Lustre Technical Project Summary —version 2, July 29, 2001

Cluster File Systems, Inc.

530 Showers Drive # 7 — 147
Mountain View, CA 94040

Phone 650 799 8578

Fax 403 678 6922

Email braam@clusterfilesystem.com
WWwW http://www.clusterfilesystem.com

Lustre Technical Project Summary
(Attachment A to RFP B514193 Response)

Authors: Peter J. Braam, Cluster File Systems
and
Rumi Zahir, Intel Labs

Date: Version 2, July 29, 2001

THISDOCUMENT AND RELATED MATERIALSAND INFORMATION ARE PROVIDED FOR
INFORMATIONAL PURPOSESONLY AND ARE "ASIS' WITH NO WARRANTIES, EXPRESSOR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESSFOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS ORANY WARRANTY OTHERWI SE ARISNG OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE.

INTEL AND CFSASSUME NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS

DOCUMENT AND HAVE NO LIABILITIESOR OBLIGATIONS FOR ANY DAMAGES ARISNG FROM
ORIN CONNECTION WITH THE USE OF THISDOCUMENT.

Cluster File Systems, Inc. Page 1 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

Table of Contents

TABLE OF CONTENTS ..ottt sttt st b 2
R = N @4 [€15 (@ 11 11| 5 SO 4
2 LUSTRE STRUCTURAL OVERVIEW ...t 5
21 RATIONALEAND ALTERNATIVES ...uiiiiiuiriereeeesiesteseestesiessessesseessessessessessessessesneens 7
3 RELATED TECHNOLOGIES.......ccct ittt st st 8
4 LUSTRE SOFTWARE ARCHITECTUREocooiitiiiieeeeeee e 10
R O 1V = . V1Y 10
4.2 THE LUSTRE CLUSTER FILE SYSTEM ...cuctiiiiiiriiriisiisiesieneeee e sseens 12
4.3 CLUSTERING INFRASTRUCTUREcoteuieieiesteseessessessessesseessessessessessessessessessennes 14
4.4 PROGRAMMABLE OBJECT STORAGE TARGETS......cctiteereeeeeeriesiesressessessesseeseenes 14
45 STORAGE MANAGEMENT & CONFIGURATION.....cerueruerrirnereerieseeseessessessessessennes 15

5 COVERAGE OF TRI-LABS/NSA REQUIREMENTS......cccccoiiievinireneeeenns 16
51 SOW SECTION 3 - MINIMUM REQUIREMENTSccuviuieueeeereeteseessessessessessesseenens 16
511 OW Section 3.1 POS X-like interface........ccoovevereeiiienene e, 16
512 SOW Section 3.2 Integration Compatibility.........ccceveeiieeiieiieiiieceeiens 16
513 SOW Section 3.3 No single point of failure ..., 16

52 SOW SECTION 4 DESIRED PERFORMANCE FEATURESc.ccovevterteniesiessessesseeseenens 17
521 SOW Section 4.1 Glohal ACCESS.......ooireriinririesiseeeeneesie e seeeenes 17
5211 SOW Section 4.1.1 Global Scalable Namespace..........cccvceeveriivneennnns 17
5212 SOW Section 4.1.2 Client SOftwareccccceeveeeeeeenveieseeseee e 18
52.1.3 SOW Section 4.1.3 Exportable Interfacescccevevveceieeieccecienen, 18
52.1.4 SOW Section 4.1.4 Coexistence with other file systems..................... 18
5215 SOW Section 4.1.5 Transparent global capabilities............cc.cecerueneee. 19
52.1.6 SOW Section 4.1.6 Integration into a SAN environment.................... 19

522 SOW Section 4.2 Scalable infrastructure for Clustersovvvvveecceeneene. 21
5221 SOW Section4.2.1 Paralel 1/0 bandwidth...........ccooovrviiiincniininnens 21
5222 SOW Section 4.2.2 Support for very large file systemscccceueeeee. 22
5.2.2.3 SOW Section 4.2.3 Scalable File Creation and M etadata operations... 22
5224 SOW Section 4.2.4 Archive driven performance...........cccoceveeivneennens 23
5225 SOW Section 4.2.5 Adaptive prefetching..........ccccooevereninenincneeee, 23

523 SOW SeCtion 4.3 WAN ACCESScouveiirieriesiesiesiesesee e sie e s eeneenes 23
5231 SOW Section 4.3.1 WAN accessto fileS......cooovrinieniniiiieieeeeens 23
5232 SOW Section 4.3.2 Global Identities...........cccccvevvreeneninsieneee e 24
52.3.3 SOW Section 4.3.3 WAN security integration...........cccccevevereeieeseennnns 24

524 SOW Section 4.4 Scalable management & operational facilities............. 24
5241 SOW Section 4.4.1 Minimize the human effortcccocevvrienennens 24
5242 SOW Section 4.4.2 Integration with other management tools.............. 24
5243 SOW Section 4.4.3 Dynamic tuning and reconfiguration.................... 24
5244 SOW Section 4.4.4 DiagnoStiC rePOrting......ccceeeveeeerierreeseeseesiensieeseens 24

Cluster File Systems, Inc. Page 2 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5245 SOW Section 4.4.5 Support for configuration management 25
5246 SOW Section 4.4.6 Problem determination GUIccoceverinneennens 25
5247 SOW Section 4.4.7 User statistiCS reporting.........ccoeeevereresererennenn 25
5248 SOW Section 4.4.8 Security management..........cceeeeveeveeveereeseesveennens 25
5249 SOW Section 4.4.9 Improved characterization and retrieval of files... 25
52410 SOW Section 4.4.10 Full documentation...........cccocvevereenenieeneenenns 25
52411 SOW Section 4.4.11 Fault tolerance, Rdiahility, Availahility,
ServiCeabIlity (RAS) ...ttt et 25
52412 SOW Section 4.4.12 Integration with tertiary storage..................... 28
52413 SOW Section 4.4.13 Standard POSIX and MPI-10cccceereenee. 28
52414 SOW Section 4.4.14 Specia APl semantics for increased
PEITOIMMANCE ...ttt s r et et ae et e sne e reenee e 28
52415 SOW Section 4.4.15 Timeto build afile system..........ccocoevrerennene. 28
52416 SOW Section 4.4.16 BaCKUP/RECOVENYcccuveeeriveieeiieiieecieeeennens 28
52417 SOW Section 4.4.17 Snapshot Capabilityccccoverviiinneninniennnns 28
52418 SOW Section 4.4.18 Flow control and QOS.........cccccvveerveirneenens 29
52419 SOW Section 4.4.19 Benchmarks..........ccoovevrveeneneneneseseseseee, 29
525 SOW SECLION 4.5 SECUMTY..eeivieiiieiiee ettt st 29
5251 SOW Section 4.5.1 AUthentiCation...........cccceevereeneeneninseeneeee e 29
5252 SOW Section 4.5.2 AULNOMZatioNccoererieiienenesese e 29
5253 SOW Section 4.5.3 Content based authorization............c.ccoeeveeerenene 30
5254 SOW Section 4.5.4 Logging and auditingccoeeererienneeneniennennnens 30
5255 SOW Section 4.5.5 ENCryptioN........cccooeverererieeieenesieseseseseseseeeens 30
5256 SOW Section 4.5.6 Trust @aNalYSISccveeeieerieeieseesieeeeseeseeeeseeneens 30
REFERENCES........o oottt s 31

Cluster File Systems, Inc. Page 3 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

1 Background

The Tri-Labs/NSA (Los Alamos, Livermore, Sandia, DOE and DOD) are requesting a
proposa for ascalable globa securefile system (SGSfile system) in the context of an
Advanced Strategic Computing Initiative (ASCI) “Pathforward” grant [1]. Cluster File
Systems, Inc is responding to this RFP [2]. Focus of this project is the development of a
highly scaable file system, named Lustre, which will be evolved from the current Lustre
opentsource object-based file system [3]. Scdability spans many dimendons, including
data and metadata performance, large numbers of clients and inter-gte file access,
management and security. All these dimensions are of importance to the Tri-Labs/NSA
stesand globa enterprises dike.

Object-basad storage continues along history of increasing the level of abstraction of
storage devices as seen by operating systems. Whereas early system software needed to
be aware of arm positions and other disk internals SCSl and ATA disk access protocols
abstracted disk drive geometry away, and exposed disks as an abstraction of alinear
sequence of fixed size. Object storage concepts date as far back as the 1980 “ Universa
File Server” paper [36] by Birre and Needham. Kaashoek started an interesting project
a MIT confirming some of the benefits[2], and the first large scale implementation was
pioneered at Carnegie Méelon University and executed as part of the NSIC/NASD project
[22], [46]. NASD focused on abstracting block alocation and providing system software
with an object- based storage abstraction. The NASD architecture enabled scalable I/0
bandwidth through third party transfer, and primarily focused on secure access to storage
devices. NASD explored object-based file systems (ERDFS) but it “interact[ed]
minimaly with its host operating system” [22], and its AP did not provide explicit

support for file system recovery or clustering. One of the most important outcomes of the
NASD work was a SCSI based OSD object command set proposal thet is currently under
consderation by the ANSI T10 standards committee [47].

Theorigind Lugtre project [5,6] in 1999 dso originated from CMU. It initidly sought to
build an obj ect- based file system, with cluster-wide Unix semantics. Thisfile system
design has evolved to become the core of this proposal. Lustre object storage categorized
the device driversthat can build up an object storage stack. Direct drivers, clients/ target
pairs and logica drivers underlie storage object applications such asfile sysems or

object databases. Lustre did not tie its command set to SCSl and added featuresto
support advanced file systems such as pardld 1/0O abstractions, object pre-dlocation,
locks and hooks for journaling to provide faster file system recovery. Ludtre dlows
protocol modules to be loaded into and executed by the storage device. A prototype
open-source Linux implementation of Ludireisavallable at [3], and currently runs under
Linux 2.4.

Since January 2000, the Lustre development efforts have been heavily influenced by
scaable cluster file system requirements outlined by the Nationd Labsin the ASCI 1/0
SGPFS [23] and the more recent Tri-Labs/NSA SGPFS requirements document [1]. In
response to the Tri-Labs/NSA RFI [1], Braam submitted a design document [4] that
outlines how the Lustre architecture can be evolved to meet the Tri-Labs/NSA’ s needs.

Cluster File Systems, Inc. Page 4 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

2 Lustre Structural Overview and Rationale

This section describes the overall Lustre architecture [4,6], and enumerates various
capabilities and interfaces of each of the components and gives a brief rationae for our
approach.

2.1 Structural Overview

Security &
Resource Metadata
Database WM]/ W[m

/ Control

Access Control

As shown in the picture above a Lustre-based cluster consists of three types of systems:

1. Clients Applications running on clients see a shared file system with standard
POSIX file system semantics. Thefile system is built up of filesets and provides
agloba namespace. Specidized applications can bypass the file system and may
directly access objects stored in the cluster.

2. Metadata Control Systems manage name space and file system meta-data
coherence, security, cluster recovery, and coordinate storage management
functions. Metadata Control systems require direct access to storage for meta:
data, i.e. file system and object attributes as well as directory conterts. Metadata
Control systems do not handle file deta, file alocation data and file locking
semantics. Insteed, they direct clientsto do file 1/O directly and securely with
dorage targets. The metadata cluster isfree of single points of failure.

Cluster File Systems, Inc. Page 5 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

3. Storage Targets provide persistent storage for objects. Objects can represent
files, stripes or extents of files or serve other purposes. Files are represented by
container objects in the metadata cluster and by constituent objects on storage
targets. Rich interfaces to perform 1/0 are provided including block alocation,
locking, pardld 1/O, storage networking optimizations and storage management
aswdl as active disk interactions with loadable logica storage modules. Storage
targets can be made free of single points of falure.

4. Resource and security databases: provide configuration management informetion
to systems, provide security services, user and group databases and file set
location databases. Inter-site referrds provide key mechanismsfor globa
infrastructure. The redundancy of these systemsiis provided by shared Storage
fall-over solutions.

The protocols among the systems can be summarized as follows:

1. Clients—Storage Targets: Clientsinteract on a client/server basis with storage
targets directly for file1/O. Clients can exploit specidized pardld 1/0 interfaces
or benefit from storage management modules running in the storage target (e.g.
data migration, network adaptation, datamining). Locking of file datais
managed with storage target based lock service supplemented by revocation
services on the client. Storage targets accept security capabilities from clients.
Client and target failures invoke recovery protocols among these systems, which
include I/O fencing, journa recovery and lock revocation/re-establishment.

2. Clients— Metadata Control: Changesto the namespaces are requested by
clients and directed to metadata control. The file system protocol is supplemented
with resource location services, lock services for metadata (including revocation
services offered by the clients). The client/metadata file protocol dynamicaly
adapts to cover low contention and high contention cases. Aggressive write-back
caching isused in case of low contention, while ascaable client/server modd is
used when contention is high. In case of high contention, resource management
digtributes the load across the metadata cluster. Implicit in this protocol isthe
alocation of storage target resources to objects, which is communicated to clients.
When clients die, asmple recovery protocol isfollowed smilar to that between
clients and storage targets. Changesin the membership of the metadata control
clugter first provoke recovery of that system and then recover clients and storage
targets.

3. Storage Targets—Metadata Control: The protocol is a client/server protocol
enabling storage targets (clientsin this protocol) to update metadata control
(servers) with information regarding congtituent attributes and summary
information on target load and capacity resources. There is arecovery protocol to
re-establish digtributed consistency among containers and constituent objects.

4. Metadata Control — Metadata Control: The communicetion in thissystem is
much like that of aVVAX Cluder, including atightly coupled metedatafile
system, clugter trangition and distributed lock management functiondity.

5. Client — Client: There are no direct interactions except for client and storage
target clusters performing hierarchica flood-fill notifications from metedata

Cluster File Systems, Inc. Page 6 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

control, resource databases (or storage targets) to al systems. FHood/fill
notification services can be made redundant by virtua service techniques because
they are statel ess and memory based.

6. Storage Target — Storage Target: Storage targets communicate with each other
as part of sorage management for object migrations directly between storage
targets. For file system operation these nodes communicate among each other
like dient — client interaction.

7. Resour ce and security services. after new (racks of) systems have been added to
the configuration databases they are sdf-configuring, usng DHCP, LDAP and
related systems. Security, user/group and file set databases are queried accessed
by clients, metadata control and storage target nodes for a variety of services. In
some cases information is cached.

The Lustre object-based protocol permits more than smple stacking of object-protocol
modules. It dso alows various clugter file system functions can be partitioned across
multiple sysems in different ways. The following client, metadata control and target
configurations are possible:

0 Sngle system: { Client = Metadata Control = Target} — All functions execute on a
sngle system. In this case, Lustre behaves like alocd file system, but can add
features such as snapshots, DMAPI or encryption through |oadable modules.

0 Shared object storage file system: { Clients incorporate Metadata Control,
Targets} — A symmetrica object-based clugter file system that performs metadata
control functions between dlients and shares storage on targets.

o File manager object file system: { Clients, Single Metadata Control, Targets} —
Multiple clients that manage coherence through a single metadata control
systems. Thisis an object-based clugter file sysem with afile mareger.

0 Client-server distributed file system: {Clients, Metadata Control with direct-
attached Targets} — Thisisadlient server network file system configuration.
Lustre: { Clients, Metadata Control Systems, Targets} — Multiple dients that
manage coherence through multiple metadata control systems, and that manage
access to multiple targets

2.2 Rationale and Alternatives

A traditiond dudter file sysem has aimed to provide high performance Unix file sharing
semanticsin atightly connected cluster. Didtributed file systems (such as NFS, SMB and
AFS) have provided file service to larger groups of clients. Newer file systems have
addressed object storage, and others (InterMezzo [20]) have introduced extremely
aggressive write back caching techniques suitable for wide area operations. Our solution
will draw on innovations from many such systems.

The requirements posed by the SGS File System emphasize dl dimension of scaability.

The brief rationde here provides motivation for our solutions and mentions some
dternatives.

Cluster File Systems, Inc. Page 7 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

First, much of the current design was arrived at in joint work with Sandia spanning

severd years, based on the I/0 subsystem used in CPLANT. Secondly, we havetried to
draw on successes in the industry: VAX Clusters, AFS scalability, Kerberos security, and
journd file systems like ReiserFS and XFS. Findly we have wanted to build a system
that is closaly digned with core developments in the storage industry such as NFS v4,
DAFS-gtyle storage networking and commodity hardware infrastructure.

Object-based 1/0 isanaturd way to offload a sub-protocol of file service to Sorage
targets. The NASD project has demonstrated the opportunities for scalable I/0 and
security. Our work is an enhancement of this providing more services and storage
management in the object stack. An dternative gpproach isto alow clients to manage
dlocations on traditiona storage controllers. While the latter provides more backward-
compatibility, we regard the ASCI setting as an opportunity to innovate.

A metadata control cluster is, perhaps, the most tentative of our choices. The primary
motivation isthat VAX-Clusters were very successful systems. Hashed directories will
provide load balancing for single object updates. The reductions of our system that occur
by co-locating metadata control, client and target components lead to a number of known
good solutions. Alternatives in this space are scarce. It has been suggested to run alarge
redundant SQL database server asthe metadata service in Lustre, and ideathat leads to
many secondary opportunities such as name space indexing. We expect to do further
research on each of these two aternatives.

3 Related Technologies

To achieve wide spread adoption and portability the Lustre project will need to integrate
avariety of complex technology components such asfile systems, networking, clustering
and storage target execution environments. We recognize that in each of these domains
sgnificant technologica evolution is ongoing, and we are actively participatingin
numerous industry standards activities [15, 16, 21].

This section outlines how we expect to leverage many of the needed software
components for Lustre from existing open standards and open source efforts.

1. NFSv4: Lusre clients bear some resemblance to NFS v4 clients [8]. However,
Lustre performs much more aggressive client Sde caching of data and meta-data
and will use adirectory format that enables extensible hashing across aclugter. As
areault, Ludtre clients aggregate 1/0 commands to a much greater extent than
NFS v4 clients, which improves performance. Our clients do not participate as
full duster nodes but as satellites and we expect the Lustre client implementation
to be smilar to an NFSv4 client.

2. Clustering: Severd groups have contributed sgnificant clustering infrastructure
components in to the open source. We expect Lusire' s clustering infrastructure to
integrate components from IBM’ s open source distributed lock manager [26],
Corndl Universty’s Ensemble group membership protocols[27], and Mission

Cluster File Systems, Inc. Page 8 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

Criticd Linux’ Kimberlite cluster recovery daemon [28].

3. Cluster File Systems The Lustre metadata control systems are responsible for
managing object meta- data coherency. Within the metadata control systems, we
expect to use anovel locking mechanism based on hashed directories with sub-
dividable extensble hashes. Some aspects, such as cluster trandtions will be
handled asin traditiona block-based cluster file system smilar to GFS[25],
GPFS[24], or the VAX clugter file system [29,30], but we will use object storage
and will replace inode data with object metadata.

4. File System Scalability. The current Lustre code is based on the standard Linux
ext2 file sysem. We definitely need ajournding file system and we expect thet
for file I/O the Slicon Graphic's XFSfile system [31] is most scalable. We will
incorporate one or more of XFS, ReiserFS, JFS, Ext3 into our storage targets.

5. Storage Networking: We expect to incorporate severa recent low-overhead
networking advancementsin to the Lustre design. Remote DMA (RDMA) [10]
will sgnificantly reduce network protocol processing overheads on clients and
targets on VI-architecture based networks. The WARP protocol [11] will also
enable RDMA writes over standard TCP/IP networks. The DAFS initiative [15]
has introduced an improved RPC data layout. Combined with WARP-like RDMA
writes, the improved DAFS RPC data layout is a very attractive solution for low-
overhead Lusdtre client-target communication, even over TCP/IP.

6. Object-Sorage Protocols: The Lustre object storage protocol bears many
resemblances to currently evolving storage standards. Compared to the DAFSfile
system storage access protocol [15], Lustre diminates the need for server-sde
name space handling, and provides severd extensons over DAFS. While iSCS
[16] is primarily focused on low-cost SAN replacement using block-based
semantics, the T10 standards group is defining an extended object-based SCSI
command sat called OSD [21]. Although Lustre defines a more substantial set of
cagpabilities than the TA0/OSD, using the Lustre clustering and meta-data
architecture to aggregate a set of T10/0OSD/iSCSI compatible targetsis desirable.

7. Security and management: Both the clugter of dl systems and the file system
require a substantial amount of configuration information. LDAP style directories
have become awiddy used globa infrastructure for such data. Kerberos/ X509
Security iswidely in use now and run-time configuration is successfully done with
DHCP-gyle services. We expect to draw on dl of these,

While we expect to leverage code, capabilities and techniques from the above
components, the Lusire design aso adds significant nove capabilities. Ludtre
incorporates novel locking mechanisms and directory structures, an advanced object-
based storage access protocol that supports byte-granular scatter gather 1/0, object pre-
alocation and command aggregation and integrated journa recovery support. To meet
the required performance and scalability targets, Lustre aso exposes a direct object

Cluster File Systems, Inc. Page 9 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

access interface and provides specidized performance hints. The ability to execute code
on the Lustre sorage targets dlows them to actively participate in storage management
functions.

4 Lustre Software Architecture

4.1 Overview

The Ludtre software architecture [5] is easiest described as a stack of layered object-
based storage (OBD) modules. Key software layersin Lustre are:

a) POSX Compliant File System: An object-based file system exposes a POSI X
compliant VFS interface to client gpplications, and two protocol interfaces to
software layers below: (1) a meta-data coherency protocol to handle name space
operations, and (2) an object storage protocol to handlefile I/O operations.
Typicaly, the object-based file system is the top-most layer in a stack of object-
based storage modules. It is intended to be stacked on top of alogica or a direct
OBD driver.

b) Direct-Access Object Storage Interface: Thisis an dterndive top-levd module
that enables high-performance computing where gpplications take respongibility
of object data coherency. Lustre provides a direct access interface that allows
such applications to bypass the above-mentioned file sysem layer. By rdaxing
cluster file system synchronization and coherency mechanisms, we expect to
achieve higher performance from speciaized direct- access applications.

c) Logical Object Modules. Logica OBD drivers are stackable modules that have
the same OBD interface going in (to the top) and coming out (of the bottom).
Logicd OBD interact with other logical drivers, or layer on top of adirect OBD
driver. Logica object modules typicaly perform functions such as mirroring,
RAID, data migration, or versoning, and can be used to execute downloaded
active disk computations.

d) Direct OBD Drivers. Direct OBD drivers provide an OBD interface (at the top) to
an actua underlying disk, that isa set of blocks (at the bottom). These drivers
perform block allocation for an object storage device, and provide a persistent
data repository that is exported through an OBD interface.

e) Client/Target Driver Pairs & Networking: are use to encapsulate the object
protocol over anetwork. Client/target driver pairs can be specidized for avariety
of transport protocols, e.g. plain TCP/IP or transport layers that support RDMA
such as VI architecture [14] supporting adapters [12, 13] that run over Infiniband,
Fibre Channd, or even TCP/IP[10,11]. Development of high-performance
trangport driversis akey component of the overal project.

The figure below illugtrates the stacking possibilities for these drivers.

Cluster File Systems, Inc. Page 10 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

MPI-10 interface POSIX
MPI file types interface
Collective & shared 1/0

|AD10-OBD adaptor] | Lustre client FS |
| metadata sync |
|
|

| auditing
Client node | object storage client networking

T >

| object storage target networking |

synchronization content based
collective 170 authorization

| data-migration/controller redundancy |
| aggregation |
Storage target node |__XFS-based OSD | [XFS-based OSD |

Figure 2: Driver stacking

In each of these areas, the Lustre project requires further work to meet the requirements
of the Tri-Labs/NSA. Key steps we will undertake are:

1. Classdrivers
o Enable remote management
o Add the capability for profile based automatic configuration asin
enterprise management systems.
2. High performance direct driversfor data and metadata storage
o Anjournd file system (XFS, ReiserFS, JFS, Ext3) based direct object
driver is a candidate for afile storage driver
o Journaling, recovery, concurrency and pre-allocation requires API
enhancements
o Extent based object locking APIs
o To support redundancy and recovery we need support for replication logs,
and orphan removd
3. Implement NASD-syle capabilities based security between clients and targets.
4. Client/target pairs
o Highperformance networking including remote DMA capability
o Incorporation of new networking and object- storage enhancements from
WARP, DAFS, and iSCSI/T10/OSD.

Cluster File Systems, Inc. Page 11 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

o Scdability in terms of number of dients
5. Logical drivers
o Didributed gtriping drivers
o Synchronization mechanisms for the above (if needed)

4.2 The Lustre Cluster File System

One of the most chalenging RFP requirements is that of metadata scalability and
performance. This problem has severd aspects, such as high performance in clientsin
gtuations of low contention for resources, as well asthat of throughput when many
clients are operating on the same resource. Generdly we will avoid synchronous writes
to the maximum extent feesible.

A key design aspect of the Lusire clugter file sysem isthe integration of caching, cluster
coherency and recovery. To achieve best performance from aclient perspective, objects
should only be evicted from client caches only when a (possibly timeout based) lock
revocation is processed, and eviction should flush groups of object operations. To ensure
recoverability, object eviction should handle groups of related object operations and
direct these to persstent storage in atransactional manner. Our basic technique here will
be to built awrite-back log of operationsin the clients memory and migrate that to
metadata control nodes for replay upon timeouts of locks or eviction.

In the case of high contention for resources, such asdl dlients creeting filesin the same
directory, we will employ quite different techniques. A first problem ishow to avoid
large amount of lock revocation traffic. Client locks should time out, but aso, when lock
requests are coming in arate exceeding a certain threshold, it will be more advantageous
to not grant client locks, but instead to perform operations on the metadata cluster in a
client server RPC mode smilar to AFS. We see here how Lustre can run in write-back
mode as well asin RPC mode, dynamicaly adapting to the level of contention in the
clugter.

Another problem in this situation is how to spread the update load over the metadata
cluster. Thekey to asolution here isto use hashed directories that can be subdivided
over the clugter in conjunction with operation based object locks [3].

Efficient recovery of the cluster under membership changes is another key problem. In
our RF response [3], we proposed that Lusire clients remain satellite nodes with respect
to clugter coherency and locking. Thisiscriticd for scalable recovery, which will have

to rely on the scdable flood fill agorithm described in [34] for natifications to dients. In
current open source clugter file systems, e.g., GFS [25], file system concurrency
semantics has received rdatively little attention. A literature sudy of commercid cluster
file system implementations, e.g. Frangipani/Petd [32], Cdypso [33], and VAX/VMS
clusters[29], [30], reved s that these systems have gone through much detailed
refinement and performance tuning. A detailed design and prototyping to assess
concurrency performance and recoverability will be very important for Lustre.

Cluster File Systems, Inc. Page 12 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

There are two cases where avoiding synchronous writesis not appropriate. Firdt, to
implement NFS semantics, metadata updates have to reach stable storage before system
cdlsreturn. Our system can support this by operating in the RPC model and requiring
the RPC'sto sync data. Operating in RPC mode a so provides an opportunity for
integration with the DiFFSfile sysem [38]. This system avoids locking and dlows
metadata transactions to span multiple storage targets. DiFFS dso avoids journa
recovery mechanisms that span multiple nodes, but requires synchronous writes and
detection of RPC failuresto order updates [51].

The following list outlines key components of the Lustre cluster file system:

1. Protocols
o Afilel/O protocol between clients and storage targets
o A metadata update protocol between clients and metadata control
o Recovery protocols for dl system failures
o Separation of protocol and service implementation
2. Afilesystem
o VFSopeaionswith VFS extensons for locking
o Scdabledirectory formats based on extensible hashes or invisble
subdirectories.
Operation based lock acquisition and lock verson management [3]
Grouping of operations into file system transaction groups
Data and attribute retrieval and storage through an object storage AP
GSSAPI compliant security
o Resource awvareness for congtituent object allocation
3. Single namespaces
o A filtering file sysem layer for nramespace management
o Filesas and Unix mount points can be grafted into a namespace
o Cross-complex file st location databases with global identities
4. Third party file 1/0 to object storage controllers
o Directory entries pointing to inodes describing large granularity
(device/object/extent) triples
o Controller based locking (flock) and collective operation support
5. A write-back file system cache integrated with existing cachesin the OS
comprising:
Cached extentsinfiles
Cached metadata
Managing dependencies within and between transaction groups
Hushing and unpinning
o Lock revocation support
6. Recovery support:
o Coherency and recovery between targets, clients and controllers
o Log replay and distributed log dependencies
o |/Ofencing
7. Exportable interfaces
o Noatification and ACL support for correct NFS/CIFS exports

O O O O

o O O O

Cluster File Systems, Inc. Page 13 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

o InterMezzo support
4.3 Clustering Infrastructure

To successfully build a clugter file system, a set of basic cluster infrastructure is needed.
A sample architecture designed by the Linux Cluster Cabd [34] incorporates critical
scaability enhancements of lock managers. Through the correct distribution of

resources, locking scaability will be mostly an issue between metadata control nodes and
satellite clients and are unlikdly to affect file 1/0. Components we expect to use for basic
clustering support are listed below:

1. Connection and live-ness support, membership and quorum: We may base these
on the Ensemble project [27].

2. Anevent delivery mechanism: IBM has detaled an implementation as part of
high-availability CMP [37]. Tweedi€ sdesign [34] issmilar. We plan to build on
these designs.

3. A cluster resource database: Replicated LDAP servers have been suggested.

4. A recovery manager for staged digtributed recovery: The daemon which is part of
Kimberlite [28] or Compaq’s open source cluster manager (to be released) will be
agood gtarting points. Barrier support will be implemented.

5. A distributed lock manager: IBM's open source DLM will form the basis, with
scalability enhancements as proposed by the Cluster Cabal in [34], and additiona
DLM communication performance improvements.

6. Basc P and shared storage fail-over services where appropriate. LVSand
Kimberlite provide excellent sarting points.

4.4 Programmable Object Storage Targets

We will design and implement a high- performance object-based storage target based on
gtandard high-volume hardware running a standard Linux operating system. Basis for
high- performance target run-time sysemisthe Linux in-kernel TUX web server
architecture [17, 18, 19]. Thiswill provide ahighly optimized multi-threaded network
communication system and additiondly a kerne-level safe execution environment. TUX
iswdl integrated with the Linux 1/0 subsystem and aready provides many of the storage
and networking hooks required to support high- performance object data /0. Reuse of
TUX provides one of the basic Lustre building bock to achieve the Tri-Labs/NSA SOW
section 3.3 (no single point of failure) and section 4.2 (scaable infrastructure for clusters
and the enterprise) requirements.

Wewill define and develop an “active disk” execution environment on the storage target
that alows safe execution of downloadable logica object modules. Active disk functions
fdl into two categories: (1) an active dement in the object metadata path can perform
storage management functions such as backup, load balancing or ortline data migration,
and (2) an active dement in the object data read/write path can perform data
manipulation and aggregation functions useful, for ingtance, for transcoding of multi-
media streams, customized content-based security or low-overhead data mining [XX].
The Lustre object protocol includes an iterator method that allows a user-defined function

Cluster File Systems, Inc. Page 14 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

to be gpplied to an entire set of objects. This primitive alows the storage target to
optimize disk block traversal used by data mining or disk indexing operations[Y'Y].

Safe execution of downloadable logica object modules hinges on two factors. First, we
need to constrain downloaded code to see (or be able to update) only a subset of dl stored
objects. Second, we need to ensure that downloaded code cannot subsume &l storage
target resources, be they compute cycles, network bandwidth or disk space. Lustre meets
the first safety congraint by enforcing NASD capabilities-based security on individua
objects, in other words, an active disks request will only be able to see/update objects for
which it has been granted the appropriate capabilities. The second safety congtraint
requires storage targets to congtrain the amount of resources available to unknown
downloadable logical modules. One sandboxing possihility isto execute the logicdl

module in user- gpace, where resource limitations such as time-dices and disk quotas can
eadly be enforced. Another isto pre-dlocate a downloaded code modul€' s required
maximum resources, and fall it when it overstepsit dlocation.

We expect downloadable logica modules to be used for providing management services
such as backup, archiving, data balancing, on-line data migration, as well as security
(content based authorization and encryption) or performance (e.g. prefetching) functions
etc. that are required by SOW sections 4.2.4 (archive driven performance), 4.2.5
(edaptive prefetching), 4.4.1 (minimize human management effort), 4.4.3 (dynamic
tuning), 4.4.4 (diagnostic reporting), 4.4.16 (backup), and 4.5 (security).

4.5 Storage Management & Configuration

To fulfill the capacity and bandwidth scaability requirements specified in the Tri-
Labs/NSA RFP [35], Lustre storage clusters would probably consist of thousands of
dorage targets. Configuration and administration of such alarge number of devices must
be completdy automated. Additionaly substantid storage management infrastructure is
required for archiving and backup.

While we will not develop management tools per-se, we will provide the basic
infrastructure for monitoring, recovery and replacement and discovery of nodes. A basic
directory scheme controlling grouping and configuration of nodes will be addressed by
this proposal. On the storage management front we will provide snapshots and deta
migration API’s upon which further tools can be built.

Although the Ludtre file system will provide a Sngle name end-user visible name space,
for management purposes, the systemsin a Lustre cluster will be subdivided into
organizational units. These units describe collections of sysems with different
characterigtics that will typicaly manage file sets for a particular purpose. The sysemsin
an organizationd unit are managed by associating the organizationd unit with a
management profile which describes afile sat’ s backup configuration, security and
performance attributes, as well as required storage target “ active disk” code execution

Cluster File Systems, Inc. Page 15 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

modules. Enterprise management systems (Novel’ s NDS, Windows 2000, Tivoli and CA
Unicenter) provide such infrastructure.

Wewill provide:

1. Cluster resource database (LDAP) storage for management data
2. Directory schemas for organizationd units and management profiles
3. API’sto gpply management profilesto sysems

At amore detailed level storage management requires a substantia collection of
modules. Among these we will ddliver basic implementations of the following:

1. Datamigration API’sfor backup/restore and HSM
2. File system snapshot
3. Monitoring of hardware and users

5 Coverage of Tri-Labs/NSA Requirements

In the following, we refer to the section numbersin the Tri-Labs/NSA SGS File System
statement of work (SOW).

5.1 SOW Section 3 - Minimum Requirements

5.1.1 SOW Section 3.1 POSIX-like interface

Our file sysem will have the sandard POSIX interfaces. The system will be able to run
in Unix semantics mode and in an optimized mode. In Unix-semantics mode the systems
cdlswill have the expected behavior, while in optimized mode significant performance-
gains are possble — thiswill likely affect the stat and fstat cals, which will involve RPCs
to storage targets.

There are anumber of specid system calls such as mmap and cals associated with
asynchronous /0. On single systems we expect these cdlls to have the norma semantics,
but their behavior across the cluster will depend on the OS.

5.1.2 SOW Section 3.2 Integration Compatibility

The Ludtre sorage stack is highly modular, and we will retain maximum modularity at
the file system level aswell. Most management functions, such as DMAPI, backup
support, encryption can be built as modules that can be downloaded into the storage
dack. We have indications from existing Lustre modules that these do not introduce a

performance penalty.

5.1.3 SOW Section 3.3 No single point of failure

Failuresin the cluster can affect clients, storage targets and cluster control nodes and
communications. The state of the cluster is represented by datain memory including
cachefile system data as well as cluster state such as lock resources and membership,
datain trangt over communication links and persistent data on systems. Under normal

Cluster File Systems, Inc. Page 16 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

operation the cluster will move forward from one consistent state to another through
groups of operations, which typicdly involve multiple Sate changes. Recovering from
faluresinvolves hdting norma operations on affected nodes, restoring date to a
consgtent form and continuing the operation.

We will introduce a systematic recovery framework based on the work of Tweedie,
Braam, Callahan and McVoy (the Linux Cluster Caba) [34], which in turn was heavily
influenced by the VAX Cluder literature.

Thereisvery little literature about the recovery issuesfor clugter file systems, but our
experience with Coda and InterMezzo [20] will lead usto build aframework that
integrates synchronization, journd file system transactions and cache behavior.

We expect that the clusters may require some scaability enhancementsto ded with large
numbers of nodes. Such enhancements were discussed in [34].

To limit the scope of our work, we will use industry standard redundancy mechanisms
such as backup Kerberos KDC and replicated L DAP databases wherever read- modly
cluster resources are involved.

5.2 SOW Section 4 Desired performance features

5.2.1 SOW Section 4.1 Global Access

Asindicated in section 2, the Sites addressed by this proposd are bigger than traditiona
clusters and our solution needs to span site boundaries. A full solution in this space goes
well beyond the SOW requirements and may draw on InterMezzo [20] to address
replication. However, our solution will provide basic infrastructure in the area of file st
support, management, security and networking.

5.2.1.1 SOW Section 4.1.1 Global Scalable Namespace

Globa name spaces were perhaps first introduced into AFS, followed by smilar
implementations in Coda, DCE/DFS, InterMezzo and Microsoft dfsand NFSv4. We
will follow asmilar strategy and congtruct a name space module that combines file sets
and file syssem mount points into a sngle name space. We will combine acluster
resource database which the file system queries for transparent traversal of the name
gpace with new techniques known as struts or pseudo file sysemsin the InterMezzo and
NFSv4 efforts. The latter provide higher availability by bridging temporarily
unavailable sections of the name space.

The globa namespace will be exportable through NFS and CIFS. However, the detailed
Windows semantics (such as Window’ s exclusive open) offered through CIFS (Samba)
sarvers running on different clients requires hooks in the server for which we will only
provide notification interfaces.

Cluster File Systems, Inc. Page 17 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

A new aspect of namespace management arises from the alocation of object storage
targets for file data (object placement). The choice of appropriate controllersto handle
segments or stripes of files should be based on a resource management scheme in the
subsystems responsible for metadata.

5.2.1.2 SOW Section 4.1.2 Client Software

Our client software is based on the Lustre object file system currently available for
Linux. The key aspects enabling easy portability of the client software to operating
systems other than Linux are:

1. Therewill be an open source Linux reference implementation

2. Thisfile system bears a gtriking resemblance to NFS

3. Our locking mechanisms for client nodes will be refinements and extensions of
those employed in NFSv4. The refinements will address finer granularity of
locks, and more aggressive caching and synchronization of meta-data and
directory data.

4. Our security mechanisms will be largely anaogous to those used in NFS v4,
combined with NASD object security, see section 5.2.5.

5. Our transport between clients and storage controllers, i.e. the Lustre object
storage protocol, has consderable smilarity to DAFS. Lustre does not require
any DAFS cdls reated to directory lookups and file names and brings extensions
to DAFS for more aggregate commands and vectored /O, pre-dlocation and file
System journd transaction support.

The sysems we will be employing, be it with modifications, form the foundation of the
next generation storage and file system infrastructure for the industry. Wefed thereisa
great likelihood that ports will not be problematic at dl. In addition to the portability it
provides this approach alows us to benefit from and contribute to related efforts.

5.2.1.3 SOW Section 4.1.3 Exportable Interfaces

Our file system will be exportable to NFSV4 and CIFS. However, thereis a cavest to
be awvare of. Neither the CIFS nor the NFS server isstateless. Exporting CIFS and NFS
v4 from asinglefile server dready requires synchronization of state between the Samba
server and the file system (Smilar issues apply even to NFSv2/3). Exporting load-

bal ancing ingtances of these servers, exporting CIFS and NFS from multiple client

gystems requires synchronization of state among dl these serversfor full support of the
semantics. In addition the servers would need to be aware of cluster membership
trangitions to handle the addition or disappearance of one of thefile servers.

Our dugter infrastructure will enable NFS and Samba to be modified to provide such
date synchronization and the Samba Team (at VA Linux) has expressed interest in doing
o with us.

5.2.1.4 SOW Section 4.1.4 Coexistence with other file systems
Thisisnot aproblem.

Cluster File Systems, Inc. Page 18 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.1.5 SOW Section 4.1.5 Transparent global capabilities

The Lugdtre file system will do an extremely aggressve form of caching. Lookup and
attribute acquidtion will be based on cached data. Writes (except when especialy
requested) will never be synchronous and large caches will flush numerous update
requests periodically.

Our security and resource management will be globd as addressed under other
requirements (globa namespace 6.2.1.1, global identities 6.2.3.2 and WAN security
6.2.3.3).

We expect good performance and have included a ddliverable to perform tuning and
provide additiond adaptation to our networking and file system layers for WAN
performance.

Wewill develop specidized Ludtre client/target driver pairsfor avariety of common
storage transport protocols, e.g. standard TCP/IP for Ethernet, VI-architecture based for
Fibre Channel and other high- performance storage area networks. While these
client/target driver pairswill be optimized for their particular trangport layer, Ludtre's
“active disk” concept alows object storage code modules to be loaded into both storage
client and target systems. Specidized prefetching or buffer resizing and caching module
pairs can be used to trangparently pipdine large requests over long latency high
bandwidth wide-area communication links. We will explore arange of adaptive self-
tuning and prefetching performance enhancing target modules. We will aso develop a set
of specidized client-side direct object storage APIs that will alow knowledgesble clients
gpplications to specify performance hints to directly to the object store.

5.2.1.6 SOW Section 4.1.6 Integration into a SAN environment

We expect most Lustre storage targets to run on high performance commodity hardware
that use traditional block storage for persstent data. Since Lustre direct drivers (the
lowest level of the Lustre storage abstraction as described in section 4 above) are
inherently capable of handling block-based storage, Lustre dready works with existing
block-based storage area network (SAN) technologies such as Fibre Channel or iSCSl.
Thisis mogt attractive in the context where the storage controllers are dso responsible for
RAID so that asmple JBOD and fail-over, commodity (SMP) system can act asthe
storage target.

In this setting we expect to incorporate explicit support of RDMA into the Lustre object
gtorage protocol. We have carefully studied the following networking technologies and
outline below how we expect to use them in the Lustre context:

1. WARP isarecent protocol proposa for encoding an interleaved send and RDMA
packet stream on top of TCP/IP [11]. WARP RDMA packets are sdf-describing
RDMA write “chunks’ that contain destination buffer-ids and offsets (this dlows
receiving network interface cards to determine destination address for each
packet). WARP send packets do not specify an address; instead they specify a
Send Sequence Number and an offset. The WARP proposa includes a mapping

Cluster File Systems, Inc. Page 19 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

of these functions on to TCP, SCTP, and aso discusses how iSCS| protocol data

units can be mapped on to WARP.

Conclusion: WARP is of interest to Lustre as it increases the probability for an
RDMA write mechaniam to exist on top of TCP/IP. Thisindicates that Lustre
should be able to take advantage of RDMA writes not only on VI-architecture

based transports, but, in the future, on TCP/IP based transports as well.

2. DAFSisthe Direct Access File System access protocol [15]. DAFSisfocused on
providing NFS v4 file access capability over ardiable system area network. The
RPC datalayout style used by DAFS for marshdling (described in section 6.1.1
of [15]) isof particular interest to Lustre. The key element of the DAFS layout
places dl fixed-gze Sructure dements at their naturaly digned boundaries, and
moves dl variadble Sze buffers to the end of the message. Pointersin the fixed-

Sze dructure that reference variable Size objects are converted into relative

offsetsin the on-the-wire format. This dlows receiversto Imply re-indtantiate

pointers by adding the offset to the message' s base address. Additiondly, if

receivers place incoming messages a the proper aignment in memory then the

received data structure can Smply be typecast to the appropriate datatypein

place, without further copying or reassembly.

Conclusion: The DAFS RPC data layout, combined with WARP-like RDMA

writesis a very attractive solution for low-overhead Lustre client-target
communication, even over TCP/IP.

3. ISCY/T10 OSD: iSCSl isa SCSl encapsulation protocol layer on top of TCP/IP
[16]. 1ISCS has gained sgnificant industry momentum over the past few months.
WhileiSCS’s primary focusislow-cost SAN replacement with block-based
semantics, work in T10 has been ongoing to define an extended object- based
SCSl command set [21]. Furthermore, the WARP effort [11] discussed above has
aready proposed an encapsulation scheme for ISCSI commands in their protocol.
Conclusion: iISCS hasalot of momentum that make it an interesting transport
layer for data trangport in Lustre. Even though L ustre defines a more substantia
set of cgpabiilities than the T10/OSD devices provide (namely predllocation, file
system recovery support, vectored byte granular 1/0 and execution of |oadable

modules on the storage target) using the Lustre clustering and meta-data

architecture to aggregate a set of T10/OSD/iSCSI targetsis avery desrable god.

We expect to spend asignificant amount of design and implementation effort to bring

new technology developments to bear on transport layer performance and robustness.

Thisindudes not only high performance in storage area networks based on V-

architecture abstractions [12,13], but also improved performance on standard TCP/IP

based local and wide area networks.
Support for direct 3"%-party I/0 in “legacy” block-based SAN

Exiging commercia SAN deployments may want to re-use expensive block-based

gorage infragtructure (such as an EMC Symmetrix, HP XP512 or smilar systems) in the

context of an object storage cluster. An object storage target can utilize such block

Cluster File Systems, Inc. Page 20

7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

storage, but 1/0 would incur an extra“hop” at the object target. Lustre can also support
direct 3% party 1/0 in such “legacy” SANs ingtallations by introducing “Proxy Object
Targets’ (POTYS) that perform block-alocation for each of the block-based SAN storage
targets. POTs execute al object commands, trandate objectsinto SAN device and block
information, and then trigger the appropriate set of 3% party direct block 1/0 transfers
between the client and SAN storage targets. Compared to native object storage this
introduces an additional message, and hence latency, for each read and each write
operation, but does not pass the data through the proxy.

When clients send write commands to a POT, they do not include data for writes, but
instead expect to receive SAN device and block information from the POT. Then clients
perform the I/O directly with the SAN target. When the 1/0 has completed the client
must confirm the completion to the POT. Also the client must handle the case of “write-
and-freg’ buffers and “write-and-retain” buffers to support journa transactions.

The POT will be careful to build the same transactiond update logs as L usire object
targets to avoid the introduction of a second recovery mechanism.

5.2.2 SOW Section 4.2 Scalable infrastructure for clusters

Generdly spesking our gpproach to scdability istwo-tiered. First we aggressively limit

the footprint of shared resources, secondly we introduce new sub-dividable resources. A
few examples will illustrate our gpproach.

Traditiond duder file systems have delegated file block dlocation to a sngle metadata
server (for non-symmetric clugter file systems such as CXFS) or to every cluster node (in
symmetric clugter file sysems). In the former case a bottleneck can easily arise, whilein
the latter a subgtantid amount of synchronization mechanisms surrounds the update of
alocation bitmaps.

5.2.2.1 SOW Section 4.2.1 Parallel /0O bandwidth

To achieve minimd interference between systems for scaable 1/0 bandwidth we made
two important design decisons. Thefirg isto use object storage targets, which offload
block alocation from the file system clients and avoid unnecessary sharing of dlocation
metadata— thisis one of the items thet falls under footprint reduction. Smilarly storage
controllers will implement file extent locking (for striped files we have some open
questionsin our desgn). Again thislimits the file locking resources to precisdy those
clients and controllers that are involved.

N by M mapping is a good example of our on-controller computing environment.
Logicd storage modules can interpret MPI-10 views of structured data on the controller
and, for example, deliver columns when storage order isin rows. Our Srategy hereisto
implement the ADIO interface for which the Lustre protocol has aready been adapted
with scatter-gather byte level compound write commands, including hints.

A very subgtantia portion of our ddiverablesis focused on not merely implementing but
aso findizing, testing and debugging the scaable /0 infrastructure, including everything

Cluster File Systems, Inc. Page 21 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

between high performance storage networking based on V1-like protocols, locking
relaxations and other performance hints.

5.2.2.2 SOW Section 4.2.2 Support for very large file systems

We will support very large file syslems as mertioned in the requirements. Object storage
brings new opportunities to bypass limitations found in some current operating systems
related to the address space of blocksin storage devices. By gtriping over multiple
devices Linux sysems will be able to support file sysems of practicdly unlimited sze
and files of up to 2** bytes.

5.2.2.3 SOW Section 4.2.3 Scalable File Creation and Metadata operations

To support scaablefile creetion it isimportant that a crestion operation for file foo in
directory bar can be executed on asingle cluster node. Two key aspectsin our solution
to this problem (see [3]) are to acquire alock, not just on bar as is common practice at
present, but on a combination of the resources involved in the operation. Inthisway a
client can locate a system responsible for that part of the directory file that will hold bar —
this is needed both for the insertion of anew directory entry and for the accompanying
check of non-existence preceding the creation. To plit directory handling across
multiple cluster nodes an extensible hashing schemeis needed. Interestingly, GFS and
the ext2 and ext3 file systlems have just seen the introduction of this. While we will
likely need to change the directory format, there is much to be learned from the
agorithms, which have shown good results with directories with millions of entries.

An open question at present isif we should dlow clients to modify directory deta (asis
cusomary in clugter file systems) or if it is more prudent to have an RPC style
interaction, possibly with write back caching, asis done in InterMezzo (with write back
caching) & Coda/AFS/DCE-DFS (without caching). Caching of directory datafor the
purpose of updates may result in much higher performance but mandates that clients are
systems entrusted with enforcing authorization — in aWAN environment thisis probably
undesirable.

To scde the performance of “IS” an interesting read-ahead operation on directory objects
will be needed, which may span multiple metadata controller nodes.

The most pressing issue for scaability isthe recovery mechanism, since it will aso need
to be invoked when there is a cluster trangition between the metadata control nodes
(metadata servers). We will carefully integrate cache flushes, synchronization and
journa transactions so that cached data is migrated from clients to control nodesin
transactiond units. Our system will rely on abdtractions found in the Spirdog File Server

[7].

Asfor 1/0 scaability, we have reserved ample room to build, test and improve the
metadata scaability issuesin our project.

Cluster File Systems, Inc. Page 22 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.2.4 SOW Section 4.2.4 Archive driven performance

The Lustre protocol provides serverless remote copy commands for extents of objects, as
well as object iteration functions to process entire volumes without server interaction.
While we do not expect to have resources for fully-fledged NDMP and DMAPI
interfaces, the complete infrastructure to build these easily — aslogica storage modules, —
will be available.

5.2.2.5 SOW Section 4.2.5 Adaptive prefetching

Like most file systems, Lustre provides standard read-ahead and Lustre will have more
aggressive write-behind techniques than currently found in clugter file sysemsto
improve performance for sequentia access patterns. In addition to the standard POSI X
file system access, Lustre will provide access to stored objects through a specidized
direct object storage API. The direct access API will dlow applications to bypass
gandard file system prefetching behavior, and will provide a relaxed consistency model
for file data to support applications that are able to take advantage of it. Additionaly, a
st of performance hints (specifiable on a per object/file basis) will dlow usersto
persistently record the preferred access methods with each object. Findly, specid
purpose logical object modules can be plugged into the Lustre client and target stacks
dlow flexible and, possbly gpplication programmable prefetching strategies to be
deployed.

5.2.3 SOW Section 4.3 WAN Access

Fundamentally we see three components to the WAN access issues raised by the RFP: a
globa name space, agloba security modd and an adaptive multi-channe WAN
trangport infrastructure.

5.2.3.1 SOW Section 4.3.1 WAN access to files

Our file system will perform extremely aggressive write-back caching with read-ahead.
Thiswill diminate many latency-induced bottlenecks in WAN environments.

Use of multiple trangport channels and connection trunking will improve throughput and
latency in wide-area networks and is one of the key research items for the object storage
and networking team. For WAN access to the Lustre object store, we expect to create
adaptive load baancing strategies in which multiple channels are automatically crested
and torn-down based on dynamic feedback. Differentiated use of a set of channdsfor
short control and coherence messages and another channel for bulk data transfers can
ggnificantly improve percaived latency. We further expect this capability to be very

useful for storage management functions such as backup and on-line data migration thet
can benefit from background operation.

InterMezzo will be able to export parts of the Lustre namespace to clients, even mobile,
disconnected clients. Such data can be presented on the client in secure private
namespaces and modifications are reintegrated with log replay that exhibits the full
security features desirable.

Cluster File Systems, Inc. Page 23 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.3.2 SOW Section 4.3.2 Global Identities

Wewill use globa identities with cross rellm authentication and authorization. Such

globa identities require mappings to integer user identities on dlients to enable export of
NFS. It may aso be efficient to maintain such mappings on control nodes, but equality of
Unix user identities on different client is not required. DCE/DFS and Coda have
solutions here that we may adopt.

5.2.3.3 SOW Section 4.3.3 WAN security integration

We will take the following steps to ensure wide area security integration. First our ACL
support will use principas not user-id' sto accommodate globa definitions of
authorization. Second we will use Kerberos with ANL/Globus X509 patches for cross-
cdl authentication. Our volume location service, part of the cluster resource database,
will be stored in (replicated) LDAP directories with referras which isitsalf secured with
Kerberos authentication and ACL’s.

5.2.4 SOW Section 4.4 Scalable management & operational facilities

Our target isto implement a basic management infrastructure, which will enable other
entities to port existing software to Lustre. For example, there are API’ sfor secure
remote management and MIB’ s for monitoring. There are data migration and hole
punching API’ s and sngpshots. However our focusis on file systems and storage
networking and we merely plan to provide sufficient infrastructure to engble further
development of management tools by others.

5.2.4.1 SOW Section 4.4.1 Minimize the human effort

We will lay the foundation for configuration of devices based on a profile description in
the cluster resource database. When anew device is added, it needs to know to what
organization unit it belongs and auto-configure based on a profile.

5.2.4.2 SOW Section 4.4.2 Integration with other management tools
Will not be addressed, but should be easily possible.

5.2.4.3 SOW Section 4.4.3 Dynamic tuning and reconfiguration

We will dlow for dynamic resizing and on-line migration of data, aswell as dynamic
tuning of system parameters. We hope to automate many of the networking transport
configuration issues by making the networking layer automatically adapt to changesin
workload and available bandwidth. We expect storage management functions such as
backup and on-line data migration will benefit from this.

5.2.4.4 SOW Section 4.4.4 Diagnostic reporting

Will be present through SNMP MIBs and driver-exported information about problems.
We have aready created alogical object module that monitors the number, size and
latency of object transactions executed by the file system. Thiswill be vauablein
andyzing performance problem and reporting overal performance Satisticsto
adminigrators and end-users.

Cluster File Systems, Inc. Page 24 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.45 SOW Section 4.4.5 Support for configuration management

We will develop precise configuration information of software and hardware running on
al systems.

5.2.4.6 SOW Section 4.4.6 Problem determination GUI
Will not be included.

5.2.4.7 SOW Section 4.4.7 User statistics reporting

Basc infragtructure in the file system clients, cluster controllers and targets will be made
avalable

5.2.4.8 SOW Section 4.4.8 Security management
Command line tools will be available to control al aspects of security.

5.2.4.9 SOW Section 4.4.9 Improved characterization and retrieval of files

Will not be covered. Our object based target drivers alow modular addition of storage
management modules that could be capable of prioritizing object access aswell as
selecting network drivers based on object attributes.

At thefile system leved InterMezzo gtyle filtering (which we will use for auditing) can
eadly be adapted to maintain file system attribute databases that remain consgtent in a
transactional manner with updates of the system.

Running a SQL based metadata cluster engine would provide unique opportunities here.

5.2.4.10 SOW Section 4.4.10 Full documentation
A basic st of system, operation and user manuals will be ddlivered.

5.24.11 SOW Section 4.4.11 Fault tolerance, Reliability, Availability,
Serviceability (RAS)

Clients

Much of our design work so far has centered about scal able tolerance mechanisms for
falures. Given the enormous number of clientsit is necessary for these clients to not
provoke cluster trangtionsinvolving large counts of other systems.

Asto locking they will be so called satellite nodes that have full use of lock mechanisms
but do not participate in resource mastering. Should such nodes leave or enter the cluster
there will be minimd disruption. If we dlow memory-to-memory data transfer between
client nodes the recovery problems remain involved since the cluster control nodes may
have to STOMITH systems that depend on a dying system flushing its write-back log. If
we synchronize by flushing through cluster control nodes such problems do not occur.

M etadata control nodes

Cluster File Systems, Inc. Page 25 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

Our metadata control nodes will follow mechanismsin VAX Cluster Style to ded with
clugter trangtions. The SOW ligs the possibility of giving such systems redundant fail-
over hardware, but this does not address memory state and is not usable for metadata
clugter trandtions. The failure handling in metadata control nodes is complicated, Ssmilar
to thet found in traditiona cluster file sysems. Traditiond clugter file sysemstypicaly
exploit synchronous 1/0 when arevocation of write locks occurs. We want to avoid
synchronous writes to the maximum extent (but will dlow thisto be an option). Asa
result the failure of a metadata control nodes may force clients to re-flush their cached
operations to a newly erected metadata control node or otherwise face afalure
themsdlves to maintain goplication condstency. Clients will detect thefailure of a
metadata control node and will have to await amessage from the cluster before
continuing to execute meta- data transactions. A top-down “flood-fill” scaable cluster
structure put forward by the cluster caba will be used to transmit such messages|[8].

The storage industry has developed many solutions for redundancy at the target leve.
Our object-based infrastructure makes many of these issues easier and dlowsfor the
following solutions. 1n each case the redundancy is introduced as an independent Storage
management module, alowing the same mechanisms to be used with different types of
storage networking and with different back-ends.

Storage Targets

Active/active redundant storage targets enable two independent targets that can
concurrently process requests. For block devices thereis no shared state among requests
but with object targets, dl alocation datais shared. Doing active/active pairs of
controllers would require a“mini clugter file sysem” between the controllers— ano-no.

A partidly active/active controller alows one controller to write to one disk partition and
another one to address another disk partition concurrently - load sharing at a coarse
granularity is possible. Such targets can be built asfollows: firdt let's use shared storage
between the controllers. Using Kimberlite style fail-over clustering we can get

redundancy for the storage networking and controller hardware. Such shared storage
itself needs to be RAID and requires partidly active/active block raid controllers on the
two object storage controllers - possbly this could be software raid and commodity SMIP
systems attached to BBODs with some processors responsible for the target and some for
the backend raid is attractive, possibly with some shared solid- state memory to speed up
bitmap maintenance for RAID restoration.

The initiators have to detect that the first controller has failed and then retry on the other
controller. The other controller needsto STOMITH thefirst controller, do journa
recovery on the shared storage. Then usng asmple form of an IntertMezzo style shared
operation log it needs to figure out what the last operation was that made it to the disk. It
then tells the initiator to resume at the next operation.

Cluster File Systems, Inc. Page 26 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

Without the possibility of doing full active/active we need a different mechanism to
exploit multiple channels. For this an SMP storage target with multiple incoming
storage- network interfaces, multiple busses, probably each handled by a dedicated CPU
and with more CPU's a the backend for doing RAID.

We aso remain very interested in full redundancy in the case of 100% commodity
hardware. Now we have two object storage controllers, each with one IDE and one
interface disk, and we want to build a replicated redundant configuration out of them.
The servers can blast out two object commands, one to each storage controller (this
requires support in the file system metadata (as in Cheops[22]) since the object id'son
the two controllers might have diverged). If one of these fails and recovers, the question
is how to resynchronize the two. An InterMezzo style log maintained on each of these
would be able to replay "missed object commands' to a recovering node.

When the log becomes too large data migration between the controllers (aka “lan” free
backup) should rebuild an entire object store. In this case very innovative solutions exist
which use the active nature of our controllers to run rsync to re-synchronize dl objects, a
dramatic improvement over classcal RAID drive restoration.

I nteractions

The creation and removad of filesinclude file data objects and causes metadata updatesin
Lustre that span multiple nodes: metadata control and possibly many storage targets.
Recovery from failures in this Stuation requires specid care. If file data objects are lost
we don't care: that is the usud behavior of NOT journding file data

If the container is logt due to system failure, it should probably take the file data objects
into its grave - that is done using an orphan list (see Ext3 [49,50] or the XFS literature).
Thefile data objects are orphan listed until the confirmation comesto the client that the

container has reached persstence. The client now includes a"deorphanize’ messagein

the next 1/O operation.

If the container is logt (typicaly because the client and meta data controller die), the best
way to remove the orphans is for the storage controller from time to time to query the
metadata control cluster about orphan listed objects. If the metadata cluster guaranteesto
flush buffers every 30 seconds, then clientswill learn that containers are persstent in

little more than 30 secs. Storage targets would learn soon afterwards. Therefore, an
orphan that is more than a minute old, and has not been de-orphanized is suspect and the
target should contact the metadata controller to find out if the object was possibly los.
[Such contact from targets to metadata control cluster is needed anyway to update the
summary metadata held in the container.]

The unlink case exploits an InterMezzo style replay |og between metadata control nodes

and object storage targets, which remains present until all storage targets have executed
the object destruction requested.

Cluster File Systems, Inc. Page 27 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.4.12 SOW Section 4.4.12 Integration with tertiary storage

Wewill not implement aDMAP! interface but will write a design document how this can
eadly be done, for other entities to step in. Our object interface provides strong
infrastructure for XDSM/DMAPI tertiary storage interaction, such as remote copy and
hole-punching APis. DMAP! like other storage management can be implemented as a
loadable storage module. Thiswill automaticaly be inter-complex. We will make sure to
afford room for dtime support.

5.2.4.13 SOW Section 4.4.13 Standard POSIX and MPI-IO
POSIX interfaces will be the default and will be part of the file system.

We intend to implement an ADIO interface on top of the object file system. The Lustre
API was adapted to deal easily with most of the requirements raised by ADIO. A new
interface for collective operationsis needed which is probably easily implemented using
the infrastructure which for default file I/O arranges synchronization.

Hint parameters will be available, but we require extensive discusson with the Tri-
Labs/NSA to learn more about specific requirements. We fed that to maximize
portability the system APIs should gear towards standard cals and not exotic features.

5.2.4.14 SOW Section 4.4.14 Special APl semantics for increased
performance

Wewill definitely introduce specid semanticsto alow relaxed locking schemesto

dramatically improve the performance of pardld /0. We will probably apply this at the

file-set level, and the semantics will likely be such that the gpplications are respongible

for synchronization.

5.2.4.15 SOW Section 4.4.15 Time to build a file system

Wewill be usng something like the XFSfile system for backend storage. This system
has extremey good characterigtics for file system building and resizing and we will make
sure to bring support for these to the Lustre file system.

5.2.4.16 SOW Section 4.4.16 Backup/Recovery

We will provide sufficient hooks for easy integration with standard enterprise backup
software, including hooks for advanced festures such as LAN free backup. We will not
be ddlivering backup clients or serversfor Lustre, but build design guidelines for others
to build such systems.

5.2.4.17 SOW Section 4.4.17 Snapshot Capability

Lustre dready has a prototype implementation of fully festured sngpshots, using alogica
object module. This has been transformed into a production qudlity file snapshot file
system by Mountain View Dataand we will amilarly the Lustre code to provide robust
and efficient snapshots, with support for database flushes and “.snap” directory support.

Cluster File Systems, Inc. Page 28 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

5.2.4.18 SOW Section 4.4.18 Flow control and QOS

Except for flow contral in our high-performance and WAN storage networking modules
thiswill not be addressed.

5.2.4.19 SOW Section 4.4.19 Benchmarks

A very ggnificant part of our ddliverables focuses on benchmarks and performance
improvements. In these areas, we require extengve collaboration from the Tri-
Labs/NSA.

5.2.5 SOW Section 4.5 Security

We expect to ddiver an dmost complete security implementation vis-a-vis the
requirements It will be based on indusiry standards, in outline form alightweight AFS,
DCE/DFSfile system security model, combined with NASD style security for storage
controllers. Additionaly we will show how storage modules can be used for content-
based security and encryption. A variety of issues were not mentioned by the Tri-
Labs/NSA document, most notably PKI for storage and retrieval of encrypted data. We
are sendtive here to adjusting our designs in such afashion that these issues can be
addressed at a later stage.

5.25.1 SOW Section 4.5.1 Authentication

We will usea GSS-API compliant authorization mechanism. We will use Kerberos with
the Globus-ANL X509 extensons as the token acquisition mechanism. The TGT's
obtained in this fashion will enable users session keys but also enable shared secrets
(“daily keys’ in NASD speak) between storage targets and metadata control nodes.

At the kernd level we need identities such as AFS-style Process Authentication Groups
(PAG) for redligtic security enforcement. Such identities can have tickets and sesson
keys associated with them after authentication.

Groups are a separate issue of extreme importance. We will seek a scalable integration
between Unix groups and users and Kerberos principals. Additionaly groups are needed
to provide an infrastructure for encryption by clients. LDAP based implementations
might provide a good secure and scalable solution here.

Authentication can involve remote authentication servers usng cellular Kerberos and
LDAP referrals.

5.25.2 SOW Section 4.5.2 Authorization

Our authorization isatwo leve approach. NFS v4 access control lists will be used at the
file system leve to authorize accessto filesand directories. Of particular concern to us
isadetailed discusson with the Tri-Labs/NSA regarding the case where multiple users
on adient are accessing the same files— in this case the NFS mechanisms are very
inefficient and complex and key expiraion — dready aknown hairy issue— can become
even more involved.

Cluster File Systems, Inc. Page 29 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

The primary means of authorizing client access to objects on the object storage targets are
capabilities. A capability is atoken issued by metadata control nodes to the client, which
describes the object it gpplies to and the access rights that are granted. The client presents
the capability to the target on each operation, and the drive can cryptographicaly verify
the authenticity of the capability without contacting the file manager. If the capability is
invalid, the drive returns an error to the client, and the client must contact thefile

manager to receive anew capability.

5.25.3 SOW Section 4.5.3 Content based authorization

Content-based authorization is an obvious attractive application of controller based
computing. Wewill build a sample module to demonstrate how this can be done. An
interesting agpect here will be the API to transfer such authorization information from
clients to storage controllers since the NASD capabilities may not suffice for this
purpose.

5.2.5.4 SOW Section 4.5.4 Logging and auditing

The InterMezzo file system can audit file access a the file sysem level. Itisalow
overheed file system filter, which can easly be modified to track access to sorage
objectson targetsaswell. The management of 10,000’ s of clients and 1000's of storage
contrallers providing auditing information is an issue by itsf.

5.2.5.5 SOW Section 4.5.5 Encryption

While we will not implement an encryption module, we will write a design specification
for other entities to step in and aso provide the key infrastructure required to handle
dlient-based encryption. Several companies have agpproached us to build hardware
supported encryption modules for Lustre.

A loadable logica object sorage moduleis an idedl vehicle for encryption and can
optionaly be run at the target as well.

5.2.5.6 SOW Section 4.5.6 Trust analysis
A trust andysiswill be ddivered as part of our design specifications.

Cluster File Systems, Inc. Page 30 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

6 References

[1]
[2]

[3]
[4]

[3]
[6]
[7]

[8]
[9]
[10]

[11]

[12]
[13]
[14]

[19]

[16]

[17]
[18]

Terry Jones & Anne Huber, “Request for Information: GFS/DFS File Systems’,
Nationa Labs RFI, October 30, 2000.

W. de Jonge, M.F. Kaashoek, and W.C. Hseh, “The Logica Disk: A New
Approach to Improving File Systems’, http://www.pdos.|cs.mit.edw/Id/, Published
in Proceedings of the Thirteenth Symposium on Operating Systems Principles,
1993.

http://www.lustre.org.

Peter Braam, “Lustre and SGPFS’, Mountain View Data, Inc., Response to RF,
November 30, 2000.

Peter J. Braam and Andreas E. Dilger, “ Object Based Storage’,
http://www.lustre.org/docs/obdspec. pdf, Stelias Computing, Inc., 1999.

Peter J. Braam & Michad J. Cdlahan, “Ludre A SAN File System for Linux”,
http://Aww.lustre.org/docs/luswhite.pdf, Stelias Computing, Inc., 1999.
Christopher Whitaker, J. Stuart Bayley, Rod D. W. Widdowson, “Design of the
Server for the Spirdog File System”,
http://research.compag.com/wrl/DECarchives DTYDTIM02/DTIMO2HM.HTM,
October 1996.

S. Shepler et.d., “Request for Comments: 3010 - NFS version 4 Protocol”,
http://Amww.fags.org/rfcs/rfc3010.html, December 2000.

W. Richard Stevens, and Gary R. Wright, “ TCP/IP Illusirated Volume 1: The
Protocols’, Addison Wed ey, November 1993.

C. Sapuntzakis, A. Romanow, and J. Chasg, “The Case for RDMA”,
http://www.cs.duke.edu/~chase/draft - csapuntz- caserdma-00.txt, December 2000
J. Pinkerton et.d., “WARP Architecturd Requirements Summary”,
http:/Amww.ece.cmu.edu/~ips/archive/draft- [pink-warp-summary- 00.txt, January
2001.

Emulex Corp., “GN9000/V1 - VI/IP PCl Host Bus Adapter”,
http:/Avwwip.emulex.comvip/products/gn9000V |.html, April 2001.

QLogic, Inc., “QLA2300 Series - 2 Gigahit Fibre Channd”,

http:/Awww.alogi c.com/products/gla2300.html, January 2001.

Compag, Intel, Microsoft, “Virtud Interface Architecture Specification”,
http://Amww.viarch.org/htmi/collateral/san_10.pdf, Version 1.0, December 16, 1997.
DAFS Collaborative, “DAFS:. Direct Access File System Protocol”,
http://www.daf scollaborative.org/tools/spec v055.pdf, Version 0.55 February 26,
2001.

Julian Satran et.d., “iISCS”, http://Mmww.globecom.net/ietf/draft/draft-ietf-ips-iscs-
02.html, December 30, 2000.

Red Hat, Inc., “TUX”, Verson2.0, hitp://www.redhat.com/support/manua s TUX-
2.0-Manua/index.html, March 2001.

Ingo Molnar, “TUX patches’, http://people.redhat.com/mingo/TUX - patches/, April
2001.

Cluster File Systems, Inc. Page 31 7/29/2001

Lustre Technical Project Summary —version 2, July 29, 2001

[19] Chuck Lever et.d., “An Andysis of the TUX web server”, Center for Information
Technology Integration, Univergty of Michigan,
http://citeseer.nj.nec.com/386260.html, November 16, 2000.

[20] InterMezzo, http:/Aww.inter-mezzo.org/, December 2000.

[21] SNIA/T10, “SCSI OSD Command Set Proposal”,
http://mww.snia.org/Englis'Work GroupsOSD/WG OSD Docs.html, Revison 3,
October 2000.

[22] Dave Nagle and Joan Digney, “Network Attach Secure Disks (NASD)”,
http://mwww.pdl.cs.cmu.edw/NASD/, July 2000.

[23] ASCI I/0O SGPFS, http:/Aww.lInl.gov/asci/sc99fliers/sgpfs pgl.html, September
1999.

[24] IBM, “GPFS Primer”,
http://mww.rs6000.ibm.com/resource/technol ogy/paper2.html, December 1998.

[25] Sigting, Inc., “Globa File System (GFS)”, http:/AMmww.ssinacom/gfs, 2001.

[26] 1BM, “Digtributed Lock Manager”,
http://oss.software.ibm.com/devel oper/opensourcellinux/projects/dlm/?dwzone=linux,
February 2001.

[27] Mark Hayden, “ Ensemble Membership Service’
http://www.cs.corndll .edu/I nfo/Proj ects/Ensembl /M aestro/groupd.htm, Corndll
University, 1997 (?).

[28] Misson Criticd Linux, “Kimberlite Clustering Technology”
http://oss.miss oncriticalinux.com/projects’kimberlite/, 2000.

[29] Roy Davis, VAX Clugter Principles, Digital Technica Press.

[30] Kirby Mccoy, VMS File System Internds, Digital Press 1990.

[31] Silicon Graphics, Inc., “Project XFS Linux”, http://oss.sgi.com/projects/xfs/, May
2001.

[32] C.A.Thekkath, T. Mann, and E. K. Lee, “Frangipani: A Scaable Didributed File
System”, Proc. 16" SOSP, pp. 224-237, October 1997.

[33] M. Devarakonda, B. Kish and A. Mohindra, “Recovery in the Calypso file sysem”,
ACM Trans. on Computer Systems, VVol. 14, No. 3, 1996.

[34] S. Tweedie, P.J. Braam, M.Cdlahan and L. McVoy, “The Linux Cluster Cabd
Papers’ (authored by Tweedie and Braam), http:/Aww.linux-
ha.org/Phasel |/WhitePapers/, 1999.

[35] DOE Nationa Nuclear Security Adminigtration & the DOD Nationd Security
Agency, “STATEMENT OF WORK: SGS File Sysem”, Attachment A of RFP
B514193, April 25, 2001.

[36] A.D.Birrdl and R. M. Needham, “A universd file server”, IEEE Transactions on
Software Engineering, SE-6(5):450-453, September 1980.

[37] IBM, “Programming Locking Applications’,
http://www.rs6000.ibm.com/software/downl cads'had4clients.pdf, 2000.

Cluster File Systems, Inc. Page 32 7/29/2001

