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Chapter 5 
 

Specific Energy 
 

5.1. Introduction 
 
The total energy of a channel flow referred to datum is given by, 
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If the datum coincides with the channel bed at the cross-section, the resulting expression 
is know as specific energy and is denoted by E. Thus, specific energy is the energy at a 
cross-section of an open channel flow with respect to the channel bed.  
 
The concept of specific energy, introduced by Bakmeteff, is very useful in defining 
critical water depth and in the analysis of open channel flow. It may be noted that while 
the total energy in a real fluid flow always decreases in the downstream direction, the 
specific energy is constant for a uniform flow and can either decrease or increase in a 
varied flow, since the elevation of the bed of the channel relative to the elevation of the 
energy line, determines the specific energy.  
 
Specific energy at a cross-section is, 
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Here, cross-sectional area A depends on water depth y and can be defined as, A = A(y). 
Examining the Equ. (5.2) show us that, there is a functional relation between the three 
variables as, 
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In order to examine the functional relationship on the plane, two cases are introduced. 
 

1. Q = Constant = Q1   →   E = f (y, Q1). 
 

Variation of the specific energy with the water depth at a cross-section for a given 
discharge Q1. 
 

2. E = Constant = E1  → E1 = f (y,Q) 
 

Variation of the discharge with the water depth at across-section for a given 
specific energy E1. 
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5.2. Constant Discharge Situation 
 
Since the specific energy, 
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Figure 5.1. Specific energy diagram 
 
For a channel of known geometry, E = f (y, Q). Keeping Q = constant = Q1, the variation 
of E with y is represented by a cubic parabola. (Figure 5.1). It is seen that there are two 
positive roots for the equation E indicating that any particular discharge Q1 can be passed 
in a given channel at two depths and still maintain the same specific energy E1. The 
depths of flow can be either PR = y1 or PR` = y`1. These two possible depths having the 
same specific energy are known as alternate depths. In Fig. (5.1), a line (OS) drawn such 
that E = y (i.e. at 450 to the abscissa) is the asymptote of the upper limb of the specific 
energy curve. It may be noticed that the intercept P`R` and P`R represents the velocity 
head. Of the two alternate depths, one (PR = y1) is smaller and has a large velocity head 
while the other (PR`= y`1) has a larger depth and consequently a smaller velocity head. 
For a given Q, as the specific energy is increased the difference between the two alternate 
depths increases. On the other hand, if E is decreased, the difference (y`1 – y1) will 
decrease and a certain value E = Ec, the two depths will merge with each other (point C in 
Fig. 5.1). No value for y can be obtained when E < Ec , denoting that the flow under the 
given conditions is not possible in this region. The condition of minimum specific energy 
is known as the critical flow condition and the corresponding depth yc is known as 
critical depth.  
 
At critical depth, the specific energy is minimum. Thus differentiating Equ. (5.2) with 
respect to y (keeping Q1 constant) and equating to zero, 
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But, 

=== T
dy

Tdy
dy
dA Top width, width of the channel at the water surface 

 
Designating the critical flow conditions by the suffix (c), 
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Equ. (5.4) is the basic equation governing the critical flow conditions in a channel. It may 
be noted that the critical flow condition is governed solely by the channel geometry and 
discharge. Other channel characteristics such as the bed slope and roughness do not 
influence the critical flow condition for any given Q. If the Froude number of the flow is 
defined as, 
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The critical flow corresponds to the minimum specific energy and at this condition the 
Froude number of the flow is unity. 
 
Referring to Fig. (5.1), considering any specific energy other than Ec, (say ordinate PP` at 
E = E1) the Froude number of the flow corresponding to both the alternate depths will be 
different from unity as y1 or y`1 ≠ yc.  
 
At lower limb, CR of the specific energy curve is the supercritical flow region. 
 

0.1111 >→>→< rcc FVVyy  
 

The upper limb CR` is the subcritical flow region, 
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Prof. Dr. Atıl BULU 4

Rectangular Cross-Section 
   

      
 

Figure 5.2 
 

For a rectangular channel, A = By, and T = B, 
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Critical slope for the critical water depth yc, 
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is calculated from Equ. (5.10). 
 
Triangular Channel 

 
 

 
Figure 5.3 

 
For a triangular channel having a side slope of m horizontal: 1 vertical. 
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The specific energy at critical water depth, 
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The Froude number for a triangular channel is, 
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Example 5.1: A rectangular channel 2.50 m wide has a specific energy of 1.50 m when 
carrying a discharge of 6.48 m3/sec. Calculate the alternate depths and corresponding 
Froude numbers. 
 
Solution: From Equ. (5.2), 
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Solving this equation by trial and error, the alternate depths y1 and y2 are obtained as, 
 

y1 = 1.30 m  and   y2 = 0.63 m 
 

Froude number, 

23
828.0

81.950.2
48.6

yyy
F

gyBy
Q

B
BygA

Q

T
Ag

VF

r

r

==

===

 

 

56.0
30.1
828.030.1 50.111 ==→= rFy → Subcritical flow 
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828.063.0 50.122 ==→= rFy →Supercritical flow 
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Example 5.2: The 500 triangular channel has a flow rate Q = 16 m3/sec. Compute a) yc, 
b) Vc, and c) Sc if n = 0.018. 
 

 
 
Solution: This is an easy cross-section because all geometric quantities can be written 
directly in terms of depth y. 
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a) The critical flow condition should satisfy, 
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b) Critical velocity is, 
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c) Critical slope for this discharge is, 
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Example 5.3: A flow of 5.0 m3/sec is passing at a depth of 1.50 through a rectangular 
channel of width 2.50 m. What is the specific energy of the flow? What is the value of the 
alternate depth to the existing depth? 
 
Solution: 
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For the alternate depth, 
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By trial and error,  y2 ≈ 0.41m. 
 
The specific energy diagram can be plotted for discharges Q = Qi = constant (i = 1, 2, 
3,…) as in Fig. (5.4). As the discharges increase, the specific energy curves moves right 
since the specific energy increases with the discharge. 
 

 
 

Figure 5.4. Specific energy for varying discharges 
 
Example 5.4: Calculate the critical depth and the corresponding specific energy for a 
discharge of 5.0 m3/sec in the following channels. 
 

a) Rectangular channel, B = 2.0 m. 
b) Triangular channel, m = 0.5. 
c) Trapezoidal channel, B = 2.0 m, m = 1.5.  
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Solution:  
 

a) Rectangular channel 
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b) Triangular channel 
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c) Trapezoidal Channel 
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By trial and error, 
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Example 5.5: Calculate the bottom width of a channel required to carry a discharge of 
15.0 m3/sec as a critical flow at a depth of 1.20 m, if the channel cross-section is, a) 
Rectangular, and b) Trapezoidal with side slope of 1.5 horizontal: 1 vertical. 
 
Solution:  
 
a) Rectangular cross-section 
 
The solution for this case is straightforward, 
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b) Trapezoidal Cross-Section 
 
The solution in this case is by trial and error, 
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By trial and error,     B = 2.535 m. 
 
 
5.3. Discharge-Depth Curve  
 
For a given specific energy E1 = constant,  
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Plotting the variation of discharge with the water depth, 
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Figure 5.5. Variation of discharge with water depth 
 
The condition for maximum discharge can be obtained by differentiating Equ. (5.14) with 
respect to y and equating it zero while keeping E = constant, 
 

yE
AyE

dy
dA

yE
AyE

dy
dAg

dy
dQ

−
=−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−=

1
1

1
1

2

0
2

2
 

T
dy
dA

=    and    ( )yEg
A
Q

−= 12  

 

yE
gA
Q

−= 12

2

2
    (5.15) 

 

( ) AyE
dy

Tdy
=−×× 12    (5.16) 

 
Substituting  Equ. (5.16) to (5.15), 
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This is the same as Equ. (5.4) and hence represents the critical flow conditions. Hence, 
the critical flow condition also corresponds to the maximum discharge in a channel for a 
fixed specific energy. 
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Rectangular Cross-Section 
 
For a given specific energy E = E1, 
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Taking derivative with respect to y, 
 

11

1
1

1
1

3
2

2
3

0
2

2

0
2

2

EyyE

yyE
yE

g

yE
yyEg

dy
dq

cc

c
c

c

c
c

=→=

=⎟
⎠
⎞

⎜
⎝
⎛ −−

−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−=

         (5.18) 

 
Maximum discharge for the critical water depth is, 
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Variation of discharge with the water depth is known as Koch parabola. (Fig. 5.6b) 
 

 
                                                (a)                                     (b) 

Figure 5.6. (E-y) and (q – y) diagrams for the rectangular channel 
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Example 5.6: Find the critical water depth for a specific energy head of E1 = 1.5 m in the 
following channels: 
 

a) Rectangular channel, B = 2.0 m. 
b) Triangular channel, m = 1.5. 
c) Trapezoidal channel, B = 2.0 m and m = 1.0. 

 
Solution:  
 

a) Rectangular channel 
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b) Triangular channel 
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c) Trapezoidal channel 
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By trail and error, yc = 1.10 m. 
 
5.4. Occurrence of Critical Depth 
 
The analysis of open channel flow problems usually begins with prediction of points in 
the channel at which the critical depth yc will occur. Those points feature a change from 
subcritical to supercritical flow, are known as controls since their occurrence governs, or 
controls, the liquid depths in the reach of channel upstream from these points. 
 
The most obvious place where critical depth can be expected is in the situation in Fig. 
(5.7), where a long channel of mild slope (S0 < Sc) is connected to a long channel of steep 
slope (S0 > Sc). At the upstream of the channel, uniform subcritical flow at normal depth, 
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y01, will occur, and at the downstream a uniform supercritical flow at a smaller normal 
depth, y02, can be expected. These two uniform flows will be connected by a reach of 
varied flow in which at some point the depth must pass through the critical water depth, 
yc. (Chapter 6……).  
 
 

 
 

Figure 5.7 
 
When a long channel of steep slope discharges into one of mild slope (Fig. 5.8), normal 
depths will occur upstream and downstream from the point of slope change. Under these 
conditions a hydraulic jump will form whose location will be dictated by the details of 
slopes, roughness, channel shapes, but the critical depth will be found within the 
hydraulic jump. 
 

 
 

Figure 5.8 
 
The occurrence of critical depth on overflow structures may be proved by examining the 
flow over the top of a broad-crested weir equipped with a movable sluice gate at the 
downstream end and discharging from a large reservoir of constant surface elevation. 
(Fig. 5.9). With a gate closed (position A), the depth of water on the crest will be yA, and 
the discharge will be zero, giving point A on the q-curve. With the gate raised to position 
B, a discharge qB will occur, with a decrease in depth from yA to yB. This process will 
continue until the gate is lifted clear of the flow (C ) and can therefore no longer affect it. 
With the energy line fixed in position at the reservoir surface level and, therefore, giving 
constant specific energy, it follows that points A, B, and C have outlined the upper 
portion of the q-curve, that the flow occurring without gates is maximum, and the depth 
on the crest is the critical depth. For flow over weirs, a relation between head and 
discharge may be obtained by substituting yc = 2H/3 (Equ. 5.8) in Equ. (5.7), which 
yields, 
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Figure 5.9 

 
Another occurrence of the critical water depth is the free outfall from a long channel of 
mild slope. The critical water depth occurs a short distance (3 to 4 yc) upstream from the 
fall for rectangular channels and the fall depth (yb) is 72% of the critical depth. (Fig. 
5.10) 

 
 

Figure 5.10 
 
 
5. 4. 1. Characteristics of Subcritical and Supercritical Flows 
 
5.4.1.1. Wave Propagation Velocity 
 
c is the wave propagation velocity (celerity) on a flowing water with velocity V1. 
 

 
 

Figure 5. 11 
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If we take the celerity c equal but opposite to the flow velocity V1, then the wave stays 
still and the steady state conditions may be applied. Writing the energy equation between 
cross-sections 1 and 2 and neglecting the energy loss for a horizontal channel, 
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For rectangular channels, 
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Substituting this relation to Equ. (a), 
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If y1 = y then y2 = y+Δy and V1 = -c , in which Δy = Wave height, Equ. (5.21) may be 
written as, 
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Neglecting Δy2 values, 
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Equ. (5.22) is valid for shallow waters. Generally Δy/y may be taken as zero. The celerity 
equation is then, 
 

gyc =          (5.23) 
 

The waves generated on a still water with water depth y will propagate to all directions 
with the celerity derived and given by Equ. (5.23). If the wave is on a flowing water, 
resultant velocity of the celerity, c and flow velocity, V will be taken as the absolute 
velocity. 
 

a) Subcritical Flows 
 
Froude number for rectangular or wide channels is, 
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Since celerity gyc = , for subcritical flows, 
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Flow velocity < Celerity 

 
A wave generated on a flowing water will propagate to the downstream also with a 
velocity equal to (c – V) and to the downstream with (c + V). The generated wave will be 
seen in the entire flow surface. That is why subcritical flows is also called downstream 
controlled flows. 
 

b) Supercritical Flows 
 
The Froude number for supercritical flows for the same channel, 
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Flow velocity > Celerity 

 
Since flow velocity is greater than the wave celerity, a generated wave will propagate 
only in the downstream direction. That is why supercritical flows are called upstream 
controlled flows. 
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Case study: 
 
Generating waves by throwing a stone to flowing water may be used to know if the flow 
is subcritical or supercritical for practical purposes. If the generated waves propagate 
only in the downstream direction, then the flow is supercritical otherwise it is subcritical. 
  
5.5. Transitions 
 
The concepts of specific energy and critical energy are useful in the analysis of transition 
problems. Transitions in rectangular channels are presented here. The principles are 
equally applicable to channels of any shape and other types of transitions. 
 
5.5.1. Channel with a Hump 
 

a) Subcritical Flow 
 
Consider a horizontal, frictionless rectangular channel of width B carrying discharge Q at 
depth y1. 
 
Let the flow be subcritical. At a section 2 (Fig. 5.11) a smooth hump of height ΔZ is built 
on the floor. Since there are no energy losses between sections 1 and 2, construction of a 
hump causes the specific energy at section to decrease by ΔZ. Thus the specific energies 
at sections 1 and 2 are, 
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Figure 5. 12. Channel transition with a hump 
 
Since the flow is subcritical, the water surface will drop due to a decrease in the specific 
energy. In Fig. (5.13), the water surface which was at P at section 1 will come down to 
point R at section 2. The depth y2 will be given by, 
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Figure 5.13. Specific energy diagram for Fig. (5.12) 
 
It is easy to see from Fig. (5.13) that as the value of ΔZ is increased, the depth at section 
2, y2, will decrease. The minimum depth is reached when the point R coincides with C, 
the critical depth. At this point the hump height will be maximum, ΔZmax, y2 = yc = 
critical depth, and E2 = Ec = minimum energy for the flowing discharge Q. The condition 
at ΔZmax is given by the relation, 
 

22

2

2max1 2 c
cc ygB

QyEEZE +===Δ−     (5.28) 

 
The question may arise as to what happens when ΔZ > ΔZmax. From Fig. (5.13) it is seen 
that the flow is not possible with the given conditions (given discharge). The upstream 
depth has to increase to cause and increase in the specific energy at section 1. If this 
modified depth is represented by y1`, 
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2

11 `2 ygB
QyE +′=′      (with E`1>E1 and y`1>y1)   (5.29) 

 
At section 2 the flow will continue at the minimum specific energy level, i.e. at the 
critical condition. At this condition, y2 = yc, and, 
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cc ygB
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Recollecting the various sequences, when 0 < ΔZ < ΔZmax the upstream water level 
remains stationary at y1 while the depth of flow at section 2 decreases with ΔZ reaching a 
minimum value of yc at ΔZ = ΔZmax. (Fig. 5.13). With further increase in the value of ΔZ, 
i.e. for ΔZ > ΔZmax , y1 will change to y1` while y2 will continue to remain yc. 
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The variation of y1 and y2 with ΔZ in the subcritical regime can be clearly seen in Fig. 
(5.14). 

 
 

Figure 5.14. Variation of y1 and y2 in subcritical flow over a hump 
 

b) Supercritical Flow 
 
If y1 is in the supercritical flow regime, Fig. (5.13) shows that the depth of flow increases 
due to the reduction of specific energy. In Fig. (5.13) point P` corresponds to y1 and point 
R` to depth at the section 2. Up to the critical depth, y2 increases to reach yc at ΔZ = 
ΔZmax. For ΔZ > ΔZmax , the depth over the hump y2 = yc will remain constant and the 
upstream depth y1 will change. It will decrease to have a higher specific energy E1`by 
increasing velocity V1. The variation of the depths y1 and y2 with ΔZ in the supercritical 
flow is shown in Fig. (5.15). 
 

 
 

Figure 5.15. Variation of y1 and y2 in supercritical flow over a hump 
 
Example 5.7: A rectangular channel has a width of 2.0 m and carries a discharge of 4.80 
m3/sec with a depth of 1.60 m. At a certain cross-section a small, smooth hump with a flat 
top and a height 0.10 m is proposed to be built. Calculate the likely change in the water 
surface. Neglect the energy loss. 
 
Solution: Let the suffixes 1 and 2 refer to the upstream and downstream sections 
respectively as in Fig. (5.12).  
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The upstream flow is subcritical and the hump will cause a drop in the water surface 
elevation. The specific energy at section 1 is, 
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At section 2, 
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The minimum specific energy at section 2 is Ec2  = 1.26 m < E2 = 1.615 m. Hence y2 > yc 
and the upstream depth y1 will remain unchanged. The depth y2 is calculated by solving 
the specific energy equation, 
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Solving by trial and error gives,  y2 = 1.48 m. 
 
The drop at water surface elevation is, 
 

my 02.010.048.160.1 =−−=Δ  
 

Example 5.8: In Example 5.7, if the height of the hump is 0.50 m, estimate the water 
surface elevation on the hump and at a section upstream of the hump. 
 
Solution:  
 
From Example 5.7; Fr1 = 0.38, E1 = 1.715 m, and yc = yc2 = 0.837 m. 
 
Available energy at section 2 is, 
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The minimum specific energy required at section 2 is greater than E2, (Ec2 = 1.26 m > E2 
=1.215 m), the available specific energy at that section. Hence, the depth at section 2 will 
be at the critical depth. Thus E2 = Ec2 = 1.26 m. The upstream depth y1 will increase to a 
depth y1’ such that the new specific energy at the upstream section 1 is, 
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Solving by trial and error and selecting the positive root gives, y’1 > y2, y’1 = 1.648 m.  
 
Water surface profile is shown schematically in Fig. (5.16). 

 
Figure 5.16 

 
Example 5.9: A rectangular channel 2.50 m wide carries 6.0 m3/sec of flow at a depth of 
0.50 m. Calculate the height of a flat topped hump required to be placed at a section to 
cause critical flow. The energy loss due to the obstruction by the hump can be taken as 
0.1 times the upstream velocity head. 
 
Solution: 
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Since the critical flow is desired at section 2, 
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By the energy equation between sections 1 and 2, 
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Where EL = Energy loss, ΔZ= Height of the hump. 
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Example 5.10: Water flow in a wide channel approaches a 10 cm high hump at 1.50 
m/sec velocity and a depth of 1 m. Estimate a) The water depth y2 over the hump and b) 
The hump height that will cause the crest flow to be critical. 
 
Solution: 
 
a) Froude number at the upstream of the hump is, 
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For subcritical approach flow, if ΔZ is not too large, a depression is expected in the water 
level over the hump and a higher subcritical Froude number at the crest. With ΔZ = 0.10 
m, the specific energy levels are, 
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The physical situation is shown on a specific energy plot in Fig. (5. 17). With y1 in 
meters. 

 
 

 
Figure 5.17 
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There are three real roots: y = 0.859 m, 0.451 m, and -0.296 m. The third (negative) 
solution is physically impossible. The second (smaller) solution is the supercritical 
condition for E2 and is not possible for this subcritical hump. The first solution is the 
searched solution.  

y2 (subcritical) = 0.859 m 
 

The water surface level has dropped by, 
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Downstream flow over hump is subcritical. These flow conditions are shown in Fig. 
(5.17). 
 

b) For critical flow in a wide channel , 
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Therefore the maximum height for frictionless flow over this hump is, 
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For this hump, the surface level at the critical flow has dropped by, 
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5.5.2. Transition with a Change in Width 
 
5.5.2.1. Subcritical Flow in a Width Constriction 
 
Consider a frictionless horizontal channel of width B1 carrying a discharge Q at a depth y1 
as in Fig. (5.17). At a section 2 channel width has been constricted to B2 by a smooth 
transition. Since there are no losses involved and since the bed elevations at sections 1 
and 2 are the same, the specific energy at section is equal to the specific energy at section 
2. 
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Figure 5.18. Transition with width constriction 

 
It is convenient to analyze the flow in terms of the discharge intensity q = Q/B. At section 
1, q1 = Q/B1 and at section 2, q2 = Q/B2. Since B2 < B1, q2 > q1. In the specific energy 
diagram (Fig. 5.19) drawn with the discharge intensity, point P on the curve q1 
corresponds to depth y1 and specific energy E1. Since at section 2, E2 = E1 and q = q2, 
point P will move vertically downward to point R on the curve q2 to reach the depth y2. 
Thus, in subcritical flow the depth is y2 < y1. If B2 is made smaller, then q2 will increase 
and y2 will decrease. The limit of the contracted width B2 = B2min is reached when 
corresponding to E1, the discharge intensity q2 = q2max, i.e. the maximum discharge 
intensity for a given specific energy (critical flow condition) will prevail.  
 

 

 
 

Figure 5.19. Specific energy diagram for Fig. (5.18) 
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At the minimum width, y2 = ycm = critical depth. 
 
     (5.32) 

 

For a rectangular channel, at critical flow, Cc Ey
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Since E1 = ECmin, 
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If B2 < B2min, the discharge intensity q2 will be larger than qmax, the maximum discharge 
intensity consistent E1. The flow will not, therefore, be possible with the given upstream 
conditions. The upstream depth will have to increase to y1`. The new specific energy will  
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be formed which will be sufficient to cause critical flow at section 2. It may be noted that 
the new critical depth at section 2 for a rectangular channel is, 
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Since B2 < B2min , yc2 will be larger that ycm, yc2 > ycm. Thus even though critical flow 
prevails for all B2 < B2min , the depth section 2 is not constant as in the hump case but 
increases as y1` and hence E1` rises. The variation of y1, y2 and E with B2/B1 is shown 
schematically in Fig. (5.20). 
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Figure 5.20. Variation of y1 and y2 in subcritical flow  
in a width constriction 

 
 
5.5.2.2. Supercritical Flow in a Width Constriction 
 
If the upstream depth y1 is in the supercritical flow regime, a reduction of the flow width 
and hence an increase in the discharge intensity cause a rise in depth y2. In Fig. (5.19), 
point P` corresponds to y1 and point R` to y2. As the width B2 is decreased, R` moves up 
till it becomes critical at B2 = B2min . Any further reduction in B2 causes the upstream 
depth to decrease to y1` so that E1 rises to E1`. At section2, critical depth yc` 
corresponding to the new specific energy E1` will prevail. The variation of y1, y2 and E 
with B2/B1 in supercritical flow regime is indicated in Fig. (5.21). 
 

 
Figure 5.21. Variation of y1 and y2 in supercritical flow 

in a width constriction 
 
5.5.2.3. Choking 
 
In the case of a channel with a hump, and also in the case of a width constriction, it is 
observed that the upstream water surface elevation is not affected by the conditions at 
section 2 till a critical stage is first achieved. Thus in the case of a hump for all ΔZ ≤ 
ΔZmax , the upstream water depth is constant and for all ΔZ > ΔZmax the upstream depth is 
different from y1. Similarly, in the case of the width constriction, for B2 ≥ B2min , the 
upstream depth y1 is constant; while for all B2 < B2min , the upstream depth undergoes a 
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change. This onset of critical condition at section 2 is a prerequisite to choking. Thus all 
cases with ΔZ > ΔZmax or B2 < B2min are known as choked conditions. Obviously, choked 
conditions are undesirable and need to be watched in the design of culverts and other 
surface drainage features involving channel transitions. 
 
 
Example 5.10: A rectangular channel is 3.50 m wide conveys a discharge of 15.0 m3/sec 
at a depth of 2.0 m. It is proposed to reduce the width of the channel at a hydraulic 
structure. Assuming the transition to be horizontal and the flow to be frictionless 
determine the water surface elevations upstream and downstream of the constriction 
when the constricted width is a) 2.50 m and b) 2.20 m. 
 
Solution:  
 
Let suffixes 1 and 2 denote sections upstream and downstream of the transition 
respectively. 
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The upstream flow is subcritical and the transition will cause a drop in the water surface. 
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Let B2min = minimum width at section 2 which does not cause choking. 
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a) When B2 = 2.50 m 
 
B2 = 2.50 m < B2min = 2.63 m and hence choking conditions prevail. The depth at section 
2 = y2 = yc2. The upstream depth y1 will increase to y1`. 
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At the upstream section 1: 
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Solving by trial and error and selecting positive subcritical flow depth root, 
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b) When B2 = 2.20 m; 
 
As B2 < B2min choking conditions prevail. 
 
Depth at section 2 = y2 = yc2. 
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At upstream section 1, new upstream depth = y1`, 
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Solving by trial and error, the appropriate depth to give subcritical flow is, 
 

my 35.21 =′  
 

[Note that for the same discharge when B2 < B2min (i.e. under choking conditions) the 
depth at the critical section will be different from yc = 1.49 m and depends on the value 
B2]. 
 
5.5.2.4. General Transition 
 
A transition in general form may have a change of channel shape, provision of a hump or 
a depression, contraction or expansion of channel width, in any combination. In addition, 
there may be various degrees of loss of energy at various components. However, the 
basic dependence of the depths of flow on the channel geometry and specific energy of 
flow will remain the same. Many complicated transition situations can be analyzed by 
using the principles of specific energy and critical depth. 
 
In subcritical flow transitions the emphasis is essentially to provide smooth and gradual 
changes in the boundary to prevent flow separation and consequent energy losses. The 
transitions in supercritical flow are different and involve suppression of shock waves 
related disturbances. 
 
Example 5.12: A discharge of 16.0 m3/sec flows with a depth of 2.0 m in a rectangular 
channel 4.0 m wide. At a downstream section the width is reduced to 3.50 m and the 
channel bed is raised by ΔZ. Analyze the water surface elevations in the transitions when 
a) ΔZ = 0.20 m and b) ΔZ = 0.35 m. 
 
Solution: 
 
Let the suffixes 1 and 2 refer to the upstream and downstream sections respectively. At 
the upstream section, 
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The upstream flow is subcritical and the transition will cause a drop in the water surface 
elevation.  
 

m
g

VyE

m
g

V

20.220.00.2
2

20.0
62.19
0.2

2
2

1
11

22
1

=+=+=

==
 

 
For the transition cross-section 2, 
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c) When ΔZ = 0.20 m, 

 
E2 = Available specific energy at section 2 
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Hence the depth y2 > yc2 and the upstream depth will remain unchanged at section 1, y1. 
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Solving by trial and error,  

my 58.12 =  
 

Hence when ΔZ = 0.20 m, y1 = 2.00 m and y2 = 1.58 m. The drop in water surface is, 
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c) When ΔZ = 0.35 m, 
 

E2 = Available specific energy at section 2 
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Hence the contraction will be working under the choked conditions. The upstream depth 
must rise to create a higher to energy. The depth of flow at section 2 will be critical with,  
 

y2 = yc2 = 1.29 m 
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By trial and error, 

my 10.21 =′  
 

The upstream depth will therefore rise by 0.10 m due to the choked condition at the 
constriction. Hence, when ΔZ = 0.35 m, 
 

y1’ = 2.10 m    and y2 = yc2 = 1.29 m 
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Hydraulic Jump 
 
 

If the flow at the upstream of a cross section is subcritical (y1<ycr) but supercritical 
(y2>ycr) at the downstream of that cross section, the transition from subcritical flow to 
the supercritical flow will be abrupt with a jump called Hydraulic Jump. In the 
mathematical derivation of hydraulic jump, the following assumptions are made, 
 
a) Rectangular channel with horizontal bottom slope, 
b) Before and after the hydraulic jump, velocity distributions are uniform and the 

pressure distribution over the cross sections are hydrostatic, 
c) Friction losses are neglected. 
 

 
 

Figure. Hydraulic Jump 
 

Momentum equation will be applied to the control volume taken at the hydraulic jump 
section for a unit width perpendicular to the control volume, 
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Multiplying both side of the above equation with (1/y1

3) yields, 
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Since for rectangular channels, 
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Equation (1) takes the form of, 
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Solution of this equation and taking the positive sign of the square root gives, 
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The ratio of flow depths after and before the hydraulic jump (y2/y1) is a function of the 
Froude number of the subcritical flow before hydraulic jump. 

 
Hydraulic Jump as an Energy Dissipater 
 
If we write the difference of the specific energies before after the hydraulic jump, 
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Since, 
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It has been derived that, 
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Putting this equation to Equation (3), 
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The analytical equation of the energy dissipated with the hydraulic jump is, 
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The power lost by hydraulic jump can be calculated by, 
 

EQN w Δ= γ  
 

Where, 
 
γw = Specific weight of water = 9.81 kN/m3 
Q = Discharge (m3/sec) 
ΔE = Energy dissipated as head (m) 
N = Power dissipated (kW) 
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Some empirical equations were given to calculate the length of hydraulic as, 
 

L = 5.2y2      Safranez equation 
 

L = 5(y2 – y1)    Bakhmetef equation 
 

L = 6(y2 – y1)       Smetana equation 
 

L = 5.6y2        Page equation 
 

Physical explanation of Equations (2) and (4) gives that, 
 

a) If  011
1

2
1 =Δ→=→= E

y
yFr    (critical flow) 

 

b) If  01
1

2
1 >Δ>→→> E

y
yFr      (hydraulic jump) 

 

c) If 011
1

2
1 <Δ→<→< E

y
yFr     (Energy gain is not possible. Transition from 

supercritical to subcritical flow is with gradual water surface profile) 
 
 
Physical Explanation of Critical Flow 
 
It has been derived that, 
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Since for rectangular channels, 
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Equation (5) can be written as, 
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Defining as, 
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Equation (6) takes the form of, 
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The curve of this equation, 
 

 
 

The physical explanation of this curve gives, 
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The regimes of the flows should be different when passing through a critical flow depth. 
If the flow is subcritical at downstream when passing through critical water depth it 
should be in supercritical at the downstream and vice versa. 
 
Example: If the Froude number at the drop of a hydraulic jump pool is 6 and the water 
depth is 0.50 m, find out the length of the hydraulic jump. Calculate the power 
dissipated with the hydraulic jump if the discharge on the spillway is 1600 m3/sec. 
 
 
 
 
 
 

Y1=y1/yc 

Y2=y2/yc 
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Solution: Using the equation of the ratio of water depths, 
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The length of hydraulic jump by different equations, 
 

myL 8.2042.52.5 2 =×=×=         (Safranez) 
 

( ) ( ) myyL 5.175.0455 12 =−×=−=      (Bakhmetef) 
 

( ) ( ) myyL 215.0466 12 =−×=−=     (Smetana) 
 

myL 4.2246.56.5 2 =×=×=     (Page)  
 

It is preferred to be on the safe side with the hydraulic structures. Therefore, the longest 
result will be chosen. The length of the hydraulic jump will be taken as L = 22.4 m for 
design purposes. 

 
Energy dissipated as head, 
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The power dissipated with the hydraulic jump, 
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