O
0 0 sin@ °© o &

TR in terms of P> 3;§ can now be derived. From the Euler

geometrical equations,
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w, cos¥ sin®T O Zsin® 0 o0O\/& 5(I-56)
w@ # [-8in® cos® O 0 1 0|®|=3® @ ,
L«)B 0 0 1 cos® O 1 3.2 4

one can show that generally,

il ss AU /
Te Zg%wfzuw)"z(w‘w"o%) —JZJ_, Tad Ly “

zu/ zl:_ :2!3 i > (I-57>
EEVE SO

e 2
:é‘.(i@&)@ii'f?@(@g) )

or in particular, for the case .2§_j ) .

i 13
Pz 3 (I-58)
o |=BEZL IO O
PO T

and . AL
Pp &+ %@*ngf(i@i) P®>

s Py (1-59)
(68 5T @(@} o
or E " b
A
Tet(EO ) P@> : (1-60)
Pg
But _§ ' P§ |
i = o ~. P
@ = @ E Z E @ @ ¢ ) (1-61)
§ Pz
Hence

(§®§) = (P By Pg ) @'@ 7' @5" , (1-62)
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from which follows, )~ EQ (1-63)
L Yo'y v e |Te 1o
TR’Z(P§P®P‘P)®\P2 ve Py

' o snB O sin? cos¥ o0 c>I & <'> siny ces? oo sin® o Pe
Pe

! =TT ,
=E(P§‘>®P~Y sin*® cos® 0 sm@/\0c o I/\0 o .:;(-3. o o I/\e o sin®
So far the order of the factors has been preserved, so

- 0 o \fos¥-sin¥ o ?KL’ o 0 \fcos ¥ -sing o)/~ © coSOXPcP

that in the quantum context, in the coordinate representation
)
wherein ps -if\—a—*, [p, f(q)]:?S 0, operators take the form
&= £(a)p, C5T=jp*f(q*). The momenta canonically conjugate
to the Euler angles are angular momentum components about
the corresponding axes, and in the quantum coordinate repres-
entation employing the Euler angles are given by the differ-
9 9 E)
entjial operators -1k 3% ° -i‘h 36 ° —1JE1 3¢ In any represen-
tation they do not commute with functions of the angles.
For a general angle coordinate ©, the canonically
conjugate angular momentum pgZ Lg satisfies
= 44l -
[P » £(0)] = 1haf. (1-64)
Then péF( $,0,¥)=F( $,0, \P)pqs-ih%%, etc. This complicates
the explicit calculation of the operator for Tr in the form
with all the p's on the right. The expressions become much
) ) ) !
simpler however in the case of axial symmetry,.?, 32152 # 23 ,

for which direct calculation shows that

| \ 2 2 4 ces® L
Tf'i{?[?a?\*_é(l-@'c“ @Lé) +Lg-ik ?'.?\'B'Le]*:z; Ly } (1-65)
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if

. > 2 2 -
-ih ok L® = -h -éa@-; R (I-66)

L®

or

11, 1 2 2] 1 2
T_R =5 {a' ['s'l_ﬁ?@ (I.§ -cos@LQ) + L® + 5.; L? },(I-67)

identical to the classical form, if

= _sx 2 2 _ a2 _1 d : P
L®- lk _B@’ L® j.’l E:Tn—@ -5-@ (Sll’l@%) (1—68)
2 > )
fh ( .3@' + COt@a—@)—)e
TR may be expressed in terms of angular momentum
components about the body axes, written in terms of the
Buler angles, as follows: from the transformation
properties of vectors or pseudovectors under proper

rotations R (2®T): (x,y,z)->(1,2,3) (space frame —»body frame),

which are assumed to be the same as for the coordinates,
1 X (I-69)
21=REO) |7
5 2

one can set analogously to (I-14,15,18),

L, Ly Lei ig (I-70)
L | = RsD| Ly [ | Ly |= R®)| Ly |
Ls Ly by 21

Ly x

i;’ -R® | 1,
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Noting that the canonical momenta

: - (I-71)
Lg g D L Z@@Q) (L)

®--\’F\ 3®-Lq,‘(§®§) ( )

gzl 3@@@){ }

are the angular momentum components about the specified axes,
and hence pseudovectors, one may express L., I@, LE in terms
of Ly, Ly,
for L

X3Y12%2,1,2,3
on compounding of rotations through infinitesmal angles’

Lz or of Ll’ L2, L§’ which can in turm be solved
in terms of Ly, Lgy Lg- Arguments” based

give the same results. The results are:

L, (209%) = -1h( Eo—:?ﬁ% -sing$ gggé a?)‘z (I-72)
Ly(E@Q) = -ih( 5%%{—0@@5%4—00@-5@%—% 2

L,EOY) - -1h R

1, G0D) - -ine® (prky 000 pes ]
L,EAT) - - L(-E-0-F) (1-73)
1,GOY) = - L (-F -B-3)

Ly@EOD) = - L,(-3-@-F) = - ih =%

L, @D - - L(-T-0-3)
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IZ@OD+IZEODIEEHT) = 1 EOD+I5EOD+ISED  (I-74)

2 2 @ ’,‘ 2 >
:l°@e®) = -h [j@': S 5%3 E'i'ﬁ'eé (ar 3 siggg aﬁaa@i'

Here L, =L +iL,, LfFLlﬁL2’ From these expressions it can be

J
shown that
(1,8, 1 EOD] - + ihL, @D et cyel., (1-75)
but that
(1,60, L,@8D)) = - thL,EOD) et. cycl. (1-76)

In terms of these quantities, TR becomes
. yz[l P@en « (L -1, L2(§®§):I (1-77)
23 Z 3

The D-functions defined above are eigenfunctions of
Ls(§®§), LzC§®§°), L2(1®§), and hence of Tp. This is easy
to prove for L, and L3’ In the gpepresentation in which L,

is diagonal it was noted that
Dpig EOT) = e 1(@EIE) 4 (g (1-78)

with the .immediate consequences,

LZ(I@)I)QfK(i@}): -th -j—i D,f: (E®E)=% M qf: (3®T) (I-79)

L(ZORIDL (3O ih 5 5 Do (2O 1D (3O F) | (1-80)

The following relations can be derived from the commutation

relations:4'7

L*(60F) Dax (§0F)=H'T (1+1) Dy (§0F) (1-81)
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(1-82)
LTI (302): HC, [FFMinn) D, % (208)

La(@09)Da@0¥) = K¢, [(Tzx) tskel) D 1 (40¢)

MKEI
where C,, C} are phase factors, \c,\:'c;‘: 1 , of which

(1-83)

mention will be made below. Then also,

2z Z

3

(R +1)- 1 3 I* )
TeDme(g09)= (1« 5 )DMK zed) . (1-84)

3. General Classical Rotor

Suppose there 1s a body of unspecified content which
moves essentialiy in the manner of a fluid (possibly a rigid
or elastic solid), that can have 1ts content and motion
specified by a mass density /JM(ﬁ,t) and a velocity field

E;O?,t). In the center of mass frame the net linear momentum
— 5N —_— e A =
p#M(n,t)M(n,t) ar=0 , (1-85)

where the integration 1s carried out throughout all space
for which /OM(ﬁ;t)>0, that 1s, throughout the body. For
convenience the origin may be taken at the mass centroid,
which in the absence of external forces acting on the body's
material will be unaccelerated.

Now a number of convenient definitions will be intro-

duced. With the origin at the mass centroid, for convenience,

define an instantaneous local angular velocity field vector

@D (R,t)
FERH=DERE)*A (I-86)

and analogously
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(R t)=p, (R )T (A, £) (1-87)
T (RA) =R P =y (Bt) Ax7 (R, ) (1-88)
fmn%(wxn)- (AR T -TRR)

P

A (/Lt[/tj’b K w(ff,f)
where & = 114-3j+ 1s the unit dyadic. (In general, I mean

_)
by'?, a vector; V, a dyadic; 9,_& unit vector, ete.) Define
in conjunction with the local instantaneous angular momentum
density a local instantaneous inertia moment density
!(n’c) /JM (R t) (R~ &/L) (1-89)
ThenX (n,,t)— (l (R,t)0 (&,t). Define a nonrelativistic kinetic
energy density
—
£ 25 paRO [T Zol=1T. 33407 . (1-90)
Now, with the otherwise arbitrary body so localized and
constituted as to make all the relevant integrals converge,
the gross rotational parameters may be defined and separated
from the residual or "intrinsic" velocity fields. Define an
arbitrary net rotational component to the overall internal
motion of the body:
J —
B v ()= R (1-91)
where {1 1s now 1ndependent of R . Let D(R f)‘!l(t‘ w'(Rt)ana
"l =
'V'(n. t)_w,% (_Q*w')X/L N-R.,.w x/,‘ /V;'UW" . ~ andw'are the
residual velocity field and its associated residual local
instantaneous angular velocity field. Then
,?szM/t*(Na-w') 10 & (Do), (1-92)
and the total angular momentum, possibly a function of time

but independent of time in the absence of external torques,

and the associated inertia dyadic may be defined:
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T ) ‘/‘T(xtax'fudn‘/ﬁdnﬂ+ﬁu:an (1-93)

=1(y)- <)+f4(nt DA AR

At this point the net instantaneous rotational velocity

vector of this arbitrary body may be defined by choosing

(1) = g (1), (1-94)
s8o that |
f] (R,t) ©'(t)=30 . (1-95)
Then | A
T1@ A0y T [PuFAt-du)dn, (-9

Even if L is constant in time, as for an isolated body, both
- -
I and{lg still may be time-dependent.

The total kinetic energy is
2 -\
T= [£ @047 = 5 [P0 dR=2)@ R4 oo
3o, [Rx@ mlld7 = 4 (FR-La) 3]

-

=4[5 4842 =3 0®-T0). n_(t)
The second+‘t£-£r[mali.?‘a+n ? ]alj""‘ fw ol .
[f“ ‘Q d D‘ +9—qu _-”JJL.] (1-98)

/ -—
For the special choiceﬂ QR, for which f‘ﬂ-'A dn 20 ,
-—

L

o I
£

and sinci \0 is a symmetric dyadic, one finds thatw N
or fﬁ'-Ia\}tE D . That is, with the rotational component
to the mQtion that is related in the conventional way to the
angular momentum, the cross terms in the kinetic energy
expression vanish. Then,
T TR + Ty 3 (1-99)

Tz O NOD t) ﬂR t) (1-100)

L=-,'_-j<‘,3’(n £ ) DR L) dR
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provide rotational and intrinsic pomponents to the kinetic
energy. All these quantities may be time-dependent; even in
the absence of external forces, T may change, with an accom-
panying change in net potentlal energy of the body configur-
ation so that T(t)+ V(t) remains conatant. Even with T
identically constant, Tg and Ty can undergo compensating
changes, and even 1f Tg and Ty are constant in time,zahgf%
and 3', 3 need not be.

The Euler angles ¢>,€D,'P connecting orthogonal refer-
ence frames with coincident origins at the mass centroid but
different orientations are convenient for -the discussion of
kinematics and mechanics of any bodies which display approxi-
mately time-invariant surface configurations, apart from
orientations, such as the‘rotational nuclel under discussion,
and may be conveniently introduced at this point into Ty
Just ag with the rigid body above. But now the kinetic
energy is divided into rotational and residual parts, and the
inertia moments and angular velocities are related to a
qulte general velocity field. In this way the concept of a
rotation is generalized to a universal formal aspect of
internal motion, from the usual conception which corresponds
to time-independent inertia dyadic and net angular velocity.

A pure rotational band, however, is the signature of
the presence of the more specialized uniform rotational
motion:-ﬁRE co.nstant in time. In choosing ﬁ&? constant in

—
time for an arbitrary system for whichusz.as defined above

1s time-dependent, but using a Hamiltonian Hgo= HR+Hj is
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tantamount to neglect of the now non-vanishing cross terms
ﬁ.ﬁ'(c)dﬁ‘ which provide those terms responsible for

"rotational-particle" and rantion—vibration coupling, and
also to taking T’L(C)=’;_'f55'(‘>. I.Z}'G)Jﬁ with respect to Zj/(c),
not Cy(t). The smallness of these mixing cross terms is the

measure of the "extent" of a pure time-constant rotational

component in the true motion.
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D. Collective Models

l, History

Many features of nuclear dats for heavy nuclei, in par-
tlcular characteristic level energy and spin sequences,
fast E2 transitions, and large static quadrupole moments,
suggest the existence of modes of motion in which the entire
nucleus contributes in é collective fashion. Bohrb, and
Bohr and Mottelson8 'introduced a phenomenological model for
collective motion in which they represented the nucleus as an
incompressible charged fluid body whose boundary is given by

R - R [l_._gz o Y/‘(ecp:l .‘ (I-101)

and for which tHfe flow pattern is irrotational:

-—

Vxv20 , W(R)=-Vo(R) . (1-102)
With small values of the deformation parameters . which al-

)YA

low the simple-harmonic approximation to the potential energy

function, the Hamiltonian was constructed as follows:

T=-l' B =-l- _l" ’IT z
122 ol z%% 2, | Tl
(I-103)

My S o = B, %y,

M ELIW /*I 1, S '

e = T+ = 2 lrer\ . )\
The motion consists of sidble-harmon ¢ oscillations, or pho=-
nons in the quantized version, with energytﬂd*¢\§:, where Cx

Iy

is related to the Coulomb repulsion and the surface tension,
B% to the effective moments of inertia. The terms with Azo0
and.}:l, corresponding to radlial compressional oscillations

and (to first order) translations, respectively, are excluded
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from the low-energy phenomena of interest, so that the lowest-
order non-vanishing terms are assoclated with the quadrupole
surface deformations, A = 2.

The empirical data suggested definite regions of the per-

odic table, A~15, 150 £A <190 and A=2225, not too near the
"megic-number" nuclei, where the nuclei displayed well-deve-
loped rotatianal structures characteristic of appreclably
nonspherical equilibrium shapes. For an irrotational flow the
moment of inertia about an axis of symmetry is small, or may
vanish altogether, and to the extent that the real nuclear

flow pattern approximates irrotational flow, the energies of
states corresponding to rotation about a sSymmetry axis will
tend to be large. The well-developed low-lying rotational bands

then imply the large static deformations. In this case it

was found convenlent to choose a body-fixed principal-axis
frame and to redefine the surface parameters (considering only

A=2 terms):

2
Ay =>Z;5%V* E;i,(i;@hf)

Gom= vg_} Ay Qf;(@, e,%) (I-104)
aA,, :ﬁ cosY

Ayyr= jlz_/gSinY
Then the expression
C R=ER[I+2axY 60 97] (1-105)
describes the nuclear surface in the body frame, and 6/,97/
are the new spherical coordinates, as shown in Fig. I.1l. For

convenience the new constants Q,.are replaced by certain
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functions of them, which forA=2 are the five independent
parameters @, e, LP,/_;, Y, the three Euler angles specifying
the orientation and the other two the shape of the most gen-
eral quadrupole surface deformation. To first order in the
deformation parameters this surface is an ellipsoid with, in
general, three mutually unequal semiaxes., For the general
A-surface such shape and orlentation parameters are denoted
by F)‘/A e Possible motions assoclated with the quadrupole
surface are the rotations, and shape oscillations involving
changes 1n the parameters/B and Y known as beta- and gamma-
vibrations. With the assumptions of rigidity agalnst gamma-
vibrations, the small-amplitude simple-harmonic approximation
of the potential energy function for beta-vibrations, and
irrotational incompressible flow, it was found that the

Hamiltonlan separated into several parts:
V=1C. 6 '
Tk (I-106)
| P IVEY i 2! _
T‘;Bz (/3 +(3 Y )+'£ 2{%’; Z( = TV +Tp\

Here, .
' 2 . 'z.('(_ 2\ ‘Z" &
o= N —_— = —_— I-10
L ‘+Bz/3 s 3 ) ‘e & (I-107)
are the irrotational principal inertia moments,
N :
£ = |- (-R_‘— et. cycl, (I-108)
3 R\

are the eccentricities of the (approximately) elliptical

sections perpendicular to the 3-, 1-, and 2-gxes respectively,

and _ + L; ( )
VT T I-109
qf zt'

are the operators for the body-frame components of angular
momentum in terms of the Euler angles, The Hsmiltonlan oper-

ator in /3- T-$-6-9- space became
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'k’- | 9 ¢ 9 ) [ P '_)] % Lz(é 4‘,) .
H‘ ?.Bz{—"r BV 9 (3 sm 37 37 (sN3T Z 2C2/3 (I-110)
The Schrddinger equation was separated into equations in terms

of the coordinates (3,7, and the rotational coordinates @, @,

\P. The total wave function was written in the form

b(p.¥;909)= f! (mm $e¥),
d, (GPOY): Z az 1) Do (30F) -

A suitable choice of phase for the Z) -functions 1is discussed

(1-111)

below. It was noted that for the case of axial symmetry, Y= 0
or T , only one K would contribute to an energy eigenfunction,
and that the Z’-functions_satisfied (1-79,80,81).

With restriction to right-handed coordinate axes, it was
noted that there are 24 different sets of fSVAcorresponding to
& given set °f<X3M’ all mutually related through repeated
applications of three basic transformations: reversal of the
"2" and "3" axes, rotation of 90° about the "3" axis plus rever-
sal of the sign of ¥, and cyclic permutation of axes plus
subtraction of 2W/3 from { . Single-valuedness of the wave
function in O(.‘/A required invariance of (FZ/A) under these
transformations, which when taken together with the symmetry
properties of the jj;i—functions implied certain restrictions
on the "partial" functions fge) and g(¥); e.g., that g(¥) be
some function of cos 3% with the range of 7 restrictéd to
0&Y& T /3,

For o0dd-A nuclei the unpaired nucleon was treated as an
entity separate from the even-even core:

H=Hg + Hy+ Hy (1-112)
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where to the collective core Hamiltonian are added two terms,
H%lT§+Vb is a éE?ll model Hamiltonian with a spherical well
potential with e term, but in later work of Nilsson9,
Gottfriedl0, Lemmerll, Davidson and Chil2, and others it is
taken as various deformed wells with harmonic oscillator or
more realistic radial shapes, 70’3 and f2 terms, or even non-
local potentials, and these were takeﬁ to depend on the in-
trinsic particle coordinates j;'andg parametrically, on the
shape parameterS/B,'Y. H, denoted an explicit coupling term

i
taken of form

H --k.(ﬂ.)z tx/,, Y’M (6,9) (rI-113)
to first order 1ncx5“, which arises from expansion of
p(ﬁ,o(,/‘,,) about 0(/ 0.

In the regions of nearly spherical nuclei, between the
magic number nuclei and the rotational regions (Fig. I=2),
the odd nucleon was conslidered as coupled weakly to the sur=-
face configuration and strongly to any specified space quan-
tization axis, so that

BeHo (0l )5, (R)+H; (ﬁ‘,o(,/) (I-114)
and the only collective-intrinsic coupling was contained in
Hi, which was treated as a perturbation. In the deformed re-
gions, the particle was considered to be strongly coupled to
body-fixed axes. H, was put in the form Hi(/?"ﬁz/d)’ and a
deformed potential well was used. In the "adiabatic limit"
such a well will rotate slowly compared to the particle
motion, and non-adiabatic effects such as centrifugal

stretching of the nuclear core, which determines the well
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shape, and the Coriolis force can be treated as perturba-
tions. The total angular momentum was divided into collec=-

tive and intrinsic odd-particle angular momenta:

T -ﬁfj (I-115)

T-T@ed); 1« = il (I-116)

-j;f e VAR AR ¥- g -J'A*—j‘*fj (I-117)

Tr=3 2 t;?"z (1-118)
;

In the representation in which the angular momentum compo-

nents on the "3" axis, 13 and j3, are dlagonal and have ex-
pectation values K and {1 respectively, for irrotational flow
the problem separated into equations inﬂ -7:%,0, J 3 and
intrinsic (body-frame) odd-particle coordinates /1. s with the

total wave function becoming:

(I-119)
U 2 L1 (1) %0 (7) Bt (00)
Symmetry conditions for this case required a function of the
form (1-120
]

R Palp [ hal 31,30 Do) ) A ptidod) /D, (o9

for whl;.crh K-Q=0,22,% 4ye.. only. In the adiabatic limit of
slow rotation,’)(,_n_(/_l\') will be undisturbed andﬁ and ¥ will
remaln constant. Nonadlabatic effects, centrifugal stretch-
ing which changes the inertial moments with 1ncreasing_li as
well as the values of /3 and ¥, and the Coriolis interaction
or "rotational-particle coupling", can be treated as pertur-

bations., - They have effects both on a single pure rotational
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band because of the wave function symmetrization, and in the
case of several rotational bands based on intrinsic or vibra-
tional states, arising from band mixing. In the caée of
axial symmetry where onlyone K-term contributes, the Hamil-

tonian was found to be:

H=H°+ U (I-121)
where

- o)

Ho- TV+V+HP+ H1+TR (I-122)
o_tz t1 2
U= U1+U2+U3 3
) P ' ,

U1= —-2--,-1' N ——,- Isz (Coridlis interaction); (I-12l)

orlEe- i Bhcpu )

2/ |
oo Fl- )1
Hy = -'-l(CJPCoS Y(3j31-jz) | (I-125)

(Effects of nonaxiality);

The approximations for U2 and Hi are valld provided one
spherical-well wave function predominates in x.nf.zcjx" °

Hi 1s an explicit collective-intrinsic coupling tJer'm appro-
priate for smallﬁ ,,Vz-é-_C,/}" is a deformation energy, T# is
the vibrational kinetic energy operator, and Hp is the odd-
nucleon Hamliltonian. In the adiabatic limit H%Ho, whose
eigenfunctions, the zero-ordep pure rotational band functionsg

were given by
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T °
Ho@mxn =EN cpmg_o_ ("s" for symmetrization), (I-126)
B = ban (1) Xn Dt #0 V, D | zaem)
H, = T, +W(B.Y) (I-128)

o
where W 1s independent of —— and s Which is equivalent

2
6/& o ¥
to neglect of the vibrational kinetic energy in H,. Upon
substituting V =%C‘F‘ and 2;'=4B‘/3‘s:n‘(5'(- _E.;r.i) from the
irrotational flow model into the terms of W, it was noted
that a crude estimate of equilibrium deformation /[5,, Y.
could be calcuted as those values of and ¥ for which
<@,W-HP|@> is a minimum. It was found that, where one
j predominates in %,, Y, = 0 if 30%¢ 3(j+1) (axially symme-
tric prolate spheroid), or Ye=T 1if 30*> j(3+1) (axially
symmetric oblate gpheroid), and that if ¥z ¥, then ﬁo is a

root of the aquation
c.B-3k¢y|30n 'J(j‘*l)‘ ﬂ [I(IH +j(]*1)- 2-0-] o (I -129)

which has just one vositive root. Then

W((.;,X) ~W ([3°.Yo)+-'ic/3 (/3-/30)1' +%_C7 (‘(—'{o)"' (I-130)
where

B.‘/3 [I"')*J(_)‘” Z_QJ

@

2% .t -
S img20] w3

Cy® 3 ‘-3(3+1)'+

The latter terms in C, and C,, small for large equilibrium
f f

deformations, are in the nature of vibration-rotation inter-
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actions. Neglecting these, the potential for vibratlons, W,

is approximately harmonic:

¢(/3.7)z $ (/3)4: (Y)
H 43 [W(/&o"z( +Eﬁ +E1]¢(/3 ) (P-/B,,K'%srna“);

%
= 2t +t +"' n =O,‘)1)"‘;
B.Ry P
(I-132)
Cy
E =t (h""l) —0 2,4y e+ (no 0dd ny because of
3‘ ° symmetry)
The matrix elements of U with respect to @Imm. were

expressed in terms of

<ﬂ|:‘)*0lﬂ*>=ﬁj$n)(j*ﬂ+l) , others 0;

(I-133)
K| Lo |k = [Tagyreeen » others 0.
It was found that U1 connects the state IK, _m:]>
and )K’Fl ns 1> 3 Usy | K00 with ,K,,Qt2> and U, K,.ﬂ.>

with lK:hZ,ﬂ.> o The effects of U were small in the strong-
coupling 1limit of large /30, and were treated as perturbations,
Kermanllt considered the perturbations arising from small
nonaxiality (UZ’ U3) and from the R.P.C. (rotation-particle
coupling, or Coriolis interaction, Ul) term, along the fol-

lowing 1lines: the Hamiltonlan was written in the fomm

H=Hp+Tp +tp=H+ty (I-13Y)
where tR 1s the R.P.C. term for the case of axial symmetry,

written in a slightly different manner:

JH‘L . .
tr == 3@ (Ll tLoju) (1-235)
H@ is the deformed-well single-particle Hamiltonlan above
k2,2

plus the term ‘i—fi;" J , and for which.
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S ° S e t‘ (1‘136)
= +——— -ﬂ, —— ]
<q/1nm‘H \Pmm> Ea T )+ [M Enm. '
For the case of an isolated band with K=, and including

vibration-rotation interaction, he gave
(I 137)

~ o )] I“’.i (1) o
EIKQ=K~€K+€K [_I(Ia-l)*-gklzo.(-l) (I+Jz-)_J—EK [I@+1)+8 L°-("> (I+;):]
For slight nonaxiality he listed the additional perturbations

In the following forms:

=H U+ E o H T (7)) (I-138)
TRl ‘ :

e —4-( 1 1{)(I+'J+'+I—")")
SR Ty ALESUR DAY R SN

o' —3‘(2.' z{)(a,,dyﬂ-'l-') (I-139)
v REf '

H3 = _Eg__(-:—r-";-— zz')(]:*,l*. [ IIO)

V' (') = axially asymmetric component of
: particle potential,

Of these potentials Hl' is related to Ul-tR, H2' 'to the first
term in U2, and H3' to U3. He noted that these; in contrast
to tR, do not preserve K- as a good quantum number, The
zero-order (axially symmetric) energy expressions were taken
with 2' set equal to the harmonic mean of 7:' and 2,_'0 In
second-order perturbation theory H3" produced a negative
I2(1+1)2 term, H ' and H3' renormalized Z' , and H,' and

VARY l‘?') renormalized C: « These assertioens hold as a conse-
quence of the formal structure of the Hamiltonian, irrespec-

tive of assumptions about the actual values of :Z. o It was

noted that centrifugal distortion, which changes 2“ ’ will
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have the same general effects on i' ’ E.:. s and will produce
the same type of vibration-rotation interaction term as H!,
The possibility, besides K= 1/2 decoupling due to sym-
metry, of band mixing involving excited 9ddd-=A single-pérticle
states resulting from the Coriolis interaction was considered,
An exact diagonalization in the presence of two zero-order
pure bands of the Coriolis term was carried out, and expres-
glons for energy perturbations and admixed wave-function am-

.
plitudes in terms of the quantity AKEl<7<-K|'{*z" J-"’X’HD

were presented. The effects were a renormalization of %/
and the introduction of an [I(I+1)J2 term that under cer-
tain conditions (small inertia moment of the inter-acting
band compared to the ground-state band) can be positive.

It was noted that an effect of R.P.C. in a more "self-
consistent" type of calculation provided an explanation of
the moment of inertia associated with the rotation, on‘’a per-
turbation approach, as the effect of tR’ introduced to repre-
sent the presence of rotation, operating in the second order
of perturbation theory over all the particles comprising the
nuclear state with the non-rotating self-consistent deformed
potential, The change 1n the total nuclear energy due to the
impressed rotation, which 1s the sum of the perturbations on
all the single-particle or shell-model energies, turns out to
be of the formls’lé, (coefficient) xu)a, where (W 1is the
assumed angular velocity of the body-frame (the "cranking"
frequency), and the coefficient is interpreted as the corre-

sponding inertia moment. It has been shownl7 that substi-
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tution into the "cranking formula" for the inertia moments of
unmixed deformed shell-model states ylelds the rigid-body
values. This is true for any system of fermions, interacting
or not, so long as they are uncorrelated. Mixing due to
Coriolis (or other) perturbations reduces the calculated ef-
fective inertia moments to values more nearly in line with
experiment, and provides a qualitative cause for the observed
lower I‘ values in odd-A nuclel than in adjacent even-even
nuclei, where the admixed intrinsic states produce smaller
energy denominators because of the even-even energy gap.

In this regard theoretical work appears to lndicate that
the use of two main types of residual interactions in the
framework of independent-particle models, the Bardeen-Cooper-
Schreiffer type pairing interactions (e.g., ref. 18,19,20)
and the Elliott or quadrupole forcezl can reproduce most
gross dynamical nuclear properties. The former 1s diagonal
in the seniority angular momentum coupling scheme and can be
defined by matrix elements which are non-zero only between
the |33€>"3,—+€> pairs of shell-model states and appreci-
able only between pairs in the same major oscillator shell,
and favors spherical equilibrium shapes, in fact allowing
spherical shapes for some non-maglic nuclei that would other-
wlse have small but definite calculated asphericlties, in
disagreement with experiment. The latter favors larger de-
formations and, acting in conjucfion with the palring force,
produces the sudden onset of deformations at the correct

values of A. These two residual interactions permit electro-
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magnetic transition B-values, static electromagnetic moments,
energy gsps in even-even nuclei, moments of inertla, etc. to
be calculated in wide ranges of nuclel with some success, Ih.
particular, the pairing interactlon gives calculated inertia
moments In good agreement with experimental valuesl, repro-
ducing the rather wide fluctuations in values for odd-A
nuclei rather well.

Alaga et a122 gave Intensity rules for gamma transitions
between members of pure rotationsl bands, for the axially
symmetric case, without R.P.C. mixing but including the

2

. I+
- = —0.(-! A
first-order decoupling energy correction [S%kc 22'01 ) (+z)5K£

and the vibration-rotation interaction energy, which for the
irrotational-flow model 1s

3 l e 2
- - + I-140
AEVK 2[(1: wp)" (‘ﬁwx)‘} ' memk (I-1L0)

as part of the "zero-order" energies. This topic is dealt

with below. Kermanlu also considered interband and intra-
band B-vaslue modifications due to Coriolis mixing of baﬁds.
Bohr and Mottelson23, in a paper presenting details of Alaga
rule modifications, noted that (as of 1962) experimental ac-
curacy of measured B-values was ~ 5-10% and had not produced
evidence of deviations from the large collective leading
terms in intraband E2 transition probabilities, for which

estimated deviations due to mixing are £ 1%

o

Because of the outstanding success of the shell model of
| the nucleus and because of the theoretical justifiability of

the model 1n spite of the strong, short-range nature of the
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nucleon-nucleon interaction (essentially an effect of the
Paull principle, which acts to inhibit most free-nucleon scat-
tering processes), the nucleon intrinsic states in the rota-
tional region have been calculated on a deformed-well shell
model by many asuthors. In the absence of complete self-
consistent calculations for heavy finite nuclei, recourse had
to be taken to assumed one-body potentials, adjusted to re-
produce observed nuclear shell structure, ground state spins,
and other pertinent properties, and to be consistent with
requirements on the true self-consistent potential resulting
from the observed characteristics of the nucleon-~-nucleon
interaction. Of the different deformed shell models devel-
oped the most readlly employed is the Nilsson9s 2k model, for
which tables of eigenvalues and eigenfunctions have been pub-
lished. This model uses a (rather unreslistic) simple=

harmonic axially symmetric anisotropic local potentigl with

=

s and {2 terms, the latter to represent the momentum-
dependence required in the true self-consistent potential,

The more sophisticated calculations- (using more realistic one-
body ppxentials) do not give substantially altered energy
levels as functlions of the deformation/s, although they do
give somewhat different spherical-shell model components in
the eigenfunctions, which may, for example, account for some
of the B(El) values in odd-A nucleil that even Coriolis mixing
of the Nilsson wave functions cannot reproducegs. An approx-
imation to self-consistency was obtained by calculating the

sum of single-particle energies for all the nucleons as a
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function of the deformation and using for equilibrium defor-
mation that which minimized the sum of the single-particle
energies, The calculated deformations agreed for the Nilsson
model quite well with the values of the deformatlon obtained
from measurements of spectroscopic quadrupole moments Q to=-
gether with the relation of these and the intrinsic moments
Qo (moments with respect to a principal-axis body frame)
characteristic of the rotational model, and also gave correct
ground-state spins, in the region 150 ¢ A ¢ 190.

In the core-plus-single-nucleon picture the polarization
of the even-even core by this nucleon was accounted for by
minimizing the total energy of the odd number of nucleons to
produce the equilibrium deformation and using this as the de-
formation of the even-even core and as the shape of the
Nilsson potential for the odd-nucleon intrinsic state,

2. Theoretical justification

The core-plus-nucleon model 1s useful for classifylng
nuclear states, as abundant evidence showsl’zu, indicating
that it 1s a fairly close representation of low-energy
nuclear behavior. There have been three maln approaches26 to
relating the model to more fundamental considerations,

In the first method27’28’29’30 collective coordinates
are introduced by a variational procedure. Letting ¢(ﬁ:,d)
be a wave function for the n-body problem, for example a
Hartree-Fock type of self-consistent function that depends

parametrically on certain quantities {, the function

b ()= [P (Fi,o) % () d ok (I-141)
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is formed, for which the variation equation

8[<¢|H|¢>-E<¢l¢>]=o (I-142)

yilelds a Schrddinger type equation in &, all of whose
elgenstates have the same intrinsic structure, LP (/—1.7, AR ).
The X (X) 1s chosenso that ¢ will be an eigenstate of
total linear and angular momentum operators expressed in
terms of O and -.l'r\;%(-, a property not possessed by the
straight Hartree-Fock solutions. 1In the case of linear mo-
mentum the Hartree-Fock solutlons of H contaln components

from "ghost levels", various "excited states™ of the center-
N

of-mass motion, S P“&
L
<q’n.r.|HH)H.F.> = Eo t 22lm~‘ . (I-143)

For any £ 5 Y, (R +'§) 1s degenerate with W, . (1) -

Then a solution comprising a linear combination of these,

cP(E)"f‘Pu.r.('ﬁ*é)X(g)alg (I-14k)

will usually remove the gogeneracy; the choice
— -t P
%(§)= € (I-145)
causes¢ to be an eigenstate of the total angular momentum;
the lowest energy eigenvalue will correspond to P=0, The

"ghost states" of center-of-mass motion are eliminated. The

energles E - <¢| H l ¢
e I (I-1L6)
can be shown for small values of

P=Golel4y, P=2R (1-2k7)

to be givin by @2 i ¢|H|LP><¢|@"‘~P>J
EF—[Q‘PIHH&— <ol lﬁil;‘l‘?) ' (I-148)

Lo {CUHEYD - R D QIO D)4 sy + PL
e s ] 21
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where __'_ _ ( H(Pz> "<H><@t>
M {P*)* (I-149)
takes the role of the mass parameter as calculated from the

self-consistent solutions.

For angular momentum, one has
Prv (E):fx(@:)) Y[R o)) Jﬂgj , (I-150)

The choice I
%(8;) = D (6;) (1-150)

removes thé éngular momentum ghost states, splitting the
self-consistent degeneracy with respect to orientation, and
produces the set of non-rotating ground-state and rotational
excited state eigenfunctions of the angular momentum opera-
tors Iz, Iz, I3 expressed in terms of the Euler angles com-

prising a rotational band. For slow rotations expansion of

<¢lH|¢> in powers of
S SN2 3.5y e
yields the result <¢|¢> =i :
Er=Erot Sealty (I-153)

. 2 z' [ ‘
in which, as calculated with the straight Hartree-Fock solu-

al

e

tilons in analogy to the mass parameter sbove, the reciprocal

moment of inertis 1is
N o t
L. CHIPH (I | (I-151)
Z {T*D*

When such approximations to self-consistent solutlons as are

avallable for nuclear intrinsic states are substituted into
this formula, the resulting values tend to be 1In qualitative

agreement with experiment. It can also be shown that the

quantitles 44 M=Ilzzol¢n> ’
g: & , Qe Kz |y (3159
e, Akl
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are related by Q-c(,I,K)QO, wherein c¢(I,K) turns out to be the
3K-I(I+1)
°(I K)= (I+1)(21+3) . (I-156)

The second niethod31 consists in noting that for any sys-

usual value

tem of N particles, each of mass m, there exlists a decomposi-
tion of the total kinetlc energy T:;;—‘;—;, re‘sulting from a
canonical transformation, into terms depending explicitly on
the total angular momentum -f, on a certaln non-conserved

. wd
angular momehtum T and on the total linear momentum P:

B 108 T R O, s

where M= mN,g 'ﬂ} are new canonically conjugate intrinsic
generalized coordinates and momenta (3N-6 in number), j (g,»n')
plays the role of the intrinsic angular momentum Q,u-v (g ) of
the reciprocal inertia tensor, and where the last term is the

intrinsic energy. The transformation equations may be
written - = 2 -
n;=R+<R(9.)‘/1.{ (I-158)
' /7- (g) or gf’ g,,(ﬁ‘
where R is the usual center-of-mass coordinate vector, % 1s
the rotation dyadiece, and not all the /z:, are independent but
-
are suhject to Z}L{=O from the definition of the center-of-
' i
mass frame and three other conditions,
w—h .
)= I-1
F(r')= o0 (1-159)
which are related to the "/_{[" or "body-frame" orientation
t
relative to the system, specified by the Euler angles @i
A superficial disadvantage of this approach is that the g,,

—
are rather complicated combinations of the hi', not readily
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physically interpretable in usual shell-model terms. The
coupling term in T, contalning both collective and intrinsic
coordinates, which no non-inertiel body freme can remove,
have their roots in the associated Corlolis forces, The cal-
culation of such parameters as inertia moments, electromag-
netic B-values, etc., for the system requires detailed solu-
tions for the intrinsic structure, which of course are not
avallable for large n, Here, models of the intrinsic struc-
ture must be used.

A variation of this procedure is to transform only the
N particles of an even-even core, leaving the N extra-core

nucleons expressed in the s ace frame., This gives

Q.MN +H; (‘I‘I‘,xi)w‘Z{ +ZV "e‘/"(g)]"'z zvts Ne) }(1-160)
+—ZZ Qe [Tj- %Je,JEI iy Zier]

where je Xe*“‘oi refers to the extra-core nucleons,EE are

the Euler angles for the core-frame orientation, T‘is the
core -intrinsic angular momentum, and'f is still the tbtal
system angular momentum, Typically'? will be‘ﬁ fér non-
vibrating even~even cores, This method ameliorates the inter-
pretation difficulties for the intrinsic state of the odd
nucleon in odd-A core-plus-nucleon models, but still leaves
the calculation of core properties a formidable problem, 1In
(I.160) the extra-core particle energy terms are particle
kinetic energy, a potential depending essentially on particle-
core relative positions, and a "particle-rotational coupling"
potential, The "zero-order" Coriolis coupling results from

~
the presence of Je’ residing with the odd nucleon(s), and



49

nonadiabatic effects of rotation on the intrinsic state from
the "rotational-particle coupling" potential.

It is possible to separate out multipole vibrational
coordinates by this method, reé‘overing Hamiltonlans resenm=-
bling the Hamiltonians of the vibrational model,

The third method 1s a variation on the second which
séeks to clrcumvent the necesslity of using gp by introducing
redundant variables, as follows:‘ in transforming from /'i': to
71;_’, X , the conditions of constraint Fs(iz) = 0y, 8=1y000, T
are ignored and the values of F‘8 treated as dynamical varia-

bles, possessing canonically conjugate momenta Gs:

Foa = ot s G, P = P! [Fs,60 )= -8, ete- (1-161)
Then H= H( Fs,}_fi,Gs,ﬁ )}, which is actually 1ndependent‘of Fs’
Gs’ become s ‘I:I'()-;;',O(s,]—D:',TI'S ), which commutes with Fs’Gs and
has eigenfunctions 11”(’7‘:’,0%) « But if \P (717) is an eigen-
function of H, then

¥ o)z URIP(R) (1-162)
where U 1s an arbitrary function of Fs, are degenerate., If

it should turn out that
r~ - -
H=H,(TE,°(s)*Hz(ﬁ',n:')+H3 (s, i) (I-163)

with the coupling term, independent of T, Pf’ , small, then

zero-order wave functions, eigenfunctions of
H, =H, +H, (I-16l4)
can be written in the form

’q;no (ds,}_{”): ’Xan(O(s)C#,, (;(-:') . (I-165)

]
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The development of this method is in a very nascent state.

The foregoing indicates that the kinds of terms occur-
ring in sinple models for collective and intrinsic motions
and coupling between them also arise from more fundamental
theoretical conslderations. Hence the experlimental determi-
nation of the magnitude of these phenomenological terms is
of paramount importance for quantitative understanding of
nuclear structure.

The criterion of "validity" of the rotational model,
whether the Euler angles are considered as dynamlical varia-
bles that are linear combinations of the intrinsic particle
coordinates or as parameters of transformation coefficients
to a rotating frame chosen to minimize coupling terms in the
Hamiltonian, 1s the success of the description of a component
of the total nuclear motion as a rotation, as measured by the
degree of separabllity of the Hamiltonian. Since the separa-
tion_is never complete, except in such physically unattainable
limiting cases as perfectly rigid solids or incompressible,
nonviscous fluids, there is always some coupling between the
assumed zero-order modes of motion, here the rotation, and
the other modes of motion or "degrees of freedom", such as
core vibrations, "intrinsic" motions, residuél two-body inter-
actions, or, ultimately, the entire rest of the motion of the
real system not accounted for by any of the terms in the
adopted provisionally-complete model Hamiltonian. The criterion
1s a relative concept, then, so that trying to describe

a vibrational nucleus in terms of rotational-model variables



51

may be loglcally valid procedure, but highly lmpracticable
and uninformative. The use of "vibrational variables" would
result in a much better approximate separation, and show that
what is actually happening is almost a pure vibration.

In this spirit one can "subtract off" phenomenological
concepts such as "rotation", "vibration", "single-particle
excitation", study the properties of these modes and the
magnitudes and effects of possible couplings between them,
and see if all the observable effects can be accounted for,
leaving the effects of the unknown, neglected residual terms
in the true Hamiltonian below the level of current measufement

capabllities.
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E., On the Core-Plus-Nucleon Model

1. :C; Constant

To display certain higher-order phenomena in rotational
nuclei a simple axlally-symmetric quadrupo;e core~plus-odd-
nucleon model formallism will be set down. The Hamiltonlan

may be written

= H_+
H P Tg (I-166)
where TR i1s the collective core rotational kinetic energy,
3 R 2
T2 — (I-167)
Yal 22,,

b
in terms of the core angular momentum R, and Hp is the ener-
gy of the odd particle in the deformed core potential. For

axial symmetry the lnertia moments are
! R R -
z' =Y‘L :Z #23 (I 168)

and the partlicle can be represented approximately by a
Nilsson state, Setting

— _A—T\

R=] - J (I-169)

- —

where I and j are the total and intrinsic angular momenta

respectively, results in:

, o (I-170)
H:HP*’TR-"xR:H +’tK
where
B2 e
Hp = Hp + (I-171)
q) P 2zl

and TR° and tR are given by

° +* H* -} z -
T =;;r[1’-131-3:]+223, (Im§s)" (1-172)
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..h?. . . . ’

e = - o (Lot Lids) (1-173)
tR 1s the "rotational-particle coupling" or Coriolis term,
which will be treated as a perturbation. In the gbsence of

this term the zero-order unsymmetrized eigenfunctions of H°

e ,IMKQ> = }% Yn Dmf: > (I-174)

and satisfy the relations X
¥ 2 I* I I
[* Dy =R 1(1+1) Dug I D =FMDu

% . (I-175)
| Izbml: = R K D Ja % TROKA
and therefore,
o -]
HQ'X«'&:E;%A ! g-n. = g_n_
o I¥*_~ o I
Te DMK ) EIK.n. Dm( ' (1-176)

He| IMKED = (E, 2 +£7 ) | IMKDY)
where E_:_ are single-particle energies, and
o -h'l z_ kN -h?. ™
E‘m=7§r[1(l+l)~\< Sltl*r % (K-0) (I-177)

are the energies qf pure rotational bands based on these

states. The L and K-dependent parts can be subsumed in £°°
Because of the large values for the reciprocal inertia

moment for rotation about a symmetry axis, the low-lying

levels will have K={L ., Following Preston32, the intrinsic

state can be expressed as a sum over spherical-well states:

!
Ko 22 % “nama ?— Cia%a (1-178)

~ where the states X are diagonal in the X_", 13=,/\_, sm, S__‘=Z

[TNq}
_ 2,
representation, X'j.n. in the Xi,‘Sz,J R J3='Q representation,

and the two are connected by
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%m MQ<3A32|X33Q> , (1-179)
from which 1t can be shown that
!
Cia = Z E <*M55- XSJQ\) TV (1-180)
The parities of the functions ?C o 8TC given by ’
= (-1 ) (1-181)

so that sums over,e are restricted to only even or odd X
values, Axial symmetry requires that K and {1 be good
quantum numbers (constants of motion)”.

Symmetry with respect to the equatorial plane requires
Invariance in form of the wave function under a rotation of
the body-frame through 180° about the 2-axis; going from the
)_l}-fra_me (1-2-3-axes), reached from the space frame via the
Euler rotations @,@,‘-P, to an A" =frame (11=21=3'=agxes),
which 1s reached from the old body frame via Euler rotations
0, T, M, or directly from the space frame via EBuler rotations
TT+¢,'TT—@, ZW-‘P o Let R denote the resulting transforma-

tion on the wave function. Then, 1if ’)63,,\ represent the usual

angular momentum eigenfunc tions,
X (R) = 23,1, (BOY) % (7)
ﬂ">= Z, Dm'm (OTT ) %im! (jf")

(1-182)

ZD (rr+q3 T-©,2M ?)m(n)

Taking 'X,- in the Euler angle representation and noting that

—!
Dmm' (OTT'\'\') (- )J+M mém)_m. s or working directly with the
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explicit D-funetions, it may be shown that

'DMI:(Tr+c1>,'n'-e>,21T-‘P)'-‘('|)IDME:(¢9‘P) . (I-183)
Hence X
R.lIMKQ>=D,:K (m+g,m-8, zw-?)x (")

2(-)'D, (36%) 2Ciad Dyia (OTT)y(R)

=(-1)' Dy K(@@@)Zcm( ,)‘Jx (A1) (1-181)

H

where use has been made of the fact that (- ')MJ m" + 1|,
Now32 from the property of the Nilsson ﬁmctions' amplitudes,

J
, 1t may be shown that Cm_ %( ) zC‘,J .. » SO

Gan® Hapin
that 1 .
I- .
R|mKa) =(1)" >, D, L@eVX, () . (zass)
Since the symmetrized wave funétion is to obey
S S
RP°= ¥° | (1-186)
and 812=‘1, the required normalized symmetrized function is
- (R Y) (1287
or -4

" I-4 1¥
Vi \IMKQ‘>= }% [DMIK % (1) T Dy %..n.] . (1-188)

It can b#& qu.own that

Tg IMKQ.S> E“m_ ‘IMK.O.> (I-189)
and that although
CIMKQ| £r ) TMKRD = 0 (1-190)

or there 1s no "decoupling™ without symmetrization, yet
{IMKAS) *a\ IMK.Q>

-1
=_T?.E;TT-;'--2$£T< D K% +:j +I_0J+\ x () WDM-,)(’;

_{:z—'rr%() :m " Ju,<90 \3 | _a> (I-191)
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— z N
=2 fI-‘-""(-') (I*J'i)}“-<¢’-“-’ J+,|’X/_n_> s 88 given in ref, 33,

2 [ (jEm)Fmel) (1-192)
and i}
J_')%a>=<')6,,. 3+.\%__¢> . (1-193)

Here, primes on quantities denote reference to the body

frame, It can be shown that34

ne n]J+,l%n>——§:lC3L}( m T &,

Soas=Z e ) (Gik A3 (1-191)

This is the usual decoupling and occurs for an 1solated rota-
tional band only if K== * 1/2. The Coriolis term can
cause mixing of states from other bands into a given band, as
is discussed below.

2e Inélusion of Core Distortion

Higher+4order effects depend on higher-order terms in the
Hamiltonian®3%, A possible mechanism for these 1is centri-

fugal distortion of the core. As above,

=23-_ Ry’ =._'__(R1_R‘&>+ — R
Tr =295 2 3002 R (1-195)
and
Rz- R;: IZ'I:'J';'FJZ'(I-HJ-' '\J+ ) I3 ‘)3) ) (I-196)
from which follows
6 tlcz
Te = Tr * e —__i_)'iT ‘ (1-197)

Centrifugal core distortion can be introduced by permitting

the 2”, Z}'to depend on the magnitude of the core angular

#Relevant formulae of the Rayleigh-Schrddinger scheme appear
in appendix 3, .
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momentum, in analogy to the classical situation in the pre-
— - b - N

sence of centrifugal force w*(w"/t‘h(wfu—iw“)-j{"oc wr .

The dependence can be expressed as a phenonenological power-

)
series expansion of 7', %, in powers of R%:

| | o ()2

— = —5 pMg¥ )

%' ‘:z°/,z,° R (I-198)
4L < oo (I-199)
?3' 2-; /2033 Rf

where B(/‘), B3(/‘) assume the role of adjustable parameters .

Upon substitutlion into TR there results, after some manipu-

lation, s i () z:‘ 1], 2 /“' (e)
R‘sz[AM:r;Rs A3 ](R Rs) 22°A R, " (I-200)
where /e '
(,‘)= [ ) B(.V) 1.(\)‘/4) (1‘201)
A vz_- (/4) R3 ’ (
o & W) 2 G0 I-202)
A3/A -Z(/‘>B R )

v:/‘
and therefore

° ) z Y] o2 (-p)
[A(/A)-F%-R;'A;/H' )] B v/”'[( )B(v+ z;/‘ (v]R /(I 203)
and -

o = (V) o2V M2 pipt
AP ZBVRy =1+By Ry+ByRyw (1-204)

Vv=o
) ' S
Noting that R3 =(I3‘33)v Is diagonal in the 'LPIMK.O.>

representation and that for low-lylng states,

MK | ISIIMK_().‘>5K=QE<IMKDS|33|IMKﬂs> ; (I-205)
there follows
Ry |mkaH =0, (1-206)

so that the terms of TR giving non-vanishing energy contri-

butlions are simply,
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(o) ,
zz"ZB (R-R3)", 8= 1. (I-207)

The leading term 1s the problem in the absence of R2 depen-

dence of Z , and, simllarly to this case, one has

(Mka®| R*= R TMKAS) = (g | 11| %) + 1 (1+1)- K- 2
. +d \ :
#0104 8y Saene G|l

where K =L and <90_n_,:)°‘|90_n> can be included with the

(I-208)

single-particle energies E_;

The only "first-order" effect is the usual decoupling
produced by .

I_\,:j‘_r + 1, NG (I~209)

In second-order, the first stretching correction occurs,
involving the matrix element <IM\(QSI(R1‘.R;')1"IMK.QS> .
Noting the relation

(R-R3V = (11333 e @ w2 (110§

2R -[(IFNR + @ (I} +'33 )] : (1-210)

the terms that arise from this matrix element are as follows:

<IMK.Q.S)(I I" '1) lIMKQs> [I(I“" )-K*~- 1.] (I-211)
which 1s a usual vibration-rotation type coupling term;
<IMK-Q-$| :)4 ' IMK-Q-‘> = <'X/_n_\ J"I'Xm> . (I-212)

calculated with the help of the relations

Gl 21 S GT-E Il ol o -2

and which can be sub sumed in the intrinsic energy; and

thirdly
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amka®| @ |mkad=[1m)-K2JKxal §, §o| %y + G o) i Jr ey
=2 [I(I*')'K1][<’x‘n\ :\‘I’X’Q _-Q.'l‘] ’ (I-214)

the latter eqﬁﬁlity holding for half-integral K only. The
effect of this term 1s a renbrmalization of the lnertlia con-
stant, as well as of the single-parti‘cle energies. It also
produces, for K=t1 bands, the higher-order decoupling effect

given by Bohr and Mottelson23, Continulng,

MKQS| 2 (1151 )SZ\IMKD->= 2[1(1+1)- K™ ) | §* %y, (1-215)

This term contributes to the inertia constant renormaiization

(but not to the single-particle energies, provided K =.l).
amkas| 2 (1*+)*)@ | mka*) |
= 20(I+1)<mkas|@ et +2<imkat| @[ kD (o )

= T ) 8 iy S [T 0ty [, )+ 2 o 1], ) .

This renormalizes and includes a small additive I(I+ 1)-depen-

dent part in the decoupling parameter a., Filnally,

Gmen®| - [(IM+3)@ +@(1d+]3)]|mKka®)
=“Trox_("|)l-%( )SIKI'L M(“’.L\Jq.'\ >

Thus, with renormalization of £.n.’ 2', Q, the rotational

(I-217 )

energles to this order are of the form

a+“AI(I+l)*P>I‘I+l)"+...+(-l) fpbentis,] (d) )(1218)

as noted by Bohr and ].V_Igottelson23.
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In third order the matrix element to be considered is

<LPMKSQKR‘.R;)3\%M:Q . It can be shown that

(R:Re )%= (113 jab+i - @)3 N

(D)= (T 12+ ) 2)- 30 R + 3PN )™ (1oeng)
+3(I‘+3‘)@1+(I31ﬁ\3)3*'@3+3(I‘*3‘)[(I31+3?)e*@<I31*:\;)]1
- (I r@)L(Ipvid)e UM+t )) - (1w ) - (I ) @™

There are many terms contributing to renormalizations of all
the foregoing constants plus some new contributions. Of
particular interest are the terms (IZ+ j2)3, which will give
rise to an I?(I+ 1) energy correction term, and the ® 5

term, the calculation of whose characteristic effect follows:

3 e o o ° %,
ImKQ> T K'IK-iK'IKIK DMK3 % R’um 1,k+! 1 D'E;“zgg')xa

I , 3
+Tr’(‘ ')I [K}-Kq_; “K=) 3 KDM K-‘b‘)-'x'.n.‘” K} ffn I“K+l I qu -k+3 ) +'7(’-.n. ’

where :( )= K‘(J,‘M J(J*M)(S;w"’") hen, after some manipu-

lation,

{imkaf| @3 |Imm>—/%’—;< "% - 'ﬂ;(_DM "y, leslmms>
(1-221)

=_l'2rn— zXI )I+— IKI3 6.0.1( }U.< 1|J+I‘x1>

+ terms proportional to 8“(,% .

This term, besides producing renormalization of the I(I+1)-
dependent part of the decoupling parameter a for \K\: 1/2
bands, glves rise to a higher-order decoupling effect present
in |K| = 3/2 bands, with the conseq{;ence that the alternating
elevation and depression of levels can occur for these bands
even in the absence of any Coriolis mixing, that is, in a
manner that does not result in any admixtures in the zero-

order wave functions.
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3. Band Mixing

Another mechanism that can similarly affect K= 3/2
bands arises from the action of the Coriolis term in the
presence of more than one rotational band, a situation that
pertains if Hq, has more than one eilgenvalue f,: Because
of the properties of the f>ﬁ§ only. states of equal I from
the two bands are coupled by the Coriolis perturbation. This

coupling first occurs in second-order perturbation theory:
2) _ H' (|H'}n

n
i#n En>~ E° |
where H=HCO+ H' and H°]é> En]n> gives the zero-order eigen-

states. The perturbed wave functions are, to first order,
Wy =ley+ 3 WA (1-229)

If, to improve convergence, the device of employing first-

instead of zero-order energles in the second-order energy
denominators 1s employed, the Coriolis decoupling of \K):l/z
bands that might be admixed with pands under consideration
will be mirrored in the perturbed energles, as follows: the
uncoupled bands are described by the equations (assuming

K=f1Lin all cases)
T | IMKO) = Eg k) |

He |IMKQS = €4 |k | (1-224)
EI;:-?_:[‘%:‘:I(I«»l)*-(-’@--é—,‘)K‘] (1-225)
for the K-band, and _
T % \IME‘QS ) (1-226)
H@IIMZﬁ‘>=£1 |IMRED
(1-227)

Ee = Llgr10a)+ (- 5K

for the f-bands The total Hamiltonian describing these
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states 1s _
|
HoHp+Ta=Ho+Ta 2= Ho + Te +1 2 H  + £y (1-228)
for the K-band, as previously,/ and the same except that /fg is
replaced by £
tR"ﬁT( 'J +1. 'J+) (I-229)

and 7', 23 by the inertia moments ‘:( 23 for the K-bands.

The perturbation problem is, for the K-band,
s
H IIMKQ-‘> (C:\. + EIK)IIMK'Q > (1_230)

H ’q)iMK-Q> = g.n. +E:|<)'¢1MKS).> , (1-221)

To first order the perturbed wave functions are
MEGS) CIMRRS| e | IMKAQS)
]Lp ‘\>z\mm‘>+z' | °> s PO (I-232)
IMKQ. e Eqa-Ex + Ere-Eix

where the sum is over all bands specified by the K, except

the band specified by K. In the case of two bands, K, the

ground-state band, and K, the upper band, this becomes

’¢IMKQ> lIMKQ>+ <2M°K-néol leIMKQ‘> IIMKﬂ->
= |tMkat) + C""‘ MRS |

IKK

N <IMK:LS|;6 | tka®) . oms
wmﬁn-> 'IMKﬂ> Y 'E:u-E;z )IMK.Q> (1-234)

'\ZK
= |k ‘-5? . lrmm‘
The quantities C - ’CT.RK are given by :

x = <ok’ | TMK D
- - ’_—'—{K:K <'><,_\J \?@} +M —@i]:).,.i'?(i_n.>> gi K-

2!
+E)F t"T < \J \’)6 >+'ﬂ-9c Tx<xn.\5 \’)O,)) k- k+|(I -235)

+K'IK[<9<’4‘J \')6_“>+'ﬂ— m, <'X'.n- J—‘\X’ n> K, Kl
+(- |)I o1 ( I) |%‘J,>+‘TF,7, '7T;¢<'X« .<~.'j+.|76a> 8- k-] ]}

I (1-2%3)
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and for the upper band (EI'KK) , the same except that }f‘R is
replaced by ;R and K, K; ?0_“,765: and ’I'Q,W',aare interchanged

_ throughout. Noting that K_t (3,-m)= K_i (J,me1l)= k¥ (3,m),
'IT” Wg'l, and<9¢nljt"7&.> @']ﬁ}x) by a little maripulation
CIKK can be put in a form identical to Cygg except that Z
is replaced by 2" and <%5“=¢,%_“> is n°w<%.Tx|Jtl\%A>

Then apart from the possible slight difference in L' and EE',
the admixing ampllitudes for the two bands are equal in magni-
tude provided quantities such as@’zﬁ\j_,\x‘.>+ﬂ¢ ;<7§3\:]+,\')T_1>]§_lgrl'e
real. That this is the case can be illustrated as followe:

supposing M1 (= K)=.n. -1 (Lf1=K), and setting "

Kon=2C1u%n , Xaz2Cia¥%n (1-236)
one has j J
[<70 \J N %a + T TE&<\ j:LLu'x9;;2] 6
= {n-, \3 \%}W,,Tr,g{%m.h |oc> (1-237)

= % CJn-y CJA[< j&-ll‘j_l'x,)n>+<%j-ﬁ+!IJ.(.')%j-.ﬂ->]

where uee was made of
Cin={AE-T L J-0) Ay 2 AT A3 0y,

+do \ . =) 17_
=M IUAST R0 0y 2 T ()G,

and the fact that theQ,  are real?, and hence also Cja .

(1-238)

Also required were

gaal jol g + a3 1 %o a)
= K—Jn [<’X’Jn- l\x’o-ﬂ- '> <’x’3 n+l\% -.n.+l>__l 2 K-J.n.

and the reality of K,

(I-239)

The perturbed energies are

| o |(IMRAS| AalIMKaD|*
Eu=En + e\ kgl iMras) + g L2

n-Ex +E -E (I-240)
= Eoo +IMKOY) ARV IMKOD + Crpz /(= § Em?)
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|<Tmk| F) IMRESD |
€a-Ex+Ed-E 7

Eg = E;x +(IMRE*| £alIMRTES) =

1l

o — — _ a o
Eox +(IMRES | Fo ) IMRDD - Togil /(- SE %) . (1-241)
For the case |K|=1/2, |K|#1/2, the diagonal term in Erg

is zero. The diagonal term in E1R» the Coriolis decoupling

in the upper band, is found analogously to (I-191) to be
(mm‘];{—R\IMKa‘)" 22, A E) TS §71+8ax K UR) 2 Fzl], | s

I+t (I-242)
|> 1(1 1-)8“(]1

= 4+
2:Z
where the decoupling parameter.is
= Tz &ax /u,<'X»_n,|J ]’)C _m> (I-243)
and the first-order upper-band decoupling correction is

I+
_(IMKQ";{;R\IMKQ.>— = a(1) S(1e1) (1-244)
Replacing EIK by EIK-PEEQ in the second-order energy denomi-

nator to improve cogvergence>1esults in
s H
E._=[ 4 JCIMRR? g | IMKQ }
e ‘SEIKK ;‘g;zi,a(—w“*(rﬁ) | (.I 245)
= ° = A N+ o - ot
Eax +|<REe [ ke {-sem-m+ﬁ5(§—-:}jr<1+n)—§-z‘-a<-u>r “(p{)}

o+ () o! 'hm (
£ EIK=£K-°-+—2_§(_’I I“") ’

where

/ | | % 6 (1-246)
Ckgztl(fi.;—f))( +€a
and )
§€vara = €za ~Exa (I-247)

1s the zero-order band-head separation. Negleqting the second

term of the denominator, to first order in small quantities,
tMkaS e | IMKQD|E  JOMRRS 2
E~Es o _|Gemkef [falIrkal® | KIMRAS| it dzz,() (I+l) 1-248)

o §ES (6€2axan)*
xn?n kKo
The third term mirrors the upper-band decoupling in the

ground-state band perturbations, and can be reduced to a

more familiar form as follows:
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for the case K=K-1, K=3/2, L= K, QL=K,
l<mm‘|tk\mm‘>l

= [ 25 K00 -+ (@) + T T G, | %))

(I-249)
= -LK* 1)yl ilwyr]”
(2.,, V(1)1 2y 5, )
where use was made of (I- 184)
A (V)= Xn () = ZZC_,“D 'n(O'TT'O) ynt(7)
—(—l)JL "rr,,%n_(n N, (1-250)

R Am (R) =X () = ZCJ“D,noqro)x (R

I)‘“‘“‘L-’\T 7(/ o (ﬂ')
in which G( is a body- frame rotation of 180° about the "2"

axis, from which follows
RS AFCER AT A AN VIR
the second equality wvalid because ¢{ is unitary; and also of

the reality of<5QLh—A?Q3>(for Nilsson wave functions).
2 %

Therefore,

s ¢ iﬂg— +t
(55° <1MKQI)|:R\I”K0>) e A (I d (1-252)

gl P o o)z e oo,

This ‘1s the expression given in the paper of Diamond, Elbek

and Stephens35. It is seen that the sign of C is the same as
the sign of &, and that the form of the alternating term is
1dentical in its I-dependence to the form of the term arising
from centrifugal stretching.

If one has K= -K+ 1= -1/2, the squared quantity turns

out to be the same.
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4, Inclusion of Vibrations

The nature of /3 and 7Y-vibrational states in odd-A
deformed nuclei will now be considered. For this purpose it
is necesgary to consider the particular kind of collective
model that has been more or less suceessful in describing
observed rotational and vibrational nuclear phenomena.

The energy is taken as a function of the nuclear shape,
specified by the equation of the surface, R=R ZZ%,.Y/A(OQ‘?)
The O(>/Aare given the role of generalized 0001“@.1:1;/1:68 As 1is

generally the case with mechanical systems, the kinetic

energy 1s a homogeneous quadratic form in the generalized
velocities: . _ EE
T=’li;B>‘(°( 'EZB> /v. '
(1-253)

The relation 0(;/4- (- l)/AO()/,A follows from the requirement

that R be real. In the approximation of small.vxﬁpl

are approximately independent of M»u, and in that apprexi—

mation, ) P

V—;EQE(-:) O(,\/A o(xr _ (1-254)

For the quadratic deformations, A= 2, the generalized momenta
=9T/35( =B, ()", 2op and the Hamiltonian HQ-"E;E 'rM/
Z(")/Adz/»d\z/- may be written down. The problem is that

of a five-dimensional harmonic oscillator, and has for its

¢
solution the energy eigenvalues E—-th(ﬂ/,ﬁ-") )EMJ(N ) w4
-Byw
and eisenstates? Tan (o(}“)e 2% % Tl “’ . Low-lying positive-
=1

parity quadrupole vibrations about a spherical equilibrium
shape for an even-even nucleus, described by this model, are

the 0+ ground state, a 2+ first excited state, a O+ 2+



67

4+ triplet at twice the energy of the 2+ , ‘etc. In regions
between closed-shell configurations and the rotational regions
of the periodic table, the "vibrational regions", such sequ-
ences of levels are frequently encountered. For odd-A nuclel -
in these regions the Hamiltonian consists of a collective

part H (d‘/"’rrrt/") for the core, an intrinsic part H Z(p\
V(fg)) for the particles (generally only extra-core parti—

cles), where TS ()\;[ -255)
- M oV (n6¢;
V(red): VS"H(I+Z°< Y"M/ Vapy (1) 2%, (o ST h«'_}

and only the spherical shell- model potential is included 1

H, , and the interaction terms, of the form -EZKM{Z‘Z*O(%Y:‘ 9;?2.)
This treatment in which Vsph(/b) is used in Hp and for calcul-
ating the interaction term between the core and the particles
is the so-called "weak-coupling" case.

To describe the situation in the rotational region a
transformation to body-frame coordinates is expedient. Here
O(v' will not be small, so that V(A,é,$€) can no longer be
expanded as above to advantage. The Co and the Bp may be<X§»-
dependent, and 1ln the case of odd-A nuclei, the interaction
term will not be "small". All these effects lead to gross
distortions of the simple vibrational sequences, out of which
ultimately emerges, for strong deformations, the rotational
picfure whose simplest description is in terms of body-frame
coordinates.

Following somewhat the precepts set out by J. P. David-
son217, the general nuclear surface is given in terms of body

coordinates
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R=R Z 2 %,.Yf (6'p') (1-256)

O 50 pi=)
whence because of the relation Yf (e',cp')=ZDv>(¢®@)Y:(9<P),
v #

the Q obey the relations

Vs
eIngeebl, | auIBlEeba e

*
showing that °(>‘/‘ are spherical tensors. Then the terms in the

vibrational Hamiltonian become

=1 ZO‘ *Ky ——C*ZEED D o. G.Y

Ve (1-258)
=3¢ 225-»(* wa‘f 3 'Cxila "=V,
BZO( o()\:-;-_ VZEZE/A:)*./‘fa' a‘(a (I-259)
D“‘ Dl-:D O'Xv a’;(a""D/A?v* /4>° Gy O p:] .

The figgt erm of descri es a rotation, the last, a vibra-
tion, and the middle two, the vibration-rotation interaction .

-)*
The /n» have to be evaluated. One has

2K wK
. o Dpv oDw
>i|:(43(9\]‘»): el cI> __Z‘__ 6 + —L—a; b (1-260)

D/n, 3%
From the expression? :D;v (Cb@kp): el(/@'w@)d_/:v(@) , there
follow M‘ N¥ M
2D 22 LD 30w _1yD 2"
/‘( 7Y "a"',f_ "')D/w 3
. ? \ (1-261)
Dy e.(/aéw ) ddoy(®)

The evalua.tion of d.c{. (@)/éais most readily accomplished by
recourse to the definition and transformation properties of
ceqﬁain angular momentum components in the Euler-angle config-

uration space; using the notatlon given with the definitions
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of the Euler angles,

-i=2 D 30K, (7)) 2 (@89 D (38¥) %a(R)]
- [- s’m@I«'@@«I} J+eos & Iy CP@‘P][DMK ($89) % (R )](1-262)

= (e %1, 800)-e%1_40%)) D) @@@ n(R)]

-
If X,(N') is independent of @ ,0, '-P , which in strongly

deformed nuclel will be approximately the case, this becomes
Lr -é I, - ¢ r*‘
21 [e (I+DMK )%.n. e (I_DMK 9(/_“,]

[e-'é- - @K-m MDK]% ?

m M+l

(1-263)

where as before K‘JM-JQ*M (:) ¥M+1) . From this 1t follows
that
I
d. d,(8)
de
Also,

Iy @O [P %] = 1 (SO L) (DA %]
(I-265)

= (sin$T +eosP], [DM%,:] [eyl C'I]ﬁ% %l

I
=3 [KIM a‘mt K(ﬁ) CLM I K(e)] . (I-264)

which in an analogous way, under @ ,@,q’ -independence of

'Xz leads to the alternative relation,

d d. (@)
——=1l¥, A— 8)-Kyd. . (@)] (1-266)

whence,, w ‘(/@WQ)D/.» z@( —@K“y- /‘:;: K.»;D/L-n))

_‘(};\é-\-‘pl?)‘D ):u*_‘-_ (el‘pK:v'D = QK)ND.(‘DH) (1-267)
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or more succlnctly, o ,
o W (DH D“ DM) n ,e K/‘ ) ‘P
v = . .

2 AR AN A WA ‘ze P J(1-268)
AW e“qk o\(®
( /4'u+l D/*V .D/A'”'\ 3/4 : @) " v Q

Q -{-ewk‘;\; o/\¥
From the Euler geometrical equations in this form,

_ eoS *I’ sin P

: ) 9 sin ® 0
¢ i ! (I-269)
('>= gin ¥ cos® © oY

@
¥ cosd _sind 23
———— —
tq,ne tan ©
one can get t> * in terms of the body components of the

angular velocity of the body frame as seen from the space

frame. Substltuting into the rotational term of the Hamil-

cos ¥
e S0
\ sin § sind J_L 08, - Loty
o ° | o -i[o @
X* '
[ b mint o et o
Dﬂf—l Vaad D/A -1 /Av D/.;-: D/av-l o} lze_"y}(,;v o (I-270)
coSVyY S\n@

~sme smo © L

1 sin@ cos® of| N Q)\:‘ @,
COS_J\P_ SlV\ \P l ﬂ3 f
fa.ne mne

BQEZQ At mew’” By AL 0y Gup

= 3 Bx -Q-* A* [%ZB Zﬂ)x,«,wa,w Qw v Jan.,
At this point generally one can Yeet to advantage, with no

loss of generality,
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a;‘;,=pke,(,, By rea), Z)e,(,\%l . (1-271)

+
;Z%E A B’/‘PDX/‘(NBV”A o(_k(“q,x must be diagonalized by a
sultable choice of EXF , Which 1s tantamount to specifyling

($,6,9) (¢>’ A,‘P\) , in general different for each A ,

for rotation to a principal-axis body frame. Symmetry require-
ments on the wave funétions, which are connected with the non-
unigqueness in the choice of body frames will be treated below.
For the case of a constant rotating shape, the /Sx’ Qﬁﬁmay

be chosen 1lndependent of time. It is also necessary if T 1is
to have meaning as a rotational Hamiltonian that the d?,@?,g’-
dependence of the various matrices be eliminated upon perfor-
ming the/ﬁi,/o;v sums. The mamner of the emergence of a
rotational term from the surface-energy model of collective
motion, with the a%’;‘ (or F,‘ ,ex(,)-dependence of elements of
the inertia tensor implied in the phenomenological "centri-
fugal stretch" calculation, is thus displayed.

The vibrational term of T is much easier to treat.

T =zB *ZEE /W é-x(a%:

, oK N oM ¥ (I1-272)
-'z-m'z'?.m(,aw/lb,fbv

1]

H

" ?- B\ Z Io‘w '
With Q.xp =/3)\€ s as above, and noting Zmexvem z“dt we/\v O

one has

)\v:_ _%.B [/3% *’ﬁx zlewl J (I-273)
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For a rigid quadrupole surface the conventional choice of
S.IVIY o.
20
vz

T =B (ARt V) (r-274)

For a specific situation, for example a rigid body or a non-

cos ¥ , whence

parameters is &, ) =0, 0-1’1 = /3

viscous incompressible fluid in irrotational flow or, as
experimental data in the rotationalvregions seem to indicate,
the somewhat intermediate case of actual deformed nuclei,
whenever the rotational term has Euler-angle-independent and
time-independent inertia tensor components these two terms
comprise the collective part of the zero-order rotational
model Hamiltonlans commonly expounded. For quadrupole defor-

mations,

Ro’
v R L
T+ T =18, (p+p" Y )+
The collective potential energy i1s generally given a form

suitable for small devliations about an equllibrium shape

specified by the equilibrium values [3,, Yo= O
2 ¥
/3([5'/39) v Y, (1-276)
The model Hamiltonian is of the form
(Q
[T‘_ +-C2 ({3(3) +1C YJ I-_H T°(°)]

(1-277)
(0) V. R,
+t +Z V (P)+ RV.P.+T

The first three terms constitute the zero-order vibrational

Hamiltonian, H(°). The next two terms are the zero-order
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rotational and particle terms considered above (e.g.,(I-170),

H®), denoted here by Hs» é), as before ((I-l70),¢i) refers

N
to the Coriolis term *-jigs[; .J_,+ J3+f] (primes mean that
I, etc. are referred to body-frame axes. ) p““is glven by
1e) _ -
HP Z[‘l;-r- A ’Y‘“)LP’IP:S ]22@)\), as before, but with equi
librium values of /3 and Y. Superscripts(°>denote that

quantities are calculated using the equilibrium values of
2
Bana¥ ;e Ty Ta(pe,%). TR 1RO Bl
R (o). ZRv
where T G . The perturbations neglected in the
v 21»

(o
zero-order Hamiltonlan, aside from the Coriolis term t’ ),

, a8 before,

are the vibration-rotation terms arising from the O(X/A—to 0.;/‘
transformation, Tg ;s terms correcting for the use of equili-
brium values ﬂo, Y in Hp' (©) ’ v%';p, and terms correcting for
the use of/Ge, Yo in the inertia moments :CS? The neglected

vibration-rotation terms Tgn, which may be expected to produce
the most significant perturbations, would be present in the
absence of any significant /3— and Y -dependence of Ly, or in
the case of the use of exact 2;(/3 7) in the rotation terms
TR +t& The vibrational potential term (1/2)02 /3 - /30)2
has been altered from that in the spherical case in a some-
what ad hoc manner to sult expected conditions.

Then, with neglect of vibration-rotation interactions
and /3 ,¥ -dependence of X, the zero-order plus Coriolis

terms of the Hamiltonian for a spheroidal-core-plus-particles

model with vibrations 1s

H© =';B,([s‘+p‘?‘) Py CR(p-B) +5 O VA Tow, £, (1-278)
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Quantization®* in [5 't -@-@—‘P space leads to

AR [@ o a(s*ﬁ‘s"m &2t s

The separation of the HQ“» elgenvalue problem, without the

(I -279)

Coriolis term, depends on the assumed F and ¥ -dependence of
:G). For example** the use of irrotational moments :Zﬁrr—
ABQF?sin (Y-2TV/3) allows a separation of Ho(® with exact

(/3,'( ) used in TR +)"R . The nature of the vibrational
functions will depend on the method of handling 25(/3,7')
and the kind of exact or approximate separations resulting.

As examples, following Davidson®l7 somewhat, with Tﬁ

and TY as given above, and noting that in general the inertia
moments Xy are functions of fs and ?', separatlons in irro-
tational and "quasi-rigid" situations will be examined. One
has*#*

[Torgm +Var Vot Z;;v?;zw)m Gospt)#=EY . (1as0)

Here V(3= (1/2)02(/3-(30) y V= (1/2)02YY2, typically. Approxi-
N

mating Hp by HI<3°?(;¢;~)E Hp(/ﬁ;/%,Yo) , and calling the approx-

imate E, *{J, E® and LIJO, for the irrotational flow case one

can make separations as follows217:

V(prde b )= TR (V,803)

(1-281)

2 2 vJZ (1-282
(pzT@ +{3 Vﬁ "‘(3 H;o) (ﬁ-p)'ﬂ E ) T\“t'B V. +z( ‘Q\rr?Y))‘PO _ A )
‘Q° @o = le'
! 2

*See e.g. J.P.D.217, p. 114
##Sec e.g. M. .A. Prestond2,. p. 237
###Sece o.g. J.P.D.217, equation (II-14)
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Here 1"1”( )= __T:-(E-—- = 4Bosin?( ¥ -2MV/3). If pev is
approximated by/3 2V , then each fraction i1s a function of
only its own independent variables and‘hg/¥/232 must be a
constant. Treating the rotational terms as in the rotational

formalism expounded above leads to

[T Vo 2 080) ]‘P b (1-285)
[T +Vy +T ot }‘”]‘P 232 2 (I-284)

As before, the prime on H_ denotes that the term proportional

p
~
to'jz has been transferred thereto, and the bar on TR, that
1t has been removed therefrom. The ° denotes absence of the
N(°) (o)
Coriolis term tR , the s, the use of equilibrium defor-
mation values of the inertia moments, and the ™, the use of
(°) .
&vbn)=z”(°j“)5 Jv in all the rotational expressions, which
(-]
appears to be a feature in this kind of separation. The first
equation separates again, with E®= E/M-}-e ; with € the

separation constant:

g° ((3 4’(/3)%("" (1-285)
[Ta+Vp - “F L ]95 ImEE %
4, x

[T(p»\lr3 "8 /3]c}> (1-287)

Hp ()% = €%,

These give the equations for /3—v1brations and the single-

= -€ (1-246)

particle motlions. The second equation separates only if the
o~

¢
Coriolis term tR°) 1s neglected, whence



76

b, (v,¢,.089)= o (v) B8P © (1-288)
2 A = .0)
[:[‘-!-po VY'\’_Z__E-;—]%,= _ TR ( ﬁ - E-’ o (o) (1-289)
¥ H )
(I-290)

(TY *ﬁ:vy)%' = Ey%’
"T"’Ro(o) ﬁ = 'ERO(O) ﬁ |

Here EY+§£‘°)= —hQJ\_/EBz, and the vibrational and the rota-
tional energies are reflected in E° via EﬁJ\. . The wave function
(-] —

is of the form P :4}(/3)%(Y)ﬁ(@,@)ql>%(ﬁr'), and the usual
kind of vibration-rotation-particle plcture emerges.

In the "quasi-rigid" case, one may take Z,,Z(Pj)z Z,)z{/_?“](a)
- - ~ —oy(0)
=Z.(5, ,0)F z(°>3 Zy (F,‘()"’Zg%,\‘):%(Y).FOP a rigid axially-symmetric
body, 2 riS:}Bgigﬁf, and 2'3(°)is approximately independent

0)__irr
of ¥ . (In the irrotational case 2‘233;ﬁ‘2.v,3351’r‘ ﬂcz, B%Pr« 5518,
and 2:”( )& 4B%rr °2Y 2-—_: 4B2Y72 and is typically very small,
. 0), =\ _x‘

and zero at equilibrium.) Again using ng (/:F’) = Hp(lt;,/B, y ),

but TY/(Q‘x TY/P:' and the equilibrium inertia moments, one has
L ARVIRY '3 S_I"’_"J‘_‘:’.).‘+H‘°)(-A')]‘P°=E°@° (I1-291)
e 73:;+p+‘(v2yv(0) P j‘f ? e

— ' 2‘ b 2 ' —0 CJ
or, as previously, with Tp (O)""‘EEET)(I -1, )+ =) (I3)3) s
0 _ ‘ ‘ 1 (0)_ o), 1 2
tR = ?z(_é')(1+'.)—'+I-'J+')’ Hp _Hp +22(°> J,this equation
separates if téﬂis neglected, but due to the use of T.f/{3°°'

in lieu of T.(/P“ , in a somewhat different manner:

q' O(F’Y’@)@*q);ﬁ\!’) = QQ(P)Y) ‘PL (@ O, "P))—{\p'> (1-292)
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[ 2 v+ o 1 %
Pa

(I-294)
['I;‘-v- __+\I +_?%;%(—]Q _Evkn@“ . ‘

Here the vibrational energy appears explicltly:E, .+ EI“’((_;’\)_-\-E‘:EO,

along with the usual rotational and particle equations. Further

+'2—:'|-Z-(3)[I(I+I)-K7‘.ﬂ"]+€“= E° (I-293)
