1	Technical Specification
2	
3	
4	ATLAS Level-1 Calorimeter Trigger Upgrade
5	
6	FEX System Switch Module (FEX Hub)
7	Prototype
8	
9	Dan Edmunds, Yuri Ermoline, Brian Ferguson
10	Wade Fisher, Philippe Laurens, Spencer Lee,
11	Pawel Plucinski
12	
13	Draft for Review
14	Version: 1.1
15	12 March 2018
16	

Contents

18	1 Conventions	
19	2 Related Documents	9
20	3 Introduction	11
21	3.1 L1Calo Overview	11
22	3.1.1 Overview of the L1Calo System in Phase I (Run 3)	11
23	3.1.2 Overview of the L1Calo System in Phase-II (Run 4)	14
24	3.2 FEX-Hub Module Overview	14
25	4 FEX-Hub Module Functionality	17
26	4.1 Support of the ROD Mezzanine Card	
27	4.2 FEX and FEX-Hub Readout Data Distribution	
28	4.3 TTC Clock and Data Stream Distribution	
29	4.4 Ethernet Network Switch	
30	4.5 Slow Control	
31	4.6 Connections to the IPMB	
32	4.7 Power Supplies	19
33	4.8 Extended Use Cases	
34	4.9 Commissioning and Diagnostic Facilities	
35	4.10 Environment Monitoring	
36	4.11 ATCA Form Factor	
37	5 Interfaces to Other L1Calo Modules	
38	5.1 TTC Clock and Data Stream Interfaces	
39	5.2 High-Speed Readout Data Interfaces	
40	5.3 Ethernet Network Interfaces	
41	5.4 Hub Interfaces to FEX Modules	
42	5.4.1 Interface with Hub-1	
43	5.4.2 Interface with Hub-2	
44	5.5 Hub Interface to the ROD Mezzanine	
45	5.5.1 MGT Differential Inputs to ROD from Hub	
46	5.5.2 MGT Differential Outputs from ROD to Hub	
47	5.5.3 Other signals between ROD and Hub	
48	5.6 Hub Interfaces to Second Hub Modules	
49 50	5.6.1 Base Interface	
50	5.6.2 Fabric Interface	
51	5.6.3 Hub-2 usage of the Fabric Interface connection to Hub-1	
52 52	5.6.4 Update Channel Interface	
53 54	6 Hub Implementation Details	
54	6.1 Physical Layout6.2 Readout Signal Distribution	
55 56	6.3 Timing and Trigger Control Distribution	
50 57	6.3.1 Clock Distribution	
58	6.3.2 Control Signal Distribution	
59	6.4 Base Interface Switch	
59 60	6.5 Hub FPGA	
61	6.6 The IPM Controller	
62	6.7 Power Supplies and Management	
63	6.8 Thermal Management	
64	6.9 Front-Panel Layout	
65	6.9.1 Front Panel LEDs	
66	6.10 Rear Inputs and Outputs	
\sim	0.10 11941 111941 4114 Output	

67	6.10.1 ATCA Zone 1	
68	6.10.2 ATCA Zone 2	
69	6.10.3 ATCA Zone 3	
70	6.11 FEX-Hub PCB	
71	7 Programming Model	
72	7.1 Guidelines	
73	7.2 Register Map & Controllable Functions	
74	8 Testing and Commissioning	
75	8.1 Standalone and FEX System Tests	
76	8.2 Full Bandwidth Tests	
77 - 0	9 FEX-Hub Prototype Tests	
78 70	9.1 Overview	
79	9.2 Power and Cooling Tests	
80	9.2.1 Power Consumption	
81	9.2.2 MGT Rail Power Supply Capacity	
82	9.2.3 MGT Rail Supply Noise	
83	9.2.4 FPGA Silicon Temp	
84	9.3 Clock Tests	
85	9.3.1 Clock Generation and Distribution	
86	9.3.2 Hub PLL Relock	
87	9.4 High-Speed Link Tests	
88	9.5 Gigabit Ethernet Tests	
89	9.6 IPMC, Slow Control and Monitoring Tests	
90	9.7 Miscellaneous tests	
91	9.8 Conclusions	
92 93	10 Planned Hub Module Production Yields11 Special Notes	
93 94	12 Glossary	
9 4 95	13 Document Revision History	
95 96	14 Appendix 1: Backplane Connector/Pin Tables	
90 97	14.1 Connector and Signal Usage for a HUB Slot	
98	14.1 Connector and Signal Usage for a FEX Slot	
99	15 Appendix 2: Hub Module FEX MGT Data Fanout	
100	15.1 AC Coupling	
101	15.1 AC Coupling	
102	15.3 Input Termination	
103	15.4 Equalizer Enable	
104	15.5 Reference Designators	
105	15.6 Fanout Vcc Supply	
106	15.7 Routing Challenges	
107	15.8 Fanout Name	
108	15.9 Hub-Module FEX MGT Data Fanout Map	
109	16 Appendix 3: Hub-Module Clock Generation and Distribution	
110	16.1 Ethernet 25.000 MHz Clock	
111	16.2 40.08 MHz LHC Locked Clock	
112	16.3 320.64 MHz LHC Locked Clock for MGT Reference and FPGA Logic	
113	17 Appendix 4: Hub-Module Ethernet Line Circuits	
114	17.1 Transformer Coupled Ethernet Line Circuits	
115	17.2 Phys Side Connections	
116	17.3 Line Side Connections	
117	17.4 Ethernet Magnetics Connection Summary	

118	17.5 Front Panel RJ-45s	89
119	17.6 Capacitor Coupled Ethernet Line Circuits	89
120	17.7 Assignment of Ethernet "Magnetics"	90
121	17.8 Assignment of Front Panel RJ-45 Connectors	91
122	17.9 Document / Verify the ROD's RJ45 Ethernet Connection	91
123	17.10 Document / Verify the IPMC's RJ45 Ethernet Connection	92
124	18 Appendix 5: Hub Virtex FPGA MGT Transceiver Usage	
125	19 Appendix 6: Hub Virtex FPGA Select I/O Usage	109
126	20 Appendix 7: Hub FPGA Signal Types	
127	20.1 Select I/O Signals:	115
128	20.1.1 Clock and Clock Management Signals	115
129	20.1.2 Ethernet Switch Chip Management Signals	116
130	20.1.3 Hardware Address Signals	117
131	20.1.4 I2C Bus Signals	117
132	20.1.5 MiniPOD Management Signals	
133	20.1.6 Miscellaneous Select I/O Signals	
134	20.1.7 Phys U21 and Phys U22 signals	
135	20.1.8 ROD Present and ROD Power Control Signals	
136	20.2 MGT Transceiver Signals	
137	21 Appendix 8: Hub-Module IPMC Connections	
138	21.1 Connections Shown in Figure 33	
139	21.2 Connections Shown in Figure 34	
140	21.3 Connections Shown in Figure 35	
141	22 Appendix 9: Hub-Module JTAG String	
142	23 Appendix 10: Hub-Module Jumpers	
143	23.1 IPMC Ethernet A/Tx, B/Rx, Mag CT to 3V3, R1405 & R1410	
144	23.2 Virtex FPGA Configuration Mode R1811 through R1816	
145	23.3 Power On Reset Delay Override R1821 and R1822	
146	23.4 Configuration Bank Voltage Select R1823 and R1824	
147	23.5 Pull-Ups During Configuration R1825 and R1826	
148	23.6 VBATT R1827	
149	23.7 JTAG Skip the Hub FPGA JMP1 and JMP2	
150	23.8 DONE Included in ROD Power Control JMP3 and JMP4	
151	23.9 Wait for IPMC Payload Enable Signal JMP5 and JMP6	
152	23.10 Hub Phys Chip Jumpers R1901:R1914, R1951:R1964	
153	23.11 DCDC Converter with LC Output Filter Feedback Jumpers	
154	23.12 ATCA "Shelf Ground" to "Logic Ground" Connection R959	
155	23.13 Jumper on the Sensor I2C Bus EEPROM	
156	24 Appendix 11: Hub-Module Front Panel LEDs	
157	24.1 LEDs Driven by the IPMC Mezzanine	
158	24.2 LEDs Driven by the Switch Chips	
159	24.3 LEDs Driven by the Phys Chips on the Hub Module	
160	24.4 LEDs Driven by the ROD Mezzanine Card	
161	24.5 LEDs Driven by the Hub Module's FPGA	
162	24.6 LEDs NOT Driven by the IPMC Card's Ethernet Connection	
163	24.7 Two Rationality LEDs	
164	25 Appendix 12: Hub-Module MiniPOD Connections	
165	26 Appendix 13: Non-MGT Rod-Hub Connections	
166	26.1 JTAG	
167	26.2 Sensor I2C Bus	
168	26.3 ROD Front Panel Signals	
100	20.3 ROD Tituit i anci bighais	133

169	26.4	Clock 40.08 MHz	156
170	26.5	Geographic Address	156
171	26.6	Ethernet Connection	157
172	26.7	Module Present	157
173	26.8	ROD-Hub Power Control Signals	157
174	26.9	Spare Unused ROD-Hub HP IO Signals	158
175	26.10	Power from the Hub to the ROD	
176	26.11	ROD-Hub MGT Signals	159
177	27 App	pendix 14: Phys Chip Usage on the Hub Module	161
178	27.1	Power Supply, ByPass, Power Up, and Reset Requirements	161
179	27.2	RGMII Interface Port	163
180	27.3	MDC/MIIM/MDIO Interface Port	
181	27.4	Jumpers for the KSZ9031RNX (aka Strapping Pins)	163
182	28 App	pendix 15: Hub-Module Power System	167
183	28.1	ATCA Power Entry and Isolated +12V Supply	167
184	28.2	Hub Module Power Bus Table	168
185	28.3	DCDC Converters	168
186	28.4	DCDC Converter Input Filter Capacitors	170
187	28.5	DCDC Linear Supplies	170
188	28.6	DCDC Converter Supervision	171
189	28.7	DCDC Converters with an LC Output Filter	172
190	28.8	Power Requirements Information for each Section of the Hub	173
191	28.9	Final best Estimate on FPGA MGT Power from Xilinx Tools	175
192	29 App	pendix 16: Hub-Module Base Interface Ethernet Switch	193
193	29.1	Power Supply for the BCM53128 Switch Chip	194
194	29.2	Power-Up Supply Sequencing	196
195	29.3	Hub Module Power Supply Design for Its Switch Chips	196
196	29.4	Switch Chip Bypass Capacitors and Filter Chokes	197
197	29.5	The BCM53128 Switch Capacitive Coupling	
198	29.6	Switch Chip Orientation and Port Connections	199
199	29.7	Assignment of Ethernet "Magnetics"	201
200	29.8	Assignment of Front Panel RJ-45 Connectors	201
201	29.9	Resistor Set Pin	201
202	29.10	Unused Tie Hi, Tie Low, Float Pins	201
203	29.11	EEPROM Connection to the Switch Chip	202
204	29.12	SPI Bus Connection	203
205	29.13	MDC MDIO Connection to the Hub's Virtex FPGA	203
206		Switch Chip Reset	
207	29.15	Clock to the Switch Chip	204
208	29.16	Switch Chip Functions That Are Not Used on the Hub	204
209	29.17	Switch Chip Bypass Capacitor and Filter Update	205
210	30 App	pendix 17: Switch Chip Associated Jumpers	210
211	30.1	Enumeration of All Strapping Options on the BCM53128	210
212	31 App	pendix 18: Hub-Module Xilinx FPGA	212
213	31.1	FPGA Configuration:	212
214	31.2	FPGA JTAG Connection	
215	31.3	FPGA System Monitor Reference and Connections	212
216	31.4	FPGA MGT Transceivers	
217	31.5	FPGA RGMII Ethernet Base Interface Connection	213
218	31.6	FPGA Clock Sources	
219	31.7	The Select I/O Signals	213

220	31.8	FPGA Power Supply Requirements	213
221		opendix 19: Hub Commissioning Test Plan	
222	32.1	Power Supplies and Hub Component Cooling Tests	218
223	32.2	IPMC and Slow Control & Monitoring Bus Tests	219
224		MGT Link Tests	
225	32.4	Clock Tests	220
226	32.5	Ethernet Connection and Ethernet Switch Tests	220
227	32.6	Miscellaneous Tests	220
228			

1 Conventions

230

240

241

242

243244

245

246

247

248

249

252

- The following conventions are used in this document:
- The term "Hub" or "FEX-Hub" is used to refer to the Phase-I L1Calo FEX system ATCA switch (hub) module in the rest of this document.
- The L1Calo FEX system Readout Driver (ROD) mezzanine is referred to as the "Hub-ROD" or just "ROD" in this document.
- FEX-Hub modules can be physically located in logical slots 1 or 2. The convention for the remainder of this document is to refer to these different modules as Hub-1 and Hub-2, respectively. Likewise the ROD modules in logical slots 1 or 2 are referred to as ROD-1 and ROD-2.
 - The convention in this document will be that Hub-1 is the receiver of the TTC signal from the upstream FELIX system, and thus is responsible for distributing these signals to the FEX, ROD and Hub-2 recipients.
 - A programmable parameter is defined as one that can be altered under computer control, for example between runs, not on an event-by-event basis. Changing such a parameter does not require a re-configuration of any firmware.
 - Where multiple options are given for a link speed, for example, the readout links of the FEX modules are specified as running ≤6.4 Gb/s, this indicates that the link speed has not yet been fully defined. Once it is defined, that link will run at a single speed.
- In accordance with the ATCA convention, a crate of electronics is here referred to as a shelf.
 - Figure 1 explains the timeline for ATLAS running and shutdowns: Phase-I upgrades will be installed before the end of long shutdown LS 2; Phase-II upgrades will be installed before the end of LS 3.
- The term "buffer" is used to mean electrical reception and re-transmission of signals (possibly with fan-out), but without any storage or memory function. The terms "storage buffer", "FIFO", "Dual Port RAM" et al. are used where storage is involved.

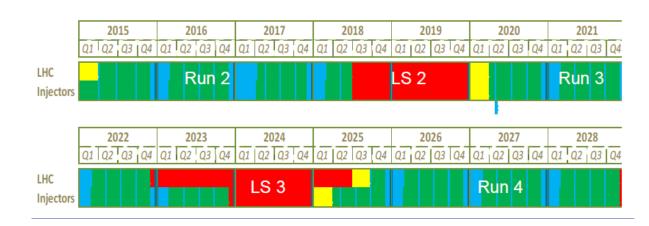


Figure 1: LHC shutdown and run schedule.

262	2	Related Documents
263 264 265	[1.1]	ATLAS TDAQ System Phase-I Upgrade Technical Design Report, CERN-LHCC-2013-018, http://cds.cern.ch/record/1602235/files/ATLAS-TDR-023.pdf
266 267	[1.2]	L1Calo Phase-I eFEX Specification, https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloUpgradeModules/
268 269	[1.3]	L1Calo Phase-I jFEX Specification, https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloUpgradeModules/
270 271	[1.4]	L1Calo gFEX Specification, https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloUpgradeModules/
272 273	[1.5]	L1Calo Phase-1 ROD Specification , https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloUpgradeModules/
274 275	[1.6]	L1Calo Phase-I Optical plant Specification, https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloUpgradeModules/
276 277	[1.7]	ATCA Short Form Specification, http://www.picmg.org/pdf/picmg_3_0_shortform.pdf
278 279	[1.8]	PICMG 3.0 Revision 3.0 AdvancedTCA Base Specification, <i>access controlled</i> , http://www.picmg.com/
280 281 282	[1.9]	P. Moreira, A. Marchioro, and K. Kloukinas, The GBT, a Proposed Architecture for Multi-Gb/s Data Transmission in High Energy Physics, 2007. https://espace.cern.ch/GBT-Project/Papers/paperMoreiraGBT.doc
283 284 285	[1.10	Development of an ATCA IPMI controller mezzanine board to be used in the ATCA developments for the ATLAS Liquid Argon upgrade, http://cds.cern.ch/record/1395495/files/ATL-LARG-PROC-2011-008.pdf
286 287	[1.11] IPbus Protocol, https://svnweb.cern.ch/trac/cactus/export/trunk/doc/ipbus_protocol_v2_0.pdf
288 289	[1.12	P] Front-End Link Exchange (Felix), https://edms.cern.ch/document/13111772/1
290 291 292 293	[1.13	MEG-Array Connectors, https://cdn.amphenol-icc.com/media/wysiwyg/files/documentation/datasheet/boardwiretoboard/bwb_megarray_mezzanine.pdf
294 295	[1.14	ATLAS L1Calo System-Level Specifications, https://edms.cern.ch/document/1492098/1

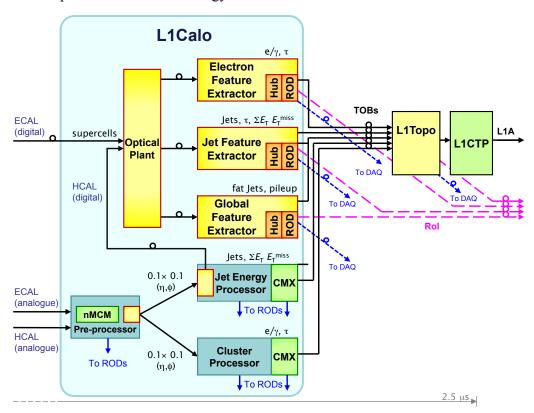
296 297 298	[1.15] Spencer Lee, Hub Gigabit Ethernet test description, https://web.pa.msu.edu/hep/atlas/l1calo/hub/specification/2_final_design_review/Fub_GbE_Test_Report_v0_1.pdf
299 300	[1.16] Hub firmware specification, <pre>https://web.pa.msu.edu/hep/atlas/l1calo/hub/specification/2_final_design_review/F</pre> <pre>LIP_FW_Spec_FDP_02_12_2018_pdf</pre>
301	UB_FW_Spec_FDR_03_12_2018.pdf

3 Introduction

302

- This document describes the ATCA switch module (FEX-Hub) of the ATLAS Level-1
- Calorimeter Trigger Processor (L1Calo) system [1.1]. The FEX-Hub is one of several
- modules being designed to upgrade L1Calo, providing the increased discriminatory
- 306 power necessary to maintain trigger efficiency as the LHC luminosity is increased
- beyond that for which ATLAS was originally designed.
- The function of the FEX-Hub module is to provide common communications functions
- for the FEX ATCA shelves including the routing of FEX readout data, network
- communications to and from FEX modules and distribution of clock and control signals.
- The FEX-Hub modules will be installed in L1Calo during the long shutdown LS2, as part
- of the Phase-1 upgrade, and will operate during Run 3. They will remain in the system
- after the Phase-2 upgrade in LS3, and will operate during Run 4, at which time they will
- form part of L0Calo. The following sections provide overviews of L1Calo in Run 3 and
- 315 L0Calo in Run 4.
- This is a specification for the production FEX-Hub module. This final version will
- deliver the required functionality for the L1Calo FEX system. This specification further
- describes possible use cases not critical to the core Hub functionality that represent
- fallback options for the L1Calo (L0Calo) readout system if needed.
- This document is arranged as follows. The front portion of the document introduces the
- L1Calo system, the plans for its upgrade and the upgrade evolutions. Next, a descriptive
- overview of the FEX-Hub module is provided, describing the primary specifications for
- its functionality within the L1Calo trigger system, including system interfaces and the
- implementation of the FEX-Hub itself. Finally, there are two appendices that enter into
- 325 the details of how the FEX-Hub module has been designed and built, which provide an
- official reference on the "as built" FEX-Hub specification.

3.1 L1Calo Overview


328 3.1.1 Overview of the L1Calo System in Phase I (Run 3)

- In Run 3, L1Calo contains three subsystems installed prior to LS2, as shown in Figure 2
- 330 (see document [1.1]):

- The Pre-processor, which receives shaped analog pulses from the ATLAS
- calorimeters, digitises and synchronises them, identifies the bunch-crossing from
- which each pulse originated, scales the digital values to yield transverse energy $(E_{\rm T})$,
- and prepares and transmits the data to the following processor stages:

• The Cluster Processor (CP) subsystem (comprising Cluster Processing Modules (CPMs) and Common Merger Extended Modules (CMXs)) which identifies isolated e/γ and τ candidates;

• The Jet/Energy Processor (JEP) subsystem (comprising Jet-Energy Modules (JEMs) and Common Merger Extended Modules (CMXs)) which identifies energetic jets and computes various local energy sums.

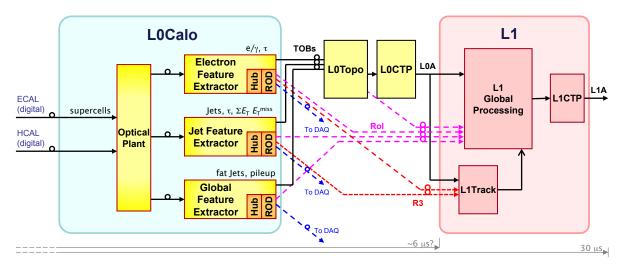
Figure 2: The L1Calo system in Run 3. *Components installed during LS2 are shown in yellow/orange*

- Additionally, L1Calo contains the following three subsystems installed as part of the Phase-I upgrade in LS2:
- The electromagnetic Feature Extractor eFEX subsystem, comprising eFEX modules and FEX-Hub modules, the latter carrying Readout Driver (ROD) daughter cards. The eFEX subsystem identifies isolated e/γ and τ candidates, using data of finer granularity than is available to the CP subsystem.
- The jet Feature Extractor (jFEX) subsystem, comprising jFEX modules, and Hub modules with ROD daughter cards. The jFEX subsystem identifies energetic jets and computes various local energy sums, using data of finer granularity than that available to the JEP subsystem.
- The global Feature Extractor (gFEX) subsystem, which is a single, stand-alone module. The gFEX subsystem identifies calorimeter trigger features requiring the complete calorimeter data.

• An updated Level-1 Topological Processing subsystem (L1Topo), comprising L1Topo modules, and Hub modules with ROD daughter cards. The L1Topo subsystem applies topological selection and threshold criteria on trigger objects derived from the calorimeter and muon detector systems.

360361

357


358

- In Run 3, the Liquid Argon Calorimeter provides L1Calo both with analog signals (for
- the CP and JEP subsystems) and with digitized data (for the FEX subsystems). From the
- hadronic calorimeters, only analog signals are received. These are digitized on the Pre-
- processor, transmitted electrically to the JEP, and then transmitted optically to the FEX
- subsystems. Initially at least, the eFEX and jFEX subsystems will operate in parallel with
- 367 the CP and JEP subsystems. Once the performance of the FEX subsystems has been
- validated, the CP sub system will be removed, and the JEP used only to provide hadronic
- data to the FEX subsystems.
- The optical signals from the JEP and LDPS electronics are sent to the FEX subsystems
- via an optical plant. This performs two functions. First, it separates and reforms the fibre
- bundles, changing the mapping from that employed by the LDPS and JEP electronics to
- that required by the FEX subsystems. Second, it provides any additional fan-out of the
- signals necessary to map them into the FEX modules where this cannot be provided by
- 375 the calorimeter electronics.
- The outputs of the FEX subsystems (plus CP and JEP) comprise Trigger Objects (TOBs):
- data structures which describe the location and characteristics of candidate trigger
- objects. The TOBs are transmitted optically to the Level-1 Topological Processor
- (L1Topo), which merges them over the system and executes topological algorithms, the
- results of which are transmitted to the Level-1 Central Trigger Processor (CTP).
- The eFEX, jFEX, gFEX and L1Topo subsystems comply with the ATCA standard. The
- 382 eFEX subsystem comprises two shelves each of 12 eFEX modules. The jFEX subsystem
- comprises a single ATCA shelf holding 6 jFEX modules. The gFEX subsystem
- comprises a single ATCA shelf holding a single gFEX module. The L1Topo subsystem
- comprises a single ATCA shelf housing up to four L1Topo modules, each of which
- receives a copy of all data from all FEX modules. All L1Calo processing modules
- produce Region of Interest (RoI) and DAQ readout on receipt of a Level-1 Accept signal
- from the CTP. RoI information is sent both to the High-Level Trigger (HLT) and the
- DAO system, while the DAO data goes only to the DAO system. In the FEX and L1Topo
- subsystems, these data are transmitted by each FEX or L1Topo module via the shelf
- backplane to two Hub modules (with the exception of the gFEX, which requires no
- Hub/ROD). Each of these buffers the data and passes a copy to their ROD daughter
- board. The RODs perform the processing needed to select and transmit the RoI and DAQ
- data in the appropriate formats; it is likely that the required tasks will be partitioned

between the two RODs. Additionally, the Hub modules provide distribution and switching of the TTC signals and control and monitoring networks.

3.1.2 Overview of the L1Calo System in Phase-II (Run 4)

The Phase-II upgrade will be installed in ATLAS during LS3. At this point, substantial changes will be made to the trigger electronics. All calorimeter input to L1Calo from the electromagnetic and hadronic calorimeters will migrate to digital format, the structure of the hardware trigger will change to consist of two levels, and a Level-1 Track Trigger (L1Track) will be introduced and will require TOB seeding. The Pre-processor, CP and JEP subsystems will be removed, and the FEX subsystems, with modified firmware, will be relabelled to form the L0Calo system in a two stage (Level-0/Level-1) real-time trigger, as shown in Figure 3. Hence, the FEX subsystems must be designed to meet both the Phase-I and Phase-II upgrade requirements. The main additional requirements are to provide real-time TOB data to L1Track, and to accept Phase-II timing and control signals including Level-0 Accept (L0A) and Level-1 Accept. Additional calorimeter trigger processing will be provided by a new L1Calo trigger stage.

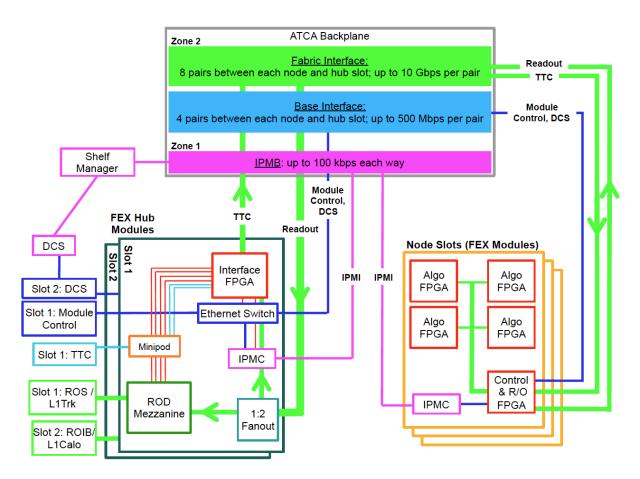


Figure 3: The L0/L1Calo system in Run 4. *The new Level-1 system is shown in red and pink. Other modules (yellow /orange) are adapted from the previous system to form the new L0Calo.*

3.2 FEX-Hub Module Overview

The FEX-Hub module is an integral part of the L1Calo system. Its primary functions are to support FEX system readout, provide switching functionality for module control and DCS IPbus networks and to distribute timing and control signals to the FEX modules. **Figure 4** shows a sketch of the Hub modules within the FEX ATCA shelves. There are to be two Hub modules per shelf. Both Hub modules will receive multi-gigabit FEX data over the ATCA Fabric Interface, which will be fanned out to a ROD mezzanine on the

- Hub and to the Hub's own FPGA. This high-speed data path will include two data
- channels from the other Hub module. The Hub module in logical slot 1 will provide
- switching capability for a network that routes module control signals on the base
- interface, while the Hub in logical slot 2 will provide switching for a network that routes
- DCS information. The Hub module in slot 1 will further receive TTC information from
- 425 the FELIX system, and these signals will be decoded and fanned out to the FEX modules,
- 426 ROD modules and also to the Hub in slot 2. The fanned-out TTC control data stream will
- be interleaved with ROD-to-FEX communications including, for example, back-pressure
- 428 signals.
- The Hub module has connections to the other slots in the ATCA shelf over three distinct
- electrical interfaces, as illustrated in **Figure 4**. ATCA backplane Zone-2 consists of the
- Fabric Interface and the Base Interface. The Fabric Interface provides 8 differential pairs
- (channels) from each node slot to each Hub slot (8 to Hub-1 and 8 to Hub-2). There are a
- 433 total of 8 Fabric Interface channels between Hub-1 and Hub-2 (not 16 total). The Fabric
- Interface pairs have a nominal bandwidth specification of 10 Gbps / channel. The Base
- Interface provides 4 differential pairs between each node slot and each Hub slot. There
- are a total of 4 Base Interface channels between Hub-1 and Hub-2. The Base Interface
- lines have a nominal bandwidth specification of 500 Mbps / channel, suitable for Gbps
- Ethernet protocol. Finally, ATCA backplane Zone-1 provides each node and Hub slot
- with a connection to the Intelligent Platform Management Bus (IPMB) with a total
- bandwidth of 100 kbps. The Hub module will provide MPO connectors in the ATCA
- Zone-3 region, which will allow for the routing of fiber-optic cables to/from the
- 442 MiniPODs on the Hub and ROD modules.
- The L1Calo FEX-Hub system will consist of eight modules. There will be two eFEX
- shelves, one jFEX shelf and one L1Topo shelf, each hosting two Hub modules.

Figure 4: Illustration of the functions of FEX-Hub modules within the FEX trigger system, emphasizing the data paths through the ATCA backplane.

449 4 FEX-Hub Module Functionality

- 450 This section describes the functionality required for the FEX-Hub module within the
- L1Calo FEX trigger system. Details of the implementation of these functions will be
- described in Section 6 of this document. Figure 5 illustrates the overall layout of the Hub
- 453 module, including the outline of the ROD mezzanine card. In this figure, all of the
- primary functions and features of the Hub module are annotated for reference.

4.1 Support of the ROD Mezzanine Card

- 456 The FEX-Hub physically holds the ROD Mezzanine Card and provides electrical
- connections to it through two 400 pin MEG-Array connectors [1.13].

4.2 FEX and FEX-Hub Readout Data Distribution

- 459 The FEX-Hub receives over the Fabric Interface 6 serial streams of Readout Data from
- 460 each FEX Module. Each FEX-Hub also receives over the Fabric Interface 2 serial
- streams of Readout Data from the other FEX-Hub in the ATCA shelf. These 74 high-
- speed serial streams pass through a 1:2 fan-out on the FEX-Hub. One copy of each
- stream is sent to the ROD mezzanine and one copy is sent to the Hub's own FPGA. The
- Hub FPGA also sends 2 serial streams with its own Readout Data to its own ROD. Each
- ROD thus receives a total of 76 high speed Readout Data streams: 6 streams from each
- 466 FEX, 2 streams from the local Hub FPGA and 2 streams from the other Hub's Hub
- FPGA. The data rate per readout stream will be 10 Gbps or less.

4.3 TTC Clock and Data Stream Distribution

- The FEX-Hub in Slot 1 uses a 12-channel MiniPOD optical receiver to receive TTC
- signals from the upstream FELIX system. The FEX-Hub receives two types of TTC
- signals: a copy of the LHC clock and TTC control data. These signals are fanned out to
- each FEX module, to the local ROD, to the local Hub FPGA and to the FEX-Hub in Slot
- 2 (including its ROD). The LHC clock is directly forwarded without any processing on
- 474 the FEX-Hub. The TTC control data will be merged with additional control information
- coming from the ROD module from each FEX-Hub before being fanned out. The FEX-
- Hub uses two ports from the Fabric Interface Channel to each Node Slot to fan out these
- 477 two signals to each FEX. These two TTC and control signals sent to the FEX plus the 6
- 478 Readout Data streams received from each FEX use all 8 signals pairs of each Fabric
- Channel connecting one FEX to the FEX-Hub, albeit with an unconventional port
- 480 direction usage.

455

458

- The FEX-Hub in Slot 2 does receive the TTC information from FELIX directly, but
- 482 receives the TTC Clock and the TTC/ROD readout control stream from the FEX-Hub in

Slot 1. The FEX-Hub in Slot 2 sends any required ROD readout control data generated

by its own ROD to the FEX-Hub in Slot 1 for inclusion in the combined TCC/ROD

485 readout control data stream.

483

484

486

487

488

489

490

491

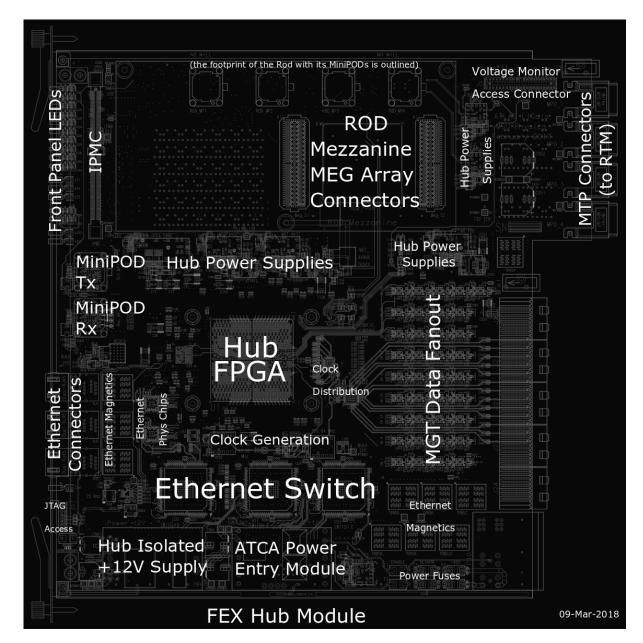


Figure 5: Annotated layout of Hub (+ROD outline) with primary functions noted.

4.4 Ethernet Network Switch

The FEX-Hub hosts an un-managed 10/100/1000 Base-T switch to provide the following 18 Gigabit Ethernet connections:

- Backplane: 12 connections to the "FEX Node" modules in this crate via the Base Channel Fabric;
- Backplane: 1 connection to the Ultrascale FPGA on the other Hub via the Update Channel Interface;
 - Direct: 1 connection to the Ultrascale FPGA on this Hub;
- Front-Panel: 1 connection for an "up-link";
 - Front-Panel: 1 connection for the ROD on this Hub (or IPMC on the other Hub);
- Front-Panel: 1 connection for the ROD on the other Hub (or IPMC on this Hub);
- Front-Panel: 1 spare connection;

501

506

496

498

- 502 This Ethernet switch functionality is implemented in hardware with three interconnected
- 503 8-port switch chips.
- The FEX-Hub module circuit board can be modified to disconnect these three switch
- 505 chips and provide a higher aggregate bandwidth capacity as described in Section 5.

4.5 Slow Control

- An IPBus interface is provided for high-level, functional control of the FEX-Hub module.
- This allows, for example, any firmware parameters to be set, modes of operation to be
- 509 controlled and monitoring data to be read.

4.6 Connections to the IPMB

- 511 The FEX-Hub maintains a connection to the Intelligent Platform Management Bus
- 512 (IPMB) via an IPM Controller (IPMC) located on the Hub module. Communications
- between monitorable targets on the Hub, including the ROD mezzanine, are managed via
- an I2C Bus on the Hub module.

515 **4.7 Power Supplies**

- The FEX-Hub provides all of the normal ATCA redundant power input, power isolation,
- and power control from the Shelf Manager via an IPMC card. Bulk +12 Volt power is
- 518 provided to the ROD Mezzanine Card. Control signals are sent from the Hub to the ROD
- and Status signals are returned from the ROD to manage the ROD's own power up
- sequence. DC/DC converters are used to provide the power rails for the Hub itself.

521 4.8 Extended Use Cases

- 522 The FEX-Hub module is intended to be used in the L1Calo and L0Calo trigger systems
- through Run 4. As such, future use cases in which the Hub may need to augment the
- 524 capacity of the FEX-Hub-ROD readout path have been identified. This extra
- functionality is being implemented on the FEX-Hub so long as it does not complicate the
- 526 core Hub functions and design. These extra Hub functions are as follows:

527 •	Τ	he Hub ı	nain	FPGA	receives a	afanne	d-out	copy	of all	high-s	peed I	FEX	data l	being

- sent to the ROD mezzanine card, allowing at a minimum the monitoring of FEX data.
- This feature can also support Hub commissioning and diagnostics, as it further
- provides a Fabric Interface connection to the other Hub module.
- The Hub main FPGA provides additional MGT links to the ROD mezzanine, which
- will be instrumented on the ROD if sufficient input MGT links are available.
- Similarly, MGT links from the ROD to the Hub main FPGA are defined on the HUB-
- ROD interface.
- External data output paths from the Hub main FPGA are provided electrically via
- Ethernet and optically via one MiniPOD transmitter. The MiniPOD socket and
- routings are implemented by default, but the MiniPOD transmitter is only installed if
- 538 required.

542

551

- Together, this Hub functionality can provide supplemental trigger processing if required.
- However, all of this functionality could instead be ignored or disabled with no negative
- impact on the Hub core functions.

4.9 Commissioning and Diagnostic Facilities

- 543 The FEX-Hub module provides sufficient Hub-to-Hub electrical connections over the
- Fabric Interface, Base Interface and front-panel connections to commission and perform
- standalone diagnostic tests of the Ethernet switching functions, a subset of Fabric
- Interface high-speed data paths and TTC clock/data distribution using either one or two
- 547 FEX-Hub modules.
- Full commissioning and diagnostics will require a mated Hub+ROD, as well as a data
- source/sink for the node slots (eg., the FEX Test Module or Hub Test Module). The Hub
- testing and commissioning plan is discussed in greater detail in Section 8.

4.10 Environment Monitoring

- The Hub monitors the voltage and current of every power rail on the board. It also
- monitors the temperatures of FPGAs, of the MiniPOD transmitters (if installed), and of
- other areas of dense logic. Where possible, this is done using sensors embedded in the
- relevant devices themselves. Where this is not possible, discrete sensors are used. The
- voltage and temperature data are collected by the IPMC, via an I2C bus. From there, they
- are transmitted via Ethernet to the ATLAS DCS system. The Hub hardware also allows
- these data to be transmitted to the DCS via IPMB and the ATCA Shelf Controller, but it
- is not foreseen that ATLAS will support this route.

4.11 ATCA Form Factor

- The FEX-Hub module is an ATCA module, conforming to the PICMG® 3.0 Revision 3.0
- specification. The FEX-Hub is only capable of supporting a Dual-Star 14-slot (not 16)
- ATCA shelf. Within the L1calo system some of the Fabric Interface and Update
- Interface Channel ports are not used according to their conventional ATCA manner, as
- described in the technical detail appendices, see Sections 15 and 17.

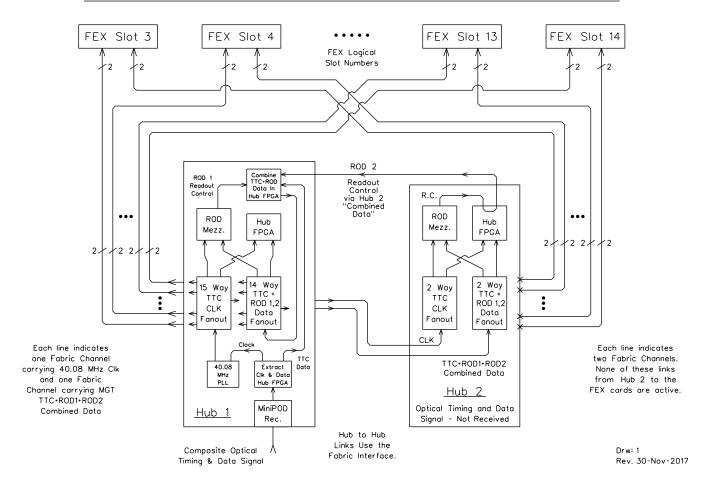
5 Interfaces to Other L1Calo Modules

- The FEX-Hub module has mechanical and electrical connections to three other module
- 568 types within the L1Calo trigger system: the Hub-ROD Mezzanine card, the
- eFEX/jFEX/L1Topo modules and the other Hub module when used in a shelf with two
- Hubs. This section describes and illustrates the electrical connections between these
- 571 modules.

566

572

586


5.1 TTC Clock and Data Stream Interfaces

- Figure 6 shows the Hub's distribution of the TTC Clock and Data signals in the context
- of the other cards in the ATCA shelf. The composite TTC signal is received by a
- 575 MiniPOD receiver on the Hub-1 card. The TTC Clock is fanned out from the Hub-1 card
- 576 to all other modules in the shelf (including Hub-2) over the Fabric Interface. The TTC
- Data is combined with the back data from both ROD-1 and ROD-2 on Hub-1 and this
- 578 combined data stream is also fanned out from the Hub-1 module over the Fabric
- Interface. When a second Hub is used as shown in **Figure 6**, no TTC information is sent
- from Hub-2 to any of the Node slots, as the corresponding Fabric Interface ports are not
- driven on Hub-2. The Hub-1 and Hub-2 cards are identical printed circuit boards and
- could support independent fan-out of clock and data streams from both Hubs if that were
- desired in the future. Each Node slot has access to both the Hub-1 and the Hub-2 TTC
- clock and data streams. L1calo shelves are however currently explicitly defined to
- provide and use the TTC clock and data information fanned out from Hub-1 only.

5.2 High-Speed Readout Data Interfaces

- Figure 7 shows the Hub's distribution of readout data in the context of the cards in the
- ATCA shelf. The readout data comes from the Node slots and from the FPGA on each
- Hub module. All of this data flows to both the ROD and to the FPGA on each Hub. The
- arrangement shown in **Figure 7** supports 2 independent streams of readout data. That is,
- the readout stream processed by the ROD and Hub FPGA on Hub-1 can be
- independent of the readout stream flowing into Hub-2.
- The Hub's high-speed readout data path as described at the level of the Hub board is
- illustrated in **Figure 19**, which can be found in the section describing the Hub PCB
- layout (Section 6.11) and in greater detail in the technical detail appendices (Section 15).

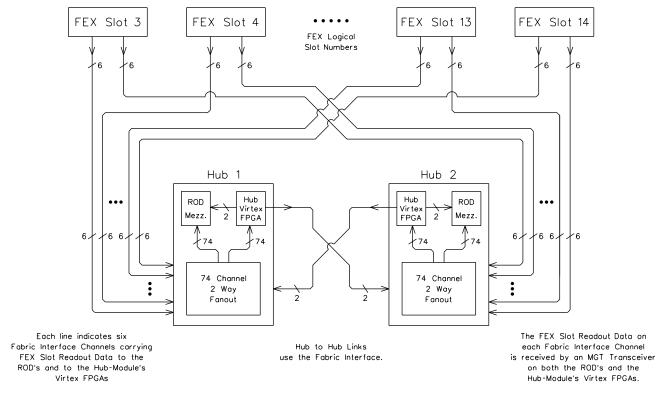
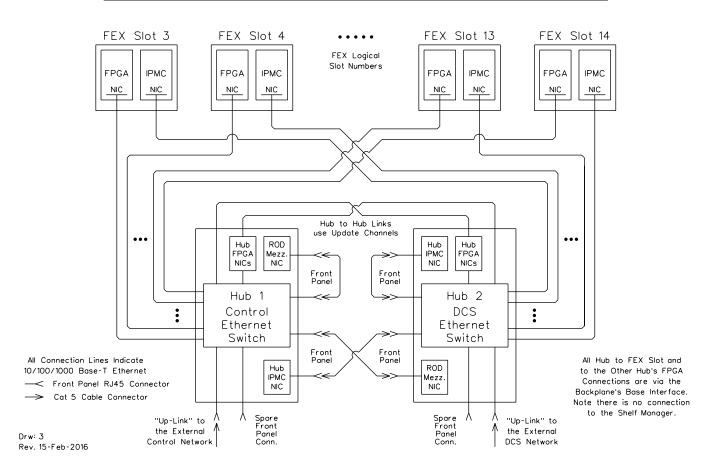

<u>Hub</u> <u>Clock and Combined Data Distribution</u>

Figure 6: Illustration of FEX-Hub distribution of TTC clock and control data stream signals.

596

<u>Hub-Module Readout Data Distribution</u>

Drw: 2 Rev. 15-Feb-2016


Figure 7: Illustration of FEX-Hub distribution of high-speed readout data signals.

5.3 Ethernet Network Interfaces

Figure 8 shows the Hub's Base Interface Ethernet Switch in the context of the other cards in the ATCA shelf. As shown in **Figure 8** the switch on Hub-1 is used to handle all connections to the IPbus Control network and the switch on Hub-2 is used to handle all connections to the IPMC/DCS network. Operation with only a Hub-1 in the shelf is possible but does not provide a Base Interface Ethernet connection to the IPMCs in the

- Node slots. In this situation the Node slot IPMCs can use their IPMB connection to the
- Shelf Manager and pass monitoring data to the DCS network.
- The Gigabit Ethernet switch functionality is implemented in hardware with three
- interconnected Broadcom BCM53128 8-port switch chips.
- When these three switch Chips are left interconnected one up-link connection per Hub is
- used to connect the L1calo crate to the rest of the network. The available aggregate
- bandwidth for the whole shelf is 1 Gbps over each of the Hub1 and Hub 2 networks. The
- corresponding connectivity at the level of one typical L1Calo shelf is depicted in **Figure**
- **6**17 **9**
- The FEX-Hub module circuit board can be modified to severe the inter-connections
- between these three switch chips. This modification increases the aggregate bandwidth

Hub-Module Ethernet Switch Connections

Figure 8: Circuit diagram for the Hub Ethernet switch.

capacity. In particular, the aggregate bandwidth is then doubled for the FEX node slots. Four up-link connections per Hub are then required to connect the L1calo crate to the rest of the network. The corresponding connectivity at the level of one typical 11calo crate is depicted in **Figure 10**.

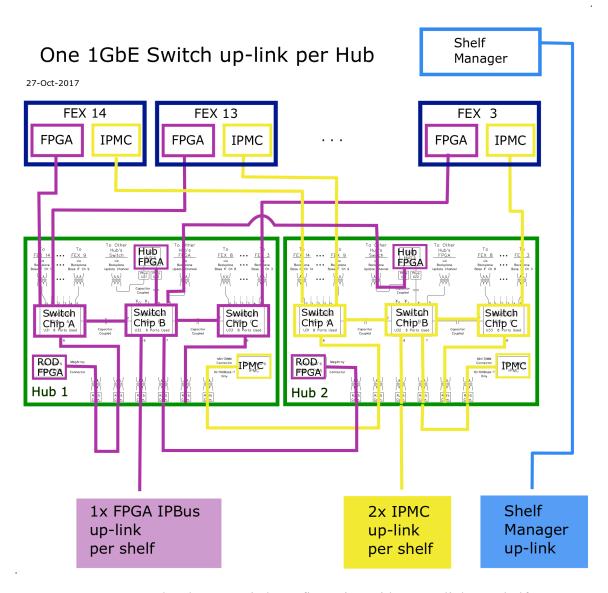
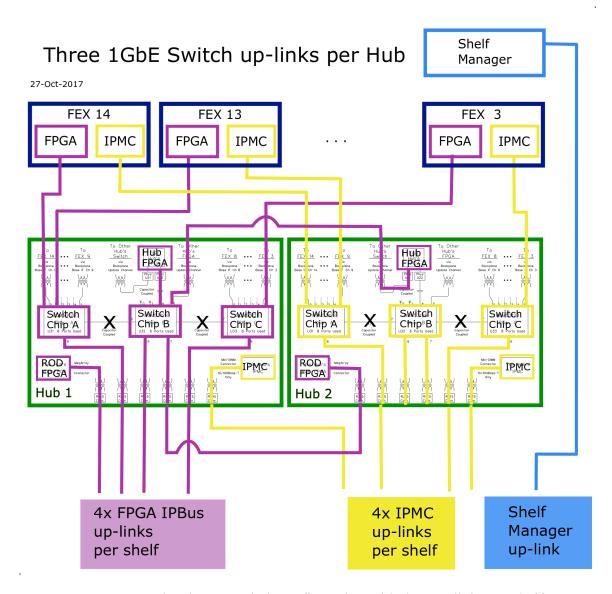



Figure 9: Hub Ethernet switch configuration with one uplink per shelf.

Figure 10: Hub Ethernet switch configuration with three uplinks per shelf.

5.4 Hub Interfaces to FEX Modules

- This subsection summarizes the Hub electrical interfaces to the FEX modules. A more
- complete specification of the connector/pin assignments is illustrated in Appendix 1
- 632 (Section 14). Please refer there for more details.

5.4.1 Interface with Hub-1

627

628

629

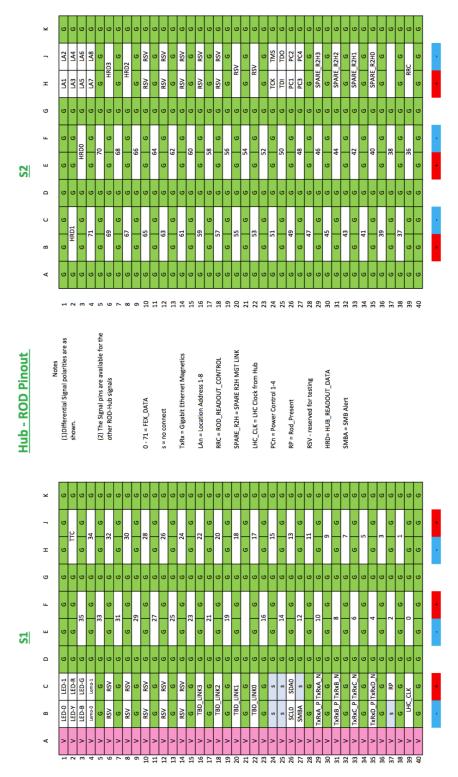
- Hub-1 resides in logical slot 1 and receives the TTC information from FELIX optically
- via MiniPOD. It thus distributes the TTC clock and control data signals. Hub-1 also
- 636 hosts the slow control IPbus network.

- 637 *5.4.1.1 Base Interface*
- The 2 ports of Base Channel 1 (4 pairs of differential signals) of the base interface are
- used to provide a Gigabit Ethernet connection to be used by the FEX module for its IPbus
- 640 port.
- The usage of the ports on this channel follows the ATCA PICMG 3.0 specification for
- 642 1000BASE-T Ethernet.
- 643 5.4.1.2 Fabric Interface
- The ports of the Fabric Interface Channel 1 are not used according to the ATCA
- 645 convention and notation.
- The 4 ports of Fabric Channel 1 (8 pairs of differential signals) are defined by ATCA as 4
- transmitting and 4 receiving pairs.
- Hub-1 is instead transmitting on only 2 of these pairs and receiving readout data from the
- FEX on the other 6 pairs
- 650 5.4.1.3 Hub-1 Module signals as Seen from a FEX Module
- The FEX modules receive the LHC clock on the receive signal pair of Fabric Interface
- Channel 1 port 0. (Note: this clock is received via MiniPOD on Hub-1). This signal is
- 653 meant to be received as a logic clock and not as data stream. It is not driven by an FPGA
- 654 MGT Transceiver on the HUB and is not meant to be received by an MGT on a FEX.
- 655 The FEX modules receive the combined TTC and ROD control data stream on the
- receive signal pair of Fabric Interface Channel 1 port 1. Note: the TTC control
- information is provided via the TTC signals sent by FELIX and received on Hub-1. The
- 658 two RODs on Hub-1 and Hub-2 may need to also send control information to the FEXs.
- This optional ROD control is merged with the TTC control data stream according to a
- 660 format to be determined.
- The FEX modules send their primary readout data streams 0-3 destined to the ROD on
- Hub-1 on the transmit signal pair of Fabric Interface Channel 1 port 0-3. The FEX
- module is SENDING its secondary readout data streams 4-5 destined to the ROD on
- Hub-1 on the RECEIVE signal pair of Fabric Interface Channel 1 port 2-3 which means it
- is using these two ports in the opposite direction from their conventional usage and
- 666 ATCA naming.

5.4.2 *Interface with Hub-2*

- Hub-2 resides in logical slot 2 and hosts the IPMC network. Hub-2 does not receive the
- TTC signal from FELIX via its MiniPOD receiver.

- 670 *5.4.2.1 Base Interface*
- The 2 ports of Base Channel 2 (4 pairs of differential signals) of the base interface are
- used to provide a Gigabit Ethernet connection to be used by the FEX module for its
- 673 IPMC.
- The usage of the ports on this channel follows the ATCA PICMG 3.0 specification for
- 675 1000BASE-T Ethernet.
- 676 5.4.2.2 Fabric Interface
- The ports of Fabric Interface channel 2 are not used according to the ATCA convention
- and notation.
- The 4 ports of Fabric Channel 2 (8 pairs of differential signal) are defined by ATCA as 4
- transmitting and 4 receiving pairs.
- Hub-2 is instead transmitting nothing on 2 of these pairs and receiving readout data from
- the FEX on the other 6 pairs.
- 683 5.4.2.3 Hub-2 Module Signals as Seen from a FEX Module
- The receive signal pair of Fabric Interface Channel 2 port 0 is unused on FEX modules.
- The receive signal pair of Fabric Interface Channel 2 port 1 is also unused on FEX
- 686 modules.
- The FEX modules send their primary readout data streams 0-3 destined to the ROD on
- 688 Hub-2 on the transmit signal pair of Fabric Interface Channel 2 port 0-3.
- The FEX module is SENDING its secondary readout data streams 4-5 destined to the
- 690 ROD on Hub-2 on the RECEIVE signal pair of Fabric Interface Channel 2 port 2-33
- which means it is using these two ports in the opposite direction from their conventional
- usage and ATCA naming.


693 5.5 Hub Interface to the ROD Mezzanine

- Two 400 pin MEG-Array connectors interface the ROD Mezzanine to the FEX-Hub.
- This section identifies the signals carried through these connectors. A more detailed
- description of these HUB-ROD connections is given in the technical appendices,
- Sections 26, 19 and 18. An illustration of how the signals are organized in the MEG-
- Array connectors is shown in **Figure 11**, which emphasizes the relative use of ground
- and signal pins for the high-speed data lines. This figure is for illustration only and the
- technical specification appendices should be used for the mapping.
- Note: both the Ultrascale FPGA used on the FEX-Hub and the Virtex-7 FPGA used on
- the ROD offer a maximum of 80 MultiGigabit Transceivers (MGT) i.e. 80 Transmitter

704 705	the main limiting factor in the compromises reached in the design of both the Hub-FEX and the ROD.
706	5.5.1 MGT Differential Inputs to ROD from Hub
707	These differential signals are connected to MGT Receiver on the ROD FPGA.
708	• $12x6 = 72$ serial streams of Readout Data from the FEX modules
709	• 2x serial streams of Readout Data from the local HUB FPGA
710	• 2x serial streams of Readout Data from the other HUB FPGA
711	• 1x serial stream of combined TTC and ROD control data stream
712	5.5.2 MGT Differential Outputs from ROD to Hub
713	• 1x serial stream of ROD Readout Control information
714 715	This signal needs to be merged with the TTC control data stream by the HUB FPGA of the FEX-Hub in slot 1.
716 717	A copy of this combined TTC and ROD control data stream is sent to the ROD FPGA from both FEX-Hub in Slot 1 and Slot 2.
718	5.5.3 Other signals between ROD and Hub
719	• LHC Clock
720	o 1x Differential signal pair
721	Geographic Address
722	 8x signals coming from the Hub FPGA
723 724 725 726	The HUB FPGA determines this System Geographic Address by combining the J10 Hardware Address pins with the Shelf Address retrieved from the Shelf Manager by the IPMC. The shelf and slot addressing scheme for this 8 bit address needs to be defined.
727	• IPbus port
728 729	 4x Bi-directional Signal Pairs forming a 1000BASE-T Gigabit Ethernet connection.
730	Sensor I2C Bi-directional Bus

ports and 80 MGT Receiver ports. The limit on the number of MGT Receivers has been

731	0	2x I2C Signals (Clock and Data) connected to the IPMC
732	• JTAG	access
733	0	4x JTAG Signals
734	• Power	Supply Connections
735	0	+12V bulk power is made available to the ROD
736	• Power	Control signals: 4 single-ended bidirectional signals nominally used as
737	0	2x Power Control Signals to the ROD
738	0	2x Power Status Signals from the ROD
739	• Contro	l and Status
740	0	5x ROD-specified LEDs
741	0	2x Phy LEDs
742	0	1x Lemo
743	0	4x spare bidirectional differential pairs
744	0	1x ROD present

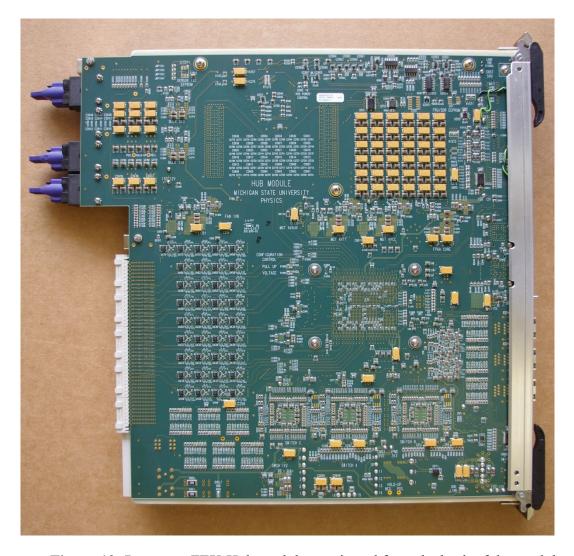
Figure 11: Illustration of the ROD/Hub MEG-Array connector pin usage, illustrating signal and ground designations. This diagram is not intended for signal mapping, and the final mapping is provided in the technical appendices.

746 **5.6 Hub Interfaces to Second Hub Modules**

- **747 5.6.1 Base Interface**
- The Base Channel 1 is reserved for the Shelf Manager Controller and is unused.
- The Base Channel 2 port (4 pairs of differential signals) is not currently allocated.
- 750 **5.6.2 Fabric Interface**
- 751 The Fabric Interface channel 1 is used according to the ATCA convention and notation
- with one caveat for Hub-2: Hub-2 is transmitting nothing on 2 of its transmitter pairs.
- 753 **5.6.3 Hub-2** usage of the Fabric Interface connection to Hub-1
- Hub-2 is receiving the LHC clock on the receiving signal pair of Fabric Interface Channel
- 755 1 port 0.
- 756 Hub-2 is receiving the combined TTC and ROD control data stream on the receiving
- signal pair of Fabric Interface Channel 1 port 1.
- Hub-2 is sending on the transmitting signal pair of Fabric Interface Channel 1 port 0-1 its
- readout data streams 1-2 destined to the ROD on Hub-1.
- 760 5.6.3.1 Hub-1 usage of the Fabric Interface connection to Hub-2
- 761 The receiving signal pair of Fabric Interface Channel 1 port 0 is unused on Hub-1.
- Hub-1 is receiving on the receive signal pair of Fabric Interface Channel 1 port 1 the
- ROD Readout control information from the ROD on Hub-2.
- Hub-1 is sending on the transmit signal pair of Fabric Interface Channel 1 port 0-1 its
- readout data streams 1-2 destined to the ROD on Hub-2.

766 **5.6.4 Update Channel Interface**

- 767 The 5 ports of the Update Channel (10 pairs of differential signal) are defined by ATCA
- as 5 transmitting and 5 receiving pairs. The first 4 ports of the Update Channel Interface
- are not used according to this ATCA convention and notation. The 5th port of the Update
- 770 Channel Interface is not currently allocated.
- The 4 Transmit pairs of Update Channel port 0-4 form one Gigabit Ethernet link and are
- connected to a Switch port of the local Hub. The 4 Receive pairs of Update Channel port
- 773 0-4 form another Gigabit Ethernet link and are connected to the Hub FPGA on the local
- 774 Hub.


- Note: the exact pin assignment of each port to the four 1000BASE-T signal pairs will be
- specified later while this assignment is internal to Hub operation only (no other L1Calo
- modules are affected).
- 778 This Hub-to-Hub connection allows the Hub FPGA on Hub-2 to connect to the IPbus
- Network serviced by the Ethernet switch on Hub-1.
- 780 The Hub FPGA on Hub-1 is directly connected to the IPbus Network switch on Hub-1
- and can simply ignore this additional Ethernet port that would connect it to the IPMC
- Network serviced by the Ethernet switch on Hub-2.

6 Hub Implementation Details

- 784 This section describes the details of how the FEX-Hub functionality has been
- 785 implemented for the prototype module, which is also the intended implementation for the
- final production module. The prototype FEX-Hub module is shown in **Figure 12** and
- Figure 13, wherein the ROD mezzanine card has been mounted to illustrate the
- anticipated final form of the Hub+ROD pairing.

Figure 12: Prototype FEX-Hub module with ROD mezzanine mounted, as viewed from the front of the module.

Figure 13: Prototype FEX-Hub module, as viewed from the back of the module.

6.1 Physical Layout

789

790

- The FEX-Hub module is implemented as a size 6 HP ATCA card, with the L1Calo-
- specified bump-out in Zone 3 to accommodate the L1Calo RTM. An annotated
- 794 illustration of the physical layout can be found in **Figure 5**.
- The Hub holds the ROD mezzanine card. The ROD is located near the top edge of the
- Hub and runs from the Hub's front panel edge for 200 mm towards the Hub's backplane
- edge. In the direction along the front panel the ROD runs for 100 mm.
- The Hub and ROD are electrically connected by two 400 pin MEG-Array connectors. A
- short 4mm stack height is used so that the Hub and ROD PCBs are quite close to each
- other. The component sides of the Hub and ROD both face in the same direction. The
- intent is to keep the path of the high-speed differential signals from the Hub to the ROD

- as short as possible and to give the maximum available height for the MiniPODs and
- other components on the ROD.
- The Hub and ROD are mechanically connected to each other using standoffs. The Hub
- holds the fiber-optic pig-tail cables and connectors that run from Zone 3 on the Hub to
- the MiniPOD devices on the ROD.
- The primary components on the Hub card are a Xilinx Ultrascale FPGA, three Broadcom
- GbE switches (with associated PHY chips and RJ45 connectors), 74 ON-Semi 1:2 fanout
- 809 chips.

832

- The Hub includes heat sinks for its FPGA, and for it MiniPODs. Along its backplane
- edge the FEX-Hub uses the Zone 1 P10 connector, the full complement of Zone 2
- connectors (J20 through J24), and 4 MPO connectors in Zone 3.

6.2 Readout Signal Distribution

- The FEX-Hub receives readout data on 6 channels of the Fabric Interface from each of
- the 12 node slots in the shelf. This is 72 channels of high-speed readout data from the
- FEX node slots. In addition the Ultrascale FPGA on the other FEX-Hub provides 2
- Fabric Interface channels of readout data. This makes a total of 74 channels of readout
- data from other slots in the shelf. The FPGA on the FEX-Hub holding the ROD also
- provides 2 GTH channels of readout data. Thus a total of 74 GTH receivers on the ROD
- are required to field the readout data from all sources in the shelf.
- The readout data from the backplane is received by the Hub with On-Semi 2-way fan-out
- chips that have built-in termination.
- One output from these fan-out chips runs to 74 MGT inputs on the FEX-Hub's Ultrascale
- FPGA. The other output from these fan-out chips is routed through the 2 Meg-Array
- connectors to the ROD mezzanine card.
- The pinout of the Meg-Array connectors to the ROD has been designed to provide
- optimum signal fidelity for these high-speed differential signals. The intent is to provide
- a clean, uniform, and short route for the traces on the ROD that connect the Meg-Array
- pins to its GTH transceiver inputs. On the ROD the Meg-Array connectors are located
- adjacent to the edges of its Ultrascale FPGA that hold the MGT transceivers.
- Additional details can be found in the technical appendices (Section 15).

6.3 Timing and Trigger Control Distribution

- In normal operation Hub #1 uses a MiniPOD to receive an optical link from FELIX that
- contains the LHC Reference Clock and the TTC Data Stream. Logic in the Hub's FPGA

- separates the LHC Reference Clock from this composite signal and sends it to the
- reference input of a 40.0787 MHz quartz crystal based Phase Locked Loop. The
- composite control information is combined with data flow control signals from the two
- 838 ROD modules in the shelf.
- The FEX-Hub distributes the TTC Clock and the TCC Data Stream to 15 different
- objects that use these signals. The objects that use these TTC signals are: 12 ATCA
- Node Slots, the ROD mezzanine card on this Hub, this Hub's own Ultrascale FPGA, and
- finally distribution of these TTC signals to the other Hub module.

6.3.1 Clock Distribution

- Distribution of the TTC Clock by the Hub is purely by fan-out. Note that the Hub will
- provide a 40.08 MHz clock signal even when it is not receiving a composite TTC input
- 846 signal.

- The specified "pull range" of of this PLL is +- 40 ppm minimum which gives them an
- operating range of 40.077097 MHz to 40.080303 MHz. This operating range covers all
- conditions of operating temperature, supply voltage, and aging. The operating range of
- these PLLs is wider than the frequency range specified in FELIX Requirement
- 2.3.5: "The FE systems shall operate in the BC clock frequency range 40.078886 MHz to
- 40.078973 MHz during proton runs (at 6.5 TeV) and in the range 40.078422 MHz to
- 853 40.078970 MHz during heavy ion runs (at 6.5 TeV)".
- The clean output of the Hub's 40.0787 MHz PLL is fanned out to the following loads:
- as an AC coupled LVDS reference clock to the ROD on this Hub,
- as a logic clock to the FPGA on this Hub,
- as a reference clock to the 320.6296 MHz PLL on this Hub,
- as an AC coupled LVDS reference clock over the backplane to the Hub Module #2 in this shelf,
- as an AC coupled LVDS reference clock over the backplane to the 12 FEX cards in this shelf
- In normal operation Hub Module #2 receives its reference clock over the backplane just
- like the 12 FEX cards. Hub Module #2 does not receive an optical link from FELIX with
- the LHC Reference Clock. In Hub Module #2 the backplane reference clock is sent to
- the reference input of its 40.0787 MHz PLL. From there the clean 40 MHz clock signal is
- 866 fanned out to the following loads:
- as an AC coupled LVDS reference clock to the ROD on this Hub,

- as a logic clock to the FPGA on this Hub,
- as a reference clock to the 320.6296 MHz PLL on this Hub

6.3.2 Control Signal Distribution

- Distribution of the TTC Data Stream by the Hub is more complicated than what's
- required for the clock signal. As shown in the TTC Distribution drawing the TTC Data
- Stream is mixed with the "back data" coming from both the ROD on Hub-1 and the ROD
- on Hub-2. A small part of the logic available in the Hub-1 Virtex FPGA is used to
- combine these 3 data streams.

870

- Fabric Interface Channels are used to carry the TTC Clock and the combined Data
- Stream from Hub-1 to the Node Slots and from Hub-1 to Hub-2. When the Hubs are
- used this way all Node slots receive both their TTC Clock and the combined Data Stream
- from the Fabric Interface channels to Hub-1. Note that the PCB traces on both Hubs are
- the same so that distribution of TTC Data combined with back data from the ROD on
- Hub-1 on one set of Fabric channels while separately distributing TTC Data combined
- with back data from the ROD on Hub-2 on another set of Fabric channels is possible.
- We assume that extraction of the information that a given object requires from the
- combined TTC plus ROD Data Stream will be performed by FPGA firmware in that
- object. Further we assume that all objects will receive the combined Data Stream using a
- 886 MGT Transceiver.
- As noted the Hub module that holds receives the TTC signal will distribute the TTC
- 888 Clock and combined Data Stream signals to the other Hub. This connection is necessary
- to supply these signals to the ROD and Ultrascale FPGA on the other Hub. The physical
- path to carry these signals from the Hub that receives the FELIX TTC signal to the other
- Hub is a pair of Fabric Interface channels that run between the Hubs.
- Note that only the Fabric Interface channels from the Hub that receives the TTC signals
- from FELIX are actually active. The TTC Fabric Interface channels from the other Hub
- 894 (Hub-2) are tied Low by that Hub.

6.4 Base Interface Switch

- 896 Each FEX-Hub provides a 10/100/1000 Base-T Ethernet switch with 19 ports that are
- 897 connected to the following:

- 1 connection to the front panel i.e. the "up-link";
- 1 connection to the ROD (or IPMC) on this Hub;

- 1 connection to the ROD (or IPMC) on the other Hub;
- 1 connection to this Hub's Virtex FPGA;
- 1 connection to the other Hub's Virtex FPGA;
- 1 connection to the Shelf Manager;
- 1 spare front panel connection;
- 12 connections to the "Node" boards in this shelf.
- This Hub switch is implemented using 3 Broadcom BCM53118 devices. These 8 port
- 907 switches include the PHY interface to the BASE-T network connections. Besides
- providing the advantage of build in PHY interface the BCM53118 can be operated as
- either a simple unmanaged switch or if managed it can provide advanced switch features.
- The intent is to provide a prototype Hub switch that is easy for everyone to use but that
- has advanced features available via remote management if needed.
- The prototype Hub module has 6 RJ45 Ethernet connectors on its front panel: 4
- onnectors to its switch, one to the Hub ROD and one to the Hub IPMC. The 4 switch
- onnections are normally used for: the up-link to the external network, two ports for
- onnections to either both Hub RODs or both Hub IPMCs (depending on whether this is
- 916 Hub-1 or Hub-2), and a spare front panel Ethernet connection.
- The point of having these connections accessible via front panel RJ45 connectors is to
- make the prototype Hub easy to uses in various test setups where either one or two Hubs
- may be used. The RJ45 connections to the Hub also allow the switch to be tested without
- any other ATCA cards in the system.

921 **6.5 Hub FPGA**

- The main Hub FPGA is a large Xilinx Ultrascale device: the XCVU125-1FLVC2104I.
- This is speed grade "1", i.e. the normal common slowest speed grade and it is the
- "Industrial" temperature range which is the common temp range for most of these
- 925 UltraScale parts.
- This part has: 40 GTH Transceivers and 40 GTY Transceivers. These are spread across 2
- 927 Super Logic Regions (SLRs) with 20 of each kind of transceiver in each SLR.
- This part has 7 HP Select I/O Banks with 52 I/O signals in each. 4 of the HP banks are in
- 929 SLR #0 and 3 of the HP banks are in SLR #1.

- This part also has 2 HR Select I/O Banks with 26 I/O signals in each. Both of the HR
- banks are in SLR #0. The Hub Module uses both of the HR Banks for 3V3 I/O and it
- uses most of the signals in these Banks.
- More details are available in the technical description of the Hub FPGA implementation.

6.6 The IPM Controller

934

957

- For the purposes of monitoring and controlling the power, cooling and interconnections
- of a module, the ATCA specification defines a low-level hardware management service
- based on the Intelligent Platform Management Interface standard (IPMI). The Intelligent
- Platform Management (IPM) Controller is that portion of a module (in this case, the
- 939 FEX-Hub) that provides the local interface to the shelf manager via the IPMI bus. It is
- 940 responsible for the following functions:
- interfacing to the shelf manager via dual, redundant Intelligent Platform Management
- Buses (IPMBs); it receives messages on all enabled IPMBs and alternates
- transmissions on all enabled IPMBs;
- negotiating the Hub power budget with the shelf manager and powering the Payload
- hardware only once this is completed;
- managing the operational state of the Hub, handling activations and deactivations,
- hot-swap events and failure modes;
- implementing electronic keying, enabling only those backplane interconnects that are
- compatible with other modules in shelf, as directed by shelf manager;
- providing to the Shelf Manager hardware information, such as the module serial
- number and the capabilities of each port on backplane;
- collecting, via an I2C bus, data on voltages and temperatures from sensors on the
- Hub, and sending these data, via IPBus, to the main Hub FPGA;
- driving the BLUE LED, LED1, LED2 and LED3.
- The Hub uses the IPMC mezzanine produced by LAPP as the IPM Controller [1.9]. The
- 956 form factor of this mezzanine is DDR3 VLP Mini-DIMM.

6.7 Power Supplies and Management

- The power design and power management on the FEX-Hub conform to the full ATCA
- 959 PICMG® specification (issue 3.0, revision 3.0). Details of the FEX-Hub power system
- are given in Section 28, and a summary description is provided here.

- A SynQor IQ65033QMA10SNF-G (10A, 300W) power entry module provides -48V dual
- redundant input power distribution and 3.3V/5.0V isolated management power for IPMC
- and its auxiliary circuitry. From the power entry module filtered power, monitored by the
- 964 IPMC, flows to the input of an Isolated +12 Volt converter. This converter makes the
- Isolated +12 Volt power that operates everything on the Hub Module except for the
- power supervision circuits and the IPMC mezzanine card. The Isolated +12 Volt power
- 967 is provided by a SynQor PQ60120QEA25NNS-G 12V 25A 300 Watt quarter-brick
- module. Higher current modules are available if needed.
- By default, on power up, the management power for the IMPC is on. The payload power
- 970 is disabled by the IPMC until it has successfully negotiated power-up rights with the
- ATCA Shelf Manager. To enable bench-top diagnosis, a toggle switch is provided to
- bypass the IPMC. This switch will be disabled for the FEX-Hub modules when they are
- 973 ready for installation.
- 974 Details of the Hub power configuration and management can be found in the technical
- 975 appendices, Section 28.
- The total power consumption of the FEX-Hub is estimated to be approximately 65W,
- measured using a FPGA configuration that enables all MGTs operating at their maximum
- anticipated line rates. Thus, this estimate does not account for any future power
- consumption by algorithms running in the Hub FPGA fabric.

980 **6.8 Thermal Management**

- 981 The ATLAS-standard ATCA shelf uses vertical airflow with water chillers sandwiched
- between shelves. The cooling capacity in ATLAS Point 1 is 400W per slot (front space),
- which is well above the estimated FEX-Hub power consumption. A high thermal-
- onductivity aluminium heat-sinks is used for the main FPGA, and heat sinks are fitted
- for the MiniPOD electro-optical transceivers (if fitted). Finally, the ROD mezzanine is
- allocated 100W of the total cooling budget, and will manage/monitor the temperature of
- 987 its FPGA and MiniPODs.

988

6.9 Front-Panel Layout

- The FEX-Hub includes an extruded aluminum ATCA front panel with an EMC
- gasket. The front panel insertion extraction handles actuate a PCB mounted micro-switch
- 991 for the hot-swap function.
- 992 Penetrations through the front panel include those for the standard ATCA LEDs, those
- 993 for the RJ45 Ethernet connections, LEDs for each of the Hub GbE links to the ROD and
- backplane, JTAG connection, a LEMO connection to the ROD, five that are required for
- the ROD mezzanine card and three spare (functions so far unspecified) Hub specific

- 996 LEDs. Further, the prototype Hub module has a front-panel toggle switch to control the
- power-on sequence, which will be removed for the production Hub modules.
- The Hub prototype module front panel silk screen is shown in **Figure 14**.

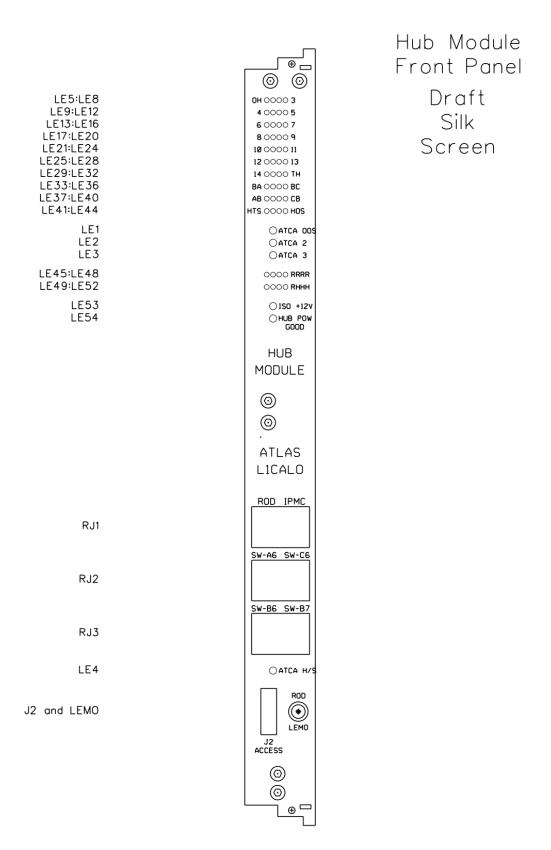


Figure 14: Hub prototype front panel silk screen.

	to OtherHub Activity		to FEX 3	ATCA Mandato Red LED #1	ory: Failure	(IPMC Socket	pin #104)
	yellow LED #6	green LED #7	yellow LED #8	Green	al: TBD (IPMC	Socket pin #	105)
Switch port Link	to FEX 4 Activity	Switch port Link	to FEX 5 Activity	LED #2 			106)
green LED #9	yellow LED #10	green LED #11	yellow LED #12	Red LED #3	it: IBD (IPMC	Socket pin #	106)
Switch port Link	to FEX 6 Activity	Switch port	to FEX 7	Driven by RO			
green LED #13	yellow LED #14	green LED #15	yellow LED #16	ConfigDone Green LED #45	PowerGood Green LED #46	SMB_Alert Red LED #47	GP Blue LED #48
Switch port Link	to FEX 8 Activity	Switch port Link	to FEX 9	From ROD	Driven by H		
green LED #17	yellow LED #18	green LED #19	yellow LED #20	Run Blue	TBD Green	TBD Yellow	TBD Red
Switch port		Switch port		LED #49 	LED #50	LED #51 	LED #52
Link	Activity	Link	Activity	Hub Module I areen	Isolated +12V	present	
green LED #21	yellow LED #22	green LED #23	yellow LED #24	LED #53			
Switch port		Switch port		Hub Module F	Power Good		
Link green	Activity yellow	Link green	Activity yellow	LED #54			
LED #25	LED #26	LED #27	LED #28	RJ1 left/low		RJ1 right/u	
Switch port Link	to FEX 14 Activity	Switch port	Hub FPGA Activity	ROD Mezzanir Link	ne Activity		o LED signal de available
green	yellow	green	yellow	green	yellow ´	green	yellow
LED #29	LED #30	LED #31	LED #32		LED #58		LED #56
Switch B por		Switch B por		RJ2 left/low Switch A Por		RJ2 right/u Switch C Po	
green	Activity yellow	green	Activity yellow	Link	Activity	Link	Activity
ĽED #33	LED #34	LED #35	LED #36		yellow LED #62	green LED #59	yellow LED #60
Switch A por Link	t 7 (to B) Activity	Switch C po	rt 7 (to B) Activity	 RJ3 left/low	 ver	RJ3 right/u	pper
green	yellow	green	yellow	Switch B Por	rt 6	Switch B Po	rt 7
LED #37	LED #38	LED #39	LED #40	Link areen	Activity vellow	Link areen	Activity vellow
	s Chip conx		ys Chip conx		LED #66		LED #64
to this Hub'	s Switch Activity	to other Hub Link	o's Switch Activity		ry: Hot Swap	(IPMC Socket	pin #103)
green LED #41	yellow LED #42	green LED #43	yellow LED #44	Blue LED #4			

Figure 15: Description of Hub front panel LED definitions.

1004 6.9.1 Front Panel LEDs

- 1005 A description of the LED definitions is given in **Figure 15**. Further details of the Hub
- 1006 LEDs are given in the technical specification Appendix, Section 24.

6.10 Rear Inputs and Outputs

1008 6.10.1 ATCA Zone 1

1007

- 1009 This interface is configured according to the ATCA standard. The connections include
- 1010 dual, redundant -48V power supplies,
- 1011 hardware address.
- 1012 • IPMB ports A and B (to the ATCA Shelf Manager),
- 1013 • shelf ground,
- 1014 logic ground.
- 1015 See the ATCA specification for further details [1.7].

6.10.2 ATCA Zone 2 1016

- 1017 All Zone 2 connections are described in detail in Section 5 and the technical appendices
- 1018 (Sections 15, 0 and 17). These include:
- Eight Fabric Interface channels to each node slot: 1019
- o One copy of the 40.08 MHz LHC clock (Hub Tx), 1020
- o One copy of the combined TTC/Hub-ROD1 CTRL high-speed serial link 1021
- 1022 (Hub Tx),
- 1023 o Six lanes of high-speed FEX readout data serial links (Hub Rx)
- Gigabit Ethernet links in the Base Interface to/from each node slot. 1024

1025 6.10.3 ATCA Zone 3

- The ATCA Zone 3 houses four Molex MTP backplane connectors, which will connect 1026
- directly to the L1Calo Rear Transition Module (RTM). Note that, here the FEX-Hub 1027
- 1028 violates the standard ATCA form factor, in that the front board protrudes through Zone 3
- 1029 into the rear space of the ATCA shelf. All L1Calo ATCA modules conform to this
- 1030 modified standard [1.14].

6.11 FEX-Hub PCB 1031

- 1032 Figure 5 illustrates the layout of the main components on the FEX-Hub. Figure 17,
- 1033 Figure 18 and Figure 19 illustrate the Gigabit Ethernet switch implementation, the core
- 1034 TTC distribution and high-speed data distribution on the Hub module, respectively. The
- remainder of this section describes the PCB layout of the Hub module. 1035

The Hub printed circuit board is a standard size ATCA card with the RAL specified "bump out" in the Zone 3 area to accommodate up to 4 MPT optical connectors for use with a Rear Transition Module.

There are 22 copper are in the Hub PCB, used in the following way:

Layer Type Function	Controlled
	Impedance
Signal Traces	100 Ohm Diff
Ground Plane Upper Type	
Signal Traces	100 Ohm Diff
Ground Plane Upper Type	
Signal Traces	100 Ohm Diff
Ground Plane Upper Type	
Signal Traces	100 Ohm Diff
Ground Plane Middle Type	
Power Fills and Signals	100 Ohm Diff
	Middle Type
	Middle Type
	100 Ohm Diff
Signal Traces	100 Ohm Diff
Ground Plane	Lower Type
Signal Traces	100 Ohm Diff
Ground Plane Lower Type	
Signal Traces	100 Ohm Diff
Ground Plane Lower Type	
Signal Traces	100 Ohm Diff
	Signal Traces Ground Plane Upper Type Signal Traces Ground Plane Upper Type Signal Traces Ground Plane Upper Type Signal Traces Ground Plane Middle Type Power Fills and Signals Ground Plane Power Fills Power Fills Power Fills Ground Plane Power Fills and Signals Ground Plane Signal Traces

The stack-up of the Hub card is shown in **Figure 16**.

	Calc			
Layer	Thickness	Primary Stack	Description	Dk / Df
Layer - 1	0.0127 0.0508	16	Taiyo 4000-BN 1/2oz Sig (Std Plt)	3.90 / 0.0330
Layer - I	0.0965	1080HRC	FR408HR	3.42 / 0.0098
Layer - 2	0.0152		1/2oz P/G	
	0.1270	0.0050 (1-2116)	FR408HR	3.77 / 0.0089
Layer - 3	0.0152	(1-2116)	1/2oz Sig	
	0.1422	1080	FR408HR	3.44 / 0.0098
Layer - 4	0.0152		1/2oz P/G	
	0.1270	0.0050 (1-2116)	FR408HR	3.77 / 0.0089
Layer - 5	0.0152		1/2oz Sig	
	0.1422	1080	FR408HR	3.44 / 0.0098
Layer - 6	0.0152		1/2oz P/G	
	0.1270	0.0050 (1-2116)	FR408HR	3.77 / 0.0089
Layer - 7	0.0152		1/2oz Sig	
	0.1422	1080	FR408HR	3.44 / 0.0098
Layer - 8	0.0152	-	1/2oz P/G	
	0.1270	0.0050 (1-2116)	FR408HR	3.77 / 0.0089
Layer - 9	0.0305		1oz Mix	
	0.1397	1080	FR408HR	3.44 / 0.0098
Layer - 10	0.0152	0.0000	1/2oz P/G	
	0.0762	0.0030 (1-1080)	FR408HR	3.48 / 0.0096
Layer - 11	0.0305		1oz Mix	
	0.0813	106	FR408HR	3.24 / 0.0106
Layer - 12	0.0305		1oz Mix	
	0.0762	0.0030 (1-1080)	FR408HR	3.48 / 0.0096
Layer - 13	0.0152		1/2oz P/G	
	0.1397	1080	FR408HR	3.44 / 0.0098
Layer - 14	0.0305	0.0050	1oz Mix	
	0.1270	(1-2116)	FR408HR	3.77 / 0.0089
Layer - 15	0.0152		1/2oz P/G	
	0.1422	1080	FR408HR	3.44 / 0.0098
Layer - 16	0.0152	0.0050	1/2oz Sig	
	0.1270	(1-2116)	FR408HR	3.77 / 0.0089
Layer - 17	0.0152		1/2oz P/G	
	0.1422	1080	FR408HR	3.44 / 0.0098
Layer - 18	0.0152	0.0050	1/2oz Sig	
	0.1270	(1-2116)	FR408HR	3.77 / 0.0089
Layer - 19	0.0152		1/2oz P/G	
	0.1422	1080	FR408HR	3.44 / 0.0098

Figure 16: Hub PCB stackup details.

The Hub PCB includes 10 ground planes that are needed to facilitate routing of the high-speed differential signals. The 3 different ground plane patterns are needed to allow relief of the ground plane layers that are immediately under the AC coupling capacitors that are used in most of these high-speed differential signals. These 0201 size AC coupling capacitors are needed on both sides of the PCB and relief of the ground planes immediately under their pads minimizes the transmission line impedance bump caused by these capacitors.

- In the layers with high speed differential traces the dielectric layers are kept thick enough
- so that the 100 Ohm traces do not become so narrow that their losses are too high. This
- results in card with an overall thickness of 3.0 mm. From the backside of the card, in a
- narrow strip along the top and bottom edges, the thickness of the card is milled down to
- 1057 2.4 mm so that it fits into standard ATCA card guides.
- The layout of the Hub PCB requires routing of 384 high-speed differential pairs. The
- main complication in this high speed routing is at the output of the 74 Channel FEX
- 1060 Readout Data MGT Fanout where all of the signals routing up to the ROD must cross
- over those routing to the Hub FPGA. This crossover is done without any layer changes
- by having all MGT differential pairs running to the ROD located in layers 14, 16, 18, 20
- and all MGT differential pairs routing to the Hub FPGA located in layers 3, 5, 7, 9.
- Layer transitions in the high speed signals are only used where these signals come to the
- surface to connect to a component such as the Hub FPGA or the AC coupling capacitors.
- These required high speed layer transitions are implemented with a 4 via component that
- provides 2 ground current return vias along with the differential via pair. The ground
- planes are relieved in an oval pattern around the differential via pair to maintain a
- 1069 constant transmission line impedance All high speed trace pairs are length matched to
- 1070 0.5 mm using serpentines. All vias and Zone 2 backplane connector pin holes in the high
- speed traces have been back-drilled to remove the via stubs. 7 back-drill depths are used
- from the bottom side of the card and 4 back-drill depths are used from the top side.
- The Hub PCB is built with Isola FR408HR laminate which is a low dielectric loss
- laminate that is appropriate for 10 Gb/sec digital routing. This is a high transition
- temperature laminate to facilitate assembly of the Hub Modules with a lead free process.
- The Hub design includes many components that use a center Exposed Pad that is soldered
- to a grounded thermal land for cooling. These thermal lands include an array of vias that
- connect them to the internal ground planes to help carry heat away from the associated
- 1079 component. To prevent wicking of solder into these vias (which would cause a poor
- solder connection to the associated component) hole plugs have been used in all thermal
- land via arrays on both the top and bottom sides of the Hub PCB.
- The Hub design uses 10 main power buses. There are not enough layers available to
- route each power bus on its own PCB layer. Instead 58 power area fills on 5 different
- layers are used to route the power buses on the Hub card.
- The Hub PCB has 9162 drill through holes of 20 different hole types. All drills are
- through all layers. Blind vias are not used.
- The bare Hub PCB is manufactured with a gold surface finish to provide an optimum
- solder re-flow process during assembly.

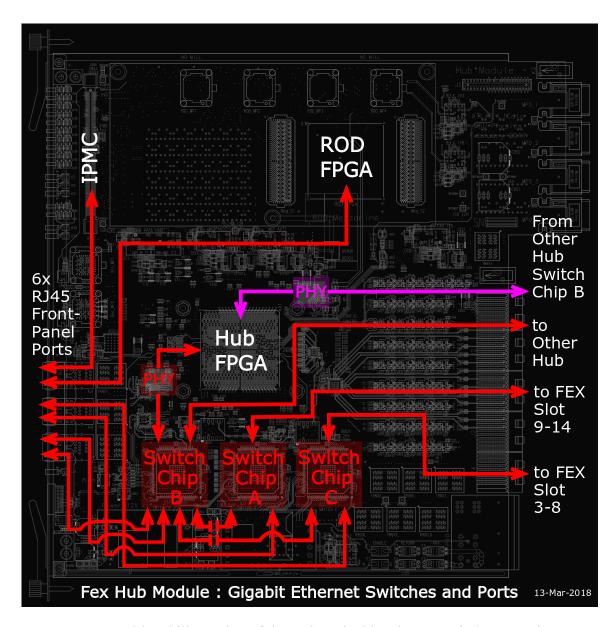


Figure 17: Board-level illustration of the Hub's Gigabit Ethernet switch connections.

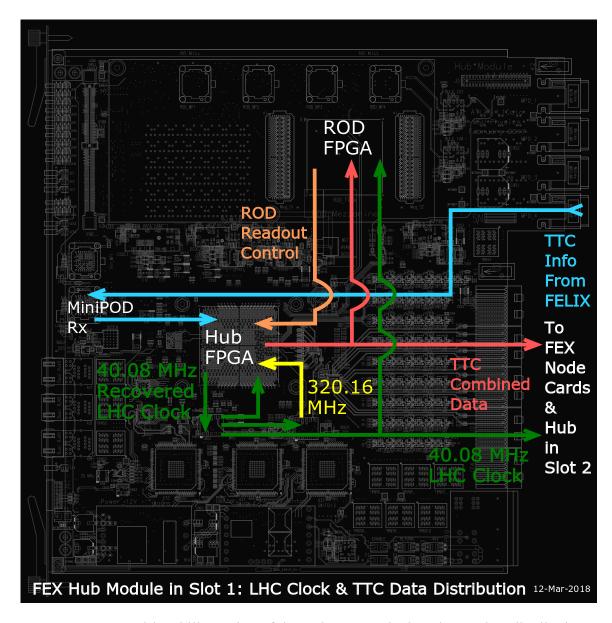


Figure 18: Board-level illustration of the Hub's LHC clock and TTC data distribution.

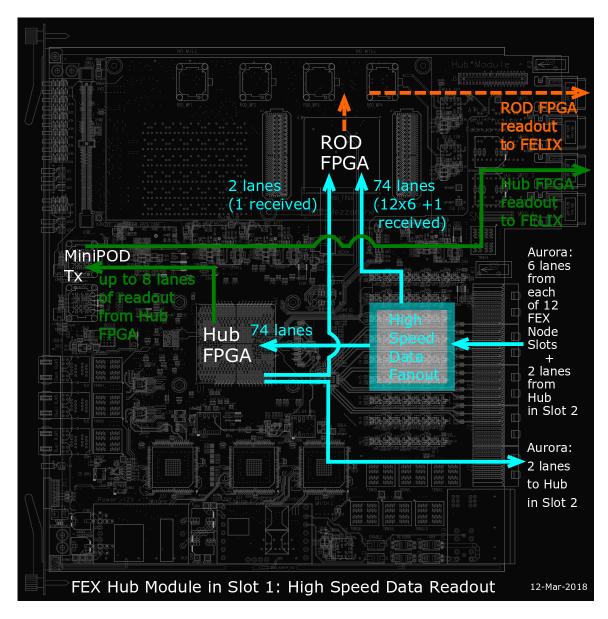


Figure 19: Board-level illustration of the high-speed data interfaces for the Hub.

7 Programming Model

The Programming model is preliminary, and is expected to change significantly during detailed design.

7.1 Guidelines

1096

1099

1106 1107

1108

- The slow-control interface of the FEX-Hub obeys the following rules.
- The system controller can read all registers; there are no 'write only' registers.
- Three types of register are defined: Status Registers, Control Registers and Pulse Registers.
- All Status Registers are read-only registers. Their contents can be modified only by the Hub hardware.
 - All Control Registers are read/write registers. Their contents can be modified only by system controller. Reading a Control Register returns the last value written to that register.
- All Pulse Registers are read/write registers. Writing to them generates a pulse for those bits asserted. Reading them returns all bits as zero.
- Attempts to write to read-only registers, or undefined portions of registers, result in the non-modifiable fields being left unchanged.
- If the computer reads a register (e.g. a counter) which the Hub is modifying, a well-defined value is returned.
- The power-up condition of all registers bits is zero, unless otherwise stated.

7.2 Register Map & Controllable Functions

- The register map and the controllable functions are described in the Hub firmware
- specification [1.16].

8 Testing and Commissioning

- The testing and commissioning of the FEX-Hub module will be performed in two modes:
- (1) standalone as a single module in an ATCA shelf, (2) together with FEX (or test
- module) and ROD modules to test core FEX system functionality. Both of these testing
- phases can be performed with either one or two Hubs per shelf.
- There insufficient test modules capable of sourcing data in the ATCA backplane
- available in the L1Calo prototype phase to fully populate all 12 node slots, thus the
- current FEX-Hub design has not been tested with a full shelf of source nodes. Thus, a
- bandwidth test following the Final Design review will be performed prior to the
- 1128 Production Readiness Review.

1119

1132

1141

1142

11431144

- 1129 A detailed list of commissioning tests for the production FEX-Hub module is presented
- in Appendix Section 32. While this list may grow to cover more in-depth testing of Hub
- interfaces, it is already covering all Hub functionality.

8.1 Standalone and FEX System Tests

- 1133 Standalone Hub tests will be performed to verify power distribution, FPGA configuration
- and basic functionality of the GbE network. To facilitate the requirement of Hub-to-Hub
- testing, the Hub module:
- allows testing and validation of the DCS and control networks via direct connections to a second Hub module;
- allows testing and validation of the DCS and control networks via front-panel connections to external computers, allowing thorough scanning of all IPbus targets;
 - allows the sending and receiving of high-speed signals from one Hub to another, providing a path to study Fabric Interface bandwidth limitations;
 - allows testing and validation of the fanout of clock and TTC control data information over the Fabric Interface.
- To facilitate the requirement of FEX-Hub-ROD testing, the Hub module:
- provides Fabric Interface connections to the ROD with no Hub configuration required;
- provides network switching functions with no Hub configuration required;
- provides a clock to all node slots with no Hub configuration required;
- functions as a single module without a second Hub module in the ATCA shelf;
- sees a copy of the same data delivered to the ROD module.

1152 **8.2 Full Bandwidth Tests**

- To facilitate testing of the FEX-HUB and ROD with a full shelf of data sources,
- 1154 Michigan State University has designed a Hub Test Module (HTM) for this purpose. The
- HTM is an ATCA carrier card hosting a commercial mezzanine with a Kinex-7 FPGA.
- 1156 Thus, the HTM is capable of emulating FEX modules by
- sourcing 6 lanes of multi-gigabit serial transmission lines to both Hub slots;
- receiving the Hub-sourced clock;

- receiving the combined TTC info signal from the Hub;
- connecting to both GbE networks provided via Hub slots 1 and 2.
- Using a full shelf of HTM cards, the bandwidth conditions of a full FEX shelf will be
- tested. These tests will include a simultaneous test of:
- 6 lanes of data traffic to both Hub slots from all 12 node slots, with a goal of testing up to the maximum anticipated L1Calo bandwidth of 9.6 Gbps;
- distribution of the Hub clock to all 12 node slots;
- distribution of the Hub TTC combined info to all 12 node slots;
- full-bandwidth GbE traffic on both Hub Ethernet networks;
- full-bandwidth ROD-Hub links, including the backplane links between Hub slots;
- While all of these tests can be performed individually with a single test module, this test
- will emulate the expected rigors of L1Calo operations over Run 3 and Run 4.

9 FEX-Hub Prototype Tests

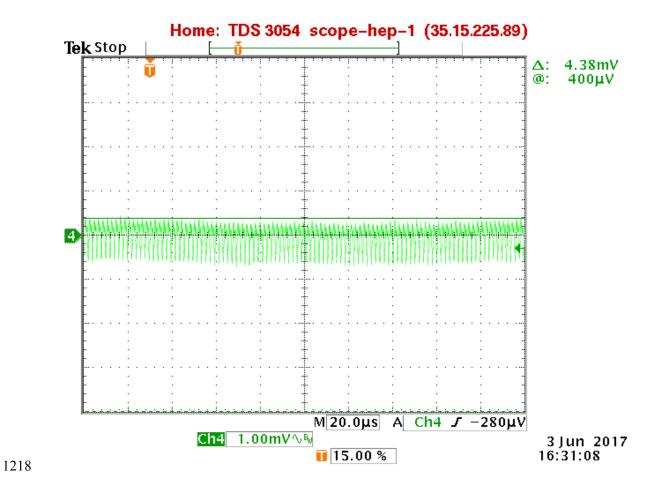
1172

1202

1203

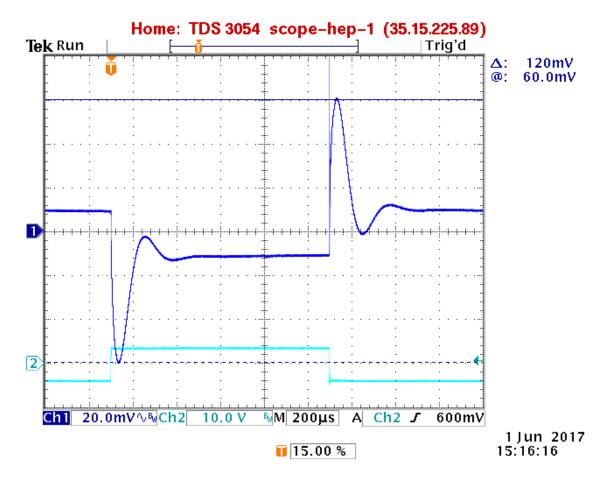
1173 9.1 **Overview** Eight FEX-Hub prototype modules were manufactured in 2017. All of these modules 1174 1175 have been tested, though some tests were only performed on a subset of Hub cards. Two 1176 of the prototype cards have been shipped to Cambridge, and are now part of the ROD test 1177 module bench. This section describes the test results for these prototype modules. While 1178 this section summarizes the salient details of the Hub tests, a full description of the Hub 1179 commissioning tests can be found in Section 32, which forms the production Hub 1180 commissioning plan as well. 9.2 **Power and Cooling Tests** 1181 To perform power and cooling tests, all Hub MGTs were activated and running in the 1182 anticipated normal Hub configuration (Tx and Rx together). The FPGA fabric is 1183 1184 primarily allocated to IBERT logic, but this is estimated to be a relatively small fraction 1185 of the FPGA fabric capacity. 9.2.1 1186 **Power Consumption** 1187 The two primary power draws on the Hub are the Hub FPGA, which consumes 33.4W in the configuration anticipated for L1Calo operations. The high-speed data fanout chips 1188 consume 21.8W in total. The MiniPODs, switch chips and IPMC all together consume 1189 1190 less than 10W. The total power consumption for the Hub is found to be 67W in normal 1191 L1Calo operating conditions, which increases to 72W when operating all unconnected MGTs. The Hub supply capacity is 300W, of which 100W is reserved for the ROD. 1192 1193 9.2.2 MGT Rail Power Supply Capacity The capacity of the Hub MGT rail power supplies were a significant concern for the 1194 1195 prototype design, as a safety margin of 40% in DCDC supply capacity was desired for the all MGT rail supplies. This concern was driven by an apparent discrepancy between the 1196 1197 predictions by the Xilinx Power Estimator (XPE) and measurements on Xilinx development boards, also observed by other ATLAS Xilinx users. 1198 1199 The current draw measurements are given in the following table. The smallest margin 1200 observed is for MGT AVTT at 36.5%, which is a satisfactory safety margin as the design 1201 is already using all MGTs supplied by that converter.

	FPGA_	MGT_	MGT_	SWCH	BULK	FAN_	BULK_
Converter	CORE	AVCC	AVTT	_1V2	_1V8	1V8	3V3
Voltage	0.95 V	1.00 V	1.20 V	1.20 V	1.80 V	1.80 V	3.3 V
Draw	8.04 A	9.38 A	12.7 A	1.94 A	0.62 A	12.1 A	2.25 A
Capacity	40 A	20 A	20 A	12 A	12 A	20 A	12 A


1206 1207

1208

In this configuration the FPGA is consuming 33.4W. It should be noted that we do not have direct access to the 1V8 MGT_AVAUX and 1V3 BULK_2V5 buses, but these are included in the BULK 3V3 current.


9.2.3 MGT Rail Supply Noise

- 1209 The Xilinx FPGAs and ON-Semi fanout chips specify a noise tolerance for the MGT rail
- supplies, typically smaller than 10 mV pk-pk. Both GE (Lineage Power) D-Lynx series
- and TI (Power Trends) PTH08Txyz series converters were evaluated for use on the Hub
- Module, which both advertise noise characteristics compatible with the Hub
- requirements. The D-Lynx converters were selected, primarily for the PMbus
- 1214 connections offered on their control chips.
- All supplies on the Hub prototype have been tested and fall well within the noise
- tolerance required. An example measurement is shown in Figure 20 for the fanout 1.8V
- supply, obtained with all DCDC supplies running.

Figure 20: Noise measurement for the 1.8V fanout DCDC power supply.

Tests of the Hub DCDC supply stability have also been performed, and their performance has been found to be satisfactory. An example is given in **Figure 21** wherein the MGT AVTT 1.2V supply load is pulsed from 7.2A to 12A at 500 Hz.

Figure 21: Stability test of the MGT_AVTT DCDC supply, obtained while pulsing the supply load from 7.2A to 12A at a 500 Hz rate.

9.2.4 FPGA Silicon Temp

The Hub FPGA silicon temperature has been measured using a full load, as described above, and with normal shelf cooling fan speeds. Measurements of FPGA silicon temperature across the Hub prototypes are typically 45C with small variance. It should be noted that the usage of the FPGA fabric is minimal in this test, but it is not anticipated that the Hub FPGA usage will be significant. In tests that activate all unused Hub FPGA MGTs, the power draw increases by 5W to 38W and the silicon temperature increases by 1C to 46C.

9.3 Clock Tests

9.3.1 Clock Generation and Distribution

The Hub module produces a 40.0787 MHz LHC reference clock with jitter characteristic that is OC-192 compliant (optical carrier standard for 10 Gbps transmission).

- All clock distribution links have been verified at the recipient endpoint: this Hub's ROD,
- other Hub and all node slots using the FEX Test Module.

1241 **9.3.2 Hub PLL Relock**

- During testing of the Hub Modules these PLLs are checked to verify their "re-lock"
- frequency range, i.e. the reference frequency is initially set outside the PLL's operating
- range and then slowly brought within the operating range and the frequency where re-
- lock occurs is recorded. The re-lock test is done with the initial reference frequency set
- both below and above the operating range. The re-lock range of the 40.0787 MHz PLLs
- is typically a little over 2x the +- 40 ppm minimum specified by their manufacturer. Note
- that this test also verifies that the Hub Modules will automatically re-lock to the LHC
- Reference Clock as soon as it becomes available again after an interruption. A signal
- indicating the state of the 40.0787 MHz PLL (i.e. locked or not locked) is sent to the
- Hub's FPGA where it can be made visible in an IPBus register.

1252

1262

- 1253 When the LHC Reference Clock frequency is slewing the phase of the output of the
- Hub's 40.0787 MHz PLL will shift from its normal position with respect to its reference
- input. When the LHC is slewing up in frequency the output phase of the PLL will fall
- behind its normal position. At the maximum LHC slew rate of 220 Hz/sec there is a
- phase shift of about 3.2 degrees in the output of the PLL. Such a shift in phase is not
- something special to the PLLs used on the Hub Module rather it is an inherent
- characteristic of the PLL architecture. Increasing the "loop bandwidth" of the PLL will
- reduce this phase shift and reduce the ability of the PLL to reject the jitter in its input
- reference clock.

9.4 High-Speed Link Tests

- 1263 Tests of the electrical connectivity and stability of the Hub high-speed links have been
- 1264 performed. This includes:
- 4x MiniPOD receiver MGT links to the Hub FPGA (9.6 Gbps);
- 8x MiniPOD transmitter MGT links from the Hub FPGA (9.6 Gbps);
- 72x MGT links from the FEX data fanout to the Hub and ROD FPGAs (6.4 Gbps and 10.26 Gbps);
- 2x (1x) MGT links from the other Hub slot to the Hub (ROD) FPGA (9.6 Gbps);
- 2x (1x) MGT links from this Hub to the other Hub (ROD) FPGA (9.6 Gbps);
- 14x MGT links from the Hub FPGA to the FEX slots (12x), the ROD on this Hub (1x) and the other Hub (1x) (6.4 Gbps);
 - 1x MGT link for ROD/Combined data from the other Hub (9.6 Gbps);
- 1x MGT link from the ROD on this Hub (9.6 Gbps);

1275

- All high-speed links were tested using the Xilinx IBERT test firmware using SRBS7 test patterns. The data source was a FEX Test Module (FTM). All tests were performed at
- the line rates expected to be used for L1Calo operations. However due to limitations of
- the FTM, some tests were not able to be performed at 9.6 Gbps and in such instances a
- line rate of 10.26 Gbps was used. And due to the availability of only one FTM, only a
- subset of links corresponding to a single node slot could be tested simultaneously.

- The duration of the tests was limited by the number of Hub modules required to be tested
- and the availability of the FTM. Thus, all links were tested to at least a bit error rate
- 1285 (BER) of less than 1E-12 and a subset was tested to 1E-16. In all tests of all Hub
- prototype cards, zero errors were observed.

1287

1290

- As noted in the test plan, these tests are planned to be repeated using Hub Test Modules
- 1289 (HTMs) in a configuration that allows all links to be tested simultaneously.

9.5 Gigabit Ethernet Tests

- This is a summary of the FEX-Hub Gigabit Ethernet tests, described in more detail in
- 1292 [1.15]. The FEX-Hub has three interconnected 8-port Broadcom GbE switch chips
- (denoted A, B, C here). Switch chip B has ports connected to both the other chips, A and
- 1294 C. The scope of the tests performed was to evaluate that all 22 GbE switch ports
- maintain reliable GbE links and that the bandwidth characteristics of the FEX-Hub GbE
- network are desirable.
- Regarding the first test aspect, verifying connectivity of the FEX-Hub GbE switch ports,
- all 8 of the Hub prototypes and one Hub prototype without a Ultrascale FPGA mounted
- were fully qualified in this test. No links were found to have connection or transmission
- 1300 issues.
- 1301 Regarding the second test aspect, it was found that using the FEX Hub Module
- connections between a single client and a single server maintain a bandwidth of 935
- 1303 Mbps, which is the same as that of the commercial switch. It is further found that when
- sending data from multiple clients to a single server, an overall bandwidth of 940 Mbps
- per switch is maintained. When using a single source of data into chip A and sinking via
- chips B or C, we further find bandwidth reliability. When multiple sources are sent into a
- multiple chips and sinked via a single chip, we observe that the bandwidth is split
- between sources, reflecting the maximum bandwidth for the single source chip. For
- example, when sourcing from chips A and C via a sink on chip B, we find a maximum
- bandwidth of 470 Mbps for chips A and B. This pattern continues as more sources are
- added. This behaviour is as expected for the design, and reflects what one would expect
- from a commercial GbE switch.

1313 9.6 IPMC, Slow Control and Monitoring Tests

- 1314 A LAPP IPMC has been used on the FEX-Hub prototypes. The basic functions such as
- power negotiation; Ethernet connection, LED management and hot swap have been tested
- successfully. For the final FEX-Hub, the LAPP IPMC may be replaced by the pin-
- 1317 compatible CERN IPMC.

1318

9.7 Miscellaneous tests

- All physical aspects of the Hub card have been verified: dimensions, insertion/extraction
- forces, ground points, control signals, I2C bus and feasibility of heat sinks. Furthermore,
- all front-panel features are verified: LEDs, JTAG, RJ45 jacks, and LEMO. The
- communication and control of all components on the card has been verified.

9.8 Conclusions

- The FEX-Hub prototype modules have been systematically tested, yielding successful
- outcomes for all tests. Based on the results of these tests, there is no indication for
- changes to the Hub PCB or implementation of core functions. No tests thus far suggest
- that current Hub design will not satisfy the L1Calo operational requirements.

1328	10 Planned Hub Module Production Yields
1329 1330 1331	The construction of FEX-Hub modules will occur in two phases, prototype and production. The Hub modules were fabricated spring 2017. A total of eight prototype modules were produced, with delivery as follows:
1332	• Two prototype modules for function testing at MSU;
1333	• Two prototype modules for an integration test rig at CERN;
1334 1335	 One prototype module each for Rutherford and Cambridge, for eFEX and ROD testing;
1336	• One prototype module for Argonne National Lab, for FELIX integration tests.
1337	One spare prototype Hub module.
1338 1339	A total of nineteen production Hub modules will be produced by April 2019, with delivery anticipated as:
1340 1341	• Eight production modules to support the L1Calo system eFEX, jFEX and L1Topo shelves at CERN (note, there are two eFEX shelves and two Hubs per shelf);
1342	• Three spare production modules at CERN, dedicated for the L1Calo system;
1343	• Two production modules for function testing at MSU;
1344	• Two production modules the CERN test facility;
1345 1346	 Two production modules for Rutherford and Cambridge (one per institute), for eFEX and ROD testing;
1347	Two spare production module to be used as needed.
1348	11 Special Notes
1349 1350 1351	• The FEX-Hub module is not providing Fabric or Base Interface connections to the 2 slots that do not exist in 14-slot shelves, i.e. shelves with 2 Hub slots and only 12 Node slots.
1352	• As shown the FEX-Hub's Base Interface switch provides a connection to only one

Shelf Manager.

1354 **12 Glossary**

ATCA Advanced Telecommunications Computing Architecture (industry

standard).

BC Bunch Crossing: the period of bunch crossings in the LHC and of the

clock provided to ATLAS by the TTC, 24.95 ns.

BCMUX Bunch-crossing multiplexing: used at the input to the CPM, JEM (from

Phase I) and eFEX, this is a method of time-multiplexing calorimeter

data, doubling the number of trigger towers per serial link.

CMX Common Merger Extended Module.

CP Cluster Processor: the L1Calo subsystem comprising the CPMs.

CPM Cluster Processor Module. CTP Central Trigger Processor

DAQ Data Acquisition

DCS Detector Control System: the ATLAS system that monitors and controls

physical parameters of the sub-systems of the experiment, such as gas pressure, flow-rate, high voltage settings, low-voltage power supplies,

temperatures, leakage currents, etc.

ECAL The electromagnetic calorimeters of ATLAS, considered as a single

system.

ECR Event Counter Reset signal from the TTC, used to initiate clearing of

ROD memories

eFEX Electron Feature Extractor.

FEX Feature Extractor, referring to either an eFEX or jFEX module or

subsystem.

FIFO A first-in, first-out memory buffer.

FPGA Field-Programmable Gate Array.

HTM Hub Test Module

HCAL The hadronic calorimeters of ATLAS, considered as a single system.

IPbus An IP-based protocol implementing register-level access over Ethernet

for module control and monitoring.

IPMB Intelligent Platform Management Bus: a standard protocol used in ATCA

shelves to implement the lowest-level hardware management bus.

IPM Intelligent Platform Management Controller: in ATCA systems, that

Controller portion of a module (or other intelligent component of the system) that

interfaces to the IPMB.

IPMI Intelligent Platform Management Interface: a specification and

mechanism for providing inventory management, monitoring, logging,

and control for elements of a computer system. A component of, but not exclusive to, the ATCA standard.

JEM Jet-Energy Module.

JEP Jet-Energy Processor: the L1Calo subsystem comprising the JEMs.

jFEX Jet Feature Extractor.

JTAG A technique, defined by IEEE 1149.1, for transferring data to/from a

device using a serial line that connects all relevant registers sequentially.

JTAG stands for Joint Technology Assessment Group.

LOA In Run 4, the Level-0 trigger accept signal.

L0Calo In Run 4, the ATLAS Level-0 Calorimeter Trigger.

L1A The Level-1 trigger accept signal.

L1Calo The ATLAS Level-1 Calorimeter Trigger.

LHC Large Hadron Collider.

MGT As defined by Xilinx, this acronym stands for Multi-Gigabit Transceiver.

However, it should be noted that it denotes a multi-gigabit transmitter—

receiver pair.

MiniPOD An embedded, 12-channel optical transmitter or receiver.

MPO Multi-fibre Push-On/Pull-Off: a connector for mating two optical fibres.

PMA Physical Media Attachment: a sub-layer of the physical layer of a

network protocol.

ROD Readout Driver.

RoI Region of Interest: a geographical region of the experiment, limited in η

and ϕ , identified by the Level-1 trigger (during Run 3) as containing candidates for Level-2 trigger objects requiring further information. In Run 4, RoIs are used in the same between the Level-0 and Level-1

triggers.

Shelf A crate of ATCA modules.

SMA Sub-Miniature version A: a small, coaxial RF connector.

Supercell LAr calorimeter region formed by combining E_T from a number of cells

adjacent in η and ϕ .

SLR Super Logic Region. A single silicon die in a Xilinx Ultrascale FPGA,

TOB connected by a silicon interposer.

Trigger Object. A Compact data structure describing a trigger feature

detected by a FEX module.

TTC The LHC Timing, Trigger and Control system.

XTOB Extended Trigger Object. A data packet passed to the readout path,

contained more information about a TOB than can be accommodated on

the real-time path.

13 Document Revision History

Version	Date	Comments
0.01	16-09-14	Preliminary Draft
0.02	19-09-14	Language & grammar edits.
0.03	1-10-14	Final version for Preliminary Design Review
1.1	13-03-18	Updated version for Final Design Review

1359 **14 Appendix 1: Backplane Connector/Pin Tables**

- 1360 This Appendix enumerates the connector and pin connections intended for the Hub-FEX
- and Hub-Hub backplane links in the Fabric Interface, Base Interface and Update
- 1362 Interface.

1365

1366

- In the convention presented here, the FEX numbering below presumes that the module
- called "FEX 01" is located in Logical Slot 3, FEX 02 in Slot 4,... and FEX 12 in Slot 14.

14.1 Connector and Signal Usage for a HUB Slot

Connector Usage for a HUB Slot								
Connect Number	Row Num	Channel	 a b	Connector I	Pin Pairs e f	 g h		
J20/P20	01	Clocks	CLK1A+ CLK1A- Unused signal pair	CLK1B+ CLK1B- Unused signal pair	CLK2A+ CLK2A- Unused signal pair	CLK2B+ CLK2B- Unused signal pair		
J20/P20	02	Upd Chan & Clocks	Tx4(UP)+ Tx4(UP)- Unused signal pair	Rx4(UP)+ Rx4(UP)- Unused signal pair	CLK3A+ CLK3A- Unused signal pair	CLK3B+ CLK3B- Unused signal pair		
J20/P20	03	Update Channel	Tx2(UP)+ Tx2(UP)- GE Pair C HUB FPGA	Rx2(UP)+ Rx2(UP)- GE Pair C HUB Switch	Tx3(UP)+ Tx3(UP)- GE Pair D HUB FPGA	Rx3(UP)+ Rx3(UP)- GE Pair D HUB Switch		
J20/P20	04	Update Channel	Tx0(UP)+ Tx0(UP)- GE Pair A HUB FPGA	Rx0(UP)+ Rx0(UP)- GE Pair A HUB Switch	Tx1(UP)+ Tx1(UP)- GE Pair B HUB FPGA	Rx1(UP)+ Rx1(UP)- GE Pair B HUB Switch		
J20/P20	05	Fabric Channel 15	Tx2[15]+ Tx2[15]- Unused signal pair	Rx2[15]+ Rx2[15]- Unused signal pair	Tx3[15]+ Tx3[15]- Unused signal pair	Rx3[15]+ Rx3[15]- Unused signal pair		
	06	15	Tx0[15]+ Tx0[15]- Unused signal pair	Rx0[15]+ Rx0[15]- Unused signal pair	Tx1[15]+ Tx1[15]- Unused signal pair	Rx1[15]+ Rx1[15]- Unused signal pair		
J20/P20	07	Fabric Channel 14	Tx2[14]+ Tx2[14]- Unused signal pair	Rx2[14]+ Rx2[14]- Unused signal pair	Tx3[14]+ Tx3[14]- Unused signal pair	Rx3[14]+ Rx3[14]- Unused signal pair		
	08	14	Tx0[14]+ Tx0[14]- Unused signal pair	Rx0[14]+ Rx0[14]- Unused signal pair	Tx1[14]+ Tx1[14]- Unused signal pair	Rx1[14]+ Rx1[14]- Unused signal pair		
J20/P20	09	Fabric Channel 13	Tx2[13]+ Tx2[13]- RO Str 5 from FEX 14	Rx2[13]+ Rx2[13]- RO Str 3 from FEX 14	Tx3[13]+ Tx3[13]- RO Str 6 from FEX 14	Rx3[13]+ Rx3[13]- RO Str 4 from FEX 14		
	10	13	Tx0[13]+ Tx0[13]- LHC Clk to FEX 14	Rx0[13]+ Rx0[13]- RO Str 1 from FEX 14	Tx1[13]+ Tx1[13]- TTCCombData to FEX 14	Rx1[13]+ Rx1[13]- RO Str 2 from FEX 14		
J21/P21	01	Fabric Channel	Tx2[12]+ Tx2[12]- RO Str 5 from FEX 13	Rx2[12]+ Rx2[12]- RO Str 3 from FEX 13	Tx3[12]+ Tx3[12]- RO Str 6 from FEX 13	Rx3[12]+ Rx3[12]- RO Str 4 from FEX 13		
	02	12	Tx0[12]+ Tx0[12]- LHC Clk to FEX 13	Rx0[12]+ Rx0[12]- RO Str 1 from FEX 13	Tx1[12]+ Tx1[12]- TTCCombData to FEX 13	Rx1[12]+ Rx1[12]- RO Str 2 from FEX 13		
J21/P21	03	Fabric Channel	Tx2[11]+ Tx2[11]- RO Str 5 from FEX 12	Rx2[11]+ Rx2[11]- RO Str 3 from FEX 12	Tx3[11]+ Tx3[11]- RO Str 6 from FEX 12	Rx3[11]+ Rx3[11]- RO Str 4 from FEX 12		
	04	11	Tx0[11]+ Tx0[11]- LHC Clk to FEX 12	 Rx0[11]+ Rx0[11]- RO Str 1 from FEX 12	 Tx1[11]+ Tx1[11]- TTCCombData to FEX 12	Rx1[11]+ Rx1[11]- RO Str 2 from FEX 12		

1367 Continued on next page...

					1
05	Fabric Channel	Tx2[10]+ Tx2[10]- RO Str 5 from FEX 11	Rx2[10]+ Rx2[10]- RO Str 3 from FEX 11	Tx3[10]+ Tx3[10]- RO Str 6 from FEX 11	Rx3[10]+ Rx3[10]- RO Str 4 from FEX 11
06	10	Tx0[10]+ Tx0[10]- LHC Clk to FEX 11	Rx0[10]+ Rx0[10]- RO Str 1 from FEX 11	Tx1[10]+ Tx1[10]- TTCCombData to FEX 11	Rx1[10]+ Rx1[10]- RO Str 2 from FEX 11
07	Fabric Channel	Tx2[09]+ Tx2[09]- RO Str 5 from FEX 10	Rx2[09]+ Rx2[09]- RO Str 3 from FEX 10	Tx3[09]+ Tx3[09]- RO Str 6 from FEX 10	Rx3[09]+ Rx3[09]- RO Str 4 from FEX 10
08	0,	Tx0[09]+ Tx0[09]- LHC Clk to FEX 10	Rx0[09]+ Rx0[09]- RO Str 1 from FEX 10	Tx1[09]+ Tx1[09]- TTCCombData to FEX 10	Rx1[09]+ Rx1[09]- RO Str 2 from FEX 10
09	Fabric Channel	Tx2[08]+ Tx2[08]- RO Str 5 from FEX 09	Rx2[08]+ Rx2[08]- RO Str 3 from FEX 09	Tx3[08]+ Tx3[08]- RO Str 6 from FEX 09	Rx3[08]+ Rx3[08]- RO Str 4 from FEX 09
10	00	Tx0[08]+ Tx0[08]- LHC Clk to FEX 09	Rx0[08]+ Rx0[08]- RO Str 1 from FEX 09	Tx1[08]+ Tx1[08]- TTCCombData to FEX 09	Rx1[08]+ Rx1[08]- RO Str 2 from FEX 09
01	Fabric Channel	Tx2[07]+ Tx2[07]- RO Str 5 from FEX 08	Rx2[07]+ Rx2[07]- RO Str 3 from FEX 08	Tx3[07]+ Tx3[07]- RO Str 6 from FEX 08	Rx3[07]+ Rx3[07]- RO Str 4 from FEX 08
02	07	Tx0[07]+ Tx0[07]- LHC Clk to FEX 08	Rx0[07]+ Rx0[07]- RO Str 1 from FEX 08	Tx1[07]+ Tx1[07]- TTCCombData to FEX 08	Rx1[07]+ Rx1[07]- RO Str 2 from FEX 08
03	Fabric Channel	Tx2[06]+ Tx2[06]- RO Str 5 from FEX 07	Rx2[06]+ Rx2[06]- RO Str 3 from FEX 07	Tx3[06]+ Tx3[06]- RO Str 6 from FEX 07	Rx3[06]+ Rx3[06]- RO Str 4 from FEX 07
04	06	Tx0[06]+ Tx0[06]- LHC Clk to FEX 07	Rx0[06]+ Rx0[06]- RO Str 1 from FEX 07	Tx1[06]+ Tx1[06]- TTCCombData to FEX 07	Rx1[06]+ Rx1[06]- RO Str 2 from FEX 07
05	Fabric Channel	Tx2[05]+ Tx2[05]- RO Str 5 from FEX 06	Rx2[05]+ Rx2[05]- RO Str 3 from FEX 06	Tx3[05]+ Tx3[05]- RO Str 6 from FEX 06	Rx3[05]+ Rx3[05]- RO Str 4 from FEX 06
06	05	Tx0[05]+ Tx0[05]- LHC Clk to FEX 06	Rx0[05]+ Rx0[05]- RO Str 1 from FEX 06	Tx1[05]+ Tx1[05]- TTCCombData to FEX 06	Rx1[05]+ Rx1[05]- RO Str 2 from FEX 06
07	Fabric Channel	Tx2[04]+ Tx2[04]- RO Str 5 from FEX 05	Rx2[04]+ Rx2[04]- RO Str 3 from FEX 05	Tx3[04]+ Tx3[04]- RO Str 6 from FEX 05	Rx3[04]+ Rx3[04]- RO Str 4 from FEX 05
08	04	Tx0[04]+ Tx0[04]- LHC Clk to FEX 05	Rx0[04]+ Rx0[04]- RO Str 1 from FEX 05	Tx1[04]+ Tx1[04]- TTCCombData to FEX 05	Rx1[04]+ Rx1[04]- RO Str 2 from FEX 05
09	Fabric Channel	Tx2[03]+ Tx2[03]- RO Str 5 from FEX 04	Rx2[03]+ Rx2[03]- RO Str 3 from FEX 04	Tx3[03]+ Tx3[03]- RO Str 6 from FEX 04	Rx3[03]+ Rx3[03]- RO Str 4 from FEX 04
10	03	Tx0[03]+ Tx0[03]- LHC Clk to FEX 04	Rx0[03]+ Rx0[03]- RO Str 1 from FEX 04	Tx1[03]+ Tx1[03]- TTCCombData to FEX 04	Rx1[03]+ Rx1[03]- RO Str 2 from FEX 04
	06 07 08 09 10 01 02 03 04 05 06 07 08	Channel 10 Channel 10 Channel 09 Fabric Channel 10 Fabric Channel 10 Fabric Channel 07 Channel 06 Fabric Channel 06 Fabric Channel 06 Fabric Channel 07 Fabric Channel 08 Fabric Channel 08 Fabric Channel 09 Fabric Channel 00 O7 Fabric Channel 00 O9 Fabric Channel 03	Channel RO Str 5 from FEX 11	Channel RO Str's from FEX'11 RO Str's from FEX'11	Channel RO Štr 5 from FEX 11 RO Štr 3 from FEX 11 RO Štr 6 from FEX 11 Tx0[10]+ Tx0[10]- LHC Clk to FEX 11 Rx0[10]+ Rx0[10]- RO Str 1 from FEX 11 TTCCombData to FEX 11 Tx2[09]+ Tx2[09]+ Rx2[09]+ Rx2[09]+ Rx2[09]+ Rx3[09]+ Tx3[09]+ Tx3[09]- RO Str 5 from FEX 10 RO Str 3 from FEX 10 RO Str 6 from FEX 09 RO Str 6 from FEX 0

P23/J23	01	Fabric Channel 02	Tx2[02]+ Tx2[02]- RO Str 5 from FEX 03	Rx2[02]+ Rx2[02]- RO Str 3 from FEX 03	Tx3[02]+ Tx3[02]- RO Str 6 from FEX 03	Rx3[02]+ Rx3[02]- RO Str 4 from FEX 03
	02	02	Tx0[02]+ Tx0[02]- LHC Clk to FEX 03	Rx0[02]+ Rx0[02]- RO Str 1 from FEX 03	Tx1[02]+ Tx1[02]- TTCCombData to FEX 03	Rx1[02]+ Rx1[02]- RO Str 2 from FEX 03
P23/J23	03	Fabric Channel	Tx2[01]+ Tx2[01]- RO Str 1 to othHUB	Rx2[01]+ Rx2[01]- RO Str 1 from othHUB	Tx3[01]+ Tx3[01]- RO Str 2 to othHUB	Rx3[01]+ Rx3[01]- RO Str2 from othHUB
	04	"1	Tx0[01]+ Tx0[01]- LHC Clk to othHUB	Rx0[01]+ Rx0[01]- LHC Clk from othHUB	Tx1[01]+ Tx1[01]- TTC/ROD Ctl to othHUB	Rx1[01]+ Rx1[01]- TTC/ROD Ctl from othHUB
P23/J23	05	ShMC	BI_ShMCA+ BI_ShMCA- Unused signal pair	BI_ShMCB+ BI_ShMCB- Unused signal pair	BI_ShMCC+ BI_ShMCC- Unused signal pair	BI_ShMCD+ BI_ShMCD- Unused signal pair
P23/J23	06	Base Chan 02	BI_DA2+ BI_DA2- Unused signal pair	BI_DB2+ BI_DB2- Unused signal pair	BI_DC2+ BI_DC2- Unused signal pair	BI_DD2+ BI_DD2- Unused signal pair
P23/J23	07	Base Chan 03	BI_DA3+ BI_DA3- GE Pair A to FEX 03	BI_DB3+ BI_DB3- GE Pair B to FEX 03	BI_DC3+ BI_DC3- GE Pair C to FEX 03	BI_DD3+ BI_DD3- GE Pair D to FEX 03
P23/J23	08	Base Chan 04	BI_DA4+ BI_DA4- GE Pair A to FEX 04	BI_DB4+ BI_DB4- GE Pair B to FEX 04	BI_DC4+ BI_DC4- GE Pair C to FEX 04	BI_DD4+ BI_DD4- GE Pair D to FEX 04
P23/J23	09	Base Chan 05	BI_DA5+ BI_DA5- GE Pair A to FEX 05	BI_DB5+ BI_DB5- GE Pair B to FEX 05	BI_DC5+ BI_DC5- GE Pair C to FEX 05	BI_DD5+ BI_DD5- GE Pair D to FEX 05
P23/J23	10	Base Chan 06	BI_DA6+ BI_DA6- GE Pair A to FEX 06	BI_DB6+ BI_DB6- GE Pair B to FEX 06	BI_DC6+ BI_DC6- GE Pair C to FEX 06	BI_DD6+ BI_DD6 GE Pair D to FEX 06
J24/P24	01	Base Chan 07	BI_DA7+ BI_DA7- GE Pair A to FEX 07	BI_DB7+ BI_DB7- GE Pair B to FEX 07	BI_DC7+ BI_DC7- GE Pair C to FEX 07	BI_DD7+ BI_DD7- GE Pair D to FEX 07
J24/P24	02	Base Chan 08	BI_DA8+ BI_DA8- GE Pair A to FEX 08	BI_DB8+ BI_DB8- GE Pair B to FEX 08	BI_DC8+ BI_DC8- GE Pair C to FEX 08	BI_DD8+ BI_DD8- GE Pair D to FEX 08
J24/P24	03	Base Chan 09	BI_DA9+ BI_DA9- GE Pair A to FEX 09	BI_DB9+ BI_DB9- GE Pair B to FEX 09	BI_DC9+ BI_DC9- GE Pair C to FEX 09	BI_DD9+ BI_DD9- GE Pair D to FEX 09
J24/P24	04	Base Chan 10	BI_DA10+ BI_DA10- GE Pair A to FEX 10	BI_DB10+ BI_DB10- GE Pair B to FEX 10	BI_DC10+ BI_DC10- GE Pair C to FEX 10	BI_DD10+ BI_DD10- GE Pair D to FEX 10
J24/P24	05	Base Chan 11	BI_DA11+ BI_DA11- GE Pair A to FEX 11	BI_DB11+ BI_DB11- GE Pair B to FEX 11	BI_DC11+ BI_DC11- GE Pair C to FEX 11	BI_DD11+ BI_DD11- GE Pair D to FEX 11
J24/P24	06	Base Chan 12	BI_DA12+ BI_DA12- GE Pair A to FEX 12	BI_DB12+ BI_DB12- GE Pair B to FEX 12	BI_DC12+ BI_DC12- GE Pair C to FEX 12	BI_DD12+ BI_DD12- GE Pair D to FEX 12
	+	+	 	+	 	

1370 Continued on next page...

J24/P24	07	Base Chan 13	BI_DA13+ BI_DA13- GE Pair A to FEX 13	BI_DB13+ BI_DB13- GE Pair B to FEX 13	BI_DC13+ BI_DC13- GE Pair C to FEX 13	BI_DD13+ BI_DD13- GE Pair D to FEX 13
J24/P24	08	Base Chan 14	BI_DA14+ BI_DA14- GE Pair A to FEX 14	BI_DB14+ BI_DB14- GE Pair B to FEX 14	BI_DC14+ BI_DC14- GE Pair C to FEX 14	BI_DD14+ BI_DD14- GE Pair D to FEX 14
J24/P24	09	Base Chan 15	BI_DA15+ BI_DA15- Unused signal pair	BI_DB15+ BI_DB15- Unused signal pair	BI_DC15+ BI_DC15- Unused signal pair	BI_DD15+ BI_DD15- Unused signal pair
J24/P24	10	Base Chan 16	BI_DA16+ BI_DA16- Unused signal pair	BI_DB16+ BI_DB16- Unused signal pair	BI_DC16+ BI_DC16- Unused signal pair	BI_DD16+ BI_DD16- Unused signal pair

Note: the FEX numbering above follows the L1Calo convention to call "FEX 03" the module in ATCA Slot 3, "FEX 04" the module in ATCA Slot 4,

"FEX 14" the module in ATCA Slot 14.

Note: the name "othHUB" above stands for "the other HUB in the same ATCA crate" 1371

14.2 Connector and Signal Usage for a FEX Slot 1372

Connector Usage for a FEX Slot

Connect Number	Row Num	 Name 	l a b	Connector 1	Pin Pairs e f	g h
P23/J23	01	Fabric Channel	Tx2[02]+ Tx2[02]- RO Stream 3 to HUB 2	Rx2[02]+ Rx2[02]- RO Stream 5 to HUB 2	Tx3[02]+ Tx3[02]- RO Stream 4 to HUB 2	Rx3[02]+ Rx3[02]- RO Stream 6 to HUB 2
	02	02	Tx0[02]+ Tx0[02]- RO Stream 1 to HUB 2	Rx0[02]+ Rx0[02]- LHC Clock from Hub2	Tx1[02]+ Tx1[02]- RO Stream 2 to HUB 2	Rx1[02]+ Rx1[02]- TTCCombData from Hub2
P23/J23	03	Fabric Channel	Tx2[01]+ Tx2[01]- RO Stream 3 to HUB 1	Rx2[01]+ Rx2[01]- RO Stream 5 to HUB 1	Tx3[01]+ Tx3[01]- RO Stream 4 to HUB 1	Rx3[01]+ Rx3[01]- RO Stream 6 to HUB 1
	04	01	Tx0[01]+ Tx0[01]- RO Stream 1 to HUB 1	Rx0[01]+ Rx0[01]- LHC Clock from Hub1	Tx1[01]+ Tx1[01]- RO Stream 2 to HUB 1	Rx1[01]+ Rx1[01]- TTCCombData from Hub1
P23/J23	05	Base Chan 01	BI_DA1+ BI_DA1- GE Pair A IPbus Net	BI_DB1+ BI_DB1- GE Pair B IPbus Net	BI_DC1+ BI_DC1- GE Pair C IPbus Net	BI_DD1+ BI_DD1- GE Pair D IPbus Net
P23/J23	06	Base Chan 02	BI_DA2+ BI_DA2- GE Pair A IPMC Net	BI_DB2+ BI_DB2- GE Pair B IPMC Net	BI_DC2+ BI_DC2- GE Pair C IPMC Net	BI_DD2+ BI_DD2- GE Pair D IPMC Net
P23/J23	07	Base Chan 03	BI_DA3+ BI_DA3- Unused signal pair	BI_DB3+ BI_DB3- Unused signal pair	BI_DC3+ BI_DC3- Unused signal pair	BI_DD3+ BI_DD3- Unused signal pair
P23/J23	08	Base Chan 04	BI_DA4+ BI_DA4- Unused signal pair	BI_DB4+ BI_DB4- Unused signal pair	BI_DC4+ BI_DC4- Unused signal pair	BI_DD4+ BI_DD4- Unused signal pair
P23/J23	09	Base Chan 05	BI_DA5+ BI_DA5- Unused signal pair	BI_DB5+ BI_DB5- Unused signal pair	BI_DC5+ BI_DC5- Unused signal pair	BI_DD5+ BI_DD5- Unused signal pair
P23/J23	10	Base Chan 06	BI_DA6+ BI_DA6- Unused signal pair	BI_DB6+ BI_DB6- Unused signal pair	BI_DC6+ BI_DC6- Unused signal pair	BI_DD6+ BI_DD6 BI_DD6+ BI_DD6 BI_DD6+ BI_DD6

1374 **15 Appendix 2: Hub Module FEX MGT Data Fanout**

- 1375 This section describes the 74 channel MGT Fanout on the Hub Module. This fanout
- receives FEX readout data from the Hub's ATCA Zone 2 connectors and sends this data
- to MGT transceiver inputs on both the ROD mezzanine card and to the Hub's own
- 1378 UltraScale Virtex FPGA. This fanout is based on the NB7VQ14M chip from On-Semi.
- 1379 Illustrations of the circuit diagrams can be found in Figure 22 and Figure 23.

1380 15.1 AC Coupling

- The outputs from the NB7VQ14M fanout chips are AC coupled. 100 nFd 0201 size DC
- Blocking capacitors are used for this AC coupling. These capacitors are located very
- close the output pins on the NB7VQ14M fanout chips.

15.2 Input Common Mode Reference

- The signals send to the Hub's MGT Fanout are all AC coupled at the sending end. Thus
- the input common mode voltage to NB7VQ14M fanout chips can and must be set with
- circuits on the Hub Module.

1384

1399

- The fanout chips internal VRef generator is used to set their common mode input voltage.
- When powered with a Vcc of 1.800 Volts this reference generator provides a 1.300 V +-
- 1390 150 mV common mode input voltage to the fanout chips. This makes sense as the input
- circuit of these fanout chips is the bases of a long-tail NPN pair the emitters of which are
- feed by a current source.

1393 **15.3 Input Termination**

- The NB7VQ14M fanout chips contain their own input termination resistors. From a
- center tap there is a 50 Ohm resistor to each input. This center tap is tied to the common
- mode reference supply and bypassed to ground with a 47 nFd capacitor. In this way the
- common mode input voltage to the receiver is set, the 100 Ohm differential termination is
- realized, and a common mode termination is implemented.

15.4 Equalizer Enable

- 1400 The NB7VQ14M fanout chips contain an equalizer that can reduce inter symbol
- interference on long copper PCB traces. This equalizer is enabled or removed from the
- fanout circuit by means of a logic level control pin.
- Because it is not yet clear if this equalizer will improve the MGT readout signals in the
- 1404 ATCA backplane application we will make the Equalizer Enable pin accessible on the
- Hub Module on a per slot basis. The assumption is that for the backplane losses from a

- given slot that either all 6 of the MGT readout signals from that slot will be improved by
- the equalizer or else none of them will.
- 1408 Thus from the point of view of the Equalizer Enables, the MGT fanout it is divided into
- 1409 13 section (12 FEXs and the Other Hub) with the equalizer enables individually
- programmable to each of these sections.
- 1411 The equalizer enable input pin has a 75k Ohm pull-down resistor. 6 of these in parallel is
- 1412 12.5k Ohm. When this logic input is at its default Low the equalizer is bypassed. The
- 1413 equalizer enable logic levels are:
- 1414 Low is $< 0.35 \,\text{Vcc}$ High is $> 0.65 \,\text{Vcc}$.
- With 1.8 Volt Vcc Low is < 0.630 and High is > 1.170 Volts
- Current is under +- 150 uAmp.
- 1417 The fanout equalizer enable pins are driven by a 1V8 HP Select I/O Bank on the Hub
- 1418 FPGA. In the Hi state, these control signals from the Hub FPGA are guaranteed to reach
- 1.35 Volts (in LVCMOS 1V8 mode) or 1.400 Volts (in HSTL mode). So we are
- guaranteed to be able to remain in control of these equalizer enable inputs with the fanout
- chips operating from a Vcc as high as 2.154 Volts.

1422 **15.5 Reference Designators**

- 1423 The Hub Module uses an overall scheme to organize the reference designators of its
- many components. The fanout chips themselves run from U401 through U475 with an
- increment of 1 between channels. The various capacitors in these circuits (DC blocking,
- 1426 Vcc bypass, VRef bypass) run from C401 through C919 with an increment of 7 between
- 1427 channels.

1428 **15.6 Fanout Vcc Supply**

- The NB7VQ14M fanout chips can be powered with anything from 1.8 V to 3.3V. The
- lower supply voltages are attractive because of the reduced heat dissipation. From the
- data sheet I see no advantage in powering the fanout circuits from a 3.3 Volt supply. Ed
- 1432 Flaherty's ROD work indicates that 1V8 works as well or better than 2V5.
- 1433 There may be some advantage in using a fanout Vcc supply somewhat higher than the
- 1434 1V8 minimum listed in the NB7VQ14M data sheet. In any case this supply must be quiet
- as any noise that it puts onto these high speed MGT signals is likely to interfere with
- reception of these signals from across the ATCA backplane.
- 1437 Thus the Hub Module provides a private supply just for powering these fanout chips.
- 1438 This supply, FAN 1V8, is nominally set for 1.8 Volts. Because it does not power

- anything besides the fanout chips it could be adjusted up to at least 2.150 Volts if that is
- necessary.
- 1441 The expected current draw for the 74 fanout chips is 13 Amps. At maximum the fanout
- 1442 Vcc current draw should be less than 15 Amps. The heat from the 74 fanout chips is
- expected to be about 23 Watts.
- The Vcc pins on each fanout chip are bypassed with a 4.7 nFd and 100 nFd 0402 size
- ceramic capacitors as close as possible to the Vcc pins.

1446 **15.7 Routing Challenges**

- All of the differential pair traces associated with the FEX MGT data fanout circuits must
- be able to cleanly support 10 Gb/sec data rates. Interference and cross-talk must be kept
- to a minimum.
- 1450 This is especially true on the traces that run from the Zone 2 connectors to the inputs of
- the fanout chips. These MGT signals may be in poor condition after their travel across
- the backplane and through two ADFplus connectors.
- The 74 outputs running to the ROD must route out and separate from the 74 pairs that run
- to the Hub's FPGA. There is little space available on the Hub Module to hold the MGT
- fanout. Fanout chips are located on both sides of the card and the design of the side 2
- 1456 cover needs to take the height and heat dissipation from these parts into consideration.

1457 15.8 Fanout Name

- In a few places the documentation for the Hub Module may still call its FEX MGT data
- fanout by the name "GTH Fanout". This old name came from the original design of the
- Hub Module that used a Virtex-7 FPGA with only GTH type MGT transceivers. The old
- name has been replaced in most of the Hub's documentation but I know that it is still
- used in the net names.

1463 **15.9 Hub-Module FEX MGT Data Fanout Map**

- 1464 This FEX MGT Data Fanout Map is presented in two sections. The first section shows
- the map from the Zone 2 inputs through to the ROD MegArray connectors. The second
- section shows the map from the Zone 2 inputs through to the Hub's FPGA MGT inputs.
- 1467 Details of the design understandings:
- The FEX cards are numbered 3:14 by their ATCA Logical Slot Number.
- The 6 Aurora Lanes carrying FEX readout data are assigned to the ATCA Fabric
- 1470 Interface Channel Ports in the following way:

1	4	7	1
1	┰	/	ч

Aurora Lane	0	1	2	3	4	5
FEX End ATCA	Tx0	Tx1	Tx2	Tx3	Rx2	Rx3
Hub End ATCA	Rx0	Rx1	Rx2	Rx3	Tx2	Tx3
Hub Zone 2 Pins	c,d	g,h	c,d	g,h	a,b	e,f
Hub Zone 2 Row	lower	lower	upper	upper	upper	upper

1473

- All FEX Aurora data on the ATCA backplane is "right side up". That is, if for high speed routing considerations, a given FEX card criss-crosses some of its MGT Transmitter direct and complement output pins with the ATCA backplane direct and complement pins then it will also setup these MGT Transmitters to invert their output data.
- The MegArray connector pinout is defined by the V1p4 document from 6-May-2015 written by Ed.
- With these understandings, all readout data delivered to the ROD will be "right side up" with the map that follows.

1484 Description of the Columns in this Map Table:

- MGT Fanout Channel Number, this table is listed in order of the MGT Fanout
 Channels on the Hub circuit board. The Hub Module netlist is in terms of MGT
 Fanout Channel Number.
- FEX, this is the FEX card number 3:14, i.e. the ATCA Logical Slot Number of the FEX card.
- Aurora Lane, this is the Aurora protocol Lane number of the readout data from this source, 0:5.
- Zone 2 Input Pins, this column shows the ATCA Fabric Interface connector and pin numbers where this data source arrives on the Hub Module, e.g. J23-C/D2 means connector J23 pins C2 and D2. The pin carrying the direct signal (aka non-inverted signal) is always listed first, the pin carrying the complement signal (aka inverted signal) is listed second.
- Layer, the signal layer (not physical layer) in the Hub PCB on which this differential pair is routed to the MGT Fanout Array.
- Inverted, indicates whether or not the trace routing inverts this differential signal on its way from the Zone 2 connector to the MGT Fanout input.
- MegAry Con, shows whether this signal is routed to the S1 or S2 MegArray connector.
- MegArry Pins, lists the pins used in the MegArray connector for this readout signal, e.g. F/E39 means pins F39 and E39 are used for this differential signal. The pin carrying the direct signal is always listed first and the pin carrying the complement signal is listed second.
- ROD FEX Input, this is the input to the ROD in Ed's notation from his version V1p4 MegArray Pinout from 6-May-2015.

- Layer, the signal layer (not physical layer) in the Hub PCB on which this differential pair is routed from the MGT Fanout output to the MegArray connector.
 - Inverted, indicates whether or not the trace routing inverts this differential signal on its way from the MGT Fanout to the MegArray connector.

The map table for the connections between the backplane Zone 2 pins and the Hub's FPGA is similar but instead of the MegArray connections it shows the connections to the

- 1516 FPGA MTG Receivers in terms of Quad and channel within the Quad. Again the index
- to this table is MGT Fanout Channel Number.

1511

1512 1513

1520

Although the readout data from the FPGA on This Hub does not pass through the MGT Fanout it is listed at the end of this table for completeness.

Map from Zone 2 Fabric Interface Inputs to ROD MEG-Array Connectors

MGT	FEX	Aurora	Zone 2			MEG-	MEG-	ROD	FEX	
Fanout		Lane	Input Pins	Layer	Inv	Array	Array	FEX	Layer	Inv
Channel			•			Con	Pins	Input		
1	3	0	J23-C/D2	7	N	S1	F/E39	0	7	N
2 3	3	1	J23-G/H2	8	Y	S 1	J/H38	1	8	Y
3	3	2	J23-C/D1	9	N	S 1	F/E37	2	9	N
4	3	3	J23-G/H1	6	Y	S1	J/H36	3	6	Y
5	3	4	J23-A/B1	7	N	S 1	F/E35	4	7	N
6	3	5	J23-E/F1	8	Y	S1	J/H34	5	8	Y
7	4	0	J22-C/D10	9	N	S1	F/E33	6	9	N
8	4	1	J22-G/H10	6	Y	S 1	J/H32	7	6	Y
9	4	2 3	J22-C/D9	7	N	S1	F/E31	8	7	N
10	4	3	J22-G/H9	8	Y	S 1	J/H30	9	8	Y
11	4	4	J22-A/B9	9	N	S 1	F/E29	10	9	N
12	4	5	J22-E/F9	6	Y	S1	J/H28	11	6	Y
13	5	0	J22-C/D8	7	N	S 1	F/E27	12	7	N
14	5	1	J22-G/H8	8	Y	S 1	J/H26	13	8	Y
15	5	2	J22-C/D7	9	N	S1	F/E25	14	9	N
16	5	3	J22-G/H7	6	Y	S 1	J/H24	15	6	Y
17	5	4	J22-A/B7	7	N	S 1	F/E23	16	7	N
18	5	5	J22-E/F7	8	Y	S1	J/H22	17	8	Y
19	6	0	J22-C/D6	9	N	S1	J/H20	18	9	N
20	6	1	J22-G/H6	6	Y	S1	F/E19	19	6	Y
21	6	2 3	J22-C/D5	7	N	S1	J/H18	20	7	N
22	6		J22-G/H5	8	Y	S1	F/E17	21	8	Y
23	6	4	J22-A/B5	9	N	S1	J/H16	22	9	N
24	6	5	J22-E/F5	6	Y	S1	F/E15	23	6	Y
25	7	0	J22-C/D4	7	N	S1	J/H14	24	7	N
26	7	1	J22-G/H4	8	Y	S1	F/E13	25	8	Y
27	7	2 3	J22-C/D3	9	N	S1	J/H12	26	9	N
28	7	3	J22-G/H3	6	Y	S1	F/E11	27	6	Y
29	7	4	J22-A/B3	7	N	S1	J/H10	28	7	N
30	7	5	J22-E/F3	8	Y	S1	F/E9	29	8	Y
31	8	0	J22-C/D2	9	N	S 1	J/H8	30	9	N
32	8	1	J22-G/H2	6	Y	S 1	F/E7	31	6	Y
33	8	2	J22-C/D1	7	N	S1	J/H6	32	7	N
34	8	3	J22-G/H1	8	Y	S 1	F/E5	33	8	Y
35	8	4	J22-A/B1	9	N	S 1	J/H4	34	9	N
36	8	5	J22-E/F1	6	Y	S 1	F/E3	35	6	Y
MGT	FEX	Aurora	Zone 2			MEG-	MEG-	ROD	FEX	

Channel	Fanout		Lane	Input Pins	Layer	Inv	Array	Array	FEX	Layer	Inv
37	Channel						Con	Pins	Input		
38	37	Other	0	J23-C/D3	7	Y	S2	E/F3	HRD0	7	Y
Hub 9		Hub									
39	38	Other	1	J23-G/H3	8	N	S2	H/J8	HRD2	8	N
39		Hub									
40 9	39		0	J21-C/D10	9	Y	S2	B/C4	71	9	Y
41	40	9			6	N	S2				
43		9	2								
43		9	$\frac{1}{3}$				S2				N
A44		9	4								
45			5				\$ 2				
46			ő								
47											
49			2				S2 S2				
49			3				S2 S2			6	
S0			4				S2 S2				
51 11 0 J21-C/D6 9 Y S2 B/C16 59 9 Y 52 11 1 J21-G/H6 6 N S2 E/F17 58 6 N 53 11 2 J21-C/D5 7 Y S2 B/C18 57 7 Y 54 11 3 J21-G/H5 8 N S2 E/F19 56 8 N 55 11 4 J21-A/B5 9 Y S2 B/C20 55 9 Y 56 11 5 J21-E/F5 6 N S2 E/F21 54 6 N 57 12 0 J21-C/D4 7 Y S2 B/C22 53 7 Y 58 12 1 J21-G/H4 8 N S2 E/F23 52 8 N 59 12 2 J21-G/H3			5				S2 S2				
52 11 1 J21-G/H6 6 N S2 E/F17 58 6 N 53 11 2 J21-C/D5 7 Y S2 B/C18 57 7 Y 54 11 3 J21-G/H5 8 N S2 E/F19 56 8 N 55 11 4 J21-A/B5 9 Y S2 B/C20 55 9 Y 56 11 5 J21-E/F5 6 N S2 E/F21 54 6 N 57 12 0 J21-C/D4 7 Y S2 B/C22 53 7 Y 58 12 1 J21-C/D3 9 Y S2 B/C24 51 9 Y 58 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-E/F3			0				S2 S2				
53 11 2 J21-C/D5 7 Y S2 B/C18 57 7 Y 54 11 3 J21-G/H5 8 N S2 E/F19 56 8 N 55 11 4 J21-A/B5 9 Y S2 B/C20 55 9 Y 56 11 5 J21-E/F5 6 N S2 E/F21 54 6 N 57 12 0 J21-C/D4 7 Y S2 B/C22 53 7 Y 58 12 1 J21-G/H4 8 N S2 E/F23 52 8 N 59 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-G/H3 6 N S2 E/F25 50 6 N 61 12 4 J21-A/B3							S2 S2				
S5			2								
S5			2				S2 S2				
56 11 5 J21-E/F5 6 N S2 E/F21 54 6 N 57 12 0 J21-C/D4 7 Y S2 B/C22 53 7 Y 58 12 1 J21-G/H4 8 N S2 E/F23 52 8 N 59 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-G/H3 6 N S2 E/F25 50 6 N 61 12 4 J21-A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H1			3								
57 12 0 J21-C/D4 7 Y S2 B/C22 53 7 Y 58 12 1 J21-G/H4 8 N S2 E/F23 52 8 N 59 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-G/H3 6 N S2 E/F25 50 6 N 61 12 4 J21-A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F25 50 6 N 63 13 0 J21-C/D2 9 Y S2 B/C26 49 7 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1			4								
58 12 1 J21-G/H4 8 N S2 E/F23 52 8 N 59 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-G/H3 6 N S2 E/F25 50 6 N 61 12 4 J21-A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-G/H1 8 N S2 E/F31 44 8 N 66 13 3 J21-E/F1			5	J21-E/F3			S2 S2				
59 12 2 J21-C/D3 9 Y S2 B/C24 51 9 Y 60 12 3 J21-G/H3 6 N S2 E/F25 50 6 N 61 12 4 J21-A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-G/H1											
61 12 4 J21- A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D0			1				S2				
61 12 4 J21- A/B3 7 Y S2 B/C26 49 7 Y 62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D0			2				S2				
62 12 5 J21-E/F3 8 N S2 E/F27 48 8 N 63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H9			3								
63 13 0 J21-C/D2 9 Y S2 B/C28 47 9 Y 64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H9 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9			4								
64 13 1 J21-G/H2 6 N S2 E/F29 46 6 N 65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9			5				S2				
65 13 2 J21-C/D1 7 Y S2 B/C30 45 7 Y 66 13 3 J21-G/H1 8 N S2 E/F31 44 8 N 67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9							S2				
67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0			1				S2				
67 13 4 J21-A/B1 9 Y S2 B/C32 43 9 Y 68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0		13	2				S2				
68 13 5 J21-E/F1 6 N S2 E/F33 42 6 N 69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - <td< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td>S2</td><td></td><td></td><td></td><td></td></td<>			3				S2				
69 14 0 J20-C/D10 7 Y S2 B/C34 41 7 Y 70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - S2 H/J6 HRD3 - -			4							9	
70 14 1 J20-G/H10 8 N S2 E/F35 40 8 N 71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - S2 H/J6 HRD3 - -			5				S2				
71 14 2 J20-C/D9 9 Y S2 B/C36 39 9 Y 72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - S2 H/J6 HRD3 - -							S2				
72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - S2 H/J6 HRD3 - -			1				S2				
72 14 3 J20-G/H9 6 Y S2 E/F37 38 6 Y 73 14 4 J20-A/B9 7 Y S2 B/C38 37 7 Y 74 14 5 J20-E/F9 6 N S2 E/F39 36 8 N This 0 - S2 B/C2 HRD1 - - This 1 - S2 H/J6 HRD3 - -			2				S2				
74			3								
This 0 S2 B/C2 HRD1 Hub This 1 S2 H/J6 HRD3			4				S2				
This 0 S2 B/C2 HRD1 Hub This 1 S2 H/J6 HRD3	74		5	J20-E/F9	6	N	S2			8	N
Hub - S2 H/J6 HRD3 - -		This	0		-	-	S2	B/C2	HRD1	-	-
This 1 S2 H/J6 HRD3		Hub									
		This	1		-	-	S2	H/J6	HRD3	-	-

MGT		Aurora	Zone 2 Input			Hub FPGA	MGT	Receiver		
Fanout	FEX	Lane	Pins	Layer	Inv	Chan-	Туре	Pins	Layer	Inv
Channel						Quad	7 F -			
1	3	0	J23-C/D2	7	N	Rx1-126	GTY	AF43/4	2	Y
2	3	1	J23-G/H2	8	Y	Rx0-126	GTY	AG45/6	3	N
3	3	2	J23-C/D1	9	N	Rx3-125	GTY	AH43/4	4	Y
4	3	3	J23-G/H1	6	Y	Rx2-125	GTY	AJ45/6	5	N
5	3	4	J23-A/B1	7	N	Rx1-125	GTY	AK43/4	2	Y
6	3	5	J23-E/F1	8	Y	Rx0-125	GTY	AL45/6	3	N
7	4	0	J22-C/D10	9	N	Rx3-124	GTY	AM43/4	4	Y
8	4	1	J22-G/H10	6	Y	Rx2-124	GTY	AN45/6	5	N
9	4	2 3	J22-C/D9	7	N Y	Rx1-128	GTY	V43/4	2	Y
10	4 4	3 4	J22-G/H9	8	Y N	Rx0-128 Rx3-127	GTY GTY	W45/6 Y43/4	3 4	N Y
11 12	4	5	J22-A/B9 J22-E/F9	9 6	Y	Rx3-127 Rx2-127	GTY	AA45/6	5	N
13	5	0	J22-E/F9 J22-C/D8	7	N	Rx2-127 Rx1-127	GTY	AB43/4	2	Y
14	5	1	J22-G/H8	8	Y	Rx1-127 Rx0-127	GTY	AC45/6	3	N
15	5	2	J22-G/118 J22-C/D7	9	N	Rx3-126	GTY	AD43/4	4	Y
16	5	3	J22-G/H7	6	Y	Rx2-126	GTY	AE45/6	5	N
17	5	4	J22-A/B7	7	Ň	Rx1-130	GTY	K43/4	2	Y
18	5	5	J22-E/F7	8	Y	Rx0-130	GTY	L45/6	3	Ň
19	6	0	J22-C/D6	9	N	Rx3-129	GTY	M43/4	4	Y
20	6	1	J22-G/H6	6	Y	Rx2-129	GTY	N45/6	5	N
21	6	2	J22-C/D5	7	N	Rx1-129	GTY	P43/4	2	Y
22	6	3	J22-G/H5	8	Y	Rx0-129	GTY	R45/6	3	N
23	6	4	J22-A/B5	9	N	Rx3-128	GTY	T43/4	4	Y
24	6	5	J22-E/F5	6	Y	Rx2-128	GTY	U45/6	5	N
25	7	0	J22-C/D4	7	N	Rx3-132	GTY	B43/4	2	Y
26	7	1	J22-G/H4	8	Y	Rx2-132	GTY	C45/6	3	N
27	7	2	J22-C/D3	9	N	Rx1-132	GTY	D43/4	4	Y
28	7	3	J22-G/H3	6	Y	Rx0-132	GTY	E45/6	5	N
29 30	7 7	4 5	J22-A/B3 J22-E/F3	7 8	N Y	Rx1-131 Rx0-131	GTY GTY	F43/4 G45/6	2 3	Y N
31	8	0	J22-E/F3 J22-C/D2	9	N	Rx3-130	GTY	H43/4	4	Y
32	8	1	J22-G/H2	6	Y	Rx2-130	GTY	J45/6	5	N
33	8	2	J22-G/112 J22-C/D1	7	N	Rx2-231	GTH	G16/5	2	N
34	8	3	J22-G/H1	8	Y	Rx3-231	GTH	E16/5	3	Y
35	8	4	J22-A/B1	9	Ň	Rx3-131	GTY	E31/2	4	Ÿ
36	8	5	J22-E/F1	6	Y	Rx2-131	GTY	G31/2	5	Ň
37	Other	0	J23-C/D3	7	Ŷ	Rx3-133	GTY	A31/2	2	N
	Hub									
38	Other	1	J23-G/H3	8	N	Rx2-133	GTY	B33/4	3	N
	Hub				_					_
39	9	0	J21-C/D10	9	Y	Rx1-133	GTY	C31/2	4	Y
40	9	1	J21-G/H10	6	N	Rx0-133	GTY	D33/4	5	N
41	9	2	J21-C/D9	7	Y	Rx0-232	GTH	E 2/1	2	N
42	9	3	J21-G/H9	8	N	Rx1-232	GTH	D 4/3	3	Y
43	9	4	J21-A/B9	9	Y	Rx2-232	GTH	C 2/1	4	N
44 45	9 10	5 0	J21-E/F9 J21-C/D8	6 7	N Y	Rx3-232 Rx0-233	GTH GTH	B 4/3 D14/3	5	Y
45	10	1	J21-C/D8 J21-G/H8	8	N N	Rx0-233 Rx1-233	GTH	C16/5	2 3	N Y
47	10	2	J21-G/H8 J21-C/D7	9	Y	Rx1-233 Rx2-233	GTH	B14/3	3 4	N
48	10	$\frac{2}{3}$	J21-C/D7 J21-G/H7	6	N	Rx2-233 Rx3-233	GTH	A16/5	5	N
49	10	4	J21-A/B7	7	Y	Rx2-229	GTH	N 2/1	2	N
50	10	5	J21-R/B7 J21-E/F7	8	N	Rx3-229	GTH	M 4/3	3	Y
51	11	ő	J21-E/17 J21-C/D6	9	Y	Rx0-230	GTH	L 2/1	4	Ň
52	11	1	J21-G/H6	6	Ň	Rx1-230	GTH	K 4/3	5	Y
53	11	2	J21-C/D5	7	Y	Rx2-230	GTH	J 2/1	2	N
54	11	3	J21-G/H5	8	N	Rx3-230	GTH	H 4/3	3	Y

55	11	4	J21-A/B5	9	Y	Rx0-231	GTH	G 2/1	4	N	
56	11	5	J21-E/F5	6	N	Rx1-231	GTH	F 4/3	5	Y	
57	12	0	J21-C/D4	7	Y	Rx2-227	GTH	AA2/1	2	N	
58	12	1	J21-G/H4	8	N	Rx3-227	GTH	Y 4/3	3	Y	
59	12	2	J21-C/D3	9	Y	Rx0-228	GTH	W 2/1	4	N	
60	12	3	J21-G/H3	6	N	Rx1-228	GTH	V 4/3	5	Y	
61	12	4	J21-A/B3	7	Y	Rx2-228	GTH	U 2/1	2	N	
62	12	5	J21-E/F3	8	N	Rx3-228	GTH	T 4/3	3	Y	
63	13	0	J21-C/D2	9	Y	RX0-229	GTH	R 2/1	4	N	
64	13	1	J21-G/H2	6	N	Rx1-229	GTH	P 4/3	5	Y	
65	13	2	J21-C/D1	7	Y	Rx0-225	GTH	AL 2/1	2	N	
66	13	3	J21-G/H1	8	N	Rx1-225	GTH	AK 4/3	3	Y	
67	13	4	J21-A/B1	9	Y	Rx2-225	GTH	AJ 2/1	4	N	
68	13	5	J21-E/F1	6	N	Rx3-225	GTH	AH 4/3	5	Y	
69	14	0	J20-C/D10	7	Y	Rx0-226	GTH	AG 2/1	2	N	
70	14	1	J20-G/H10	8	N	Rx1-226	GTH	AF 4/3	3	Y	
71	14	2	J20-C/D9	9	Y	Rx2-226	GTH	AE 2/1	4	N	
72	14	3	J20-G/H9	6	Y	Rx3-226	GTH	AD 4/3	5	Y	
73	14	4	J20-A/B9	7	Y	Rx0-227	GTH	AC 2/1	2	N	
74	14	5	J20-E/F9	6	N	Rx1-227	GTH	AB 4/3	3	Y	
	56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	56 11 57 12 58 12 59 12 60 12 61 12 62 12 63 13 64 13 65 13 66 13 67 13 68 13 69 14 70 14 71 14 72 14 73 14	56 11 5 57 12 0 58 12 1 59 12 2 60 12 3 61 12 4 62 12 5 63 13 0 64 13 1 65 13 2 66 13 3 67 13 4 68 13 5 69 14 0 70 14 1 71 14 2 72 14 3 73 14 4	56 11 5 J21-E/F5 57 12 0 J21-C/D4 58 12 1 J21-G/H4 59 12 2 J21-C/D3 60 12 3 J21-G/H3 61 12 4 J21-A/B3 62 12 5 J21-E/F3 63 13 0 J21-C/D2 64 13 1 J21-G/H2 65 13 2 J21-C/D1 66 13 3 J21-G/H1 67 13 4 J21-A/B1 68 13 5 J21-E/F1 69 14 0 J20-C/D10 70 14 1 J20-G/H10 71 14 2 J20-C/D9 72 14 3 J20-G/H9 73 14 4 J20-A/B9	56 11 5 J21-E/F5 6 57 12 0 J21-C/D4 7 58 12 1 J21-G/H4 8 59 12 2 J21-C/D3 9 60 12 3 J21-G/H3 6 61 12 4 J21-A/B3 7 62 12 5 J21-E/F3 8 63 13 0 J21-C/D2 9 64 13 1 J21-G/H2 6 65 13 2 J21-C/D1 7 66 13 3 J21-G/H1 8 67 13 4 J21-A/B1 9 68 13 5 J21-E/F1 6 69 14 0 J20-C/D10 7 70 14 1 J20-G/H10 8 71 14 2 J20-C/D9 9 72 14 3	56 11 5 J21-E/F5 6 N 57 12 0 J21-C/D4 7 Y 58 12 1 J21-G/H4 8 N 59 12 2 J21-C/D3 9 Y 60 12 3 J21-G/H3 6 N 61 12 4 J21-A/B3 7 Y 62 12 5 J21-E/F3 8 N 63 13 0 J21-C/D2 9 Y 64 13 1 J21-G/H2 6 N 65 13 2 J21-C/D1 7 Y 66 13 3 J21-G/H1 8 N 67 13 4 J21-A/B1 9 Y 68 13 5 J21-E/F1 6 N 69 14 0 J20-C/D10 7 Y 70 14	56 11 5 J21-E/F5 6 N Rx1-231 57 12 0 J21-C/D4 7 Y Rx2-227 58 12 1 J21-G/H4 8 N Rx3-227 59 12 2 J21-C/D3 9 Y Rx0-228 60 12 3 J21-G/H3 6 N Rx1-228 61 12 4 J21-A/B3 7 Y Rx2-228 62 12 5 J21-E/F3 8 N Rx3-228 63 13 0 J21-C/D2 9 Y RX0-229 64 13 1 J21-G/H2 6 N Rx1-229 65 13 2 J21-C/D1 7 Y Rx0-225 66 13 3 J21-G/H1 8 N Rx1-225 67 13 4 J21-A/B1 9 Y Rx2-225 68 <td< td=""><td>56 11 5 J21-E/F5 6 N Rx1-231 GTH 57 12 0 J21-C/D4 7 Y Rx2-227 GTH 58 12 1 J21-G/H4 8 N Rx3-227 GTH 59 12 2 J21-C/D3 9 Y Rx0-228 GTH 60 12 3 J21-G/H3 6 N Rx1-228 GTH 61 12 4 J21-A/B3 7 Y Rx2-228 GTH 61 12 4 J21-E/F3 8 N Rx3-228 GTH 62 12 5 J21-E/F3 8 N Rx3-228 GTH 63 13 0 J21-C/D2 9 Y RX0-229 GTH 64 13 1 J21-G/H2 6 N Rx1-229 GTH 65 13 2 J21-C/D1 7 Y Rx0-225</td><td>56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 62 12 5 J21-E/F3 8 N Rx3-228 GTH T 4/3 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 64 13 1 J21-G/H2 6 N R</td><td>56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 5 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 2 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 3 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 4 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 4 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 2 62 12 5 J21-E/F3 8 N Rx3-228 GTH T 4/3 3 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 4 64 13 1 J21-G/H2 6 N Rx1-229 GTH P 4/3</td><td>56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 5 Y 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 2 N 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 3 Y 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 4 N 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 4 N 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 2 N 62 12 5 J21-E/F3 8 N Rx3-228 GTH U 2/1 2 N 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 4 N 64 13</td></td<>	56 11 5 J21-E/F5 6 N Rx1-231 GTH 57 12 0 J21-C/D4 7 Y Rx2-227 GTH 58 12 1 J21-G/H4 8 N Rx3-227 GTH 59 12 2 J21-C/D3 9 Y Rx0-228 GTH 60 12 3 J21-G/H3 6 N Rx1-228 GTH 61 12 4 J21-A/B3 7 Y Rx2-228 GTH 61 12 4 J21-E/F3 8 N Rx3-228 GTH 62 12 5 J21-E/F3 8 N Rx3-228 GTH 63 13 0 J21-C/D2 9 Y RX0-229 GTH 64 13 1 J21-G/H2 6 N Rx1-229 GTH 65 13 2 J21-C/D1 7 Y Rx0-225	56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 62 12 5 J21-E/F3 8 N Rx3-228 GTH T 4/3 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 64 13 1 J21-G/H2 6 N R	56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 5 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 2 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 3 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 4 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 4 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 2 62 12 5 J21-E/F3 8 N Rx3-228 GTH T 4/3 3 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 4 64 13 1 J21-G/H2 6 N Rx1-229 GTH P 4/3	56 11 5 J21-E/F5 6 N Rx1-231 GTH F 4/3 5 Y 57 12 0 J21-C/D4 7 Y Rx2-227 GTH AA2/1 2 N 58 12 1 J21-G/H4 8 N Rx3-227 GTH Y 4/3 3 Y 59 12 2 J21-C/D3 9 Y Rx0-228 GTH W 2/1 4 N 60 12 3 J21-G/H3 6 N Rx1-228 GTH W 2/1 4 N 61 12 4 J21-A/B3 7 Y Rx2-228 GTH U 2/1 2 N 62 12 5 J21-E/F3 8 N Rx3-228 GTH U 2/1 2 N 63 13 0 J21-C/D2 9 Y RX0-229 GTH R 2/1 4 N 64 13

Data Path - FEX to Hub and then to ROD

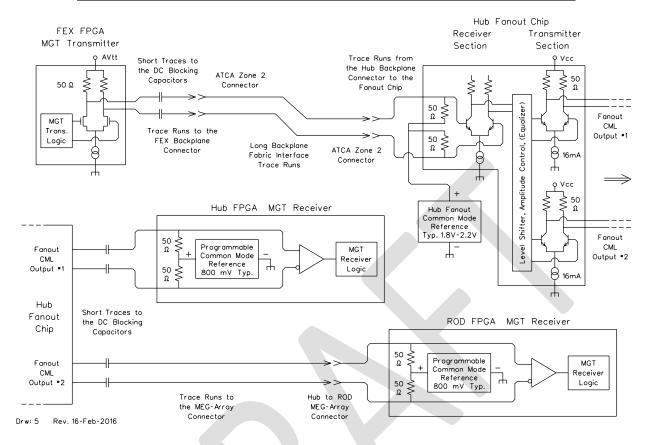


Figure 22: Circuit diagram of FEX/Hub/ROD high-speed data paths.

. . . .

FEX MGT Data FanOut

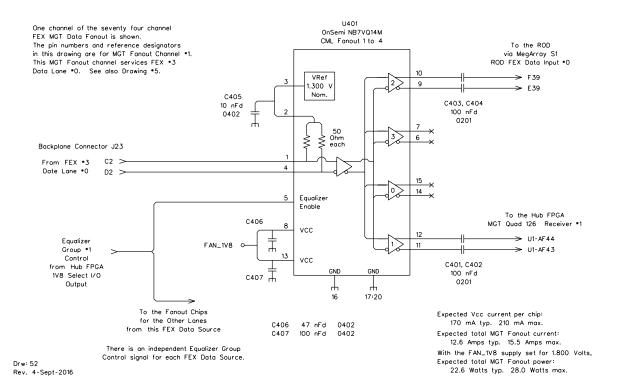


Figure 23: Hub MGT FanOut circuit diagram.

1550 **16 Appendix 3: Hub-Module Clock Generation and Distribution**

- 1551 The Hub-Module uses 3 different clocks:
- Ethernet 25.000 MHz Clock crystal controlled
- 40.08 MHz LHC locked clock for FPGA logic
- 320.64 MHz LHC locked clock for MGT Reference and FPGA logic

16.1 Ethernet 25.000 MHz Clock

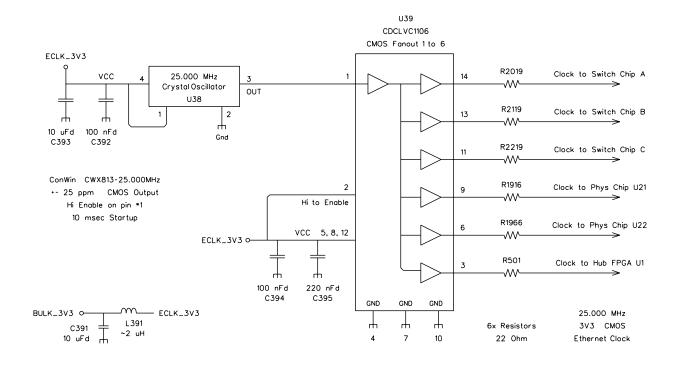
- 1556 The 25 MHz clock generation and distribution are shown in **Figure 24**. This clock is
- generated by a local crystal and thus is not LHC locked. All other clocks on the Hub Module
- are LHC locked. The main purpose of the 25.000 MHz clock is to run the Ethernet Switches
- and the Phys chips.

1555

- 1560 The crystal that is used to generate this clock has better frequency tolerance and jitter
- specification than are required by either the Switch or Phys chips. The output of this crystal
- oscillator is fanned out 6 ways by a low jitter TI clock fanout chip. The 25 MHz clock
- signals from this fanout are all single ended back terminated 3V3 CMOS level. There are
- separate clock feeds to each of the 3 Switch chips and to both of the Phys chips. There is also
- a 25.000 MHz clock feed to a Global Clock input in Select I/O Bank 94 of the FPGA. This is
- in SLR #0 of the UltraScale FPGA.
- 1567 The clock input on the Switch chips requires a high level of 1.7 V min and 3.8 V max
- 1568 (XtalVdd + 0.5V max). The clock input on the Phys chips requires a high level of 2.5 V min
- and 3.3 V max. So a 3V3 clock is fine for both the Switch and Phys chips.
- Each of the Phys chips multiplies the 25.000 MHz clock that it receives up to 125 MHz.
- 1571 These Phys chips make their 125 MHz clocks available on output pins in case they are
- needed by the associated MACs. The 125 MHz clock outputs from the 2 Phys chips have
- been routed to Global Clock inputs in Select I/O Bank 68 of the FPGA. This is the same I/O
- Bank that handles all of the RGMII MAC interface connections between the FPGA and the
- 1575 Phys chips. This I/O Bank is in SLR #0 of the UltraScale FPGA.

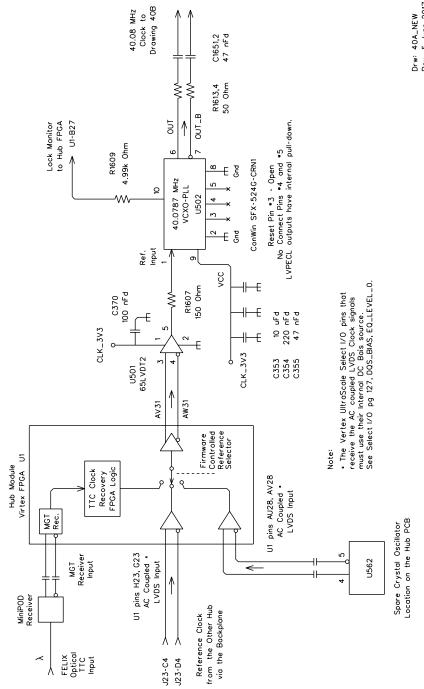
1576 **16.2 40.08 MHz LHC Locked Clock**

- 1577 The Hub's 40.08 MHz clock generation is shown in **Figure 26**. This 40.08 MHz clock is
- designed to be locked to the LHC.
- 1579 To make this lock an LHC reference clock is received either as an FELIX Optical TTC signal
- using one of the Hub's MiniPOD Receivers or it is received from the Other Hub as a
- differential pair over the ATCA fabric interface backplane.
- Both the decoding of the optical LHC reference clock and the selection between using the
- optical reference or using the reference from the Other Hub are implemented in the Hub's
- 1584 FPGA. This is shown in the left-hand side of **Figure 26**.


1585	In either case, the selected LHC reference clock leaves Bank 68 of the FPGA as an LVDS
1586	signal and is routed to an LVDS to single ended receiver U501 that is located right next to
1587	the 40.08 MHz crystal controlled PLL U502. This crystal controlled PLL has a low loop
1588	frequency so that it removes jitter from the selected LHC reference. When no LHC reference
1589	is available the PLL will hold within 50 ppm of the nominal LHC frequency. A signal
1590	indicating whether or not this PLL is locked to its reference is sent to a Select I/O input on
1591	the Hub's FPGA where it can be monitored in an IPBus visible status register.
1592	The 40.08 MHz LVPECL output from this PLL is routed to a set of clock fanouts that are
1593	shown in Figure 26. The First Fanout U503 drives 4 loads and then a Second Fanout U504
1594	drives the 12 FEX cards plus the Other Hub over the Backplane. This two step fanout is
1595	necessary because of the two Hub cards in a Shelf only the Hub that receives the FELIX
1596	Optical TTC signal will drive its backplane clock lines. Thus the Second Fanout U504 can
1597	be controlled from the Hub's FPGA so that it either operates normally or else it holds its
1598	output pins static. Only on the Hub that receives the FELIX Optical TTC signal will this
1599	Second Fanout be enabled and thus provide a backplane clock to the 12 FEX cards and to the
1600	Other Hub.
1601	First Fanout U503 a TI CDCLVD1204 drives:
1602	• the ROD Mezzanine on This Hub
1603	• a Select I/O Global Clock input pair in Bank 71 of This Hub's FPGA for use as a logic
1604	clock
1605	• a reference to the 320.64 MHz Clock on This Hub
1606	• the Second 40.08 MHz Fanout on This Hub
1607	
1608	Second 40.08 MHz Fanout U504 a TI CDCLVD1216 drives:
1609	• the 12 FEX cards over the backplane
1610	• the Other Hub over the backplane
1611	
1612	The 2V5 and 3V3 power for the 40.08 MHz clock generation and distribution components is
1613	LC filtered from the bulk supplies and distributed to these components on separate isolated
1614	PCB area fills. The ground plane under these components has been partially separated from
1615	the rest of the Hub's ground plane with a moat.
1616	Figure 25 includes a note about FPGA differential pin pairs that receive this AC coupled
1617	LVDS clock signals.
1618	16.3 320.64 MHz LHC Locked Clock for MGT Reference and FPGA
1619	Logic
1620	The Hub's 320.64 MHz clock is shown in Figure 27 . This is also an LHC locked clock. It
1621	uses a fanout copy of the Hub's 40 08 MHz clock as its reference

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

1622	This 40.08 MHz LVDS reference signal is received by U505 and converted to a single ended
1623	CMOS reference signal for U506, the 320.64 MHz PLL. This crystal controlled PLL has a
1624	loop frequency that allows it to track changes in the output of the Hub's 40.08 MHz PLL. A
1625	signal indicating whether or not this PLL is locked to its reference is sent to a Select I/O input
1626	on the Hub's FPGA where it can be monitored in an IPBus visible status register.
1627	The LVPECL output from the 320.64 MHz PLL is delivered to U507 which is a
1628	MC100LVEP111 10 way LVPECL fanout.
1629	• 8 copies of the 320.64 MHz clock from this fanout are delivered to MGT Reference
1630	Clock inputs on This Hub's FPGA. These are delivered as AC coupled LVPECL signals.
1631	The MGT Reference Clock inputs that receive this clock are listed near the end of Section
1632	18.
1633	
1634	 A copy of the 320.64 MHz clock from this fanout is delivered to a Select I/O Global
1635	Clock input pair in Bank 71 of This Hub's FPGA for use as a logic clock. Note that the
1636	correct options need to be set in this I/O Block to allow it to receive this AC coupled
1637	clock signal. See the note on Figure 27 .
1638	


16421643

<u>Hub Module - 25 MHz Ethernet Clock</u>

Drw: 39 Rev. 30-Dec-2015

Figure 24: Circuit diagram of Hub 25 MHz Ethernet clock.

1646

Figure 25: Circuit diagram for Hub 40.08 MHz clock distribution (1/2)

1648

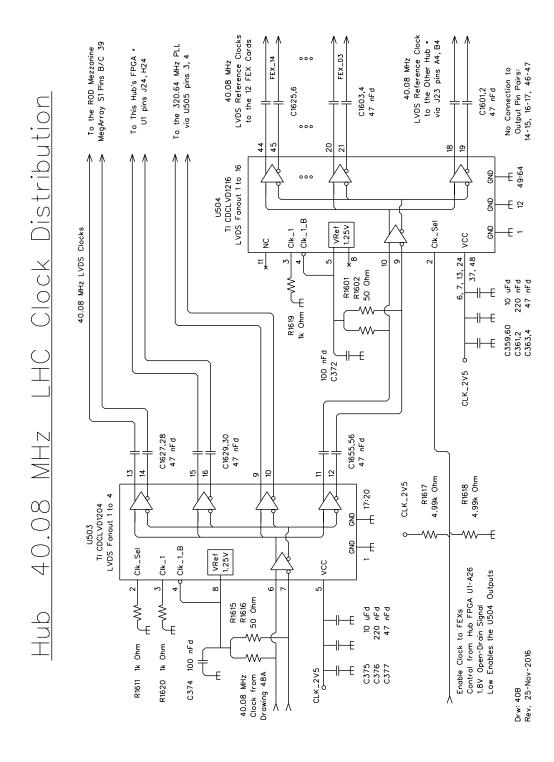


Figure 26: Circuit diagram for Hub 40.08 MHz clock distribution (2/2)

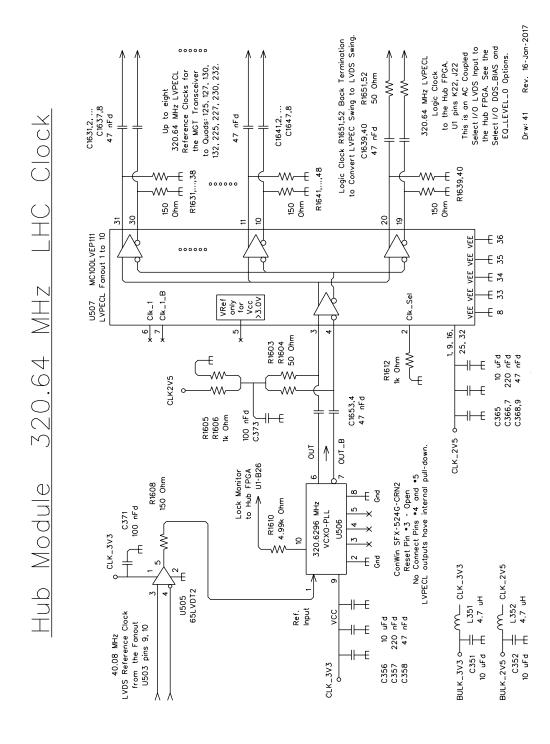


Figure 27: Circuit diagram for Hub 320 MHz clock generation.

1659 17 Appendix 4: Hub-Module Ethernet Line Circuits

- This note describes the "line circuits" on the Hub Module that connect its various Ethernet
- 1661 components to the twisted pair lines that run from the card. Here I used "twisted pair" to
- mean both the ATCA Base Interface Ethernet links and the front panel RJ-45 unshielded
- twisted pair cable (UTP cable) Ethernet links. The standard transformer coupled Ethernet
- line circuits are often referred to in engineering slang as "Ethernet magnetics". A circuit
- diagram is shown in **Figure 28**.

1668

- 1666 The very end of this note describes the capacitor coupled Ethernet line circuits that are used
- for the Ethernet connections that have both ends on the same Hub Module.

17.1 Transformer Coupled Ethernet Line Circuits

- 1669 At the Ethernet physical layer the Hub Module has three different types of devices that must
- 1670 connect to standard transformer coupled Ethernet line circuits:
- 17 line circuits to Broadcom BCM53128 Switch ports.
- 13 of these run to the backplane Zone 2 Base Interface.
- 4 of these run to the front panel RJ-45s.
- 1 line circuit to the Micrel KSZ9031RNX Phys Chip for this Hub's Virtex FPGA. This circuit runs to the backplane Zone 2 Base Interface.
- 1 line circuit to the Micrel KSZ9031RNX Phys Chip for the ROD Virtex FPGA on this Hub card. This circuit runs to a front panel RJ-45 connector.
- 1 line circuit to the TI DP83848C Phys Chip on the IPMC mezzanine module. This circuit runs to a front panel RJ-45 connector.
- Both modern voltage mode and older current mode connections to the Ethernet line circuits
- are used on the Hub Module. The Broadcom BCM53128 and the Micrel KSZ9031RNX are
- voltage mode devices. The TI DP83848C Phys Chip in the IPMC is a current mode device.
- The Ethernet line circuit for the IPMC has the added complication that currently it is a 10/100
- Base-T only connection but in the future the IPMC may be supplied as a 10/100/1000 Base-T
- device that will use 2 additional circuits and will presumable be a voltage mode device.
- The "magnetics" used on the Hub Module is a SMD device that holds 8 circuits per device,
- i.e. 2 complete 10/100/1000 Base-T connections per device. It is a Pulse Engineering
- 1689 HX5201NL part that can operate over the -40 to +85 deg. C temperature range. The
- 1690 HX5201NL is of the recommended topology with its isolation transformer next to the Phys
- port and its common mode choke next to its line port. This is a so called "8 core" per
- 1692 Ethernet connection device and has a 3 wire common mode choke that can be used with
- 1693 Power Over Ethernet.

1694 **17.2 Phys Side Connections**

- The connection to the Phys side of the magnetics is different for voltage mode and current mode devices.
- The voltage mode Phys devices connect to the two outer primary side transformer terminals on each circuit and the primary center tap is tied to logic ground through a 100 nFd capacitor.
- The current mode Phys device connects to the two outer primary side transformer terminals as above. In addition each terminal on the Phys has a 50 Ohm resistor that runs to Vcc which is 3.3 Volts for the the DP83848C device on the IPMC. These 50 Ohm resistors are located on the IPMC mezzanine. The Vcc side of these resistors must be bypassed to ground. In addition the center tap of the transformer primary must be bypassed to ground with a 100 nFd cap and tied to Vcc, i.e. 3.3 Volts for the DP83848C device.
- So the difference in these circuits on the Hub Module needs to be the inclusion of a jumper from the transformer primary center tap to the 3.3 Volt plane for any circuits that may need to operate in current mode, i.e. the IPMC A/Tx B/Rx circuits.

17.3 Line Side Connections

- 1711 In the Hub application (which does not have Power Over Ethernet) the line side of the
- magnetics is tied to a front panel RJ-45 connector or to a Zone 2 Base Interface connection
- paying attention to the required strange pinout of the B and "C" circuits in the RJ-45
- 1714 connector. The center tap of the line side common mode choke is tied to ground through a
- Bob Smith termination (patented by Robert W. Smith).
- The intent of this termination of to absorb common mode energy in the line side circuit and
- thus to help reduce the radiation of this energy. This termination consists of a 75 Ohm series
- 1718 resistor from the common mode choke choke center tap in each of the 4 circuits in a given
- 1719 Ethernet connection. The far side of these 4 resistors are tied together and then tied to ground
- through a 1 nFd capacitor.

1710

- For the Base Interface Ethernet connections the ground that this 1 nFd cap is tied to should
- 1722 clearly be the Logic Ground. For the front panel RJ-45 links one could argue that the 1 nFd
- cap should be tied to the Shelf ground or to the Logic Ground. Being an ATCA card the Hub
- Module has only a single pin Zone 1 connection to the Shelf Ground and thus this ground
- 1725 connection is likely to be noisy and not a very stiff ground point. Thus for the Hub's front
- panel RJ-45 Ethernet connections the 1 nFd Bob Smith capacitor is tied to Logic Ground.

1727 **17.4 Ethernet Magnetics Connection Summary**

- 1728 In summary, each Ethernet connection (4 circuits) requires the following passive
- 1729 components:
- 4x 100 nFd caps from the trans pri center tap to gnd
- 2x zero Ohm jumpers to 3V3 for current mode Tx,Rx only
- 1732 4x 75 Ohm from common mode choke sec side center tap

• 1x 1 nFd from the 75 Ohm resistors to ground

17.5 Front Panel RJ-45s

- 1735 The front panel RJ-45 connectors used on the Hub Module are TE Connectivity 1888653-x
- 1736 1x2 condo connectors. These are special condo connectors for ATCA because the standard
- height RJ-45 condo connector is too tall to fit within the ATCA side 1 component height
- 1738 limitation.

1734

- 1739 The TE 1888653-x connector requires a notch in the front edge of the PCB or else it will stick
- out to far. On the Hub Module this notch is a minimum of 16.00 mm wide (i.e the connector
- itself requires a 16.00 mm wide notch and to this one needs to add some clearance and router
- tool radius). The notch, in theory, needs to be 10.55mm deep. Using a 7.00 mm deep cutout
- makes a better match to how far the other components (e.g. SFP+) stick out in front of the
- Hub's front panel.
- 1745 The Hub Module uses the 1888653-4 RJ-45 connector. This connector has the following
- setup of its LEDs: LEDs 1,4 are in the lower, i.e. PCB level, RJ45; LEDs 2,3 are in the
- 1747 upper RJ45.
- 1748 As installed on our Hub card and with the long axis of the front panel vertical:
- 1749 LEDs 1.2 are above their RJ45s
- 1750 LEDs 3,4 are below their RJ45s.

1751

- 1752 TE Part No. LED 1 LED 2 LED 3 LED 4
- 1753 ----- ---- ----
- 1754 1888653-4 Green Green Yellow Yellow

1755

- 1756 There are alternative versions of this connector available with different LED arrangements.
- 1757 The 1888653-4 version has the common Green/Yellow LEDs and is available from stock.
- For the Hub's Ethernet links that do not run through front panel RJ-45 connectors, green and
- 1759 yellow LEDs are provided in a separate front panel LED array.
- The metal cover shell around the RJ-45 connectors, which makes no electrical connection to
- the twisted pair cable, is tied to the Shelf Ground via its fingers that touch the front panel. In
- addition the Shelf Ground net is run to the pins on this connector that attach to its metal cover
- 1763 shell.

1764

17.6 Capacitor Coupled Ethernet Line Circuits

- 1765 There are two types of Ethernet connections on the Hub Module were both ends of the
- 1766 connection are on the same module. These are:

- The connections between the Broadcom BCM53128 Switch Chips: Chip A <--> Chip B <--> Chip C.
 - The connection from the Micrel KSZ9031RNX Phys Chip for this Hub's Virtex FPGA to Switch Chip C on the same Hub Module.

1769

1770

- In these cases both ends of the Ethernet connection are on the same Hub Module and operate with the same ground planes. Thus we do not have a large concern about common mode signals on these links.
- To save circuit board space capacitor coupling can be used on these links. Both of these devices have modern voltage mode physical layer transmitters which makes it much easier to use capacitor coupling.
- Specific information about using capacitor coupling with the Broadcom BCM53128 Switch
 Chip is given on page 29 of the BCM53128 "Layout and Design Guide" including an
 example of capacitor coupling it to a different LDAC Phys device. Also see the Broadcom
 note CAP-AN102 "Capacitive Coupling 10/100/1000 Base-T Ethernet Chip-to-Chip and
- 1782 Backplane Applications".
- 1783 Information from Micrel about using capacitor coupling is given in their application note AN-120.

17.7 Assignment of Ethernet "Magnetics"

The Pulse Engineering HX5201NL "magnetics" that are used on the Hub have 2 full Ethernet port (i.e. 8 circuits) per module. They are assigned to the various Line Circuits in the following way:

1789

Ref. Desig.	Mag Sect	Usage
TRNS1	Left Right	RJ1 Lower This Hub's ROD RJ1 Upper This Hub's IPMC
TRNS2	Left Right	RJ2 Lower Switch Chip "A" Port 6 RJ2 Upper Switch Chip "C" Port 6
TRNS3	Left Right	RJ3 Lower Switch Chip "B" Port 6 RJ3 Upper Switch Chip "B" Port 7
TRNS4	Left Right	This Hub's FPGA Phy U21 J20 Rw 3&4 to Other Hub Sw Chip B Port 5 BI Ch 2 J20 Rw 3&4 to Other Hub FPGA
TRNS5	Left Right	Chip C Port 5 BI Ch 3 J23 Rw 7 to Slot 3 FEX Chip C Port 4 BI Ch 4 J23 Rw 8 to Slot 4 FEX
TRNS6	Left Right	Chip C Port 3 BI Ch 5 J23 Rw 9 to Slot 5 FEX Chip C Port 2 BI Ch 6 J23 Rw 10 to Slot 6 FEX

TRNS7	Left Right	Chip C Port 1 BI Ch 7 J24 Rw 1 to Slot 7 FEX Chip C Port 0 BI Ch 8 J24 Rw 2 to Slot 8 FEX
TRNS8	Left Right	Chip A Port 5 BI Ch 9 J24 Rw 3 to Slot 9 FEX Chip A Port 4 BI Ch 10 J24 Rw 4 to Slot 10 FEX
TRNS9	Left Right	Chip A Port 3 BI Ch 11 J24 Rw 5 to Slot 11 FEX Chip A Port 2 BI Ch 12 J24 Rw 6 to Slot 12 FEX
TRNS10	Left Right	Chip A Port 1 BI Ch 13 J24 Rw 7 to Slot 13 FEX Chip A Port 0 BI Ch 14 J24 Rw 8 to Slot 14 FEX

1791

17.8 Assignment of Front Panel RJ-45 Connectors

The TE 1888653-x condo RJ-45 connector that are used on the front panel of the Hub Module are assigned in the following way:

Ref Desig	Connector	Usage
RJ1	Lower or Left Upper or Right	This Hub's ROD This Hub's IPMC
RJ2	Lower or Left Upper or Right	Switch Chip "A" Port 6 Switch Chip "C" Port 6
RJ3	Lower or Left Upper or Right	Switch Chip "B" Port 6 Switch Chip "B" Port 7

1794

1795

1796 1797

1798

1799

1800

When viewed from the front with the card plugged into a crate and the long axis of its front panel vertical, then RJ1 is nearest the top of the Hub and RJ3 is nearest the bottom edge of the card.

17.9 Document / Verify the ROD's RJ45 Ethernet Connection

The ethernet connections on the ROD mezzanine card shown below come from pages 3 and 20 of the 4-Sept-2015 ROD print set.

	ROD's Ethern	et	Hub I	Magnetics a	nd RJ45 for th	e ROD
ROD Net Name	U11 KSZ9031 Pin No.	MegArray S1 Pin No.	MegArray S1 Pin No.	TRNS1 Primary Pin No.	Magnetics Secondary Pin No.	Front Panel RJ45 Pin No.
TxRxA_P TxRxA_N	2 3	S1-B29 S1-C29	S1-B29 S1-C29	L3 L1	L9 L7	2 1
TxRxB_P TxRxB_N	5 6	S1-B31 S1-C31	S1-B31 S1-C31	L6 L4	L12 L10	6 3
TxRxC P	7	S1-B33	S1-B33	L22	L16	5

TxRxC_N	8	S1-C33	S1-C33	L24	L18	4
TxRxD_P	10	S1-B35	S1-B35	L19	L13	8
TxRxD N	11	S1-C35	S1-C35	L21	L15	7

For the ROD application (which is a Voltage Mode Phys Chip) the magnetics primary center tap has a 100 nFd capacitor to ground and the secondary center tap has a "Bob Jones" 50 Ohm 1 nFd in series to ground. Note as currently layed out it looks like all 4 pairs are inverted.

17.10 Document / Verify the IPMC's RJ45 Ethernet Connection

The current IPMC mezzanine supports 10/100 Mbits/sec Ethernet using a National/Texas DP83848C 10/100 Base-T Phys chip. This Phys chip has an old type Current Mode transmitter connection to the magnetics. The Hub must include jumpers so that it can support either the current IPMC or a future version of the IPMC with a 1000 Base-T Phys chip that would use a Voltage Mode connection the magnetics primary. The IPMC pinout includes pins for all 4 pairs in the standard contemporary Base-T Ethernet.

IPMC Mezzan	ine	Hub Magnetics and RJ45 for the IPMC					
			TRNS1	Magnetics			
IPMC Net Name	IPMC Pin No.	Hub IPMC Socket Pin No.	Primary Pin No.	Secondary Pin No.	Front Panel RJ45 Pin No.		
Gb A+/Eth Tx+	171	171	R1	R7	1		
Gb_A- / Eth_Tx-	172	172	R3	R9	2		
Gb_B+ / Eth_Rx+ Gb_B- / Eth_Rx-	174 175	174 175	R4 R6	R10 R12	3 6		
Gb C+	177	177	R24	R18	4		
Gb_C-	178	178	R22	R16	5		
Gb_D+ Gb_D-	180 181	180 181	R21 R19	R15 R13	7 8		

For the IPMC application (which is currently a Current Mode Phys Chip but could be a Voltage Mode Phys Chip in the future) the magnetics primary center tap has a 100 nFd capacitor to ground and the primary center tap for circuits A (Tx) and B (Rx) also have a 0603 jumpers to the BULK_3V3 supply. All of the secondary center taps have a "Bob Jones" 50 Ohm 1 nFd in series to ground.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

1	823
1	824

Ethernet Magnetics

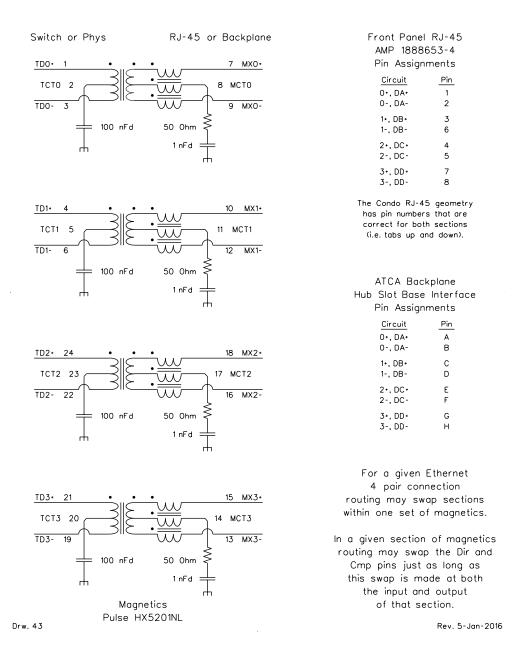


Figure 28: Circuit diagram for Hub Ethernet magnetics design.

1834 **18 Appendix 5: Hub Virtex FPGA MGT Transceiver Usage**

- 1835 A significant number of MGT Transceivers are used on the Hub Module's Virtex FPGA.
- 1836 The intent of this document is to describe in a single place all of the MGT Transceiver
- 1837 connections to this FPGA. These connections are described in the text of this section, the
- associated tables, and in **Figure 29**, **Figure 30**, and **Figure 31**. Notes:
- The xcvu125_flvc2104 FPGA on the Hub Module contains 80 MGT Transceivers. 40 of these are GTY type transceivers and 40 of them are GTH type transceivers.
 - Both the GTY and GTH type transceivers are split across the two Super-Logic-Region pieces of silcon in the xcvu125_flvc2104 FPGA. Half of each transceiver type is in each of the two Super-Logic-Regions.
 - Note that MGT Reference Clocks can NOT be shared across Super-Logic-Regions.
- All 80 of the MGT Receivers are used in the Hub Module design.
 - The specific MGT Receiver used for a given application has been selected on the bases of providing the best PCB trace routing.
- Only 30 of the MGT Transmitters are used in the Hub design.
 - Again PCB trace routing was the bases for selecting a given MGT Transmitter for a specific application. In general this means that the MGT Transmitters with pins nearer the perimeter were selected for use.

1852

The following tables liss only the MGT Transceiver inputs and outputs. The Reference Clock inputs and the MGTAVTTRCAL_LC and MGTRREF_LC pins are listed in a separate table at the end of this section.

1856

1841

1842

1843

1844

1846

1847

1849 1850

Pin/Quad	Pin Name	I/O Type	Super Logic Reg.	Hub Module Net Connection
GTY Quad		•		
133:				
A36	MGTYTXP3_133	GTY	1	'Comb_Data_to_Cap_to_FEX_08_Dir'
A37	MGTYTXN3_133	GTY	1	'Comb_Data_to_Cap_to_FEX_08_Cmp'
B38	MGTYTXP2_133	GTY	1	'Comb_Data_to_Cap_to_FEX_07_Dir'
B39	MGTYTXN2_133	GTY	1	'Comb_Data_to_Cap_to_FEX_07_Cmp'
C36	MGTYTXP1_133	GTY	1	
C37	MGTYTXN1_133	GTY	1	
D38	MGTYTXP0_133	GTY	1	
D39	MGTYTXN0_133	GTY	1	
A31	MGTYRXP3_133	GTY	1	'MGT_FO_CH_37_OUT_Hub_DIR'
A32	MGTYRXN3_133	GTY	1	'MGT_FO_CH_37_OUT_Hub_CMP'
B33	MGTYRXP2_133	GTY	1	'MGT_FO_CH_38_OUT_Hub_DIR'
B34	MGTYRXN2_133	GTY	1	'MGT_FO_CH_38_OUT_Hub_CMP'
C31	MGTYRXP1_133	GTY	1	'MGT_FO_CH_39_OUT_Hub_CMP'
C32	MGTYRXN1_133	GTY	1	'MGT_FO_CH_39_OUT_Hub_DIR'
D33	MGTYRXP0_133	GTY	1	'MGT_FO_CH_40_OUT_Hub_DIR'
D34	MGTYRXN0_133	GTY	1	'MGT_FO_CH_40_OUT_Hub_CMP'
GTY Quad				
<u>132:</u>				_

A41	A 40	MCTVTVD2 122	CTV	1	ICamb Data to Con to EFV 00 Did
C40	A40	MGTYTXP3_132	GTY	1	'Comb_Data_to_Cap_to_FEX_06_Dir'
C41		_		_	'Comb_Data_to_Cap_to_FEX_06_Cmp'
E36		_			
E37				_	
E40 MGTYTXPO_132 GTY 1 B43 MGTYRXPS_132 GTY 1 B44 MGTYRXPS_132 GTY 1 B44 MGTYRXPS_132 GTY 1 B44 MGTYRXPS_132 GTY 1 B44 MGTYRXPS_132 GTY 1 C45 MGTYRXPS_132 GTY 1 C46 MGTYRXPS_132 GTY 1 D43 MGTYRXP_132 GTY 1 D44 MGTYRXN_132 GTY 1 C46 MGTYRXN_132 GTY 1 D47 MGT_FO_CH_25_OUT_Hub_DIR' D48 MGTYRXN_132 GTY 1 MGT_FO_CH_26_OUT_Hub_CMP' D49 MGTYRXN_132 GTY 1 MGT_FO_CH_27_OUT_Hub_DIR' E46 MGTYRXN_132 GTY 1 E47 MGT_FO_CH_28_OUT_Hub_DIR' E48 MGTYRXN_131 GTY 1 E48 MGTYTXN_131 GTY 1 E49 MGTYTXN_131 GTY 1 E40 MGTYTXN_131 GTY 1 E41 MGTYTXN_131 GTY 1 E42 MGTYRXN_131 GTY 1 E43 MGTYRXN_131 GTY 1 E44 MGTYRXN_131 GTY 1 E45 MGTYRXN_131 GTY 1 E46 MGTYTXN_131 GTY 1 E47 MGT_FO_CH_35_OUT_Hub_CMP' E48 MGTYTXN_131 GTY 1 E49 MGTYTXN_131 GTY 1 E40 MGTYRXN_131 GTY 1 E41 MGTYTXN_131 GTY 1 E42 MGTYRXN_131 GTY 1 E43 MGTYRXN_131 GTY 1 E44 MGTYRXN_131 GTY 1 E45 MGTYRXN_131 GTY 1 E46 MGTYRXN_131 GTY 1 E47 MGT_FO_CH_36_OUT_Hub_DIR' E48 MGTYRXN_131 GTY 1 E49 MGTYTXN_131 GTY 1 E49 MGTTTXN_131 GTY 1 E49 MGTTTXN_131 GTY 1 E49 MGTTTXN_131 GTY 1 E49 MGTTTXN_131 GT		<u> </u>			
F41		_			
B43		_			
B44 MGTYRXN3_132 GTY 1 'MGT_FO_CH_25_OUT_Hub_DIR' C45 MGTYRXP2_132 GTY 1 'MGT_FO_CH_26_OUT_Hub_DIR' C46 MGTYRXP1_132 GTY 1 'MGT_FO_CH_26_OUT_Hub_DIR' D43 MGTYRXP1_132 GTY 1 'MGT_FO_CH_27_OUT_Hub_DIR' D44 MGTYRXP0_132 GTY 1 'MGT_FO_CH_27_OUT_Hub_DIR' E45 MGTYRXP0_132 GTY 1 'MGT_FO_CH_28_OUT_Hub_DIR' E46 MGTYTXN0_132 GTY 1 'MGT_FO_CH_28_OUT_Hub_DIR' GTY Quad 131: "MGTYTXN0_131 GTY 1 F34 MGTYTXN2_131 GTY 1 'MGT_FO_CH_28_OUT_Hub_DMP' G36 MGTYTXN2_131 GTY 1 'MGTYTXN0_131 GTY 1 F38 MGTYTXN0_131 GTY 1 'MGT_FO_CH_35_OUT_Hub_DMP' 1 F39 MGTYTXN0_131 GTY 1 'MGT_FO_CH_35_OUT_Hub_DIR' 1 G31 MGTYRXP0_131 GTY 1 'MGT_FO_CH_35_OUT_Hub_DIR'		_			
C45					
C46 MGTYRXN2_132 GTY 1 MGT_FO_CH_26_OUT_Hub_CMP' D43 MGTYRXN1_132 GTY 1 MGT_FO_CH_27_OUT_Hub_CMP' D44 MGTYRXN1_132 GTY 1 MGT_FO_CH_27_OUT_Hub_DIR' E45 MGTYRXN0_132 GTY 1 MGT_FO_CH_28_OUT_Hub_DIR' E46 MGTYRXN0_132 GTY 1 MGT_FO_CH_28_OUT_Hub_DIR' MGTYQuad 131: F34 MGTYTXN3_131 GTY 1 F35 MGTYTXN3_131 GTY 1 F36 MGTYTXN2_131 GTY 1 F38 MGTYTXN2_131 GTY 1 F39 MGTYTXN1_131 GTY 1 F39 MGTYTXN0_131 GTY 1 F39 MGTYTXN0_131 GTY 1 F31 MGTYTXN0_131 GTY 1 F32 MGTYTXN0_131 GTY 1 G31 MGTYTXN0_131 GTY 1 G31 MGTYRXN2_131 GTY 1 F33 MGTYTXN1_131 GTY 1 F34 MGTYRXN2_131 GTY 1 F35 MGTYRXN3_131 GTY 1 F36 MGTYRXN2_131 GTY 1 F37 MGTYRXN1_131 GTY 1 F38 MGTYTXN0_131 GTY 1 F39 MGTYRXN1_131 GTY 1 F30 MGTYRXN1_131 GTY 1 F31 MGTYRXN1_131 GTY 1 F32 MGTYRXN1_131 GTY 1 F33 MGTYRXN1_131 GTY 1 F34 MGTYRXN1_131 GTY 1 F35 MGTYRXN1_131 GTY 1 F36 MGTYRXN1_131 GTY 1 F37 MGT_FO_CH_35_OUT_Hub_DIR' F38 MGTYRXN1_131 GTY 1 F39 MGTYRXN1_131 GTY 1 F30 MGTYRXN1_131 GTY 1 F31 MGTYRXN1_131 GTY 1 F32 MGTYRXN1_131 GTY 1 F33 MGTYRXN1_131 GTY 1 F34 MGTYRXN1_131 GTY 1 F35 MGTYRXN1_131 GTY 1 F36 MGTYRXN1_131 GTY 1 F37 MGT_FO_CH_36_OUT_Hub_DIR' F38 MGTYTXN1_130 GTY 1 F38 MGTYTXN1_130 GTY 1 F39 MGTYTXN1_130 GTY 1 F30 MGTYTXN1_130 GTY 1 F30 MGTYTXN1_130 GTY 1 F31 MGTYTXN1_130 GTY 1 F32 MGTYTXN1_130 GTY 1 F33 MGTYTXN1_130 GTY 1 F34 MGTYTXN1_130 GTY 1 F35 MGTYTXN1_130 GTY 1 F36 MGTYTXN1_130 GTY 1 F37 MGT_FO_CH_30_OUT_Hub_DIR' F38 MGTYTXN1_130 GTY 1 F38 MGTYTXN1_130 GTY 1 F39 MGTYTXN1_130 GTY 1 F30 MGTYTXN1_130 GTY 1 F31 MGTYTXN1_130 GTY 1 F32 MGTYTXN1_130 GTY 1 F33 MGTYTXN1_130 GTY 1 F34 MGTYTXN1_130 GTY 1 F35 MGTYTXN1_130 GTY 1 F36 MGTYTXN1_130 GTY 1 F37 MGT_FO_CH_30_OUT_Hub_DIR' F38 MGTYTXN1_130 GTY 1 F38 MGTYTXN1_130 GTY 1 F39 MGT_FO_CH_30_OUT_Hub_DIR' F39 MGTYTXN1_130 GTY 1 F30 MGT_FO_CH_30_OUT_Hub_DIR' F30 MGT_FO_CH_30_OUT_Hub_DIR' F30 MGT_FO_CH_30_OUT_Hub_DIR' F30 MGT_FO_CH_30_OUT_Hub_DIR' F30 MGT_FO_CH_30_OUT_Hub_DIR' F37 MGT_FO_CH_30_OUT_Hub_DIR' F38 MGTYTXN1_130 GTY 1 F38 MGTYTXN1_130 GTY 1 F39 MGT_FO_CH_18_OUT_Hub_DIR' F39 MGT_FO_CH_18_OUT_Hub_DIR' F30 MGT_FO_CH_18		_			
D43		—			
D44 MGTYRXN 132 GTY 1 'MGT_FO_CH_27_OUT_Hub_DIR'		<u> </u>			
E45 MGTYRXP0_132 GTY 1 'MGT_FO_CH_28_OUT_Hub_DIR' GTY Quad 131: F34 MGTYTXN3_131 GTY 1 F35 MGTYTXN2_131 GTY 1 F38 MGTYTXN1_131 GTY 1 F39 MGTYTXN1_131 GTY 1 F39 MGTYTXN0_131 GTY 1 G40 MGTYTXN0_131 GTY 1 G41 MGTYTXN0_131 GTY 1 G31 MGTYTXN3_131 GTY 1 F32 MGTYRXN3_131 GTY 1 F33 MGTYRXN3_131 GTY 1 G31 MGTYRXN3_131 GTY 1 G32 MGTYRXN2_131 GTY 1 G32 MGTYRXN2_131 GTY 1 G32 MGTYRXN1_131 GTY 1 G34 MGTYRXN1_131 GTY 1 MGT_FO_CH_35_OUT_Hub_DIR' G34 MGTYRXN1_131 GTY 1 MGT_FO_CH_36_OUT_Hub_DIR' F43 MGTYRXN1_131 GTY 1 MGT_FO_CH_36_OUT_Hub_DIR' F44 MGTYRXN1_131 GTY 1 MGT_FO_CH_29_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' G47 Quad 130: H38 MGTYTXN1_130 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' CGTY Quad 130: H38 MGTYTXN1_130 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' CGTY Quad 130: H38 MGTYTXN1_130 GTY 1 MGT_FO_CH_30_OUT_Hub_DIR' COmb_Data_to_Cap_to_FEX_05_Dir' 'Comb_Data_to_Cap_to_FEX_04_Cmp' H44 MGTYRXN1_130 GTY 1 MGT_FO_CH_31_OUT_Hub_DIR' COmb_Data_to_Cap_to_FEX_04_Cmp' H44 MGTYTXN0_130 GTY 1 MGT_FO_CH_31_OUT_Hub_DIR' H44 MGTYTXN3_130 GTY 1 MGT_FO_CH_31_OUT_Hub_DIR' H44 MGTYTXN3_130 GTY 1 MGT_FO_CH_31_OUT_Hub_DIR' H44 MGTYRXN3_130 GTY 1 MGT_FO_CH_32_OUT_Hub_DIR' H44 MGTYRXN3_130 GTY 1 MGT_FO_CH_32_OUT_Hub_DIR' H45 MGTYRXN1_130 GTY 1 MGT_FO_CH_32_OUT_Hub_DIR' H46 MGTYRXN1_130 GTY 1 MGT_FO_CH_32_OUT_Hub_DIR' H47 MGT_FO_CH_32_OUT_Hub_DIR' H48 MGTYRXN1_130 GTY 1 MGT_FO_CH_13_OUT_Hub_DIR' H49 MGTYRXN1_130 GTY 1 MGT_FO_CH_13_OUT_Hub_DIR' H44 MGTYRXN1_130 GTY 1 MGT_FO_CH_13_OUT_Hub_DIR' H45 MGTYRXN1_130 GTY 1 MGT_FO_CH_13_OUT_Hub_DIR' H46 MGTYRXN1_130 GTY 1 MGT_FO_CH_13_OUT_Hub_DIR' H47 MGT_FO_CH_18_OUT_Hub_DIR' H48 MGTYRXN1_130 GTY 1 MGT_FO_CH_18_OUT_Hub_DIR' H49 MGTYRXN1_130 GTY 1 MGT_FO_CH_18_OUT_Hub_DIR' H49 MGTYRXN1_130 GTY 1 MGT_FO_CH	D43	MGTYRXP1_132	GTY	1	
E46 MGTYRXN0_132 GTY 1 'MGT_FO_CH_28_OUT_Hub_CMP'	D44	MGTYRXN1_132	GTY	1	'MGT_FO_CH_27_OUT_Hub_DIR'
GTY Quad 131:	E45	MGTYRXP0_132	GTY	1	'MGT_FO_CH_28_OUT_Hub_DIR'
131:	E46	MGTYRXN0_132	GTY	1	'MGT_FO_CH_28_OUT_Hub_CMP'
F34	GTY Quad				
F35	131:				
F35	F34	MGTYTXP3 131	GTY	1	
G36 MGTYTXP2_131 GTY 1 GTY				1	
G37					
F38				1	
F39		_			
G40		_			
G41 MGTYTXN0_131 GTY 1 E31 MGTYRXP3_131 GTY 1 E32 MGTYRXN3_131 GTY 1 G31 MGTYRXP2_131 GTY 1 G32 MGTYRXN2_131 GTY 1 F43 MGTYRXP1_131 GTY 1 F44 MGTYRXN1_131 GTY 1 G45 MGTYRXP0_131 GTY 1 G46 MGTYRXN0_131 GTY 1 GTY Quad 130: 1 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130: 1 'MGT_FO_CH_30_OUT_Hub_DIR' GTY Quad 130: 1 'MGT_FO_CH_30_OUT_Hub_DIR' GTY Quad 130: 1 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130: 1 'Comb_Data_to_Cap_to_FEX_05_Dir' J41 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Dir' K38 MGTYTXN1_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' K43 MGTYRXN0_130 GTY <td></td> <td>_</td> <td></td> <td></td> <td></td>		_			
E31		-			
E32 MGTYRXN3_131 GTY 1 'MGT_FO_CH_35_OUT_Hub_DIR' G31 MGTYRXP2_131 GTY 1 'MGT_FO_CH_36_OUT_Hub_DIR' G32 MGTYRXN2_131 GTY 1 'MGT_FO_CH_36_OUT_Hub_CMP' F43 MGTYRXP1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_CMP' F44 MGTYRXN1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_DIR' G45 MGTYRXP0_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130:		<u> </u>			'MGT FO CH 35 OUT Hub CMP'
G31		_			
G32 MGTYRXN2_131 GTY 1 'MGT_FO_CH_36_OUT_Hub_CMP' F43 MGTYRXP1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_CMP' F44 MGTYRXN1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_DIR' G45 MGTYRXP0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_CMP' G7Y Quad		_			
F43 MGTYRXP1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_CMP' F44 MGTYRXN1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_DIR' G45 MGTYRXP0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' GTY Quad 130: 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130: 'MGTYTXP3_130 GTY 1 J40 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Dir' J41 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Cmp' K38 MGTYTXN1_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L40 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L41 MGTYRXP3_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J46 MGTYRXP2_130 <td< td=""><td></td><td>_</td><td></td><td></td><td></td></td<>		_			
F44 MGTYRXN1_131 GTY 1 'MGT_FO_CH_29_OUT_Hub_DIR' G45 MGTYRXP0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' GTY Quad 130: 'MGT_FO_CH_30_OUT_Hub_CMP' H38 MGTYTXP3_130 GTY 1 J40 MGTYTXP2_130 GTY 1 J41 MGTYTXP2_130 GTY 1 K38 MGTYTXN1_130 GTY 1 K39 MGTYTXN1_130 GTY 1 L40 MGTYTXN0_130 GTY 1 L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYRXP3_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46		_			
G45 MGTYRXP0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_DIR' G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130: H38 MGTYTXP3_130 GTY 1 'Comb_Data_to_CAp_to_FEX_05_Dir' J40 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Dir' J41 MGTYTXN2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Cmp' K38 MGTYTXN1_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L40 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYXN0_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' K44 MGTYRXN1_130		—			
G46 MGTYRXN0_131 GTY 1 'MGT_FO_CH_30_OUT_Hub_CMP' GTY Quad 130: H38 MGTYTXP3_130 GTY 1 Comb_Data_to_Cap_to_FEX_05_Dir' J40 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Dir' J41 MGTYTXN2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Cmp' K38 MGTYTXN1_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L40 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L43 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' K43 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR'		_			
GTY Quad		—			
130:		MUTIKANU_131	GII	1	MG1_FO_CH_30_OU1_Hu0_CMF
H38					
H39		MOTATANDA 120	OTM	1	
J40 MGTYTXP2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Dir' J41 MGTYTXN2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Cmp' K38 MGTYTXP1_130 GTY 1 K39 MGTYTXN0_130 GTY 1 L40 MGTYTXN0_130 GTY 1 L41 MGTYTXN0_130 GTY 1 H43 MGTYRXP3_130 GTY 1 H44 MGTYRXN3_130 GTY 1 H44 MGTYRXN2_130 GTY 1 J45 MGTYRXP2_130 GTY 1 J46 MGTYRXN2_130 GTY 1 K43 MGTYRXN1_130 GTY 1 K44 MGTYRXN1_130 GTY 1 K44 MGTYRXP0_130 GTY 1 L45 MGTYRXP0_130 GTY 1 L46 MGTYRXN0_130 GTY 1 GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'					
J41 MGTYTXN2_130 GTY 1 'Comb_Data_to_Cap_to_FEX_05_Cmp' K38 MGTYTXP1_130 GTY 1 K39 MGTYTXN1_130 GTY 1 L40 MGTYTXN0_130 GTY 1 L41 MGTYTXN0_130 GTY 1 H43 MGTYRXP3_130 GTY 1 H44 MGTYRXN3_130 GTY 1 J45 MGTYRXP2_130 GTY 1 J46 MGTYRXN2_130 GTY 1 K43 MGTYRXN1_130 GTY 1 K44 MGTYRXN1_130 GTY 1 K44 MGTYRXN1_130 GTY 1 L45 MGTYRXP0_130 GTY 1 L46 MGTYRXN0_130 GTY 1 GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			ICamil Data to Co. to EEV 05 Did
K38 MGTYTXP1_130 GTY 1 K39 MGTYTXN1_130 GTY 1 L40 MGTYTXP0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		-			
K39 MGTYTXN1_130 GTY 1 L40 MGTYTXP0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			Comb_Data_to_Cap_to_FEX_05_Cmp'
L40 MGTYTXP0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Dir' L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP' 'MGT_FO_CH_18_OUT_Hub_CMP'		<u> </u>			
L41 MGTYTXN0_130 GTY 1 'Comb_Data_to_Cap_to_FEX_04_Cmp' H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP'		<u> </u>			
H43 MGTYRXP3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_CMP' H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			
H44 MGTYRXN3_130 GTY 1 'MGT_FO_CH_31_OUT_Hub_DIR' J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			
J45 MGTYRXP2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_DIR' J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			
J46 MGTYRXN2_130 GTY 1 'MGT_FO_CH_32_OUT_Hub_CMP' K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad		_			
K43 MGTYRXP1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_CMP' K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad		_			
K44 MGTYRXN1_130 GTY 1 'MGT_FO_CH_17_OUT_Hub_DIR' L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad		_			
L45 MGTYRXP0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_DIR' L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_18_OUT_Hub_CMP'		_			
L46 MGTYRXN0_130 GTY 1 'MGT_FO_CH_18_OUT_Hub_CMP' GTY Quad		_			
GTY Quad		_		1	
	L46	MGTYRXN0_130	GTY	1	'MGT_FO_CH_18_OUT_Hub_CMP'
129:					
<u> </u>	129:				

M38						
N40	M38	MGTYTXP3_129	GTY	1		
N41	M39	MGTYTXN3_129	GTY	1		
P38 MGTYTXPI_129 GTY 1	N40	MGTYTXP2 129	GTY	1	'Comb Data to Cap to FEX 03 Dir'	
P39	N41	MGTYTXN2 129	GTY	1	'Comb Data to Cap to FEX 03 Cmp'	
R40 MGTYTXP0 129 GTY 1 Comb Data to Cap to Other Hub Dir' Comb Data to Cap to Other Hub Dir' Comb Data to Cap to Other Hub Cmp' MGT FO CH 19 OUT Hub DIR' MGT FO CH 20 OUT Hub DIR' MGT FO CH 21 OUT Hub DIR' MGT FO CH 22 OUT Hub DIR' MGT FO CH 23 OUT Hub DIR' MGT FO CH 23 OUT Hub DIR' MGT FO CH 24 OUT Hub DIR' MGT FO CH 20 OUT Hub DIR' MGT FO CH 10 OUT Hub DIR' MGT FO CH 11 OUT Hub DIR' MGT FO C	P38	MGTYTXP1 129	GTY	1		
R41	P39	MGTYTXN1 129	GTY	1		
R41 MGTYTKN0 129 GTY 1 Comb Data Io. Cap 10 Other Hub Cmp' M44 MGTYRXP3 129 GTY 1 MGT FO CH 19 OUT Hub DIR' N45 MGTYRXP2 129 GTY 1 MGT FO CH 19 OUT Hub DIR' N46 MGTYRXP2 129 GTY 1 MGT FO CH 20 OUT Hub DIR' N46 MGTYRXP2 129 GTY 1 MGT FO CH 20 OUT Hub DIR' N46 MGTYRXP1 129 GTY 1 MGT FO CH 20 OUT Hub DIR' N46 MGTYRXP0 129 GTY 1 MGT FO CH 20 OUT Hub DIR' N46 MGTYRXP0 129 GTY 1 MGT FO CH 21 OUT Hub DIR' N46 MGTYRXP0 129 GTY 1 MGT FO CH 22 OUT Hub DIR' N46 MGTYRXP0 129 GTY 1 MGT FO CH 22 OUT Hub DIR' N46 MGTYTXP3 128 GTY 0 MGTYTXP3 128 GTY 0 MGTYTXP3 128 GTY 0 MGTYTXP1 128 GTY 0 MGT FO CH 23 OUT Hub DIR' MGTYTXP1 128 GTY 0 MGT FO CH 24 OUT Hub DIR' MGTYTXP1 128 GTY 0 MGT FO CH 24 OUT Hub DIR' MGT FO CH 24 OUT Hub DIR' MGT FO CH 26 OUT Hub CMP' MGT FO CH 26 OUT Hub DIR' MGT FO CH 26	R40	MGTYTXP0 129	GTY	1	'Comb Data to Cap to Other Hub Dir'	
M43 MGTYRXP3 129 GTY 1 MGT FO CH 19 OUT Hub CMP'	R41	MGTYTXN0 129	GTY	1		
M44 MGTYRXN3 129 GTY 1 MGT FO CH 19 OUT Hub DIR'	M43	MGTYRXP3 129	GTY	1		
N45 MGTYRXP2 129 GTY 1 MGT_FO_CH_20_OUT_Hub_DIR' P43 MGTYRXP1 129 GTY 1 MGT_FO_CH_20_OUT_Hub_CMP' P44 MGTYRXP1 129 GTY 1 MGT_FO_CH_21_OUT_Hub_CMP' P45 MGTYRXP0_129 GTY 1 MGT_FO_CH_21_OUT_Hub_DIR' R46 MGTYRXN0_129 GTY 1 MGT_FO_CH_22_OUT_Hub_DIR' R47 MGTYRXN0_128 GTY 0 U40 MGTYTXP2_128 GTY 0 U41 MGTYTXP2_128 GTY 0 U41 MGTYTXN1_128 GTY 0 W40 MGTYTXN1_128 GTY 0 W41 MGTYTXN0_128 GTY 0 W41 MGTYRXN3_128 GTY 0 W41 MGTYRXN3_128 GTY 0 W41 MGTYRXN3_128 GTY 0 W44 MGTYRXN3_128 GTY 0 W45 MGTYRXN2_128 GTY 0 MGT_FO_CH_24_OUT_Hub_DIR' U45 MGTYRXN2_128 GTY 0 MGT_FO_CH_24_OUT_Hub_DIR' V44 MGTYRXN1_128 GTY 0 MGT_FO_CH_20_OUT_Hub_DIR' V44 MGTYRXN1_128 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYTXN2_127 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYTXN2_127 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' AA41 MGTYTXN2_127 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' AA42 MGTYTXN2_127 GTY 0 MGT_FO_CH_10_OUT_Hub_DIR' AC40 MGTYTXN2_127 GTY 0 MGT_FO_CH_11_OUT_Hub_DIR' AC40 MGTYTXN2_127 GTY 0 MGT_FO_CH_11_OUT_Hub_DIR' AC40 MGTYRXN2_127 GTY 0 MGT_FO_CH_11_OUT_Hub_DIR' AC44 MGTYRXN2_127 GTY 0 MGT_FO_CH_11_OUT_Hub_DIR' AC45 MGTYRXN2_127 GTY 0 MGT_FO_CH_13_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 MGT_FO_CH_13_OUT_Hu		_		1		
N46 MGTYRXN2 129 GTY 1 MGT FO CH 20 OUT Hub CMP' P44 MGTYRXN1 129 GTY 1 MGT FO CH 21 OUT Hub DIR' R45 MGTYRXN0 129 GTY 1 MGT FO CH 21 OUT Hub DIR' R45 MGTYRXN0 129 GTY 1 MGT FO CH 22 OUT Hub DIR' R46 MGTYRXN0 129 GTY 1 MGT FO CH 22 OUT Hub DIR' R46 MGTYRXN0 129 GTY 1 MGT FO CH 22 OUT Hub DIR' R46 MGTYTXN3 128 GTY 0 U40 MGTYTXN2 128 GTY 0 U41 MGTYTXN2 128 GTY 0 U38 MGTYTXN1 128 GTY 0 W40 MGTYTXN1 128 GTY 0 W41 MGTYTXN0 128 GTY 0 W41 MGTYTXN0 128 GTY 0 W41 MGTYTXN0 128 GTY 0 W41 MGTYRXN3 128 GTY 0 W41 MGTYRXN2 128 GTY 0 W41 MGTYRXN2 128 GTY 0 MGT FO CH 23 OUT Hub DIR' U46 MGTYRXN2 128 GTY 0 MGT FO CH 24 OUT Hub DIR' U46 MGTYRXN2 128 GTY 0 MGT FO CH 24 OUT Hub DIR' V43 MGTYRXN1 128 GTY 0 MGT FO CH 00 UT Hub CMP' V44 MGTYRXN1 128 GTY 0 MGT FO CH 10 OUT Hub DIR' W45 MGTYRXN1 128 GTY 0 MGT FO CH 10 OUT Hub DIR' W46 MGTYRXN1 128 GTY 0 MGT FO CH 10 OUT Hub DIR' W47 MGTYRXN1 128 GTY 0 MGT FO CH 10 OUT Hub DIR' W48 MGTYTXN2 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA40 MGTYTXN2 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA41 MGTYTXN2 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA42 MGTYTXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA43 MGTYTXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA44 MGTYRXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA45 MGTYRXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA46 MGTYRXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA46 MGTYRXN3 127 GTY 0 MGT FO CH 10 OUT Hub DIR' AA46 M		_				
P43		<u> </u>		1		
P44 MGTYRXN 129 GTY 1 'MGT_FO_CH_21_OUT_Hub_DIR' R45 MGTYRXP0_129 GTY 1 'MGT_FO_CH_22_OUT_Hub_DIR' MGTYQuad 128:		_				
R45 MGTYRXP0 129 GTY 1 'MGT FO CH 22 OUT Hub DIR' GTY Quad 128: T38 MGTYTXN3 128 GTY 0 WGTYTXN3 128 GTY 0 WGTYTXN3 128 GTY 0 WGTYTXN2 128 GTY 0 WGTYTXN2 128 GTY 0 WGTYTXN2 128 GTY 0 WGTYTXN1 128 GTY 0 WGTYTXN0 128 GTY 0 WGTYTXN0 128 GTY 0 WGTYTXN0 128 GTY 0 WGTYTXN3 128 GTY 0 WGTYTXN3 128 GTY 0 WGTYRXP3 128 GTY 0 'MGTFO CH 23 OUT Hub CMP' T44 MGTYRXN3 128 GTY 0 'MGTFO CH 24 OUT Hub DIR' U45 MGTYRXN2 128 GTY 0 'MGT FO CH 24 OUT Hub DIR' V43 MGTYRXN3 128 GTY 0 'MGT FO CH 24 OUT Hub DIR' W44 MGTYRXN1 128 GTY 0 'MGT FO CH 29 OUT Hub DIR' W44 MGTYRXN1 128 GTY 0 'MGT FO CH 30 OUT Hub DIR' W45 MGTYTXN3 127 GTY 0 'MGT FO CH 10 OUT Hub DIR' Y38 MGTYTXN3 127 GTY 0 'MGT FO CH 10 OUT Hub DIR' <td <="" rowspan="2" td=""><td></td><td>_</td><td></td><td></td><td></td></td>	<td></td> <td>_</td> <td></td> <td></td> <td></td>		_			
R46 MGTYRXN0 129 GTY 1 'MGT FO CH 22 OUT Hub CMP'						
GTY Quad 128:		_				
128:		1/1011111111111111111111111111111111111	011	-		
T38						
T39		MGTYTYP3 128	GTV	0		
U40		_				
U41		_				
V38 MGTYTXP1_128 GTY 0 V39 MGTYTXN1_128 GTY 0 W40 MGTYTXP0_128 GTY 0 W41 MGTYTXN0_128 GTY 0 T43 MGTYRXP3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_CMP' T44 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_DIR' U45 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' Y38 MGTYTXN3_127 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' AA41 MGTYTXP1_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB38 MGTYTXN1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC40 <		_				
V39		_				
W40 MGTYTXP0_128 GTY 0 W41 MGTYTXN0_128 GTY 0 T43 MGTYRXP3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_CMP' T44 MGTYRXP3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_DIR' U45 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_29_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' Y39 MGTYTXN3_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AA40 MGTYTXP1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y43 MGTYRXN3_127 GTY 0 <td></td> <td>_</td> <td></td> <td></td> <td></td>		_				
W41 MGTYTXNO_128 GTY 0 T43 MGTYRXP3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_CMP' T44 MGTYRXN3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_DIR' U45 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_DIR' U46 MGTYRXP1_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' GTY Quad 127: T 0 'MGT_FO_CH_10_OUT_Hub_DIR' AA40 MGTYTXN3_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AA41 MGTYTXN1_127 GTY 0 'This_Hubs_RO_1 to_Cap_Other_ROD_Cmp' AC40 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1 to_Cap_Other_ROD_Cmp' Y43 MGTYRXN3_127<		_				
T43 MGTYRXP3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_CMP' T44 MGTYRXN3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_DIR' U45 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_DIR' U46 MGTYRXP1_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYTXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYTXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' Y39 MGTYTXN3_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AC40 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' <tr< td=""><td></td><td>_</td><td></td><td></td><td></td></tr<>		_				
T44 MGTYRXN3_128 GTY 0 'MGT_FO_CH_23_OUT_Hub_DIR' U45 MGTYRXP2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_DIR' U46 MGTYRXN2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: TY38 MGTYTXN3_127 GTY 0 Y39 MGTYTXN3_127 GTY 0 'This_Hubs_RO_0 to_Cap_Other_ROD_Dir' AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_1 to_Cap_Other_ROD_Cmp' AB38 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1 to_Cap_Other_ROD_Cmp' AC40 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1 to_Cap_Other_ROD_Dir' Y43 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR'		_			'MGT EO CH 22 OUT Hub CMD'	
U45		<u> </u>				
U46 MGTYRXN2_128 GTY 0 'MGT_FO_CH_24_OUT_Hub_CMP' V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127:						
V43 MGTYRXP1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_CMP' V44 MGTYRXN1_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: 'MGT_FO_CH_10_OUT_Hub_CMP' Y38 MGTYTXP3_127 GTY 0 Y39 MGTYTXN3_127 GTY 0 AA40 MGTYTXP2_127 GTY 0 AB38 MGTYTXN1_127 GTY 0 AB39 MGTYTXN1_127 GTY 0 AC40 MGTYTXN0_127 GTY 0 AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y43 MGTYRXP3_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR'		_				
V44 MGTYRXNI_128 GTY 0 'MGT_FO_CH_09_OUT_Hub_DIR' W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' Y38 MGTYTXP3_127 GTY 0 Y39 MGTYTXN3_127 GTY 0 AA40 MGTYTXP2_127 GTY 0 AB38 MGTYTXN2_127 GTY 0 AB39 MGTYTXN1_127 GTY 0 AC40 MGTYTXN0_127 GTY 0 AC41 MGTYTXN0_127 GTY 0 Y43 MGTYRXP3_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y44 MGTYRXN3_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y43 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' AA45 MGTYRXN3_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43						
W45 MGTYRXP0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_DIR' W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: Y38 MGTYTXP3_127 GTY 0 'MGTYTXN3_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Dir' AA40 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB38 MGTYTXN1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC40 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y43 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN1_127		<u> </u>				
W46 MGTYRXN0_128 GTY 0 'MGT_FO_CH_10_OUT_Hub_CMP' GTY Quad 127: 128: 128:		<u> </u>				
GTY Quad 127: 738 MGTYTXP3_127 GTY 0 739 MGTYTXN3_127 GTY 0 749 MGTYTXP2_127 GTY 0 749 MGTYTXP2_127 GTY 0 749		<u> </u>				
127: Y38 MGTYTXP3_127 GTY 0 Y39 MGTYTXN3_127 GTY 0 AA40 MGTYTXP2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Dir' AB38 MGTYTXP1_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB39 MGTYTXN1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC40 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AB43 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 M		MGTTRANU_128	GII	U	MG1_FO_CH_10_OU1_Hu0_CMP	
Y38 MGTYTXP3_127 GTY 0 Y39 MGTYTXN3_127 GTY 0 AA40 MGTYTXP2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Dir' AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB38 MGTYTXP1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC45 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127	,					
Y39 MGTYTXN3_127 GTY 0 AA40 MGTYTXP2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Dir' AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB38 MGTYTXN1_127 GTY 0 AB39 MGTYTXP0_127 GTY 0 AC40 MGTYTXN0_127 GTY 0 Y43 MGTYRXP3_127 GTY 0 Y43 MGTYRXN3_127 GTY 0 Y44 MGTYRXN3_127 GTY 0 Y44 MGTYRXN2_127 GTY 0 YMGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXN2_127 AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY		MOTEVITY DO 107	OTM	0		
AA40 MGTYTXP2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Dir' AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0_to_Cap_Other_ROD_Cmp' AB38 MGTYTXP1_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y43 MGTYRXP3_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y44 MGTYRXN3_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB43 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 <t< td=""><td></td><td><u> </u></td><td></td><td></td><td></td></t<>		<u> </u>				
AA41 MGTYTXN2_127 GTY 0 'This_Hubs_RO_0 to Cap_Other_ROD_Cmp' AB38 MGTYTXP1_127 GTY 0 AB39 MGTYTXN1_127 GTY 0 AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1 to Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1 to Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB43 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP' 'MGT_FO_CH_14_OUT_Hub_CMP'		_			ITL: ILL DO O COL DOD D'	
AB38 MGTYTXP1_127 GTY 0 AB39 MGTYTXN1_127 GTY 0 AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' GTY Quad		<u> </u>				
AB39 MGTYTXN1_127 GTY 0 AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP' 'MGT_FO_CH_14_OUT_Hub_CMP'		_			Inis_Hubs_RO_0_to_Cap_Other_ROD_Cmp'	
AC40 MGTYTXP0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Cmp' AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1_to_Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXN1_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP' 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
AC41 MGTYTXN0_127 GTY 0 'This_Hubs_RO_1 to Cap_Other_ROD_Dir' Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP' 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
Y43 MGTYRXP3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_CMP' Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB43 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
Y44 MGTYRXN3_127 GTY 0 'MGT_FO_CH_11_OUT_Hub_DIR' AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP' 'MGT_FO_CH_14_OUT_Hub_CMP'		<u> </u>				
AA45 MGTYRXP2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_DIR' AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
AA46 MGTYRXN2_127 GTY 0 'MGT_FO_CH_12_OUT_Hub_CMP' AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
AB43 MGTYRXP1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_CMP' AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad GTY Quad O 'MGT_FO_CH_14_OUT_Hub_CMP'		<u> </u>				
AB44 MGTYRXN1_127 GTY 0 'MGT_FO_CH_13_OUT_Hub_DIR' AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad GTY Quad O 'MGT_FO_CH_14_OUT_Hub_CMP'						
AC45 MGTYRXP0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_DIR' AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad GTY Quad O 'MGT_FO_CH_14_OUT_Hub_CMP'		_				
AC46 MGTYRXN0_127 GTY 0 'MGT_FO_CH_14_OUT_Hub_CMP' GTY Quad						
GTY Quad		<u> </u>				
		MGTYRXN0_127	GTY	0	'MGT_FO_CH_14_OUT_Hub_CMP'	
126:						
	126:					

AD38	MGTYTXP3 126	GTY	0	
AD39	MGTYTXN3 126	GTY	0	
AE40	MGTYTXP2 126	GTY	0	
AE41	MGTYTXN2 126	GTY	0	
AF38	MGTYTXP1 126	GTY	0	
AF39	MGTYTXN1 126	GTY	0	
AG40	MGTYTXP0 126	GTY	0	
AG41	MGTYTXN0 126	GTY	0	
AD43	MGTYRXP3 ¹ 26	GTY	0	'MGT FO CH 15 OUT Hub CMP'
AD44	MGTYRXN3 126	GTY	0	'MGT FO CH 15 OUT Hub DIR'
AE45	MGTYRXP2 126	GTY	0	'MGT FO CH 16 OUT Hub DIR'
AE46	MGTYRXN2 126	GTY	0	'MGT FO CH 16 OUT Hub CMP'
AF43	MGTYRXP1 126	GTY	0	'MGT FO CH 01 OUT Hub CMP'
AF44	MGTYRXN1 126	GTY	0	'MGT FO CH 01 OUT Hub DIR'
AG45	MGTYRXP0 126	GTY	0	'MGT FO CH 02 OUT Hub DIR'
AG46	MGTYRXN0 126	GTY	0	'MGT FO CH 02 OUT Hub CMP'
GTY Quad				
125:				
AH38	MGTYTXP3 125	GTY	0	
AH39	MGTYTXN3 125	GTY	0	
AJ40	MGTYTXP2 125	GTY	0	
AJ41	MGTYTXN2 125	GTY	0	
AK38	MGTYTXP1 125	GTY	0	
AK39	MGTYTXN1 125	GTY	0	
AL40	MGTYTXP0 125	GTY	0	
AL41	MGTYTXN0 125	GTY	0	
AH43	MGTYRXP3 125	GTY	0	'MGT FO CH 03 OUT Hub CMP'
AH44	MGTYRXN3 125	GTY	0	'MGT FO CH 03 OUT Hub DIR'
AJ45	MGTYRXP2 125	GTY	0	'MGT FO CH 04 OUT Hub DIR'
AJ46	MGTYRXN2 125	GTY	ő	'MGT FO CH 04 OUT Hub CMP'
AK43	MGTYRXP1 125	GTY	0	'MGT FO CH 05 OUT Hub CMP'
AK44	MGTYRXN1 125	GTY	0	'MGT FO CH 05 OUT Hub DIR'
AL45	MGTYRXP0 125	GTY	0	'MGT FO CH 06 OUT Hub DIR'
AL46	MGTYRXN0 125	GTY	0	'MGT FO CH 06 OUT Hub CMP'
GTY Quad	111011101110_125	GII	0	Morato_cn_oo_oor_nao_cm
124:				
AM38	MGTYTXP3 124	GTY	0	
AM39	MGTTTXI3_124 MGTYTXN3 124	GTY	0	
AN40	MGTTTXN3_124 MGTYTXP2 124	GTY	0	
AN41	MGTTTX12_124 MGTYTXN2 124	GTY	0	
AP38	MGTTTXN2_124 MGTYTXP1 124	GTY	0	
AP39	MGTTTXF1_124 MGTYTXN1 124	GTY	0	
AR40	MGTTTXN1_124 MGTYTXP0 124	GTY	0	
AR40 AR41	MGTYTXN0_124	GTY	0	
AM43	MGTTTXN0_124 MGTYRXP3 124	GTY	0	'MGT FO CH 07 OUT Hub CMP'
AM44 AM44	MGTYRXN3_124 MGTYRXN3_124	GTY	0	'MGT_FO_CH_0/_OUT_Hub_CMP
AN45	MGTYRXP2 124	GTY	0	'MGT_FO_CH_0/_OUT_Hub_DIR'
AN45 AN46	MGTYRXN2_124 MGTYRXN2_124	GTY	0	'MGT FO CH 08 OUT Hub CMP'
	_			
AP43	MGTYRXP1_124	GTY	0	'Combined_Data_from_OTHER_Hub_Cmp'
AP44	MGTYRXN1_124	GTY	0	'Combined_Data_from_OTHER_Hub_Dir'
AR45	MGTYRXP0_124	GTY	0	'Rec_MP_Fiber_8_to_FPGA_Dir'
AR46	MGTYRXN0_124	GTY	0	'Rec_MP_Fiber_8_to_FPGA_Cmp'

		I/O	Super	Hub Module Net Connection
	Pin Name	Type	Logic	True trought that commenter
Pin/Quad	1 III 1 (WIII)	1370	Reg.	
GTH Quad			1148.	
233:				
A11	MGTHTXP3 233	GTH	1	'Comb Data to Cap to FEX 09 Cmp'
A10	MGTHTXN3 233	GTH	1	'Comb_Data_to_Cap_to_FEX_09_Dir'
B9	MGTHTXP2 233	GTH	1	'Comb Data to Cap to FEX 10 Cmp'
B8	MGTHTXN2 233	GTH	1	'Comb Data to Cap to FEX 10 Dir'
C11	MGTHTXP1 233	GTH	1	
C10	MGTHTXN1 233	GTH	1	
D9	MGTHTXP0 233	GTH	1	
D8	MGTHTXN0 233	GTH	1	
A16	MGTHRXP3 233	GTH	1	'MGT FO CH 48 OUT Hub DIR'
A15	MGTHRXN3 233	GTH	1	'MGT FO CH 48 OUT Hub CMP'
B14	MGTHRXP2 233	GTH	1	'MGT FO CH 47 OUT Hub DIR'
B13	MGTHRXN2 233	GTH	1	'MGT FO CH 47 OUT Hub CMP'
C16	MGTHRXP1 233	GTH	1	'MGT FO CH 46 OUT Hub CMP'
C15	MGTHRXN1 233	GTH	1	'MGT FO CH 46 OUT Hub DIR'
D14	MGTHRXP0 233	GTH	1	'MGT FO CH 45 OUT Hub DIR'
D13	MGTHRXN0 233	GTH	1	'MGT FO CH 45 OUT Hub CMP'
GTH Quad	_			
232:				
A7	MGTHTXP3 232	GTH	1	'Comb Data to Cap to FEX 11 Cmp'
A6	MGTHTXN3 232	GTH	1	'Comb Data to Cap to FEX 11 Dir'
C7	MGTHTXP2 232	GTH	1	
C6	MGTHTXN2 232	GTH	1	
E11	MGTHTXP1 232	GTH	1	
E10	MGTHTXN1_232	GTH	1	
E7	MGTHTXP0_232	GTH	1	
E6	MGTHTXN0_232	GTH	1	
B4	MGTHRXP3_232	GTH	1	'MGT_FO_CH_44_OUT_Hub_CMP'
В3	MGTHRXN3_232	GTH	1	'MGT_FO_CH_44_OUT_Hub_DIR'
C2	MGTHRXP2_232	GTH	1	'MGT_FO_CH_43_OUT_Hub_DIR'
C1	MGTHRXN2_232	GTH	1	'MGT_FO_CH_43_OUT_Hub_CMP'
D4	MGTHRXP1_232	GTH	1	'MGT_FO_CH_42_OUT_Hub_CMP'
D3	MGTHRXN1_232	GTH	1	'MGT_FO_CH_42_OUT_Hub_DIR'
E2	MGTHRXP0_232	GTH	1	'MGT_FO_CH_41_OUT_Hub_DIR'
E1	MGTHRXN0_232	GTH	1	'MGT_FO_CH_41_OUT_Hub_CMP'
GTH Quad				
231:				
F13	MGTHTXP3_231	GTH	1	
F12	MGTHTXN3_231	GTH	1	
G11	MGTHTXP2_231	GTH	1	
G10	MGTHTXN2_231	GTH	1	
F9	MGTHTXP1_231	GTH	1	
F8	MGTHTXN1_231	GTH	1	
G7	MGTHTXP0_231	GTH	1	
G6	MGTHTXN0_231	GTH	1	
E16	MGTHRXP3_231	GTH	1	'MGT_FO_CH_34_OUT_Hub_CMP'

1 1		I	1	
E15	MGTHRXN3_231	GTH	1	'MGT_FO_CH_34_OUT_Hub_DIR'
G16	MGTHRXP2_231	GTH	1	'MGT_FO_CH_33_OUT_Hub_DIR'
G15	MGTHRXN2_231	GTH	1	'MGT_FO_CH_33_OUT_Hub_CMP'
F4	MGTHRXP1_231	GTH	1	'MGT_FO_CH_56_OUT_Hub_CMP'
F3	MGTHRXN1 231	GTH	1	'MGT FO CH 56 OUT Hub DIR'
G2	MGTHRXP0 231	GTH	1	'MGT FO CH 55 OUT Hub DIR'
G1	MGTHRXN0 231	GTH	1	'MGT FO CH 55 OUT Hub CMP'
GTH Quad				
230:				
H9	MGTHTXP3 230	GTH	1	
H8	MGTHTXN3_230	GTH	1	
J7	MGTHTXP2 230	GTH	1	'Comb Data to Cap to FEX 12 Cmp'
J6	MGTHTXN2 230	GTH	1	'Comb Data to Cap to FEX 12 Dir'
	_			Como_Data_to_Cap_to_FEX_12_Dif
K9	MGTHTXP1_230	GTH	1	
K8	MGTHTXN1_230	GTH	1	10 1 D () 0 1 EFY 12 C 1
L7	MGTHTXP0_230	GTH	1	'Comb_Data_to_Cap_to_FEX_13_Cmp'
L6	MGTHTXN0_230	GTH	1	'Comb_Data_to_Cap_to_FEX_13_Dir'
H4	MGTHRXP3_230	GTH	1	'MGT_FO_CH_54_OUT_Hub_CMP'
Н3	MGTHRXN3_230	GTH	1	'MGT_FO_CH_54_OUT_Hub_DIR'
J2	MGTHRXP2_230	GTH	1	'MGT_FO_CH_53_OUT_Hub_DIR'
J1	MGTHRXN2_230	GTH	1	'MGT_FO_CH_53_OUT_Hub_CMP'
K4	MGTHRXP1 230	GTH	1	'MGT FO CH 52 OUT Hub CMP'
K3	MGTHRXN1 230	GTH	1	'MGT FO CH 52 OUT Hub DIR'
L2	MGTHRXP0 230	GTH	1	'MGT FO CH 51 OUT Hub DIR'
L1	MGTHRXN0 230	GTH	1	'MGT FO CH 51 OUT Hub CMP'
GTH Quad				
229:				
M9	MGTHTXP3 229	GTH	1	
M8	MGTHTXN3 229	GTH	1	
N7	MGTHTXP2 229	GTH	1	'Comb_Data_to_Cap_to_FEX_14_Cmp'
N6	MGTHTXN2 229	GTH	1	'Comb Data to Cap to FEX 14 Dir'
P9	MGTHTXN2_229 MGTHTXP1 229	GTH	1	Como_Data_to_Cap_to_1 LA_14_Dir
P8	MGTHTXN1 229	GTH	1	
R7	-			This Hubs DO 0 to Con Its DOD Did
	MGTHTXP0_229	GTH	1	'This_Hubs_RO_0_to_Cap_Its_ROD_Dir'
R6	MGTHTXN0_229	GTH	1	'This_Hubs_RO_0_to_Cap_Its_ROD_Cmp'
M4	MGTHRXP3_229	GTH	1	'MGT_FO_CH_50_OUT_Hub_CMP'
M3	MGTHRXN3_229	GTH	1	'MGT_FO_CH_50_OUT_Hub_DIR'
N2	MGTHRXP2_229	GTH	1	'MGT_FO_CH_49_OUT_Hub_DIR'
N1	MGTHRXN2_229	GTH	1	'MGT_FO_CH_49_OUT_Hub_CMP'
P4	MGTHRXP1_229	GTH	1	'MGT_FO_CH_64_OUT_Hub_CMP'
Р3	MGTHRXN1_229	GTH	1	'MGT_FO_CH_64_OUT_Hub_DIR'
R2	MGTHRXP0_229	GTH	1	'MGT_FO_CH_63_OUT_Hub_DIR'
R1	MGTHRXN0_229	GTH	1	'MGT_FO_CH_63_OUT_Hub_CMP'
GTH Quad				
228:				
Т9	MGTHTXP3_228	GTH	0	
Т8	MGTHTXN3 228	GTH	0	
U7	MGTHTXP2 228	GTH	0	'This Hubs RO 1 to Cap Its ROD Dir'
U6	MGTHTXN2 228	GTH	0	'This Hubs RO 1 to Cap Its ROD Cmp'
V9	MGTHTXP1 228	GTH	0	ppp
V8	MGTHTXN1 228	GTH	0	
W7	MGTHTXP0 228	GTH	0	'Comb Data to Cap to ROD Dir'
W6	MGTHTXN0_228	GTH	0	'Comb Data to Cap to ROD Cmp'
T4	MGTHRXP3 228	GTH	0	'MGT FO CH 62 OUT Hub CMP'
14	WIGTHKAP3_228	ОІП	U	

•	•			
Т3	MGTHRXN3_228	GTH	0	'MGT_FO_CH_62_OUT_Hub_DIR'
U2	MGTHRXP2_228	GTH	0	'MGT_FO_CH_61_OUT_Hub_DIR'
U1	MGTHRXN2 228	GTH	0	'MGT FO CH 61 OUT Hub CMP'
V4	MGTHRXP1 228	GTH	0	'MGT FO CH 60 OUT Hub CMP'
V3	MGTHRXN1 228	GTH	0	'MGT FO CH 60 OUT Hub DIR'
W2	MGTHRXP0 228	GTH	0	'MGT FO CH 59 OUT Hub DIR'
W1	MGTHRXN0 228	GTH	0	'MGT FO CH 59 OUT Hub CMP'
GTH Quad	1110111101110_220	0111	V	Mor ro on so our nucleur
227:				
Y9	MGTHTXP3 227	GTH	0	
Y8	MGTHTXF3_227 MGTHTXN3 227	GTH	0	
AA7	MGTHTXN3_227 MGTHTXP2 227			MiniBOD Trong Eilen O Date Count
	_	GTH	0	'MiniPOD_Trans_Fiber_0_Data_Cmp'
AA6	MGTHTXN2_227	GTH	0	'MiniPOD_Trans_Fiber_0_Data_Dir'
AB9	MGTHTXP1_227	GTH	0	
AB8	MGTHTXN1_227	GTH	0	
AC7	MGTHTXP0_227	GTH	0	'MiniPOD_Trans_Fiber_1_Data_Cmp'
AC6	MGTHTXN0_227	GTH	0	'MiniPOD_Trans_Fiber_1_Data_Dir'
Y4	MGTHRXP3_227	GTH	0	'MGT_FO_CH_58_OUT_Hub_CMP'
Y3	MGTHRXN3_227	GTH	0	'MGT_FO_CH_58_OUT_Hub_DIR'
AA2	MGTHRXP2_227	GTH	0	'MGT_FO_CH_57_OUT_Hub_DIR'
AA1	MGTHRXN2_227	GTH	0	'MGT_FO_CH_57_OUT_Hub_CMP'
AB4	MGTHRXP1 227	GTH	0	'MGT FO CH 74 OUT Hub CMP'
AB3	MGTHRXN1 227	GTH	0	'MGT FO CH 74 OUT Hub DIR'
AC2	MGTHRXP0 227	GTH	0	'MGT FO CH 73 OUT Hub DIR'
AC1	MGTHRXN0 227	GTH	0	'MGT FO CH 73 OUT Hub CMP'
GTH Quad			-	
226:				
AD9	MGTHTXP3 226	GTH	0	
AD8	MGTHTXN3 226	GTH	0	
AE7	MGTHTXP2 226	GTH	0	'MiniPOD Trans Fiber 2 Data Cmp'
AE6	MGTHTXN2 226	GTH	o 0	'MiniPOD Trans Fiber 2 Data Dir'
AF9	MGTHTXP1 226	GTH	0	Minin OB_Truns_1 loci_2_Bum_Bit
AF8	MGTHTXN1 226	GTH	0	
AG7	MGTHTXP0 226	GTH	0	'MiniPOD Trans Fiber 4 Data Cmp'
AG6	MGTHTXN0_226	GTH	0	'MiniPOD Trans Fiber 4 Data Dir'
AD4	MGTHRXP3 226		0	'MGT FO CH 72 OUT Hub CMP'
	_	GTH		
AD3	MGTHRXN3_226	GTH	0	'MGT_FO_CH_72_OUT_Hub_DIR'
AE2	MGTHRXP2_226	GTH	0	'MGT_FO_CH_71_OUT_Hub_DIR'
AE1	MGTHRXN2_226	GTH	0	'MGT_FO_CH_71_OUT_Hub_CMP'
AF4	MGTHRXP1_226	GTH	0	'MGT_FO_CH_70_OUT_Hub_CMP'
AF3	MGTHRXN1_226	GTH	0	'MGT_FO_CH_70_OUT_Hub_DIR'
AG2	MGTHRXP0_226	GTH	0	'MGT_FO_CH_69_OUT_Hub_DIR'
AG1	MGTHRXN0_226	GTH	0	'MGT_FO_CH_69_OUT_Hub_CMP'
GTH Quad				
225:				
AH9	MGTHTXP3_225	GTH	0	
AH8	MGTHTXN3_225	GTH	0	
AJ7	MGTHTXP2_225	GTH	0	'MiniPOD_Trans_Fiber_6_Data_Cmp'
AJ6	MGTHTXN2_225	GTH	0	'MiniPOD_Trans_Fiber_6_Data_Dir'
AK9	MGTHTXP1 225	GTH	0	
AK8	MGTHTXN1 225	GTH	0	
AL7	MGTHTXP0 225	GTH	0	'MiniPOD Trans Fiber 8 Data Cmp'
AL6	MGTHTXN0 225	GTH	0	'MiniPOD Trans Fiber 8 Data Dir'
AH4	MGTHRXP3 225	GTH	0	'MGT FO CH 68 OUT Hub CMP'
11117	MO11110X1 3_223	1 0111	ı	MIGI_IO_CII_00_OOI_IIUU_CIVII

AH3	MGTHRXN3 225	GTH	0	'MGT FO CH 68 OUT Hub DIR'
AJ2	MGTHRXP2 225	GTH	0	'MGT FO CH 67 OUT Hub DIR'
AJ1	MGTHRXN2 225	GTH	0	'MGT FO CH 67 OUT Hub CMP'
AK4	MGTHRXP1 225	GTH	0	
	_		-	'MGT_FO_CH_66_OUT_Hub_CMP'
AK3	MGTHRXN1_225	GTH	0	'MGT_FO_CH_66_OUT_Hub_DIR'
AL2	MGTHRXP0_225	GTH	0	'MGT_FO_CH_65_OUT_Hub_DIR'
AL1	MGTHRXN0_225	GTH	0	'MGT_FO_CH_65_OUT_Hub_CMP'
GTH Quad				
224:				
AM9	MGTHTXP3_224	GTH	0	
AM8	MGTHTXN3 224	GTH	0	
AN7	MGTHTXP2 224	GTH	0	'MiniPOD Trans Fiber 10 Data Cmp'
AN6	MGTHTXN2 224	GTH	0	'MiniPOD_Trans_Fiber_10_Data_Dir'
AP9	MGTHTXP1_224	GTH	0	
AP8	MGTHTXN1_224	GTH	0	
AR7	MGTHTXP0_224	GTH	0	'MiniPOD_Trans_Fiber_11_Data_Cmp'
AR6	MGTHTXN0 224	GTH	0	'MiniPOD Trans Fiber 11 Data Dir'
AM4	MGTHRXP3_224	GTH	0	'This_RODs_Readout_Ctrl_to_GTH_Input_Cmp'
AM3	MGTHRXN3_224	GTH	0	'This_RODs_Readout_Ctrl_to_GTH_Input_Dir'
AN2	MGTHRXP2_224	GTH	0	'Rec_MP_Fiber_2_to_FPGA_Dir'
AN1	MGTHRXN2_224	GTH	0	'Rec_MP_Fiber_2_to_FPGA_Cmp'
AP4	MGTHRXP1_224	GTH	0	'Rec_MP_Fiber_4_to_FPGA_Dir'
AP3	MGTHRXN1_224	GTH	0	'Rec_MP_Fiber_4_to_FPGA_Cmp'
AR2	MGTHRXP0_224	GTH	0	'Rec_MP_Fiber_6_to_FPGA_Dir'
AR1	MGTHRXN0_224	GTH	0	'Rec_MP_Fiber_6_to_FPGA_Cmp'

Now we list the Reference Clock inputs and the MGTAVTTRCAL_LC and

1862 MGTRREF_LC pin connections. All Quads that have MGTAVTTRCAL_LC and

MGTRREF_LC pins have the appropriate resistors and supplies connected to them. In this

file I'm just listing the reference designators of the MGT Termination Calibration Resistors.

1865

1863

		I/O	Super	Hub Module Net Connection
	Pin Name	Type	Logic	
Pin/Quad			Reg.	
GTY Quad				
133:				
H34	MGTREFCLK1P 133	GTY	1	
H35	MGTREFCLK1N 133	GTY	1	
J36	MGTREFCLK0P 133	GTY	1	
J37	MGTREFCLK0N 133	GTY	1	
GTY Quad				
132:				
K34	MGTREFCLK1P 132	GTY	1	'MHZ 320.64 COPY 2 DIR'
K35	MGTREFCLK1N 132	GTY	1	'MHZ 320.64 COPY 2 CMP'
L36	MGTREFCLK0P 132	GTY	1	
L37	MGTREFCLK0N 132	GTY	1	
GTY Quad				
131:				
M34	MGTREFCLK1P 131	GTY	1	
M35	MGTREFCLK1N 131	GTY	1	
N36	MGTREFCLK0P 131	GTY	1	

N37	MGTREFCLK0N 131	GTY	1	
GTY Quad				
130:				
P34	MGTREFCLK1P 130	GTY	1	
P35	MGTREFCLK1N 130	GTY	1	
R36	MGTREFCLK0P 130	GTY	1	'MHZ 320.64 COPY 1 DIR'
R37	MGTREFCLK0N 130	GTY	1	'MHZ 320.64 COPY 1 CMP'
D40	MGTAVTTRCAL LN	NA	NA	R114
D41	MGTRREF_LN	NA	NA	R114
GTY Quad				
129:				
T34	MGTREFCLK1P 129	GTY	1	
T35	MGTREFCLK1N_129	GTY	1	
U36	MGTREFCLK0P_129	GTY	1	
U37	MGTREFCLK0N_129	GTY	1	
GTY Quad				
128:				
V34	MGTREFCLK1P_128	GTY	0	
V35	MGTREFCLK1N_128	GTY	0	
W36	MGTREFCLK0P_128	GTY	0	
W37	MGTREFCLK0N_128	GTY	0	
GTY Quad				
127:				
Y34	MGTREFCLK1P_127	GTY	0	'MHZ_320.64_COPY_3_DIR'
Y35	MGTREFCLK1N_127	GTY	0	'MHZ_320.64_COPY_3_CMP'
AA36	MGTREFCLK0P_127	GTY	0	
AA37	MGTREFCLK0N_127	GTY	0	
GTY Quad				
126:				
AB34	MGTREFCLK1P_126	GTY	0	
AB35	MGTREFCLK1N_126	GTY	0	
AC36	MGTREFCLK0P_126	GTY	0	
AC37	MGTREFCLK0N_126	GTY	0	
GTY Quad				
125:				
AE36	MGTREFCLK0P_125	GTY	0	'MHZ_320.64_COPY_0_DIR'
AE37	MGTREFCLK0N_125	GTY	0	'MHZ_320.64_COPY_0_CMP'
AD34	MGTREFCLK1P_125	GTY	0	
AD35	MGTREFCLK1N_125	GTY	0	D142
AH40	MGTAVTTRCAL_LC	NA	NA	R113
AH41	MGTRREF_LC	NA	NA	R113
GTY Quad				
124:	A COMPANY AND ACT	OFF.		
AF34	MGTREFCLK1P_124	GTY	0	
AF35	MGTREFCLK1N_124	GTY	0	
AG36	MGTREFCLK0P_124	GTY	0	
AG37	MGTREFCLK0N_124	GTY	0	

		I/O	Super	Hub Module Net Connection
D: (0 1	Pin Name	Type	Logic	
Pin/Quad			Reg.	
GTH Quad				
233: H13	MGTREFCLK1P 233	GTH	1	
H12	MGTREFCLK1P_233 MGTREFCLK1N 233	GTH	1	
J11	MGTREFCLKIN_233 MGTREFCLK0P 233	GTH	1	
J11 J10	MGTREFCLK0F_233 MGTREFCLK0N 233	GTH	1	
GTH Quad	WIGHTELECTION_233	GIII	1	
232:				
K13	MGTREFCLK1P 232	GTH	1	'MHZ 320.64 COPY 7 DIR'
K12	MGTREFCLK1N 232	GTH	1	'MHZ 320.64 COPY 7 CMP'
L11	MGTREFCLK0P 232	GTH	1	
L10	MGTREFCLK0N 232	GTH	1	
GTH Quad	_			
231:				
M13	MGTREFCLK1P 231	GTH	1	
M12	MGTREFCLK1N_231	GTH	1	
N11	MGTREFCLK0P 231	GTH	1	
N10	MGTREFCLK0N 231	GTH	1	
D6	MGTRREF RN	NA	NA	R116
D7	MGTAVTTRCAL_RN	NA	NA	R116
GTH Quad				
230:				
P13	MGTREFCLK1P_230	GTH	1	
P12	MGTREFCLK1N_230	GTH	1	
R11	MGTREFCLK0P_230	GTH	1	'MHZ_320.64_COPY_8_DIR'
R10	MGTREFCLK0N_230	GTH	1	'MHZ_320.64_COPY_8_CMP'
GTH Quad				
229:				
T13	MGTREFCLK1P_229	GTH	1	
T12	MGTREFCLK1N_229	GTH	1	
U11	MGTREFCLK0P_229	GTH	1	
U10	MGTREFCLK0N_229	GTH	1	
GTH Quad				
228:	MOTRECL WID 220	OTH	0	
V13	MGTREFCLK1P_228	GTH	0	
V12	MGTREFCLK1N_228 MGTREFCLK0P 228	GTH	$0 \\ 0$	
W11 W10	MGTREFCLK0P_228 MGTREFCLK0N 228	GTH GTH	0	
GTH Quad	MGTREFCLKUN_228	ОІП	U	
227:				
Y13	MGTREFCLK1P 227	GTH	0	'MHZ 320.64 COPY 6 DIR'
Y12	MGTREFCLK1N 227	GTH	0	'MHZ 320.64 COPY 6 CMP'
AA11	MGTREFCLK0P 227	GTH	0	
AA10	MGTREFCLK0N 227	GTH	0	
GTH Quad	<u> </u>			
226:				
AB13	MGTREFCLK1P 226	GTH	0	
AB12	MGTREFCLK1N_226	GTH	0	
AC11	MGTREFCLK0P_226	GTH	0	
AC10	MGTREFCLK0N_226	GTH	0	
AH6	MGTRREF_RC	NA	NA	R115

7.40 C PPT TT 1.57 C C PP . 1 C C PP . 1

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

AH7	MGTAVTTRCAL_RC	NA	NA	R115
GTH Quad				
225:				
AD13	MGTREFCLK1P_225	GTH	0	
AD12	MGTREFCLK1N_225	GTH	0	
AE11	MGTREFCLK0P_225	GTH	0	'MHZ_320.64_COPY_9_DIR'
AE10	MGTREFCLK0N_225	GTH	0	'MHZ_320.64_COPY_9_CMP'
GTH Quad				
224:				
AF13	MGTREFCLK1P_224	GTH	0	
AF12	MGTREFCLK1N_224	GTH	0	
AG11	MGTREFCLK0P_224	GTH	0	
AG10	MGTREFCLK0N_224	GTH	0	

Hub - GTY Transceivers - QUADs 124:133

Combined Data to FEX 06 N.C. N.C. N.C. Rx 3 Rx 2 Rx 1 Rx 0 Rx 3 Rx 2 Rx 1 Rx 0 MGT_FO_35 MGT_FO_36 MGT_FO_29 MGT_FO_30 <u>1</u>31 N.C. Combined Data to FEX 05 N.C. Combined Data to FEX 04 Rx Rx Rx Rx 130 N.C. Combined Data to FEX 03 N.C. Combined Data to Other Hub 129 Rx Rx Rx Rx 128 N.C. Hub Readout AL_O to Other Hub N.C. Hub Readout AL_1 to Other Hub — С.L. Rx 3 Rx 2 Rx 1 126 Rx 3 Rx 2 Rx 1 Rx 0 MGT_FO_03 MGT_FO_04 MGT_FO_05 MGT_FO_06 Tx 3 Tx 2 Tx 1 Tx 0

Figure 29: Hub GTY Transceiver Quad Assignments

ST -> Straight Through

0,1 → UltraScale FPGA

C.L. -> Center Line of BGA

N.C. -> No Connection

AL -> Aurora Lane Number

Super Logic Region

 $PF \rightarrow Polarity Flip$

★ → These Quads receive

 $MGT_FO_{-} \longrightarrow MGT$ Data Fanout

the LHC locked

320.6296 MHz

reference clock.

Channel Number

FEX_4 AL_0 MGT_FO_07 PF FEX_4 AL_1 MGT_FO_08 PF Combined Data from Other Hub PF Receiver MiniPOD Fiber 8 ST

Drw: 22

Rev. 7-Dec-2016

Hub - GTH Transceivers - QUADs 224:233

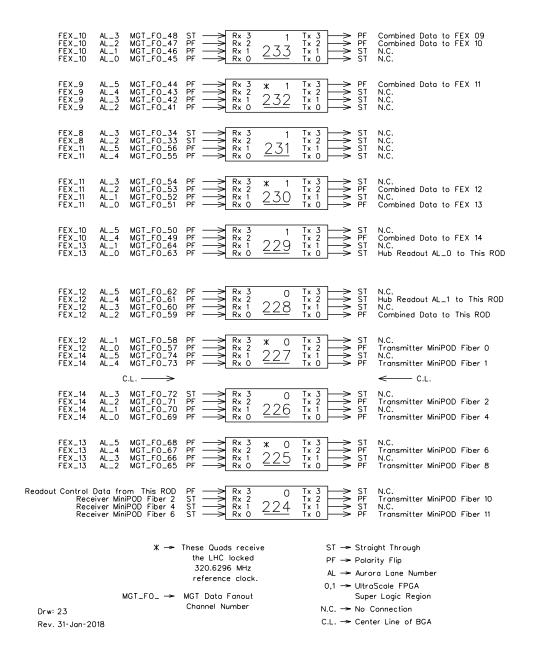


Figure 30: Hub GTH Transceiver Quad assignments.

5 105 0001

<u>Hub Readout Data Connections</u>

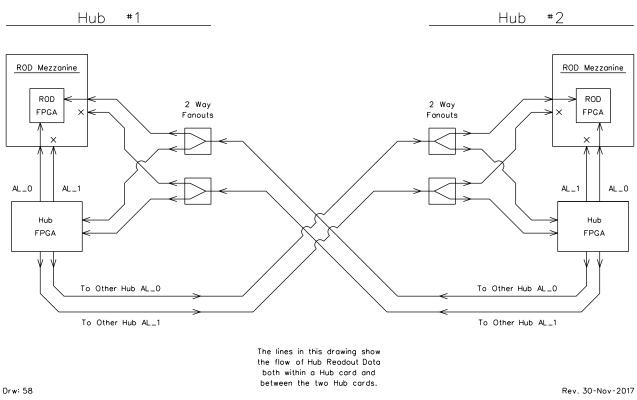


Figure 31: Hub Readout Data Connections.

1891 19 Appendix 6: Hub Virtex FPGA Select I/O Usage

- 1892 A significant number of Select I/O signals are used on the Hub Module's UltraScale Virtex
- 1893 FPGA. The intent of this document is to list in a single place all of the Select I/O lines that
- are used on the Hub FPGA. About 183 Select I/O pins are connected in the Hub design.
- 1895 Notes:

1905

1906 1907

1908

1909

1910

1911

1912

1913

1914

1915 1916

1917

1918

1925

- Currently all Select I/O connections to the Hub FPGA are made to Banks: 65, 67, 68, 70, 71, 72, 84, and 94.
- Bank 65 is used for Configuration of the FPGA from FLASH memory Master BPI mode
 Configuration. Currently none of the Bank 65 Select I/O pins are used after
 Configuration except for the two pins that allow I2C slave access to the FPGA's System
 Monitor.
- Banks 84 and 94 are operated with a Vcco of 3V3. The Select I/O lines from Banks 84 and 94 are used for all of the 3V3 logic connections to the Hub Virtex FPGA.
- The only signals that are routed to Select I/O Banks 70, 71, 72 are:
 - the 13 Equalizer Enable signals that control the MGT Fanout equalizers (these are static low current output lines with non-critical routing),
 - the 2 PLL Lock-Detect inputs to the FPGA which should be static durning normal operation,
 - the 1 "clock select" signal that controls whether or not the 40.08 MHz reference clock outputs in Zone 2 are active or not. This is a static low current output,
 - and 3 differential clock signals inputs that use Bank 71 because it is adjacent to the clock generation chips. Bank 71 is of the HP type and is on SLR #1. These clock signals are the 40.08 MHz Logic Clock, the 320.64 MHz Logic Clock, and the 40.08 MHz Reference Clock from the Other Hub Module.
 - Currently there are no connections to Bank 66. The reason for this is to facilitate routing access for required configuration signals to the very deep rings on Bank 65. These configuration signals need to go 14 or 15 rings in. Except for this Bank 66 is perfectly usable HP type Select I/O signals. Bank 66 does have Vcco power.
- All banks that must handle high speed Select I/O signals have their VRP and VREF pins connected to the appripriate resistors. I have listed the reference designators of the resistors associated with these pins (instead of listing a not interesting net name).
- All of the Select I/O Banks that we are using in the Hub design come from Super Logic Region #0 in the XCVU125 stacked silicon FPGA, except for Banks 70, 71, and 72 which are part of Super Logic Region #1.

Bank 65:	1V8 I/O HP SLR #0	44 Hub Connections
BE20	IO_L24P_T3U_N10_EMCCLK_65	'NO_CONN_FPGA_BANK_65_BE20'
BF20	IO_L24N_T3U_N11_DOUT_CSO_B_65	'NO_CONN_FPGA_BANK_65_BF20'
BD20	IO_T3U_N12_PERSTN0_65	'NO_CONN_FPGA_BANK_65_BD20'
BE16	IO_L23P_T3U_N8_I2C_SCLK_65	'HUB_I2C_TO_FPGA_SCL'
BF16	IO_L23N_T3U_N9_I2C_SDA_65	'HUB_I2C_TO_FPGA_SDA'
BE19	IO_L22P_T3U_N6_DBC_AD0P_D04_65	'FLASH_D04'
BF19	IO_L22N_T3U_N7_DBC_AD0N_D05_65	'FLASH_D05'
BD18	IO_L21P_T3L_N4_AD8P_D06_65	'FLASH_D06'
BE18	IO_L21N_T3L_N5_AD8N_D07_65	'FLASH_D07'
BE17	IO_L20P_T3L_N2_AD1P_D08_65	'FLASH_D08'
BF17	IO_L20N_T3L_N3_AD1N_D09_65	'FLASH_D09'

DD 17	IO I IOD TOL NO DDG ADOD DIO (5	IEL ACIT DAOI
BD17	IO_L19P_T3L_N0_DBC_AD9P_D10_65	'FLASH_D10'
BD16	IO L19N T3L N1 DBC AD9N D11 65	'FLASH_D11'
BC20	IO_L18P_T2U_N10_AD2P_D12_65	'FLASH_D12'
BC19	IO_L18N_T2U_N11_AD2N_D13_65	'FLASH_D13'
BA19	IO_L17P_T2U_N8_AD10P_D14_65	'FLASH_D14'
BB19	IO_L17N_T2U_N9_AD10N_D15_65	'FLASH_D15'
BA21	IO_L16P_T2U_N6_QBC_AD3P_A00_D16_65	'FLASH_A00'
BB21	IO_L16N_T2U_N7_QBC_AD3N_A01_D17_65	'FLASH_A01'
BB18	IO_L15P_T2L_N4_AD11P_A02_D18_65	'FLASH_A02'
BC18	IO_L15N_T2L_N5_AD11N_A03_D19_65	'FLASH_A03'
AY20	IO_L14P_T2L_N2_GC_A04_D20_65	'FLASH_A04'
BA20	IO_L14N_T2L_N3_GC_A05_D21_65	'FLASH_A05'
BC21	IO_T2U_N12_CSI_ADV_B_65	'NO_CONN_FPGA_BANK_65_BC21'
AY19	IO L13P T2L N0 GC QBC A06 D22 65	'FLASH A06'
AY18	IO L13N T2L N1 GC QBC A07 D23 65	'FLASH A07'
AV20	IO L12P T1U N10 GC A08 D24 65	'FLASH A08'
AW20	IO L12N T1U N11 GC A09 D25 65	'FLASH A09'
AV19	IO T1U N12 PERSTN1 65	'NO CONN FPGA BANK 65 AV19'
AW18	IO L11P T1U N8 GC A10 D26 65	'FLASH A10'
AW17	IO L11N T1U N9 GC A11 D27 65	'FLASH A11'
AV21	IO L10P T1U N6 QBC AD4P A12 D28 65	'FLASH A12'
AW21	IO L10N T1U N7 QBC AD4N A13 D29 65	'FLASH A13'
AU18	IO L9P T1L N4 AD12P A14 D30 65	'FLASH A14'
AV18	IO L9N T1L N5 AD12N A15 D31 65	'FLASH A15'
	IO L8P T1L N2 AD5P A16 65	'FLASH A16'
AT21		
AU21	IO_L8N_T1L_N3_AD5N_A17_65	'FLASH_A17'
AT19	IO_L7P_T1L_N0_QBC_AD13P_A18_65	'FLASH_A18'
AU19	IO_L7N_T1L_N1_QBC_AD13N_A19_65	'FLASH_A19'
AR20	IO_L6P_T0U_N10_AD6P_A20_65	'FLASH_A20'
AT20	IO L6N T0U N11 AD6N A21 65	'FLASH_A21'
AR19	IO_L5P_T0U_N8_AD14P_A22_65	'FLASH_A22'
AR18	IO_L5N_T0U_N9_AD14N_A23_65	'FLASH_A23'
AM21	IO_L4P_T0U_N6_DBC_AD7P_A24_65	'FLASH_A24'
AN21	IO_L4N_T0U_N7_DBC_AD7N_A25_65	'FLASH_A25'
AM19	IO_L3P_T0L_N4_AD15P_A26_65	'NO_CONN_FPGA_BANK_65_AM19'
AN19	IO_L3N_T0L_N5_AD15N_A27_65	'NO_CONN_FPGA_BANK_65_AN19'
AN20	IO_L2P_T0L_N2_FOE_B_65	'FLASH_OUTPUT_ENB_B'
AP20	IO_L2N_T0L_N3_FWE_FCS2_B_65	'FLASH_WRITE_ENB_B'
AP21	IO_T0U_N12_VRP_A28_65	R101
AN18	IO_L1P_T0L_N0_DBC_RS0_65	'NO_CONN_FPGA_BANK_65_AN18'
AP18	IO_L1N_T0L_N1_DBC_RS1_65	'NO_CONN_FPGA_BANK_65_AP18'
AM18	VREF_65	R106
This is a co	mplete list of all pins in Bank 65 including 9 No_Conn_s	spare unused pins.
Bank 66:	1V8 I/O HP SLR #0	2 Hub Connections
Except for t	the resistor pins no pins in Bank 66 are currently in use - all	are "No_COnn_" spare not connected pins.
AM27	IO_T0U_N12_VRP_66	R102
AM22	VREF_66	R107
Bank 67:	1V8 I/O HP SLR #0	27 Hub Connections

BE25	IO L23P T3U N8 67	'OVERALL ADRS 1 TO RES NET'
BF25	IO L23N T3U N9 67	'OVERALL ADRS 0 TO RES NET'
BE27	IO L22P T3U N6 DBC AD0P 67	'OVERALL ADRS 3 TO RES NET'
BE28	IO L22N T3U N7 DBC AD0N 67	'OVERALL ADRS 5 TO RES NET'
BF26	IO L20P T3L N2 AD1P 67	'OVERALL ADRS 2 TO RES NET'
BF27	IO L20N T3L N3 AD1N 67	'OVERALL ADRS 4 TO RES NET'
BA29	IO_L18P_T2U_N10_AD2P_67	'Hub_I2C_to_FPGA_SCL'
BB29	IO_L18N_T2U_N11_AD2N_67	'Hub_I2C_to_FPGA_SDA'
AW27	IO_L14P_T2L_N2_GC_67	'ROD_PRESENT_B_TO_FPGA'
AW28	IO_L14N_T2L_N3_GC_67	'ROD_Power_Control_2_FPGA'
BB28	IO_T2U_N12_67	'FPGA_RODs_SMBALERT_B'
AY27	IO_L13P_T2L_N0_GC_QBC_67	'TBD_SPARE_LINK_2_DIR'
AY28	IO_L13N_T2L_N1_GC_QBC_67	'TBD_SPARE_LINK_2_CMP'
AV29	IO_L12P_T1U_N10_GC_67	'ROD_Power_Control_4_FPGA'
AV30	IO_L12N_T1U_N11_GC_67	'ROD_Power_Control_3_FPGA'
AU28	IO_L11P_T1U_N8_GC_67	'SPARE_OSC_TO_FPGA_DIR'
AV28	IO_L11N_T1U_N9_GC_67	'SPARE_OSC_TO_FPGA_CMP'
AT30	IO_L10P_T1U_N6_QBC_AD4P_67	'ACCESS_SIGNAL_1_FROM_FPGA'
AT31	IO_L10N_T1U_N7_QBC_AD4N_67	'ACCESS_SIGNAL_2_FROM_FPGA'
AT29	IO_L9P_T1L_N4_AD12P_67	'TBD_SPARE_LINK_3_DIR'
AU29	IO_L9N_T1L_N5_AD12N_67	'TBD_SPARE_LINK_3_CMP'
AT27	IO_L8P_T1L_N2_AD5P_67	'TBD_SPARE_LINK_1_DIR'
AU27	IO_L8N_T1L_N3_AD5N_67	'TBD_SPARE_LINK_1_CMP'
AV26	IO_L7P_T1L_N0_QBC_AD13P_67	'TBD_SPARE_LINK_0_DIR'
AW26	IO_L7N_T1L_N1_QBC_AD13N_67	'TBD_SPARE_LINK_0_CMP'
AP31	IO_T0U_N12_VRP_67	R103
AM28	VREF_67	R108
The remain	ing Pank 67 ning are not connected and are not listed here	

The remaining Bank 67 pins are not connected and are not listed here.

Bank 68:	1V0 I/O IID CI D #0	41 Hub Connections
	1V8 I/O HP SLR #0	41 Hub Connections
BF30	IO_L24P_T3U_N10_68	'HUB_FPGA_LED51_DRV'
BF31	IO_L24N_T3U_N11_68	'HUB_FPGA_LED52_DRV'
BA30	IO_T3U_N12_68	'Phys_U21_MDIO'
BC31	IO_L23P_T3U_N8_68	'Phys_U21_RXD0MODE0'
BD31	IO_L23N_T3U_N9_68	'No_Conn_FPGA_BD31'
BE29	IO_L22P_T3U_N6_DBC_AD0P_68	'OVERALL_ADRS_6_TO_RES_NET'
BF29	IO_L22N_T3U_N7_DBC_AD0N_68	'HUB_FPGA_LED50_DRV'
BA31	IO_L21P_T3L_N4_AD8P_68	'Phys_U22_INT_B'
BB31	IO_L21N_T3L_N5_AD8N_68	'Phys_U21_RX_DVCLK125_EN'
BD30	IO_L20P_T3L_N2_AD1P_68	'No_Conn_FPGA_BD30'
BE30	IO_L20N_T3L_N3_AD1N_68	'OVERALL_ADRS_7_TO_RES_NET'
BC29	IO_L19P_T3L_N0_DBC_AD9P_68	'No_Conn_FPGA_BC29'
BC30	IO_L19N_T3L_N1_DBC_AD9N_68	'Phys_U21_INT_B'
BA36	IO_L18P_T2U_N10_AD2P_68	'Phys_U21_TXD0'
BB36	IO_L18N_T2U_N11_AD2N_68	'Phys_U21_TXD2'
BB32	IO_L17P_T2U_N8_AD10P_68	'Phys_U21_MDC'
BB33	IO_L17N_T2U_N9_AD10N_68	'Phys_U21_RXD2MODE2'
BA34	IO_L16P_T2U_N6_QBC_AD3P_68	'Phys_U21_GTX_CLK'
BB34	IO_L16N_T2U_N7_QBC_AD3N_68	'Phys_U21_TX_EN'
AY32	IO_L15P_T2L_N4_AD11P_68	'Phys_U21_RXD1MODE1'
BA32	IO L15N T2L N5 AD11N 68	'No Conn FPGA BA32'

AW33	IO L14P T2L N2 GC 68	'Phys U22 RX CLK PHYAD2'
AW33 AY33	IO L14P 12L N2 GC 68	'Phys U21 RXD3 MODE3'
BA35	IO T2U N12 68	'Phys U21 TXD3'
AY34	IO L13P T2L N0 GC QBC 68	'Phys U22 CLK125 LED MODE'
AY35		'Phys U21 TXD1'
AU33	IO_L13N_T2L_N1_GC_QBC_68 IO_L12P_T1U_N10_GC_68	'Phys U21 CLK125 LED MODE'
AU34	IO L12P 110 N10 GC 68	'Phys U22 TX EN'
AW32	IO T1U N12 68	'Phys U22 RX DV CLK125 EN'
AW32 AV33	IO L11P T1U N8 GC 68	'Phys U21 RX CLK PHYAD2'
AV34	IO L11N T1U N9 GC 68	'Phys U22 RXD2 MODE2'
AV34 AV36	IO L10P T1U N6 QBC AD4P 68	'Phys U22 RXD1 MODE1'
AW36	IO L10N T1U N7 QBC AD4N 68	'Phys U22 MDC'
AV35	IO L9P T1L N4 AD12P 68	'Phys U22 RXD0 MODE0'
AW35	IO L9N T1L N5 AD12N 68	'Phys U22 MDIO'
AW33	IO L8P T1L N2 AD5P 68	'No Conn FPGA AU31'
AU32	IO L8N T1L N3 AD5N 68	'Phys U22 RXD3 MODE3'
AV31	IO L7P T1L NO QBC AD13P 68	'Ref 40.08 MHz from FPGA to Rec Dir'
AW31	IO L7N T1L N1 QBC AD13N 68	'Ref 40.08 MHz from FPGA to Rec Cmp'
AR36	IO L6P TOU N10 AD6P 68	'Phys U22 TXD0'
AT36	IO L6N T0U N11 AD6N 68	'Phys U22 TXD1'
AP33	IO L5P TOU N8 AD14P 68	'No Conn FPGA AP33'
AR33	IO L5N TOU N9 AD14N 68	'No Conn FPGA AR33'
AR35	IO L4P TOU N6 DBC AD7P 68	'Phys U22 TXD2'
AT35	IO L4N TOU N7 DBC AD7N 68	'Phys U22 TXD3'
AR32	IO L3P TOL N4 AD15P 68	'No Conn FPGA AR32'
AT32	IO L3N T0L N5 AD15N 68	'No Conn FPGA AT32'
AR34	IO L2P TOL N2 68	'No Conn FPGA AR34'
AT34	IO L2N TOL N3 68	'Phys U22 GTX CLK'
AU36	IO TOU N12 VRP 68	R104
AN32	IO L1P TOL NO DBC 68	'No Conn FPGA AN32'
AP32	IO L1N T0L N1 DBC 68	'No Conn FPGA AP32'
AM32	VREF 68	R109
This is a co	mplete list of all pins in Bank 68 including 12 No_	Conn_ spare unused pins.
D 1- 04	2V2 I/O IID CI D //O	24 H-1, C
Bank 84:	3V3 I/O HR SLR #0	24 Hub Connections
AP17	IO_L24P_T3U_N10_84	'ROD_Power_Enable_B'
AR17	IO_L24N_T3U_N11_84 IO_T3U_N12_84	'ROD_Power_Enable'
AM16		'ALL_HUB_POWER_GOOD_TO_FPGA'
AN15	IO L23P T3U N8 84	'Trans MiniPOD SCL'
AP15	IO L23N T3U N9 84	'Trans_MiniPOD_SDA' 'FPGA_SW_C_LOOP_DETECTED'
AV16 AV15	IO_L22P_T3U_N6_DBC_AD0P_84 IO_L22N_T3U_N7_DBC_AD0N_84	'FPGA SW C ATC LOOP DET'
AV15 AN16	IO L22N_13U_N/_DBC_AD0N_84 IO L21P T3L N4 AD8P 84	'Trans MiniPOD INTR B'
AP16	IO L21P 13L N4 AD8P 84 IO L21N T3L N5 AD8N 84	'Hubs SMB Alert B'
AP16 AT17	IO L21N 13L N3 AD8N 84 IO L20P T3L N2 AD1P 84	'No Conn FPGA AT17'
AU17	IO L20N T3L N3 AD1N 84	'No Conn FPGA AU17'
AU17 AT16	IO L19P T3L N0 DBC AD9P 84	'FPGA SW B MDC'
A116 AU16	IO L19P_13L_N0_DBC_AD9P_84 IO L19N_T3L_N1_DBC_AD9N_84	'FPGA SW B MDIO'
AP13	IO L19N_13L_N1_DBC_AD9N_84	'Trans MiniPOD RESET B'
AR13	IO L18N T2U N11 AD2N 84	'Recvr MiniPOD SDA'
AU12	IO L17P T2U N8 AD10P 84	'ISO SLOT HW ADRS 2'
11012		
AU11	IO L17N T2U N9 AD10N 84	'ISO SLOT HW ADRS 3'

	Hub_Spec_v1_1.docx	of 13/03/2018
AR15	IO L16P T2U N6 QBC AD3P 84	'Recvr MiniPOD INTR B'
AR14	IO L16N T2U N7 QBC AD3N 84	'Recvr MiniPOD RESET B'
AR12	IO L15P T2L N4 AD11P 84	'Recvr MiniPOD SCL'
AT12	IO L15N T2L N5 AD11N 84	'ISO SLOT HW ADRS 0'
AT15	IO L14P T2L N2 GC 84	'CLOCK 25 MHz FPGA'
AT14	IO L14N T2L N3 GC 84	'FPGA SW B ATC LOOP DET'
AT11	IO T2U N12 84	'ISO SLOT HW ADRS 1'
AU14	IO L13P T2L N0 GC QBC 84	'No Conn FPGA AU14'
AU13	IO L13N T2L N1 GC QBC 84	'FPGA SW B LOOP DETECTED'
AM17	VREF 84	R111
	mplete list of all pins in Bank 84 including 3 No	Conn spare unused pins.
Bank 94:	3V3 I/O HR SLR #0	22 Hub Connections
AW13	IO L12P T1U N10 GC 94	'FPGA SW A MDC'
AW12	IO L121 110 N10 GC 34	'ISO SLOT HW ADRS 5'
AY13	IO T1U N12 94	'FPGA SW C MDC'
AV14	IO L11P T1U N8 GC 94	'No Conn FPGA AV14'
AV13	IO L11N T1U N9 GC 94	'FPGA SW A ATC LOOP DET'
BA11	IO L10P T1U N6 QBC AD4P 94	'SHELF ADRS 7 TO FPGA'
BB11	IO L10N T1U N7 QBC AD4N 94	'SHELF ADRS 5 TO FPGA'
AY12	IO L9P T1L N4 AD12P 94	'ISO SLOT HW ADRS 7'
BA12	IO L9N T1L N5 AD12N 94	'SHELF ADRS 6 TO FPGA'
BB13	IO L8P T1L N2 AD5P 94	'SHELF ADRS 3 TO FPGA'
BB12	IO L8N T1L N3 AD5N 94	'SHELF ADRS 4 TO FPGA'
AV11	IO L7P T1L NO QBC AD13P 94	'ISO SLOT HW ADRS 4'
AW11	IO L7N T1L N1 QBC AD13N 94	'ISO SLOT HW ADRS 6'
AY17	IO L6P T0U N10 AD6P 94	'No Conn FPGA AY17'
BA17	IO L6N T0U N11 AD6N 94	'No Conn FPGA BA17'
BA14	IO L5P TOU N8 AD14P 94	'SHELF ADRS 2 TO FPGA'
BB14	IO_L5N_T0U_N9_AD14N_94	'SHELF_ADRS_1_TO_FPGA'
BB17	IO L4P TOU N6 DBC AD7P 94	'No Conn FPGA BB17'
BB16	IO L4N TOU N7 DBC AD7N 94	'I2C Buf 1503 ENABLE'
BA16	IO L3P TOL N4 AD15P 94	'I2C Buf 1501 ENABLE'
BB15	IO L3N TOL N5 AD15N 94	'SHELF ADRS 0 TO FPGA'
AW15	IO L2P TOL N2 94	'FPGA SW A MDIO'
AY14	IO L2N TOL N3 94	'FPGA SW C MDIO'
BC16	IO TOU N12 94	'No Conn FPGA BC16'
AY15	IO L1P TOL NO DBC 94	'FPGA SW A LOOP DETECTED'
BA15	IO L1N TOL N1 DBC 94	'I2C Buf 1502 ENABLE'
AW16	VREF 94	R112
	mplete list of all pins in Bank 94 including 5 No	

Bank 70:	1V8 I/O HP SLR #1	3 Connections PLL-Det FEX Ref Clk Enb
B26	IO_L24P_T3U_N10_70	'PLL_320.64_MHz_Lock_Detect_to_FPGA'
B27	IO_L22P_T3U_N6_DBC_AD0P_70	'PLL_40.08_MHz_Lock_Detect_to_FPGA'
A26	IO_L24N_T3U_N11_70	'Select_Input_Second_40_Fanout'

Only the Bank 70 signals used in the Hub design are listed.

Bank 71:	1V8 I/O HP SLR #1	15 Connections Clocks and Equalizer Enb
B22	IO_L24N_T3U_N11_71	'MGT_FO_EQU_ENB_GRP_6'

Hub_Spec_v1_1.docx of 13/03/2018

B25	IO_L23P_T3U_N8_71	'MGT_FO_EQU_ENB_GRP_3'
A25	IO_L23N_T3U_N9_71	'MGT_FO_EQU_ENB_GRP_2'
C25	IO_L21N_T3L_N5_AD8N_71	'MGT_FO_EQU_ENB_GRP_1'
A24	IO_L20P_T3L_N2_AD1P_71	'MGT_FO_EQU_ENB_GRP_4'
A23	IO_L20N_T3L_N3_AD1N_71	'MGT_FO_EQU_ENB_GRP_9'
C24	IO_L19N_T3L_N1_DBC_AD9N_71	'MGT_FO_EQU_ENB_GRP_5'
H23	IO_L14P_T2L_N2_GC_71	'Ref_40.08_MHz_from_Other_Hub_Dir'
G23	IO_L14N_T2L_N3_GC_71	'Ref_40.08_MHz_from_Other_Hub_Cmp'
J24	IO_L12P_T1U_N10_GC_71	'Logic_Clk_40.08_MHz_to_FPGA_Dir'
H24	IO_L12N_T1U_N11_GC_71	"Logic_Clk_40.08_MHz_to_FPGA_Cmp"
K22	IO_L11P_T1U_N8_GC_71	'Logic_Clk_320.64_MHz_to_FPGA_Dir'
J22	IO_L11N_T1U_N9_GC_71	'Logic_Clk_320.64_MHz_to_FPGA_Cmp'
P22	IO_T0U_N12_VRP_71	R105
P21	VREF_71	R110

The remaining 39 pins in Bank 71 are not used in the Hub design and are not listed here.

Bank 72:	1V8 I/O HP SLR #1	6 Connections Equalizer Enables
A18	IO_L24N_T3U_N11_72	'MGT_FO_EQU_ENB_GRP_13'
A20	IO_L23P_T3U_N8_72	'MGT_FO_EQU_ENB_GRP_11'
A19	IO_L23N_T3U_N9_72	'MGT_FO_EQU_ENB_GRP_12'
A21	IO_L21N_T3L_N5_AD8N_72	'MGT_FO_EQU_ENB_GRP_10'
D20	IO_L20P_T3L_N2_AD1P_72	'MGT_FO_EQU_ENB_GRP_7'
C20	IO_L19P_T3L_N0_DBC_AD9P_72	'MGT_FO_EQU_ENB_GRP_8'
Only the Bank 72 signals used in the Hub design are listed.		

1941 **20 Appendix 7: Hub FPGA Signal Types**

- 1942 For each signal "type" that connects to the Hub's FPGA this file provides:
- A short description of the function of that signal type.
- A description of how the I/O Block that handles that signal type should be setup.
- A description of the FPGA logic that is necessary to properly handle that signal type in a minimal safe Hub firmware implementation.
- Where applicable a reference is given to the Hub Circuit Diagram(s) where that signal type is shown so that you can see how it is used on the Hub circuit board.

20.1 Select I/O Signals:

1950 **20.1.1 Clock and Clock Management Signals**

- 1951 This sections lists the various Select I/O clock signals and clock management signals in the
- Hub design. See Figure 24, Figure 25, Figure 26 and Figure 27.
- 1953 CLOCK_25_MHz_FPGA
- This is a single ended clock input to the FPGA. This clock is used in the Ethernet
- circuits. This is not an LHC locked clock. This is a 3.3V CMOS clock signal that is
- always running. The FPGA needs to always provide a 3.3V CMOS receiver for it. No
- special internal FPGA termination should be necessary to correctly receive this clock
- signal.

1949

- 1959 Logic_Clk_320.64_MHz_to_FPGA_ Dir/Cmp, Logic_Clk_40.08_MHz_to_FPGA_ Dir/Cmp
- These are the main Logic Clock signals for the Hub FPGA. These are AC coupled LHC
- locked clocks. The FPGA must receive them as differential signals, 100 Ohm terminate
- them, and DC Bias these FPGA inputs by including the proper combination of
- DQS_Bias and EQ_Level0 attributes in the setup of these I/O Blocks. Even if these
- 1964 clocks are not used in a minimal safe FPGA design they must still be properly received.
- 1965 Ref 40.08 MHz from Other Hub Dir/Cmp
- This is an AC coupled LVDS input to the Hub FPGA. In a shelf with two Hub Modules
- this clock path is used on the Hub that does not receive an Optical Felix TTC signal.
- Because this is AC coupled the I/O Block that receives this signal must be setup with the
- correct combination of the DQS_Bias and EQ_Level0 attributes. This FPGA input
- should include a 100 Ohm differential terminator. This input needs to be setup and
- instantiated in all versions of the Hub FPGA firmware.
- 1972 Ref_40.08_MHz_from_FPGA_to_Rec_ Dir/Cmp
- This is an LVDS output from the Hub FPGA that runs to an LVDS receiver and then
- 1974 connects to the reference input on the 40.08 MHz PLL. I believe that we should include
- this output even in a minimal safe FPGA design even if we only tie the input to the LVDS
- 1976 driver Low.
- 1977 PLL_40.08_MHz_Lock_Detect_to_FPGA, PLL_320.64_MHz_Lock_Detect_to_FPGA
- These are two Lock Detect signals from the PLL Clock circuits on the Hub Module.
- 1979 When Hi they indicate that the associated PLL has locked onto its reference input. The
- 1980 FPGA needs to always provide 1.8V CMOS receivers for these two signals.

1981	Select_Input_Second_40_Fanout
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	This signal is an output from the Hub FPGA. It is used to enable or disable the Hub circuit board from sending out 40.08 MHz Reference Clocks on Zone-2 of the Backplane. Recall that in a shelf with 2 Hub Modules, that only the primary Hub that receives the Optical Felix TTC signal will send out its 40.08 MHz Reference Clocks to the FEX modules. The secondary Hub (the Hub that does not receive an Optical Felix TTC signal) must not send out its Zone-2 Reference Clocks. This is a 1.8V CMOS open-drain output from the Hub Module. When Low it enables the Hub Module to send out its Zone-2 Reference Clocks. When the open-drain output transistor in the FPGA I/O Block is Off then its backplane Reference Clock output drives will be shutdown. In a minimal safe design I think that we want this open-drain output to pull this signal Low so that we can see these Reference Clock outputs.
1993	SPARE_OSC_TO_FPGA_ Dir/Cmp
1994 1995 1996	This is a spare differential clock input to the Hub FPGA. As long as we are not installing this part (U562) then nothing special needs to be done with these input pins to the FPGA even in a minimal safe FW design.
1997	20.1.2 Ethernet Switch Chip Management Signals
1998	Each of the 3 Broadcom Ethernet Switch chips has its own set of 4 management signals with
1999	the Hub FPGA. See Hub Circuit Diagram 17.
2000	FPGA_SW_?_ATC_LOOP_DET
2001 2002 2003 2004	This is a control signal from the Hub FPGA to the Ethernet Switch chips. I assume that this signal will eventually be controlled from a bit in an IPBus visible register. A minimal Hub FPGA design could just tie this signal Low. A Slow Slew and 4 mA Drive level is fine for this 3.3V CMOS static level output signal.
2005	FPGA_SW_?_LOOP_DETECTED
2006 2007 2008	This is a status signal from the Broadcom Switch chips to the Hub FPGA. I assume that this status bit will eventually be visible in an IPBus register. The FPGA needs to at least always provide a receiver for this 3.3V CMOS input signal.
2009	FPGA_SW_?_MDC
2010 2011 2012 2013 2014	Because the MDC/MDIO interface on the Broadcom Switch chips is in Slave mode, this clock signal runs from the Hub FPGA to the Switch chip. Eventually I assume that these pins on the Hub FPGA will be controlled by firmware that implements the MDC/MDIO part of a MAC. For minimal safe firmware this line could just be driven Low by a Slow Slew 4 mA 3.3V CMOS output driver.
2015	FPGA_SW_?_MDIO
2016 2017 2018 2019 2020	This is a bi-directional data line between the Hub FPGA and the MDC/MDIO interface in the Broadcom Switch chips. Eventually I assume that these pins on the Hub FPGA will be handled by firmware that implements the MDC/MDIO part of a MAC. In a minimal safe Hub FPGA design I would provide a 3.3V CMOS receiver for this signal with a weak pull-up resistor at its input.

2021	20.1.3	Hardware Address Signals
2022	ISO_SLO	T_HW_ADRS_?
2023 2024 2025 2026	IPM0 Hard	e 8 signals bring the backplane Hardware Slot Address to the Hub FPGA. The C module also receives these signals. Even if the Hub FPGA is not going to use this ware Slot number information it must still receive these 8 lines with 3.3V CMOS vers. See Hub Circuit Diagram 13.
2027	SHELF_A	ADRS_?_TO_FPGA
2028 2029 2030 2031	FPG/ modu	e are 8 signals that bring the Shelf Address information from the IPMC to the Hub's A. These lines connect to "User I/O" pins on one of the ARM CPUs in the IPMC ale. The Hub Firmware needs to at least always provide 3.3V CMOS receives for signals.
2032	OVERAL.	L_ADRS_?_TO_RES_NET
2033 2034 2035 2036 2037 2038	ROD Addr from	e are 8 outputs from the Hub FPGA that provide an Overall Hardware Address to the mezzanine. This Overall Hardware Address is made up of the Slot Hardware ess that comes from the Backplane and the Shelf Hardware Address that comes the IPMC. In a minimal safe FPGA implementation I would just tie all 8 of these all Hardware Address lines Low. These can be 1.8V CMOS Slow Slew 4 mA Drive its.
2039	20.1.4	I2C Bus Signals
2040	Hub_I2C	_to_FPGA_SCL, Hub_I2C_to_FPGA_SDA
2041 2042		that this I2C bus makes TWO connections to the Hub FPGA. See Hub Circuit ram 37.
2043	It conn	ects to pins:
2044	В	E16 IO_L23P_T3U_N8_I2C_SCLK_65
2045	В	F16 IO_L23N_T3U_N9_I2C_SDA_65
2046	that provi	de for a Slave I2C interface to the FPGA System Monitor, and it connects to pins:
2047	В	A29 IO_L18P_T2U_N10_AD2P_67
2048	В	B29 IO_L18N_T2U_N11_AD2N_67
2049 2050		e can implement a Master I2C interface so that for example the Hub FPGA can talk to the CDC Converter power supplies.
2051 2052		minimal safe design both of these I2C signals at both pin pairs should connect to CMOS Receivers.
2053	I2C_Buf_	150?_ENABLE
2054 2055 2056 2057 2058 2059 2060	chips cards Senso the R signa	e are control signals from the Hub FPGA to the Sensor I2C Bus translator/buffer at These translator/buffer chips allow the overall Sensor I2C Bus on the ROD-Hub to be divided up into sections. Eventually we may need to control dividing up the or I2C bus either from bits in an IPBus visible register of from a control signal from to the Hub. For a minimal safe Hub FPGA design these 3 I2C buffer control als can just be tied Hi which will enable these I2C translator/buffers. These control als are 3.3V Slow Slew 4 mA Drive outputs from the Hub FPGA.

2061	20.1.5 MiniPOD Management Signals
2062	Each of the MiniPODs has 4 management signals associated with it. The Hub's Receiver and
2063	Transmitter MiniPODs each have their own private set of these 4 management signals. Hub
2064	Circuit Diagram 21 shows the layout of these signals. The setup of the MiniPOD
2065	management signals on the Hub is very similar to that used on the CMX card.
2066	Recvr_MiniPOD_INTR_B, Trans_MiniPOD_INTR_B
2067 2068	Interrupt signals from the MiniPODs to the FPGA. Low indicates interrupt. The FPGA should always provide 3.3V CMOS receivers for these two signals.
2069	Recvr_MiniPOD_RESET_B, Trans_MiniPOD_RESET_B
2070 2071 2072 2073	These are Reset signals from the FPGA to the MiniPODs. Low indicates Reset. A minimal safe design should at least drive these lines Hi with a Slow Slew 4 mA Drive 3.3V CMOS output. In a full firmware design I assume that these Reset signals will be controlled from bits in an IPBus visible register.
2074	Recvr_MiniPOD_SCL, Trans_MiniPOD_SCL
2075 2076 2077	These are the clock signals for the bi-directional serial data path between the FPGA and the MiniPODs. In a minimal safe design I would drive this signals Low with a Slow Slew 4 mA Drive 3.3V CMOS output.
2078	Recvr_MiniPOD_SDA, Trans_MiniPOD_SDA
2079 2080 2081	These are the bi-directional data lines for the serial data path between the FPGA and the MiniPODs. In a minimal design I would provide a 3.3V CMOS receiver for these signals.
2082	20.1.6 Miscellaneous Select I/O Signals
2083	ACCESS_SIGNAL_?_FROM_FPGA
2084 2085 2086 2087 2088 2089	These two output signals from the FPGA run to a translator/buffer chip and then to pins in the front panel J2 connector. See Hub Circuit Diagram 53. The purpose of these signals is to allow one to see with an oscilloscope some aspect of the FPGA's operation. Unless needed for something special these 1.8V CMOS output signals can be configured for a Slow Slew rate and modest 4 mA Drive. A minimal safe Hub FPGA design could just tie these 2 signals Low.
2090	HUB_FPGA_LED5?_DRV
2091 2092 2093	These three signals are outputs from the Hub FPGA that control front panel LEDs. These are 1.8V CMOS signals and using a Slow Slew and 4 mA of Drive would be fine. A minimal safe Hub FPGA design could just tie these 3 output signals Low.
2094	Hubs_SMB_Alert_B
2095 2096 2097 2098	This is an input signal to the Hub's FPGA from the 7 DCDC Converter power supplies or the Hub Module. When Low it indicates that one or more of these Hub power supplies is in trouble (or at least wants attention). Normally this signal should be Hi. This is a 3.3V CMOS signal and the FPGA must always have a receiver for it even if it does not make use of this signal

2100	ALL_HUB_POWER_GOOD_TO_FPGA
2101 2102 2103 2104 2105 2106 2107 2108	This is an input signal to the Hub's FPGA from the Power Control circuits on the Hub Module. This is a 3.3V Select I/O signal in Bank 84. When Low this signal indicates that there is some kind of power supply problem on the Hub Module. When Hi this signal indicates: that all 7 DCDC Converters report that they are operating correctly, and that the Isolated +12V supply is Enabled, and that the output from the Linear MGT_AVAUX and BULK_2V5 supplies is good. The Hub FPGA must always instance a 3.3V CMOS receiver for this signal even if it does not make use of this signal. This signal comes through a 2.7k Ohm isolation resistor from a 5V source.
2109	$MGT_FO_EQU_ENB_GRP_?$
2110 2111 2112 2113 2114 2115 2116 2117	These 13 control signals are outputs from the Hub FPGA that enable or disable the equalization in the MGT Fanout chips. All fanout chips that service a given data source either have their equalization enabled or disabled. I assume that eventually these 13 equalization enable signals will be separately controllable from bits in an IPBus visible register. In a minimal safe Hub FPGA design all of the Equalization Enable signals can just be tied HI. I would drive them as 1.8V CMOS outputs with Slow Slew and 8 mA of Drive. The loading on these signals will only be about 150 uA but the high Drive level may help if we need to ramp up the FAN_1V8 rail voltage.
2118	TBD_SPARE_LINK_?_ Dir/Cmp
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128	These are 8 To Be Determined spare lines between the Hub and ROD FPGAs. Currently none of them have an assigned function. If needed they can be operated as either 8 separate 1.8V CMOS signals or as 4 separate LVDS signals. As with all CMOS signals we can not just leave them floating. As unassigned spare signals the agreement with ROD is that we will run them as 8 separate CMOS signals and that the Hub will drive them and the ROD will receive them. Further the agreement with ROD is that the Hub will keep these signals tri-stated until the ROD asserts it Power Control #2 signal HI to the Hub. See Hub Circuit Diagram 42. Even in a minimal safe firmware design the Hub needs to implement this functionality. These 8 lines should be driven with Slow Slew 4 mA Drive 1.8V CMOS output blocks. See also Section 26.
2129	20.1.7 Phys_U21 and Phys_U22 signals
2130 2131	Each Phys Chip makes 16 connections with the Hub's FPGA. These Phys Chip <> FPGA connections are shown in Figure 43 and make up a RGMII interface bus.
2132	In the real Hub operation these 16 signals will be managed by MAC IP firmware. This
2133	RGMII connection between the FPGA and the Phys Chips includes signals that may require
2134	fast slew rates, higher drive current, and DCI back (series) termination. These RGMII signals
2135	have been laid out carefully on the Hub circuit to minimize cross-talk, reflections, and signal
2136	loss. Careful consideration must be given to how the RMGII signals are handled in the
21372138	FPGA I/O Blocks to provide both a good RGMII interface and to minimize interference with other parts of the Hub Module.
2139 2140	For a minimal safe Hub FPGA design we still should handle these CMOS signals in a defined rational way.
2141 2142	I would provide Low current Drive Slow Slew 1.8V CMOS outputs tied Low for the following signals:
2143	Phys_U2?_TXD0

```
2144
           Phys_U2?_TXD1
           Phys_U2?_TXD2
2145
           Phys_U2?_TXD3
2146
           Phys_U2?_TX_EN
2147
           Phys_U2?_GTX_CLK
2148
           Phys_U2?_MDC
2149
2150
2151
       I would provide 1.8V CMOS receivers for the following signals:
           Phys_U2?_RXD0__MODE0
2152
           Phys_U2?_RXD1__MODE1
2153
2154
           Phys U2? RXD2 MODE2
2155
           Phys U2? RXD3 MODE3
           Phys_U2?_RX_CLK__PHYAD2
2156
           Phys U2? RX DV CLK125 EN
2157
2158
           Phys_U2?_CLK125__LED_MODE
           Phys U2? MDIO
2159
2160
           Phys_U2?_INT_B
       20.1.8
                 ROD Present and ROD Power Control Signals
2161
       These 7 signals have to do with letting the Hub know whether or not a ROD is installed on it.
2162
       Controlling (i.e. enabling) the power on the ROD, and letting the Hub know whether or not
2163
       all ROD power is good and that the ROD is ready for normal trigger system operation. See
2164
2165
       also Section 26 for further discussion.
       ROD_PRESENT_B_TO_FPGA
2166
           This signal is a pull-down resistor on the ROD. When the ROD is NOT present this
2167
           signal goes HI on the Hub. The Hub must always provide a 1.8V CMOS receiver for this
2168
2169
           signal even if it does not use it.
2170
       ROD Power Control 2 FPGA
           This is an input to the Hub's FPGA. When HI this signal indicates that all power supplies
2171
           on the ROD are operating correctly. The Hub must always provide a 1.8V CMOS
2172
2173
           receiver for this signal even if it does not use it.
2174
       ROD Power Control 3 FPGA
           This is an input to the Hub's FPGA. When HI this signal indicates that the ROD is
2175
           Configured and fully ready for normal L1Calo operation. The Hub must always provide
2176
2177
           a 1.8V CMOS receiver for this signal even if it does not use it.
2178
       ROD_Power_Control_4_FPGA
           This is a spare power control signal. In a minimal safe firmware design the Hub should
2179
2180
           provide a 1.8V CMOS receiver for this signal with a weak pull-up resistor at its input.
2181
       ROD Power Enable, ROD Power Enable B
           These two signal are outputs from the Hub FPGA that through some hardwired logic on
2182
           the Hub tell the ROD when it may turn ON its power supplies. The hardwired logic
2183
2184
           associated with these signals is shown in Hub Circuit Diagram 32. These are 3.3V Slow
           Slew 4 mA Drive CMOS outputs. A minimal safe design (that just locks OFF the ROD
2185
           power) should set ROD Power Enable Low and set ROD Power Enable B Hi.
2186
```

2187	FPGA_RODs_SMBALERT_B
2188 2189 2190 2191 2192	This is an input to the Hub's FPGA that when LOW indicates a power supply problem on the ROD. During normal operation this signal should always be HI. Pull up current to 1V8 is provided by a 1k Ohm resistor on page 25 of the ROD schematics. A normal 1.8V CMOS receiver should be used. The FPGA needs to always provide a receiver for this signal.
2193	20.2 MGT Transceiver Signals
2194 2195	Comb_Data_to_Cap_to_FEX_*_Dir/Cmp, Comb_Data_to_Cap_to_Other_Hub_Dir/Cmp, Comb_Data_to_Cap_to_ROD_Dir/Cmp
2196 2197 2198 2199	These 14 Combined Data signals are MGT Outputs from the FPGA. Hub Circuit Diagrams 22 and 23 indicate which of the Combined Data signals needed to be inverted in their MGT Transmitter in order to provide standard right-side-up polarity over the Backplane and at the Receiver.
2200	This_Hubs_RO_?_to_Cap_Its_ROD_Dir/Cmp, This_Hubs_RO_?_to_Cap_Other_ROD_Dir/Cmp
2201 2202 2203 2204 2205	These 4 MGT outputs are the readout data from the Hub FPGA. One of these links goes to the ROD on This Hub (where it can only receive the Lane 0 signal) and the second pair goes to the MGT Fanout on the Other Hub from which it is routed to both the Other Hub's FPGA and to the Other Hub's ROD. Hub Circuit Diagrams 22 and 23 indicate the MGT Transmitter logic inversions that should be included in the firmware setup.
2206	MiniPOD_Trans_Fiber_??_Data_ Dir/Cmp
2207 2208 2209	These are 8 MGT Transmitter outputs that run to the Transmitter MiniPOD. Hub Circuit Diagram 23 indicates which of these MGT Transmitters needs to include a logic inversion so that all 8 of these Transmitter MiniPOD fibers provide a right-side-up light signal.
2210	Rec_MP_Fiber_?_to_FPGA_ Dir/Cmp
2211 2212 2213	These 4 MGT inputs come from the Receiver MiniPOD. Hub Circuit Diagrams 22 and 23 indicate which of these links need to be inverted in the MGT receiver in order to compensate in a polarity flip in the trace routing.
2214	MGT_FO_CH_??_OUT_Hub_ Dir/Cmp
2215 2216 2217 2218	These are the 74 MGT inputs to the Hub FPGA that carry the FEX readout data and the readout data from the Other Hub. Hub Circuit Diagrams 22 and 23 indicate which of these MGT Receivers need to invert their input signal. These 74 signals are specified by their MGT_Fanout_Channel number.
2219	Combined_Data_from_OTHER_Hub_ Dir/Cmp
2220 2221 2222	This signal is an MGT Input to the Hub FPGA. As indicated in Hub Circuit Diagram 22 the MGT receiver for this signal needs to invert it to compensate for the polarity flip in the Hub circuit board traces.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

2223	This_RODs_Readout_Ctrl_to_GTH_Input_ Dir/Cmp
2224 2225 2226	This is the MGT input for the Readout Control data from the ROD on This Hub. Hub Circuit Diagram 23 indicates that this MGT Receiver should be setup to provide a logic inversion to properly receive this data.
2227 2228 2229 2230	Note that this high bandwidth link from the ROD to the Hub FPGA was provided so that if the ROD ever needs to send a lot Readout Control information to the FEX data sources that we can provide such a data path (i.e. to match the bandwidth of the Combined Data links to the FEX cards).
223122322233	On the other hand if the ROD only needs to send one bit On/Off Readout Control to the Hub FPGA then one of the ROD-Hub TBD spare links could be used to transport that simple type of Readout Control.
2234	MHz_320.64_COPY_?_ Dir/Cmp
2235 2236 2237 2238 2239	These 8 clocks are the MGT Reference clock inputs to the Hub FPGA. They have been spread through out the 20 MGT Quads so that no MGT Transceiver needs to go further than the adjacent Quad to get its reference clock signal. These are AC coupled LHC locked clock signals. All clock polarities have been kept right-side-up to keep clock duty factor uncertainty from turning into clock jitter. See Hub Circuit Diagram 41.
2240	

2241 **21 Appendix 8: Hub-Module IPMC Connections**2242 The Hub Module design includes a large number of connections to the IPMC mezzanine 2243 and These connections are described in following sections of this document and are shall

- 2243 card. These connections are described in following sections of this document and are shown
- in Figure 33, Figure 34 and Figure 35 as well as Figure 36.

21.1 Connections Shown in Figure 33

2245

- The IPMC is connected to the Shelf Manager by the two IPMB buses. The A and B IPMB
- Buses enter the Hub Module on the Zone 1 connector and have a rather long path up to near
- 2249 the top of the IPMC socket. These two I2C buses are routed to keep them away from noise
- sources as much as possible.

2251 Slot Hardware Address:

- The 8 Slot Hardware Address signals allow the Hub Module to know what slot it is in but not
- 2253 what Shelf it is in in the overall L1Calo system it is in. The Slot Hardware Address enters the
- Hub Module on its Zone 1 connector and is routed up to near the top of the IPMC socket.
- Hear next to the IPMC socket are located the 4.99k Ohm pull-up resistors to IPMC 3V3 and
- the 100 nFd noise bypass capacitors.
- A point to note is that both the IPMC and the Hub's FPGA need to know the Slot Hardware
- Address. This is accomplished by also running these 8 signals to a 3V3 Select I/O Bank in
- 2259 the Hub's FPGA. These 8 connections to the Hub's FPGA include 470 Ohm isolation
- 2260 resistors.
- 2261 A potential issue involves IPMC trying to read the Slot Hardware Address lines before the
- FPGA has powered up. In that situation these lines may be held low by the input protection
- 2263 diodes on the FPGA. If that is the case then stronger pull-ups will be used along with higher
- value isolation resistors. These are static signals so rather high value isolation resistors
- should be OK. In any case I don't think that this should require a full buffer for these signals.

2266 Front Panel Switch:

- The Hub Module uses a front panel switch that is permanently mounted to the back side of
- 2268 the PCB. The required sense of this switch is not well explained in the IPMC documentation.
- I believe that it should be "open" when the front panel handle is fully closed and latched.
- The switch wiring is up-side-down from common rational practice, i.e. the switch connects
- to 3V3 and uses a pull-down resistor) but it is connected as the IPMC document
- 2272 recommends.

2273 **21.2 Connections Shown in** Figure 34

- 2274 Front Panel LEDs:
- The IPMC directly drives the 4 ATCA front panel LEDs. The required setup of these LEDs
- 2276 is not explained in the IPMC documentation. I believe that they use normal GPIO pins their
- ARM uProcessor to drive these LEDs. I believe that the user needs to supply the LED series
- resistor but this is never explained. I believe that they are trying to drive the anode of the
- 2279 LED (backwards from rational practice) but this is not explained in their document. On the
- Hub I have connected the LED cathode pin to Ground and put the series resistor between the
- LED anode and the LED pin on the IPMC.
- 2282 Pay Load Enable Signal:
- I believe that the Pay Load Enable signal goes Hi when it wants to turn ON the card. Opto-
- 2284 Coupler isolation is used between the IPMC and the Control pin on the Isolated +12V power
- supply. The cathode of this LED is Grounded and its anode is tied to the IPMC's
- 2286 12V_Enable pin through a 330 Ohm LED series resistor.
- The Opto-Coupler's LED will illuminate when the IPMC's 12V Enable pin goes HI, and will
- 2288 turn ON the Opto-Coupler's transistor and will turn ON the Isolated +12V supply.
- To allow power up the Hub Module in the absence of an IPMC or on the bench in the
- absence of a Shelf Manager for the IPMC to talk to, I have included two jumper locations
- JMP5 and JMP6. Install JMP5 and remove JMP6 for normal operation controlled by the
- 2292 IPMC. Install JMP6 and remove JMP5 to turn on the Hub's Isolated +12V supply all of the
- 2293 time.
- Note that the 12V Enable signal is also routed to the Hub's power supply supervisor circuits.
- This signal is used both as part of the startup sequence for the Hub Module's DCDC
- converters and also during the shutdown sequence. This 12V Enable signal falling is the
- first indication that the Hub is going to power down. Using this signal to shutdown the Hub's
- DCDC converters allows then time to ramp down before the Isolated +12V power bus falls
- below threshold.
- 2300 *Power Entry Module Alarm:*
- The single Alarm pin signal from the ATCA Power Entry Module is connected to the
- 2302 ALARM A pin on the IPMC. This connections includes a 4.99k Ohm pull-up to
- 2303 IPMC 3V3. The Hub Module makes no connection to the IPMC's ALARM B pin.
- 2304 Management I2C Bus:
- The IPMC's Management I2C bus is connected to both the ATCA Power Entry Module and
- 2306 to the FRU-SDR EEPROM. The I2C bus address of the Power Entry Module is set by
- resistor R955 connected between its pin #10 and Ground. The IPMC documentation does not
- say what I2C address it expects the Power Entry Module to appear at. The FRU-SDR
- EEPROM is a ST Micro M24256 that is configured by its Ex pins to appear as 32k words of

23102311	8 bits at I2C address 1010000. The EEPROM's WC pin is tied Low to allow write operations.
2312	21.3 Connections Shown in Figure 35
2313	Power for the IPMC:
2314 2315 2316 2317	3.3 Volt power for the IPMC is supplied by the ATCA Power Entry Module. This power bus is called IPMC_3V3 and is used only by the IPMC and the components immediately associated with it. The IPMC_3V3 bus is energized any time that the Power Entry Module receives backplane 48 Volt power.
2318	IPMC Ethernet Port:
2319 2320 2321 2322 2323 2324	The Hub Module provide the Ethernet Magnetics and RJ45 connector for the IPMC. The current IPMC is a 10/100 speed only device that uses only 2 of the 4 pairs in the standard Ethernet connection. This device requires an old "current" mode type of connection to its magnetics. The Hub Module provides the required environment the existing IPMC and can also be setup via jumpers for a 10/100/1000 speed voltage mode operation that a future IPMC would most likely require.
2325 2326 2327	The Ethernet connection to the IPMC is via a front panel RJ45 connector on the Hub Module. In this way the IPMC can be connected to the DCS Ethernet in a 2 Hub Shelf or operated with a single Ethernet up-link in a one Hub test setup.
2328	Shelf Address:
2329 2330 2331 2332 2333 2334	The IPMC needs to obtain the Shelf Address of the shelf that it finds itself in from the Shelf Manager. Then the IPMC needs to make the Shelf Address available on 8 of its User I/O output pins. These IPMC User I/O pins are connected to pins on the Hub's FPGA through isolation resistors. The point of this is to send the Shelf Address to the Hub FPGA. The Hub FPGA will use a combination of this Self Address and the Slot Hardware Address to generate the Ethernet Address that it will use for IPBus communication.
233523362337	A combination of the Shelf Address and the Slot Hardware Address is also sent to the ROD so that it can also generate the Ethernet Address that its FPGA will use for IPBus communication.
2338	Sensor I2C Bus
2339 2340 2341 2342	The IPMC Senor I2C Bus is used to collect monitoring data about power supply voltages and currents and device temperatures on the ROD and Hub. The IPMC will forward this hardware monitoring information over Ethernet to the Atlas DCS system. The layout of the Sensor I2C Bus is shown in Figure 36 .
2343 2344 2345	As shown in this drawing, three I2C bus buffer/translators are used both to drive the large number of devices on this bus, a combination of ROD and Hub devices, and also to translate between the sections of the Sensor I2C Bus that are 3V3 and the sections that are 1V8 level

7.2.1 WEST VI. 1.1 W. 1.1.2 M. 1.1.2 M.

2346 I2C bus. The buffer/translator part that is used on the Hub is the Linear Technology

LTC4315. If necessary these buffer/ translators can also be used to separate the various

sections of overall Sensor I2C bus under control of the Hub FPGA.

At times other devices will need to initiate and master cycles on the Sensor I2C Bus, e.g. to setup parameters in the GE DCDC power converters on both the ROD and Hub modules. A User I/O input pin on the IPMC to disable its collection sweeps of monitoring data might be useful during the short and infrequent periods when other devices need to initiate and master cycles on this bus.

2354

2347

2349

23502351

2352

2353

I2C Addresses on the Sensor I2C Bus

ROD	Binary	Decimal	TI-GE Octal
FPGA Master	0100 000	32	
LM82 Temp Monitor	0011 001	25	
MDT040 1V0	0011 010	26	32
MDT040 1V05	0011 011	26	33
PDT012 1V2	0011 100	28	34
PDT006 1V8	0011 101	29	35
PDT006 2V5	0011 110	30	36
PDT006 3V3	0011 111	31	37
SI5338 Clk Gen	1110 000	112	
Hub	Binary	Decimal	TI-GE Octal
FPGA Master	0101 001	41	
FPGA Sys Mon Slv	0101 010	42	
MDT040 FPGA CORE	0110 000	48	50
UDT020 MGT AVCC	0110 001	49	51
UDT020 MGT AVTT	0110 010	50	52
PDT012 SWCH 1V2	0110 011	51	53
PDT012 BULK 1V8	0110 100	52	54
UDT020 FAN 1V8	0110 101	53	55
PDT020 BULK 3V3	0110 110	54	56

2355

2356

Note that a number of addresses are reserved:

2357 0:12, 40, 44, 45, 55, 64:68, 72:75, 99, 120:127 all in decimal.

The MSB of the address of the GE/TI converters must be zero.

Decimal means take the whole 7 bit I2C address and represent it as a decimal number.

TI-GE Octal means take the 6 least significant address binary bits and represent them as 2 octal digits, i.e. the setup of the address programming resistors on the TPS40400.

JTAG Master and Slave Ports

The Hub Module make no connection to the IPMC's master or slave JTAG ports.

2364

23622363

2365

2366

2367

Drw: 9

<u> Hub-Module IPMC General</u>

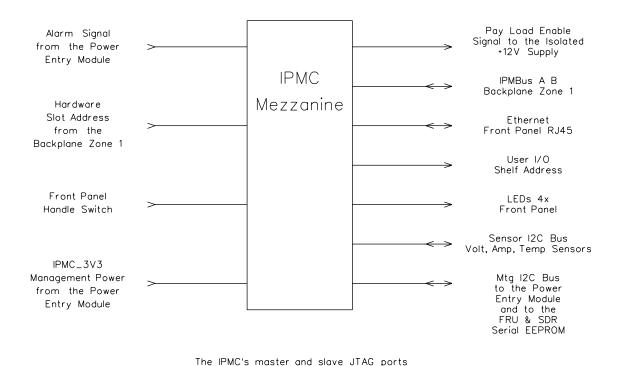


Figure 32: General circuit diagram for Hub IPMC connections.

are not used in the Hub Module design.

Rev. 17-Feb-2016

....

IPMC: HW-Adrs, Handle Switch, IPMBus

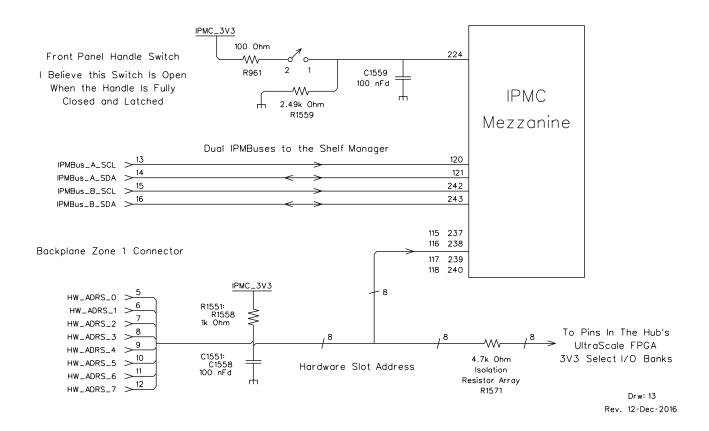
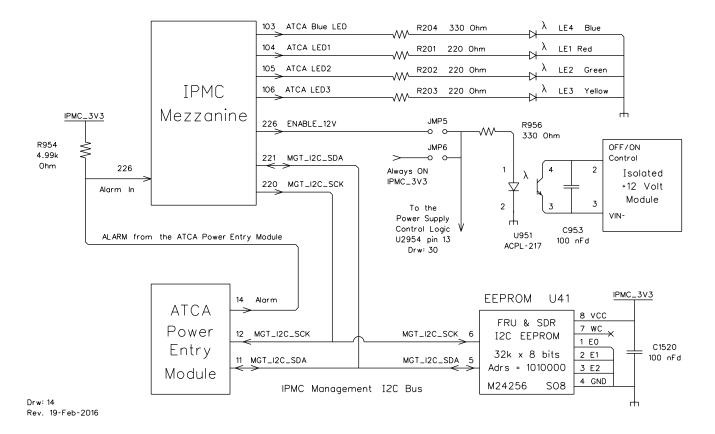
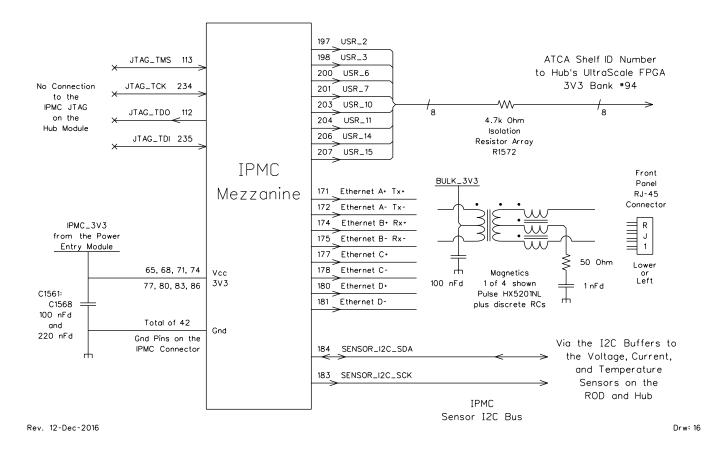
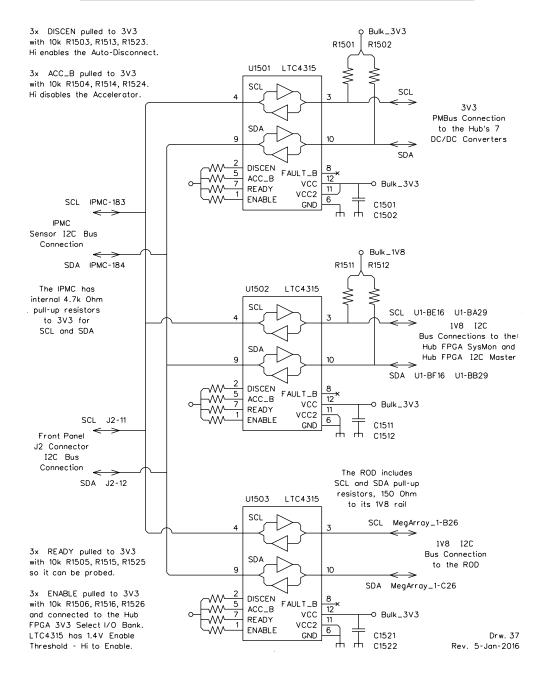


Figure 33: Hub IPMC circuit diagram (1/3)

IPMC: Power Entry Alarm, Mgt. I2C, Payload Enable, LEDs


Figure 34: Hub IPMC circuit diagram (2/3)

IPMC: Vcc-Gnd, Ethernet, User I/O, JTAG, Sensor I2C

Figure 35: Hub IPMC circuit diagram (3/3)

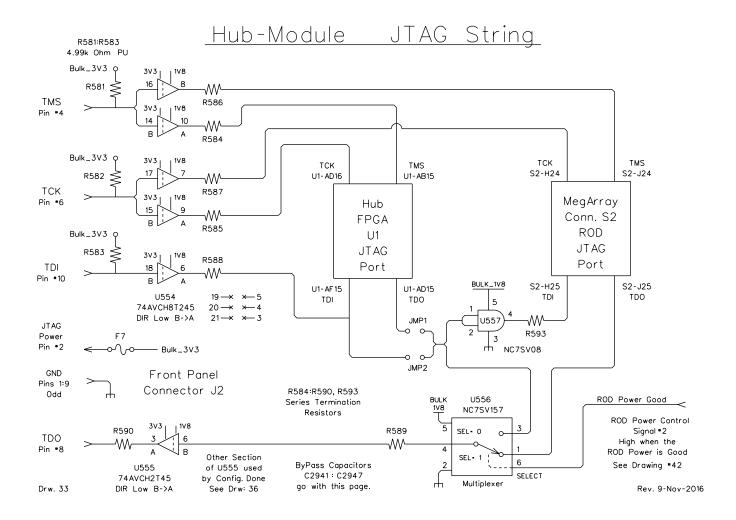
Hub-Module IPMC Sensor I2C Bus

2371

2372

2373

2375


2374

.... F

Figure 36: Hub I2C sensor bus circuit diagram.

10.1

2376	22 Appendix 9: Hub-Module JTAG String
2377 2378	The Hub Module provides a front panel JTAG connection via its J2 "Access Connector". The layout of the Hub Module's JTAG string is shown in Figure 37 .
2379	This JTAG string runs to components on both the ROD and Hub:
2380 2381 2382	 On the ROD this JTAG string connects only to the ROD's FPGA. On the Hub this JTAG string connects only to the Hub's FPGA.
2383	This JTAG string is not connected to either the IPMC's "master" or "slave" JTAG ports.
2384 2385	Jumpers locations are provided so that the JTAG string can be jumpered around the Hub's FPGA if necessary.
2386 2387 2388	An automatic jumper is provided so that this JTAG string jumpers around the ROD when the ROD Power Control signal #2 is not asserted. Power Control #2 is the ROD's "Power Good" signal.
2389 2390 2391	Note that even though the Hub provides this automatic jumper around the ROD for cases when the ROD is either not installed or is installed but not yet powered up, one will probably still need to reset the JTAG string when a new device appears on it or a device drops out.
2392 2393 2394	The JTAG signal level at the Hub's from panel is 3V3 CMOS. The pinout of the Hub front panel JTAG connection is standard for Xilinx signal/ground pair type of JTAG wiring and includes a fused 3V3 reference pin.
2395 2396	The front panel pin-out and a typical JTAG cable setup to plug a JTAG "pod" into the Hub's front panel access connector is shown in Figure 38 .
2397 2398	On the Hub Module the JTAG signals are buffered and translated to 1V8 levels. The JTAG signal level to the ROD is 1.8 Volt.
2399	
2400	
2401	
2402	
2403	
2404	
2405	
2406	
2407	

2410

400

Figure 37: Hub circuit diagram for JTAG string.

2411	23 Appendix 10: Hub-Module Jumpers
2412 2413 2414	This note collects in one place a description of all of the jumpers on the Hub Module except for the jumpers associated with the 3 Switch Chips. The Switch Chip jumper are described in Section 30.
2415 2416 2417	All of these jumpers are typically used to control various functions on the Hub Module that need to be defined during the power up process or that can not be controlled through IPBus registers.
2418	23.1 IPMC Ethernet A/Tx, B/Rx, Mag CT to 3V3, R1405 & R1410
2419 2420 2421 2422 2423 2424 2425	IPMC Ethernet A/Tx B/Rx circuits magnetics primary side center tap connection to the 3.3V bus. The issue is that all of the connections to the Hub's Ethernet Magnetics use modern "voltage mode" connections except for the IPMC. The IPMC uses an old "current mode" National/TI DP83848 Phys chip. This current mode connection to the Magnetics requires that the center taps on the primary side be connected to the 3V3 bus. The normal 100 nFd capacitor from the primary center taps to ground is used for either voltage mode or current mode connections to the Magnetics.
2426	The two jumpers that make these connections are R1405 and R1410.
2427	Default setup:
2428 2429 2430	For the current version of the IPMC with a current mode Phys chip we need to install both of these jumpers to tie the center taps to 3V3. These are Zero_Ohm jumpers. If a newer version of the IPMC is ever made then we may need to remove these jumpers.
2431	• R1405 R1410 Installed
2432	23.2 Virtex FPGA Configuration Mode R1811 through R1816
243324342435	These 6 jumpers control the M2, M1, and M0 Configuration Mode pins on the Virtex FPGA. Normally this FPGA is Configured via Master BPI mode from its dedicated Parallel NOR Flash Memory device U25. The Master BPI mode requires the three M lines to be set: 0,1,0.
2436 2437	Never install both the HI and LOW jumpers for a given signal. Installed jumpers are to be 100 Ohm resistors.
2438	Install R1816 to pull M2 LOW R1815 to pull M2 HI
2439	Install R1814 to pull M1 LOW R1813 to pull M1 HI
2440	Install R1812 to pull M0 LOW R1811 to pull M0 HI
2441	Default setup:
244224432444	Select Master BPI Configuration Mode. Set M2, M1, M0 to: 0, 1, 0. • R1812, R1813, R1816 Installed
	7.2. mm, 7

2445	• R1811, R1814, R1815 NOT installed
2446	23.3 Power On Reset Delay Override R1821 and R1822
2447 2448 2449 2450	These two jumpers control how long the FPGA waits after it has powered up until it begins its Configuration process. This delay allows time for the Parallel NOR Flash Configuration Memory to wake up and get itself organized. The options are Standard Delay or Shorter Delay. These two jumpers control the state of the FPGA's POR_OVERRIDE pin.
2451 2452	Never install both the Standard and Short Delay jumpers at the same time. These are Zero Ohm jumpers.
2453 2454 2455	Install R1821 for a Shorter Delay Install R1822 for a Standard Delay
2456	Default Setup:
2457	We want the Standard Delay.
2458 2459	R1822 InstalledR1821 NOT Installed
2460	23.4 Configuration Bank Voltage Select R1823 and R1824
246124622463	These two jumpers are used to VCCO voltage range of BANK 0 and of the Configuration part of Bank 65 during Configuration. The two ranges are: 3V3/2V5 and 1V8 and under. These jumpers control the state of the FPGA's CFGBVS_0 pin.
2464	Never install both jumpers at the same time.
2465	These are Zero Ohm jumpers.
2466	Install R1823 for 3V3/2V5 voltage range Configuration
2467	Install R1824 for 1V8 and under voltage range Config
2468	Default Setup:
2469	We need the 1V8 and under voltage range Configuration.
24702471	R1824 InstalledR1823 NOT Installed
2472	23.5 Pull-Ups During Configuration R1825 and R1826
2473 2474 2475 2476 2477	These two jumpers are used to control whether or not the FPGA turns on weak pull-ups during its Configuration process. The weak pull-ups are on all of its Select I/O pins and can be used to define a fixed state of these CMOS signals during the Configuration process, i.e. no floating receiver inputs. These two jumpers control the state of the FPGA's PUDC_B_0 pin.

2478	Never install both jumpers at the same time.
2479	These are 100 Ohm jumpers.
2480 2481 2482 2483	1. Install R1825 to turn OFF the weak pull-ups 2. Install R1826 to turn ON the weak pull-ups during Configuration Default Setup:
2484	We select to turn on weak pull-ups during Configuration.
2485 2486	R1826 InstalledR1825 NOT Installed
2487	23.6 VBATT R1827
2488	Jumper R1827 connects the FPGA's VBATT pin to ground.
2489	Default Setup:
2490 2491	We are not using VBATT so we want to connect this FPGA pin to Ground. This is a Zero Ohm jumper.
2492	• R1827 Installed
2493	23.7 JTAG Skip the Hub FPGA JMP1 and JMP2
2494 2495 2496	Jumpers JMP1 and JMP2 control whether or not the JTAG string on the Hub Module includes the Hub's Virtex FPGA. Normally we want to include the Hub's FPGA in the JTAG string. Install either JMP1 or JMP2 - never install both at once.
2497	Install JMP1 (and remove JMP2) to include the
2498	Hub's FPGA in the JTAG string
2499	Install JMP2 (and remove JMP1) to skip over the
2500	Hub's FPGA in the JTAG string
2501	Default Setup:
2502	We want to include the Hub's FPGA in the JTAG string.
2503 2504	JMP1 InstalledJMP2 NOT Installed
2505	23.8 DONE Included in ROD Power Control JMP3 and JMP4
2506 2507	Jumpers JMP3 and JMP4 control whether or not the Hub FPGA Configuration DONE signa is included in the "AND" gate that generates the power enable signal to the ROD mezzanine

card.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

2509 2510	Install JMP3 (and remove JMP4) to INCLUDE the Hub FPGA Configuration DONE signal when generating the power enable signal to the ROD mezzanine.
2511 2512 2513	Install JMP4 (and remove JMP3) to IGNORE the Hub FPGA Configuration DONE signal when generating the power enable signal to the ROD mezzanine. Note that if used JMP4 can be a 1k Ohm resistor.
2514	Default Setup:
2515	We want to include the Hub FPGA Config DONE signal.
2516 2517	JMP3 InstalledJMP4 NOT Installed
2518	23.9 Wait for IPMC Payload Enable Signal JMP5 and JMP6
2519 2520 2521	Jumpers JMP5 and JMP6 control whether or not the Hub card waits for the IPMC Payload Enable signal before starting up its Isolated +12V power supply. JMP5 JMP6 are Zero Ohm jumpers.
2522	Install either JMP5 or JMP6 - never install both at once.
2523 2524	With JMP5 installed the Payload Enable signal from the IPMC is connected to the LED in the opto-coupler that turns on the Isolated +12V power supply.
2525 2526 2527 2528	With JMP6 installed the IPMC's Payload Enable signal is disconnected. Instead the constant auxiliary 3V3 supply from the ATCA Power Entry module is used to always enable the Isolated +12V power supply and to provide the power enable signal to the Hub power supply control logic via U2954.
2529	Default Setup:
2530 2531	We want to use the IPMC to Enable the Isolated +12V power supply and thus control the startup of the Hub Module.
2532 2533	JMP5 InstalledJMP6 NOT Installed
2534	23.10 Hub Phys Chip Jumpers R1901:R1914, R1951:R1964
2535 2536 2537	The Hub Module has two KSZ9031RNX Phys chips. There are 14 jumpers associated with each of these Phys chips. These jumpers are resistors that bias a pin in one direction or the other and this value is read when the Phys chip first powers up or is reset.
2538 2539 2540 2541 2542	The KSZ9031RNX has 9 pins (called "Strapping Options") that are read in this way at power up. Because of space limitations and because there is an obvious why that the Hub Module wants some of these Strapping Options set, 4 of them have only one jumper to pull that pin in the direction that is obviously needed for rational operation of the Hub Module.
2543 2544	The following is a list of all of the jumpers that are associated with each Phys chip on the Hub Module.
2545	

Option	Pull-Up	Pull-Down
PHYAD0	R1901	R1902
PHYAD1	R1903	R1904
PHYAD2	R1905	R1906
Mode_0	R1911	R1912
Mode_1	R1909	R1910
Mode_2	R1908	
Mode_3	R1907	
CLK125_EN	R1913	
LED_Mode	R1914	

2547

- This table shows the Reference Designators for Phys chip U21. Phys chips U22 has the same
- setup but its Reference Designators are higher by 50.
- In all cases, if installed, the pull-up resistor should be 10k Ohms and the pull-down resistor
- should be 1k Ohm.
- 2552 The PHYADx jumpers set the address of the Management Interface Port on the
- 2553 KSZ9031RNX. The Management Port PHYAD bits 3 and 4 are internally always set to 0,0.
- To set one of these three PHYAD bits HI install the associated pull-up resistor. To set one
- low install the pull-down resistor.
- 2556 The Hub Module provides easy control of only the Mode 0 and Mode 1 lines. This provides
- 2557 the following 4 options for the Phys chip (Mode bits listed Mode_3, ..., Mode_0).

2558	1100	RGMII 1000 Base-T fullduplex only
2559	1101	RGMII 1000 Base-T full or half duplex
2560	1110	RGMII 10/100/100 all but 1000 half duplex
2561	1111	RGMII 10/100/1000 full or half duplex

2562

2571

- 2563 CLK125_EN is pulled up by R1913 thus enabling the Phys chip to send its 125 MHz clock
- back to the MAC in the Hub's FPGA.
- LED_Mode is pulled up by R1914 thus setting up the Phys chip for Single LED mode.
- 2566 Default Setup:
- Note that Phys chips U21 and U22 are setup with the same Management Port PHYAD which is OK because they each have their own private Management Power connection in the Hub's FPGA.
- 2570 PHYADx:
 - Set the 3 controllable PHYAD lines Low.
 - Install 1k Ohm in R1902, R1904, R1906.
- 2573 o Leave R1901, R1903, R1905 open.
- 2574 Mode:
- 2575 o Set all Mode lines Hi.
- 2576 o Install 10k Ohm in R1907 R1908 R1909 and R1911.
- o Leave R1910 and R1912 open.

- 2578 *CLK125 EN*:
- 2579 Enable the 125 MHz Clock.
- o Install a 10k Ohm resistor in R1913.
- *LED_Mode*:
- 2582 Enable Single LED Mode.
- 2583 Install a 10k Ohm resistor in R1914.

2584 23.11 DCDC Converter with LC Output Filter Feedback Jumpers

2585 3 of the DCDC Converters on the Hub Module include an LC Output Filter to reduce the

switching noise that is present in their output voltage. These 3 converters include jumpers to

provide some options in how their control loop feedback is setup. These 3 converters and

2588 their jumpers are:

2589

2587

DCDC-2	JMP1051	JMP1052	JMP1053	JMP1054	
MGT_AVCC					
DCDC-3	JMP1101	JMP1102	JMP1103	JMP1104	
MGT_AVTT					
DCDC-7	JMP1301	JMP1302	JMP1303	JMP1304	
FAN 1V8					

2590

2599

- 2591 Jumpers JMP1051, JMP1052 (and JMP1101, JMP1102 and JMP1301, JMP1302) control
- 2592 whether the V SENSE + feedback is taken before or after the output filter inductor.
- JMP1051 selects before the output inductor and JMP1052 selects after the inductor.
- 2594 Jumpers JMP1053, JMP1054 (and JMP1103, JMP1104 and JMP1303, JMP1304) control
- whether the the RC coupled feedback is taken before or after the output filter inductor.
- JMP1053 selects before the output inductor and JMP1054 selects after the inductor.
- During initial pro-type manufacturing none of these 4 jumpers will be installed by the
- assembly company.

23.12 ATCA "Shelf Ground" to "Logic Ground" Connection R959

- 2600 ATCA Specification 4.96 requires a jumper that can optionally macke a connection between
- 2601 the ATCA Shelf Ground and the ATCA Logic Ground. On the Hub Module this optional
- link between these ground systems is made by R959.
- 2603 Install a zero Ohm jumper at R959 to connect the Shelf and Logic Grounds.
- Note that one could also use a high value resistor so that there are not significant currents
- or loops between these two ground systems will still providing a path to remove static
- 2606 charge from the card.
- 2607 Default Setup:
- A 1 Meg Ohm resistor will be installed in location R959.

2609	23.13 Jumper on the Sensor I2C Bus EEPROM
2610	U1541 is a soic_8 location that can hold a M24256 EEPROM that appears on the Hub's
2611	Sensor I2C bus. There are 4 jumpers associated with the operation of the EEPROM.
2612 2613 2614 2615	 JMP1541 controls the chip's E0 Enable pin (aka Address Select) JMP1542 controls the chip's E1 Enable pin (aka Address Select) JMP1543 controls the chip's E2 Enable pin (aka Address Select) Zero Ohm jumper install> Enable pin is Hi
2616	Open> Enable pin is Low
2617	JMP1544 controls the chip's WC_B pin
2618	Zero Ohm jumper install> WC_B pin is Hi
2619	> Write operations are Disabled
2620	Open> WC_B pin is Low
2621	> Write operations are Enabled
2622	
2623	Default Setup: Neither U1541 or any of the jumpers JMP1541:JMP1544 are installed.
2624	

2625 **24 Appendix 11: Hub-Module Front Panel LEDs**

- 2626 This note collects the information about the LED displays that are used on the front panel of
- the Hub Module. The Hub Module includes front panel LEDs to indicate the following:
- Four that are required by the ATCA format and are managed by the IPMC mezzanine
- o Mandatory LED_1
- 2630 o Optional LED_2
 - Optional LED_3
- 2632 o Mandatory Blue

2631

26342635

26392640

2643

2644

2647

- Two general health/rationality LEDs
 - o Has the IPMC Enabled the Pay Load Power?
 - o Are all of the Hub's DCDC Converters running OK?
- Five LEDs for the ROD Mezzanine
- Three LEDs for the Hub Module that are managed by the Hub's Virtex FPGA.
- Six RJ-45 Ethernet connectors with 2 LEDs each
 - o RJ1 Upper/Right for This Hub's IPMC
 - o RJ1 Lower/Left for This Hub;s ROD Mezzanine FPGA
- 2641 o RJ2 Upper/Right for This Hub's Switch Chip "C"
- 2642 RJ2 Lower/Left for This Hub's Switch Chip "A"
 - o RJ3 Upper/Right for This Hub's Switch Chip "B"
 - o RJ3 Lower/Left for This Hub's Switch Chip "B"
- Two LEDs each for 20 other Ethernet connections
- 2646 Switch Ports to the FEXs
 - o 1 This Hub's Switch Port to the Other Hub's FPGA
- 2648 o 1 This Hub's Switch Port to This Hub's FPGA
- 2649 o 1 This Hub's FPGA Phys to the Other Hub's Switch
- 2650 o 1 This Hub's FPGA Phys to This Hub's Switch
- 2651 \circ 1 Switch Chip "A" side of A <--> B connection
- 2652 \circ 1 Switch Chip "B" side of A <--> B connection
- 2653 \circ 1 Switch Chip "B" side of B < --> C connection
- 2654 \circ 1 Switch Chip "C" side of B < --> C connection
- 2656 This is a total of 66 front panel LEDs. An illustration of the layout of these LEDs on the
- 2657 front panel is shown in **Figure 38**, **Figure 39** and **Figure 40**.
- 2658 The 4 ATCA LEDs use the 3mm Mentor 1271.100x "single column" light pipes to reach the
- 2659 front panel.
- The 2 General Health LEDs also use the same 3mm Mentor 1271.100x light pipes.
- The 5 ROD LEDs, and the 3 Hub LEDs, and the 40 "Other Ethernet Connections" LEDs use
- 2662 the 2mm Mentor 1296.10x4 light pipe array. This is a 4 column light pipe array. They are
- layed out in a 4x2 array and a 4x10 array.
- The Hub Module uses SMD LEDs on side 1 of the PCB and light pipe assemblies to route
- 2665 them to the front panel. This design is driven by the need to place the required ATCA LEDs
- 2666 in specific locations and to use very little space along the West edge of the card for these
- 2667 LEDs.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

2668 2669 2670 2671	The LEDs are in two categories: single column and 4 column. Note that in this document the words row and column refer to viewing the Hub Module from the front as it normally looks when plugged into a crate, i.e. columns are vertical along the long axis of the front panel.
2672 2673 2674	The single column setup has a 3.0 mm diameter light pipe that is centered 5.08 mm to the right of the side 1 surface of the PCB. This uses a Mentor 1271.100x light pipe and an Osram LED:
2675	LxT673 P-LLC-2 3.0x3.4 package Vf Blue typ 2.9/3.1 at 5/10 mA
2676	Hyper TOPLED Blue, Green Vf Grn typ 2.8/3.0 at 5/10 mA
2677	2006
2678	LxT676 P-LLC-2 3.0x3.4 package Vf Red typ 1.9/1.95 at 5/10 mA
2679	Hyper TOPLED Red, Yellow Vf Yel typ 1.9/1.95 at 5/10 mA
2680	2007
2681	
2682 2683	Many other Osram parts in the 2-PLCC Advanced Power TOPLEDs are available.
2684 2685 2686 2687 2688	The 4 column setup has 1.95 mm Mentor 1296.10x4 light pipes. The first light pipe is centered 2.54 mm to the right of the side 1 surface of the PCB. The next light pipe is centered 2.54 mm to the right of the first one and so on. Center to Center the rows are spaced by 5.08 mm. This provides some limited space for labels. This 4 column setup with the Mentor 1296.10x4 light pipe array uses an Osram LED in the 0805 case size package:
2689	LG R971 green Vf about 2.0 to 2.1 at 5 to 10 mA
2690	LS R976 super red Vf about 1.9 at 5 to 10 mA
2691	LY R976 yellow Vf about 1.9 at 5 to 10 mA
2692	
2693	Many other 0805 case size types are available from Osram for example: LH R974 hyper red.
2694 2695 2696 2697 2698	Ed needs a blue LEDs in this 4 column setup for the ROD display. Osram does not seem to make one in the correct package to work with the Mentor 1296.10x4 light pipes. The problem is to find a quality blue LED in the 0805 package size with the right optics to put light into the light pipe and the same suggested PCB layout pattern. So far the Avago HSMR-C170 looks OK except for the PCB layout pattern.

24.1 LEDs Driven by the IPMC Mezzanine

2700 These are the 4 ATCA Status LEDs that are driven by the IPMC mezzanine card. I believe

that the IPMC mezzanine directly drives the anodes of these LEDs through series resistors

and that the cathodes of these LEDs are just tied to ground. See also the 2 IPMC Ethernet

2703 LEDs that are listed below under "not driven".

LED Ref Desgntr Display		Source -Pin	
LE1	ATCA Mandatory Red LED_1	IPMC Mezz Socket 104	
LE2	ATCA Optional Green LED_2	IPMC Mezz Socket 105	
LE3	ATCA Optional Red LED_3	IPMC Mezz Socket 106	
LE4	ATCA Mandatory Blue	IPMC Mezz Socket 103	

2704

2705

2707

2699

24.2 LEDs Driven by the Switch Chips

2706 The switch chips used in the Hub module can drive up to 4 LEDs per ethernet port. Control

registers in these chips allow you to select what types of information about a given ethernet

port are displayed on its LEDs.

2709 The Hub module provides 2 LEDs per switch chip ethernet port. By default one of these

LEDs shows if the port is operating at 10/100 vs 1000 speed and the other LED shows if a

2711 connection exists on that port and when a connection exists whether or not it is currently

2712 moving data.

2713 In the following table for LE5:LE40, the Speed LED is Green and the Link Activity LED is

2714 Yellow.

2715 In the section of the table that describes the front panel RJ-45 connectors recall that these are

2716 TE Connectivity part number 1888653-4 "condo" connectors. The -4 indicates the LED

2717 colors for each socket:

2718	TE Part No.	LED_1	LED_2	LED_3	LED_4
2719					
2720	1888653-4	Green	Green	Yellow	Yellow

2721

Note, if we change which switch port is connected to which Base Interface target then we

should also change the connections to these LEDs to keep them in rational BI Channel order.

2724 Recall which 53128 Switch Chip LED Pin is used to indicate what information about a given

2725 53128 Switch Chip Port:

	Link Speed			Link Active	
Port	Pin Num	Pin Name	Port	Pin Num	Pin Name

7	168	LEDP0	7	170	LEDP1
6	174	LEDP4	6	175	LEDP5
5	178	LEDP8	5	179	LEDP9
4	184	LEDP12	4	185	LEDP13
3	189	LEDP16	3	190	LEDP17
2	194	LEDP20	2	195	LEDP21
1	198	LEDP24	1	199	LEDP25
0	256	LEDP28	0	1	LEDP29

- These are the switch chip port numbers as defined in the 53128 documentation.
- 2729 The switch chip LEDs are arranged on the Hub module front panel in the following way:

	1 &	1	0)
LED Ref	Display	Source	Pin
Desgntr	1 3		
LE5	BI "Channel 2" Speed Grn	Sw Chip B Port 5	LED8-178
LE6	BI "Channel 2" Lnk-Act Yel	Sw Chip B Port 5	LED9-179
LE7	BI Channel 3 Speed Grn	Sw Chip C Port 5	LED8-178
LE8	BI Channel 3 Lnk-Act Yel	Sw Chip C Port 5	LED9-179
LE9	BI Channel 4 Speed Grm	Sw Chip C Port 4	LED12-184
LE10	BI Channel 4 Lnk-Act Yel	Sw Chip C Port 4	LED13-185
LE11	BI Channel 5 Speed Grn	Sw Chip C Port 3	LED16-189
LE12	BI Channel 5 Lnk-Act Yel	Sw Chip C Port 3	LED17-190
LE13	BI Channel 6 Speed Grn	Sw Chip C Port 2	LED20-194
LE14	BI Channel 6 Lnk-Act Yel	Sw Chip C Port 2	LED21-195
LE15	BI Channel 7 Speed Grn	Sw Chip C Port 1	LED24-198
LE16	BI Channel 7 Lnk-Act Yel	Sw Chip C Port 1	LED25-199
LE17	BI Channel 8 Speed Grn	Sw Chip C Port 0	LED28-256
LE18	BI Channel 8 Lnk-Act Yel	Sw Chip C Port 0	LED29-1
LE19	BI Channel 9 Speed Grn	Sw Chip A Port 5	LED8-178
LE20	BI Channel 9 Lnk-Act Yel	Sw Chip A Port 5	LED9-179
LE21	BI Channel 10 Speed Grn	Sw Chip A Port 4	LED12-184
LE22	BI Channel 10 Lnk-Act Yel	Sw Chip A Port 4	LED13-185
LE23	BI Channel 11 Speed Grn	Sw Chip A Port 3	LED16-189
LE24	BI Channel 11 Lnk-Act Yel	Sw Chip A Port 3	LED17-190
LE25	BI Channel 12 Speed Grn	Sw Chip A Port 2	LED20-194
LE26	BI Channel 12 Lnk-Act Yel	Sw Chip A Port 2	LED21-195
LE27	BI Channel 13 Speed Grn	Sw Chip A Port 1	LED24-198
LE28	BI Channel 13 Lnk-Act Yel	Sw Chip A Port 1	LED25-199
LE29	BI Channel 14 Speed Grn	Sw Chip A Port 0	LED28-256
LE30	BI Channel 14 Lnk-Act Yel	Sw Chip A Port 0	LED29-1
LE31	SW to Hub FPGA Speed Grn	Sw Chip B Port 4	LED12-184
LE32	Sw to Hub FPGA Lnk-Act Yel	Sw Chip B Port 4	LED13-185
LE33	Sw B to Sw A Speed Grn	Sw Chip B Port 2	LED20-194
LE34	Sw B to Sw A Lnk-Act Yel	Sw Chip B Port 2	LED21-195
LE35	Sw B to Sw C Speed Grn	Sw Chip B Port 3	LED16-189
LE36	Sw B to Sw C Lnk-Act Yel	Sw Chip B Port 3	LED17-190
LE37	Sw A to Sw B Speed Grn	Sw Chip A Port 7	LED0-168
LE38	Sw A to Sw B Lnk-Act Yel	Sw Chip A Port 7	LED1-170
LE39	Sw C to Sw B Speed Grn	Sw Chip C Port 7	LED0-168
LE40	Sw C to Sw B Lnk-Act Yel	Sw Chip C Port 7	LED1-170

	And now the RJ-45 LEDs driven by	the Switch Chips	
LED Ref	Display	Source	Pin
Desgntr			
LED_59	RJ2-LED2 Grn	RJ2 Upper or Right	LED4-174
		Sw Chip C Port 6	
LED_60	RJ2-LED3 Yel	Sw Chip C Port 6	LED5-175
LED 61	RJ2-LED1 Grn	RJ2 Lower or Left	LED4-174
		Sw Chip A Port 6	
LED_62	RJ2-LED4 Yel	Sw Chip A Port 6	LED5-175
LED 63	RJ3-LED2 Grn	RJ3 Upper or Right	LED0-168
		Sw Chip B Port 7	
LED 64	RJ3-LED3 Yel	Sw Chip B Port 7	LED1-170
LED 65	RJ3-LED1 Grn	RJ3 Lower or Left	LED4-174
		Sw Chip B Port 6	
LED_66	RJ3-LED4 Yel	Sw Chip B Port 6	LED5-175

2731

24.3 LEDs Driven by the Phys Chips on the Hub Module

The two KSZ9031RNX Phys chips on the Hub Module each drive two LEDs. These LEDs are not directly driven by the Phys chips but rather they are driven through a buffer. The Hub's Phys chip LEDs are arranged on the front panel in the following way:

LED Ref Desgntr	Display	Source	Pin
LE41	Hub FPGA to Sw Link Grn	Phys U22	LED2-15
LE42	Hub FPGA to Sw Active Yel	Phys U22	LED1-17
LE43	Hub FPGA to BI Ch 2 Link Grn	Phys U21	LED2-15
LE44	Hub FPGA to BI Ch 2 Active Yel	Phys U21	LED1-17

2735

2736

24.4 LEDs Driven by the ROD Mezzanine Card

- The ROD mezzanine controls two types of LEDs on the Hub Module. It controls 5 LEDs that indicate the "Status" of the ROD and it controls two LEDs that indicate the operation of the ROD's Ethernet Phys chip which is also a KSZ9031RNX.
- In all 7 cases the Hub module provides buffering for the 1V8 logic control signals that come from the ROD for these LEDs. In all 7 cases the LED is illuminated when the control signal from the ROD is Low.
- Note that an 8th control signal from the ROD is used to set the state of the front panel Lemo connector on the Hub. The Hub provides an open collector driver for this Lemo. When this control signal from the ROD is Hi then this open collector Lemo driver pulls down.

LED Ref Desgntr	Display	Source	Pin
LED_57	RJ1-LED1 RJ1 Lower or Left Lnk Grn	MegArray S1	B1
LED_58	RJ1-LED4 RJ1 Lower or Left Act Yel	MegArray S1	B2
LED_45	Prog_Done_LED_B Green	MegArray S1	В3

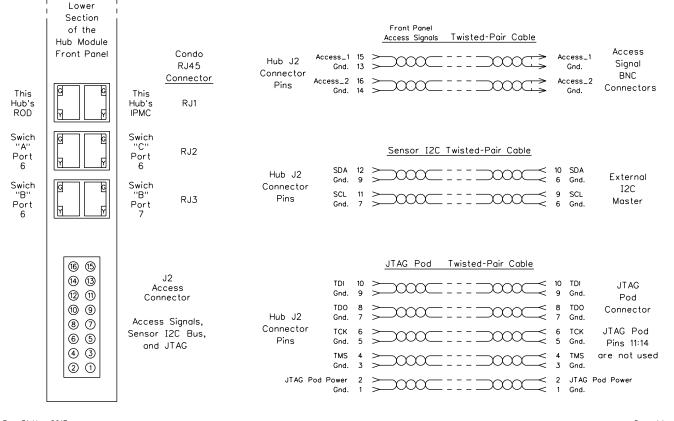
J1	LEMO not an LED	MegArray S1	B4
LED_46	Pwr_Good_LED_B Green	MegArray S1	C1
LED 47	SMB Alert LED B RED	MegArray S1	C2
LED 48	GP LED B Blue	MegArray S1	C3
LED 49	Run LED B Blue	MegArray S1	C4

	ROD	MegArray Conn Specification	
MegArray	Old	New	LED
S1 Pin#	Name	Current Name	Color
B1	LED-0	Phy_LED2_B	Green
B2	LED-Y	Phy_LED1_B	Yellow
В3	LED-B	Prog_Done_LED_B	Green
B4	LEMO-0	LEMO not an LED	
C1	LED-1	Pwr_Good_LED_B	Green
C2	LED-R	SMB_Alert_LED_B	RED
C3	LED-G	GP_LED_B	Blue
C4	LEMO-1	Run_LED_B	Blue

24.5 LEDs Driven by the Hub Module's FPGA

The Hub Module's FPGA directly controls 3 Front Panel LEDs using 3 of its Select I/O signals. The Hub provides buffers between its FPGA pins and these LEDs. The Select I/O signals that are used to control these 3 LEDs are listed in Section 19.

LED Ref Desgntr	Display	Source	Pin
LE50	Hub FPGA LED Grn	Hub FPGA Select I/O	
LE51	Hub FPGA LED Yel	Hub FPGA Select I/O	
LE52	Hub FPGA LED Red	Hub FPGA Select I/O	


24.6 LEDs NOT Driven by the IPMC Card's Ethernet Connection

Besides the 4 "ATCA Status" LEDs listed above, the IPMC also could have driven LEDs to indicate the operation of its Ethernet circuit. The IPMC uses a National/TI DP83848 Phys chip which does directly drive LED but these pins were not routed out out on the IPMC to its edge connector. So as far as I know we cannot directly see the status of the ethernet connection to the IPMC mezzanine card. There is still the issue of what to do with these LEDs in the Hub's RJ-45 Ethernet connector for the IPMC.

LED Ref Desgntr	Display	Source	Pin
LED_55	RJ1-LED2 RJ1 Upper or Right Green		
LED 56	RJ1-LED3 RJ1 Upper or Right Yellow		

24.7 Two Rationality LEDs 2763 There are two front panel LEDs that show the general health of the Hub Module. These two 2764 2765 LEDs indicate to the user whether or not it is "rational" to consult the other LEDs on the 2766 card. One of these LEDs (LED 53) shows whether or not the Isolated +12V supply is running. 2767 The other LED (LED 54) shows whether or not all of the power buses on the Hub 2768 2769 Module are operating within tolerance. 2770 2771 The cathode of the Iso +12V LED is connected to ground. The anode of this LED is connected through a series resistor to the Iso 12V bus. This is LED 53. 2772 2773 The anode of the All Power OK LED is tied through a series resistor to the BULK 3V3 bus. The cathode of this LED is tied to the source of the low active All Power Is OK signal, i.e. 2774 U2961 pin 4. This is LED 54. 2775

Hub Module Front Panel Connectors and Cables

Rev. 31-May-2017 Drw: 44

Figure 38: Illustration of Hub front-panel connections.

<u>Hub - Front Panel Resources for ROD</u>

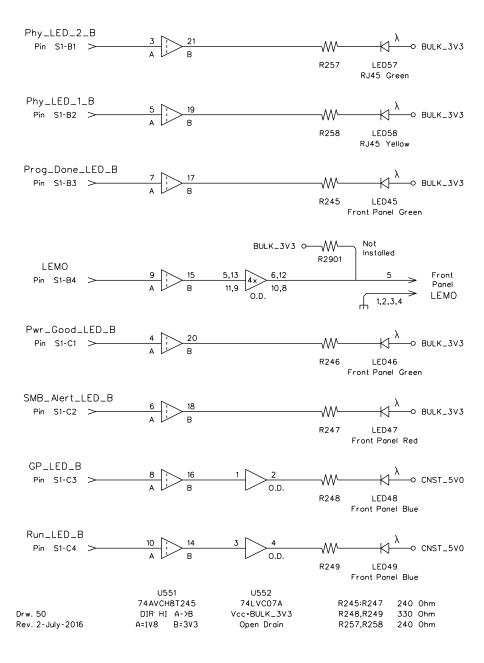
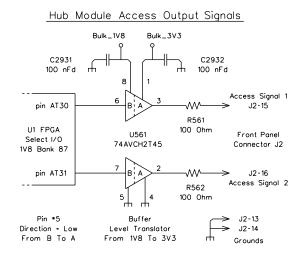
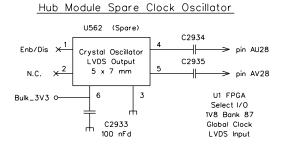




Figure 39: Hub front-panel resources for the ROD mezzanine.

Front Panel Access Signals and Spare Gates

<u>Hub Module Spare Gates</u>

U554 Translator pin 19 ln pin 5 out U554 Translator pin 20 ln pin 4 out U554 Translator pin 21 ln pin 3 out

Rev. 12-Nov-2016

Figure 40: Hub front-panel access signals and spare gates.

2778

Drw: 53

10.1 7777771111 77 111 17 17 17 17

25 Appendix 12: Hub-Module MiniPOD Connections

2780 The Hub Module includes 2 MiniPODs: 1 Transmitter MiniPOD and 1 Receiver MiniPOD.

Details about the connections to a Hub Module MiniPOD are shown in **Figure 41**.

2782 Only 8 of the 12 channels in the Transmitter MiniPOD are connected to MGT transmitter

outputs on the Hub's FPGA. MiniPOD fibers: 3, 5, 7, 9 are not connected to the FPGA.

The 8 attached MiniPOD fibers are connected to MGT outpu ports in the following order:

Transmitter MiniPOD Fiber	MGT Quad and Port
0	227 Tx2
1	227 Tx0
2	226 Tx2
4	226 Tx0
6	225 Tx2
8	225 Tx0
10	224 Tx2
11	224 Tx0

2785

2779

2784

2786 These Quads are GTH type MGT transceivers in SLR 0 of the FPGA. These connections are

listed in Section 18 and are shown in **Figure 30**.

Only 4 channels from the Receiver MiniPOD are connected to MGT receivers in the Hub;s

2789 FPGA. The connected Receiver MiniPOD fibers are shown in the following table:

Receiver MiniPOD Fiber	MGT Quad and Port
2	224 Rx2
4	224 Rx1
6	224 Rx2
8	124 Rx0

2790

Quad 224 is of the GTH type and Quad 124 is of the GTY type. Both of these Quads are in

SLR 0 of the FPGA. These MiniPOD connections are capacitor coupled using 100 nFd 0201

size coupling capacitors. The trace routing from fiber 8 to Quad 124 Port Rx0 is particularly

2794 complicated and may not support high-speed operation.

2795 The 8 remaining Receiver MiniPOD fibers have no connection on the Hub's FPGA. Recall

2796 that one of these fibers is used to receiver the Optical Felix TTC clock and data signal. These

connections are listed in Section 18 and are shown in Figure 29 and Figure 30.

2798 Monitoring and control of the two MiniPODs is provided by a separate "TWB" from the

Hub's FPGA to each MiniPOD. Both MiniPODs have their TWB Address set at zero. Each

2800 MiniPOD has its own Interrupt B and Reset B lines connecting it to the Hub FPGA. Pull-up

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

2801 2802	resistors are provided for the TWB SDA and SCL lines as well as for the interrupt and reset lines so the Hub FPGA does not need to provide the pull up current.
2803 2804	Filtered 2.5 Volt and 3.3 Volt power is separately supplied to each MiniPOD from the bulk supplies on individual isolated power fills.
2805 2806 2807	The design of the heat sinks for these MiniPODs must take into consideration: the ATCA height limitation, the ROD mezzanine air flow requirements, and the near by Hub FPGA heat sink.
2808 2809 2810	The two ribbons of optical fibers for these MiniPODs will uses the backplane optical MPO connectors to exit the Hub via its Rear Transition Module. Part numbers for 50 cm single 12-fiber ribbon Prizm to MPO cables are:
2811	Molex 106267-2011 for the male MPO connector and
2812	Molex 106267-2001 for the female MPO connector
2813	
2814	

Transmitter and Receiver MiniPOD Modules

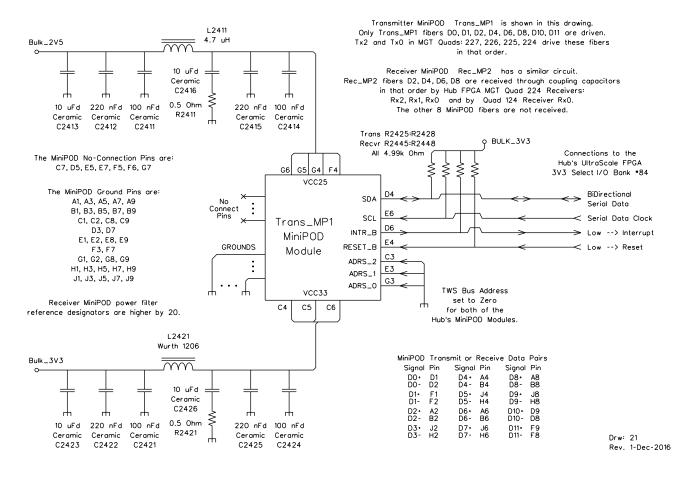


Figure 41: Hub MiniPOD module circuit digrams.

26 Appendix 13: Non-MGT Rod-Hub Connections 2816 2817 The intent of this note is to describe all of the non-MGT ROD-Hub connection signals. The 2818 Meg-Array pinout of these signals is presented in Ed's document, "ROD Hub Pinout" Rev. 2819 1.4 from 6-May-2015. 26.1 JTAG 2820 2821 The Hub Module provides a front panel "Access" connector". One of the functions available 2822 on this J2 access connector is a JTAG string that runs to components on both the ROD and 2823 Hub. 2824 On the ROD this JTAG string connects only to the ROD's FPGA. 2825 On the Hub this JTAG string connects only to the Hub's FPGA. 2826 This JTAG string is not connected to either the IPMC's "Master" or "Slave" JTAG ports. 2827 Manually installed jumpers are provided so that the JTAG string can be jumpered around the Hub's FPGA. An automatic jumper is provided so that this JTAG string jumpers around the 2828 2829 ROD when the ROD Power Good signal is not asserted. The JTAG signal level at the Hub's front panel is 3V3 CMOS. The front panel pinout is 2830 standard for Xilinx signal/ground pair type of JTAG wiring and includes a fused 3V3 2831 2832 reference. On the Hub Module the JTAG signals are buffered and translated to 1V8 levels. The JTAG 2833 2834 signal level to the ROD is 1.8 Volt. 2835 The Hub Module JTAG String is shown in **Figure 37**. 26.2 Sensor I2C Bus 2836 The I2C Bus connection to the ROD is normally mastered by the IPMC's Sensor I2C port. 2837 The normal function of the Sensor I2C bus is to allow collection of monitoring information 2838 2839 (e.g. power supply voltages and currents and device temperatures). The IPMC initiates and masters the Sensor I2C Bus cycles that collect this monitoring data. The Sensor I2C bus 2840 from the IPMC is shared by the ROD and the Hub and is used to collect the Atlas DCS 2841 monitoring information from both of them. 2842 2843 At times either the Hub or ROD FPGA may need to initiate and master a Sensor I2C Bus cycle for example to set a parameter in one of their GE power supplies. Thus not only 2844 2845 sensors and GE power modules are connected to the Sensor I2C Bus but also both the Hub and ROD FPGAs make a master connection to this bus. In addition the Hub's FPGA makes a 2846 2847 second slave only connection to the Sensor I2C Bus that provides a port to the System Monitor in the Hub's FPGA. 2848

The I2C addresses are shared between the Hub and ROD on this IPMC Sensor I2C Bus.

Hub Spec v1 1.docx of 13/03/2018

- Some parts of the overall Sensor I2C bus are 3V3 level and some parts are 1V8 level. The
- 2851 Hub Module provides the required translation and uses buffered translator chips, to provide
- the required drive for the large number of devices that are connected to the Sensor I2C Bus.
- These translators can have their ports enabled or disables under control of the Hub's FPGA.
- The Hub's Sensor I2C Bus is shown in **Figure 36**.
- Note that the Sensor I2C Bus can also be accessed from the front panel of the Hub Module
- via its J2 "Access Connector".
- The ROD-Hub Sensor I2C bus has the potential problem that when a section of it is either
- powered off or has a power supply problem, that the the ESD diodes in the devices in that
- section of the bus may clamp the I2C signals to ground. Comments on this potential
- 2860 problem:
- We really only need monitoring information when the ROD Hub are up and running so a brief lack of monitoring data at the start of a normal power up is probably OK.
- It would be very useful the IPMC could report in its monitoring data when the Sensor I2C cycles are not working vs just sending junk data or no data to the DCS monitoring system.
- The Linear Technology I2C bus translators/buffers may automatically isolate stuck sections of the Sensor I2C bus and allow good monitoring data to be read from the sections of the bus that are fully powered up.
- It may be useful to run the Ready signals from the I2C bus translators/buffers back to the Hub FPGA so that it can see if a section of the Sensor I2C bus is stuck.

26.3 ROD Front Panel Signals

- The ROD provides a total of 8 front panel control signals. The net-names of these signals,
- both old and new netnames are shown in the table below.
- **Figure 39** shows the resources on the Hub that are connected to these 8 front panel control signals from the ROD.
- Two of these front panel signals control the two LEDs in the RJ45 connector for the ROD.
- One of these front panel signals is the input to the LEMO driver and thus controls the output of the ROD's LEMO connector on the Hub's front panel.
- Five of these front panel signals control five of the LEDs on the Hub's front panel.
- All 7 of the front panel control signals from the ROD that control LEDs are Low active 1V8 logic signals. When these signals are voltage Low the LED illuminates.
- The one front panel control signal from the ROD that controls the LEMO output is also a 1V8 logic signal. When this control signal is voltage Low the open drain LEMO output pulls Low.
- All of these front panel signals from the ROD are 1V8 CMOS level, i.e. they do not directly drive the LEDs.
- Front panel signal table:

2889

2890

MegArray	Old	New	LED
S1 Pin#	Name	Current Name	Color
B1	LED-0	Phy_LED2_B	Green
B2	LED-Y	Phy_LED1_B	Yellow
В3	LED-B	Prog_Done_LED_B	Green
B4	LEMO-0	LEMO	
C1	LED-1	Pwr_Good_LED_B	Green
C2	LED-R	SMB_Alert_LED_B	RED
C3	LED-G	GP_LED_B	Blue
C4	LEMO-1	Run_LED_B	Blue

2892

- GP_LED_B is a General Purpose LED which can be used by firmware to signal some condition (TBD)
 - "The Run_LED_B is the "Up and Running" signal that you had proposed a while back. It indicates to the Hub and to the Front Panel that the ROD is running a functional firmware image. This will not be turned on if the ROD is running an initialization, error recovery, or other engineering image.

2898 2899

2900

2901

2902

2903

2895 2896

2897

- My configuration sequence is to always boot an engineering image first. That image will check to see the board context, and will then trigger the boot of the appropriate "RUN" image. I've allowed for the ROD to carry several images for [efex, gfex, jfex * hub1, hub2] + the engineering image = 7 configuration images.
- 2904

2905

2911

• I will turn on "Run" when the second image has booted."

26.4 Clock 40.08 MHz

- 2906 This is a clock signal from the Hub to the ROD. This 40.08 MHz clock is always running -
- even when the Hub is not receiving an Optical Timing reference signal from the LHC. This
- 2908 is an LVDS signal. It is AC coupled on the Hub before being sent to the ROD. It is
- 2909 synchronous with the Clock signal that the Hub sends to the other 12 FEX slots in the ATCA
- 2910 Shelf.

26.5 Geographic Address

- 2912 These 8 lines are 1V8 signals from the Hub to the ROD.
- The net-names of these signals are: LOC_ADD1:LOC_ADD8.
- 2914 These signals indicate a unique Geographic Address within the overall L1Calo system. That
- 2915 is, these lines indicate both a Slot Number and a Shelf Number within the overall L1Calo
- 2916 system. These lines are not just the backplane Geographic Address signals from the ATCA
- 2917 Zone 1 connector.

2918 2919 2920	The details of how the Hub obtains the Shelf Number and encodes the Shelf Nmbr + Slot Nmbr before sending it to the ROD on these 8 lines are currently being discussed with Ian and David.
2921	26.6 Ethernet Connection
2922 2923 2924	These 8 lines come from the Micrel KSZ9031RNX Phys chip on the ROD. The net-names of these signals are: TR01_P, TR01_N, through TR04_P, TR04_N. The Hub provides the "magnetics" and the RJ45 connector for the ROD's Base Interface Ethernet connection.
2925 2926 2927 2928	The components on the Hub are specified for 10/100/1000 Base-T operation. The components currently in the Hub design are Pulse Engineering HX5201NL magnetics and TE Connectivity 1888653-x connectors. The colors of the LEDs in the RJ45 connector are Green and Yellow.
2929 2930	Careful attention must be paid while routing the Hub to confirm that it correctly implements the polarity of the Ethernet signals coming from the ROD.
2931	26.7 Module_Present
2932 2933 2934 2935	This ROD_PRSNT_B signal is pulled to Ground with a 1k Ohm resistor on the ROD. The Hub has a high value pull-up resistors on this signal. The resulting logic signal goes Low when the ROD is plugged in. This signal can be used to let the Hub FPGA know if a ROD mezzanine card is installed.
2936	26.8 ROD-Hub Power Control Signals
2937 2938	All 4 of the Power Control Signals are 1V8 CMOS level logic signals. These are single ended signals and the direction of each of them is given below.
2939	OK for ROD to Power Up: Net PWR_CON1
2940 2941 2942	This is a signal from the Hub to the ROD that tells the ROD when everything on the HUB has been brought up and is running. By using this signal the ROD can delay its power up until the Hub is fully running and presenting a stable environment to the ROD.
2943	The ROD includes a 1k Ohm pull-down resistor on this signal.
2944 2945	Before telling the ROD to power up the Hub will have configured its FPGA and will have all clocks running.
2946 2947	It will take several (many) seconds from the time that the Shelf Manager gives the Hub the OK to power up until the Hub gives the ROD the OK to power up.
2948 2949 2950	During an overall power up sequence, once the Hub asserts the PWR_CON1 signal voltage Hi it will not return this signal Low until the Shelf Manager tells the Hub to turn off or the backplane 48V goes away or a process is started to re-power-up the ROD.

- 2951 ROD Power Supplies Are All Running OK: --- Net PWR_CON2
- 2952 This is a signal from the ROD to the Hub.
- As soon as the ROD has all of its power supplies up and running with their outputs within the
- required voltage range then it will assert this signal.
- 2955 The Hub will not "believe or use" any other signals that it receives from the ROD until this
- signal is asserted.
- 2957 ROD Has Completed Its Power Up: --- Net PWR_CON3
- 2958 This is a signal from the ROD to the Hub.
- 2959 This signal means that the ROD is fully Configured and ready for normal L1Cal Trigger
- 2960 operation.
- The Hub will not indicate to any other cards that it is ready to operate in the overall L1Calo
- 2962 system until this signal from the ROD is asserted.
- 2963 Spare Power Control Signal: --- Net PWR CON4
- 2964 The spare Power Control signal will be routed to Select I/O pins on both the ROD and Hub
- 2965 FPGAs.
- 2966 PWR_CON signals 2, 3, and 4 all run directly between the ROD and Hub FPGAs. The Hub
- includes 470 Ohm "isolation" resistors in these line to limit current flow before both FPGAs
- are both powered up and configured.

2969 **26.9 Spare Unused ROD-Hub HP IO Signals**

- We have a number of spare currently un-assigned signals between the ROD and the Hub. All
- of these signals are FPGA to FPGA HP IO lines.
- There are 8 spare HP IO lines in the Meg-Array pinout list. These are nicely setup as 4
- 2973 LVDS pairs so that we can use them as LVDS or as single-ended signals, which ever
- 2974 may be required in the future.
- The net-names of these spare signals are: TBD_LINK0_P, TBD_LINK0_N, through
- TBD_LINK3_P, TBD_LINK3_N.
- Both ROD and Hub have routed these 8 signals as 4 differential pairs.
- When not used for some function, these 8 spare signals are to be operated with 1.8V
- single ended CMOS levels with the Hub driving and the ROD receiving. The Hub is
- required to tri-state its output drives for these signals any time that the ROD's Power
- 2981 Control #2 signal is NOT asserted HI. That is, the Hub will only drive these signals when
- the ROD reports that it is fully powered up. In any case, in this stand by service the Hub
- should use a low level of Drive current on these lines.
- In firmware, these unused spare HP IO lines between the ROD and Hub will be
- connected to IPBus visible registers so that we may test them to prove that they are OK,
- i.e. prove that our lifeboat floats.

2987	26.10	Power from the Hub to the ROD
2988 2989 2990	Volt power fo	vides bulk +12 Volt power to the ROD that is isolated from the backplane 48 eed This power is the same Isolated +12V bus that feeds all of the DC/DC in the Hub module itself.
2991 2992		by draw up to 100 Watts of this bulk +12V power, i.e. 8.3 Amps. This +12V to the ROD as soon as the Shelf Manager tells the Hub that it may power up.
2993 2994 2995		parts in the Hub design that provide the bulk Isolated +12V power are: SynQor A10SNF-G power entry module and SynQor PQ60120QEA25NNS-G Isolated.
2996 2997 2998 2999	that it can sup	Isolated +12V supply module has a maximum capacitive load of 12,000 uFd apport when fully loaded with a resistive load. The Hub itself places 3118 uFd of the Isolated +12V converter or about 26% of the assumed total available
3000	26.11	ROD-Hub MGT Signals
3001	These signals	s are covered in Section 18.

ROD plus Hub Overall Sensor I2C Bus

3002

Figure 42: Joint ROD and Hub sensor I2C bus circuit diagram.

3004

3003

27 Appendix 14: Phys Chip Usage on the Hub Module 3006 The Hub Module requires 2 Phys Chips for the Ethernet Base Interface connections to its 3007 3008 UltraScale Virtex FPGA. 3009 Two Micrel (now Microchip Technology) KSZ9031RNX Phys chips are used to implement these Ethernet connection. An advantage of this part is that it can operate with a 1.8V 3010 RGMII port and thus directly connect to the Virtex HP I/O pins. The documentation for this 3011 Micrel part looks good and its implementation looks clean. 3012 Two drawings show the implementation of the Micrel Phys chips on the Hub Module, 3013 provided in Figure 61 and Figure 62. 3014 27.1 Power Supply, ByPass, Power Up, and Reset Requirements 3015 In the Hub application the KSZ9031RNX Phys chip requires 3 supply buses: 3016 3017 1.2V supply for: AVDDL = the Analog Core, DVDDL = the Digital Core, AVDD PLL 3018 = Internal PLL 1.8V supply for: DVDDH = the Digital I/Os, this bus can be: 1.8V, 2.5V, or 3.3V 3019 3020 3.3V supply for: AVDDH = Transceiver Analog Power 3021 The total load on each of these 3 power buses is expected to be the following, per chip, recall 3022 that Hub has 2 chips: 3023 1.2V supply 265 mA for Cores and PLL 3024 1.8V supply 65 mA for Digital I/Os 3025 3.3V supply 82 mA for Transceivers 3026 3027 The Micrel data sheet gives a +-5% tolerance on all of this chip's supply rails. 3028 Note that the KSZ9031RNX includes a "controller" for an external MOSFET pass transistor 3029 so that by itself it can generate the 1.2V bus from the 3.3V bus if the application requires that function. The Hub Module provide all 3 buses from external supplies. 3030 Total Power Consumption with 1.8 V digital IO and 3.3 V Transceiver supply and 100% 3031 utilization at 1000 Base-T is expected to be about 706 mW per chip. 3032 3033 ByPass and Filter Components recommended for the KSZ9031RNX: AVDDL Bus: Next to pins 4, 9 bypass with 100 nFd on each pin. Also include one 3034

• AVDDL_PPL Bus: Next to pin 44 bypass with 100 nFd. Also include a 10 uFd and use a Ferrite Bead to isolate the AVDDL_PLL bus.

Also include a 10 uFd and use a Ferrite Bead to isolate the DVDDL bus.

DVDDL Bus: Next to pins 14, 18, 23, 26, 30, 39 bypass with 100 nFd on each pin.

3035

3036

3037

or two 10 uFd and a 1 uFd on the AVDDL bus.

- DVDDH Bus: Pins 16, 34, 40
- AVDDH Bus: Pins 1, 12
- Ground: Pins 29 and the exposed thermal pad pin 49
- All capacitors are X5R or X7R ceramic.
- All ferrite beads are <0.1 Ohm DC and >60 Ohm at 100 MHz e.g. TDK MPZ1005S600C 3045

JUT.

- This list of Bypass and Filter requirements for the KSZ9031RNX about matches the schematic of the Micrel Eval Brd for this chip.
- The Mircel Eval Brd uses chokes (ferrite beads) on all 5 supply rails to the chip. They use:
- 3049 Steward HI1206N101R-00 on all rails. These are: 100 Ohm at 100 MHz, 144 Ohm at 500
- 3050 MHz and 150 Ohm at 1 Ghz with 35 mOhm of DC resistance and 3 Amp max.
- Because of space limitation on the Hub module I think that we can use the smaller Wurth
- 3052 782633601 0603 size chokes on 4 of these 5 power rails. The Wurth 782633601 has better
- AC filtering characteristic, a 1 Amp max, but has 200 mOhm max DC resistance. This
- should be OK for the: AVDDL, AVDDL_PLL, DVDDH, and AVDDH rails.
- None of these supplies can be over 100 mA and thus the maximum drop with the Wurth
- 782633601 choke is about 20 mV or about 1.6% on the lowest 1.2 Volt rails. I expect the
- current draws to be less than 100 mA, and it's possible to measure them on a running card
- and replace these parts if necessary so I think that this is OK.
- 3059 I believe that most of the current for this chip is on its DVDDL rail, probably about 225 mA
- so for that I will use the lower DC resistance (60 mOhm) Wurth 742792116.
- See pages 40 and 65 in the ver 2.2 datasheet for this chip for details about the expected
- 3062 current requirements.
- 3063 Power Up Sequence:
- Basically the KSZ9031RNX wants its Cores to power up last.
- Recommended power up sequence is to have the transceiver AVDDH and the digital
 I/O DVDDH voltages power up before the 1.2V buses to DVDDL, AVDDL,
 AVDDL PLL.
- There is no required sequence between the transceiver AVDDH and the digital I/O DVDDH.
- The power up waveforms need to be monotonic for all power buses to the KSZ9031RNX.
- After de-assertion of the RESET wait 100 usec before starting to use the part.
- At power down it is best to remove the 1.2 V supply first.
 - For a power down cycle all buses must be less than 0.4V for at least 150 msec.
- All power buses must be stable for at least 10 msec before de-assertion of the Reset signal.
- All supply voltages must have a minimum of 200 usec ramp up time and have monotonic ramp.
- The recommended Reset circuit, on page 75 of the data sheet is a combination of the typical R, C, Diode to guarantee a Reset at power up and another Diode to mix in an External Reset from a CPU or FPGA.

3082 27.2 RGMII Interface Port

- The RGMII port on the KSZ9031RNX is its data connection with the Hub's UltraScale
- 3084 Virtex FPGA. The KSZ9031RNX RGMII connects to HP I/O pins on the FPGA.
- 3085 The RGMII bus consists of 12 signals:
- Transmit Clock to the KSZ9031RNX
- Transmit Control (enable) to the KSZ9031RNX
- Transmit Data 0:3 to the KSZ9031RNX
- Receive Clock from the KSZ9031RNX
- Receive Control (enable) from the KSZ9031RNX
- Receive Data 0:3 from the KSZ9031RNX

27.3 MDC/MIIM/MDIO Interface Port

- The KSZ9031RNX includes a MII Management port. This type of port is also called MDIO
- 3094 Management Data Input/Output. This port allows higher level devices to monitor and control
- the KSZ9031RNX. This port allows direct access to the IEEE defined MIIM registers, and
- 3096 the vendor specific registers. This port also allows indirect access to the MMD address space
- 3097 and registers.

3092

- 3098 This port consists of signals:
- MDC the clock
- MDIO the data line
- The MAC in the FPGA provides the connections to this device management port.

27.4 Jumpers for the KSZ9031RNX (aka Strapping Pins)

- The KSZ9031RNX uses a number of jumpers that are "read" during its power up process and
- then the state of these jumpers control its operation of the chip once power up is completed.
- Most of these jumpers are the new standard type of jumper, i.e. a weak pull-up or weak pull-
- down on a dual purpose I/O pin. Once the jumper is "read" and the KSZ9031RNX completes
- its power up then the pin begins its normal function and the weak pull resistor is ignored.
- For this chip the pull-up resistors connect to the DVDDH 1V8 rail.

3109

Pin	Strap	Normal	Jumper Function - Strapping Option
#	Pin Name	Function	
17	PHYAD0	LED1	Pull-Up = 1
15	PHYAD1	LED2	Pull-Down = 0
35	PHYAD2	RX_CLK	PHY Address Bits 3 and 4 are always 0, 0. This is the
		_	PHYAD of the
			Management Interface port on the KSZ9031RNX.
_32	MODE0	RXD0	Set operating Mode at Power Up

31	MODE1	RXD1	0100 NAND tree mode
28	MODE2	RXD2	1100 RGMII 1000 Base-T full duplex
27	MODE3	RXD3	1101 RGMII 1000 Base-T full or half duplex
			1110 RGMII 10/100/100 all but 1000 half duplex
			1111 RGMII 10/100/1000 full or half duplex
33	CLK125_EN	RX_DV	Pull-Up> Enable the 125 MHz Clk Output
			Pull-Down> Disable the 125 MHz Clk Output
41	LED_MODE	CLK125_NDO	Pull-Up> Single LED Mode
			Pull-Down> 3 color or dual LED Mode

3111 KSZ9031RNX Jumpers implemented on the Hub Module:

- Pins 15, 17, 35 PHYAD Pull-Up and Pull-Down R1901:R1906
- Pins 27, 28 MODE Pull-Up Only R1907,R1908
- Pins 31, 32 MODE Pull-Up and Pull-Down R1909:R1912
- Pin 33, CLK125 EN, Pull-Up Only --> Enable the 125 MHz Clk to the MAC
- Pin 41, LED_MODE, Pull-Up Only --> Single LED Mode R1913,R1914

3117

- Note that the Pull-Down resistors are 1k Ohm and the Pull-Up resistors are 10k Ohm. Note
- that some of these Pull-Up / Pull-Down resistors are on high-speed RGMII lines. They must
- be placed and routed with minimum parasitic effect on the high-speed signals.

3121 *KSZ9031RNX LEDs:*

- The Hub Module runs the KSZ9031RNX LEDs in "Single LED Mode". That is it does not
- use tri-color or multiple LEDs per LED pin on the chip. With a 1V8 DVDDH rail I do not
- think that the chip can drive the LEDs directly. Rather the standard, 74AVCH8T245 non-
- inverting Hub circuit for controlling LEDs with 1V8 CMOS logic signals is used for the Phys
- 3126 chip LEDs.

3127 KSZ9031RNX ISET Resistor:

- 3128 ISET pin #48 requires a 12.1k Ohm 1% resistor to ground to set the transmitter output level.
- This is resistor R1915.

3130 KSZ9031RNX RESET Circuit:

- The KSZ9031RNX Phys Chips receive a reset signal from the Hub's Board Startup Reset
- circuits. Currently it is not understood if we want to or should provide the Phys Chips with
- a reset from the Hub's FPGA that would be controlled from a bit in an IPBus visible register.

3134 *KSZ9031RNX Clocks:*

- The KSZ9031RNX contains an internal oscillator circuit for use with a 25 MHz crystal or it
- can use an external clock. Be sure to use the version 2.2 or later data sheet for this Phys chip
- 3137 to correctly understand its clock signal requirements.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

3138 3139	The Hub supplies the KSZ9031RNX with a quality external 25 MHz 3V3 clock signal. This external clock is sent into "X1" pin #46. Pin "X0" pin #45 is not connected.
3140 3141	Internally the KSZ9031RNX manipulates this 25 MHz clock as required to sequence its various functions. One step to to multiply this up to 125 MHz.
3142 3143 3144	The internally generated 125 MHz clock is made available on pin CLK125 pin #41 for use by the MAC that controls the KSZ9031RNX. This 125 MHz clock is returned to the Hub FPGA as it provides the MAC for the KSZ9031RNX Ethernet circuits.
3145 3146 3147 3148	Note that this Phys chip has internal series terminator resistors in the CLK125 line and the other high-speed output lines from it in the RGMII interface. The FPGA pins in its RGMII port should incorporate the correct type of DCI termination, e.g. series termination in its output pins.
3149	KSZ9031RNX RGMII Link to FPGA:
3150 3151	Reduced Gigabit Media Independent Interface between the KSZ9031RNX Phys chip and the MAC in the Hub FPGA.
3152	KSZ9031RNX MII / MIIM Link to the FPGA:
3153 3154 3155 3156 3157 3158 3159	This is the "Management Interface" between the MAC in the Hub FPGA and the KSZ9031RNX Phys chip. This separate interface allows an external entity to monitor and control the KSZ9031RNX via way of its MDC/MDIO Monitor Data Clock and I/O pins. The address of this port on the KSZ9031RNX is set by the PHYAD strapping jumpers. This Management Interface can talk to 32 bit registers both directly addressed IEEE defined registers and indirectly to vendor defined management registers.

Phys Chip - RGMII, MDC/DMIO, and Base-T Circuits

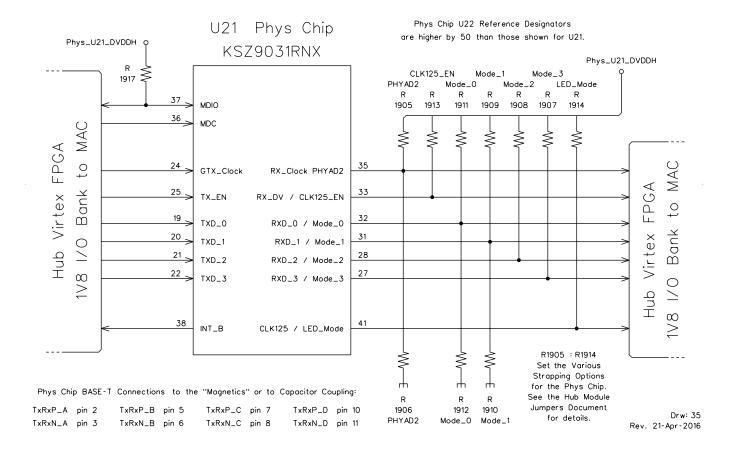


Figure 43: PHY Chip RGMII, MDC/DMIO and Base-T circuit diagrams.

28 Appendix 15: Hub-Module Power System 3161 The Hub-Module power system is based on the ATCA architecture. This power system 3162 3163 supplies both the components on the Hub-Module itself and provides +12V power to the ROD mezzanine card. An overall view of the Hub Module power supplies is presented in 3164 3165 Figure 47. 3166 28.1 ATCA Power Entry and Isolated +12V Supply 3167 Power reaches the Hub Module's zone 1 connector on redundant negative 48 Volt buses. After passing through fuses the bulk -48 Volt power from the backplane enters a SynQor 3168 "power entry module". This is either a SynQor IQ65033QMA10 10 Amp 300 Watt 3169 3170 module or a SynQor IQ65033QGA12 12 Amp 350 Watt module. In either case these are 3171 quarter-brick size modules with the same footprint. The first prototype Hub cards are built 3172 with the SynQor IQ65033QMA10SNF-G power entry module. From the power entry module filtered power, monitored by the IPMC, flows to the input of 3173 3174 an Isolated +12 Volt converter. This converter makes the Isolated +12 Volt power that 3175 operates everything on the Hub Module except for the power supervision circuits and the 3176 IPMC mezzanine card. The Isolated +12 Volt power is provided by a SynQor 3177 PQ60120QEA25NNS-G 12V 25A 300 Watt quarter-brick module. Higher current modules 3178 are available if needed. The Isolated +12 Volt power from this SynQor module is the input power to a number of 3179 non-isolated DC/DC "buck" converters that generate the actual power buses used on the Hub 3180 3181 Module. This same Isolated +12 Volt power is provided to the ROD mezzanine card on the 3182 Hub. The power entry module provides a separate isolated 5V0 supply that is used to operate the 3183 3184 power supervision circuits on the Hub Module. This isolated 5V0 supply is available 3185 anytime that the Hub receives backplane 48V power. 3186 The power entry module also provides separate isolated 3V3 power for the IPMC card. This separate 3V3 power is available anytime that the input module receives backplane 48V 3187 3188 power. 3189 The IPMC controls when the Isolated +12V module is allowed to operate. When the IPMC 3190 and the Shelf Manager have successfully negotiated the power up of the Hub Module then the 3191 IPMC assets the enable signal to the Isolated +12V module. 3192 The IPMC the monitors the power entry module using its Management I2C bus which runs to 3193 both the ATCA power entry module and to the FRU & SDR EEPROM. 3194 The power entry and Isolated +12V section of the overall Hub Module design are shown in 3195 Figure 44 and Figure 45. Figure 46 shows the various backplane ground connections that are used on the Hub Module. 3196

28.2 Hub Module Power Bus Table

Power Bus	Bus	Principal	Anticipated	Supply	Supply
Net Name	Voltage	Consumers	Load	Capacity	Name
FPGA_CORE	0.950 V	FPGA INT & BRAM	20.8 Amps	40 Amps	DCDC-1
MGT_AVCC	1.000 V	FPGA MGT	10.8 Amps	20 Amps	DCDC-2
MGT_AVTT	1.200 V	FPGA MGT	10.0 Amps	20 Amps	DCDC-3
MGT_AVAUX	1.800 V	FPGA MGT	0.60 Amps	3 Amps	DCDC-4
SWCH_1V2	1.200 V	Switch & Phys	4.0 Amps	12 Amps	DCDC-5
BULK_1V8	1.800 V	FPGA & other	3.0 Amps	12 Amps	DCDC-6
FAN_1V8	1.800 V	MGT Fanout	13.0 Amps	20 Amps	DCDC-7
BULK_3V3	3.300 V	Switch & other	4.6 Amps	12 Amps	DCDC-8
BULK_2V5	2.500 V	MiniPOD & Clk FO	1.3 Amps	3 Amps	DCDC-9

3200 Notes:

• The 40 Amp supply is a GE MDT040A0X3-SRPHZ

- The 20 Amp supplies are GE UDT020A0X3-SRZ
- The 12 Amp supplies are GE PDT012A0X3-SRZ
- The 3 Amp linear supplies are LT1764AEQ

• The low current reference supplies for the FPGA System Monitor are not included in this table.

28.3 DCDC Converters

Both GE (Lineage Power) D-Lynx series and TI (Power Trends) PTH08Txyz series converters were evaluated for use on the Hub Module. The D-Lynx converters were selected based mostly on the PMBus connection offered by their TI TPS40400 control chip. Concerns about using the D-Lynx converters remain in the areas of noise, assembly, and rework. Note that for the 2 low current supplies Linear Technology LDO linear regulators are used both to save space on the PCB and to insure a low noise supply bus. The amperage capacity of each of these DC/DC converters was sized to the load that it must drive. During this selection consideration is also given to minimizing the number of different component types used on the Hub Module.

The details of the 7 GE DCDC Converters are shown in **Figure 49 - Figure 51**. The following table and its notes summarize these designs:

Converter Name:			
	DCDC1	DCDC2	DCDC3
Bus NetName:	FPGA_CORE	MGT_AVCC	MGT_AVTT
Bus Voltage:	0.950 V	1.000 V	1.200 V
Max Bus Amps:	40 A	20 A	20 A
Converter Type:	MDT040A0X3	UDT020A0X3	UDT020A0X3
* Cin Local:	62 uFd	42 uFd	42 uFd
# Cout Local:	220 uFd	580 uFd	580 uFd
Cout Remote:	3822 uFd	1013 uFd	1013 uFd
R V-Set Theory:	34.29k	30.0k	20.0k
R V-Set Real:	34.00k	30.0k	20.0k
R Ramp Series:	20.0k	20.0k	20.0k
R Ramp Shunt:	34.0k	30.0k	20.0k
R Servo:	180 Ohm	180 Ohm	180 Ohm
C Servo:	10 nFd	10 nFd	10 nFd
R ADRS_0:	10k	15.4k	23.7k
R Adrs_1:	84.5k	84.5k	84.5k
I2C Adrs:	0o50	0o51	0o52
Anticipated			
Load in Watts:	19.8 W	10.8 W	12.0 W
@ Anticipated			
Input Current:	1.83 A	1.00 A	1.11 A
Design Notes:		External	External
		Output	Output
		LC Filter	LC Filter

Converter Name:				
	DCDC5	DCDC6	DCDC7	DCDC8
Bus Net Name:	SWCH_1V2	BULK_1V8	FAN_1V8	BULK_3V3
Bus Voltage:	1.200 V	1.800 V	1.800 V	3.300 V
Max Bus Amps:	12 A	12 A	20 A	12 A
Converter Type:	PDT012A0X3	PDT012A0X3	UDT020A0X3	PDT012A0X3
* Cin Local:	42 uFd	42 uFd	42 uFd	42 uFd
# Cout Local:	88 uFd	88 uFd	580 uFd	88 uFd
Cout Remote:	1530 uFd	1510 uFd	1929 uFd	1030 uFd
R V-Set Theory:	20.0k	10.0k	10.0k	4.444k
R V-Set Real:	20.0k	10.0k	10.0k	4.420k
R Ramp Series:		40.0k	40.0k	40.0k
R Ramp Shunt :		20.0k	20.0k	8.87k
R Servo:	180 Ohm	180 Ohm	- Ohm	200 Ohm
C Servo:	10 nFd	15 nFd	- nFd	10 nFd
R ADRS_0:	36.5k	54.9k	84.5k	130k
R Adrs_1:	84.5k	84.5k	84.5k	84.5k
I2C Adrs:	0o53	0o54	0o55	0056
Anticipated				
Load in Watts:	4.8 W	5.4 W	23.4 W	15.2 W
@ Anticipated				
Input Current:	0.44 A	0.50 A	2.17 A	1.41 A
Design Notes:	Delayed		External	
	Turn On &		Output	
	Self Ramp		LC Filter	

3226 The following symbols were used in the previous table: * --> The Cin Local capacitors are all ceramic of 3 different values and are located 3227 3228 immediately next to the converter's input terminal. There is an additional Bulk Cin of 2100 uFd consisting of both ceramic and Tantalum 3229 capacitors that is shared by all 7 DCDC converters. This Bulk Cin is located within a few 3230 cm of the converters and is connected to each converter by a neck of trace typically a one 3231 3232 or two cm wide. 3233 # --> The Cout Local capacitors are all ceramic of 2 different values and are located 3234 immediately next to the converter's output terminal. Note that in the case of converters: DCDC_2, DCDC_3, and DCDC_7 (the 3 DCDC Converters that include an external LC 3235 output filter) that the Cout Local includes a 470 uFd Tantalum capacitor in addition to 3236 the multiple ceramic capacitors. 3237 3238 Cout Remote consists of ceramic and Tantalum capacitors of multiple values distributed around the card. In the case of the FPGA supplies these capacitors are all located near the 3239 U1 FPGA. 3240 @ --> The anticipated Input Current in Amps for each supply assumes 90% efficiency 3241 for that converter. 3242 Currently the total anticipated load on the Isolated +12V bus from the Hub itself is 8.46 3243 Amps or about 101.5 Watts. About 91 Watts of this reaches components on the Hub 3244 and about 10 Watts is lost as heat in the DCDC converters. 3245 28.4 DCDC Converter Input Filter Capacitors 3246 There is a limit of about 12,000 uFd for the total amount of capacitance that one may have on 3247 the output of the Isolated +12V converter without upsetting its stability. Note that this 12,000 3248 3249 uFd is specified with the Isolated +12V supply running at capacity into a resistive load and I do not know how running it at less than full output or running it into a chopping DCDC 3250 Converter load affects its stability with the full 12,000 uFd on its output. 3251 This 12,000 uFd must be split between the DCDC Converters on the Hub itself and the 3252 3253 converters on the ROD mezzanine. 3254 On the Hub Module itself, the total capacitance presented to the Isolated +12V supply is: 3255 3118 uFd or about 26% of the assumed total available budget. 28.5 DCDC Linear Supplies 3256 Two low current power buses on the Hub Module use linear LDO regulators. One of the 3257 3258 linear supplies is MGT AVAUX and the other is BULK 2V5. Both of these linear 3259 supplies are powered from the BULK 3V3 bus. Both supplies use an LC filter between the 3260 possibly noisy BULK 3V3 supply and the linear regulator's power input pin. These supplies include a trim pot with a +-5% adjustment range. These LDO regulators are enabled all of 3261 the time. Their output ramps up as the BULK 3V3 supply ramps with the regulator output 3262 typically trailing the BULK 3V3 supply by about 200 mV. These two supplies do not have 3263 3264 PMBus monitoring and control like the 7 DCDC converters do. Details of these low current

linear supplies are shown in Figure 52.

3266 **28.6 DCDC Converter Supervision**

- 3267 The IPMC supervises the Hub module power system through its control of the Isolated +12V
- bus. In addition the IPMC can monitor the ATCA power entry module via its Management
- 3269 I2C bus and it can monitor the 7 DCDC converters via its Sensor I2C bus.
- The only two supplies that can not be directly monitored in this way by the IPMC are the
- 3271 linear regulators for the MGT AVAUX and BULK 2V5 power buses. The voltage of these
- 3272 supplies can be read by the FPGA's System Monitor. The System Monitor can internally see
- 3273 the MGT AVAUX supply and the BULK 2V5 is scaled and connected to an analog input to
- 3274 the System Monitor's ADC.
- 3275 The voltage of all 9 supplies can be accurately measured with a good DVM plugged into
- header J3 in the NE corner of the Hub circuit board. This step is needed to calibrate the
- internal monitoring provided by the DCDC Converters.
- A number of components on the Hub Module (FPGA, Switch chips, and Phys chips) have
- 3279 specific power supply sequencing requirements. These requirements are meet by ramping up
- 3280 together on a volt per volt bases all supplies on the Hub module except for the SWCH 1V2
- supply. The SWCH 1V2 converter is not started until the other 8 supplies have ramped up
- 3282 and are stable.
- The circuits that control the start-up of the power supplies are shown in **Figure 53**, **Figure 55**
- and **Figure 56**. The start-up process has the following steps:
- The process starts when the supervisor sees that the enable signal to the Isolated +12V supply has been asserted and that the Isolated +12V bus from this supply has reached a
- 3287 minimum of 8.5 Volts.
- At this point a delay of 500 msec is used to allow the Isolated +12V bus to reach its full value and to stabilise.
- Then the enable signal is sent to 6 of the DCDC converters on the Hub Module, all of the DCDC converters except for the SWCH_1V2 supply.
- At this point a delay of 120 msec is used to allow these 6 DCDC converters time to
- 3293 complete their internal startup routines. Note that the output of these converters does not
- begin to ramp during this 120 msec delay because the Ramp Sequence pins on these
- 3295 converters is being held low.
- After this 120 msec delay the Ramp Sequence signal to these 6 converters begins to rise.
- The converter outputs follow the Ramp Sequence signal on a volt per volt bases. The
- main supplies to the FPGA reach their full output over a 5 to 9 msec period. The
- BULK_3V3 supply is the last to reach its full output taking about 3 times longer than a 1 Volt supply.
- About 100 msec after these 6 supplies have reached their full output the SWCH_1V2
- converter is enabled. The ramp rate of this converter is internally controlled so that it
- reaches its full output in a few msec. This delayed startup of the SWCH_1V2 supply is
- required by the Switch chips, not just to prevent cross coupling of the power rails through
- the CMOS circuits but rather because the Switch does not want its core to start until its
- 3306 I/O has been powered up and is stable.

- The two linear regulator supplies MGT_AVAUX and BULK_2V5 receive their input power from the BULK_3V3 supply. They just ramp up about 200 mV behind the BULK_3V3 supply.
- Once all 9 supplies are up and stable, as indicated either by their Power Good signals being asserted or as measured for the two linear regulator supplies, then there is a delay of 500 msec for everything to settle down and then the Board_Startup_Reset_B signal is de-asserted. The distribution of the Board_Startup_ Reset_B signal is shown in **Figure**58. This completes the power up of the Hub Module.

3328

- 3316 The circuits that supervise this startup process are powered by an isolated 5 Volt output on
- 3317 the ATCA power entry module. This 5 Volt output is active anytime that the card receives
- 3318 backplane 48 Volt power.
- The shutdown of the Hub Module supplies is initiated when either the enable to the Isolated
- +12V supply is dropped (the normal shutdown situation) or when the output of the Isolated
- +12V supply falls below 8.5 Volts. During the shutdown sequence the SWCH 1V2
- converter is immediately stopped and the other 6 converters ramp down quickly in an orderly
- manner for as long as their input power remains available. When the input power falls below
- threshold then all of the converters are immediately stopped. The shutdown sequence is
- shown in **Figure 54**. During shutdown the Board Startup Reset B signal is asserted as
- soon as the enable is removed from the Isolated +12V supply and remains asserted for as
- long as power is available.

28.7 DCDC Converters with an LC Output Filter

- Three of the DCDC Converters on the Hub Module include an LC Output Filter to reduce the
- 3330 switching noise that is present in their output voltage. These 3 converters make power for the
- MGT Transciver circuits and these circuits specify a peak to peak noise voltage of under 10
- 3332 mV on their power supply rails.
- 3333 The low current MGT AVAUX supply meets this requirement by using a linear regulator
- with a filter inductor before it to remove the high frequency noise. The higher current
- 3335 MGT AVCC, MGT AVTT, and FAN 1V8 supplies meet this requirement by using an LC
- filter after these DCDC Converters. The L for this filter is a high current low resistance 680
- 3337 nH Wurth inductor. The C for the filter consists of large value tantalum capacitors and
- ceramic capacitors of multiple values. Most of these capacitors are located near the load
- 3339 point.
- A potential issue with using an LC filter after these buck DCDC Converters is that their servo
- control loop may require special compensation for it to be stable. To provide various options
- for how the feedback network is setup in these 3 converters the Hub Module PCB includes a
- set of 4 jumpers for each of these supplies. The jumpers that are associated with each of
- these converters are:
- 3345 DCDC-2 MGT AVCC JMP1051, JMP1052, JMP1053, JMP1054

3346	DCDC-3 MGT_AVTT JMP1101, JMP1102, JMP1103, JMP1104
3347	DCDC-7 FAN_1V8 JMP1301, JMP1302, JMP1303, JMP1304
3348	
3349	Jumpers JMP1051, JMP1052 (and JMP1101, JMP1102 and JMP1301, JMP1302) control
3350	whether the the V_SENSE_+ feedback is taken before or after the output filter inductor.
3351	JMP1051 selects before the output inductor and JMP1052 selects after the inductor.
3352	Jumpers JMP1053, JMP1054 (and JMP1103, JMP1104 and JMP1303, JMP1304) control
3353	whether the the RC coupled feedback is taken before or after the output filter inductor.
3354	JMP1053 selects before the output inductor and JMP1054 selects after the inductor.
3355	This jumpers information is also presented in the "as built jumpers" document. In addition to
3356	these feedback source selection jumpers, the layout for each of these 3 converters also
3357	includes the SMD pads to mount an 0805 capacitor that directly connects between the
3358	converters output and its "Trim" input pin.

28.8 Power Requirements Information for each Section of the Hub

The following are power supply requirements information about the various components on the Hub Module. This information was used to design the overall Hub Module power supply and to make the overall list of Hub Module power buses shown above. More details about the power requirements of the individual sections can be found in their "as built" documents.

3364 Power Supply Requirements for the Hub Module UltraScale XCVU125 FPGA:

FPGA Bus	Bus Volts	Estimated Current Draw
VCCINT+VCCBRAM	0.950 V	20.8 Amps est.
VCCAUX	1.800	147 mA quiescent
VCCAUX_IO	1.800	2 mA quiescent
VCCO	1.800 / 3.300	1 mA per bank quiescent
VCCADC	1.800	few mA
VREFP	1.250	few mA
MGT_AVCC	1.000	8.8 Amps est.
MGT_AVTT	1.200	12.6 Amps est.
MGT_AVAUX	1.800	0.6 Amps est.

Note that this FPGA has power supply sequencing requirements.

See below for more details about the estimates for FPGA MGT power from the Xilinx tools.

3365

3367 3368

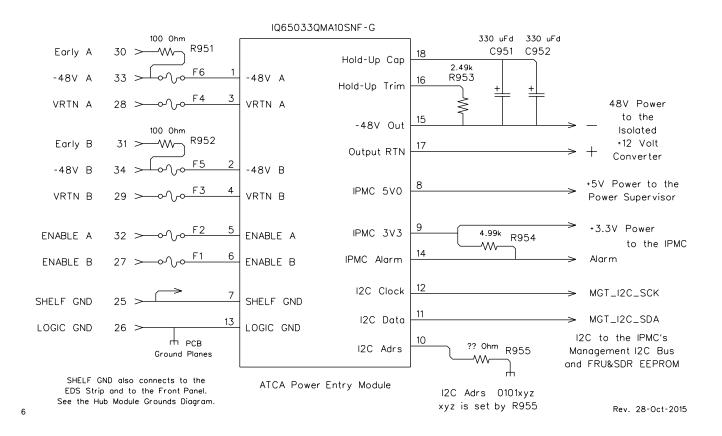
3359

33603361

3362

3369	Requirements for the Base Interface Switch Power Supplies:
3370 3371 3372 3373	A separate 12 Amp converter is used for the Switch's 1.2 Volt requirements. To meet the power supply sequencing requirements of the Switch and Phys chips, this SWCH_1V2 converter is not enabled until after the other DCDC converters on the Hub have ramped up and stable.
3374 3375	The total draw on the SWCH_1V2 bus from all 3 switch chips is expected to be 3.5 Amps.
3376 3377	The total draw on the BULK_3V3 supply from the 3 Switch chips is expected to be 1.5 Amps.
3378	The total heat dissipation from the 3 Switch chips is expected to be 9.2 Watts.
3379	Requirements for the GTH Fanout Power Supply:
3380 3381 3382 3383	The 74 channel FEX Data Fanout (aka GTH Fanout) has its own private power bus called FAN_1V8. The reasons to have a private converter for this Gb/s speed fanout include the requirement for low noise and the possible need to adjust this supply independent of other loads.
3384 3385	The expected load on the FAN_1V8 supply is 13.0 Amps which results in about 23.4 Watts of heat from the 74 fanout chips.
3386	Requirements for the Micrel KSZ9031RNX Phys Chip Power Supplies:
3387	In the Hub application the KSZ9031RNX requires 3 supply buses:
3388 3389 3390	 1.2V supply for: AVDDL, the Analog Core, DVDDL the Digital Core, AVDD_PLL Internal PLL 1.8V supply for: DVDDH, the Digital I/Os
3391	• 3.3V supply for: AVDDH, Transceiver Analog Power
3392 3393	The total load on each of these power buses from the 2 Phys Chips on the Hub Module is expected to be:
3394 3395 3396 3397	 1.2V supply 530 mA from SWCH_1V2 delayed turn on 1.8V supply 130 mA from BULK_1V8 3.3V supply 164 mA from BULK_3V3
3398 3399	Total Power Consumption with 1.8 V digital IO and 3.3 V Transceiver supply and 100% utilization at 1000 Base-T is expected to be about 1.5 Watts for both Phys chips.
3400	Requirements for the Clock Generation and Fanout Power Supplies:
3401 3402	The 25 MHz Ethernet Clock generator and its fanout are expected to use 55 mA from the BULK_3V3 supply.
3403 3404	The 40.08 MHz and 320.64 MHz Clock generators and their fanouts are expected to use 160 mA from the BULK_3V3 supply and 381 mA from the BULK_2V5 supply.
3405 3406 3407	6. All supplies to these clock generators and fanouts are filtered and distributed to the clock components on a separate isolated PCB area fills. A total of about 2.0 Watts is needed for Clock generation and distribution.
3408	Requirements for the MiniPOD Power Supplies:
3409	The MiniPODs each require: 2.5 V and 3.3 V power.

7.0.1 ND77 77 1 7.7 1 M 1 1 1 0 1 M 1


$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

3410 3411 3412	The Transmitter MiniPOD requires: from the 2V5 bus 280 mA typical 365 mA maximum, from the 3V3 bus 105 mA typical 185 mA maximum. This is a heat load of 1.2 Watts typ 1.6 Watts max.
3413 3414 3415	The Receiver MiniPOD requires: from the 2V5 bus 350 mA typical 525 mA maximum, from the 3V3 bus 48 mA typical 90 mA maximum. This is a heat load of 1.1 Watts typ 1.6 Watts max.
3416	The total maximum requirements for both MiniPODs are:
3417 3418 3419 3420	Bulk_2V5 bus 890 mA Bulk_3V3 bus 275 mA Heat Load 3.1 Watts
3421	Power to both MiniPODs is filtered and distributed on separate isolated PCB area fills.
3422	28.9 Final best Estimate on FPGA MGT Power from Xilinx Tools
3423	Requirements for the MGT AVCC and AVTT Power Supplies
3424	Ultrascale GTH and GTY channels each draw currents from:
3425 3426 3427	1.0 V AVCC power 1.2 V AVTT power
3428 3429 3430 3431 3432 3433 3434	The Xilinx Power Estimator spreadsheet (XPE) was used to evaluate the expected power usage for AVCC and AVTT. The current draw on these supplies depends highly on the line rate and very little on the user data payload. This is quite different from estimating current usage in the main logic area where user data content and most importantly the toggling ratio is the driving factor. For MGT channels the toggling ratio for the highest rate circuitry has to be 50%. XPE thus has all the information it should need to produce an accurate estimate for MGT AVCC and AVTT.
3435	The goal was to determine a maximum expected power usage.
3436	This requires knowing the maximum line rate considered.
3437	The asumptions were
3438 3439 3440 3441 3442 3443 3444	 9.6 Gbps maximum line rate for backplane and all readout channels 4.8 Gbps maximum line rate for MiniPOD channels, i.e. all TTC, combined data and FELIX channels DFE used for all receiver channels (as it uses more power) 1.0 V differential swing on Hub FPGA readout output channels 0.5 V differential swing on MiniPOD output channels
3445 3446 3447 3448	The MGT channel assignment from 18-Apr-2016 provided the list of GTH and GTY channels the Hub uses only as transmitters and as full transceivers, grouped by usage and by corresponding expected line rates. This list was used to configure the XPE GTH and GTY tabs.

$Hub_Spec_v1_1.docx\ of\ 13/03/2018$

3449 3450 3451 3452	4.8, 6.4 and 9.6 Gbps are backplane speeds still plausible at this time for l1calo. XPE indicates that some current draws are higher at 6.4 than 9.6 Gbps, for GTY AVTT in particular. Two sets of XPE estimates were thus needed, for backplane line rates of 6.4 and 9.6 Gbps. The maximum values are summarized below.
3453	The maximum currents from these XPE estimates are:
3454 3455 3456	MGT AVCC drawing 8.8 Amps MGT AVTT drawing 12.6 Amps
3457	Note: The "EyeScan" feature was NOT enabled in the XPE estimation.
3458	Adding this option to all channels increases AVCC only, by ~2 A.
3459	
3460	
3461	
3462	
3463	
3464	
3465	
3466	
3467	
3468	
3469	
3470	
3471	
3472	
3473	
3474	
3475	
3476	
3477	
3478	

Hub-Module ATCA Power Entry

Figure 44: Circuit diagram for Hub power entry.

Hub-Module Isolated +12V Supply

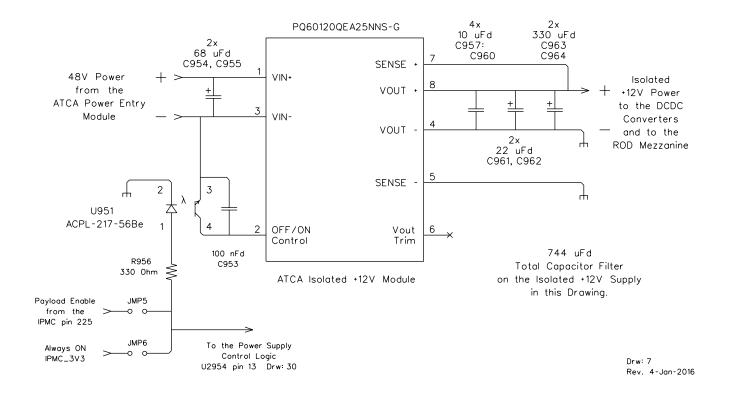
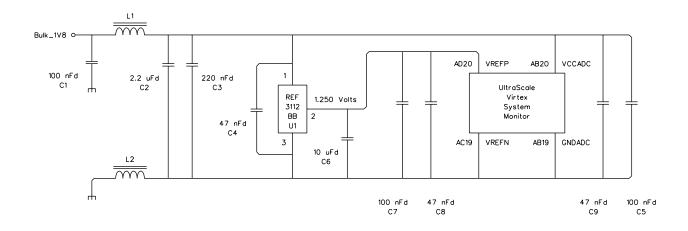


Figure 45: Circuit diagram for Hub +12V supply.

Hub-Module Ground Connections R959 Zero Ohm <= = = **-**VVV-Req. 4.96 Optional PCB Th Connection between the Ground Planes Shelf Ground and the Logic Ground RJ45 Shields Connect to the <= = = Shelf Ground RJ45 Shelf Ground RJ45 Pin #25 10 Meg. RJ45 R957 Logic Ground Pin #26 10 Meg. ₼ PCB PCB Th R958 Ground Planes Ground Planes Zone 1 Connector EDS Strip 3 Sections The Front Panel Connects to the Front Section of the EDS Strip Not shown are the 400 connections from the Zone 2 Drawing: 8 and thus to the Shelf Ground Connector Ground Pins to the PCB Ground Planes. Rev. 4-May-2016


Figure 46: Circuit diagram for Hub ground connections.

<u>Hub Module Power Supplies</u> > Iso. +5V Power to Supervisor -48V A ATCA → Iso. 3V3 Power to the IPMC -48V B -Power Entry Mgt. I2C to/from the IPMC 48 Volt Isolated +12V Enable from the IPMC Power Module +12 Volt ISO_12V to ROD Sensor I2C Bus I2C 0o50 FPGA_CORE DCDC1 0.950 Volt First Enable 🤇 ______ Enable 40 Amp ISO_12V I2C Øo51 1.000 Volt MGT_AVCC Enable Ramp 20 Amp ISO_12V I2C Øo52 Enable 1.200 Volt MGT_AVTT DCDC3 20 Amp ISO_12V Sequence > I2C Øo54 1.800 Volt BULK_1V8 Ramp Enable _____ DCDC6 12 Amp ISO_12V I2C 0₀55 FAN_1V8 DCDC7 1.800 Volt Enable 🤇 20 Amp ISO_12V I2C Øo56 BULK_3V3 3.300 Volt Enable Ramp DCDC8 12 Amp Ţ ISO_12V I2C 0o53 1.200 Volt SWCH_1V2 Second Enable DCDC5 12 Amp Enable The First Enable must be asserted at least 20 msec before the Sequence Ramp starts. FLTR_3V3 The SWCH_1V2 supply is not MGT_AVAUX enabled until after the other supplies 1.800 Volt DCDC4 have ramped up and are stable. 3 Amp I2C addresses are in TI-GE octal format. FLTR_3V3 The FPGA System Monitor BULK_2V5 2.500 Volt Reference Supplies are not DCDC9 shown in this drawing. 3 Amp Drw: 24 Rev. 14-July-2016

Figure 47: Circuit diagram for Hub power supplies.

HUB System Monitor Reference Supply

UltraScale Virtex FPGA System Monitor Reference

The inductors are Wurth 742792116, 1206, 60 mOhm. See: SysMon UG580 Pg. 9 and 71, 72.

Actual reference designators are larger by 1850.

25 Rev. 19-Nov-2016

Figure 48: Circuit diagram for the Hub monitor reference supply.

<u>Hub Module 40 Amp DC-DC Converter Design</u>

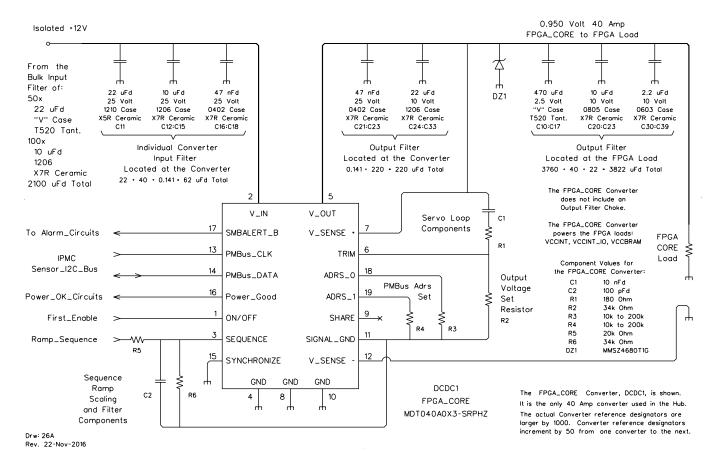


Figure 49: Circuit diagram for Hub 40A DCDC converter

Hub Module 20 Amp DC-DC Converter with External Filter

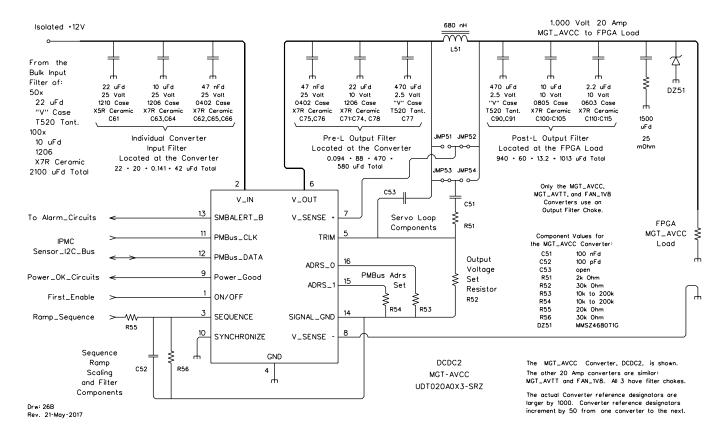


Figure 50: Circuit diagram for Hub 20A DCDC converter

Hub Module 12 Amp DC-DC Converter Design

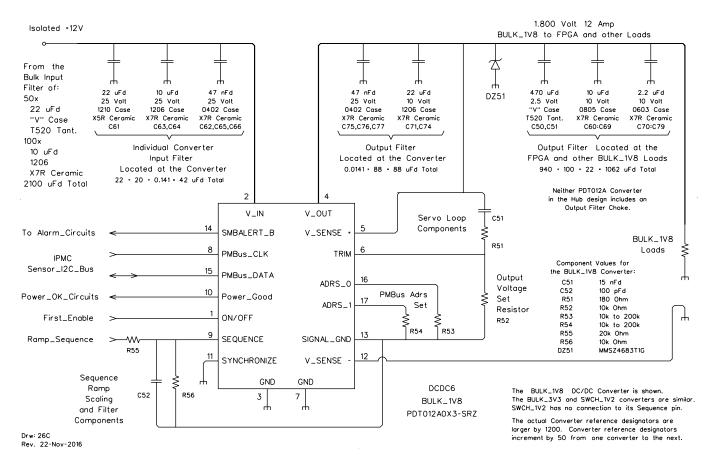


Figure 51: Circuit diagram for Hub 12A DCDC converter.

<u>Hub Module Linear Regulators</u>

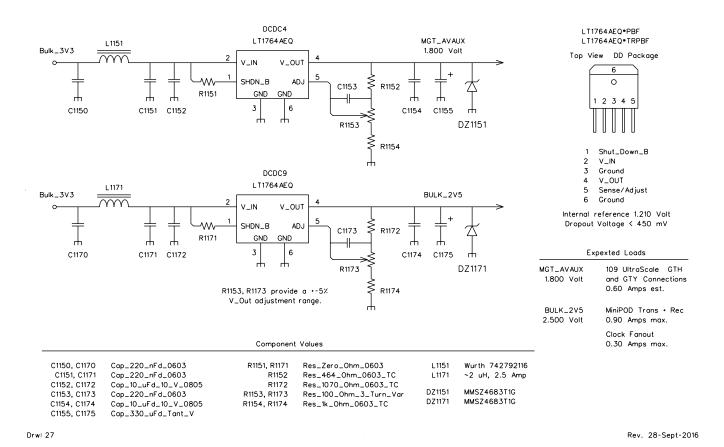
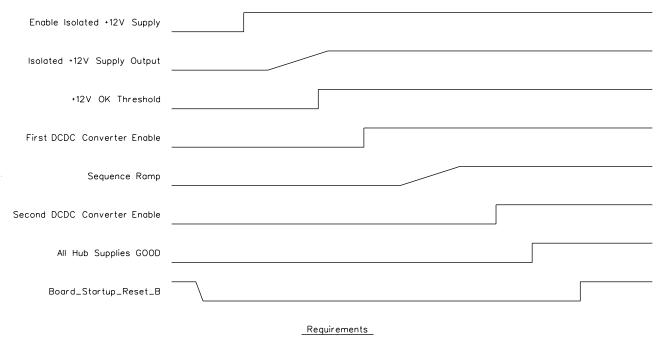



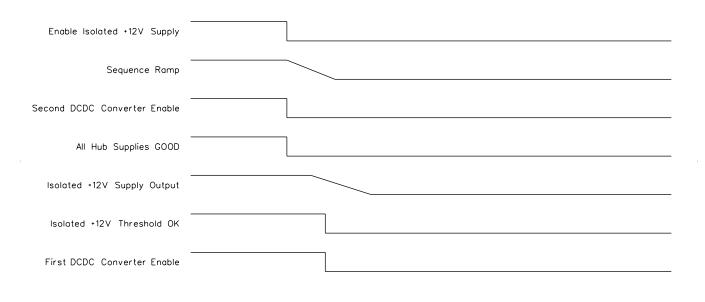
Figure 52: Circuit diagram for Hub linear regulartors.

Allow the Isolated +12V Supply to stabilize for 500 msec before asserting the First DCDC Converter Enable. First DCDC Converter Enable must be asserted for 20 msec minimum before the Sequence Ramp starts.

The Sequence Ramp should bring up the FPGA supplies in about 5 to 9 msec.

Once the Sequence Ramp is complete must wait a minimum of 10 msec before asserting the Second DCDC Converter Enable.

The SWCH_1V2 supply must ramp up within 2 msec maximum.


All supplies must be up and stable for 100 msec minimum before the Startup Reset is dropped.

Drw: 28

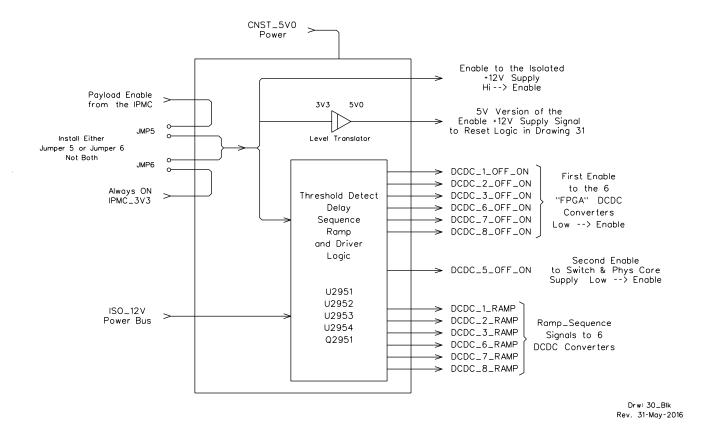
Rev. 11-Feb-2016

Figure 53: Hub power supply startup timing diagram.

When the Enable signal to the Isolated +12V Supply is dropped the Sequence Ramp will immediately begin to fall.

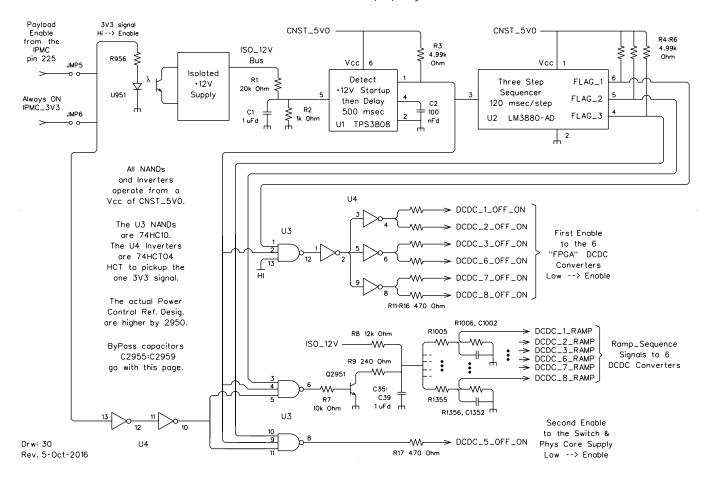
The supplies will ramp down in an organized manner for as long as the Isolated +12V remains above threshold.

Once the Isolated +12V bus falls below threshold then the First Enable signal to the 6 FPGA DCDC Converters is dropped.


The Second Enable (to the SWCH_1V2 converter) is dropped as soon as the Isolated +12V Enable is deasserted.

Sequence

Drw: 29 Rev. 11-Feb-2016


Figure 54: Hub power supply shutdown timing diagram.

Block Diagram of Power Control Drawing #30

Figure 55: Block diagram of Hub power control (1/2)

Hub Power Supply Control

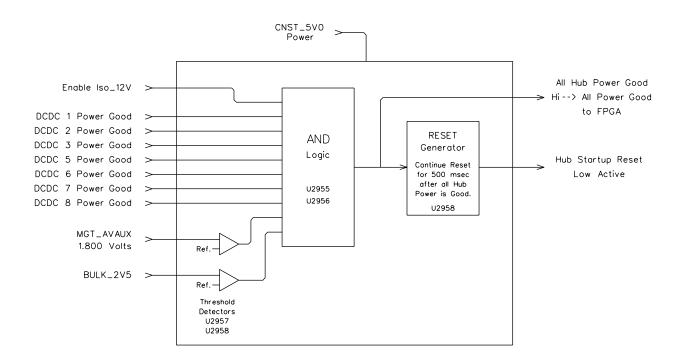


Figure 56: Circuit diagram of Hub power supply control (2/2).

3491

7.0. PROVINCE A 1. P. 1. 1.0. 10. 10.

Block Diagram Power Good & Reset Drawing #31

Drw: 31_Blk Rev. 28-Dec-2016

3492

Figure 57: Block diagram of Hub power ready/reset (1/2).

3494

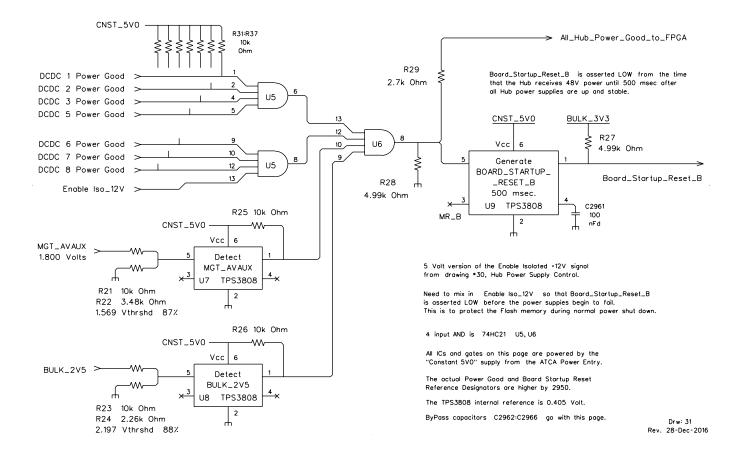
3496

3497

3498

3499

3500


3501

3502

401 PPY Y 13/11 P 1: 10 :00

- ---

<u>Hub Power Good and Board Startup Reset</u>

3503

3504

3505

3506

~ ~ ~ ~

Figure 58: Circuit diagram for Hub power ready/reset (2/2).

Board Reset Distribution - ROD Power Control

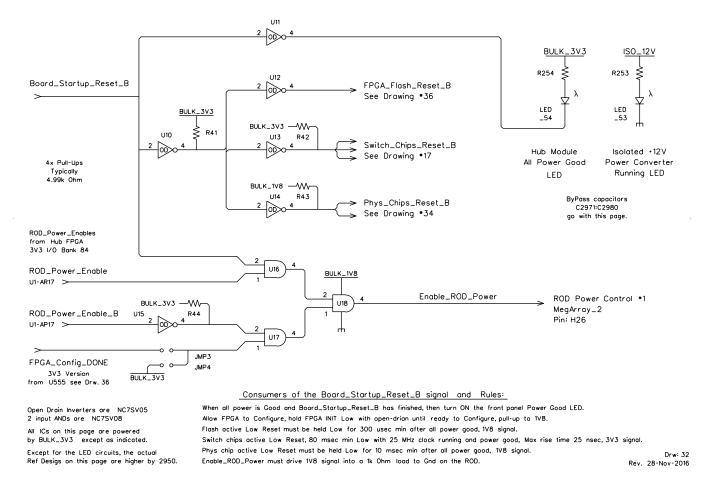


Figure 59: Circuit diagram for Hub board reset distribution.

29 Appendix 16: Hub-Module Base Interface Ethernet Switch 3510 The Hub Module contains a Base Interface Ethernet Switch that is built from 3 Broadcom 3511 3512 BCM 53128 KQLE switch chips. The Hub Module Ethernet switch provides ATCA Base Interface Ethernet connections to the following: 3513 3514 12 to the FEX Cards via the backplane 3515 to the Other Hub's FPGA via the backplane 3516 to This Hub's FPGA via capacitor coupling 4 Front Panel RJ-45s 1x to Switch Chip "A", 3517 2x to Switch Chip "B", 3518 3519 1x to Switch Chip "C" 3520 3521 During normal operation the 4 front panel RJ-45 connections to the Ethernet Switch are used in the following way: 3522 3523 one is used for the "up-link" connection, one is used for the connection to the ROD or IPMC mezzanine on This Hub Module. 3524 one is used for the connection to the ROD or IPMC mezzanine on the Other Hub Module. 3525 3526 and there is one spare front panel RJ-45 connection to the Ethernet Switch. 3527 Internally there are 4 switch ports used to connect the 3 BMC53128 switch chips: Chip "A" 3528 <--> Chip "B" and Chip "B" <--> Chip "C". 3529 The Hub Module does not provide a Base Interface Ethernet connection to the Shelf 3530 3531 Manager. With 2 Hub Modules in an ATCA Shelf the intent is that the switch in one module will 3532 provide connection to the "Control" Ethernet and the switch in the other Hub Module will 3533 proved connection to the "DCS" Ethernet. 3534 The FEX modules have an ethernet connection to both switches and thus to both 3535 3536 networks. 3537 The Hub FPGAs also have an etherent connection to both switches and thus to both networks. 3538 The RODs have only one ethernet connection and both the ROD on This Hub and the 3539 ROD on the Other Hub are connected to the Control network switch. 3540 The IPMCs have only one ethernet connection and both the IPMC on This Hub and the 3541 IPMC on the Other Hub are connected to the DCS network switch. 3542 Test systems may be operated with a single Hub Module that handles the Etherent connects 3543 to both the single ROD and single Hub IPMC in the Shelf. 3544 3545 The Hub's ethernet switch supports 10/100/1000 Base-T operation. The switch is based on 3 Broadcom BCM53128 switch chips. These 3 chips are connected together to form one 3546 3547 switch but can also be operated as 2 separate switches. Note that the part used is a

BCM53128 not a BCM53128v

29.1 Power Supply for the BCM53128 Switch Chip

- 3550 The BCM53128 Switch chip has some rather specific power supply requirements in terms of
- 3551 the number of supplies, their noise level, and the order in which they are ramped up at power
- 3552 on.

3549

- 3553 The naming of the power buses to this switch chip does not seem to be consistent in all of the
- 3554 BCM53128 documentation so one must be very careful. In the Hub design I have used
- unambiguous versions of the BMC53128 power supply net names.
- Using the power supply net-names from the Data Sheet the required power rails are:

Data Sheet Power Net	Supplies Power to	Details
AVDDH	Analog I/O	3.3V from BULK 3V3
	C	Net-name matches in the Design Guide the Demo
		Brd Sch and Data Sheet tables and Pin Lists.
AVDDL	Analog Core	1.2V from SWCH_1V2 DCDC Conv.
		Ferrite isolated on Demo Board. Net-name matches
		in the Design Guide the Demo Brd Sch and Data
		Sheet tables and Pin Lists.
DVDD	Digital Core	1.2V from SWCH_1V2 DCDC Conv.
		Called DVDD in Data Sheet and Sch.
		Called VDDC in the Design Guide.
OVDD	GMII-RGMII	Can be: 1.5V or 2.5V or 3.3V
	Port	from BULK_3V3 on the Hub.
		This port is not used on the Hub.
		Called OVDD in Data Sheet and Sch.
OVID D 4	D	Called VDDO1 in the Design Guide.
OVDD2	Digital 3V3	3.3V from BULK_3V3
	I/O	Called OVDD2 in Data Sheet and Sch.
CDITILL DATED	D1 4 1	Called VDDO3 in the Design Guide.
GPHY1_BAVDD	Phys Analog	3.3V from BULK_3V3 Ferrite isolated on
		Demo Brd. Called GPHY1_BAVDD in Data
		Sheet Table 32 Signal Definitions and Design
		Guide Pg 62. Called GPHY1_BVDD in the
		Schematic and the Data Sheet Pin Lists. Called
		QGPHY1_BVDD1 in the Design Guide Pg 61.
GPHY2 BAVDD	Phys Analog	3.3V from BULK 3V3
_		Ferrite isolated on Demo Brd. Called
		GPHY2 BAVDD in Data Sheet Table 32
		Signal Definitions and Design Guide Pg 62.
		Called GPHY2 BVDD in the Schematic and
		the Data Sheet Pin Lists. Called
		QGPHY2_BVDD1 in the Design Guide Pg 61.
PLL AVDD	PLL Analog	1.2V from SWCH 1V2 DCDC Conv.
ILL_AVDD	1 LL Allalog	Ferrite isolated on Demo Brd.
		Called PLL AVDD in all documents
		but not listed Pg 61 Design Guide.
GPHY1_PLLDVDD	Phys Analog	1.2V from SWCH 1V2 DCDC Conv.
	i iiyo i iiiaiog	Ferrite isolated on Demo Brd. Called
		1 cirre isolated on Demo Bid. Called

		GPHY1_PLLDVDD in Data Sheet Table 32 Signal Definitions and Design Guide Pg 62. Called GPHY1_PLLVDD in the Schematic and the Data Sheet Pin Lists. Called QGPHY1_PLLVDD in the Design Guide Pg 61.		
GPHY2_PLLDVDD	Phys Analog	1.2V from SWCH_1V2 DCDC Conv. Ferrite isolated on Demo Brd. Called GPHY2_PLLDVDD in Data Sheet Table 32 Signal Definitions and Design Guide Pg 62. Called GPHY2_PLLVDD in the Schematic and the Data Sheet Pin Lists. Called QGPHY2_PLLVDD in the Design Guide Pg 61.		
XTAL_AVDD	Osc Analog	3.3V from BULK_3V3 Ferrite isolated on Demo Brd. Called XTAL_AVDD in all documents but not in Design Guide Pg 61 or 62.		
Data Sheet pages 136 a This is a total of 11 su	References: see pages 61, 62 in the Design Guide, the Demo Board Schematics, and in the Data Sheet pages 136 and the pin lists starting on page 138. This is a total of 11 supply buses to the Switch Chip. As implemented on the Demo Brd, 7			
of them have Ferrite po				
There are a number of	-			
_	GPHYS1_RDAC Bias Setting Pin 1.24k Ohm to Gnd Required. GPHYS2 RDAC Bias Setting Pin 1.24k Ohm to Gnd Required.			
GITT 52_RD/TC Dias setting I ii 1.2 ik Olim to Gha required.				
IMP_VOL_REF IMP	IMP_VOL_REF IMP Interface Voltage Reference Gnd this pin.			
PLL_AVSS Gnd Tie this pin to Logic Ground.				
XTAL_AVSS Gnd Tie this pin to Logic Ground.				
Exposed_Pad Gnd Tie this pin to Logic Ground.				

* 4 G 1 PD*** * * 1 1 1 1 1 G 1 1 G 1 G 1 G

3576 3577	As such I do not think that there are any Gnd pins on this part. Its one and only ground connection is through its center Exposed Thermal Pad.
3578	The power supply connections to a Switch Chip on the Hub Module are shown in Figure 60 .
3579	29.2 Power-Up Supply Sequencing
3580 3581 3582 3583	The required power supply ramp up sequence is discussed on page 62 and 63 of the Design Guide. They say that failure to properly sequence the supplies will not damage the device but the for "successful" power up the proper supply sequence must be followed and the Reset line used in the proper way.
3584 3585	The BCM53128 device requires specific power sequencing between the core and I/O supplies.
3586 3587 3588	The device power sequence requires I/O power (3.3V, 2.5V) to come up first, followed by the core power (1.2V). The requirement is that the core power (1.2V) should not be on until the I/O power (3.3V, 2.5V) reaches at least 1.0V.
3589 3590	When the core power reaches nominal core voltage $(1.2V + -5\%)$, the I/O power should be stable at nominal I/O voltage $(3.3V + -5\%)$ or $2.5V + -5\%$.
3591 3592	The max ramp-up time for core power 1.2V (from 0V to nominal voltage +-5%) is 2 msec. See page 63.
3593 3594 3595	Additionally, for successful power-up, Broadcom recommends that the external hardware reset be active for at least 80 msec after both I/O and core power are stable. See page 63.
3596 3597	Note that the required power-up sequence rules out ramping all supplies Volt for Volt because they do not want any power on the core until the I/O is up to at least 1.0V.
3598 3599 3600	Thus the Hub Module needs a separate delayed 1.2V Core supply for the Switch Chips. Having a separate 1.2V supply for the Switch Chips was kind of in the cards anyway because clearly it can not be shared with the 1.2V Virtex MGT supply.
3601 3602	The power supply current requirements on page 298 of the data sheet appear to be total current from the various voltage buses. I don't know if there are extra start up requirements.
3603 3604	1.2 Volt 1130 mA 2.5 Volt 26 mA (if used)
3605	3.3 Volt 496 mA
3606	29.3 Hub Module Power Supply Design for Its Switch Chips
3607 3608 3609 3610	A separate 12 Amp supply is used for the Switch's 1.2 Volt requirements. This is a GE UDT020A0X1 DCDC Converter and it is enabled after the other DCDC Converters on the Hub Module have all ramped up and specifically after the BULK_3V3 converter has ramped up.

- The typical draw on this SWCH 1V2 bus for all 3 switch chips is expected to be 3.5 Amps.
- The typical draw on the BULK_3V3 bus for all 3 switch chips is expected to be 1.5 Amps.
- The expected heat load for all 3 switch chips is 9.2 Watts.
- 3614 The OVDD power bus to the Switch Chips can be either 2.5 Volt or 3.3 Volt. The OVDD
- rail powers the GMII RGMII port I/O pins. On the Hub Module the GMII-RGMII port is
- not used and for convenience the OVDD rail is powered from the BULK 3V3 supply.
- The sources of the 11 supply rails to the BCM53128 Switch Chips on the Hub Module are the
- 3618 following:

3619	AVDDL	1.2V from SWCH_1V2 DC/DC Converter	
3620	DVDD	1.2V from SWCH_1V2 DC/DC Converter	
3621	PLL_AVDD	1.2V from SWCH_1V2 DC/DC Converter	
3622	GPHY1_PLLDVDD	1.2V from SWCH_1V2 DC/DC Converter	
3623	GPHY2_PLLDVDD	1.2V from SWCH_1V2 DC/DC Converter	
3624	AVDDH	3.3V from BULK_3V3 DC/DC Converter	
3625	OVDD	3.3V from BULK_3V3 DC/DC Converter	
3626	OVDD2	3.3V from BULK_3V3 DC/DC Converter	
3627	GPHY1_BAVDD 3.3	3V from BULK_3V3 DC/DC Converter	
3628	GPHY2_BAVDD 3.3	3V from BULK_3V3 DC/DC Converter	
3629	XTAL_AVDD	3.3V from BULK 3V3 DC/DC Converter	

29.4 Switch Chip Bypass Capacitors and Filter Chokes

- Recall the power supply bypass capacitors recommended by Broadcom. The following is a
- combination of the BCM53128 Design Guide and the Demo Board Schematic.
- PLL_AVDD pin (each one) is connected to the Analog 1.2V plane via the ferrite bead. Each pin is bypassed with 22 uFd and 100 nFd capacitors.
- AVDDL pins are connected to the Analog 1.2V plane and bypassed with a 33 uFd capacitor. Each pin is decoupled with a 1.0 uFd capacitor.
- DVDD pins are connected to the Digital 1.2V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- GPHY1_PLLDVDD pins are connected to the Digital 1.2V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- GPHY2_PLLDVDD pins are connected to the Digital 1.2V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- XTAL_AVDD pins are connected to the 3.3V plane and bypassed with a 100 nFd capacitor.

- AVDDH pins are connected to the 3.3V plane and bypassed with a 33 uFd capacitor. Each pin is bypassed with a 1.0 uFd capacitor.
- OVDD2 pins are connected to the 3.3V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- OVDD pins are connected to either the 2.5V or 3.3V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- GPHY1_BAVDD pins are connected to the 3.3V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- GPHY2_BAVDD pins are connected to the 3.3V plane and bypassed with a 10 uFd capacitor. Each pin is bypassed with a 100 nFd capacitor.
- On the Hub Module the following 7 supply rails to the switch chips are isolated with a ferrite filter chokes:

3657	AVDDL		1.2V
3658	PLL_AVDD	1.2V	
3659	GPHY1_PLLDVDD		1.2V
3660	GPHY2_PLLDVDD	1.2V	
3661	GPHY1_BAVDD		3.3V
3662	GPHY2_BAVDD		3.3V
3663	XTAL_AVDD		3.3V

From the demo board schematics I believe that ferrite chokes with a reactance of 600 Ohms

at 100 MHz and a 2 Amp capacity with less than 100 mOhm resistance is adiquate for all 7 of

3667 these applications.

On the Hub Module the following 4 supply rails to the switch chips are not isolated with a

3669 filter choke:

3664

3674

3670 DVDD 1.2V 3671 AVDDH 3.3V 3672 OVDD 3.3V 3673 OVDD2 3.3V

29.5 The BCM53128 Switch Capacitive Coupling

- Page 29 of the BCM53128 Design Guide explains that capacitive coupling can be used
- between pairs of BCM53128 chips for all 3 ethernet speeds. Capacitive coupling works
- between BMC53128 chips because the BCM53128 uses Voltage Mode Phy technology.

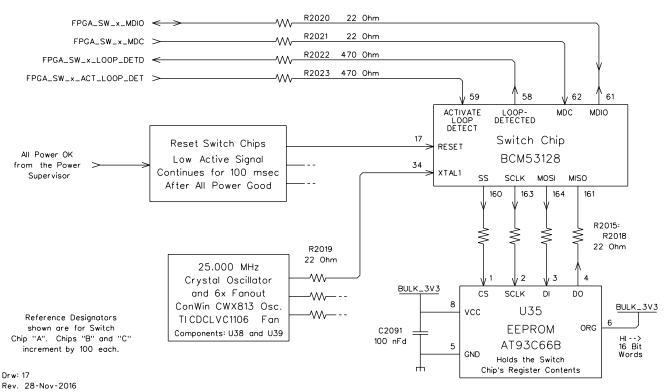
3678 3679	Capacitive coupling should also work between the BMC53128 and other parts that use Voltage Mode Phy technology.
3680 3681 3682	There are termination schemes that use capacitive coupling between the BCM53128 and parts with older Current Mode Phys parts but this is probably speed dependent and is not needed on the Hub Module.
3683 3684 3685 3686 3687 3688	The Micrel KSZ9031 Phys has a voltage mode transmitter connection to the medium so it can probably work with capacitive coupling. The KSZ9031 data sheet talks only about connection with magnetics. Because the KSZ9031 has voltage mode transmitters, the center tap on the chip's side of the transformer should just be tied to ground with a 100 nFd capacitor (i.e. not connection to a power bus). This is just like the transformer connection to the BCM53128 switch chip.
3689 3690	The Hub Module design uses capacitive coupling between the 3 BCM53128 Switch chips and between the BCM53128 and the KSZ9031RNX Phys for the Hub's FPGA.
3691	29.6 Switch Chip Orientation and Port Connections
3692	For all 3 Switch Chips their pin #1 will be in the SE corner.
3693	The 1:64 edge is to the East with its Clock, JTAG, 3 LED, and unused IMP connections.
3694	The 65:128 edge is to the North. This is Ports 4:7 with Port 4 closest to the Hub's back edge.
3695 3696	The 129:192 edge is to the West. This is a bunch of unused IMP stuff and then the bulk of the LED connections.
3697 3698	The 193:256 edge is to the South. This is a few LED connections and then Ports 0:3 with Port 3 closest to the back edge of the Hub.
3699 3700 3701	Based on the placement of the Switch Chips running B, A, C across the card from front to back and based on the Switch Chip's orientation the following Port assignments are the most straight forward to route.
3702	Chip "A" U31 is in the center of the row:
3703	Port 0 to J24 Row 8 BI Channel 14 Slot 14 FEX
3704	Port 1 to J24 Row 7 BI Channel 13 Slot 13 FEX
3705	Port 2 to J24 Row 6 BI Channel 12 Slot 12 FEX
3706	Port 3 to J24 Row 5 BI Channel 11 Slot 11 FEX
3707	Port 4 to J24 Row 4 BI Channel 10 Slot 10 FEX
3708	Port 5 to J24 Row 3 BI Channel 9 Slot 9 FEX
3709	Port 6 to Front Panel RJ-45 Connector RJ2 Lower/Left

3710	Port 7	to Switch Chip "B" Capacitor Coupled
3711		
3712		
3713		
3714	Chip "B"	U32 is the "center" Switch Chip:
3715	Port 0	not used
3716	Port 1	not used
3717	Port 2	to Switch Chip "A" Capacitor Coupled
3718	Port 3	to Switch Chip "C" Capacitor Coupled
3719	Port 4	to This Hub's FPGA Capacitor Coupled
3720	Port 5	to J20 Row 3 Update Channel to Other Hub
3721	Port 6	to Front Panel RJ-45 Connector RJ3 Lower/Left
3722	Port 7	to Front Panel RJ-45 Connector RJ3 Upper/Right
3723		
3724		
3725	Chip "C"	U33 is near the cards backplane edge:
3726	Port 0	to J24 Row 2 BI Channel 8 Slot 8 FEX
3727	Port 1	to J24 Row 1 BI Channel 7 Slot 7 FEX
3728	Port 2	to J23 Row 10 BI Channel 6 Slot 6 FEX
3729	Port 3	to J23 Row 9 BI Channel 5 Slot 5 FEX
3730	Port 4	to J23 Row 8 BI Channel 4 Slot 4 FEX
3731	Port 5	to J23 Row 7 BI Channel 3 Slot 3 FEX
3732	Port 6	to Front Panel RJ-45 Connector RJ2 Upper/Right
3733	Port 7	to Switch Chip "B" Capacitor Coupled
3734		
3735		
3736		

3737	29.7 Assignment of Ethernet "Magnetics"	
3738	These assignments are given in Section 17.	
3739	29.8 Assignment of Front Panel RJ-45 Connectors	
3740	These assignments are given in Section 17.	
3741	29.9 Resistor Set Pin	
3742 3743	The RDAC pins, GPHY1_RDAC pin 228 and GPHY2_RDAC pin 96 must be connec to Ground with 1.24k Ohm 1% resistors.	ted
3744	29.10 Unused Tie Hi, Tie Low, Float Pins	
3745 3746	There are a number of un-used and no-connect pins on the switch chips. Some of the unpins must be tied Hi or Low - others must be left floating.	usec
3747	IMP_VOL_REF pin 146 must be tied to Ground.	
3748		
3749	CLK_FREQ0/GPIO0 pin 14 must be left floating	
3750	CLK_FREQ1/GPIO1 pin 15 must be left floating	
3751		
3752	IMP RGMII Inputs: RXCLK, RXD(3:0), RXCTL (aka RXDV)	
3753	should all be Pulled-Down These are pins:	
3754	144, 154, 152, 151, 150, 149	
3755		
3756	LOOP_DETECTED pin 58 warning buzzer if a Loop	
3757	is Detected - float	
3758	No Connect Pins from BCM Datasheet:	
3759	NC 5 this is a second MDIO aka MDIO2	
3760	NC 6 this is a second MDC aka MDC2	
3761	NC 20	
3762	NC 28	
3763	NC 37	
3764	NC 39	

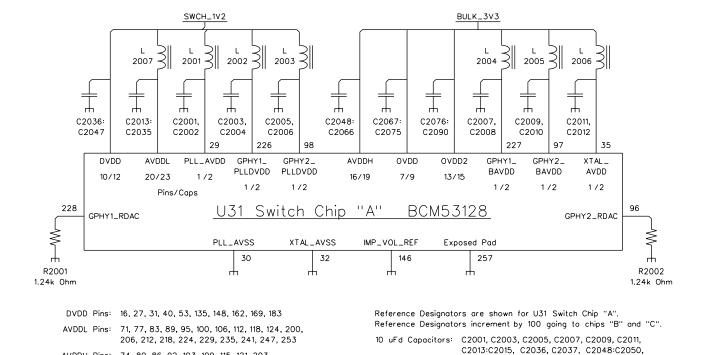
3765	NC 41
3766	NC 42
3767	NC 45
3768	NC 46
3769	NC 69
3770	NC 70
3771	NC 99
3772	NC 225
3773	Other unused pins, e.g.
3774	LEDCLK 167 HP has small cap to gnd Kit has 100 pFd to gnd
3775	LEDDATA 166 HP has small cap to gnd Kit floats
3776	
3777	TRST pin 36 has an internal Pull-Up but Must be pulled Low
3778 3779	7. for normal operation. See datasheet page 129.8. Kit has a DNI pull-down. HP has a pull-down.
3780	29.11 EEPROM Connection to the Switch Chip
3781 3782	The BCM53128 contains about 200 internal registers. The initial running state of many of these registers may be set at power up by the contents of an attached EEPROM.
3783 3784	Figure 61 shows the connection of this EEPROM to the BCM53128 switch. This drawing also shows the Clock, Reset, and management connections to the Swtich Chip.
3785 3786 3787	The EEPROM is an AT93C66B device with 8 pins. Note that an earlier Atmel device (AT93C66A-2.7) had originally been specified for use with the BCM53128. This EEPROM is powered from the 3V3 bus and 4 of its pins connect to the switch chip:
3788	SS slave select pin 160 Low active to the EEPROM
3789	SCK SPI Clock pin 163 to the EEPROM
3790	MOSI Master Out Slave In pin 164 input to the EEPROM
3791	MISO Master In Slave Out pin 161 output from EEPROM
3792	
3793 3794	All 4 of these pins use series damping resistors, e.g. 22 Ohm. In addition to these 4 signal pins this EEPROM has one power pin and one ground pin and one not connected pin.

3795 3796	The ORG pir stores 256 1	n on the EEPROM is pulled up to set it for 16 bit words. 16 bit words.	The AT93C66B
3797 3798 3799 3800 3801	Note that this: SS, SCK, MOSI, MISO interface to the switch chip can be used for either: EEPROM or SPI bus - but not for both. It's use is set for ever more at power up by the CPU_EEPROM_SEL strapping pin, pin 18. Pull it down to enable use with the EEPROM. At power up I think it's basically an issue of setting up the switch's SPI port as a SPI master or a slave.		
3802 3803 3804	We still have the questions of what content to put into this EEPROM for the Hub application, can all 3 EEPROMs contain exactly the same data, how to program them, and how to change their data if there is a problem in the future.		
3805 3806 3807 3808 3809	and keep then should be par normal SOIC	these uncertanties I want to put the EEPROMs on the back mopen and easy to change. To facilitate this I will use a sert number: AT93C66B-SSHM -B or -T. Both are good with a 3.90 mm wide body, i.e. feet about 6.00 mm wide eight is 1.75 mm so it fits within the Hub's 2.00 mm side	in SOIC-8 part. This d DK numbers. This is a le. Atmel says that its
3810	29.12	SPI Bus Connection	
3811 3812 3813 3814 3815	control and n serial bus and option sets th	128 switch chip includes a serial SPI bus connection. The monitoring of the chip through its various registers. The d the EEPROM share the same pins on the device. At ponese pins to operate as either an SPI bus interface or as attion is set it can not be changed.	problem is that the SPI ower up, a strapping
3816 3817 3818	subsequent c	Module we need to use these pins for EEPROM setup of to control and monitoring of the switch chips from the Hub' DIO management interface to the device.	•
3819	29.13	MDC MDIO Connection to the Hub's Virte	ex FPGA
3820 3821 3822	i.e. the Hub's	s the Switch Chip's MDC MDIO port in slave mode so s FPGA, can access registers within the Switch. See the lon page 128. See the Design Guide starting on page 56	e Datasheet starting at
3823	MDIO pin 61	1 Data I/O pin	
3824 3825	"In slave mo	de, it is used by an external entity to read/write to the sw	itch registers via the
3826	MDC pin 62	Clock pin	
3827	"In slave mo	de (the clock) is sourced by an external entity."	


3828	29.14	Switch Chip Reset
3829 3830 3831 3832 3833 3834	all of its pow all of the Sw minimum pu the Reset sig	128 Swtich Chip needs a Reset signal that remains asserted until 80 msec after ver supply rails are fully ramped up. We may also want to be able to reset one or itch Chips from a protected register in the Hub Module's Virtex FPGA. The lse width of the Reset signal is 1 msec. One must wait 50 msec after the end of nal before trying to talk to the switch chip via its SPI bus. The Reset signal is Reset signal is Low active.
3835	29.15	Clock to the Switch Chip
3836 3837 3838	Switch Chips	dule uses an external 25 MHz clock source to provide the clock to all 3 of its s. This external clock enters the chip on its XTAL1 pin 34 and the XTAL0 pin ating. The clock source for the Switch Chips must be:
3839 3840 3841 3842 3843 3844 3845 3846 3847		25 MHz +- 50 ppm, 50% duty cycle, 1 to 4 nsec edge speed, 3V3 CMOS level, 5 ppm per year, 10 ppm over temperature, less then 100 psec jitter very low jitter in the 5 kHz to 1 MHz band.
3848 3849	The Hub Module supplies this clock from a Connor Winfield CWX813-025.0M oscillator with a 6x fanout and series terminator resistors.	
3850	29.16	Switch Chip Functions That Are Not Used on the Hub
3851 3852		derstand whether or not any pull-up / pull-downs are needed to not use these that they just sit quietly as good citizens.
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862	 Flash Memory, pins: FSO 64, FCSB 65, FSCLK 66, FSI 67 Note that the Flash Memory is for 8051 code only. JTAG, pins: TDO 22, TDI 23, TCK 24, TMS 25, TRST 36 IMP Interface - this is the Inband-Management-Port, i.e. a PhysLess port that can operate as: GMII, RGMII, MII, TMII, RxMII or whatever to manage the switch chip. We do not want it at all - thus we must tie DIS_IMP strap pin Hi. The IMP pins - note that the Design Guide says to tie Low unused IMP pins: RXCLK, RXD(3:0), RXCTL but that neither the Kit or HP does this. List of IMP pins: 	
3863	IMP_VOL_	REF 146 must be tied Low
3864	IMP_VOL_	SEL1 48, IMP_VOL_SEL0 49
3865	IMP_COL	159, IMP_CRS 143
3866	IMP_DUPI	EX 52, IMP_LINK 54

```
3867
        IMP MODE0/GPIO5 7, IMP MODE1/GPIO6 8
3868
        IMP PAUSECAP RX 55, IMP PAUSECAP TX 56
3869
        IMP SPEED1
                       50, IMP SPEED0
                                         51
3870
        IMP GTXCLK
                       132, IMP RXCLK
                                          144
3871
                      150, IMP_RXD1
        IMP RXD0
                                       151
3872
        IMP RXD2
                      152, IMP RXD3
                                       154
3873
        IMP RXD4
                      155, IMP RXD5
                                       156
                      157, IMP_RXD7
3874
        IMP RXD6
                                       158
3875
        IMP RXDV
                      149, IMP RXER
                                        147
3876
        IMP_TXCLK
                      141, IMP_TXD0
                                        137
3877
        IMP TXD1
                      136, IMP_TXD2
                                       134
3878
        IMP TXD3
                      131, IMP TXD4
                                       130
3879
        IMP TXD5
                     128, IMP_TXD6
                                       127
3880
                     126, IMP_TXEN
                                       139
        IMP TXD7
3881
        IMP TXER
                      140
                   Switch Chip Bypass Capacitor and Filter Update
3882
       29.17
3883
       During the tentative final placement of the 100 or so RCL comps for each Switch chips the following
3884
       changes were made:
3885
3886
       PLL AVDD
                      C01 C02 L01
                                    no-change
3887
       GPHY1 PLLDVDD C03 C04 L02
                                        no-change
3888
       GPHY2 PLLDVDD C05 C06 L03
                                        no-change
3889
        GPHY1 BAVDD
                        C07 C08 L04
                                       no-change
3890
       GPHY2_BAVDD
                        C09 C10 L05
                                       no-change
3891
        XTAL AVDD
                       C11 C12 L06
                                      no-change
3892
3893
       DVDD SWCH 1V2 C36,C37 C38:C47 no-change
```

3895	AVDDL 1V2 C13,C14 C16:C30 L07
3896	remove from set: C15 C33,C34,C35
3897	
3898	
3899	AVDDH \ C48, C49, C50
3900	OVDD BULK_3V3 C51:C62
3901	OVDD2 / C78:C85
3902	
3903	remove from set: C67, C68, C76, C77
3904	C63, C64, C65, C66
3905	C69:C75
3906	C86:C90
3907	
3908 3909	The components that have been removed from the relatively positioned component set are now in their own comps file for manual positioning.
3910	
3911	Other Changes in Switch Comps:
3912	
3913	R2x19 the clock series terminator has been moved
3914	out of the Switch Chip Comps files and into
3915	the 25 MHz Enet Clock Generator comps file.
3916	
3917	C2x91 for the Switch EEPROM has been moved to the
3918	top side of the card.


Switch Chip - Support Circuits 1

Signals to/from pins in the Hub's UltraScale FPGA 3V3 Select I/O Banks

Figure 60: Hub switch chip support circuit diagram (1/3).

Switch Chip - Support Circuits 2

OVDD2 Pins: 3, 11, 19, 43, 44, 57, 63, 68, 165, 173, 180, 187, 193 C2038:C2047, C2069:C2075, C2078:C2090

100 nFd Capacitors:

C2067, C2068, C2076, C2077

C2002, C2004, C2006, C2008, C2010, C2012,

1 uFd Capacitors: C2016:C2035, C2051:C2066

Figure 61: Hub switch chip circuit diagram (2/3).

3920

Rev. 1-Dec-2015

AVDDH Pins: 74, 80, 86, 92, 103, 109, 115, 121, 203,

OVDD Pins: 125, 129, 133, 138, 142, 145, 153

209, 215, 221, 232, 238, 244, 250

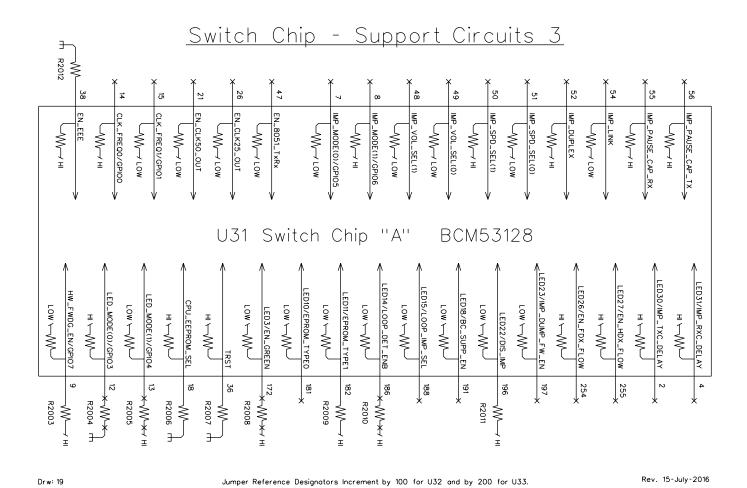


Figure 62: Hub switch chip circuit diagram (3/3).

30 Appendix 17: Switch Chip Associated Jumpers

3922

3937

3938

- The BMC53128 switch chip has a large number of "straping" pins (33) to provide basic control its various functions. The use of these strapping pins is complicated because there are interactions between then and because the documentation seem incomplete and different sections of the documentation frequently call the same object by different names and frequently use slang names, e.g. green means don't use the 8051.
- On the Hub Module, to the extent that space limitations allow, the approach taken (same as HP used) is to provide a 0603 jumper site for each strapping pin that is tied to the opposite rail than the default internal pull up/down resistor for that pin. This gives us a way to make post production changes if necessary.
- The 0603 site has not been provided for some strapping pins where their funtions were clear and where we wanted the default provided by the internal pull up/down resistor. In these cases trace routing is such that access can be made to the signal if necessary.
- The 33 strapping pins and their internal pull up/down resistors and their external 0603 jumper sites are shown in **Figure 62**.

30.1 Enumeration of All Strapping Options on the BCM53128

	Pin	Int'l	BCM Docs			
Signal Name	#	Default	Say	Kit	HP	Hub
CLK FREQ1/GPIO1	15	PD	Must Float	DNI	Float	
_ `			in all designs	PU		
CLK_FREQ0/GPIO0	14	PU	DG pg 39	DNI	Float	
				PD		
EN_CLK25_OUT/CLK_25_OUT	26	PD	Low>	Float	Float	
EN_CLK50_OUT/CLK_50_OUT	21	PD	Disable	Float	Float	
EN_EEE	38	PU	Hi->Enable	Float	Float	YID
EN_8051_TxRx	47	PD	Hi->Enable	Float	Float	
IMP_MODE(1)/GPIO6	8	PU	Sets IMP	Float	Float	
IMP_MODE(0)/GPIO5	7	PD	Mode	Float	Float	
IMP_VOL_SEL(1)	48	PD	Both Low	Float	Float	
IMP_VOL_SEL(0)	49	PD	> 3V3	Float	Float	
IMP_SPD_SEL(1)	50	PU	Default	Float	Float	
IMP_SPD_SEL(0)	51	PD	for normal	Float	Float	
			operation			
IMP_DUPLEX	52	PU	Hi->Duplex	Float	Float	
IMP_LINK	54	PD	Hi->LinkUp	Float	Float	
IMP_PAUSE_CAP_RX	55	PU	Hi-	Float	Float	
			>EnbPause			
IMP_PAUSE_CAP_TX	56	PU	Hi-	Float	Float	
			>EnbPause			
HW_FWDG_EN/GPIO7	9	PD	HI to Enb	has	has	YIU
			Frame Fwd	PU	PU	

101 PPY Y 131 1 P 1 1 10 10 1

LED_MODE(1)/GPIO4	13	PD	Set LED Mode	DNI PD	has PD	YBU
LED_MODE(0)/GPIO3	12	PU	- Wode	DNI PU	Float	YBD
CPU_EEPROM_SEL	18	PU	Low to Enb EEPROM	has PD	has PD	YID
TRST	36	PU	Pull Low	DNI	has	YID
			for normal	PD	PD	
			operation			
LED3/EN GREEN	172	PD	Hi->Enable	has	Float	YBU
ELD5/EI_GREEI\	1/2	1 D	Green Mode	PU	1 1041	100
			DS Pg 133	10		
			DG pg 56			
LEDP11/EPROM_TYPE1	182	PD	10b is PROM	has	has	YIU
			type 93C66	PU	PU	
LEDP10/EPROM_TYPE0	181	PD		Float	Float	
LEDP14/LOOP_DETECT_EN	186	PD	Hi->Enable	has PU	Float	YBU
LEDP15/LOOP_IMP_SEL	188	PD	Hi->Include	Float	Float	
LEDP18/BC_SUPP_EN	191	PD	Hi->Enable	Float	Float	
			Rate Brdcst			
			Supp			
LEDP22/DIS_IMP	196	PD	Hi->Disable	has PU	has PU	YIU
LEDP23/IMP_DUMB_FWDG_EN	197	PD	Hi->Allow	Float	Float	
			Dumb			
			Forward			
LEDP26/ENFDXFLOW	254	PU	Hi->Not	Float	Float	
			Clear			
			from DS or			
LEDD27/ENHDVELOW	255	DII	DG	Floor	Elect	
LEDP20/IMP, TYC, DELAY	255	PU PU	Hi->Enable	Float	Float	
LEDP30/IMP_TXC_DELAY	2	PU PU	Hi->Enable	Float	Float	
LEDP31/IMP_RXC_DELAY	4	PU	Hi->Enable	Float	Float	

3940

3941

3942

Hub Notation Key:

- YIU -> Yes Hub has an Installed jumper and it's a Pull-Up
- YID -> Yes Hub has an Installed jumper and it's a Pull-Dowm
- YBU -> Yes Hub has a Not-Installed jumper and it's a Pull-Up
- YBD -> Yes Hub has a Not-Installed jumper and it's a Pull-Dowm
- --- -> For these, the Hub does not have a jumper for this function

3948	31 Appendix 18: Hub-Module Xilinx FPGA
3949	The UltraScale Virtex device on the Hub Module is a: XCVU125-1FLVC2104I
3950 3951	This is speed grade "1", i.e. the normal common slowest speed grade and it is the "Industrial" temperature range which is the common temp range for most of these UltraScale parts.
3952 3953	This part has: 40 GTH Transceivers and 40 GTY Transceivers. These are spread across 2 SLRs with 20 of each kind of transceiver in each SLR.
3954 3955	This part has 7 HP Select I/O Banks with 52 I/O signals in each. 4 of the HP banks are in SLR #0 and 3 of the HP banks are in SLR #1.
3956 3957 3958	This part also has 2 HR Select I/O Banks with 26 I/O signals in each. Both of the HR banks are in SLR #0. The Hub Module uses both of the HR Banks for 3V3 I/O and it uses most of the signals in these Banks.
3959 3960	The FLVC2104 package has 2104 pins in a 1mm by 1mm square array with 46 pins on each side and 3 pins missing at each corner. This is a No-Lead package.
3961	31.1 FPGA Configuration:
3962 3963 3964	The Hub's UltraScale Virtex FPGA is configured in Master BPI mode from a Micron MT28GU01GAAA1EGC-OSIT NOR Flash memory. This method of configuration requires pins in both the special Bank #0 and most of the pins in Select I/O Bank #65.
3965	Figure 63 shows the details of this configuration setup.
3966 3967 3968	The MT28GU01GAAA1EGC-OSIT Flash memory holds 1 Gb of data. The XCVU125 FPGA requires 401,441,280 bits to configure so the Hub Module can hold 2 versions of FPGA Firmware.
3969	31.2 FPGA JTAG Connection
3970 3971	The Hub Module provides a front panel JTAG connection via its J2 "Access Connector". A 1V8 version of this JTAG string is routed to the Hub's FPGA as shown in Figure 37 .
3972	31.3 FPGA System Monitor Reference and Connections
3973 3974 3975	The hub provides an external precision reference and filtered power for the FPGA System Monitor. This is shown in Figure 64 . The IPMC's Sensor I2C bus is routed to the slave I2C port to the System Monitor as shown in Figure 36 .
3976	31.4 FPGA MGT Transceivers

The Hub design uses all 80 MGT Receivers and 29 of the MGT Transmitters. Note that this

FPGA's MGT transceivers are shared across both of its SLRs.

3977

The assignment of the MGT transceivers is listed in Section 18. The connections to the GTY 3979 and GTH Banks are shown in Figure 29 and Figure 30. 3980 31.5 FPGA RGMII Ethernet Base Interface Connection 3981 3982 The Hub Module FPGA is connected to 2 Micrel KSZ9031RNX Phys chips. These Phys 3983 chips provide 10/100/1000 speed ethernet connection between the FPGA and the Switch on 3984 This Hub and via the backplane to the Switch on the Other Hub. The Phys RGMII to FPGA connections are made to HP Bank #68. 3985 3986 Besides the MACs to run these connections the FPGA firmware may want MACs to run the MDC MDIO management links to the 3 Switch chips. 3987 31.6 FPGA Clock Sources 3988 3989 The Hub's FPGA is provided with the following clocks: 25.000 MHz Ethernet Clock single ended 3V3 to Bank 94 3990 3991 40.08 MHz LHC Clock LVDS Logic Clock to Bank 71 320.64 MHz LHC Clock Cap Coupled LVPECL Logic Clk to Bank 71 3992 8x 320.64 MHz LHC Clock Cap Coupled LVPECL MGT Reference Clk 3993 3994 2x 125.000 MHz Ethernet Clock single ended 1V8 level 3995 Each Phys Chip returns its 5x multiplied Clk to Bank 68 in the FPGA 31.7 The Select I/O Signals 3996 3997 The Hub design currently uses about 166 Select I/O signals. Both 1V8 and 3V3 levels are used. The 3V3 levels are from HR Select I/O Banks 84 and 94. 3998 3999 The Hub's use of FPGA Select I/O signals is listed in Sections 19 and 20.1. 31.8 FPGA Power Supply Requirements 4000 4001 The intent here is to list the full details of this FPGA's power supply and bypass capacitor requirements. Then in the Hub Power Supply Design document only a short summary of 4002 4003 these FPGA's power requirements will be presented along with a summary of the power supply requirements of the other components on the Hub Module. 4004 *UltraScale XCVU125-FLVC2104 Recommended Operating Conditions:* 4005 4006 VCCINT 0.950 V + 3.0%

VCCINT IO 0.950 V +- 3.0%

• VCCAUX 1.800 V +- 3.0%

0.950 V +- 3.0%

VCCBRAM

4007

4008

```
4010
             VCCAUX IO 1.800 V +- 3.0%
             VCCO HR
                          1.140 V to 3.400 V
4011
4012
             VCCO HP
                         0.950 V to 1.890 V
4013
             VBATT
                    MGTAVCC
                                 1.000 V +- 3.0%
4014
                 0
4015
                    MGTAVTT
                                 1.200 V +- 2.5%
                 0
4016
                    MGTVCCAUX 1.800 V +- 2.8%
4017
          VCCINT IO must be connected to VCCINT
4018
4019
          VCCAUX IO must be connected to VCCAUX
4020
          If VBATT is not used then connect VBATT to either ground or to VCCAU, then
          VCCO_0 must be a minimum of 1.425V during configuration.
4021
       Quiescent Supply Currents:
4022
4023
             VCCINT
                        2875 mA
4024
             VCCINT IO 178 mA
4025
             VCCBRAM
                          162 mA
4026
             VCCAUX
                         373 mA
4027
             VCCAUX IO 148 mA
4028
             VCCO
                        1 mA (assume per Bank)
       Power Supply Sequencing and Common Supplies:
4029
          At Power ON:
4030
          VCCINT / VCCINT_IO then VCCBRAM then
4031
          VCCAUX / VCCAUX_IO then VCCO
4032
          Power OFF is the reverse.
4033
4034
          VCCINT / VCCINT_IO and VCCBRAM can all be powered from the same supply and
4035
          ramped simultaneously.
          VCCAUX / VCCAUX_IO and VCCO can all be powered from the same supply and
4036
          ramped simultaneously.
4037
          VCCINT and MGTAVCC may be ramped simultaneously.
4038
          MGTAVCC should ramp before MGTAVTT.
4039
4040
          No recommended sequencing for MGTVCCAUX.
4041
          Besides the Quiescent currents listed above the supplies must be able to provide the
          following minimum currents during power up:
4042
                    VCCINT / VCCINT_IO supply 4397 mA minimum additional current
4043
                    VCCBRAM
                                           200 mA
4044
4045
                    VCCAUX / VCCAUX io supply 533 mA
                    VCCO
                                  supply 54 mA
4046
4047
4048
         All ramp times are 200 usec minimum and 40 msec max.
4049
           3.0 msec is about in the middle 16x from either side.
```

4050	
4051	From the "ultrascale PCB design guide" ug583
4052	ByPass Capacitor Requirements for the XCVU125-FLVC2104:
4053	• VCCINT / VCCINT_IO 2x 680 uFd, 3x 100 uFd, 5x 4.7 uFd
4054	• VCCBRAM 1x 47 uFd, 1x 4.7 uFd
4055	• VCCAUX / VCCAUX_IO 2x 47 uFd, 4x 4.7 uFd
4056	• VCCO HR or HP 1x 47 uFd
4057	 MGTAVCC, MGTAVTT, MGTVCCAUX One 4.7 uFd per Power Group
4058 4059 4060	The XCVU125-FLVC2104 has a from the GTH & GTY Guides total of 6 Power Groups. Six Power Groups includes both the GTH and GTY. There is the same one 4.7 uFd capacitor requirement for both the GTH and GTY transceivers.
4061	
4062	Notes:
4063 4064 4065 4066 4067 4068	 VCCINT and VCCINT_IO must be tied together on PCB. VCCAUX and VCCAUX_IO must be tied together on PCB. One 47 uFd capacitor is required for up (to) four HP/HR Banks when powered from the same VCCO voltage. 470 uFd can be used for 680 uFd in a 4 to 3 ratio

<u>Hub FPGA - Banks 0 & 65 - Configuration</u>

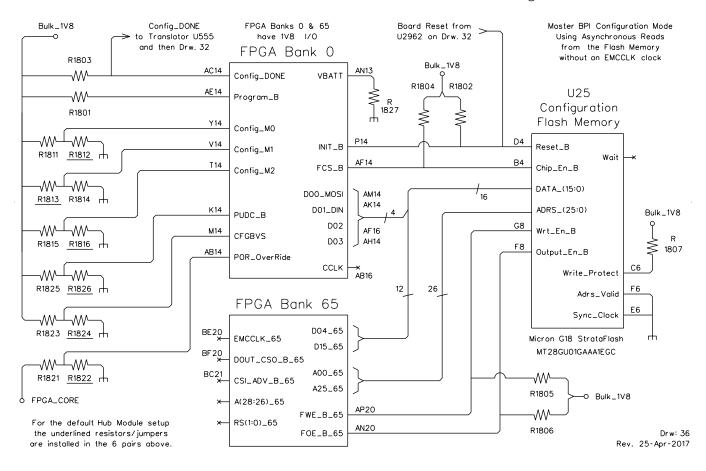
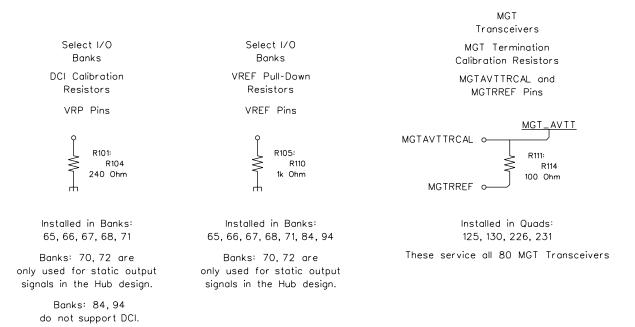



Figure 63: Hub FPGA configuration, banks 0 & 65.

4069

4080

Hub FPGA DCI, VREF, MGT Calibration Resistors

Drw. 38 Rev. 13-Nov-2016

Figure 64: Hub FPGA calibration resistors.

32 Appendix 19: Hub Commissioning Test Plan

4082 External inputs:

- Requirements from ROD, FEX and FELIX interfaces are assumed to be defined by the prior review outcomes and module specifications.
 - An engineering definition should be provided for the maximum changes in LHC input reference clock (eg, "We must be able to track a slew rate of 220 Hz/sec while our recovered clock does not shift in phase by more than 30 degrees from its normal position with respect to a static center frequency reference input.")

Definitions:

- "This Hub" / "Other Hub"
 - O Hub modules do not have a physical difference of whether they are in logical slot 1 or logical slot 2. The only difference is that the Hub in slot 1 transmits the master clock to the FEX, ROD and slot-2 Hub modules.
 - o Thus, each Hub can view the world from its own internal reference point and must be able to achieve satisfactory operation from both logical slots.
 - o "This Hub" corresponds to a Hub module in a reference slot (eg. Slot 1)
 - "Other Hub" thus corresponds to the Hub in the implied alternate slot relative to "This Hub" (eg, Slot 2 relative to Slot 1 and vice versa)
 - Combined Data
 - The Hub module receives TTC information from FELIX and extracts the clock and configuration data. It then combines local control signals from the ROD(s) present and distributions this Combined Data to all modules in the ATCA shelf.
 - GbE = Gigabit Ethernet

32.1 Power Supplies and Hub Component Cooling Tests

- 1. During MSU Final Assembly and Bench Testing
 - a. Verify (measure) 11 power supply output voltages and 7 power supply output currents while the FPGA is configured with test firmware.
 - b. The 7 DCDC Converters on each Hub are tested and setup for: Vin_On, Vin_Off, Vout_Margin_High, Vout_Margin_Low, and Vout_Scale_Loop.
- 2. Verify that the I2C PMBus monitoring of the 7 DCDC Converter output voltages and currents is working OK by reading them from the Front Panel I2C Bus connector. The intent is to verify that the IPMC has access to this data.
- 3. Verify that the FPGA's System Monitor reads out correct data for the Si Temperature, 1V8 Aux power, and 0V95 Core power.
- 4. Verify the sequencing and ramp rate for at least two of the power supply voltages, e.g. DC/DC-1 FPGA_Core, DC/DC-5 SWCH_1V2, and DC/DC-8 Bulk_3V3.
- 5. Verify that the board power enable circuit, the board start-up reset circuit and the two front panel board power status LEDs are all working correctly.
- 6. Verify the expected Hub FPGA Si Temperature with the Hub running in the Shelf with standard air flow rate and the highest wattage FPGA firmware that we have available (currently about 32 Watts).

7. Verify that the expected operating temperature is readout from the two MiniPODs via their control/monitoring serial bus connection to the Hub FPGA.

32.2 IPMC and Slow Control & Monitoring Bus Tests

- 1. Verify that the IPMC can negotiate via the IPMB Buses with the Shelf Manager and turn On or Off the Hub card appropriately.
- 4129 2. Verify that the IPMC can detect the front panel handle switch position and correctly follow the protocol to turn the Hob module power On and Off.
- 3. Verify that the IPMC can correctly read the Slot Address from the backplane pins for both Hub Slots.
- 4. Verify that the IPMC can correctly get the Crate Address from the Shelf Manager and make this address data available on the IPMC's general purpose I/O pins.
- 5. Verify that the IPMC can correctly gather the Hub's voltage, current, and temperature Monitoring Data by initiating the required cycles on the Sensor I2C Bus and that it can forward this Monitoring Data to the Shelf Manager where it is made available to the DCS system.
 - 6. Verify that by one of its general purpose I/O pins the IPMC can be told to suspend its Reads of Monitoring Data over the Sensor I2C Bus and then later to resume its normal reads of the Hub Monitoring Data.
 - 7. Verify that the IPMC can correctly read FRU and SDR data from the PROM on the Hub card via the Management I2C bus so that a generic Hub type L1Calo IPMC can be used on any Hub card.
 - 8. Verify that the IPMC can correctly read the Monitoring Data from the Hub's ATCA Power Entry Module via the Management I2C Bus.
 - 9. Verify that the three I2C buffers in the overall Sensor I2C Bus are working and be enabled or disabled via their control lines that run to the Hub's FPGA.
 - 10. Verify that the Front Panel JTAG connector has access to the Hub's FPGA and that when the ROD is installed and powered up that the ROD's FPGA also appears in this JTAG string.
- 4152 11. Verify that the two MiniPOD serial control & monitoring I/O buses are working and communicating with the Hub's FPGA.

4154 **32.3 MGT Link Tests**

4126

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4163 4164

- 1. Verify that the 13 Equalization Group Enable Signals are all working OK and routed to the correct sets of MGT Fanout Chips.
- Verify that the 4 MiniPOD Receiver MGT channels and the 8 MiniPOD Transmitter
 MGT channels are all working OK.
- 3. Verify that the Hub FPGA can receive 6 lanes of MGT data from all 12 of the FEX slots.
- 4. Verify that the Hub can receiver 6 lanes of MGT data from all 12 of the FEX slots and correctly pass this data to the ROD.
 - 5. Verify that the Hub FPGA can send out Combined Data to the 12 FEX slots, to the ROD on This Hub, and to the Other Hub.
- 6. Verify that This Hub can Receive Combined Data that was sent out by the Other Hub.
- 7. Verify that This Hub can Receive the Readout Control data that was sent out by the ROD on This Hub.
- 4168 8. Verify that This Hub can send out two lanes of Readout data to the Other Hub.
- 9. Verify that This Hub can Receive two lanes of Readout data from the Other Hub.

7.6.1 5577 7.1.2.1.5 5.1.6 5.2.

- 4170 10. Verify that This Hub can Receive and correctly pass to its ROD one lane of readout data from the Other Hub.
- 4172 11. Verify that the FPGA on This Hub can send one lane of its readout data to the ROD on This Hub.

32.4 Clock Tests

4174

4188

4203

4204

4205 4206

4207

4208

4210

4213

- 1. Verify that the 25.0 MHz and 40.0787 MHz oscillators are running at the correct frequency and are stable.
- 4177 2. Verify the 40.0787 and 320.6296 MHz PLLs have the correct LHC frequency tracking range.
- 3. Verify both sides of the First 40 MHz Fanout to the: Hub FPGA, ROD, 320 MHz PLL, and Second 40 MHz Fanout.
- 4. Verify both sides of the 13 outputs from the Second 40 MHz Fanout: 12 to the FEXs and 1 to Other Hub.
- 5. Verify both sides of the outputs from the 320 MHz Fanout: 8 connections to MGT Reference Inputs and 1 Logic Clock to the Hub FPGA.
- 4185 6. Verify that when operated as the Other Hub (i.e. the Hub that does not directly receive an optical TTC signal from FELIX), that the Hub card can correctly receive its LHC Reference Clock from the backplane.

32.5 Ethernet Connection and Ethernet Switch Tests

- 1. Verify that both GbE links to the Hub's FPGA are working correctly (link to the GbE Switch on This Hub and link via the backplane Base Interface to the GbE Switch on the Other Hub).
- 4192 2. Verify that all 22 GbE Switch Ports that are used on the Hub card carry GbE traffic OK.
- 3. Verify that the Hub's Front Panel GbE connection and GbE Magnetics for the ROD are all working OK.
- 4. Verify that the Hub's Front Panel GbE connection and GbE Magnetics for the IPMC are all working OK.
- 5. Verify that the current GbE Switch PROM content is OK and Final and start installing GbE Switch PROMs with this content on all Hub Modules.
- 6. Characterize the performance of the GbE Switch, i.e. test in isolation the data flow rate to each of the Switch's 18 external ports and test the switch when all 18 of its external ports are trying to flow data at the same time.

32.6 Miscellaneous Tests

- 1. Verify that all 66 Front Panel LEDs are working and are of the correct color.
- 2. Verify the Physical aspects of this Hub card:
 - a. Dimensions look correct (e.g. none of the brackets are in backwards).
 - b. The board's corners are in good shape.
 - c. The Insertion and Extraction forces feel correct and are smooth.
- d. The Front Panel Labels are clear and not scratched.
 - e. All of the backplane connectors line up in a straight row and are fully inserted.
- f. Nothing is loose or likely to vibrate in the air flow (e.g. the discrete power wires or fiber optic ribbons, or power supply LC filter comps).
 - g. MiniPOD and FPGA heat sinks are correctly installed.

Hub Spec v1 1.docx of 13/03/2018

4215 The MiniPOD Fiber Optic Ribbon Cables are correctly routed and not blocking air flow. 4216 3. Verify that all 9 ESD ground points are correctly connected so that the card is safe to 4217 handle. 4218 4. Verify that the card auto-configures its FPGA from its Flash memory at power up. 4219 5. Verify that the ROD can control the open collector output signals from the Hub's 4220 Front Panel LEMO Connector. 4221 6. Verify the correct operation of the 4 Power Control signals and the 8 Spare TBD 4222 4223 signals between the Hub and ROD cards. 4224 7. Verify the correct fuses are installed.

8. Verify that both Front Panel FPGA output Access Signals are working OK.

h. The MiniPODs are fully seated and screwed down.

4214