Chapter 5
Specific Energy
5.1. Introduction

The total energy of a channel flow referred to datum is given by,

2

H:z+y+V— (5.1)
2g

If the datum coincides with the channel bed at the cross-section, the resulting expression
is know as specific energy and is denoted by E. Thus, specific energy is the energy at a
cross-section of an open channel flow with respect to the channel bed.

The concept of specific energy, introduced by Bakmeteff, is very useful in defining
critical water depth and in the analysis of open channel flow. It may be noted that while
the total energy in a real fluid flow always decreases in the downstream direction, the
specific energy is constant for a uniform flow and can either decrease or increase in a
varied flow, since the elevation of the bed of the channel relative to the elevation of the
energy line, determines the specific energy.

Specific energy at a cross-section is,

2 2
E:y+V—:y+ 0 5 (5.2)
2g 2gA

Here, cross-sectional area A depends on water depth y and can be defined as, A = A(y).
Examining the Equ. (5.2) show us that, there is a functional relation between the three
variables as,

S(E,y,0)=0 (5.3)
In order to examine the functional relationship on the plane, two cases are introduced.
I. Q=Constant=0Q; — E=f1(y, Q)).

Variation of the specific energy with the water depth at a cross-section for a given
discharge Q);.

2. E=Constant=E; — E; =1 (y,Q)

Variation of the discharge with the water depth at across-section for a given
specific energy E;.
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5.2. Constant Discharge Situation

Since the specific energy,

2 Q2
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Figure 5.1. Specific energy diagram

For a channel of known geometry, E = f (y, Q). Keeping Q = constant = Q,, the variation
of E with y is represented by a cubic parabola. (Figure 5.1). It is seen that there are two
positive roots for the equation E indicating that any particular discharge Q; can be passed
in a given channel at two depths and still maintain the same specific energy E;. The
depths of flow can be either PR =y, or PR" = y';. These two possible depths having the
same specific energy are known as alternate depths. In Fig. (5.1), a line (OS) drawn such
that E = y (i.e. at 45° to the abscissa) is the asymptote of the upper limb of the specific
energy curve. It may be noticed that the intercept P'R* and PR represents the velocity
head. Of the two alternate depths, one (PR = y;) is smaller and has a large velocity head
while the other (PR'= y')) has a larger depth and consequently a smaller velocity head.
For a given Q, as the specific energy is increased the difference between the two alternate
depths increases. On the other hand, if E is decreased, the difference (y'; — y;) will
decrease and a certain value E = E, the two depths will merge with each other (point C in
Fig. 5.1). No value for y can be obtained when E < E., denoting that the flow under the
given conditions is not possible in this region. The condition of minimum specific energy
is known as the critical flow condition and the corresponding depth y. is known as
critical depth.

At critical depth, the specific energy is minimum. Thus differentiating Equ. (5.2) with
respect to y (keeping Q; constant) and equating to zero,

2
dE_\ O d1_,
dy gA” dy
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But,

j—A = %‘{y =T =Top width, width of the channel at the water surface
y y

Designating the critical flow conditions by the suffix (c),

2
—QIA L1 s
&4,

Equ. (5.4) is the basic equation governing the critical flow conditions in a channel. /¢t may
be noted that the critical flow condition is governed solely by the channel geometry and
discharge. Other channel characteristics such as the bed slope and roughness do not
influence the critical flow condition for any given Q. If the Froude number of the flow is
defined as,

Fea— (9
&1
Vj;=1—>F,§=1—>Fm=1 60
‘T,

The critical flow corresponds to the minimum specific energy and at this condition the
Froude number of the flow is unity.

Referring to Fig. (5.1), considering any specific energy other than E,, (say ordinate PP" at
E = E)) the Froude number of the flow corresponding to both the alternate depths will be
different from unity as y; or y'; # ye.

At lower limb, CR of the specific energy curve is the supercritical flow region.

W<y V>V, > EFy > 10

The upper limb CR" is the subcritical flow region,

Vi >y, >V <V. > F, <10
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Rectangular Cross-Section

Figure 5.2
For a rectangular channel, A = By, and T = B,

QZ

E=y+
Y 2ngy2

0

q= e Discharge per unit width

v, =3 % (5.7)
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Critical slope for the critical water depth y,

is calculated from Equ. (5.10).

Triangular Channel

Figure 5.3
For a triangular channel having a side slope of m horizontal: 1 vertical.

and T =2my
By Equ. (5.4),

gd’

QO _A _my, _my

g T - 2my, 2

c

NE
’. z(zQ ] (5.11)

gm’

The specific energy at critical water depth,

2 2
E =y +ic=y+ ¢ p
2g 2g4;
2.5
E. =y.+ £ ycz 2
2x2xgxm Xy,
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E =y, +%:1.25yc (5.12)

The Froude number for a triangular channel is,

;- VA: y_
my
gi
\/ T \/mey
g2

5.13
o (5.13)

Example 5.1: A rectangular channel 2.50 m wide has a specific energy of 1.50 m when

carrying a discharge of 6.48 m’/sec. Calculate the alternate depths and corresponding
Froude numbers.

Solution: From Equ. (5.2),

2 2
E:y+V—:y+%
2g 2gB7y
2
1.50=y+ 643 —
2x9.81x2.50"x y
1.SO:y+O'342243
y

Solving this equation by trial and error, the alternate depths y; and y, are obtained as,

y1=130m and y,=0.63m

Froude number,

' \/ 4 A\/ By By\/g
g g
T B
6.48 ~0.828

r

2.50p,/9.81y  y7?

»=130>F, = &%i = 0.56 — Subcritical flow
30"
¥, =063>F, = % =1.67 —Supercritical flow
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Example 5.2: The 50° triangular channel has a flow rate Q = 16 m’/sec. Compute a) y.,
b) Ve, and ¢) S¢ if n=0.018.

|<— yeot50° >|
T

y

100° \
yese50°

Solution: This is an easy cross-section because all geometric quantities can be written
directly in terms of depth y.

P =2ycsc50°
A=y*cot50°
T =2ycot50°

2 0
RzézL‘[SOO:l)}COSy)O
P 2ycsc50° 2

a) The critical flow condition should satisty,
07T, _,
gA;
0?2y, cot50°
g(yf cot50° )3

s 200 2x16°

Y T gcot?50°  9.81x0.839°
v, =23Tm

1

b) Critical velocity is,
A, =y’ cot50° =2.37*x0.839 = 4.71m’

V. :2:£:3.40m/sec
A, 471

c) Critical slope for this discharge is,

v :1}2,2/351/2
C n C C

R, =%yc c0s50° =0.50x2.37xcos50" = 0.838

Sl/z _ 340)( 0018

P = e S = 000474
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Example 5.3: A flow of 5.0 m*/sec is passing at a depth of 1.50 through a rectangular
channel of width 2.50 m. What is the specific energy of the flow? What is the value of the

alternate depth to the existing depth?

Solution:
o__ 30 1.33m/sec

V1 =
4, 1.50x2.50

2 2
PE_L33 6 om
2¢  19.62

2

E =y, I 15040.10 = 1.60m
2g

For the alternate depth,
5.0°
=1.60m

+
P %9 81x(2.57,)
4929 60

2

V2

By trial and error, y, =~ 0.41m.

The specific energy diagram can be plotted for discharges Q = Q; = constant (i = 1, 2,
3,...) as in Fig. (5.4). As the discharges increase, the specific energy curves moves right

since the specific energy increases with the discharge.

Depth y

2]
(M
45"

0 £ P )
Specific energy E ——=

Figure 5.4. Specific energy for varying discharges

Example 5.4: Calculate the critical depth and the corresponding specific energy for a

discharge of 5.0 m*/sec in the following channels.

a) Rectangular channel, B=2.0 m.

b) Triangular channel, m = 0.5.
c) Trapezoidal channel, B=2.0 m, m= L.5.
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Solution:

a) Rectangular channel
5.0

i

=2.5m"/sec/m

S \3
(29'5801] =0.86m

=1.5x0.86 =1.29m

q:

-4

b) Triangular channel

From Equ. (5.11),

1/5
2 2
yc ) ( Q2 ]
gm

2x5.0° "
P o R S
Ve (9.81x0.52J

E =125y, =125%x1.83=2.29m
¢) Trapezoidal Channel

A=(B+my)y
T=(B+2my)
Q2 A3

¢ T

o _(B+my)y:
g (B+2my,)

50° _(2.0+1.5xy,)'y
9.81  (2.0+2x1.5y,)

By trial and error,
y.=0.715m

A, =(2.0+1.5x0.715)x0.715 = 2.20m’

5.0

V. =——=22T7m/sec
2.20
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Example 5.5: Calculate the bottom width of a channel required to carry a discharge of
15.0 m’/sec as a critical flow at a depth of 1.20 m, if the channel cross-section is, a)
Rectangular, and b) Trapezoidal with side slope of 1.5 horizontal: 1 vertical.

Solution:

a) Rectangular cross-section

The solution for this case is straightforward,

2
yc=3qg—>q=\/gy§
v, =V/9.81x1.20° = 4.12m’ /sec/ m

B = Bottom width = ﬁ =3.64m

4.12
b) Trapezoidal Cross-Section
The solution in this case is by trial and error,

A =(B+1.5x12)x1.2=(B+1.8)x1.2
T =(B+2x1.5x12)=(B+3.6)

T

c

Q2 A3
g

15> (B+1.8)'x1.2°
981  (B+3.6)

3
13.273 = (B+—18)
(B+3.6)
By trial and error, B =2.535 m.
5.3. Discharge-Depth Curve
For a given specific energy E; = constant,
2
El = y+ Q 2
2g4

Q:A1/2giEl—yi (5.14)

Plotting the variation of discharge with the water depth,
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4 Subcritical

Hydrostatic y=E,
E=E;=constant

——— Supercritical

> Q

O=Omax

Figure 5.5. Variation of discharge with water depth

The condition for maximum discharge can be obtained by differentiating Equ. (5.14) with
respect to y and equating it zero while keeping E = constant,

dQ dA A
—=2g| —E -y-————1=0
dy g[dy Y 2 El—yj
a A
dy V! d 2JE -y

dA 0

—=T d ==,2glE -

Ut 2= oglE)

2
2§A2 :El_y (5'15)

T (B =y)=4 (5.16)

dy
Substituting Equ. (5.16) to (5.15),
Tx2xQ? 1
2gx A -
2
o7, =1 (5.17)

3

c

This is the same as Equ. (5.4) and hence represents the critical flow conditions. Hence,
the critical flow condition also corresponds to the maximum discharge in a channel for a

fixed specific energy.
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Rectangular Cross-Section
For a given specific energy E = E;,
Q2 q2
E =y+ =y+
T grry T  agy?

q=+2gxy . X\E -,

Taking derivative with respect to y,

{50
— 2 | E -y —2£(=0 5.18
m 1= Ve > ( )

3 2
E==y 5>y ==F
1 2_)/‘ Ye 30

Maximum discharge for the critical water depth is,
q=N28 %Y XA E ~ .

3
Gomax =28 XY, ¥ 5 Ve Ye

G =28 XV, ¥ y2

qmax = \/g X (yc )3/2
Ov = BV g

(5.19)

Variation of discharge with the water depth is known as Koch parabola. (Fig. 5.6b)

.q E:'éi'iéia'nt rL-F constant |
t D
¥
1
Eg. 10.14 Subecritical

Supercritical

Subcritical

%= iE
q—

% E%Eﬂﬂn Supercritical
E—»
Specific energy diagram o
(a) (b)

Figure 5.6. (E-y) and (q — y) diagrams for the rectangular channel
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Example 5.6: Find the critical water depth for a specific energy head of E; = 1.5 m in the
following channels:

a) Rectangular channel, B =2.0 m.
b) Triangular channel, m = 1.5.
c) Trapezoidal channel, B=2.0 m and m = 1.0.

Solution:

a) Rectangular channel

3
E =—y =1.50m
c 2yc

_ 1.50x2 —1.00m

b) Triangular channel

E.=125y.=1.50m
_1.50

=——=1.20m
Ye 125
c¢) Trapezoidal channel
VZ 2
E =y +5==. g ;
2¢g 2g4,
2 3

A
.4 > E =y .+
g I 2T,

By trail and error, y. = 1.10 m.
5.4. Occurrence of Critical Depth

The analysis of open channel flow problems usually begins with prediction of points in
the channel at which the critical depth y. will occur. Those points feature a change from
subcritical to supercritical flow, are known as controls since their occurrence governs, or
controls, the liquid depths in the reach of channel upstream from these points.

The most obvious place where critical depth can be expected is in the situation in Fig.

(5.7), where a long channel of mild slope (So < S.) is connected to a long channel of steep
slope (Sp > S;). At the upstream of the channel, uniform subcritical flow at normal depth,
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yo1, Will occur, and at the downstream a uniform supercritical flow at a smaller normal
depth, yo2, can be expected. These two uniform flows will be connected by a reach of
varied flow in which at some point the depth must pass through the critical water depth,
ye. (Chapter 6...... ).

Figure 5.7

When a long channel of steep slope discharges into one of mild slope (Fig. 5.8), normal
depths will occur upstream and downstream from the point of slope change. Under these
conditions a hydraulic jump will form whose location will be dictated by the details of
slopes, roughness, channel shapes, but the critical depth will be found within the
hydraulic jump.

Hydraulic jump

S, < Se

Figure 5.8

The occurrence of critical depth on overflow structures may be proved by examining the
flow over the top of a broad-crested weir equipped with a movable sluice gate at the
downstream end and discharging from a large reservoir of constant surface elevation.
(Fig. 5.9). With a gate closed (position A), the depth of water on the crest will be ya, and
the discharge will be zero, giving point A on the g-curve. With the gate raised to position
B, a discharge qg will occur, with a decrease in depth from ya to yg. This process will
continue until the gate is lifted clear of the flow (C ) and can therefore no longer affect it.
With the energy line fixed in position at the reservoir surface level and, therefore, giving
constant specific energy, it follows that points A, B, and C have outlined the upper
portion of the g-curve, that the flow occurring without gates is maximum, and the depth
on the crest is the critical depth. For flow over weirs, a relation between head and
discharge may be obtained by substituting y. = 2H/3 (Equ. 5.8) in Equ. (5.7), which
yields,
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Figure 5.9

Another occurrence of the critical water depth is the free outfall from a long channel of
mild slope. The critical water depth occurs a short distance (3 to 4 y.) upstream from the
fall for rectangular channels and the fall depth (yy) is 72% of the critical depth. (Fig.

5.10)
: e = =
5, TE T o e
¢ RN
T R
Se=8. g
| 5
@ to 4y,
Figure 5.10

5. 4. 1. Characteristics of Subcritical and Supercritical Flows
5.4.1.1. Wave Propagation Velocity

c is the wave propagation velocity (celerity) on a flowing water with velocity V.

4—
Y U Ay
\ 4 \VA
A
y2
Vi —> Y1 i y
Figure 5. 11
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If we take the celerity ¢ equal but opposite to the flow velocity V, then the wave stays
still and the steady state conditions may be applied. Writing the energy equation between
cross-sections 1 and 2 and neglecting the energy loss for a horizontal channel,

" vy
+ L=y, += a
N 2g Vs 2g (@)
For rectangular channels,
q=Vy =y,
V=72
B

Substituting this relation to Equ. (a),

2
Wo_non o (so

- 2
B
If y; =y then y, = y+Ay and V; = -c , in which Ay = Wave height, Equ. (5.21) may be

written as,
2

c y+Ay—y

2g - y 2
y+Ay

< My+yy)
22 (y+ay)y -y’
¢’ _ Ay(y2 +2yAy+Ay2)
2 Y H2yAVHAY -

i: Ay!y2 +2yAy!

Neglecting Ay values,

2¢ 2yAy
Ay
5 y2(1+ 2j
c -\ V)
2g 2y
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12
c;,/gy[1+2A—;}J (5.22)

Equ. (5.22) is valid for shallow waters. Generally Ay/y may be taken as zero. The celerity
equation is then,

c=\gv (5.23)

The waves generated on a still water with water depth y will propagate to all directions
with the celerity derived and given by Equ. (5.23). If the wave is on a flowing water,
resultant velocity of the celerity, ¢ and flow velocity, V will be taken as the absolute
velocity.

a) Subcritical Flows

Froude number for rectangular or wide channels is,

Since celerity ¢ = /gy, for subcritical flows,

_V _ Flowvelocity <1
c Celerity

F

”

(5.24)

Flow velocity < Celerity
A wave generated on a flowing water will propagate to the downstream also with a
velocity equal to (¢ — V) and to the downstream with (¢ + V). The generated wave will be
seen in the entire flow surface. That is why subcritical flows is also called downstream
controlled flows.
b) Supercritical Flows

The Froude number for supercritical flows for the same channel,

_V _ Flowvelocity S
c Celerity

F

r

1 (5.25)

Flow velocity > Celerity
Since flow velocity is greater than the wave celerity, a generated wave will propagate

only in the downstream direction. That is why supercritical flows are called upstream
controlled flows.

17 Prof. Dr. Atll BULU



Case study:

Generating waves by throwing a stone to flowing water may be used to know if the flow
is subcritical or supercritical for practical purposes. If the generated waves propagate
only in the downstream direction, then the flow is supercritical otherwise it is subcritical.

5.5. Transitions

The concepts of specific energy and critical energy are useful in the analysis of transition
problems. Transitions in rectangular channels are presented here. The principles are
equally applicable to channels of any shape and other types of transitions.

5.5.1. Channel with a Hump
a) Subcritical Flow

Consider a horizontal, frictionless rectangular channel of width B carrying discharge Q at
depth y;.

Let the flow be subcritical. At a section 2 (Fig. 5.11) a smooth hump of height AZ is built
on the floor. Since there are no energy losses between sections 1 and 2, construction of a
hump causes the specific energy at section to decrease by AZ. Thus the specific energies

at sections 1 and 2 are,
2

E =» +V_l
2g (5.26)
E,=E -AZ
Energy line

Figure S. 12. Channel transition with a hump

Since the flow is subcritical, the water surface will drop due to a decrease in the specific
energy. In Fig. (5.13), the water surface which was at P at section 1 will come down to
point R at section 2. The depth y, will be given by,

VZ QZ
E, =y, +2 =y, +—=— 527
2 yz 2g y2 2ngy22 ( )
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Figure 5.13. Specific energy diagram for Fig. (5.12)

It is easy to see from Fig. (5.13) that as the value of AZ is increased, the depth at section
2, ya, will decrease. The minimum depth is reached when the point R coincides with C,
the critical depth. At this point the hump height will be maximum, AZ .y, y2 = ye =
critical depth, and E, = E; = minimum energy for the flowing discharge Q. The condition
at AZmax 1s given by the relation,

2.2
c

2
E 02y, =E,=E =y +-2 (528)
2gB
The question may arise as to what happens when AZ > AZ.x. From Fig. (5.13) it is seen
that the flow is not possible with the given conditions (given discharge). The upstream
depth has to increase to cause and increase in the specific energy at section 1. If this
modified depth is represented by y;°,

’ ! 2
E =y, +% (with E'>E; and y'1>y;) (5.29)
2gB%y,

At section 2 the flow will continue at the minimum specific energy level, i.e. at the
critical condition. At this condition, y, =y,, and,

2.2
c

, 2
E -AZ=E,=E =y, +Q— (5.30)
2g
Recollecting the various sequences, when 0 < AZ < AZu.x the upstream water level
remains stationary at y; while the depth of flow at section 2 decreases with AZ reaching a
minimum value of y, at AZ = AZax. (Fig. 5.13). With further increase in the value of AZ,
i.e. for AZ > AZnax , y1 Will change to y;* while y, will continue to remain y..
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The variation of y; and y, with AZ in the subcritical regime can be clearly seen in Fig.

(5.14).
DCPV

Depth y2

¥e
i Subcritical flow
L . )

}" AZm '_"“I AL

Figure 5.14. Variation of y; and y; in subcritical flow over a hump
b) Supercritical Flow

If'y, is in the supercritical flow regime, Fig. (5.13) shows that the depth of flow increases
due to the reduction of specific energy. In Fig. (5.13) point P corresponds to y; and point
R" to depth at the section 2. Up to the critical depth, y, increases to reach y. at AZ =
AZ vax. For AZ > AZ . , the depth over the hump y, = y. will remain constant and the
upstream depth y; will change. It will decrease to have a higher specific energy E; by
increasing velocity V. The variation of the depths y; and y, with AZ in the supercritical
flow is shown in Fig. (5.15).

J Depth y,

X ot T
/ .

Depth y, Ye

—

ypand y,

Supercritical flow
1 h 4
— '()ZH! ---——---—-—H ﬂz 4

Figure 5.15. Variation of y; and y; in supercritical flow over a hump

Example 5.7: A rectangular channel has a width of 2.0 m and carries a discharge of 4.80
m’/sec with a depth of 1.60 m. At a certain cross-section a small, smooth hump with a flat
top and a height 0.10 m is proposed to be built. Calculate the likely change in the water
surface. Neglect the energy loss.

Solution: Let the suffixes 1 and 2 refer to the upstream and downstream sections
respectively as in Fig. (5.12).

q= 4.80 =2.40m’ /sec/ m
2 2
|4 :E:I.SOm/sec—)V#: 1.50 =0.115m
1.60 2g 19.62
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14 1.50

F,=—Ll = =0.38
T Jo, V9.81x1.60

The upstream flow is subcritical and the hump will cause a drop in the water surface
elevation. The specific energy at section 1 is,

E, =1.60+0.115=1.715m

At section 2,
E,=E -AZ=1715-0.10=1.615m

D ) 1/3
o= o[ 2 6 837m
Vg osl

E, =15y, =1.5x0.837=1.26m

The minimum specific energy at section 2 is Ec; = 1.26 m < E; = 1.615 m. Hence y, > y.
and the upstream depth y; will remain unchanged. The depth y; is calculated by solving
the specific energy equation,

2

v
E, =y, +—=
2 2 2g
2
1615 =y, +—=20
9.81x2xy,

Solving by trial and error gives, y, = 1.48 m.
The drop at water surface elevation is,

Ay =1.60-1.48-0.10=0.02m

Example 5.8: In Example 5.7, if the height of the hump is 0.50 m, estimate the water
surface elevation on the hump and at a section upstream of the hump.

Solution:
From Example 5.7; F;; = 0.38, E; = 1.715 m, and y, = y» = 0.837 m.
Available energy at section 2 is,

E,=E —Az
E,=1.715-0.50=1.215m
E,=15y,=15x0.837=1.26m
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The minimum specific energy required at section 2 is greater than Es, (Ec; = 1.26 m > E;
=1.215 m), the available specific energy at that section. Hence, the depth at section 2 will
be at the critical depth. Thus E, = E¢; = 1.26 m. The upstream depth y; will increase to a
depth y;’ such that the new specific energy at the upstream section 1 is,

E'=E_,+AZ

12

V4L _=1.26+0.50=1.76m
2gy;

. 2.40°

19.62x y!?

3+ 024 g6
y

1

=1.76

Solving by trial and error and selecting the positive root gives, y’; >y, y’1 = 1.648 m.

Water surface profile is shown schematically in Fig. (5.16).

¥ ~ Energy line after the placement of the hump
T b Tt F\ __ Energy line without the hump
———— Water surface

E', = 1756 m
By pisigm,, Bom | 2

Figure 5.16

Example 5.9: A rectangular channel 2.50 m wide carries 6.0 m’/sec of flow at a depth of
0.50 m. Calculate the height of a flat topped hump required to be placed at a section to
cause critical flow. The energy loss due to the obstruction by the hump can be taken as
0.1 times the upstream velocity head.

Solution:
q=@=2.4m3/sec/m
2.5
2
v, 2224.8m/sec—> 48 i 17m
0.5 19
F, = . 4.80 =2.17

T Jo, 9.81x0.50

2

E =y, +L:O.50+1.17:1.67m
2g
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Since the critical flow is desired at section 2,

2
V. = 13/ 29.4801 =0.84m=y,

2

C

V
E2c :1'5yc :yc+2

2 2
Ve 2 088 6 pom=le
2g 2 2 2g

By the energy equation between sections 1 and 2,

2

E -E, :y2+V—2+AZ
2g

Where E; = Energy loss, AZ= Height of the hump.

2
E, — 0107 —0.10x1.17m = 0.12m
2g

1.67-0.12=0.84+0.42+ AZ
AZ =0.29m

Example 5.10: Water flow in a wide channel approaches a 10 cm high hump at 1.50
m/sec velocity and a depth of 1 m. Estimate a) The water depth y, over the hump and b)
The hump height that will cause the crest flow to be critical.

Solution:

a) Froude number at the upstream of the hump is,

|4 1.50

F‘ = 1 =
T Jo, V9.81x1.0

=0.48<1 (Subcritical flow)

For subcritical approach flow, if AZ is not too large, a depression is expected in the water
level over the hump and a higher subcritical Froude number at the crest. With AZ = 0.10
m, the specific energy levels are,

V2 1.50°
E, :_1+y1 =
2g 19.62

E,=E -AZ=1.115-0.10=1.015m

+1.0=1.115m
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The physical situation is shown on a specific energy plot in Fig. (5. 17). With y; in

meters.

1.2

1.0

0.8 —

C 06

0.4

0.

E,

—{— 0.612m

bump

o Subcritical @ s
@ "

2/ = -‘:I =1.0m

Ty 0859 m

<~ Ah=0.1 m —

_ T — 45 iti
v — ) 43 1“‘ | Supereritical

e

90 | 1.00 1.10 .20

i
=0.918 m Ey=1.015m E;=1.115m

E

Figure 5.17
iy

Y

Vv =V,y, >V, =

E =E,+AZ
4 )
+—=y,+—+AZ
g 2g Y2 2g

3 2 V1)"1:0

1.50* x12
3 _1.015y2+— " =90
& 2T 962

y3—1.015y2 +0.115=0

There are three real roots: y = 0.859 m, 0.451 m, and -0.296 m. The third (negative)
solution is physically impossible. The second (smaller) solution is the supercritical
condition for E, and is not possible for this subcritical hump. The first solution is the

searched solution.

y2 (subcritical) = 0.859 m

The water surface level has dropped by,

Ah=y =y, -AZ
Ah=1.0-0.859-0.10=0.041m

24
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Vv _150x1.0
y, 0859
PV 115
” Jov,  V9.81x0.859

V, =

=1.75m/sec

0.60

Downstream flow over hump is subcritical. These flow conditions are shown in Fig.
(5.17).

b) For critical flow in a wide channel ,

g=Vy=15x1=1.5m*/sec

3 3 (2"
E2,min :Ec ==V :_x[q_]

2 2 g
ANTE
E. :%x[;élj ~0.918m

Therefore the maximum height for frictionless flow over this hump is,

A =E —-E =1.115-0.918 =0.197m

max 2,min

1.5
— oy =0.612m—V, =—2 =2 45m/sec
V2= Ye 27 0.612 /

.

v9.81x0.612

For this hump, the surface level at the critical flow has dropped by,

Ah:yl _y2 _AZmax
Ah=1.0-0.612-0.197=0.191m

5.5.2. Transition with a Change in Width
5.5.2.1. Subcritical Flow in a Width Constriction

Consider a frictionless horizontal channel of width B; carrying a discharge Q at a depth y;
as in Fig. (5.17). At a section 2 channel width has been constricted to B, by a smooth
transition. Since there are no losses involved and since the bed elevations at sections 1

and 2 are the same, the specific energy at section is equal to the specific energy at section
2.
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2g 2gB’y}
V2 Q2
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@ ™ Horizontal @

L-Section

Figure 5.18. Transition with width constriction

It is convenient to analyze the flow in terms of the discharge intensity q = Q/B. At section
1, q; = Q/B; and at section 2, q; = Q/B,. Since B, < By, q2 > q;. In the specific energy
diagram (Fig. 5.19) drawn with the discharge intensity, point P on the curve q
corresponds to depth y; and specific energy E;. Since at section 2, E; = E; and q = qp,
point P will move vertically downward to point R on the curve q, to reach the depth y,.
Thus, in subcritical flow the depth is y, <y;. If B, is made smaller, then g, will increase
and y, will decrease. The limit of the contracted width B, = Bomin is reached when
corresponding to E,;, the discharge intensity q» = Qomax, 1.€. the maximum discharge
intensity for a given specific energy (critical flow condition) will prevail.

Subcritical flow

N =i e y, Supercritical flow

LS ks S i 4

Yeb——— ==

/ N _‘\ gmfor E*)
R’ H‘ﬁ"mf(}rf"
/ 2>

P’ —q

u-s——-—.';]-—-i P

E" Specific Energy E

Figure 5.19. Specific energy diagram for Fig. (5.18)
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At the minimum width, y, = y.m = critical depth.

2 (5.32)
E = Ecpin = Yen +Q—22
2g(B2min) ycm
For a rectangular channel, at critical flow, y, = %EC
Since E1 = ECmin,
2 2
y2 =yCm =_ECmin =_bjl (533)
3 3
2\ 2
yc:[ 2Q J _)BZmin: Q3
BZming gycm

2
B2min = 27Q3 (534)
8gE;

If B, < Bomin, the discharge intensity q, will be larger than qmax, the maximum discharge
intensity consistent E;. The flow will not, therefore, be possible with the given upstream
conditions. The upstream depth will have to increase to y; . The new specific energy will

QZ

E =y +
T (B

be formed which will be sufficient to cause critical flow at section 2. It may be noted that
the new critical depth at section 2 for a rectangular channel is,

/3 1/3
c2 -
Blg g

2

ECZ :yCZ +Q:15y6‘2
2g

Since By < Bomin , Y2 Will be larger that yem, Ye2 > Yem- Thus even though critical flow
prevails for all B, < Bomin , the depth section 2 is not constant as in the hump case but
increases as y; and hence E;" rises. The variation of y;, y» and E with B,/B; is shown
schematically in Fig. (5.20).
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Subcritical Flow

Specific energy

Depth y,

Ypy,and E T

Figure 5.20. Variation of y; and y; in subcritical flow
in a width constriction

5.5.2.2. Supercritical Flow in a Width Constriction

If the upstream depth y; is in the supercritical flow regime, a reduction of the flow width
and hence an increase in the discharge intensity cause a rise in depth y,. In Fig. (5.19),
point P* corresponds to y; and point R" to y». As the width B, is decreased, R* moves up
till it becomes critical at B, = Bomin . Any further reduction in B, causes the upstream
depth to decrease to y,” so that E; rises to E;". At section2, critical depth y.
corresponding to the new specific energy E;" will prevail. The variation of y;, y, and E
with B,/B; in supercritical flow regime is indicated in Fig. (5.21).

Supercritical Flow

o
ey}

Specificenergy

“1

Depth y,

yyand E —p

.\IJ!‘

PRI
1_?1_ 2, | e i
Figure 5.21. Variation of y; and y; in supercritical flow
in a width constriction

5.5.2.3. Choking

In the case of a channel with a hump, and also in the case of a width constriction, it is
observed that the upstream water surface elevation is not affected by the conditions at
section 2 till a critical stage is first achieved. Thus in the case of a hump for all AZ <
AZmax , the upstream water depth is constant and for all AZ > AZ,.x the upstream depth is
different from y;. Similarly, in the case of the width constriction, for B, > By , the
upstream depth y; is constant; while for all B, < Bowin , the upstream depth undergoes a
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change. This onset of critical condition at section 2 is a prerequisite to choking. Thus all
cases with AZ > AZ.x or By < Bomin are known as choked conditions. Obviously, choked
conditions are undesirable and need to be watched in the design of culverts and other
surface drainage features involving channel transitions.

Example 5.10: A rectangular channel is 3.50 m wide conveys a discharge of 15.0 m’/sec
at a depth of 2.0 m. It is proposed to reduce the width of the channel at a hydraulic
structure. Assuming the transition to be horizontal and the flow to be frictionless
determine the water surface elevations upstream and downstream of the constriction
when the constricted width is a) 2.50 m and b) 2.20 m.

Solution:

Let suffixes 1 and 2 denote sections upstream and downstream of the transition
respectively.

0=BVy

V, = 0 __150 =2.14m/sec
By, 3.5x2.0

el 2.14

= =0.48
T Jon V9.81x2.0

The upstream flow is subcritical and the transition will cause a drop in the water surface.

4% 2.14%

E =y +—1=2.0+ =2.23m
2g 19.62

Let Bomin = minimum width at section 2 which does not cause choking.

E . ..=E=223m
v.=2E. =2x223=149m
3 3
) ) 0.5
)’3 = Qz _)BZmin :(Q_3]
gBZmin gyc
15 02 0.5
B2min = +3 = 2.6317’1
9.81x1.49
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a) When B, =2.50m

B, =2.50 m < Byyin = 2.63 m and hence choking conditions prevail. The depth at section
2 =y, =ye. The upstream depth y; will increase to y; .

_15.0
2755

2 2 1/3
ﬂ; 6.0" 1" _ 1 s4m
g 9.81

=15y, =15x1.54=231m

—6m2/sec

At the upstream section 1:

E/=E,=231m
g =2 =10 4 09m sec
B, 3.50
12 2
=yl oy
2g 2gy1
2
231:y}h—;£%l—3
2><9.81><yl
231=y 4+ 2938

1
Solving by trial and error and selecting positive subcritical flow depth root,

vy =2.10m

b) When B, = 2.20 m,
As B; < Bomin choking conditions prevail.
Depth at section 2 =y, = yeo.

:159_682 2/m

2.2
( j =1.68m
=15

, =1.5x1.68=2.52m
At upstream section 1, new upstream depth =y;",

q,
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E/=E,=2.52m
q, = 4.29m" [sec

2
1

2
i+ 2‘11 =252
0938 sy
y

1
Solving by trial and error, the appropriate depth to give subcritical flow is,

¥y, =235m

[Note that for the same discharge when B, < Bomin (i.€. under choking conditions) the
depth at the critical section will be different from y. = 1.49 m and depends on the value
Bs].

5.5.2.4. General Transition

A transition in general form may have a change of channel shape, provision of a hump or
a depression, contraction or expansion of channel width, in any combination. In addition,
there may be various degrees of loss of energy at various components. However, the
basic dependence of the depths of flow on the channel geometry and specific energy of
flow will remain the same. Many complicated transition situations can be analyzed by
using the principles of specific energy and critical depth.

In subcritical flow transitions the emphasis is essentially to provide smooth and gradual
changes in the boundary to prevent flow separation and consequent energy losses. The
transitions in supercritical flow are different and involve suppression of shock waves
related disturbances.

Example 5.12: A discharge of 16.0 m*/sec flows with a depth of 2.0 m in a rectangular
channel 4.0 m wide. At a downstream section the width is reduced to 3.50 m and the
channel bed is raised by AZ. Analyze the water surface elevations in the transitions when
a) AZ=0.20 m and b) AZ =0.35 m.

Solution:

Let the suffixes 1 and 2 refer to the upstream and downstream sections respectively. At
the upstream section,

16
4x2
sV 20

T Jo 9.81x2.0

v, =2.0m/sec

=0.45
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The upstream flow is subcritical and the transition will cause a drop in the water surface
elevation.

v 20°

LA =0.20m
2¢ 19.62

2

E =y, T 204020=2.20m
2g

For the transition cross-section 2,

g, =2 =100 4 572 sec
, 3.0
2\ !/3 2\1/3
Yea =[Q_2J =(49.5§;71 j =1.29m
g .

3 3
E o =—y , =—x129=194m
c2 2y02 2

c) WhenAZ = 0.20 m,
E, = Available specific energy at section 2

E,=E, —AZ=220-020=2.00m>E,, =1.94m

Hence the depth y, >y, and the upstream depth will remain unchanged at section 1, y;.

2

V.
v, +—=—+AZ=E,
2g

2
Y, +L =2.20-0.20=2.00m

19.62x y;

1.064
Y, +—2 =2.00m

2

Solving by trial and error,
v, =1.58m

Hence when AZ = 0.20 m, y; = 2.00 m and y, = 1.58 m. The drop in water surface is,

Ah=2.00-1.58—-0.20=0.22m
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c) When AZ = 0.35 m,

E, = Available specific energy at section 2

E,=220-035=185m<E,, =194m

Hence the contraction will be working under the choked conditions. The upstream depth
must rise to create a higher to energy. The depth of flow at section 2 will be critical with,

Y2=V¥Ye2 T 1.29 m

If the new depth is y;’,
2
2k Az
2gB/y,
2
V200941035
19.62x4.0” x y,
OB o,
N
By trial and error,
¥ =2.10m

The upstream depth will therefore rise by 0.10 m due to the choked condition at the
constriction. Hence, when AZ = 0.35 m,

yi’=2.10m andy,=yo=129m
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Hydraulic Jump

If the flow at the upstream of a cross section is subcritical (y;<y.) but supercritical
(y2>yer) at the downstream of that cross section, the transition from subcritical flow to
the supercritical flow will be abrupt with a jump called Hydraulic Jump. In the
mathematical derivation of hydraulic jump, the following assumptions are made,

a) Rectangular channel with horizontal bottom slope,

b) Before and after the hydraulic jump, velocity distributions are uniform and the
pressure distribution over the cross sections are hydrostatic,

c) Friction losses are neglected.

Energy Line

Y U T~ ~ [y he
T~ Y
4 Vy'l2g
V229 VA }‘
v Y2 —>
Vi
> l

Figure. Hydraulic Jump

Momentum equation will be applied to the control volume taken at the hydraulic jump
section for a unit width perpendicular to the control volume,

2 2
Since,
q :Vlyl :szz _)Vz :i,vl :i
Y, Yi
Y =9

2 2

(y?-y2)= p(% Y- le

2 1
1 1) _g(y,-y.)
V=Y Y+ Y,)=0| ——— |=——*
=y + ) [)/2 ylj A2

27 V2
ylyz(y]+y2)=%=—‘gy‘

2,2
Y12 yz[1 + h] = 2y,
Yi g

&

Nje
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Multiplying both side of the above equation with (1/y,’) yields,

24,2
{yfyz(HL}—zvl . H%j
v) 9 |\

2
ﬁ(nﬁ]:zv—l (1)
yl yl yl

Since for rectangular channels,

Equation (1) takes the form of,

2
(ﬁ] + L2 _oFr =0
Yi Yi

Solution of this equation and taking the positive sign of the square root gives,

L2 ) @

Yi

The ratio of flow depths after and before the hydraulic jump (y2/y)) is a function of the
Froude number of the subcritical flow before hydraulic jump.

Hydraulic Jump as an Energy Dissipater

If we write the difference of the specific energies before after the hydraulic jump,

2 2
AE = El _Ez z[yl +\2/_19J_[y2+\2/_29j

ViV
AE:(y]—yz){#——zj
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Since,

It has been derived that,

VYo (Y +¥,) ="

2
1
g—gjylyz(yﬁyz)

Putting this equation to Equation (3),

1 (¥ - Yy)
AyE=(yl—y2)+zyly2(yl+yz)ﬁ
Ly, +Y,) (v, —y)
AE =(y, —y, )+—~21 2 2 1
i-y2) 4 YiYs
AE = Yo =¥a)+ (v +Y,) (v - 1)
4y,y,

a2 ey + ()]
4Y1Y,
AE = (yz — Y )(yz —Y )2
4Y1Y,

The analytical equation of the energy dissipated with the hydraulic jump is,

3
AE = (y2 B yl) (4)
4y,Y,

The power lost by hydraulic jump can be calculated by,
N =7,QAE

Where,

vw = Specific weight of water = 9.81 kN/m’

Q = Discharge (m’/sec)

AE = Energy dissipated as head (m)
N = Power dissipated (kW)
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Some empirical equations were given to calculate the length of hydraulic as,
L=52y, Safranez equation
L=5(y,—y1) Bakhmetef equation
L=6(y2—v1) Smetana equation
L =15.6y, Page equation

Physical explanation of Equations (2) and (4) gives that,

a)If Fr=1—>2=15AE=0 (critical flow)

1

b)If Fr>152>5AE>0 (hydraulic jump)

1

c) If Fr<l— Y <1->AE<0 (Energy gain is not possible. Transition from
1

supercritical to subcritical flow is with gradual water surface profile)

Physical Explanation of Critical Flow

It has been derived that,

2q2 = gy1y2(y1 + yz) (5)

Since for rectangular channels,

Yo =3
s
q* =gy,

Equation (5) can be written as,

22 =y Yo (Y, +V,)

cr

If multiply both sides with (LSJ ,

2 2
2= yl y2 + M (6)
ycr ycr
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Defining as,

Equation (6) takes the form of,
Y, +YY, -2=0
The curve of this equation,

Y1=yalye A

\ Yo=yaly.

>
>

The physical explanation of this curve gives,

For,
Y,>1->Y <1

yZ > ycr % yl < yCI‘
and

Y, <I->Y,>1
y2 < yCI’ % yl > yCI’
The regimes of the flows should be different when passing through a critical flow depth.

If the flow is subcritical at downstream when passing through critical water depth it
should be in supercritical at the downstream and vice versa.

Example: If the Froude number at the drop of a hydraulic jump pool is 6 and the water

depth is 0.50 m, find out the length of the hydraulic jump. Calculate the power
dissipated with the hydraulic jump if the discharge on the spillway is 1600 m*/sec.
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Solution: Using the equation of the ratio of water depths,

ﬁzé(\/HSFrf —1)

Y,
Y (g6 —1)=s
no2

Y, =Y, x8=0.5x8=4m
The length of hydraulic jump by different equations,
L=52xy,=52x4=20.8m (Safranez)
L=5(y,~y,)=5%x(4-0.5)=17.5m  (Bakhmetef)
L=6(y,-Y,)=6x(4—-0.5)=2Im (Smetana)

L=5.6xy,=56x4=224m (Page)

It is preferred to be on the safe side with the hydraulic structures. Therefore, the longest
result will be chosen. The length of the hydraulic jump will be taken as L = 22.4 m for

design purposes.

Energy dissipated as head,

AE — (y2 - yl )3
4y,y,
_(4-05)

= =5.36m
4x0.5%x4

AE

The power dissipated with the hydraulic jump,

N =y, QAE
N =9.81x1600x5.36
N = 8413 1KW
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