
Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 1 7/29/2001

Cluster File Systems, Inc.
530 Showers Drive # 7 – 147
Mountain View, CA 94040

Phone 650 799 8578
Fax 403 678 6922
Email braam@clusterfilesystem.com
WWW http://www.clusterfilesystem.com

Lustre Technical Project Summary
(Attachment A to RFP B514193 Response)

Authors: Peter J. Braam, Cluster File Systems
and
Rumi Zahir, Intel Labs

Date: Version 2, July 29, 2001

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED FOR
INFORMATIONAL PURPOSES ONLY AND ARE "AS IS" WITH NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE.

INTEL AND CFS ASSUME NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS
DOCUMENT AND HAVE NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM
OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 2 7/29/2001

Table of Contents

TABLE OF CONTENTS ... 2

1 BACKGROUND ... 4

2 LUSTRE STRUCTURAL OVERVIEW .. 5

2.1 RATIONALE AND ALTERNATIVES ... 7

3 RELATED TECHNOLOGIES.. 8

4 LUSTRE SOFTWARE ARCHITECTURE ... 10

4.1 OVERVIEW ... 10
4.2 THE LUSTRE CLUSTER FILE SYSTEM.. 12
4.3 CLUSTERING INFRASTRUCTURE ... 14
4.4 PROGRAMMABLE OBJECT STORAGE TARGETS ... 14
4.5 STORAGE MANAGEMENT & CONFIGURATION.. 15

5 COVERAGE OF TRI-LABS/NSA REQUIREMENTS 16

5.1 SOW SECTION 3 - MINIMUM REQUIREMENTS ... 16
5.1.1 SOW Section 3.1 POSIX-like interface ... 16
5.1.2 SOW Section 3.2 Integration Compatibility.. 16
5.1.3 SOW Section 3.3 No single point of failure .. 16

5.2 SOW SECTION 4 DESIRED PERFORMANCE FEATURES .. 17
5.2.1 SOW Section 4.1 Global Access.. 17

5.2.1.1 SOW Section 4.1.1 Global Scalable Namespace 17
5.2.1.2 SOW Section 4.1.2 Client Software ... 18
5.2.1.3 SOW Section 4.1.3 Exportable Interfaces .. 18
5.2.1.4 SOW Section 4.1.4 Coexistence with other file systems 18
5.2.1.5 SOW Section 4.1.5 Transparent global capabilities 19
5.2.1.6 SOW Section 4.1.6 Integration into a SAN environment 19

5.2.2 SOW Section 4.2 Scalable infrastructure for clusters 21
5.2.2.1 SOW Section 4.2.1 Parallel I/O bandwidth .. 21
5.2.2.2 SOW Section 4.2.2 Support for very large file systems 22
5.2.2.3 SOW Section 4.2.3 Scalable File Creation and Metadata operations ... 22
5.2.2.4 SOW Section 4.2.4 Archive driven performance 23
5.2.2.5 SOW Section 4.2.5 Adaptive prefetching... 23

5.2.3 SOW Section 4.3 WAN Access .. 23
5.2.3.1 SOW Section 4.3.1 WAN access to files.. 23
5.2.3.2 SOW Section 4.3.2 Global Identities .. 24
5.2.3.3 SOW Section 4.3.3 WAN security integration..................................... 24

5.2.4 SOW Section 4.4 Scalable management & operational facilities 24
5.2.4.1 SOW Section 4.4.1 Minimize the human effort 24
5.2.4.2 SOW Section 4.4.2 Integration with other management tools.............. 24
5.2.4.3 SOW Section 4.4.3 Dynamic tuning and reconfiguration 24
5.2.4.4 SOW Section 4.4.4 Diagnostic reporting.. 24

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 3 7/29/2001

5.2.4.5 SOW Section 4.4.5 Support for configuration management 25
5.2.4.6 SOW Section 4.4.6 Problem determination GUI 25
5.2.4.7 SOW Section 4.4.7 User statistics reporting... 25
5.2.4.8 SOW Section 4.4.8 Security management .. 25
5.2.4.9 SOW Section 4.4.9 Improved characterization and retrieval of files ... 25
5.2.4.10 SOW Section 4.4.10 Full documentation ... 25
5.2.4.11 SOW Section 4.4.11 Fault tolerance, Reliability, Availability,
Serviceability (RAS)... 25
5.2.4.12 SOW Section 4.4.12 Integration with tertiary storage 28
5.2.4.13 SOW Section 4.4.13 Standard POSIX and MPI-IO 28
5.2.4.14 SOW Section 4.4.14 Special API semantics for increased
performance .. 28
5.2.4.15 SOW Section 4.4.15 Time to build a file system.............................. 28
5.2.4.16 SOW Section 4.4.16 Backup/Recovery.. 28
5.2.4.17 SOW Section 4.4.17 Snapshot Capability .. 28
5.2.4.18 SOW Section 4.4.18 Flow control and QOS 29
5.2.4.19 SOW Section 4.4.19 Benchmarks... 29

5.2.5 SOW Section 4.5 Security.. 29
5.2.5.1 SOW Section 4.5.1 Authentication... 29
5.2.5.2 SOW Section 4.5.2 Authorization .. 29
5.2.5.3 SOW Section 4.5.3 Content based authorization.................................. 30
5.2.5.4 SOW Section 4.5.4 Logging and auditing .. 30
5.2.5.5 SOW Section 4.5.5 Encryption... 30
5.2.5.6 SOW Section 4.5.6 Trust analysis .. 30

6 REFERENCES.. 31

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 4 7/29/2001

1 Background
The Tri-Labs/NSA (Los Alamos, Livermore, Sandia, DOE and DOD) are requesting a
proposal for a scalable global secure file system (SGS file system) in the context of an
Advanced Strategic Computing Initiative (ASCI) “Pathforward” grant [1]. Cluster File
Systems, Inc is responding to this RFP [2]. Focus of this project is the development of a
highly scalable file system, named Lustre, which will be evolved from the current Lustre
open-source object-based file system [3]. Scalability spans many dimensions, including
data and metadata performance, large numbers of clients and inter-site file access,
management and security. All these dimensions are of importance to the Tri-Labs/NSA
sites and global enterprises alike.

Object-based storage continues a long history of increasing the level of abstraction of
storage devices as seen by operating systems. Whereas early system software needed to
be aware of arm positions and other disk internals SCSI and ATA disk access protocols
abstracted disk drive geometry away, and exposed disks as an abstraction of a linear
sequence of fixed size. Object storage concepts date as far back as the 1980 “Universal
File Server” paper [36] by Birrel and Needham. Kaashoek started an interesting project
at MIT confirming some of the benefits [2], and the first large scale implementation was
pioneered at Carnegie Mellon University and executed as part of the NSIC/NASD project
[22], [46]. NASD focused on abstracting block allocation and providing system software
with an object-based storage abstraction. The NASD architecture enabled scalable I/O
bandwidth through third party transfer, and primarily focused on secure access to storage
devices. NASD explored object-based file systems (ERDFS) but it “interact[ed]
minimally with its host operating system” [22], and its API did not provide explicit
support for file system recovery or clustering. One of the most important outcomes of the
NASD work was a SCSI based OSD object command set proposal that is currently under
consideration by the ANSI T10 standards committee [47].

The original Lustre project [5,6] in 1999 also originated from CMU. It initially sought to
build an object-based file system, with cluster-wide Unix semantics. This file system
design has evolved to become the core of this proposal. Lustre object storage categorized
the device drivers that can build up an object storage stack. Direct drivers, clients / target
pairs and logical drivers underlie storage object applications such as file systems or
object databases. Lustre did not tie its command set to SCSI and added features to
support advanced file systems such as parallel I/O abstractions, object pre-allocation,
locks and hooks for journaling to provide faster file system recovery. Lustre allows
protocol modules to be loaded into and executed by the storage device. A prototype
open-source Linux implementation of Lustre is available at [3], and currently runs under
Linux 2.4.

Since January 2000, the Lustre development efforts have been heavily influenced by
scalable cluster file system requirements outlined by the National Labs in the ASCI I/O
SGPFS [23] and the more recent Tri-Labs/NSA SGPFS requirements document [1]. In
response to the Tri-Labs/NSA RFI [1], Braam submitted a design document [4] that
outlines how the Lustre architecture can be evolved to meet the Tri-Labs/NSA’s needs.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 5 7/29/2001

2 Lustre Structural Overview and Rationale
This section describes the overall Lustre architecture [4,6], and enumerates various
capabilities and interfaces of each of the components and gives a brief rationale for our
approach.

2.1 Structural Overview

Access Control

Data Transfers

Coherence
Management

Storage
Management

Clients

Object
Storage
Targets

Metadata
Control

Security &
Resource
Database

As shown in the picture above a Lustre-based cluster consists of three types of systems:

1. Clients: Applications running on clients see a shared file system with standard
POSIX file system semantics. The file system is built up of filesets and provides
a global namespace. Specialized applications can bypass the file system and may
directly access objects stored in the cluster.

2. Metadata Control Systems: manage name space and file system meta-data
coherence, security, cluster recovery, and coordinate storage management
functions. Metadata Control systems require direct access to storage for meta-
data, i.e. file system and object attributes as well as directory contents. Metadata
Control systems do not handle file data, file allocation data and file locking
semantics. Instead, they direct clients to do file I/O directly and securely with
storage targets. The metadata cluster is free of single points of failure.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 6 7/29/2001

3. Storage Targets: provide persistent storage for objects. Objects can represent
files, stripes or extents of files or serve other purposes. Files are represented by
container objects in the metadata cluster and by constituent objects on storage
targets. Rich interfaces to perform I/O are provided including block allocation,
locking, parallel I/O, storage networking optimizations and storage management
as well as active disk interactions with loadable logical storage modules. Storage
targets can be made free of single points of failure.

4. Resource and security databases: provide configuration management information
to systems, provide security services, user and group databases and file set
location databases. Inter-site referrals provide key mechanisms for global
infrastructure. The redundancy of these systems is provided by shared storage
fail-over solutions.

The protocols among the systems can be summarized as follows:

1. Clients – Storage Targets: Clients interact on a client/server basis with storage
targets directly for file I/O. Clients can exploit specialized parallel I/O interfaces
or benefit from storage management modules running in the storage target (e.g.
data migration, network adaptation, data mining). Locking of file data is
managed with storage target based lock service supplemented by revocation
services on the client. Storage targets accept security capabilities from clients.
Client and target failures invoke recovery protocols among these systems, which
include I/O fencing, journal recovery and lock revocation/re-establishment.

2. Clients – Metadata Control: Changes to the namespaces are requested by
clients and directed to metadata control. The file system protocol is supplemented
with resource location services, lock services for metadata (including revocation
services offered by the clients). The client/metadata file protocol dynamically
adapts to cover low contention and high contention cases. Aggressive write-back
caching is used in case of low contention, while a scalable client/server model is
used when contention is high. In case of high contention, resource management
distributes the load across the metadata cluster. Implicit in this protocol is the
allocation of storage target resources to objects, which is communicated to clients.
When clients die, a simple recovery protocol is followed similar to that between
clients and storage targets. Changes in the membership of the metadata control
cluster first provoke recovery of that system and then recover clients and storage
targets.

3. Storage Targets – Metadata Control: The protocol is a client/server protocol
enabling storage targets (clients in this protocol) to update metadata control
(servers) with information regarding constituent attributes and summary
information on target load and capacity resources. There is a recovery protocol to
re-establish distributed consistency among containers and constituent objects.

4. Metadata Control – Metadata Control: The communication in this system is
much like that of a VAX Cluster, including a tightly coupled metadata file
system, cluster transition and distributed lock management functionality.

5. Client – Client: There are no direct interactions except for client and storage
target clusters performing hierarchical flood-fill notifications from metadata

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 7 7/29/2001

control, resource databases (or storage targets) to all systems. Flood/fill
notification services can be made redundant by virtual service techniques because
they are stateless and memory based.

6. Storage Target – Storage Target: Storage targets communicate with each other
as part of storage management for object migrations directly between storage
targets. For file system operation these nodes communicate among each other
like client – client interaction.

7. Resource and security services: after new (racks of) systems have been added to
the configuration databases they are self-configuring, using DHCP, LDAP and
related systems. Security, user/group and file set databases are queried accessed
by clients, metadata control and storage target nodes for a variety of services. In
some cases information is cached.

The Lustre object-based protocol permits more than simple stacking of object-protocol
modules. It also allows various cluster file system functions can be partitioned across
multiple systems in different ways. The following client, metadata control and target
configurations are possible:

o Single system: {Client = Metadata Control = Target} – All functions execute on a
single system. In this case, Lustre behaves like a local file system, but can add
features such as snapshots, DMAPI or encryption through loadable modules.

o Shared object storage file system: {Clients incorporate Metadata Control,
Targets} – A symmetrical object-based cluster file system that performs metadata
control functions between clients and shares storage on targets.

o File manager object file system: {Clients, Single Metadata Control, Targets} –
Multiple clients that manage coherence through a single metadata control
systems. This is an object-based cluster file system with a file manager.

o Client-server distributed file system: {Clients, Metadata Control with direct-
attached Targets} – This is a client server network file system configuration.
Lustre: {Clients, Metadata Control Systems, Targets} – Multiple clients that
manage coherence through multiple metadata control systems, and that manage
access to multiple targets

2.2 Rationale and Alternatives
A traditional cluster file system has aimed to provide high performance Unix file sharing
semantics in a tightly connected cluster. Distributed file systems (such as NFS, SMB and
AFS) have provided file service to larger groups of clients. Newer file systems have
addressed object storage, and others (InterMezzo [20]) have introduced extremely
aggressive write back caching techniques suitable for wide area operations. Our solution
will draw on innovations from many such systems.

The requirements posed by the SGS File System emphasize all dimension of scalability.
The brief rationale here provides motivation for our solutions and mentions some
alternatives.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 8 7/29/2001

First, much of the current design was arrived at in joint work with Sandia spanning
several years, based on the I/O subsystem used in CPLANT. Secondly, we have tried to
draw on successes in the industry: VAX Clusters, AFS scalability, Kerberos security, and
journal file systems like ReiserFS and XFS. Finally we have wanted to build a system
that is closely aligned with core developments in the storage industry such as NFS v4,
DAFS-style storage networking and commodity hardware infrastructure.

Object-based I/O is a natural way to offload a sub-protocol of file service to storage
targets. The NASD project has demonstrated the opportunities for scalable I/O and
security. Our work is an enhancement of this providing more services and storage
management in the object stack. An alternative approach is to allow clients to manage
allocations on traditional storage controllers. While the latter provides more backward-
compatibility, we regard the ASCI setting as an opportunity to innovate.

A metadata control cluster is, perhaps, the most tentative of our choices. The primary
motivation is that VAX-Clusters were very successful systems. Hashed directories will
provide load balancing for single object updates. The reductions of our system that occur
by co-locating metadata control, client and target components lead to a number of known
good solutions. Alternatives in this space are scarce. It has been suggested to run a large
redundant SQL database server as the metadata service in Lustre, and idea that leads to
many secondary opportunities such as name space indexing. We expect to do further
research on each of these two alternatives.

3 Related Technologies
To achieve wide spread adoption and portability the Lustre project will need to integrate
a variety of complex technology components such as file systems, networking, clustering
and storage target execution environments. We recognize that in each of these domains
significant technological evolution is ongoing, and we are actively participating in
numerous industry standards activities [15, 16, 21].

This section outlines how we expect to leverage many of the needed software
components for Lustre from existing open standards and open source efforts.

1. NFS v4: Lustre clients bear some resemblance to NFS v4 clients [8]. However,
Lustre performs much more aggressive client side caching of data and meta-data
and will use a directory format that enables extensible hashing across a cluster. As
a result, Lustre clients aggregate I/O commands to a much greater extent than
NFS v4 clients, which improves performance. Our clients do not participate as
full cluster nodes but as satellites and we expect the Lustre client implementation
to be similar to an NFS v4 client.

2. Clustering: Several groups have contributed significant clustering infrastructure
components in to the open source. We expect Lustre’s clustering infrastructure to
integrate components from IBM’s open source distributed lock manager [26],
Cornell University’s Ensemble group membership protocols [27], and Mission

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 9 7/29/2001

Critical Linux’ Kimberlite cluster recovery daemon [28].

3. Cluster File Systems: The Lustre metadata control systems are responsible for
managing object meta-data coherency. Within the metadata control systems, we
expect to use a novel locking mechanism based on hashed directories with sub-
dividable extensible hashes. Some aspects, such as cluster transitions will be
handled as in traditional block-based cluster file system similar to GFS [25],
GPFS [24], or the VAX cluster file system [29,30], but we will use object storage
and will replace inode data with object metadata.

4. File System Scalability: The current Lustre code is based on the standard Linux
ext2 file system. We definitely need a journaling file system and we expect that
for file I/O the Silicon Graphic’s XFS file system [31] is most scalable. We will
incorporate one or more of XFS, ReiserFS, JFS, Ext3 into our storage targets.

5. Storage Networking: We expect to incorporate several recent low-overhead
networking advancements in to the Lustre design. Remote DMA (RDMA) [10]
will significantly reduce network protocol processing overheads on clients and
targets on VI-architecture based networks. The WARP protocol [11] will also
enable RDMA writes over standard TCP/IP networks. The DAFS initiative [15]
has introduced an improved RPC data layout. Combined with WARP-like RDMA
writes, the improved DAFS RPC data layout is a very attractive solution for low-
overhead Lustre client-target communication, even over TCP/IP.

6. Object-Storage Protocols: The Lustre object storage protocol bears many
resemblances to currently evolving storage standards. Compared to the DAFS file
system storage access protocol [15], Lustre eliminates the need for server-side
name space handling, and provides several extensions over DAFS. While iSCSI
[16] is primarily focused on low-cost SAN replacement using block-based
semantics, the T10 standards group is defining an extended object-based SCSI
command set called OSD [21]. Although Lustre defines a more substantial set of
capabilities than the T10/OSD, using the Lustre clustering and meta-data
architecture to aggregate a set of T10/OSD/iSCSI compatible targets is desirable.

7. Security and management: Both the cluster of all systems and the file system
require a substantial amount of configuration information. LDAP style directories
have become a widely used global infrastructure for such data. Kerberos/X509
security is widely in use now and run-time configuration is successfully done with
DHCP-style services. We expect to draw on all of these.

While we expect to leverage code, capabilities and techniques from the above
components, the Lustre design also adds significant novel capabilities. Lustre
incorporates novel locking mechanisms and directory structures, an advanced object-
based storage access protocol that supports byte-granular scatter gather I/O, object pre-
allocation and command aggregation and integrated journal recovery support. To meet
the required performance and scalability targets, Lustre also exposes a direct object

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 10 7/29/2001

access interface and provides specialized performance hints. The ability to execute code
on the Lustre storage targets allows them to actively participate in storage management
functions.

4 Lustre Software Architecture

4.1 Overview
The Lustre software architecture [5] is easiest described as a stack of layered object-
based storage (OBD) modules. Key software layers in Lustre are:

a) POSIX Compliant File System: An object-based file system exposes a POSIX
compliant VFS interface to client applications, and two protocol interfaces to
software layers below: (1) a meta-data coherency protocol to handle name space
operations, and (2) an object storage protocol to handle file I/O operations.
Typically, the object-based file system is the top-most layer in a stack of object-
based storage modules. It is intended to be stacked on top of a logical or a direct
OBD driver.

b) Direct-Access Object Storage Interface: This is an alternative top-level module
that enables high-performance computing where applications take responsibility
of object data coherency. Lustre provides a direct access interface that allows
such applications to bypass the above-mentioned file system layer. By relaxing
cluster file system synchronization and coherency mechanisms, we expect to
achieve higher performance from specialized direct-access applications.

c) Logical Object Modules: Logical OBD drivers are stackable modules that have
the same OBD interface going in (to the top) and coming out (of the bottom).
Logical OBD interact with other logical drivers, or layer on top of a direct OBD
driver. Logical object modules typically perform functions such as mirroring,
RAID, data migration, or versioning, and can be used to execute downloaded
active disk computations.

d) Direct OBD Drivers: Direct OBD drivers provide an OBD interface (at the top) to
an actual underlying disk, that is a set of blocks (at the bottom). These drivers
perform block allocation for an object storage device, and provide a persistent
data repository that is exported through an OBD interface.

e) Client/Target Driver Pairs & Networking: are use to encapsulate the object
protocol over a network. Client/target driver pairs can be specialized for a variety
of transport protocols, e.g. plain TCP/IP or transport layers that support RDMA
such as VI architecture [14] supporting adapters [12, 13] that run over Infiniband,
Fibre Channel, or even TCP/IP [10,11]. Development of high-performance
transport drivers is a key component of the overall project.

The figure below illustrates the stacking possibilities for these drivers.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 11 7/29/2001

XFS-based OSDStorage target node XFS-based OSD
aggregation

data-migration/controller redundancy

synchronization
collective I/O

object storage target networking

object storage client networking

ADIO-OBD adaptor Lustre client FS
metadata sync

auditing

content based
authorization

POSIX
interface

MPI-IO interface
MPI file types
Collective & shared I/O

Client node

SAN

Figure 2: Driver stacking

In each of these areas, the Lustre project requires further work to meet the requirements
of the Tri-Labs/NSA. Key steps we will undertake are:

1. Class drivers
o Enable remote management
o Add the capability for profile based automatic configuration as in

enterprise management systems.
2. High performance direct drivers for data and metadata storage

o An journal file system (XFS, ReiserFS, JFS, Ext3) based direct object
driver is a candidate for a file storage driver

o Journaling, recovery, concurrency and pre-allocation requires API
enhancements

o Extent based object locking APIs
o To support redundancy and recovery we need support for replication logs,

and orphan removal
3. Implement NASD-style capabilities based security between clients and targets.
4. Client/target pairs

o High-performance networking including remote DMA capability
o Incorporation of new networking and object-storage enhancements from

WARP, DAFS, and iSCSI/T10/OSD.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 12 7/29/2001

o Scalability in terms of number of clients
5. Logical drivers

o Distributed striping drivers
o Synchronization mechanisms for the above (if needed)

4.2 The Lustre Cluster File System

One of the most challenging RFP requirements is that of metadata scalability and
performance. This problem has several aspects, such as high performance in clients in
situations of low contention for resources, as well as that of throughput when many
clients are operating on the same resource. Generally we will avoid synchronous writes
to the maximum extent feasible.

A key design aspect of the Lustre cluster file system is the integration of caching, cluster
coherency and recovery. To achieve best performance from a client perspective, objects
should only be evicted from client caches only when a (possibly timeout based) lock
revocation is processed, and eviction should flush groups of object operations. To ensure
recoverability, object eviction should handle groups of related object operations and
direct these to persistent storage in a transactional manner. Our basic technique here will
be to built a write-back log of operations in the clients memory and migrate that to
metadata control nodes for replay upon timeouts of locks or eviction.

In the case of high contention for resources, such as all clients creating files in the same
directory, we will employ quite different techniques. A first problem is how to avoid
large amount of lock revocation traffic. Client locks should time out, but also, when lock
requests are coming in a rate exceeding a certain threshold, it will be more advantageous
to not grant client locks, but instead to perform operations on the metadata cluster in a
client server RPC model similar to AFS. We see here how Lustre can run in write-back
mode as well as in RPC mode, dynamically adapting to the level of contention in the
cluster.

Another problem in this situation is how to spread the update load over the metadata
cluster. The key to a solution here is to use hashed directories that can be subdivided
over the cluster in conjunction with operation based object locks [3].

Efficient recovery of the cluster under membership changes is another key problem. In
our RFI response [3], we proposed that Lustre clients remain satellite nodes with respect
to cluster coherency and locking. This is critical for scalable recovery, which will have
to rely on the scalable flood fill algorithm described in [34] for notifications to clients. In
current open source cluster file systems, e.g., GFS [25], file system concurrency
semantics has received relatively little attention. A literature study of commercial cluster
file system implementations, e.g. Frangipani/Petal [32], Calypso [33], and VAX/VMS
clusters [29], [30], reveals that these systems have gone through much detailed
refinement and performance tuning. A detailed design and prototyping to assess
concurrency performance and recoverability will be very important for Lustre.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 13 7/29/2001

There are two cases where avoiding synchronous writes is not appropriate. First, to
implement NFS semantics, metadata updates have to reach stable storage before system
calls return. Our system can support this by operating in the RPC model and requiring
the RPC’s to sync data. Operating in RPC mode also provides an opportunity for
integration with the DiFFS file system [38]. This system avoids locking and allows
metadata transactions to span multiple storage targets. DiFFS also avoids journal
recovery mechanisms that span multiple nodes, but requires synchronous writes and
detection of RPC failures to order updates [51].

The following list outlines key components of the Lustre cluster file system:

1. Protocols
o A file I/O protocol between clients and storage targets
o A metadata update protocol between clients and metadata control
o Recovery protocols for all system failures
o Separation of protocol and service implementation

2. A file system
o VFS operations with VFS extensions for locking
o Scalable directory formats based on extensible hashes or invisible

subdirectories.
o Operation based lock acquisition and lock version management [3]
o Grouping of operations into file system transaction groups
o Data and attribute retrieval and storage through an object storage API
o GSSAPI compliant security
o Resource awareness for constituent object allocation

3. Single namespaces
o A filtering file system layer for namespace management
o File sets, and Unix mount points can be grafted into a namespace
o Cross-complex file set location databases with global identities

4. Third party file I/O to object storage controllers
o Directory entries pointing to inodes describing large granularity

(device/object/extent) triples
o Controller based locking (flock) and collective operation support

5. A write-back file system cache integrated with existing caches in the OS
comprising:

o Cached extents in files
o Cached metadata
o Managing dependencies within and between transaction groups
o Flushing and unpinning
o Lock revocation support

6. Recovery support:
o Coherency and recovery between targets, clients and controllers
o Log replay and distributed log dependencies
o I/O fencing

7. Exportable interfaces
o Notification and ACL support for correct NFS/CIFS exports

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 14 7/29/2001

o InterMezzo support

4.3 Clustering Infrastructure

To successfully build a cluster file system, a set of basic cluster infrastructure is needed.
A sample architecture designed by the Linux Cluster Cabal [34] incorporates critical
scalability enhancements of lock managers. Through the correct distribution of
resources, locking scalability will be mostly an issue between metadata control nodes and
satellite clients and are unlikely to affect file I/O. Components we expect to use for basic
clustering support are listed below:

1. Connection and live-ness support, membership and quorum: We may base these
on the Ensemble project [27].

2. An event delivery mechanism: IBM has detailed an implementation as part of
high-availability CMP [37]. Tweedie’s design [34] is similar. We plan to build on
these designs.

3. A cluster resource database: Replicated LDAP servers have been suggested.
4. A recovery manager for staged distributed recovery: The daemon which is part of

Kimberlite [28] or Compaq’s open source cluster manager (to be released) will be
a good starting points. Barrier support will be implemented.

5. A distributed lock manager: IBM's open source DLM will form the basis, with
scalability enhancements as proposed by the Cluster Cabal in [34], and additional
DLM communication performance improvements.

6. Basic IP and shared storage fail-over services where appropriate. LVS and
Kimberlite provide excellent starting points.

4.4 Programmable Object Storage Targets
We will design and implement a high-performance object-based storage target based on
standard high-volume hardware running a standard Linux operating system. Basis for
high-performance target run-time system is the Linux in-kernel TUX web server
architecture [17, 18, 19]. This will provide a highly optimized multi-threaded network
communication system and additionally a kernel-level safe execution environment. TUX
is well integrated with the Linux I/O subsystem and already provides many of the storage
and networking hooks required to support high-performance object data I/O. Reuse of
TUX provides one of the basic Lustre building bock to achieve the Tri-Labs/NSA SOW
section 3.3 (no single point of failure) and section 4.2 (scalable infrastructure for clusters
and the enterprise) requirements.

We will define and develop an “active disk” execution environment on the storage target
that allows safe execution of downloadable logical object modules. Active disk functions
fall into two categories: (1) an active element in the object metadata path can perform
storage management functions such as backup, load balancing or on-line data migration,
and (2) an active element in the object data read/write path can perform data
manipulation and aggregation functions useful, for instance, for transcoding of multi-
media streams, customized content-based security or low-overhead data mining [XX].
The Lustre object protocol includes an iterator method that allows a user-defined function

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 15 7/29/2001

to be applied to an entire set of objects. This primitive allows the storage target to
optimize disk block traversal used by data mining or disk indexing operations [YY].

Safe execution of downloadable logical object modules hinges on two factors. First, we
need to constrain downloaded code to see (or be able to update) only a subset of all stored
objects. Second, we need to ensure that downloaded code cannot subsume all storage
target resources, be they compute cycles, network bandwidth or disk space. Lustre meets
the first safety constraint by enforcing NASD capabilities-based security on individual
objects, in other words, an active disks request will only be able to see/update objects for
which it has been granted the appropriate capabilities. The second safety constraint
requires storage targets to constrain the amount of resources available to unknown
downloadable logical modules. One sandboxing possibility is to execute the logical
module in user-space, where resource limitations such as time-slices and disk quotas can
easily be enforced. Another is to pre-allocate a downloaded code module’s required
maximum resources, and fail it when it oversteps it allocation.

We expect downloadable logical modules to be used for providing management services
such as backup, archiving, data balancing, on-line data migration, as well as security
(content based authorization and encryption) or performance (e.g. prefetching) functions
etc. that are required by SOW sections 4.2.4 (archive driven performance), 4.2.5
(adaptive prefetching), 4.4.1 (minimize human management effort), 4.4.3 (dynamic
tuning), 4.4.4 (diagnostic reporting), 4.4.16 (backup), and 4.5 (security).

4.5 Storage Management & Configuration

To fulfill the capacity and bandwidth scalability requirements specified in the Tri-
Labs/NSA RFP [35], Lustre storage clusters would probably consist of thousands of
storage targets. Configuration and administration of such a large number of devices must
be completely automated. Additionally substantial storage management infrastructure is
required for archiving and backup.

While we will not develop management tools per-se, we will provide the basic
infrastructure for monitoring, recovery and replacement and discovery of nodes. A basic
directory scheme controlling grouping and configuration of nodes will be addressed by
this proposal. On the storage management front we will provide snapshots and data
migration API’s upon which further tools can be built.

Although the Lustre file system will provide a single name end-user visible name space,
for management purposes, the systems in a Lustre cluster will be subdivided into
organizational units. These units describe collections of systems with different
characteristics that will typically manage file sets for a particular purpose. The systems in
an organizational unit are managed by associating the organizational unit with a
management profile which describes a file set’s backup configuration, security and
performance attributes, as well as required storage target “active disk” code execution

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 16 7/29/2001

modules. Enterprise management systems (Novell’s NDS, Windows 2000, Tivoli and CA
Unicenter) provide such infrastructure.

We will provide:

1. Cluster resource database (LDAP) storage for management data
2. Directory schemas for organizational units and management profiles
3. API’s to apply management profiles to systems

At a more detailed level storage management requires a substantial collection of
modules. Among these we will deliver basic implementations of the following:

1. Data migration API’s for backup/restore and HSM
2. File system snapshot
3. Monitoring of hardware and users

5 Coverage of Tri-Labs/NSA Requirements
In the following, we refer to the section numbers in the Tri-Labs/NSA SGS File System
statement of work (SOW).

5.1 SOW Section 3 - Minimum Requirements

5.1.1 SOW Section 3.1 POSIX-like interface
Our file system will have the standard POSIX interfaces. The system will be able to run
in Unix semantics mode and in an optimized mode. In Unix-semantics mode the systems
calls will have the expected behavior, while in optimized mode significant performance-
gains are possible – this will likely affect the stat and fstat calls, which will involve RPCs
to storage targets.

There are a number of special system calls such as mmap and calls associated with
asynchronous I/O. On single systems we expect these calls to have the normal semantics,
but their behavior across the cluster will depend on the OS.

5.1.2 SOW Section 3.2 Integration Compatibility
The Lustre storage stack is highly modular, and we will retain maximum modularity at
the file system level as well. Most management functions, such as DMAPI, backup
support, encryption can be built as modules that can be downloaded into the storage
stack. We have indications from existing Lustre modules that these do not introduce a
performance penalty.

5.1.3 SOW Section 3.3 No single point of failure
Failures in the cluster can affect clients, storage targets and cluster control nodes and
communications. The state of the cluster is represented by data in memory including
cache file system data as well as cluster state such as lock resources and membership,
data in transit over communication links and persistent data on systems. Under normal

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 17 7/29/2001

operation the cluster will move forward from one consistent state to another through
groups of operations, which typically involve multiple state changes. Recovering from
failures involves halting normal operations on affected nodes, restoring state to a
consistent form and continuing the operation.

We will introduce a systematic recovery framework based on the work of Tweedie,
Braam, Callahan and McVoy (the Linux Cluster Cabal) [34], which in turn was heavily
influenced by the VAX Cluster literature.

There is very little literature about the recovery issues for cluster file systems, but our
experience with Coda and InterMezzo [20] will lead us to build a framework that
integrates synchronization, journal file system transactions and cache behavior.

We expect that the clusters may require some scalability enhancements to deal with large
numbers of nodes. Such enhancements were discussed in [34].

To limit the scope of our work, we will use industry standard redundancy mechanisms
such as backup Kerberos KDC and replicated LDAP databases wherever read-mostly
cluster resources are involved.

5.2 SOW Section 4 Desired performance features

5.2.1 SOW Section 4.1 Global Access
As indicated in section 2, the sites addressed by this proposal are bigger than traditional
clusters and our solution needs to span site boundaries. A full solution in this space goes
well beyond the SOW requirements and may draw on InterMezzo [20] to address
replication. However, our solution will provide basic infrastructure in the area of file set
support, management, security and networking.

5.2.1.1 SOW Section 4.1.1 Global Scalable Namespace
Global name spaces were perhaps first introduced into AFS, followed by similar
implementations in Coda, DCE/DFS, InterMezzo and Microsoft dfs and NFS v4. We
will follow a similar strategy and construct a name space module that combines file sets
and file system mount points into a single name space. We will combine a cluster
resource database which the file system queries for transparent traversal of the name
space with new techniques known as struts or pseudo file systems in the InterMezzo and
NFS v4 efforts. The latter provide higher availability by bridging temporarily
unavailable sections of the name space.

The global namespace will be exportable through NFS and CIFS. However, the detailed
Windows semantics (such as Window’s exclusive open) offered through CIFS (Samba)
servers running on different clients requires hooks in the server for which we will only
provide notification interfaces.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 18 7/29/2001

A new aspect of namespace management arises from the allocation of object storage
targets for file data (object placement). The choice of appropriate controllers to handle
segments or stripes of files should be based on a resource management scheme in the
subsystems responsible for metadata.

5.2.1.2 SOW Section 4.1.2 Client Software
Our client software is based on the Lustre object file system currently available for
Linux. The key aspects enabling easy portability of the client software to operating
systems other than Linux are:

1. There will be an open source Linux reference implementation
2. This file system bears a striking resemblance to NFS
3. Our locking mechanisms for client nodes will be refinements and extensions of

those employed in NFS v4. The refinements will address finer granularity of
locks, and more aggressive caching and synchronization of meta-data and
directory data.

4. Our security mechanisms will be largely analogous to those used in NFS v4,
combined with NASD object security, see section 5.2.5.

5. Our transport between clients and storage controllers, i.e. the Lustre object
storage protocol, has considerable similarity to DAFS. Lustre does not require
any DAFS calls related to directory lookups and file names and brings extensions
to DAFS for more aggregate commands and vectored I/O, pre-allocation and file
system journal transaction support.

The systems we will be employing, be it with modifications, form the foundation of the
next generation storage and file system infrastructure for the industry. We feel there is a
great likelihood that ports will not be problematic at all. In addition to the portability it
provides this approach allows us to benefit from and contribute to related efforts.

5.2.1.3 SOW Section 4.1.3 Exportable Interfaces
Our file system will be exportable to NFS V4 and CIFS. However, there is a caveat to
be aware of. Neither the CIFS nor the NFS server is stateless. Exporting CIFS and NFS
v4 from a single file server already requires synchronization of state between the Samba
server and the file system (similar issues apply even to NFS v2/3). Exporting load-
balancing instances of these servers, exporting CIFS and NFS from multiple client
systems requires synchronization of state among all these servers for full support of the
semantics. In addition the servers would need to be aware of cluster membership
transitions to handle the addition or disappearance of one of the file servers.

Our cluster infrastructure will enable NFS and Samba to be modified to provide such
state synchronization and the Samba Team (at VA Linux) has expressed interest in doing
so with us.

5.2.1.4 SOW Section 4.1.4 Coexistence with other file systems
This is not a problem.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 19 7/29/2001

5.2.1.5 SOW Section 4.1.5 Transparent global capabilities
The Lustre file system will do an extremely aggressive form of caching. Lookup and
attribute acquisition will be based on cached data. Writes (except when especially
requested) will never be synchronous and large caches will flush numerous update
requests periodically.

Our security and resource management will be global as addressed under other
requirements (global namespace 6.2.1.1, global identities 6.2.3.2 and WAN security
6.2.3.3).

We expect good performance and have included a deliverable to perform tuning and
provide additional adaptation to our networking and file system layers for WAN
performance.

We will develop specialized Lustre client/target driver pairs for a variety of common
storage transport protocols, e.g. standard TCP/IP for Ethernet, VI-architecture based for
Fibre Channel and other high-performance storage area networks. While these
client/target driver pairs will be optimized for their particular transport layer, Lustre’s
“active disk” concept allows object storage code modules to be loaded into both storage
client and target systems. Specialized prefetching or buffer resizing and caching module
pairs can be used to transparently pipeline large requests over long latency high
bandwidth wide-area communication links. We will explore a range of adaptive self-
tuning and prefetching performance enhancing target modules. We will also develop a set
of specialized client-side direct object storage APIs that will allow knowledgeable clients
applications to specify performance hints to directly to the object store.

5.2.1.6 SOW Section 4.1.6 Integration into a SAN environment
We expect most Lustre storage targets to run on high performance commodity hardware
that use traditional block storage for persistent data. Since Lustre direct drivers (the
lowest level of the Lustre storage abstraction as described in section 4 above) are
inherently capable of handling block-based storage, Lustre already works with existing
block-based storage area network (SAN) technologies such as Fibre Channel or iSCSI.
This is most attractive in the context where the storage controllers are also responsible for
RAID so that a simple JBOD and fail-over, commodity (SMP) system can act as the
storage target.

In this setting we expect to incorporate explicit support of RDMA into the Lustre object
storage protocol. We have carefully studied the following networking technologies and
outline below how we expect to use them in the Lustre context:

1. WARP is a recent protocol proposal for encoding an interleaved send and RDMA
packet stream on top of TCP/IP [11]. WARP RDMA packets are self-describing
RDMA write “chunks” that contain destination buffer-ids and offsets (this allows
receiving network interface cards to determine destination address for each
packet). WARP send packets do not specify an address; instead they specify a
Send Sequence Number and an offset. The WARP proposal includes a mapping

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 20 7/29/2001

of these functions on to TCP, SCTP, and also discusses how iSCSI protocol data
units can be mapped on to WARP.
Conclusion: WARP is of interest to Lustre as it increases the probability for an
RDMA write mechanism to exist on top of TCP/IP. This indicates that Lustre
should be able to take advantage of RDMA writes not only on VI-architecture
based transports, but, in the future, on TCP/IP based transports as well.

2. DAFS is the Direct Access File System access protocol [15]. DAFS is focused on
providing NFS v4 file access capability over a reliable system area network. The
RPC data layout style used by DAFS for marshalling (described in section 6.1.1
of [15]) is of particular interest to Lustre. The key element of the DAFS layout
places all fixed-size structure elements at their naturally aligned boundaries, and
moves all variable size buffers to the end of the message. Pointers in the fixed-
size structure that reference variable size objects are converted into relative
offsets in the on-the-wire format. This allows receivers to simply re-instantiate
pointers by adding the offset to the message’s base address. Additionally, if
receivers place incoming messages at the proper alignment in memory then the
received data structure can simply be typecast to the appropriate data type in
place, without further copying or reassembly.
Conclusion: The DAFS RPC data layout, combined with WARP-like RDMA
writes is a very attractive solution for low-overhead Lustre client-target
communication, even over TCP/IP.

3. iSCSI/T10 OSD: iSCSI is a SCSI encapsulation protocol layer on top of TCP/IP
[16]. iSCSI has gained significant industry momentum over the past few months.
While iSCSI’s primary focus is low-cost SAN replacement with block-based
semantics, work in T10 has been ongoing to define an extended object-based
SCSI command set [21]. Furthermore, the WARP effort [11] discussed above has
already proposed an encapsulation scheme for iSCSI commands in their protocol.
Conclusion: iSCSI has a lot of momentum that make it an interesting transport
layer for data transport in Lustre. Even though Lustre defines a more substantial
set of capabilities than the T10/OSD devices provide (namely preallocation, file
system recovery support, vectored byte granular I/O and execution of loadable
modules on the storage target) using the Lustre clustering and meta-data
architecture to aggregate a set of T10/OSD/iSCSI targets is a very desirable goal.

We expect to spend a significant amount of design and implementation effort to bring
new technology developments to bear on transport layer performance and robustness.
This includes not only high performance in storage area networks based on VI-
architecture abstractions [12,13], but also improved performance on standard TCP/IP
based local and wide area networks.
Support for direct 3rd-party I/O in “legacy” block-based SAN

Existing commercial SAN deployments may want to re-use expensive block-based
storage infrastructure (such as an EMC Symmetrix, HP XP512 or similar systems) in the
context of an object storage cluster. An object storage target can utilize such block

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 21 7/29/2001

storage, but I/O would incur an extra “hop” at the object target. Lustre can also support
direct 3rd-party I/O in such “legacy” SANs installations by introducing “Proxy Object
Targets” (POTs) that perform block-allocation for each of the block-based SAN storage
targets. POTs execute all object commands, translate objects into SAN device and block
information, and then trigger the appropriate set of 3rd-party direct block I/O transfers
between the client and SAN storage targets. Compared to native object storage this
introduces an additional message, and hence latency, for each read and each write
operation, but does not pass the data through the proxy.

When clients send write commands to a POT, they do not include data for writes, but
instead expect to receive SAN device and block information from the POT. Then clients
perform the I/O directly with the SAN target. When the I/O has completed the client
must confirm the completion to the POT. Also the client must handle the case of “write-
and-free” buffers and “write-and-retain” buffers to support journal transactions.

The POT will be careful to build the same transactional update logs as Lustre object
targets to avoid the introduction of a second recovery mechanism.

5.2.2 SOW Section 4.2 Scalable infrastructure for clusters
Generally speaking our approach to scalability is two-tiered. First we aggressively limit
the footprint of shared resources, secondly we introduce new sub-dividable resources. A
few examples will illustrate our approach.

Traditional cluster file systems have delegated file block allocation to a single metadata
server (for non-symmetric cluster file systems such as CXFS) or to every cluster node (in
symmetric cluster file systems). In the former case a bottleneck can easily arise, while in
the latter a substantial amount of synchronization mechanisms surrounds the update of
allocation bitmaps.

5.2.2.1 SOW Section 4.2.1 Parallel I/O bandwidth
To achieve minimal interference between systems for scalable I/O bandwidth we made
two important design decisions. The first is to use object storage targets, which offload
block allocation from the file system clients and avoid unnecessary sharing of allocation
metadata – this is one of the items that falls under footprint reduction. Similarly storage
controllers will implement file extent locking (for striped files we have some open
questions in our design). Again this limits the file locking resources to precisely those
clients and controllers that are involved.

N by M mapping is a good example of our on-controller computing environment.
Logical storage modules can interpret MPI-IO views of structured data on the controller
and, for example, deliver columns when storage order is in rows. Our strategy here is to
implement the ADIO interface for which the Lustre protocol has already been adapted
with scatter-gather byte level compound write commands, including hints.

A very substantial portion of our deliverables is focused on not merely implementing but
also finalizing, testing and debugging the scalable I/O infrastructure, including everything

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 22 7/29/2001

between high performance storage networking based on VI-like protocols, locking
relaxations and other performance hints.

5.2.2.2 SOW Section 4.2.2 Support for very large file systems
We will support very large file systems as mentioned in the requirements. Object storage
brings new opportunities to bypass limitations found in some current operating systems
related to the address space of blocks in storage devices. By striping over multiple
devices Linux systems will be able to support file systems of practically unlimited size
and files of up to 264 bytes.

5.2.2.3 SOW Section 4.2.3 Scalable File Creation and Metadata operations
To support scalable file creation it is important that a creation operation for file foo in
directory bar can be executed on a single cluster node. Two key aspects in our solution
to this problem (see [3]) are to acquire a lock, not just on bar as is common practice at
present, but on a combination of the resources involved in the operation. In this way a
client can locate a system responsible for that part of the directory file that will hold bar –
this is needed both for the insertion of a new directory entry and for the accompanying
check of non-existence preceding the creation. To split directory handling across
multiple cluster nodes an extensible hashing scheme is needed. Interestingly, GFS and
the ext2 and ext3 file systems have just seen the introduction of this. While we will
likely need to change the directory format, there is much to be learned from the
algorithms, which have shown good results with directories with millions of entries.

An open question at present is if we should allow clients to modify directory data (as is
customary in cluster file systems) or if it is more prudent to have an RPC style
interaction, possibly with write back caching, as is done in InterMezzo (with write back
caching) & Coda/AFS/DCE-DFS (without caching). Caching of directory data for the
purpose of updates may result in much higher performance but mandates that clients are
systems entrusted with enforcing authorization – in a WAN environment this is probably
undesirable.

To scale the performance of “ls” an interesting read-ahead operation on directory objects
will be needed, which may span multiple metadata controller nodes.

The most pressing issue for scalability is the recovery mechanism, since it will also need
to be invoked when there is a cluster transition between the metadata control nodes
(metadata servers). We will carefully integrate cache flushes, synchronization and
journal transactions so that cached data is migrated from clients to control nodes in
transactional units. Our system will rely on abstractions found in the Spiralog File Server
[7].

As for I/O scalability, we have reserved ample room to build, test and improve the
metadata scalability issues in our project.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 23 7/29/2001

5.2.2.4 SOW Section 4.2.4 Archive driven performance
The Lustre protocol provides serverless remote copy commands for extents of objects, as
well as object iteration functions to process entire volumes without server interaction.
While we do not expect to have resources for fully-fledged NDMP and DMAPI
interfaces, the complete infrastructure to build these easily – as logical storage modules, –
will be available.

5.2.2.5 SOW Section 4.2.5 Adaptive prefetching
Like most file systems, Lustre provides standard read-ahead and Lustre will have more
aggressive write-behind techniques than currently found in cluster file systems to
improve performance for sequential access patterns. In addition to the standard POSIX
file system access, Lustre will provide access to stored objects through a specialized
direct object storage API. The direct access API will allow applications to bypass
standard file system prefetching behavior, and will provide a relaxed consistency model
for file data to support applications that are able to take advantage of it. Additionally, a
set of performance hints (specifiable on a per object/file basis) will allow users to
persistently record the preferred access methods with each object. Finally, special
purpose logical object modules can be plugged into the Lustre client and target stacks
allow flexible and, possibly application programmable prefetching strategies to be
deployed.

5.2.3 SOW Section 4.3 WAN Access
Fundamentally we see three components to the WAN access issues raised by the RFP: a
global name space, a global security model and an adaptive multi-channel WAN
transport infrastructure.

5.2.3.1 SOW Section 4.3.1 WAN access to files
Our file system will perform extremely aggressive write-back caching with read-ahead.
This will eliminate many latency-induced bottlenecks in WAN environments.

Use of multiple transport channels and connection trunking will improve throughput and
latency in wide-area networks and is one of the key research items for the object storage
and networking team. For WAN access to the Lustre object store, we expect to create
adaptive load balancing strategies in which multiple channels are automatically created
and torn-down based on dynamic feedback. Differentiated use of a set of channels for
short control and coherence messages and another channel for bulk data transfers can
significantly improve perceived latency. We further expect this capability to be very
useful for storage management functions such as backup and on-line data migration that
can benefit from background operation.

InterMezzo will be able to export parts of the Lustre namespace to clients, even mobile,
disconnected clients. Such data can be presented on the client in secure private
namespaces and modifications are reintegrated with log replay that exhibits the full
security features desirable.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 24 7/29/2001

5.2.3.2 SOW Section 4.3.2 Global Identities
We will use global identities with cross realm authentication and authorization. Such
global identities require mappings to integer user identities on clients to enable export of
NFS. It may also be efficient to maintain such mappings on control nodes, but equality of
Unix user identities on different client is not required. DCE/DFS and Coda have
solutions here that we may adopt.

5.2.3.3 SOW Section 4.3.3 WAN security integration
We will take the following steps to ensure wide area security integration. First our ACL
support will use principals not user-id’s to accommodate global definitions of
authorization. Second we will use Kerberos with ANL/Globus X509 patches for cross-
cell authentication. Our volume location service, part of the cluster resource database,
will be stored in (replicated) LDAP directories with referrals which is itself secured with
Kerberos authentication and ACL’s.

5.2.4 SOW Section 4.4 Scalable management & operational facilities
Our target is to implement a basic management infrastructure, which will enable other
entities to port existing software to Lustre. For example, there are API’s for secure
remote management and MIB’s for monitoring. There are data migration and hole
punching API’s and snapshots. However our focus is on file systems and storage
networking and we merely plan to provide sufficient infrastructure to enable further
development of management tools by others.

5.2.4.1 SOW Section 4.4.1 Minimize the human effort
We will lay the foundation for configuration of devices based on a profile description in
the cluster resource database. When a new device is added, it needs to know to what
organization unit it belongs and auto-configure based on a profile.

5.2.4.2 SOW Section 4.4.2 Integration with other management tools
Will not be addressed, but should be easily possible.

5.2.4.3 SOW Section 4.4.3 Dynamic tuning and reconfiguration
We will allow for dynamic resizing and on-line migration of data, as well as dynamic
tuning of system parameters. We hope to automate many of the networking transport
configuration issues by making the networking layer automatically adapt to changes in
workload and available bandwidth. We expect storage management functions such as
backup and on-line data migration will benefit from this.

5.2.4.4 SOW Section 4.4.4 Diagnostic reporting
Will be present through SNMP MIBs and driver-exported information about problems.
We have already created a logical object module that monitors the number, size and
latency of object transactions executed by the file system. This will be valuable in
analyzing performance problem and reporting overall performance statistics to
administrators and end-users.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 25 7/29/2001

5.2.4.5 SOW Section 4.4.5 Support for configuration management
We will develop precise configuration information of software and hardware running on
all systems.

5.2.4.6 SOW Section 4.4.6 Problem determination GUI
Will not be included.

5.2.4.7 SOW Section 4.4.7 User statistics reporting
Basic infrastructure in the file system clients, cluster controllers and targets will be made
available.

5.2.4.8 SOW Section 4.4.8 Security management
Command line tools will be available to control all aspects of security.

5.2.4.9 SOW Section 4.4.9 Improved characterization and retrieval of files
Will not be covered. Our object based target drivers allow modular addition of storage
management modules that could be capable of prioritizing object access as well as
selecting network drivers based on object attributes.

At the file system level InterMezzo style filtering (which we will use for auditing) can
easily be adapted to maintain file system attribute databases that remain consistent in a
transactional manner with updates of the system.

Running a SQL based metadata cluster engine would provide unique opportunities here.

5.2.4.10 SOW Section 4.4.10 Full documentation
A basic set of system, operation and user manuals will be delivered.

5.2.4.11 SOW Section 4.4.11 Fault tolerance, Reliability, Availability,
Serviceability (RAS)

Clients

Much of our design work so far has centered about scalable tolerance mechanisms for
failures. Given the enormous number of clients it is necessary for these clients to not
provoke cluster transitions involving large counts of other systems.

As to locking they will be so called satellite nodes that have full use of lock mechanisms
but do not participate in resource mastering. Should such nodes leave or enter the cluster
there will be minimal disruption. If we allow memory-to-memory data transfer between
client nodes the recovery problems remain involved since the cluster control nodes may
have to STOMITH systems that depend on a dying system flushing its write-back log. If
we synchronize by flushing through cluster control nodes such problems do not occur.

Metadata control nodes

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 26 7/29/2001

Our metadata control nodes will follow mechanisms in VAX Cluster Style to deal with
cluster transitions. The SOW lists the possibility of giving such systems redundant fail-
over hardware, but this does not address memory state and is not usable for metadata
cluster transitions. The failure handling in metadata control nodes is complicated, similar
to that found in traditional cluster file systems. Traditional cluster file systems typically
exploit synchronous I/O when a revocation of write locks occurs. We want to avoid
synchronous writes to the maximum extent (but will allow this to be an option). As a
result the failure of a metadata control nodes may force clients to re-flush their cached
operations to a newly erected metadata control node or otherwise face a failure
themselves to maintain application consistency. Clients will detect the failure of a
metadata control node and will have to await a message from the cluster before
continuing to execute meta-data transactions. A top-down “flood-fill” scalable cluster
structure put forward by the cluster cabal will be used to transmit such messages [8].

The storage industry has developed many solutions for redundancy at the target level.
Our object-based infrastructure makes many of these issues easier and allows for the
following solutions. In each case the redundancy is introduced as an independent storage
management module, allowing the same mechanisms to be used with different types of
storage networking and with different back-ends.

Storage Targets

Active/active redundant storage targets enable two independent targets that can
concurrently process requests. For block devices there is no shared state among requests
but with object targets, all allocation data is shared. Doing active/active pairs of
controllers would require a “mini cluster file system” between the controllers – a no-no.

A partially active/active controller allows one controller to write to one disk partition and
another one to address another disk partition concurrently - load sharing at a coarse
granularity is possible. Such targets can be built as follows: first let's use shared storage
between the controllers. Using Kimberlite style fail-over clustering we can get
redundancy for the storage networking and controller hardware. Such shared storage
itself needs to be RAID and requires partially active/active block raid controllers on the
two object storage controllers - possibly this could be software raid and commodity SMP
systems attached to JBODs with some processors responsible for the target and some for
the backend raid is attractive, possibly with some shared solid-state memory to speed up
bitmap maintenance for RAID restoration.

The initiators have to detect that the first controller has failed and then retry on the other
controller. The other controller needs to STOMITH the first controller, do journal
recovery on the shared storage. Then using a simple form of an InterMezzo style shared
operation log it needs to figure out what the last operation was that made it to the disk. It
then tells the initiator to resume at the next operation.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 27 7/29/2001

Without the possibility of doing full active/active we need a different mechanism to
exploit multiple channels. For this an SMP storage target with multiple incoming
storage-network interfaces, multiple busses, probably each handled by a dedicated CPU
and with more CPU's at the backend for doing RAID.

We also remain very interested in full redundancy in the case of 100% commodity
hardware. Now we have two object storage controllers, each with one IDE and one
interface disk, and we want to build a replicated redundant configuration out of them.
The servers can blast out two object commands, one to each storage controller (this
requires support in the file system metadata (as in Cheops [22]) since the object id's on
the two controllers might have diverged). If one of these fails and recovers, the question
is how to resynchronize the two. An InterMezzo style log maintained on each of these
would be able to replay "missed object commands" to a recovering node.

When the log becomes too large data migration between the controllers (aka “lan” free
backup) should rebuild an entire object store. In this case very innovative solutions exist
which use the active nature of our controllers to run rsync to re-synchronize all objects, a
dramatic improvement over classical RAID drive restoration.

Interactions

The creation and removal of files include file data objects and causes metadata updates in
Lustre that span multiple nodes: metadata control and possibly many storage targets.
Recovery from failures in this situation requires special care. If file data objects are lost
we don't care: that is the usual behavior of NOT journaling file data.

If the container is lost due to system failure, it should probably take the file data objects
into its grave - that is done using an orphan list (see Ext3 [49,50] or the XFS literature).
The file data objects are orphan listed until the confirmation comes to the client that the
container has reached persistence. The client now includes a "deorphanize" message in
the next I/O operation.

If the container is lost (typically because the client and meta data controller die), the best
way to remove the orphans is for the storage controller from time to time to query the
metadata control cluster about orphan listed objects. If the metadata cluster guarantees to
flush buffers every 30 seconds, then clients will learn that containers are persistent in
little more than 30 secs. Storage targets would learn soon afterwards. Therefore, an
orphan that is more than a minute old, and has not been de-orphanized is suspect and the
target should contact the metadata controller to find out if the object was possibly lost.
[Such contact from targets to metadata control cluster is needed anyway to update the
summary metadata held in the container.]

The unlink case exploits an InterMezzo style replay log between metadata control nodes
and object storage targets, which remains present until all storage targets have executed
the object destruction requested.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 28 7/29/2001

5.2.4.12 SOW Section 4.4.12 Integration with tertiary storage
We will not implement a DMAPI interface but will write a design document how this can
easily be done, for other entities to step in. Our object interface provides strong
infrastructure for XDSM/DMAPI tertiary storage interaction, such as remote copy and
hole-punching APIs. DMAPI like other storage management can be implemented as a
loadable storage module. This will automatically be inter-complex. We will make sure to
afford room for dtime support.

5.2.4.13 SOW Section 4.4.13 Standard POSIX and MPI-IO
POSIX interfaces will be the default and will be part of the file system.

We intend to implement an ADIO interface on top of the object file system. The Lustre
API was adapted to deal easily with most of the requirements raised by ADIO. A new
interface for collective operations is needed which is probably easily implemented using
the infrastructure which for default file I/O arranges synchronization.

Hint parameters will be available, but we require extensive discussion with the Tri-
Labs/NSA to learn more about specific requirements. We feel that to maximize
portability the system APIs should gear towards standard calls and not exotic features.

5.2.4.14 SOW Section 4.4.14 Special API semantics for increased
performance

We will definitely introduce special semantics to allow relaxed locking schemes to
dramatically improve the performance of parallel I/O. We will probably apply this at the
file-set level, and the semantics will likely be such that the applications are responsible
for synchronization.

5.2.4.15 SOW Section 4.4.15 Time to build a file system
We will be using something like the XFS file system for backend storage. This system
has extremely good characteristics for file system building and resizing and we will make
sure to bring support for these to the Lustre file system.

5.2.4.16 SOW Section 4.4.16 Backup/Recovery
We will provide sufficient hooks for easy integration with standard enterprise backup
software, including hooks for advanced features such as LAN free backup. We will not
be delivering backup clients or servers for Lustre, but build design guidelines for others
to build such systems.

5.2.4.17 SOW Section 4.4.17 Snapshot Capability
Lustre already has a prototype implementation of fully featured snapshots, using a logical
object module. This has been transformed into a production quality file snapshot file
system by Mountain View Data and we will similarly the Lustre code to provide robust
and efficient snapshots, with support for database flushes and “.snap” directory support.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 29 7/29/2001

5.2.4.18 SOW Section 4.4.18 Flow control and QOS
Except for flow control in our high-performance and WAN storage networking modules
this will not be addressed.

5.2.4.19 SOW Section 4.4.19 Benchmarks
A very significant part of our deliverables focuses on benchmarks and performance
improvements. In these areas, we require extensive collaboration from the Tri-
Labs/NSA.

5.2.5 SOW Section 4.5 Security
We expect to deliver an almost complete security implementation vis-à-vis the
requirements It will be based on industry standards, in outline form a lightweight AFS,
DCE/DFS file system security model, combined with NASD style security for storage
controllers. Additionally we will show how storage modules can be used for content-
based security and encryption. A variety of issues were not mentioned by the Tri-
Labs/NSA document, most notably PKI for storage and retrieval of encrypted data. We
are sensitive here to adjusting our designs in such a fashion that these issues can be
addressed at a later stage.

5.2.5.1 SOW Section 4.5.1 Authentication
We will use a GSS-API compliant authorization mechanism. We will use Kerberos with
the Globus-ANL X509 extensions as the token acquisition mechanism. The TGT’s
obtained in this fashion will enable users session keys but also enable shared secrets
(“daily keys” in NASD speak) between storage targets and metadata control nodes.

At the kernel level we need identities such as AFS-style Process Authentication Groups
(PAG) for realistic security enforcement. Such identities can have tickets and session
keys associated with them after authentication.

Groups are a separate issue of extreme importance. We will seek a scalable integration
between Unix groups and users and Kerberos principals. Additionally groups are needed
to provide an infrastructure for encryption by clients. LDAP based implementations
might provide a good secure and scalable solution here.

Authentication can involve remote authentication servers using cellular Kerberos and
LDAP referrals.

5.2.5.2 SOW Section 4.5.2 Authorization
Our authorization is a two level approach. NFS v4 access control lists will be used at the
file system level to authorize access to files and directories. Of particular concern to us
is a detailed discussion with the Tri-Labs/NSA regarding the case where multiple users
on a client are accessing the same files – in this case the NFS mechanisms are very
inefficient and complex and key expiration – already a known hairy issue – can become
even more involved.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 30 7/29/2001

The primary means of authorizing client access to objects on the object storage targets are
capabilities. A capability is a token issued by metadata control nodes to the client, which
describes the object it applies to and the access rights that are granted. The client presents
the capability to the target on each operation, and the drive can cryptographically verify
the authenticity of the capability without contacting the file manager. If the capability is
invalid, the drive returns an error to the client, and the client must contact the file
manager to receive a new capability.

5.2.5.3 SOW Section 4.5.3 Content based authorization
Content-based authorization is an obvious attractive application of controller based
computing. We will build a sample module to demonstrate how this can be done. An
interesting aspect here will be the API to transfer such authorization information from
clients to storage controllers since the NASD capabilities may not suffice for this
purpose.

5.2.5.4 SOW Section 4.5.4 Logging and auditing
The InterMezzo file system can audit file access at the file system level. It is a low
overhead file system filter, which can easily be modified to track access to storage
objects on targets as well. The management of 10,000’s of clients and 1000’s of storage
controllers providing auditing information is an issue by itself.

5.2.5.5 SOW Section 4.5.5 Encryption
While we will not implement an encryption module, we will write a design specification
for other entities to step in and also provide the key infrastructure required to handle
client-based encryption. Several companies have approached us to build hardware
supported encryption modules for Lustre.

A loadable logical object storage module is an ideal vehicle for encryption and can
optionally be run at the target as well.

5.2.5.6 SOW Section 4.5.6 Trust analysis
A trust analysis will be delivered as part of our design specifications.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 31 7/29/2001

6 References

[1] Terry Jones & Anne Huber, “Request for Information: GFS/DFS File Systems”,

National Labs RFI, October 30, 2000.
[2] W. de Jonge, M.F. Kaashoek, and W.C. Hsieh, “The Logical Disk: A New

Approach to Improving File Systems”, http://www.pdos.lcs.mit.edu/ld/, Published
in Proceedings of the Thirteenth Symposium on Operating Systems Principles,
1993.

[3] http://www.lustre.org.
[4] Peter Braam, “Lustre and SGPFS”, Mountain View Data, Inc., Response to RFI,

November 30, 2000.
[5] Peter J. Braam and Andreas E. Dilger, “Object Based Storage”,

http://www.lustre.org/docs/obdspec.pdf, Stelias Computing, Inc., 1999.
[6] Peter J. Braam & Michael J. Callahan, “Lustre: A SAN File System for Linux”,

http://www.lustre.org/docs/luswhite.pdf, Stelias Computing, Inc., 1999.
[7] Christopher Whitaker, J. Stuart Bayley, Rod D. W. Widdowson, “Design of the

Server for the Spiralog File System”,
http://research.compaq.com/wrl/DECarchives/DTJ/DTJM02/DTJM02HM.HTM,
October 1996.

[8] S. Shepler et.al., “Request for Comments: 3010 - NFS version 4 Protocol”,
http://www.faqs.org/rfcs/rfc3010.html, December 2000.

[9] W. Richard Stevens, and Gary R. Wright, “TCP/IP Illustrated Volume 1: The
Protocols”, Addison Wesley, November 1993.

[10] C. Sapuntzakis, A. Romanow, and J. Chase, “The Case for RDMA”,
http://www.cs.duke.edu/~chase/draft-csapuntz-caserdma-00.txt, December 2000

[11] J. Pinkerton et.al., “WARP Architectural Requirements Summary”,
http://www.ece.cmu.edu/~ips/archive/draft-jpink-warp-summary-00.txt, January
2001.

[12] Emulex Corp., “GN9000/VI - VI/IP PCI Host Bus Adapter”,
http://wwwip.emulex.com/ip/products/gn9000VI.html, April 2001.

[13] QLogic, Inc., “QLA2300 Series - 2 Gigabit Fibre Channel”,
http://www.qlogic.com/products/qla2300.html, January 2001.

[14] Compaq, Intel, Microsoft, “Virtual Interface Architecture Specification”,
http://www.viarch.org/html/collateral/san_10.pdf, Version 1.0, December 16, 1997.

[15] DAFS Collaborative, “DAFS: Direct Access File System Protocol”,
http://www.dafscollaborative.org/tools/spec_v055.pdf, Version 0.55 February 26,
2001.

[16] Julian Satran et.al., “iSCSI”, http://www.globecom.net/ietf/draft/draft-ietf-ips-iscsi-
02.html, December 30, 2000.

[17] Red Hat, Inc., “TUX”, Version2.0, http://www.redhat.com/support/manuals/TUX-
2.0-Manual/index.html, March 2001.

[18] Ingo Molnar, “TUX patches”, http://people.redhat.com/mingo/TUX-patches/, April
2001.

Lustre Technical Project Summary – version 2, July 29, 2001

Cluster File Systems, Inc. Page 32 7/29/2001

[19] Chuck Lever et.al., “An Analysis of the TUX web server”, Center for Information
Technology Integration, University of Michigan,
http://citeseer.nj.nec.com/386260.html, November 16, 2000.

[20] InterMezzo, http://www.inter-mezzo.org/, December 2000.
[21] SNIA/T10, “SCSI OSD Command Set Proposal”,

http://www.snia.org/English/Work_Groups/OSD/WG_OSD_Docs.html, Revision 3,
October 2000.

[22] Dave Nagle and Joan Digney, “Network Attach Secure Disks (NASD)”,
http://www.pdl.cs.cmu.edu/NASD/, July 2000.

[23] ASCI I/O SGPFS, http://www.llnl.gov/asci/sc99fliers/sgpfs_pg1.html, September
1999.

[24] IBM, “GPFS Primer”,
http://www.rs6000.ibm.com/resource/technology/paper2.html, December 1998.

[25] Sistina, Inc., “Global File System (GFS)”, http://www.sistina.com/gfs/, 2001.
[26] IBM, “Distributed Lock Manager”,

http://oss.software.ibm.com/developer/opensource/linux/projects/dlm/?dwzone=linux,
February 2001.

[27] Mark Hayden, “Ensemble Membership Service”
http://www.cs.cornell.edu/Info/Projects/Ensemble/Maestro/groupd.htm, Cornell
University, 1997 (?).

[28] Mission Critical Linux, “Kimberlite Clustering Technology”
http://oss.missioncriticallinux.com/projects/kimberlite/, 2000.

[29] Roy Davis, VAX Cluster Principles, Digital Technical Press.
[30] Kirby Mccoy, VMS File System Internals, Digital Press 1990.
[31] Silicon Graphics, Inc., “Project XFS Linux”, http://oss.sgi.com/projects/xfs/, May

2001.
[32] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A Scalable Distributed File

System”, Proc. 16th SOSP, pp. 224-237, October 1997.
[33] M. Devarakonda, B. Kish and A. Mohindra, “Recovery in the Calypso file system”,

ACM Trans. on Computer Systems, Vol. 14, No. 3, 1996.
[34] S. Tweedie, P.J. Braam, M.Callahan and L. McVoy, “The Linux Cluster Cabal

Papers” (authored by Tweedie and Braam), http://www.linux-
ha.org/PhaseII/WhitePapers/, 1999.

[35] DOE National Nuclear Security Administration & the DOD National Security
Agency, “STATEMENT OF WORK: SGS File System”, Attachment A of RFP
B514193, April 25, 2001.

[36] A. D. Birrell and R. M. Needham, “A universal file server”, IEEE Transactions on
Software Engineering, SE-6(5):450–453, September 1980.

[37] IBM, “Programming Locking Applications”,
http://www.rs6000.ibm.com/software/downloads/ha44clients.pdf, 2000.

