

MINING EXPERTISE

Quebec Office 725 Boulevard Lebourgneuf Suite 312-13-17 Quebec (Quebec) G2J 0C4

Montreal Office 859 Boulevard Jean-Paul-Vincent Suite 201 Longueuil (Quebec) J4G 1R3

Val-d'Or Head Office 560, 3^e Avenue Val-d'Or (Québec) J9P 1S4

Telephone: 819-874-0447 Toll free: 866-749-8140 Email: info@innovexplo.com Website: www.innovexplo.com

NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada

Wallbridge Mining Company Limited 129 Fielding Road Lively (Ontario) P3Y 1L7

Project Location Latitude: 50°00' North; Longitude: 78°54' West Province of Quebec, Canada

Prepared by: Carl Pelletier, P.Geo. Vincent Nadeau-Benoit, P.Geo.

InnovExplo Inc. Val-d'Or (Quebec)

> Effective Date: December 23, 2021 Signature Date: December 23, 2021

SIGNATURE PAGE – INNOVEXPLO

NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada

Prepared for Wallbridge Mining Company Limited 129 Fielding Road Lively (Ontario) P3Y 1L7

Project Location Latitude: 50°00' North; Longitude: 78°54' West Province of Quebec, Canada

Effective Date: December 23, 2021

(Original signed and sealed)

Signed at Val-d'Or on December 23, 2021

Carl Pelletier, P.Geo. InnovExplo Inc. Val-d'Or (Quebec)

(Original signed and sealed)

Vincent Nadeau-Benoit, P.Geo. InnovExplo Inc. Val-d'Or (Quebec) Signed at Val-d'Or on December 23, 2021

CERTIFICATE OF AUTHOR – CARL PELLETIER

I, Carl Pelletier, P.Geo. (OGQ No. 384, PGO No. 1713, EGBC No. 43167 and NAPEG No. L4160), do hereby certify that:

- 1. I am a professional geoscientist and Co-President Founder of InnovExplo Inc., located at 560, 3^e Avenue, Val-d'Or, Quebec, Canada, J9P 1S4.
- 2. This certificate applies to the report entitled "NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report") with an effective date of December 23, 2021, and a signature date of December 23, 2021, prepared for Wallbridge Mining Company Limited (the "Issuer").
- 3. I graduated with a Bachelor's degree in Geology (B.Sc.) from Université du Québec à Montréal (Montreal, Quebec) in 1992, and I initiated a Master's degree at the same university for which I completed the course program but not the thesis.
- 4. I am a member of the Ordre des Géologues du Québec (OGQ licence No. 384), the Association of Professional Geoscientists of Ontario (PGO No. 1713), the Association of Professional Engineers and Geoscientists of British Columbia (EGBC No. 43167) and the Northwest Territories Association of Professional Engineers and Geoscientists (NAPEG No. L4160).
- 5. My relevant experience includes a total of 29 years since graduating from university. My mining expertise has been acquired at the Silidor, Sleeping Giant, Bousquet II, Sigma-Lamaque and Beaufor mines. My exploration experience has been acquired with Cambior Inc. and McWatters Mining Inc. I have been a consulting geologist for InnovExplo Inc. since February 2004.
- 6. I have read the definition of a "qualified person" set out in National Instrument 43-101/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of that instrument.
- 7. I did not visit the property for the purpose of this technical report; however, I conducted multiple site visits in the past in 2004 and 2005.
- 8. I am co-author and share responsibility for all items of the Technical Report.
- 9. I have had prior involvement with the property that is the subject of the Technical Report as an independent QP for two (2) previous mineral resource estimates and supporting NI 43-101 technical reports.
- 10. I am independent of the Issuer in accordance with the application of section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F1, and the sections of the Technical Report for which I am responsible have been prepared in accordance with that instrument and form.
- 12. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Signed this 23rd day of December 2021 in Val-d'Or, Quebec, Canada.

(Original signed and sealed)

Carl Pelletier, P.Geo. InnovExplo Inc. carl.pelletier@innovexplo.com.

CERTIFICATE OF AUTHOR – VINCENT NADEAU-BENOIT

I, Vincent Nadeau-Benoit, P.Geo. (OGQ No. 1535, EGBC No. 54427, NAPEG No. L4154), do hereby certify that:

- I am a professional geoscientist, employed as Senior Geologist in Mineral Resources Estimation for InnovExplo Inc., located at 560, 3^e Avenue, Val-d'Or, Quebec, Canada, J9P 1S4.
- 2. This certificate applies to the report entitled "NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Quebec, Canada" (the "Technical Report"), with an effective date of December 23, 2021 and a signature date of December 23, 2021, prepared for Wallbridge Mining Company Limited (the "Issuer").
- 3. I graduated with a bachelor's degree in Earth and Atmospheric Sciences (Geology) from Université du Québec à Montréal (Montreal, Quebec) in 2010.
- I am a member in good standing of the Ordre des Géologues du Québec (OGQ licence No. 1535), the Association of Professional Engineers and Geoscientists of British Columbia (EGBC, No. 54427) and the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG No. L4154).
- 5. I have practiced my profession continuously as a geologist for a total of 10 years since graduating from university during which time I have been involved in mineral exploration and mine geology projects for precious and base metal properties in Canada. I acquired my expertise with Royal Nickel Corporation and Glencore. I have been a consulting geologist for InnovExplo Inc. since August 2018.
- 6. I have read the definition of "qualified person" set out in National Instrument/Regulation 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of that instrument.
- 7. I have visited the property on August 16 and 17, 2021, for the purpose of this Technical Report.
- 8. I am co-author and share responsibility for all items of the Technical Report.
- 9. I have not had prior involvement with the property that is the subject of this Technical Report.
- 10. I am independent of the Issuer in accordance with the application of section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F1 and the items of the Technical Report for which I am responsible have been prepared in compliance with that instrument and form.
- 12. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Signed this 23rd day of December 2021 in Val-d'Or, Quebec, Canada.

(Original signed and sealed)

Vincent Nadeau-Benoit, P.Geo. InnovExplo Inc. vincent.nadeau-benoit@innovexplo.com

TABLE OF CONTENTS

SIGNA	TURE PAGE – INNOVEXPLO	ii
CERTI	FICATE OF AUTHOR – CARL PELLETIER	. iii
CERTI	FICATE OF AUTHOR – VINCENT NADEAU-BENOIT	.iv
1.	SUMMARY	1
2.	INTRODUCTION	12
2.1	Terms of Reference	12
2.2	Report Responsibility and Qualified Persons	13
2.3	Site Visit	13
2.4	Effective Date	13
2.5	Sources of Information	14
2.6	Currency, Units of Measure, and Acronyms	14
3.	RELIANCE ON OTHER EXPERTS	21
4.	PROPERTY DESCRIPTION AND LOCATION	22
4.1	Location	22
4.2	Mining Title Status	22
4.3	Acquisition of the Detour-Fenelon Gold Trend Property	25
4.4	Previous Agreements and Encumbrances – Mineral Royalties	25
4.5	Permits	20 26
- 4.0		20
5.	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	28
51	Accessibility	28
5.2	Climate	28
5.3	Local Resources	28
5.4	Infrastructure	30
5.5	Physiography	30
6.	HISTORY	31
6.1	Fenelon Claim Block	31
6.2	Grasset Claim Block	36
6.3	Martiniere Claim Block	43
6.4	Doigt Claim Block	47
6.5	Harri Claim Block	48
6.6		50
6.7	Detour East Claim Block	52
0.0 6 0	Vasauli Claim Block	50 50
_ 0.3		
7.	GEOLOGICAL SETTING AND MINERALIZATION	60 60
7.1	Regional Geology	00 62
7.2 7.2	Geology of the Property	64
7.	3.1 Fenelon Claim Block	64
7.	3.2 Grasset Claim Block	66
7.	3.3 Martiniere Claim Block	69
7.4	Mineralization	71
7.	4.1 Fenelon Claim Block	71

7.4.2 7.4.3 7 4 4	Grasset Claim Block Martiniere Claim Block Other Claim Blocks	78 78 .84
, . .		
8. DEF	OSIT TYPES	
8.1	Urogenic Gold	86
8.2		87
8.3	VMS Cu-Zn-(Ag-Au)	88
9. EXF	LORATION	90
9.1	Surface Exploration	90
9.1.1	Historical core resampling	
9.1.2	Induced Polarization Survey	90
9.1.3	Airborne Magnetic Survey	
9.1.4	Fenelon, Grasset and Casault Biogeochemical Survey (Tree Bark Sampling)	
9.1.5	Casault and Casault East Mapping Program	
9.2	Underground Exploration	
9.2.1	Bulk Sample	
9.2.2		
10. DRI	_LING	95
10.1	Drilling Methodology	95
10.2	Core Logging Procedures	95
10.3	2017 to 2021 Drilling Programs	96
10.3.1	2017 Drilling Program	101
10.3.2	2018 Drilling Program	
10.3.3	2019 Drilling Program	
10.3.4	2020 Drilling Program	
10.3.5	2021 Drilling Program	
11. SAM	IPLE PREPARATION, ANALYSES AND SECURITY	107
11.1	Fenelon Claim Block	107
11.1.1	Core Handling, Sampling and Security	107
11.1.2		
11.1.3	Laboratory Accreditation and Certification	
	Laboratory Accreditation and Certification Laboratory Preparation and Assays	
11.1.4	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control	
11.1.4 11.1.5	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block	
11.1.4 11.1.5 11.2	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block	
11.1.4 11.1.5 11.2 11.2.1	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block Core Handling, Sampling and Security	
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.2	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification	
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.3	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control	107 108 108 108 110 112 112 112 112 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere)	107 108 108 108 110 112 112 112 112 113 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.3 11.2.3 11.2.4 11.2.5 11 3	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere).	107 108 108 108 110 112 112 112 112 112 113 113 113 113 115 116
11.1.4 11.1.5 11.2 11.2.1 11.2.3 11.2.4 11.2.5 11.3 11.3.1	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block. Core Handling, Sampling and Security	107 108 108 108 110 112 112 112 112 113 113 113 113 115 116
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification	107 108 108 108 110 112 112 112 112 113 113 113 115 116 116 116
11.1.4 11.1.5 11.2 11.2.1 11.2.3 11.2.4 11.2.5 11.3 11.3 11.3.1 11.3.2 11.3.3	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation	107 108 108 108 110 112 112 112 112 113 113 113 115 116 116 117
11.1.4 11.1.5 11.2 11.2.1 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods	107 108 108 108 110 112 112 112 112 112 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control	107 108 108 108 110 112 112 112 112 112 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Grasset)	107 108 108 108 110 112 112 112 112 112 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 12.	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block. Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control Analytical Methods Conclusions on Balmoral's QA/QC (Grasset)	107 108 108 108 110 112 112 112 112 113 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 12. DA 12.1	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block. Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Grasset) Methods Drill Hole Database	107 108 108 108 110 112 112 112 112 113 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 12. DA 12.1 12.1	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays. Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Grasset) Drill Hole Database Detour-Fenelon Gold Trend 2021 MRE	107 108 108 108 108 110 112 112 112 112 112 113 113 113
11.1.4 11.1.5 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 12. DA 12.1 12.1 12.1.1 12.1.1	Laboratory Accreditation and Certification Laboratory Preparation and Assays Quality Assurance and Quality Control Conclusions on QA/QC for the Fenelon Claim Block Martiniere Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Laboratory Preparation and Assays. Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Martiniere) Grasset Claim Block Core Handling, Sampling and Security Laboratory Accreditation and Certification Sample Preparation Analytical Methods Quality Assurance and Quality Control Conclusions on Balmoral's QA/QC (Grasset) A VERIFICATION Drill Hole Database Detour-Fenelon Gold Trend 2021 MRE Grasset 2021 MRE	107 108 108 108 108 110 112 112 112 112 113 113 113 113

12.2	2 Site Visit	125
12	2.2.1 Fenelon Property	125
1:	2.2.2 Martiniere Property	126
12.3	3 Comments	127
13.	MINERAL PROCESSING AND METALLURGICAL TESTING	
13.1	1 Fenelon Deposit	
1.	3.1.1 Treatment and results of the 2018 and 2019 bulk samples (Gabbro Zones)	
1.	3.1.2 Metallurgical testwork on Tabasco-Cayenne and Area 51 zones	
1.	3.1.3 Conclusions for the Fenelon Gold Mine Deposit	133
13.2	2 Martiniere Deposit	133
1.	3.2.1 2012 and 2013 ALS Metallurgy	134
1.	3.2.2 2014 SGS Minerals Services	135
1.	3.2.3 2015 Blue Coast	137
13.3	3 Grasset Deposit	138
1.	3.3.1 Study Summary	
1.	3.3.2 Conclusions for the Grasset Deposit	144
14.	MINERAL RESOURCE ESTIMATES	145
14.1	1 Detour-Fenelon Gold Trend 2021 MRE	145
1.	4.1.1 Methodology	145
1.	4.1.2 Drill Hole Databases	146
1.	4.1.3 Geological Model	148
1.	4.1.4 Voids Model	149
1.	4.1.5 High-grade Capping	150
1.	4.1.6 Density	
1.	4.1.7 Compositing	
1.	4.1.8 Block Model	
1.	4.1.9 Variography and Search Ellipsoids	
1.	4.1.10Grade Interpolation	
1.	4.1.11DIOCK MOUEL Valluation	170
1.	4.1.13Economic Parameters and Cut-Off Grade	
1.	4 1 14Mineral Resource Estimate	
14 2	2 Grasset 2021 MRF	180
1.	421 Methodology	180
1.	4.2.2 Drill Hole Database	
1.	4.2.3 Geological Model	
1.	4.2.4 Voids Model	183
1.	4.2.5 High-grade Capping	183
1.	4.2.6 Density	185
1.	4.2.7 Compositing	186
1.	4.2.8 Block Model	
1.	4.2.9 Variography and Search Ellipsoids	
1.	4.2.10Grade and Density Interpolation	
1.	4.2. I INITIETAL RESOURCE CLASSIFICATION	
1.	4.2. 12 EUUIUIIIU Palallelels allu Ull-Ull Glade	
1.		
15.	MINERAL RESERVE ESTIMATES	197
16.	MINING METHODS	197
17.	RECOVERY METHODS	197
18.	PROJECT INFRASTRUCTURE	197

19.	MARKET STUDIES AND CONTRACTS	197
20.	ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT	197
21.	CAPITAL AND OPERATING COSTS	197
22.	ECONOMIC ANALYSIS	197
23.	ADJACENT PROPERTIES	198
24.	OTHER RELEVANT DATA AND INFORMATION	200
25.	INTERPRETATION AND CONCLUSIONS	201
26.	RECOMMENDATIONS	204
26.1	Costs Estimate for Recommended Work	205
27.	REFERENCES	207
27.1	GM (SIGÉOM)	210
APPEN	NDIX I – LIST OF MINING TITLES	225

LIST OF FIGURES

Figure 4.1 – Location of the Detour-Fenelon Gold Trend Property in the Province of Quebec.	23
Figure 4.2 – Map of claim blocks comprising the Detour-Fenelon Gold Trend Property	24
Figure 5.1 – Access and waterways of the Fenelon Gold Property and surrounding region	29
Figure 7.1 – Stratigraphic map of the Abitibi Greenstone Belt	61
Figure 7.2 – Geology of the Harricana-Turgeon Belt, northwestern Abitibi Subprovince	63
Figure 7.3 – Geology of the Fenelon claim block	65
Figure 7.4 – Geology of the Grasset claim block	68
Figure 7.5 – Geology of the Martiniere claim block	70
Figure 7.6 – Geology and mineralized zones of the Fenelon Gold System	72
Figure 7.7 – 9975E cross-section (looking west) of the Area 51 and Tabasco-Cayenne mineralized zones	74
Figure 7.8 – Area 51 mineralized zones cross-section 10200E	76
Figure 7.9 – Grasset cross-section	79
Figure 7.10 – Geology and Mineralization zones of the Martiniere Gold System	81
Figure 7.11 – Cross-section of the Bug North zone	82
Figure 8.1 – Types of gold deposits and their inferred deposit clan	87
Figure 8.2 – Types of komatiite-hosted Ni-Cu-PGE mineralization	88
Figure 8.3 – Types of VMS mineralization and tectonic settings	89
Figure 9.1 – 3D view and results of the 2018-2019 bulk sample	94
Figure 10.1 – Holes drilled on the Fenelon claim block from 2017 to 2021	98

Figure 10.2 – Holes drilled by Wallbridge on the Martiniere claim block in 2021	99
Figure 10.3 – Holes drilled by Wallbridge on the Casault claim block in 2021	100
Figure 12.1 – Fenelon camp: access and core facilities	127
Figure 12.2 – Selected core intervals of Fenelon examined during the site visit of August 10 17, 2021	<u></u> ვ- 128
Figure 12.3 – Site Visit of the Martiniere Camp	129
Figure 13.1 – Proposed flotation and cyanidation flowsheet for the Bug Composite	138
Figure 13.2 – Modal mineralogy of master composites	140
Figure 13.3 – Variability of composite modal mineralogy	141
Figure 14.1 – Surface plan view of the Fenelon deposit showing the validated DDH used for the Detour-Fenelon Gold Trend 2021 MRE	or 147
Figure 14.2 – Surface plan view of the Martiniere deposit showing the validated DDH used for the Detour-Fenelon Gold Trend 2021 MRE	147
Figure 14.3 – Inclined view of the Fenelon model looking north: envelopes (left) and high- grade zones (right)	148
Figure 14.4 – Inclined view of the Martiniere model looking north: envelopes (left) and high grade zones (right)	- 149
Figure 14.5 – Longitudinal section of the voids for the Fenelon deposit, looking north	149
Figure 14.6 – Example of graphs (Tabaco_1) for the Fenelon deposit	157
Figure 14.7 – Example of graphs (all Martiniere West HG-zones combined) for the Martinie Deposit	ere 158
Figure 14.8 – Variograms for the Tabasco_1 Zone	162
Figure 14.9 – Section views of the ellipsoid radii for the Tabasco_1 Zone	163
Figure 14.10 – Variograms for the West Contact Zone from the Bug Lake Zones	164
Figure 14.11 – Section views of the ellipsoid radii for the West Contact Zone from the Bug Lake Zones	165
Figure 14.12 – Visual validation comparing drill hole composites and block model grade values (example of Tabasco_1 for Fenelon)	171
Figure 14.13 – Visual validation comparing drill hole composites and block model grade values (example of West Contact from the Bug Lake Zones)	171
Figure 14.14 – Classified mineral resources within the constraining volumes for the Martiniere deposit	174
Figure 14.15 – Classified mineral resources within the constraining volumes for the Fenelo deposit	n 175
Figure 14.16 – Surface plan view of the validated DDH used for Grasset 2021 MRE	181
Figure 14.17 – Isometric view of the lithological model for the Grasset deposit	182
Figure 14.18 – Isometric view of the topographic surface of the Grasset deposit	182

Figure 14.19 – Graphs supporting a capping value of 15% Ni for the H3 zone	184
Figure 14.20 – Major axis variogram for the H3 Zone (InnovExplo, March 2021)	189
Figure 14.21 – Semi-major axis variogram for the H3 Zone (InnovExplo, March 2021)	189
Figure 14.22 – Section views of the ellipsoid radiuses for the H3 Zone	190
Figure 14.23 – Longitudinal view of the H1 Zone with clipping boundary	192
Figure 14.24 – Longitudinal view of the H3 Zone with clipping boundary	192
Figure 23.1 – Adjacent properties	199

LIST OF TABLES

Table 2.1 – List of Acronyms14
Table 2.2 – List of units
Table 2.3 – Conversion Factors for Measurements 20
Table 6.1 – Historical work on the Fenelon Claim Block
Table 6.2 – Historical work on the Grasset claim block
Table 6.3 – Historical work on the Martiniere claim block44
Table 6.4 – Historical work on the Doigt claim block47
Table 6.5 – Historical work on the Harri claim block 48
Table 6.6 – Historical work on the Jeremie claim block
Table 6.7 – Historical work on the Detour-East claim block 52
Table 6.8 – Historical work on the Casault claim block
Table 7.1 – Summary of significant mineralization found on other claim blocks
Table 10.1 – Summary of 2017 to 2021 drilling programs 97
Table 10.2 – Significant results of the 2017 drilling program
Table 10.3 – Significant results of the 2018 drilling program101
Table 10.4 – Significant results of the 2019 drilling program103
Table 10.5 – Significant results of the 2020 drilling program104
Table 10.6 – Significant results of the 2021 drilling program105
Table 11.1 – Results of standards used in the 2021 drilling program
Table 11.2 – Results of blanks used in the 2021 drilling program112
Table 11.3 – Samples submitted to ALS for analysis118
Table 11.4 – ALS internal QC samples119
Table 11.5 – Blank warning levels119
Table 11.6 – Standard failures

Table 12.1 – Results of the independent re-sampling of material from the Fenelon deposit	.126
Table 13.1 – Summary of the results for the 2018 and 2019 bulk samples	.130
Table 13.2 – Average recovery per stage and average leach time	.131
Table 13.3 – Results of SGS' 2020 metallurgical testwork (Area 51 and Tabasco Zones)	.132
Table 13.4 – Results of SGS' 2014 metallurgical testwork (from DiLauro and Dymov, 2014).	.136
Table 13.5 – Flotation metallurgical balance summary	.136
Table 13.6 – Metallurgical balance from separate concentrate and tails leach option	.138
Table 13.7 – Master Composite Head Assays	.139
Table 13.8 – Variability of composite head assays	.140
Table 13.9 – Grindability test results	.141
Table 13.10 – Summary of locked cycle test results	.142
Table 13.11 – Gold and platinum group metal content in the LCT concentrates	.142
Table 13.12 – Summary of acid base accounting and net acid generation test results	.143
Table 14.1 – Summary statistics for the DDH raw and capped assays for the Fenelon deposit	.151
Table 14.2 – Summary statistics for the DDH raw and capped assays for the Martiniere deposit	.154
Table 14.3 – Summary of density measurements for the Fenelon deposit	.159
Table 14.4 – Summary of density measurements for the Martiniere deposit	.159
Table 14.5 – Summary statistics for the composites of the Fenelon deposit	.160
Table 14.6 – Summary statistics for the composites of the Martiniere deposit	.160
Table 14.7 – Properties of block models	.161
Table 14.8 – Estimation parameters for the Fenelon deposit	.166
Table 14.9 – Estimation parameters for the Martiniere deposit	.168
Table 14.10 – Comparison of the mean grades for blocks and composites	.170
Table 14.11 – Input parameters used to calculate the cut-off grades	.172
Table 14.12 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (total per deposit)	.176
Table 14.13 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (Results for the Fenelon deposit per zones)	.176
Table 14.14 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (Results for the Martiniere deposit per zones)	.177
Table 14.15 – Cut-off grade sensitivity for the Fenelon deposit (in-pit)	.178
Table 14.16 – Cut-off grade sensitivity for the Fenelon deposit (underground)	.179
Table 14.17 – Cut-off grade sensitivity for the Martiniere deposit (in-pit)	.179

Table 14.18 – Cut-off grade sensitivity for the Martiniere deposit (underground)	180
Table 14.19 – Summary statistics for the DDH raw assays by metal	183
Table 14.20 – Summary of density measurements in the current database	185
Table 14.21 – Density values used for the mineral resource estimate	186
Table 14.22 – Summary statistics for the composites	186
Table 14.23 – Block model properties	187
Table 14.24 – Block model naming convention and codes	188
Table 14.25 – Grade and density estimation parameters	191
Table 14.26 – Input parameters used to calculate the underground cut-off grade	193
Table 14.27 – Mineral resource estimate for the Grasset deposit at 0.80% NiEq cut-off	195
Table 14.28 – Cut-off grade sensitivity for the Grasset deposit	196
Table 24.1 – Bulk sample results	200
Table 25.1 – Risks for the Detour-Fenelon Gold Trend Property	202
Table 25.2 – Opportunities for the Detour-Fenelon Gold Trend Property	203
Table 26.1 – Estimated Costs for the Recommended Work Program	206

1. SUMMARY

Introduction

Wallbridge Mining Company Limited ("Wallbridge" or the "Issuer") retained InnovExplo Inc. ("InnovExplo") to prepare a technical report (the "Technical Report") to support the results of the maiden and updated mineral resource estimates for the Fenelon and Martiniere deposits, respectively (combined, the "Detour-Fenelon Gold Trend 2021 MRE"), and the updated mineral resource estimate for the Grasset deposit (the "Grasset 2021 MRE") in accordance with Canadian Securities Administrators' National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43 101") and Form 43-101F1. The mandate was assigned by Attila Péntek, VP Exploration of Wallbridge.

InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Quebec.

Wallbridge is a Canadian mining company trading publicly on the Toronto Stock Exchange ("TSX") under the symbol WM and on the United States OTCQX Best Market ("OTCQX") under the symbol WLBMF.

Contributors

This Technical Report was prepared by InnovExplo employees Carl Pelletier, (P.Geo.), Co-President Founder of InnovExplo and Vincent Nadeau-Benoit (P.Geo.), Senior Geologist in Mineral Resources Estimation. Both are independent and qualified persons ("QPs") as defined by NI 43 101.

Mr. Pelletier is a professional geologist in good standing with the OGQ (No. 384), PGO (No. 1713), EGBC (No. 43167) and NAPEG (No. L4160). He is co-author of the Technical Report.

Mr. Nadeau-Benoit is a professional geologist in good standing with the OGQ (No. 1535), EGBC (No. 54427) and NAPEG (No. L4154). He is co-author of the Technical Report.

Property Description and Location

The Property, as defined below, is located in the Nord-du-Québec administrative region of the Province of Quebec, Canada, approximately 75 km west-northwest of the city of Matagami (Figure 4.1).

The Property covers an area of 912.62 km², extending 97 km east-west and 27 km northsouth. The coordinates of the approximate centroid are 78°53'33"W and 49°59'49"N (UTM: 651048E and 5540489N, NAD 83, Zone 17). The Property overlies the townships of Manthet, Martigny, La Martinière, Jérémie, Caumont, Du Tast, Massicotte, La Peltrie, Lanouillier, Gaudet, Fenelon, and Grasset on NTS map sheets 32L/01 to 04 and 32E/13 to 16.

The main access to the Fenelon Camp (eastern part of the Property) is via Highway 109 from Amos, which heads north. From this highway, the drive is 13 km west along the road leading to the former small mining town of Joutel, then 51 km northwest on the Selbaie paved road (N-810). Between the Km 122 and Km 123 markers, a year-round forestry road provides access to the Fenelon Camp, 21 km from the junction.

The Issuer acquired the Property through a number of transactions with Balmoral Resources Ltd ("Balmoral") and Midland Exploration Inc. ("Midland"). The Property consists of nine (9) claim blocks: eight (8) of them forming the Issuer's Fenelon Gold Trend Property (Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Jeremie) and the one (1) that corresponds to Midland's Casault Property, which is under an option agreement with the Issuer. The combined claim blocks, including the JV area, comprise 1,669 claims staked by electronic map designation (map-designated cells or "CDC"), three (3) non-exclusive leases for surface mineral substances, and one (1) mining lease, for an aggregate area of 91,044.17 ha.

The Issuer holds all of the mineral titles for the Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Jeremie blocks. Midland owns the Casault claim block, for which the Issuer has an option agreement to acquire an interest of up to 65% in the claim block. All claims are in good standing as of December 6, 2021.

All of the claim blocks are subject to royalties payable to various beneficiaries, with the major holder being Franco-Nevada Corporation.

Geology

The Property is located in the northwestern Archean Abitibi Subprovince of the southern Superior Province in the Canadian Shield. The Property overlies a significant portion of the North Volcanic Zone or Harricana-Turgeon ("HT") volcano-sedimentary belt of the Abitibi Subprovince, near the boundary between the Abitibi and Opatica subprovinces.

The HT belt overlaps the Ontario-Quebec boundary. In Quebec the HT belt is formed by the Manthet Group, the Rivière Turgeon Formation (Matagami Group), and the Broullian-Fénelon Group, each forming a distinct geological domain. The boundaries between the geological domains are zones of high strain that include the Lower Detour ("LDDZ") and Sunday Lake ("SLDZ") deformation zones. The SLDZ separates the Manthet and Matagami domains whereas the LDDZ occurs between the Matagami and Broullian-Fenelon domains.

The Manthet Group, to the north of the SDLZ, has been interpreted as the equivalent of the 2730-2724 Ma Deloro assemblage, it lies north of the SLDZ and is characterized by abundant iron-rich tholeiitic basalts and coeval gabbroic sills and dykes with minor intercalated graphitic argillites, as well as mafic and felsic volcaniclastic rocks. Ultramafic flows and intrusions at the base of the volcanic sequence are also known near the Detour Gold Mine and between the Fenelon claim block and the Opatica Subprovince. The volcanic sequence is coeval to the volcanics of the Selbaie and Matagami base metal mining camps. The degree of metamorphism and deformation within the Manthet domain increases gradually northward toward the Opatica gneisses.

The Rivière Turgeon Formation is bound by the SLDZ in the north and the LDDZ in the south, bridging the Manthet and Broullian-Fénelon Groups respectively. Rock types of the Rivière Turgeon Formation consist mostly of wackes and argillites, as well as tuffaceous units and iron formations. These sediments are interpreted to be formed in a successor basin unconformably overlying the volcanic rocks, they are included in the Matagami Group and are considered equivalent to the Porcupine-type sediments of the southern Abitibi. The contact between the Rivière Turgeon Formation and the Manthet Group is the SLDZ, which dips 70°-80° to the south-southwest.

The volcanic-dominated Broullian-Fenelon Group lies to the south of the LDDZ and comprises mostly mafic volcanic rocks that are interpreted to be the equivalent of the 2723-2720 Ma Stoughton-Roquemaure Assemblage. This geological domain contains a greater volume of felsic volcanic and intrusive rocks than the Manthet Group and hosts the formerly producing Selbaie volcanogenic massive sulphide ("VMS") deposit.

Mineralization

The Property is well endowed with mineral occurrences and includes the Fenelon Gold deposit, the Martiniere gold deposit, and the Grasset Ni-Cu-PGE deposit.

A few gold-enriched domains are present in the Fenelon Gold system area: the Gabbro Zones in the dyke swarm complex, the Tabasco and Cayenne zones in sedimentary rocks, and Area 51 Zone in the Jérémie Pluton and its contact zone. The Ripley-Reaper gold zones represents the continuity of Area 51 to the south, all the way to the SLDZ.

The Gabbro Zones was the only known mineralization of significance before the Issuer discovered the Tabasco-Cayenne and Area 51 zones. The Gabbro Zone contains seven mineralized zones (Trinidad Scorpion, Fresno, Chipotle, Anaheim, Naga Viper, Habanero and Serrano). The mineralized zones are restricted to a wide corridor of intensely altered gabbro between two panels of argillaceous sediments, except for the Habanero zones, which are partially hosted in sediments. The zones are primarily concentrated in an area where the gabbro direction changes from WNW-ESE to E-W. The zones are predominantly located at the inflection of shear zones, where the dip changes from 70° to vertical. The general rake of the Gabbro Zones is subparallel to the mineral stretching lineations. The thickness of the mineralized envelopes varies from a few centimetres to 15 m.

The Tabasco-Cayenne system was discovered in 2019 and is bounded by the edge of the Main Gabbro to the northeast and by the Jérémie Pluton contact to the southwest. The two zones have similar geological characteristics. They trend N130 and dip steeply between 70° and 90° to the south. Together, they form an anastomosing and sheared mineralized system with numerous secondary splays. Along these shear zones, internal variations in dip define dilatational segments that accompany folded and boudinaged gold-bearing shear veins. These features may represent primary ore shoots. In some places, the zones follow dyke contacts.

The mineralization in the Area 51 Zone is dominantly hosted in the Jérémie Pluton and its contact with the sediments, but also extends into the sediments in the west. It occurs as a series of parallel vein network corridors approximately 20-50 m wide that are divided into subzones. The mineralization plunges to the northeast, extending from the bedrock surface to a vertical depth of approximately 1,000 m. Subzones inside the mineralized corridors are interpreted as vertical and subparallel alteration envelopes ranging in thickness from metres to decametres. The transition is gradational between altered zones and relatively fresh intrusive rock. Gold mineralization is mainly associated with isolated or regularly spaced subparallel translucent grey quartz veins generally less than 2-3 cm thick, rarely up to 5 cm.

The Ripley-Reaper mineralized zones represent the southern extension of the Area 51 corridor. The higher gold-bearing intervals reach locally of over 22 metres within broader lower grade intervals greater than 100 metres. Intercepts indicate a steep WSW plunge for the high-grade gold mineralization which is related to a WSW zone of strong shearing

and deformation. The Ripley-Reaper zones are influenced by and occur roughly parallel the orientation of the nearby SLDZ.

Diamond drilling on the Martiniere claim block has defined several mineralized zones and showings that occur along structural trends. Gold mineralization typically shows a close spatial association with greater amounts of: (1) disseminated to (rarely) semimassive pyrite, (2) carbonate and/or quartz alteration and veining, and (3) brittle to ductile structures. Lithology and alteration are somewhat different on the Bug Lake and Martiniere West zones, resulting in a distinction between "Bug Lake-style" and "Martiniere West-style" mineralization.

At least three pyrite-dominant VMS systems also occur on the Martiniere claim block although generally with negligible base and precious metal contents.

Mineralization at the Grasset Ni-Cu-PGE deposit is concentrated in two stacked sulphide-bearing horizons, oriented NW-SE within vertically dipping peridotite ultramafic units. Mineralization consists of metre-scale layers of net-textured, blebby to semi-massive and massive sulphides. The concentration of pentlandite and chalcopyrite is proportional to the total sulphide content.

Two other significant gold mineralized occurrences are present in the Detour East (Lynx-Rambo zones) and Casault (Vortex) claim blocks of the Property. In both cases gold mineralization is reportedly structurally controlled and associated with major deformation zones or splays.

Data Verification

Data verification and the site visit demonstrated that the data for the Fenelon deposit, the Martiniere deposit and the Grasset deposit are acceptable. The databases are considered to be valid and of sufficient quality to be used for the mineral resource estimates.

Mineral Resource Estimates

The Detour-Fenelon Gold Trend 2021 MRE were prepared by QPs Carl Pelletier, P.Geo. (Fenelon and Martiniere) and Vincent Nadeau-Benoit, P.Geo. (Fenelon only), both of InnovExplo, using all available information.

The effective date of the Detour-Fenelon Gold Trend 2021 MRE is November 9, 2021.

The mineral resource area of the Fenelon deposit has an ENE strike length of 1,400 m, a width of 1,100 m, and a vertical extent of 1,000 m below the surface. Located 30 km west of the Fenelon deposit, the mineral resource area of the Martiniere deposit has a NE strike length of 1,000 m, a width of 350 m and a vertical extent of 600 m (Martiniere Trend), and an NW strike length of 1,500 m, a width of 500 m and vertical extend of 600 m (Bug Lake Trend). The Fenelon model consists of 60 high-grade zones (using a 2.0 m minimum true thickness) and 5 low-grade envelopes and the Martiniere model consists of 59 high-grade zones (using a 3.0 m minimum true thickness) and one (1) low-grade envelope.

The mineral resource database of the Fenelon deposit contains 1,040 DDH (357,650.70 m). This selection contains 196,561 sampled intervals taken from 230,450.40 m of drilled core which were sampled for gold. The mineral resource

database of the Martiniere deposit contains 610 DDH (153,292 m). This selection contains 108,452 sampled intervals taken from 107,662 m of drilled core which were sampled for gold.

The Detour-Fenelon Gold Trend 2021 MRE can be classified as Indicated and Inferred mineral resources based on geological and grade-continuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The requirement of reasonable prospects for eventual economical extraction has been met by: having a minimum width for the modelling of the mineralization zones and a cut-off grade; using reasonable inputs, both for potential open pit and underground extraction scenarios; and constraints consisting of a surface shape for the open-pit scenario and mineable shapes for the underground scenario.

The Detour-Fenelon Gold Trend 2021 MRE is considered reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards.

The following table displays the results of the Detour-Fenelon Gold Trend 2021 MRE at the official cut-off grades.

Detour Fenelon Gold Trend	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)	
	Indiantad	in Pit ≥ 0.35	28,132,000	1.45	1,307,600	2 4 2 6 0 0 0	
Fanalan	Indicated	UG ≥ 1.50	7,885,800	3.23	819,300	2,120,900	
reneion	Inforred	in Pit ≥ 0.35	22,102,500	1.18	841,400	1 467 400	
	Interred	UG ≥ 1.50	6,888,900	2.83	626,000	1,467,400	
	Indicated	in Pit ≥ 0.40	6,583,000	2.00	422,800	543,700	
Mortinioro	muicaleu	UG ≥ 2.40	957,500	3.93	120,900		
Martiniere	Informed	in Pit ≥ 0.40	1,406,700	1.81	81,900	256 200	
	Interred	UG ≥ 2.40	1,379,500	3.95	174,300	256,200	
Total Indicated			43,558,300	1.91		2,670,600	
Total Inferred			31,777,600	1.69		1,723,600	

Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (Table 14.12)

Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate notes:

2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.

- 3. The QPs are not aware of any known environmental, permitting, legal, title-related, taxation, sociopolitical or marketing issues, or any other relevant issue, that could materially affect the potential development of mineral resources other than those discussed in the Detour-Fenelon Gold Trend 2021 MRE.
- 4. For Fenelon, a density value of 2.80 g/cm³, supported by measurements, was applied to the bedrock. Sixty-one (61) high-grade zones and five (5) low-grade envelopes were modelled in 3D using a minimum true width of 2.0 m. High-grade capping was done on raw assay data and established on a per-zone basis and ranges between 25 g/t and 110 g/t Au (except Gabbro Zones, where it ranged from 35 g/t to 330 g/t) for the high-grade zones and ranges between 8 g/t and 35 g/t Au for the low-grade envelopes. Composites (1.5 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed.

The independent and qualified persons for the current Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate are Carl Pelletier, P.Geo. (for Fenelon and Martiniere) and Vincent Nadeau-Benoit, P.Geo. (for Fenelon), both from InnovExplo. The Detour-Fenelon Gold Trend 2021 MRE follows 2014 CIM Definition Standards and 2019 CIM MRMR Best Practice Guidelines. The effective date of the Detour-Fenelon Gold Trend 2021 MRE is November 9, 2021.

- 5. For Martiniere, a density value of 2.80 g/cm³, supported by measurements, was applied to the bedrock. Fifty-nine (59) high-grade zones and one (1) low-grade envelope were modelled in 3D using a minimum true width of 3.0 m. High-grade capping was done on raw assay data and established at 35 g/t Au based on the most numerous zones and extrapolated to all zones. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed.
- 6. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to any blocks (potential surface or underground extraction scenario) using Whittle and DSO and by the application of cut-off grades, as shown in the above table, which were calculated using a gold price of US \$ 1,607/oz and an exchange rate of US \$ 1.31/CAD\$.
- **7.** Results are presented in-situ. Ounce (troy) = metric tons x grade/31.10348. The number of tonnes and ounces was rounded to the nearest thousand. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations as per NI 43-101.

The mineral resource estimate update for the Grasset deposit (the "Grasset 2021 MRE") was prepared by Carl Pelletier, P.Geo., using all available information.

The Grasset 2021 MRE comprises a review and update of the 2016 mineral resource estimate for the Grasset deposit (the "Grasset 2016 MRE"; Richard and Turcotte, 2016). After the effective date of the Grasset 2016 MRE, Balmoral drilled 11 more diamond drill holes ("DDH") within the modelled mineral resource volume, which extended the H1 and H3 zones (Tucker, 2019). Overall, a visual inspection by the QP of the 2018 drilling results revealed that the thickness and grade of the mineralized zones remain in the same order of magnitude as the Grasset 2016 MRE. Moreover, the 2018 DDH continued to confirm the geological and grade continuities that were demonstrated in the Grasset 2016 MRE.

For the purpose of this Technical Report, the QPs have assumed that the gains and losses between the 2016 and 2021 data balance each other (negligible net variation), and thus the resulting difference would not be material to the overall resource. Therefore, the Grasset 2016 MRE database was used for the Grasset 2021 MRE.

The effective date of the Grasset 2021 MRE is November 9, 2021.

The close-out date of the Grasset database is May 19, 2016.

The mineral resource area of the Grasset deposit has a NE strike length of 1,000 m, a width of 350 m, and a vertical extent of 600 m below the surface. Thirteen (13) solids were constructed: 11 lithological solids and 2 mineralized solids (H1 and H3). Both mineralized zones are contained within an ultramafic lithology. A minimum true thickness of 3.0 m was used. The resource database contains 101 surface DDH (37,944.49 m). This selection contains 14,167 sampled intervals taken from 16,084.65 m of drilled core, which were sampled for nickel, copper, cobalt, platinum, palladium, gold or silver, or a combination of these elements.

The Grasset 2021 MRE can be classified as Indicated and Inferred mineral resources based on geological and grade continuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The QP also believes that the requirement of reasonable prospects for eventual economic extraction has been met by having a minimum modelling width for the mineralized zones, a cut-off grade based on reasonable inputs and an economic constraining volume amenable to a potential underground extraction scenario.

The Grasset 2021 MRE is considered reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards.

The following table displays the results of the Grasset 2021 MRE at the official 0.80 % NiEq cut-off grade.

>0.80% NiEq		Tonnes	NiEq (%)	Ni (%)	Cu (%)	Co (%)	Pt (g/t)	Pd (g/t)	Contained NiEq (t)	Contained Ni (t)	Contained Cu (t)	Contained Co (t)	Contained Pt (oz)	Contained Pd (oz)
INDICATED	Horizon 1	89 200	1.00	0.82	0.09	0.03	0.15	0.33	900	700	100	20	400	1 000
	Horizon 3	5 422 700	1.54	1.22	0.13	0.03	0.26	0.64	83,300	66,400	7,300	1,400	45,400	112,200
	Total Indicated	5 512 000	1.53	1.22	0.13	0.03	0.26	0.64	84,200	67,100	7,400	1,400	45,800	113,100
INFERRED	Horizon 1	13 600	0.95	0.78	0.09	0.02	0.14	0.32	100	100	10	3	100	100
	Horizon 3	203 500	1.01	0.83	0.09	0.02	0.15	0.34	2,100	1,700	200	40	1,000	2,200
	Total Inferred	217 100	1.01	0.83	0.09	0.02	0.15	0.34	2,200	1,800	200	43	1,000	2,400

Grasset 2021 Mineral Resource Estimate at the official 0.80 % NiEq cut-off grade (Table 14.27)

Grasset 2021 Mineral Resource Estimate notes:

1. The independent and qualified person for the Grasset 2021 MRE, as defined by NI 43-101, is Carl Pelletier, P.Geo. (InnovExplo Inc.). The effective date of the Grasset 2021 MRE is November 9, 2021.

- 2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.
- 3. The mineral resource estimate follows 2014 CIM Definition Standards and the 2019 CIM MRMR Best Practice Guidelines.
- 4. Two mineralized zones were modelled in 3D using a minimum true width of 3.0 m. Density values are interpolated from density databases, capped at 4.697 g/cm³.
- 5. High-grade capping was done on raw assay data and established on a per zone basis for nickel (15.00%), copper (5.00%), platinum (5.00 g/t) and palladium (8.00 g/t). Composites (1-m) were calculated within the zones using the grade of the adjacent material when assayed or a value of zero when not assayed.
- 6. The estimate was completed using a block model in GEMS (v.6.8) using 5m x 5m x 5m blocks. Grade interpolation (Ni, Cu, Co, Pt, Pd, Au and Ag) was obtained by ID2 using hard boundaries. Results in NiEq were calculated after interpolation of the individual metals.
- 7. The mineral resources are categorized as Indicated and Inferred based on drill spacing, geological and grade continuity. A maximum distance to the closest composite of 50 m was used for Indicated mineral resources and 100 m for the Inferred mineral resources.
- 8. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to any blocks (potential underground extraction scenario) using DSO and by the application of a cut off grade of 0.80% NiEq. Cut-off calculations used: Mining = \$65.00/t; Maintenance = \$10.00/t; G&A = \$20.00/t; Processing = \$42.00/t. The cut-off grades should be re-evaluated in light of future prevailing market conditions (metal prices, exchange rate, mining cost, etc.). The NiEq formula used a USD:CAD exchange rate of 1.31, a nickel price of US\$6.95/lb, a copper price of US\$3.33/lb, a cobalt price of US\$17.06/lb, a platinum price of US\$984.85/oz, and a palladium price of US\$2,338.47/oz. Gold and silver do not contribute to the economics of the deposit.
- 9. Results are presented undiluted and in-situ. Ounce (troy) = metric tons x grade / 31.10348. Metric tons and ounces were rounded to the nearest hundred. Metal contents are presented in ounces and pounds. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations in NI 43-101.
- 10. The QP is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political, marketing or other relevant issue that could materially affect the Grasset 2021 mineral resource estimate

Interpretation and Conclusions

The following conclusions were reached after conducting a detailed review of all pertinent information and completing the Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE:

- The results demonstrate the geological and grade continuities for both gold deposits, Fenelon and Martiniere and for the Ni-Cu-PGE deposit, Grasset.
- The drill holes provide sufficient information for the mineral resource estimates of the 3 (three) deposits.
- In a combined scenario, the Fenelon deposit contains:
 - at a cut-off grade of 0.35 g/t Au for open-pit mining, an estimated Indicated mineral resource of 28,132,000 t grading 1.45 g/t Au for 1,307,600 oz Au and an estimated Inferred mineral resource of 22,102,500 t grading 1.18 g/t Au for 841,400 oz Au,
 - at, a cut-off grade of 1.50 g/t Au for underground mining, an estimated Indicated mineral resource of 7,885,800 t grading 3.23 g/t Au for 819,300 oz Au and an estimated Inferred mineral resource of 6,888,900 t grading 2.83 g/t Au for 626,000 oz Au,
- In a combined scenario, the Martiniere deposit contains:
 - at a cut-off grade of 0.40 g/t Au for open-pit mining, an estimated Indicated mineral resource of 6,583,000 t grading 2.00 g/t Au for 422,800 oz Au and an estimated Inferred mineral resource of 1,406,00 t grading 1.81 g/t Au for 81,900 oz Au,
 - at, a cut-off grade of 2.40 g/t Au for underground mining, an estimated Indicated mineral resource of 957,500 t grading 3.93 g/t Au for 120,900 oz Au and an estimated Inferred mineral resource of 1,379,500 t grading 3.95 g/t Au for 174,300 oz Au,
- In an underground scenario and using a cut-off grade of 0.80% NiEq, the Grasset deposit contains, an estimated Indicated mineral resource of 5,512,000 t grading 1.53% NiEq for 84,200 t NiEq, and Inferred mineral resource of 217,100 t grading 1.01% NiEq for 2,200 t NiEq.
- Additional diamond drilling could upgrade some of the Inferred mineral resource to the Indicated category and could identify additional mineral resources down-plunge and in the vicinity of the current identified mineralization.

Recommendations

Based on the results of the Detour-Fenelon Gold Trend 2021 MRE and the results of the Grasset 2021 MRE, the QPs recommend advancing the Fenelon, Martiniere and Grasset deposits to an advanced phase of exploration. The QPs also recommend continuing the property-scale exploration program, including compilation studies, drill target generation, and drilling brownfield targets on other claim blocks.

The recommended two-phase work program is detailed below:

Phase 1:

• Complete the on-going drilling programs on the Fenelon deposit, the

Martiniere deposit and the Casault claim block.

- Complete additional infill drilling, between the core of the Gabbro Zones, close to surface, and the Cayenne-Tabasco zones, at depth, and within the known high-grade zones of Area 51 for potential conversion from Inferred to Indicated mineral resources and increased confidence in the grades in those areas.
- Exploration drilling Fenelon:
 - Further drilling in the Area 51 zones should target the potential downplunge and western extensions of the current mineral resource and southward toward the Ripley-Reaper zones.
 - Further drilling in the Tabasco-Cayenne Contact zones should target the down-plunge extensions and the strike extensions to the northeast and northwest of the current mineral resource.
- Infill and exploration drilling Martiniere:
 - Further drilling should target the gaps between the several isolated zones or improve the drill hole spacing in those areas to potentially combine the mineral resources of those zones. Drilling should also target the downplunge extensions of the Martiniere zones.
- Exploration drilling Grasset:
 - Further drilling should target the down-plunge extensions of the Grasset deposit and its immediate vicinity to test for additional zones of similar mineralization.
- Complete an update of the MREs for the Fenelon, the Martiniere and Grasset deposits to include the results of the recommended drilling programs.
- Regional compilation and drill targeting:
 - Pending target ranking, areas of known mineralization on the Property, especially along the SDLZ and LDDZ, should be reassessed, and the continuity of the mineralized systems should be drill-tested since some mineralized occurrences reportedly remain open on strike and down dip.
- Engineering studies:
 - Continue advancing the engineering studies to gather geotechnical, metallurgical, environmental and hydrogeological information (Fenelon, Martiniere and Grasset).
- Complete underground development at Fenelon to access the Area 51 and Tabasco-Cayenne Contact zones to better understand the geology of these mineralized areas.
- Complete a preliminary economic assessment ("PEA") using the updated MREs with (supported by) an updated NI 43-101 Technical Report. The purpose of the PEA will be to confirm, as a first step, the potential economic viability of the project, and it will also help prepare and prioritize the next steps (Phase 2) of the project.

Phase 2 (contingent on the success of Phase 1):

- Infill and exploration drilling Fenelon (provision for follow-up on Phase 1).
- Infill and exploration drilling Martiniere (provision for follow-up on Phase 1).
- Infill and exploration drilling Grasset (provision for follow-up on Phase 1).
- Complete an update of the MREs for the Fenelon, Martiniere and Grasset deposits that will include the results of the recommended drilling programs from Phase 2.

- Bulk sampling program on the Area 51 and Tabasco-Cayenne Contact zones to test geological and grade continuities and metallurgical parameters.
- Complete a pre-feasibility study ("PFS") based on the updated mineral resource estimates and summarized in an updated NI 43-101 Technical Report.

Cost Estimate for Recommended Work

The QPs have prepared a cost estimate (in Canadian dollars) for the recommended twophase work program to serve as a guideline. The budget for the proposed program is presented in Table 26.1. Expenditures for Phase 1 are estimated at \$70.9 million (incl. 15% for contingencies). Expenditures for Phase 2 are estimated at \$63.7 million (incl. 15% for contingencies). The grand total is \$134.6 million (incl. 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

Phase 1	Work Program	Description	Budget Cost
	Complete ongoing drilling program (2021)	25,000 m	\$6.9M
	Infill drilling – Fenelon (Area 51 and Tabasco-Cayenne)	35,000 m	\$9.6M
	Exploration drilling – Fenelon	80,000 m	\$22.0M
	Exploration drilling – Martiniere	40,000 m	\$11.0M
	Exploration drilling – Grasset	10,000 m	\$2.8M
	Update of MREs (Detour-Fenelon Gold Trend and Grasset)		\$0.2M
	Regional compilation studies and drilling of brownfield targets on the Property	10,000 m	\$2.8M
	Underground development at Fenelon	200 m	\$2.4M
	Engineering studies		\$3.0M
	PEA on the Detour-Fenelon Gold Trend		\$1.0M
	Contingencies (15%)		\$9.2M
	Phase 1 subtotal		\$70.9M
Phase 2	Work Program	Description	Budget Cost
	Infill and exploration drilling – Fenelon (provision for follow-up on Phase 1).	120,000 m	\$33.0M
	Infill and exploration drilling – Martiniere (provision for follow-up on Phase 1).	50,000 m	\$13.8M
	Infill and exploration drilling – Grasset (provision for follow-up on Phase 1).	5,000 m	\$1.4M
	Bulk sampling program (Area 51 and Tabasco-Cayenne Contact zones)		\$5.0M
	Update of the MREs (Detour-Fenelon Gold Trend and Grasset)		\$0.2M
	PFS on the Detour-Fenelon Gold Trend		\$2.0M
	Contingencies (15%)		\$8.3M
	Phase 2 subtotal		\$63.7M

Estimated Costs for the Recommended Work Program (Table 26.1)

2. INTRODUCTION

Wallbridge Mining Company Limited ("Wallbridge" or the "Issuer") retained InnovExplo Inc. ("InnovExplo") to prepare a technical report (the "Technical Report") to support the results of the maiden and updated mineral resource estimates for the Fenelon and Martiniere deposits, respectively (combined, the "Detour-Fenelon Gold Trend 2021 MRE"), and the updated mineral resource estimate for the Grasset deposit (the "Grasset 2021 MRE") in accordance with Canadian Securities Administrators' National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and Form 43-101F1. The mandate was assigned by Attila Péntek, VP Exploration of Wallbridge.

InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Quebec.

Wallbridge is a Canadian mining company trading publicly on the Toronto Stock Exchange ("TSX") under the symbol WM.

2.1 Terms of Reference

Wallbridge Mining Company Limited was incorporated in the Province of Ontario under the Business Corporations Act (Ontario) by filing articles of incorporation effective June 3, 1996.

The head office, registered office and principal place of business of the Issuer are located in the city of Greater Sudbury at 129 Fielding Road, Lively, Ontario, P3Y 1L7. The Issuer also maintains an office at 80 Richmond Street West, 18th Floor, Toronto, Ontario, M5H 2A4.

The Issuer acquired the Detour-Fenelon Gold Trend Property (the "Property"), the subject of this Technical Report, through a number of transactions with Balmoral Resources Ltd ("Balmoral") and Midland Exploration Inc. ("Midland").

The Property consists of nine (9) claim blocks, eight (8) of which form the Issuer's Detour-Fenelon Gold Trend Property (Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Jeremie) and one (1) that corresponds to Midland's Casault Property, which is under an option agreement with the Issuer.

In October 2016, the Issuer purchased Balmoral's Discovery Zone Property, host to the Discovery Zone deposit (a.k.a. the Discovery Gold Zone) and a 10.5-km² subdivision of Balmoral's larger Fenelon Property (Wallbridge press releases of May 25, 2016, and October 19, 2016). The Issuer renamed the property the Fenelon Gold Property and renamed the deposit Fenelon (a.k.a. the Fenelon Gold System).

The Issuer then acquired Balmoral on May 22, 2020, by way of a plan of arrangement, thereby adding the remainder of Balmoral's Fenelon Property and six (6) other of the company's properties to its portfolio (Wallbridge press release of May 22, 2020). Balmoral's former Fenelon Property has also been called the Fenelon A Property or the Fenelon Project by past operators.

On June 18, 2020, the Issuer announced it had entered into an option agreement with Midland to acquire an interest of up to 65% in the Casault Property, thereby expanding its holdings to form the current configuration of the Property consisting of nine (9) claim blocks.

Finally, on September 14, 2020, the Issuer announced it had entered into a non-binding term sheet with respect to a joint venture ("JV") on its Detour East claim block with Kirkland Lake Gold Ltd ("Kirkland Lake Gold"). Under terms of this joint venture, Kirkland Lake Gold can earn a 75% interest in Detour East by incurring \$35 million in expenditures on the claim block.

The Issuer now controls a district-scale land position along the Detour-Fenelon Gold Trend, a major mineralized corridor in the Sunday Lake Deformation Zone ("SLDZ"). The Detour-Fenelon Gold Trend hosts the open-pit Detour Lake gold mine in Ontario (Kirkland Lake Gold), 15 km to the west of the eastern property limit. The Property occupies roughly 900 km² of land centred on the SLDZ and hosts the Fenelon Gold System (Gabbro, Tabasco-Cayenne, Area 51 and Ripley-Reaper zones), the Grasset nickel-copper-PGM deposit, and the Bug and Martiniere West gold deposits.

The Property is an advanced stage project with near-term production potential. Drill intersections suggest an exploration potential for mineral resource expansion.

2.2 Report Responsibility and Qualified Persons

This Technical Report was prepared by InnovExplo employees Carl Pelletier, (P.Geo.), Co-President Founder of InnovExplo and Vincent Nadeau-Benoit (P.Geo.), Senior Geologist in Mineral Resources Estimation. Both are independent and qualified persons ("QPs") as defined by NI 43-101.

Mr. Pelletier is a professional geologist in good standing with the OGQ (No. 384), PGO (No. 1713), EGBC (No. 43167) and NAPEG (No. L4160). He is co-author of the Technical Report and share responsibility for all items.

Mr. Nadeau-Benoit is a professional geologist in good standing with the OGQ (No. 1535), EGBC (No. 54427) and NAPEG (No. L4154). He is co-author of the Technical Report and share responsibility for all items.

2.3 Site Visit

Mr. Nadeau-Benoit visited the Property on August 16 and 17, 2021, for the purpose of this Technical Report. The site visit included a review of the access to the Property, visual checks of the Fenelon and Martiniere camps, the core facilities which include the storage, the sawing and sampling rooms, a general assessment of the site's overall condition, an examination of mineralized intervals from recently drilled holes of the Fenelon claim block and independent resampling, an examination of mineralized intervals from drilled holes of the Martiniere claim block, a review of the core logging and sampling procedures with the Issuer's employees, onsite data verification, and personal inspection of the application of the core logging, sawing and sampling procedures.

Mr. Pelletier has visited the Property in the past but not for the purpose of this Technical Report.

2.4 Effective Date

The effective date of this report is December 23, 2021.

2.5 Sources of Information

This Technical Report is supported by the information described in Item 3 and the documents listed in Item 27. Excerpts or summaries from documents authored by other consultants are indicated in the text.

The authors' assessment of the Project was based on published material in addition to the data, professional opinions and unpublished material submitted by the Issuer. The authors reviewed all the relevant data provided by the Issuer and/or by its agents.

The author also consulted other sources of information, mainly the Government of Quebec's online claim management and assessment work databases (GESTIM and SIGEOM, respectively), as well as documents published on SEDAR (<u>www.sedar.com</u>) under the Issuer's profile, including technical reports, annual information forms, MD&A reports and press releases.

The authors reviewed and appraised the information used to prepare this Technical Report, and believe that such information is valid and appropriate considering the status of the project and the purpose for which this Technical Report is prepared. The authors have fully researched and documented the conclusions and recommendations made in this Technical Report.

2.6 Currency, Units of Measure, and Acronyms

The abbreviations, acronyms and units used in this report are provided in Table 2.1 and Table 2.2. All currency amounts are stated in Canadian Dollars (\$, C\$, CAD) or US dollars (US\$, USD). Quantities are stated in metric units, as per standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for weight, kilometres (km) or metres (m) for distance, hectares (ha) for area, percentage (%) for copper and nickel grades, and gram per metric ton (g/t) for precious metal grades. Wherever applicable, imperial units have been converted to the International System of Units (SI units) for consistency (Table 2.3).

Acronyms	Term
43-101	National Instrument 43-101 (Regulation 43-101 in Quebec)
AA or AAS	Atomic absorption spectroscopy
Ag	Silver
Ai	Abrasion index
AMIS	Abandoned Mines Information System
Au	Gold
BLFZ	Bug Lake Fault Zone
CA	Certificate of authorization
CAD:USD	Canadian-American exchange rate
CIM	Canadian Institute of Mining, Metallurgy and Petroleum
CIM Definition Standards	CIM Definition Standards for Mineral Resources and Mineral Reserves (2014)
CIM MRMR Best Practice	CIM Estimation of Mineral Resources and Mineral Reserves Best Practice

Table 2.1 – List of Acronyms

Acronyms	Term
Guidelines	Guidelines (2019)
CL	Core length
Со	Cobalt
COG	Cut-off grade
COV	Coefficient of variation
COVAVG	Average coefficient of variation
CRM	Certified reference material
CSA	Canadian Securities Administrators
CSS	Contact support services
Cu	Copper
CV	Coefficient of variation
CWi	Crusher work index
DDH	Diamond drill hole
DSO	Deswik stope optimizer
EA	Environmental assessment
EM	Electromagnetic
ESIA	Environmental and social impact assessment
F ₁₀₀	100% passing - Feed
FA	Fire assay
FS	Feasibility study
G&A	General and administration
GESTIM	Gestion des titres miniers (the MERN's online claim management system)
GPR	Ground penetrating radar
GRAV	Gravimetric analysis
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectroscopy
ICP-ES	Inductively Coupled Plasma Emission Spectroscopy
ICP-MS	Inductively Coupled Plasma Mass Spectroscopy
ID2	Inverse distance squared
ISO	International Organization for Standardization
JV	Joint venture
JVA	Joint venture agreement
LDDZ	Lower Detour Deformation Zone
LOI	Letter of intent
Mag	Magnetics (or magnetometer)
MERN	Ministère de l'Énergie et des Ressources Naturelles du Québec (Quebec's Ministry of Energy and Natural Resources)
mesh	US mesh

Acronyms	Term	
MFFP	Ministère des Forêts, de la Faune et des Parcs (Quebec's Ministry of Forests, Wildlife and Parks)	
MMI	Mobile metal ion	
MRE	Mineral resource estimate	
MRN	Former name of MERN	
NAD 83	North American Datum of 1983	
nd	Not determined	
Ni	Nickel	
NI 43-101	National Instrument 43-101 (Regulation 43-101 in Quebec)	
NN	Nearest neighbour	
NSR	Net smelter return	
NTS	National Topographic System	
ОК	Ordinary kriging	
P80	80% passing – Product	
PAG	Potentially acid generating	
Pb	Lead	
Pd	Palladium	
PFS	Prefeasibility study	
PGE	Platinum group elements	
PGM	Platinum group metals	
Pt	Platinum	
QA	Quality assurance	
QA/QC	Quality assurance/quality control	
QC	Quality control	
QP	Qualified person (as defined in National Instrument 43-101)	
RC	Reverse circulation (drilling)	
Regulation 43-101	National Instrument 43-101 (name in Quebec)	
RQD	Rock quality designation	
RQI	Rock quality index	
RWi	Rod work index	
SD	Standard deviation	
SG	Specific gravity	
SIGÉOM	Système d'information géominière (the MERN's online spatial reference geomining information system)	
SLDZ	Sunday Lake Deformation Zone	
SMU	Selective mining unit	
SPLP	Synthetic Precipitation Leaching Procedure	
TDS	Total dissolved solids	

Acronyms	Term
UG	Underground
UTM	Universal Transverse Mercator coordinate system
VTEM	Versatile time domain electromagnetic
Zn	Zinc

Table 2.2 – List of units

Symbol	Unit
%	Percent
% solids	Percent solids by weight
\$, C\$	Canadian dollar
\$/t	Dollars per metric ton
0	Angular degree
°C	Degree Celsius
μm	Micron (micrometre)
μS/cm	Micro-siemens per centimetre
A	Ampere
avdp	Avoirdupois
cfm	Cubic feet per minute
cfs	Cubic feet per second
cm	Centimetre
cm ²	Square centimetre
cm²/d	Square centimetre per day
cm ³	Cubic centimetre
сР	Centipoise (viscosity)
d	Day (24 hours)
dm	Decametre
ft	Foot (12 inches)
g	Gram
G	Billion
Ga	Billion years
gal/min	Gallon per minut
g-Cal	Gram-calories
g/cm ³	Gram per cubic centimetre
g/L	Gram per litre
g/t	Gram per metric ton (tonne)
GW	Gigawatt

Symbol	Unit
h	Hour (60 minutes)
ha	Hectare
hp	Horsepower
Hz	Hertz
in	Inch
k	Thousand (000)
ka	Thousand years
kbar	Kilobar
kg	Kilogram
kg/h	Kilogram per hour
kg/t	Kilogram per metric ton
kj	Kilojoule
km	Kilometre
km²	Square kilometre
km/h	Kilometres per hour
koz	Thousand ounces
kPa	Kilopascal
kW	Kilowatt
kWh	Kilowatt-hour
kWh/t	Kilowatt-hour per metric ton
kVA	Kilo-volt-ampere
L	Litre
lb	Pound
lb/gal	Pounds per gallon
lb/st	Pounds per short ton
L/h	Litre per hour
L/min	Litre per minute
lbs NiEq	Nickel equivalent pounds
М	Million
m	Metre
m²	Square metre
m ³	Cubic metre
m/d	Metre per day
m³/h	Cubic metres per hour
m³/min	Cubic metres per minute
m/s	Metre per second
m³/s	Cubic metres per second

Symbol	Unit
Ма	Million years (annum)
masl	Metres above mean sea level
Mbgs	Metres below ground surface
Mbps	Megabits per second
MBtu	Million British thermal units
mi	Mile
min	Minute (60 seconds)
Mlbs	Million pounds
ML/d	Million litres per day
mm	Millimetre
mm²	Square millimetres
mm Hg	Millimetres of mercury
mm WC	Millimetres water column
Moz	Million (troy) ounces
mph	Mile per hour
Mt	Million metric tons
MW	Megawatt
ng	Nanogram
NiEq	Nickel equivalent
oz	Troy ounce
oz/t	Ounce (troy) per short ton (2,000 lbs)
ppb	Parts per billion
ppm	Parts per million
psf	Pounds per square foot
psi	Pounds per square inch
rpm	Revolutions per minute
s	Second
\$ ²	Second squared
scfm	Standard cubic feet per minute
st/d	Short tons per day
st/h	Short tons per hour
t	Metric tonne (1,000 kg)
ton	Short ton (2,000 lbs)
tpy	Metric tonnes per year
tpd	Metric tonnes per day
tph	Metric tonnes per hour
US\$	American dollar

Symbol	Unit
usgpm	US gallons per minute
V	Volt
vol%	Percent by volume
wt%	Weight percent
У	Year (365 days)
yd³	Cubic yard

Table 2.3 – Conversion Factors for Measurements

Imperial Unit	Multiplied by	Metric Unit
1 inch	25.4	mm
1 foot	0.3048	m
1 acre	0.405	ha
1 ounce (troy)	31.1035	g
1 pound (avdp)	0.4535	kg
1 ton (short)	0.9072	t
1 ounce (troy) / ton (short)	34.2857	g/t

3. RELIANCE ON OTHER EXPERTS

The authors did not rely on other experts to prepare this Technical Report.

The QPs relied on the Issuer's information regarding mining titles, option agreements, royalty agreements, environmental liabilities and permits. Neither the QPs nor InnovExplo are qualified to express any legal opinion with respect to property titles, current ownership or possible litigation.

4. PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Property is located in the Nord-du-Québec administrative region of the Province of Quebec, Canada, approximately 75 km west-northwest of the city of Matagami (Figure 4.1).

The Property covers an area of 912.62 km², extending 97 km east-west and 27 km northsouth. The coordinates of the approximate centroid are 78°53'33"W and 49°59'49"N (UTM: 651048E and 5540489N, NAD 83, Zone 17). The Property overlies the townships of Manthet, Martigny, La Martinière, Jérémie, Caumont, Du Tast, Massicotte, La Peltrie, Lanouillier, Gaudet, Fenelon, and Grasset on NTS map sheets 32L/01 to 04 and 32E/13 to 16.

4.2 Mining Title Status

Mineral title status was supplied by the Issuer. InnovExplo verified the status of all mining titles using GESTIM, the Government of Quebec's online claim management system (gestim.mines.gouv.qc.ca).

The Property consists of nine (9) claim blocks: eight (8) of them forming the Issuer's Fenelon Gold Trend Property (Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Jeremie) and the one (1) that corresponds to Midland's Casault Property, which is under an option agreement with the Issuer. The combined claim blocks, including the JV area, comprise 1,669 claims staked by electronic map designation (map-designated cells or "CDC"), three (3) non-exclusive leases for surface mineral substances, and one (1) mining lease, for an aggregate area of 91,044.17 ha (Figure 4.2).

The Issuer holds all of the mineral titles for the Fenelon, Grasset, Detour East, Doigt, Nantel, Martiniere, Harri and Jeremie blocks. Midland owns the Casault claim block, for which the Issuer has an option agreement to acquire an interest of up to 65% in the claim block. All claims are in good standing as of December 6, 2021. 9 claims have an expiration date before December 23, 2021; renewal is currently being processed by the MERN.

Appendix I presents a list of mineral titles with details of ownership, royalties and expiration dates.

Figure 4.1 – Location of the Detour-Fenelon Gold Trend Property in the Province of Quebec

Figure 4.2 – Map of claim blocks comprising the Detour-Fenelon Gold Trend Property

4.3 Acquisition of the Detour-Fenelon Gold Trend Property

The Issuer acquired the Property through a number of transactions with Balmoral and Midland.

On May 25, 2016, Wallbridge announced it had entered into a binding agreement by means of a letter of intent ("LOI") dated May 24, 2016 to acquire the former Discovery Zone Property from Balmoral for a purchase price of \$3.6 million. The property represented a 10.5-km² subdivision of Balmoral's larger Fenelon Property. The Issuer now refers to the mineralization on the former Discovery Zone Property as the "Fenelon Gold System" or the "Fenelon Deposit".

On October 19, 2016, Wallbridge announced it had completed the purchase by making the final payment. It renamed the acquired property the Fenelon Gold Mine Property.

On March 2, 2020, Wallbridge and Balmoral announced they had entered into a definitive agreement following the signing of an LOI on February 14, 2020, whereby Wallbridge would acquire all the issued and outstanding shares of Balmoral in an all-stock transaction.

On May 22, 2020, Wallbridge and Balmoral announced the completion of the agreement, with which Wallbridge had acquired 100% of the issued and outstanding common shares of Balmoral in exchange for consideration of 0.71 of a common share of Wallbridge for each Balmoral share. As a result of the transaction, Balmoral became a wholly owned subsidiary of Wallbridge.

On June 18, 2020, Wallbridge announced that it had increased its holdings in the Detour-Fenelon Trend by entering into an option agreement to acquire from Midland an interest of up to 65% in the Casault Property.

For the first option of the two-stage agreement, Wallbridge can acquire an undivided 50% interest in the Casault Property by making an initial expenditure before the end of June 2021 and subsequently incurring aggregate expenditures by the end of June 2024. Upon exercising the first option, Wallbridge may increase its undivided interest in the Casault Property to 65% (the second option), by incurring additional expenditures and/or cash payments within two years from the date of exercise of the first option.

On September 14, 2020, the Issuer announced it had entered into a non-binding term sheet with respect to a JV of its Detour East claim block with Kirkland Lake Gold. Under terms of this JV, Kirkland Lake Gold can acquire, during Phase 1 (the option), an undivided 50% interest with a minimum expenditure of \$2 million within the first two years. Upon exercising the first option, a JV will be formed and Kirkland Lake Gold will hold an additional 25% interest in the claim block by incurring additional expenditures within 5 years of the formation of the JV. Under terms of this JV, Kirkland Lake Gold can earn a 75% interest in the Detour East claim block by making expenditures totalling \$35 million on the claim block.

4.4 **Previous Agreements and Encumbrances – Mineral Royalties**

All nine (9) claim blocks are subject to royalties payable to various beneficiaries, with the major holder being Franco-Nevada Corporation. Details of the net smelter return ("NSR") royalties applicable to the Property are presented in Appendix I.

4.5 Permits

In addition to the mandatory exploration permits for tree cutting to provide road access for the drill rig or to conduct drilling and stripping work, the Issuer acquired, in early 2018, a permit for dewatering the open pit and old underground workings of the Fenelon deposit (including water treatment and discharge), as well as for commencing underground exploration activities.

In 2019, the Issuer submitted a project description for mining the Gabbro Zone. As the Property is located on territory regulated by the James Bay and Northern Quebec Agreement, the project description was provided to an evaluation committee composed of representatives from the Cree First Nations and the provincial and federal authorities. The evaluation committee determined that the project must complete an environmental and social impact assessment ("ESIA"). The MELCC sent Wallbridge the ESIA guidelines in October 2019 and Wallbridge submitted the ESIA in Q3 2020.

Subsequent to the 2020 drilling results, the company opted to pause the MELCC's evaluation of the ESIA in order to provide an updated project description and ESIA that would include the Area 51 and Tabasco shear zones. As such, the Issuer is focusing on exploration work until sufficient detail has been acquired for an updated project description to be submitted.

The Issuer is in possession of all permits and amendments to the existing certificate of authorization ("CA") to support its present exploration program and underground development in the Area 51 and Tabasco shear zones. An amendment to the CA was approved by the MELCC on April 8, 2021 to add Area 51 bulk sample material, to increase the in-pit waste by an additional 180,600 t, and to add a temporary in-pit ore pad of 25,000 t. The request for the proposed 25,000 t bulk sample in the Area 51 sector was submitted to the MERN on July 12,2021. At the effective date of this report, the request was still under review. The Issuer also received an exemption from the ESIA process on March 31, 2021, for the development work in Area 51 and the proposed bulk sample.

In 2021, the Issuer updated the previous (2017) site restoration plan and associated costs according to regulatory timelines. The updated restoration plan was recently submitted to the MERN for review and is still pending approval at the effective date of this report. The estimated closure cost in the updated plan is \$2,908,600, which takes into consideration the 2021 activities.

4.6 Communication and Consultation with the Community

The Issuer conducts consultation activities with the Cree communities of Waskaganish and Washaw Sibi and the Cree Nation Government. It also consults with the Algonquin community of Abitibiwinni First Nations through weekly meetings, site visits and monthly bulletins. The Issuer follows a formal consultation plan and schedule that it developed as part of the 2019 ESIA process. The plan is meant to facilitate the identification of and communication with potentially interested and/or impacted First Nations and stakeholders. First Nations consultation activities include:

- Meetings and traditional knowledge workshops with the Tallymen;
- Meetings with the First Nation leaders;
- Participating in a mining workshop and community feast in Waskaganish;
- Project update bulletins;
- Weekly scheduled meetings with each community and other frequent discussions as needed;
- Assisting with business development and employment opportunities;
- Site visits; and
- Assisting local Tallymen by providing assistance or accommodation when needed.

The Issuer's hiring and contracting policy is to hire First Nations and local community members or service providers when possible.

Consultation activities with the municipalities, associations, organizations and political stakeholders have included project update correspondence and meetings with the municipalities and their chamber of commerce, as well as meetings with interested organizations.

At the time of writing, the Issuer actively collaborates with the town of Matagami, the Société de Développement de la Baie-James, the Société du Plan Nord and the Cree Nation Development Corporation to identify opportunities for employment and infrastructure development projects in the vicinity of the Property. On March 1st 2021, The Issuer committed to the funding of up to \$1.5 million (subject to conditions), for improvements on the access road from Matagami. The project is carried out by the Société du Plan Nord and the Société de Développement de la Baie-James.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Accessibility

The main access to the eastern part of the Property (Figure 5.1) is via Highway 109 from Amos, which heads north to Matagami. From this highway, the drive is 13 km west along the road leading to the former small mining town of Joutel, then 51 km northwest on the Selbaie paved road (N-810). Between the Km 122 and Km 123 markers, a year-round forestry road provides access to the Fenelon Camp on the Property, 21 km from the junction. The old open pit and decline ramp are located 6 km west of the Fenelon Camp.

The western part of the Property is accessible via Highway 393 from Rouyn-Noranda, heading north to LaSarre and continuing on Route des Conquérants and Highway 810. Different parts of the land package are accessible via logging roads that spur off Highway 810.

5.2 Climate

The region experiences a typical continental-style climate, with cold winters and warm summers. Climate data from the nearest weather station in the Town of Matagami indicate daily average temperatures range from -20°C in January to 16°C in July (Environment Canada, 2012). The coldest months are December to March, during which temperatures are often below -30°C and can fall below -40°C. During summer, temperatures can exceed 30°C. Snow accumulation begins in October or November and snow cover generally remains until spring thaw in mid-March to May. The average monthly snowfall peaks at 65 cm in February and the yearly average is 314 cm (Environment Canada, 2012).

Exploration, mining and drilling operations may be generally carried out year-round with some limitations in specific areas. Surface exploration work (mapping, channel sampling) should be planned from mid-May to mid-October. Lakes are usually frozen and suitable for drilling from January to April. The thick overburden can make conditions difficult when the snow melts in May.

5.3 Local Resources

The Property area is well serviced by the mining supply sector and processing facilities. The Town of Matagami, about 75 km east-southeast of the Property, is the closest municipality with a population of 1,400 (2016). Matagami has the nearest hospital, and airstrip and access to the CN rail line. The Town of Amos is a major supply and service centre, with a population of 12,800 (2016). It also has a regional hospital. The nearest helicopter base is in La Sarre, located 140 km south of the Property. Val-d'Or has the nearest regional airport, with daily flights to various destinations.

Qualified personnel can be found throughout the Abitibi and Nord-du-Québec regions (Val-d'Or, Rouyn-Noranda, La Sarre, and Chibougamau) due to its rich history of forestry and mineral exploration and production.

Figure 5.1 – Access and waterways of the Fenelon Gold Property and surrounding region

5.4 Infrastructure

The nearest high-voltage power line is at the former Selbaie mine, approximately 20 km south of the Property. Two generators are used on the site (1200 kW and 800 kW). There is ample water on or near the Property to supply a mining operation.

The water is non-potable. On October 6, 2021, the Issuer received a CA for water withdrawal (20.6 m^3 /day). At the effective the date of this report, the Issuer is preparing the application for a water distribution permit.

The Fenelon camp can accommodate up to 155 people. Currently, the Issuer has an average of 140 people working at the site. The site includes a dry that can accommodate 200 people, a kitchen and dining room, a recreation facility and a nurse's office. The construction of an onsite septic system was completed during the summer and fall of 2021 following an amendment to the CA for the management of the camp's sewage system received on May 17, 2021.

Other infrastructure includes trailers housing the administration office, a foldaway garage, a core shack, a propane and fuel farm, a ventilation and heating system, and a water treatment facility.

The historical Fenelon open pit is used as an ore pad and waste pad area. The site does not have an ore processing facility, nor does it have heap leach pads or a tailings storage area.

An exploration camp is present on the Martiniere claim block dating back to the Balmoral period. It sits on the site where the historical Martiniere drill core is stored. A helicopter pad is present and is still being used. The core shack and prospector tents (for accommodation and offices) would need investment and repairs to be functional again for daily use, which should not be necessary as all activities are coordinated out of the Fenelon camp.

No infrastructure is present on the other claim blocks.

5.5 Physiography

The Property has an extensive cover of Pleistocene glacial sediments ranging from 5 to 117 m thick. Most of the area is covered by swamps and forests composed of spruce, fir and pine. Some areas of the Property have recently been logged and partly revegetated. The minimum and maximum elevations on the property are 250 masl and 320 masl, respectively.

6. HISTORY

The history of the Property stretches over a 60-year period, from the late 1950s to the present. The Property consists of nine (9) claim blocks representing former mining properties. The boundaries and names of those properties have changed over time following ownership (and/or option) changes, the abandonment and/or addition of claims, or changes to mining title status when claims were converted into mining leases.

Each of the claim blocks has been the subject of multiple exploration programs, including prospecting and geological mapping, geophysics, geochemistry and drilling. Drilling has ranged from exploration-stage to mineral resource definition. At Fenelon, the drilling programs were conducted from both surface and underground. The Property has also been the subject of a great number of geological studies and reports covering a wide array of topics ranging from local mineral resource and mineral reserve estimates, to engineering studies, to regional geological surveys and synthesis.

Exploration work and drilling completed by the Issuer is presented in item 9 and item 10 respectively.

6.1 Fenelon Claim Block

This review summarizes all work and activities completed before 2017 on the Fenelon claim block. Most of the information in this section was obtained from Richard et al. (2017) and Faure et al. (2020), and from assessment ("GM") reports in the SIGEOM database.

Table 6.1 summarizes the most relevant historical work.

Year	Owner	Description of work	Highlights / Significant results	Reference
1981-1982	Teck Explorations Ltd	Ground Pulse EM survey and MaxMin II HLEM; Mag survey; DIGHEM survey; drilling	Evaluation of conductivity areas and possible follow-up drill targets. Drill Hole GB-68-1 (105.16m): best intersection was 0.58 g/t Au over 0.51 m.	Thorsen 1981a, 1981b, 1982a, 1982b
1986 -1991	Morrison Minerals Limited	Heliborne Mag and EM surveys (251 line-km, incl. the current Fenelon Mine Property); Ground EM and Mag surveys; Ground Max- Min and Total Mag (16.1 line-km)	Several interpreted EM conductors. Follow-up on Mag and EM anomalies from the 1986 survey. Strong conductor identified on the flank of a strong Mag anomaly; deemed a favourable gold target.	Boustead, 1988; Turcotte and Gauthier, 1989; Kenwood, 1991
1993	Cyprus Canada Inc.	Follow-up drilling (1 DDH) on HLEM conductor	The most significant result was 2.84 g/t Au over 0.95 m (185 m) in drill hole FA93-1. Pyritic sediments returned anomalous values for As (up to 1,800 ppm), Cu (537 ppm) and Zn (3,840 ppm).	Broughton, 1993
1994		Ground Mag survey and HLEM survey	Survey data helped identify new drill targets.	Guy, 1994

Table 6.1 – Historical work on the Fenelon Claim Block

Year	Owner	Description of work	Highlights / Significant results	Reference
1994		Follow-up drilling (8 DDH) on 1993 drill results	Drilling confirmed a favourable geological environment for gold mineralization. Most significant drill result: FA94-4 (Discovery Zone): 42.6 g/t Au over 6.7 m (uncut), including 144.5 g/t Au over 2.1 m (uncut); anomalous Cu also present (0.2%-1% Cu). Other results included: FA94-5: 40.73 g/t Au over 0.5 m; FA94-6: 5.94 g/t Au over 0.5 m; FA94-6: 5.94 g/t Au over 0.5 m; FA94-7: 3.74 g/t Au over 1.5 m	
1995		Drilling (57 DDH for 13,374m)	Visible gold observed in 18 DDH. Best results : FA-95-10 : 14.24 g/t Au over 13.9 m; FA-95- 13 : 9.78 g/t Au over 7.2 m; FA- 95-23 : 13.74 g/t Au over 6.8 m; FA-95-60 : 37.48 g/t Au over 6.99 m.	Needham and Nemcsok, 1995
1995		Borehole gyroscopic survey	Survey found to be unreliable in establishing DDH deviation due to host rock magnetics.	
1995		IP orientation survey on Discovery Zone: 3.5 line- km	Discovery Zone interpreted to be associated with a "shoot" running off a strong resistivity high adjacent to a strong chargeability anomaly; correlates with a moderate magnetic low break in both ground and airborne Mag surveys.	Lortie, 1995
1995-1996		IP survey (183 line-km), HLEM survey (31 line-km), Mag and VLF surveys (241.7 line-km); Drilling (36 DDH for 9,851.4 m; 2 DDH for 540.4 m outside the Discovery Zone)	Objective was to define new targets similar to the Discovery Zone. Best result from the drill program: 48.56 g/t Au over 0.59 m.	Needham and Nemcsok, 1996; Boileau and Lapointe, 1996
1996-1997	Fairstar Exploration Inc.	1996 drilling: 36 DDH totalling 6,497 m. 1997 drilling: 77 DDH totalling 15,924 m	Best results: FA-97-104: 83.4 g/t Au over 0.70 m FA-97-105 : 74.2 g/t Au over 0.60 m FA-97-112 :17.5 g/t Au over 1.75 m FA-97-123 :124.7 g/t Au over 1.60 m FA-97-135 : 109.5 g/t Au over 4.30 m	Kelly et al., 1997

Year	Owner	Description of work	Highlights / Significant results	Reference
1997		Geotechnical work Detailed seismic refraction survey 5 DDH to test the physical characteristics of the overburden	New model of Discovery Zone greatly enhanced the understanding of its structure and geology; it was thought it would facilitate the future task of extending the zone at depth and along strike.	Kelly et al., 1997; Poulin and Goupil, 1996
1997		MAG survey IP survey Drilling (39 DDH for 9,426.6 m).	Tested the potential of other areas in the FAJV.	Boileau, 1997
1997		PFS report on Discovery Zone by CHIM International		Fairstar press release of
1997		Metallurgical testing (20 kg representative samples)	Gold recovery between 96.5% and 99.1%	1997
1998		Drilling (6 DDH, 191 m).	FA-98-202 : 31.6 g/t Au over 2.4 m; FA-98-203 : 9.55 g/t Au over 1.8 m; FA-98-204 : 44.83 g/t Au over 3.65 m and 94.9 g/t Au over 5.8 m; FA-98- 205B : 22.7 g/t Au over 0.8 m.	Guy and
2000		Drilling 24 NQ-size DDH, 992 m.	Results indicated highly erratic; all veins indicated a lack of continuity. Drilling on vein structures between drill holes failed to intersect the vein as predicted in the proposed model.	Tims, 2000
	International Taurus Resources Inc.	Bulk sampling program, including overburden pad preparation and overburden stripping.	18,966 t of ore blasted; 13,835 wet metric tons (13,752 dry metric tons) milled at Camflo for 132,039 g (4,245 oz) of gold produced for a recovery grade of 9.60 g/t Au (recovery of 97%).	Veilleux, 2001; Guy, 2001
2001		Mapping and sampling (74 surface channel samples).	1S zone: channel samples grading as high as 187.96 g/t Au and averaging 111 g/t Au 0S, VI and 2S zones: channel samples with higher gold values of up to 926.75 g/t Au, averaging 537 g/t Au.	Veilleux, 2001; Guy, 2001

Year	Owner	Description of work	Highlights / Significant results	Reference
		MRE and scoping study.		Poos et al., 2002
2001		Structural study and survey of the stripped and open pit area; 964 channel samples (1,000 m).	Some anomalous zones with gold values from 100 ppb to 1,228.6 g/t Au.	Dereciere
2002		Drilling program. 41 NQ short drill holes (FA-02-207 to FA-02-248) for 2,354 m.	FA-02-207: 46.71 g/t Au over 2.0 m; FA-02-213: 6.40 g/t Au over 4.04 m; FA-02-208: 41.09 g/t Au over 1.48 m; FA-02- 212: 3.34 g/t Au over 1.63 m	2003
2003	International Taurus Resources Inc.; Fairstar Exploration Inc.	Updated geological model and MRE (SRK). Technical report filed (NI 43-101).		Couture and Michaud, 2003
2003		Preliminary Assessment Study ("PA") non-compliant with NI 43-101	PA was used to generate possible scenarios for internal planning and budgeting purposes.	Drips and Bryce, 2003, 2004
2003	International Taurus Resources Inc.	Exploration program: portal and decline (326 m) >745 m of drifts and crosscuts developed, and 254 m of raises driven in ore; Samples: 359 from faces, 258 from test drill holes, 149 from muck. Drilling: 54 NQ-size DDH (3,966 m) drilled from the northern access drift on level 5213; 8 DDH (BZ-04- 001 to BZ-04-029; 78 m) drilled from production drifts.	Development in mineralized material generated a volume of 5,374 t at 16 g/t Au (mostly muck from sills and breasts) over widths of at least 1.5 m. Lower grade material also recovered (800 t at 3.0 g/t Au) in crosscuts averaging 4.5 m wide.	Pelletier and Gagnon, 2004
2004		InnovExplo produced updated MRE for Central Discovery Zone.		Pelletier and Gagnon, 2004
2004		Bulk sample at Camflo Mill facility: 8,169 t of underground material was milled.	High-grade material represents 5,764 t at 12.41 g/t Au; low-grade material 2,405 t at 5.07 g/t Au. Four (4) bricks cast: 3,427.6 oz	St-Jean, 2004

Year	Owner	Description of work	Highlights / Significant results	Reference
			containing 2,595.5 oz of gold. After casting the last brick, Camflo Mill recovered a 922 g button, and a 207 g button after cleaning the furnace. Mill malfunction on Sept. 11 caused gold loss (about 90 oz) over 6 hours. Mill feed grade was estimated at 10.25 g/t Au, with recovery of 95.5%. After final inventory, grade was calculated to be 10.70 g/t Au, including gold lost in tails during milling. If the 90 oz lost to mill malfunction is included in mill reconciliation, total gold recovery is close to 97%.	
2005		Publication of NI 43-101 compliant technical report to present the updated MRE.		Pelletier and Gagnon, 2005
2005		Independent (InnovExplo) relogging and drill core sampling program.	Results of geological review and sampling program were combined with geophysical survey data (Mag, EM and IP) and incorporated into MapInfo (GIS database) at property scale to completely revise the surface geological map of Fenelon A Property (lithologies, favourable areas, faults, fold structures).	Théberge et al., 2006
2005-2006	American Bonanza Gold Corp.	Drilling and sampling program: 54 NQ-size DDH (18,114 m); 2,837 mineralized samples. Lithogeochemical study: 359 whole-rock samples.	Confirmation of epithermal setting for the Discovery deposit in the southern part of the property. Significant gold results obtained: FA-05-255 with 4.44 g/t Au over 0.80 m, 4.25 g/t Au over 3.90 m and 3.40 g/t Au over 0.95m FA-06-256 with 10.75 g/t Au over 0.50 m and 42.80 g/t Au over 0.50 m FA-05-258 with 9.70 g/t Au over 1.90 m Discovery and confirmation of a VHMS setting in the northeastern part of the property.	Brousseau et al., 2007; Le Grand, 2008
2006-2007		Exploration drilling program 4 DDH (959 m); 6 deep DDH (3,399 m)	No significant values.	Le Grand, 2008
2008		1 DDH 349 m	No significant values.	Leclerc and Giguère, 2010

Year	Owner	Description of work	Highlights / Significant results	Reference
2011	Balmoral Resources Ltd	41 DDH (8,580 m): 35 drill holes to test lateral and down-dip/plunge extensions of Discovery Zone; 6 drill holes at eastern and northern ends of Discovery Zone.	Several high-grade gold intercepts confirmed the high grades of the Discovery Zone. Drilling extended some mineralized veins in the zone along strike and to a vertical depth of 250 m.	Balmoral press release dated January 2, 2012
2019	Balmoral Resources Ltd	13 DDH (4588.7 m): company's first drill testing of the Area 52 gold target.	The discovery of a new, near- surface, high-grade gold zone located proximal to the SLDZ. Best result: Drill hole A52-19-03 5.00 g/t Au over 9.65 m, including 14.03 g/t Au over 3.29 m	Balmoral press release dated September 16, 2019
2020	Balmoral Resources Ltd	8 DDH (3535.0 m): new, very high-grade gold discovery on the Fenelon Property: the Reaper Zone	Several high-grade gold intercepts confirmed the new the Reaper Zone. Best result: 307.89 g/t Au over 2.97 m, including 858.00 g/t Au over 1.06 m	Balmoral press release dated April 30, 2020

6.2 Grasset Claim Block

The information for the Grasset claim block was obtained from Richard and Turcotte (2016). A summary of the relevant historical work is presented in Table 6.2.

Year	Owner	Description of work / Highlights / Significant results	Ref.
1938-1939	Ministère des Mines	Filed mapping and sampling, discovery of a gold-copper showing: 1 grab sample of 5.55 g/t Au.	RG 012
1956	Subercase Syndicate	A 0.9-m pit was blasted to expose the gold- copper showing. 4 DDH (290.8 m) to test lateral and depth extensions. Best result: S-2: 0.37% Cu over 0.5 m.	GM 05226
1957-1958	Orchan Mines Ltd	An aeromagnetic survey and a ground geophysical survey using a McPahr R.E.M. and a radar magnetometer carried out by Federal Department of Mines and Technical Surveys, outlining 2 zones of magnetic highs and 2 zones of electrical conductivity.	GM 07808
1959	-	A dual-frequency EM survey and Mag traverses carried out by Federal Department of Mines and Technical Surveys, outlining 5 conductors.	GM 09009-A

 Table 6.2 – Historical work on the Grasset claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959	Andersen Prospecting Trust; United New Fortune Mines Ltd; A. D Hellens; St-Mary's Explorations Ltd; Grasset Lake Mines Ltd; Nordex Development Company Ltd; Nipiron Mines Ltd; Consolidated Mining and Smelting Company of Canada Ltd; Head of Lakes Iron Ltd; Westfield Minerals Ltd; Daniel Mining Company Ltd; Norsyncomague Mining Ltd; St-Mary's Explorations Ltd; Newlund Mines Limited; Noranda Exploration Company Ltd	Interest in the gold-copper showing and new geophysical data (Federal Department of Mines and Technical Surveys) resulted in the staking of many mining titles by several companies. Several airborne and ground geophysical surveys (Mag and EM) were carried out on many parts of the current Grasset claim block by different companies.	GM07722; GM 08620-A; GM 09352; GM 11467; GM 10351; GM 09266; GM 09183-A; GM 09183-B; GM 09078; GM 09078; GM 09007; GM 08926; GM 08823; GM 08881; GM 08878; GM 08818
1959	Grasset Lake Mines Ltd	Drilling: 5 DDH (GL-1 to GL-5, 894 m) to test geophysical anomalies. Mineralized zones of massive to disseminated pyrite, some pyrrhotite and specks of chalcopyrite were observed in tuff.	GM 08917
1959	Orchan Mines	Drilling: 6 DDH (K-1 to K-6, 508.3 m) to test geophysical anomalies. No assay results are available.	GM 09009-B
1959	Newlund Mines Ltd	Drilling: 2 DDH (NE-1 to NE-2, 321.9 m): 2 sulphide-rich horizons (4.5m thick) carrying 50% pyrrhotite and pyrite with specks of chalcopyrite, and 2 samples sent to Swastika Laboratories Ltd, returning up to 2 g/t Ag, 0.11% Cu and 0.05% Zn, no nickel or gold.	GM 09119
1960	Nipiron Mines Ltd	Drilling: 4 DDH (NP-1 to NP-4, 486.5 m) to test geophysical anomalies. Drill hole NP-4 2.06 g/t Au over 1.1 m.	GM 10231-A; GM 10231-B
1959	Noranda Exploration Company Ltd	Drilling: 4 DDH (G-2 to G-4) totalling 549.3 m. No mineralization was reported.	GM 10165-E
1960	Hudson Bay Exploration and Development Ltd (optioned by Northwoods Exploration Ltd)	Drilling: 5 DDH (Pete-1 to Pete-5) totalling 492.5 m near Peter Lake. Many shear zones accompanied by quartz veining were reported. Disseminated to massive pyrite and pyrrhotite with rare specks of chalcopyrite were observed in volcanic rocks. No assay results reported or available.	GM 50912; GM 10848
1964	John I. Cummings	A ground EM and Mag survey was performed. The results indicated that the mineralized zone could have an apparent length of approximately 120 m and a maximum width of 6 m.	GM 15869
1974	Musto Explorations Ltd	Ground EM and Mag surveys performed. EM survey outlined three conductors coincident with Mag anomalies.	GM 30181

Year	Owner	Description of work / Highlights / Significant results	Ref.
		4 DDH (MU-1 to MU-4) totalling 591.1 m to test previously identified geophysical anomalies. No significant assay results were reported.	GM 30182
1974/ 1975	Selco Mining Corporation Ltd	A ground Mag and EM survey was performed over 6 grids. Results defined conductors on 3 grids. Drilling: 2 DDH (G-20-1 and G-18-1) totalling 218.9 m, both passing through a sequence of felsic and intermediate tuff. A mineralized zone was encountered, corresponding to disseminated to massive pyrite and pyrrhotite with minor flecks of chalcopyrite. This zone assayed anomalous values for zinc, copper and silver over 6.1 m, but no gold values. 2 DDH (G-17-1 and G-11- 1) totalling 214.3 m. A horizon of massive sulphide was encountered in G-17-1, containing pyrrhotite and pyrite with traces of chalcopyrite. No significant assay results. G- 11-1 cut a sequence of andesite and sericite schist. No mineralized zones were identified.	GM 30031, GM 30889; GM 30888, GM 30884; GM 31192
1977 / 1978	Amoco Canada Petroleum Company Ltd	A ground Mag and EM survey was performed, follow-up on an anomaly identified by an airborne survey carried out in 1977; 4 DDH totalling 552 m. Minor horizons with up to 40% pyrite pyrrhotite and minor chalcopyrite were observed in MQ-78-13-1 and MQ-78-13-2. These horizons returned anomalous values for zinc, copper and silver, no gold. MQ-78-32-1 intersected a horizon of massive sulphide (80% sulphide (pyrite- pyrrhotite) with anomalous values for zinc, copper and silver, no gold.	GM 33676, GM 36103
March 1981	Teck Exploration Ltd	1 DDH (SU-4-1) totalling 91.4m. No significant mineralized zone was observed. One graphitic argillite horizon was reported.	GM 37923; GM 37924; GM 37925; GM 37541; GM 40603; GM 40493
1984	Detour Syndicate Ltd	Re-sampling of cores from Nipiron Mines Ltd, Grasset Lakes Mines and on the Discovery gold-copper showing. NP-4 (2.06g/t Au over 1.1m) was confirmed. Re-sampling results returned 2.57g/t Au over 0.9 m. Presence of a major zone of semi-massive to massive pyrite-pyrrhotite mineralization was noted in altered tuffaceous rocks. 11 grab samples of heavy sulphide mineralization were analyzed, but the gold values only reached 51 ppm Au. Unable to duplicate the previously reported gold values of up to 5.5 g/t Au.	GM 42312

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Minerex Resources Ltd	Ground Mag and HEM surveys were performed. The surveys outlined 6 conductors, of which, 5 correlated with Mag anomalies.	GM 43327
	Aiguebelles Resources Inc.	Ground Mag and HEM surveys were performed. The surveys identified many Mag and EM anomalies.	GM 44450; GM 44450
1986	Ram Petroleums Ltd	A compilation of past exploration work was carried out. The most significant conclusion derived from the study was that the property contained a major interpreted "structural break" based on geophysical results. The structure was considered to possibly be a major structure associated with gold-bearing systems. A combined heliborne Mag and EM survey was performed. EM and Mag anomalies were identified.	GM 44449
1986		An airborne total field Mag and a MK VI Input surveys were performed. Based on those results, one grid was cut and Mag and EM (MaxMin II HLEM) surveys were carried out to locate the EM conductors identified.	GM 44883; GM 44882
	Nodle Peak Resources Ltd	A diamond drilling program was designed on the basis of the above surveys to test linear EM conductors. A total of 1,629.2 m was drilled in 9 drill holes (N-1 to N-8, and N8A). Drilling intersected two structural zones characterized by graphitic fault gouge with graphitic microcrystalline quartz, sericite and chlorite schists, shearing, brecciation. Gold values associated with these structures were low (up to 420 ppb).	GM 44525
1988		The results of 4 reverse circulation drill holes indicated that Max-Min II HLEM anomalies from previous surveys were primarily due to conductive overburden effects and not to bedrock sources. Only 4 abraded gold grains were observed in the till samples.	GM 48294
	Morrison Minerals Ltd	A combined heliborne Mag and EM survey was performed. EM and Mag anomalies were outlined by this survey, and some conductors were interpreted to be of bedrock origin.	GM 46741
1989	Noranda Explorations	A ground Mag and HEM survey was performed on two grids. Presence of ground geophysical anomalies was noted.	GM 48781
	Globex Mining Enterprises	Ground Mag and IP-resistivity surveys were performed.	GM 53934; GM 53933; GM 53935
1995	Inc.	8 DDH (S-96-1 to S-96-8) totalling 1,444.1m to test the defined IP targets. The drilling program indicated the property hosts a series of fault systems and that a significant	GM 53934

Year	Owner	Description of work / Highlights / Significant results	Ref.
		regional-scale iron carbonate alteration was present. No significant gold-bearing mineralization was intersected. The best result was 76 ppb Au.	
		Ground total field Mag, EM (HLEM) and IP- resistivity surveys were performed.	GM 54040; GM 54041
1996	Cyprus Canada Inc. and Fairstar Explorations Inc.	5 DDH (FB96-1, FB96-2, SC96-1, DT96-1, and DT96-2) totalling 1,082m to test geophysical targets. Moderate to strong shearing was encountered in four of the five drill holes. The highest gold value obtained was 55 ppb Au. DT96-2 intersected 209 g/t Ag over 0.3m within a quartz vein. Anomalous copper and zinc values were reported in drill hole FB96-2, DT96-1 and DT96-2.	GM 54040
1998		Magnetic and EM surveys (HLEM) were performed.	GM 58336; GM 55992; GM 56062
2010		Staking of what is now the Grasset claim block.	
		Heliborne EM survey was performed. Several strong Mag and conductive trends identified.	GM 66705; GM 66706
2011		5 DDH (GR-11-01 to GR-11-05). The 2011 drill program intersected an undiscovered gold-bearing zone, and confirmed the location of a major shear zone along geological domain boundaries. Drill hole GR- 11-01 returned 33 m grading 1.66g/t Au, including 4.04 m grading 6.15g/t Au and 5.00 m grading 4.18g/t Au. The gold mineralization is located along the SLDZ.	GM 66784
2012	Balmoral Resources Ltd	Grasset Discovery: 7 DDH totalling 1,899 m: 4 drill holes (GR-12- 06 to GR-12-09) were drilled along the SLDZ and 3 (GR-12-13 to GR-12-15) tested a coincident EM-Mag anomaly in the western most part of the claim block. GR-12-09 (discovery drill hole) intersected 9.17 m returning 0.51% Ni, 0.09% Cu and 0.50 g/t Pt+Pd+Au.	GM 67198
		Soil sampling program: 225 samples collected.	GM 67158
2013		Ground-based IP-resistivity and Mag surveys were performed. The results of the survey show a large chargeability high at depth over much of the survey grid with an accompanying magnetic high trending roughly east-west. This is the geophysical signature that would be expected from a Ni- Cu-PGE magmatic sulphide deposit.	

Year	Owner	Description of work / Highlights / Significant results	Ref.
		A small (3.75 line-km) ground-based HLEM and Mag survey was performed. The survey detected a weak magnetic field increase over the Grasset Discovery, but did not generate any meaningful EM data.	
		Soil sampling program: 349 samples collected.	GM 67765
		11 DDH totalling 3,633.6m, (9 drilled into Grasset Discovery) (GR-14-16 to GR-14-20, and GR-14-22 to GR-14-25). At least 3 Ni- Cu-PGE mineralized horizons in the Ultramafic Complex were delineated.	GM 69006
		51 DDH totalling 16,672.6m on Grasset. Several ultramafic intrusions highly anomalous in Ni-Cu-PGE were intersected. Highlight included drill hole GR-14-57 returning 1.85% Ni, 0.21% Cu, 0.40g/t Pt and 0.97g/t Pd over 57.88 m.	GM 69006
2014		An airborne survey was performed over portions of the property that had not previously been surveyed and a Nickel Test grid was flown, over the area of the Grasset Discovery. Magnetic trends on the Grasset North and Grasset Gap grids display parallel curved linear total field magnetic highs that follow a pattern consistent with the regional- scale folding of mafic members of the Manthet Group. The Nickel Test grid comprises a more detailed survey of the Grasset Ni-Cu-PGE deposit.	Venter et al., 2014
		A ground-based IP-resistivity survey was performed. The survey consisted of a small addition to the 2013 grid and a separate survey on the eastern part of the property near Lac Grasset, covering an area identified by the 2011 airborne survey as hosting both Mag and EM anomalies. Several chargeability anomalies of potential interest were identified by this survey. A well-defined east-west-trending chargeability high is present along the southern margin of the grid, and has been interpreted by Balmoral to be a potential sulphide-rich horizon.	GM 69007
		Surface and borehole pulse EM surveys were carried out on 27 drill holes on the Grasset Discovery. The downhole EM surveys were successful in locating known massive and net-textured sulphides, showing that the method is appropriate for detection of mineralization at the Grasset Ni-Cu-PGE deposit. Numerous additional off-hole anomalies were also identified, suggesting that additional mineralized zones may be	GM 69008; GM 69009

Year	Owner	Description of work / Highlights / Significant results	Ref.
		present.	
		14 DDH totalling 6,900.7m (GR-15-69 to GR- 15-80A). Drilling along strike and down-dip on H3 horizon, and along H1 horizon of the Ni- Cu-PGE discovery, continued to intersect broad zones of disseminated nickel-copper- PGE sulphide mineralization, extending the scale of the mineralized system.	GM 69257
		3 DDH totalling 623.8m (GR-15-81M to GR- 15-83M) for metallurgical testing on the H3 horizon. GR-15-81M intercepted 1.10% Ni, 0.13% Cu, 0.24 g/t Pt, 0.61 g/t Pd and 0.17 g/t Au over 97.11 m. GR-15-82M and GR-15-83M returned similar mineralized intervals.	
		Infill and expansion drilling of 25 DDH totalling 9,902.3 m.	
2015		An IP survey covering a series of very strongly folded and highly magnetic rocks located approximately 12 to 17km east of the Grasset deposit was performed. A large number of very strong IP responses have been detected, associated both with the conductive zones and elsewhere along this trend.	
		12 DDH totalling 3,235.6m (GRX-15-09 to GRX-15-20): 6 drill holes on the Grasset Gap VMS target area and 3 on the Grasset Hinge area. The Grasset Gap area is marked by a 7.0 km trend of stratiform airborne EM conductors located 14 to 21 km east of the Grasset deposit. Drilling intersected broad zones of massive to semi-massive sulphide mineralization, locally associated with anomalous levels of copper, lead, zinc and silver. Geologically, the Grasset Gap Trend exhibits similarities to the West Camp in the nearby Matagami VMS district. The Grasset Hinge area is a strongly folded sequence dominated by mafic intrusive and extrusive rocks located northeast of the H3 horizon. All samples (163) collected from two of the three drill holes in this area, GRX-15-19 and GRX- 15-20, returned gold values above detection limits.	
2016		Publication of NI 43-101 compliant technical report to present the updated MRE.	Richard and Turcotte, 2016

Year	Owner	Description of work / Highlights / Significant results	Ref.
2017		4 DDH totalling 1,030.8m (GRX-17-25 to GRX-17-28). Drilling took place mainly proximal to the Lower Detour Deformation Zone and on identified conductive geophysical anomalies. No significant alteration or mineralization were intercepted.	GM 70311
2018		11 DDH totalling 3,693 m. This campaign expanded the deposit 230 m vertically and 100 m to the northwest with several drill holes containing broad zones of mineralization. Both the H1 and H3 zones were extended. The H1 zone was intersected at 775 m depth, which is the deepest intersect to date. Drill hole GRA-18-90D returned 0.53% Ni over 97.59 m including 1.08% Ni over 23.03 m and drill hole GRA-18-107 returned 0.77% Ni over 92.57 m including 1.11% Ni over 53.50 m.	GM 71335
2021	Wallbridge Mining Co. Ltd	2021: InnovExplo completes MRE reporting indicated mineral resource of 4.753 Mt @ 1.64 NiEq% for 172.3 Mlbs of NiEq and inferred mineral resource of 173,000 t @ 1.10 NiEq% for 4.19 Mlbs of NiEq. The mineral resource estimate was completed using a 0.80% NiEq cut-off grade (based on nickel price of US\$6.62/lb, a copper price of US\$2.80/lb, cobalt price of US\$14.87/lb, platinum price of US\$901.42/oz, and palladium price of US\$2,064.19/oz.). Grade interpolation done in GEMS v.6.8 (Ni, Cu, Co, Pt, Pd, Au, and Ag) was obtained by ID2 using hard boundaries. <i>"The mineral resource estimate referred above is the prior estimate and should not be relied upon. It is included in this section for illustrative purposes only. The Issuer is not treating this prior estimate as current mineral resources; they are superseded by the mineral resource estimate presented in Item 14 (Section 14.2)"</i>	Savard et al., 2021

6.3 Martiniere Claim Block

The information in this section is mainly based on the 2017 NI 43-101 report by Equity Exploration Consultants Ltd (Mumford and Voordouw, 2017).

The current amalgamated Martiniere claim block was first established by Cyprus Canada Inc. in 1994. Pre-1994 exploration work in the area completely to partially overlapped the current claim block boundaries. In 1998, Cyprus Canada optioned the claim block to International Taurus Resources Inc. and subsequently was purchased by them. A merger in 2004 changed the ownership to American Bonanza. In November 2010, Balmoral purchased the rights to acquire a 100% interest in the Martiniere claim block from American Bonanza, and the purchase was completed in 2013.

Table 6.3 summarizes the most significant historical work on the Martiniere claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Kateri Mining Co.	Airborne EM and 2 DDH totalling 155 m. One drill hole intersected a diorite sill with disseminated pyrite and quartz stringers that returned trace Au.	GM 08217-A; RP458
1959	Monpre Mining Co.	Ground EM and 3 DDH. The drill holes were collared 6.5 km northeast of the current Martiniere claim block boundary and intersected sheared mafic volcanic and graphitic schist with 2-3% sulphide, with no Au returned in the assays	GM 08704, GM 09755; GM 10898
	Paudash Lake Uranium Mines Ltd	Airborne EM, ground EM, Mag, gravity.	GM 09563; GM 13018
1975/1977	Noranda Exploration Co. Ltd	Ground EM, Mag. Geological mapping. 1 DDH (77-1) drilled in what is currently the NW corner of the Martiniere claim block. This drill hole consisted entirely of quartz gabbro with a few specks of chalcopyrite near the end of the drill hole	GM 31645, GM 32173; GM 33366; GM 33119
1981/ 1984	Teck Exploration Ltd	Ground EM, Mag. Several DDH were drilled, one of which (GB-60-1) is located within the current boundaries of the Martiniere claim block and another (GB-61-1) which is collared just south of what is now the Bug Lake Trend. GB-60-1 tested an EM conductor and intercepted altered, carbonatized, mafic volcanic intercalated with pyritic graphitic argillite and minor tuffaceous horizons. GB-61-1 cut through mafic volcanic and argillite but failed to intersect gold mineralization.	GM 37880, GM 37882, GM 39439, GM 39438; GM 40023, GM 41127; GM 41438
1982/ 1987	Queenston Mines Ltd	Mapping, ground EM, Mag. Identification of a series of NW/SE-trending EM anomalies on the Lac du Doigt Deformation Zone. 26 DDH drilled to the south of the Martiniere claim block, with the exception of DL-86-20. The latter was collared near the center of the Martiniere claim block and intersected mafic volcanic and graphitic argillite with local sulphide enrichment (pyrite, pyrrhotite, chalcopyrite, arsenopyrite) and up to 0.3 g/t Au over 1.0 m. Airborne gravity, Mag, VLF.	GM 39928, GM 42172; GM 44767; GM 46476
1984		Mapping, soils	GM 41575
1984/ 1985		Ground EM, Mag	GM 41440, GM 42382
1985/ 1988		Ground IP, Mag	GM 42421, GM 46279
1985	Noranda Exploration Co. Ltd	5 DDH (LAM-85-01 to -05) on the Bug Lake prospect (NW part of the Martiniere claim block). Several irregular, NW-trending, veins and shear zones hosted in fine-grained gabbroic rocks were identified. Best result returned 2.1 g/t Au over 1.1 m	GM 42615
1988		5 DDH (LAM-88-06 to -10) on the Bug Lake prospect (NW part of the Martiniere claim block). Best result returned 3.6 g/t Au over 1.5 m.	GM 46833
1987		Ground gravity, Mag	GM 46076

Table 6.3 – Historical work on the Martiniere claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1996/ 1998		Ground IP, Mag. Identification of a series of NE to EW trending structures on and around the Martiniere claim block	GM 54042, GM 54647, GM 55489, GM 55538, GM 55622
1997		4 DDH (MT97-01 to -04) in the northern half of what is now the Martiniere claim block. No significant mineralization was intersected	GM 55537
1997	Cyprus Canada Inc.	8 DDH (MD-97-01 to -08) in the southern half of what is now the Martiniere claim block. MD-97-06 hit 12.44 g/t Au over 2.5 m and 1.07 g/t Au over 12.0 m, the most significant discovery of gold on the claim block that the time. This mineralization was hosted in chloritic shear zones with 10-30% quartz + carbonate + pyrite veining and strong silica + carbonate \pm sericite \pm fuchsite alteration. MD-97-02 intersected a pyrite- dominant massive to semi-massive sulphide body with negligible gold and base metal contents.	GM 55490, GM 54648, GM 54818, GM 54701
1997		Soil sampling, mapping	
1999	International Taurus Resources	9 DDH (MD-99-09 to -17) followed-up on the gold discovery made by Cyprus in drill hole MD-97-06. This program intersected quartz + carbonate veins in the southern part of the claim block, with 5.91 g/t Au over 6.45 m in MD-99-11 and 14.55 g/t Au over 4.2 m in MD-99-13	GM 56816
2000		20 DDH (MD-00-18 to -29): MD-00-19 intersected 11.12 g/t Au over 1.5 m and MD-00-28 intersected 12.80 g/t Au over 1.5 m and 3.45 g/t Au over 1.0 m	GM 58073
2006	American Bonanza - Gold Corp.	9 DDH (MD-06-01 to -09) to test the high-grade gold intercepts returned by Cyprus and International Taurus. This program extended the MD-00-28 discovery on what became known as the Martiniere West Trend ("MW"), and confirmed the gold intercepts returned from MD-97-06, MD-99-13 and MD-99-14 in the Martiniere Central area	GM 62862
2007		13 DDH (MD-07-10 to -22) to test for extensions to the mineralized zones and to test IP and Mag anomalies. Almost all drill holes intercepted gold mineralization; best results were returned by MD-07-12 with 7.15 g/t Au over 3.0 m and MD-07-14 with 5.09 g/t over 5.0 m	GM 64281
2012	Balmoral Resources Ltd	106 DDH totaling 20,728 m. Drilling expanded the MW trend and discovered the larger Bug Lake ("BL") Trend. The highlight of this program was the discovery of very high-grade mineralization within the BL Footwall Zone ("BLFZ") with an intercept of 1,25 g/t Au over 0.55 m. The Upper and Lower BL zones were also discovered and returned 5.7 g/t over 42.5 m, 2.9 g/t over 67.0 m and 1.7 g/t over 51.7 m.	GM 67653

Year	Owner	Description of work / Highlights / Significant results	Ref.
2013		Diamond drilling was performed on the MW and BL trends, in addition to 33 wildcat drill holes spread across the claim block. Results extended mineralization on the BL Trend along a minimum 700 m strike length and depth of 320 m below the surface. Drilling on the MW Trend returned an intercept of 7.99 g/t Au over 28.45 m but otherwise failed to extend high-grade mineralization. Results from these 33 drill holes included 2.25 g/t Au over 24.14 m in MDX-13-13, 12.90 g/t Au over 2.45 m in MDX-13-17 and 2.28 g/t Au over 6.21 m in MDX-13-26.	GM 69210
2014		41 DDH on the BL Trend and 6 wildcat drill holes. Highlights of this program include the best assay result from the BLFZ, grading 8330 g/t over 0.57 m, in addition to the highest grade returned from the lower steep of the BLFZ (7.71 g/t over 15.56 m), suggesting mineralization stretches at depth. Other significant results include 2.33 g/t Au over 42.01 m from the Southern part of the BL Trend and discovery of the mineralized and E-W trending North Swamp–Lac du Doigt fault zones. Wildcat drilling returned several intersections of pyrite-rich massive sulphide with low base metal values.	GM 69087
		A 17.8 km IP survey yielded mixed results, with work on the "VMS1" grid essentially reviving a target that returned negative results the year before, work on the "VMS2" grid confirming the stacked nature and IP response of sulphide lenses and, survey on the conceptual "AU" grid returning essentially no chargeability response whatsoever.	GM 69087
2015		32 infill DDH, 200 m along the BL trend. This drilling returned a number of mineralized intercepts, including 18.13 g/t Au over 44.45 m in MDE-15-166, 7.07 g/t over 34.44 m in MDE-15-170 and 3.55 g/t over 64.55 m in MDE-15-173. 7 DDH were also drilled with the aim of expanding mineralization on the BL trend. One such hole drilled at the northern end (MDE-15-200) encountered the anomalously broad and calcite-rich Hanging Wall Zone, returning 0.69 g/t Au over 96.1 m with sub-intervals of 27.3 g/t over 0.81 m, 9.03 g/t over 1.03 m and 12.4 g/t over 0.60 m. Two other holes drilled just south of the infill area (MDE-15-201, 202) returned 2.33 g/t over 11.44 m and 18.85 g/t over 1.28 m.	GM 69310
		An IP survey delineated several chargeability and resistivity anomalies north of the Lac du Doigt area.	GM 69696
2016		37 DDH (11,879.66 m): the program confirmed continuity and grade within the 240-m-long segment of the Bug South Sub-trend; discovered a high-grade Zn- Pb-Ag zone east of the Bug South Subtrend; and discovered the new Southeast Zone past the southern end of the Bug Southeast Subtrend. Best results were obtained by MDE-16-234A with 64.20 g/t Au over 1.08 m and MDE-16-247 with 13.54 g/t Au over 5.34m.	GM 70684

Year	Owner	Description of work / Highlights / Significant results	Ref.
2017		78 DDH (27,224.38 m). Discoveries of the BL NW zone which returned gold values (Best result: MDE-17-297A returned 1.02 g/t Au over 67.40m) and extended the BL porphyry to the north. The Horsefly zone was expanded further east. The Lower Detour Deformation Trend was expanded to the west with MDX-16-69 returning 0.73 g/t Au over 26.33 m. The BL north porphyry was expanded 130 m further down plunge. The BL south mineralized zone was expanded to 460 m vertical depth.	GM 70683
		A geological mapping and soil sampling program was performed north of the Lac du Doigt area.	GM 71230
2018		23 DDH totalling 7,389.60 m. Holes drilled within the historical LAM area intersected broad veining, alteration corridors and anomalous Au concentrations but assay results did not return anything higher than 1.98 g/t Au over 1.53 m. Drill holes MDE-18-320 and MDE-18-321 confirmed the extension of the Horsefly Zone at depth, with anomalous gold mineralization being intercepted in both drill holes. At BL South, MDE-18-324 and MDE-18-325 intersected broad gold mineralization associated with cruciform-carbonate veining in the footwall portion of the South Zone at vertical depths of approximately 375 and 410 m.	GM 71308
2018		Publication of NI 43-101compliant technical report to present the maiden MRE	Voordouw and Jutras, 2018

6.4 Doigt Claim Block

The significant historical exploration work on the Doigt claim block consists of geophysical surveys, soil surveys and drilling. A summary of the work is presented in Table 6.4.

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959-1960	Monpre Mining Co Ltd	6 DDH (2086 ft, 625 m) tested EM anomalies in the east central part of La Martinière Township and the southeast corner of Martigny Township. Best DDH intersections: 0.02 to 0.08% Cu, 0.00 to 0.05% Zn (DDH1); and 0.04 to 0.14 oz/t Ag/t and 0.12 to 0.15% oz Cu (DDH4).	GM 10850
1975	Selco Mining Corp.	Ground EM in the Detour-Turgeon area. There were no	GM 31185,

Table 6.4 – Historical work on the Doigt claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Ltd	bedrock conductors detected.	GM31186
2011		A heliborne VTEM Plus survey was flown over the East Doigt Property. The survey total area was 22.11 km ² and the total survey line coverage was 131.6-line km.	GM 66714
2012	Balmoral Resources Ltd	Mobile metal ion (MMI) soil sampling program conducted on two E-W trending lines in late 2012 by Equity Exploration Consultants Ltd. ("Equity") on behalf of Balmoral (Perk and Swanton, 2013c). Results of the survey indicate that there is a moderate gold-in-soil anomaly at the east end of both sampling lines.	GM 67654
2013		Equity conducted a soil sampling program, on behalf of Balmoral that covered parts of the Detour East, Doigt, Martiniere and Harri properties. A total of 36 poly- metallic soil anomalies were identified, two 2 on Doigt.	GM 67745
2013		IP/Mag survey (20,175-line km) delineated 5 zones of weak to strong chargeability, the survey showed the presence of an elongated NE-trending coincident Mag, and resistivity high located centrally on the Doigt Property.	GM 68182
2013		2 DDH (523 m) completed in the northern part of the Doigt Property. The 2013 drilling program successfully identified the first mineralisation found on the property to date. Best DDH intersections: 0.81 g/t Au over 0.47 m (DOT-13-02); 0.546 g/t Au over 0.92 m in DOT- 13-01, and 10,150 ppm Zn, 2 g/t Ag and 689 ppm Cu over 0.38 m (DOT-13-02).	GM 68187

6.5 Harri Claim Block

The significant historical exploration work on the Harri claim block consists of geophysical surveys, soil surveys and drilling. A summary is presented in Table 6.5.

 Table 6.5 – Historical work on the Harri claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959-1963	Monpre Mining Co Ltd, Paudash Mines Ltd (Claims Martin, Monpre Mining Co Itd), Paudash Lake Uranium Mines Ltd	Ground Mag, EM surveys and airborne Mag and gravimetry surveys yielded various geophysical anomalies.	GM 08704, GM 09563, GM 11087- B, GM 13018, GM 09754, GM 08217-B
1975	Selco Mining Corp. Ltd	Ground EM and Mag surveys and diamond drilling. Various geophysical anomalies. No significant drilling results.	GM 31185, GM 31186, GM 31244, GM 31246, GM 31586

Year	Owner	Description of work / Highlights / Significant results	Ref.
1976-1977	Hudson Bay Exploration & Development Co. Ltd and Selco Mining Corp Ltd	EM surveying (various anomalies) and 12 DDH (no significant results).	GM 31958, GM 31959, GM 31960, GM 32274, GM 32806
1981-1984	Teck Exploration Ltd	Ground EM and Mag surveys (various anomalies) and 32 DDH (no significant results).	GM 37799, GM 37877, GM 37887, GM 37931, GM 37932, GM 37935, GM 37936, GM 39413, GM 39424, GM 39425, GM 39426, GM 39426, GM 39437, GM 39438, GM 39441, GM 40020, GM 40021, GM 41127, GM 41438
1986-1988	Exploration Min Golden triangle Inc., Xanaro Technologies Inc., Claims Mattew and Claims Ottereyes	Ground Mag, EM, HEM, IP and airborne EM and Mag surveys yielding various geophysical anomalies. RC drilling yielded significantly anomalous trace element assays (Au, Ag, Cu, Zn, As). Diamond drilling failed to produce significant results.	GM 43386, GM 43451, GM 44045, GM 44468, GM 44469, GM 45309, GM 45979, GM 45981, GM 46137, GM 46137, GM 46175, GM 46855, GM 47615
1991	Minéraux Morrison Ltée, Total Energold Corp.	Ground Mag and EM surveys; various geophysical anomalies.	GM 50524, GM 50567, GM 50673
1993-1996	Cyprus Canada Inc.	Geophysical surveying (ground Mag, EM, HEM and IP/resistivity) and diamond drilling. Various geophysical anomalies. Best DDH intersections: Drill hole GC-93-1 (288 m) 580 ppb Au in graphitic sediments (GM 52352), drill hole GC95-06 70.10-77.45m 10 to 100 ppb Au and drill hole GC95-07, 155.2-158.5m, 60-160 ppb Au (GM 53674), drill hole GC-93-1, 860 ppb Au in sediments (GM 53923)	GM 52352, GM 53653, GM 53674, GM 53923, GM 53992
1996	Billiton Metals Canada Inc.	Line cutting (7.3 km), IP (6.2 km), 1 DDH and Pulse EM. No significant values.	GM 54064
1997-1998	Claims Frigon, Explorations Minières du Nord Ltée, Fairstar Explorations Inc.	Geophysical surveying (Mag, IP, IP/resistivity) and 6 DDH (1178 m). Various geophysical anomalies. Minor pyrite and pyrrhotite explained the IP anomalies. The sulphides were barren of gold.	GM 54906, GM 54907, GM 55422, GM 55617

Year	Owner	Description of work / Highlights / Significant results	Ref.
2006	American Bonanza Gold Corporation	54 DDH (18,113.9 m).	GM 62991
2008	Claims Tremblay, Exploration MetauxDic	Airborne Mag and EM over two blocks (B and C).	GM 64010
2011		A heliborne VTEM Plus survey was flown over the Harricana Property. Total area coverage for all properties covered by the survey is 60.55 km ² . Total survey line coverage is 684 line-km.	GM 66710
2011		A heliborne EM survey (1216.2 line-km), including 227 km over Harri).	GM 67280
2013		Soil sampling program (1,854 soil samples). A total of 36 poly-metallic soil anomalies were identified in this way, 26 of which occur on Detour East, 5 on Harri, 3 on Martiniere and 2 on Doigt.	GM 67745
2013	Balmoral Resources Ltd	IP and Mag survey over three roughly N-S lines with an aggregate length of 18.1 km. Several other apparently planar IP anomalies are also present. While the data collected from this survey is not sufficient to demonstrate the existence of any mineralized systems on the property, it does outline several features of interest which may be worthy of follow-up work.	GM 67644
2014		A heliborne VTEM geophysical survey has been completed over the Lac Fleuri, Nantel, Grasset Gap, Grasset North, Jeremie-Fenelon and Nickel Test survey areas. Based on the geophysical results obtained, a number of TEM anomalous zones are identified across the properties.	GM 68603
2015		Geochemical MMI survey (128 samples) which focussed on Detour East, Harri and Jérémie properties. Anomaly 2014-H-02 is observed on the western line of the Harri Property. It shows 4 to 6 samples anomalous in Cu, Pd, Ag, and to some extent Au over a distance of 250 m.	GM 68959
2018		2 DDH (610.6 m) on the Harri Property. These drill holes tested for gold and base metal mineralization, testing geologic and geophysical targets in proximity to the SLDZ. Drill hole HAR-18-02 intersected 1.13 m of 1.5% Zn.	GM 70895

6.6 Jeremie Claim Block

The relevant historical exploration work on the Jeremie claim block consists of geophysical surveys, soil surveys and drilling. A summary is presented in Table 6.6.

Year	Owner	Description of work / Highlights / Significant results	Ref.
1976	Canadian Nickel Co. Ltd	EM and Mag	GM 31955
1976	Hudson Bay Exploration &	EM survey: 3 strong conductors, all of which strike off the claim group	GM 32041, GM 32042, GM 32046, GM 32047
1977		7 DDH (GM 32804) and 2 DDH (GM 32805).	GM 32804, GM 32805
1981 to 1983	Teck Exploration Ltd	EM, Mag and line cutting (3.4 km)	GM 37930, GM 39422, GM 40018
1983	Noranda Exploration Ltd	Mag and EM completed over Jeremie 1-82 (GM 40163). Line cutting (18 km) and survey by MaxMin II HLEM and Mag by Services Exploration. Two major conductive trends and several short weak conductors were delineated. (GM 41074).	GM 40163, GM 41074
1987	Claims Bertrand	Mag and VLF-EM (total of 423.25 km) completed by the airborne division of H. Ferderber Geophysics Ltd over Jeremie Property. The Mag survey was successful in delineating a series of highs striking east and southeast across the property.	GM 44666
	1995 Cyprus Canada Inc. 1995-1996	Mag (46.2 km) and IP (26 km) completed over Jeremie Property. Defined several subparallel, E-W oriented anomalies.	GM 53651
1995		Mag (57.8 km) and VLF-EM (30.8 km) surveys followed by HLEM and IP surveys in the Jeremie and Caumont townships. A few moderate to strong VLF-EM and HEM conductors located inside a moderate to locally strong magnetic relief.	GM 53652
		10 DDH (1 826 m) on the Jeremie Property, 4 of which intersected semi-massive to massive sulphide zones. No anomalous gold values were obtained. Canadian Golden Dragon Resources Ltd ("Dragon") entered into a JV agreement December 1, 1994 with Cyprus Canada Inc. ("Cyprus"). With Cyprus acting as contractor, Dragon is earning a 50% interest in the group of 245 claims known as "Jérémie A".	GM 53727
1995-1996		The geophysical surveys executed on the Fenelon Property have been successful in detecting many bedrock conductors and IP polarizable zones which are usually consistent with the magnetic trends of the property. More over, most of these anomalies could possibly be explained by massive, semi-massive, stringer or disseminated mineralization.	GM 53992
1997		4 DDH (1 125.26 m) on the Jeremie Property tested 6 geophysical targets. Best intercept: 55 ppb Au and 0.4 ppm Ag sampled over 1 m from 39 m to 40 m down the drill hole (JLR-97-5).	GM 55859
2002	Corporation TGW;	Several geophysical surveys.	GM 61228

Table 6.6 – Historical work on the Jeremie claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
	Globestar Mining Inc.		
2008	Abitex Resources Inc.	A high-resolution heliborne aeromagnetic and EM survey was carried out on two blocks, B (403 km) and C (469 km), by Geo Data Solutions GDS Inc.	GM 64010
2008		Mag (62 km) and HEM (54 km) surveys completed on southwest property (Jérémie-C Block), by Abitibi Geophysics. Some observed magnetic and conductive anomalies probably associated with sulphides and located in contact with different lithologies	GM 64011
2014	Balmoral Resources Ltd	A heliborne VTEM geophysical survey was flown over the Lac Fleuri, Nantel, Grasset Gap, Grasset North, Jeremie-Fenelon and Nickel Test survey areas. No formal Interpretation has been reported.	GM 68603
2014		Geochemical MMI survey (128 samples) focused on the Detour East, Harri and Jeremie properties. The survey succeeded in highlighting 8 distinct anomalous areas within the 3 investigated zones.	GM 68959
2015		57 DDH (22 326.95 m) at their Grasset, Fenelon and Jeremie properties. 5 of the DDH (1051.49 m) tested for gold and VMS mineralization on the Jeremie Property. JER-15-02: 0.34% Pb and 0.59% Zn over 1.74 m.	GM 69257

6.7 Detour East Claim Block

The significant historical exploration work on the Detour East claim block consists of more than 218 DDH for at least 50,000 m of drilling. Other historical work includes several airborne and ground-based geophysical surveys (EM, IP, Mag, gravity), and a lesser amount of surface work that includes mapping, prospecting and soil sampling. The bulk of this historical work focused on two regionally prominent areas of high EM conductivity, referred to herein as the Southern EM and Northern EM trends. These trends are located along boundaries between lithological domains. A summary of the relevant work is presented in Table 6.7.

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959	Kesagami Syndicate	3 DDH totalling 277 m along the Northern EM trend. Most of the drill holes hit short intervals of massive to semi-massive pyrite and/or pyrrhotite with, or without, minor to trace Cu and Zn (Groupe Kesagami-Fox showing).	GM 18183
1959- 61	Paudash Lake Uranium Mines Ltd	EM, Mag and gravity surveys; 11 DDH drilled on the Southern EM. Intersection of several sulphide-rich layers with mostly low base and precious metal values, with the exception of a 1.0 m intercept running 8.2% Zn and 1.45% Cu (Paudash showing).	GM 11354

Table 6.7 – Historical work on the Detour-East claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
1969	Pennaroya Canada Ltd	4 DDH totalling 664 m on the Southern EM targeting the Paudash showing. Intersection of 1.8 m of massive pyrite + chalcopyrite + marcasite in hole 887-23.	GM 24929
1971	Canadian Nickel Co. Ltd	1 DDH for 162 m on the Southern EM. Intersection of a weakly mineralized schist.	GM 27181
1975-76	Noranda Exploration Co. Ltd	Mapping; 2 DDH totalling 261 m on the Northern EM. DDH 76-2 returned three 1-2 m wide zones with trace Au and Cu + Zn and M-77-1 intersected several 0.5-1.0 m wide layers of semi-massive sulphide	GM 31660, GM 32507, GM 35999
1979-80		3 DDH totalling 294 m on the Southern EM. Best assay was 0.07 g/t Au over 60 cm from a chloritized intermediate volcanic in hole D-100-1 just west of the yet-to-be-discovered Lynx Zone. Drill hole D-105-2 intersected 18.8 m of iron formation.	GM 36209, GM 37078
1975	Selco Mining Corp. Ltd	Airborne and ground Mag surveys on the Northern EM followed by 1 DDH of 103 m that intersected a conductive unit of pyrite-bearing argillite.	GM 31965
1980		Geophysical survey and 3 DDH totalling 205 m on the Manthet Domain. Drilling intersected 9.2 m of massive to semi-massive sulphide in drill hole D-107-1.	GM 37361, GM 36766
1980		Regional air photo interpretation.	GM 38110
1981-82		Mapping, soil sampling and ground-based geophysics at the Southern EM followed up on 5 DDH totalling 891 m. Best results comprised 4.0 m of massive to semi-massive sulphide grading up to 18% Zn over 0.6 m in drill hole LB-81-1, which was collared near the Paudash showing.	GM 38109, GM 39941, GM 38976
1982	Ltd	1 DDH for 206 m on the Northern EM.	GM 40106
1988-93		Mapping; soil sampling; LF-EM survey and drilling of 8 DDH totalling 1,710 m on the Southern EM. Most of the drill holes tested geophysical anomalies (IP, EM, Mag) that after drilling appeared to have been mostly caused by graphitic sedimentary units. Follow-up drilling on the Paudash showing returned 0.24% Zn and 0.034% Cu over 4.57 m.	GM 47836, GM 50997, GM 52046
1981	Canadian Merrill Ltd	Ground-based EM survey following by 2 DDH totalling 248 m on the Southern EM. FOP-1 returned a 63 m interval with 5-20% pyrrhotite and/or pyrite and assays of up to 1.16% Zn over 1.6 m (the FOP-1 showing).	GM 37394
1982-86	Queenston Gold Mines Ltd	Geophysical surveys and 3 DDH totalling 337 m at the Manthet Domain. Highlights included 14 m of sulphide and graphitic argillite near the end of DL-85-1 and an assay of 0.135 g/t Au over 1.0 m in DDH 86-31.	GM 42183
1982	Anaconda Canada Exploration Ltd	Remote sensing surveys over the Manthet Domain.	GM 39226
1984	Ingamar Explorations	Compilation, geological mapping of the Matagami area.	GM 41656, GM 41657
1984-87	Ltd JVS	Compilation, geological mapping of the Southern EM.	GM 44282

Year	Owner	Description of work / Highlights / Significant results	Ref.
			GM 44283 GM 44284
1987	Mineta Resources Ltd	Airborne geophysical surveys with 114 km of ground- based Mag, 24 km of HLEM and 14.5 km of IP survey on the Southern EM.	GM 45304; GM 46083
1986	Exploration Essor Inc.	2 DDH totalling 314 m on the Southern EM trend. KA- 86-2 intersected significant stretches of pyrite bearing graphitic argillite and pyrite mineralization hosted within volcanic rocks but returned no significant assays.	GM 44258
1986	Rambo Exploration	9 DDH led to the discovery of the Rambo Zone. Assay results included 6.3 g/t Au over 2.7 m (TU-86-1), 6.51 g/t over 0.7 m (TU-86-2), 7.6 g/t over 0.6 m (TU- 86-6), 3.4 g/t over 1.2 m (TU-86-3), 2.45 g/t Au over 1.5 m (TU-86-8) and 4.35 g/t over 0.3 m (TU-86-9).	GM 45607
1987		7 DDH. The program was unsuccessful in extending the "Rambo Zone" along strike or at depth.	GM 45607
1988	Rambo Exploration Inc.; Coleraine Mining Resources Inc.	14 DDH on the Rambo Zone. No significant assay results.	GM 48553
1994	Coleraine Mining Resources Inc.	Drilling of a 402-m DDH on the Rambo Zone. No significant assay results.	GM 52701
1988	Exploration Lynx Canada Ltée	Ground Mag, EM and IP surveys followed by 8 DDH totalling 1,828 m led to the discovery of the Lynx Zone. MS-87-06 intersected a vein with visible gold that returned 3.44 g/t Au over 1.00 m, and MS-87-07 returned 11.96 g/t Au over 1.35 m.	GM 46540
1987-88	Exploration Minière Golden Triangle Inc.; Explorations Noramco Inc.	9 DDH totalling 2241 m on the Southern EM. DDH 001 intersected 19 m of pyrite-bearing graphitic argillite that assayed 0.1 g/t Au over 18.7 m with a sub-interval grading 2.2 g/t over 1.0 m. Drill holes H-1428- 017, -23, -25 and -31 intersected at least one 1.0-1.5 m interval grading 0.3-0.5 g/t Au (Rivière Théo–Rivière Turgeon showing).	GM 45982, GM 47623
	Glen Auden Resources Ltd; Golden Dragon Resources Ltd; Royex Gold Mining Corp.	7 DDH totalling 1,292 m west of the Rambo discovery, hitting mostly barren sedimentary rocks with maximum grades of 150 ppb Au over 0.45 m.	GM 47225
1988		5 DDH totalling 1,159 m on the Northern EM trend returned weakly anomalous base metal values that include: 0.25% Zn over 1.46 m (GD-88-01), 0.28% Zn over 1.37 m (GD-88-02) and 0.105% Cu over 0.91 m (GD-88-01).	GM 47226
		37 RC drill holes totalling 1,118 m on the Matagami area, with 14 of the RC drill holes returning significant gold grain counts (>5 grains) in basal till. As well as 8 RC drill holes returning anomalous gold values (15-120 ppb Au) in bedrock (the RC Trend).	GM 47447
1989	Glen Auden Resources Ltd	3 DDH totalling 811 m. No significant gold assays results	GM 48757

Year	Owner	Description of work / Highlights / Significant results	Ref.
1991	Total Energold Corp.	Geophysical surveys and 4 DDH totalling 812 m on the Southern EM. Drill hole LA-3, collared 1 km west of the Rivière Théo-Turgeon showing, intercepted 24.1 g/t Au over 2.48 m (the LA-3 showing).	GM 50596
1993		6 DDH totalling 1,476 m across the claim block. Drilling on the Lynx Zone yielded a composite of 4.81 g/t Au over 13.34 m in drill hole LX-93-12 and 3.32 g/t Au over 5.65 m in drill hole LX-93-15. Follow-up drilling on the LA-3 showing results yielded few results of significance.	GM 52083; GM 51785; GM 52084
1994	Cyprus Canada Inc.	6 DDH totalling 2006 m to test the down-dip and strike extensions of the Lynx Prospect were unsuccessful in doing so.	GM 52617
1997		2 DDH totalling 313 m at the Manthet Domain. These drill holes intersected a set of quartz + calcite + pyrrhotite + pyrite veins that were interpreted to be linked to an IP anomaly, but carried no significant gold or base metal values.	GM 55499
1995	Ressources Minières Radisson Inc.	Geophysical surveys and 5 DDH totalling 2,178 m on the Lynx Zone. Drill hole MS-95-29 returned assays of 1.71 g/t Au over 0.34 m and 1.30 g/t Au over 0.38 (the Lac Geoffrion East showing). Drill hole LG-95-01 drilled on the Lac Gignac Deformation Zone ("LGDZ"), returned an assay of 0.73 g/t Au over 1.18 m.	GM 53010
1996		Geophysical surveys and drilling of 21 DDH totalling 5,478 m on the Lynx Zone and LGDZ. No notable precious or base metal values were intersected.	GM 55564
1997-98		Geophysical surveys and drilling of 12 DDH totalling 2,887 m on the LGDZ. Drill hole LG98-28 returned assays values of 1.92 g/t Au over 0.33 m and drill hole LG98-17 returned weakly anomalous gold (-0.05 g/t) over 149 m and 0.4% Zn over 3 m (the Lac Gignac West and LG98-17 showings).	GM 56041
2001		8 DDH totalling 2,878 m on the LGDZ returned 1.93 g/t Au over 1.0 m from the Lac Gignac West showing.	GM 59037
1996	Billiton Metals Canada Inc.	3 DDH totalling 597 m on the Northern EM. best assays comprised 0.36 g/t Au over 1.6 m in B01-01 and 0.036% Cu over 6.4 m in B01-06. Follow-up downhole EM surveys had limited success due to the intersection of pyrite- and/or graphite-rich conductors.	GM 54144, GM 55411
1998	Gowest Amalgamated Resources Ltd	3 DDH totalling 758 m on the Northern EM. These DDH were aimed at a chargeability anomaly and returned broad intervals of disseminated pyrite mineralization with only weakly anomalous gold values.	GM 55878
1998	SOQUEM	5 DDH totalling 1,225 m on the Southern EM. Intersection of 1.17 g/t Au over 0.75 m in drill hole 1197-98-01 and 1.24 g/t Au over 1.0 m in drill hole 1197-98-2.	GM 56103

Year	Owner	Description of work / Highlights / Significant results	Ref.
2008	Ressources d'Arianne Inc.	Airborne VTEM, mobile metal ion sampling and drilling of 2 DDH totalling 318 m on the Southern EM. Neither drill hole returned grades exceeding 12 ppb Au.	GM 64141
2011		Geological mapping on the Southern EM and IP/Res surveying and 7 DDH on the eastward trend of the SLDZ. No significant results.	GM 66026
2011-12		Soil sampling (800 samples) and drilling of 8 DDH totalling 2,654 m on the Northern EM and LGDZ. Drilling highlights including assays of 3.06 g/t Au over 0.60 m in drill hole DTE-12-08 as well as 1.725 g/t Au over 1.0 m in DTE-12-12.	GM 66719, GM 66348, GM 67370
2015		1 DDH (DTE-15-16) for 279.4 m on the Eastern part of the claim block; La Peltrie Township.the drill hole returned no significant assay result.	GM 69163
2016	Balmoral Resources Ltd	6 DDH totalling 1,559 m mainly focused on confirming and expanding the Lynx and Rambo gold zones. The program extended the Lynx Zone down plunge to the west intersecting two zones of gold mineralization in DTE-16-18 (1.27 g/t over 0.5 m and 5.69 g/t over 1.58 m). Two DDH tested for extensions of the Rambo area failed to intersect any significant gold mineralization. The exploration drilling completed along the RC trend discovered in 1988, and located northwest of the Lynx Zone, did not identified a potential source for the results of previous RC drilling.	GM 70057
2017		15 DDH totalling 4,695 m tested for gold and base metal mineralization on the DTE area. Drill hole DTE- 17-23 returned three individual intervals with significant results (>1 g/t Au): 1.10 g/t Au over 4.00 m, 1.62 g/t Au over 0.92 m and 1.28 g/t Au over 0.54 m. Drill hole DTE 17-33 returned 815 ppm Ni over 6.53 m. Drill hole DTE-17-34 and drill hole DTE-17-35 tested a single conductor target on the margin of a magnetic high. Drill hole DTE-17-34 intersected 699 ppm Ni over 88.76 m and drill hole DTE-17-35 intersected 745 ppm Ni and 662 ppm Ni over 10.93 m and 72.66 m.	GM 70591
2018		6 DDH totalling 1,889 m tested for gold and base metal mineralization on the DTE area. Drill hole DTE-18-42A returned two individual intervals with significant results (>1 g/t Au): 0.25 g/t Au over 7.92 m and 1.60 g/t Au over 7.00 m.	GM 70894

6.8 Casault Claim Block

The relevant historical work on the Casault claim block consists of geophysical surveys and drilling. A summary is presented in Table 6.8.

Year	Owner	Description of work / Highlights / Significant results	Ref.
1959	Kesagami Syndicate	2 DDH (60-1 and 4-1). Both DDH intersected several intervals with 10 to 50% pyrite. DDH 4-1 intersected an iron formation. No assay results area available.	GM 18183
	Selco Mining	Mag and EM survey followed by an IP survey, mapping, and drilling of several DDH to test some anomalies.	GM 31185, GM 31186
1975		DDH D-52-1. Intersection of a quartz sericite schist with an interval of 5-10% disseminated pyrite over 42 m. No assay results available.	GM 31188
1980-1981	SDBJ (Société de Développement de la Baie-James)	VLF and magnetometric surveys, sampling, and mapping. Several VLF anomalies were identified.	GM 37488; GM 8959
1982		Geophysical and geological data compilation. 2 zones of interest identified: a highly magnetic zone interpreted as an iron formation and a second one corresponding to an unidentified conductor.	GM 39929
1983		Field exploration and geophysical airborne survey. Various features were identified, including EM conductors and geological contacts.	GM 39931
1984-1985		Mag and EM survey. 3 conductors identified.	GM 42169
1986	Queenston Mining	3 DDH (DL-85-8, DL-85-9 et DL-85-13). Drill hole DL- 85-13 intersected 0,57 g/t Au over 1.0 m in mafic volcanics.	GM 43413; GM 44072
1986-1988		13 DDH (DL-86-24 to -30 and DL-87-48 to -53). Best results were: 0.73 g/t Au over 3 m in drill hole DL-86- 24; 0.89 g/t Au over 1.2 m, 0.41 g/t Au over 3.1 m and 0.25 g/t Au over 9.2 m in drill hole DL-86-25; 1.85 g/t Au over 9.0 m in drill hole DL-87-50; 1,955 g/t Au over 1.0 m in drill hole DL-87-51.	GM 44767; GM 46412
1987		Mag and EM survey. Many EM conductors detected and interpreted as coming from the bedrock.	GM 46476
1995	Placer Dome	An airborne geophysical survey and an IP survey were performed. Many typical sulfide response anomalies were detected	GM 54177; GM 54178
1995	Billiton Metals Canada Inc.	4 DDH. Best results were: 0.29% Zn over 4.5 m in DDH B01-02; 0.14% Zn over 3.65 m in DDH B01-04 and 0.26% Zn over 2.6 m in DDH B01-05.	GM 54144
2008	Ressources D'Arianne Inc.	Structural study based on LANDSAT ETM+ images and ortho-rectified aerial photographs.	GM 63647
		Geophysical surveys performed: VTEM and Mag.	GM 66346; GM 66347
2010-2011	Midland Exploration Inc.	3 DDH totalling 669 m. Some intervals of pyrite, pyrrhotite and chalcopyrite were intercepted (trace to up to 5% exceptionally). Best result was 0.85 g/t Au over 1.5 m	GM 66345

Table 6.8 – Historical work on the Casault claim block

Year	Owner	Description of work / Highlights / Significant results	Ref.
2012	Midland Exploration Inc.; Osisko Mining Corporation	20 DDH totalling 4,562 m. Discovery of a new zone with CAS-12-07 returning 10.4 g/t Au over 1.45 m and CAS-12-010 (collared 2 km to the East) returning 1.86 g/t Au over 1.50 m. Discovery of a new zone with drill hole CAS-12-07 returning 10.4 g/t Au over 1.45 m and drill hole CAS-12-010 (collared 2 km to the east) returning 1.86 g/t Au over 1.50 m. CAS-12-020 and CAS-12-022 completed in the northern part of the claim block intersected a major fault zone locally anomalous in gold, now interpreted as the SLDZ. Drill hole CAS- 12-020 and drill hole CAS-12-022 completed in the northern part of the claim block intersected a major fault zone locally anomalous in gold, interpreted as the SLDZ. Drill hole CAS-12-020 returned 0.22 g/t Au over 3.0 m and drill hole CAS-12-022 returned 0.79 g/t Au over 1.5 m.	GM 66854
		VTEM survey.	GM 67664; GM 67665
2012		Magnetic and IP surveys.	GM 67617; GM 67738
2013		14 DDH totalling 2,992.8 m. Only weakly anomalous gold values were intersected.	GM 67737
2014		Mag, IP and TDEM surveys.	GM 68447; GM 68909
	Midland Exploration Inc.	Mag, resistivity/IP and OreVision surveys.	GM 69063; GM 69064
		High-resolution Mag-gradiometry survey. 2 magnetic domains identified.	GM 69229
2015-2016	Midland Exploration Inc.; SOQUEM Inc.	15 DDH totalling 3,332 m (CAS-15-038 to -52). Drill hole CAS-15-044 intersected several continuous anomalous gold intervals (> 100 ppb Au) over 100 m, with a best grade of 0.47 g/t Au over 1.0 m. Gold values are associated with strong silica, sericite and hematite alteration as well as quartz-carbonate stockworks and QFPs. CAS-15-041 and -042 intersected 1.19 g/t Au over 2.5 m and 0.331 g/t Au over 6.55 m, respectively.	GM 68987; GM 69778
		Mag and OreVision surveys.	GM 69554
		34 DDH totalling 10,690 m (CAS-15-053 to -075 and CAS-16-078 to -083). CAS-15-053 confirmed the continuity of the gold-bearing veins discovered, intersecting 6.89 g/t Au over 1.10 m and 5.41 g/t Au over 1.00 m. CAS-15-068 (2.90 g/t Au over 0.4 m), CAS-15-069 (0.69 g/t Au over 0.55m) and CAS-15-070 (3.34 g/t Au over 0.40 m and 0.87 g/t Au over 2.85 m) confirmed the extension of those gold-bearing veins to the NW. CAS-15-071 intersected 0.31 g/t Au over 1.00 m. CAS-16-082 intersected anomalous gold values with 0.29 g/t Au over 1.00 m associated with a QFP mineralized with pyrite and pyrrhotite.	GM 70013; GM 69701

Year	Owner	Description of work / Highlights / Significant results	Ref.
		OreVision survey: 5 low intensity polarizable sources interpreted, all oriented NW. Several appear to be, at least in part, due to the uplift of the bedrock.	GM 69779
		Mag and OreVision surveys: 3 anomalies interpreted.	GM 70339; GM 70674
2017		13 DDH totalling 3,889 m (CAS-17-084 to -096). Discovery of a new zone "Zone 450" with drill hole CAS-17-086 returning 3.1 g/t Au over 1.40 m. The 5 following DDH designed to test the extensions of the zone intersected mineralization. Best results are: CAS- 17-096 returning 1.38 g/t Au over 26.20 m; CAS-17- 095 returning 1.30 g/t Au over 23.50 m and CAS-17- 094 returning 1.88 g/t Au over 7.20 m. Zone 450 is characterized by breccia and banded albite, ankerite, hematite, sericite, chlorite, quartz and calcite. This new auriferous sector was named "Vortex" and comprised zones 475,450, 435 and 425.	GM 71352
2018		25 DDH totalling 8770.5 m (CAS-18-097 to -122). Results showed the Vortex gold system comprises 6 parallel mineralized zones (550, 525, 475, 450, 435 and 425) contained in a corridor 2 km long and 50 to 150 m wide. Zone 450 (the most important in terms of width and gold values) had been identified between a depth of 75 to 250 m in all DDH between CAS-18-116 and CAS-18-117. Those two drill holes marked the western and eastern limits of the corridor. Zone 550 and 525 are new zones discovered in 2018; Zone 550 (associated with quartz- calcite injection and few pyrite) returned 0.385 g/t Au over 3.80 m in CAS-18-098 and Zone 525 returned 0.1 g/t Au over 6.50 m at a contact between mafic volcanics and a gabbro unit.	GM 71351
		OreVision survey: identification of 9 weakly polarizable lineaments, globally oriented E-W.	GM 70908
2019	Midland Exploration Inc.	IP survey: Delineation of 4 polarizable IP axes highlighting moderate to strong chargeability anomalies, partially correlated with resistivity lows. The 2D inversion models suggest they are indicative of quite broad or closely spaced bodies/structures with steep dips. They could be the potential markers of disseminated to sulphide-rich mineralization (±graphite), hosted along faults and/or altered and sheared band of rocks developed along geological contacts.	GM 71473

6.9 Nantel Claim Block

The only relevant historical work completed on the Nantel claim block is a heliborne VTEM geophysical survey, flown in 2014 over the Nantel claim block and the Lac Fleuri, Grasset Gap, Grasset North, Jeremie-Fenelon and Nickel Test areas (GM 68603) with no formal interpretation reported by Balmoral.

7. GEOLOGICAL SETTING AND MINERALIZATION

The information presented in this item is based on Faure et al. (2020), Myers and Wagne (2020), Richard and Turcotte (2016), Perk (2015), and Voordow and Jutras (2018). Other references are duly indicated where applicable.

7.1 Regional Geology

The Property is located in the northwestern Archean Abitibi Subprovince of the southern Superior Province in the Canadian Shield (Figure 7.1).

The Abitibi Subprovince is a greenstone belt composed of east-trending synclines of largely volcanic rocks and intervening domes cored by synvolcanic and/or syntectonic plutonic rocks (gabbro-diorite, tonalite, and granite in composition) alternating with east-trending bands of turbiditic wackes. Most of the volcanic and sedimentary strata dip vertically and are generally separated by abrupt, east-trending trans-crustal faults with variable dip. Some of these faults, such as the Cadillac–Larder Lake and Porcupine-Destor faults, display evidence of overprinting deformation events, including early thrusting, later strike-slip and extension events. Two ages of unconformable successor basins, producing widely distributed Porcupine-style basins of fine-grained clastic rocks, followed by Timiskaming-style basins of coarser clastic and minor volcanic rocks which are largely proximal to major strike-slip faults, such the Porcupine-Destor, Cadillac–Larder Lake, and similar faults in the northern Abitibi Greenstone Belt. In addition, the Abitibi Greenstone Belt is cut by numerous late-tectonic plutons from syenite and gabbro to granite, with lesser dykes of lamprophyre and carbonatite.

The Abitibi Greenstone Belt is subdivided into seven volcanic stratigraphic episodes based on groupings of numerous U-Pb zircon ages. These episodes denote a geochronologically constrained stratigraphy (from oldest to youngest):

- Pre-2750 Ma volcanic episode 1
- Pacaud Assemblage (2750-2735 Ma)
- Deloro Assemblage (2734-2724 Ma)
- Stoughton-Roquemaure Assemblage (2723-2720 Ma)
- Kidd-Munro Assemblage (2719-2711 Ma)
- Tisdale Assemblage (2710-2704 Ma)
- Blake River Assemblage (2704-2695 Ma)

The U-Pb zircon ages and recent mapping show similarity in timing of volcanic episodes and ages of plutonic activity between the northern and southern Abitibi Greenstone Belt, as indicated in Figure 7.1. Therefore, this geographic limit has only stratigraphic and structural significance.

The Abitibi Subprovince is bounded to the south by the Cadillac–Larder Lake Fault Zone, a major crustal structure separating the Abitibi and Pontiac subprovinces (Figure 7.1).

Modified after Thurston et al. (2008)

Figure 7.1 – Stratigraphic map of the Abitibi Greenstone Belt

The Abitibi Subprovince is bound to the north by the Opatica Subprovince (Figure 7.1), a complex plutonic-gneiss belt formed between 2800 and 2702 Ma.

The metamorphic grade in the greenstone belt displays greenschist to sub-greenschist facies, except around plutons or approaching the Opatica and Pontiac subprovinces and the Grenville Province where amphibolite grade prevails.

7.2 Local Geology

The Property is located in the Northern Volcanic Zone or Harricana-Turgeon ("HT") volcano-sedimentary belt of the Abitibi Subprovince, near the boundary between the Abitibi and Opatica subprovinces (Figure 7.2). The HT belt overlaps the Ontario-Quebec boundary. In Ontario, the HT belt is formed by the Deloro, Porcupine and Stoughton-Roquemare assemblages of Thurston et al. (2008). In Quebec, these assemblages are recognized as the Manthet Group, the Rivière Turgeon Formation and the Brouillan-Fenelon Group, each forming a distinct geological domain. The boundaries between the geological domains are high-strain zones that include the Lower Detour ("LDDZ") and Sunday Lake ("SLDZ") deformation zones. The SLDZ separates the Manthet and Matagami domains, whereas the LDDZ separates the Matagami and Brouillan-Fenelon domains.

The Manthet Group, to the north of the SLDZ, has been interpreted as the equivalent of the 2730-2724 Ma Deloro assemblage. It is characterized by abundant iron-rich tholeiitic basalts and coeval gabbroic sills and dykes with minor intercalated graphitic argillites, as well as mafic and felsic volcaniclastic rocks. Ultramafic flows and intrusions at the base of the volcanic sequence are also known near the Detour gold mine and between the Fenelon claim block and the Opatica Subprovince. The volcanic sequence is coeval to the volcanics of the Selbaie and Matagami base metal mining camps. The degree of metamorphism and deformation within the Manthet domain increases gradually northward toward the Opatica gneisses.

The Rivière Turgeon Formation is bound by the SLDZ in the north and the LDDZ in the south, bridging the Manthet and Brouillan-Fenelon groups, respectively. Rock types consist mostly of wackes and argillites, as well as tuffaceous units and iron formations. These sediments are interpreted to be formed in a successor basin unconformably overlying the volcanic rocks. They are included in the Matagami Group and are considered equivalent to the Porcupine-type sediments of the southern Abitibi. The iron formations show strong lateral continuity along east-west trends. Other rock types include numerous mafic to ultramafic sill-like intrusions and at least one larger composite mafic-ultramafic intrusion. The contact between the Rivière Turgeon Formation and the Manthet Group is the SLDZ, which dips 70°-80° to the south-southwest.

The volcanic-dominated Brouillan-Fenelon Group lies to the south of the LDDZ and comprises mostly mafic volcanic rocks that are interpreted to be the equivalent of the 2723-2720 Ma Stoughton-Roquemaure Assemblage of Thurston et al. (2008). This geological domain contains a greater volume of felsic volcanic and intrusive rocks than the Manthet Group. It hosts the former-producing Selbaie volcanogenic massive sulphide ("VMS") deposit.

Modified by InnovExplo from Wallbridge: Detour Lake Mine and Zone 58N mineral resources and reserves are from Leite et al. (2020). The information on these adjacent properties obtained from the public domain has not been verified by the QPs. Nearby mineralized occurrences are not necessarily indicative that the Property hosts similar types of mineralization.

Figure 7.2 – Geology of the Harricana-Turgeon Belt, northwestern Abitibi Subprovince

The Property also encloses the southeastern edge of the Jérémie Pluton, the largest multiphase intermediate to felsic intrusion of the volcanic segment. The pluton has been recently dated at 2697.11 \pm 0.96 Ma (Carter, 2020; *in* Slater and Amaral, 2020).

7.3 Geology of the Property

Due to the thick glacial cover, the geology of the Property is mainly known through drilling or the open pit and underground development on the Fenelon claim block, and the interpretation of geophysical survey results. The claim blocks that saw the bulk of the drilling on the Property are Fenelon, Grasset and Martiniere.

7.3.1 Fenelon Claim Block

The Fenelon claim block is almost entirely covered by overburden, with depths ranging from 5 m to over 117 m. The block covers approximately 14 km of the SLDZ (Figure 7.3).

North of the SLDZ, the Fenelon claim block is underlain by NW-SE trending sedimentary rocks and lesser mafic to ultramafic volcanic rocks of the Manthet domain. These rocks have been intruded by intermediate to mafic/ultramafic sills and lesser dykes. To the northwest, the sequence is intruded by the Jérémie Pluton, an ovoid-shaped, composite intrusive body. The Jérémie Pluton is interpreted to be syn-tectonic and has an age of 2697 Ma (Carter, 2020). Structural zones that developed within or along the margins of these intrusive rocks have served as the most common focal points for gold accumulation (e.g., the Fenelon Gold System).

The Fenelon Gold System area is located within 2 km north of the SLDZ and is also covered with approximately 20-30 m of glacial overburden. The area is mainly underlain by a turbiditic sedimentary basin and the eastern margin of the Jérémie Pluton (Figure 7.3).

The turbiditic sediments consist of greywackes, siltstones, mudstones and locally metrethick intervals of black graphitic argillites and iron formations. Occasionally, intervals of coarser sediment (wacke and conglomerates) are found in the argillites in the western part of the claim block, west of the Jérémie Pluton. The upper parts of the Tabasco and Cayenne zones are hosted in this sedimentary package.

The Jérémie Pluton is a mesocratic medium- to coarse-grained intrusion. The pluton is not magnetic and varies in composition from diorite to granodiorite. Mafic xenoliths are often observed. The pluton contact with the sediments is not sharp; it represents a transitional zone affected by ductile deformation. The Area 51 vein network is largely hosted in the pluton and its margin (Contact Zone).

The Main Gabbro is the largest intrusive body in the Fenelon Gold System area after the Jérémie Pluton. It is a multiphase ultramafic to intermediate dyke swarm complex injected in a sedimentary sequence. The Main Gabbro dyke swarm dips steeply (75°-80°) to the south. The dyke swarm likely represents a synvolcanic differentiated sill tilted by regional deformation. Ultramafic rocks are concentrated in the middle of the dyke swarm, whereas intermediate to felsic, medium-grained and equigranular massive granodiorite occurs along the western margin. The Main Gabbro is the host of the Gabbro Zones, the only historically known (pre-Wallbridge) gold-bearing zones at Fenelon: Fresno, Chipotle, Anaheim, Naga Viper, Paprika, Habanero and Serrano.

Modified from Faure et al. (2020) and Myers and Wagner (2020)

Figure 7.3 – Geology of the Fenelon claim block

The Main Gabbro intrusive suite crosscuts the Jérémie diorite and is interpreted to be younger than the pluton. The greatest concentration of dykes occurs in the pluton contact zone. These mafic dykes also cut the porphyries in the pit area of the Fenelon Gold System. Most mafic dykes on the Property are foliated or folded, and contacts are sheared with frequent quartz-carbonate veins. Intermediate to felsic porphyries are more competent and have sharper contacts in the sediments. To date, no post-mineralization dykes have been observed, and gold zones appear to cut across all lithologies.

The eastern part of the Fenelon claim bock is underlain by the Grasset Ultramafic Complex ("GUC"). The GUC features interlayered ultramafic and felsic volcanic rocks intruded by cumulate ultramafic sills and dykes. Komatiite-hosted Ni-Cu-PGE mineralization occurs within the GUC, and pyrite-rich, volcanic-hosted massive sulphide mineralization is found in the felsic members of the complex.

South of the SLDZ, the stratigraphy is dominated by E-W trending sedimentary rocks of the Rivière Turgeon Formation. Timiskaming-type polylithic conglomerates are observed within this sequence proximal to and within the SLDZ. Little geological information is available on this sequence due to the low level of exploration activity in this domain.

7.3.2 Grasset Claim Block

The Grasset claim block is covered by thick (50 to 100 m) glacial overburden. The only known outcrops are on the southwestern shore of Lac Grasset, where Lacroix (1990) documented a sequence of pillowed and massive basaltic flows and gabbros of the Brouillan-Fenelon domain. Detailed information on the geology of this claim block is only available for areas that have been drilled. The correlation between drill hole information and geophysical maps has been used to recognize magnetic units, such as gabbroic and ultramafic rocks, low-magnetic sedimentary rocks, and highly conductive graphitic horizons.

Basalts of the Manthet Group are located north of the SLDZ and cover about a third of the Grasset claim block. Magnetic gabbroic sills follow the attitude of the contact between the Abitibi and Opatica subprovinces.

GUC intrusives have been identified in the western part of the claim block. The GUC hosts the Grasset Ni-Cu-PGE deposit. It consists of a stacked pile of basalts, gabbro and ultramafic sills and dykes, with minor rhyodacitic to dacitic volcaniclastics and rhyolite flows, several narrow-intercalated bands of iron formation and graphitic argillite in apparent conformable contact with the overlying rock units.

The general attitude of the GUC is WNW, pinched between the Jérémie Pluton and the Opatica Subprovince. Several ductile deformation zones have been intercepted in drill holes along strike in the GUC, suggesting that the NW-SE trend may correspond to a major fault, parallel to other similar faults to the north and south of the SLDZ (Figure 7.4). The southern portion of the GUC is sheared and possibly folded by the SLDZ. The ultramafic part of the GUC is composed of olivine pyroxenite, black pyroxenite, and pyroxene dunite, with a serpentine and talc-carbonate alteration overprint. It is not clear if the ultramafic rocks are intrusive in the volcanic sequence or are volcanic flows. Most drill hole intervals show the ultramafic to be massive, homogeneous, fine-grained and generally magnetic, possibly correlated to the 'B' cumulate layer at the base of komatiitic flows. Spinifex texture has been observed by Brousseau et al. (2007), indicating that the upper part of volcanic flows, the 'A' layer, is also present in the sequence. In the centre

of the GUC, the presence of biotite in drill holes indicates that metamorphism reached upper greenschist facies.

The northern part of the claim block is underlain by the gneissic tonalite and granodiorite intrusions of the metamorphic Opatica Subprovince.

A turbiditic basin of the Rivière Turgeon Formation occupies a low magnetic domain in the southwestern and central parts of the property. South of the Grasset deposit and within the SLDZ, a thick package of heterolithic conglomerates contains sheared and rounded to subrounded clasts of many lithologies not commonly found nearby, including granitoids that have been encountered in drill holes. These conglomerates bear a strong resemblance to Timiskaming-type conglomerates. They may represent a younger marginal basin, possibly correlated to the 15-km-long basin north of the SLDZ as defined by Faure (2015).

The Brouillan-Fenelon domain occurs in the southern part of the Property. Volcanic and sedimentary units in the western part of the claim block are oriented E-W, whereas they trend NW-SE in the eastern part.

The SDLZ and GDZ merge in the centre of the claim block and cut across the sedimentary basin of the Rivière Turgeon Formation. The regional E-W orientation of these two faults changes to an ESE orientation in the eastern part of the claim block. The thickness of the SLDZ varies between 500 and 1500 m and dips steeply to the SSE. The contact between Manthet Group and the sediments of the Rivière Turgeon is sheared and strongly altered.

Source Richard and Turcotte (2016)

Figure 7.4 – Geology of the Grasset claim block

7.3.3 Martiniere Claim Block

The Martiniere claim block is mostly flat and covered by glacial overburden that averages 22.5 m thick based on Balmoral's drilling. Only a few outcrops are present along the Martigny River and on higher ground in the northwest part of the claim block, consisting mostly of mafic volcanic and/or intrusive rocks. The MERN's geophysical interpretation of the boundaries between lithological units suggests that most of the Property is underlain by mafic volcanics and gabbro of the Manthet Group (Figure 7.5), with lesser sedimentary rocks, felsic tuff and younger diabase dykes. Granitoid gneiss of the Opatica Subprovince underlies the northwest corner of the claim block.

Recent interpretations by the Issuer, also based on work by the MERN and CONSOREM, indicate that the volcano-sedimentary package is openly folded in the deposit area. Rock types consist mostly of mafic volcanics and gabbroic sills, with minor felsic intrusions, graphitic argillite and massive sulphides. Sulphide minerals consist almost entirely of pyrite. Assays typically return low concentrations of gold (average of ~0.2 g/t Au) and base metals. A younger generation of quartz porphyry intrusions locally forms subvertical dikes that play an important role in localizing gold mineralization.

The most prominent structures in the claim block area are E-W striking, possibly crustalscale, deformation corridors like the SLDZ, which passes through the southern part of the Martiniere claim block, and the smaller and more recently discovered Lac du Doigt Deformation Zone ("DDZ") cutting through the centre of the Property. However, the most important structure on the Property is the NNW-trending Bug Lake Fault Zone ("BLFZ"; a.k.a. the Bug Lake Trend) that hosts the Bug deposit. The BLFZ dips approximately 50-70° to the east and has a planar to sigmoidal form in cross-section, showing steeply dipping ramps (or "steeps") and shallower flats. The BLFZ hosts the Bug Lake quartz porphyry and is characterized by a strong deformation fabric with silica-carbonate alteration, increased disseminated pyrite content and fault breccia texture. Alteration is associated with a set of diffuse quartz-carbonate ± pyrite veins that locally exhibit coliform texture. Movement along the BLFZ appears to have included: (1) ductile shearing as marked by increased penetrative deformation fabric in volcano-sedimentary rocks. (2) brittle shearing represented by re-healed breccia (typically with calcite in-fill), and (3) brittle faulting marked by broken ground, with clay coatings on fracture surfaces and rare fault gouge.

The Martiniere West Zone is hosted within the Martiniere West Shear Zone ("MWSZ"; a.k.a. the Martiniere West Trend), a more diffuse, stratiform structure marked by a weak penetrative deformation fabric, with 1-5% disseminated pyrite and localized silicification. The MWSZ is developed within a gabbroic sill, near its contact with gabbroic rocks, and is oriented at an angle of ~60° to the BLFZ.

Modified by InnovExplo from Wallbridge

Figure 7.5 – Geology of the Martiniere claim block

7.4 Mineralization

7.4.1 Fenelon Claim Block

7.4.1.1 Gold

The Fenelon Gold System comprises three gold-bearing domains: the Gabbro Zones in the dyke swarm complex, the Tabasco and Cayenne zones in sedimentary rocks, and Area 51 Zone in the Jérémie Pluton and its contact zone (Figure 7.6). The Ripley-Reaper gold zones represent the continuity of Area 51 to the south, all the way to the SLDZ.

Gabbro Zones

The Gabbro Zones (a.k.a. the Main Gabbro or Discovery Gold Zone) was the only known mineralization of significance before the Issuer discovered the Tabasco-Cayenne and Area 51 zones. The Gabbro Zones consist of seven (7) mineralized zones from northeast to southwest: Trinidad Scorpion, Fresno (formerly Zone B), Chipotle (formerly Zone C), Anaheim, Naga Viper (formerly zones D and E), Habanero and Serrano. The mineralized zones are restricted to a wide corridor of intensely altered gabbro between two panels of argillaceous sediments, except for the Habanero zones, which are partially hosted in sediments. The zones are primarily concentrated in an area where the gabbro direction changes from WNW-ESE to E-W. The zones are predominantly located at the inflection of shear zones, where the dip changes from 70° to vertical. The general rake of the Gabbro Zones is subparallel to the mineral stretching lineations. The thickness of the mineralized envelopes varies from a few centimetres to 15 m.

Two different types of mineralization are distinguished: 1) massive, laminated or brecciated silica-sulphide zones occurring along mafic dyke contacts, or commonly as isolated, irregular, metre-scale lensoidal bodies inside the mafic dyke complex; and 2) narrow, lenticular or commonly tabular zones of silica-sulphide sericite alteration associated with small-scale (1-30 cm) shear zones occurring primarily along narrow dyke contacts.

Silicification is the dominant alteration and serves as a guide for exploration and is the key feature in guiding underground development. The general attitude of the silicified and mineralized envelopes is subparallel to the contact of the sediments and the coarse-grained mafic intrusive.

Gold mineralization is concentrated in the silicified envelopes and is associated with pyrrhotite, chalcopyrite and pyrite. Sulphides are mainly disseminated, although where silicification is locally more intense, they are contained in quartz veins. Pyrrhotite is the dominant sulphide, accounting for up to 30% by volume, with intervals of massive pyrrhotite up to several centimetres wide. Chalcopyrite content generally varies from trace amounts to 15%, locally up to 40%. When present, pyrite occurs in trace amounts or up to 2%. Marcasite has been observed in drill core and is locally associated with gold mineralization. Native gold is fairly common in drill hole intersections and the wall rock of underground workings. The grain size of visible gold can reach 4 mm.

From Wallbridge

Figure 7.6 – Geology and mineralized zones of the Fenelon Gold System

Tabasco and Cayenne zones

The Tabasco-Cayenne system was discovered in 2019 and is bounded by the edge of the Main Gabbro to the northeast and by the Jérémie Pluton contact to the southwest (Figure 7.6). The two zones have similar geological characteristics. They trend N130 and dip steeply between 70° and 90° to the south. Together, they form an anastomosing and sheared mineralized system with numerous secondary splays. Along these shear zones, internal variations in dip define dilatational segments that accompany folded and boudinaged gold-bearing shear veins. These features may represent primary ore shoots. In some places, the zones follow dyke contacts.

The dips of the Tabasco and Cayenne zones are shallow at a depth of 500 m, producing a thickening of the mineralized envelopes over a roughly 200-m vertical interval. This

zone of shallower dips can be traced from section to section, plunging toward the northwest. Mineralization occurs mainly in the sediments, but the Tabasco Zone follows the Jérémie Pluton contact, and the zones have now been traced down to approximately 1000 m vertical depth (Figure 7.7 and Figure 7.8).

The mineralization is discrete with a low sulphide content (<5%) and weak quartz veining. It is mainly associated with silicification and sericitization. Gold intervals are associated with a pyrrhotite-chalcopyrite assemblage. Pyrrhotite alone reflects barren intervals, indicating that gold was carried with chalcopyrite. Sulphides appear as disseminated blebs in the matrix or are found in quartz veins and as isolated stringers or semi-massive to massive veinlets and veins less than 10 cm thick. The sulphide content is generally proportional to gold grade. Arsenopyrite and sphalerite are locally present and appear early in the sulphide paragenesis. Free gold is common and is observed in quartz veins and the adjacent wall rock along fractures or at sulphide boundaries. The best gold intervals associated with veining are in intersections with light grey quartz veins. High-grade gold intervals grading more than 10 g/t over 50 cm to 1 m are common.

Most of the mineralization is clearly pre- to syn-ductile deformation. Gold-sulphidebearing veinlets, strings and blebs are sheared and stretched parallel to the foliation. Sulphides have been observed in the axial planes of isoclinal folds. Chalcopyrite and free gold occasionally occur in brittle fractures perpendicular to sheared veins, indicating that part of the mineralization was remobilized late in the deformation history.

From Wallbridge

Figure 7.7 – 9975E cross-section (looking west) of the Area 51 and Tabasco-Cayenne mineralized zones

Area 51 zone

The mineralization in the Area 51 Zone (Figure 7.6) is dominantly hosted in the Jérémie Pluton and its contact with the sediments, but also extends into the sediments in the west. It occurs as a series of parallel vein network corridors approximately 20-50 m wide that are divided into subzones. The mineralization plunges to the northeast, extending from the bedrock surface to a vertical depth of approximately 1,000 m (Figure 7.8).

Subzones inside the mineralized corridors are interpreted as vertical and subparallel alteration envelopes ranging in thickness from metres to decametres. Alteration minerals are sericite, chlorite and silica. Locally, alteration is characterized by K-feldspar or iron-carbonate with hematite. Alteration is moderate, selectively replacing the matrix, or strong and pervasive, destroying the primary igneous textures. The transition is gradational between altered zones and relatively fresh intrusive rock.

Gold mineralization is mainly associated with isolated or regularly spaced subparallel translucent grey quartz veins generally less than 2-3 cm thick, rarely up to 5 cm. Sulphide content in the veins is less than 3%. Most mineralized quartz veins are sheared, but extensional veins also occur. Vein contacts are usually sharp and sheared, with chlorite selvages. They probably formed during localized extensional events during brittle deformation and were later deformed by shearing. Gold-bearing sulphides also occur disseminated or as veinlets with chlorite selvages. Pyrrhotite and chalcopyrite are the major sulphides, followed by pyrite, sphalerite, arsenopyrite and marcasite. Pyrite is more common in Area 51 than in Tabasco or Cayenne. Visible gold is commonly observed as isolated blebs in quartz veins or vein selvages. It is also found at sulphide grain boundaries or in fractures inside grains. White quartz-carbonate veins are late and unmineralized.

Ripley-Reaper gold zones

The Ripley-Reaper mineralized zones represent the southern extension of the Area 51 corridor (Figure 7.6).

Within the broader Area 51–Ripley-Reaper mineralized system, three distinct styles of gold mineralization have been observed:

- High-grade gold within a zone of strong shearing, occurring as dominantly visible, very fine to medium-sized free gold grains hosted in quartz-carbonate-sericite veins with 1-5% sulphides (pyrite>>chalcopyrite>arsenopyrite) (e.g., Ripley gold zone). The veins are surrounded by a strong sericite alteration halo. The quartz veining is locally laminated, indicating multiple phases of vein formation and protracted fluid flow through the shear zone.
- 2. Visible gold and high-grade free gold found in discrete, polyphase shear veins in an otherwise weakly altered and deformed siltstone. This style of veining appears to increase in frequency near the Area 51 corridor.

From Wallbridge

3. Broader intervals of lower-grade gold mineralization within the Area 51 corridor in association with polymetallic sulphide vein swarms in weak to moderately sheared and fractured diorite/monzonite and sedimentary lithologies. The sulphide content within individual veins typically exceeds 75%.

The Ripley-Reaper gold zones are located approximately 250 to 500 m to the south and along strike from Area 51 (Figure 7.6). At Ripley, the higher gold-bearing intervals locally reach widths of more than 22 m within broad lower-grade intervals greater than 100 m. Intercepts indicate a steep WSW plunge for the high-grade gold mineralization, which is related to a WSW zone of strong shearing and deformation. The Ripley-Reaper zones are influenced by and occur roughly parallel to the orientation of the nearby SLDZ.

7.4.1.2 Nickel

The GUC Central Ni-Cu-Co-PGE discovery ("GUC Central") is located within the GUC, 7 km northwest on strike from the multi-million-tonne Grasset Ni-Cu-Co-Pt-Pd deposit (Figure 7.3). The GUC Central mineralized discovery sits near or at the base of an approximately 950-m-thick bimodal stratigraphic package comprised of ultramafic (komatiite) flows with lesser felsic (rhyolite and rhyolite tuff) volcanic lithologies. This SW-dipping stratigraphic sequence is locally intruded by a series of cumulate ultramafic (peridotite) sills and late gabbro dykes.

The principal target in the GUC Central area is komatiite-hosted nickel sulphide mineralization. At GUC Central, the nickel sulphide mineralization exhibits classic sulphide segregation/settling textures grading down-sequence from disseminated, to net-textured matrix, to massive sulphide, over widths of 5 to 20 m. The thickest accumulation of this style of nickel sulphide mineralization occurs at the base of the ultramafic sequence, where it appears to have thermally eroded the mafic volcano-sedimentary sequence in the basement. Erosional channels are known to be typical of productive komatiite sequences and are widely used as exploration guides for massive sulphide bodies. The mineralization consists of a simple sulphide assemblage of pyrrhotite>purte>pentlandite>chalcopyrite and locally appears to have been remobilized by post-mineral deformation and dyke emplacements.

The broadest mineralized interval intersected to date was in drill hole FAB-18-58, which returned 7.58 m grading 1.05% Ni, 0.31% Cu, 0.05% Co, 0.20 g/t Pt and 0.48 g/t Pd. Locally nickel- and copper-bearing sulphide accumulations occur above the base of the komatiite stratigraphy. Several of these sulphide accumulations appear to represent zones of remobilized sulphide related to late shearing, cutting through portions of the GUC.

7.4.1.3 Gold-Nickel

The Hole 50 gold-nickel occurrence is located approximately 3 km northwest of the Grasset deposit. It corresponds to a 2015 exploration drill hole (FAB-15-50) that intersected an interval grading 216 g/t Au over 0.78 m in a previously unknown shear zone cutting the GUC (Figure 7.3). The shear zone and related gold mineralization, appear to be later than the nickel mineralization within the complex. The gold-bearing interval contains remobilized nickel sulphide mineralization (0.72 % Ni over 0.78 m). The mineralized structure hosts abundant visible gold mineralization over a 10 to 15 cm downhole interval.

7.4.2 Grasset Claim Block

Gold mineralization on the Grasset claim block is associated with the SLDZ. However, the most important mineralized occurrence consists of Ni-Cu-PGE mineralization associated with the GUC.

7.4.2.1 Gold

The Grasset Gold discovery (Figure 7.4) was outlined by drilling (2011–2014) at the contact between strongly deformed Timiskaming-type conglomerates and a mafic intrusive of the Manthet Group in the footwall of the SLDZ. The first DDH intersected 33.00 m grading 1.66 g/t Au, including two higher-grade intervals grading 6.15 g/t Au over 4.04 m and 4.18 g/t Au over 5.00 m. The mineralization is hosted in an anastomosing quartz-carbonate vein system along the contact, and is open laterally and at depth.

7.4.2.2 Nickel

Mineralization at the Grasset Ni-Cu-PGE deposit (Figure 7.4) is concentrated in two stacked sulphide-bearing horizons (H1 and H3) oriented NW-SE within vertically dipping peridotite ultramafic units (Figure 7.9). Mineralization consists of metre-scale layers of net-textured or blebby to semi-massive and massive sulphides. Pyrrhotite is the dominant sulphide mineral, with subordinate amounts of pentlandite, chalcopyrite and pyrite. The concentration of pentlandite and chalcopyrite is proportional to the total sulphide content. The two horizons are stacked, 25 to 50 m thick, and separated by 10 to 50 m of unmineralized ultramafic rock. Horizon 3 (H3) is defined over a strike length of roughly 500 m and hosts the bulk of the high Ni-Cu-PGE values defined to date. Horizon 1 (H1) has been defined over a longer strike length (~900 m) and hosts moderate nickel grades (<1%) over its entire extent. Mineralization has been defined down to a vertical depth of approximately 600 m. Both zones remain open at depth.

7.4.3 Martiniere Claim Block

Diamond drilling on the Martiniere claim block has defined several mineralized zones or showings that occur along structural trends. At least three pyrite-dominant VMS systems also occur on the Martiniere claim block, although generally with negligible base and precious metal contents.

7.4.3.1 Gold

Gold mineralization typically shows a close spatial association with greater amounts of: (1) disseminated to (rarely) semi-massive pyrite, (2) carbonate and/or quartz alteration and veining, and (3) brittle to ductile structures. Lithology and alteration are somewhat different on the Bug Lake and Martiniere West zones, resulting in a distinction between "Bug Lake-style" and "Martiniere West-style" mineralization.

Modified by InnovExplo from Wallbridge.

Figure 7.9 – Grasset cross-section

The Bug zones (Figure 7.5) covers approximately 1 km of the Bug Lake Trend, which follows the brittle-ductile BLFZ. The BLFZ occurs at a high angle across stratigraphy and hosts the Bug Lake quartz porphyry. This porphyry is one of the few known non-stratiform Archean units on the Property.

The Bug zones are divided into the North, South and Lower Steep zones (Figure 7.10), all of which are centred on the Bug Lake porphyry and the BLFZ. The fault and porphyry dip an average of 50° to 70° to the east, exhibiting a ramp-flat structure in the North Zone (Figure 7.11) and a more planar structure in the South Zone. Gold mineralization occurs adjacent to both the upper and lower contacts of the Bug Lake porphyry, within the so-called Upper Bug ("UBSZ") and Lower Bug ("LBSZ") subzones (formerly the Upper Bug Lake and Lower Bug Lake zones). Both subzones are up to 75 m wide and consist of ankerite- and/or dolomite-altered greenstone with 1-5% disseminated pyrite. The subzones include one or more 0.1 to 10 m wide intervals of carbonate-quartz flooding, veins and/or vein breccias, and/or 0.1 to 1 m intercepts with 30-70% pyrite. Accessory minerals include tourmaline, telluride, arsenopyrite, chalcopyrite, galena and sphalerite. Vein breccias comprise angular fragments of coliform-textured carbonate-quartz veins, suggesting an upper crustal setting. Gold grades are highest in pyrite-rich intervals and strongly sulphidized wall rock. Veining is likely contemporaneous with alteration.

Within the ramp-flat structure of the North and Lower Steep zones, gold mineralization is best developed along the steeper (i.e., ramp) parts of the structure. In the South Zone, the Bug Lake porphyry exhibits a more planar morphology with high-grade mineralization preferentially developed beneath the intersection with the moderately dipping hanging wall side of the porphyry. The South Zone also shows gold mineralization along lithological contacts away from the deposit, suggesting that competency contrasts between host rocks play a role in controlling gold mineralization. Pyrite-enriched graphitic argillite and semi-massive to massive sulphide typically contain anomalous gold, but the pyrite is most likely of a different generation than that associated with the Bug and Martiniere West deposits.

Narrow mineralized shear zones that occur further outboard of the UBSZ and LBSZ are referred to as Hanging Wall and Footwall subzones ("HWSZ", "FWSZ"), respectively. These narrow outlying subzones have returned among the highest grades on the Property, with the FWSZ from the North Zone returning grades of 8,330 g/t Au over 0.57 m and 1,255 g/t Au over 0.55 m. Examples of high-grade HWSZ include 195.5 g/t Au over 1.0 m and 36.0 g/t Au over 2.1 m.

Gold to silver ratios in the North, South and Lower Steep zones indicate mineralization characteristic of orogenic gold deposits. Multi-element data shows a moderate positive rank correlation for gold with Ag and As $(0.6>\rho>0.3)$.

Modified by InnovExplo from Wallbridge.

Figure 7.10 – Geology and Mineralization zones of the Martiniere Gold System

Modified by InnovExplo from Voordow and Jutras (2018). Section A-A' in Figure 7.11.

Figure 7.11 – Cross-section of the Bug North zone

The Martiniere West deposit comprises a series of steep, subparallel, mineralized subzones hosted within the MWSZ. This shear zone is stratigraphically concordant, 200 to 300 m wide, and defined by weak deformation fabric, localized silicification and veining, as well as 1-5% disseminated pyrite. Elevated gold occurs throughout the MWSZ, but the highest grades occur within shoots hosted by silicified shear zones ("SISZ") and/or sets of quartz-dolomite \pm sulphide veins ("QDL"). Shear zones and individual veins range from 0.1 to 10 m and 1 to 40 cm wide, respectively. Gabbro within the MWSZ is markedly non-magnetic, providing a useful marker for rocks that could host anomalous gold. Individual SISZs consist of quartz gabbro that is weakly to moderately sheared and silicified \pm sericite-altered, hosting up to 20% disseminated pyrite with trace arsenopyrite \pm chalcopyrite \pm sphalerite. The mineralogy of the QDL veins suggests that they were derived from the same fluid flow event that produced the SISZs. Grades within the SISZ and QDL intervals range from >10 g/t Au over a few metres to 1 g/t Au over several tens of metres.

Multi-element geochemistry shows that Au:Ag ratios at Martiniere West are characteristic of orogenic gold deposits. Gold shows moderate to strong positive rank correlation with Ag, As and Pb, with average As contents (1534 ppm) significantly higher than the Bug deposit (~300-900 ppm).

Several zones are considered extensions to known mineralized areas, such as the NW Extension and Southeast zones in the Bug Lake Trend, the West Extension and Central Zones in the MSZW, and the ME-16 and ME-23 Zones, previously referred to as the "Martiniere East Gold Trend", located 300 m east of the BLFZ. Although some of the areas have shown promising results, follow-up drilling was unable to establish continuity for the mineralization.

7.4.3.2 Polymetallic

There are at least three pyrite-rich VMS systems on the Martiniere claim block. Martiniere East (Figure 7.10) is located immediately east of the BLFZ. The two other occurrences are in Grid #2 and Grid #3 towards the eastern limit of the claim block. All three systems are similar, with up to 50-m (core length) intercepts of massive (>60%) to semi-massive (25-60%) sulphides. The sulphide mineralogy typically comprises >99% pyrite. The mafic volcanic host rock is strongly altered to chlorite and calcite. Massive sulphide mineralization typically grades outwards, in both directions, into semi-massive sulphide and then pyrite-rich basalt (<25% sulphide). The exceptions are the so-called outlying massive sulphide layers with sharp contacts and core widths of 1 to 5 m, usually occurring at an appreciable distance from the larger massive sulphide zone.

Mean gold contents are <0.3 g/t Au for the larger systems but can average up to 1 g/t Au for the outlying layers. Base metal enrichment is generally negligible, with the highest average grade returned from the Grid #2 VMS prospect at 0.14% Zn. An exception is drill hole MDE-15-172, which intersected 2.1 m of massive sulphide that averaged 1.52% Cu and 4.2% Zn in addition to 2.8 g/t Au and 29 g/t Ag. However, nearby drill holes returned only barren intervals in massive and semi-massive sulphides.

7.4.4 Other Claim Blocks

Significant gold mineralization has also been found on the Detour East and Casault claim blocks (Figure 7.2). Table 7.1 summarizes the mineralization encountered during past exploration programs.

Claim Block	Mineralized Zones	Significant Results
Detour East	Lynx and Rambo zones	Both zones are approximately 2.2 km apart along an E-W trending deformation zone. The Lynx Zone is the westernmost of the two. Notable assay results for diamond drilling on Lynx include 7.78 g/t Au over 7.25 m, in drill hole MS-87-08, and 4.81 g/t Au over 13.34 m in drill hole LX-93-12 (MacTavish et al., 2017). Lynx was tested over approximately 300-400 m along strike and down to 250 m vertical depth. The Lynx Zone comprises a gently west-plunging, quartz-sulphide vein stockwork hosted in mineralized and altered mafic volcanics, and is spatially associated with a sericitized shear zone. The exact geometry of the zone is unknown. The host quartz veins are subdivided into arsenopyrite + pyrite (apy+py) and chalcopyrite + sphalerite (cpy+sp) types, with cpy+sp veins. The host mafic rocks are widely altered to ankerite and sericite, and typically host 1-2% py. Closer to the gold-bearing veins, volcanic host rocks are silicified and may contain disseminated arsenopyrite as well. Notable assay results for the Rambo Zone include 6.3 g/t Au over 2.7 m, in drill hole TU-86-1, and 6.51 g/t Au over 0.7 m in drill hole TU-86-2 (Brack, 1988). The Rambo Zone consists of quartz veins and stringers in a sheared package of mafic volcanic rocks, greywacke and graphitic argillite. The structural setting appears to be at the intersection of the E-W deformation zone and smaller NW-SE trending structures, with gold mineralization possibly concentrated into steeply NW-plunging shoots. The mineralized area was tested over approximately 300 m along strike and down to 200 m vertical depth.
Casault	Vortex Zone (a.k.a. Zone 450)	Examples of the mineralization encountered in this zone include drill hole CAS-17-95, which intersected 1.30 g/t Au over 23.5 m, including 3.46 g/t Au over 6.0 m; and drill hole CAS-17-96, which intersected 1.38 g/t Au over 26.2 m, including 7.87 g/t Au over 2.2 m. Results from the 2018 follow-up drilling in this area include drill hole CAS-18-110, which intersected 0.46 g/t Au over 25.7 m, including 3.8 g/t Au over 1.15 m. The mineralization occurs in a shear zone at the contact between Timiskaming-type sediments and Manthet Group metavolcanics, possibly coincident with the SLDZ. The W-trending, high-strain gold zone is spatially associated with subalkaline to reddish albite-sericite-hematite- altered alkaline porphyritic dykes (Castonguay et al., 2020). The mineralization in this zone was encountered over an approximate distance of 500 m along trend and down to 250 m vertical depth. The mineralized system remains open along strike and down-dip (https://wallbridgemining.com/our-projects/detour-gold- trend/casault/ Wallbridge website consulted February 2021).

Claim Block	Mineralized Zones	Significant Results
	Northern part of Casault	New mineralization was intersected during the 2021 drill program on the Casault claim block. The first drill hole, CAS-21-123, targeted a regional-scale structure, in the northern part, interpreted from displacement in airborne total magnetic anomalies. Gold was intersected from 254.5 to 256.5 m; 6.85 g/t Au over 2.00 m. Other drill holes in the area targeting similar interpreted structures, intersected strong shearing, sulfide mineralization (Py, Cp and Po) and alteration. Most of the results for these drill holes are still pending. The combination of an airborne magnetic survey and lithologies intersected during the 2021 drilling program prompted a re- interpretation of the regional geology of the Casault property. The principal modifications are: 1) the magnetic highs are dominantly pillowed mafic volcanic units with local magnetite within pillow seams; 2) a large body of magnetic pyroxenite was also intersected and interpreted as a magnetic high through the area; and 3) the magnetic low in the area were also on occasion mafic volcanics, quartz-felspar porphyritic felsic intrusives or minor felsic and intermediate volcanics.

8. DEPOSIT TYPES

The information presented in the current section is based on Faure et al. (2020), Myers and Wagner (2020) and Richard and Turcotte (2016). Other references are duly indicated where applicable.

The ore deposits and mineralized occurrences on the various claim blocks of the Property share many characteristics with the following deposit types: orogenic gold (e.g., Fenelon Gold System, Bug Lake, Martiniere West and Grasset Gold), komatiite-hosted Ni-Cu-PGE (e.g., the GUC Central and Grasset deposits) and volcanogenic massive sulphide ("VMS") deposits (e.g., Martiniere East). Descriptions of the different deposit types are summarized below.

8.1 Orogenic Gold

Metamorphic belts like the Abitibi Greenstone Belt are complex regions where accretion or collisions have added to or thickened the continental crust. Gold-rich deposits can form at all stages of this orogen evolution so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other (Figure 8.1).

Most gold deposits in metamorphic terranes are adjacent to first-order, deep-crustal fault zones (e.g., Cadillac–Larder Lake, Porcupine-Destor, Casa Berardi and Sunday Lake in the Abitibi), which show complex structural histories and may extend along strike for hundreds of kilometres, with widths up to a few thousand metres. Fluid expulsion from crustal metamorphic dehydration along such zones was driven by episodes of major pressure fluctuations during seismic events.

Ores formed as simple to complex networks of gold-bearing, laminated quartz-carbonate fault-fill veins in second-order and third-order shears and faults, particularly at jogs or changes in strike along the major deformation zones. Mineralization styles vary from stockworks and breccias in shallow, brittle regimes, to laminated crack-seal veins and sigmoidal vein arrays in brittle-ductile crustal regions, to replacement- and disseminated-type orebodies in deeper ductile environments. Fenelon is interpreted to have been formed in the latter.

Most orogenic gold deposits occur in greenschist facies rocks, but significant orebodies can be present in lower-grade or higher-grade rocks. The mineralization is syn- to late-deformation and typically post-peak metamorphism. It is typically associated with iron-carbonate alteration. Gold is largely confined to the quartz-carbonate vein network but significant amounts may also be present in iron-rich sulphidized wall-rock selvages or silicified sulphide-rich replacement zones. One of the key structural factors for gold emplacement is the late strike-slip movement event that reactivated earlier-formed structures within the orogeny, a condition that has been achieved along the SLDZ.

Note the logarithmic depth scale. Modified from Pulsen et al. (2000).

Figure 8.1 – Types of gold deposits and their inferred deposit clan

8.2 Komatiite-hosted Ni-Cu-PGE

Deposits of this type are associated with ultramafic (komatiite) volcanic flows and related sub-volcanic intrusive bodies. They are broadly divided into two classes based on the style of mineralization and the host rock. Massive to semi-massive sulphide bodies are typically found at the base of stratified komatiite flow sequences (Figure 8.2). Mineralization typically exhibits classic sulphide segregation/settling textures grading down-sequence from disseminated, to net-textured matrix, to massive sulphide. In most productive systems, the thickest accumulation of nickel sulphides occurs at the base of the ultramafic sequence, where it comes in contact with (and appears to have thermally eroded) the basement volcanic-sedimentary sequence. The metal source is the ultramafic magma, which was generated by strong partial melting of a sulphur-undersaturated mantle source. The sulphur is derived from sulphides are melted by the high-temperature komatiite magma. Disseminated sulphide deposits are more commonly associated with sills and dykes that are considered feeders to the ultramafic volcanic flows, with nickel to copper ratios greater than 3:1.

Critical parameters controlling the presence or absence of mineralization include the primary magmatic composition, the availability of a suitable substrate and, most critically, the physical volcanology or magma dynamics in small intrusions. The Grasset Ultramafic Complex is prospective for this type of mineralization.

Source: Lesher and Keays (2002).

Figure 8.2 – Types of komatiite-hosted Ni-Cu-PGE mineralization

8.3 VMS Cu-Zn-(Ag-Au)

VMS deposits are a product of hydrothermal convection systems in the seafloor that are typically established within extensional tectonic settings (Figure 8.3). Thinned lithosphere and magmatism associated with rifting cause heating and changes to the seawater trapped in the adjacent volcanic strata. Heat-induced water-rock reactions result in metal leaching and the formation of hydrothermal convection systems. Long-lived hydrothermal systems ultimately discharge hot, metal-rich hydrothermal fluids from deep-penetrating, synvolcanic faults onto the seafloor or into permeable strata immediately below the seafloor to form VMS deposits. VMS deposits are mined as important sources of zinc, lead, copper, silver and/or gold and may also be endowed with cobalt, tin, selenium, manganese, cadmium, indium, bismuth, tellurium, gallium and germanium. A typical

VMS deposit comprises a concordant lens of massive sulphides (greater than 60% sulphide minerals), underlain by a discordant stockwork zone typically comprising stockwork veins and stringers of vein-hosted sulphides in a pipe-like body of hydrothermally altered rock. The most abundant sulphide mineral is typically pyrite, followed by pyrrhotite, chalcopyrite, sphalerite and galena.

To date, the only known VMS occurences north of the SLDZ are Martiniere East, Grid #2 and Grid #3. However, the Manthet and Brouillan-Fenelon groups on the Property are prospective for this type of mineralization associated with mafic VMS deposits that occur in primitive oceanic back arcs. VMS mineralization associated with the felsic horizons in the eastern claim blocs is also a possibility (e.g., Grasset).

From Morgan and Schulz (2012).

Figure 8.3 – Types of VMS mineralization and tectonic settings

9. **EXPLORATION**

This section presents the Issuer's exploration work on the Property. The work consisted of a geophysical survey, an underground bulk sample, an exploration drift, and an airborne aeromagnetic survey.

The information presented below is mostly based on Richard et al. (2017), Faure et al. (2020) and Savard et al. (2021). Other references are duly indicated.

9.1 Surface Exploration

9.1.1 Historical core resampling

In 2016, the Issuer quickly commenced exploration on the property it had acquired from Balmoral. The program on the renamed Fenelon Gold Property involved a review of historical underground drilling and a sampling program involving previously unsampled historical drill core. The assay results from the first three sample batches included one with visible gold that yielded 89.3 g/t Au over 0.35 m.

The Issuer announced the assay results from the first two batches in the press release of November 16, 2016. Of the 176 samples (179 m), 25 (14%) returned gold values greater than 0.5 g/t. Highlights included:

- 89.30 g/t Au over 0.35 m in DDH 1050-005
- 4.21 g/t Au over 0.72 m in DDH 1100-001
- 3.91 g/t Au over 0.99 m in DDH 1110-001
- 2.55 g/t Au over 1.57 m in DDH FA-02-214

Assay results from the third batch were announced in the press release of December 5, 2016. Of the 275 new samples, 3 samples returned gold values greater than 5 g/t, 29 samples (>10%) returned >0.5 g/t, and 34 samples returned grades ranging from 0.5 g/t to 0.1 g/t. Highlights included:

- 19.7 g/t Au over 1.90 m in DDH 1050-005, including:
 - 47.94 g/t over 0.75 m
 - 89.3 g/t over 0.35 m
- 8.37 g/t Au over 1.25 m in DDH 1040-002; together with historical assays, this forms part of an intersection of 20.17 g/t Au over 6.21 m

9.1.2 Induced Polarization Survey

In January 2019, a ground OreVision® induced polarization ("IP") survey was carried out by Abitibi Geophysics Inc. ("Abitibi Geophysics") to test a 600-m strike length of the goldhosting environment northwest of the Fenelon deposit (Chemam, 2019). Gold in the Fenelon deposit is associated with sulphides and silicification and, since IP surveys are used to detect occurrences of disseminated sulphides (as low as 0.5%) and semimassive to massive, non-conductive clusters (i.e., silicified or electrically discontinuous), IP is therefore an appropriate exploration tool in the current context.

The survey covered 12 lines (from L 6+50W to L 1+00W), each 1.2 km long. The lines were regularly spaced at 50 m intervals. The aim was to map the resistivity and

polarizable properties of the geological formations underlying the Property. The parameters used by Abitibi Geophysics for this survey (a = 25 m, n = 1 to 30) made it possible to push data interpretation to a minimum depth of 300 m below the surface.

Quality control was performed both before and during the data acquisition, and at the base of operations; all the recorded readings were validated (100%).

The validated data were subjected to 3D inversion using the Geosoft DC-IP VOXI platform. The purpose of the inversion process is to convert surface IP/Resistivity measurements into a realistic model. From the resulting resistivity and chargeability models, Abitibi Geophysics generated contour maps of resistivity and chargeability and vertical sections as Oasis Montaj map files.

These results were integrated with existing geophysical data to produce a 3D model, which was used to guide geological modelling and drill targeting.

9.1.3 Airborne Magnetic Survey

The information presented in this section is largely based on Kiavash (2020) and information provided by the Wallbridge geologists (personal communication, March 2021).

A detailed airborne magnetic survey was completed over the Fenelon claim block between June 19 and August 21, 2020. The survey used an unmanned aerial vehicle ("UAV") to fly 4,996 line-km at 20-m line spacing, with tie lines at 200 m. The survey's tight line spacing close to the ground yielded high-resolution data.

Magnetic surveys are considered an important exploration tool for the Property as they help map intrusions (e.g., gabbro and diorite rock units) and outline structures potentially related to the gold-bearing system. Magnetic surveys played a key role in the discovery of mineralization in Area 51, successfully supporting the drill testing of magnetic lows parallel to known gold mineralized zones.

9.1.4 Fenelon, Grasset and Casault Biogeochemical Survey (Tree Bark Sampling)

Tree bark sampling can be a useful tool when exploring for gold in areas with little to no bedrock exposure due to thick overburden. Bark sampling programs were completed on the Fenelon, the Grasset and Casault claim blocks, where overburden reaches more than 100 m thick.

Black spruce bark was sampled by Wallbridge personnel for both the Casault and Grasset programs. Sampled trees must have similar trunk width, height and health, and be in areas of similar tree density. A stainless-steel paint scraper was used to scratch away the textured bark at chest level and the material was caught using a modified dustpan. Approximately 100 g of bark material was collected and stored in paper bags. For quality control, a duplicate sample was taken every 20th sample from the same tree or another tree in the same area.

A total of 159 sample were collected on the Fenelon claim block, including 11 duplicates, a total of 148 samples were collected on the Casault claim block, including 16 duplicates, and 81 samples were collected on Grasset, including 4 duplicates. All samples were processed at the Actlabs laboratories in Ancaster, Ontario, using a process specifically designed for this type of biogeochemical survey (lab code "2G"). The samples were dried

before being dissolved in acid and analyzed for a 63-element suite by inductively coupled plasma mass spectrometry (ICP-MS).

For the survey on the Fenelon claim block, two N-S lines were completed, 850 m apart, totaling 3.5 km and were sampled at a 25 m spacing between samples. Line one, the East line, was located to the Southeast of the mine site (historical open pit and ramp of the Fenelon deposit), east of Area 51. The second line, the West line, was located over the western portion of Fenelon mine site drilling, where some drill holes intersected mineralization near surface.

The initial observation from the raw biogeochemistry data shows promising results although the effect of glacial dispersion appears to influence some of the elements. The program also helped determine the elements useful to detect mineralization for the Fenelon deposit within till covered bedrock: Ag, As, B, Ba, Bi, K, Ca, Fe, Hg and Ti.

The southern part of the East line showed an anomaly in Au, As, Cu, Ag, Bi, Pb and Ti that does not correlate to any known mineralization. Anomalies on the West line in Au, As, Cu, Ag, Bi, Sb, Pb, Ti, Tl and Th were observed above the mineralization near surface intersected by drill holes; other zones with projected low-grade shells close to surface do not show similar anomalies on the West line.

For the survey on the main Casault claim block, two sets of 2 lines were completed on the Vortex and Casault South zones, with 300 m between lines and 50 m between samples. The objective of the Casault biogeochemical survey was to:

- Correlate known gold occurrences (in the Vortex Zone) with biogeochemical results; the center of the western transect overlies one of the highest gold intersections of the Property.
- Identify anomalies to generate potential drill targets.

The initial observation from the raw biogeochemistry data shows an isolated high gold occurrence in this area. At Casault South, the northern portion of the eastern transect presents punctual gold anomalies associated with a slight elevation in bismuth. Copper is also anomalous in that part of the survey. However, a significant amount of the anomalous values is dispersed over the different sampling locations, making it difficult to generate targets with this survey alone.

For the Grasset survey, 2 offset lines with 400 m spacing between samples were completed in a grid system and had a density of 16 samples/km². The main objective was to identify anomalies to generate potential drill targets.

A Fe, Ni, Cr and Mg anomaly was identified that is a possible extension of the ultramafic suite that host the Grasset Ni-Cu-PGE deposit. Additionally, pathway elements for gold (Bi, Mo and As) were also locally anomalous and could represent possible presence of gold mineralization in the area.

Follow-up work and further treatment will be completed to assess all of these anomalies and determine if they are representative of possible mineralization in the areas sampled.

9.1.5 Casault and Casault East Mapping Program

Small mapping programs were completed by Wallbridge personnel on the main Casault claim block in summer 2021 and on the eastern Casault claim blocks in fall 2021.

Multiple outcrops of mafic volcanic rocks and gabbro were observed during the 4-day summer mapping program. Veins included milky quartz vein and carbonate-epidote veins with trace pyrite. A total of 15 samples were collected with one blank for QC. All samples were sent for gold analysis by fire assay and whole rock analyses, and one of the samples was sent for additional metals analysis.

For the fall program, a small mapping program was completed on the eastern part of the Casault claim block. Four outcrops were examined during three days of mapping. Three of the outcrops were mafic volcanics with quartz-carbonate veins with some displaying chlorite margins. Seven (7) samples were collected from this outcrop (4 from veins and 3 from mafic volcanics). The last outcrop was finely bedded argillite or mudstone; no veins were observed on the outcrop (1 sample was collected; not assay). The seven (7) samples from the veined volcanic outcrop were sent for gold by fire assay along with one blank for quality control), and three (3) of the outcrop samples were also sent for whole rock analyses.

The analytical results of these mapping programs are still pending (as of November 29, 2021).

9.2 Underground Exploration

9.2.1 Bulk Sample

Following the 2017 drilling program, the Issuer updated the interpretation of the mineralized zones and planned a bulk sampling program. Dewatering of the Fenelon pit and underground infrastructure was completed by mid-Q2 2018. Underground development began on June 10, 2018.

The bulk sampling program was completed in Q1 2019. As part of this program, the Issuer completed approximately 2,100 m of underground development, establishing four mining horizons and the infrastructure required to mine the first vertical 100 m of the deposit. The development program was designed to meet the operating requirements for a 400 tpd operation.

From September 2018 to February 2019, ore was processed at the Camflo Mill near Vald'Or. Production was from five (5) stopes and from the low-grade ore that remained after the 2004 bulk sample. The Issuer's bulk sampling plan included this low-grade ore as part of the first mill run while milling performance was optimized. Lessons learned from the first mill run were applied to the next mill runs to achieve recoveries of more than 98%.

The results of the 2018-2019 bulk sample were as follows:

- Stope grades ranged from 10.94 to 38.33 g/t Au
- 33,233 t of ore yielded a reconciled average grade of 18.49 g/t Au containing 19,755 oz
- 2,277 t of low-grade ore (the remaining material from the 2004 bulk sample) yielded a reconciled grade of 4.23 g/t Au for a gold content of 310 oz

These results were used to calibrate the Gabbro Zones interpolation parameters for the Detour-Fenelon Gold Trend mineral resource estimation.

nary Table Fenelon Gold 2018/2019 Bulk Sample Stopes Sum Mill Reconciled Drift/Stope material Contained Recovered Mill Run # Tonnes Au g/t Recovery WALLBRIDGE Au Ounces Au Ounces CH-01 Stope 4,823 16.82 2,608 2,120 81% 182 **Development Or** 1, 2, 3, 8, 4 4,615 16.03 2,378 2,362 99% NV-01 Stope 4,852 10.94 1,706 1,696 99% CH-02 Stope 1,368 18.34 806 802 99% 283 NV-02 Stope 2.735 17.99 1.582 1.572 99% NV-03 Stope 4,453 38.33 5,488 5,450 4 99% 2004 U/G NV-04/05 Stope 10,386 15.53 5,186 97% 5 Developm Total 33,233 18.49 19,755 19,037 Open Pit NV-0 CH-02 NV-0 Stope Mined NV-05 2018/2019 Bulk Sample 2018/2019 U/G Development NV-04 5130 Level (~125 m depth) Fenelon Gold **3D view** Exploration Drift Looking Northeast Development May 13, 2019

Figure 9.1 provides a 3D view of the development for the bulk sample and the stopes that were mined. A summary of the results is also shown.

Figure 9.1 – 3D view and results of the 2018-2019 bulk sample

9.2.2 Exploration Drift

Since 2019, the Issuer has been developing an exploration drift that starts from the 2018/2019 underground bulk sample development. The new exploration drift has made it possible to drill to greater depths (approx. 350-400 m) and further along strike, including into the Tabasco and Cayenne zones and the Area 51 system. To the date of this publication, there has been approximately 1,700 metres developed in 2021 between Area 51 and Tabasco areas providing underground drill platforms for exploration drilling campaigns and access for a possible new bulk sample if the milling results demonstrate a need for one.

10. DRILLING

This section includes a summary of the Issuer's drilling activities on the Property from February 2, 2017 to October 31, 2021. The 2021 drill holes were concentrated on the Fenelon claim block and to a lesser extent on the Casault and Martiniere claim blocks. A drilling campaign was underway at of the effective date of this report.

Drilling data was provided by the Issuer's geology team or obtained by the QPs during their site visits and subsequent discussions.

Highlights of historical drilling by the former owner are presented in Item 6.

10.1 Drilling Methodology

Drilling was carried out by Jacob & Samuel Drilling Ltd (2017 and 2021), Foraco Canada Ltd (2018), Youdin-Rouillier Drilling and Major/Norex Drilling (2019, 2020 and 2021). Drilling was conducted with NQ caliber (47.6 mm core diameter) and included downhole orientation surveys. The surveys were performed by the contractor and results were transferred to Wallbridge geologists digitally or on paper after each work shift.

Deviation surveys in 2017 consisted of single-shot measurements taken every 30 m while drilling using a Reflex tool (REFLEX EZ-SHOT[™]), and multi-shot measurements every 10 m in the completed hole using the North-Seeking Gyro instrument.

In 2018, 2019, 2020 and 2021, deviation surveys used the REFLEX EZ-TRAC[™] and REFLEX GYRO SPRINT-IQ[™] tools to record deviation measurements every 6 to 12 m for underground drill holes, and the REFLEX EZ-GYRO[™] tool every 12 m for surface drill holes.

Since September 2018, oriented core has been obtained from most surface and underground holes using the REFLEX ACT III RD[™] system.

Wallbridge geologists used front sight and back sight stakes to align the direction of drilling at the collar position. The drillers aligned the rig with these markers and started the hole. In 2017, the geologists used the Mazac Easy Aligner to set up the sight markers, but the REFLEX TN14 GYROCOMPASS[™] has been used since 2018. Collars were later surveyed by the Issuer's surveyors using an RTK system or a Total Station.

Generally, holes are drilled with maximum stabilization using 6-m hexagonal core barrels with a 36" or 18" shell on surface and 3-m hexagonal core barrels with an 18" shell underground.

As per standard Wallbridge procedures, the driller helper places the core into core boxes at the rig, marking off every 3-m run with wooden blocks. Once a box is full, the helper wraps it in tape. Drillers deliver the core to the Issuer's core logging facility daily.

When the hole is completed, the collars of surface holes are capped with metal reflective flags, whereas underground holes are marked with metal tags screwed either into the rock or to the casing displaying the hole number.

10.2 Core Logging Procedures

In the core shack, Wallbridge employees place the boxes on logging tables and check that the core is continuous and that distances are correctly indicated on the wooden

blocks placed every 3 m. The core is measured, and each box labelled with an aluminum tag displaying the hole number, box number and depth interval. The geologists rotate the core so that all the pieces are oriented one way, showing a cross-sectional view.

When working with the REFLEX ACT III RD[™] system to produce oriented drill core, the core is lined up according to the driller's marks drawn at the end of each 3-m drill interval indicating the lower portion of the drill hole. Once the geologist can join all the pieces of core back together in a 3-m interval, a blue line joining the marks is traced on the underside of the core.

For every 3-m run, the total length of fragments shorter than 10 cm is recorded in the RQD log, and the number of naturally occurring fractures in each section are counted and recorded. If core loss is observed, this is also entered. The log automatically calculates the RQD value for the section. Core recovery percentages are calculated over the same sections.

Geological logging is then performed, recording the following features in the acQuire software: lithology, grain size and texture, colour, alteration type and strength, sulphide type and concentrations, veining details (type, width and density), and structural features (foliation, shearing, brecciation, faulting).

If the core is oriented, the alpha and beta angles of structural features are measured using a protractor and a metal ring tool, respectively.

Geologists have access to an XRF analyzer for rapid material characterization. The XRF analyzer is mostly used to help geologists identify uncertain lithological units.

Sampling intervals are marked with a red marker. Sample boundaries respect lithological boundaries and/or major changes in alteration/mineralization. Sample numbers are written on the core boxes corresponding to the pre-printed sample tags placed in the box for each sample interval. A photographic record of both dry core and wet is taken of every core box and stored on the server and also uploaded on Wallbridge's Imago Cloud Library, whereas it will be archived.

Sample lengths typically range from 0.5 to 1.5 m. Once logged and labelled, samples are sawn in half using a circular rock saw. One half of the core is placed in a plastic bag along with a detached portion of the unique bar-coded sample tag for shipment to the laboratory, and the other half of the core is returned to the core box and the remaining tag portion is stapled in place.

The witness drill core is stored onsite, either outside in core racks or in the Megadome structure. An Excel spreadsheet serves as an inventory of the location of every box in the core storage area.

10.3 2017 to 2021 Drilling Programs

The Issuer drilled 553 holes (surface and underground) on the Fenelon claim block from 2017 to October 31, 2021, for a total of 312,832 m. Table 10.1 summarizes the Issuer's annual drilling totals.

Figure 10.1 shows the positions of the holes by year on the Fenelon claim block, Figure 10.2 shows the 2021 holes on the Martiniere block and Figure 10.3 shows the 2021 holes on the Casault block. The reader is referred to Figure 7.7 and Figure 7.8 for

representative examples of drill sections on the Fenelon deposit, Figure 7.11 for the Martiniere deposit and Figure 7.9 for the Grasset deposit.

		Surface		Und	erground	Total		
Year	Claim Block	DDH Count	Length (m)	DDH Count	Length (m)	DDH Count	Length (m)	
2017	Fenelon	33	6,346	-	-	33	6,346	
2018	Fenelon	21	7,412	92	10,902	113	18,314	
2019	Fenelon	64	45,830	167	31,556	231	77,386	
2020	Fenelon	127	96,889	49	3,130	176	100,019	
2021	Fenelon	197	95,592	6	1,214	203	96,806	
up to	Casault	13	5,292	-	-	13	5,292	
October 31 st , 2021	Martiniere	13	8,669	-	-	13	8,669	
TOTAL		468	266,030	314	46,802	782	312,832	

Table 10.1 – Summary of 2017 to 2021 drilling programs

Some of the regional holes (remote from current mineral resources) were drilled by Balmoral prior to being acquired by Wallbridge in 2020. Please refer to Table 10.1 for the DDH count completed by the Issuer during these years.

Figure 10.1 – Holes drilled on the Fenelon claim block from 2017 to 2021

Figure 10.2 – Holes drilled by Wallbridge on the Martiniere claim block in 2021

Figure 10.3 – Holes drilled by Wallbridge on the Casault claim block in 2021

10.3.1 2017 Drilling Program

In 2017, the main objective was to use surface drill holes to expand the exploration targets near existing infrastructure and above a depth of 150 m. Mineralization was confirmed to a distance of 120 m from the existing deposit, and two new gold-bearing structures were identified.

Table 10.2 presents the significant results of the 2017 program.

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/Corridor
FA-17-07	122.10	129.16	7.06	141.16	
FA-17-17	134.86	137.92	3.06	311.08	Naga Viper
FA-17-26	139.83	146.85	7.02	260.44	
FA-17-27	130.12	134.85	4.73	80.42	Habanero
FA-17-31	45.60	46.62	1.02	18.95	Cayenne
FA-17-32	105.55	106.21	0.66	11.30	Habanero

Table 10.2 – Significant results of the 2017 drilling program

10.3.2 2018 Drilling Program

In 2018, the Issuer conducted an underground and surface diamond drilling program.

The underground campaign ran from early June to the end of December. The aim of the surface program, which ran from August to December, was to follow known mineralized zones to depths of 300 to 400 m and to test for additional zones away from the mine workings.

Mineralized zones containing chalcopyrite, an indicator mineral for the gold-bearing system, were intersected in nine (9) of the holes. Visible gold was observed in two drill holes, FA-18-038 at a vertical depth of 325 m and drill hole FA-18-051 at a vertical depth of 380 m, making them the deepest occurrences of visible gold at that time on the Property. Other deep (500 to 650 m) holes drilled during the program (FA-18-040, FA-18-044 and FA-18-047) confirmed the depth extensions of the host lithologies (i.e., gabbro) and the mineralized shear zones.

Table 10.3 presents the highlights of the 2018 drilling program.

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/ Corridor	Target		
18-1035-019	72.50	77.35	4.85	137.63	Naga	High-grade shoots down to the 5130		
18-1035-005	58.77	64.90	6.13	48.81	Viper	level (~120 m depth) using a spacin		
18-1035-017	56.00	66.13	10.13	50.31	Chipotlo	model and demonstrate the continuity		
18-1035-013	27.36	29.48	2.12	144.96	Criipolie	of high-grade shoots.		

 Table 10.3 – Significant results of the 2018 drilling program

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/ Corridor	Target
18-5175-021	104.45	110.55	6.10	144.77		
18-0990-007	132.02	134.97	2.95	122.35	Naga	The high-grade domain in this
18-0990-011	104.41	112.20	7.79	54.45	Viper	over 20 drill intersections.
18-0990-010	111.40	116.92	5.52	41.02		
18-0990-017	106.83	108.53	1.70	134.57	Chipotle	
18-1000-009	31.23	33.39	2.16	87.63	Fresno	The western end of the Main Gabbro
18-1030-009	77.58	81.00	3.42	35.91	Naga Viper	zones.
FA-18-051	501.46	506.24	4.78	3.13		A previously unknown, approximately
and	543.00	552.96	9.96	4.09	A === 54	200-m-wide package of favourable
and	593.50	596.90	3.40	5.16	Area 51	low-grade gold mineralization
and	633.00	634.44	1.44	5.92		throughout.
FA-18-038	440.46	441.46	1.00	29.90	Tabasco	Interpreted to be the depth extension
FA-18-038	213.39	216.38	2.99	4.70	Habanero	of the Tabasco Zone.
FA-18-040	276.00	276.58	0.58	19.18	Cayenne	Extends the Cayenne Zone approximately 100 m to the northwest.
FA-18-040	531.00	534.27	3.27	3.08	Tabasco	A new zone at depth in the Tabasco South area.

10.3.3 2019 Drilling Program

The underground infill drilling component of the 2019 drilling program was designed to extend known zones below the 2018/2019 bulk sample development to a depth of 350 m. It was performed from the 5150 level and from the 230-m-long exploration drift on the 5130 level (125 m depth). The completion of this exploration drift by the end of February 2019 facilitated mineral resource drilling to greater depths (approximately 350-400 m) and along strike, including the Tabasco and Cayenne corridors, as well as the newly discovered Area 51 system.

The surface exploration drilling component expanded the footprint of the Fenelon Gold System to a strike length of 1,000 m, a width of 600 m along the margin of the Jérémie Pluton, and a vertical depth of 850 m. In addition to the known NW-SE structural trend, the campaign confirmed the Area 51 Zone as an ENE-WSW trend controlling high-grade mineralization.

Table 10.4 presents the highlights of the 2019 drilling program.

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone/ Corridor	Target
FA-19-052	477.56	576.47	98.91	2.81		The first hole of the 2019 surface drilling
including	565.25	576.47	11.22	15.93		program (FA-19-052) confirmed the
and	493.76	500.00	6.24	8.71	Area 51	unknown corridor that had been discovered
and	482.90	485.50	2.60	4.57		In the last hole of the 2018 program (FA- 18-051), approximately 300 m west of the
and	516.34	518.70	2.36	5.63		bulk sample area.
FA-19-059	665.70	676.74	11.04	17.58	Cayenne	The high-grade gold mineralization hosted by the Main Gabbro was also extended to a vertical depth of 600 m.
FA-19-086	595.67	643.68	48.01	22.73		A shear zone in near-surface sediments,
FA-19-103	785.00	804.00	19.00	43.47	- .	the Tabasco Zone is extended to a vertical depth of 850 m, showing continuity and
FA-19-094	717.45	727.15	9.70	32.18	Tabasco	increasing gold endowment with depth as it
FA-19-099	1008.45	1044.00	35.55	4.16		like the Jérémie Pluton or the Main Gabbro.
FA-19-052	362.50	590.30	227.80	1.46		
including	565.25	576.47	11.22	15.93		
FA-19-080	131.84	202.83	70.99	1.21		Operationality of animality data in the Anna 54
including	131.84	139.13	7.29	5.13	Area E1	system is now suggested by several
FA-19-059	307.83	386.15	78.32	1.02	Alea ST	intersections that include wide intersections
including	368.55	386.15	17.60	3.28		
FA-19-065	321.95	513.85	191.90	0.98		
including	463.47	476.18	12.71	5.00		
FA-19-089	714.12	714.63	0.51	83.18	Geological- geophysical target	Potential for Area 51-style gold mineralization along the approximately four-kilometre strike length of the Jérémie Diorite.

Table 10.4 – Significant results of the 2019 drilling program

10.3.4 2020 Drilling Program

Six (6) drill rigs were operating on the Property for the 2020 drilling program. Five (5) concentrated on exploration drilling from surface, forming widely spaced step-outs to define the footprint of the Fenelon Gold System, with a particular focus on testing Area 51. The sixth rig was used for closely spaced underground definition drilling in the Main Gabbro zones near the mine's underground workings.

Table 10.5 presents the highlights of the 2020 drilling program.

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target		
FA-20-181	699.00	799.60	100.60	5.07				
FA-20-128	844.00	900.00	56.00	4.84	Tabasco-	Expands the Tabasco-Cayenne-		
FA-20-134	1001.45	1053.15	51.70	4.06	zones	original Fenelon Gold Property		
including	1001.45	1005.10	3.65	41.01				
FA-20-116	617.50	676.00	58.50	1.70				
FA-20-113	585.10	667.50	82.40	1.01				
FA-20-186	99.60	174.00	74.40	1.24				
FA-20-115	510.50	549.00	38.50	2.06				
FA-20-116	661.15	676.00	14.85	5.77		Potentially open pit / bulk-mineable intercepts		
FA-20-115	510.50	517.00	6.50	9.28	Jérémie Diorite- hosted Area 51			
19-0915-020	411.20	417.20	6.00	7.18				
FA-20-107	541.75	545.85	4.10	19.55				
FA-20-118	387.00	387.50	0.50	307.74				
FA-20-128	166.60	167.20	0.60	121.00				
19-0915-025	226.90	227.60	0.70	78.21				
FA-20-160	508.00	513.35	5.35	13.03				
including	512.75	513.35	0.60	106.00	Area 51 West	Expands the Area 51 vein network		
FA-20-165	275.40	281.05	5.65	6.76	Extension	500 m to the west		
including	276.90	278.85	1.95	18.89				
FA-20-185	73.55	94.00	20.45	5.95		Demonstrates the growing open pit		
and	124.00	164.95	40.95	1.05	Western part of	mineral resource potential, especially in Area 51. Near-surface		
FA-20-186	99.60	174.00	74.40	1.24	Area 51	intercepts in the western part of Area 51		
FA-20-219	373.60	390.00	16.40	17.79	Gabbro Zones:	Discovery drill hole of the Eastern		
including	374.70	378.00	3.30	76.98	Eastern Extension	Extension of the Gabbro Zones located approximately 140 m along		
and	384.70	390.00	5.30	6.65		strike to the east		

Table 10.5 – Significant results of the 2020 d	Irilling program
--	------------------

10.3.5 2021 Drilling Program

The 2021 underground and surface diamond drilling programs were still underway as of the date of this report writing.

One (1) drill rig was operating underground, committed to the infill drilling program on the Tabasco-Cayenne zones. The rig started drilling, from the exploration drift in late September.

Nine (9) drill rigs were dedicated to the surface expansion and definition drilling on the Fenelon Gold System and the regional drilling program on the Detour-Fenelon Gold Trend. The focus of the definition and exploration program was the infilling of the

Tabasco-Cayenne zones and the western extension of the Area 51 zone. The regional drilling programs on the Martiniere and Casault claim blocks tested the possible extensions of the Martiniere mineralized zones and the grassroots exploration targets on Casault.

Table 10.6 presents the highlights of the 2021 program.

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target	
FA-21-297	38.65	52.70	14.05	11.60			
including	38.65	39.15	0.50	201.00		Expand Area 51 near surface footprint to the northwest.	
and	47.70	48.20	0.50	117.00			
FA-21-228	124.50	130.20	5.70	34.99		Expand Area 51 near surface	
including	124.50	125.05	0.55	351.00		footprint to the southwest.	
FA-21-269	62.40	87.30	24.90	23.70		Expand Area 51 near surface	
including	84.40	87.30	2.90	196.29		western-southwestern portion.	
FA-21-241	277.00	324.50	47.50	3.46	Area 51		
including	295.35	297.85	2.50	52.38			
FA-21-247	269.00	302.70	33.70	1.04		Demonstrate Area 51 high-grade	
including	298.70	302.70	4.00	5.31		300 m vertical depth.	
FA-21-264A	319.40	332.90	13.50	1.93			
and	403.60	404.10	0.50	92.38			
FA-21-224	872.20	883.00	10.80	2.23		Demonstrates the gold	
including	872.20	876.20	4.00	4.12		Zone below 300 m vertical depth.	
FA-21-221-W4	1067.95	1072.50	4.55	16.67			
FA-21-226-W1	1084.15	1094.50	10.35	8.57	Tabasco-	Demonstrates the continuity of	
including	1084.15	1086.80	2.65	29.94	Cayenne-Contact	high metal factor of the Tabasco	
FA-21-226-W1-W2	1038.00	1076.10	38.10	4.99	Zone		
including	1067.00	1075.50	8.50	15.81			
FA-21-305	232.00	242.00	10.00	9.00	Gabbro Zones -	Confirms the presence of strong gold mineralization of the	
including	236.50	239.85	3.35	18.56	East Extension	previous discovery hole at east of the Main Gabbro Zone.	
MDE-21-326	300.00	322.50	22.50	3.68		Expands the Bug Lake North,	
including	301.60	303.60	2.00	13.78	Martiniere Bug Lake North	approximately 100 m down- plunge of previous historic	
and	309.00	314.00	5.00	6.45		intersections.	
MDE-21-328	805.40	842.00	36.60	2.21	Martiniere Bug	Expands the zone, approximately	
including	805.40	808.50	3.10	14.15	Lake South	historic intersections.	

Table 10.6 – Significant results of the 2	2021 drilling program
---	-----------------------

Hole ID	From (m)	To (m)	Core Length (m)	Au (g/t)	Zone	Target
and	825.00	827.00	2.00	10.18		
MDE-21-330	649.50	660.00	10.50	3.83		Expands the zone at approximately 150 m down-
including	650.90	655.50	4.60	6.84		plunge from the previous historical intersections.
CAS-21-123	254.50	256.50	2.00	6.85	Casault	Grassroots exploration target testing interpreted structure on magnetic airborne survey in the northern part of the Casault Property.

11. SAMPLE PREPARATION, ANALYSES AND SECURITY

This item describes the Issuer's sample preparation, analysis and security procedures on the Fenelon claim block from 2017 to 2021, and those of Balmoral on the Grasset claim block in 2015 and the Martiniere claim block from 2011 to 2018.

11.1 Fenelon Claim Block

This section discusses the Issuer's procedures for the diamond drilling programs from February 2, 2017 to October 31, 2021, herein referred to by their respective year. The Issuer's geology team provided the information discussed below. The QPs reviewed the QA/QC procedures and the results for those programs. The QA/QC results of the 2021 program (from January 1, 2021 until the database close-out date of September 10, 2021) are presented below. The results of the 2020 program are presented in Savard et al. (2020).

11.1.1 Core Handling, Sampling and Security

The drill core is boxed and sealed at the drill rigs and delivered daily by road or helicopter to the logging facility where a Wallbridge technician takes over the core handling. Drill core is logged and sampled by experienced geologists or by a geologist-in-training under the supervision of a qualified geologist. A geologist marks the samples by placing a unique ID tag at the end of each core sample interval. Core sample lengths vary from 0.5 to 1.5 m, and sample contacts respect lithological contacts as well as changes in the appearance of mineralization or alteration (type and/or strength). Digital photographs of the marked and tagged core are taken for archival purposes. A Wallbridge technician saws each marked sample in half. One half of the core is placed in a plastic bag along with a detached portion of the unique bar-coded sample tag, and the other half of the core is returned to the core box and the remaining tag portion stapled in place. The core boxes are stockpiled or stored in outdoor core racks for future reference. Individual sample bags are placed in rice bags along with the list of samples.

QA/QC samples are prepared and bagged ahead of time by Wallbridge personnel and are batched at the core shack according to the geologist's instructions.

For the 2017 program, samples were prepared and assayed at the ALS Minerals ("ALS") laboratory facility in Val-d'Or, Quebec. Samples from the 2018 and 2019 programs were prepared by SGS Canada Inc. ("SGS") in Val-d'Or and analyzed at either their Lakefield laboratory in Ontario or their Burnaby laboratory in British Columbia. From fall 2019 to the end of the 2020 program, samples were submitted to both laboratories: SGS and ALS. For the 2021 program, samples were submitted to SGS, Bureau Veritas Mineral Laboratories ("Bureau Veritas"), and AGAT Laboratories ("AGAT"). Samples submitted to Bureau Veritas were prepared and assayed at their Timmins laboratory in Ontario, and samples submitted to AGAT were prepared in Val-d'Or and analyzed at their Mississauga laboratory in Ontario. For the 2021 program, the laboratories were chosen based on drill but also for the type of program (e.g., infill sampling). Having multiple laboratories provided also an option when turnaround time at one of the laboratories was becoming too long.

11.1.2 Laboratory Accreditation and Certification

All four laboratories (SGS, ALS, Bureau Veritas and AGAT) have received ISO/IEC 17025 accreditation through the Standards Council of Canada ("SCC"). They are all independent of the Issuer and have no interests in the Property.

11.1.3 Laboratory Preparation and Assays

11.1.3.1 ALS

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, and the entire sample is crushed to 90% passing a 2 mm screen. A split of up to 1,000 g is taken using a riffle splitter, and pulverized to better than 95% passing a 106-micron screen for the 2017 program and 85% passing a 75-micron screen for the 2019 and 2020 programs.
- Samples are analyzed for gold by fire assay ("FA") with atomic absorption spectroscopy ("AA") from 50 g pulps. The method used is Au-AA26, with a reporting range of 0.01 to 100 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold (since 2018), a metallic sieve analysis is performed from the 1 kg split or the remaining reject, and a new pulp is obtained and screened at 100 µm.
- Assay results are provided as Excel spreadsheets and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions are returned to the original sample bags.
- The remainder of the crushed samples, referred to as sample rejects, are sent to the Issuer's Sudbury office for storage.

11.1.3.2 SGS

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, and the entire sample is crushed to 90% passing a 2 mm screen. A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 95% passing a 106-micron screen for the 2017 and 2018 program and 85% passing a 75-micron screen since the 2019 program.
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is GE_FAA515, with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold (since 2018), a metallic sieve analysis is performed from the 1 kg split. In the case of insufficient sample for the analysis, the overrange test is performed by

GO_FAG505, which is FA with gravimetric ("GRAV") finish from 50 g pulps (the lower limit for that method is 0.5 g/t).

- Assay results are provided on Excel spreadsheets and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portion returned to the original sample bag.
- The remainder of the crushed samples (the sample rejects) are sent to the Issuer's Sudbury office for storage. Since the start of the 2021 program, that remainder of the crushed samples (the sample rejects) and pulverized pulps have been disposed by the laboratory once the QA/QC review is completed and the pulp samples have been selected, pulled and shipped for the external check analysis (normally, pulps are discarded after 90 days and rejects are disposed after 60 days).

11.1.3.3 Bureau Veritas

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, weighed (WGHT) and the entire is sample crushed to 90% passing a 2 mm screen (CRU90). A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 85% passing a 75 µm screen (PUL85).
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is FA450, with a reporting range of 0.005 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold, a metallic sieve analysis is performed from the 1 kg split (FS652). In the case of insufficient sample for the analysis, the overrange test is performed by FA550-Au, which is FA with GRAV finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions returned to the original sample bags.
- The remainder of the crushed samples (the sample rejects) and pulverized pulps are disposed of by the laboratory once QA/QC review is completed and pulp samples are selected, pulled and shipped for the external check analysis (usually pulps are disposed of after 90 days and rejects are disposed of after 60 days)

11.1.3.4 AGAT

- Samples are sorted, bar-coded and logged into the laboratory tracking program.
- Each sample is dried, weighed and the entire sample is crushed to 90% passing a 2 mm screen. A split of up to 1,000 g is taken using a riffle splitter and pulverized to better than 85% passing a 75-micron screen.
- Samples are analyzed for gold by FA with AA from 50 g pulps. The method used is 202-551, with a reporting range of 0.002 to 10 g/t.
- When assay results are higher than 10 g/t Au or contain visible gold, a metallic sieve analysis is performed from the 1 kg split. In the case of insufficient sample for the analysis, the overrange test is performed by 202-564, which is FA with GRAV finish from 50 g pulps (the lower limit for that method is 0.5 g/t).
- Assay results are provided on Excel spreadsheets and the official certificate (sealed and signed) as a PDF.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions returned to the original sample bags.
- The remainder of the crushed samples (the sample rejects) and pulverized pulps are disposed of by the laboratory once QA/QC review is completed and pulp samples are selected, pulled and shipped for the external check analysis (usually pulps are disposed of after 90 days and rejects are disposed of after 60 days)

11.1.4 Quality Assurance and Quality Control

The Issuer's QA/QC program for drill core includes the insertion of blanks and standards in the core sample stream. About 10% of the samples were control samples in the sampling and assaying process. One (1) standard and one (1) blank sample of barren rock were added to each group of 20 samples sent for FA analysis as an analytical check for laboratory batches.

During the 2017 program, an additional protocol was implemented in which two (2) blanks were inserted after every visible gold occurrence. In mid-July 2018, the procedure was revised to include one (1) blank for every 10 samples submitted for FA-metallic sieve analysis.

Duplicates were not part of the Issuer's QA/QC program, although a check assaying (5%) on pulps is performed using a third laboratory to validate the assays from the two main laboratories.

The Issuer's geologists were responsible for the QA/QC program and database compilation. Upon receiving the analytical results, they extracted the results for blanks and standards to compare against the expected values. If QA/QC acceptability was achieved for the analytical batch, the data were entered into the project database; if not, the batch was retested.

11.1.4.1 Certified reference materials (standards)

Accuracy is monitored by inserting CRMs at a rate of one CRM for every 20 samples submitted. From the 2017 program to the beginning of the 2020 programs, the standards from CDN Resource Laboratories Ltd (based in Langley, British Columbia) were used

exclusively. From the beginning of the 2020 program, the standards were obtained from OREAS (based in Melbourne, Australia) and gradually replaced the previously used ones. The definition of a QC failure is when an assay result for a standard falls outside three standard deviations ("3SD"). Gross outliers are excluded from the standard deviation calculation.

For the 2021 program (before the database close-out date of September 10, 2021), 4,041 standards were assayed using three (3) different CRMs ranging from 0.542 g/t Au to 8.57 g/t Au. A total of 100 standards returned results outside 3SD, for an overall success rate of 97.8% (Table 11.1). In the event of a result outside 3SD (outliers and gross outliers), the Issuer took actions to explain the cause of the abnormal value (e.g., incorrect submissions to the laboratory or sequencing issues). When no satisfactory explanation could be found, a re-run of the failed sample sequence was performed (about 10% of the failed samples).

Overall, the results exhibit a slight positive bias in terms of accuracy with an average of -0.57% for standards. The precision for most CRMs is between 1.6% and 3.5%. Both parameters comply with standard industry criteria.

The QPs are of the opinion that the QA/QC results for the standards and the approach used during the Issuer's drilling programs are reliable and valid.

CRM	CRM Value (g/t Au)	Quantity Inserted	Average (g/t Au)	Accuracy %	Precision %	Outliers	Gross Outliers	% passing QC
OREAS 228B	8.57	9	8.6323	0.7	3.1	0	0	100.0
OREAS 238	3.03	2127	2.9866	-1.4	1.6	76	3	96.4
OREAS 231	0.542	1905	0.5366	-1	3.5	17	4	99.1

 Table 11.1 – Results of standards used in the 2021 drilling program

11.1.4.2 Blank samples

Contamination is monitored by the routine insertion of a barren sample (blank) which goes through the same sample preparation and analytical procedures as the core samples.

A total of 4,008 blanks were inserted in the batches from the 2021 program (before database close-out date of September 10, 2021). The blanks were derived from barren rock (crushed decorative pink quartz).

The Issuer's QA/QC protocol stipulates that if any blank yields a gold value above five times the detection limit ("5DL"), then two (2) to four (4) samples on either side of the blank should be re-analyzed to determine whether smearing had occurred while processing the sampling sequence.

A total of 27 samples (0.70%) returned grades higher than 5DL (Table 11.2).

The QP is of the opinion that the QC results for the blanks used during the Issuer's drilling programs are reliable and valid.

Laboratory	Method	Acceptance limit 5DL (ppm)	Quantity inserted	Quantity failed	% passing QC
SGS	FA	0.025	2078	13	99.4%
SGS	Metallic screen FA	0.05	147	6	95.9%
Bureau Veritas	FA	0.025	982	2	99.8%
AGAT	FA	0.01	595	6	99.0%
AGAT	Metallic screen FA	0.05	19	0	100.0%
Total			3821	27	99.3%

Table 11.2 – Results of blanks used in the 2021 drilling program

11.1.5 Conclusions on QA/QC for the Fenelon Claim Block

The statistical analysis of the QA/QC data did not identify any significant analytical issues. The QPs are of the opinion that the sample preparation, analysis, QA/QC and security protocols used during the drilling programs on the Fenelon claim block (Fenelon deposit) follow generally accepted industry standards, and that the data is valid and of sufficient quality to be used for mineral resource estimation purposes.

11.2 Martiniere Claim Block

This section discusses Balmoral's sample preparation, analysis and security procedures for its 2011 to 2018 drilling programs on the Martiniere claim block (Martiniere deposit). The procedures were reviewed by an independent QP and the findings presented in Voordow and Jutras (2018) and they were also described in Lustig (2012b, 2013, 2014a, 2014b, 2015, 2016b, 2017, 2018 and 2019) who conducted a review of the QA/QC results from the 2012 to 2018 programs. All the QA/QC reviews mentioned above were provided by the Issuer.

11.2.1 Core Handling, Sampling and Security

Newly drilled core was placed into routered wooden trays, covered with a lid and then transported to the core logging facility by helicopter or snowmobile. Core was then logged by geotechnicians and geologists, after which the sampling intervals were marked on by the geologist and the core was photographed. Core marked for sampling was then split with a diamond blade saw, with one half submitted for geochemical assay and the other retained in the core box for reference.

Samples taken for geochemical assay were placed into a clear polyethylene bag together with a waterproof ID tag, which was then sealed with a cable tie and placed, together with 5-10 other sample bags, into a rice bag. The rice bag was then sealed with a non-resealable plastic security tag. A "sample shipment" comprised a group of rice bags containing all of the samples from a single drill hole, which would be shipped out together to facilitate sample tracking. Shipments were transported to ALS in Val-d'Or by Balmoral personnel (2011) or a contracted expeditor provided by Outland Camps of Amos (2012-

2017). Upon arrival in Val-d'Or, an ALS employee would sign the "Request for Analysis" form to verify that the full shipment had been delivered with no unbroken security tags.

Since the first drill campaign in winter 2011, Balmoral has submitted 102,389 core samples for gold assay. Ninety percent of these core samples were processed and analysed by ALS's analytical facilities in Val-d'Or and the remaining 10% at ALS in Sudbury (Ontario), Timmins (Ontario) or Vancouver (British Columbia).

11.2.2 Laboratory Accreditation and Certification

ALS is certified to ISO 9001:2008 standards and is accredited by the SCC to ISO/IEC 17025:2005 for the analytical methods used on the Martiniere samples. ALS was independent of Balmoral and had no interests in the Property.

Techni-Lab SGB Abitibi Inc. ("Techni-Lab") in Ste-Germaine-Boulé, Quebec, was used for check assays for the 2012 and winter 2013 programs. Techni-Lab is a wholly-owned subsidiary of Activation Laboratories Limited and is accredited by the SCC to ISO/IEC 17025:2005 (CAN-P4E) for gold by FA followed by AAS and GRAV finishes. Check assay programs after the winter 2013 program were done through SGS in Burnaby which is also accredited by the SCC to CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005) for the same gold assay methods.

11.2.3 Laboratory Preparation and Assays

11.2.3.1 ALS

- Samples were sorted, bar-coded and logged into the laboratory tracking program.
- Each sample was dried and crushed to a minimum of 70% passing <2 mm material. A riffle splitter was used to produce a 1,000 g subsample of this coarse crush material, which was then pulverized to 85% passing <75 µm.
- Samples were analyzed for gold by FA with AA from 30 g of this pulverized material. The method used was Au-AA23, with a reporting range of 0.01 to 100 g/t.
- Samples returning between 5-10 g/t Au by this method were re-analyzed, on 30 g of pulverized material, using FA with a GRAV finish (Au-GRA21),
- Whereas samples exceeding 10 g/t Au were re-analyzed by the screen metallic method (Au-SCR21) done on a 1 kg of pulverized material (or remaining reject).
- Multi-element analysis by inductively coupled plasma atomic emission spectroscopy ("ICP-AES"; ME-ICP41 on 0.5g sample or ME-ICP61 on 0.25g sample) has been done on 24,340 of the 102,389 core samples (24%), returning 35 additional elements that include Ag, Cu, Pb and Zn.
- The pulverized pulp is placed in kraft sample bags, and the un-pulverized portions are returned to the original sample bags.
- The remainder of the crushed samples (sample rejects) were sent to Balmoral's Val d'Or office, for storage.

11.2.4 Quality Assurance and Quality Control

Between 2011 and 2018, Balmoral added 17,720 samples to the core sample stream to provide external QA/QC. Accuracy and contamination were monitored using CRMs and

blank material, respectively, both of which were inserted at regular intervals of 1 for every 20 samples (i.e., 5% insertion rate). Precision was monitored with quarter-core (or field) and coarse crush (or preparation) duplicates that, from 2012, was inserted at intervals of 1 for every 40 samples (2.5% insertion rate). The 2011 procedures inserted just one (1) quarter-core sample and one (1) coarse crush duplicate in each sample shipment for a significantly lower insertion rate. The 15% insertion rate used between 2012 and 2018 follows best practice suggestions (e.g. Abzalov, 2008) and was done in addition to Balmoral's check assay programs and ALS's own internal QA/QC tracking.

For the 2011 program, the QPs do not have sufficient information to know whether the samples were securely transported from the core facility to ALS in Val-d'Or. Likewise, the QPs do not know the reason for the relatively high number of CRM failures incurred for that program, whether the failed batches were re-analyzed and whether the failures were due to faulty analyses or sample switches in the lab or core facility. Nonetheless, the QPs are confident that the core was securely handled and that laboratory contamination was not a problem in 2011, but believe that the program suffered from careless standard insertion in the core facility.

Between 2012 and 2018, the external QA/QC data was monitored and reviewed by Gary Lustig, P.Geo., who was independent and fulfilled the requirements to be a QP. Lustig tracked the ALS and identified QA/QC failures and provided guidance on how these failures should be rectified. He also outlined bi-annual check assay programs and provided yearly reviews of all Martiniere QA/QC data (Lustig, 2012b, 2013, 2014a, 2014b, 2015, 2016b, 2017, 2018 and 2019).

11.2.4.1 Certified reference materials (standards)

Since 2011, Balmoral has used 36 different CRMs to monitor the accuracy of their gold assays, typically using a suite of low-grade (~1 g/t Au), medium-grade (~3 or ~6 g/t Au) and high-grade (>10 g/t Au) materials that the core logging geologist attempts to match to the grade of the associated core samples. The accuracy of a CRM analysis is quantified by the number of standard deviations that it returns from the certified mean, also knows as the "Z-score". Typical industry practise is to classify Z-scores between -2 and +2 as a "pass", scores between -2 and -3 or +2 and +3 as a "contingent pass or failure", and Z-scores exceeding -3 or +3 as "failures". Failed CRM were re-analyzed only if they were associated with mineralized core samples. The mean Z-score for all CRMs in Balmoral's Martiniere database, excluding 1-2% that are obvious sample mixups and database errors, is below 0.1 with a standard deviation of 1.1, suggesting that gold assays are both accurate and unbiased.

11.2.4.2 Blank samples

Cross-contamination is quantified by comparing the measured gold concentration in a blank sample against the detection limit, with the expectation that blanks should assay below detection. To allow for some level of inevitable cross-contamination, failure thresholds are usually set as a multiple of 5 to 10 times the detection limit. On the Martiniere claim block, the quartz pebble material used as a blank was flagged as contaminated when returning >5DL or 25 ppb Au. Of all the blanks in the Balmoral database, 89% returned assays at or below the 5 ppb DL and an additional 9% assayed \leq 25 ppb Au. The remaining 2% of blanks returned between >25 ppb Au and up to 95.6 g/t Au, typically because they followed samples with >5 g/t Au. For this reason, core

sampling procedures were modified in winter 2013 to request that ALS insert quartz washes after samples with visible gold and insert one or more external blanks after such sample.

11.2.4.3 Duplicates

Duplicate sample analysis was used to estimate precision of gold assays and assess the appropriateness of sampling and subsampling procedures. In general, precision improves from core duplicates through coarse crush to pulp duplicates as the samples become more homogeneous through crushing and then pulverizing (Figure 11-2). In reviewing all duplicate assays from the 2012-2018 programs, Lustig (Lustig, 2012b, 2013, 2014a, 2014b, 2015, 2016, 2017, 2018 and 2019) concluded that the overall precision of gold analyses had high variance but is typical of orogenic gold deposits. The 2709 and 2674 pairs of core and coarse crush duplicates in the database show an average coefficient of variation ("COVAVR") of 38% and 30%, respectively, which lies within the "acceptable" values for orogenic gold deposits calculated by Abzalov (2008). Eliminating 5% outliers reduces the COVAVR to 30% for the core duplicates and 16% for coarse crush, falling between "acceptable" and "best practise" values. Lustig (2012) suggested that precision could be improved by increasing the crush passing 2 mm from 70% to 85% and/or increasing the pulverization from 85% passing 75 µm to 95% passing 105 µm, but these measures were never implemented during the Balmoral years (2011 to 2018 programs).

11.2.4.4 External Check Assays

Check assay programs were used to assess the relative accuracy of the gold assays and were done at the conclusion of each drilling campaign, starting with winter 2012 (Lustig, 2012b, 2013, 2014a, 2014b, 2015, 2016b, 2017, 2018 and 2019). Each check assay program begins with the random selection of 100 to 250 samples from a subset of samples with $\geq 2\%$ pyrite (2012-2015) or >0.5 g/t Au (2016), which ensures a higher proportion of gold-bearing samples. Check assays for the 2012 and winter 2013 programs were assayed at Techni-Lab. All subsequent check assay programs were done through SGS in Burnaby. Both labs used methods comparable to those employed by ALS. In all cases, the check assays demonstrated that there is a good correlation between the original ALS analyses and those determined by Techni-Labs and SGS (Lustig, 2012b, 2013, 2014a, 2014b, 2015, 2016b, 2017, 2018 and 2019).

11.2.5 Conclusions on Balmoral's QA/QC (Martiniere)

The QPs believe that sample preparation, security, and analytical procedures were adequate for the 2012-2018 drilling completed on the Martiniere claim block and agree with the conclusion of Lustig (Lustig, 2012b, 2013, 2014a, 2014b, 2015, 2016b, 2017, 2018 and 2019) that, for these programs, "the quality control and check assays completed confirm that the Martiniere gold assay data is accurate, precise and free of contamination to industry standards and is of sufficient quality to be used in mineral resource estimation".

11.3 Grasset Claim Block

This section discusses Balmoral's sample preparation, analysis and security procedures for its 2015 program on the Grasset claim block (Grasset deposit), as described in Lustig (2016) who conducted a review of the QA/QC results from the 2015 program.

For descriptions relating to the 2011, 2012 and 2014 drilling programs, the reader should refer to Perk (2015).

11.3.1 Core Handling, Sampling and Security

Core handling and security procedures were managed by Balmoral personnel in 2015. Drill core was laid out in wooden core trays at the drill site, with the end of each drill run marked with a small wooden block displaying the total depth of the hole. The boxes were labelled with the hole and box number (permanent marker), sealed with a lid, strapped with fiber tape and then transported daily from the drill site to the core storage and logging facility. The core was transported mostly via helicopter, but also by snowmobile and truck during the winter programs.

Following geological and geotechnical logging, core samples (NQ size) were sawed lengthwise with half of the core submitted as a primary sample and the remaining half core retained in the core box for future reference or to serve as QA/QC samples. Samples are typically 1 m in length with an average length of 1.217 m and a range from 0.33 m to 4.12 m.

Field duplicates were collected as a quarter-core sample from the same interval as the half-core sample, leaving a quarter-core in the box for reference. Core trays containing this remaining reference core were labelled with aluminum tags indicating the hole number and the core interval, and stored at the Fenelon mine site. The sampled portion of the core was placed into a clear polyethylene bag, along with a waterproof sample tag supplied by the analytical lab. The sample tag number was then written on the bag after which it was sealed with a cable tie. Up to 10 sealed sample bags were then placed in labeled rice bags, along with a request for analysis form, and then closed with a plastic seal. Samples from individual holes were sent to the laboratory as separate batches, or shipments, in order to optimally track and minimize possible handling and/or sample preparation errors. Prior to shipment to the laboratory, each sample bag was checked to verify it was numbered properly and sealed. Balmoral personnel then transported the samples to ALS in Val-d'Or, Quebec. Upon arrival in Val-d'Or, an ALS employee would sign the analytical request form to verify that the full shipment had been delivered.

11.3.2 Laboratory Accreditation and Certification

The ALS laboratories in Val-d'Or and Vancouver are ISO 9001 certified and individually accredited (ISO/IEC 17025) for the analytical methods routinely used on the Grasset samples. The Val-d'Or and Vancouver facilities are commercial laboratories and ALS were independent of Balmoral and have no interests in the property.

Bureau Veritas in Vancouver and SGS in Burnaby were used for check assays. Bureau Veritas in Vancouver is accredited by the SCC to CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005) for the FA330 method only (Au-Pt-Pd FA/ICP-AES). SGS in Burnaby is also accredited by the SCC to CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005) for the

methods GE_FAI313 (Au-Pt-PD FA/ICP-AES), GE_ICP40B (33 element 4A/ICP-AES) and GOICP90Q (Cu, Ni sodium peroxide fusion/ICP-AES).

11.3.3 Sample Preparation

All samples were submitted to ALS in Val-d'Or, Quebec, with sample preparation at either the Val-d'Or facility or the one in Sudbury. Gold was analyzed at the Val-d'Or laboratory. Analyses for platinum, palladium, copper and nickel were done at ALS in Vancouver, as were gold analyses by ICP-AES.

After logging and sorting, the samples were dried and crushed using method CRU-31, consisting of fine crushing to better than 70% of the sample passing 2 mm. A crushed sample split of up to 1,000 g was pulverized in a ring mill using a chrome steel ring set to at least 85% of the ground material passing through a 75 µm screen (method PUL32).

11.3.4 Analytical Methods

At the Val-d'Or laboratory, gold was analyzed by FA with AAS and GRAV finishes using methods Au-AA23 and Au-GRA21, respectively. At the Vancouver laboratory, copper and nickel were analyzed using methods ME-ICP61 and ME-ICP81, and gold was analyzed by ICP-AES as part of the PGM-23 package along with platinum and palladium.

- Au-AA23 (gold assays from the target gold zones: FA of a 30 g aliquot followed by aqua regia (HNO₃-HCI) digestion and measurement by AA).
- Au-GRA21 (re-assays on the same pulp of samples returning >5 ppm Au): FA
 of a 30 g aliquot, parting with nitric acid (HNO₃) followed by GRAV gold
 determination.
- PGM-23 (gold plus platinum and palladium): FA of a 30 g aliquot with aqua regia (HNO₃-HCl) digestion and measurement by ICP-AES (aka, ICP-OES and ICP-ES.
- ME-ICP61 (all samples; trace-level multi-element method): analyses of a 0.25 g aliquot by ICP-AES following a four acid (HNO₃-HCIO₄-HF-HCI digestion, HCI leach – nitric, perchloric, hydrofluoric, and hydrochloric acids).
- ME-ICP81 (re-assays of samples returning >5,000 ppm Cu or Ni): fusion of a 0.2 g aliquot with a sodium peroxide (Na₂O₂) flux. The fused material is dissolved in 30% hydrochloric acid and analyzed by ICP-AES. The detection limits are 0.005% with an upper reporting limit of 30%.

11.3.5 Quality Assurance and Quality Control

The QA/QC procedures for the 2015 program on the Grasset deposit were the same as those established for the 2012 program (Lustig, 2012a). They included the routine insertion of a standard reference material (standards), field or preparation duplicates and field blanks in each group of twenty (20) samples. The initial drilling program at the Grasset deposit targeted gold mineralization, but magmatic Ni-Cu-PGM mineralization was discovered during the 2012 program. The QA/QC program was modified to include the monitoring of platinum, palladium, copper and nickel in addition to gold (Lustig, 2016).

Analytical results were continuously and independently monitored to assure that the quality of analyses was maintained. A "failure table" was kept to document deviations from the accepted limits and to track corrective actions. Assays exceeding the acceptable limits were examined to determine if there had been a sample mix-up in the field or laboratory, or whether it was an analytical issue that may require corrective action. When necessary, the affected samples were re-assayed.

Contamination was monitored by the routine insertion of barren coarse material (blanks) that went through the same sample preparation and analytical procedures as the core samples. Results were monitored and corrective actions applied where necessary.

Precision of the analytical results was monitored by quarter-core duplicate samples and preparation duplicates split after coarse crushing. Pulp duplicates were routinely analyzed as a part of the ALS internal QC programs, which were reported and monitored. Duplicates were taken at each stage involving reduced sample mass or grain size to monitor the overall sampling system. The field duplicates, representing the first split of the sample, incorporated the maximum amount of geological variability inherent in the material due to the particulate nature of the material.

In addition to the routine QA/QC samples, random selections from a geologically defined mineralized subset were assayed at two different laboratories as an independent check of relative accuracy.

The following QA/QC results for the 2015 program were presented in Lustig (2016). Table 11.3 outlines the samples included in the 2015 QC database. ALS' internal QC samples varied with the analyte and digestion method (Table 11.4).

Type of Sample	Number of Samples
Primary Drill Core Sample	6,993
Field Blanks	417
Quarter Core Duplicates	199
Preparation Duplicates	209
Standards	412
Total Grasset	1,237
Total Submitted	8,230

Table 11.3 – Samples submitted to ALS for analysis

(Lustig, 2016)

Table 11.4 – ALS Internal QC Samples	Table	11.4 -	ALS	internal	QC	sample
--------------------------------------	-------	--------	-----	----------	----	--------

Type of Sample	Number of Samples
Pulp Duplicates	389
Preparation Duplicates	88
Blanks	704
Standard – All	1,696
Standards Au-AA23	253
Standards Au-GRA21	10
Standards AU-ICP-23	430
Standards PGM-ICP23	152
Standards ME-ICP61	646
Standards Cu-ICP81	72
Standards Ni-ICP81	289
(Lustin 2016)	

11.3.5.1 Blank samples

To monitor contamination during the sample preparation and analytical stages, 417 coarse quartz material blank samples were inserted into the sample stream at a rate of one (1) for each group of 20 samples submitted. In high-grade intervals, additional blanks were sometimes inserted. Table 11.5 presents the detection limit for each element and the upper acceptable limit (5DL). As the copper and nickel analyses combined several methods, the detection limit of 0.001% for method ME-OG62-a standard ore grade method-was used to establish the warning level for these elements.

Metal	DL	5DL
Gold	0.005 ppm	0.025
Platinum	0.005 ppm	0.025
Palladium	0.001 ppm	0.005
Copper	0.001%*	0.005%
Nickel	0.001%*	0.005%

(Lustig, 2016) Warning levels for Cu and Ni were based on the ME-OG62 method.

A total of 16 field blanks exceeded the 5DL warning level.

Two (2) of the blanks exceeding the limit were determined to have been switched with the core samples. Re-assays of both blanks along with adjacent samples confirmed that the initial assays were of core samples and not blank material, and one (1) of the samples could not be definitely connected with a specific sample interval. The remaining warnings were for Cu (2), Ni (8), Pd (1), Pd-Cu-Ni (1), and Pd-Ni (1). Each elevated blank value was examined to determine if it was likely caused by contamination and if that degree of contamination was significant given the overall values in the sample sequence. One (1)

copper and one (1) nickel blank exceeding the warning limits had no apparent source or indication of contamination. The remaining samples could be correlated with higher grades in preceding samples, but there was no apparent significant contamination indicated with any of the samples following the elevated blanks.

According to Lustig (2016), there is a close correlation between the core grades and the blank analyses. This indicates that some contamination is always present. Although there were indications of contamination associated with many of the mineralized intervals, the amount of metal added to the blank was not considered significant by Lustig (2016) in the context of the actual grades of the overall interval.

11.3.5.2 Certified Reference Materials (standards)

Accuracy was monitored by the insertion of CRMs into the sample stream at the rate of one (1) in each group of 20 samples submitted. Control limits were established at the recommended mean $\pm 3SD$ and warning limits at the recommended mean $\pm 2SD$.

Analytical batches were not automatically re-analyzed in the event of a standard failure; instead, the complete batch was examined to determine the cause and significance of the failure. Analyses with large differences from expected values were often misidentified standards or had been switched with routine drill samples. Batches where all results were less than detection or very low grade generally did not require re-analysis, but batches containing mineralized results were always re-analyzed if it was determined that the error was analytical rather than a sample mix-up.

The primary standards employed were certified commercial standards prepared by CDN Resource Laboratories Ltd of Langley. As part of their internal quality control program, ALS used commercial standards provided by CANMET, AMIS, CDN, Geostats, OREAS and RockLabs.

Forty (40) standard analyses exceeded the control limits (Table 11.6). Six (6) of these were misidentified standards. These can be readily identified by the unique multi-element signature of each standard.

Standard	Elements	Failures	Re-assay	Misidentified
CDN-GS-1L	Au	6	0	3
CDN-GS-1M	Au	2	0	0
CDN-ME-1204	Au	1	0	0
CDN-ME-1207	Cu	26	1	1
CDN-ME-1207	Cu-Ni	1	0	1
CDN-ME-1207	Pt-Pd	1	1	0
CDN-ME-1208	Cu-Ni	1	0	1
CDN-ME-1208	Pd	1	1	0
CDN-ME-1208	Pt, Pd	1	1	0
Totals		40	4	6

Table 11.6 – Standard failures

(Lustig, 2016)

No groups were re-assayed due to gold failures.

A group of samples was re-assayed based on a Cu failure and Pt-Pd failures. The Cu-Ni failure was due to a misidentified standard. The samples associated with the Pt-Pd failures were re-assayed.

Four (4) gold standards were used during the 2015 program, with certified values ranging from 1.16 ppm to 3.19 ppm. No result required re-analysis.

Two (2) platinum standards were used during the 2015 program, with certified values ranging from 0.568 ppm to 0.807 ppm. Only two results required re-analysis (Lustig, 2016).

Two (2) platinum standards were used during the 2015 program, with certified values ranging from 0.9928 ppm to 3,420 ppm. Only three (3) results required re-analysis (Lustig, 2016).

Three (3) copper standards were used during the 2015 program, with certified values ranging from 0.407% to 1.635%. Only one (1) result required re-analysis (Lustig, 2016).

Two (2) nickel standards were used during the 2015 program, with certified values ranging from 1.572% to 4,770%. No result required re-analysis (Lustig, 2016).

11.3.5.3 Duplicates

Precision was monitored through a program of field and laboratory duplicates representing each level of sub-sampling. These included alternating quarter-core field duplicates and preparation duplicates taken after coarse crushing. With the exception of gross errors indicating sample mix-ups, samples or batches were not passed or failed based on the results of duplicate analyses; rather, they quantified relative error and indicated how representative the sampling and sub-sampling procedures were.

According to Lustig (2016), the procedure used for the Grasset drilling programs compared the quarter-split field duplicates to the half-core original samples. Outliers were removed from the dataset before performing statistical analyses or plotting the duplicate results. A number of far outliers were also removed manually.

A series of duplicate plots were produced in Lustig (2016) for each metal, consisting of scatter plot pairs, linear and log-scaled plots for each type of duplicate, ARD%/COV% vs. percentile or rank, and a set of relative error vs. concentration plots.

Gold

Gold results were based on a combined dataset of FA/AAS and FA/ICP-AES results. The uncorrected COVAVR(%) results are quite different, with the ICP results having considerably higher relative error at 41.4% compared to 28.5% for the AAS analyses. The ICP assays have slightly lower grade.

The overall corrected average relative error as indicated by the field duplicates at 28.37% is fairly good when compared to other deposits (Lustig, 2016). The precision indicated by the ARD% value of 90% at the 90th percentile is quite poor. This may be due to some extent by the low overall grade of the complete gold dataset.

Platinum

In contrast to gold, the platinum duplicate results indicate low average relative error with COVAVR(%) values at 11.6% for quarter-core field duplicates, 6.4% for preparation duplicates and 5.3% for pulp duplicates (Lustig, 2016). The ARD% at the 90th percentile is also low at 29.2%, 13.3% and 10% for field, preparation and pulp duplicates, respectively. The scatter plots and relative error vs. rank plot in Lustig (2016) show the improving precision with the decrease in sample mass and particle size. The relative error as COV% vs. duplicate pair mean plot for the quarter-core duplicates indicates that there is little or no relationship between error and concentration. The COV% for the preparation duplicates decreases from 10% at ~0.03 ppm to ~2% at 0.04%, remaining near this level to the end of the moving average line at 0.3 ppm. A similar pattern is apparent from the pulp duplicates with a drop from ~10% at 0.01 ppm to ~3% at 0.03 ppm to ~2% at 0.12 ppm.

Palladium

According to Lustig (2016), the relative error of duplicate analyses for palladium are similar to platinum with COVAVR(%) of 15.5%, 5.7% and 2.7% for field, preparation and pulp duplicates, respectively, and ARD% at the 90th percentile is 40.3%, 15.4% and 5.7%.

The scatter plots and ARD% vs. rank plots in Lustig (2016) show the decreasing relative error with sample mass and particle size reduction during sample preparation and the decreasing relative error with concentration in the more homogenized preparation and pulp duplicates.

Copper

According to Lustig (2016), average relative error values as COVAVR(%) for copper field duplicates at 10.4% are within the general guidelines of 10% "best practice" and 15% "acceptable practice" suggested by Abzalov (2008). Also, the COVAVR(%) for pulp duplicates at 4.0% are within the best and acceptable guidelines of 5% and 10%. The plots in Lustig (2016) indicate consistent decrease in relative error from field duplicates to pulps and low grade to high grade.

Nickel

Nickel analyses of all duplicates indicate very low levels of relative error (Lustig, 2016). The COVAVR(%) is 4.9% for quarter-core field duplicates, 3.1% for coarse preparation duplicates and 2.9% for pulp duplicates. ARD% at the 90th percentile is also low at 13.5%, 6.3% and 6.7% for the three duplicate types. Interestingly, the ARD% at the 9^{0th} percentile for pulp duplicates is slightly higher than the preparation duplicates. The scatter plots in Lustig (2016) display very tight patterns on both the linear and log plots for all duplicate types. The ARD% vs. rank plot shows the very low levels of relative error plus the coincidence and crossover of the preparation and pulp curves. The relative error vs. concentration plots indicates a distinct bimodal character to the results, with clusters at ~0.01% and ~0.2%, with a slight cluster ~1%. It is assumed that these clusters represent the natural distributions of relative error in background and mineralized populations.

11.3.5.4 External Check Assays

As an independent check of relative accuracy, pulps previously assayed by ALS were sent to external laboratories for check assays (Lustig, 2016). To avoid a selection bias

and to avoid re-assaying a large number of barren samples, subsets of samples that had been visually logged as mineralized based on the presence of pyrrhotite were used as the basis for a computerized random selection. The external checks consisted of 50 samples each from the summer and winter drill programs. Pulps from the winter program were submitted to SGS in Burnaby accredited by the SCC to CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005) for the methods GE_FAI313 (Au-Pt-PD FA/ICP-AES), GE_ICP40B (33 element 4A/ICP-AES) and GOICP90Q (Cu, Ni sodium peroxide fusion/ICP-AES); these methods are comparable to those employed by ALS.

The summer checks were sent to Bureau Veritas in Vancouver, accredited by the SCC to CAN-P-1579 and CAN-P-4E (ISO/IEC 17025:2005) for the FA330 method only (Au-Pt-Pd FA/ICP-AES), which is comparable to the method used by ALS. Methods for copper and nickel by 4-acid digestion and sodium peroxide fusion are comparable to the ALS methods, but are not accredited to Bureau Veritas.

For the purpose of this comparison, duplicate pairs with <DL samples from either laboratory were removed from the dataset (Lustig, 2016). Outliers were also removed before statistical analyses and plotting using the same methods as with the routine duplicate samples.

After the examination of check assay results, Lustig (2016) concluded that the quality control and check assays confirm that the Grasset winter and summer 2015 assay data are accurate, precise and free of contamination to industry standards, and of sufficient quality to be used in mineral resource estimation.

11.3.6 Conclusions on Balmoral's QA/QC (Grasset)

The statistical analysis of the QA/QC data provided by Lustig (2016) did not identify any significant analytical issues. The QPs are of the opinion that the sample preparation, analysis, QA/QC and security protocols used during the drilling programs on the Grasset claim block (Grasset deposit) follow generally accepted industry standards, and that the data is valid and of sufficient quality to be used for mineral resource estimation purposes.

12. DATA VERIFICATION

This item covers the data verification done by the QPs on the diamond drill hole databases used for the Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE. Data verification also included a site visit on August 16 and 17, 2021.

12.1 Drill Hole Database

12.1.1 Detour-Fenelon Gold Trend 2021 MRE

Two databases were validated for the Detour-Fenelon Gold Trend 2021 MRE: one for the Fenelon deposit and one for the Martiniere deposit.

The QPs had access to the assay certificates for all drill holes dating from 2002 to 2015 that were drilled by the Issuer or Balmoral. Certificates from drill holes completed by previous operators were either provided by the Issuer from files in their archives (i.e., not from the laboratory), or from hardcopy logs. All assays were verified for selected drill holes (5% of the database). The assays recorded in the database were compared to the original certificates (or hardcopy logs). No major errors or discrepancies were found.

The QA/QC database was also validated and is described in Section 11.2.

Downhole surveys (mainly Gyro and Multi-shot surveys) were conducted on the majority of surface and underground drill holes completed by the Issuer. These deviation test results were archived using Microsoft Excel (*.xls) or *.csv files. The results of older tests (those not completed by the Issuer) were archived on hard copy logs. Deviation tests from 5% of these drill holes were compared to the downhole data recorded in the database. No major discrepancies were found.

The collars for the Issuer's drill holes were surveyed by the Issuer's surveyor using an RTK system or a Total Station. The Issuer provided the QPs with the source files for these surveys. The collars for the Martiniere holes drilled by Balmoral (2011-2018) were professionally surveyed by a land surveyor. The Issuer provided the QPs with the surveyor's certificates. The collar positions of older drill holes were either archived on hardcopy logs or re-surveyed by the Issuer's surveyors when the surface collars were discovered. The archived collar positions for 5% of the drill holes were compared to the collar coordinates found in the database. For Fenelon, it was found that some recent holes (2020 and 2021) did not have the final collar coordinates in the database; instead, they had the planned or proposed coordinates. Although not causing any major discrepancies, the QPs strongly suggest that all drill holes be re-surveyed once completed, and that those final coordinates are the ones entered into the database.

12.1.2 Grasset 2021 MRE

All drilling information for the Grasset 2021 MRE was reviewed and validated by the QPs. Basic cross-check routines were performed between the 2016 and 2021 databases. Since the 2016 MRE was published, 11 additional holes have been drilled by Balmoral in 2018 (Tucker, 2019). Overall, a visual inspection of the 2018 drilling results revealed that the thickness and grade of the mineralized zones remain in the same order of magnitude as the Grasset 2016 MRE. Moreover, the 2018 DDH continued to confirm the geological and grade continuities that were demonstrated in the Grasset 2016 MRE.

Checks and validation were also conducted in Gems for the volumetrics comparison (tonnage and grade estimation) between the 2016 and 2021 MREs. No discrepancies were found.

The 2021 validation included all aspects of the drill hole database (i.e., collar location, drilling protocols, down-hole surveys, logging protocols, sampling protocols, QA/QC protocols, validation sampling, density measurements review and check against assay certificates).

12.2 Site Visit

12.2.1 Fenelon Property

The QP, Vincent Nadeau-Benoit, conducted a site visit on August 16 and17, 2021. He used the access road to the Fenelon Camp to drive onto the Property. The site visit included a review of the general access and a visual check of the camp site (Figure 12.1), as well as an assessment of the overall condition of the site. He also had discussions with Peter Lauder, the Issuer's exploration manager, and Christopher Kelly, the Issuer's senior geologist, about the ongoing exploration drilling program. At the time of the site visit, six (6) drill rigs were exploring the Fenelon property and its potential extension, one (1) rig was exploring the Casault Property and one (1) rig was exploring the Martiniere claim block.

Core logging and sampling procedures were also discussed with the rest of the team during the site visit. Discussions covered collar locations, drilling protocols, down-hole surveys, logging protocols, oriented core and structural measurements, sampling protocols, QA/QC protocols, and density measurement procedures. Mr. Nadeau-Benoit is of the opinion that the site visit and validation exercises demonstrated the validity of the protocols in place and their use during current drilling program on the Fenelon claim block.

Field checks on collar location (handheld GPS check) were also conducted by the QP.

Mr. Nadeau-Benoit also examined core intervals from eight (8) drill holes from the ongoing exploration drilling program and some witness core from the core library. All core boxes were labelled and properly stored; mainly on core racks with recent holes from the ongoing program on pallets. Sample tags are present in the boxes, and it was possible to validate sample numbers and confirm the presence of mineralization in the reference half-core samples from mineralized zones. The eight (8) holes were FA-21-226-W1, FA-21-226-W1-W2, FA-21-241, FA-21-247, FA-21-257, FA-21-264, FA-21-221-W2 and FA-20-119. The intervals included mineralized graphitic argillite, sheared and mineralized diorite, mineralized quartz veins and veinlets, and various metasedimentary and intrusive rocks. Figure 12.2 shows an example of sulphide-rich veinlet cross-cutting the Jérémie Diorite (FA-21-257), sheared wacke with chlorite and sulphides veinlets and stringers with visible gold (FA-21-226-W1-W2) and mineralized quartz veins (with pyrrhotite-chalcopyrite stringers) and chlorite halos hosted in the Jérémie Diorite (FA-21-257).

Independent re-sampling of mineralized intervals in the Area 51 zones and in the Tabasco zones (Table 12.1) was completed by the QP and show that low-grade samples yielded results that are consistent with the original results and more variable results for

higher-grade samples (although Au values still considered high), reflecting a nugget effect commonly related to this type of deposit.

Re-sampling by independent and QPs (as defined in NI 43-101) of mineralized intervals in the Gabbro Zones of the Fenelon deposit and mineralized intervals of the Grasset deposit were completed for the purpose of the technical reports by, respectively, Richard et al. (2017) and Richard and Turcotte (2016).

Hole Information	on		Original (Wallbridge)		Field Duplicate (InnovExplo)			
Hole ID	From	То	Sample Number	Au (ppm)	IE Sample Number	Au (AA26E) (ppm)	Au (GRA22) (ppm)	Rock (Zone)
FA-21-221-W2	1036.75	1037.75	D00103947	0.330	W035460	0.25		S3 (A51)
FA-21-221-W2	1037.75	1039.00	D00103948	0.244	W035461	0.62		S3 (A51)
FA-21-221-W2	1039.00	1040.45	D00103949	1.069	W035462	1.10		S3 (A51)
FA-21-221-W2	1040.45	1041.20	D00103950	6.605	W035463	4.95		S3 (A51)
FA-21-221-W2	1041.20	1042.00	D00103951	11.600	W035464	10.85	11.60	S3 (A51)
FA-20-119	904.60	905.25	B00410884	14.810	W035465	10.35	9.97	S6G (Tab)
FA-20-119	905.25	906.00	B00410886	4.820	W035466	8.78	7.20	S6G (Tab)
FA-20-119	906.00	906.90	B00410887	0.260	W035467	0.37		S6G (Tab)
FA-20-119	906.90	907.50	B00410888	7.600	W035468	6.46	7.07	S6G (Tab)
FA-20-119	907.50	909.00	B00410889	0.680	W035469	0.31		S6G (Tab)
FA-20-119	909.00	910.40	B00410890	0.248	W035470	0.84		S6G (Tab)

Table 12.1 – Results of the independent re-sampling of material from the Fenelon deposit

12.2.2 Martiniere Property

The QP Vincent Nadeau-Benoit conducted a visit of the Martiniere claim block and camp on August 16, 2021. The camp was accessed by a 15 minutes helicopter ride from the Fenelon camp (30 km). The site visit included a review of the general access and a visual check of the camp site, as well as an assessment of the overall condition of the site (Figure 12.3).

The exploration camp present on the Martiniere claim block dates from the Balmoral years: A helicopter pad is present and is still being used. The core shack and prospector tents (for accommodation and offices) would need investments and reparations to be functional again for a daily use.

Field checks on collar locations (hand-held GPS check) were conducted by the QP.

Mr. Vincent Nadeau-Benoit also examined core intervals from six (6) DDH drilled by Balmoral between 2012 and 2017. All core boxes were properly labelled and stored on pallets. Sample tags were still present in the boxes and it was possible to validate sample numbers and confirm the presence of mineralization in the reference half-core samples from mineralized zones. The six (6) holes were MDW-12-64A, MDE-17-266, MDW-16-89, MDX-14-46, MDW-13-88 and MDE-16-203. The intervals included mineralized

brecciated mafic rocks (Figure 12.3), sheared and silicified gabbro, carbonate-altered mafic volcanic, mineralized sulphide-rich quartz veins and veinlets, and mafic volcanics and intrusive rocks.

12.3 Comments

The QPs had full access to all data required for the data verification. The QPs are of the opinion that their data verification process has demonstrated the validity of the project data and protocols. The QPs consider the databases to be valid and of sufficient quality to be used for the mineral resource estimates herein.

A and B: Access road to the Fenelon camp - C: Core yard - D: Sampling and sawing - E: Core logging facilities

Figure 12.1 – Fenelon camp: access and core facilities

A: Drill hole FA-21-257 (approx. 634m): example of sulphide-rich veinlet (mostly pyrrhotite). B: FA-21-226-W1-W2 (approx. 1,069-1,072m): Sheared wacke with chlorite and sulphides veinlets and stringers with visible gold. C: Drill hole FA-21-241 (approx. 296-298m): Mineralized quartz veins (wit pyrrhotite-chalcopyrite stringers) wit chlorite halos hosted in the Jérémie Diorite.

Figure 12.2 – Selected core intervals of Fenelon examined during the site visit of August 16-17, 2021

A: Drill hole MDE-16-203 (approx. 218-227m): Interval of the Bug Lake East contact: Brecciated and bleached (Qz flooding) mafic rocks with disseminated sulphides and stringers (mostly pyrite). B: Core yard. C: Tents.

Figure 12.3 – Site Visit of the Martiniere Camp

13. MINERAL PROCESSING AND METALLURGICAL TESTING

This item describes the mineral processing and metallurgical testing carried out on the Gabbro Zones (Fenelon deposit) and the Grasset deposit.

The information presented in this item was sourced from Faure et al. (2020) for the Fenelon Gabbro Zones, from Voordow and Jutras (2018) for the Martiniere deposit, and from Richard and Turcotte (2016) for the Grasset deposit.

13.1 Fenelon Deposit

13.1.1 Treatment and results of the 2018 and 2019 bulk samples (Gabbro Zones)

This section summarizes the treatment and results of the 2018 and 2019 bulk samples mined from the Gabbro Zones. The samples were treated at the Camflo Mill facilities, owned at the time by Monarques Gold Corporation (Jolicoeur, 2020) but now the property of Yamana Gold Inc. (Yamana website, accessed March 5, 2021).

References for the metallurgical testwork are the studies carried out by CRM for Fairstar Exploration Inc. (Fairstar press release of November 13, 1997) and Laboratoire LTM Inc. (St-Jean, 2004).

The 2018 and 2019 bulk samples were divided into five (5) batches from September 11, 2018 to April 18, 2019. During the first 2018 batch, 2,930 t from the historical surface low-grade stockpile were included and processed as part of the bulk sample. A total of 36,160 dry metric tons were treated. The average head grade, including the 767 ounces of gold in tails, was 17.37 g/t Au with an overall recovery of 96.20%.

Silver was not recorded for the batches.

Table 13.1 presents the results for each batch of the 2018 and 2019 bulk samples. Table 13.2 shows the average recovery rate per stage and leach time per circuit.

Period	Dry metric tons	Gold ounces	Gold ounces in tails	Total gold ounces	Recovery (%)	Head grade (g/t Au)
September 11-18, 2018	7,075	1,607	399	2,006	80.12	8.82
November 20-27, 2018	6,405	2,908	168	3,076	94.53	14.94
December 28 to January 11, 2019	6,692	3,962	25	3,988	99.37	18.53
January 24, to February 3, 2019	5,652	5,777	16	5,793	99.73	31.88
March 31 to April 18, 2019	10,336	5,035	151	5,186	97.09	15.60
Gold recovery from slag treatement ¹	-	144	8	152	95.00	0.13
Total/Average	36,160	19,433	767	20,201	96.20	17.37

 Table 13.1 – Summary of the results for the 2018 and 2019 bulk samples

1) Slag treatment at Sipi Smelter, Elk Grove Village (Illinois, United States of America)

	torage loadin anno
Stage or average leach time (h)	Average recovery (%)
Grinding	85
Circuit 1: 9.2 h	10
Circuit 2: 27.6 h	0.7
Circuit 3:18.4 h	0.5
Total (55.2 h)	96.2

Table 13.2 – Average recovery per stage and average leach time

13.1.1.1 Camflo Process Description

Crushing Circuit

The crushing circuit begins with a 36" X 48" jaw crusher and a primary 4-1/4 standard cone crusher in an open circuit. It is then followed by a secondary 4-1/4 sort head cone crusher in a closed circuit to produce a final product passing a 3/4 x 3/4" screen. The crushing capacity is in the range of 125 tph.

Grinding Circuit

The ore is fed at the rate of 30-35 tph, with the required quick lime (average rate of 2.43 kg/t) through an 8' X 12' rod mill in an open circuit. The rod mill discharge is then mixed with the discharge from the two (2) 8' X 15' and 9' X 12' ball mills. It is then classified through a single 20" cyclone. The underflow is used to feed both ball mills at ± 200% circulating load, and the overflow is the final grinding product. The entire power consumption of the grinding mills is 452 kWh.

The cyanide requirement of 1.524 kg per tonne is added to the final grinding product prior to thickening.

Thickening, Leaching and Filtration

The cyclone overflow feeds three (3) 36'-diameter thickeners. The underflows from the thickeners feed the leaching circuit. The overflows become the pregnant solution, feeding the bags clarifier in the Merrill-Crowe process.

The first leaching and filtration circuit consists of three (3) leach tanks of 28' X 28' and two (2) 11'-6" X 16' drum filters. The second circuit consists of similar equipment: two (2) leach tanks and two (2) drum filters. Finally, the tailings circuit consists of one (1) leach tank and two (2) drum filters (same dimensions as the first circuit).

All the recovered filtration solution is pumped to the thickeners, consisting of part of the pregnant solution.

Due to the poor performance of the first batch, the process flow sheet was modified for the other four batches. The leaching time was increased from 45 h to 55 h.

Modifications to the leaching circuit

As described above, the first batch was processed as the normal flow sheet with regards to leaching. Due to poor performance, the process flow sheet was modified for the other four (4) batches.

The modified process consists of one (1) leach tank for the first stage, three (3) for the second and two (2) leach tanks for the last leach circuit.

This change lowered the gold concentration in the solution, allowing soluble gold to be recovered earlier in the process.

13.1.1.2 Gold Recovery

Gold was recovered using a Merrill-Crowe circuit. The process consists of a solution bags clarifier, followed by a Merrill-Crowe tower, followed by the addition of zinc dust and lead acetate, ahead of two (2) Perrins presses. This process produces a gold concentrate of \pm 30%. This concentrate is then melted in an induction furnace to produce doré of \pm 80% gold with \pm 17% silver and \pm 3% impurities.

Modifications to the Merrill-Crowe Circuit

To reduce the gold charge in the circuit and to potentially improve the wash on the drum filters, the precipitation tonnage at the Perrins Presses was increased by \pm 30%.

13.1.1.3 Reprocessing the refining slag

The slag produced by the induction furnace was re-melted in a Wabi fuel furnace to recover additional gold and silver. The slag from the Wabi was sent to the Sipi Smelter, (Elk Grove Village, Illinois, USA) for a final gold and silver recovery.

13.1.2 Metallurgical testwork on Tabasco-Cayenne and Area 51 zones

Preliminary metallurgical testwork was completed on the Tabasco zones and the Area 51 zones (Wallbridge, press release of September 3, 2020). The testwork was carried out on three composites (low-grade material from the Area 51 zones, low-grade material from the Tabasco zones) and was prepared from assay lab rejects from 14 individual holes and performed by SGS laboratories. These three composites were tested for their amenability to gravity separation as well as cyanidation under varying grind sizes and conditions. Table 13.3 summarizes results from the 2020 SGS testings.

Sample	Details	Feed Size	Gravity %	Total Recovery	Head Grade		
		P80, µm	Au	% Au	Calc.	Grav+CN	
Tabasco-	Whole Ore Leach	47		98.9	25.8		25.7
HG	Whole Ore & CIP	46		99	24.4		

Table 13.3 – Res	sults of SGS	' 202 0	metallurgical	testwork	(Area 51	and	Tabasco
Zones)			-				

Sample	Details	Feed Size	Gravity %	Total Recovery	Head Grad	de	
		P80, µm	Au	% Au	Calc.	Grav+CN	
Comp.	Gravity & Cyanidation	59	84.1	99.1	4.47	28.1	
	Gravity & Cyanidation	69	40.5	98.8	14.2	23.9	
	Gravity & Cyanidation	97	36.1	98.5	16.8	26.2	
	Whole Ore Leach	45		96.8	3.17		3.23
Tabasco-	Whole Ore & CIP	45		95.8	2.16		
LG	Gravity & Cyanidation	56	64.2	96.9	0.93	2.6	
Comp.	Gravity & Cyanidation	69	29.8	96	1.66	2.36	
	Gravity & Cyanidation	91	48.5	94.6	1.1	2.13	
	Whole Ore Leach	51		97.6	1.25		0.84
Area 51-	Whole Ore & CIP	51		96.6	1.04		
LG	Gravity & Cyanidation	53	72.8	96.4	0.23	0.084	
Comp.	Gravity & Cyanidation	68	78.1	97.1	0.22	1	
	Gravity & Cyanidation	102	66.5	95.3	0.22	0.66	

13.1.3 Conclusions for the Fenelon Gold Mine Deposit

The commercial-scale milling to process the 2018 and 2019 bulk sample batches corroborates the testwork results completed by the CRM but with a lower cyanide consumption.

The relatively low work index for the Fenelon material, combined with the presence of chalcopyrite and pyrrhotite, does not affect the leaching time or the recovery, as anticipated from the CRM testwork results.

The Camflo milling facilities with the modifications described above seem adequate to treat the material from the Project successfully.

Metallurgy testing on composites from Tabasco and Area 51 zones, completed by SGS in 2020, achieved good gold recoveries using standard grind size and processing technologies. The results are comparable to the results achieved from the Main Gabbro zone

13.2 Martiniere Deposit

Three rounds of metallurgical testwork have been done on composites from the Martiniere deposit, with one on material from the Martiniere West zones (Welte-Kerne and Johnston, 2012 and Welte-Kerne and Johnston, 2013) and two on the Bug Lake zones (DiLauro and Dymov, 2014; Martin, 2015). None of the metallurgical reports were publicly filed, although results have been previously summarized in the technical reports by Mumford and Voordouw (2017) and Voordow and Jutras (2018).

13.2.1 2012 and 2013 ALS Metallurgy

A shipment of 27 samples, weighing a combined 47 kg, was sent to ALS Metallurgy Kamloops in Kamloops, British Columbia. These samples were collected from the Main Subzone of the Martiniere West deposit and were homogenized into a single "Master Composite" grading 6.4 g/t Au, 8.0 g/t Ag and 0.7% As, then grinded to 80% passing (P80) 100 µm (Welte-Kerne and Johnston, 2012). Mineralogy of this Master Composite, as determined by quantitative evaluation of minerals by scanning electron microscope ("QEMSCAN"), comprised 53% quartz, 15% muscovite, 9% each chlorite and pyrite, 1-2% each arsenopyrite and garnet, <1% feldspar and chalcopyrite and 10% "others". The arsenic content lies near the high end of what is returned for gold-bearing ICP analyses from Martiniere West and may be unrepresentatively high.

Metallurgical testing aimed to evaluate gold recoveries using gravity separation, flotation and cyanidation bottle roll leach tests. All testing was done on a primary grind size of P80 100 μ m. Gravity separation was done in a lab-scale Knelson concentrator and was followed by panning. Gold and silver recoveries in the gravity concentrate averaged 35% and 16% respectively, with the final pan concentrate grading 444 g/t Au and 168 g/t Ag. These results suggest that there is potential for incorporating a gravity circuit into the flow sheet (Welte-Kerne and Johnston, 2012).

A single kinetic rougher flotation test was done using natural pH and a potassium amyl xanthate (PAX) collector. Results show that 97% of the feed gold and 87% Ag was recovered at 18% feed mass recovery, generating a rougher concentrate grading 36 g/t Au. These results suggest the potential for a flowsheet that includes rougher concentration, re-grinding and then cyanide leaching (Welte-Kerne and Johnston, 2012).

Results from a cyanidation bottle roll test show 48-hour gold extraction of 62% and that very little additional extraction occurred after the first 24 hours. Sodium cyanide consumption was relatively low, at 0.8 kg per tonne, and lime consumption was about 0.4 kg/t.

Follow-up testing by ALS Metallurgy Kamloops on the same Master Composite included whole ore cyanidation on a finer grind size (P80 of 71 μ m) and testing of a flow sheet comprised of gravity separation followed by re-grinding and cyanidation of rougher concentrate (Welte-Kerne and Johnston, 2013). Whole ore cyanidation was conducted for 48 hours with a target sodium cyanide concentration of 1 kg per tonne and pH maintained at 11.0. Testing achieved similar results to earlier work (Welte-Kerne and Johnston, 2012), with 63% of gold extracted with consumption of 0.8 kg/t NaCN and 0.6 kg/t lime. Most of the gold was extracted after 6 hours.

Gravity separation by Knelson concentration followed by panning averaged 37% gold recovery, which was similar to earlier testwork (Welte-Kerne and Johnston, 2012). Subsequent rougher flotation recovered another 60% in the flotation concentrate. Regrinding of this concentrate, to P80 16 µm followed by cyanidation resulted in 58% gold extraction whereas cyanidation without regrinding recovered 48% gold (Welte-Kerne and Johnston, 2013). Combined recoveries for this flowsheet are therefore 72% gold with regrinding of rougher concentrate and 66% without. Sodium cyanide consumptions were1.3 and 3.3 kg/t for non-reground and reground concentrate respectively, with lime consumption of 1.0 kg/t and 2.8 kg/t. This testwork therefore gravity concentration, rougher flotation and then regrinding and cyanidation of rougher concentrate (Welte-Kerne and Johnston, 2013).

13.2.2 2014 SGS Minerals Services

The first metallurgical testing on material from the Bug Lake zones was performed in 2014 by SGS Minerals Services of Lakefield ("SGS Lakefield") on a composite comprised of 49 half-core samples taken from three drill holes that cut the North Zone (the "Bug Composite"; drill holes MDE-13-119, -120, -121). The Bug Composite consists mostly of samples taken from the Lower Bug Lake subzones as well as representative material from the Upper Bug Lake subzones, in the hanging wall and footwall. Average head grades were 6.78 g/t Au, 7.09 g/t Ag, 3.34% sulphide sulphur and 13.1% carbonate (DiLauro and Dymov, 2014). Mineralogy determined by QEM automated rapid mineral scan ("QEM-ARMS") is distinctly more carbonate- and chlorite-rich than the Martiniere West composite, comprising 31.8% quartz, 23.7% carbonate (calcite > dolomite > ankerite), 20.9% chlorite, 10% mica, 8.8% pyrite and trace abundances of Cu-sulphide, arsenopyrite and sphalerite.

Metallurgical testing done by SGS Lakefield included (1) whole-ore cyanidation, (2) gravity separation followed by gravity tailing cyanidation, and (3) gravity separation followed by gravity tailing flotation and then cyanidation of the flotation products. Overall process results are summarized in Table 13.3.

Whole-ore cyanidation of the Bug Composite returned recoveries of 72% to 81% for Au, with higher recoveries related to finer grind sizes and increased NaCN consumption (Table 13.3). Conditions applied were 40% solids for 48 hours with cyanide concentration maintained at 0.5 g/L and the pH maintained between 10.5 and 11.0 by adding lime as calcium hydroxide. The presence of carbon caused no significant change in Au and Ag recoveries (DiLauro and Dymov, 2014).

Gravity separation testing was done with a Knelson MD-3 concentrator followed by a Mozley mineral separation. Recoveries in the Mozley gravity concentrate were dependent on grind size, ranging from 7.3% Au and 3.1% Ag for grind size of 198 μ m, to 24.3% Au and 9.7% Ag for the finest grind of 58 μ m. Concentrate assays ranged from 650 to 2591 g/t Au and 265 to 1079 g/t Ag, and in all cases comprised <0.1% of the total mass. The Mozley and Knelson tailings were recombined and blended for downstream flotation and cyanidation test work.

The flotation test for gravity tailings was done with total additions of 100 g/t PAX and 50 g/t Cytec A 208 collectors, with a series of five rougher concentrates recovered and assayed for gold and sulphide sulphur. Recoveries in concentrates 1 to 3 were reported at 91% Au and 95% Ag respectively, with mass pull of 9.2%. Flotation cycles 4 and 5 increased recoveries to 94% Au and 97% sulphide sulphur for the combined rougher concentrates, and the mass pull to 12.3%. Tailings contained 0.38 g/t Au and 0.10% sulphide sulphur. When combining the 19% gold recovery from the gravity concentrate with the 94% Au recovered from gravity tailing flotation, the overall gold recovery for the Bug Composite is calculated at 95% (Table 13.4).

Bottle roll cyanidation testing of gravity tailings were done on three grind sizes (Table 13.3) with applied conditions similar to the whole ore cyanidation. Gold and silver recoveries ranged from 67% Au and 59% Ag for the coarsest grind to 75% Au and 70% Ag for the finest grind. Again, the addition of carbon made no difference to the recoveries. An increase in NaCN consumption was observed with decreased grind size, going from 0.12 kg/t NaCN at P80 grind size of 198 μ m to 0.53 kg/t at P80 of 58 μ m. There was no significant difference in lime consumption. The combined gravity plus gravity tailing

cyanidation recoveries ranged from 71% Au and 61% Ag to 81% Au and 72% Ag (Table 13.3).

Process	Size P80 microns	Reagent Cons. NaCN kg/t	Recovery Au %	Residue g/t Au	Recovery Ag %	Residue g/t Ag
Whole ore CN	174	0.13	72%	2	65%	2.2
	73	0.51	79%	1.58	72%	1.8
	52	0.69	81%	1.37	73%	1.8
	198	0.12	71%	2.09	61%	2.9
Gravity → CN	84	0.22	78%	1.59	71%	2
	58	0.43	81%	1.41	72%	2
$\begin{array}{l} \text{Gravity} \rightarrow \\ \text{Flotation} \rightarrow \\ \text{CN} \end{array}$	84	0.65	74%	1.84	82%	2.16
	84/12	2.42	91%	0.95	97%	1.3

Table 13.4 – Results of SGS' 2014 metallurgical testwork (from DiLauro and Dymov, 2014)

Table 13.5 – Flotation metallurgical balance summary

	Mass		Assays		%Distribution			
Product	g	%	Au g/t	S %	Au Flotation	Au Gravity + Flotation	S	
Gravity recovery						19.4		
Rougher concentrate 1	226	5.69	69.8	43.2	70.2	56.6	73	
Rougher concentrate 2	75.3	1.9	49	30.2	16.4	13.2	17	
Rougher concentrate 3	65	1.65	15.8	9.65	4.6	3.7	4.7	
Rougher concentrate 4	61.1	1.54	6.64	3.74	1.8	1.5	1.7	
Rougher concentrate 5	60.3	1.52	3.93	1.99	1.1	0.9	0.9	
Rougher tail	3484	87.71	0.38	0.1	5.9	4.7	2.6	
Head (calculated)	3972.4	100	5.66	3.36	100	100	99.9	

For the cyanide leach testing of flotation concentrate and tailings, it was decided to combine rougher concentrates 1 to 3 as the "final flotation concentrate" and recombine rougher concentrates 4 and 5 with the rougher tailing as the "final flotation rougher tailing" (DiLauro and Dymov, 2014). The final flotation concentrate assayed 56 g/t Au and 34.5% sulphide sulphur with a mass pull of 9.2% whereas the final flotation rougher tailing has 0.55 g/t Au and 0.19% sulphide sulphur. Conditions applied for cyanidation were 20% solids for 48 hours with pH maintained between 10.5-11.0 and cyanide concentration maintained at 5.0 g/L. Cyanidation of rougher concentrate with P80 grind size of 84 μ m were 72% Au and 78% Ag, with reagent consumptions of 6.4 kg/t NaCN and 0.38 kg/t of lime. Re-grinding of this concentrate to P80 grind size of 12 μ m yielded extractions of 89% Au and 96% Ag with reagent consumptions of 25.5 kg/t NaCN and 0.03 kg/t of lime.

Cyanidation of the rougher flotation tailing at P80 of 84 μ m returned final extractions of 72% Au and 59% Ag, with reagent consumptions of 0.07 kg/t NaCN and 0.34 kg/t of lime.

A diagnostic leach program on the gravity tailing cyanide residue at P80, grind size of 58 µm, was used to assess possible mineralogical associations for refractory gold and silver. Results indicate that most of the refractory gold (86.1%) is likely associated with, or occluded by, sulphide minerals, pyrite and/or arsenopyrite, whereas 70.6% of refractory silver could occur in sulphide minerals, pyrite, arsenopyrite, complex Ag minerals with iron and manganese, As-Sb sulphide, pyrrhotite, calcite and/or ferrites (DiLauro and Dymov, 2014).

13.2.3 2015 Blue Coast

In 2015, Blue Coast Research Limited of Parksville, British Columbia ("Blue Coast") was contracted to follow up on the 2014 metallurgical testing done by SGS Lakefield, with the aim of evaluating the recovery upside for a flowsheet that combines flotation, concentrate re-grinding and cyanidation (Martin, 2015). Testing was done on the same Bug Composite prepared by SGS Lakefield, which was re-assayed by Blue Coast to yield head grades of 6.29 g/t Au and 6.7 g/t Ag. Blue Coast note that the 18-month age of the Bug Composite could have potentially impacted flotation performance (Martin, 2015).

Three flotation tests were done to determine optimal grind size and two were done to create concentrates for leach testing. All three grind sizes (54, 86, 127 μ m) produced comparable gold (97%) and silver (92-93%) recoveries once the mass pull to concentrate had reached 20%. It was therefore decided to use the coarsest grind for leach testing, so that tests 4 and 5 were done with material ground to 127 μ m.

Cyanidation was done on both flotation concentrate and tails. Four leach tests were done on the flotation concentrate, to examine the effects of grind size, cyanide concentration and lead nitrate. Leaching was described as "extremely rapid", with gold extraction peaking after 3-5 hours using cyanide concentration of 5 g/L and no lead nitrate. The use of finer grind somewhat enhanced the leach kinetics although the peak extraction stayed the same at about 92.5% Au. Addition of lead nitrate had no positive affect and may actually have slowed leach kinetics.

Some of the gold appeared to drop out of solution after 3-5 hours in a weak process referred to as "preg-borrowing" (Martin, 2015). The addition of carbon failed to combat this effect, with recoveries dropping to 86.8% Au and 86.4% Ag. Martin (2015) states that the preg-borrowing mechanism is weak and at least somewhat reversible, and that further investigation may lead to overall enhanced metallurgical recoveries.

Concentrate tails were leached for 24 hours at 0.5 kg/t cyanide and pH 11, with testing showing low cyanide (0.13 kg/t) and lime (0.2 kg/t) consumption. Results showed that 83% of the silver in the tails was leached together with 65% of the gold. Overall, 0.24 g/t Au and 0.4 g/t Ag were extracted through the leach, comprising 2.5% and 6.3% of the Au and Ag mill feed respectively.

The final test done by Blue Coast comprised re-grinding of pyrite concentrate and flotation tails to P80 of 12 μ m followed by cyanide leaching. The leach performance on this co-processed stream was 10% below those achieved through separate leaching of concentrate and tails.

As a result of this work, Blue Coast proposed a flowsheet that includes separate leaches for concentrate and tails (Figure 13.1) and projected overall extractions of 91.4% Au and 80.2% Ag (Table 13.5).

	Mass (%)	Gold (%)	Silver (%)
Feed	100	100	100
Flotation concentrate	20.4	96.1	92.5
Concentrate leach extraction	n/a	88.9	74
Concentrate leach residue	20.4	7.2	18.5
Flotation Tails	79.7	3.9	7.5
Tails leach extraction	n/a	2.5	6.2
Tails leach residue	79.7	1.4	1.3
Combined circuit extraction	n/a	91.4	80.2

Table 13.6 – Metallurgical balance from separate concentrate and tails leach option (Martin, 2015)

From Martin (2015)

13.3 Grasset Deposit

A preliminary metallurgical testwork report (the "Met Report") dated September 24, 2015, was authored by Andrew Kelly, P.Eng., of Blue Coast (Kelly, 2015).

The Met Report includes a disclaimer stating that the data provided and the associated interpretations offered are based on samples made available to Blue Coast by Balmoral. No assurances can be made by Blue Coast on the representability of the samples tested.

The text below represents excerpts from the Met Report that have not been altered except for minor linguistic editing and formatting to ensure harmonization with the rest of this Technical Report.

13.3.1 Study Summary

Blue Coast was contracted by Balmoral to execute an initial metallurgical performance characterization of two master composites and variability testing of 12 additional composites for the Grasset nickel-copper-gold-PGM project. The testwork program was conducted on two master composites with average nickel grades of 1.9% and 1.3%, respectively. Average grades for both master composites are summarized in Table 13.7. The program was designed to provide a scoping level metallurgical evaluation of the property and included grindability testing (Bond Rod and Bond Ball work index tests), gravity amenability tests, and both rougher and cleaner flotation tests. Single locked cycle tests were conducted for each composite using the best conditions developed during the cleaner flotation program. Tailings generated during the locked cycle tests were subjected to net acid generation and acid base accounting tests to determine the extent that tailings may be acid generating.

Sample	Ni %	Cu %	Fe %	S %	Co %	Pt (g/t)	Pd (g/t)	Au (g/t)	Ag (g/t)
Master Composite 1	1.87	0.25	11.11	4.44	0.04	0.38	0.97	0.42	0.92
Master Composite 2	1.29	0.15	9.38	3.10	0.03	0.26	0.66	0.05	0.44

Table 13.7 – Master Composite Head Assays

Both master composites displayed similar mineral compositions. Sulphide mineralization is made up of pentlandite, chalcopyrite, pyrrhotite and pyrite. Gangue mineralogy is composed of a mix of altered silicates (talc and serpentine) as well as carbonates (magnesite and dolomite). The talc content ranges from 29% in Master Composite 1 to 36% in Master Composite 2, making it substantially higher than most nickel deposits. Master Composite 1 contains a significant quantity of serpentine (25%), while this is almost non-existent in Master Composite 2 (0.4%). On the other hand, Master Composite 2 contains more chlorite (13%) compared to Master Composite 1 (0.5%) (Figure 13.2).

Figure 13.2 – Modal mineralogy of master composites

Variability composites were characterized by chemical assays and QEMSCAN automated mineralogical analysis. Overall, the variability composites showed similar mineralogical characteristics to the master composites. Sulphide mineralization was composed of pentlandite, chalcopyrite, pyrite and pyrrhotite. Once sample (R154073) contained millerite as the primary nickel host; however, this was the only sample where millerite was observed. Four (4) of the 12 samples (R15074, R15076, R15078 and R15083) contained moderate amounts of serpentine and are similar to Master Composite 1 in that regard. The remaining eight (8) samples contain low levels of serpentine and are more closely related to Master Composite 2. Head assays are summarized in Table 13.8, while the modal mineralogy of the variability composites is summarized in Figure 13.3.

Sample	Ni %	Cu %	Fe %	S %	Co %	Pt (g/t)	Pd (g/t)	Au (g/t)	Ag (g/t)
R154072	0.55	0.07	6.83	1.33	0.02	0.09	0.23	0.07	0.10
R154073	0.87	0.08	7.20	1.32	0.02	0.08	0.22	0.15	0.27
R154074	0.53	0.09	7.55	0.92	0.01	0.02	0.04	0.05	0.20
R154075	2.79	0.18	13.27	6.04	0.06	0.67	1.53	0.11	1.00
R154076	1.75	0.16	10.22	3.63	0.04	0.12	0.28	0.11	1.20
R154077	2.15	0.21	12.60	4.90	0.05	0.50	1.18	0.18	0.93
R154078	1.49	0.17	9.33	3.56	0.03	0.37	0.90	0.15	0.67
R154079	1.02	0.15	8.19	2.53	0.03	0.12	0.34	0.07	0.47
R154081	1.35	0.09	5.84	1.27	0.02	0.48	1.65	0.16	0.40

Table 13.8 – Variability of composite head assays

Sample	Ni %	Cu %	Fe %	S %	Co %	Pt (g/t)	Pd (g/t)	Au (g/t)	Ag (g/t)
R154082	1.73	0.17	9.20	4.32	0.04	0.30	0.64	0.05	1.07
R154083	2.79	0.27	13.15	6.59	0.06	0.68	1.67	0.16	0.37
R154084	1.26	0.14	9.57	2.69	0.03	0.32	0.67	0.05	0.33

From Kelly (2015)

Figure 13.3 – Variability of composite modal mineralogy

Grindability testing indicates material of moderate hardness, which should not present difficulties during grinding. However, differences in grinding times were observed between the composites and are likely explained by the relative content of serpentine mineralization present, with greater quantities of serpentine tied to longer grind times. Grindability test results are summarized in Table 13.9.

Table 13.9 – Grindability test results

Test	Work Index (kWh/tonne)
Bond Rod Mill Work Index	12.9
Bond Ball Mill Work Index	11.4

Flotation results are presented in Table 13.10. The results were consistent between each composite. Concentrates grading between 13.4% and 13.8% nickel were produced, with nickel recoveries ranging between 86% and 87%. Copper recovery to concentrate was 94%. Higher grades and recoveries were observed with Master Composite 2 (MC-2) and are likely explained by coarser pentlandite grain sizes which improved the overall liberation profile compared to Master Composite 1 (MC-1).

Rougher and cleaner flotation tests identified significant drivers of overall metallurgical performance to be:

- Soda ash and CMC for talc depression
- Primary grinds of approximately 80% passing 65 µm
- Long cleaning flotation times to recover slower floating pentlandite

Minor element scans of final concentrates did not detect the presence of any significant quantities of penalty elements; however, exact penalty limits should be verified with concentrate marketing specialists. Iron to MgO ratios for MC-1 and MC-2 were 5.9 and 6.9, respectively.

Composite	Test ID		Assays (%)	i i	Distribution (%)			
		Ni	Cu	Fe	Ni	Cu	Fe	
MC-1	LCT-2	13.4	1.97	27.4	86	93.5	30.1	
MC-2	LCT-1	13.8	1.97	29.6	87.3	94.4	25.9	

The final locked cycle test concentrates were assayed for gold and PGE, with results summarized in Table 13.11. Flotation conditions were not specifically optimized for precious metals as part of this program. Gold recovery ranged between 42% and 54%, platinum recovery ranged between 35% and 49%, while palladium recovery appeared the highest at 89%. Gold and PGE recoveries were based on a limited dataset of feed and concentrate assays coupled with mass recoveries from locked cycle tests. Accordingly, they are estimates only and should not be considered as robust as the base metal projections.

Composite	Test ID	4	Assays (g/t)	Distribution (g/t) ¹			
		Au	Pt	Pd	Au	Pt	Pd	
MC-1	LCT-2	1.88	1.1	7.17	54	35	89	
MC-2	LCT-1	0.265	1.56	8.78	42	49	N/A²	

Table 13.11 – Gold and platinum group metal content in the LCT concentrates

1. Gold and PGE recoveries are estimates only based on a limited dataset of feed and concentrate assays coupled with mass recovery measurements during the Locked Cycle Test. 2.

Inconsistencies in palladium assays meant that palladium recovery could not be adequately determined for MC-2.

Two gravity tests were conducted during the test program. A single test was conducted on the feed material to identify the gravity response of the material itself. A second test was conducted to evaluate the ability to produce a separate precious metal stream from the final flotation concentrate. The test on feed material showed negligible recovery of platinum and palladium to the Knelson concentrate. Gold recovery to the Knelson concentrate was moderate at 27.7%, albeit at a fairly low concentrate grade of 8.1 g/t Au. Tabling the Knelson concentrate was able to upgrade the sample to 74.6 g/t Au but at a low overall recovery of 1.9%. The results suggest that gravity concentration is not effective for gravity recovery of the PGE and is only marginally better for gold.

Concentrate produced from Master Composite 1 (during LCT 2) was tabled to determine if the precious metals and gold could be placed into a separate, higher grade concentrate to reduce the impact of smelter deductions and increase the overall value of the project. The test showed that 53% of the gold, 31% of the platinum and 31% of the palladium could be concentrated into 21% of the mass. Gold grades increased from 2.2 g/t to

5.7 g/t. The palladium grades increased from 7.8 g/t to 11.5 g/t, while the platinum grades remained relatively unchanged.

Acid-Base Accounting ("ABA") and Net Acid Generation ("NAG") tests were conducted to determine the extent that Grasset tailings could be acid generating. Results of both analyses suggest that the potential for Grasset tailings to be acid generating is low. The net neutralization potential ("NNP") of each composite was an order of magnitude greater than the Maximum Potential Acidity ("MPA"). Additionally, the NAG test results were both below detection limits, and the final pH ranged between 8.7 and 8.8. ABA and NAG test results are summarized in Table 13.12.

Table 13.12 -	Summary	of aci	d base	accounting	and	net	acid	generation	test
results									

Composite	MPA	NNP	NAG @ pH 4.5	NAG @ pH 7.0	ъЦ
	t CaCO3 / 1Kt	t CaCO3 / 1Kt	Kg H2SO4 / t	Kg H2SO4 / t	рп
MC-1	37.8	255	<0.01	<0.01	8.8
MC-2	21.3	231	<0.01	<0.01	8.7

Based on the test program, the following recommendations were made:

- Conduct variability hardness testing to determine the range of hardness within the deposit.
- Evaluate conditions to increase the final concentrate grade by further depressing pyrite and pyrrhotite during flotation.
- Conduct a further evaluation of the cleaner circuit to optimize reagent addition and increase talc depression.
- Conduct a variability flotation program to determine the range of flotation response and to generate head grade/recovery relationships.

13.3.2 Conclusions for the Grasset Deposit

Blue Coast concluded the following:

- Sulphide mineralization in the Grasset material consists of pentlandite, chalcopyrite, pyrite and pyrrhotite. The mineralized materials are nickel-rich with Ni:Cu ratios of approximately 6.5:1.
- Gangue mineralization is dominated by talc and magnesite, together making up for 52% of the mass in Master Composite 1 and 67% of the mass in MC 2.
- Grindability tests indicate the material is of medium hardness.
- Differences in grind times between the two master composite samples indicate some variability in hardness, likely tied to the quantity of serpentine in the mineralized material.
- Samples exhibited a low level of gravity recoverable platinum and palladium.
- 27% of the gold could be recovered to a low-grade gravity concentrate.
- Based on locked cycle test results using the same basic flowsheet, metallurgical performance was consistent between both master composites.
- A soda ash-based flowsheet with the addition of carboxyl-methyl cellulose is necessary to control the readily floatable talc present in each master composite.
- Finer primary grinds (~65 μm) produce faster flotation kinetics and result in higher grades and higher recovery to the final concentrate.
- Good nickel concentrates could be generated at consistent grades (13.4%–13.8%) and very good overall recoveries (86%–87%).
- Copper recovery to the final concentrate was 94%.
- Minor element scans did not indicate the presence of any penalty elements in significant quantities; however, exact penalty limits should be confirmed with concentrate marketing specialists.
- ABA and NAG tests suggest the Grasset tailings produced using this flowsheet are not likely to be acid generating.

14. MINERAL RESOURCE ESTIMATES

The maiden mineral resource estimate for the Fenelon deposit and the updated mineral resource for the Martiniere deposit (combined, the "Detour-Fenelon Gold Trend 2021 MRE") were prepared by QPs Carl Pelletier, P.Geo. (Fenelon and Martiniere) and Vincent Nadeau-Benoit, P.Geo. (Fenelon only), both of InnovExplo, using all available information.

The effective date of the Detour-Fenelon Gold Trend 2021 MRE is November 9, 2021.

The close-out date of the Fenelon database is September 10, 2021. The close-out date of the Martiniere database is July 26, 2021.

The mineral resource estimate update for the Grasset deposit (the "Grasset 2021 MRE") was prepared by Carl Pelletier, P.Geo., using all available information.

The Grasset 2021 MRE comprises a review and update of the 2016 mineral resource estimate for the Grasset deposit (the "Grasset 2016 MRE"; Richard and Turcotte, 2016). After the effective date of the Grasset 2016 MRE, Balmoral drilled 11 more diamond drill holes ("DDH") within the modelled mineral resource volume, which extended the H1 and H3 zones (Tucker, 2019). Overall, a visual inspection by the QP of the 2018 drilling results revealed that the thickness and grade of the mineralized zones remain in the same order of magnitude as the Grasset 2016 MRE. Moreover, the 2018 DDH continued to confirm the geological and grade continuities that were demonstrated in the Grasset 2016 MRE.

For the purpose of this Technical Report, the QPs have assumed that the gains and losses between the 2016 and 2021 data balance each other (negligible net variation), and thus the resulting difference would not be material to the overall resource. Therefore, the Grasset 2016 MRE database was used for the Grasset 2021 MRE.

The effective date of the Grasset 2021 MRE is November 9, 2021.

The close-out date of the Grasset database is May 19, 2016.

14.1 Detour-Fenelon Gold Trend 2021 MRE

14.1.1 Methodology

The mineral resource area of the Fenelon deposit has an ENE strike length of 1,400 m, a width of 1,100 m, and a vertical extent of 1,000 m below the surface. Located 30 km west of the Fenelon deposit, the mineral resource area of the Martiniere deposit has a NE strike length of 1,000 m, a width of 350 m and a vertical extent of 600 m (Martiniere Trend), and an NW strike length of 1,500 m, a width of 500 m and vertical extend of 600 m (Bug Lake Trend).

The Fenelon and Martiniere 2021 MRE is based on a compilation of historical and recent DDH and a litho-structural model constructed in Leapfrog by the Issuer, subsequently validated by the QPs.

The Fenelon and Martiniere 2021 MRE was prepared using the Leapfrog Geo software v.2021.1.3 with the Edge Extension ("Edge"). Edge was used for the grade estimation, variography and block modelling. Basic statistics, capping and validations were

established using a combination of Edge, Microsoft Excel and Snowden Supervisor v.8.13 ("Supervisor").

The main steps in the methodology were as follows:

- Review and validation of the DDH database.
- Validation of the topographic surfaces, bedrock surfaces, the geological model and the interpretation of the mineralized zones based on lithological and structural information and metal content.
- Perform a capping study on assay data for each structure of each deposit.
- Grade compositing.
- Geostatistics (spatial statistics).
- Grade interpolation.
- Validation of the grade interpolation.
- Mineral resource classification.
- Assessment of mineral resources with "reasonable prospects for economic extraction" and selection of appropriate cut-off grades and constraining volumes for a scenario combining open-pit and underground mining.
- Generation of a mineral resource statement.

14.1.2 Drill Hole Databases

Both deposits, Fenelon and Martiniere, have their own DDH database.

The database covering the Fenelon deposit contains 832 surface DDH (321,843.50 m) and 364 underground DDH (49,559.83 m). A subset of 1,040 DDH (357,650.70 m) was used to create the mineral resource database. (Figure 14.1). This selection contains 196,561 sampled intervals taken from 230,450.40 m of drilled core. All the intervals were sampled for gold.

The database covering the Martiniere deposit contains 610 surface DDH (153,292 m). (Figure 14.2). This selection contains 108,452 sampled intervals taken from 107,662 m of drilled core. All the intervals were sampled for gold.

Both databases also include lithological, alteration and structural descriptions taken from drill core logs. Oriented core data is available for the Fenelon deposit only, for holes drilled in September 2018 and later.

The databases cover the strike length of each mineral resource area at variable drill spacings: from 10 to 200 m for the Fenelon deposit and from 20 to 150 m for the Martiniere deposit.

In addition to the tables of raw data, the mineral resource database includes tables of calculated drill hole composites and wireframe solid intersections, which are required for the statistical evaluation and mineral resource block modelling.

Figure 14.1 – Surface plan view of the Fenelon deposit showing the validated DDH used for the Detour-Fenelon Gold Trend 2021 MRE

Figure 14.2 – Surface plan view of the Martiniere deposit showing the validated DDH used for the Detour-Fenelon Gold Trend 2021 MRE

14.1.3 Geological Model

The litho-structural models for the Fenelon and Martiniere deposits were built by the Issuer's geologists using the DDH databases as the primary source of information (assays, lithological units, alteration and mineralization). For the Fenelon deposit, this includes drill holes from the 2021 drilling program.

The Fenelon model consist of 60 high-grade zones and 5 low-grade envelopes (Figure 14.3) and the Martiniere model consists of 59 high-grade zones and 1 low-grade envelope (Figure 14.4). All geological solids were modelled in Leapfrog.

For Fenelon, the high-grade zones were designed with a minimum thickness of 2.0 m and based on a cut-off grade of 2.0 g/t Au. The Ripley and Area 51 low-grade envelopes were based on a cut-off grade of 0.3 g/t. The vein solids extend to a radius of up to 50 m from the last selected intercept or are fixed at the mid-distance of an intercept that does not meet the minimum grade criterion. The solids were snapped to drill holes. These high-grade zones represent mineralized structures based mainly on gold grade. In-hole oriented data helped refined the shape and orientation of the solids (i.e., measurements of sheared and extensional veins associated with mineralization of Area 51 or measurements shearing corridors associated with the mineralization for the Tabasco, Cayenne and Gabbro zones). Logging descriptions (logged units, structures, alteration and mineralization) were also used to assess those mineralized structures.

Figure 14.3 – Inclined view of the Fenelon model looking north: envelopes (left) and high-grade zones (right)

For Martiniere, the high-grade zones were designed with a minimum thickness of 3.0 m and based on a cut-off grade of 1.0 g/t Au. The solids extend to a radius of up to 50 m from the last selected intercept or are fixed at the mid-distance of an intercept that does not meet the minimum grade criterion. The solids were snapped to drill holes. The high-grade zones represent mineralized structures based mainly on gold grade. Logging descriptions (logged units, structures, alteration and mineralization) were also used to assess the mineralized structures.

Figure 14.4 – Inclined view of the Martiniere model looking north: envelopes (left) and high-grade zones (right)

Two surfaces were also created for each deposit to define topography, using drill hole collar survey data and the overburden-bedrock contact generated from drill hole descriptions.

14.1.4 Voids Model

The Fenelon deposit has underground openings and an open pit. The 3D wireframes of the exploration ramp, bulk sample stopes and open pit, all surveyed by the Issuer, are located in the area of the Gabbro Zones and intersected some of the high-grade zones in this area (Figure 14.5). These 3D wireframes were included in the block models as voids (blocks inside these wireframes were depleted).

Figure 14.5 – Longitudinal section of the voids for the Fenelon deposit, looking north

14.1.5 High-grade Capping

For each deposit, basic univariate statistics were completed on all individual structures. Capping was applied to raw assays. Capping values were selected by combining the dataset analysis (COV, decile analysis, metal content) with the probability plot and lognormal distribution of grades. Table 14.1 and Table 14.2 present a summary of the statistical analysis for each structure of each deposit. Figure 14.5 shows graphs supporting the capping value for the Tabasco_1 high-grade zone as an example for Fenelon and Figure 14.6 shows graphs supporting the capping value for the combined high-grade zones of Martiniere West as an example for Martiniere.

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
A51 – <200m Interior	37503	437.00	0.05	43.44	25	3	0.01%	0.04	8.91
A51 – LG	56597	284.00	0.21	9.53	25	27	0.05%	0.20	5.20
A51 – Ripley	1042	15.20	0.30	3.18	Not Capped	-	-	-	-
A51 – Andromeda_01	91	31.00	1.81	2.39	Not Capped	-	-	-	-
A51 – Andromeda_02	14	35.39	6.74	1.64	Not Capped	-	-	-	-
A51 – Andromeda_03	85	65.30	2.98	2.63	65	1	1.18%	2.97	2.62
A51 – Andromeda_04	276	92.38	2.51	3.21	65	1	0.36%	2.41	2.92
A51 – Andromeda_05	463	101.00	2.08	3.60	65	2	0.43%	1.99	3.27
A51 – Andromeda_06	212	77.70	2.75	2.73	65	1	0.47%	2.69	2.58
A51 – Andromeda_07	258	70.56	2.82	2.83	65	1	0.39%	2.80	2.79
A51 – Enterprise_01	35	141.00	9.09	3.41	30	2	5.71%	3.32	2.56
A51 – Enterprise_02	105	92.60	3.69	3.39	25	5	4.76%	2.32	2.58
A51 – Enterprise_03	16	35.34	5.97	1.81	25	1	6.25%	5.32	1.71
A51 – Enterprise_04	24	21.11	2.75	1.78	Not Capped	-	-	-	-
A51 – Enterprise_05	69	20.31	1.68	2.63	Not Capped	-	-	-	-
A51 – Enterprise_06	54	110.00	4.32	3.50	30	1	1.85%	2.84	1.87
A51 – Enterprise_07	56	9.51	1.51	1.67	Not Capped	-	-	-	-
A51 – Interstellar_01	30	20.53	2.79	1.86	Not Capped	-	-	-	-
A51 – Interstellar_02	54	351.00	8.36	5.71	55	1	1.85%	2.87	2.96
A51 – Interstellar_03	319	111.00	2.50	3.77	75	2	0.63%	2.34	3.32
A51 – Interstellar_04	27	20.78	2.99	1.91	Not Capped	-	-	-	-
A51 – Interstellar_05	96	54.92	3.01	2.74	Not Capped	-	-	-	-
A51 – Interstellar_06	653	72.40	2.32	2.77	Not Capped	-	-	-	-
A51 – Interstellar_07	26	68.28	5.88	2.33	Not Capped	-	-	-	-
A51 – Interstellar_08	99	307.74	7.17	4.60	75	2	2.02%	4.57	2.83

Table 14.1 – Summary statistics for the DDH raw and capped assays for the Fenelon deposit

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
A51 – Interstellar_09	40	910.00	27.19	5.27	55	1	2.50%	5.82	1.98
A51 – Interstellar_10	96	64.81	2.90	2.90	Not Capped	-	-	-	-
A51 – Interstellar_11	28	43.99	3.82	2.67	Not Capped	-	-	-	-
A51 – Interstellar_12	25	12.77	1.83	1.64	Not Capped	-	-	-	-
A51 – Interstellar_13	36	43.60	3.14	2.39	Not Capped	-	-	-	-
A51 – Interstellar_14	67	43.19	1.97	3.43	Not Capped	-	-	-	-
A51 – Interstellar_15	43	73.70	4.34	2.73	Not Capped	-	-	-	-
A51 – MIB_01	25	9.37	2.17	1.15	Not Capped	-	-	-	-
A51 – MIB_02	90	177.00	6.41	3.36	35	3	3.33%	4.19	2.12
A51 – MIB_03	31	34.58	3.41	2.41	Not Capped	-	-	-	-
A51 – MIB_04	21	11.77	2.33	1.41	Not Capped	-	-	-	-
A51 – MIB_05	77	44.75	4.41	1.82	Not Capped	-	-	-	-
A51 – MIB_06	136	49.82	3.47	2.19	Not Capped	-	-	-	-
A51 – MIB_07	51	95.72	6.54	2.76	50	2	3.92%	5.02	2.24
Gabbro – Envelope	13803	11.05	0.06	4.59	Not Capped	-	-	-	-
Gabbro – Anaheim	790	612.73	5.90	5.55	100	8	1.01%	4.21	3.41
Gabbro – Chipotle	998	1765.00	18.98	4.86	330	15	1.50%	14.42	3.54
Gabbro – Chipotle_N	83	204.00	4.68	4.93	35	2	2.41%	2.53	2.68
Gabbro – Chipotle_S	114	839.55	20.44	4.25	100	7	6.14%	11.11	2.42
Gabbro – Fresno	460	277.00	2.99	7.16	100	5	1.09%	1.98	5.76
Gabbro – Habanero	737	420.00	2.08	8.15	100	1	0.14%	1.65	4.86
Gabbro – Habanero_N	35	11.90	0.77	2.93	Not Capped	-	-	-	-
Gabbro – NagaViper	1322	897.00	16.00	4.21	330	13	0.98%	13.57	3.38
Gabbro – NagaViper_S	21	28.80	2.14	3.10	Not Capped	-	-	-	-
Gabbro – Serrano	572	273.32	3.71	4.70	100	4	0.70%	3.20	3.70
Gabbro – Serrano_S	44	10.55	1.22	1.83	Not Capped	-	-	-	-
Gabbro – Trinidad Scorpion	17	117.48	15.53	2.06	Not Capped	-	-	-	-

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
Tabasco – Envelope	51318	78.21	0.07	10.09	35	4	0.01%	0.07	8.48
Tabasco – JD Contact Z	2647	360.00	2.43	5.83	110	6	0.23%	2.11	3.93
Tabasco – JD Contact Z Splay	287	101.00	1.75	4.04	35	2	0.70%	1.49	2.78
Tabasco – Cayenne_1	317	28.68	0.67	3.24	Not Capped	-	-	-	-
Tabasco – Cayenne_2	1558	180.00	2.03	5.52	110	5	0.32%	1.90	4.97
Tabasco – Cayenne_3	697	69.00	0.86	4.41	35	2	0.29%	0.79	3.59
Tabasco – Tabasco_1	798	277.00	4.99	3.71	110	6	0.75%	4.51	3.07
Tabasco – Tabasco_2	410	99.00	2.45	3.51	35	6	1.46%	2.08	2.84
Tabasco – Tabasco_3	154	51.10	1.66	3.18	35	1	0.65%	1.56	2.81
Tabasco – Tabasco_4	507	48.56	0.99	4.39	35	3	0.59%	0.95	4.12
Tabasco – Tabasco_5	520	144.50	2.43	4.26	110	1	0.19%	2.36	4.02
Tabasco – Tabasco_6	125	286.00	3.43	7.51	35	1	0.80%	1.42	3.31
Tabasco – Tabasco_7	468	89.68	0.67	6.72	35	1	0.21%	0.55	4.33

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
Bug Lake – East Contact	2165	45.64	2.05	3.44	35	15	0.69%	1.81	2.27
Bug Lake – NorthEast_4South	661	25.08	1.43	6.05	35	3	0.45%	1.13	3.38
Bug Lake – NorthEast_5North	608	16.94	1.95	4.43	35	7	1.15%	1.55	3.22
Bug Lake – Porphyry	2838	60.06	0.09	5.21	Not Capped	-	-	-	-
Bug Lake – SouthEast_1	267	62.76	0.46	5.30	Not Capped	-	-	-	-
Bug Lake – SouthEast_2	357	12.79	1.62	4.91	35	2	0.56%	1.37	3.58
Bug Lake – SouthEast_3	282	14.65	1.07	3.27	35	1	0.35%	1.04	2.97
Bug Lake – West Contact	2472	47.14	1.30	3.57	35	9	0.36%	1.20	2.55
Bug Lake – West_1	203	10.85	0.91	5.46	35	1	0.49%	0.76	4.21
Bug Lake – West_2	310	24.63	0.71	3.43	Not Capped	-	-	-	-
Bug Lake – West_3	73	5.10	1.60	3.43	35	1	1.37%	1.55	3.32
Bug Lake – West_4	987	36.65	10.75	24.69	35	15	1.52%	1.72	3.05
Bug Lake – West_5	420	15.36	4.31	4.64	35	14	3.33%	2.24	3.17
Bug Lake – West_6	343	15.94	8.11	9.02	35	8	2.33%	2.23	3.04
Bug Lake – West_7	159	9.21	0.55	5.84	35	1	0.63%	0.52	5.51
Horsefly – 1	150	37.23	1.58	3.08	35	2	1.33%	1.53	2.94
Horsefly – 2	19	5.63	1.51	2.55	Not Capped	-	-	-	-
MartiniereNorth – 0	352	70.56	0.95	4.46	35	2	0.57%	0.89	4.06
MartiniereNorth – 1	540	53.00	0.65	4.07	Not Capped	-	-	-	-
MartiniereNorth – 2	1111	76.13	0.97	5.82	35	2	0.18%	0.81	2.97
MartiniereNorth – 3	480	36.35	0.68	2.70	Not Capped	-	-	-	-
MartiniereNorth – 4	531	29.98	1.37	5.30	35	4	0.75%	1.03	3.43
MartiniereWest – Central_1	21	8.00	0.56	1.77	Not Capped	-	-	-	-

Table 14.2 – Summary statistics for the DDH raw and capped assays for the Martiniere deposit

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
MartiniereWest – Central_2	59	22.35	1.38	2.39	Not Capped	-	-	-	-
MartiniereWest – Central_3	63	33.20	1.20	4.18	35	1	1.59%	1.13	3.98
MartiniereWest – Central_4	24	4.55	1.13	2.00	Not Capped	-	-	-	-
MartiniereWest – Central_5	44	13.00	1.95	3.35	Not Capped	-	-	-	-
MartiniereWest – Extension_1	28	4.13	1.38	2.39	Not Capped	-	-	-	-
MartiniereWest – Extension_2	56	25.94	1.06	3.44	Not Capped	-	-	-	-
MartiniereWest – Extension_3	28	5.62	1.15	1.89	Not Capped	-	-	-	-
MartiniereWest - Extension_4	30	7.28	3.19	1.69	Not Capped	-	-	-	-
MartiniereWest – Extension_5	33	6.40	0.92	2.29	Not Capped	-	-	-	-
MartiniereWest - Extension_6	32	4.25	1.18	3.27	Not Capped	-	-	-	-
MartiniereWest - Extension_7	27	5.00	0.29	1.90	Not Capped	-	-	-	-
MartiniereWest – Extension_8	30	4.62	0.42	3.12	Not Capped	-	-	-	-
MartiniereWest - Extension_9	26	5.35	0.51	1.94	Not Capped	-	-	-	-
MartiniereWest – Flat_1	251	12.72	1.29	2.79	35	1	0.40%	1.29	2.78
MartiniereWest – Flat_2	100	8.75	0.56	1.89	Not Capped	-	-	-	-
MartiniereWest – Flat_3	237	9.92	1.03	6.64	35	1	0.42%	0.74	3.61
MartiniereWest – Low Grade	45851	234.00	0.13	6.93	35	7	0.02%	0.12	5.91
MartiniereWest – South_1	34	4.44	0.39	2.03	Not Capped	-	-	-	-
MartiniereWest – South_2	51	9.30	0.98	2.16	Not Capped	-	-	-	-
MartiniereWest – Steep_1	211	78.50	0.43	3.80	Not Capped	-	-	-	-
MartiniereWest – Steep_10	824	62.72	4.21	4.65	35	19	2.31%	2.76	2.47
MartiniereWest – Steep_11	123	12.15	0.58	2.70	Not Capped	-	-	-	-
MartiniereWest – Steep_12	436	13.90	0.76	4.64	35	1	0.23%	0.69	3.49
MartiniereWest – Steep_13	89	8.15	0.23	2.23	Not Capped	-	-	-	-

Zone HG/Envelope	No. of samples	Max (g/t Au)	Uncut Mean Au (g/t)	COV uncut	Capping (g/t Au)	No. of Samples cut	Samples cut (%)	Cut Mean (g/t Au)	COV cut
MartiniereWest – Steep_14	428	24.24	1.11	7.57	35	2	0.47%	0.80	4.02
MartiniereWest – Steep_15	35	8.82	0.57	4.02	Not Capped	-	-	-	-
MartiniereWest – Steep_16	323	32.97	0.51	4.09	Not Capped	-	-	-	-
MartiniereWest – Steep_17	126	23.50	0.28	1.49	Not Capped	-	-	-	-
MartiniereWest – Steep_18	87	11.39	0.52	1.19	Not Capped	-	-	-	-
MartiniereWest – Steep_2	55	18.95	0.60	1.91	Not Capped	-	-	-	-
MartiniereWest – Steep_3	89	14.67	0.57	2.90	Not Capped	-	-	-	-
MartiniereWest – Steep_4	79	25.40	0.49	2.94	Not Capped	-	-	-	-
MartiniereWest – Steep_5	32	25.50	0.77	2.40	Not Capped	-	-	-	-
MartiniereWest – Steep_6	154	10.00	0.50	2.68	Not Capped	-	-	-	-
MartiniereWest – Steep_7	114	17.75	0.47	1.42	Not Capped	-	-	-	-
MartiniereWest – Steep_8	357	22.05	1.30	6.73	35	1	0.28%	0.95	3.43
MartiniereWest – Steep_9	68	7.78	1.03	2.63	Not Capped	-	-	-	-

Figure 14.6 – Example of graphs (Tabasco_1) for the Fenelon deposit

14.1.6 Density

Density (specific gravity) is used to calculate tonnage from the estimated volumes in the resource-grade block model.

Wallbridge's database contains density measurements obtained from the laboratory. Table 14.3 and Table 14.4 summarize the available density information by high-grade zones and low-grade envelopes by deposit.

Due to the paucity of data, the rounded average value of the density measurements was applied to all blocks in the Fenelon (2.80 g/cm³) and Martiniere (2.80 g/cm³) deposits. A density of 2.00 g/cm³ was assigned to the overburden and 0.00 g/cm³ to the voids

Grouped Zones	Count	Min (g/cm³)	Max (g/cm ³)	Mean (g/cm ³)	Median (g/cm³)
A51 – <200m Interior	0	-	-	-	-
A51 – HG (Combined)	30	2.75	2.94	2.83	2.81
A51 – LG	136	2.74	3.01	2.84	2.84
A51 – Ripley	0	-	-	-	-
Gabbro – Envelope	0	-	-	-	-
Gabbro – HG (Combined)	0	-	-	-	-
Tabasco – Envelope	48	2.72	2.95	2.79	2.78
Tabasco – HG (Combined)	153	2.72	3.00	2.80	2.79
All	367	2.72	3.01	2.82	2.81

Table 14.3 – Summary of density measurements for the Fenelon deposit

Гable 14.4 – Summa	ry of density	y measurements	for the	Martiniere	deposit
--------------------	---------------	----------------	---------	------------	---------

Grouped Zones	Count	Min (g/cm³)	Max (g/cm ³)	Mean (g/cm³)	Median (g/cm³)
Bug Lake	869	1.60	4.52	2.78	2.80
Horsefly	5	2.77	2.88	2.82	2.81
Martiniere North	204	1.76	4.35	2.80	2.79
Martiniere West	200	2.25	3.2	2.87	2.86
LG – Envelope	3360	1.07	5.34	2.83	2.82
All	4638	1.25	5.05	2.82	2.82

14.1.7 Compositing

To minimize any bias introduced by the variable sample lengths, the gold assays of the DDH data were composited to 1.5-m lengths for Fenelon and 1.0-m lengths for Martiniere in each of the high-grade zones, low-grade zones and envelopes. The thickness of the mineralized structures, the proposed block size and the original sample lengths were considered when determining the composite length. Tails measuring less than the half

of the chosen composite length were equally distributed. A grade of 0.00 g/t Au was assigned to intervals not sampled by the logging geologists and intervals with results not yet received from the laboratory (as of the close-out date of the database) were ignored. A total of 219,673 composites were generated for Fenelon and 75,918 composites for Martiniere.

Table 14.5 and Table 14.6 shows the basic statistics for the composites of the grouped high-grade zones, low-grade zones and envelopes. It illustrates the effect of capping and compositing on the COV of the capped data.

	Cut Assays	S	Composite				
Grouped Zones	Mean (g/t Au)	cov	No. of Comp.	Max (g/t Au)	Mean (g/t Au)	cov	
A51 – <200m Interior	0.04	9.04	38865	17.74	0.03	6.64	
A51 – HG (Combined)	2.68	2.76	2878	58.80	2.08	2.06	
A51 – LG	0.19	5.26	51388	23.26	0.14	4.00	
A51 – Ripley	0.30	3.18	733	11.19	0.29	2.56	
Gabbro – Envelope	0.06	4.79	13922	5.99	0.04	4.06	
Gabbro – HG (Combined)	6.20	4.85	4480	330.00	4.33	4.36	
Tabasco – Envelope	0.06	8.93	58670	23.45	0.04	6.94	
Tabasco – HG (Combined)	1.78	4.40	7049	107.33	1.33	3.64	
All	0.40	14.47	220416	330.00	0.21	13.92	

Table 14.5 – Summary statistics for the composites of the Fenelon deposit

Table 14.6 – Summary statistics for the composites of the Martiniere depos	Fable 14.6 – Summa	ry statistics for the	composites of the	Martiniere depo	sit
--	--------------------	-----------------------	-------------------	-----------------	-----

	Cut Assays	5	Composite						
Grouped Zones	Mean (g/t Au)	cov	No. of Comp.	Max (g/t Au)	Mean (g/t Au)	cov			
Bug Lake	1.23	3.61	13040	35.00	0.98	3.20			
Horsefly	1.52	2.75	157	29.45	1.16	2.28			
Martiniere North	0.81	3.45	2960	35.00	0.68	3.04			
Martiniere West	0.89	2.64	4842	35.00	0.73	2.41			
LG – Envelope	0.12	5.91	54919	35.00	0.09	5.14			
All	0.97	3.00	75918	35.00	0.79	2.70			

14.1.8 Block Model

A block model was created for each of the deposits. Due to the different orientations of the high-grade zones and low-grade envelopes of both deposits, unrotated sub-block models were used in Edge. The litho-structural models for the Fenelon and Martiniere

deposits, which include the high-grade zones and low-grade envelopes were used as sub-blocking triggers.

The origin of each block model is the upper-south-left corner. Block dimensions reflect the sizes of mineralized zones and plausible mining methods.

Table 14.7 shows the properties of each block model.

Properties	X (Columns)	Y (Rows)	Z (Levels)					
Fenelon deposit								
Origin coordinates (Local Mine Grid)	9230	9155	5285					
Parent block size	6	6	6					
Number of parent blocks	322	375	214					
Sub-block size	1	1	0 (Variable Height)					
Block model extent (m)	1932	2250	850					
Rotation	Not applied	Not applied						
Martiniere deposit								
Origin coordinates (UTM NAD83)	640450	5542350	270					
Parent block size	6	6	6					
Number of parent blocks	358	335	134					
Sub-block size	1	1	0 (Variable Height)					
Block model extent (m)	214	214 2010 804						
Rotation	Not applied	Not applied						

Table 14.7 – Properties of block models

14.1.9 Variography and Search Ellipsoids

For the Fenelon deposit, 3D directional variography was completed on DDH composites of capped gold assay data. The study was carried out in Supervisor. The 3D directional-specific investigations on each high-grade zone and envelope yielded best-fit models along orientations that correspond to the mean strike and dip of each zones/envelope. Locally, some high-grade zones did not contain enough composites to properly assess a best-fit model; models from similar zones (based on position and overall geology) were used and were adjusted to fit the mean orientation (azimuth and dip) of each of those specific high-grades zones. Three (3) sets of search ellipsoids (first, second and third search pass) were built from the variogram analysis, corresponding to 0.5x, 1.0x and 1.5x the results obtained from the variography study.

For the Martiniere deposit, 3D variography, also carried out in Supervisor, yielded a bestfit model along an orientation that roughly corresponds to the strike and dip of the mineralized structures. This best-fit model was adjusted to fit the mean orientation (azimuth and dip) of each zone and envelope. Three (3) sets of search ellipsoids were built from the variogram analysis and corresponds to 1.0x, 2.0x and 3.0x the results obtained from the variography study.

For the high-grade zones of the Tabasco and Cayenne corridors of the Fenelon deposit, the 3D directional-specific search ellipsoids were guided by the mid-planes of each modelled solids for an anisotropic search. Otherwise, the other high-grade zones and low-grade envelopes of both deposits use search ellipsoids with a fixed orientation, which corresponds to the mean orientation of each high-grade zones and envelopes.

For the Fenelon deposit, Figure 14.8 shows an example of the variography study for high-grade Tabasco_1 Zone and Figure 14.9 presents an example of the search ellipse (full ranges) according to the composite data points of the same high-grade zone.

For the Martiniere deposit, Figure 14.10 shows an example of the variography study for the high-grade West Contact Zone (Bug Lake Zones) and Figure 14.11 presents an example of the search ellipse (full ranges) according to the composite data points for the same high-grade zone.

Figure 14.8 – Variograms for the Tabasco_1 Zone

Figure 14.9 – Section views of the ellipsoid radii for the Tabasco_1 Zone

Figure 14.10 – Variograms for the West Contact Zone from the Bug Lake Zones

Figure 14.11 – Section views of the ellipsoid radii for the West Contact Zone from the Bug Lake Zones

14.1.10Grade Interpolation

The interpolation profiles were customized for the high-grade zones and low-grade envelopes and were used as interpolation domains with hard boundaries.

The variography study provided the parameters used to interpolate the grade model using the composites. The interpolation inside each interpolation domains was run on point datasets which corresponds to the mid-points of the composite intervals, in Edge.

A three-pass strategy was used with the capped composites.

For the Fenelon deposit, the remaining high Au values, unconstrained by a high-grade zone but inside a low-grade envelopes, used a restricted search to reduce smearing of high Au values over large distance. The OK method was selected for the final mineral resource estimate as variograms could be modelled for most of the high-grade zones and low-grade envelopes and was found that it better honours the grade distribution of this deposit.

For the Martiniere deposit, the ID2 method was selected as it better honoured the grade distribution of the deposit and the variography results were not of sufficient quality to be used with kriging interpolation method.

The parameters for the grade estimation specific to Edge are summarized in Table 14.8 for the Fenelon deposit and in for the Martiniere deposit.

			Composite Parameters			Edge Orientation			Ranges	(Based on Va	High-Grade Restricted Search		
Zone	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp. /DDH	Dip	Dip Azimuth	Pitch	Major (m)	lnt. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
	1	0.5 x variogram ranges	4	12	3				20.0	17.5	13.5	50	3
A51 – <200m Interior	2	1.0 x variogram ranges	4	12	3	70.0	30.0	140.0	40.0	35.0	27.0	25	3
	3	1.5 x variogram ranges	3	12	No Max.				60.0	52.5	40.5	12.5	3
A51 – HG Zones	1	0.5 x variogram ranges	4	12	3	Oriente	d parallel		32.5-55.0	25.0-37.5	5.0-12.5	N/A	N/A
	2	1.0 x variogram ranges	4	12	3	to the w of each	ireframes individual	Oriented with grade trend	65.0-110.0	50.0-75.0	10.0-25.0	N/A	N/A
	3	1.5 x variogram ranges	3	12	No Max.	ZO	ones		97.5-165	75.0-112.5	15.0-37.5	N/A	N/A
	1	0.5 x variogram ranges	4	12	3	60.0	35.0	40.0	35.0	35.0	22.5	50	7
A51 – LG	2	1.0 x variogram ranges	4	12	3				70.0	70.0	45.0	25	7
	3	1.5 x variogram ranges	3	12	No Max.				105.0	105.0	67.5	12.5	7
	1	0.5 x variogram ranges	4	12	3		170.0	10.0	75.0	37.5	19.0	N/A	N/A
A51 – Ripley	2	1.0 x variogram ranges	4	12	3	80.0			150.0	75.0	38.0	N/A	N/A
	3	1.5 x variogram ranges	3	12	No Max.				225.0	112.5	57.0	N/A	N/A
	1	0.5 x variogram ranges	4	12	3	85	195	140	55.0	50.0	8.5	50	4
Gabbro - Envelope	2	1.0 x variogram	4	12	3				110.0	100.0	17.0	25	4

Table 14.8 – Estimation parameters for the Fenelon deposit

	-		Composite Parameters			Edge Orientation			Ranges	(Based on Va	High-Grade Restricted Search		
Zone	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp. /DDH	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)	Distance (%)	Au Value (Au g/t)
		ranges											
	3	1.5 x variogram ranges	3	12	No Max.				165.0	150.0	25.5	12.5	4
	1	0.5 x variogram ranges	4	12	3	75-90	185-210	125-175	22.5-50.0	10.0-15.0	5.0-10.0	N/A	N/A
Gabbro - HG Zones	2	1.0 x variogram ranges	4	12	3				45.0-100.0	20.0-30.0	10.0-20.0	N/A	N/A
	3	1.5 x variogram ranges	3	12	No Max.				67.5-150.0	30.0-45.0	15.0-30.0	N/A	N/A
	1 0.5 x variogram ranges 4 12 3				54.0	35.0	7.5	50	4.5				
Tabasco - Envelope	2	1.0 x variogram ranges	4	12	3	Dyr Anis	amic otropy	170	108.0	70.0	15.0	25	4.5
	3	1.5 x variogram ranges	3	12	No Max.				162.0	105.0	22.5	12.5	4.5
	1	0.5 x variogram ranges	4	12	3				50.0-90.0	27.5-65.0	7.5-20.0	N/A	N/A
Tabasco - HG Zones	2	1.0 x variogram ranges	4	12	3	Dyr Anis	namic otropy	70-170	100.0-180.0	55.0-130.0	15.0-40.0	N/A	N/A
	3	1.5 x variogram ranges	3	12	No Max.				150.0-270.0	82.5-195.0	22.5-60.0	N/A	N/A

			Composite Parameters			Edge Orientation			Ranges		
Zone	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp. /DDH	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)
	1	1.0 x variogram ranges	4	12	3				70.0	35.0	15.0
Bug Lake CTC & Porph. – HG Zones	2	2.0 x variogram ranges	3	12	3	65.0	65.0	140.0	140.0	70.0	30.0
	3	3.0 x variogram ranges	3	12	3				210.0	105.0	45.0
	1	1.0 x variogram ranges	4	12	3			0.0	50.0	50.0	25.0
Bug Lake NE – HG Zones	2	2.0 x variogram ranges	3	12	3	48.0-62.0	65.0-135.0		100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
Bug Lake SE – HG Zones	1	1.0 x variogram ranges	4	12	3	40.0-45.0	140.0	0.0	50.0	50.0	25.0
	2	2.0 x variogram ranges	3	12	3				100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3	65.0-80.0	65.0-82.0	140.0	70.0	35.0	15.0
Bug Lake W – HG Zones	2	2.0 x variogram ranges	3	12	3				140.0	70.0	30.0
	3	3.0 x variogram ranges	3	12	3				210.0	105.0	45.0
	1	1.0 x variogram ranges	4	12	3		60.0	0.0	50.0	50.0	25.0
Horsefly – HG Zones	2	2.0 x variogram ranges	3	12	3	55.0			100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3		320.0-330.0	0.0	50.0	50.0	25.0
Martiniere Central – HG Zones	2	2.0 x variogram ranges	3	12	3	75.0			100.0	100.0	50.0
20163	3	3.0 x variogram ranges	3	12	3	1			200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3				50.0	50.0	25.0
Martiniere N – HG Zones	2	2.0 x variogram ranges	3	12	3	80.0-85.0	215.0-223.0	0.0	100.0	100.0	50.0

Table 14.9 – Estimation parameters for the Martiniere deposit

		C	Compos	Composite Parameters		Edge Orientation			Ranges		
Zone	Pass	Ellipsoid	Min Comp	Max Comp	Max Comp. /DDH	Dip	Dip Azimuth	Pitch	Major (m)	Int. (m)	Minor (m)
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3			0.0	50.0	50.0	25.0
Martiniere S – HG Zones	2	2.0 x variogram ranges	3	12	3	60.0	128.0-135.0		100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3	84.0-88.0	285.0-293.0		50.0	50.0	25.0
Martiniere W Ext. – HG Zones	2	2.0 x variogram ranges	3	12	3			0.0	100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3	-			200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3				50.0	50.0	25.0
Martiniere W Flat – HG Zones	2	2.0 x variogram ranges	3	12	3	12.0-22.0	280.0-315.0	0.0	100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0
	1	1.0 x variogram ranges	4	12	3				50.0	50.0	25.0
Martiniere W Steep – HG Zones	2	2.0 x variogram ranges	3	12	3	66.0-88.0	123.0-300.0	0.0	100.0	100.0	50.0
	3	3.0 x variogram ranges	3	12	3				200.0	200.0	100.0

14.1.11Block Model Validation

Block model grades, composite grades and assays were visually compared on sections, plans and longitudinal views for both densely and sparsely drilled areas. No significant differences were observed. A generally good match was noted in the grade distribution without excessive smoothing in the block model.

The block models were validated visually and statistically. The visual validation confirmed that the block model honours the drill hole composite data (Figure 14.12 as an example for Fenelon and Figure 14.13 as an example for Martiniere).

Table 14.10 compares the global block model mean for three (3) interpolation scenarios and the composite grades (including the declustered mean for the composites) for major mineralized structures for each deposit at zero cut-off for Inferred and Indicated blocks. Cases in which the composite mean is higher than the block mean are often a consequence of clustered drilling patterns in high-grade areas.

The comparison between composite and block grade distribution did not identify significant issues. As expected, block grades are generally lower than composite grades.

Interpolation Domain	Number of cmp.	Cmp grade (g/t Au)	Declustered Cmp. Grade (g/t Au)	Number of blocks	OK Model (g/t Au)	ID2 Model (g/t Au)	NN Model (g/t Au)
Fenelon deposit							
A51 – LG	51,039	0.145	0.140	5,145,138	0.149	0.143	0.149
A51 – Andromeda_05	350	1.640	4.086	139,487	3.038	2.990	3.665
A51 – Interstellar_06	482	1.778	2.060	184,972	1.948	1.852	2.354
Gabbro – Chipotle	816	7.887	4.493	24,274	0.989	0.936	0.814
Gabbro – NagaViper	1,067	7.867	3.087	35,395	1.988	1.986	2.281
Tabasco – JD Contact Zone	2424	1.621	1.121	1,027,830	1.701	1.687	1.519
Tabasco – Tabasco_1	786	2.961	2.314	219,908	2.686	2.758	2.544
Martiniere deposit							
Bug Lake Porphyry	3882	0.07	0.05	708,061	0.06	0.06	0.07
Bug Lake West Contact	2311	1.08	0.73	641,488	0.74	0.74	0.85
Bug Lake East Contact	1993	1.67	1.51	527 825	1.49	1.57	1.54
Martiniere West_Flat_3	252	0.53	0.91	155,223	0.34	0.47	0.33
Martiniere North_2	1060	0.73	0.60	498,074	0.69	0.69	0.66

Table 14.10 – Comparison of the mean grades for blocks and composites

Figure 14.12 – Visual validation comparing drill hole composites and block model grade values (example of Tabasco_1 for Fenelon)

Figure 14.13 – Visual validation comparing drill hole composites and block model grade values (example of West Contact from the Bug Lake Zones)

14.1.12Mineral Resource Classification

The Detour-Fenelon Gold Trend 2021 MRE comprises Indicated and Inferred mineral resources. The categories were prepared using a script in Edge. The resulting classifications were subsequently refined using a series of outline rings (clipping boundaries) to upgrade inferred blocks or downgrade indicated blocks. The QPs consider this a necessary step to homogenize the mineral resource volumes in each category and avoid the inclusion of isolated blocks in the Indicated category.

The classification takes into account the following criteria:

- Interpolation pass
- Distance to closest information
- Number of drill holes used to estimate the block's grade

No measured mineral resources were defined.

The indicated category was assigned to blocks estimated in the first and second pass with a minimum of two (2) drill holes in areas where the minimum distance from a drill hole is less than 35 m for the Martiniere deposit and for the Tabasco-Cayenne zones of the Fenelon deposit, or less than 25 m for the Area 51 and Gabbro zones.

The inferred category is defined for blocks estimated in the first and second pass with a minimum of two (2) drill holes in areas where the minimum distance from a drill hole is less than 70 m for the Martiniere deposit and for the Tabasco-Cayenne zones of the Fenelon deposit, or les than 50 m for the Area 51 and Gabbro zones.

14.1.13Economic Parameters and Cut-Off Grade

For the Detour-Fenelon Gold Trend 2021 MRE, the economic parameters were optimized considering the synergy between the Martiniere and the Fenelon deposits.

The cut-off grades ("COGs") for the Fenelon deposit are 0.35 g/t for the potential openpit extraction scenario and 1.50 g/t Au for the potential underground extraction scenario. For Martiniere, a cut-off grade of 0.40 g/t is used for the potential open-pit extraction scenario and 2.40 g/t Au for the potential underground extraction scenario.

The selected cut-off grades were calculated and then rounded using the parameters presented in Table 14.11.

The cut-off grades and parameters were used for the pit shell optimization (Whittle) and the underground stope optimization (Deswik Stope Optimizer or "DSO") to produce constraining volumes as conceptual mining shapes.

Cut-off grade should be re-evaluated in light of prevailing market conditions and other factors, such as gold price, exchange rate, mining method, related costs, etc.

Parameters	Unit	Value
Gold Price	US\$/oz	1607
Exchange Rate	US\$/C\$	1.31
Metallurgic Recovery	%	96

Table 14.11 – Input parameters used to calculate the cut-off grades

Parameters	Unit	Value
Fenelon		
Mining Cost	CAD\$/t milled	70
G&A Cost - Open Pit	CAD\$/t milled	7
G&A Cost - UG	CAD\$/t milled	8.5
Processing Cost- Open Pit	CAD\$/t milled	12.9
Processing Cost- UG	CAD\$/t milled	16.8
Calculated COG – Open Pit	Au g/t	0.35
Calculated COG – UG	Au g/t	1.5
Martiniere		
Mining Cost - UG	CAD\$/t milled	110
G&A Cost - Open Pit	CAD\$/t milled	7
Transport to Process	CAD\$/t milled	6
G&A Cost - UG	CAD\$/t milled	10.5
Processing Cost- Open Pit	CAD\$/t milled	12.9
Processing Cost- UG	CAD\$/t milled	29
Calculated COG - Open Pit	Au g/t	0.4
Calculated COG - UG	Au g/t	2.4

The DSO parameters used a minimum mining shape of 10.0 m along the strike of the deposit, a height of 10.0 m and a width of 2.0 m. The maximum shape measures 10.0 m x 10.0 m x width of the mineralized zone. The typical shape was optimized first. If it was not potentially economical, smaller stope shapes were optimized until it reached the minimum mining shape.

The use of those conceptual mining shapes as constraints to report mineral resource estimates demonstrate that the "reasonable prospects for eventual economic extraction" meet the criteria defined in the CIM Definition Standards on Mineral Resources and Reserves (CIM Definition Standards; May 10, 2014) and the CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (MRMR Best Practice Guidelines; November 29, 2019).

14.1.14Mineral Resource Estimate

The QPs are of the opinion that the Detour-Fenelon Gold Trend 2021 MRE can be classified as Indicated and Inferred mineral resources based on geological and gradecontinuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The requirement of reasonable prospects for eventual economical extraction has been met by: having a minimum width for the modelling of the mineralization zones and a cut-off grade; using reasonable inputs, both for potential open pit and underground extraction scenarios; and constraints consisting of a surface shape for the open-pit scenario and mineable shapes for the underground scenario.

The QPs consider the Detour-Fenelon Gold Trend 2021 MRE to be reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards.

Figure 14.14 and Figure 14.15 show the classified mineral resources within the constraining volumes (optimized pits and DSOs) for the Martiniere and Fenelon deposit.

Table 14.12, Table 14.13 and Table 14.14 display the results of the Detour-Fenelon Gold Trend 2021MRE.

Figure 14.15 – Classified mineral resources within the constraining volumes for the Fenelon deposit

Detour Fenelon Gold Trend	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (g/t Au)	Troy Ounces (oz Au)	Total (oz Au)	
	Indiantad	in Pit ≥ 0.35	28,132,000	1.45	1,307,600	2 126 000	
Fanalan	Indicated	UG ≥ 1.50	7,885,800	3.23	819,300	2,126,900	
reneion	Informed	in Pit ≥ 0.35	22,102,500	1.18	841,400	1 467 400	
	Interreu	UG ≥ 1.50	6,888,900	2.83	626,000	1,467,400	
	la die ete d	in Pit ≥ 0.40	6,583,000	2.00	422,800	E 40 700	
Mortiniara	Indicated	UG ≥ 2.40	957,500	3.93	120,900	543,700	
Martiniere	Informed	in Pit ≥ 0.40	1,406,700	1.81	81,900	256 200	
	Interreu	UG ≥ 2.40	1,379,500	3.95	174,300	256,200	
Total Indicated			43,558,300	1.91		2,670,600	
Total Inferred			31,777,600	1.69		1,723,600	

Table 14.12 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (total per deposit)

Table 14.13 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (Results for the Fenelon deposit per zones)

Fenelon Gold	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Total (oz Au)	
	Indicated	in Pit ≥ 0.35	555,900	4.15	74,200	70 500	
Cabbra	muicaleu	UG ≥ 1.50	66,400	2.49	5,300	79,300	
Gabbio	Inforred	in Pit ≥ 0.35	0	0.00	0	0	
	inierreu	UG ≥ 1.50	0	0.00	0	0	
	Indicated	in Pit ≥ 0.35	12,706 500	1.77	725,000	1 206 700	
Tabasco -	Indicated	UG ≥ 1.50	6,296,200	3.32	671,700	1,390,700	
Cayenne	laforrad	in Pit ≥ 0.35	6,878,100	6,878,100 1.00		461 000	
	merrea	UG ≥ 1.50	2,481,200	3.02	241,000	401,900	
	Indicated	in Pit ≥ 0.35	14,869,600	1.06	508,400	650 700	
Aroo 51	Indicated	UG ≥ 1.50	1,523,200	2.91	142,300	650,700	
Alea 51	Inforred	in Pit ≥ 0.35	15,224,300	1.27	620,500	1 005 500	
	merrea	UG ≥ 1.50	4,407,500	2.72	385,000	1,005,500	
Total Indicated	Indicated		36,017,800	1.84		2,126,900	
Total Inferred	Inferred		28,991,100	1.57		1,467,400	

Martiniere	Category	Cut-off Grade (g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Total (oz Au)	
	Indicated	in Pit ≥ 0.40	137,300	2.81	12,400	20,400	
Martiniere	Indicated	UG ≥ 2.40	225,700	3.72	27,000	39,400	
North	Informed	in Pit ≥ 0.40	153,800	2.79	13,800	44 400	
	merred	UG ≥ 2.40	283,400	3.36	30,600	44,400	
	Indicated	in Pit ≥ 0.40	746,300	2.31	55,400	76 900	
Martiniere	Indicated	UG ≥ 2.40	208,400	3.20	21,400	76,800	
West	Nest Inferred	in Pit ≥ 0.40	52,700	1.15	1,900	20.200	
		UG ≥ 2.40	299,000	3.79	36,400	38,300	
	Indicated	in Pit ≥ 0.40	0	—	0	2 100	
Llavaaflu	Indicated	UG ≥ 2.40	31,400	3.09	3,100	3,100	
Horseny	la formo d	in Pit ≥ 0.40	26,000	2.17	1,800	0.400	
	Interred	UG ≥ 2.40	7,000	2.68	600	2,400	
	la dia sta d	in Pit ≥ 0.40	5,699,400	1.94	355,000	404 400	
Dug Laka	Indicated	UG ≥ 2.40	492,100	4.39	69,400	424,400	
Bug Lake	la formo d	in Pit ≥ 0.40	1,174,100	1.71	64,400	474 400	
	Interred	UG ≥ 2.40	783,200	4.24	106,700	171,100	
Total Indicated	Indicated		7,540,600	2.24		543,700	
Total Inferred	Inferred		2,779,200	2.87		256,200	

Table 14.14 – Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate (Results for the Martiniere deposit per zones)

Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate notes:

- The independent and qualified persons for the current Detour-Fenelon Gold Trend 2021 Mineral Resource Estimate are Carl Pelletier, P.Geo. (for Fenelon and Martiniere) and Vincent Nadeau-Benoit, P.Geo. (for Fenelon), both from InnovExplo. The Detour-Fenelon Gold Trend 2021 MRE follows 2014 CIM Definition Standards and 2019 CIM MRMR Best Practice Guidelines. The effective date of the Detour-Fenelon Gold Trend 2021 MRE is November 9, 2021.
- 2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.
- 3. The QPs are not aware of any known environmental, permitting, legal, title-related, taxation, sociopolitical or marketing issues, or any other relevant issue, that could materially affect the potential development of mineral resources other than those discussed in the Detour-Fenelon Gold Trend 2021 MRE.
- 4. For Fenelon, a density value of 2.80 g/cm³, supported by measurements, was applied to the bedrock. Sixty-one (61) high-grade zones and five (5) low-grade envelopes were modelled in 3D using a minimum true width of 2.0 m. High-grade capping was done on raw assay data and established on a per-zone basis and ranges between 25 g/t and 110 g/t Au (except Gabbro Zones, where it ranged from 35 g/t to 330 g/t) for the high-grade zones and ranges between 8 g/t and 35 g/t Au for the low-grade envelopes. Composites (1.5 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed.
- 5. For Martiniere, a density value of 2.80 g/cm³, supported by measurements, was applied to the bedrock. Fifty-nine (59) high-grade zones and one (1) low-grade envelope were modelled in 3D using a minimum true width of 3.0 m. High-grade capping was done on raw assay data and established at 35 g/t Au based on the most numerous zones and extrapolated to all zones. Composites (1.0 m) were calculated within the zones and envelopes using the grade of the adjacent material when assayed or a value of zero when not assayed.
- 6. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to any blocks (potential surface or underground extraction scenario) using Whittle and DSO and by the application of cut-off grades, as shown in the above table, which were calculated using a gold price of US \$ 1,607/oz and an exchange rate of US \$ 1.31/CAD\$.

7. Results are presented in-situ. Ounce (troy) = metric tons x grade/31.10348. The number of tonnes and ounces was rounded to the nearest thousand. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations as per NI 43-101.

Table 14.15, Table 14.16, Table 14.17 and Table 14.18 show the cut-off grade sensitivity analysis of Detour-Fenelon Gold Trend 2021 mineral resource estimate. The reader should be cautioned that the numbers provided should not be interpreted as a mineral resource statement. The reported quantities and grade at different cut-off grades are presented in-situ and for the sole purpose of demonstrating the sensitivity of the mineral resource model to the selection of a reporting cut-off grade.

Cut-off	Gabbro Gabbro			Tabas	co-Cay	enne	Area 51			
Grade (g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	
INDICATED MINERAL RESOURCES										
0.30	586,200	3.95	74,500	14,055,200	1.64	739,100	17,298,700	0.96	533,700	
0.35	555,900	4.15	74,200	12,706,500	1.77	725,000	14,869,600	1.06	508,400	
0.40	532,200	4.32	73,900	11,644,000	1.90	712,200	12,911,400	1.17	484,900	
0.50	492,300	4.63	73,300	10,016,200	2.14	688,800	10,115,800	1.37	444,700	
1.00	355,200	6.14	70,100	5,625,000	3.26	588,800	4,582,500	2.18	320,900	
1.50	277,500	7.52	67,100	3,786,600	4.25	517,100	2,816,800	2.79	252,300	
2.50	199,800	9.69	62,300	2,234,900	5.86	421,000	1,264,500	3.85	156,500	
INFERRED M	INERAL R	ESOUR	CES							
0.30	0	_	0	7,738,800	0.92	229,900	17,968,700	1.12	649,100	
0.35	0	_	0	6,878,100	1.00	220,900	15,224,300	1.27	620,500	
0.40	0	_	0	6,214,500	1.07	212,900	13,270,000	1.40	597,100	
0.50	0	_	0	4,987,400	1.22	195,200	10,441,800	1.66	556,400	
1.00	0	_	0	2,016,500	1.99	128,900	4,920,600	2.75	435,500	
1.50	0	_	0	1,107,500	2.61	93,000	3,566,100	3.33	382,400	
2.50	0	_	0	459,700	3.60	53,100	1,919,100	4.52	279,100	

Table 14.15 – Cut-off grade sensitivity for the Fenelon deposit (in-pit)

Cut off Crode	Fene	elon (all zo	ones)
(g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)
INDICATED MIN	IERAL RESOURC	ES	
1.25	9,453,900	2.98	904,500
1.50	7,847,800	3.27	825,600
1.75	6,773,100	3.57	777,500
2.00	5,718,900	3.89	715,000
2.50	4,223,900	4.50	610,700
INFERRED MIN	ERAL RESOURCI	ES	
1.25	8,891,500	2.47	707,300
1.50	6,926,900	2.78	619,800
1.75	5,730,600	3.05	561,500
2.00	4,685,500	3.32	499,500
2.50	2,982,700	3.96	379,800

Table 14.16 – Cut-off grade sensitivity for the Fenelon deposit (underground)

Cut-off	Cut-off Martiniere North		Martiniere West			Horsefly			Bug Lake			
Grade (g/t Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)	Tonnes (t)	Grade (Au g/t)	Troy Ounces (oz Au)
INDICATE	INDICATED MINERAL RESOURCES											
0.30	150,600	2.59	12,600	809,800	2.16	56,100	0	0.00	0	6,147,600	1.82	360,000
0.35	144,800	2.68	12,500	778,600	2.23	55,800	0	0.00	0	5,911,400	1.88	357,600
0.40	137,300	2.81	12,400	746,300	2.31	55,400	0	0.00	0	5,699,400	1.94	355,000
0.50	124,100	3.06	12,200	681,300	2.49	54,500	0	0.00	0	5,275,700	2.06	348,900
1.00	74,000	4.63	11,000	493,600	3.15	50,100	0	0.00	0	3,652,600	2.65	310,700
1.50	60,400	5.39	10,500	378,100	3.74	45,400	0	0.00	0	2,479,000	3.31	264,000
2.40	42,900	6.86	9,500	256,500	4.60	37,900	0	0.00	0	1,314,600	4.58	193,400
INFERRED) MINERA	L RESO	URCES									
0.30	173,700	2.51	14,000	66,400	0.98	2,100	26,000	2.17	1,800	1,275,300	1.60	65,500
0.35	161,000	2.68	13,900	59,100	1.06	2,000	26,000	2.17	1,800	1,217,900	1.66	64,900
0.40	153,800	2.79	13,800	52,700	1.15	1,900	26,000	2.17	1,800	1,174,100	1.71	64,400
0.50	146,600	2.90	13,700	43,100	1.30	1,800	26,000	2.17	1,800	1,088,700	1.80	63,100
1.00	91,800	4.22	12,400	15,000	2.57	1,200	24,500	2.25	1,800	795,700	2.20	56,400
1.50	73,500	4.97	11,700	10,800	3.08	1,100	20,800	2.43	1,600	542,900	2.65	46,300
2.40	67,300	5.25	11,400	8,300	3.43	900	10,600	2.94	1,000	262,600	3.52	29,700

	Marti	niere (all z	zones)						
(g/t Au)	Tonnes Grade (t) (Au g/t)		Troy Ounces (oz Au)						
INDICATED MINERAL RESOURCES									
2.00	1,274 100	3.57	146,300						
2.40	933,500	4.10	122,900						
3.00	619,800	4.89	97,400						
INFERRED MINE	ERAL RESOURCE	ES							
2.00	1,847,000	3.42	203,100						
2.40	1,396,600	3.84	172,300						
3.00	911,800	4.51	132,300						

Table 14.18 – Cut-off grade sensitivity for the Martiniere deposit (underground)

14.2 Grasset 2021 MRE

14.2.1 Methodology

The mineral resource area has a NE strike length of 1,000 m, a width of 350 m, and a vertical extent of 600 m below the surface. The Grasset 2021 MRE is based on a compilation of historical and recent DDH and a litho-structural model constructed in Leapfrog by Balmoral, subsequently adapted for GEMS by InnovExplo.

The Grasset 2021 MRE was prepared using GEMS v.6.8.2.2 ("GEMS") software. GEMS was used for the grade estimation, variography and block modelling. Basic statistics, capping and validations were established using a combination of GEMS, Microsoft Excel and Access software.

The main steps in the methodology were as follows:

- Review and validate the DDH database.
- Review and validate the geological model and interpretation.
- Validate the DDH intercepts database, compositing database and capping values for the purposes of geostatistical analysis and variography.
- Validate the block models and grade interpolation.
- Revise the classification criteria and validate the clipping areas for mineral resource classification.
- Assessment of mineral resources with "reasonable prospects for economic extraction" and selection of appropriate cut-off grades and constraining volumes for a potential underground extraction scenario.
- Generation of a mineral resource statement.

14.2.2 Drill Hole Database

The DDH database contains 111 surface DDH (39,999.43 m). A subset of 101 DDH (37,944.49 m) was used to create the mineral resource database for the Grasset

2021 MRE. (Figure 14.16). This selection contains 14,167 sampled intervals taken from 16,084.65 m of drilled core, which were sampled for nickel, copper, cobalt, platinum, palladium, gold or silver, or a combination of these metals. The information also includes lithological and structural descriptions taken from drill core logs.

The DDHs in the mineral resource database were generally drilled at a regular spacing of 25-100 m, the majority at 50 m perpendicular to the main orientation of the mineralized zones.

In addition to the basic tables of raw data, the mineral resource database includes several tables of calculated drill hole composites and wireframe solid intersections, which are required for the statistical evaluation and mineral resource block modelling.

Figure 14.16 – Surface plan view of the validated DDH used for Grasset 2021 MRE

14.2.3 Geological Model

To conduct accurate mineral resource modelling of the deposit, the QP based the lithological and mineralized-zone wireframe model on the Leapfrog model. Thirteen (13) solids were constructed: 11 lithological solids and 2 mineralized solids (H1 and H3) that honour the DDH. Both mineralized zones are contained within an ultramafic lithology. Overlaps were handled by clipping solids against each other prior to coding the block model (Figure 14.17). A minimum true thickness of 3.0 m was used.

Two surfaces were also created in order to define topography and overburden/bedrock contact. These surfaces were generated from drill hole descriptions (Figure 14.18).

Figure 14.17 – Isometric view of the lithological model for the Grasset deposit

Figure 14.18 – Isometric view of the topographic surface of the Grasset deposit

14.2.4 Voids Model

The Grasset deposit does not contain underground openings or voids.

14.2.5 High-grade Capping

Codes were automatically attributed to any DDH assay intervals intersecting the interpreted mineralized zone wireframes. The codes are based on the name of the 3D wireframe. The coded intercepts were used to analyze sample lengths and generate statistics for high-grade capping.

Basic univariate statistics for nickel, copper, cobalt, platinum, palladium, gold and silver were completed for the individual mineralized zones H1 (n = 482) and H3 (n = 3,326). Capping was applied to raw assays only for samples in H3 for Ni, Pd and Au. Capping values were selected by combining the dataset analysis (COV, decile analysis, metal content) with the probability plot and log-normal grade distribution.

Table 14.19 presents a summary of the statistical analysis by metal. Figure 14.19 shows graphs supporting the capping threshold decisions for the nickel in H3.

Zone	Metal	# of Samples	Max (g/t or %)	Uncut Mean (g/t or %)	High Grade Capping (g/t or %)	Cut Mean (g/t or %)	# of Samples Cut	% of Samples Cut	% Metal Factor Loss	cov
	Ni (%)	482	4.38	0.40	15.00	0.40	0	0.00%	0.00%	0.97
	Cu (%)	482	0.55	0.04	5.00	0.04	0	0.00%	0.00%	1.26
	Co (%)	482	0.12	0.01	0.30	0.01	0	0.00%	0.00%	0.78
H1	Pt (g/t)	338	2.42	0.10	5.00	0.10	0	0.00%	0.00%	1.79
	Pd (g/t)	338	2.57	0.21	8.00	0.21	0	0.00%	0.00%	1.29
	Au (g/t)	378	0.76	0.03	5.00	0.03	0	0.00%	0.00%	2.55
	Ag (g/t)	482	3.90	0.17	10.00	0.17	0	0.00%	0.00%	1.51
	Ni (%)	3,326	18.95	0.81	15.00	0.81	2	0.06%	-0.11%	1.30
	Cu (%)	3,326	2.90	0.09	5.00	0.09	0	0.00%	0.00%	1.69
	Co (%)	3,326	0.25	0.02	0.30	0.02	0	0.00%	0.00%	0.86
H3	Pt (g/t)	2,918	4.12	0.19	5.00	0.19	0	0.00%	0.00%	1.40
	Pd (g/t)	2,918	12.00	0.46	8.00	0.46	2	0.07%	-0.29%	1.37
	Au (g/t)	2,946	5.13	0.05	5.00	0.05	1	0.03%	-0.06%	3.97
	Ag (g/t)	3,326	8.30	0.32	10.00	0.32	0	0.00%	0.00%	1.72

Table 14.19 – Summary statistics for the DDH raw assays by metal

Figure 14.19 – Graphs supporting a capping value of 15% Ni for the H3 zone

14.2.6 Density

Density (specific gravity) is used to calculate tonnage from the estimated volumes in the resource-grade block model.

The DDH database contains density measurements obtained from onsite and laboratory measurements (the "measured dataset"). Table 14.20 summarizes the available density information by lithology or mineralized zone.

Rock Unit	Count	Min (g/cm³)	Max (g/cm³)	Mean (g/cm ³)
CR	118	2.65	4.58	2.81
FELS1	3	2.70	2.73	2.71
GAB1	13	2.67	2.89	2.80
GAB2				
H1	13	2.68	4.30	3.06
Н3	254	2.62	4.70	2.96
QFP1	6	2.67	2.78	2.72
QFP2				
UN1	201	2.58	4.99	2.86
UM2	34	2.75	3.15	2.91
UM3	2	2.81	2.83	2.82
UM4	11	2.69	2.90	2.81
All	655	2.58	4.99	2.89

Table 14.20 – Summary of density measurements in the current database

It was determined that the measured database does not contain enough data to allow for density interpolation. The distribution is heterogeneous in the mineralized zones and the isolated high values would bias the results.

For the mineralized zones, a correlation matrix was created. The matrix is based on the combined Ni, Fe and Co contents (which return the best correlation), using a background value of 2.40 g/cm³ representing the host rock artificially depleted of all three metals. The three metals were weighted to their respective densities (8.91 g/cm³ for Ni, 7.87g/cm³ for Fe and 8.86g/cm³ for Co). This matrix returned the best correlation when compared to the measured dataset. The data derived from the correlation matrix, referred to herein as the "calculated dataset", yielded a better distribution and was used for the interpolation of the density in the block model.

The calculated density values were capped at 4.697 g/cm³, the highest measured value in the mineralized zones.

Density values for the mineral resource estimate were established as follows (Table 14.21):

- Fixed densities from the measured database for all lithological units.
- Interpolated densities from the measured and calculated databases for H1 and

H3 mineralized zones (capped at 4.697 g/cm³, the highest measured value).

• Fixed density of 2.00 g/cm³ for the overburden.

	Density Used										
Unit	Block code	Source	Mean (g/cm ³)								
CR	6000	From "All Measures"	2.81								
FELS1	6100	From "All Measures"	2.71								
GAB1	4100	From "All Measures"	2.80								
GAB2	4200	Idem to GAB1	2.80								
H1	1100	Interpolated from Calculated and Measured Data									
НЗ	1300	Interpolated from Calculated and Measured Data									
QFP1	5100	From "All Measures"	2.72								
QFP2	5200	Idem to QFP1	2.72								
UN1	2100	From "All Measures"	2.86								
UM2	2200	From "All Measures"	2.91								
UM3	2300	From "All Measures"	2.82								
UM4	2400	From "All Measures"	2.81								

Table 14.21 – Density values used for the mineral resource estimate

14.2.7 Compositing

To minimize any bias introduced by the variable sample lengths, the assays were composited within each of the mineralized zones. The thickness of the mineralized structures, the proposed block size and the original sample lengths were taken into consideration to determine the selected composite length, which was set at 1 m. When the last interval is less than 0.25 m, the composite is rejected. A grade of 0.00 % (Ni, Cu, Co) or 0.00 g/t (Pt, Pd, Au, Ag) was assigned to missing sample intervals. A total of 13,296 composites were generated within the mineralized zones.

Table 14.22 summarizes the basic statistics for the DDH composites.

Max Mean Block No. of (g/t or (g/t or Dataset Metal SD CV Code Composites %) %) Ni (%) 579 3.31 0.35 0.26 0.75 Cu (%) 579 0.29 0.04 0.03 0.95 Mineralized 1100 Co (%) 579 0.09 0.01 0.01 0.59 Zone H1 Pt (g/t) 579 1.62 0.06 0.10 1.86 Pd (g/t) 579 2.29 0.12 0.18 1.44 579 0.76 0.02 0.06 2.91 Au (g/t)

 Table 14.22 – Summary statistics for the composites

Dataset	Block Code	Metal	No. of Composites	Max (g/t or %)	Mean (g/t or %)	SD	сv
		Ag (g/t)	579	1.79	0.15	0.15	0.98
		Ni (%)	3,642	14.94	0.74	0.85	1.15
		Cu (%)	3,642	2.87	0.08	0.12	1.51
		Co (%)	3,642	0.20	0.02	0.01	0.73
Mineralized Zone H3	1300	Pt (g/t)	3,642	2.79	0.15	0.21	1.40
		Pd (g/t)	3,642	7.91	0.36	0.51	1.42
		Au (g/t)	3,642	4.94	0.04	0.16	4.10
		Ag (g/t)	3,642	7.91	0.29	0.44	1.49

14.2.8 Block Model

Rotation

A block model was established to cover the entire drilled area. The area is sufficient to host an open pit, if necessary. The model has been pushed down to a depth of approximately 800 m below surface. The block model corresponds to a multi-folder percent block model in GEMS and is not rotated (Y axis oriented along N000° azimuth). All blocks with more than 0.001% of their volume falling within a selected solid were assigned the corresponding solid block code in their respective folder. A percent block model was generated, reflecting the proportion of every block inside each solid: individual mineralized zones, individual lithological domains, overburden and waste.

The block model's origin is the lower left corner. Block dimensions reflect the sizes of mineralized structures and plausible mining methods.

Table 14.23 shows the properties of the block model.

Properties	X (Columns)	Y (Rows)	Z (Levels)									
Origin coordinates (UTM NAD83)	678800	5539350										
Block size	5	5										
Number of blocks	290	215										
Block model extent (m)	1450	1075										

Table 14.23 – Block model properties

Table 14.24 provides details about the naming convention for the corresponding GEMS solids, as well as the rock codes and block codes assigned to each individual solid. The multi-folder percent block model thus generated was used for the mineral resource estimation.

Not applied

	Description	Deelseede	GEMS Tri	on Name	Procodonco	
workspace	Description	ROCK CODE	NAME1	NAME2	NAME3	Precedence
70000	Mineralized Zone H1	1100	H1	Clip	F160113	3
Zones	Mineralized Zone H3	1300	H3	Clip	F160113	2
	Country Rocks	7000	CR		F160113	13
	Predominantly Felsic	6100	FELS1	Clip	F160113	10
	Predominantly Gabbro 1	4100	GAB1	Clip	F160113	11
Waste_01	Predominantly Gabbro 2	4200	GAB2	Clip	F160113	12
	Predominantly Ultramafic 1	2100	UM1	Clip	F160113	6
	Predominantly Ultramafic 2	2200	UM2	Clip	F160113	7
	Predominantly Ultramafic 4	2400	UM4	Clip	F160113	9
	Predominantly Ultramafic 3	2300	UM3	Clip	F160113	8
Waste_02	QFP Dyke 1	5100	QFP1	Clip	F160113	4
	QFP Dyke 2	5200	QFP2	Clip	F160113	5
OB	Overburden	50	Bedrock	Solid	F160113	1

Table 14.24 – Block model naming convention and codes

14.2.9 Variography and Search Ellipsoids

The 3D variography, carried out in Gems v.6.7, yielded the best-fit model along an orientation that roughly corresponds to the strike and dip of the mineralized zones. The variography was completed on DDH composites of the capped nickel assay data for the H3 zone. The study involved 10° incremental searches in the longitudinal plane, followed by 10° incremental searches in the vertical planes of the indicated preferred azimuths, as well as planes normal to the preferred azimuth.

Ellipsoid radiuses obtained from the study resulted in a range of 49.3 m x 27.6 m x 26.4 m, which was rounded to 50 m x 30 m x 25 m (Figure 14.20 and Figure 14.21).

Figure 14.22 presents an example of ellipsoid radiuses for the H3 Zone.

Figure 14.20 – Major axis variogram for the H3 Zone (InnovExplo, March 2021)

Figure 14.21 – Semi-major axis variogram for the H3 Zone (InnovExplo, March 2021)

Figure 14.22 – Section views of the ellipsoid radiuses for the H3 Zone

14.2.10Grade and Density Interpolation

The interpolation profiles were customized for both mineralized zones using hard boundaries.

The variography study provided the parameters needed to interpolate the grade and the density using capped-assay composites. The interpolation was run on a point area workspace extracted from the composite dataset in GEMS.

Three passes were defined for nickel (Ni), while one pass was used for all other elements and the density. Pass 1 corresponds to half the variography ranges (0.5x). Pass 2 corresponds to the variography range (1x) for blocks not estimated during the first pass, and Pass 3 to twice (2x) the variography ranges for blocks not estimated during the second pass. The ellipsoid radiuses used to interpolate Cu, Co, Pt, Pd, Au, Ag and density were established using twice the variography results. The inverse distance squared ("ID2") method was selected for the final mineral resource estimation.

Table 14.25 summarizes the grade and density estimation parameters.

		Min	Mox	Max	GEM	S Rota	ation	Ranges			
Zone	Ellipsoid	Comp. Comp.		Comp./DD H	Az	Dip	Az	X (m)	Y (m)	Z (m)	
	P1_Ni	9	18	no Max		-77		25	15	12.5	
	P2_Ni	6	18	no Max	132		312	50	30	25	
	P3_Ni	4	18	no Max	102		512	100	60	50	
	P1_Other	4	18	no Max				100	60	50	
	P1_Ni	9	18	no Max		-77		25	15	12.5	
110	P2_Ni	6	18	no Max	400		312	50	30	25	
H3	P3_Ni	4	18	no Max	132			100	60	50	
	P1_Other	4	18	no Max				100	60	50	

Table 14.25 – Grade and density estimation parameters

14.2.11 Mineral Resource Classification

All interpolated blocks within the H1 and H3 zones were assigned to the inferred category during the creation of the grade block model, corresponding to a maximum distance of 100 m from the closest composite (DDH).

Blocks were reclassified to the indicated category if they showed geological and grade continuity within a distance of 50 m from the closest composite (DDH) using a clipping boundary on longitudinal view. Within the indicated mineral resource outlines, some inferred blocks were upgraded to the indicated category, whereas outside these boundaries, some indicated blocks were downgraded to the inferred category.

No blocks were assigned to the measured category.

Figure 14.23 and Figure 14.24 show the clipping boundaries for the indicated blocks.

Looking northeast. Clipping boundary: black line

Figure 14.23 – Longitudinal view of the H1 Zone with clipping boundary

Looking northeast. Clipping boundary: black line.

Figure 14.24 – Longitudinal view of the H3 Zone with clipping boundary

14.2.12Economic Parameters and Cut-Off Grade

Considering the polymetallic nature of the mineralization (Ni, Cu, Co, Pt, Pd, Au and Ag), the zone widths and the widespread grade distribution, the cut-off grade for the Grasset deposit is expressed in nickel equivalent ("NiEq") and the assumptions made for its calculation apply to a potential underground scenario (bulk mining). The assumptions are presented in Table 14.26.

The results show that nickel, copper, cobalt, platinum and palladium are payable, whereas gold and silver do not contribute to the economics of the deposit.

The value of NiEq is given by the following formula:

where Con(%) is a variable concentrate recovery ratio derived from metallurgical balance study, and Payable(%) is applied on concentrates. Note that a minimum deduction of 0.20% Co was applied to the concentrate.

The parameters presented in Table 14.26 yield a cut-off grade of 0.81% NiEq. The final selected cut-off grade of 0.80% NiEq outlines the mineral potential of the deposit for an underground mining option. The following formula was used for the COG calculation:

$$COG = Total \ cost/(\frac{Ni \ price * Exchange \ rate * Mill \ recovery}{2204.62262}) * 100$$

COG and NiEq calculations should be re-evaluated in light of prevailing market conditions and other factors, such as gold price, exchange rate, mining method, related costs, etc.

Parameters	Unit	Value
Nickel price	US\$/lb	6.95
Copper price	US\$/lb	3.33
Cobalt price	US\$/lb	17.06
Platinum price	US\$/oz	984.85
Palladium price	US\$/oz	2,338.47
Exchange rate	USD:CAD	1.31
Nickel payable (no minimum deduction)	%	70
Copper payable (no minimum deduction)	%	75
Cobalt payable (0.2% minimum deduction)	%	75
Platinum payable (no minimum deduction)	%	45
Palladium payable (no minimum deduction)	%	45
Penalty account for chromium	US\$/t	11.00
Royalty	%	0.00

Table 14.26 – Input parameters used to calculate the	underground	cut-off grade
--	-------------	---------------

Parameters	Unit	Value
Mining cost	CAD/t milled	65.00
Maintenance cost	CAD/t milled	10.00
G&A cost	CAD/t milled	20.00
Mill recovery	%	86.5
Mine recovery	%	100
Processing cost	CAD/t milled	42.00
Calculated cut-off grade	% NiEq	0.79
Mineral resource underground cut-off grade	% NiEq	0.80

Metal prices are based on the 18-month average as of August 2021. Payable and penalty are used in the NiEq calculation; therefore, they are not used in the COG calculation.

A constraining volume was produced with DSO using a minimum mining shape of 5 m along the strike of the deposit, a height of 15 m and a width of 2 m. This maximum shape measures 15 m x 25 m x 100 m. The optimization was done using the 0.8% NiEq cut-off grade for both Indicated and Inferred mineral resources.

The DSO results were then used for the mineral resource estimate statement.

14.2.13Mineral Resource Estimate

The QP is of the opinion that the current mineral resource estimate can be classified as Indicated and Inferred mineral resources based on geological and grade continuity, data density, search ellipse criteria, drill hole spacing and interpolation parameters. The QP is also believes that the requirement of reasonable prospects for eventual economic extraction has been met by having a minimum modelling width for the mineralized zones, a cut-off grade based on reasonable inputs and an economic constraining volume amenable to a potential underground extraction scenario.

The Grasset 2021 MRE is considered reliable and based on quality data and geological knowledge. The estimate follows CIM Definition Standards.

Table 14.27 displays the results of the Grasset 2021 MRE for the Grasset deposit at the official 0.80 % NiEq cut-off grade.

Table 14.28 shows the cut-off grade sensitivity analysis of the Grasset 2021 MRE. The reader should be cautioned that the numbers provided should not be interpreted as a mineral resource statement. The reported quantities and grade at different cut-off grades are presented in-situ and for the sole purpose of demonstrating the sensitivity of the mineral resource model to the selection of a reporting cut-off grade.

>	0.80% NiEq	Tonnes	NiEq (%)	Ni (%)	Cu (%)	Co (%)	Pt (g/t)	Pd (g/t)	Contained NiEq (t)	Contained Ni (t)	Contained Cu (t)	Contained Co (t)	Contained Pt (oz)	Contained Pd (oz)
ED	Horizon 1	89,200	1.00	0.82	0.09	0.03	0.15	0.33	900	700	100	20	400	1 000
CAT	Horizon 3	5,422,700	1.54	1.22	0.13	0.03	0.26	0.64	83,300	66,400	7,300	1,400	45,400	112,200
INDIG	Total Indicated	5,512,000	1.53	1.22	0.13	0.03	0.26	0.64	84,200	67,100	7,400	1,400	45,800	113,100
INFERRED	Horizon 1	13,600	0.95	0.78	0.09	0.02	0.14	0.32	100	100	10	3	100	100
	Horizon 3	203,500	1.01	0.83	0.09	0.02	0.15	0.34	2,100	1,700	200	40	1,000	2,200
	Total Inferred	217,100	1.01	0.83	0.09	0.02	0.15	0.34	2,200	1,800	200	43	1,000	2,400

Table 14.27 – Mineral resource estimate for the Grasset deposit at 0.80% NiEq cut-off

Grasset 2021 Mineral Resource Estimate notes:

- 1. The independent and qualified person for the Grasset 2021 MRE, as defined by NI 43-101, is Carl Pelletier, P.Geo. (InnovExplo Inc.). The effective date of the Grasset 2021 MRE is November 9, 2021.
- 2. These mineral resources are not mineral reserves as they do not have demonstrated economic viability.
- 3. The mineral resource estimate follows 2014 CIM Definition Standards and the 2019 CIM MRMR Best Practice Guidelines.
- 4. Two mineralized zones were modelled in 3D using a minimum true width of 3.0 m. Density values are interpolated from density databases, capped at 4.697 g/cm³.
- 5. High-grade capping was done on raw assay data and established on a per zone basis for nickel (15.00%), copper (5.00%), platinum (5.00 g/t) and palladium (8.00 g/t). Composites (1-m) were calculated within the zones using the grade of the adjacent material when assayed or a value of zero when not assayed.
- 6. The estimate was completed using a block model in GEMS (v.õ.8) using 5m x 5m x 5m blocks. Grade interpolation (Ni, Cu, Co, Pt, Pd, Au and Ag) was obtained by ID2 using hard boundaries. Results in NiEq were calculated after interpolation of the individual metals.
- 7. The mineral resources are categorized as Indicated and Inferred based on drill spacing, geological and grade continuity. A maximum distance to the closest composite of 50 m was used for Indicated mineral resources and 100 m for the Inferred mineral resources.
- 8. The criterion of reasonable prospects for eventual economic extraction has been met by having constraining volumes applied to any blocks (potential underground extraction scenario) using DSO and by the application of a cut off grade of 0.80% NiEq. Cut-off calculations used: Mining = \$65.00/t; Maintenance = \$10.00/t; G&A = \$20.00/t; Processing = \$42.00/t. The cut-off grades should be re-evaluated in light of future prevailing market conditions (metal prices, exchange rate, mining cost, etc.). The NiEq formula used a USD:CAD exchange rate of 1.31, a nickel price of US\$6.95/lb, a copper price of US\$3.33/lb, a cobalt price of US\$17.06/lb, a platinum price of US\$984.85/oz, and a palladium price of US\$2,338.47/oz. Gold and silver do not contribute to the economics of the deposit.
- 9. Results are presented undiluted and in-situ. Ounce (troy) = metric tons x grade / 31.10348. Metric tons and ounces were rounded to the nearest hundred. Metal contents are presented in ounces and pounds. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations in NI 43-101.
- 10. The QP is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political, marketing or other relevant issue that could materially affect the Grasset 2021 mineral resource estimate

CAT.	Cut-off (NiEq %)	Tonnes	NiEq (%)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Contained Ni EQ (t)	Contained Ni (t)	Contained Cu (t)	Contained Co (t)	Contained Pt (oz)	Contained Pd (oz)
	0.70%	6,749,700	1.38%	1.11	0.12	0.02	0.23	0.57	93,300	74,600	8,100	1,600	50,300	124,100
TED	0.80%	5,512,000	1.53%	1.22	0.13	0.03	0.26	0.64	84,200	67,100	7,400	1,400	45,800	113,100
ICA ⁻	0.90%	4,633,300	1.66%	1.32	0.15	0.03	0.28	0.70	76,900	61,200	6,800	1,300	42,200	104,000
DNI	1.00%	4,027,700	1.77%	1.41	0.16	0.03	0.30	0.75	71,300	56,600	6,300	1,100	39,300	96,900
	1.10%	3,428,400	1.90%	1.50	0.17	0.03	0.33	0.81	65,100	51,600	5,700	1,000	36,100	89,000
	0.70%	290,100	0.93%	0.76	0.08	0.02	0.14	0.32	2,700	2,200	200	60	1,300	3,000
KED	0.80%	217,100	1.01%	0.82	0.09	0.02	0.15	0.34	2,200	1,800	200	40	1,000	2,400
ERF	0.90%	138,900	1.12%	0.91	0.10	0.02	0.16	0.37	1,600	1,300	100	30	700	1 700
INF	1.00%	99,500	1.19%	0.97	0.11	0.02	0.18	0.42	1,200	1,000	100	20	600	1 300
	1.10%	75,700	1.26%	1.02	0.11	0.02	0.19	0.46	1,000	800	100	20	500	1 100

Table 14.28 – Cut-off grade sensitivity for the Grasset deposit

15. MINERAL RESERVE ESTIMATES

Not applicable at the current stage of the project.

16. MINING METHODS

Not applicable at the current stage of the project.

17. RECOVERY METHODS

Not applicable at the current stage of the project.

18. PROJECT INFRASTRUCTURE

Not applicable at the current stage of the project.

19. MARKET STUDIES AND CONTRACTS

Not applicable at the current stage of the project.

20. ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

Not applicable at the current stage of the project.

21. CAPITAL AND OPERATING COSTS

Not applicable at the current stage of the project.

22. ECONOMIC ANALYSIS

Not applicable at the current stage of the project.

23. ADJACENT PROPERTIES

As at the effective date of this Technical Report, the online GESTIM claims database shows several claim blocks under different ownerships around the Property (Figure 23.1). The information on these adjacent properties that was obtained from the public domain has not been verified by the QPs. Nearby mineralized occurrences are not necessarily indicative that the Property hosts similar types of mineralization. As at the time of writing, the QPs are not aware of any active exploration activities in the immediate area of the Property that would be relevant to the Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE.

The most significant nearby mineral occurrence is the Detour Lake mine belonging to Kirkland Lake Gold. The gold mine is approximately 15 km to the west of the Property boundary. The Detour Lake, West Detour and North Pit deposits represent a large orogenic gold system of 596.1 Mt @ 0.82 g/t Au for a total of 15.78 Moz gold in the proven and probable category. These mineral Reserves are reported using a variable optimized cut-off strategy with a minimum cut-off grade of 0.35 g/t Au (Leite et al., 2020). The large Kirkland Lake Gold claim block also includes the Zone 58N gold deposit with mineral resources of 2.9 Mt @ 5.8 g/t Au for a total of 0.534 Moz gold in the Measured and Indicated category (Leite et al., 2020). The Detour Lake and Detour West deposits are hosted by the Deloro Assemblage near the SLDZ, while Zone 58N is close to the LDDZ.

Another significant mineral occurrence in the area is the Selbaie VMS deposit located 20 km to the south of the Property. This former BHP Billiton mine was closed in 2004 after achieving past production of 47.3 Mt @ 0.98% Cu, 1.98% Zn, 20 g/t Ag and 0.9 g/t Au (Voordouw and Jutras, 2018).

Figure 23.1 – Adjacent properties

24. OTHER RELEVANT DATA AND INFORMATION

Three bulk sampling programs have been carried out by different operators on the Fenelon deposit (Gabbro Zones) for an aggregate total of 57,431 t at an average recovery grade of 14.62 g/t Au, yielding 26,905 oz Au.

Table 24.1 breaks down the bulk sample results by operator.

Operator	Year	From	Tonnes	Grade (g/t Au)	Ounces
Taurus	2001	Surface	13,752	9.60	4,245
Taurus	2004	Underground	8,169	10.25	2,595
Wallbridge	2018-2019	Underground	36,160	17.37	20,201
Total			58,081	14.48	27,041

Table 24.1 – Bulk sample results

Note: The average total grade may differ due to rounding.

25. INTERPRETATION AND CONCLUSIONS

The objective of InnovExplo's mandate was to prepare a Technical Report on the Detour-Fenelon Gold Trend Property (the "Property") and to support the results of the maiden mineral resource estimate for the Fenelon deposit, an updated mineral resource for the Martiniere deposit (combined, the "Detour-Fenelon Gold Trend 2021 MRE"), a mineral resource estimate update for the Grasset deposit (the "Grasset 2021 MRE") using all available validated information and updated economic assumptions (i.e., metal prices, exchange rate, constraining volumes and surface and underground cut-off grades).

The Property provides the Issuer with an extensive district-scale land position over a 95km east-west stretch of the Sunday Lake Deformation Zone ("SLDZ") in the northern part of the Abitibi Greenstone Belt. This Technical Report and the Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE herein meet the objectives of the assigned mandate.

The following conclusions were reached after conducting a detailed review of all pertinent information and completing the Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE:

- The results demonstrate the geological and grade continuities for both gold deposits, Fenelon and Martiniere and for the Ni-Cu-PGE deposit, Grasset.
- The drill holes provide sufficient information for the mineral resource estimates of the 3 (three) deposits.
- In a combined scenario, the Fenelon deposit contains:
 - at a cut-off grade of 0.35 g/t Au for open-pit mining, an estimated Indicated mineral resource of 28,132,000 t grading 1.45 g/t Au for 1,307,600 oz Au and an estimated Inferred mineral resource of 22,102,500 t grading 1.18 g/t Au for 841,400 oz Au,
 - at, a cut-off grade of 1.50 g/t Au for underground mining, an estimated Indicated mineral resource of 7,885,800 t grading 3.23 g/t Au for 819,300 oz Au and an estimated Inferred mineral resource of 6,888,900 t grading 2.83 g/t Au for 626,000 oz Au,
- In a combined scenario, the Martiniere deposit contains:
 - at a cut-off grade of 0.40 g/t Au for open-pit mining, an estimated Indicated mineral resource of 6,583,000 t grading 2.00 g/t Au for 422,800 oz Au and an estimated Inferred mineral resource of 1,406,00 t grading 1.81 g/t Au for 81,900 oz Au,
 - at, a cut-off grade of 2.40 g/t Au for underground mining, an estimated Indicated mineral resource of 957,500 t grading 3.93 g/t Au for 120,900 oz Au and an estimated Inferred mineral resource of 1,379,500 t grading 3.95 g/t Au for 174,300 oz Au,
- In an underground scenario and using a cut-off grade of 0.80% NiEq, the Grasset deposit contains, an estimated Indicated mineral resource of 5,512,000 t grading 1.53% NiEq for 84,200 t NiEq, and Inferred mineral resource of 217,100 t grading 1.01% NiEq for 2,200 t NiEq.
- Additional diamond drilling could upgrade some of the Inferred mineral resource to the Indicated category and could identify additional mineral resources down-plunge and in the vicinity of the current identified mineralization.

Table 25.1 identifies the significant internal risks, potential impacts and possible risk mitigation measures that could affect the economic outcome for the Property. The list does not include the external risks that apply to all mining projects (e.g., changes in metal prices, exchange rates, availability of investment capital, change in government regulations, etc.). Significant opportunities that could improve the economics, timing and permitting for the Property are identified in Table 25.2. Further information and studies are required before these opportunities can be included in the project economics.

The Detour-Fenelon Gold Trend 2021 MRE and the Grasset 2021 MRE are considered to be reliable and based on quality data and geological knowledge. The estimate follows 2014 CIM Definition Standards and 2019 CIM MRMR Best Practice Guidelines.

Risk	Potential Impact	Possible Risk Mitigation	
Fenelon – Metallurgical recoveries are based on either small-scale testwork completed in Area 51 and Tabasco-Cayenne zones or larger scale testwork completed on the Gabbro Zones (high grade)	Recovery might differ negatively from what is currently assumed	Conduct additional metallurgical tests on the Tabasco-Cayenne zones and Area 51 zones	
Grasset – Metallurgical recoveries are based on limited testwork	Recovery might differ negatively from what is currently assumed	Conduct additional metallurgical tests	
Surface and underground geotechnical evaluations are not available for all deposits	Geotechnical challenge to mine the deposits, mining costs might differ negatively from what is currently assumed	Conduct geomechanical testing, geotechnical characterization and overburden characterization (for slope stability) to confirm rock quality and validate assumptions.	
Social community licencing	Possibility that the population does not accept the mining project	Maintain a pro-active and transparent strategy to identify all stakeholders and maintain a communication plan. The main stakeholders have been identified, and their needs/concerns understood. Continue to organize information sessions, publish information on the mining project, and meet with host communities.	
Proximity to the Harricana River (Martiniere Deposit) and wetlands	Mining costs might differ negatively from what is currently estimated for water inflow rates. Possibility that the population does not accept the mining project	Conduct hydrogeological assessment to better estimate water inflow rates. Conduct an environmental baseline study to evaluate potential environmental impact. Continue to organize information sessions, publish information on the mining project, and meet with host communities.	

Table 25.1 – Risks for the Detour-Fenelon Gold Trend Property

Opportunity	Explanation	Potential Benefit	
Additional infill drilling on Fenelon	Would likely confirm and and improve confidence of the known zones, Area 51 and Tabasco- Cayenne	Potential to increase mineral resources	
Exploration drilling on Fenelon	Opportunities to extend the mineralized zones	Potential to increase mineral resources	
Exploration drilling on Martiniere	Opportunity to extend the mineralized zones	Potential to increase mineral resources	
Drilling on Grasset	Potential to extend mineralization at depth and to find additional mineralization in the vicinity of the deposit	Potential to increase mineral resources	
The Property is underexplored outside the known mineralized zones	The Property covers a significant length of the gold-prospective SLDZ and LDDZ. A large area of the Property is underlain by the Manthet Group volcanics, known to host VMS mineralization.	Potential for new discoveries	

26. **RECOMMENDATIONS**

Based on the results of the Detour-Fenelon Gold Trend 2021 MRE and the results of the Grasset 2021 MRE, the QPs recommend advancing the Fenelon, Martiniere and Grasset deposits to an advanced phase of exploration. The QPs also recommend continuing the property-scale exploration program, including compilation studies, drill target generation, and drilling brownfield targets on other claim blocks.

The recommended two-phase work program is detailed below:

Phase 1:

- Complete the on-going drilling programs on the Fenelon deposit, the Martiniere deposit and the Casault claim block.
- Complete additional infill drilling, between the core of the Gabbro Zones, close to surface, and the Cayenne-Tabasco zones, at depth, and within the known high-grade zones of Area 51 for potential conversion from Inferred to Indicated mineral resources and therefore increase confidence in the grades in those areas.
- Exploration drilling Fenelon:
 - Further drilling in the Area 51 zones should target the potential downplunge and western extensions of the current mineral resource and southward toward the Ripley-Reaper zones.
 - Further drilling in the Tabasco-Cayenne Contact zones should target the down-plunge extensions and the strike extensions to the northeast and northwest of the current mineral resource.
- Infill and exploration drilling Martiniere:
 - Further drilling should target the gaps between the several isolated zones or improve the drill hole spacing in those areas to potentially combine the mineral resources of those zones. Drilling should also target the downplunge extensions of the Martiniere zones.
- Exploration drilling Grasset:
 - Further drilling should target the down-plunge extensions of the Grasset deposit and its immediate vicinity to test for additional zones of similar mineralization.
- Complete an update of the MREs for the Fenelon, the Martiniere and Grasset deposits to include the results of the recommended drilling programs.
- Regional compilation and drill targeting:
 - Pending target ranking, areas of known mineralization on the Property, especially along the SDLZ and LDDZ, should be reassessed, and the

continuity of the mineralized systems should be drill-tested since some mineralized occurrences reportedly remain open on strike and down dip.

- Engineering studies:
 - Continue advancing the engineering studies to gather geotechnical, metallurgical, environmental and hydrogeological information (Fenelon, Martiniere and Grasset).
- Complete underground development at Fenelon to access the Area 51 and Tabasco-Cayenne Contact zones to better understand the geology of these mineralized areas.
- Complete a preliminary economic assessment ("PEA") using the updated MREs with (supported by) an updated NI 43-101 Technical Report. The purpose of the PEA will be to confirm, as a first step, the potential economic viability of the project, and it will also help prepare and prioritize the next steps (Phase 2) of the project.

Phase 2 (contingent on the success of Phase 1):

- Infill and exploration drilling Fenelon (provision for follow-up on Phase 1).
- Infill and exploration drilling Martiniere (provision for follow-up on Phase 1).
- Infill and exploration drilling Grasset (provision for follow-up on Phase 1).
- Complete an update of the MREs for the Fenelon, Martiniere and Grasset deposits that will include the results of the recommended drilling programs from Phase 2.
- Bulk sampling program on the Area 51 and Tabasco-Cayenne Contact zones to test geological and grade continuities and metallurgical parameters.
- Complete a pre-feasibility study ("PFS") based on the updated mineral resource estimates and summarized in an updated NI 43-101 Technical Report.

26.1 Costs Estimate for Recommended Work

The QPs have prepared a cost estimate (in Canadian dollars) for the recommended twophase work program to serve as a guideline. The budget for the proposed program is presented in Table 26.1. Expenditures for Phase 1 are estimated at \$70.9 million (incl. 15% for contingencies). Expenditures for Phase 2 are estimated at \$63.7 million (incl. 15% for contingencies). The grand total is \$134.6 million (incl. 15% for contingencies). Phase 2 is contingent upon the success of Phase 1.

Phase 1	Work Program	Description	Budget Cost
	Complete ongoing drilling program (2021)	25,000 m	\$6.9M
	Infill drilling – Fenelon (Area 51 and Tabasco-Cayenne)	35,000 m	\$9.6M
	Exploration drilling – Fenelon	80,000 m	\$22.0M
	Exploration drilling – Martiniere	40,000 m	\$11.0M
	Exploration drilling – Grasset	10,000 m	\$2.8M
	Update of MREs (Detour-Fenelon Gold Trend and Grasset)		\$0.2M
	Regional compilation studies and drilling of brownfield targets on the Property	10,000 m	\$2.8M
	Underground development at Fenelon	200 m	\$2.4M
	Engineering studies		\$3.0M
	PEA on the Detour-Fenelon Gold Trend		\$1.0M
	Contingencies (15%)		\$9.2M
	Phase 1 subtotal		\$70.9M
Phase 2	Work Program	Description	Budget Cost
	Infill and exploration drilling – Fenelon (provision for follow-up on Phase 1).	120,000 m	\$33.0M
	Infill and exploration drilling – Martiniere (provision for follow-up on Phase 1).	50,000 m	\$13.8M
	Infill and exploration drilling – Grasset (provision for follow-up on Phase 1).	5,000 m	\$1.4M
	Bulk sampling program (Area 51 and Tabasco-Cayenne Contact zones)		\$5.0M
	Update of the MREs (Detour-Fenelon Gold Trend and Grasset)		\$0.2M
	PFS on the Detour-Fenelon Gold Trend		\$2.0M
	Contingencies (15%)		\$8.3M
	Phase 2 subtotal		\$63.7M
	TOTAL (Phase 1 and Phase 2)		\$134.6M

Table 26.1 – Estimated Costs for the Recommended Work Program

27. REFERENCES

- Abzalov, M, 2008, Quality Control of Assay Data: A Review of Procedures for Measuring and Monitoring Precision and Accuracy: Exploration and Mining Geology, Vol. 17, Nos. 3-4, p. 131-144.
- Brack, W., 1988. Lynx Canada Exploration Limited, Report on the 1987 Exploration Program, Massicotte Property in the Casa Berardi Area, GM46540, 68p.
- Brousseau, K., Pelletier, C., Carrier, A., and Théberge, L. 2007. 2005-2006 Winter Diamond Drilling Program, Fenelon Property, Fenelon Township, Province of Québec, Canada. Report prepared by InnovExplo Inc. for American Bonanza Corporation. 90 pages, GM 62991.
- Carter, J., 2020. Unraveling the Geological History of the Fenelon Gold Property and Relative Timing of Gold Mineralization, unpublished M.Sc. Thesis, University of Toronto, 53p.
- Castonguay, S., Dubé, B., Wodicka, N., and Mercier-Langevin, P., 2020. Geological Setting and Gold Mineralization Associated with the Sunday Lake and Lower Detour Deformation Zones, Northwestern Abitibi Greenstone Belt, Ontario and Québec; in Targeted Geoscience Initiative 5: Contributions to the Understanding of Canadian Gold Systems, (ed.) P. Mercier-Langevin, C.J.M. Lawley, and S. Castonguay; Geological Survey of Canada, Open File 8712, p. 127–142. <u>https://doi.org/10.4095/323670</u>
- Chamam, M., 2019, Induced polarization survey and configuration, Fenelon Project. By Abitibi Geophysics Inc. for Wallbridge Mining company limited, 32p.
- DiLauro, P. A., and Dymov, I., 2014, An investigation into Bug Lake Composite, Internal report prepared for Balmoral by SGS Mineral Services, 75p.
- Faure, S., 2015, Prolongement de la faille Sunday Lake (mine Detour Gold, Ont.) au Québec et son potentiel pour les minéralisations aurifères et en métaux de base. Rapport CONSOREM 2013-02, 31 p.
- Faure, S., Iund, M., and Beausoleil, C., 2020; NI 43-101 Technical Report for the Fenelon Gold Property, Québec, Canada, NI 43-101 Technical Report prepared for Wallbridge Mining Limited, 106p.
- Kelly, A., 2015. Preliminary Metallurgical Testwork Report, Balmoral Grasset. Report prepared for Balmoral Resources Ltd by Blue Coast Research Ltd. Internal Report. 42p.
- Kiavash P., 2020. UAV Aeromagnetic Survey Logistics Report. By Pionneer Exploration Consultants Ltd for Wallbridge Mining company limited, 22p.
- Lacroix 1990 Lacroix, S., 1990. Géologie de la région des rivières Turgeons et Théo, Ministère des Ressources naturelles MB 90-28, p. 25, 12 maps.
- Leite, A., Dupon, J.-F., Raizman, V., and Fournier, P. A., 2020. Detour Lake Operation, Ontario, Canada, NI 43-101 Technical Report on behalf of Kirkland Lake Gold Ltd., 367p.
- Lesher, C.M. and Keays R.R., 2002, Komatiite-associated Ni-Cu-PGE deposits: Geology, Mineralogy, Geochemistry and Genesis. in L Cabri, ed., *The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of the Platinum-Group Elements.* 54 edn, Canadian Institute Mineral Metallurgy Petroleum, pp. 579 -618.

- Lustig, G. N., 2012a, Review of 2012 Quality Control Results, Grasset Project, Internal Consultant's Report for Equity Exploration Consultants Ltd. and Balmoral Resources Ltd. 45p.
- Lustig, G. N., 2012b, Review of 2012 quality control results, Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 45p.
- Lustig, G. N., 2013, Review of quality control results 2013 Winter drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 36p.
- Lustig, G. N., 2014a, Review of quality control results 2013 Summer/Fall drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 41p.
- Lustig, G. N., 2014b, Review of quality control results 2014 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 45p.
- Lustig, G. N., 2015, Review of quality control results, 2015 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 50p.
- Lustig, G. N., 2016. Review of Quality Control Results 2015 Drill Program, Grasset Project, NTS 32E15, 16 and 32L01, 02 Québec, Canada. Balmoral Resources Ltd. Internal Report. 61 pages.
- Lustig, G. N., 2017, Review of quality control results, 2016 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 50p.
- Lustig, G. N., 2018, , Review of quality control results, 2017 drill program Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 49p.
- Lustig, G. N., 2019, Review of assay quality control results, 2018 drill program, Martiniere project, NTS 32E14 and 32L03 Quebec, Canada. Balmoral Resources Ltd. Internal Report., 53p.
- MacTavish, A., Wagner, D. and Vervaeke, J., 2017. Balmoral Resources Ltd., 2016 Drill Program Report, Detour East Property, Located in Townships of Massicotte, La Peltrie and Manthet, NTS 32E14, 32E13, 32L04, 32L03, GM 70057, 238p.
- Martin, C., 2015, Bug Lake gold trend metallurgical testwork report, Report for Balmoral Resources Ltd by Blue Coast Research Ltd, 29p.
- Morgan L.A., and Schulz K.J., Physical Volcanology of Massive Sulfide Deposits in Shanks III, P. and Thurston, R., eds., 2012, Volcanogenic Massive Sulfide Occurrence Model: U.S. Geological Survey Scientific Investigations Report 2010–5070–C, 345 p.
- Mumford, T.R. and Vooordow, R.J., 2017; 2017 Technical (NI 43-101) Report on The Martiniere Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 84 p.
- Myers, J.M. and Wagner D., 2020; 2020 Technical Report: The Fenelon Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 65p.
- Richard P-L and Turcotte B., 2016; Technical Report and Mineral Resource Estimate for the Grasset Ni-Cu-PGE Deposit (according to the National Instrument 43-101

and Form 43-101F1), NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 194p.

- Richard, P-L, Turcotte, B., Jalbert, C., Gourde, D., and Pelletier, P., 2017. NI-43 101 Technical Report on the Pre-Feasibility Study for the Fenelon Mine Property, NI-43 101 Technical Report prepared for Wallbridge Mining Company Ltd., 402p.
- Savard, C., Durieux, G., Beausoleil, C. and Carrier, A., 2021; NI 43-101 Technical Report for the Detour-Fenelon Gold Trend Property, Québec, Canada, NI43-101 Technical Report prepared for Wallbridge Mining Limited, 187p.
- Perk N., 2015; Amended 2015 Technical (N.I. 43-101) Report on the Grasset Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 82p.
- Poulsen, K.H., Robert, F., and Dubé B., 2000, Geological Classification of Canadian Gold Deposits, Geological Survey of Canada, Bulletin 540, 113 p.
- Slater, E., and Amaral, L., 2020. Découverte et développement le long du corridor aurifère Détout-Fenelon, la ceinture aurifère émergente de l'Abitibi, in Explo Abitibi 2020, 29p.
- Thurston, P.C., Ayer, J.A., Goutier, J., and Hamilton, M.A., 2008, Depositional Gaps in the Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Economic Geology, v. 103, p. 1097–1134.
- Tucker, M.J., and Tempest, R., 2018, 2018 Drill Program Report Grasset-Fenelon property. 1816 p.
- Voordow R. and Jutras, M., 2018; 2018 Technical (N.I. 43-101) Report on the Martiniere Property, NI 43-101 Technical Report prepared for Balmoral Resources Ltd., 113p.
- Welte-Kerne, B., and Johnston, H., 2012, Preliminary assessment of Detour Trend ore, Report prepared by ALS Metallurgy Kamloops for Equity Exploration Consultants Ltd, 41p.
- Welte-Kerne, B., and Johnston, H., 2013, Supplemental assessment of Detour Trend ore, Report prepared by ALS Metallurgy Kamloops for Balmoral Resources Ltd, 31p.

Wallbridge website: https://wallbridgemining.com/

27.1 GM (SIGÉOM)

- GM 54144, Adam, D., 1996. Rapport d'une campagne de forage, propriété B01. Les Métaux Billiton Canada Inc, rapport statutaire; 101 pages, 14 plans.
- GM 43413, Alexander, D R., 1985. Diamond Drilling Log, DIs-Casault Group Property. Mines d'Or Queenston Ltée, rapport statutaire; 44 pages, 4 plans.
- GM 31188, Anderson, W J., 1975. Diamond Drill Record, Detour Property, Grid 10-52. Selco Mining Corp Ltd, rapport statutaire; 4 pages.
- GM 31965, Anderson, W J., 1975. Diamond Drill Record, Detour Property, Quesagami Lake Area. Selco Mining Corp Ltd, rapport statutaire; 8 pages, 4 plans.
- GM 31586, Anderson, W J., 1975. Summary Report, Grid 10-65. Selco Mining Corp Ltd, rapport statutaire; 2 pages, 2 plans.
- GM 32274, Anderson, W J., 1976. Diamond Drill Record, Detour Area. Selco Mining Corp Ltd, rapport statutaire; 6 pages, 4 plans.
- GM 36766, Anderson, W J., Chamois, P., 1980. Geophysical Report, Grids 10-54, 10-106. Selco Mining Corp Ltd, rapport statutaire; 10 pages, 7 plans.
- GM 31185, Anderson, W J., Hutton, D A., Reed, L., 1975. Geophysical Report Part I, Detour-Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 339 pages, 32 plans.
- GM 31186, Anderson, W J., Hutton, D A., Reed, L., 1975. Geophysical Report, Part II And Part III, Detour Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 45 pages, 44 plans.
- GM 31246, Anderson, W J., Reed, L., 1975. Geophysical Report, Detour Turgeon Area. Selco Mining Corp Ltd, rapport statutaire; 18 pages, 14 plans.
- GM 31244, Anderson, W J., Reed, L., 1975. Report Geophysical Surveys. Selco Mining Corp Ltd, rapport statutaire; 5 pages, 2 plans.
- GM 54740, B. Needham, M.B., 1997. 1997 Summary Exploration Report, for the Cyprus Canada Inc. Sunday Lake Property, rapport statutaire, 94 pages.
- GM 71351, Bédard, F., St-Cyr, R D., 2019. Rapport des travaux de forage 2018, propriété Casault. Exploration Midland Inc, rapport statutaire; 1627 pages.
- GM 44884, Beesley, T.J., 1986. Report on 1986 Exploration and Diamond Drilling Programs, Samson River Project, Gateford Resources Inc., rapport statutaire, 277 pages.
- GM 48757, Béland, S., 1989. Diamond Drilling Record, Lower Detour M-244 Property. Glen Auden Resources Ltd, rapport statutaire; 35 pages, 8 plans.
- GM 54701, Ben, M., 1997. Assessment Report, Martiniere C Property. Cyprus Canada Inc, rapport statutaire; 11 pages, 2 plans.
- GM 54818, Ben, M., 1997. Assessment Report, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 23 pages, 3 plans.
- GM 54648, Ben, M., Needham, B., 1997. 1997 Summary Exploration Report, Martigny A Property. Cyprus Canada Inc, rapport statutaire; 126 pages, 5 plans.
- GM 51589, Berthelot, P. Et De Corta, H., 1992. Campagne de sondages au diamant, propriété Enjalran-A, Serem Québec Inc., rapport statutaire, 49 pages.
- GM 55622, Bérubé, D., 1998. A Report on Geophysical Work, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 13 pages, 14 plans.

- GM 70674, Bérubé, P., Phaneuf, C., 2017. Rapport d'interprétation, levé OreVision, projet Casault. SOQUEM INC, EXPLORATION MIDLAND INC, rapport statutaire; 31 pages, 8 plans.
- GM 55422, Boileau, P., 1997. Levés géophysiques, propriété Fenelon. Explorations Fairstar Inc, rapport statutaire; 21 pages, 70 plans.
- GM 54906, Boileau, P., 1997. Levés géophysiques, propriété Gaudet. Explorations Mines du Nord Ltée, Claims Frigon, rapport statutaire; 8 pages, 24 plans.
- GM 53992, Boileau, P., Lapointe, D., 1996. Geophysical Surveys, Fenelon A Project. Cyprus Canada Inc, rapport statutaire; 12 pages, 163 plans.
- GM 54042, Boileau, P., Lapointe, D., 1996. Geophysical Surveys, Martiniere C, Martiniere D and La Peltrie C Projects. Cyprus Canada Inc, rapport statutaire; 16 pages, 30 plans.
- GM 67665, Boivin, M., 2013. Interpretation Report on a Helicopter-Borne Vtem / Mag Survey over the Casault Project (Block 1, 2 And 3). Exploration Midland Inc, rapport statutaire; 14 pages, 2 plans.
- GM 47195, Boniwell, J.V., 1987, Diamond Drilling Results, Late Fall Program 1987, rapport statutaire, 73 pages.
- GM 64011, Boulanger, O., Boucher, S., 2008. Rapport logistique et d'interprétation, Levés magnétométrique et électromagnétique EMH, Projet Jérémie, Bloc C. Claims Tremblay, Ressources Abitex Inc, Exploration Metauxdic, rapport statutaire; 16 pages, 7 plans.
- GM 44469, Boustead, G A., 1987. Report on Combined Helicopter-Borne Magnetic and Electromagnetic Survey, Gaudet Township. Expl Min Golden Triangle Inc, rapport statutaire; 31 pages, 6 plans.
- GM 44468, Boustead, G A., 1987. Report on Combined Helicopter-Borne Magnetic and Electromagnetic Survey, Lanoullier Township. Expl Min Golden Triangle Inc, rapport statutaire; 36 pages, 6 plans.
- GM 46476, Boustead, G A., 1987. Report on Combined Helicopter-Borne, Magnetic and Electromagnetic Survey, Massicotte / Manthet / Martigny / La Peltrie / Lanoullier Townships. Mines D'or Queenston Ltée, rapport statutaire; 52 pages, 24 plans.
- GM 44284, Bowen, R P., 1987. Report on the Property, La Peltrie Township. Ingamar Expls Ltd, rapport statutaire; 19 pages, 3 plans.
- GM 46540, Brack, W., 1988. Report on the 1987 Exploration Program, Massicotte Property. Explorations Lynx-Canada Ltée, rapport statutaire; 67 pages, 12 plans.
- GM 46137, Brereton, W E., Sobie, P., Sinclair, G P., Anderson, M., 1987. Report on a Program of Ground Geophysical Surveying and Reverse Circulation Drilling, Lac Garneau Property. Claims Mattew, Gunnar Gold Inc, Claims Ottereyes, rapport statutaire; 104 pages, 9 plans.
- GM 31645, Britton, J W., 1975. Geophysical Surveys on La Martiniere 2-74 Group. Noranda Expl Co Ltd, rapport statutaire; 2 pages, 2 plans.
- GM 32173, Britton, J W., 1976. Geophysical Surveys on Martigny 1-75 Group. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 2 plans.
- GM 52352, Broughton, D., 1993. Report on Winter 1993, Fenelon-A And Gaudet-C Diamond Drill Programs. Cyprus Canada Inc, rapport statutaire; 66 pages, 2 plans.

- GM 52084, Broughton, D., Needgham, B., 1993. Report on 1993 Lynx Project, Winter Drill Program. Cyprus Canada Inc, rapport statutaire; 202 pages, 11 plans.
- GM 47836, Bunner, D P., 1988. Assessment Report, Soil Sampling and Vlf-EM Survey, Bertrand Claims. Ressources Westmin Ltée, rapport statutaire; 18 pages, 5 plans.
- GM 47225, Burk, R., 1988. Report on the Diamond Drilling Program. Glen Auden Resources Ltd, Royex Gold Mining Corp, Golden Dragon Resources Ltd, rapport statutaire; 46 pages, 4 plans.
- GM 55878, Calhoun, R., 1998. Report ff Activities, Diamond Drilling, Detour Lake East Property. Shield Geophysics Ltd, rapport statutaire; 41 pages, 5 plans.
- GM 44666, Campbell, R A., 1987. Report on the Airborne Geophysical Survey on the Property Of Vic Audet. Claims Bertrand, rapport statutaire; 13 pages, 2 plans.
- GM 11354, Caron, G G., Miller, R J., 1961. Diamond Drill Record. Paudash Mines Ltd, rapport statutaire; 20 pages, 1 plan.
- GM 37078, Chamois, P., 1980. Diamond Drill Record. Selco Mining Corp Ltd, rapport statutaire; 3 pages.
- GM 40163, Chartre, E., 1983. Levés géophysiques, projet Jérémie 1-82. Explorations Noranda Ltée, rapport statutaire; 9 pages, 7 plans.
- GM 55617, Chartre, E., 1998. Levés géophysiques, Canton Jérémie Grille Ouest. Claims Frigon, rapport statutaire; 11 pages, 4 plans.
- GM 69229, Chemam, C., 2015. Levé de gradiométrie magnétique héliporte de haute résolution, projet Casault bloc no. 3. Exploration Midland Inc, rapport statutaire; 16 pages, 5 plans.
- GM 70908, Chemam, M., 2018. Levé OreVision, projet Casault. EXPLORATION MIDLAND INC, SOQUEM INC, rapport statutaire; 38 pages, 23 plans.
- GM 59037, CHENARD, D., 2001. Rapport des travaux hiver 2001, propriété Lac Gignac. Ressources Minières Radisson Inc, rapport statutaire; 406 pages, 13 plans.
- GM 45982, Chevalier, A., 1987. Diamond Drilling Logs, La Peltrie Project. Expl Min Golden Triangle Inc, rapport statutaire; 206 pages, 1 plan.
- GM 11087-B, Christopher, I C., 1959. 1 Plan of Magnetic and Electromagnetic Surveys with DDH Location. Monpre Mining Co Ltd, rapport statutaire; 1 plan.
- GM 09755, Christopher, I C., 1959. Airborne Electromagnetic Survey on Properties in Turgeon River Area. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 6 pages, 1 plan.
- GM 09754, Christopher, I C., 1960. Report on Ground Electromagnetic Survey. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 4 pages, 1 plan.
- GM 08217-A, Christopher, I C., Seigel, H O., 1959. Report on Airborne Electromagnetic Survey. Kateri Mining Co Ltd, rapport statutaire; 18 pages, 2 plans.
- GM 67737, Corriveau, C., 2013. Rapport des travaux de forage 2013, propriété Casault. Exploration Midland Inc, rapport statutaire; 187 pages, 16 plans.
- GM 32804, Coutu, M R., Douglas, G., Moore, C M., 1977. Diamond Drill Log, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 27 pages, 1 plan.
- GM 32806, Coutu, M R., Rowe, J., 1977. Diamond Drill Record, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 45 pages, 1 plan.

- GM 55859, Daigle, R J., Mackenzie, C D., 1997. Report ff Work, 1997 Diamond Drilling Program, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 76 pages, 2 plans.
- GM 54064, De Cabissole, B., De Corta, H., 1996. Rapport d'une campagne de forage et de polarisation provoquée, propriété B04. Les Métaux Billiton Canada Inc, rapport statutaire; 19 pages, 8 plans.
- GM 55411, De Corta, H., De Cabissole, B., 1997. Rapport d'une campagne de forage et de polarisation provoquée, propriété B01. Les Métaux Billiton Canada Inc, rapport statutaire; 40 pages, 9 plans.
- GM 41575, Des Rivières, J., 1984. Rapport des levés géologiques de la propriéte La Martiniere 1-83. Explorations Noranda Ltée, rapport statutaire; 65 pages, 5 plans.
- GM 42615, Des Rivières, J., 1985. Rapport géologique et de sondage de la propriétée La Martiniere 1. Explorations Noranda Ltée, rapport statutaire; 43 pages, 6 plans.
- GM 45980, DIAMOND DRILL LOGS 1986-87 Programme, Les Explorations Noramco Inc. et Exploration Minière Golden Triangle Inc., rapport statutaire, 644 pages.
- GM 44072, DIAMOND DRILLING LOG, DLS-Gratton Group Property, rapport statutaire, 71 pages.
- GM 44767, Donner, K., 1986. Drill Hole, Turgeon East Group. Mines d'or Queenston Ltée, rapport statutaire; 246 pages, 23 plans.
- GM 46412, Donner, K., 1987. Diamond Drill Report, Turgeon East Property. Mines d'or Queenston Ltée, rapport statutaire; 85 pages, 11 plans.
- GM 71718, Dubé, J., 2020. Technical Report, High-Resolution Heliborne Magnetic Survey, Detour property. PROBE METALS INC, rapport statutaire; 27 pages, 4 plans.
- GM 55489, Dubé, J., Glass, F., 1997. A Report on Geophysical Work, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 14 pages, 17 plans.
- GM 69554, Dubois, M., 2016. Levés magnétométriques et Orevision®, projet Casault Grille Sw Et A. Exploration Midland Inc, rapport statutaire; 55 pages, 13 plans.
- GM 69779, Dubois, M., 2016. Rapport d'interprétation, Levé Orevision, projet Casault. Exploration Midland Inc, rapport statutaire; 31 pages, 7 plans.
- GM 70339, Dubois, M., 2017. Levés magnétométriques et OreVision, projet Casault. EXPLORATION MIDLAND INC, SOQUEM INC, rapport statutaire; 81 pages, 9 plans.
- GM 68909, Dubois, M., Card, D., 2014. Rapport d'interprétation, levés Mag et TDEM de surface, projet Casault. Exploration Midland Inc, rapport statutaire; 16 pages, 70 plans.
- GM 69257, Dufresne, R., Booth, K., 2015. 2015 Drill Program Report, Grasset Property. Balmoral Resources Ltd, rapport statutaire; 2253 pages, 16 plans.
- GM 69696, Dufresne, R., Scott, A., 2016. Induced Polarization Survey Report, Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 45 pages, 21 plans.
- GM 48959, Duplessis, D., 1980. Rapport annuel, projet Wawagosic 210-1380-11. S D B J, rapport statutaire; 28 pages.

- GM 37488, Duplessis, D., 1980. Travaux de l'été 1980, projet Wawagosic. S D B J, rapport statutaire; 26 pages, 39 plans.
- GM 39931, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Casault Lake Property. Mines d'or Queenston Ltée, rapport statutaire; 23 pages, 2 plans.
- GM 39928, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Lac du Doigt Property. Mines d'or Queenston Ltée, rapport statutaire; 22 pages, 3 plans.
- GM 39929, Durocher, A C., Burton, G B., 1982. Geological and Geophysical Compilation, Abitibi North Project, Lac Laporte Property. Mines d'or Queenston Ltée, rapport statutaire; 21 pages, 3 plans.
- GM 67664, Fiset, N., Han, Z., Prikhodko, A., 2013. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (Vtem Plus) and Horizontal Magnetic Gradiometer Geophysical Survey, Casault Project, Block 1, Block 2 And Block 3. Exploration Midland Inc, rapport statutaire; 58 pages, 8 plans.
- GM 67280, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, Martiniere Property. Balmoral Resources Ltds, rapport statutaire; 65 pages, 12 plans.
- GM 66714, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, East Doight Property. Balmoral Resources Ltd, rapport statutaire; 62 pages, 8 plans.
- GM 66710, Fiset, N., Kwan, K., Prikhodko, A., Legault, J., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic and Horizontal Magnetic Gradiometer Geophysical Survey, Harricana Property. Balmoral Resources Ltd, rapport statutaire; 64 pages, 12 plans.
- GM 48553, Foy, S., Lacroix, R., Bernard, J., 1988. Rapport des travaux, campagne d'exploration 1988, propriétée Turgeon. Ressources Minières Coleraine Inc, rapport statutaire; 277 pages, 30 plans.
- GM 32507, Fraser, R J., 1976. Diamond Drill Core Log, Massicotte 4-74 Property (Detour Lake Area). Noranda Expl Co Ltd, rapport statutaire; 4 pages, 1 plan.
- GM 27181, Gallop, A M., 1971. Borehold Record, Property Burntbush. Canadian Nickel Co Ltd, rapport statutaire; 5 pages, 1 plan.
- GM 47226, Garner, D., 1988. Diamond Drilling Program. Golden Dragon Resources Ltd, Glen Auden Resources Ltd, rapport statutaire; 96 pages.
- GM 62862, Giguère, E., 2006. Rapport de la campagne de forage 2006, propriété La Martiniere . Cyprus Canada Inc, rapport statutaire; 319 pages, 13 plans.
- GM 33119, Giroux, H., 1977. Diamond Drill Core Log, Martigny 1-75 Property. Noranda Expl Co Ltd, rapport statutaire; 1 page, 1 plan.
- GM 41440, Giroux, M., 1984. Rapport des levés électromagnétique et magnétique, projet Bug Lake Showing. Explorations Noranda Ltée, rapport statutaire; 5 pages, 3 plans.
- GM 42382, Giroux, M., 1985. Rapport levé magnétométrique, projet Bug Lake Showing. Explorations Noranda Ltée, rapport statutaire; 5 pages, 1 plan.

- GM 42183, Gittings, F W., 1985. Diamond Drilling Log, Lemieux Property. Mines d'or Queenston Ltée, rapport statutaire; 10 pages, 2 plans.
- GM 55538, Glass, F., Dubé, J., 1997. A Report on Geophysical Work, Martigny a Property. Cyprus Canada Inc, rapport statutaire; 13 pages, 7 plans.
- GM 54907, Goettel, T., 1997. Report on the 1997 Diamond Drilling Program, Gaudet Property. Explorations Mines Du Nord Ltée, CLAIMS FRIGON, rapport statutaire; 46 pages.
- GM 10898, Grady, J C., 1959. 3 Diamond Drill Hole DH Logs with Assay Results. Monpre Mining Co Ltd, Claims Martin, rapport statutaire; 17 pages, 2 plans.
- GM 50097, Graham, R.J., 1990. Geophysical Surveys, Val St.Gilles Gold Property, First Standar Mining, rapport statutaire, 9 pages.
- GM 31660, Graham, W F., 1975. Report on Geological Mapping of Massicotte 4-74. Noranda Expl Co Ltd, rapport statutaire; 4 pages, 1 plan.
- GM 69487, Guay, M., and Riopel, J., 2015. Rapoprt de forage 2015, Adventure Gold, rapport statutaire, 166 pages.
- GM 69178, Guay, M., and Riopel, J., 2015. Rapport de prospection, été 2015, Adventure Gold, rapport statutaire, 91 pages.
- GM 69733, Guay, M., Riopel, J., Tremblay, E., 2016. Rapport de la campagne de forage 2016, projet Detour Nord, propriété Manthet, Manthent Extension et Mantigny, 32L03 et 32L04, Canton Manthet et Martigny, Québec, rapport statutaire 172 pages.
- GM 58073, Guy, K., 2000. 2000 Report On Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 97 pages, 14 plans.
- GM 52617, Guy, K., Green, K., 1994. Report on 1994 Lynx Project, Winter Drill Program. Cyprus Canada Inc, rapport statutaire; 86 pages, 1 plan.
- GM 52701, Guy, K., Green, K., 1994. Report on 1994 Rambo Project Winter Drilling Program. Ressources Minières Coleraine Inc, rapport statutaire; 24 pages, 1 plan.
- GM 41657, Hillier, D., 1984. Geological Report on the Dugas Creek Property. Ingamar Expls Ltd, I X Resources Ltd, rapport statutaire; 17 pages, 2 plans.
- GM 41656, Hillier, D., 1984. Geological Report on the Lac Geoffrion Property. Ingamar Expls Ltd, rapport statutaire; 16 pages, 2 plans.
- GM 43451, Hodges, C., 1986. Assessment Report, Harricana East Property. Expl Min Golden Triangle Inc, rapport statutaire; 19 pages, 10 plans.
- GM 45304, Hodges, D G., 1987. Report on the Property, Massicotte-Lower Detour. Claims Passi, Claims Jones, rapport statutaire; 17 pages, 5 plans.
- GM 46083, Hodges, G., 1987. Interpretation Report. Glen Auden Resources Ltd, rapport statutaire; 26 pages, 20 plans.
- GM 39226, Hubert, A L., 1982. Photo-Geology of Vrs Bedrock and Unconsolidated Turgeon Project. Denison Mines Ltd, rapport statutaire; 24 pages, 2 plans.
- GM 41438, Hughes, T N J., Fox, J., 1984. Diamond Drill Log, Gaudet-Beschefer Property. Teck Expls Ltd, rapport statutaire; 172 pages.
- GM 44045, Hugues, N A., Webster, B., 1986. Report on Ground Geophysical Surveys Conducted on the Xanaro Grid. Xanaro Technologies Inc, Expl Min Golden Triangle Inc, rapport statutaire; 27 pages, 11 plans.

- GM 44282, Hutteri, H P., 1986. Report on the Base/Precious Metal Potential of the La Peltrie Township Property. Ingamar Expls Ltd, rapport statutaire; 13 pages.
- GM 56816, Jeffery, B D., 1999. 1999 Report on Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 125 pages, 10 plans.
- GM 53674, Jiang, X D., 1995. 1995 Gaudet C Diamond Drill Report. Cyprus Canada Inc, rapport statutaire; 44 pages, 5 plans.
- GM 53923, Jiang, X D., 1996. Diamond Drill Report, 1996 Gaudet C. Cyprus Canada Inc, rapport statutaire; 81 pages, 8 plans.
- GM 55564, Kelly, D., 1996. Rapport de qualification, propriété Lac Gignac. Ressources Minières Radisson I, rapport statutaire; 33 pages, 6 plans.
- GM 50673, Kenwood, J., 1991. Report of HLEM and Total Field Magnetics Surveys, Gaudet "C" Property. Total Energold Corp, rapport statutaire; 13 pages, 11 plans.
- GM 50567, Kenwood, J., 1991. Report of HLEM and Total Field Magnetics Surveys, Gaudet-B Property. Total Energold Corp, rapport statutaire; 10 pages, 3 plans.
- GM 50524, Kenwood, J., 1991. Report on HLEM and Total Field Magnetics Surveys, Gaudet A Property. Total Energold Corp, Minéraux Morrison Ltée, rapport statutaire; 11 pages, 6 plans.
- GM 44258, Khobzi, A., Beauregard, A J., Boisvert, G J., Foy, S., 1986. Rapport de travaux réalisés en 1986 sur la propriété Massicotte. Exploration Essor Inc, rapport statutaire; 78 pages, 3 plans.
- GM 45607, Khobzi, A., Foy, S., 1987. Rapport de travaux, projet Turgeon. Exploration Rambo Inc, rapport statutaire; 223 pages, 14 plans.
- GM 31955, Krause, B W., 1976. Magnetic and Electromagnetic Survey Report. Canadian Nickel Co Ltd, rapport statutaire; 10 pages, 2 plans.
- GM 66347, Kwan, K., Legault, J., Prikhodko, A., 2011. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (VTEM) and Horizontal Magnetic Gradiometer Geophysical Survey, Casault Property. Exploration Midland Inc, rapport statutaire; 55 pages, 10 plans.
- GM 54178, Lambert, G., 1995. Report on Ground Geophysical Investigation: Induced Polarization Surveys, Turgeon West Project. Placer Dome Inc, rapport statutaire; 10 pages, 41 plans.
- GM 67617, Lambert, G., 2013. Levés de magnétométrie et de polarisation provoquée, projet Lac Casault, Grille Turgeon Centre. Exploration Midland Inc, rapport statutaire; 17 pages, 10 plans.
- GM 67738, Lambert, G., 2013. Levés de polarisation provoquée, projet Lac Casault. Exploration Midland Inc, rapport statutaire; 16 pages, 12 plans.
- GM 45981, Lambert, G., Turcotte, R., 1987. Geophysical Survey, Harricana East 1437 Project. Expl Min Golden Triangle Inc, rapport statutaire; 10 pages, 15 plans.
- GM 47615, Landry, A C., 1987. Diamond Drill Log, Harricana East (P-1437) Property. Expl Min Golden Triangle Inc, rapport statutaire; 284 pages, 29 plans.
- GM 46175, Landry, A C., 1987. Diamond Drill Log, Harricana East (P-1437) Property. Expl Min Golden Triangle Inc, rapport statutaire; 284 pages, 29 plans.

- GM 70013, Larivière, J F., Bourassa, S., Masson, M., 2016. Rapport des travaux de forage 2015-2016, propriété Casault. Soquem Inc, Exploration Midland Inc, rapport statutaire; 1208 pages.
- GM 42421, Lavoie, C., 1985. Levés magnétique et de polarisation provoquée, projet Bug Lake Showing La Martiniere . Explorations Noranda Ltée, rapport statutaire; 12 pages, 4 plans.
- GM 46076, Lavoie, C., 1987. Leves Geophysique Propriete de Exploration Noranda, Projet Martiniere , Canton Martiniere , rapport statutaire, 8p.
- LAVOIE, C., 1987. Levés géophysiques, projet La Martiniere . Explorations Noranda Ltée, rapport statutaire; 7 pages, 3 plans."
- GM 46279, Lavoie, C., Plante, L., 1988. Levé de polarisation provoquée, projet La Martiniere . Explorations Noranda Ltée, rapport statutaire; 15 pages, 16 plans.
- GM 64281, Le Grand, M., 2009. Rapport sur la Campagne de forage au diamant, propriété Martiniere . American Bonanza Gold Corporation, rapport statutaire; 268 pages, 14 plans.
- GM 38110, Lee, H A., 1980. Photo-Geology of Detour-Turgeon Projects. Western Mines Ltd, Ressources Westmin Ltée, rapport statutaire; 25 pages, 2 plans.
- GM 45979, Legault, M H., 1987. Diamond Drill Logs 1986-87 Programs P-1437 Harricana East Project. Expl Min Golden Triangle Inc, rapport statutaire; 468 pages, 1 plan.
- GM 47623, Legault, M H., Landry, A C., 1988. Diamond Drill Log, La Peltrie (P-1428) Property. Expl Min Golden Triangle Inc, rapport statutaire; 325 pages, 24 plans.
- GM 18183, Leigh, O., 1966. Diamond Drill Record. Kesagami Synd, rapport statutaire; 40 pages, 1 plan.
- GM18183, Leigh, O., 1966. Diamond Drill Record. Kesagami Synd, rapport statutaire; 40 pages, 1 plan.
- GM 66346, Letourneau, O., PAUL, R., 2011. Helicopter-Borne Geomagnetic Survey, Data Acquisition Report, Casault Project. Exploration Midland Inc, rapport statutaire; 29 pages, 7 plans.
- GM 69063, Loader, T., Dubois, M., 2015. Levés de magnétométrie et de résistivité/polarisation provoquée Orevision®, projet Casault Grille Nord. Exploration Midland INC, rapport statutaire; 31 pages, 38 plans.
- GM 69064, Loader, T., Dubois, M., 2015. Levés Mag-GPS et PP-Orevision®, projet Casault, Grille Sud. Exploration Midland Inc, rapport statutaire; 45 pages, 32 plans.
- GM 46855, Lortie, P., 1988. Induced Polarization Survey, Harricana East Property, Project 1437. Expl Min Golden Triangle Inc, rapport statutaire; 20 pages, 20 plans.
- GM 53651, Lortie, P., 1995. Geophysical Surveys, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 9 pages, 23 plans.
- GM 53653, Lortie, P., 1995. Geophysical Surveys, Jérémie B And Jérémie C Projects. Cyprus Canada Inc, rapport statutaire; 10 pages, 17 plans.
- GM 53652, Lortie, P., Boileau, P., 1995. Geophysical Surveys, Jérémie A Project. Cyprus Canada Inc, rapport statutaire; 13 pages, 29 plans.

- GM 35999, Macisaac, N., 1976. Diamond Drill Core Log. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32041, Mactavish, R O., 1976. Electromagnetic Survey of Group A, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32042, Mactavish, R O., 1976. Electromagnetic Survey of Group B, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31958, Mactavish, R O., 1976. Electromagnetic Survey of Group D, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31959, Mactavish, R O., 1976. Electromagnetic Survey of Group E, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 31960, Mactavish, R O., 1976. Electromagnetic Survey of Group F, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32046, Mactavish, R O., 1976. Electromagnetic Survey of Group N, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 32047, Mactavish, R O., 1976. Electromagnetic Survey of Group O, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 37394, Mactavish, R O., Sullivan, J A., 1981. Diamond Drill Log. Canadian Merrill Ltd, Hudson Bay Expl & Dev Co Ltd, Francana Oil & Gas Ltd, rapport statutaire; 13 pages, 1 plan.
- GM 55499, Masson, MW., 1997. 1997 Report on Diamond Drilling, La Peltrie C Property. Cyprus Canada Inc, rapport statutaire; 85 pages, 4 plans.
- GM 55490, Masson, M W., 1997. 1997 Report on Diamond Drilling, Martiniere D Property. Cyprus Canada Inc, rapport statutaire; 206 pages, 8 plans.
- GM 68987, Masson, M., 2015. Rapport des travaux de forage 2015, propriété Casault (Bloc Central). Exploration Midland Inc, rapport statutaire; 63 pages.
- GM 69701, Masson, M., 2016. Rapport des travaux de forage 2016, propriété Casault. Exploration Midland Inc, rapport statutaire; 102 pages, 2 plans.
- GM 66854, Masson, M., Bourassa, S., Gbaguidi, G., Kamta, G., 2012. Rapport des travaux de forage 2012, propriété Casault. Exploration Midland Inc, rapport statutaire; 507 pages, 20 plans.
- GM 69778, Masson, M., Larivière, J F., Bourassa, S., 2016. Rapport des travaux de forage, propriété Casault. Exploration Midland INC, rapport statutaire; 429 pages, 5 plans.
- GM 53727, McCrae, M., Needham, B., 1995. 1995 Jérémie a Diamond Drill Report. Cyprus Canada Inc, rapport statutaire; 77 pages, 13 plans.
- GM 43386, McCurdy, S E., 1986. A Report on Geophysical Surveys Conducted in Lanouiller Township. Expl Min Golden Triangle Inc, rapport statutaire; 29 pages, 29 plans.
- GM 56041, McNichols, D., 1998. Rapport sur le programme de forages, hiver 1998, propriété Lac Gignac. Ressources Minières Radisson I, rapport statutaire; 503 pages, 18 plans.
- GM 54389, Mercier, D., De Corta, H., and Cabissole, B., 1997. Rapport d'une campagne de forage, propriété SG3, Les Métaux Billiton Canada Inc., rapport statutaire, 170 pages.

- GM 55270, Michaud, P., Taner, M F., 1997. Journaux de sondage. Les Métaux Billiton Canada Inc, rapport statutaire; 82 pages, 12 plans
- GM 33366, Misiura, J D., 1977. Geological Report on La Martiniere 2-74. Noranda Expl Co Ltd, rapport statutaire; 3 pages, 1 plan.
- GM 63647, Moreau, B., Moreau, A., 2008. Interprétation ttructurale, projet Massicotte. Ressources Minières Radisson Inc, rapport statutaire; 20 pages.
- GM 42169, Morissette, P., Andersen, E O., 1984. Rapport de levé géophysique, propriété Casault. Mines d'or Queenston Ltée, rapport statutaire; 3 pages, 4 plans.
- GM 42172, Morissette, P., Andersen, E O., 1984. Rapport de levé géophysique, propriété Du Doigt. Mines d'or Queenston Ltée, rapport statutaire; 4 pages, 4 plans.
- GM 51785, Needham, B., 1993. Diamond Drilling Holes, La Peltrie Property. Cyprus Canada Inc, rapport statutaire; 49 pages, 2 plans.
- GM 52083, Needham, B., 1993. Summary Report, La Peltrie Property. Cyprus Canada Inc, rapport statutaire; 299 pages, 12 plans.
- GM 55537, Needham, B., Ben, M., Masson, M., 1997. 1997 Martigny a Prospecting and Diamond Drill Program. Cyprus Canada Inc, rapport statutaire; 116 pages, 5 plans.
- GM 64141, Neron, P., Boulianne, D., Boivin, M., 2008. Rapport de compilation et travaux de 2008, propriété Massicotte. Ressources Minières Radisson Inc, rapport statutaire; 264 pages, 2 plans.
- GM 70591, Newton, A., Vervaeke, J., 2018. 2017 Drill Program Report, Detour East Property. BALMORAL RESOURCES LTD, rapport statutaire; 668 pages, 1 plan.
- GM 08217-B, Paudash Lake Uranium Mines Ltd, 1963. 1 Plan of Airborne Magnetic Survey. rapport statutaire; 1 plan.
- GM 24929, Penarroya Canada Ltée, 1969. Journal de sondage, permis Wawagosic. rapport statutaire; 22 pages.
- GM 68187, Perk, N., Peat, C., Letourneau, M., 2014. 2013 Diamond Drilling Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 74 pages.
- GM 67370, Perk, N., Peat, C., Treat, R., Swanton, D., 2012. 2012 Diamond Drilling and Surface Geochemistry, Detour East Project. Ressources Minières Radisson Inc, rapport statutaire;461 pages, 24 plans.
- GM 67654, Perk, N., Swanton, D., 2013. 2012 Surface Geochemistry Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 70 pages.
- GM 67644, Perk, N., Swanton, D., 2013. 2013 Geophysical Survey Report, Harri Property. Balmoral Resources Ltd, rapport statutaire; 38 pages, 7 plans.
- GM 68182, Perk, N., Swanton, D., 2014. 2013 Geophysical Work Report, Doigt Property. Balmoral Resources Ltd, rapport statutaire; 32 pages, 20 plans.
- GM 67653, Perk, N., Swanton, D., Treat, R., Brennan, S., Peat, C., Booth, K., Mann, R., Voordouw, R., 2013. 2012 Drill Program Report, La Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 2344 pages, 35 plans.

- GM 67745, Perk, N., Voordouw, R., Mckeown, M., 2013. 2013 Soil Sampling Program Report, Detour East, Doigt, Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 568 pages, 34 plans.
- GM 55989, Poitras, S., 1998. Rapport de la campagne de forage, hiver 1998, projet Bapst (# 1198), rapport statutaire, 50 pages.
- GM 58259, Poitras, S., 2000. Rapport de la campagne de forage, hiver 2000, projet Bapst (#1198), rapport statutaire, 52 pages.
- GM 54318, Poitras, S., and Verschelden, R., 1997. Rapport de la campagne de forages, projet B2-Lanoullier (#1177), rapport statutaire, 53 pages.
- GM 54647, Potvin, H., 1997. A Report on Geophysical Work (Induced Polarization and Magnetic Surveys) over the Martigny A Property. Cyprus Canada Inc, rapport statutaire; 15 pages, 24 plans.
- GM 54382, Pouliot, S., and Adam, D., 1996. Rapport d'une campagne de forage, propriété B11, Les Métaux Billiton Canada Inc., rapport statutaire, 40 pages.
- GM 46833, Pressacco, R., 1988. Report on the 1988 Drilling Program, La Martiniere Property – Project 1207. Explorations Noranda Ltée, rapport statutaire; 79 pages, 8 plans.
- GM 54177, Pritchard, R A., 1995. Dighemv Survey, Turgeon River. Placer Dome Inc, rapport statutaire; 126 pages, 20 plans.
- GM 61228, Reford, S W., Kwan, K., 2002. Report on Interpretation of Airborne Magnetic Data from Harricana River Area. Globestar Mining Inc, Corporation Tgw, rapport statutaires; 21 pages.
- GM 10850, Remick, J H., 1960. Information Report. Monpre Mining Co Ltd, rapport statutaire soumis; 1 page.
- RP458, Remick, J H., 1961. Preliminary Report on Manthet Jérémie La Forest Area, Abitibi-West and Abitibi-East Counties and Abitibi Territory. MRN; RP 458(A), 25 pages, 3 plans.
- RP458, Remick, J H., 1961. Rapport préliminaire sur la région de Manthet Jérémie La Forest, Comtes d'Abitibi-Ouest et d'Abitibi-Est et Territoire d'Abitibi. MRN; RP 458, 31 pages, 3 plans.
- GM 39941, Robinson, D J., 1981. Assessment Report, Diamond Drilling. Ressources Westmin Ltée, rapport statutaire; 10 pages.
- GM 38976, Robinson, D J., 1982. Assessment Report Geophysical Surveys and Diamond Drilling, Bertrand Project. Ressources Westmin Ltée, rapport statutaire; 28 pages, 14 plans.
- GM 38109, Rockingham, C J., 1981. A Report on the Turgeon Gold Project, Geological Prospecting and Mapping and Diamond Drilling. Western Mines Ltd, Ressources Westmin Ltée, rapport statutaire; 58 pages, 6 plans.
- GM 40106, Rockingham, C J., Nutter, G E., 1982. Diamond Drilling Report, Lac Combaluzier Claim Group. Ressources Westmin Ltée, rapport statutaire; 10 pages.
- GM 26074, Roger, J.G., 1970, Compte-rendu de la campagne de sondages de l'hiver 1970, sous-zone Lac Pater, Lac du Campet Lanouiller, projet Wawagosic, rapport statutaire, 49 pages.

- GM 66345, Sasias, M., Masson, M., Bourassa, S., 2012. Rapport des travaux de forage 2011, propriété Casault. Exploration Midland Inc, rapport statutaire; 83 pages.
- GM 09563, Seigel, H O., 1959. Report on Airborne Geophysical Surveys of Properties of Paudash Mines. Paudash Mines Ltd, rapport statutaire; 9 pages, 1 plan.
- GM 13018, Seigel, H O., 1959. Report on Magnetic, Electromagnetic and Gravimetric Surveys, Turgeon River Area. Paudash Mines Ltd, rapport statutaire; 11 pages, 82 plans.
- GM 36209, Selco Mining Corp LTD, 1979. Diamond Drill Record, Detour Project, GRID 10-100. rapport statutaire; 2 pages.
- GM 71473, Simard, J., 2019. Report on an Induced Polarization Survey Performed on the Casault Project. EXPLORATION MIDLAND INC, rapport statutaire; 29 pages, 12 plans.
- GM 24482, Sondages 1969, Zone du Lac Camp. Peñaroya Canada Limitée, rapport statutaire, 24 pages.
- GM 22497, Sondages, permis Wawagosic, 1967. Peñaroya Canada Limitée, rapport statutaire, 17 pages.
- GM 71352, St-Cyr, R D., 2019. Rapport des travaux de forage 2017, propriété Casault. Exploration Midland Inc, rapport statutaire; 692 pages.
- GM 64010, St-Hilaire, C., 2008. Heliborne High Resolution Aeromagnetic and Electromagnetic Survey, Jérémie Property. Claims Tremblay, Ressources Abitex Inc, Exploration Metauxdic, rapport statutaire; 22 pages, 6 plans.
- GM 68447, St-Hilaire, C., 2014. Rapport d'interprétation d'un levée magnétique et de polarisation provoquée, propriété Casault, Grille South et West. Exploration Midland Inc, rapport statutaire; 82 pages, 8 plans.
- GM 32805, Sullivan, J R., 1977. Diamond Drill Log, Harricana Project. Hudson Bay Expl & Dev Co Ltd, rapport statutaire; 7 pages.
- GM 41074, Sullivan, P., Staszak, G H., 1983. Geological Report, Ste Helene Project, Jérémie 1-82. Explorations Noranda Ltée, rapport statutaire; 3 pages, 1 plan.
- GM 08704, Thoday, G P., 1959. Properties in Harricana River Area. Monpre Mining Co Ltd, rapport statutaire; 11 pages, 1 plan.
- GM 37930, Thorsen, K., 1981. Geophysical Surveys on Group GB 33, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 20 pages.
- GM 37931, Thorsen, K., 1981. Geophysical Surveys on Group GB 34, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 37932, Thorsen, K., 1981. Geophysical Surveys on Group GB 35 and 36, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 21 pages, 2 plans.
- GM 37799, Thorsen, K., 1981. Geophysical Surveys on Group GB 39. Teck Expls Ltd, rapport statutaire; 8 pages, 2 plans.
- GM 37935, Thorsen, K., 1981. Geophysical Surveys on Group GB 42, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37887, Thorsen, K., 1981. Geophysical Surveys on Group GB 43, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37936, Thorsen, K., 1981. Geophysical Surveys on Group GB 44, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages, 2 plans.

- GM 37877, Thorsen, K., 1981. Geophysical Surveys on Group GB 53, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 10 pages.
- GM 37880, Thorsen, K., 1981. Geophysical Surveys on Group GB 58, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 8 pages.
- GM 37882, Thorsen, K., 1981. Geophysical Surveys on Group GB 61, Gaudet-Beschefer Area. Teck Expls Ltd, rapport statutaire; 9 pages.
- GM 39422, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 33, Jérémie Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39437, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 35 & 36, Jérémie & Gaudet Townships in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 6 plans.
- GM 39438, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 35 & 36, Jérémie & Gaudet Townships in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 6 plans.
- GM 39424, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 42, Gaudet Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39425, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 43, Gaudet, Lanouillier & La Martiniere Townships In The Gaudet Beschefer Area. Teck Expls LtD, rapport statutaire; 5 pages, 9 plans.
- GM 39426, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 46, Jérémie Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 5 pages, 9 plans.
- GM 39413, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 53, LaMartiniere Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39439, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 61, Lanoullier & La Martiniere Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 4 pages, 3 plans.
- GM 39441, Thorsen, K., 1982. Assessment Report on the Geophysical Surveys on Group GB 71, Gaudet Township in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 7 pages.
- GM 40023, Thorsen, K., 1982. Diamond Drill Log. Teck Expls Ltd, rapport statutaire; 4 pages.
- GM 40018, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-20 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 40020, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-75 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 40021, Thorsen, K., 1983. Assessment Report on the Goephysical Surveys on Group GB-76 in the Gaudet Beschefer Area. Teck Expls Ltd, rapport statutaire; 12 pages.
- GM 41127, Thorsen, K., Goodwin, J R., Fox, J., Barnes, B., 1982. Diamond Drill Log. Teck Expls Ltd, rapport statutaire; 29 pages.

- GM 52046, Tremblay, D., 1993. Rapport sur la campagne de forage au diamant, projet Lac Bertrand. Soquem, Ressources Westmin Ltée, rapport statutaire; 143 pages, 13 plans.
- GM 50997, Trudeau, J., Raymond, D., 1991. Levé géologique, été 1991, projet Lac Bertrand (1104). Ressources Westmin Ltée, rapport statutaire; 38 pages, 2 plans.
- GM 70683, Tucker, M J., Vervaeke, J., 2018. 2017 Drill Program Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 3778 pages, 40 plans.
- GM 70894, Tucker, M J., Vervaeke, J., 2018. 2018 Drill Program Report, Detour east Property. Balmoral Resources LTD, rapport statutaire; 299 pages, 1 plan.
- GM 71308, Tucker, M J., Vervaeke, J., Myers, J M., Tempest, S R., Vaudrin, M R H., Albert, S C., 2019. 2018 Drill Program Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 942 pages.
- GM 70895, Tucker, M J., Vervaeke, J., Tempest, S R., 2018. 2018 Drill Program Report, Harri Property. Balmoral Resources LTD, rapport statutaire; 122 pages.
- GM 71230, Tucker, M J., Vervaeke, J., Tempest, S R., Myers, J M., Vaudrin, M R H., 2019. 2018 Field Mapping Report, Martiniere Property. Balmoral Resources LTD, rapport statutaire; 187 pages.
- GM 68603, Venter, N., Mokubung, K., Eadie, T., Legault, J., Plastow, G., 2014. Report on a Helicopter-Borne Versatile Time Domain Electromagnetic (Vtemplus) and Horizontal Magnetic Gradiometer Geophysical Survey, Lac Fleuri, Nantel, Grasset Gap, Grasset North, Jérémie-Fenelon and Nickel Test Survey Areas. Balmoral Resources Ltd, rapport statutaire; 684 pages, 48 plans.
- GM 53010, Vermette, D., 1995. Journaux de sondage, propriété Massicotte. Ressources Minières Radisson I, rapport statutaire; 13 pages, 2 plans.
- GM 56036, Verschelden, R., 1997.Rapport de la campagne de forage, projet B2-Lanouillier (#1177), Avril – Mai 1997, rapport statutaire, 94 pages.
- GM 57512, Verschelden, R., 1997. Rapport de la campagne de forage, projet B2 Lanoullier (#1177), Avril Mai 1998, rapport statutaire, 154 pages.
- GM 56103, Verschelden, R., Fliszar, A., 1998. Rapport de la campagne de forage, projet La Peltrie. SOQUEM, rapport statutaire; 173 pages, 11 plans.
- GM 69210, Voordouw, R., Brennan, S., Perk, N., Letourneau, M., Doyon, V., Booth, K., Baker, D., Sharman, L., Mann, R., 2014. 2013 Drilling and Geophysics (Ip, Hlem) Report on the La Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 2947 pages, 63 plans.
- GM 69087, Voordouw, R., Mckeown, M., Perk, N., 2014. 2014 Drilling and Geophysics (Ip), Report on the La Martiniere and Harri Properties. Balmoral Resources Ltd, rapport statutaire; 1514 pages, 32 plans.
- GM 69163, Voordouw, R., Perk, N., 2015. 2015 Diamond Drilling Report on the Detour East Project. Balmoral Resources Ltd, rapport statutaire; 86 pages, 3 plans.
- GM 69257, Dufresne, R. and Booth, K., 2015. 2015 Drill Program Report, Grasset Property. Balmoral resources Ltd, rapport statutaire; 2253 pages, 16 plans.
- GM 69310, Voordouw, R., Perk, N., 2016. 2015 Drilling Report on the La Martiniere Property. Balmoral Resources Ltd, rapport statutaire; 1145 pages, 29 plans.

- GM 66719, Wagner, D W., 2011. A Report on Induced Polarization Surveying, Detour East Property. Ressources Minières Radisson Inc, rapport statutaire; 27 pages, 99 plans.
- GM 66348, Wagner, DW., Peshkepia, A., Brown, W., Coutts, L., Mann, R., 2012. Drilling Report on the Detour East Property. Ressources Minières Radisson Inc, rapport statutaire; 140 pages, 5 plans.
- GM 68959, Wagner, D., Dufresne, R., Mann, R., Booth, K., 2015. 2014 MMI Soil Sampling Program Report, Detour East, Harri, Jérémie Properties. Balmoral Resources Ltd, rapport statutaire; 207 pages, 2 plans.
- GM 66026, Wagner, D., Mann, R., 2011. Assessment Report on the July-August 2011 Detour East Mapping Program, Detour East Property. Ressources Minières Radisson I, rapport statutaire; 42 pages.
- GM 45309, Webster, B., Hugues, N A., 1987. Report on Ground Geophysical Surveys, Xanaro Grid. Expl Min Golden Triangle Inc, rapport statutaire; 43 pages, 3 plans.
- GM 50596, Westhaver, B., 1991. 1991 Assessment Report, Diamond Drilling, Geology and Geophysics, La Peltrie "A". Total Energold Corp, rapport statutaire; 48 pages, 11 plans.
- GM 47447, Zeeman, M., 1988. Reverse Circulation Drilling Program. Glen Auden Resources Ltd, Royex Gold Mining Corp, Mineta Resources Ltd, rapport statutaire; 147 pages, 6 plans.

APPENDIX I – LIST OF MINING TITLES

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2208453	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208454	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208455	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208456	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208457	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208458	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208459	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208460	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208461	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208462	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208463	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208464	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208465	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2208466	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208467	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208468	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208469	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208470	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208471	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208472	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208473	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208474	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208475	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208476	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208477	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208478	32E14	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208479	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208480	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208481	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208482	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208483	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2208484	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208485	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208486	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208487	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208488	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208489	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208490	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208491	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208492	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2208523	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208524	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208525	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208526	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208527	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208528	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208529	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208530	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208531	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208532	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208533	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208534	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208535	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208536	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2208537	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208538	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208539	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208540	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208541	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208542	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208543	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208544	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2208545	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208546	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208547	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208548	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208549	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208550	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208551	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208552	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208553	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2208554	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208555	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208556	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208557	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208558	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208559	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2208560	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208561	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208562	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208565	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208566	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208567	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208568	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208569	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208570	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208571	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2208572	32L03	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2211287	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2211288	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.31
Casault	CDC	2211289	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.31
Casault	CDC	2211290	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211291	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2211292	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211293	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211294	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211295	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211296	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211297	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211298	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211299	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211300	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211301	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211302	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2211303	32L03	3/28/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.32
Casault	CDC	2214200	32L03	4/14/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2214201	32L03	4/14/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2214202	32L03	4/14/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2214203	32L03	4/14/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2214204	32L03	4/14/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2241673	32L03	7/20/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2247245	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.46
Casault	CDC	2247246	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.46
Casault	CDC	2247247	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.46
Casault	CDC	2247248	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.46
Casault	CDC	2247249	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.46
Casault	CDC	2247250	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.45
Casault	CDC	2247251	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.45
Casault	CDC	2247252	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.45
Casault	CDC	2247253	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.45
Casault	CDC	2247254	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.45
Casault	CDC	2247255	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.44
Casault	CDC	2247256	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.44
Casault	CDC	2247257	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.44

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2247258	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.44
Casault	CDC	2247259	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.44
Casault	CDC	2247260	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2247261	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2247262	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247263	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247264	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247265	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247266	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247267	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247268	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2247269	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247270	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247271	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247272	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247273	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247274	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247275	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247276	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247277	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247278	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2247279	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2247280	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2247281	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2247282	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2247283	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2247284	32E14	8/23/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2271264	32E15	1/31/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2271265	32E15	1/31/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2273155	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273156	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2273157	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273158	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273159	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273160	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273161	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273162	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273163	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273164	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273165	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273166	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2273167	32E14	2/10/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2276124	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276125	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276126	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276127	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276128	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276129	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276130	32E15	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2276131	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276132	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276133	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276134	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276135	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276136	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276137	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276138	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276139	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2276140	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276141	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276142	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276143	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2276144	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276145	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276146	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276147	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276148	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276149	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276150	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2276151	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276152	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276153	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276154	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276155	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276156	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276157	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276158	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276159	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276160	32L02	3/7/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2276161	32L02	3/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.34
Casault	CDC	2282141	32L02	3/30/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.33
Casault	CDC	2286321	32E14	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286322	32E14	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286323	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286324	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286325	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286326	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286327	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286328	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286329	32E14	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	50.06
Casault	CDC	2286330	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	52.90
Casault	CDC	2286331	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	52.61
Casault	CDC	2286332	32E15	4/14/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2286777	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286778	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286779	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286780	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	54.18
Casault	CDC	2286781	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286782	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286783	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286784	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	27.81
Casault	CDC	2286785	32E15	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286786	32E15	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286787	32E15	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286788	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	50.19
Casault	CDC	2286790	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286791	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286792	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286793	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286794	32L02	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2286795	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286796	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286797	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286798	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	51.57
Casault	CDC	2286799	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286800	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2286801	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2286802	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286803	32E14	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2286804	32L03	4/18/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	30.13
Casault	CDC	2294127	32E14	6/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	42.74
Casault	CDC	2294128	32E14	6/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2313433	32E14	9/25/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	38.55
Casault	CDC	2321964	32E14	10/31/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2322789	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322790	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322791	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322792	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322793	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322794	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322795	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322796	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322797	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322798	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.41
Casault	CDC	2322799	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322800	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322801	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322802	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322803	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322804	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322805	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322806	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322807	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322808	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322809	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322810	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322811	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2322812	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322813	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322814	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322815	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322816	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322817	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322818	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322819	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2322820	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322821	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322822	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2322823	32E14	11/7/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2326101	32E15	12/1/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2326104	32L02	12/1/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2326106	32L02	12/1/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2384320	32E15	4/17/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2384321	32E15	4/17/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2384718	32E15	4/29/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.37
Casault	CDC	2384719	32L02	4/29/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.36
Casault	CDC	2384720	32L02	4/29/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2390766	32L02	9/16/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.35
Casault	CDC	2395089	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2395090	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2395091	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2395092	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2395093	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2395094	32E15	12/1/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2436774	32E14	2/4/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2436775	32E14	2/4/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2437713	32E15	3/3/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2437714	32E15	3/3/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2437715	32E15	3/3/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2437720	32E15	3/3/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2438023	32E15	3/13/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2438024	32E15	3/13/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2439224	32E14	4/4/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2457675	32E15	8/16/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2457677	32E15	8/16/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2457678	32E15	8/16/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Casault	CDC	2457679	32E15	8/16/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2457680	32E15	8/16/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2513528	32E15	2/27/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.40
Casault	CDC	2513529	32E15	2/27/2024	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2517469	32E15	5/2/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2517470	32E15	5/2/2023	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2539505	32E15	5/26/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.39
Casault	CDC	2540266	32E15	6/5/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2540267	32E15	6/5/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2540268	32E15	6/5/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2540269	32E15	6/5/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault	CDC	2540270	32E15	6/5/2022	Midland	Optioned from Midland Expl. Ltd; Soquem 1% NSR	55.38
Casault Total							17725.64
Detour East	CDC	99096	32E14	9/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99097	32E14	9/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99568	32E14	10/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99569	32E14	10/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99570	32E14	10/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99571	32E14	10/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99572	32E14	10/26/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99742	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99743	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99744	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99745	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99746	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99747	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	99748	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99749	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99750	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99751	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	99752	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	99753	32E14	10/25/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104228	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104229	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104230	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104231	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104232	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104233	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104234	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104235	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104239	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	104240	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104241	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104242	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104243	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	104244	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104245	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104246	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104247	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	104248	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	104249	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	104250	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	104251	32E14	11/22/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	1133019	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133020	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133021	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133022	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133023	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133024	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133025	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133026	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.43

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	1133027	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.43
Detour East	CDC	1133028	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
Detour East	CDC	1133029	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
Detour East	CDC	1133030	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
Detour East	CDC	1133031	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.41
Detour East	CDC	1133032	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133033	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133034	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133035	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	1133036	32E14	2/10/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%; Encana Corp. JV 39.3% int	55.42
Detour East	CDC	2011745	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2011746	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2011751	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2011752	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2011753	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2011762	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011763	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011764	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011765	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011766	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011767	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011768	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011769	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011770	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011774	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2011783	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2011784	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2011785	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2011786	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2011787	32E14	5/22/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2012630	32E14	5/23/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2012631	32E14	5/23/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2012632	32E14	5/23/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2029533	32E13	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029537	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2029538	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2029539	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2029540	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2029541	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2029543	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029544	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029545	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029546	32E14	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029547	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2029548	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2029549	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2029550	32E13	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.34
Detour East	CDC	2029551	32E13	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029552	32E13	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.33
Detour East	CDC	2029553	32E13	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2029554	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.33
Detour East	CDC	2029555	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2029556	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.34
Detour East	CDC	2029557	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2029558	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.34
Detour East	CDC	2029559	32L04	10/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050848	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2050849	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2050850	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2050851	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2050852	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2050853	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2050854	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050855	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050856	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050860	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050872	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050891	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050892	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050893	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050894	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050895	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050896	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050897	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050898	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050899	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050900	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050901	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050902	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050903	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050904	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050905	32E14	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2050906	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2050917	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	0.01
Detour East	CDC	2050931	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2050932	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2050933	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2050942	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2050943	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2050944	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050945	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050946	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050947	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2050948	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050949	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2050950	32L03	1/24/2024	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2074183	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074184	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074185	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074186	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074187	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074188	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074189	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074190	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.46
Detour East	CDC	2074191	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074192	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074193	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074194	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074195	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074196	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074197	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074198	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2074199	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2074200	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2074201	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2074202	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2074203	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2074204	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2074205	32E14	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2074206	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2074207	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2074208	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2074209	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2074211	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2074212	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2074213	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2074214	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2074216	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2074217	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2074218	32L03	4/9/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2148342	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2148343	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2148344	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2148345	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2148346	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2148347	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2148348	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.45
Detour East	CDC	2148349	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148350	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148351	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148352	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148353	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148354	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148355	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2148356	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2148357	32E14	5/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157245	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157246	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157247	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157248	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157249	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157250	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157251	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157252	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157253	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2157263	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157274	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2157284	32E14	6/1/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2157287	32E13	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2157304	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157305	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157306	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157307	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157308	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157309	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157310	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157311	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157312	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2157313	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157314	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157315	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157316	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157317	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2157325	32E14	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2159007	32E13	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2159008	32E13	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2159009	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159010	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159011	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159012	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159013	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159014	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159015	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159016	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159017	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159018	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2159019	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2159020	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.43
Detour East	CDC	2159021	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2159022	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2159023	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2159024	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2159025	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2159026	32E14	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.41
Detour East	CDC	2159042	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159043	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159044	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159045	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159046	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159047	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159048	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159049	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2159050	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.31
Detour East	CDC	2159051	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.31
Detour East	CDC	2159052	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.31
Detour East	CDC	2159053	32L03	6/4/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.31
Detour East	CDC	2164561	32E14	7/8/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.44
Detour East	CDC	2164562	32E14	7/8/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2180524	32E13	6/2/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	7.34
Detour East	CDC	2261175	32E14	11/21/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.39
Detour East	CDC	2361365	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2361366	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2361367	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361368	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361369	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361370	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361371	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2361372	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361373	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361374	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361375	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361376	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361377	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361378	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361379	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361380	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361381	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361382	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361383	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361384	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2361385	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2361391	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2361394	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.32
Detour East	CDC	2361418	32L03	11/14/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2384638	32E13	6/4/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	7.35
Detour East	CDC	2399544	32L03	2/11/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2399545	32L03	2/11/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2399546	32L03	2/11/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2399547	32L03	2/11/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2399548	32L03	2/11/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.31
Detour East	CDC	2443973	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2443974	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2443975	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2443976	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2443977	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.31
Detour East	CDC	2443986	32L03	5/3/2023	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.31
Detour East	CDC	2547819	32E13	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547820	32E13	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2547821	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547822	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547823	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547824	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547825	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547826	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547827	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547828	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547829	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547830	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547831	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547832	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547833	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547834	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547835	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547836	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547837	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547838	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547839	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547840	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547841	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547842	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547843	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547844	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547845	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547846	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547847	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547848	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547849	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547850	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547851	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2547852	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547853	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547854	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547855	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547856	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547857	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547858	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547859	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547860	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.37
Detour East	CDC	2547861	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547862	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547863	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547864	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547865	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547866	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547867	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.40
Detour East	CDC	2547868	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547869	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547870	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547871	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547872	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547873	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547874	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.39
Detour East	CDC	2547875	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547876	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547877	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2547878	32E14	12/8/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.38
Detour East	CDC	2548251	32E14	12/12/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2548252	32E14	12/12/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2549767	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549768	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2549769	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549770	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549771	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549772	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549773	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549774	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549775	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549776	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549777	32L03	4/8/2022	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2549778	32L03	4/8/2022	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2549779	32L03	4/8/2022	Wallbridge	Option to Kirk. L. Gold; *Radisson NSR 2%	55.32
Detour East	CDC	2549780	32L03	6/21/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549781	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549782	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549783	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549784	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549785	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549786	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549787	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549788	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549789	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549790	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.33
Detour East	CDC	2549791	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549792	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549793	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549794	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549795	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549796	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549797	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549798	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549799	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2549800	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549801	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549802	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549803	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549804	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549805	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549806	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549807	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549808	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549809	32E14	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2549810	32E14	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2549811	32E14	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2549812	32E14	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.36
Detour East	CDC	2549813	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549814	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549815	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549816	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549817	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549818	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549819	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2549820	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549821	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549937	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549938	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549939	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.35
Detour East	CDC	2549940	32L03	6/20/2022	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.34
Detour East	CDC	2550986	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2550987	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2550988	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2550989	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2550990	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Detour East	CDC	2550991	32E14	1/16/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2554920	32E14	2/9/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2554921	32E14	2/9/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East	CDC	2554922	32E14	2/9/2023	Wallbridge	Option to Kirk. L. Gold; Radisson NSR 2%	55.42
Detour East Total							23090.07
Doigt	CDC	2282229	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282230	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282231	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282232	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282233	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282234	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282235	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282236	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282237	32L03	4/3/2022	Wallbridge		55.31
Doigt	CDC	2282238	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282239	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282240	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282241	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282242	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282243	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282244	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282245	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282246	32L03	4/3/2022	Wallbridge		55.30
Doigt	CDC	2282250	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282251	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282252	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282253	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282254	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282255	32L03	4/3/2022	Wallbridge		55.29
Doigt	CDC	2282258	32L03	4/3/2022	Wallbridge		55.28

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Doigt	CDC	2282259	32L03	4/3/2022	Wallbridge		55.28
Doigt	CDC	2282260	32L03	4/3/2022	Wallbridge		55.28
Doigt	CDC	2282261	32L03	4/3/2022	Wallbridge		55.28
Doigt	CDC	2282264	32L03	4/3/2022	Wallbridge		55.27
Doigt	CDC	2282265	32L03	4/3/2022	Wallbridge		55.27
Doigt	CDC	2282335	32L03	4/3/2022	Wallbridge		55.31
Doigt Total							1714.20
Fenelon	BM	864	32L02	4/9/2027	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	53.36
Fenelon	CDC	2182336	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182337	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182338	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182339	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182340	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182341	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182342	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182343	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.41
Fenelon	CDC	2182344	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	37.32
Fenelon	CDC	2182345	32E15	4/15/2022	Wallbridge		23.57
Fenelon	CDC	2182346	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	7.54
Fenelon	CDC	2182347	32E15	4/15/2022	Wallbridge		22.95
Fenelon	CDC	2182348	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	8.17
Fenelon	CDC	2182349	32E15	4/15/2022	Wallbridge		22.17
Fenelon	CDC	2182350	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	8.92
Fenelon	CDC	2182351	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	50.75
Fenelon	CDC	2182352	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182353	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182354	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182355	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182356	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2182357	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182358	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182359	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182360	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2182361	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2182362	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2182363	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2182364	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2182365	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2182366	32E15	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2182367	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	35.84
Fenelon	CDC	2182368	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2182369	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	43.10
Fenelon	CDC	2182370	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2182371	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2182372	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2182373	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2182374	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182375	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182376	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182377	32L02	4/15/2024	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.35
Fenelon	CDC	2182378	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182379	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182380	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2182381	32L02	4/15/2024	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.34
Fenelon	CDC	2182382	32L02	4/15/2024	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.34
Fenelon	CDC	2182383	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2182384	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2182385	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2182386	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2182387	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2182388	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2182389	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2182390	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2182391	32L02	4/15/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2271644	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271645	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271646	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271647	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271648	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271649	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271650	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271651	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.37
Fenelon	CDC	2271652	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.37
Fenelon	CDC	2271653	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.37
Fenelon	CDC	2271654	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271655	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271656	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271657	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271658	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271659	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271660	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271661	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.37
Fenelon	CDC	2271662	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271663	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271664	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271665	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271666	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2271667	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.36
Fenelon	CDC	2271668	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271669	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271670	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271671	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271672	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271673	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271674	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271675	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.36
Fenelon	CDC	2271676	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271677	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271678	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271679	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.35
Fenelon	CDC	2271680	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.35
Fenelon	CDC	2271681	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271682	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271683	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271684	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271685	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271686	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271687	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271688	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271689	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.34
Fenelon	CDC	2271690	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.34
Fenelon	CDC	2271691	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.34
Fenelon	CDC	2271692	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271693	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2271694	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271695	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271696	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271697	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271698	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271699	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271700	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271701	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271702	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271703	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271704	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.33
Fenelon	CDC	2271705	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2271706	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2271707	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.32
Fenelon	CDC	2271708	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271709	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271710	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271711	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271712	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271713	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271714	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271715	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271716	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.40
Fenelon	CDC	2271717	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271718	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271719	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271720	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271721	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271722	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271723	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271724	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2271725	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271726	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271727	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271728	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271729	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271730	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271731	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271732	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271733	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271734	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271735	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271736	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271737	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271738	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271739	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271740	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271741	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271742	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271743	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271744	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271745	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271746	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271747	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271748	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271749	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.35
Fenelon	CDC	2271750	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.35
Fenelon	CDC	2271751	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271752	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Fenelon	CDC	2271753	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271754	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2271755	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271756	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271757	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Fenelon	CDC	2271758	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271759	32E15	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.39
Fenelon	CDC	2271783	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	55.36
Fenelon	CDC	2271784	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	42.90
Fenelon	CDC	2271785	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	47.74
Fenelon	CDC	2271789	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	53.85
Fenelon	CDC	2271790	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	27.44
Fenelon	CDC	2271791	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR; 2176423 Ontario Ltd. 1%NSR; Ely Gold Rylty Inc. 2% NSR	51.56
Fenelon	CDC	2271813	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	49.51
Fenelon	CDC	2271814	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	39.02
Fenelon	CDC	2271815	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	39.02
Fenelon	CDC	2271816	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	39.02
Fenelon	CDC	2271817	32L02	8/5/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	44.51
Fenelon	CDC	2335370	32E15	3/4/2024	Wallbridge		18.08
Fenelon	CDC	2335371	32E15	3/4/2024	Wallbridge		24.28
Fenelon	CDC	2335372	32E15	3/4/2024	Wallbridge		24.28
Fenelon	CDC	2335373	32E15	3/4/2024	Wallbridge		24.31
Fenelon	CDC	2335374	32E15	3/4/2024	Wallbridge		4.64
Fenelon	CDC	2335383	32L02	3/4/2024	Wallbridge		19.53
Fenelon	CDC	2335384	32L02	3/4/2024	Wallbridge		12.26
Fenelon	CDC	2395929	32L02	12/11/2022	Wallbridge		55.35
Fenelon	CDC	2395930	32L02	12/11/2022	Wallbridge		55.35
Fenelon	CDC	2395931	32L02	12/11/2022	Wallbridge		55.34
Fenelon	CDC	2395932	32L02	12/11/2022	Wallbridge		55.34

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Fenelon	CDC	2395933	32L02	12/11/2022	Wallbridge		55.33
Fenelon	CDC	2395934	32L02	12/11/2022	Wallbridge		55.33
Fenelon	CDC	2395935	32L02	12/11/2022	Wallbridge		55.32
Fenelon	CDC	2395936	32L02	12/11/2022	Wallbridge		55.32
Fenelon	CDC	2396594	32L02	12/26/2022	Wallbridge		55.36
Fenelon	CDC	2396595	32L02	12/26/2022	Wallbridge		55.34
Fenelon	CDC	2396596	32L02	12/26/2022	Wallbridge		55.32
Fenelon	CDC	2396597	32L02	12/26/2022	Wallbridge		55.31
Fenelon	CDC	2399572	32L02	2/12/2023	Wallbridge		55.32
Fenelon Total							10619.85
Grasset	CDC	2262763	32E15	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262764	32E15	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262765	32E15	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262766	32E15	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262767	32E15	12/2/2023	Wallbridge	Fr. Nevada Corp. 1% NSR	55.38
Grasset	CDC	2262768	32E15	12/2/2023	Wallbridge		55.38
Grasset	CDC	2262769	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262770	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262771	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262772	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262773	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262774	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262775	32E16	12/2/2023	Wallbridge		55.42
Grasset	CDC	2262776	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262777	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262778	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262779	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262780	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262781	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262782	32E16	12/2/2023	Wallbridge		55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2262783	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262784	32E16	12/2/2021	Wallbridge		55.41
Grasset	CDC	2262785	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262786	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262787	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262788	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262789	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262790	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262791	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262792	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262793	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262794	32E16	12/2/2023	Wallbridge		55.41
Grasset	CDC	2262795	32E16	12/2/2021	Wallbridge		55.41
Grasset	CDC	2262796	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262797	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262798	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262799	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262800	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262801	32E16	12/2/2023	Wallbridge		55.39
Grasset	CDC	2262802	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262803	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262804	32E16	12/2/2023	Wallbridge		55.40
Grasset	CDC	2262805	32E16	12/2/2023	Wallbridge		55.38
Grasset	CDC	2262806	32E16	12/2/2023	Wallbridge		55.38
Grasset	CDC	2262807	32E16	12/2/2023	Wallbridge		55.38
Grasset	CDC	2262808	32E16	12/2/2023	Wallbridge		55.38
Grasset	CDC	2264061	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264062	32E16	12/12/2023	Wallbridge		55.43
Grasset	CDC	2264063	32E16	12/12/2023	Wallbridge		55.43
Grasset	CDC	2264064	32E16	12/12/2023	Wallbridge		55.43
Grasset	CDC	2264065	32E16	12/12/2023	Wallbridge		55.43

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2264066	32E16	12/12/2023	Wallbridge		55.43
Grasset	CDC	2264067	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264068	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264069	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264070	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264071	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264072	32E16	12/12/2023	Wallbridge		55.42
Grasset	CDC	2264073	32E16	12/12/2021	Wallbridge		55.41
Grasset	CDC	2264074	32E16	12/12/2023	Wallbridge		55.41
Grasset	CDC	2264075	32E16	12/12/2023	Wallbridge		55.41
Grasset	CDC	2264076	32E16	12/12/2023	Wallbridge		55.41
Grasset	CDC	2264077	32E16	12/12/2023	Wallbridge		55.41
Grasset	CDC	2264078	32E16	12/12/2023	Wallbridge		55.41
Grasset	CDC	2264079	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264080	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264081	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264082	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264083	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264084	32E16	12/12/2021	Wallbridge		55.40
Grasset	CDC	2264085	32E16	12/12/2023	Wallbridge		55.40
Grasset	CDC	2306694	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306695	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306696	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306697	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306698	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306699	32E15	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306700	32E15	8/9/2022	Wallbridge		55.41
Grasset	CDC	2306701	32E15	8/9/2022	Wallbridge		55.41
Grasset	CDC	2306702	32E15	8/9/2022	Wallbridge		55.41
Grasset	CDC	2306703	32E15	8/9/2022	Wallbridge		55.41
Grasset	CDC	2306704	32E15	8/9/2022	Wallbridge		55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2306705	32E15	8/9/2022	Wallbridge		55.41
Grasset	CDC	2306706	32E16	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306707	32E16	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306708	32E16	8/9/2022	Wallbridge		55.42
Grasset	CDC	2306832	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306833	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306834	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306837	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306838	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306839	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306840	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306841	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306842	32E16	8/9/2022	Wallbridge		55.46
Grasset	CDC	2306843	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306844	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306845	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306846	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306847	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306848	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306849	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306850	32E16	8/9/2022	Wallbridge		55.45
Grasset	CDC	2306851	32E16	8/9/2022	Wallbridge		55.43
Grasset	CDC	2306852	32E16	8/9/2022	Wallbridge		55.43
Grasset	CDC	2306853	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306854	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306855	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306856	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306857	32E16	8/9/2022	Wallbridge		55.44
Grasset	CDC	2306858	32E16	8/9/2022	Wallbridge		55.43
Grasset	CDC	2306859	32E16	8/9/2022	Wallbridge		55.43
Grasset	CDC	2306860	32E16	8/9/2022	Wallbridge		55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2306861	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306862	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306863	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306864	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306865	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306866	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306867	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306868	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306869	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306870	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306871	32E16	8/9/2022	Wallbridge		55.39
Grasset	CDC	2306872	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306873	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306874	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306875	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306876	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306877	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306878	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306879	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306880	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306881	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306882	32L01	8/9/2022	Wallbridge		55.38
Grasset	CDC	2306884	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306885	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306886	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306887	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306888	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306889	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306890	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306891	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306892	32L01	8/9/2022	Wallbridge		55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2306893	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306894	32L01	8/9/2022	Wallbridge		55.37
Grasset	CDC	2306896	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306897	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306898	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306899	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306900	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306901	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306902	32L01	8/9/2022	Wallbridge		55.36
Grasset	CDC	2306905	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2306906	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2306907	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2306908	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2306909	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2306910	32L01	8/9/2022	Wallbridge		55.35
Grasset	CDC	2307076	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307077	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307078	32E16	8/11/2022	Wallbridge		55.49
Grasset	CDC	2307079	32E16	8/11/2022	Wallbridge		55.49
Grasset	CDC	2307080	32E16	8/11/2022	Wallbridge		55.49
Grasset	CDC	2307081	32E16	8/11/2022	Wallbridge		55.49
Grasset	CDC	2307083	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307084	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307085	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307086	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307087	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307088	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307089	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307090	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307091	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307092	32E16	8/11/2022	Wallbridge		55.47

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2307093	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307094	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307095	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307096	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307097	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307098	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307099	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307100	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307101	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307102	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307103	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307104	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307105	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307106	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307107	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307108	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307109	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307110	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307111	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307112	32E16	8/11/2022	Wallbridge		55.43
Grasset	CDC	2307113	32L01	8/11/2022	Wallbridge		55.34
Grasset	CDC	2307114	32L01	8/11/2022	Wallbridge		55.34
Grasset	CDC	2307115	32L01	8/11/2022	Wallbridge		55.34
Grasset	CDC	2307116	32L01	8/11/2022	Wallbridge		55.34
Grasset	CDC	2307117	32L01	8/11/2022	Wallbridge		55.33
Grasset	CDC	2307118	32L01	8/11/2022	Wallbridge		55.33
Grasset	CDC	2307119	32L01	8/11/2022	Wallbridge		55.33
Grasset	CDC	2307120	32L01	8/11/2022	Wallbridge		55.33
Grasset	CDC	2307121	32L01	8/11/2022	Wallbridge		55.33
Grasset	CDC	2307123	32L01	8/11/2022	Wallbridge		55.32
Grasset	CDC	2307124	32L01	8/11/2022	Wallbridge		55.32

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2307125	32L01	8/11/2022	Wallbridge		55.32
Grasset	CDC	2307179	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307180	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307181	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307182	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307183	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307184	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307185	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307186	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307187	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307188	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307189	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307190	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307191	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307192	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307193	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307194	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307195	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307196	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307197	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307198	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307199	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307200	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307201	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307202	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307203	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307204	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307205	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307206	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307207	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307208	32E16	8/11/2022	Wallbridge		55.44

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2307209	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307210	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307211	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307212	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307213	32E16	8/11/2022	Wallbridge		55.44
Grasset	CDC	2307270	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307271	32E16	8/11/2022	Wallbridge		55.48
Grasset	CDC	2307272	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307273	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307274	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307275	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307276	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307277	32E16	8/11/2022	Wallbridge		55.47
Grasset	CDC	2307278	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307279	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307280	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307281	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307282	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307283	32E16	8/11/2022	Wallbridge		55.46
Grasset	CDC	2307285	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307286	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2307287	32E16	8/11/2022	Wallbridge		55.45
Grasset	CDC	2395908	32E16	12/11/2022	Wallbridge		55.43
Grasset	CDC	2395909	32E16	12/11/2022	Wallbridge		55.43
Grasset	CDC	2395910	32E16	12/11/2022	Wallbridge		55.42
Grasset	CDC	2395911	32E16	12/11/2022	Wallbridge		55.42
Grasset	CDC	2395912	32E16	12/11/2022	Wallbridge		55.42
Grasset	CDC	2395913	32E16	12/11/2022	Wallbridge		55.42
Grasset	CDC	2395914	32E16	12/11/2022	Wallbridge		55.42
Grasset	CDC	2395915	32E16	12/11/2022	Wallbridge		55.41
Grasset	CDC	2395916	32E16	12/11/2022	Wallbridge		55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2395917	32E16	12/11/2022	Wallbridge		55.41
Grasset	CDC	2395918	32E16	12/11/2022	Wallbridge		55.41
Grasset	CDC	2395919	32E16	12/11/2022	Wallbridge		55.41
Grasset	CDC	2395920	32E16	12/11/2022	Wallbridge		55.41
Grasset	CDC	2395921	32E16	12/11/2022	Wallbridge		55.40
Grasset	CDC	2395922	32E16	12/11/2022	Wallbridge		55.38
Grasset	CDC	2395923	32E16	12/11/2022	Wallbridge		55.39
Grasset	CDC	2395924	32E16	12/11/2022	Wallbridge		55.39
Grasset	CDC	2395927	32L02	12/11/2022	Wallbridge		55.37
Grasset	CDC	2395928	32L02	12/11/2022	Wallbridge		55.36
Grasset	CDC	2396232	32E16	12/17/2022	Wallbridge		55.41
Grasset	CDC	2396233	32E16	12/17/2022	Wallbridge		55.40
Grasset	CDC	2396234	32E16	12/17/2022	Wallbridge		55.39
Grasset	CDC	2396235	32E16	12/17/2022	Wallbridge		55.39
Grasset	CDC	2396236	32E16	12/17/2022	Wallbridge		55.39
Grasset	CDC	2396237	32E16	12/17/2022	Wallbridge		55.39
Grasset	CDC	2396238	32E16	12/17/2022	Wallbridge		55.39
Grasset	CDC	2396582	32L01	12/26/2022	Wallbridge		55.37
Grasset	CDC	2396583	32L01	12/26/2022	Wallbridge		55.37
Grasset	CDC	2396584	32L01	12/26/2022	Wallbridge		55.37
Grasset	CDC	2396585	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396586	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396587	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396588	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396589	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396590	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396591	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396592	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2396593	32L01	12/26/2022	Wallbridge		55.38
Grasset	CDC	2397007	32E16	1/7/2023	Wallbridge		55.42
Grasset	CDC	2397008	32E16	1/7/2023	Wallbridge		55.40

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2397439	32E16	1/13/2023	Wallbridge		55.44
Grasset	CDC	2397714	32E16	1/14/2023	Wallbridge		55.41
Grasset	CDC	2397982	32E16	1/20/2023	Wallbridge		55.45
Grasset	CDC	2397983	32E16	1/20/2023	Wallbridge		55.45
Grasset	CDC	2397984	32E16	1/20/2023	Wallbridge		55.45
Grasset	CDC	2397985	32E16	1/20/2023	Wallbridge		55.45
Grasset	CDC	2397986	32E16	1/20/2023	Wallbridge		55.45
Grasset	CDC	2397987	32E16	1/20/2023	Wallbridge		55.44
Grasset	CDC	2397988	32E16	1/20/2023	Wallbridge		55.44
Grasset	CDC	2397989	32E16	1/20/2023	Wallbridge		55.44
Grasset	CDC	2397990	32E16	1/20/2023	Wallbridge		55.44
Grasset	CDC	2397991	32E16	1/20/2023	Wallbridge		55.44
Grasset	CDC	2397992	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397993	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397994	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397995	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397996	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397997	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397998	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2397999	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2398000	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2398001	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2398002	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2398003	32E16	1/20/2023	Wallbridge		55.43
Grasset	CDC	2398004	32E16	1/20/2023	Wallbridge		55.42
Grasset	CDC	2398005	32E16	1/20/2023	Wallbridge		55.42
Grasset	CDC	2398006	32E16	1/20/2023	Wallbridge		55.42
Grasset	CDC	2398007	32E16	1/20/2023	Wallbridge		55.42
Grasset	CDC	2398008	32E16	1/20/2023	Wallbridge		55.41
Grasset	CDC	2398009	32E16	1/20/2023	Wallbridge		55.41
Grasset	CDC	2398010	32E16	1/20/2023	Wallbridge		55.41

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grasset	CDC	2398011	32E16	1/20/2023	Wallbridge		55.41
Grasset	CDC	2398012	32E16	1/20/2023	Wallbridge		55.41
Grasset	CDC	2398013	32E16	1/20/2023	Wallbridge		55.41
Grasset	CDC	2398014	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398015	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398016	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398017	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398018	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398019	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2398020	32E16	1/20/2023	Wallbridge		55.40
Grasset	CDC	2399564	32E16	2/12/2023	Wallbridge		55.44
Grasset	CDC	2399565	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399566	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399567	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399568	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399569	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399570	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2399571	32E16	2/12/2023	Wallbridge		55.42
Grasset	CDC	2432108	32E16	8/17/2022	Wallbridge		55.43
Grasset Total							19341.11
Harri	CDC	2282270	32E15	4/3/2022	Wallbridge		55.40
Harri	CDC	2282271	32E15	4/3/2022	Wallbridge		55.41
Harri	CDC	2282272	32E15	4/3/2022	Wallbridge		55.39
Harri	CDC	2282273	32E15	4/3/2022	Wallbridge		55.39
Harri	CDC	2282275	32E15	4/3/2022	Wallbridge		55.40
Harri	CDC	2282276	32E15	4/3/2022	Wallbridge		55.40
Harri	CDC	2282277	32E15	4/3/2022	Wallbridge		55.40
Harri	CDC	2282283	32E15	4/3/2022	Wallbridge		55.38
Harri	CDC	2282284	32E15	4/3/2022	Wallbridge		55.38
Harri	CDC	2282285	32E15	4/3/2022	Wallbridge		55.39

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Harri	CDC	2282286	32E15	4/3/2022	Wallbridge		55.39
Harri	CDC	2282287	32E15	4/3/2022	Wallbridge		55.39
Harri	CDC	2282288	32E15	4/3/2022	Wallbridge		55.37
Harri	CDC	2282289	32E15	4/3/2022	Wallbridge		55.37
Harri	CDC	2282290	32E15	4/3/2022	Wallbridge		55.37
Harri	CDC	2282291	32E15	4/3/2022	Wallbridge		55.37
Harri	CDC	2282292	32E15	4/3/2022	Wallbridge		55.37
Harri	CDC	2282293	32E15	4/3/2022	Wallbridge		55.38
Harri	CDC	2282294	32E15	4/3/2022	Wallbridge		55.38
Harri	CDC	2282295	32E15	4/3/2022	Wallbridge		55.38
Harri	CDC	2282296	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282297	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282298	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282299	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282300	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282301	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282302	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282303	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282304	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282305	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282306	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282307	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282308	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282309	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282310	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282311	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282312	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282313	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282314	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282315	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282316	32L02	4/3/2022	Wallbridge		55.35

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Harri	CDC	2282317	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282318	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282319	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Harri	CDC	2282320	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Harri	CDC	2282321	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Harri	CDC	2282322	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282323	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282324	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282325	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282326	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282327	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282328	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282329	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282330	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282331	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Harri	CDC	2282332	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Harri	CDC	2282333	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Harri	CDC	2282334	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Harri	CDC	2282445	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282446	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282447	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282448	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282449	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282450	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282451	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282452	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282453	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282454	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282455	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282456	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282457	32L02	4/3/2022	Wallbridge		55.33

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Harri	CDC	2282458	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282459	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282460	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282461	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282462	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282463	32L02	4/3/2022	Wallbridge	Fr. Nevada Corp. 1% NSR	55.34
Harri	CDC	2282464	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282465	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282466	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282467	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282468	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282469	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282470	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282471	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282472	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282473	32L02	4/3/2022	Wallbridge		55.32
Harri	CDC	2282474	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282475	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282476	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282477	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282478	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282479	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282480	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282481	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282482	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282483	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282484	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282612	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282613	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282614	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282615	32L02	4/3/2022	Wallbridge		55.37

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Harri	CDC	2282616	32L02	4/3/2022	Wallbridge		55.37
Harri	CDC	2282617	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282618	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282619	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282620	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282621	32L02	4/3/2022	Wallbridge		55.36
Harri	CDC	2282622	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282623	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282624	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282625	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282626	32L02	4/3/2022	Wallbridge		55.35
Harri	CDC	2282627	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282628	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282629	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282630	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282631	32L02	4/3/2022	Wallbridge		55.34
Harri	CDC	2282632	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282634	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282635	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282636	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282637	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282638	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282640	32L02	4/3/2022	Wallbridge		55.33
Harri	CDC	2282641	32L02	4/3/2022	Wallbridge		55.31
Harri	CDC	2282642	32L02	4/3/2022	Wallbridge		55.31
Harri	CDC	2282643	32L02	4/3/2022	Wallbridge		55.31
Harri	CDC	2282644	32L02	4/3/2022	Wallbridge		55.31
Harri	CDC	2286473	32E15	4/17/2022	Wallbridge		49.20
Harri	CDC	2286474	32E15	4/17/2022	Wallbridge		45.35
Harri	CDC	2382143	32L02	3/11/2024	Wallbridge		55.35
Harri	CDC	2395083	32E15	11/28/2022	Wallbridge		55.38

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Harri	CDC	2395084	32E15	11/28/2022	Wallbridge		55.38
Harri	CDC	2395085	32E15	11/28/2022	Wallbridge		55.37
Harri	CDC	2395086	32E15	11/28/2022	Wallbridge		55.37
Harri	CDC	2435832	32L02	1/13/2023	Wallbridge		55.37
Harri	CDC	2435833	32L02	1/13/2023	Wallbridge		55.37
Harri	CDC	2435834	32L02	1/13/2023	Wallbridge		55.36
Harri	CDC	2435835	32L02	1/13/2023	Wallbridge		55.36
Harri	CDC	2435836	32L02	1/13/2023	Wallbridge		55.35
Harri	CDC	2499810	32L02	8/13/2022	Wallbridge		55.33
Harri	CDC	2499811	32L02	8/13/2022	Wallbridge		55.33
Harri	CDC	2511244	32E15	1/31/2023	Wallbridge		55.39
Harri	CDC	2511245	32E15	1/31/2023	Wallbridge		55.38
Harri	CDC	2511246	32E15	1/31/2023	Wallbridge		55.38
Harri	CDC	2511247	32E15	1/31/2023	Wallbridge		55.38
Harri	CDC	2541238	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541239	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541240	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541241	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541242	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541243	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541244	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541245	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541246	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541247	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541248	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541249	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541250	32L02	7/1/2022	Wallbridge		55.32
Harri	CDC	2541251	32L02	7/1/2022	Wallbridge		55.31
Harri	CDC	2541252	32L02	7/1/2022	Wallbridge		55.31
Harri	CDC	2543126	32E15	9/3/2022	Wallbridge		55.39
Harri Total							9060.64

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Jeremie	CDC	2038973	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.29
Jeremie	CDC	2038974	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.29
Jeremie	CDC	2038976	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.28
Jeremie	CDC	2038977	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.28
Jeremie	CDC	2038980	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.27
Jeremie	CDC	2039316	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.27
Jeremie	CDC	2039317	32L02	12/10/2023	Wallbridge	Vision Lithium Inc. 1% NSR	55.27
Jeremie	CDC	2323814	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	55.30
Jeremie	CDC	2323815	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	55.30
Jeremie	CDC	2323816	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	55.30
Jeremie	CDC	2323817	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	55.30
Jeremie	CDC	2323818	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	55.30
Jeremie	CDC	2323819	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	5.80
Jeremie	CDC	2323821	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	16.29
Jeremie	CDC	2323822	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	16.29
Jeremie	CDC	2323823	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	16.29
Jeremie	CDC	2323824	32L02	7/4/2024	Wallbridge	Vision Lithium Inc. 1% NSR	10.80
Jeremie	CDC	2385404	32L02	5/16/2022	Wallbridge	G. Griesbach 1% NSR	55.29
Jeremie	CDC	2385405	32L02	5/16/2022	Wallbridge	G. Griesbach 1% NSR	55.28
Jeremie	CDC	2385406	32L02	5/16/2022	Wallbridge	G. Griesbach 1% NSR	55.28
Jeremie	CDC	2385407	32L02	5/16/2022	Wallbridge	G. Griesbach 1% NSR	55.27
Jeremie	CDC	2385408	32L02	5/16/2022	Wallbridge	G. Griesbach 1% NSR	55.27
Jeremie	CDC	2399752	32L02	2/13/2023	Wallbridge		55.29
Jeremie	CDC	2399753	32L02	2/13/2023	Wallbridge		55.29
Jeremie	CDC	2399754	32L02	2/13/2023	Wallbridge		55.29
Jeremie	CDC	2399755	32L02	2/13/2023	Wallbridge		55.28
Jeremie	CDC	2399756	32L02	2/13/2023	Wallbridge		55.27
Jeremie	CDC	2399758	32L02	2/13/2023	Wallbridge		55.26
Jeremie	CDC	2399759	32L02	2/13/2023	Wallbridge		55.26
Jeremie	CDC	2399760	32L02	2/13/2023	Wallbridge		55.26

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Jeremie	CDC	2399761	32L02	2/13/2023	Wallbridge		55.26
Jeremie	CDC	2399763	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399764	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399765	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399766	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399767	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399768	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399769	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399770	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399771	32L02	2/13/2023	Wallbridge		55.25
Jeremie	CDC	2399772	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399773	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399774	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399775	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399776	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399777	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399778	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399779	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399780	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399781	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399782	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399783	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399784	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399785	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399786	32L02	2/13/2023	Wallbridge		55.22
Jeremie	CDC	2399787	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399788	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399790	32L02	2/13/2023	Wallbridge		55.22
Jeremie	CDC	2399823	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399824	32L02	2/13/2023	Wallbridge		55.24
Jeremie	CDC	2399825	32L02	2/13/2023	Wallbridge		55.23

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Jeremie	CDC	2399826	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399827	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399828	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399829	32L02	2/13/2023	Wallbridge		55.23
Jeremie	CDC	2399831	32L02	2/13/2023	Wallbridge		55.22
Jeremie	CDC	2399832	32L02	2/13/2023	Wallbridge		55.22
Jeremie	CDC	2406598	32L02	6/16/2023	Wallbridge		55.26
Jeremie	CDC	2406599	32L02	6/16/2023	Wallbridge		55.26
Jeremie	CDC	2409662	32L02	8/17/2023	Wallbridge	J. T. Asihto 1% NSR	53.82
Jeremie	CDC	2409663	32L02	8/17/2023	Wallbridge	J. T. Asihto 1% NSR	38.64
Jeremie	CDC	2411117	32L02	9/2/2023	Wallbridge		45.37
Jeremie Total							3739.67
Matiniere	CDC	2089671	32L02	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2089674	32L02	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089675	32L02	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089676	32L02	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089677	32L02	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089678	32L03	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2089679	32L03	6/4/2022	Wallbridge		55.33
Matiniere	CDC	2089680	32L03	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089681	32L03	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089682	32L03	6/4/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089683	32L03	6/4/2022	Wallbridge		55.33
Matiniere	CDC	2089684	32L03	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089685	32L03	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089686	32L03	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089687	32L03	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089688	32L03	6/4/2022	Wallbridge		55.32
Matiniere	CDC	2089689	32L03	6/4/2022	Wallbridge		55.31
Matiniere	CDC	2089690	32L03	6/4/2022	Wallbridge		55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Matiniere	CDC	2089691	32L03	6/4/2022	Wallbridge		55.31
Matiniere	CDC	2089692	32L03	6/4/2022	Wallbridge		55.30
Matiniere	CDC	2089693	32L03	6/4/2022	Wallbridge		55.30
Matiniere	CDC	2089694	32L03	6/4/2022	Wallbridge		55.30
Matiniere	CDC	2089695	32L03	6/4/2022	Wallbridge		55.29
Matiniere	CDC	2089696	32L03	6/4/2022	Wallbridge		55.29
Matiniere	CDC	2089697	32L03	6/4/2022	Wallbridge		55.29
Matiniere	CDC	2089698	32L03	6/4/2022	Wallbridge		55.29
Matiniere	CDC	2089699	32L03	6/4/2022	Wallbridge		55.28
Matiniere	CDC	2089700	32L03	6/4/2022	Wallbridge		55.27
Matiniere	CDC	2089883	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2089884	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089885	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089887	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2089892	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2089893	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089895	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089897	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089898	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089899	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089900	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089901	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089902	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089903	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089904	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2089905	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2089906	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2089907	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2089908	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2089909	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2089910	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Matiniere	CDC	2089911	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2089912	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2089913	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2089914	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089915	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089916	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089917	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089918	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2089919	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089920	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089921	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089924	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089925	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2089928	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.28
Matiniere	CDC	2089929	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.28
Matiniere	CDC	2089930	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.28
Matiniere	CDC	2089934	32L03	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.27
Matiniere	CDC	2089957	32L02	6/5/2022	Wallbridge		55.34
Matiniere	CDC	2089958	32L02	6/5/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2269086	32L02	9/21/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2269087	32L02	9/21/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.35
Matiniere	CDC	2269088	32L02	9/21/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2269089	32L02	9/21/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2283991	32L03	5/1/2022	Wallbridge	Fr. Nevada Corp. 2% NSR	55.28
Matiniere	CDC	2284009	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284010	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284011	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284012	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284013	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284014	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2284015	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Matiniere	CDC	2284016	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2284017	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2284018	32L02	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.29
Matiniere	CDC	2284019	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284020	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284021	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284022	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284023	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284024	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284025	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284026	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284027	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284028	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.32
Matiniere	CDC	2284029	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2284030	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2284031	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2284032	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.31
Matiniere	CDC	2284033	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2284034	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2284035	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284036	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.34
Matiniere	CDC	2284037	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.33
Matiniere	CDC	2284038	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	55.30
Matiniere	CDC	2284049	32L03	4/9/2023	Wallbridge	Fr. Nevada Corp. 2% NSR	51.45
Martiniere Total							5749.12
Nontol	CDC	2205227	22516	10/0/0000	Wallbridge		55 40
Nantel		2380337	32E10	12/2/2022	Wallbridge		55.49
Nantel		23805338	32010	12/2/2022	Wallbridge		55.48
Nantel		2390539	32E10	12/2/2022	Wallbridge		55 40
	CDC	2390340	32E 10	12/2/2022	vvalibriuge		55.46
Namel Total							221.93

Claim Block	Title Type	Title ID	NTS	Expiration Date	Recorded Holder	Agreements & other interests	Ha.
Grand Total							91,262.23