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Fundamental Facts To Remember 
About the Search for Planets and Life 

• The necessary ingredients of life are widespread 
– Observation reveals uniformity of physical and chemical laws 
– Origin of the elements and their dispersal is well understood
– Carbon bond is unique and ubiquitous! Forget Silicon life.

• Life on Earth can inhabit harsh environments
– Micro- and environmental biology reveal life in extremes of 

temperature, chemistry, humidity
• Life  affects a planetary environment in a detectable way

– Our own atmosphere reflects the presence of primitive through 
advanced life

• Planets are a common outcome of star formation
– Modern theory of star formation makes planet formation likely



Organic Chemistry Ubiquitous: Comets



IR, submm, mm  
spectra reveal gas 
phase, ices, 
mineralogical 
signatures of many 
species, incl:
H2O, CO2,                
CH3OH, CO, CH4, 
formic acid              
(HCOOH) and 
formaldehyde 
(H2CO), etc.

…Star & 
Planet  

Forming 
Regions…



…and distant 
galaxies

• Polycyclic Aromatic 
Hydrocarbons (PAHs)
– Complex 2-D carbon 

molecules (>25 carbon 
atoms)

– Found in many active 
galaxies

Pierre et al 2001

z=1.5??

Barthel 2001

PAH

• Perhaps in distant quasar at  
z~1.5 (wait for SIRTF)

• CO detected in a very 
distant quasar (z=4.1!)
– Found with more  complex 

species in more nearby 
objects



Life is Hardy 

• Life needs water, a source of 
energy, and cosmically 
abundant elements

•Extremophiles can   live in 
hot  (~120 C!) acid lakes,  
near undersea volcanic vents, 
in  underground aquifers, and 
within rocks in Antarctica



Earth’s  Gases With And Without Life
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Signatures of Life
• Oxygen or its proxy  ozone is most reliable biomarker

– Ozone easier to detect at low Oxygen concentrations but is a poor 
indicator of quantity of Oxygen

• Water is considered essential to life. 
• Carbon dioxide indicates an atmosphere and oxidation 

state typical of terrestrial planet.
– Long wavelength lines in both near (1 µm) and mid-IR (16 µm)  

drives angular resolution and  system temperature (mid-IR)
• Abundant Methane can have a biological source

– Non-biological sources might be confusing
– High spectral resolution and short wavelength rejection

• Find an atmosphere out of equilibrium
• Expect the unexpected → provide broad spectral coverage

Visible and mid-IR provide significant atmospheric 
signatures and potential  biomarkers



Star Formation & Protoplanetary Disks
• The formation of planets is an integral part of our theory 

of how stars form
– Hundreds of planetary masses of  gaseous and solid material in 

the protostellar disk
• Solar System-scale dust disks found around nearby stars 



Fomalhaut

Eps Eri

Debris Disks
From the 
Ground  

• Millimeter (OVRO), and 
submillimeter (JCMT) 
observations show structure 
in disks around bright disks
– Clumping on 100 AU scale
– Evacuated cavities

• Many groups searching for 
planets using AO

Beta Pic



SIRTF  Observations of Disks
• NASA’s next Great 
Observatory will map, 
survey, take spectra of 
100s stars

– single, binary
–with, without 
planets
–Lo/high metals
–1 Myr to  5 Gyr
–Grain composition
–Reach 1-10x Kuiper 
belt at 70 µm

• SIRTF launches April 
28 (oops), August TBD 
after 25 years!



SIRTF Is 60 days  
From Launch



SIRTF/MIPS 
Volume Limited 

Sample

• Observations at 24, 70, 160 
µm will detect disks at levels 
of a few times our own 
Kuiper Belt via IR excess at 
long wavelengths (80 K 10-
50 AU)
– Investigate incidence of disks as 

f(spectral type, age, metallicity, 
planets)

• SIRTF will detect only higher 
levels of emission from dust 
in “habitable zone” (x100 
local zodiacal cloud) due to 
poor contrast with star
– Interferometers (Keck-I,  LBT-

I)  will provide better measure 
of inner zodiacal clouds

Any Age
Known 
Age

FGK 139 48
F5-F9 36 16
G0-G4 40 15
G5-G9 27 6
K0-K5 36 11
with Planet 38



Gas Giant Planets

???

Marcy et al.

• Planets on longer periods 
starting to be identified

– 55 Cancri is solar system analog
• Astrometry (SIM) and radial 
velocity will determine solar 
system architecture to few M⊕

• Over 100 planets found using 
radial velocity wobble

– ~10% of stars have planets 
– Most orbits < 2-3 AU
– Half may be multiple systems



• Transits of  HD  209458 determine 
properties of another Solar System
– Confirmation of planet interpretation 
– Inclination= 85.9°
– Mass= 0.69 ± 0.07 Mjup

– Radius =1.35 ± 0.06 Rjup

– Density=  0.35 g/cc <Saturn
• Active ground based efforts using 10 

cm to 10 m telescopes
• COROT, Kepler and Eddington will 

find few hundreds of Earths, 
thousands of Jupiters

• Spectroscopy probes atmosphere
– Cloud heights, heavy-element abundances, 

temperature and vertical temperature 
stratification, and wind velocities 

Transit Determines 
Planet’s Properties



Astrometric Search for Planets 

• Astrometry measures 
positional wobble due to 
planets

• Interferometry enables 
measurements at the micro-
arcsecond level

• Result of new observing 
systems will be a census of 
planets down to a few Mearth
over the next 10-20 years



Interferometery Is One 
Key to Planet Detection

• Enables precision 
astrometry, high 
resolution imaging, 
starlight nulling

• Make astrometric census of planets 
• Detect “Hot Jupiter’s” 
• Detect exo-zodiacal dust clouds
• Image protostellar disks

• Break link between diameter, baseline



Space Interferometer Mission (SIM) 
Will Make Definitive Planet Census

A Deep Search for Earths
• Are there Earth-like (rocky) 

planets orbiting the nearest 
stars?

• Focus on ~250 stars like the Sun 
(F, G, K) within 10 pc

• Sensitivity limit of  ~3 Me at 10 
pc requires 1 µas accuracy

A Broad Survey for Planets
• Is our solar system unusual?
• What is the range of planetary 
system architectures?
• Sample 2000 stars within ~25 pc 
at 4 µas accuracy 

Evolution of Planets
• How do systems evolve?
• Is the evolution conducive to the 

formation of Earth-like planets 
in stable orbits?

• Do multiple Jupiters form and 
only a few (or none) survive?

What We Don’t Know
• Are planetary systems like our 
own common?
• What is the distribution of 
planetary masses?

– Only astrometry measures 
planet masses unambiguously

• Are there low-mass planets in 
‘habitable zone’ ? 



Search for Planets Around 
Young Stars (SIM-PLAYS)
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•Survey  young stars with variety of ages, masses (0.2-2 Mo) to look 
for gas-giant planets (>1 MJ at 1-10 AU)

− Clusters include Taurus, Oph, Sco-Cen, TW Hya, Chamaeleon, etc



Four Hard Things 
About TPF• Solar neighborhood is sparsely 

populated
– Fraction of stars with Earths (in habitable 

zone) unknown
– Unknown how far we need to look to 

ensure success
– Surveying substantial number of  stars 

means looking to ~15 pc Sensitivity 
(relatively easy)

• Detection in hours spectroscopy in days. 
– Integration time ∝ (distance/diameter)4

– Need 12 m2 of collecting area  (>4 m) for 
star at ~10 pc

• Angular resolution (hard)
– 100 mas is enough to see ~25 stars, but 

requires >4 m coronagraph or >20 m 
interferometer

– Baseline/aperture ∝ distance
• Starlight suppression (hard to very 

hard)
– 10-6 in the mid-IR
– 10-9 in the visible/near-IR

>109
>106



The Challenge of Angular Resolution

+

• Coronagraphs at >3λ/D
• Interferometers at > 1 λ/B

10 µm, 28 m
Coronagraph

C
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• How many planets to avoid mission failure (Np = 0)
• How many planets  for comparative planetology (Np >10)

η⊕ # Stars Dist (Aperture, Baseline) Cost Schedule

≈ η⊕

How Many Planets Are Enough ?



TPF Science Requirements-I
• Detect and characterize terrestrial-sized planets around nearby stars. 
• Satisfy requirements for “core sample” of 30 (late-F, G and K 

dwarf) stars 
• Partially satisfy requirements for “extended” sample of 120 stars 

(late-F, G, and K dwarf) as well as M-dwarf, early-F, and A- star 
targets of opportunity. 

– Survey of core and extended stars, including at least 3 visits, should be 
completed in ~2 years. 

– Additional visits of detected planets to determine orbits beyond the 2 year 
detection phase.

• A “TPF stretch mission” should meet the above requirements for 
the full sample of ~150 stars.

• Within the CHZ (0.9-1.1 AU for a G-type star ∝ L1/2), TPF shall be 
able to detect with 95% completeness, terrestrial planets at least half 
the surface area of the Earth with Earth’s albedo. 

– Within a more generously defined HZ (0.7-1.5 AU for a G-dwarf), TPF shall 
be able to detect an Earth-sized planet with Earth albedo with 95% 
completeness.



TPF Science Requirements-II

• TPF must be able to obtain spectra in an effort determine the 
existence of an atmosphere, detect water, detect carbon dioxide 
(in the infrared), and detect oxygen/ozone or methane if these 
are present in astrobiologically interesting quantities. 

– The wavelength range 0.5-0.8 µm (1.05 µm desirable) in the optical and 
6.5-13 µm (17 µm desirable) in the infrared, with spectral resolutions of 
75 and 25, respectively. 

– Spectrometer capable of R>100 for the brightest sources.
– Detection of Rayleigh scattering and the absorption edges desirable 

• Strong  desire for large field of view, 0.5″ -1″ , to search the 
nearest stars for terrestrial planets and to characterize giant 
planets in Jupiter-like orbits



TPF Candidate Architectures
• Visible Coronagraph

– System concept is relatively 
simple, 4-10 m mirror on a 
single spacecraft

– Components are complex
• Build adequately large mirror of 

appropriate quality (λ/100)
• Hold (λ/3,000) with (λ/10,000) 

stability during observation with 
deformable mirror

• IR Interferometer
− Components are simple: 3-4 
m mirrors of average quality
−System is complex: 30 m 
boom or separated spacecraft 
with ~ nm stability



Control of Star Light
• Control diffracted light 

with apodizing pupil 
and/or  image plane 
masks
– Square masks
– Graded aperture
– Multiple Gaussian masks
– Band limited masks
– Nulling interferometer
– Etc., etc.
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Visible Light Planet Detection
• A simple coronagraph on NGST 

could detect Jupiters around the 
closest stars as well as newly formed 
Jupiters around young stars

• Advanced coronagraph/apodized 
aperture telescope
– 2 telescope (Jupiters)
– 4  m telescope (Jupiters and nearest 30 

Earths) 
– 8~10 m telescope  (full TPF goals)

• Presence and Properties of Planets
– Planet(s) location and size×reflectivity
– Atmospheric or surface composition
– Rotation surface variability
– Radial and azimuthal structure of disks 

Simulated NGST coronagraphic 
image of a planet around Lalande
21185 (M2Vat 2.5pc) at 4.6 µm



Coronagraph Status
• Current contrast limited to 10-5 due to DM 

imperfections and lab seeing
−New DM due from Xinetics

• Kodak selected to provide large (1.8m), 
high precision (<5 nm) mirror

• Innovative ideas to improve angular 
resolution by combining interferometer 
and coronagraph ideas
− Vis nuller has achieved <10-7-10-8 effective null

5 Airy rings

10-5



IR Interferometer
Goal Earth at 10 pc Time
Planet? R=3/SNR=5 2.0 h
Atmosphere?   R=20/SNR=10 2.3d
(CO2, H2O)
Habitable? R=20/SNR=25 15d               
(O3, CH4)

• Interferometer with cooled two to 
four 3~4 m mirrors 
– 30 m boom for minimum resolution 
– 75-1000 m baseline using formation 

flying for maximum sample size
• Key question is configuration

– Trade between null depth, stability, 
physical length and resolution  



IR Nulling • JPL Modified Mach-Zender
(Serabyn et al)
– 1.4 ×10-6 null laser null @ 10.6 um 
– Aim for 10-6 null target broadband

• Add spatial filter and stabilization
• Develop fully cryogenic system

Nulling with two detectors- 
only low end detector shown, ignore initial spikes
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• UofA group (Hinz et al) 
demonstrated nulling at <1% with 
BLINC instrument on MMT



Selection of  Final Architecture 

Point Designs

June 06

A
rchitecture D

ow
n-select

M
ission C

oncept R
eview

Oct 06

Coronagraph

Point Designs

Interferometer

TPF

Past A
rchitecture Trade 

Studies

Coronagraph Architecture Trade Studies

Interferometer Architecture Trade Studies

July 05
Annual Review

July 04
Annual Review

July 03
Annual Review

Overriding goal: Find one design that is scientifically compelling and
technologically  ready for 2008 NAS Decadal Review and 2015 launch



TPF Science Roadmap
• Coordinated observing/theoretical program to address questions 

affecting TPF/Darwin architecture/scope
• What is η⊕?

– Transits (MOST,COROT, Kepler/Eddington)
– Theory extrapolating from gas giant statistics terrestrial planets

• What is level  of exo-zodiacal emission?
– SIRTF (Kuiper belts @ 3-300 of AU) 
– Keck-I/LBT-I/VLT-I (Zodiacal clouds at ~0.3-3 AU)
– Theory extrapolating from dust distribution terrestrial planets

• What wavelength region should we observe?
– Atmospheric and bio-markers from visible to mid-IR

• What are physical properties of giant planets?
– Advance understanding and demonstrate techniques

• What controls orbital stability in region of habitable zone? 
– Are solar systems “dynamically full” with planets in all stable orbits?

• What are properties of target stars
– Activity, presence of giant planets, zodi disks, gal/x-gal backgrounds

5-10% of TPF budget will support scientific activities



Collaboration on TPF/Darwin
• Strong ESA/NASA 

interest in joint 
planet-finding mission
– Collaborative 

architecture studies
– Discussions on 

technology planning 
and development

• Joint project leading 
to launch ~2015
– Scientific and/or 

technological 
precursors as required 
and feasible
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