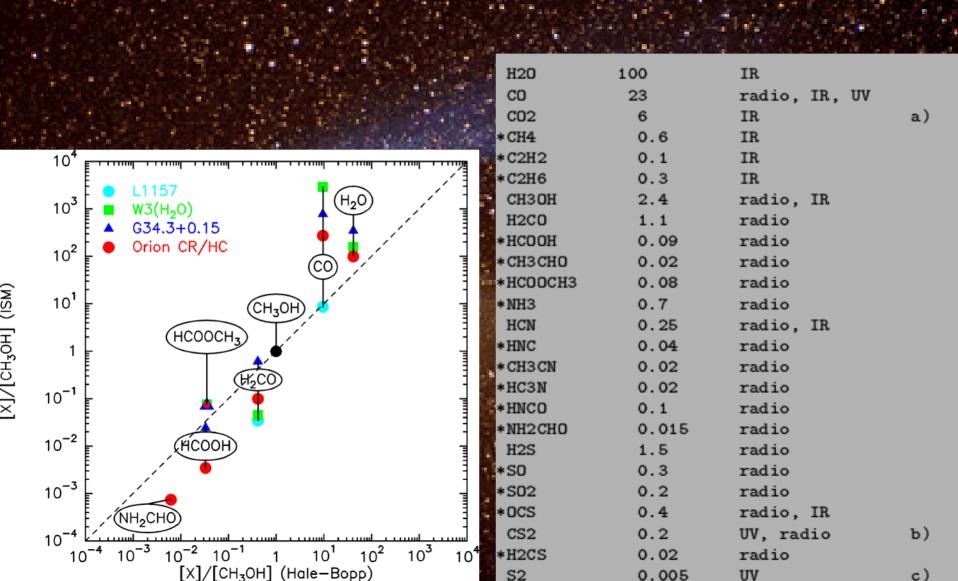
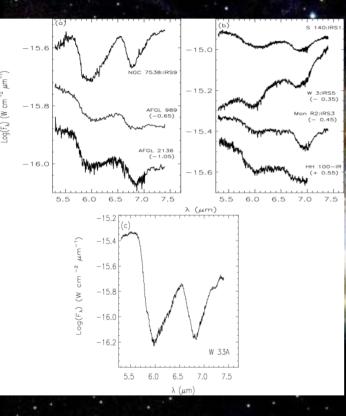
The Search for (Habitable) Planets


×.


C. Beichman, JPL

Fundamental Facts To Remember About the Search for Planets and Life

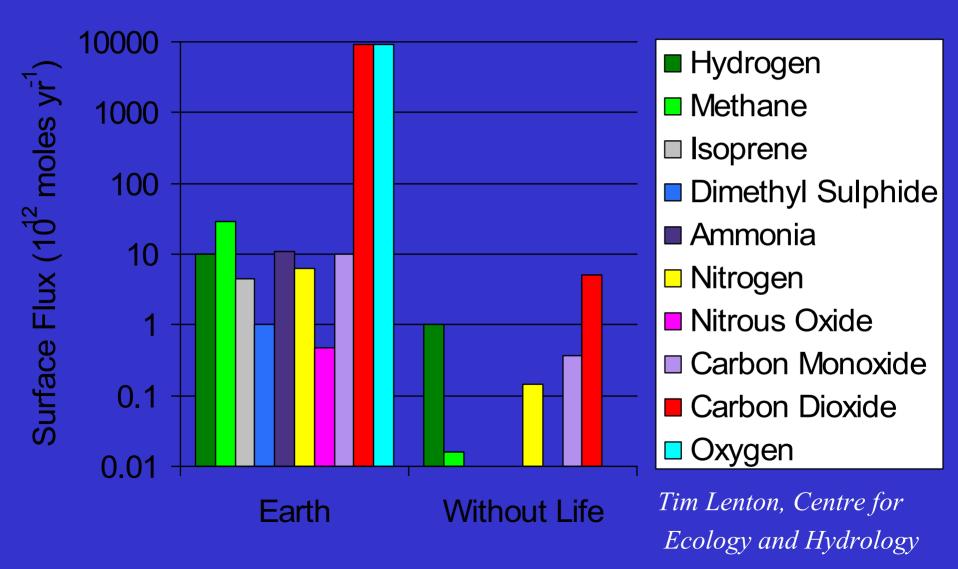
- The necessary ingredients of life are widespread
 - Observation reveals uniformity of physical and chemical laws
 - Origin of the elements and their dispersal is well understood
 - Carbon bond is unique and ubiquitous! Forget Silicon life.
- Life on Earth can inhabit harsh environments
 - Micro- and environmental biology reveal life in extremes of temperature, chemistry, humidity
- Life affects a planetary environment in a detectable way
 - Our own atmosphere reflects the presence of primitive through advanced life
- Planets are a common outcome of star formation
 Modern theory of *star* formation makes *planet* formation likely

Organic Chemistry Ubiquitous: Comets

...Star & Planet Forming **Regions...** IR, submm, mm spectra reveal gas phase, ices, mineralogical signatures of many species, incl: $H_{2}O, CO_{2},$ $CH_3OH, CO, CH_4,$ formic acid (HCOOH) and formaldehyde (H_2CO) , etc.

and distant galaxies

- Polycyclic Aromatic Hydrocarbons (PAHs)
 - Complex 2-D carbon molecules (>25 carbon atoms)
 - Found in many active galaxies
- Perhaps in distant quasar at z~1.5 (wait for SIRTF)
- CO detected in a very distant quasar (z=4.1!)
 - Found with more complex species in more nearby objects



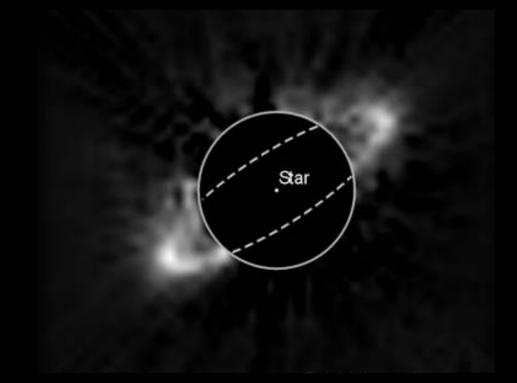
Life is Hardy

•Extremophiles can live in hot (~120 C!) acid lakes, near undersea volcanic vents, in underground aquifers, and within rocks in Antarctica

• Life needs water, a source of energy, and cosmically abundant elements

Earth's Gases With And Without Life

Signatures of Life


- Oxygen or its proxy ozone is most reliable biomarker
 - Ozone easier to detect at low Oxygen concentrations but is a poor indicator of quantity of Oxygen
- *Water* is considered essential to life.
- *Carbon dioxide* indicates an atmosphere and oxidation state typical of terrestrial planet.
 - Long wavelength lines in both near (1 μ m) and mid-IR (16 μ m) drives angular resolution and system temperature (mid-IR)
- Abundant *Methane* can have a biological source
 - Non-biological sources might be confusing
 - High spectral resolution and short wavelength rejection
- Find an atmosphere out of equilibrium
- Expect the unexpected \rightarrow provide broad spectral coverage

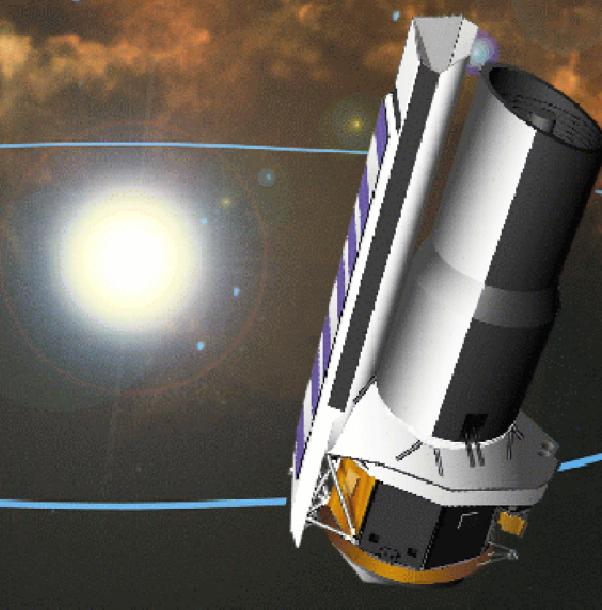
Visible and mid-IR provide significant atmospheric signatures and potential biomarkers

Star Formation & Protoplanetary Disks

- The formation of planets is an integral part of our theory of how stars form
 - Hundreds of planetary masses of gaseous and solid material in the protostellar disk
- Solar System-scale dust disks found around nearby stars

Fomalhaut Debris Disks From the Ground

- Millimeter (OVRO), and submillimeter (JCMT) observations show structure in disks around bright disks
 - Clumping on 100 AU scale
 - Evacuated cavities
- Many groups searching for planets using AO


Eps Eri

Flute's exhit

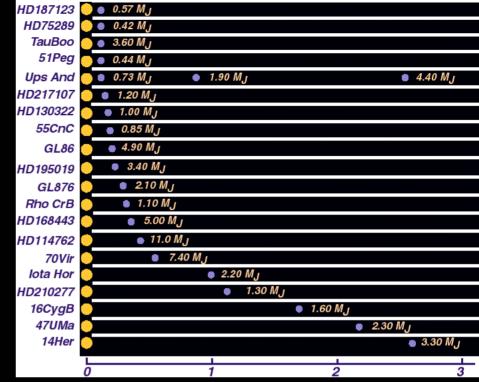
Beta Pic

SIRTF Observations of Disks

• NASA's next Great Observatory will map, survey, take spectra of 100s stars - single, binary -with, without planets -Lo/high metals -1 Myr to 5 Gyr -Grain composition -Reach 1-10x Kuiper belt at 70 µm • SIRTF launches April 28 (oops), August TBD

after 25 years!

SIRTF Is 60 days From Launch

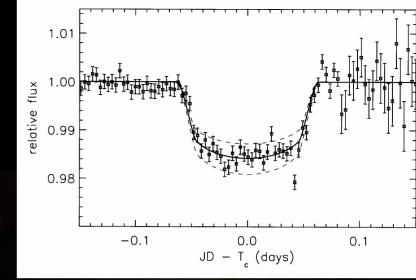

- Observations at 24, 70, 160 µm will detect disks at levels of a few times our own Kuiper Belt via IR excess at long wavelengths (80 K→ 10-50 AU)
 - Investigate incidence of disks as f(spectral type, age, metallicity, planets)
- SIRTF will detect only higher levels of emission from dust in "habitable zone" (x100 local zodiacal cloud) due to poor contrast with star
 - Interferometers (Keck-I, LBT-I) will provide better measure of inner zodiacal clouds

SIRTF/MIPS Volume Limited Sample

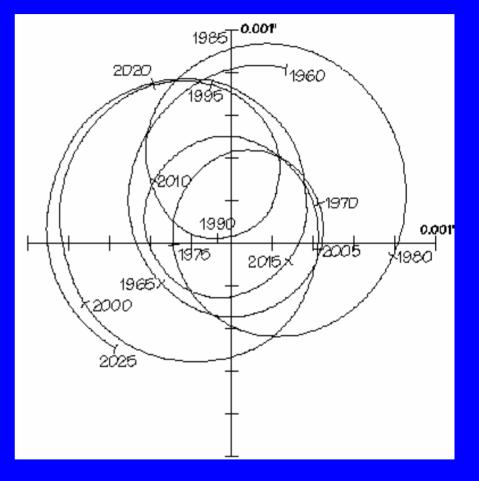
		Known
	Any Age	Age
FGK	139	48
F5-F9	36	16
G0-G4	40	15
G5-G9	27	6
K0-K5	36	11
with Plane	38	

Gas Giant Planets

- Over 100 planets found using radial velocity wobble
 - $-\sim 10\%$ of stars have planets
 - Most orbits < 2-3 AU
 - Half may be multiple systems
- Planets on longer periods starting to be identified
 - 55 Cancri is solar system analog
- Astrometry (SIM) and radial velocity will determine solar system architecture to few M_{\oplus}



Marcy et al.


Transit Determines Planet's Properties

- Transits of HD 209458 determine properties of another Solar System
 - Confirmation of planet interpretation
 - Inclination= 85.9°
 - Mass= 0.69 \pm 0.07 M_{jup}
 - Radius = 1.35 ± 0.06 R_{jup}
 - Density= 0.35 g/cc <Saturn
- Active ground based efforts using 10 cm to 10 m telescopes
- COROT, Kepler and Eddington will find few → hundreds of Earths, thousands of Jupiters
- Spectroscopy probes atmosphere
 - Cloud heights, heavy-element abundances, temperature and vertical temperature stratification, and wind velocities

Astrometric Search for Planets

- Astrometry measures positional wobble due to planets
- Interferometry enables measurements at the microarcsecond level
- Result of new observing systems will be a census of planets down to a few M_{earth} over the next 10-20 years

Interferometery Is One Key to Planet Detection

- Break link between diameter, baseline
- Enables precision astrometry, high resolution imaging, starlight nulling

- Make astrometric census of planets
- Detect "Hot Jupiter's"
- Detect exo-zodiacal dust clouds
- Image protostellar disks

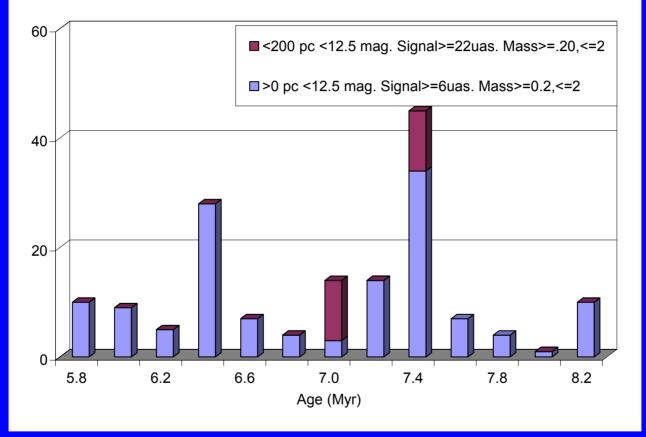
Space Interferometer Mission (SIM) Will Make Definitive Planet Census What We Don't Know

• Are planetary systems like our own common?

- What is the distribution of planetary masses?
 - Only astrometry measures planet masses unambiguously
- Are there low-mass planets in 'habitable zone'?

A Deep Search for Earths

- Are there Earth-like (rocky) • planets orbiting the nearest stars?
- Focus on ~250 stars like the Sun (F, G, K) within 10 pc
- Sensitivity limit of $\sim 3 M_{e}$ at 10 pc requires 1 µas accuracy

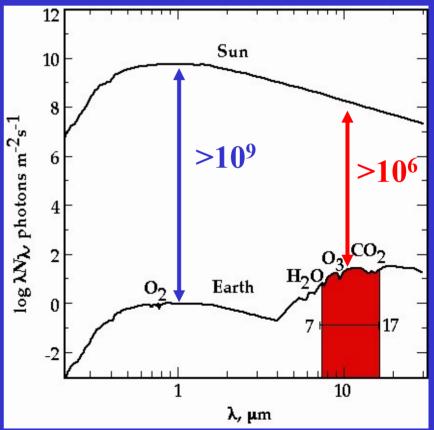

A Broad Survey for Planets

- Is our solar system unusual?
- What is the range of planetary system architectures?
- Sample 2000 stars within ~25 pc at 4 µas accuracy

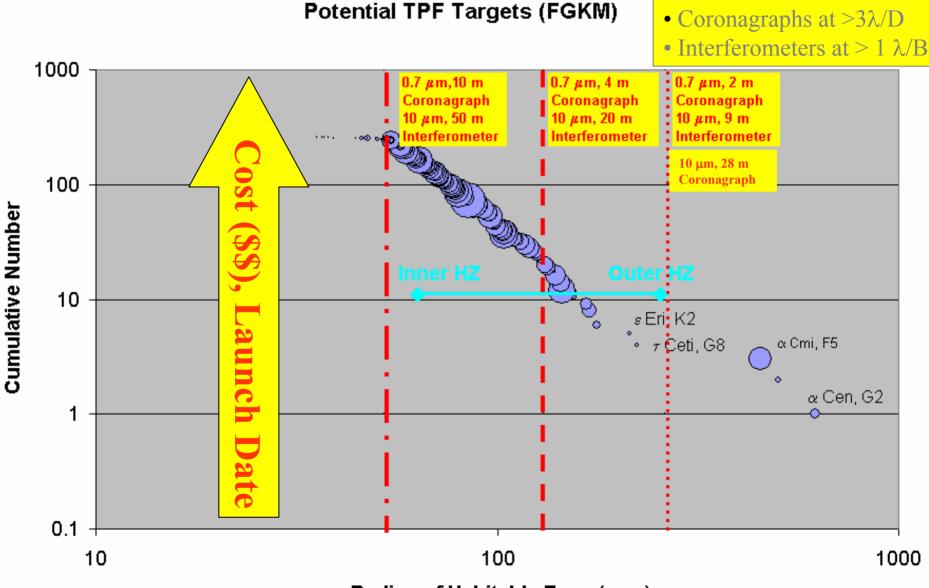
Evolution of Planets

- How do systems evolve? ullet
- Is the evolution conducive to the formation of Earth-like planets in stable orbits?
- Do multiple Jupiters form and \bullet only a few (or none) survive?

Search for Planets Around Young Stars (SIM-PLAYS)

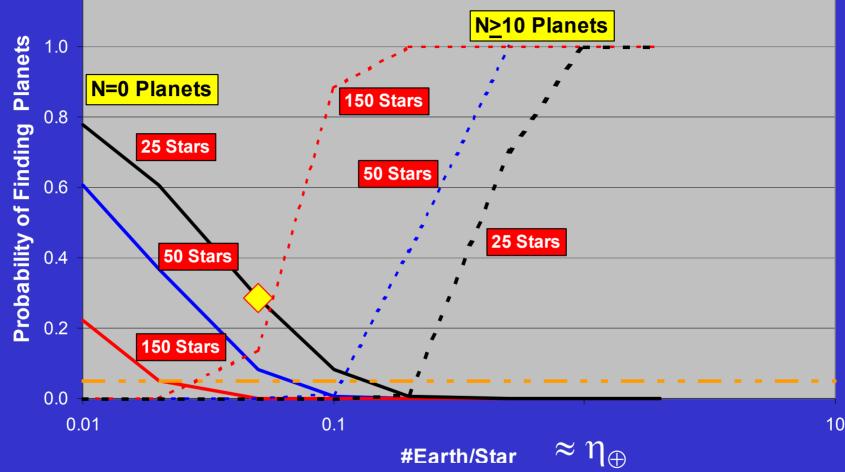


•Survey young stars with variety of ages, masses $(0.2-2 M_0)$ to look for gas-giant planets (>1 M_J at 1-10 AU)


- Clusters include Taurus, Oph, Sco-Cen, TW Hya, Chamaeleon, etc

- Solar neighborhood is sparsely populated
 - Fraction of stars with Earths (in habitable zone) unknown
 - Unknown how far we need to look to ensure success
 - Surveying substantial number of stars means looking to ~15 pc Sensitivity (relatively easy)
- Detection in hours \rightarrow spectroscopy in days.
 - Integration time \propto (distance/diameter)⁴
 - Need 12 m² of collecting area (\geq 4 m) for star at ~10 pc
- Angular resolution (hard)
 - 100 mas is enough to see ~25 stars, but requires \geq 4 m coronagraph or \geq 20 m interferometer
 - Baseline/aperture ∞ distance
- Starlight suppression (hard to very hard)
 - -10^{-6} in the mid-IR
 - 10⁻⁹ in the visible/near-IR

Four Hard Things About TPF



The Challenge of Angular Resolution

Radius of Habitable Zone (mas)

How Many Planets Are Enough?

- How many planets to avoid mission *failure* $(N_p = 0)$
 - How many planets for comparative planetology $(N_p > 10)$

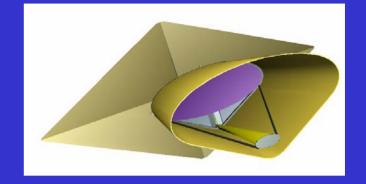
 $\eta_{\oplus} \rightarrow \#$ Stars \rightarrow Dist \rightarrow (Aperture, Baseline) \rightarrow Cost \rightarrow Schedule

TPF Science Requirements-I

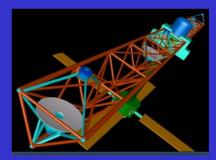
- Detect and characterize terrestrial-sized planets around nearby stars.
- Satisfy requirements for "core sample" of 30 (late-F, G and K dwarf) stars
- Partially satisfy requirements for "extended" sample of 120 stars (late-F, G, and K dwarf) as well as M-dwarf, early-F, and A- star targets of opportunity.
 - Survey of core and extended stars, including at least 3 visits, should be completed in ~2 years.
 - Additional visits of detected planets to determine orbits beyond the 2 year detection phase.
 - A "TPF stretch mission" should meet the above requirements for the full sample of ~ 150 stars.
 - Within the CHZ (0.9-1.1 AU for a G-type star $\propto L^{1/2}$), TPF shall be able to detect with 95% completeness, terrestrial planets at least half the surface area of the Earth with Earth's albedo.
 - Within a more generously defined HZ (0.7-1.5 AU for a G-dwarf), TPF shall be able to detect an Earth-sized planet with Earth albedo with 95% completeness.

TPF Science Requirements-II

- TPF must be able to obtain spectra in an effort determine the existence of an atmosphere, detect water, detect carbon dioxide (in the infrared), and detect oxygen/ozone or methane if these are present in astrobiologically interesting quantities.
 - The wavelength range 0.5-0.8 μ m (1.05 μ m desirable) in the optical and 6.5-13 μ m (17 μ m desirable) in the infrared, with spectral resolutions of 75 and 25, respectively.
 - Spectrometer capable of R>100 for the brightest sources.
 - Detection of Rayleigh scattering and the absorption edges desirable
- Strong desire for large field of view, 0.5" -1", to search the nearest stars for terrestrial planets and to characterize giant planets in Jupiter-like orbits

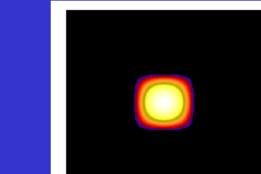

TPF Candidate Architectures

Visible Coronagraph

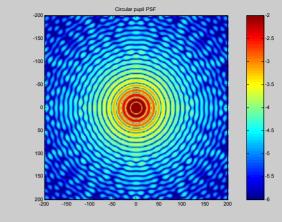

- System concept is relatively simple, 4-10 m mirror on a single spacecraft
- Components are complex
 - Build adequately large mirror of appropriate quality ($\lambda/100$)
 - Hold $(\lambda/3,000)$ with $(\lambda/10,000)$ stability during observation with deformable mirror

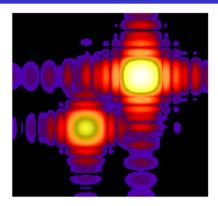
• IR Interferometer

Components are simple: 3-4
m mirrors of average quality
System is complex: 30 m
boom or separated spacecraft
with ~ nm stability

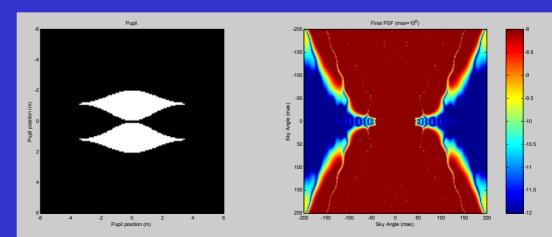

IR Interferometers

Control of Star Light

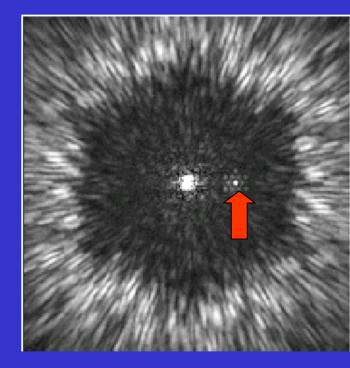

- Control <u>diffracted</u> light with apodizing pupil and/or image plane masks
 - Square masks
 - Graded aperture
 - Multiple Gaussian masks
 - Band limited masks
 - Nulling interferometer
 - Etc., etc.


• Control <u>scattered</u> light

Deformable mirror with 10,000 actuators for final 1/3000 wavefront (<1 Å)
Single mode fiber array



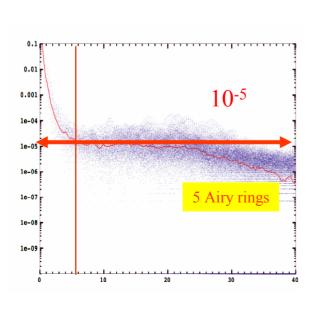
Apodized Square Aperture

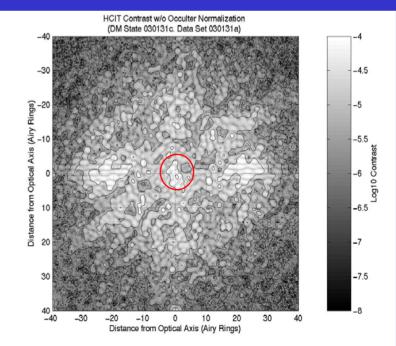


100:1 Star to Planet Ratio Apodization

Visible Light Planet Detection

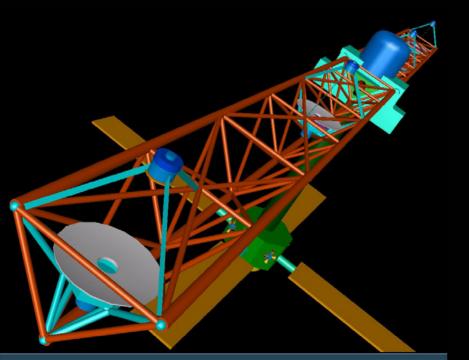
- A simple coronagraph on NGST could detect Jupiters around the closest stars as well as newly formed Jupiters around young stars
- Advanced coronagraph/apodized aperture telescope
 - 2 telescope (Jupiters)
 - 4 m telescope (Jupiters and nearest 30 Earths)
 - 8~10 m telescope (full TPF goals)
- Presence and Properties of Planets
 - Planet(s) location and size×reflectivity
 - Atmospheric or surface composition
 - Rotation \rightarrow surface variability
 - Radial and azimuthal structure of disks

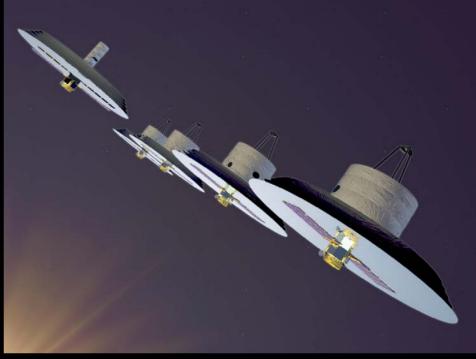

Simulated NGST coronagraphic image of a planet around Lalande 21185 (M2Vat 2.5pc) at 4.6 µm



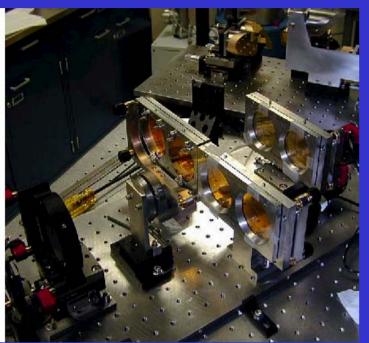
Coronagraph Status

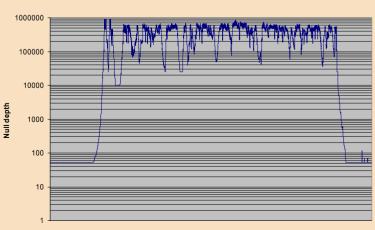
- Current contrast limited to 10⁻⁵ due to DM imperfections and lab seeing


 New DM due from Xinetics
- Kodak selected to provide large (1.8m), high precision (<5 nm) mirror
- Innovative ideas to improve angular resolution by combining interferometer and coronagraph ideas
 - Vis nuller has achieved <10⁻⁷-10⁻⁸ effective null



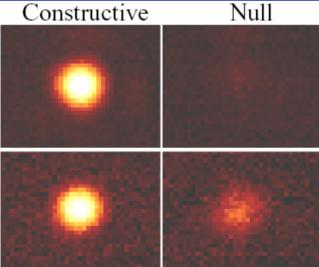
IR Interferometer


GoalEarth at 10 pcTimePlanet?R=3/SNR=52.0 hAtmosphere?R=20/SNR=102.3 d(CO2, H2O)R=20/SNR=2515 d(O3, CH4)Label 20Label 20



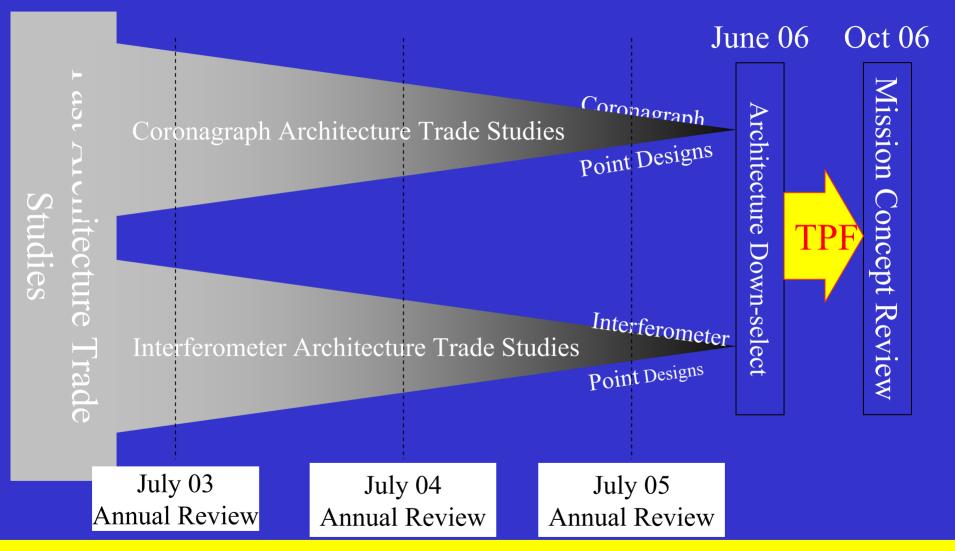
- Interferometer with cooled two to four 3~4 m mirrors
 - 30 m boom for minimum resolution
 - 75-1000 m baseline using formation flying for maximum sample size
- Key question is configuration
 - Trade between null depth, stability, physical length and resolution

IR Nulling



Nulling with two detectorsonly low end detector shown, ignore initial spikes

JPL Modified Mach-Zender (Serabyn et al)


- -1.4×10^{-6} null *laser* null @ 10.6 um
- Aim for 10⁻⁶ null target *broadband*
 - Add spatial filter and stabilization
 - Develop fully cryogenic system
- UofA group (Hinz et al) demonstrated nulling at ≤1% with BLINC instrument on MMT

e Mus (calibration star)

HD 100546

Selection of Final Architecture

Overriding goal: Find one design that is scientifically compelling and technologically ready for 2008 NAS Decadal Review and 2015 launch

TPF Science Roadmap

- Coordinated observing/theoretical program to address questions affecting TPF/Darwin architecture/scope
- What is η_{\oplus} ?
 - Transits (MOST,COROT, Kepler/Eddington)
 - Theory extrapolating from gas giant statistics \rightarrow terrestrial planets
- What is level of exo-zodiacal emission?
 - SIRTF (Kuiper belts @ 3-300 of AU)
 - Keck-I/LBT-I/VLT-I (Zodiacal clouds at ~0.3-3 AU)
 - Theory extrapolating from dust distribution \rightarrow terrestrial planets
- What wavelength region should we observe?
 - Atmospheric and bio-markers from visible to mid-IR
- What are physical properties of giant planets?
 - Advance understanding and demonstrate techniques
- What controls orbital stability in region of habitable zone?
 - Are solar systems "dynamically full" with planets in all stable orbits?
- What are properties of target stars
 - Activity, presence of giant planets, zodi disks, gal/x-gal backgrounds

5-10% of TPF budget will support scientific activities

Collaboration on TPF/Darwin

- Strong ESA/NASA interest in joint planet-finding mission
 - Collaborative architecture studies
 - Discussions on technology planning and development
- Joint project leading to launch ~2015
 - Scientific and/or technological precursors as required and feasible