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1 Background 
The Tri-Labs/NSA (Los Alamos, Livermore, Sandia, DOE and DOD) are requesting a 
proposal for a scalable global secure file system (SGS file system) in the context of an 
Advanced Strategic Computing Initiative (ASCI) “Pathforward” grant [1]. Cluster File 
Systems, Inc is responding to this RFP [2]. Focus of this project is the development of a 
highly scalable  file system, named Lustre, which will be evolved from the current Lustre 
open-source object-based file system [3].  Scalability spans many dimensions, including 
data and metadata performance, large numbers of clients and inter-site file access, 
management and security.  All these dimensions are of importance to the Tri-Labs/NSA 
sites and global enterprises alike. 
 
Object-based storage continues a long history of increasing the level of abstraction of 
storage devices as seen by operating systems. Whereas early system software needed to 
be aware of arm positions and other disk internals SCSI and ATA disk access protocols 
abstracted disk drive geometry away, and exposed disks as an abstraction of a linear 
sequence of fixed size. Object storage concepts date as far back as the 1980 “Universal 
File Server” paper [36] by Birrel and Needham.  Kaashoek started an interesting project 
at MIT confirming some of the benefits [2], and the first large scale implementation was 
pioneered at Carnegie Mellon University and executed as part of the NSIC/NASD project 
[22], [46].  NASD focused on abstracting block allocation and providing system software 
with an object-based storage abstraction. The NASD architecture enabled scalable I/O 
bandwidth through third party transfer, and primarily focused on secure access to storage 
devices. NASD explored object-based file systems (ERDFS) but it “interact[ed] 
minimally with its host operating system” [22], and its API did not provide explicit 
support for file system recovery or clustering. One of the most important outcomes of the 
NASD work was a SCSI based OSD object command set proposal that is currently under 
consideration by the ANSI T10 standards committee [47].  
 
The original Lustre project [5,6] in 1999 also originated from CMU. It initially sought to 
build an object-based file system, with cluster-wide Unix semantics.  This file system 
design has evolved to become the core of this proposal.  Lustre object storage categorized 
the device drivers that can build up an object storage stack.  Direct drivers, clients / target 
pairs and logical drivers underlie storage object applications such as file systems or 
object databases.    Lustre did not tie its command set to SCSI and added features to 
support advanced file systems such as parallel I/O abstractions, object pre-allocation, 
locks and hooks for journaling to provide faster file system recovery. Lustre allows 
protocol modules to be loaded into and executed by the storage device.  A prototype 
open-source Linux implementation of Lustre is available at [3], and currently runs under 
Linux 2.4. 
 
Since January 2000, the Lustre development efforts have been heavily influenced by 
scalable cluster file system requirements outlined by the National Labs in the ASCI I/O 
SGPFS [23] and the more recent Tri-Labs/NSA SGPFS requirements document [1]. In 
response to the Tri-Labs/NSA RFI [1], Braam submitted a design document [4] that 
outlines how the Lustre architecture can be evolved to meet the Tri-Labs/NSA’s needs. 
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2 Lustre Structural Overview and Rationale 
This section describes the overall Lustre architecture [4,6], and enumerates various 
capabilities and interfaces of each of the components and gives a brief rationale for our 
approach.  

2.1 Structural Overview 
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Coherence
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Storage 
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Clients

Object
Storage
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Resource 
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As shown in the picture above a Lustre-based cluster consists of three types of systems: 
 

1. Clients: Applications running on clients see a shared file system with standard 
POSIX file system semantics.  The file system is built up of filesets and provides 
a global namespace.  Specialized applications can bypass the file system and may 
directly access objects stored in the cluster.  

2. Metadata Control Systems: manage name space and file system meta-data 
coherence, security, cluster recovery, and coordinate storage management 
functions.  Metadata Control systems require direct access to storage for meta-
data, i.e. file system and object attributes as well as directory contents. Metadata 
Control systems do not handle file data, file allocation data and file locking 
semantics. Instead, they direct clients to do file I/O directly and securely with 
storage targets.  The metadata cluster is free of single points of failure. 
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3. Storage Targets: provide persistent storage for objects.  Objects can represent 
files, stripes or extents of files or serve other purposes.  Files are represented by 
container objects in the metadata cluster and by constituent objects on storage 
targets. Rich interfaces to perform I/O are provided including block allocation, 
locking, parallel I/O, storage networking optimizations and storage management 
as well as active disk interactions with loadable logical storage modules.  Storage 
targets can be made free of single points of failure. 

4. Resource and security databases: provide configuration management information 
to systems, provide security services, user and group databases and file set 
location databases.  Inter-site referrals provide key mechanisms for global 
infrastructure.  The redundancy of these systems is provided by shared storage 
fail-over solutions.   

 
The protocols among the systems can be summarized as follows: 
 

1. Clients – Storage Targets:  Clients interact on a client/server basis with storage 
targets directly for file I/O.  Clients can exploit specialized parallel I/O interfaces 
or benefit from storage management modules running in the storage target (e.g. 
data migration, network adaptation, data mining).  Locking of file data is 
managed with storage target based lock service supplemented by revocation 
services on the client.  Storage targets accept security capabilities from clients.  
Client and target failures invoke recovery protocols among these systems, which 
include I/O fencing, journal recovery and lock revocation/re-establishment. 

2. Clients – Metadata Control:  Changes to the namespaces are requested by 
clients and directed to metadata control.  The file system protocol is supplemented 
with resource location services, lock services for metadata (including revocation 
services offered by the clients).  The client/metadata file protocol dynamically 
adapts to cover low contention and high contention cases.  Aggressive write-back 
caching is used in case of low contention, while a scalable client/server model is 
used when contention is high.  In case of high contention, resource management 
distributes the load across the metadata cluster.  Implicit in this protocol is the 
allocation of storage target resources to objects, which is communicated to clients. 
When clients die, a simple recovery protocol is followed similar to that between 
clients and storage targets.  Changes in the membership of the metadata control 
cluster first provoke recovery of that system and then recover clients and storage 
targets. 

3. Storage Targets – Metadata Control:  The protocol is a client/server protocol 
enabling storage targets (clients in this protocol) to update metadata control 
(servers) with information regarding constituent attributes and summary 
information on target load and capacity resources. There is a recovery protocol to 
re-establish distributed consistency among containers and constituent objects. 

4. Metadata Control – Metadata Control:  The communication in this system is 
much like that of a VAX Cluster, including a tightly coupled metadata file 
system, cluster transition and distributed lock management functionality. 

5. Client – Client: There are no direct interactions except for client and storage 
target clusters performing hierarchical flood-fill notifications from metadata 
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control, resource databases (or storage targets) to all systems.  Flood/fill 
notification services can be made redundant by virtual service techniques because 
they are stateless and memory based. 

6. Storage Target – Storage Target: Storage targets communicate with each other 
as part of storage management for object migrations directly between storage 
targets.  For file system operation these nodes communicate among each other 
like client – client interaction. 

7. Resource and security services: after new (racks of) systems have been added to 
the configuration databases they are self-configuring, using DHCP, LDAP and 
related systems.  Security, user/group and file set databases are queried accessed 
by clients, metadata control and storage target nodes for a variety of services. In 
some cases information is cached. 

 
The Lustre object-based protocol permits more than simple stacking of object-protocol 
modules. It also allows various cluster file system functions can be partitioned across 
multiple systems in different ways. The following client, metadata control and target 
configurations are possible: 
 

o Single system: {Client = Metadata Control = Target} – All functions execute on a 
single system. In this case, Lustre behaves like a local file system, but can add 
features such as snapshots, DMAPI or encryption through loadable modules. 

o Shared object storage file system: {Clients incorporate Metadata Control, 
Targets} – A symmetrical object-based cluster file system that performs metadata 
control functions between clients and shares storage on targets. 

o File manager object file system: {Clients, Single Metadata Control, Targets}  – 
Multiple clients that manage coherence through a single metadata control 
systems.  This is an object-based cluster file system with a file manager.  

o Client-server distributed file system: {Clients, Metadata Control with direct-
attached Targets} – This is a client server network file system configuration. 
Lustre: {Clients, Metadata Control Systems, Targets} – Multiple clients that 
manage coherence through multiple metadata control systems, and that manage 
access to multiple targets 

2.2 Rationale and Alternatives 
A traditional cluster file system has aimed to provide high performance Unix file sharing 
semantics in a tightly connected cluster.  Distributed file systems (such as NFS, SMB and 
AFS) have provided file service to larger groups of clients.  Newer file systems have 
addressed object storage, and others (InterMezzo [20]) have introduced extremely 
aggressive write back caching techniques suitable for wide area operations.  Our solution 
will draw on innovations from many such systems. 
 
The requirements posed by the SGS File System emphasize all dimension of scalability.  
The brief rationale here provides motivation for our solutions and mentions some 
alternatives. 
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First, much of the current design was arrived at in joint work with Sandia spanning 
several years, based on the I/O subsystem used in CPLANT.  Secondly, we have tried to 
draw on successes in the industry: VAX Clusters, AFS scalability, Kerberos security, and 
journal file systems like ReiserFS and XFS.  Finally we have wanted to build a system 
that is closely aligned with core developments in the storage industry such as NFS v4, 
DAFS-style storage networking and commodity hardware infrastructure.  
 
Object-based I/O is a natural way to offload a sub-protocol of file service to storage 
targets.  The NASD project has demonstrated the opportunities for scalable I/O and 
security.  Our work is an enhancement of this providing more services and storage 
management in the object stack.  An alternative approach is to allow clients to manage 
allocations on traditional storage controllers.  While the latter provides more backward-
compatibility, we regard the ASCI setting as an opportunity to innovate. 
 
A metadata control cluster is, perhaps, the most tentative of our choices.  The primary 
motivation is that VAX-Clusters were very successful systems.  Hashed directories will 
provide load balancing for single object updates.  The reductions of our system that occur 
by co-locating metadata control, client and target components lead to a number of known 
good solutions.  Alternatives in this space are scarce.  It has been suggested to run a large 
redundant SQL database server as the metadata service in Lustre, and idea that leads to 
many secondary opportunities such as name space indexing.  We expect to do further 
research on each of these two alternatives. 

3 Related Technologies 
To achieve wide spread adoption and portability the Lustre project will need to integrate 
a variety of complex technology components such as file systems, networking, clustering 
and storage target execution environments. We recognize that in each of these domains 
significant technological evolution is ongoing, and we are actively participating in 
numerous industry standards activities [15, 16, 21].  
 
This section outlines how we expect to leverage many of the needed software 
components for Lustre from existing open standards and open source efforts.  
 

1. NFS v4: Lustre clients bear some resemblance to NFS v4 clients [8]. However, 
Lustre performs much more aggressive client side caching of data and meta-data 
and will use a directory format that enables extensible hashing across a cluster. As 
a result, Lustre clients aggregate I/O commands to a much greater extent than 
NFS v4 clients, which improves performance. Our clients do not participate as 
full cluster nodes but as satellites and we expect the Lustre client implementation 
to be similar to an NFS v4 client. 
 

2. Clustering: Several groups have contributed significant clustering infrastructure 
components in to the open source. We expect Lustre’s clustering infrastructure to 
integrate components from IBM’s open source distributed lock manager [26], 
Cornell University’s Ensemble group membership protocols [27], and Mission 
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Critical Linux’ Kimberlite cluster recovery daemon [28]. 
 

3. Cluster File Systems: The Lustre metadata control systems are responsible for 
managing object meta-data coherency. Within the metadata control systems, we 
expect to use a novel locking mechanism based on hashed directories with sub-
dividable extensible hashes.  Some aspects, such as cluster transitions will be 
handled as in traditional block-based cluster file system similar to GFS [25], 
GPFS [24], or the VAX cluster file system [29,30], but we will use object storage 
and will replace inode data with object metadata. 
 

4. File System Scalability: The current Lustre code is based on the standard Linux 
ext2 file system. We definitely need a journaling file system and we expect that 
for file I/O the Silicon Graphic’s XFS file system [31] is most scalable.  We will 
incorporate one or more of XFS, ReiserFS, JFS, Ext3 into our storage targets.  
 

5. Storage Networking: We expect to incorporate several recent low-overhead 
networking advancements in to the Lustre design. Remote DMA (RDMA) [10] 
will significantly reduce network protocol processing overheads on clients and 
targets on VI-architecture based networks. The WARP protocol [11] will also 
enable RDMA writes over standard TCP/IP networks. The DAFS initiative [15] 
has introduced an improved RPC data layout. Combined with WARP-like RDMA 
writes, the improved DAFS RPC data layout is a very attractive solution for low-
overhead Lustre client-target communication, even over TCP/IP. 
 

6. Object-Storage Protocols:  The Lustre object storage protocol bears many 
resemblances to currently evolving storage standards. Compared to the DAFS file 
system storage access protocol [15], Lustre eliminates the need for server-side 
name space handling, and provides several extensions over DAFS. While iSCSI 
[16] is primarily focused on low-cost SAN replacement using block-based 
semantics, the T10 standards group is defining an extended object-based SCSI 
command set called OSD [21]. Although Lustre defines a more substantial set of 
capabilities than the T10/OSD, using the Lustre clustering and meta-data 
architecture to aggregate a set of T10/OSD/iSCSI compatible targets is desirable.  
 

7. Security and management:  Both the cluster of all systems and the file system 
require a substantial amount of configuration information.  LDAP style directories 
have become a widely used global infrastructure for such data.  Kerberos/X509 
security is widely in use now and run-time configuration is successfully done with 
DHCP-style services.  We expect to draw on all of these. 

 
While we expect to leverage code, capabilities and techniques from the above 
components, the Lustre design also adds significant novel capabilities. Lustre 
incorporates novel locking mechanisms and directory structures, an advanced object-
based storage access protocol that supports byte-granular scatter gather I/O, object pre-
allocation and command aggregation and integrated journal recovery support. To meet 
the required performance and scalability targets, Lustre also exposes a direct object 
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access interface and provides specialized performance hints. The ability to execute code 
on the Lustre storage targets allows them to actively participate in storage management 
functions.  

4 Lustre Software Architecture 

4.1 Overview 
The Lustre software architecture [5] is easiest described as a stack of layered object-
based storage (OBD) modules. Key software layers in Lustre are: 
 

a) POSIX Compliant File System: An object-based file system exposes a POSIX 
compliant VFS interface to client applications, and two protocol interfaces to 
software layers below: (1) a meta-data coherency protocol to handle name space 
operations, and (2) an object storage protocol to handle file I/O operations. 
Typically, the object-based file system is the top-most layer in a stack of object-
based storage modules. It is intended to be stacked on top of a logical or a direct 
OBD driver. 

b) Direct-Access Object Storage Interface: This is an alternative top-level module 
that enables high-performance computing where applications take responsibility 
of object data coherency. Lustre provides a direct access interface that allows 
such applications to bypass the above-mentioned file system layer. By relaxing 
cluster file system synchronization and coherency mechanisms, we expect to 
achieve higher performance from specialized direct-access applications. 

c) Logical Object Modules: Logical OBD drivers are stackable modules that have 
the same OBD interface going in (to the top) and coming out (of the bottom). 
Logical OBD interact with other logical drivers, or layer on top of a direct OBD 
driver. Logical object modules typically perform functions such as mirroring, 
RAID, data migration, or versioning, and can be used to execute downloaded 
active disk computations. 

d) Direct OBD Drivers: Direct OBD drivers provide an OBD interface (at the top) to 
an actual underlying disk, that is a set of blocks (at the bottom). These drivers 
perform block allocation for an object storage device, and provide a persistent 
data repository that is exported through an OBD interface. 

e) Client/Target Driver Pairs & Networking: are use to encapsulate the object 
protocol over a network. Client/target driver pairs can be specialized for a variety 
of transport protocols, e.g. plain TCP/IP or transport layers that support RDMA 
such as VI architecture [14] supporting adapters [12, 13] that run over Infiniband, 
Fibre Channel, or even TCP/IP [10,11]. Development of high-performance 
transport drivers is a key component of the overall project. 

The figure below illustrates the stacking possibilities for these drivers. 
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Figure 2: Driver stacking 

In each of these areas, the Lustre project requires further work to meet the requirements 
of the Tri-Labs/NSA.  Key steps we will undertake are: 

1. Class drivers  
o Enable remote management 
o Add the capability for profile based automatic configuration as in 

enterprise management systems.  
2. High performance direct drivers for data and metadata storage  

o An journal file system (XFS, ReiserFS, JFS, Ext3) based direct object 
driver is a candidate for a file storage driver 

o Journaling, recovery, concurrency and pre-allocation requires API 
enhancements 

o Extent based object locking APIs 
o To support redundancy and recovery we need support for replication logs, 

and orphan removal 
3. Implement NASD-style capabilities based security between clients and targets. 
4. Client/target pairs  

o High-performance networking including remote DMA capability 
o Incorporation of new networking and object-storage enhancements from 

WARP, DAFS, and iSCSI/T10/OSD. 
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o Scalability in terms of number of clients 
5. Logical drivers  

o Distributed striping drivers 
o Synchronization mechanisms for the above (if needed) 

4.2 The Lustre Cluster File System 

One of the most challenging RFP requirements is that of metadata scalability and 
performance.  This problem has several aspects, such as high performance in clients in 
situations of low contention for resources, as well as that of throughput when many 
clients are operating on the same resource.  Generally we will avoid synchronous writes 
to the maximum extent feasible. 

A key design aspect of the Lustre cluster file system is the integration of caching, cluster 
coherency and recovery.  To achieve best performance from a client perspective, objects 
should only be evicted from client caches only when a (possibly timeout based) lock 
revocation is processed, and eviction should flush groups of object operations. To ensure 
recoverability, object eviction should handle groups of related object operations and 
direct these to persistent storage in a transactional manner.   Our basic technique here will 
be to built a write-back log of operations in the clients memory and migrate that to 
metadata control nodes for replay upon timeouts of locks or eviction.  

In the case of high contention for resources, such as all clients creating files in the same 
directory, we will employ quite different techniques.  A first problem is how to avoid 
large amount of lock revocation traffic.  Client locks should time out, but also, when lock 
requests are coming in a rate exceeding a certain threshold, it will be more advantageous 
to not grant client locks, but instead to perform operations on the metadata cluster in a 
client server RPC model similar to AFS.  We see here how Lustre can run in write-back 
mode as well as in RPC mode, dynamically adapting to the level of contention in the 
cluster. 

Another problem in this situation is how to spread the update load over the metadata 
cluster.  The key to a solution here is to use hashed directories that can be subdivided 
over the cluster in conjunction with operation based object locks [3].   

Efficient recovery of the cluster under membership changes is another key problem. In 
our RFI response [3], we proposed that Lustre clients remain satellite nodes with respect 
to cluster coherency and locking.  This is critical for scalable recovery, which will have 
to rely on the scalable flood fill algorithm described in [34] for notifications to clients.  In 
current open source cluster file systems, e.g., GFS [25], file system concurrency 
semantics has received relatively little attention.  A literature study of commercial cluster 
file system implementations, e.g. Frangipani/Petal [32], Calypso [33], and VAX/VMS 
clusters [29], [30], reveals that these systems have gone through much detailed 
refinement and performance tuning. A detailed design and prototyping to assess 
concurrency performance and recoverability will be very important for Lustre. 
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There are two cases where avoiding synchronous writes is not appropriate.  First, to 
implement NFS semantics, metadata updates have to reach stable storage before system 
calls return.  Our system can support this by operating in the RPC model and requiring 
the RPC’s to sync data.  Operating in RPC mode also provides an opportunity for 
integration with the DiFFS file system [38].  This system avoids locking and allows 
metadata transactions to span multiple storage targets.  DiFFS also avoids journal 
recovery mechanisms that span multiple nodes, but requires synchronous writes and 
detection of RPC failures to order updates [51].  

The following list outlines key components of the Lustre cluster file system: 

1. Protocols 
o A file I/O protocol between clients and storage targets 
o A metadata update protocol between clients and metadata control 
o Recovery protocols for all system failures 
o Separation of protocol and service implementation 

2. A file system  
o VFS operations with VFS extensions for locking 
o Scalable directory formats based on extensible hashes or invisible 

subdirectories. 
o Operation based lock acquisition and lock version management [3] 
o Grouping of operations into file system transaction groups 
o Data and attribute retrieval and storage through an object storage API 
o GSSAPI compliant security 
o Resource awareness for constituent object allocation 

3. Single namespaces 
o A filtering file system layer for namespace management 
o File sets, and Unix mount points can be grafted into a namespace 
o Cross-complex file set location databases with global identities 

4. Third party file I/O to object storage controllers  
o Directory entries pointing to inodes describing large granularity 

(device/object/extent) triples 
o Controller based locking (flock) and collective operation support 

5. A write-back file system cache integrated with existing caches in the OS 
comprising:  

o Cached extents in files 
o Cached metadata 
o Managing dependencies within and between transaction groups 
o Flushing and unpinning 
o Lock revocation support 

6. Recovery support:  
o Coherency and recovery between targets, clients and controllers  
o Log replay and distributed log dependencies 
o I/O fencing 

7. Exportable interfaces 
o Notification and ACL support for correct NFS/CIFS exports 
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o InterMezzo support 

4.3 Clustering Infrastructure 

To successfully build a cluster file system, a set of basic cluster infrastructure is needed. 
A sample architecture designed by the Linux Cluster Cabal [34] incorporates critical 
scalability enhancements of lock managers.  Through the correct distribution of 
resources, locking scalability will be mostly an issue between metadata control nodes and 
satellite clients and are unlikely to affect file I/O. Components we expect to use for basic 
clustering support are listed below: 

1. Connection and live-ness support, membership and quorum: We may base these 
on the Ensemble project [27]. 

2. An event delivery mechanism: IBM has detailed an implementation as part of 
high-availability CMP [37]. Tweedie’s design [34] is similar. We plan to build on 
these designs.  

3. A cluster resource database: Replicated LDAP servers have been suggested. 
4. A recovery manager for staged distributed recovery: The daemon which is part of 

Kimberlite [28] or Compaq’s open source cluster manager (to be released) will be 
a good starting points. Barrier support will be implemented. 

5. A distributed lock manager: IBM's open source DLM will form the basis, with 
scalability enhancements as proposed by the Cluster Cabal in [34], and additional 
DLM communication performance improvements. 

6. Basic IP and shared storage fail-over services where appropriate.  LVS and 
Kimberlite provide excellent starting points. 

4.4 Programmable Object Storage Targets 
We will design and implement a high-performance object-based storage target based on 
standard high-volume hardware running a standard Linux operating system. Basis for 
high-performance target run-time system is the Linux in-kernel TUX web server 
architecture [17, 18, 19]. This will provide a highly optimized multi-threaded network 
communication system and additionally a kernel-level safe execution environment. TUX 
is well integrated with the Linux I/O subsystem and already provides many of the storage 
and networking hooks required to support high-performance object data I/O. Reuse of 
TUX provides one of the basic Lustre building bock to achieve the Tri-Labs/NSA SOW 
section 3.3 (no single point of failure) and section 4.2 (scalable infrastructure for clusters 
and the enterprise) requirements.  
 
We will define and develop an “active disk” execution environment on the storage target 
that allows safe execution of downloadable logical object modules. Active disk functions 
fall into two categories: (1) an active element in the object metadata path can perform 
storage management functions such as backup, load balancing or on-line data migration, 
and  (2) an active element in the object data read/write path can perform data 
manipulation and aggregation functions useful, for instance, for transcoding of multi-
media streams, customized content-based security or low-overhead data mining [XX]. 
The Lustre object protocol includes an iterator method that allows a user-defined function 
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to be applied to an entire set of objects. This primitive allows the storage target to 
optimize disk block traversal used by data mining or disk indexing operations [YY]. 
 
Safe execution of downloadable logical object modules hinges on two factors. First, we 
need to constrain downloaded code to see (or be able to update) only a subset of all stored 
objects. Second, we need to ensure that downloaded code cannot subsume all storage 
target resources, be they compute cycles, network bandwidth or disk space. Lustre meets 
the first safety constraint by enforcing NASD capabilities-based security on individual 
objects, in other words, an active disks request will only be able to see/update objects for 
which it has been granted the appropriate capabilities. The second safety constraint 
requires storage targets to constrain the amount of resources available to unknown 
downloadable logical modules. One sandboxing possibility is to execute the logical 
module in user-space, where resource limitations such as time-slices and disk quotas can 
easily be enforced. Another is to pre-allocate a downloaded code module’s required 
maximum resources, and fail it when it oversteps it allocation. 
 
We expect downloadable logical modules to be used for providing management services 
such as backup, archiving, data balancing, on-line data migration, as well as security 
(content based authorization and encryption) or performance (e.g. prefetching) functions 
etc. that are required by SOW sections 4.2.4 (archive driven performance), 4.2.5 
(adaptive prefetching), 4.4.1 (minimize human management effort), 4.4.3 (dynamic 
tuning), 4.4.4 (diagnostic reporting), 4.4.16 (backup), and 4.5 (security). 
  

4.5 Storage Management & Configuration 

To fulfill the capacity and bandwidth scalability requirements specified in the Tri-
Labs/NSA RFP [35], Lustre storage clusters would probably consist of thousands of 
storage targets.  Configuration and administration of such a large number of devices must 
be completely automated.   Additionally substantial storage management infrastructure is 
required for archiving and backup.  

While we will not develop management tools per-se, we will provide the basic 
infrastructure for monitoring, recovery and replacement and discovery of nodes.  A basic 
directory scheme controlling grouping and configuration of nodes will be addressed by 
this proposal.  On the storage management front we will provide snapshots and data 
migration API’s upon which further tools can be built. 

Although the Lustre file system will provide a single name end-user visible name space, 
for management purposes, the systems in a Lustre cluster will be subdivided into 
organizational units.  These units describe collections of systems with different 
characteristics that will typically manage file sets for a particular purpose. The systems in 
an organizational unit are managed by associating the organizational unit with a 
management profile which describes a file set’s backup configuration, security and 
performance attributes, as well as required storage target “active disk” code execution 



Lustre Technical Project Summary – version 2, July 29, 2001 

Cluster File Systems, Inc. Page 16 7/29/2001 

modules. Enterprise management systems (Novell’s NDS, Windows 2000, Tivoli and CA 
Unicenter) provide such infrastructure. 

We will provide: 

1. Cluster resource database (LDAP) storage for management data 
2. Directory schemas for organizational units and management profiles 
3. API’s to apply management profiles to systems 

At a more detailed level storage management requires a substantial collection of 
modules.  Among these we will deliver basic implementations of the following: 

1. Data migration API’s for backup/restore and HSM 
2. File system snapshot 
3. Monitoring of hardware and users 

5 Coverage of Tri-Labs/NSA Requirements 
In the following, we refer to the section numbers in the Tri-Labs/NSA SGS File System 
statement of work (SOW). 

5.1 SOW Section 3 - Minimum Requirements 

5.1.1 SOW Section 3.1 POSIX-like interface 
Our file system will have the standard POSIX interfaces.  The system will be able to run 
in Unix semantics mode and in an optimized mode.  In Unix-semantics mode the systems 
calls will have the expected behavior, while in optimized mode significant performance-
gains are possible – this will likely affect the stat and fstat calls, which will involve RPCs 
to storage targets.  
 
There are a number of special system calls such as mmap and calls associated with 
asynchronous I/O.  On single systems we expect these calls to have the normal semantics, 
but their behavior across the cluster will depend on the OS.  

5.1.2 SOW Section 3.2 Integration Compatibility 
The Lustre storage stack is highly modular, and we will retain maximum modularity at 
the file system level as well.  Most management functions, such as DMAPI, backup 
support, encryption can be built as modules that can be downloaded into the storage 
stack.  We have indications from existing Lustre modules that these do not introduce a 
performance penalty.  

5.1.3 SOW Section 3.3 No single point of failure 
Failures in the cluster can affect clients, storage targets and cluster control nodes and 
communications.  The state of the cluster is represented by data in memory including 
cache file system data as well as cluster state such as lock resources and membership, 
data in transit over communication links and persistent data on systems.   Under normal 
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operation the cluster will move forward from one consistent state to another through 
groups of operations, which typically involve multiple state changes.  Recovering from 
failures involves halting normal operations on affected nodes, restoring state to a 
consistent form and continuing the operation.  
 
We will introduce a systematic recovery framework based on the work of Tweedie, 
Braam, Callahan and McVoy (the Linux Cluster Cabal) [34], which in turn was heavily 
influenced by the VAX Cluster literature.    
 
There is very little literature about the recovery issues for cluster file systems, but our 
experience with Coda and InterMezzo [20] will lead us to build a framework that 
integrates synchronization, journal file system transactions and cache behavior.  
 
We expect that the clusters may require some scalability enhancements to deal with large 
numbers of nodes.  Such enhancements were discussed in [34].  
  
To limit the scope of our work, we will use industry standard redundancy mechanisms 
such as backup Kerberos KDC and replicated LDAP databases wherever read-mostly 
cluster resources are involved.  

5.2 SOW Section 4 Desired performance features 

5.2.1 SOW Section 4.1 Global Access 
As indicated in section 2, the sites addressed by this proposal are bigger than traditional 
clusters and our solution needs to span site boundaries.  A full solution in this space goes 
well beyond the SOW requirements and may draw on InterMezzo [20] to address 
replication.  However, our solution will provide basic infrastructure in the area of file set 
support, management, security and networking. 
 

5.2.1.1 SOW Section 4.1.1 Global Scalable Namespace 
Global name spaces were perhaps first introduced into AFS, followed by similar 
implementations in Coda, DCE/DFS, InterMezzo and Microsoft dfs and NFS v4.   We 
will follow a similar strategy and construct a name space module that combines file sets 
and file system mount points into a single name space.  We will combine a cluster 
resource database which the file system queries for transparent traversal of the name 
space with new techniques known as struts or pseudo file systems in the InterMezzo and 
NFS v4 efforts.  The latter provide higher availability by bridging temporarily 
unavailable sections of the name space.  
 
The global namespace will be exportable through NFS and CIFS.  However, the detailed 
Windows semantics (such as Window’s exclusive open) offered through CIFS (Samba) 
servers running on different clients requires hooks in the server for which we will only 
provide notification interfaces.  
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A new aspect of namespace management arises from the allocation of object storage 
targets for file data (object placement).  The choice of appropriate controllers to handle 
segments or stripes of files should be based on a resource management scheme in the 
subsystems responsible for metadata. 

5.2.1.2 SOW Section 4.1.2 Client Software 
Our client software is based on the Lustre object file system currently available for 
Linux.  The key aspects enabling easy portability of the client software to operating 
systems other than Linux are: 

1. There will be an open source Linux reference implementation 
2. This file system bears a striking resemblance to NFS  
3. Our locking mechanisms for client nodes will be refinements and extensions of 

those employed in NFS v4.  The refinements will address finer granularity of 
locks, and more aggressive caching and synchronization of meta-data and 
directory data. 

4. Our security mechanisms will be largely analogous to those used in NFS v4, 
combined with NASD object security, see section 5.2.5. 

5. Our transport between clients and storage controllers, i.e. the Lustre object 
storage protocol, has considerable similarity to DAFS.  Lustre does not require 
any DAFS calls related to directory lookups and file names and brings extensions 
to DAFS for more aggregate commands and vectored I/O, pre-allocation and file 
system journal transaction support. 

The systems we will be employing, be it with modifications, form the foundation of the 
next generation storage and file system infrastructure for the industry.   We feel there is a 
great likelihood that ports will not be problematic at all.  In addition to the portability it 
provides this approach allows us to benefit from and contribute to related efforts.  

5.2.1.3 SOW Section 4.1.3 Exportable Interfaces 
Our file system will be exportable to NFS V4 and CIFS.   However, there is a caveat to 
be aware of.  Neither the CIFS nor the NFS server is stateless.   Exporting CIFS and NFS 
v4 from a single file server already requires synchronization of state between the Samba 
server and the file system (similar issues apply even to NFS v2/3).  Exporting load-
balancing instances of these servers, exporting CIFS and NFS from multiple client 
systems requires synchronization of state among all these servers for full support of the 
semantics.  In addition the servers would need to be aware of cluster membership 
transitions to handle the addition or disappearance of one of the file servers. 
 
Our cluster infrastructure will enable NFS and Samba to be modified to provide such 
state synchronization and the Samba Team (at VA Linux) has expressed interest in doing 
so with us.  

5.2.1.4 SOW Section 4.1.4 Coexistence with other file systems 
This is not a problem.  
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5.2.1.5 SOW Section 4.1.5 Transparent global capabilities 
The Lustre file system will do an extremely aggressive form of caching.  Lookup and 
attribute acquisition will be based on cached data.  Writes (except when especially 
requested) will never be synchronous and large caches will flush numerous update 
requests periodically.   
 
Our security and resource management will be global as addressed under other 
requirements (global namespace 6.2.1.1, global identities 6.2.3.2 and WAN security 
6.2.3.3). 
 
We expect good performance and have included a deliverable to perform tuning and 
provide additional adaptation to our networking and file system layers for WAN 
performance.   
 
We will develop specialized Lustre client/target driver pairs for a variety of common 
storage transport protocols, e.g. standard TCP/IP for Ethernet, VI-architecture based for 
Fibre Channel and other high-performance storage area networks. While these 
client/target driver pairs will be optimized for their particular transport layer, Lustre’s 
“active disk” concept allows object storage code modules to be loaded into both storage 
client and target systems. Specialized prefetching or buffer resizing and caching module 
pairs can be used to transparently pipeline large requests over long latency high 
bandwidth wide-area communication links. We will explore a range of adaptive self-
tuning and prefetching performance enhancing target modules. We will also develop a set 
of specialized client-side direct object storage APIs that will allow knowledgeable clients 
applications to specify performance hints to directly to the object store.  

5.2.1.6 SOW Section 4.1.6 Integration into a SAN environment  
We expect most Lustre storage targets to run on high performance commodity hardware 
that use traditional block storage for persistent data. Since Lustre direct drivers (the 
lowest level of the Lustre storage abstraction as described in section 4 above) are 
inherently capable of handling block-based storage, Lustre already works with existing 
block-based storage area network (SAN) technologies such as Fibre Channel or iSCSI.  
This is most attractive in the context where the storage controllers are also responsible for 
RAID so that a simple JBOD and fail-over, commodity (SMP) system can act as the 
storage target. 
 
In this setting we expect to incorporate explicit support of RDMA into the Lustre object 
storage protocol. We have carefully studied the following networking technologies and 
outline below how we expect to use them in the Lustre context: 
 

1. WARP is a recent protocol proposal for encoding an interleaved send and RDMA 
packet stream on top of TCP/IP [11].  WARP RDMA packets are self-describing 
RDMA write “chunks” that contain destination buffer-ids and offsets (this allows 
receiving network interface cards to determine destination address for each 
packet). WARP send packets do not specify an address; instead they specify a 
Send Sequence Number and an offset. The WARP proposal includes a mapping 
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of these functions on to TCP, SCTP, and also discusses how iSCSI protocol data 
units can be mapped on to WARP.  
Conclusion: WARP is of interest to Lustre as it increases the probability for an 
RDMA write mechanism to exist on top of TCP/IP.  This indicates that Lustre 
should be able to take advantage of RDMA writes not only on VI-architecture 
based transports, but, in the future, on TCP/IP based transports as well. 
 

2. DAFS is the Direct Access File System access protocol [15]. DAFS is focused on 
providing NFS v4 file access capability over a reliable system area network. The 
RPC data layout style used by DAFS for marshalling (described in section 6.1.1 
of [15]) is of particular interest to Lustre. The key element of the DAFS layout 
places all fixed-size structure elements at their naturally aligned boundaries, and 
moves all variable size buffers to the end of the message. Pointers in the fixed-
size structure that reference variable size objects are converted into relative 
offsets in the on-the-wire format. This allows receivers to simply re-instantiate 
pointers by adding the offset to the message’s base address. Additionally, if 
receivers place incoming messages at the proper alignment in memory then the 
received data structure can simply be typecast to the appropriate data type in 
place, without further copying or reassembly. 
Conclusion: The DAFS RPC data layout, combined with WARP-like RDMA 
writes is a very attractive solution for low-overhead Lustre client-target 
communication, even over TCP/IP. 
 

3. iSCSI/T10 OSD: iSCSI is a SCSI encapsulation protocol layer on top of TCP/IP 
[16]. iSCSI has gained significant industry momentum over the past few months. 
While iSCSI’s primary focus is low-cost SAN replacement with block-based 
semantics, work in T10 has been ongoing to define an extended object-based 
SCSI command set [21]. Furthermore, the WARP effort [11] discussed above has 
already proposed an encapsulation scheme for iSCSI commands in their protocol. 
Conclusion: iSCSI has a lot of momentum that make it an interesting transport 
layer for data transport in Lustre. Even though Lustre defines a more substantial 
set of capabilities than the T10/OSD devices provide (namely preallocation, file 
system recovery support, vectored byte granular I/O and execution of loadable 
modules on the storage target) using the Lustre clustering and meta-data 
architecture to aggregate a set of T10/OSD/iSCSI targets is a very desirable goal. 
 

We expect to spend a significant amount of design and implementation effort to bring 
new technology developments to bear on transport layer performance and robustness. 
This includes not only high performance in storage area networks based on VI-
architecture abstractions [12,13], but also improved performance on standard TCP/IP 
based local and wide area networks.   
Support for direct 3rd-party I/O in “legacy” block-based SAN 
 
Existing commercial SAN deployments may want to re-use expensive block-based 
storage infrastructure  (such as an EMC Symmetrix, HP XP512 or similar systems) in the 
context of an object storage cluster.  An object storage target can utilize such block 
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storage, but I/O would incur an extra “hop” at the object target.  Lustre can also support 
direct 3rd-party I/O in such “legacy” SANs installations by introducing “Proxy Object 
Targets” (POTs) that perform block-allocation for each of the block-based SAN storage 
targets. POTs execute all object commands, translate objects into SAN device and block 
information, and then trigger the appropriate set of 3rd-party direct block I/O transfers 
between the client and SAN storage targets. Compared to native object storage this 
introduces an additional message, and hence latency, for each read and each write 
operation, but does not pass the data through the proxy. 
 
When clients send write commands to a POT, they do not include data for writes, but 
instead expect to receive SAN device and block information from the POT. Then clients 
perform the I/O directly with the SAN target.  When the I/O has completed the client 
must confirm the completion to the POT.   Also the client must handle the case of “write-
and-free” buffers and “write-and-retain” buffers to support journal transactions.  
 
The POT will be careful to build the same transactional update logs as Lustre object 
targets to avoid the introduction of a second recovery mechanism.  

5.2.2 SOW Section 4.2 Scalable infrastructure for clusters 
Generally speaking our approach to scalability is two-tiered.   First we aggressively limit 
the footprint of shared resources, secondly we introduce new sub-dividable resources.  A 
few examples will illustrate our approach.  
 
Traditional cluster file systems have delegated file block allocation to a single metadata 
server (for non-symmetric cluster file systems such as CXFS) or to every cluster node (in 
symmetric cluster file systems).   In the former case a bottleneck can easily arise, while in 
the latter a substantial amount of synchronization mechanisms surrounds the update of 
allocation bitmaps.  

5.2.2.1 SOW Section 4.2.1 Parallel I/O bandwidth 
To achieve minimal interference between systems for scalable I/O bandwidth we made 
two important design decisions.  The first is to use object storage targets, which offload 
block allocation from the file system clients and avoid unnecessary sharing of allocation 
metadata – this is one of the items that falls under footprint reduction.  Similarly storage 
controllers will implement file extent locking (for striped files we have some open 
questions in our design).  Again this limits the file locking resources to precisely those 
clients and controllers that are involved. 
 
N by M mapping is a good example of our on-controller computing environment.  
Logical storage modules can interpret MPI-IO views of structured data on the controller 
and, for example, deliver columns when storage order is in rows.  Our strategy here is to 
implement the ADIO interface for which the Lustre protocol has already been adapted 
with scatter-gather byte level compound write commands, including hints.  
 
A very substantial portion of our deliverables is focused on not merely implementing but 
also finalizing, testing and debugging the scalable I/O infrastructure, including everything 
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between high performance storage networking based on VI-like protocols, locking 
relaxations and other performance hints.  

5.2.2.2 SOW Section 4.2.2 Support for very large file systems 
We will support very large file systems as mentioned in the requirements. Object storage 
brings new opportunities to bypass limitations found in some current operating systems 
related to the address space of blocks in storage devices.  By striping over multiple 
devices Linux systems will be able to support file systems of practically unlimited size 
and files of up to 264 bytes. 
 

5.2.2.3 SOW Section 4.2.3 Scalable File Creation and Metadata operations 
To support scalable file creation it is important that a creation operation for file foo in 
directory bar can be executed on a single cluster node.  Two key aspects in our solution 
to this problem (see [3]) are to acquire a lock, not just on bar as is common practice at 
present, but on a combination of the resources involved in the operation.  In this way a 
client can locate a system responsible for that part of the directory file that will hold bar – 
this is needed both for the insertion of a new directory entry and for the accompanying 
check of non-existence preceding the creation.   To split directory handling across 
multiple cluster nodes an extensible hashing scheme is needed.  Interestingly, GFS and 
the ext2 and ext3 file systems have just seen the introduction of this.  While we will 
likely need to change the directory format, there is much to be learned from the 
algorithms, which have shown good results with directories with millions of entries. 
 
An open question at present is if we should allow clients to modify directory data (as is 
customary in cluster file systems) or if it is more prudent to have an RPC style 
interaction, possibly with write back caching, as is done in InterMezzo (with write back 
caching) & Coda/AFS/DCE-DFS (without caching).   Caching of directory data for the 
purpose of updates may result in much higher performance but mandates that clients are 
systems entrusted with enforcing authorization – in a WAN environment this is probably 
undesirable. 
 
To scale the performance of “ls” an interesting read-ahead operation on directory objects 
will be needed, which may span multiple metadata controller nodes. 
 
The most pressing issue for scalability is the recovery mechanism, since it will also need 
to be invoked when there is a cluster transition between the metadata control nodes 
(metadata servers).   We will carefully integrate cache flushes, synchronization and 
journal transactions so that cached data is migrated from clients to control nodes in 
transactional units.  Our system will rely on abstractions found in the Spiralog File Server 
[7]. 
 
As for I/O scalability, we have reserved ample room to build, test and improve the 
metadata scalability issues in our project. 
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5.2.2.4 SOW Section 4.2.4 Archive driven performance 
The Lustre protocol provides serverless remote copy commands for extents of objects, as 
well as object iteration functions to process entire volumes without server interaction.   
While we do not expect to have resources for fully-fledged NDMP and DMAPI 
interfaces, the complete infrastructure to build these easily – as logical storage modules, – 
will be available.  

5.2.2.5 SOW Section 4.2.5 Adaptive prefetching 
Like most file systems, Lustre provides standard read-ahead and Lustre will have more 
aggressive write-behind techniques than currently found in cluster file systems to 
improve performance for sequential access patterns. In addition to the standard POSIX 
file system access, Lustre will provide access to stored objects through a specialized 
direct object storage API. The direct access API will allow applications to bypass 
standard file system prefetching behavior, and will provide a relaxed consistency model 
for file data to support applications that are able to take advantage of it. Additionally, a 
set of performance hints (specifiable on a per object/file basis) will allow users to 
persistently record the preferred access methods with each object. Finally, special 
purpose logical object modules can be plugged into the Lustre client and target stacks 
allow flexible and, possibly application programmable prefetching strategies to be 
deployed.  

5.2.3 SOW Section 4.3 WAN Access 
Fundamentally we see three components to the WAN access issues raised by the RFP: a 
global name space, a global security model and an adaptive multi-channel WAN 
transport infrastructure. 

5.2.3.1 SOW Section 4.3.1 WAN access to files 
Our file system will perform extremely aggressive write-back caching with read-ahead.  
This will eliminate many latency-induced bottlenecks in WAN environments. 
 
Use of multiple transport channels and connection trunking will improve throughput and 
latency in wide-area networks and is one of the key research items for the object storage 
and networking team. For WAN access to the Lustre object store, we expect to create 
adaptive load balancing strategies in which multiple channels are automatically created 
and torn-down based on dynamic feedback. Differentiated use of a set of channels for 
short control and coherence messages and another channel for bulk data transfers can 
significantly improve perceived latency. We further expect this capability to be very 
useful for storage management functions such as backup and on-line data migration that 
can benefit from background operation. 
 
InterMezzo will be able to export parts of the Lustre namespace to clients, even mobile, 
disconnected clients.  Such data can be presented on the client in secure private 
namespaces and modifications are reintegrated with log replay that exhibits the full 
security features desirable.  
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5.2.3.2 SOW Section 4.3.2 Global Identities 
We will use global identities with cross realm authentication and authorization.  Such 
global identities require mappings to integer user identities on clients to enable export of 
NFS.  It may also be efficient to maintain such mappings on control nodes, but equality of 
Unix user identities on different client is not required.  DCE/DFS and Coda have 
solutions here that we may adopt. 

5.2.3.3 SOW Section 4.3.3 WAN security integration 
We will take the following steps to ensure wide area security integration.  First our ACL 
support will use principals not user-id’s to accommodate global definitions of 
authorization.  Second we will use Kerberos with ANL/Globus X509 patches for cross-
cell authentication.  Our volume location service, part of the cluster resource database, 
will be stored in (replicated) LDAP directories with referrals which is itself secured with 
Kerberos authentication and ACL’s.  
 

5.2.4 SOW Section 4.4 Scalable management & operational facilities 
Our target is to implement a basic management infrastructure, which will enable other 
entities to port existing software to Lustre.  For example, there are API’s for secure 
remote management and MIB’s for monitoring.  There are data migration and hole 
punching API’s and snapshots.  However our focus is on file systems and storage 
networking and we merely plan to provide sufficient infrastructure to enable further 
development of management tools by others. 
 

5.2.4.1 SOW Section 4.4.1 Minimize the human effort 
We will lay the foundation for configuration of devices based on a profile description in 
the cluster resource database. When a new device is added, it needs to know to what 
organization unit it belongs and auto-configure based on a profile.  

5.2.4.2 SOW Section 4.4.2 Integration with other management tools 
Will not be addressed, but should be easily possible. 

5.2.4.3 SOW Section 4.4.3 Dynamic tuning and reconfiguration 
We will allow for dynamic resizing and on-line migration of data, as well as dynamic 
tuning of system parameters. We hope to automate many of the networking transport 
configuration issues by making the networking layer automatically adapt to changes in 
workload and available bandwidth. We expect storage management functions such as 
backup and on-line data migration will benefit from this. 

5.2.4.4 SOW Section 4.4.4 Diagnostic reporting 
Will be present through SNMP MIBs and driver-exported information about problems. 
We have already created a logical object module that monitors the number, size and 
latency of object transactions executed by the file system. This will be valuable in 
analyzing performance problem and reporting overall performance statistics to 
administrators and end-users. 
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5.2.4.5 SOW Section 4.4.5 Support for configuration management 
We will develop precise configuration information of software and hardware running on 
all systems. 

5.2.4.6 SOW Section 4.4.6 Problem determination GUI 
Will not be included. 

5.2.4.7 SOW Section 4.4.7 User statistics reporting 
Basic infrastructure in the file system clients, cluster controllers and targets will be made 
available.  

5.2.4.8 SOW Section 4.4.8 Security management 
Command line tools will be available to control all aspects of security.  

5.2.4.9 SOW Section 4.4.9 Improved characterization and retrieval of files 
Will not be covered.   Our object based target drivers allow modular addition of storage 
management modules that could be capable of prioritizing object access as well as 
selecting network drivers based on object attributes. 
 
At the file system level InterMezzo style filtering (which we will use for auditing) can 
easily be adapted to maintain file system attribute databases that remain consistent in a 
transactional manner with updates of the system. 
 
Running a SQL based metadata cluster engine would provide unique opportunities here. 
  

5.2.4.10 SOW Section 4.4.10 Full documentation 
A basic set of system, operation and user manuals will be delivered. 

5.2.4.11 SOW Section 4.4.11 Fault tolerance, Reliability, Availability, 
Serviceability (RAS) 

 
Clients  
 
Much of our design work so far has centered about scalable tolerance mechanisms for 
failures.  Given the enormous number of clients it is necessary for these clients to not 
provoke cluster transitions involving large counts of other systems.   
 
As to locking they will be so called satellite nodes that have full use of lock mechanisms 
but do not participate in resource mastering.  Should such nodes leave or enter the cluster 
there will be minimal disruption.  If we allow memory-to-memory data transfer between 
client nodes the recovery problems remain involved since the cluster control nodes may 
have to STOMITH systems that depend on a dying system flushing its write-back log.  If 
we synchronize by flushing through cluster control nodes such problems do not occur. 
 
Metadata control nodes 
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Our metadata control nodes will follow mechanisms in VAX Cluster Style to deal with 
cluster transitions.  The SOW lists the possibility of giving such systems redundant fail-
over hardware, but this does not address memory state and is not usable for metadata 
cluster transitions.  The failure handling in metadata control nodes is complicated, similar 
to that found in traditional cluster file systems.  Traditional cluster file systems typically 
exploit synchronous I/O when a revocation of write locks occurs.  We want to avoid 
synchronous writes to the maximum extent (but will allow this to be an option).  As a 
result the failure of a metadata control nodes may force clients to re-flush their cached 
operations to a newly erected metadata control node or otherwise face a failure 
themselves to maintain application consistency.    Clients will detect the failure of a 
metadata control node and will have to await a message from the cluster before 
continuing to execute meta-data transactions.  A top-down “flood-fill” scalable cluster 
structure put forward by the cluster cabal will be used to transmit such messages [8]. 
 
The storage industry has developed many solutions for redundancy at the target level.  
Our object-based infrastructure makes many of these issues easier and allows for the 
following solutions.  In each case the redundancy is introduced as an independent storage 
management module, allowing the same mechanisms to be used with different types of 
storage networking and with different back-ends.  
 
Storage Targets  
 
Active/active redundant storage targets enable two independent targets that can 
concurrently process requests.  For block devices there is no shared state among requests 
but with object targets, all allocation data is shared.  Doing active/active pairs of 
controllers would require a “mini cluster file system” between the controllers – a no-no. 
 
A partially active/active controller allows one controller to write to one disk partition and 
another one to address another disk partition concurrently - load sharing at a coarse 
granularity is possible. Such targets can be built as follows: first let's use shared storage 
between the controllers. Using Kimberlite style fail-over clustering we can get 
redundancy for the storage networking and controller hardware.  Such shared storage 
itself needs to be RAID and requires partially active/active block raid controllers on the 
two object storage controllers - possibly this could be software raid and commodity SMP 
systems attached to JBODs with some processors responsible for the target and some for 
the backend raid is attractive, possibly with some shared solid-state memory to speed up 
bitmap maintenance for RAID restoration. 
 
The initiators have to detect that the first controller has failed and then retry on the other 
controller.   The other controller needs to STOMITH the first controller, do journal 
recovery on the shared storage.  Then using a simple form of an InterMezzo style shared 
operation log it needs to figure out what the last operation was that made it to the disk.  It 
then tells the initiator to resume at the next operation. 
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Without the possibility of doing full active/active we need a different mechanism to 
exploit multiple channels.  For this an SMP storage target with multiple incoming 
storage-network interfaces, multiple busses, probably each handled by a dedicated CPU 
and with more CPU's at the backend for doing RAID.  
 
We also remain very interested in full redundancy in the case of 100% commodity 
hardware.  Now we have two object storage controllers, each with one IDE and one 
interface disk, and we want to build a replicated redundant configuration out of them.  
The servers can blast out two object commands, one to each storage controller (this 
requires support in the file system metadata (as in Cheops [22]) since the object id's on 
the two controllers might have diverged).  If one of these fails and recovers, the question 
is how to resynchronize the two. An InterMezzo style log maintained on each of these 
would be able to replay "missed object commands" to a recovering node. 
 
When the log becomes too large data migration between the controllers (aka “lan” free 
backup) should rebuild an entire object store.  In this case very innovative solutions exist 
which use the active nature of our controllers to run rsync to re-synchronize all objects, a 
dramatic improvement over classical RAID drive restoration.  
 
Interactions 
 
The creation and removal of files include file data objects and causes metadata updates in 
Lustre that span multiple nodes: metadata control and possibly many storage targets.  
Recovery from failures in this situation requires special care.  If file data objects are lost 
we don't care: that is the usual behavior of NOT journaling file data. 
 
If the container is lost due to system failure, it should probably take the file data objects 
into its grave - that is done using an orphan list (see Ext3 [49,50] or the XFS literature).  
The file data objects are orphan listed until the confirmation comes to the client that the 
container has reached persistence.  The client now includes a "deorphanize" message in 
the next I/O operation. 
 
If the container is lost (typically because the client and meta data controller die), the best 
way to remove the orphans is for the storage controller from time to time to query the 
metadata control cluster about orphan listed objects.  If the metadata cluster guarantees to 
flush buffers every 30 seconds, then clients will learn that containers are persistent in 
little more than 30 secs.  Storage targets would learn soon afterwards. Therefore, an 
orphan that is more than a minute old, and has not been de-orphanized is suspect and the 
target should contact the metadata controller to find out if the object was possibly lost. 
[Such contact from targets to metadata control cluster is needed anyway to update the 
summary metadata held in the container.] 
 
The unlink case exploits an InterMezzo style replay log between metadata control nodes 
and object storage targets, which remains present until all storage targets have executed 
the object destruction requested. 
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5.2.4.12 SOW Section 4.4.12 Integration with tertiary storage 
We will not implement a DMAPI interface but will write a design document how this can 
easily be done, for other entities to step in. Our object interface provides strong 
infrastructure for XDSM/DMAPI tertiary storage interaction, such as remote copy and 
hole-punching APIs. DMAPI like other storage management can be implemented as a 
loadable storage module. This will automatically be inter-complex.  We will make sure to 
afford room for dtime support. 

5.2.4.13 SOW Section 4.4.13 Standard POSIX and MPI-IO 
POSIX interfaces will be the default and will be part of the file system.  
 
We intend to implement an ADIO interface on top of the object file system.  The Lustre 
API was adapted to deal easily with most of the requirements raised by ADIO.  A new 
interface for collective operations is needed which is probably easily implemented using 
the infrastructure which for default file I/O arranges synchronization.  
 
Hint parameters will be available, but we require extensive discussion with the Tri-
Labs/NSA to learn more about specific requirements.  We feel that to maximize 
portability the system APIs should gear towards standard calls and not exotic features.  

5.2.4.14 SOW Section 4.4.14 Special API semantics for increased 
performance 

We will definitely introduce special semantics to allow relaxed locking schemes to 
dramatically improve the performance of parallel I/O. We will probably apply this at the 
file-set level, and the semantics will likely be such that the applications are responsible 
for synchronization.  

5.2.4.15 SOW Section 4.4.15 Time to build a file system 
We will be using something like the XFS file system for backend storage.  This system 
has extremely good characteristics for file system building and resizing and we will make 
sure to bring support for these to the Lustre file system.  

5.2.4.16 SOW Section 4.4.16 Backup/Recovery 
We will provide sufficient hooks for easy integration with standard enterprise backup 
software, including hooks for advanced features such as LAN free backup.  We will not 
be delivering backup clients or servers for Lustre, but build design guidelines for others 
to build such systems.  
 

5.2.4.17 SOW Section 4.4.17 Snapshot Capability 
Lustre already has a prototype implementation of fully featured snapshots, using a logical 
object module.  This has been transformed into a production quality file snapshot file 
system by Mountain View Data and we will similarly the Lustre code to provide robust 
and efficient snapshots, with support for database flushes and “.snap” directory support. 
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5.2.4.18 SOW Section 4.4.18 Flow control and QOS 
Except for flow control in our high-performance and WAN storage networking modules 
this will not be addressed. 

5.2.4.19 SOW Section 4.4.19 Benchmarks 
A very significant part of our deliverables focuses on benchmarks and performance 
improvements.  In these areas, we require extensive collaboration from the Tri-
Labs/NSA. 

5.2.5  SOW Section 4.5 Security 
We expect to deliver an almost complete security implementation vis-à-vis the 
requirements   It will be based on industry standards, in outline form a lightweight AFS, 
DCE/DFS file system security model, combined with NASD style security for storage 
controllers.  Additionally we will show how storage modules can be used for content-
based security and encryption.  A variety of issues were not mentioned by the Tri-
Labs/NSA document, most notably PKI for storage and retrieval of encrypted data.  We 
are sensitive here to adjusting our designs in such a fashion that these issues can be 
addressed at a later stage. 

5.2.5.1 SOW Section 4.5.1 Authentication 
We will use a GSS-API compliant authorization mechanism.  We will use Kerberos with 
the Globus-ANL X509 extensions as the token acquisition mechanism.   The TGT’s 
obtained in this fashion will enable users session keys but also enable shared secrets 
(“daily keys” in NASD speak) between storage targets and metadata control nodes.  
 
At the kernel level we need identities such as AFS-style Process Authentication Groups 
(PAG) for realistic security enforcement.  Such identities can have tickets and session 
keys associated with them after authentication.  
 
Groups are a separate issue of extreme importance.  We will seek a scalable integration 
between Unix groups and users and Kerberos principals.  Additionally groups are needed 
to provide an infrastructure for encryption by clients.  LDAP based implementations 
might provide a good secure and scalable solution here. 
 
Authentication can involve remote authentication servers using cellular Kerberos and 
LDAP referrals. 
 

5.2.5.2 SOW Section 4.5.2 Authorization 
Our authorization is a two level approach. NFS v4 access control lists will be used at the 
file system level to authorize access to files and directories.   Of particular concern to us 
is a detailed discussion with the Tri-Labs/NSA regarding the case where multiple users 
on a client are accessing the same files – in this case the NFS mechanisms are very 
inefficient and complex and key expiration – already a known hairy issue – can become 
even more involved. 
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The primary means of authorizing client access to objects on the object storage targets are 
capabilities. A capability is a token issued by metadata control nodes to the client, which 
describes the object it applies to and the access rights that are granted. The client presents 
the capability to the target on each operation, and the drive can cryptographically verify 
the authenticity of the capability without contacting the file manager. If the capability is 
invalid, the drive returns an error to the client, and the client must contact the file 
manager to receive a new capability. 

5.2.5.3 SOW Section 4.5.3 Content based authorization 
Content-based authorization is an obvious attractive application of controller based 
computing.   We will build a sample module to demonstrate how this can be done.  An 
interesting aspect here will be the API to transfer such authorization information from 
clients to storage controllers since the NASD capabilities may not suffice for this 
purpose. 

5.2.5.4 SOW Section 4.5.4 Logging and auditing 
The InterMezzo file system can audit file access at the file system level.  It is a low 
overhead file system filter, which can easily be modified to track access to storage 
objects on targets as well.   The management of 10,000’s of clients and 1000’s of storage 
controllers providing auditing information is an issue by itself. 

5.2.5.5 SOW Section 4.5.5 Encryption 
While we will not implement an encryption module, we will write a design specification 
for other entities to step in and also provide the key infrastructure required to handle 
client-based encryption.  Several companies have approached us to build hardware 
supported encryption modules for Lustre.  
 
A loadable logical object storage module is an ideal vehicle for encryption and can 
optionally be run at the target as well.  

5.2.5.6 SOW Section 4.5.6 Trust analysis 
A trust analysis will be delivered as part of our design specifications.  
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