Bedford Institute of Oceanography

l'institut oceanographiqué de Bedford
Dartmouth/Nova Scotia/Canada

The Construction of Wave Refraction Diagrams
by Computer
P. E. Vandall, Jr.

The Bedford Institute of Oceanography is a Government of Canada establishment whose staff undertake scientific research and surveys in the marine environment. It consists of three main units, (1) the Atlantic Oceanographic Laboratory, which is part of the Marine Sciences Branch of the Department of the Environment, (2) the Marine Ecology Laboratory of the Fisheries Research Board of Canada, also of the Department of the Environment, and (3) the Atlantic Geoscience Centre of the Department of Energy, Mines and Resources.

BEDFORD INSTITUTE OF OCEANOGRAPHY
DARTMOUTH, NOVA SCOITA CANADA

THE CONSTRTUCTION OF WAVE REFPRCIION DIAGRAMS

BY COMPUTER

by
Pàul E. Vandall, Jr.
AtIantic Oceanographic Laboratory
Marine Sciences Directorate
Departuent of the Environment

This is an internal technical report which has received only limited circulation. on citing this report the reference should be followed by the words "UNPUBLISHED MANUSCRIPT".

Although this program was tested by the author prior to submission no warranty expressed or implied is made by the author or the Bedford Institute of Oceanography as to the accuracy and functioning of the program. No responsibility is assumed by the anthor or the Bedford Institute of Oceanography in connection therewith.

ABSIRACT

- The computer program for ocean wave refraction described estimates and constructs wave refraction diagrams which are graphical representations of changes in direction of wave fronts as they move over relatively shallow areas with varying depths. The rays or orthogonals calculated indicate the direction of travel of the wave energy from a given initial position.

For each point along the ray, water depth and bottom slope are estimated from the depth grid by linear interpolation; wave speed and curvature are computed according to the first order wave theory; the location of the next successive point is approximated by an iterative procedure. Sample data and their results are included.

All subroutines, with the exception of NOMBER, SYMBDL and DATE (which is written in binary) are written in FORTRAN 32 and together are designed for use only on the Bedford Institute CDC . 3150 computer.

TABLE OF CONTENTS

Pege
Abstract (i)
List of Figures (iii)
Acknowledgements (iv)
1.0 Introduction 1
2.0 Method 2
2.1 Initial Requirements
2
2
2.2 Selection of grid Boundaries 2
2.3 Selection of Grid Interval 3
2.4 Selection of Depth Values 3
2.5 Selection of Ray Origins 4
3.0 Computer Operations 6
3.1 Optional Operations 7
3.2 Plotter Operations 8
4.0 Description of Computer Program (SWAVE) 8
5.0 Description of Program Variables 13
6.0 Program Listing 16
6.1 Memory Requirements 50
7.0 Operating Instructions 50
T.1 Additional Notes 54
8.0 Example Funs 54
8.1 Run $\# 1$
54
54 55
8.2 Run \# 2
8.2 Run \# 2
9.0 References 66

LIST OF FIGURES

Pege
FIGURE 1: Depth grid used to Draw Shoreline 4
2: Initial Wave Front Positions on depth Grid 5
3: Selection of Initial Ray Angle 5
4: Generalized Flow Chart of SWAVE 9
5: \quad Hun \# 1, Plot \# 1, Straight Line Wave Front with All Options except FR ${ }^{2} \mathrm{NT} T=4 \mathrm{sec}$ 56
6: Run \# 1, Plot \# 2, Streight Line Wave Front employing only the FRØIVT Option $T=8 \mathrm{sec}$ 57
7: Input Date up to First Rey Card for Run \#. 1 . Plot \# 1 58
8: Sample Output Date for Run \#1, Plot \# 1, NPT = 1 59
9: Input Date for Rum \#1, Plot \# 2 (continued from Figure 7 except for remaining ray cards for Plot \# 2) 60
10: Output Data for Run \#1, Plot \#2, NPT $=0$ 61
11: \quad Rum \#2, Plot \#1, Point Source employing the FAN and Shoreline Option $T=8 \mathrm{sec}$ 62
12: $\begin{aligned} & \text { Input Data up to First Ray Card for Rum \#2, } \\ & \text { Plot \# 1 }\end{aligned}$ 63
13: Output Date for Run \# 2, Plot \# 1, NPT = 0 64

ACKTIOWLEDGENENIS

This program is a modification of a program developed by W.S. Wilson under the auspices of the Coastal Engineering Center, U.S. Arry Corps of Engineers, and in its original form is described in a Technical Memorandum (No. 17) entitled "A Method for Calculating and Plotting Surface Weve Rays" by W.S. Wilson (February 1966). This report describes the modifications made and is meant to be a guide to the users at BIO only.

I wish to thank R. Fichards (former Head of Computer Section at BIO) and G. Seibert (Coastal Oceanography) for their assistance in preparing some of the subroutines required for this program.

INTRODUCTION

A wave refraction diagram is a graphical representation of the change in direction of a wave front as it moves from deep water to shallow water. A straight wave front of a wave propagating over shallow areas (depth less than half the wavelength) starts to bend as its velocity becomes a function of depth. When progressing over increasing depths wave orthogonals tend to diverge and when progressing over shoals or ridges they tend to converge.

The refraction theory applied to this program is besed upon the following assumptions: (1) that the waves are long-crested, sinusoidal, progressive gravity waves for which the linear wave theory applies; (2) that the wave period is constant throughout the shoeling process; (3) that the wave velocity depends only upon the wavelength and still water depth; (4) that the elements of the wave crest advance in a direction perpendicular to the wave front; (5) that the amount of wave energy between orthogonals remains constant; (6) that the effect of friction and currents on the refraction process is negligible. These last two assumptions make it possible to sptimate variations in wave height with variations in depth and orthogonal spacing.

Refraction diagrams are constructed in two weys. The first, known as the 'wave-front method', is essentially the illustration of successive wave front positions (at given time intervals), found by using Huygen's principle, on a chart of the region of interest. The second method, known as the 'orthogonal method', illustrates the path of the wave orthogonals. This second method is employed in the program described.

This program was designed to replace the manual construction of wave reys particularly when a multiple number of periods and angles of approach are to be considered. However, it should be noted that the preparation of the depth grid and ray cards will exceed in time and effort that required for the manual construction of two or three refraction diagrams.

Comperisons of manually and computer constructed refraction plots will show slight differences, due to the finite grid spacing and lack of an integrating effect over an area around each point in the computer product. These differences may be made smaller by using a smaller grid spacing (if possible) and by visually integrating the area around each grid point and using the integrated depth as the grid depth at any point.

The refraction principle is quite useful and can be employed in a wide variety of applications. Of particular importance is its identification of areas of convergence and divergence of wave rays. For example, when establishing a wave climate for a certain area through direct wave measurements observations should be conflned to regions of non-convergence and non-divergence. This is one important application for which this technique has been used. Other uses may be found in Pierson, Neumann, and James (1955) and Pierson, Tuttell, and Wooley (1953).

2.0 METHOD

2.1 Initial Requirements

A hydrographic chart with sufficient depth detail is the basic requirement. This chart must cover the shoreline of interest and extend out into water that is considered 'deep', i.e. where the depth is at least equal to half the wave length of the longest wave to be considered. ${ }^{1}$ Under these circumstances 'deep water' conditions prevail; i.e. no refraction is occurring and the initial wave front can be assumed to be a straight line. A set of periods and angles for which wave rays are to be drawn mast be chosen and the 'deep water' wave front fitted into the area of interest. Since the maximum plotting dimensions of the PDP-8 plotting system are, 22×28 inches, the area. of interest on the chart should not exceed these dimensions if the ratio between the size of the resultant wave ray plots to the chart size is to be equal to one. There is a provision made to scale the plot down but unless shorelines and contours are indicated in the output plot the results cannot be easily referenced to the original chart. To plot shorelines major alterazions must be made to the depth grid and will be described later. These alterations are manually time-consuming and the additional plotting of shorelines and contours requires a considerable amount of computer time and memory space as will be seen. For these reasons it is most advantageous to make the ratio of the refraction plot to chert size, one to one. Clear plastic overlays of the shore line and contours on the resultant wave ray plots will relate the refraction diagram to the chart.

2.2 Selection of Grid Boundaries

A rectangular (right-handed) $X-Y$ coordinate system, whose boundaries form the boundaries of the depth grid, is imposed on the area of interest. The boundaries of the plot are specified by the lines $X=0$, $X=A N M, Y=0$ and $Y=A N I N$ (AMM and ANN are expressed in grid units). Care must be exercised in selecting these boundaries. As indicated before some criteria must be kept in mind: (a) all rays must start in deep water for all angles of approach (if a 'deep water' wave front is required), (b) no shoals should be left in the seaward direction, and (c) the angles of approach should be adequately covered by the depth grid, so as to ensure realistic approaches to the shoreline of interest. For example, if the shoreline of interest is on an island the depth grid must surround the island since the waves which arrive at any point on the shore could originate from almost any point around the island.

Generally (and for the program presented here) the Y-axis is set parallel to the coast (or to the contour defining the boundary of 'deep water'); the X-axis increases positively seaward. If another orientation is desired changes mast be made in the main program. The shoreline and the 'deep water' contour must-lie at least one grid unit from the grid boundaries since any ray which comes within one-half grid unit of the boundary is stopped at that point.

[^0]
2.3 Selection of Grid Intervel

The depth grid is a two-dimensional array of integer depths, all equally spaced. The selection of the grid interval is dependent on opposing criteria. The first requires that each grid cell be so small that its bottom topography may be approximated by a plane. Of course, the smaller the cell the better the approximation and the better the resolution of the wave rays. The number of depths in the grid, however, is limited by the size of the computer core. For the BIO computer the maximum dimensions of the depth grid are 25×30 (i.e. 25 in X direction and 30 in Y direction) - see Memory Requirements, Section 6.1. Along with these criteria some consideration of the size of the area must also be made. For instance, since the Y axis can only be 28 inches long (i.e. HT ≤ 28) and can only have 30 equally spaced points, the points then will be spaced 0.932 inch apart. This is an odd figure. It is certainly easier to use a distance of one inch so that inch- lined paper or plastic cen be laid on top of the hydrographic chart to interpolate the depths at the grid points. If one inch is used then 28 points are sufficient. The grid interval will then be equal to one inch times map scale factor to yield actual separation between depths in feet. This factor is determined by the scele of the hydrographic chart used. If this grid interval does not yield sufficient resolution the area of interest should be subdivided into overlapping areas that are small enough to yield adequate resolution and whose orthogonals are made to match in the overlapped regions.

2.4 Selection of Depth Values

The depths used in the depth grid may be expressed in any units. The depths used, however, must be converted to units of feet to be useful for this program. For this reas on the program requires a conversion factor called DCØN which when multiplied by the depth unit used yields depths in feet. For example, if the depths are in fathoms $D C \not \subset N=6.0$ ($\mathrm{ft} / \mathrm{fm}$) and if the depths are in metres $D C$ CDII $=3.28(\mathrm{ft} / \mathrm{m})$.

The depth at each grid point is most easily determined by fi rst drawing contour lines on the hydrographic chart at convenient intervals. This may appear time-consuming but it saves on the interpolation time required to establish the depth at each grid point. Depths indicated should be a visual integration of depths within an area of one-half grid unit square.

To obtain a plot of the shoreline the depths overland are not set equal to zero (as they would be if no shoreline is to be drawn) but are set equal to negative values which are generated, as indicated below. Depth contours are drawn in a strip extending at least three grid units seaward from the shoreline. On the land the reflections of these contours about the shoreline are drawn. The depth assigned to each reflected contour is the negative water depth associated with the contour being reflected. Successive reflections should be made to obtain the depths further inland. Once within two grid units of the boundary the remaining depths may be set equal to zero (see Figure 1).

FIGURE 1: Depth Grid used to draw Shoreline

2. 5 Selection of Rey Origins

To determine the wave ray paths, the starting points (ray origins) of each ray must be specified, along with the angle at which the rays are to set out from these points. If the rays are originated in deep water then ell the initial points may lie on the same straight line and all the angles for the rays are the same. For example on Figure 2 a wave front is indicated with the starting points of the rave rays. The rays originate in deep water (i.e. beyond deep water contour DW) so their origins may lie on a straight line. The starting points are given by their X and Ψ coordinates. The angies or angle (for this example denoted as A) are measured in degrees with respect to the increasing X -axis, as shown in Figure 3. This method of selecting ray origins is used if the refraction of a particular wave front for a particular weve period is desired.

If instead it is desired to see from which direction and location waves are refracted into a point then all possible angles of approach are specified for that point for a particular wave period. These rays then radiate from that point. When these reys reach deep water, their directions yield the angles at which wave rays should be initially started in deep water in the case of the first application mentioned above.

FIGURE 2: Initial Wave Front Positions on Depth Gria

FIGURE 3: Selection of Initial Ray Angle

3.0 COMPUIER OPERATIONS (quoted from Wilson)

The computer starts with a ray origin and approximates the path by calculating successive points. For this calculation the computer needs the array of depth values (KMAT), the wave period (TTI), the direction of travel (A), and the coordinates of the initial position (X, Y). At each point a first order plane is fitted by least-squares to the four closest depth values. Water depth (h) and the gradients $\partial h / \partial x$ and $\partial h / \partial y$ are obtained from the plane. The change in depth normal to the ray ($\partial \mathrm{h} / \partial \mathrm{n}$) is found from

$$
\begin{equation*}
\frac{\partial h}{\partial n}=-\frac{\partial h}{\partial x} \sin A+\frac{\partial h}{\partial y} \cos A \tag{I}
\end{equation*}
$$

Wave speed (C) and $\frac{\partial C}{\partial n}$ are calculated with

$$
\begin{equation*}
C=\frac{g T}{2 \pi} \tanh \frac{(2 \pi h)}{(C T)} \tag{2}
\end{equation*}
$$

$$
\text { where } T=\text { wave period }
$$

ana

$$
\begin{equation*}
\frac{\partial C}{\partial n}=\frac{\partial h}{\partial n} \cdot W \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
W=\frac{I}{k^{\prime}} \frac{1}{\frac{C k^{\prime \prime}}{1+k^{\prime \prime} C}+\frac{C k^{\prime \prime}}{1-k^{\prime \prime} C}+\ln \left(1+k^{\prime \prime} C\right)-\ln \left(1-k^{\prime \prime} C\right)} \tag{4}
\end{equation*}
$$

ena

$$
\begin{equation*}
k^{\prime}=\frac{T}{4} \quad \text { and } k^{\prime \prime}=\frac{2}{G T} \quad \text { (see Harrison and Wilson, } \tag{5}
\end{equation*}
$$

Ray curvature (K) is computed with

$$
\begin{equation*}
K=\frac{I}{C} \frac{(-\partial C)}{(\partial n)} \tag{7}
\end{equation*}
$$

Denoting the current point $\left(P_{n}\right)$ and the next succeeding point (P_{n+1}) P_{n+1} is reached from P_{n} by iterating with

$$
\begin{align*}
& \Delta A=\left(K_{n}+K_{n+1}\right) D_{n} / 2 \tag{8}\\
& A_{n+1}=A_{n}+\Delta A \tag{9}\\
& \bar{A}=\left(A_{n}+A_{n+1}\right) / 2 \tag{10}\\
& X_{n+1}=X_{n}+D_{n} \cos \bar{A} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{n+1}=Y_{n}+D_{n} \sin \bar{A} \tag{12}
\end{equation*}
$$

where D_{n}, the incremental distance between points, is given by the ratio h_{n} / L_{d} (Griswold and Nagle, 1962; Griswold, 1963).

Computations stop when the rays reach the shore, a border of the grid, when the number of the points along a ray exceeds 1799 or when the bottom slope increases very sharply. The coordinates of the points. defining the ray path, just completed, are then stored and subsequently written on tape. The process is repeated for each ray origin specified. Later, the information contained on this tape is used by the PDP-8 plotter to draw the rays.

3.1 Optional Operations

The computer may be made to perform any or all of four options provided memory space is available (see.Memory Requirements). The first calculates the coordinates along a ray of the positions occupied by a wave crest at equal time intervals (CIN). If the value of CIN is chosen so that CIN/TM $=M$ where M is an integer, the result of the calculation can be interpreted as the positions of every Mth crest in a sinusoidal wave train.

The second operation obtains coordinate values of points on the depth grid where the linearly-interpolated depth equals zero. This option, if exercised, provides the plotter with data with which it can draw an approximate position of the shoreline. The approximation becomes poorer as $\frac{\partial h}{\partial x} \rightarrow 0$ at $h=0$.

The third option enables the plotter to enter selected soundings on the ray diagrams. If a judicious selection of water depths is made, an idea of the bathymetry of the region of analysis can be formed directly from the ray plot without- referring to the chart of the region. These soundings should also verify the accuracy of the computed ray paths.

The fourth option causes the computer to calculate the points along a straight line wave front if NøFRNT $\neq 0$. Only the initial point (XST, YST) and the final point (XEND, YEND) need to be specified. The front is divided up into $N \varnothing \mathrm{R}$ equally spaced points and these points are taken to be the starting points of the rays originating on that wave front. This option is not exercised if $\mathrm{N} \varnothing \mathrm{FRNT}=0$.

3.2 Plotter Operations

The PDP-8 computer is used to transform the data on the CDC 3150 output tape into the plots desired by means of the CALCOMP plotter and the PL $f T I S$ or PIITS plotting routine. The choice is determined by the mode of output; paper or magnetic tape. Each plot shows ray paths and is bordered and labelled. If the options have been exercised, the plot will also show travel-time marks, the shoreline, and soundings.

The maximum dimensions of the plotting surface are 120 feet by 29.5 inches. 2 The position of the border and label of each plot is controlled by AMM, ANN and HT (the height of the plot in inches). AMM and ANN are determined from the dimensions of the depth grid. HT must be fed in and may be no greater than 28 inches. The value of HT, however, may be chosen so as to produce a specific scale of plot (SCL). This may be done by setting $H T=G R T D \cdot S C L \cdot A N N \cdot 12$, where GRTD equals the number of feet per grid interval.

Before beginning a series of plots, the plotter pen is set (15.0 - HT/2) inches from the bottom of the roll of paper where HT is the height selected for the first plot. This establishes the origin. . Subsequent plots are spaced by 6 inches from the previous plot.

4.0 DESCRIPTION OF COMPUIER PROGRAM (SWAVE)

This program consists of a main program, 17 subroutines (one of these is a binary progiram) and 4 function routines. The description of the main and subprograms follows in Figure 3 which is a diagram depicting the sequence in which the various subroutines are called. Program variables will be discussed later.

MAIN Progrem

This part of the program called MAIN controls the rest of the prom gram and receives the data input. This data which is to be described later is read in on cards. MANN calls (in order) the following subroutines: TITLE, $\operatorname{HUMC\emptyset N,~SHQRE~and~RAYN.~RAYN~is~called~for~each~ray~but~the~other~}$ subrơutines are only called once (for each plot).

[^1]

FIGURE 4: Generalized Flow Chart of SWAVE

TITIE
This subroutine produces all the information necessary for plotting the borders of and the labelling of each plot. The label contains the project number, date, plot number, wave period, and time between crest marks. Depending on the velue of NAX, TIITE may or may not call GRAF which prepares instructions for drawing calibrated X and Y axis.

GRAF

This subroutine calibrates X and Y axes and prepares the instructions for the resulting plot. Calibrations are located at integral values along the axes. The product DY-SIZE mast be integer.

NUMCØIN

This subroutine (which is optionally called) draws specified sounding values on a particular plot. NCD specifies the number of sounding values, and these values are stored in the array CIØUR. For each integral value of Y where $I \leq Y \leq$ ANIT -1 and for each value of CIDUR, NUMCDN prepares the necessary plotting instructions for the plotter to draw this value of CIøUR. This subroutine cannot be used wiess $\frac{\partial h}{\partial x} \geq 0$ et $h=0$ for the entire depth gria. When $\mathbb{K C D} \leq 0$ NUMCDN is not called, and no sounding card is read.

SEDRE

This subroutine (which is optionally called) is only called if. ITSH $\neq 0$. When called it prepares plotting instructions for drawing the shoreline on a plot. Coordinates of points, where the linearly-interpolated value of KMAT equals zero, are calculated. When plotted, the shoreline consists of a line joining all these points. This subroutine cannot be used when $\frac{\partial h}{\partial x}<0$ at $h=0$ for the entire depth grid.

FRbIT

This subroutine is only called if N $\emptyset F F W F \mid \neq 0$. When called it calculates the coordinates of the starting points of each ray if the points all lie on a straight line (i.e. the wave front is straight). For each wave front this subroutine is only called once, subsequent plots use the original starting points if the variable NEWRAY $=0$.

RAYN
This subroutine is the heart of the program. RAYN calls, in order, the following subroutines SURFCE, MDVE, DAFE, PCD, $S T \emptyset R E$ and DRAW. RAYN calls SURFCE to obtain the initial curvature of the ray. MDVE then calculates the
coordinates of all the points on each ray. DATE calls the date from the computer accounting system. After each point is located on a plot, RAYN calls PCD to obtain PCIDIF and then calls. STDRE to store the coordinates of the point. After all points have been generated, BAYN cells DRAN to prepare plotting instructions for the stored points.

The calculation of new points along a ray ceases when one of the following conditions is encountered. Each condition is followed by the message which is printed by the computer when this condition is fulfilled.

1. MIT = 3, CURVATURE APPROXIMATI ØNS I φ C CøNVERGING
2. $N G \emptyset=2$, RAY REACHED GRID BøUNDARY
3. $\quad N D P=2$, RAY REACHED SH $\emptyset R E$

NOTE: Condition 3 may occur in deep water if the bottom slope is changing too fast.

RAYN also prepares the printed output for the entire program. Two formats are availeble: first, if NPT $\neq 0$, MAX, X, Y, ANGLE, TIME PCIDIF, DEP, and D are printed for each point along a rav; second, if $N P T=0, X, Y$, ANGLE and TIME are output only for the initial and final points along a ray.

SURFCE

This subroutine is called by RAFN and MDVE and it in turn calls VELCIY and CONDER. SURFCE calculates the curvature for a specific point along a wave ray. The four closest KMAT values (depth grid values) i.e. closest to point of interest, are stored in array C and the coefficients found in arrays $F M$ and S are combined with the values in C to obtain the coefficients of the plane fitted to the four depths. DEP is obtained by interpolating on this plane.

If DEP >0	$\operatorname{INDP}=1$
If DEP ≤ 0	$\operatorname{NDP}=2$

If NDP $=2$, control is transferred back to MøVE. Otherwise, VELCIY is celled to obtain CXY.

If $\mathrm{DEP} / \mathrm{WL}>0.5 \mathrm{NFK}=1$ and $\mathrm{FK}=0$ (curvature)
If DEP/WL $\leq 0.5 \mathrm{NFK}=2$ and $F K$ is computed after calling c \quad aNDER to obtain the partial derivative of wave speed normal to the ray.

VELCIT

This subroutine is called by SURFCE each time a wave speed CXY is required. If $N F K=1, C X Y=C X X \emptyset$. If $N F K=2, C X Y=$ equation 2 .

CONDER

This subroutine is called by SURFCE to convert the partial derivative of water depth with respect to the direction normal to a ray into the partial derivative of wave speed with respect to the normal (see equation 3).

M \varnothing VE

This subroutine is called by RAYN and in turn calls only SURFCE. $M \emptyset V E$ calculates the coordinates of the next point along a wave ray. D is calculated, and the curvature used in getting the present point is used to approximate the location of the next point. MøVE calls SURFCE to obtain the curvature at the approximated position of the next point. The average of the curvatures at the present and new points is taken and is used to obtain a second approximation of the next point. This procedure continues for a maximum of 20 times or until two successive curvature averages differ by a factor less than $0.0009 / \mathrm{D}$. If this convergence occurs, the new point is accepted and $M I T=1$. If the average curvatures used on the 18 th and 20th trials have converged to less than $0.009 / D$, the curvatures of the 19th and 20th trials ere averaged to obtain the curvature used in calculating the new point. This is done because the curvature approximations have converged to two values, $M I T=2$ in this case and, if NPT $\neq 0$, the message CURVATURE AVERAGED appears on the printer output. If neither convergence condition is satisfied, NIT $=3$ and no new point is accepted.

Before returning to RAYN, the coordinates.of the new point are checked to see if the new point lies one-half grid unit from the edge of the grid. If this is true, $\mathbb{N G} \emptyset=2$, otherwise $\mathbb{N G} \emptyset=1$.

DATE

This subroutine called by RAYN returns the date on which the program is run from the internal accounting system of the BIO computer.

PCD

This subroutine is called by RAYN to calculate the maximm percent difference (PCIDIF) between the depth at a point on the ray and the surrounding four grid depths.

STYRE

This subroutine is called by RAYN after each point along a ray has been computed. The X, Y coordinates are stored in the AX and AY arrays respectively. If CIN >0, the X, Y coordinates representing the position of a wave crest at equal time intervals along a ray are calculated and similarly stored in $A X$ and $A Y$. If $C I N \leq 0$, these crest positions are not calculated.

DRAW

This subroutine is called by RAYN after all points have been calculated for a given ray so that coordinates of these points can be transformed into plotting instructions. In order to minimize plotting time, odd-numbered rays are plotted beginning with the initial point; evennumbered rays are plotted beginning with the terminal point. If CIIN >0 marks are placed aiong a ray to designate crest positions, otherwise there are no marks.

SYMBDL and NUMBER

These subroutines are system plotting subroutines used for plotting characters or numbers and are called by TITILE, GRAF, NUMC

PLøTS

This subroutine is called by MATN to initialize plotting operations by reserving an output buffer region for plotting information. The limits on the dimension of this region are $120 \leq N \leq 180,000$, where it is recommended that \mathbb{N} be at least 2000 .

PL ϕT

This subroutine is called by MAIN, TITME, AXIS, NUMCON, SHORE and DRAW to issue plotting instructions to the pen.

5.0	DESCRIPTION OF PROGRAM VARTABLES
A	- initial ray angle measured in degrees relative to the direction of increasing X. Internally in the program the ray angle in radians for a specific calculation point along a ray.
AMM, AINT	- maximum values of X and Y, respectively, for a particular depth grid.
AIVGLE	- ray angle in degrees for a specific point along a ray.
AX, AY	- two arrays used for temparary storage of plotter output information. The dimensions of these arrays is specified by MMAX.
B	- dumay array for starting angles for rays.
BUFFER	- an array used for temporary storage of plotter output information. See discussion of PLØIS.
C	- the array for the four closest points to a specific calculation point along a ray.

CIN	- if CIN > 0: in the input and output, the travel time in seconds between the CIN/TT successive crest marks is given along a ray; internally in program, the same time as above but measured in hours. If CIN $=0$: no crest marks are made on the wave rays.
CTØUR	- an array of up to five soumding values in feet. These values are plotted numerically on the resultant plot.
CXX \varnothing	- deep water wave speed in ft/s.
CXI	- wave speed in $f t / s$ at a specific point on a ray.
D	- incremental distance in grid units between successive calculation points along a ray.
DCDN	- conversion factor which will take KMAT values into units of feet.
DEP	- water depth in feet at a specific point on a ray.
DN	- before C C NDER is called: $\partial \mathrm{h} / \partial \mathrm{n}$ in ft/grid unit; after C CONDER is called: $\partial C / \partial n$ in $\mathrm{ft} / \mathrm{s} / \mathrm{grid}$ unit.
DT	- a dumy argument for subroutine DATE where the date is subsequently stored.
DY	- number of gria units per inch for a specific plot.
E	- array of coefficients of the equation of the plane fitted to the four closest depth velues around a point aiong a ray.
EM	- array used in calculation of coefficients for fitted depth plane (see Harrison and Wilson (1964), Appendix C).
FAN	- FAN $\neq 0$ (for rays originating from one point) causes rays to be numbered at their terminal points; FAN $=0$ (for rays originating along a front) causes their initial points to be numbered.
FTK	- ray curvature (1/grid unit).
GRID	- number of feet per grid unit for a particular depth grid.
ET	- length in inches of Y axis for a specific plot.
İ, J	- indices for KMAT: $I=X+1, J=Y+1$.
K	- index specifying the number of rays in straight line wave front.
KCIN	- number of crest marks calculated along a ray which do not correspond to calculation points used for plotting the ray path.

KMAT	- array of grid depth. Dimension is (MM, NTN).
KREST	- number of crest marks calculated alo
LII	- LI $+5=$ number of lines printed per page.
MAX	- serial number of a specific calculation point along a ray.
MLT	- MIT = 1 if the curvature approximations in MøVE have converged to one value; MIT $=2$ if they have converged to two values; MIT $=3$ if they have not converged.
MM	- X-dimension of the depth grid (number of points on X axis).
max	- dimension of AX and AY arrays.
	- number of plots to be prepared for a given operation of the computer program.
N	- ray number.
IAX	- if NAX $=0$, the borders of a given plot will be uncalibrated; if NAX $\neq 0_{3}$ the borders will be calibrated with integral values of grid units.
NC \varnothing	- this variable specifies the number of sounding values which are to be read in (must be ≤ 5) if NCO ≤ 0 no sounding card is required.
NDP	- if $\operatorname{DEP}>0, \mathrm{NDP}=1$, if $\mathrm{DEP} \leq 0, \mathrm{NDP}=2$ 。
mewray	- if $\operatorname{NEWRAY}=0$ the starting points for the previous wave front and plot are to be used again; if NEWRAY $\neq 0$ these starting points are calculated by calling subroutine FRøNI or read in on cards.
NFK	- if ($\mathrm{DEP} / \mathrm{WL}$) > 0.5, NFK $=1$; if ($\mathrm{DEP} / \mathrm{WL}$) ≤ 0.5, NFK $=2$ 。
TNT	- Y-dimension of the depth grid (number of points on Y axis).
IDFRRIT	- if IX \varnothing FRNT $=0$ then wave front is not straight and the points on the front must be read from cards and FR \varnothing NIT is not called. If $\mathbb{N} \not \mathrm{FFRNT} \neq 0$ then only XST, YST, XEND and YEND need be read in and subroutine FRONT is called.
\#øR	- number of rays to be drawn for a given plot.
WPL $¢$ I	- plot number.
NPT	- this determines the format of prinited output. See discussion of RAYN in previous section.
MSH	- if NSH $\neq 0$ a shoreline is drawn; if $\mathrm{HSH}=0$ no shoreline

NXCMAT	- if NXCMAT $=0$ a depth grid is read in; if NXCMAT $\neq 0$ the depth grid for the previous plot is used again.
PCIDIF	- this is the percent difference between an interpolated depth and a nearby grid depth. See discussion of PCD in previous section.
PROJCT	- six digits of elphenumeric information used to identify the project number.
RTI	- width in inches of the plot.
S	- array used for calculating the coefficients of fitted depth plane.
SCL	- scale of plot.
SCLI	- I/SCL.
TIME	- total time in hours necessary for a wave crest to travel from a ray origin to a specific calculation point of the same ray.
TT	- wave period in seconds.
U	- calculated X coordinates of points on straight line wave front.
V	- calculated Y coordinates of points on straight line wave front.
WL	- deep-water wavelength in feet.
X, Y	- coordinates of a specific calculation point.
XEND, YETVD	- coordinates of end point on straight line wave front.
XST,YST	- coordinates of starting point on straight line wave front.

6.0 PROGRAM LISTITNG
(see following pages)


```
    MgTAT 27 (VI(1) = 4N(1X,
    ENCCDE (1,2A,IUFI(2) )I
    WRIIE (GI,IVFT) (IKHAIII,N), I=1,MMI,JII,NN)
    z It INCC) 4,4,J (KG),KC=1,NCO)
    PRINT 30 
    PAIAT 31, (CICLR(I),IEI,NCC)
    CALG ALMGCN (PF,NN,NCO
    CALL StCRE (PF,NA
    If (NOFRNT&EC,O) 7,10
    IF (NENRAY.EG;O) 1,10
    DO % NEWRAYEEG:O
    MAX =1
        MAXX=1,
        FERLST2,
        ERINT 34, A,X,Y,FA
        ((N) ax
        \forall(A) # \gamma
        (N) = A=0.017453292
        ~A A&J.J174532925
            CALL RAYM (X,Y,A,NPLOT,A,NMAX,LI,NPT,LII)
    contiAve
    g0 10 16
```



```
PRINT 3
PRINT 36, , ,XST,YST,XEND,YEND
FANMBO:
GALL FKCNI TA,XST, YST, XEND,YEND,NOH,U,V
DO 
goniINuE
DO 15 K=1,kFAYS
    MAX = 1
        x a U(k)
        ##V(k)
```



```
15 CONTINUE CALL PLCTXY (ET+6.,-2.3,0,0)
    OALL PLCYXY (FT+6.0
    CALL ENCPLCY (20)
    17 CONTINLE
    CALL FLOP (0,0,0,0,-3)
    CRINT 3B
- Is fcrmat (13,afi
18 FCRMAT (I3,AED 
    &O FCRNA: (IX,IE,DE)
    2: FCRMAT (F5,1,14,214,F7.0,F7.2,514,F7.0,Fg.3,2X,I1,4X,11)
```



```
    24 FCRNAT (2JA4)
    27 FORMAT {1HJ,24HOEFTP GRIO VALUES (KMAT\)
ze fCRMar (al)
```


$\begin{array}{llllll}200757 & 20077202025 & 401043 & 502090 & 00000\end{array}$
fcrtran ciagnostie resllis fok ittle

ms fortian (4.2)/msos
$12 / 01 / 12$


```
        SUDRCUIINE GFAF IX,Y, ICD,AC,SIZE,INETA,YMIN,DY{
        this slarclitic figlifes the follcwing sudgoutines,plot,Symbol and
        ALMDER. II ALSC REGUIRES THE FUNGIION MOOF.
        rcoified fach a calcomp sughcltine of the same nare
        FEPROCLCEL HIIM PERMISSION FRCM
        CALIFCRNIA CCFFLTER PRODUCTS, INC.,ANAHEIM,CALIF.
        SIGN D 1:O
    SIGN = -1,0
    2 NAG a MAESF(NC)
        IM = THEIAP0,017453294
        M=OY*SI2E*0.5
        CTH # COSF(TH)
        STH=SINF(It)
        ME= X
        YO= 
```



```
        xA = X-0.1*SIGN=STM
        YA= Y+0,1*SICN*CIH
        co 3 I=1,N
            CALL PLCT (XE,YB,2)
            XC: XE+CTH/CY
            CaLl PLCI (XC,YC,2)
            GAL: PLCICXXC,
            YA=YA+STt/CY
            CALL PLOI (XA,YA,Z)
                x日 口 XC'
    3 YB=YC
        XA = XE-(.20*SIGA*.05)*STH-.02857*GTH
        YA = YE+6.20*SICA-.C5)*GTh-.02857*STH
        CO=N+1,N
        & I=1,N
        CALL LIMEER (XA,YA,0,1;ABSV,THETA,-1)
        ABSV = AESV-10
        XA a XA CTH/C
    G YA = YA-SIF/CY
        XA = X = (SI2E12.0-.0&*TNC)*CTH-(-. 17+SIGN*. 36)*STH
        \,
        CALL SMMEOL {XA,YA,0.14,日CD,THETA,NAG\
        GETURN
        ENO
```

 pgegram variables

fchtaan ciagnositic restlis fof graf

cerpilec lengths of graf

SLGROUTINE FRCNT ($A, X S T, Y S T, X E N O$, YEND, NOR, $U, V)$
SLIROUTINE FRCNT (A,XST,YST,XEND,YEND,NOR,U,V)
DMEASION $S(3,3), E M(4,3), E(3), Y Y H(3), K M A T(25,30), C(4), ~ Q U F F E R$
 CCMMCN TCATAS EM (4,3)
 CCON, DEP, NL, AYM, AAN, DY, FAA, GIH, DT, RT
CNR = MOR +2
KRAYS a ACR
XIMGR = (XENC-XST)/ONE
HINGR a TYENE-YSTITON
$A=A+0.0174532925$
U(1) $=x 58$
$y(1)=y S I$
$f(1)=3.1415926536$
AFI = PI<z.
$A A_{1} A=A F I$
OC 1 KN2,KRAYS
$U(K)=U(K-1)+X I A C F$

ELY a Y(K)-YEND
IF CDELX.GE.J.JJS1, AND .OELY.GE. $0.000132,1$
1 CONTINLE
IF (NUEL) $3,4,3$
3 FRINI 9 C
RETUAN
c
5 format ($1 x, 42 h e r a c r$ in calculation of ray starting points FORMA
ENO
prcGabm variables

data variables
00022 E EM 0000 R S
statemetit nimeers
$100343 \quad 200353 \quad 30036300367$
fCRTRAN CIAGNOSTIC RESULTS FOR FRONT

```
    SUAROUTINE EAYA (X,Y,A,NPLOT,R,MMAX,LI,NPT,LII)
    ihis SLukClime hlalires the follching suaroutines,Slrfce,Ncve
    M,
    GIMENSION S(J,3), EM(4,3), E(2), YYW(3), KMAT(25,30), C(4), guFFER
        1(1), ax(10jJ,, OY(1E00), GTCUE(5), U(50), V(50), B(50), IVFT(21)
    CCYMCN OOATAOS S(3,3)
    CCHMCN <ATAM EP[4;3
    COMMGN E,YUW,XNGT,G,BUFFER,AX,AY,CTOUE,PROSCT,O,II,CXY,MAX,GAIC,
    *CCON,OEP,HL,AHN,ANN,DY,FAA,GIA,CT,R
    NCP=1
    MGK##
    KREST =0
    MCIN a O
    CALL SLRFCE (X;Y,A,FK,NFK,NLP)
    THME=0000
    ANGLE = APS7.255779g1
1FFINRPI\ 1,&,1
    FFINT 29
    200 T0 16 4% (N-1) 4,4,3
    If (XXGDF(N,LIy)) 5,4,9
    FRINI 2O, FRGJCT,CT,NFLOT,TT
    FEINT 32, N,MAX,X,Y,ANGLE,TIME
    to TO 16
    6 \mp@code { Y A X ~ = ~ 1 + ~ P A X }
F(NAX+KC(N-KMAX) 8,7,7
    FPINT 33
    2CXY = CXY
    CALL HCVE (X,Y,A,FK;NGO,MIT,NFK,NEP)
    GC TC (10,g), RCF
9 FFINT 34
GC TO (12,12,11), HIT
11 FRINT 25
$2 TO ED
12 IF (NFIN 13,15,13
13 IF (XMCDF(MAX,LI) 15,14,15
FRINT 28, PRCJCT,ET,NFLOT,TT,A
```



```
I6 ANGLE ANFIT AN57.29577951
16 IF (AFI) 17:18,17
17 CALL PCD (C,E,FCTITF)
12 kMAX a Max
FX= X
```



```
Col
```



```
20 fRINT 37 (NX) 22,22,23
```


C IHIS SLUKCLTINE HEOLIEED IHE FOLLCWING SUUFOUTINE, SURFGE,
CIMENSION $5(3,3), E r(4,3), E(3)$, YUW(3), KMAF(25,30), C(4), GUFFER

CCMMON /CATA, EF(4,
CCHMCA E, YYK, KMAT, C, UUFFER, AX,AY,CTOUR, PROAGT, C, TI,CXY,MAX,GRIO,
CCON, OEP,ML, AMK, ANN, OY,FAR,CIM, GT,RT
GO 10 is.2), NFK

C $=$ (MYA-JJ5
IF
(MAX
4 IF (MAX-2)
DC 14 IT = $1,2 \mathrm{~J}$
DELA $=$ FKRAF
$A A=A+C E E A$
AEAF = A+.5*CELA
DELY E CPCCSFAABARI
xxa x CoCELX

CALL SUFFGE (XX,YY, AA, FKK, AFY, AOP
60 10 10,171, HIP
$60 ~$
10

IF (IT-18) 11,1J,13
FKXFP \& FKEAF:
If (max-2) $12,12,13$
IF IABSF(FKKF-FKEAR)-(0,00009/01) $17,1.7,14$
FKKP $=$ FKEAR
IF (ABSF (FKXFP FKKAF)
15 HIf

IE FKBAR = 0.5*(FK日AGtFKKP)
MIT a ?
GC ${ }^{2} \mathrm{C}$

19 A $600^{2} 2$
$20 y=x y$
B= YY
$A B A A$
KK
- FK a FKK
$21 \begin{gathered}\text { feturn } \\ \text { ENO }\end{gathered}$
pacgram variagles

Gcphch variables


```
SUBROUTINL SURFCE ( }X,Y,A,FK,NFK,NDP
```

THIS BUBRUUIINE REQUIRES THE FOLLOWING SUOHCUTINES, VELCTY,

```
THIS BUBRUUIINE REQUIRES THE FOLLOWING SUOHCUTINES, VELCTY,
DIMENSION S(3,3)
(11, AX(1a00), AY(100), GroUR(5), U(50), U(50); B(50), IVFT(21)
    gommun (us la/' S(3,3)
    GOMMUN 
    JCON,DEP,HL, AMK, ANH,OY,FAN,GIN,OT,RT
    I =x+1.
    J=$11
    F1=1
    XL: x+10-FI
    MF (MA1,-FJ
    IF
    IF (2J-FJ) 3,6,3
    3 2I = FI
        c(1) = {MAT(1,J)
        C(2) = KMATTIt1,N)
        C(3) - KMAT(1+1,J)S
        G(4) = XMAT(I,J+1)
        004IEPL,S
        Va(11) = O.
```



```
    00 54[01,3
        ELC! = 0.
    E(II): E(1J)+5!II,JJ) % %Yw(JJ)
    UEP= (E(3)+E(2)-XL+E(3)*YL)*acon
    IF IOEP) 7,7,8
    NOP = ?
    If ((UEP/WL)-0.5) 9,9,10
    IF TNEP
    NFFK=2
    CALL VELCTY (CXY,TT,HAX,DEP,NFK)
        PGX = E(2)*DCON
        ON : -PCXPSINF (A)+PGY* COSF(A)
        CALL CONUER (ON,TI,CXY,HAX,NFK
        GO TJ (12,13), NFK
        13. FK = -DN/CXY
    13G FR RTM
prograr variables
```

 10.
 12
 | 00310 Q | ${ }^{8}$ | 00503 | 1 | 00534 | Jd | 00000 R | 0 | 00513 R | YL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00543 R | ON | 33527 I | 11 | 30532. | 4 | 0.3144 R | v | 00920 a | 21 |
| 00505 R | FI | 00454 I | IVFT | 00537 'R | PGX | 00511 R | XL | 00923 \% | 2. |
| 00507 R | FJ | 005041 | \rfloor | 00541 R | PGY | 0 Sel R | K | 0 ¢53 \% | 2. |

MS FORIFAN (4.2)/MSOS
StimRnuttint veicit (cxy,it,max,DEP,NFK)
If (NAX-1) $1,1,2$

CCC CXXO
ecce xcxy
$6 G 10$ 14,5), hFK
Cxy: CxxO

- $\mathrm{CO}_{\mathrm{G}}^{\mathrm{MaL}}$.

CCC. (ACXY+CCEY-CCC)=.3JJJs) 7,6,6

5 Ccc - ICXY+CCCY/2.
XCXY C
EETURN
END
prcgram variagles
OCOOS BAR C0011日 CCC 00007日 EXXO 00016
staterent hlmbers
$\begin{array}{llllll}100033 & 300047 & 403055 & 5 & 0.336 \mathrm{~J} & 603133\end{array}$
fCRTRAM CIAGAOSTIC RESLLTS FOA VELGTY
CCRPILEC LENGTHS OF VELCTY - 00161 C 00000 o 00000

MS FORTRAN (4.2)/MSOS 18/37/72

Slarcuitme ccadeg (cn,tt, CXy, Pax, afk)	$1 \begin{array}{ll}1 & 1 \\ 6 & \end{array}$
If (max-1) 1,1,2	13
C1 $=11 / 12.5663700$	4
C2 = $6.2831854 / 132.2 * T$)	5
8 GC TC $(4,3)$, WFR	6
C3 ${ }^{\text {c }}$ C8* ${ }^{\text {cxy }}$	67
$11=c 2 /(1 .+C 3)$	18
AL_{2} a C3) (1,-63)	19
A3 = LCGF (1.463)	410
$\mathrm{A}_{4}=$ LCGF(1.-63)	111
	112
4 EETURN	123

prggram vabiaeles

$100037 \quad 200050 \quad 330356$ 4 30125
fortian ciagaostic results for conder

hs fohtran (4.2)/hsos

CIMENSIUN C(4), E(3).
1f $\left.\subset(11)^{\circ}(2) \cdot C(3) \circ C(4)\right) 2,1,2$
1 fCTOIF a 999.
2 P1 AESF((C(1)-E(1)) C(1))
F2: AESF((C)(2)-E(1)-E(2)) F2 : AESf($C(2)-E(1)-E(2)) / C(2))$
$f J=A E S f(C(3)-E(1)-E(2)-E(J)) / C(3)$ F4: AESF(iC(3)-E(1)-E(2)-E(3))/C(3))
 3 RETUR
prceram variables

staterent almeers
$100025 \quad 200030 \quad 300077$
fcrtann ctaghostic resllis for pgo

SUGRCUIIAE STCRE $(X, Y, A, K M A X, T I M E, K C I A, K R E S T, M M A X)$ CIMENSION S(3,3), ER(4,3), E(3), YVH(3), KMAT(25,30), C(4), EUFFE (1), AX(1800), ay(1a00), CICUR(5), U(50), V(50), 日(90); IVFT(21) CCKMCN CCATA/ S(3,3)
 SOCON, DEP,HL,AHM, ARN,OY,FAN,CII,OT,RT

$3 \mathrm{~K}=\mathrm{KMAX}+\mathrm{KCIN}$
IF (K.GT, MMAX.CF,KK.LE.A) GO TC A
AX(K) $=x$
AY(k) $=Y$
IF (CIN) 9,9,4
$42 A=A$
$2 C X Y$
a
CXY
$\mathrm{COXY}_{\mathrm{GO}}^{\mathrm{TO}} \mathrm{CXY}$

IF (CIN-ET) 7,E,
C $k=\mathrm{KHAX}+\mathrm{KCIN}$
IF (K.GT.HFAX.CF.M.LE.O) 60 TC 8

KKEST = KFES
AT
$\mathrm{GC} \mathrm{TCO}_{4}$

$A A=(A+2 A) Z_{0}$.

YK $=$ CSCOSIAF (AA
$\mathrm{K}=\mathrm{KMAX}+\mathrm{KCIN}$
1F (K.GT.MRAX.Cs.K.LE.3) GO IC 8
$a x(k)=-x+x y$
ar(K) $=Y-Y M$
KREST a KRESTES
KCIN: KG1N4
AT $=A 1+C$
CC
IC
5
- CONTINLE
© CONT
EETURN
END
END
paceram yariables


```
                    mS fORTRAM 14.2%/MSOS
        FUNCTICA TANHF (X)
        B= EXF(X)
        & E EXF(-X) ( )
        END
        pregram varzable
00002 : A 0
    fCETAAN DIAGROSTIC RESLLTS FOR TANHF
CgppILED LENGTHS OF TAAFP - O 00001 C 00000 0 00000
```

```
                                    ms fortan (4.2)/msos 1R/O1/72
    FungiticN xmCCF (I,J)
    ENDOF = NCC(I,N)
        fortaan liggosflo results for xmodf
```



```
ll
```


HS FORTEAN 14.21/MSOS 28/01/72

```
                    slnrguizat flets igouf,mlec,leev
            call ENDFLOT';
            | CALL ENOF(O) (20)
                CAL6 - 1
            GETURN
            #no
prggath variagles
00001 1 50w
statepent almbers
    100022
                        200025
                            fentabob diagostic resllts for flots
Cechplese lemeths of plCtS - P 00104 c 00400 & 00000
```

```
                                    MS fortram 14.2)/msos 12/07/72
                subrcuizae plot ( }x,y,\mathrm{ IPEN)
                IF (ISH) 5,1,
```



```
            2 CALL LEALEA
            GO}1
            3 GONTINLE
```



```
                call axzs
            CALL AKISxY (20,40,0,20.0,0.0,40,0,20.0,020,0-2.0-2,0,-2,01
            E CCNTINLE
            CIF\IFEN\ E,E,T
            4 ISM "0
            CalL fLCTXY (-2,3,-2,3,a,3)
                CALL EMDPLOT (20)
                CALL EMD
            1P!INPGSIJ-2PERS
                CALL FLOTXY (X,Y,IO,O)
                GALL FL
            GETURN,
            CETUR
        prgGram yariables
```



```
fcritan ciagnostic resllis for plot
CCPPILEC LENGTHS OF PLCT - P .0087% C 00000 D 00000
AC ERECRS
ERLIP,S1=nTCOEOUOS
ECMD,ES
&CAD,
```

suep											
3 3 313	stonf	36410	Unit	36515	guffer	31225	laptramo				
31570	craptrs	40044	MIL ACPRR	40176	TYPFCut.	40.324	whatisit	40623	NAO		hhatkinc
41122	linutror	41145	NhR	41212	batr	41211	MTAWGK	41513	NHiHIAS	41019	NRC mihfre
42311	micik	42321	cricr	42371	cpicr	42901	FACPF	42517	SCAP	43072	
44036	NLPEER	44436	MCD	44477	XL	44515	Charif	44554	OIGSFLOT	44575	SHMECL GIOSEFL
45453	MTCFPT	45479	OF1V3691	46500	ROLR 5	45541	haitel	47124	XYHUVE	44575 50232	giostrit
51092	GACERPOR	51321	Extremal	51426	SENShYCH	51472	DBSF	515.33	F1xp		flcaif
51597	. sincos	52064	LtGf	92264	sarif	52365	FChRF	52471	xict	S1543	FLCAIF
53045	G1CADRI	53232	C10.MS30	53654	COntrol	54652	ecoinp	gbu0s	flamat	52522 96420	ExFF BCDOLT
00243	cape	60314	001Ex	60324	PLOT	60522	FLCJS	60 ± 26			8coolt
63734	yanf	61315	diAM	62357	Store	63413	PCO	63606	CChCer	$6 J 676$ 63774	XHCOF velctr
64155	5LEFCE	65359	hcve	66460	RAYN	70233	FRCNT	70710			
11455	SHCRE	7871	NUMCON	14261	title	78457	Shave		Pchia	70770	graf
ExiR											
38373	XSIGMF	36372	S16N	36373	SIGMF						
31337	GSCREHND	37464	ofopause	40422	MTEXIT2	38410	Thitexit	37057	Leng inf	36515	GacbuFza
41143	th.cut	41154	TA.REJL	41137	PN.REJ2	4	Thenorrot	41125 41145	NARA	41126	
40712	ECF.	42011	IC.GATE	42312	FC. ${ }^{\text {a }}$	41753	CLMHY..	41145	NARHRCH	41015	
$4 C 126$	tracour.	41510	siatus..	41604	WRITE,	41622	EFASE.:	41536 4186	GFIEED.	41593	PRGNAME
41614	amadall	41517	REAOMODE	41610	hrthcoe	41654	ACISE.:	41530	RCECALI'	48627	KEact.*
40629	nit	41737	SAR	40324	hilatisit	40410	riexit	40045	Milacpaf	42013	MTYPGF
41333	NTEFRR	41333	nrgheck	31777	ciorej	37735	REJECT	37612	CICCaLt	37570	CHAREN
31627	IMIST	37635	Stmmins	40023	stateuf	37652	degrin	40015	Sicaeuff	31625	calisiat
37122	CHFRCPE	37E49	S10PTPR	40016	RINEAT	37 E46	Indxs	37720	Inca3	42501	crcpe
42371	CFEER	42327	chotr	42315	mraer	42318	MDEGAM	40431	SLACHECK	4 4 462	PRCPR ${ }_{\text {tagem }}$
42552	CKSHFLAG	41511	Flag..	41763	MISTE	41613	FEAD..	41510	SETLF.:	40771	CHKACISE
40623	${ }_{\text {ASF.as }}$	41563		40543	USTHO2	40577	S¢F	43070	scafusii	42924	SCARAM
44554	GIGSPLCT CFIVEROT	36373 45479	LSIGN OTIVEROG	44515	trchar	$4 \mathrm{EL11}$	RP T4,4	46130	HCCKids	46471	ccceind
31331	cecenf 12	36523	QEQEUFOT	146471	FLGICH	$4653 J$ 36413	FEADS	37444	Qegsiof	37227	Qegescks
44643	G16SJPLT	47650	X PMCVE	47151	PERRAUMS	36413	lagle	45453	Micifi	46711	WRITE
47565	T1CK	51036	cabely	82033	Labely	51036	${ }_{\text {IY }}$	47124	MMIFL	47320	Isc
51332	KIA1	51327	Haxi	51324	amint	91.321	araxi	51133	xpinta	51045	dicklsw
81324	Pinf	51486	SSuTCH	51503	XFIXF	51503	IFIX	51543	flcal	51557	
91565	51 n	920E4	Al0gio	52064	LOGLOF	52067	alcg	52264	Sofi.	ge3t5	POHRF
$51543 \cdot$	flcatf	52477	x 10I	52722	Expf	51503	FIXF	53127	010jurx	53152	O100var
53233	cicstrx	53155	OLOSTXR	93147	OLIMLXR	53144	cicsexs	63133	O10日EXA	g1952	O1C0Y1R
53144	casseir	53133	Qigavir	53123	OLGMLRX	53117	Q1cserx	53077	OICAERX		
93063	cicsert	53045	gigapri	93457	QsOECFRC	53634	CODFCTAB	42517	Scas	54472	gigduri
54161	cecmsia	$5451 E$	Q YOINFMS	54533	GBGRJHES	54447	csaccnvt	53743	oegarray	53723	Ogriotae
51657	catexits	53684	gegentry	53654	uteslhit	51052	G8tefrem	54526	pbitelo	54457	Qagectiot
55631	nceciant	55625	OCIABTON	55637	NOEGILJS	59634	BCILJSCN	54753	gealginc	B1263	09ackar
58703 54473	GACIOSET	$536 E 5$	OBOSENSE	54250	QsoEcris	53232	c10.tsio	56415	a日GIfrmi	86043	gacformi
41212	HABA	57161	LEDEER, ${ }^{\text {a }}$	37531 5663	Hedirind	54103	ceorcsue	53774	ascicent	54530	Phatel
51472	daes	44477	Leader	51431	SSWTCHF	56522 44437	G800 coic	60314	Datex	80460	MHEEE
51472	ats	52264	SCRTF	51322	Maxif	52367	LCGF	52722		52477	GICEXAL
64020	VELCTY	51478	AESF	61620	orab	63123	Sticre	63427	PCC	86	Concer
68020	SLatce	5316E	OIDSTRI	60633	m00F	51565	sinf	51557	Ccsp	81472	XAESE
76712	FCATF	53067	alomuri	53147	ciamuir	60700	xmcof	71063	GEAF	44375	
43375	SYFEOL	E3159	OLOSTIR	52374	qugexpr	56535	ceglgota	56530	Deolgorl	57290	noceagot
ge420	cacingot	55441	Qadengin	54764	deqLGINR	84760	gelgimz	5465 a	obcingja	60344	
50232	Axisxy	47321	Endoplot	50743	PLOTXY	70511	FRONT	67453	Rapa	72860	SHCRE
73600	ALPCON	75077	TITAE	63246	date	63935	flots	76603	Snave	10600	FDPbexs
18206 04646	Cst	00240	UC	13225	Starta	10323	SETClock	01366	SEL	04654	dstcreo
10577	ACEXIY	O¢1592	RSTO.sp	12654	RLO	12315	EnT	12529	RECNF1	11868	ferraco
11567	prexad	12477	HEMCRY	12375	Liocs	03202 23475	MSCAOMS 30	12564 14002		11837	Mrauf
${ }_{6} 6644$	1 cc CN	10567	ICP	12265	EST.	10214	EEAT.	10200	dint.	12898	cst
1:316	CII.RIF	12430	C ${ }^{17}$	10357	CIP	07246	cic3.01	07400	ciceer	C0367	crise?


```
10G00 AENORMAL
LOTA
CCPM
23470 23204
cald
exia non
(FEMORY) = 33zOS (MEMCRYE) = 36372
```


6.1 Memory Requirements

This program as listed above requires 33,205 octel memory spaces (MEMDRY) for all arrays and program compilation. In all there are only 33,640 octal memory spaces available ($\mathrm{MEM} \phi \mathrm{RYE}$). The difference is 434 ; this is equivalent to 192 umused floating point word locations in the computer core. Since the computer compiling routine is always being updated (with subsequent changes in the available memory space), these memory requirements should not be extended at the present time.

If more space than this is required, i.e. to load a bigger depth matrix, space may be obtained by sacrificing some of the power of the program and by removing some of the subroutines. The subroutines which may be removed without altering the basic operations of the program are: SH $\varnothing \mathrm{RE}$, MCMCDN and FROMT. The calling statements for the removed subroutines, of course, must be deleted.

7.0 OPERATTING INSTRUCTIONS

This section of the report will be written with only the user in mind. In this section, therefore, no reference will be mede to the previous sections. Unfortumately, some repetition will follow. This repetition, however, is thought to be of help especially when making use of this program.

The most important variables that must be read by the computer in order to achieve useful and workable results are as follows (in order of importance):
a. Physical size of aree of interest (this must be rectangular) - the maximum size of a plot is 22×28 inches. Generally, it is advisable to make the physical size of the output plot exactly the same size as that area of interest on the hydrographic chart which is used for establishing the depth grid. The reason for this will be stated later. The physical size is determined by the variable denoted as HT which is actually the maximum length of the Y axis in inches. The Y axis is alwoys chosen to be parallel to the coast and the maximum length of the X axis is calculated on the basis of HT and the relative dimensions of the depth grid.
b. Depth grid is a two-dimensional array of integer depths equally spaced over the area described by the variable HT. The maximum dimensions of this variable (which is denoted by KMAT) are 25×30. In other words, there cannot be more than 25 equally spaced depths in the X direction and 30 equally spaced depths in the Y direction. This matrix does not have to span the whole area denoted by HT but must be wholly within thie area. It is advisable, however, to have this matrix span the entire area. To do this, there must be some manipulation of the value of HT and the dimensions of KMAT.
of KMAT. GRID is then set equal to the number of feet (actual) between grid depths.

A description of the data required by this program is now given. Variables along with their formats are listed in the order in which they are required with suggested values for fast operation.

Card 1		- Number of plots required by one rum of the program. Generally there is a new plot for every set of ray cards (these will be discussed later). Format is I3.
	PRØJCT	- Project number. Format is A6.
Card 2	TY	- Period of waves to be used. Format is F5.1.
	NøR	- Number of wave rays or number of ray cards to be read in. Format is I4.
	MM	- X dimension of depth grid. Format is I4.
	NN	- Y dimension of depth grid. Format is I4.
	GRID	- Defined in Section 2.3. Format is F7. 0 .
	DCøN	- Factor which must be multiplied by the depths given in the depth matrix to yield depths in feet, i.e. if depths are in fathoms $D C \not \subset \mathbb{N}=6$. Format is FT.2.
	WSH $=0$	- Variable that specifies whether a shoreline is to be drawn. If a shoreIine is to be drawn NSH $=1$, (special alterations to the depth grid must be made for this) otherwise NSH $=0$. This is generally what is used because it is the easiest, and computer operating time is kept to a minimum. Format is I4.
	$\mathbb{N C \emptyset}=0$	- Variable that specifies whether a selected depth is contoured or not. Up to five depths may be contoured. If NC $=0$, no contours are denoted. Otherwise, $N C \varnothing$ must be set equel to the number of depths which are to be contoured. Generally this is set to 0 for reasons of time. Format is I4.

NXCMAT	- Variable which specifies whether a new depth grid is to be read in for this set of rays. NXCMAT $=0$ if a depth grid is to be read, otherwise it is set >0. Generally $\mathbb{N X C M A T}=0$ for first plot ond >0 for the rest provided all plots use the same depth grid. Format is I4.
$\begin{aligned} \text { MPT } & =1 \text { first run } \\ & =0 \text { for others } \end{aligned}$	- Variable.which specifies the format of the printed output (line printer). - If NPP $=1$, the location of every point (X, Y) calculated along a ray path is printed along with the depth (DEP), angle of ray (A), time of travel to that point (TIME), the number of that point along the ray (MAX), the maximum percent difference between the depth at this point and one of the surrounding points (PCIDIF) and the spacing from the last point represented as a factor of the velue of GRID(D). If NPT $=0$ only X, Y, A and TIME are typed out only for the first and lest point along each ray. This is the usual value for NPT since it saves printing time and paper. Format is I4.
MAX $=$ non-zero	- Variable which specifies whether the borders of the plot ere to be calibiated or not. If $N A X=0$, they are uncalibrated; if NAX $\neq 0$, the borders will be calibrated with integral values of grid units. If procedure in section (a) is followed $N A X=0$. Formet is 14 .
CIIN $=0$	- Varieble which specifies whether or not crest marks are to be placed along the wave reys along with the time of travel to that point. If CIM > 0 crest marks are made; if CDI $=0$ no crest marks are made. HOTE: If CTI >0 and the number of points along a ray >1000 the program will terminate. For this reason and for reasons of time CIN $=0$ for most jobs. CIN/TT corresponds to the number of waves between crest marks Format is F7.0.
HT	- Length of Y oxis in inches. Format is F9.3.

NØFRNT - Variable which specifies whether or not a straight line weve front is used; if $\mathbb{N} \varnothing \mathrm{FRNT} \neq 0$ the program proceeds to calculate the equally spaced starting points elong a straight line which is determined from two points which ere read from cards. This veriable should be zero if NEWRAY $=0$. Format is I3.

WEWRAY - Variable which specifies. whether or not the starting points along the new line wave front must be recalculated or read in from cards: if NEWRAY $\neq 0$ these points are either recalculated by reading in another data card containing the two end points on the new line and the angular orientation of the front, or read in from cards. Format is I5.

Card 3 IVFT

Cerds $4 \rightarrow \mathbb{N}$ (say) KMAT

- This variable specifies the format under which the depth grid values are to be read in. Format is 20A4.
- Depths in grid. These values are read in as follows: for $Y=0$ all the $X^{\prime} s$ are read in, in increasing order. Then for $Y=1,2$, etc.

NOTE: Cards $3 \rightarrow \mathbb{N}$ are not required if NXCMAT >0.
Card N +1 CIØUR - Matrix of depths to be contoured. Format is 5F8.2.
NOTE: This card is not required if $\mathbb{N C} \varnothing=0$.
Cards $\mathrm{N}+2 \rightarrow \mathrm{M}$ (say)
a. If $N \not \subset F{ }^{2}$ RINT $=0$

b. If $\mathrm{N} \varnothing \mathrm{FRNT} \neq 0$

A - as above.
Format is F7. 2.
XST, YST

- Coordinates of one end point of straight line wave front. Format is 2F6.2.

XEND, YEND

- Coordinates of the opposite end. Format is 2F6.2.

NOTE: This cerd (there is only one card used if (b) option is taken) may be omitted after the first calculation of all the starting points if the same wave front is used for successive plots.

Is there is only one plot these are all the cards that are required. If there is more than one plot the computer will ask for more of cards 2 thrcugh to K for as many plots as required. A paper tape or magnetic tape is ciuput depending on whether the logical unit number 51 is equipped to the tave fimch or magnetic tape. This output tape must be plotted on the PDP-8 comuter by computer operetors.

7.1 Additional Notes

(1) When this program is submitted to be run it inust be specifled on the job description card that the background is not to be used.
(2) For test purposes the program may be run with Sense Switch 6 on. Enis ellows the program. to run faster because no tape is output. An idea of how the plot looks may be gained by requesting a picture of the scope output display. This provides a fast means of checking all the data and the resultant plot. NOTE: Card Al05 must be removed and MXPLøT set equal to one before employing this option.
(3) If the depth gria is of the same size as the borders of the area the resultant plot from the PDP-8 can then be laid on top of the hydrographic chart and the shoreline drawn in by hand in order to see how the wave rays come in on the shore.
(4) The plot program to be used by the PDP-8 is called PLøTLS and all plots should be of B quelity with bellpoint pen markings.

E.0 ETAMPIE RUTIS

To exhibit the use of this program two example runs are included. The first run makes use of all options except the fan option and indicates the data required for multiple plots. The next run indicates the fan and shoreline option. The depth grid used in both instances is the depth and referred to as the small grid by Wilson (1966) in his report. This grid represents the shoreline area near the mouth of the Chesapeake Bay.

8.1. Run \#1

As mentioned above, all options, except the fan option, were employed in this run. Two plots were prepared by this example (Figures 5 and 6). Figure 5 depicts the direction of travel (with equal time marks) of a 4.0 second wave over a contoured bottom from the SSE direction and travelling to a shoreline. The borders of the plot are calibrated in grid units and the scale of the output plot is equal to the scale of the original hydrographic chart. The option of reading the starting points of the rays was employed. A printout of most of the data input may be found in Figure 7. Figure 8 depicts the output for one ray when NTP $=1$.

The second plot (Figure 6) depicts the direction of travel of an 8.0 second wave from the SSE direction. The borders of the plot are calibrated and the scale of the output plot is one-half the scale of the hydrographic chart. The starting points of the rays were determined by employing the FR $/$ INT subroutine. A printout of the data input may be found in Figure 9. Figure 10 depicts the output for all the rays when $\mathbb{N P T}=0$.

8.2 Run \# 2

One plot was prepared for this example (Figure 11). This plot depicts the directions from which 8.0 second waves finally terminate at the indicated position near the shoreline. The borders of the plot are calibrated in grid units and the scale of the output is one-half the scale of the hydrographic chart. Equal time marks are indicated on the rays. The starting point and the various ray angles were read from cards. A printout of the data input (up to first ray cerd) is given in Figure 12 and the output ($\mathbb{N P T}=0$) is given in Figure 13.

FIGURE 5: Run \# 1, Plot \#1, Straight Line Wave Front with All Options except FRめNT $T=4$ sec

IPROJNOT11166 10/07/72 , PLOT NO. 2, $\mathrm{SCL}=1 / 80004$. TT $=8.0$. $\mathrm{CIN}=0$

FIGURE 6: Run \# 1, Plot \# 2, Straight Line Weve Front employing only the FR $\varnothing \mathbb{N T}$ Option $T=8 \mathrm{sec}$

MXFLCI PECJCT

vaEIEELE FERMAT FOR KMAT

FIGURE 7: Input Data up to First Ray Card for Run \# 1, Plot \# 1

FIGURE 8: Sample Output Data for Rum \# 1, Plot \# $1, N P T=1$

 AnGLE XST YST XENG VENC
 220.03 14.07 2.25 16.22 3.50

FIGURE 9: Input Data for fum \# 1 , Plot \# 2
(continued from Figure 7 except for remaining ray cards for Plot \# 1)

PRGECT NO. 168, 10/07/72, PLOT NO. 2, PERTOD a 8.0 SEC.

RAY NC.	\max	x	$\boldsymbol{\gamma}$	angle	TIME
1	8_{8}^{1}	$\begin{array}{r} 14.07 \\ 9.71 \end{array}$	$\begin{aligned} & 2.25 \\ & \epsilon .57 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 182.05 \end{aligned}$	$.208$
$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	${ }_{88}^{1}$	$\begin{array}{r} 14.28 \\ 9.84 \end{array}$	$\begin{aligned} & 2.38 \\ & 6.5 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 120.00 \\ & 182.98 \end{aligned}$	$.214$
$\begin{aligned} & 3 \\ & 3 \end{aligned}$	92	14.58 8.42	8.50 7.51	$\begin{aligned} & 120.00 \\ & 183.07 \end{aligned}$. 230
4	${ }_{97}^{1}$	$\begin{array}{r} 14.71 \\ 8.14 \end{array}$	$\begin{aligned} & 2.63 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 101.23 \end{aligned}$	$.249$
$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 1 \\ 205 \end{array}$	$\begin{array}{r} 14.93 \\ 8.80 \end{array}$	$\begin{aligned} & 2.75 \\ & 9.22 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 183.13 \end{aligned}$	$\begin{array}{r} 0 \\ -276 \end{array}$
ε	$112^{\frac{1}{2}}$	$\begin{array}{r} 15.14 \\ 8.57 \end{array}$	$\begin{array}{r} 2.88 \\ 10.19 \end{array}$	$\begin{aligned} & 120.00 \\ & 201.54 \end{aligned}$	$.300$
7	120^{1}	15.36 8.29	3.00 11.02	120.00 182.91	. 325
	$.129$	$\begin{array}{r} 15.57 \\ 8.09 \end{array}$	$\begin{array}{r} 3.13 \\ 11.77 \end{array}$	$\begin{array}{r} 120.00 \\ 183.01 \end{array}$	$.344^{0}$
$\begin{aligned} & 9 \\ & 8 \end{aligned}$	$\begin{array}{r} 13 \\ \hline 136 \end{array}$	$\begin{array}{r} 19.79 \\ 7.01 \end{array}$	$\begin{array}{r} 3.25 \\ 12.48 \end{array}$	$\begin{aligned} & 120.00 \\ & 181.19 \end{aligned}$	$.368$
$\begin{aligned} & 10 \\ & 10 \end{aligned}$	139	$\begin{array}{r} 16.00 \\ 7.74 \end{array}$	$\begin{array}{r} 3.38 \\ 12.77 \end{array}$	$\begin{aligned} & 120.00 \\ & 282.95 \end{aligned}$. 378
$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 1 \\ 139 \end{array}$	$\begin{array}{r} 26.22 \\ 7.73 \end{array}$	$\begin{array}{r} 3.50 \\ 12.80 \end{array}$	$\begin{aligned} & 120.00 \\ & 182.94 \end{aligned}$. 378

```
rat reached shcre.
RAY REACHED SHORE.
RaY reached shCRE.
CURVATURE AFPROXIMATIONS NOT CONVERGING.
RAY REACHEQ SHORE. I
ray reached shore.
ray reached shoge.
may reached shore.
curvatuke afpfcximailons net ccmverging.
RaY reached sacre.
ray reached Shore.
```

FIGURE 10: Output Data for Run \# 1, Plot \# 2, NPT = 0

FIGURE 12: Input Data up to First Ray Card
for Run \# 2, Plot \# 1

GRISWOLD, G.M. 1963. Numerical calculation of wave refraction. Jous. Geophys. Res. 68 (6): 1715-1723.

GRISWOLD, G.M., and F.W. NAGLE. 1962. Weve Refraction by numerical methods. Mimeo. Report, U.S. Navy Weather Res. Facility, Norfolk, Va., 19 pp.

HARRISON, W., and W.S. WILSON. 1964. Development of a method for numerical calculation of wave refraction. Coastal Engineering Res. Center, U.S. Army Corp. of Eng., Tech. Mem. No. 6, 64 pp.

PIERSON, W.J., JR., J.J. TUHELLL, and J.A. WOOLEY. 1953. The theory of the refraction of a short crested Gaussian sea surface with application to the northern New Jersey coast. Proc. 3ri Conf. on Coastal Eng. (J.W. Johnson, Ed.), pp. 86-108.

PIERSON, H.J., JR., G. NEUMANN, and R.W. JAMES. 1955. Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra end Statistics. U.S. Navy Hydrographic Office Pub. No. 603 (reprinted 1960), 284 pp.

WIISON, W.S. 1966. A method for calculating and plotting surface wave rays. U.S. Army Coastal Eng. Res. Center, Tech. Mem. No. 17, 58 pp.

BI-C-

Library
 Marine Sciences Branch Pacific Region

[^0]: 1. Wavelength $L=5.12 T^{2}$ where T is the period of the wave in seconds.
[^1]: 2. These are the maximum dimensions of the roll of plotting paper.
