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Chapter I 

INftODUCTION 

Although same nonparametric statistical techniques have 

a long history, most of the theoretical research in the dis-

cipline of nonparametric statistical inference is canpara-

tively recent. Manr nonparametric teats in camnon use have 

been advanced·principally on'intuitive grounds, ahd their 

properties are still not completely understood. In recent 

years, much interesting research has been done on the asymp-

totic•properties of such testa1 and methods of constructing 

tests with desirable large-sample properties have been devel-

oped. However, these investigations are of limited pzactical 

value unless it is known how soon asymptotic results provide 

a reasonable approximation in samples of moderate size. 

In this dissertation~ the emphasis is on exact small-

sample properties, particularly on the power of a variety of 
. . 

nonparametric tests. Some asymptotic results are also ob-

tained. Two new rank tests on the equality of two distribu-

tions are proposed and their properties examined. 

The main difficulty in determining the power of nonpara-

metric tests is brought about by their very generality and the 

consequent abundance of reasonable alternatives to whatever 



2 

null hypothesis may be under consideration. In view of the 

central role played by the normal distribution in statistics, 

one approach has been to attempt the evaluation of power under 

suitable normal alternatives. 

Most of the results presently available are for nonpara-

metric tests of the null hypothesis that two samples of sizes 

m and n come £ran identical populations against the alterna• 

tive of normal distributions differing only in location. Van 

der Waerden (1952, 1953) has found the exact power of the X 

test, Mann-Whitney, Maximum Absolute Deviation, and runs tests 

for isolated sample sizes. Dixon (1954) used numerical meth-

ods to find the power of the Mann-Whitney, Maximum Absolute 

Deviation, median, and runs two-sided tests for sample sizes 

m • n • 31 4 1 5. The exact power of the median test has been 

calculated by Barton (1957) form• n • 9. Teichroew (1954) 

has canputed mathematically the probabilities of the two most 

extreme rank orderings under normal alternatives, for a wide 

range of small sample sizes. 

Since the extensive numerical work required for normal 

alternatives has greatly limited the range of results, sane 

empirical and approximate calculations have been attempted. 

Form• n • 10, Epstein (1955) found the power of the Maximum 

Absolute Deviation, Epstein's Exceedances, median, and Mann-

Whitney tests. Experimental canparisons of the latter test 
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and the~ test were made by Hemelrijk (1961) also form• n • 

10. 'l'he probabilities of all possible rank orderings under 

normal alternatives have been determined empirically by 

Teichroew (1955) for (m,n) • (21 3), (2,4) 1 (31 3) and (3,4). 

'l'he power of the c1 test form• n • 4 was determined by 

Terry (1952) using randan sampling. Tsao (1957) used a poly-

nomial method of approximation to the normal distribution to 

find all the rank order probabilities for equal sample sizes 

of 2 and 3. A few isolated rank order probabilities have 

been approximated by Sundrum (1954). 

For alternatives of changes in location and scale in the 

uniform distribution and translation in the exponential dis-

tribution, exact power functions have been found by Leone et 

al. (1961) for the median test and Massey's test, and by 

Haynam et al. (1961) for the Mann-Whitney and median tests, 

for a variety of selected sample sizes. 

'l'he power function of the two-sided, two-sample sign 

test has been extensively tabulated by Dixon (1953) for a 

near .05 and .011 and pin intervals of .os, where pis the 

expected proportion of plus signs under the alternative. 

Previously, Walsh (1946) investigated the power of the one-. 
sample, one-sided sign test and canpared sane results against 

normal alternatives with the power function of the J:. test for 
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small sample sizes and isolated significance levels. He also 

found that performing the sign test on a distribution whose 

mean and median do not exactly coincide does not affect the 

significance level greatly. 

Although a number of investigators have attempted the 

evaluation of power functions of nonparametric tests with 

parametric alternatives, the range of sample sizes and sig-

nificance levels is very limited. Most of the results m:e 

for nonrandanized decision rules. The power functions m:e 

consequently difficult to canpare. 

The first portion of this paper (Chapter Il) deals with 

power function canparisons between the one-sample, one-sided 

sign test and Student's s, test, when the underlying distribu-

tion function is asswned to be close to normal, but deviating 

fran the exact normal distribution either by skewness, kurto-

sis, or both. The Edgeworth-Cramer expansion is used to re• 

present the population distribution function. Nwnerical re-

sults are given for samples of size 10, significance level 

.OS. Srivastava (1958) has performed the power calcu,lations 

for the!. test under similar conditions. 

The natural drawback to obtaining power functions a-

gainst parametric alternatives is that the results apply 

only to the particular distribution assumed. Especially for 



5 

comparisons among similar nonparametric tests, distribution• 

free properties would be desirable. If the power functions 

are independent of any specific distribution, the alternative 

can also be termed nonparametric. Consider the null hypoth-

esis that two randan samples cane fran the same population. 

Many nonparametric tests based on the ranks of the variables, 

obtained by combining the two samples and arranging the vari-

ables in ascending order, have been proposed for this hypoth-

esis. 

Lehmann (1953) has employed a nonparametric alternative 
' 

to compare the small-sample power functions of six two-sam-

ple rank tests of this aypothesis when m • n • 4 1 6 1 a• .10. 

The alternative is that the random variables from the second 

sample, Y, are distributed as the largest of k of the vari• 

ates from the first sample, x, where the distribution of X 

is not specified. Although the results are interesting 

from a theoretical point of view, the two alternative dis-

tributions are usually quite dissimilar unless k is large. 

The second and major portion of this paper (Chapters 

III, IV and V) is concerned with power functions of two-

sample rank tests of the hypothesis of identical popula-

tions. But here the alternative is that the random vari• 

ables fran the first sample, x, are distributed as the 
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smallest of k randan variables fran sane unspecified contin~ 

uous distribution r, and the random variables £ran the second 

sample; Y; are distributed as the largest of these k. If the 

density function of Pis symmetrical, then the densities of 

X and Y are mirror images. This is another nonparametric 

type of alternative for tests based on ranks, since the prob-

ability of any arrangement is independent of F. 

Since the power functions of rank tests are found by 

summing the probabilities of the rejection orderings under 

the stated alternative, a practical method for their compu-

tation is needed. Hoeffding (1951) has introduced a general 

method of calculating the probability of any rank ordering; 

provided that the alternative expresses a functional rela• 

tionship between the two distributions. However, extensive 

multiple integration is required to util1ZEPJ\is result. Here; 

more direct formulae are derived for these probabilities 

under the alternative of two extreme distributions, aad a 

theorem is proved concerning the equivalence of certain pairs 

of order probabilities. 

'l'he power functions of eight nonparametric rank tests 

are tabulated fork• 2, 3 and 4. The cases included are 

equal sample sizes such that m • n 4 with significance lev-

els of .01, .OS and .10, and all unequal sample sizes such 
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that m + n 8 for significance levels which place only one 

or both of the two extreme orderings· in the critical region. 

These results are canpared with power functions against the 

alte~native that both samples cane from normal populations 

differing only in location. The standardized difference be-

tween the two normal populations corresponds to the standar• 

dized difference between the two extreme distributions as-

sumed under the previous alternative. 

The alternatives of one and two extreme distributions 

are special cases of an even more general type of alterna-

tive. This is that the X randan variables are distributed 

as sane arbitrary continuous functio~ of the distribution of 

the Y randan variables and a parameter e. The_ locally most 

powerful rank test against this gen~ral alternative is de-

rived. Its asymptotic properties are investigated by apply• 

ing the general results obtained by Chernoff and Sav~ge 

(1958), Uzawa (1960) and Capon (1961). Some specific alter-

natives are considered. Two of these alternatives, which are 

similar in spirit to the alternative of two extreme distribu-

tions, suggest new rank tests. One of them, which I have 

called the Psi test, is shown to have sane desirable small-

sample properties. 

Since power function calculations for small samples are 
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limited by the tedium of the computation of the order proba-

bilities under the alternative, large sample power canpari-

sons are often made when the asymptotic distributions are not 

too difficult to obtain. Large sample power results for the 

Wilcoxon and Wald-Wolfowitz runs tests are given for the al-

ternative of two extreme distributions with k • 26 for equal 

sample sizes and significance level .OS. 
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Chapter II 

SMALL-SAMPLE POWER OF THB ONE-SAMPLB SIGN TBST FOR 

APPROXIMATBLY NORMAL DISTRIBUTIONS 

Suppose that we wish to test a hypothesis of location, 

where the data consist of a si11gle sample of independent 

randan variables £ran a population with a continuous distri-

bution function. If the form of the population distribution 

function is known, a parametric test of location should be 

employed. On the other hand, the single-sample nonparametric 

tests of location require no further assumptions about the 

specific character of the distribution. But how powerful 

are these nonparametric tests? 

When the canmon assumption of an underlying normal dis-

tribution is justified and the variance is unknown, Student's 

.t test can be used to test the null hypothesis that the pop-

ulation meanµ is equal to sane specified valueµ. For a 
0 

one-sided alternative, i.e.,µ is equal to µ1 which is 

greater thanµ (or less thanµ ) 1 the ,t test is the uni-o 0 

formly most powerful test of the null hypothesis. There is 

then no need to apply any other criterion since it 1s impos-

sible to find a "better" test. In spite of this handicap, 
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the power functions of one~aample nonparametric tests of 

location against a normal alternative are sanetimes canpared 

with the power function .of the· optimum teat.' 

However. in the more usual situation. the investigator 

does not "know" that his data cane from a normal population. 

but he may have good reason to believe that the frequency 

function is approximately normal. If the s, teat is applied 

anyway, how powerful are the results? Srivastava (1958) has 

tried to answer this query by canputing the power function 

of the s test for an approximately normal distribution. He 

characterizes the deviation fran the exact normal by degrees 

of skewness and kurtosis. as measured by the third and 

fourth cumulants, ~3 and ~4, and represents the distribu-

tion function by the Edgeworth-Cramer asymptotic expansion. 

The question naturally arises as to how powerful appropriate 

nonparametric tests are in canparison with the s test, when 

the population density function deviates fram the normal. 

In this chapter the power function of the single-sample, 

one-sided sign test will be determined for canparison with 

Srivastava's results. The main difficulty is the difference 

in hypotheses, since the theory of the sign test is based on 
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testing a hypothesis on the location of the median. For an 

exact normal distribution, the mean and_median coincide so 

that the hypotheses are the same. But if normality holds 

only approximately, the hypotheses will differ according to 

the degree of skewness in the distribution. Therefore, 

three different sets of hypotheses are considered& 

(1) 

(2) 

(3) 

and their power functions tabulated. The results in all 

cases indicate that the gap between the power functions of 

the parametric and nonparametric tests 1s narrowed consid-

erably when the population is not an exact normal distribution. 

The calculations and conclusions are immediately appli-

cable to a comparison between the paired s_ test and the 

paJ,red sign test:\· in a two-sample situation, when the under-

lying variable is taken to be the difference between cor-

responding measurements on the two populations. 
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2.1 The Edgeworth Expansion 11!. Representation of .!D. 

Approximately Normal Distribution 

A distribution function F(y) for a random variable Y 

which is known to be approximately normal with mean O and 

variance l can be approximated by ~(y) where 

y 
1 s -½t2 ~(y) • - e dt 

1211 -oo 
• 

However, a more accurate representation of P(y) might be 

found in the form 

F(y) • ~(y) + R(y) I 

where R(y) is some convenient expansion of the remainder 

terms. We wish to obtain an expression for R(y) in terms of 

the cumulants of the distribution of Y. 

If Y is considered to be a linear function of the sum 

of N independent randan variables, Y1, Y2, •.. , YN, drawn 

from a population with mean O and variance l, and is defined 
N 

by Y • .t Y1/ Ii , then we know by the Central Limit 
1•1 

Theorem that Y is approximately normally distributed with 

mean O and variance 1 when N is large. Let 'f(t) denote the 

characteristic function of Y and t 1 (t) the characteristic 

function of each of the Yi. Then 
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'l"he cumulant generating function of the Y's# where 1t' r 
denotes the ,£th cumulant of the random variables Y1, is 

x:j(it) 3 
log !(t) • N log !(t//ii) • N[(it)• + -----

2IN JI N3/2 

it4(it)4 

+ 41 N2 + •.• ] 

-(i~)• + 
iti(it) 3 it~(it)4 

+ 21 31 ifi + 41 N . . . I 

or 

the terms neglected are at most of order l/N3/ 2 • 

Applying the Fourier Integral transform to !(t) in (2.1), we 

may write 

(2.2) 

Introducing the same transform for the normal distribution, 

1 -½Y· ,<Y) e , whose characteristic function is 
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!(t) -½ta 
• e • we have 

q,(y) • ..1-5 CD -ity-~t2 . (2.3) 
2Tr -co 

e e dt • 

Fran (2.3) we observe that 

r roo a o q,(y} • q>(r) (y) • ..!.. \ (-it)r e-itye-½t dt 
oyr 21r J -CD 

(2.4) 

so that 

from (2.2) and (2.4). The order of each term is evident. 

However, a more convenient expansion is in terms of the .__l 
cumulants of Y, Kr• The relationship is Kr• K~/N2 , 

so that (2. 5) can be written 

f(y) a q>(y) - KJq>(J) (y)/6 +ic4q,( 4 ) (y)/24+ K;q>( 6 ) (y)/72 1 

(2.6) 
or equivalently, 

F(y) • <l>(y) - it3q,(2 ) (y)/6+ K4q,(l) (y)/24 + K~q>(S) (y)/72 . 

(2.7) 

This expression for F(y) is called the Edgeworth-Cramer 

asymptoticexpansion (Edgeworth, 19051 Cramer, 1928, 1937). 

We will use it to represent the distribution function of a 

variable which is approximately normally distributed with 

zero mean ~nd unit variance. Barton and Dennis (1952) have 
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shown that the restrictions O K4 2.4 and~;~ 0.2 must 

be imposed to ensure a pos~tive definite unimodal density 

function. 

A somewhat more practical expression of the Edgeworth 

expansion is in terms of the Hermite polynomials. The gen-

eral relationship between the coefficients ,<r)(y) and H (y)., r 
the _£,th Hermite polynomial, is ,<r>(y) • (-l)rHr(Y)f(y). For 

example., J12 (y) • y2 -l., a3 (y) • y3-3y;1, a5 (y) • y5-10y3 +lSy., 

etc. Sul:>stituting these coefficients into (2.7~we obtain 

F(y) • ~(y) - K3 (y2 -l),(y)/6 + K4 (y3-Jy)f(y)/24 

5 3 + ~;(y -lOy +lSy)f(y)/72 • 

2.2 Student's S test Applied ~.!!l AppfOXimatelY Normal 

Distributic:m 

Consider a sample of n independent randan variables 

which are identically and approximately normally distributed 

with meanµ and variance a2. The standardized random vari-

ables will be denoted by Y1 ., Y2., .•• , Yn. With the density 

of Y represented by the Edgeworth-Cramer expansion (ignoring 

terms of order at most l/N~), Srivastava (1958) has can• 

puted the power of the one-sample .t, test of the null 
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hypothesis H 1 µ • µ versus the one-sided alternative 
0 0 

a1a µ • µ 1 ) µ 0 for x3 • -.6(.2).6 and x4 • -1(1)2, n • 101 .. 
Pn • (µ1--µ.0 ~/a • 0(1)~. The upper five per cent point of 

the ordinary .t, distribution with nine degrees of freedom is 

used as the critical value of S• Thus the true significance 

level is .OS only for the case x3 • ~4 • o. His results 

(Table 2, p. 427) show that the power increases with x4 for 

all K3 when pn ( 2, and decreases with x4 when pn) 2. The 

included values of tt3 have more effect than K4 on the 11true 11 

Type I error probabilities, which are represented by the 

table entries for p • o. n 
Since the true significance level changes with x3 and 

K4, the results are difficult to interpret. Therefore, 

Srivastava has computed the power of the .t, test for an exact 

.OS significance level for the one case x3 • .6, x4 • .4, 
with p • 0(1)4 and p • •4(1)0 (which would correspond to n n 
the alternativeµ• µ1 ( µ0 ). The correct critical value of 

.t, 1s found using the inverse Cornish-Fisher expansion 

(Cornish and Fisher, 1937). The power functions are greatly 

affected by which value of .t, defines the critical region when 

p is small (see Table 2.5 infra). Both of these power n 
functions for K3 • .6, x4 • .4, are compared with the power 
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of the .05 levels_ test for an exact normal distribution, 

tt3 • K4 • O. The calculations indicate that the power of 

the J:. test for an approximately normal distribution with 

tt3 • .6, K4 • .4, is considerably greater than for an exact 

normal distribution if p ) 0 (and less if p ( O), when the n n 

correct critical region is employed for each distribution. 

Although these latter comparisons made by Srivastava 

are interesting from a theoretical point of view, in actual 

practice the upper 5% point of the ordinary J:. distribution 

would generally be used to perform a test of the hypothesis. 

The investigator should be aware that the true significance 

level is .05 only if the distribution is exactly normal. In 

fact, unless the values of K3 and ic4 can be assessed with 

reasonable accuracy for the given situation, the correct 

critical value of J:. for an approximately normal distribution 

cannot be determined. 

2.3 Sign~ Jm the Population Median 

A nonparametric test which is often used for a hypothe• 

sis of location when no assumptions are made about the 

underlying population distribution function is the one-

sample sign test. However, here the null hypothesis to be 
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tested is that the population median Mis equal to M, 
0 

H ' a M • M , where we have a sample of n random variables, 
0 0 

x1 , x2, •.• , xn, which are independent and identically 

distributed. Under the null hypothesis, Pr(Xt>MJ•Pr(Xi(M0 )• ~, 

regardless of the population density function, and we would 

expect half of then differences (Xi• M0 ) to be positive 

and half to be negative. If the alternative is one-sided, 

Hi• M • M1 ) M0 , the sign test would require a rejection of 

the null hypothesis when the number of plus signs among the 

n differences (Xi - M) is greater than r, where r is 
0 0 0 

n n n chosen so that~ ( )(½) • a (a being the probability 
r-r0 +1 r 

of the Type I error) •;. A randomized decision rule may be 

used when necessary to obtain the exact desired signifieance 

level a. 

close as 

n n n Then r is chosen so that ( )(~) is as 
o r-r +l r 

0 
possible to a, but still less than a. 'l'he test 

would be to reject always when r) r and with probability 
0 

p when r • r, where p satisfies 
0 

n n n n n ( )(½) + p( )(~) • a • r r r•r +l o 
0 

The power of this test is given by 

n (n) ,r ,n-r n r 0 n-r r-r +l r P1 ql + p( )p' q' o o r 0 l 1 , 

(2.9) 

(2.10) 
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where p' • Pr(X ) M IHI\ and q• • l - p' 1 1 o· lf 1 l 

Thus in order to calculate Pi and evaluate the power 

function, sane assumptions must be made about the population 

distribution under the alternative. If the assumed distri-

bution is symmetrical about its mean, then mean and median 

coincide and H0 • H~, H1 • Hi• We shall assume only that, 

under the alternative, the x1, x2, •.• , Xn are independent 

random variables, identically distributed with mean µ1 and 

variance a2, and the corresponding standardized variables 

are distributed according to the approximately normal 

density function defined in (2.6). The two sets of hypoth-

eses will be identical 1£ K3 • O. But it is always true 

that M0 ) M1 if and only if µ 0 ) µ1 , and M0 ( M1 if and only 

if µ0 ( µ1 • This implies that the alternative Hi is true if 

and only if H1 is true and similarly for the two null 

hypotheses, so that the results of the two tests will be 

approximately the same. 

Under our assumptions, we have 

where F(y) is given by (2.7). 

then 

If we define p • • In (µ.1-M )/a, n o 
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The standardized difference for the t test of H was defined 
- 0 

asp • In (µ1-µ )/a, and the null hypothesis H is true n o o 
whenever p • O. However, p' • 0 does not indicate that the n n 

null hypothesis H' holds true unless the mean and median of 
0 

f(x) coincide. For example, when x3 • o, f(x) is symmetrical 

and thus M1 • µ1 • M0 for p~ • O. If we also assume that 

the Xi have mean µ0 and variance a2 under the null hypothe-

sis, we can write p' • ./n (µ 1-M )/a • p + In (µ •M )/a, so n o n o o 
that p' • p only whenµ • M. The relationship between n n o o 
M1 and M0 when p~ • 0 depends upon the sign of x 3 • When a 

distribution is skewed to the right (K3 ) O), the median M 

is less than the meanµ, and the reverse inequality is true 

for a distribution skewed to the left (K3 < O). For p' • O n 
(µ1 • M0 ), if "l ) o., have M1 < µ.1 • M0 < µ.0 (and Pi < ½). 

and if "J < o, µ.0 ( M0 • µ1 < M1 (pi ) ½). Thus neither the 

null nor the alternative relationship remains valid for 

Kl) O; p~ • O; and the alternative is true when K3 < o, 
p~ • o. However; Table 2.1 shows that M1 is close to µ.1 

(which is equal to M0 ), since Pi is not too far from½ for 

all x3 and 1{4 • 
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Table 2.1. Pr(x1 ) M0 1Bj_) • Pr(X1 ) µ1) for p~ • 0 1 all 
values of "4 

K3 -.6 --.4 -.2 0 .2 .4 .6 

p' 1 .5399 .5266 .5133 .5000 .4867 .4734 .4601 

For the.!:, test, when pn) o, the one-sided alternative 

s1 always holds. However, when p~) o, the alternative Hi 

may or may not be true, depending on the sign of "land the 

magnitude of p~. If p~) 0 and x3 ( o, we have 

µ 0 ( M0 ( µ. l ( M1 so that Hi holds. However, if the dis-

tribution is skewed to the right, p • ) O implies any one of n 
three inequalities, M0 ( µ 0 ( H1 ( µ1, M0 ( M1 < µ 0 ( JJ. 1, 

a~d ~l < 110 < ~l ( tlto• 
two cases only. 

The alternative Bi hold11'1n the first 

The power functions have been canputed fran (2.8), 

(2.9), (2.10), and (2.12) for n • 10, a• .OS, all combina-

tions of p~ • 0(1)4, 1t3 • -.6(.2).6, 1t4 • -1(1)2, and are 

presented in Table 2.2. The randanized decision rule for 

the sign test when n • 10, .. exact a • • 05 in all c<1aes, is 

found fran (2. 9). We reject always when r ) 8 and with 

probability 201/225 when r • 8. These computations of F(y) 

and all further calculations involving the Edgeworth-Cram,r 
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Table 2.2. Power of the sign test of H'a M • M versus 
0 0 

H 11 1 M • M ) M 1 l o' for n • 101 p' • In (µ. 1-M )/a, n o 
a• .05 

lt4 
1t3 -.6 -.4 -.2 .o .2 .4 .6 p • . 

n 
0 .081 .070 .059 .050 .042 .035 .029 
1 .214 .202 .173 .169 .138 .130 .110 

-1 2 .417 .416 .409 .395 .374 .348 .316 
3 .651 .662 .668 .668 .663 .652 .630 
4 .846 .857 .867 .875 .883 .889 .895 

0 .081 .070 .059 .oso .042 .035 .029 
1 .242 .229 .197 .194 .159 .151 .116 

0 2 .480 .479 .471 .457 .434 .406 .372 
3 • 714 .725 .730 .731 .725 .715 .699 
4 .877 .887 .896 .903 .910 .916 .921 

0 .081 .010 .059 .oso .042 .035 .029 
l .273 .259 .224 .220 .183 .173 .148 

1 2 .546 .545 .S37 .521 .498 .469 .432 

3 .774 .785 .790 .790 .785 ,775 .760 
4 .905 .914 .921 .928 .934 .939 .943 

0 .081 .010 .059 .oso .042 .035 .029 

1 .306 .291 .253 • 249 .208 .198 .171 . 
2 2 .613 .613 .605 .5$9 .565 .534 .496 

3 .831 .840 .845 .845 .840 .831 .818 
4 .929 .937 .944 .949 .954· .958 .962 
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expanaion hava 1-an ~t•xmined Wlin4J the foxm (2.8). 'Iha 

Hermite polynomial• have been evaluated with four decimal 

places in y when y (land four aignif.t.cant fi9',lrea when 

y }. 1. f(y) and ~(y) were obtained to five decimal places 

from tal>lea (Rational Bureau of Standards, 1953}. The 

actual powr calculation• fraa (2.10) were carried out on 

the IBM 1620 computer with four dec1mal place• in Pi· The 

program waa written in l'OJl'DAll language. 

ror all values of x4, the pcwer inar••••• •• it3 increaaa• 

when p~ • 4, inareaaea for 1naraa•1ng x3 for negative value• 

of x3 and decreases with increuing x3 for positive x3 when 

p~ • 3, and deer••••• with increaaing x3 When p~ • 0,1 and 2. 

Aa Jt4 incr•••••• F(x) defined by (2.7) dear••••• since 

,<3) (x) ( O for -Ii ( x ( IJ , tbua Pi inareaaea and there• 

fore the power incraaaes for all p~ and all xj. 1'he power 

for poa1t1ve valuea of x3 is higher than the power for the 

corresponding negative value of JC3 when p~ • 4, for all val.uea 

of x4• The opposite ia txue for all other valwaa of p~. 

1.'he pc,wer function• are not directly comparable 

with Srivutava •• results ,('fable 2, p. 427) becauae 

of the difference in hypotheaea, the difference in 

interpretation of Pn and p~, and the fact that 
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Srivastava's significance level varies with x3 and K4 

whereas here the a level is constant. In general, the power 

of the sign test compares favorably with Srivastava's results 

for the!, test under the same alternative assumptions. The 

graphical comparisons in Figure 2.1 of the power of the sign 

test versus the t test for the different values of p or p• 
- n n 

for the four most extreme cases considered (K4 • -1, 

K3 • -.67 1(4 • 2, l.{3 • -.61 1(4 • -1., K3 • .6 and K4 • 2, 

x3 • .6) demonstrate the close agreement between them, 

eapecially for K3 • -.6., K4 • 2. 

Due to the disparity between the hypotheses to be 

tested., the differences in power cannot be attributed en-

tirely to a distinction between the!, test and the sign 

test. However, even though the results are not directly 

comparable, they are enlightening, when we assume normality 

as a requisite for performing the!, test., the coincidence of 

the means and medians is implied, making H and H' equiva-o 0 

lent. In spite of the fact that exact knowledge of the 

population distribution is absent in most practical situa-

tions, normality is often assumed. 
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2.4 Sign Test .2!1.th!. Population Median l!!. Approximated l?i. 

the Population Mean sn,g.!:h!, Coefficient .2f. Skewness 

Comparisons of the power functions of the sign test and 

Student•s !, test for the approximately normal distribution 

defined by (2.7) might be more relevant theoretically if the 

difference between the two hypotheses could be minimized. 

One possible approach is to express the median as a function 

of the mean and the coefficient of skewness. 

An approximately normal distribution with meanµ, var-

iance a2, and standardized third cumulant x3 has the median 

M • µ - x3a/6 , (2.13) 

when terms of order at most 1/N are neglected. This result, 

due to Haldane (1942), may be established as follows. Mis 

the solution of F(M) •~.where F(M) is given by the first 

two terms of (2.8), i.e., 

~(M) - K3(M2-l)t(M)/6 • • 

Using the fact that 

we have 

I 
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ljMa SM -½ta 'l'hen e e dt - K (M2-l)/6 • 0 
0 3 . 

Integrating by parts once, we obtain 

M + e½.M2 SM t 2 e-½t2 dt • K. (M2-l)/6 
0 3 

(2.14) 

But since F(y) is approximately the normal distribution with 

zero mean and unit variance, the median M will be very close 

to zero. We will assmne that Mis at most of order 1/N½. 

Then, neglecting the terms of order at most l/N in (2.14), 

we obtain M • -K3/6 for the median of the distribution of 

the standardized variable Y. The relationship (2.13) then 

follows immediately for the distribution of x. 
Using the relationship given by (2.13), we would test 

the null hypothesis H~1 M • M0 • µ0 - K.3a/6 against the 

alternative Hi• M • M1 • µ1 - K3a/6, Ml) M0 , so that H~ and 

Hi are roughly the same as H0 and Hi• In a practical situa-

tion, then, some estimate of x3cris necessary, but this may 

be possible from previous experience with the same type of 

data. A comparison of the power functions for H and B" is 
0 0 

appropriate in the case where (1) the .t test is used to test 

the null hypothesis H0 , even though we know, or are willing 

to assume, that the distribution is skewed but still approx-

imately normal, in preference to some nonparametric test of 
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location, and (2) the sign test is used to test the null 

hypothesis H" so that no assumptions need be made about the 
0 

distribution (except for the value of K3a) to perform the 

test, but the same asswuptions as for H are made to deter-o 
mine the power. 

If M0 is the true median of the distribution, 

Pr(x1 ) M0 ) ~½regardless of the type of density function. 

However, M0 is only approximately equal to µ 0 - K 3a/6, where 

µ0 is the true mean, since the terms of order at most 1/N 

have been neglected in obtaining this approximation. Let 

p" • Pr(Xi ) M IH") • Pr[OC1-µ )/a) (M -µ )/alH11 ] 
0 00 0 00 0 

(2.15) 

If the null hypothesis is true, we would expect np" of the 
0 

n differences (Xi - µ0 + x3cy'6) to be positive and n(l - p~) 

to be negative. The sign test is to reject when r) r 0 , 

where (n)p"r(l-p")n-r • a. Now this implies that a r•r0 +1 r o o 
different critical region is needed for each value of ~3 to 

have an exact significance level of a. Furthermore, we must 

assume the population distribution function of the Xi under 

the null hypothesis in order to perform the sign test, 

which is typ~cally a nonparametric test. If we assume that 
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the standardized xi are approximately normally distributed 

according to (2.7) under H~, p~ • l - F(-1t3/6). Table 2.3 

shows that p ranges l:>etween • 4925 and • 507 5 when -1 ( it4 ( 2, 

•.6 it3 .6, and is exactly equal to .5000 only when 

Since these values of p" are very close to½, and 
0 

since in actual practice the sign test would be performed 

assuming that p~ •½so that it is a nonparametric teat, we 

will use the single critical region determined by (2.9). 

Then the test for n • 10, a• .os, is exactly the. same as 

for H~, .!•.!.•, to reject always when r) 8 and reject with 

probability 201/225 if r • 8. 

The power function of the sign test against the alter-

native Hi is given by (2.8) and (2.10), with Pi replaced by 

Pi• Here 

Pi• Pr(x1 ) M0 1Hi) • Pr[(X1-µ1)/o) (M0 -µ1)/a1Hil 

• Pr[ (x1-µ1) /") (µ.0 -µ1) /a-11.3/6 I Hil •1-:r[ (µ.0 -µ1) /0-11.3/6] 

• l - P ( •p I In - 1t. /6) n · 3 (2.16) 

with p defined as before for H. When p • O p" • p" so n o n • 1 o 
that the entries in Table 2.3 can also be interpreted as the 

values of Pi• Pr(x1 ) M0 1Hi, pn • O). These Pi values are 

much closer to~ than the corresponding entries for p1 in 
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Table 2.3. Pr(x1 ) M0 IH~) or Pr(Xi) M IH" p • 0) o 11 n 

icl 

lt4 -.6 -.4 -.2 0 .2 .4 .6 

-1 .5074 .5040 .5018 .sooo .4982 .4960 .4926 

p" 0 .5024 .5007 .5001 .5000 .4999 .4993 .4976 
1 1 .4975 .4974 .4984 .sooo .5016 .5026 .5025 

2 .4925 .4941 .4968 .5000 .5032 .5059 .5075 

Table 2.1 for Hi· When pn • o, µ1 • µ 0 and M1 • M0 , so that 

the null hypothesis H0 is true, H~ is approximately true, 

since M is quite close to the true median of the diatribu-o 

tion :r(x). The power functions of the sign test of H" 
0 

versus Hi have been canputed for the various canbinations of 

x:3 and ic4, n. • 10., pn • 0(1)4, and are presented in Table 2.4. 

The exact significance level corresponds to the entries for 

Pn • 0. It ranges between .045 and .055. 

The results in Table 2.4 seem to indicate that, in 

general, changes in K4 tend to have more effect on the power 

function than changes in K 3• This is especially evident for 

small values of Pn• The power increases as ic3 increases for 

all K4 and all Pn except Pn • 0, 1. The values for p • 0 n 
are all close to .05 since p1 is close to~ when Pn • 0. 

Like the power function of H~ in Table 2.2, the power 
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1 Power of the sign teat of B~• M • M0 • µ0 - i1'3a 

versus Bi• M • M1 • µ1 • '¼x3a ) M0 for n • 10., 

p • m(µ.1-µ. )/a., a • .OS n o 

-.6 -.4 -.2 0 .2 .4 .6 

.055 .053 .051 .050 .049 .047 .045 

.164 .166 .169 .169 .168 .165 .159 

.346 .366 .382 .395 .404 .408 .410 

.577 .612 .642 .668 .691 .713 .734 

.793 .823 .853 .875 .898 .920 .940 

.052 .oso .oso .050 .oso .050 .048 

.181 .186 .191 .194 .195 .193 .188 

.401 .423 .442 .457 .467 .473 .475 

.645 .679 .707 .731 .751 .770 .788 

.835 .861 .883 .903 .922 .939 .955 

.048 .048 .049 .oso .051 .052 .052 

.199 .207 .214 .220 .224 .224 .221 

.459 .484 .sos .521 .533 .540 .542 

.712 .743 .769 .790 .808 .823 .838 

.873 .894 .911 .928 .942 .956 .968 

.045 .046 .048 .oso .052 .054 .055 

.218 .229 .240 .249 .256 .258 .257 

.519 .547 .571 .589 .601 .609 .611 

.777 .804 .827 .845 .859 .871 .883 

.908 .924 .935 .949 .960 .970 .979 
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increases for all pn and all x3 as K4 increases, and for the 

same reason as stated there. The power functions in 

Table 2.4 are greater than the corresponding values in 

Tal:>le 2.2 in all cases for which Kl) o, and less than the 

corresponding values for Kl ( o. They are, of course, the 

same when K3 • O. 

A comparison with Srivastava's results reveals that 

although the power of the aign test of B~ is much less than 

the power of the s test of H0 when Kl ( o, the gap is nar• 

rowed considerably when K 3 ) o. Even these results are 

difficult to compare directly because of the larger variation 

in significance level for the s test. The close agreement 

of the power functions for ~3 ) 0 is demonstrated graphically 

in Figure 2.2 for the cases K3 • .4, K4 • 2 and K3 • .6, 

K4 • 2. 

2.5 Sign Test an the Mean 

There is still another possibility for minimiz.1ng the 

difference between the hypothesis H for the s test and the 
0 

hypothesis to be tested using the sign test, and this is to 

make the two hypotheses exactly the same. This might be 

called a sign teat on the mean. Thus we are testing the 
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null hypothesis Haµ•µ against the alternative 
0 0 

B1 a µ. • µ.1 ) µ 0 • Since we must assume that the n randan 

variables are independent and approximately normally distri-

buted with mean µ and variance a2: even to perform the sign 

teat of H, this test no longer belongs in the category of 
0 

nonparametric tests. The sign test on the mean would be to 

reject if there are too many plus signs among then differ-

ences (Xi - µ0 ). The problem is how to define "too many" in 

order to determine the critical region. 

Let us use the notation p Pr (Xi ) µ. I B ) and 
0 0 0 

p1 • Pr(Xi) µ.0 la1), Then the p0 for the various canbina-

tiona of KJ and K4 are the same as those given in Table 2.1 

for B~, and the critical region for an exact significance 

level a would differ for each value of ic.3 • In a practical 

situation, we would probably use the sign test determined by 

p •~,realizing that this implies that the significance 
0 

levels vary with the value of it3 • The pl values are given 

by pl • Pr[ (X1-µ.1)/a) (µ0 -µ1 )/a] • 1 - P(•pn/J'ii). For 

n • 10, then, the power functions for this test are the same 

as those given by Table 2.2 for the various canbinations of 

x3 and ~4 with p~ replaced by Pn, and the significance levels 

are represented by the table entries for p • O. They range n 
between .029 and .081. 
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The power function is still difficult to COlllpare with 

Srivastava's results since now the significance level is vary• 

ing for both tests. 

2.6 Comparisons ,9! Power for Equal Significance Levels 

Another interesting theoretical canparison between the 

power functions of the sign test and the .:t. test can be made 

by equalizing the significance levels as well as the hypoth-

eses. Srivastava has calculated the power of the .:t. test 

when the "true" significance level is .OS for n • 101 

it3 • .6, it4 • .4, and ic3 • K4 • 0 1 Pn • 0(1)4 and pn • -4(1)0. 

The negative values of pn apply if we are considering a one-

sided alternative where µ 1 ( µ 0 • For the last test discussed, 

the sign test on the mean, p0 • .4601 when ic3 • .6 and 

it4 • .4. The sign test for an exact .OS significance level 

when Pn) o, found using (2.9) 1 is to reject the null hypoth-

esis H always when r) 7 and reject with probability .22141 
0 

if r • 7. The power is given by (2.10) and (2.8). When p n 
is negative, we should reject the null hypothesis when there 

are too few-plus signs (or, equivalently, too many minus 

signs) among then differences (x1 - µ0 ). Using the same 

notation as before, the test for n • 10, a• .os, is to 
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reject always if r ( 2 and reject with probability .43474 

if r • 2. 

For the previously considered sign teat of H~, 

p~ • .4995 when x3 • .6, K4 • .4, and the ,05 level sign 

test would reject always if r) $ and reject with probability 

.90064 if r • 8 for p ) o. When p ( o, the teat is to n n 
reject if r ( 2 and with probability .88608 if r • 2. 

'l'he results for both of these tests are presented in 

Table 2.5, along with the power of the s test of H when 
0 

the population density is given by (2.6) with x3 • .4, 

K4 • .6. 'l'he power functions of the sign test and the s 
test for an exact normal distribution ('i.e., x3 . • K4 • 0) 

are also given. 

The sign test canpares quite favorably, especially the 

test of H" o• The power for the sign test of H when p is o n 
negative is considerably lower than for positive p. However, n 
the rejection region is much smaller. since the probability 

of a minus sign under the null hypothesis is .5399. 
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Table 2.5. Comparisons of power between~ test and sign 
test when "true" a• .05 and n • 101 for an 
exact normal distribution and for x3 • .6, 
K4 • .4 

Pn 
~3•:K4-0 K.3•.6, 1C4•.4 or 

p. t Test Sign Test t Test Sign Test n 
t •1.833 of H H1 H" t •1.833 t 0 •l.627 of H of H" 

0 0 1 0 1 o 0 0 0 

0 .050 .050 .035 .051 .050 .oso 
l .236 .194 .198 .259 .193 .202 
2 .580 .457 .579 .663 .481 .504 
3 .868 .731 .910 .940 .792 .810 
4 .979 .903 .997 .9996 .958 .962 

t 0 --l.833 of H H1 H" t 0 -l.833 t --2.076 of H of H11 

0 1 o' o 0 0 0 

0 .050 .050 .070 .051 .050 .050 
-1 .236 .194 .273 .219 .171 .187 
-2 .580 .457 .585 .530 • 375 .422 
-3 .868 .731 .838 .784 .605 .670 
-4 .979 .903 .957 .933 .790 .849 



38 

Chapter III 

SMALL-SAMPLE POWBR OP RANK TBSTS ON THE EQUALITY OF 

TWO DISTRIBUTION FUNCTIONS 

Nonparametric tests based on ranks are especially 

simple to use and can be applied even when no measurement is 

possible, since the rankS of the random variables constitute 

the new random variables on which the test is performed. 

Consider two samples of sizes m and n of independent randan 

variables,~• x2, ••• , xm and Y1, Y2, ... , Yn, where the 

X's and Y's are identically distributed with continuous 

cumulative distribution functions Hand G respectively. The 

null hypothesis B0 to be tested is that H • G, their common 

cumulative distribution function being unspecified. A rejec-

tion of the null hypothesis might indicate that the densities 

differ in shape, location, scale, or a combination of these. 

Many rank tests have been proposed to test the equality 

of two distribution. functions. Which one of these is most 

appropriate in any given situation will depend partly on 

computational simplicity, but more basically upon what type 

of alternative is of interest to the investigator. The 

power of competing tests against the chosen alternative will 
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therefore 'be important in the selection of a test. Often 

the class of relevant alternatives is one-sided in form, 

B(a) 2. G(a) for all.!, in Which case the Y's are said to 'be 

stochastically larger than the X's. The null hypothesis H0 

will then be rejected if most of the Y's are larger than 

most of the X's. Por example, if X and Y represent measures 

on a control and a treated group, respectively, where the 

treatment ia expected to increase the measure, or at least 

leave it unchanged, we would 'be interested in an alternative 

of this form. 

The power of any nonparametric test based on order or 

ranks can be canputed, at least in theory, for any alterna-

tive relating Hand G. The probability of any particular 

ordering of the canbined sample of m X's and n Y's arranged 

in ascending order is independent of the specific form of H 

or G, provided that G is a function of B, or both are func-

tions of some common distribution function P. The alterna-

tive distribution functions must be specified ccmpletely 

enough to determine these probabilities. The power would be 

the sum of the probabilities for the orderings contained in 

the region of rejection. The rejection orderings are deter• 

mined :bl' the test, the significance level, and the fact that 
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the probability of any arrangement of the R • (m+n) randcaa 

variables i• e.;ual to 1/(•) under the null byp()theau. 
Ill 

Lahmann (1953) hu c0n8iderad a nonparametric altexna-

tive of one extrema c:Uatribution <••• alao 8ava9e, 1956). 

l'hat ia, the Y random variule• are dietributed u the 

largaat of k of the X variate•., where the aeanin9 of k may 

be extended allowing it to be .I.DX, poaitiva number. V.in9 

tbia alternative, he ha• dete:r:mined the power Of •ix wall• 

known two-aample rank te•t• •• the moat pcwerful one•aided 

rank teat, the Wilooxon or Jlann•Whitney u teat, the one and 

two-aided aedian tests, the 1fald-1f0lfowita run• teat, and 

the two-sided Wilcoxon teat. In thi• chapter a similar 

alternative will be conaidered ••the.Y's are distributed•• 

the largest of k variable• fr011 aome unspecified distribution 

r, and the X'• are distributed u the smallest of k fraa 

this•- distribution function. This aleo belongs to the 

nonparasaatric claae of alternatives, aince the probability 

of any particular ordering under the alternative 1a inde-

pendent of the specific fora of 11 pi:ovided that r is 

continuous. Methods for determining the prObabilities of 

rank orders under this alternative will be found ed. used to 

caiaulate the aaall•saaple power of Terry•• c1 test: and a 



new teat, called the hi teat, in addition to the six tests 

considered by Lehmann. 

'l'be other alternative to be considered in this chapter 

1• that the X and Y random variables are both nomally dis-

tributed with the aaae variance but different means. The 

power functions of the tests are 9iven for thoee ei9nificance 

levels which require only one or both of the two extreme 

ordering• in the critical region. Ccapariaona are made 

between power functions for th••• alternatives. 

3.1 .T.b.!. Altemm;iye of Qn• lastUN Diatr.Q!m;ion 

If P(x) is the cumulative di•tr1bution function of a 

variate x, then the cuaulative distribution of the largest 

of k variable• drawn fran this distribution is Pk(x). When 
k P(x) is known, an expression for P (x) can always 'be found, 

although it may be coraplicated. The extr•• diatril>ution 

aay differ frcm the original distribution by a shift in 

location, scale, form, or some caabination of these. How-

ever, Piaher and Tippett (1928) have shO'Wn that the limiting 

cU11ulative distribution of the largest of k obaervatio~ 
k· satisfies the functional equation P (x) • P(akx + bk), which 

baa only three classee of solutions for P(x). The argument 
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here .la that the l:Laiting d18tribut1on P(8Jtx + 1\) of the 

largest of n • lal obaervationa·auat be of the•- form•• 

the 11aiting distribution ;k(x) of the large•~ of a ample 

of size k drawn from the largest of aaaplea of aiu a,•• m 

tenda to infinity and k i• bald fixed, except for changes in 

location. or scale. 'fhe aolution which i• called l'ype I ha• 
k . 81' • l so that P (x) • P(x + bk) • l'ben P 1• an exponential-

. -· .. " .. . -x 
type 41atribut1on With dP • exp(•x • e )dx. fte lillit.ln9 

dlatribution of the larpat value in a eaaple of k la of the 

•- fora but shifted a diatance ·of log k. In the other two 

type• of 1.1.llitlng extr ... distributions, the ac:ale ia changed. 

'l'he noraal belong• to Type l, along wit~ 

IIUIDY other illportant diatributiona. %n ccapar.t.aon with the 

noraal di•trlbutton, the -rype I danaity is aligbtly skewed 

to the right and platykurtic:. Although the diatribution of 

the extrema froa a ncmaal cliauibution converges slowly 

toward the Type I aayaptotic distribution, the difference 

between the exact and aayaptotic denaitiea for a aaaple of 

aiae 100 ia negligible (see, e.g., Graph 6.2.1(4), p. 222, 

Gabel, 1918). 

The alternative of one extreme 41.atribution considered 

by Lehman expreaaea the relatlon•htp between Band o •• 
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G • it<. If B belongs to the Type I cla••• the aaymptotic 

diatribution of Gia of the same foa •• a l)ut ahifted 

linearly, so that uymptotically the alternative expreaaea 

a change in location. Lehmann (1953, Table X, p. 29) .baa 

calculated the exact power funationa of a.1.x rank te•t• when 

• • n • 4, m • n • 6, fork• 2, k • 3, with a1gn1f1cance 

level .10. 1'he one-aided teat• which he coneictera are the 

moat appropriate for thia alternative ainc:e they are deaigued 

principally to detect the aituation where the Y'a are ato-

chaatically lar9er than the x•a. Bare Pr(l(<Y) • k/(k+l). 

Although the limiting diatrDutiona of Band G when 

G • 'It" may have the aame abape, smaller valuea of k often 

effect a conaideral>le chang-e in the diatr.ll:>ution functiona. 

the difference• between Band Gare illustrated in Lehllann•• 

article fork• 2, 3, and 6, when the dena.i.ty of Bia normal_. 

exponential., and unifOran (pp. J6•38). Xn a practical aitua-

t.t.on, we usually like to think of B and G aa >Ming ao:re 

eimilu under the alternative. An alternative which meeta 

thi• requirement in many aituationa and baa •om.e deairable 

propertiaa ia the alternative a1 of two extreme diatr~tiona~ 



Band G both bein9 functions of aome common distribution 

function F. We Will aaaume not only that the Y'• hev• a 

diatrl.bution function G • -,k, i.e., Y i•• d.1.•tribut.ed •• the 

largest of k variable• from acae WU1pecified diatribution I', 

but also that the X'• are diatr.ilNted u the naalleat of k 

frca this ea.me diatr!J>ution, B • 1 - (l•l')lc.. l'or any value 

which i• a atJ:iat.ly inc2:eaain9 function of le.. Tbua the 

alternative expre•••• the fact that the y•a are •toohaat.ioally 

considerably laqer than the X'•• 

3.2.l IEWD&II 
Both of the alternative diatril:Nt1ona change their 

ahape and location acaordin9 to the value of k, but they 

remain -.utually eymmetriaal • whenever the dena.t.ty of r u 
.,eyaaetrical. We will aay that· two diatril>ution functions 

B(x) and G(x) ue mutually aynmaetric if there ext.at.a a con-

stant.& auch that B(x•a) • l • G(a•x) for all x. If the 

aorreaponding density funationa h(x) and g(x) exiat, an 

equivalent d•finition 1• that h(x-a) • 9(a•x) for aome .1. and 

all x. 1fe aan •••uae without loe• of generality that .1. 1• 

equal to aero. 
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ror the particular oa•• of t'6'o extre• diatributiona, 

let wa •••wne that r ta ayaaetriaal about aero. l'he density 

funat:l.on of B 1• 

h(x) • k[l-f(x) lk•lf(x) • k[J'(•x) 1k•lf(•x) • 9(-x). (J.1) 

Then &~(x.P) • 10 [ (•x)P], whi~h · ilapliea that the even acmenta 

of Band G ua equal, and the Odd acmenta differ only With 

ra•peot to •ign. Mor• descriptively, the &ineity functiona 

of the aaalleat and lar:9eat value• are ain:or .bla,ea, and, 

re9ardl••• of the value of 'k, 0 and Hue related to each 

other through their acmenta. l'i9Ur• 3.1111\Wtrat•• the 

dena1ti•• of I', G and B for k • a when f (:le) 1- noriaal, uni':' 

fomjJand exponential. 

Actually• the property of mutual •YJIINtry appli•• for 

the more general due 4.n which Bia the cumulative 41.atribu• 

tion function Of the.£ th OJ:'deX' atatiatia of k 1 r•l1 J, ••• ,['sklt 

and.Gia the cli•tril>ution of the (k•ril)th order •tatJ.atia 

of k. 8uppoae that the k independent randaa varialll•• ue 

Ld.ent1oally dtatrU>uted With dana.tty function f(x) 1 and f(x) 

ia aymetriaal al:tout a(x). We can aaa'WMt Without loa• of 

generality thatr&(x) • o. Lat fr(x) denote the den•ity funa• 

tion of the .c. th order etatiatic. l'han 



2 

0 

-I 

f (x) 

46 

O I x2 I 
f (x) = - e-

2 

2 

f(x)=I, O~x~I f(x)= e-x, x?O 

Figure 3.1. Density functions of F, G=F 2 and H=l-(l-F) 2 

when Fis normal, uniform, and exponential 
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fr(x) • (r-fJ1(1t-r)I [r(x))r-1[1-r(x))k•rf(x) 

kl (l•r(-x)]r-l[r(-x)]k•r+l-lf(•x) • (r-l)l(k•r+l•l)I 

(l.2) 

ftia ho1d8 true theoretically even when k 1• not an integer 

provided that k 1• a po•itiv• number (the coefficient 

kl/[ (r-1) I (k•r) I] auat 1:Ma replaced i,y 1/a(r,k-r+l)). How-

ever, tbe interpretation in tea. of order •tati8tia• ia not 

very •anin9ful.. 

ror the aaH in which f i• not ayaaetrlaal, relation• 

ahipa i.tvaea th• acaanta an aore ~fiault to••••••· Jt 

ia intereeting to note, howver, that fork• 2, the ,2th 

moment of B plua the .ath of G 1a equal to twice the 

,atb acaent of r, re9ardl••• of the cbaraaur of 'I or the 

val• of p, •• long u the IIQllllnta are all takan alaout aQN 

coaaon point. 

• can without lo•• of pnerality that f 1• • 

ayaaetriaal danaity fUnction. l'hia will ban no effect on 

th• power funatiou, a.t.nc• the probal:»ility of any rank 

ordering ia independent of tba apeaifia abu:aoter of r u 

lonv u it i• oontlnuowa. 
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Under the null hypotheaia B • Gt all poa•ible orderings 

of the• X'a and n Y's (m+n4) in the combined •ample are 

equally likely and occur with probability mtnl/)1,l. l'be 

objective is to find a practical method of calculating the 

pro'bability of any arrangement under the alternative 8i_· 
A ve,:y general theorem due to Boeffding (1951) provide• 

one expreaaion for theae order probabilitiea. 

DtK!JI 3.1. Consider a ample of m x•• and n y•a, each 

independent and identically diatributed with continuou• cum-

ulative diatribution funotiona Band G reapectively. Let.h 

and g denote their deneLty funationa. Under the alternative 

B • Q(G), the probability of any arrangement of the x•• and 

Y'• is given by 
m 

&(Tf q(tJrj> ]/(II') , 
J•l m 

(3.3) 

whe:re q 18 the denaity function of a, o.( v1~ v2~ ••• .S: v11 ( l 

are t• order atatiatic• of a :randcm aample of aiu If (m+n-a) 

frClll the uni~om distribution, and the rJ (J•l,2, ••• ,m) are 

the ranlca of the X randcm variable• in the combined laaple. 

TWo arrangement• will be conaidared the aame regardl••• of 

pemutationa among the X'a or •on9 the Y'•• 
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trooft We may aaawne without: loa• of generality that: g(x) • l,. 

atnoe 1:f it 1• not, we can u•e the probability integral 

tranaformation to malte it unifom. Then B • Q and h •.q, 

Let a1,a2, •.• ,•n denote the rank• of the Y'•• One poasible 

general ordering J.a 

x1 ( ••• ( X8 •l ( Y1 ( X8 ( ••• ( X8 • 2 ( Y2 ( •• 
l 1 · 2 

• • ( yn-l. ( X• •n+2 < • · · < X• -n ( yn < X• •n+l < • • · < Xa' n-1 n n 

and there au:a mini of the•• ••• ordering:• c~reapondinf to 

pemutationa among the m X • • and •ong the n Y • •. 'the 

probability of th.I.a arxang-8Mnt then u 
atnl Pr(Xl ( ••• ( x. l ( Y1< x. ( .. . (Y ( x. +1< ••• (x ) 1• . . 1 n n•n m 

aince the denaity function ia g(u) • l for each integral. · 

corresponding to a Y randelm variable. fte multiple integral 

1n (3.4) ia ert't q(Vr ) ] and thu• the proof is ccaplete. 
J•l . J 

Applying the theorem to the alternative B • l - (l•P)k, 

G • Pk, let u • fk and B(u) • 1 • (l•ul/k)k, then 

h(u) • (l-u1/k)k•l u(l/k)•l. · ror ~xample, fer•• n • a. 
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k • 2, we have 

1r(1010)•2121rrrlr2(1-u1~)u1-~du1du2(1-u3~)u3-~du3du4 • 
. 0 0 0 0 .. 

On the left band aide al denote• an X randcm variable and O 

denote• a Y rand• variable, ao that Pr(lOlO) indicate• the 

probability that the X'• and Y'• alternate in the cCllbined 

ordered sample. 

ror 9eneral k, a, and n, the calculations are coneid-

erably l••• tedious if we uae the following formulae which 

are derived l:>y chan9in9 the expreaaiona (l•l')k to 

(k)(-r)J (under the aaawap1:ion that k ia an integer), 
J-0 J 
and inte9ratin9. The formulae can :be extended with eaae to 

the ca•• of more than aix groups of X'• and Y'a. 
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LIi~ • a + c + •• n • )> + d + f. 
Pr[a X'• < )> Y'a < c X'• ( d Y'a (•X's·( f Y'•l • 

. . k . k•l ~l •2 k•l k•l 8 3 
ll+n•l ·~ k •1-l <a2 ) (-1) \ <a,- ) (-1) 

mini k £ ( )(-1) 
a •l 8 1 a -0 •1••2+l a -0 •1••2+•3+2 
~- 2 3 

k-1 ,:-1)(-l)•a . . 2 • . ... ••-0 •1+•2+ •• •1+•2+ •• 
. ___ ....,;;; ______ . 

a1+a2+ .. • 1 cl:jl>(-l)ol 
al-0 .zai+(a•l)+))k+cl+l 

. 1 
••• Za1+(a-l)+bk 

k~l ,:-1)(•l)c2 
L.J a 

C -0 Zai+(a-l)+bk+alta2+2 
2 ' 

k~ (~•l)(•l)cc . 
• ••• 

0

0 Z•1+(a~l)+~k+J:c1+a • Za1+(a•l)+bk+J:a1+c+k 
C . 

·-------------· 

(3.5) 

• • • ·-~-~----- . 

(~il>(-1)•1 (~-1)(•1)•• 
• 8 ~J:a1+(a-l)Qk+Zc1+c+dk+\+l • "• • • 8 

l • 

·---~--------· ·-~----a-------Zai +(a•l)+'bk+Zc1 +dk+J:e1 +e+k • • • z.1+(a-!+'bk+Zc1"4k+J:e1 . 
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Lat 1:t + d + f • n, C a + g • m. 

Pr[b Y'• < C X'• < d Y'• < a x•a < f Y'• < 9 X'•1 

-.r- !'~il> (-1) cl ,:;1)(-1) Cc 
• (k)(2k) ••• (bk) cl-0 bk+ol+l •••cc-Obk+ol+o2+ •• +cc+c 

· l · l · bk+Zo1+a+k bk+Za1+c+2k 

. ! <=il)(~l)•1 
•1-0 bk+Zc:i+c+dk+el+l 

. ---------·-------- . 

••• 

• • • 

. l 
• • • i 

,:-1)(-1,·• 
2./ ' 8 -0 bk+Zc1+o+dk+Ze1+a 
• 

• 
J:tk+Za1+c+4k+Ze1+a+fk 

(3.6) 

k~ (k•l)(-l)91 (k-l)(-l)99 
. l~ 91 2.,~---'Sl---------obk+Zai +c+dk+r.e1 •. • -Obk+Zo1+otdkCa1+e+fk-tiF.91 +9 

91 v, 
'Iha arithmetic oparatio.na can be aillplified 1n fwr 

general cu•• l,y u.t.n9 the follovin9 fomulae when applicule. 

In the initial •t•t-nt of each of the prolHa))ilitiaa, •Cx) 

will l:Mt ~•pr•••nted b.r x and G(y) b.r y. 
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Pr(all a X'a ( all n Y'a) • • ra,(1-G(x)]n[B(x)]a-l b(x)dx 

rJ, k n[ k 11-l k•l • • J0(1-x) 1•(1-x) J k(l•x) dx 

• .·-zl(a-1)(-1)1 rJ,(1-xk)n (1-x)ki k(l-x)k•l dx 
1-0 1 Jo 

• lCII E (n)(•l)J r1 x-'k(l-x)ki+k•l dx 
1-o 1 J-o J Jo 

• Jca ~ 1,--11)(-1) 1 ! ,nJ)(-l)J a(Jk+l,ki+k) 
1-0 J-0 

Pr[(m-1) X'• < 1 Y ( (pr.l) Y'• ( 1 X ( (n•p) Y'•l 

• an(::~)r: ra, [B(y) ]11-lg(y) [G(x)•G(y) ]p-l 

: b(x)[l•G(x)]n~p dy dx 

a k .... j ;:~) f J: ( l• (1-yj k)__.l yk•l (xk•yk) p-1 i l•x) k•l 

• ( l•xk) n..:p dy dx 

111 k•an(~ll) 9il (a-1) t•l) tf1 ('X (l•y) ikyk~l(xk-yk)p-1 
P- i-o i JoJo · 

• (l•x)k!-1 tl•xk)n•p dy cix 

(3.7) 

• ;....i;½ ( 7"~ (~1) ( •l)'l. f °" ( l•v1/lt) ik(xk •V) p-l (l•x) k•l 

• U-!«~.n-p~'dv dx 

•· >mm(n-1) -z1 ,~1) (•l)1 r(ik) (-l)Jf1 rJ' ,,Jlkc k_ )p-1 
p-1_ J.-0 i J-0 j Jo.lo. X V 

• (l•x)k•lc1~x1')n-p dv dx 

n-1 a-l a-1 1 ik ik J . ~p · 
• Jcmn(p-1>1!c,( 1 )(wl) J!o( J )(•l) a{p,(J/Jf)+l] wi,o<n;p)(-l)w 

.' Jo xkw(l•x)k~l[xk]p+(J/k) ax 
. 0 

• laln(n•l)•Zl(m-1) (-1)1 r (ik) (-l)J B(P, (J/kJ+l]n~ (n-p) (•1)" 
. p-1 iii() i JiiO J . ,. w-o w 

• (3.8) 
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Pr[(n-1) Y'• ( 1 X ( (p-l)X'• ( 1 Y ( (m-p) x••J 

• an(.-11) (<D ~(G(x) ]n•l h(x) (B(y)-B(x) ]P-l P- J.a,Jx \ , 
, • 9(y) (1-B(y) ]m-p dy dx 

• k8an(a-l)r1,£'1 xk(n•l)(l•x)k-l[(l•x)k-(l•y)k]p,-1 
p-1 JoJx 

.• yk-l(l-y)k(m-p) dy dx 

• laln(a-1)l'1f(l-x)kxk(n-l)(l•x)k•l((l-x)k•v]p-l va-p 
p-1 JoJo . 

• v(l/k)-l(l•vl/k)k-l dv dx 

k-1 fo~l-x)k • kan(a-1) % (k-1)(-l)J [(l-x)k•v]p-1 
p-1 J 0 

j-0 (J/k)+(l/k) ..... p-l(l )k•l k(n•l) • V •X X dv dx 
k•l • 1aan<;:!> X <kjn<-1)J •Cp,(J/k)+(l/k) ...... p) 
J-0 

, Jo (l-x)k-lxk(n-1) [ (1-x)k]a-l+(J/k)+(l/k) dX 

Pr (all n Y'• ( all a X'a) • nf'» dy ~-co 
• kn s: yk(n•l) yk•l (l-y)Jaa dy 

• kn a(lm+l,kn) (J.10) 

In (l.8) and (l.9), l p (n-1), and in (J.7), (3.8), and 

(l.t), k must be a p09itive integer. the ~inOlllal coefficient• 
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<:> ue defined to be equal to zero if b ) a. fonaula (3.10) 

1a true•• long ask ia a poaitive number. 

The computation•- of the order prol»abilities under the 

alternative 8i are further •implified l:1y the fact that cer-

tain ordering• have equal probu111t1e• for all value• of k, 

• and n. 'fhi• ia the cue whenever a given ordering ta com-

pletely reveraed (the original variable• are now in a 

da•c•ndin9 order) and the II X rand.OIi variable• ua replaced 

by m Y rand.ca va:r:iulea, and then Y randora variable• bec:rc:ae 

n X randCII vu:ial>lea (the new var.t.al>l•• are in an aacendin9 

order). An anan9eMnt for the ccml:»1ne4 a-.ple of aize ll 

will be denoted by the vector a • [ •1 • •2' ••• , •·l, where 

the•,•• are indicator variables, z1 • 1 if th• .&,th ordered 

random var.table in th• cc.l,ined aample 1• an X randca va:r:1• 

able, and z1 • o othexw.f.••• Using this notation for a given 

ordering 'i, the new ordering 'l''·"with the •- prot,al>ility 1• 

a'• (1-a8, i--..1, ••• , l-a1]. ror exmaple, 

Pr(ll1010100) • l'r(110101000). fte equivalence could be 

proved for each poaeible ordez-in9 using (3.7) • (3.10) and 

aillilar fomula• for tbe special caaea. An euier and more 

general proof can be aaacapliahed uaing the form of the 

probal)iliti•• given by (3.3) for an arbitrary ordering and 

any Band a which are mutually •~tric. 
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D•90JB:S.a. Let z • (z1, z2, •.• , zn] denote an arrange-

ment of m random variable• X frcn a Population with diatr1• 

button function B(x) and n random variable• Y froa G(x) 

(m+n-s), where z1 • l if the J:.th·ordered randcm variable in 

the cCllbined •ample of• variable• 1, an X randCIIII variable, 

and z1 • 0 otherwiae. Let i'• • C •i, a2., ••• , a11]., where 

z1 • l - •••i+l• lf Band Gare both continuoua and are 

mutually ayaaetric auch that H(x-a) • 1 - G(a•x) for aQne .!. 

and all x, then the pxOJ:,abilitiea of the two arran9 ... nt• z 
and i'• are eQUal. 

Proof. ft.e probability of the ordering 'i ia 

p(i) • mlnlr. r- ... J2 fr h(u ) tr 9(u ) du1du2 ••• du5, 
•co -co -co J•l . r J ¥111 8w 

where the rJ (J•l,2., ••• ,a) and •w (w-1,2., ••• ,n) are the ranke 
. -of the X'• and Y'• in th• arrangeaent a of the cCllbined aam-

ple. Xf w let VR•i+l • -v1 for 1 • 1,2, ••• ,R, then 

- 00 i v1 ! v2 ! . . . , v8 ! oo tmpliea that 

• CO _! V l !_ V 2 ! . . . ' V11 ! CD, ana 

p(z) •alnl_j r• ... J2 -ft h(-vH•r +l>tr g(-Ys-a +J!dv1 ••• dv11 • 
- •c:x, •00 •00 J•l J -wal w 

(3.11) 

Since Band Gare continuou• and mutually eymaetric, 
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h(x-a) • 9(a•x) for .& and all x. We can ••-- without 

loa• of generality that a• o. ften .(3.11) ltac_.• 

-• p(a•) , 

whex-e the r.;, (wa,1,2, ••• .,n) and •j CJ•l,2, ••• ,a) are the 
. .. 

ranka of the x•• and y• • in the arrangement i'• • 

g91911agv 3,2.1. More 9enerally, the tbeor• contin•• to 

be tJ:Ue for ai:ran9911tnta.of randcm var.t.al,le• drawn fr• PoP-

ulationa with Cllllulative 41.atril,ution function• of the fOftl 

a[t(x)] and G[l(x)], u lon9 u B(x) • l • G(•x), •inae the 

probability of any uran-nt i• unaffected tf•th• •-

monotonic tranefonat1on ia applied to all• r:andca varia-

bl••• 

Proof. We need only to •bow that a acmotonia tranafODl&t.t.on 

of th• X and Y rand• variable• drawn frCIII B(x) and G(x) 

where ll(x) • 1 - G(•x) will yield rand.aa variule• x• and y• 
with cllllNlative d.ietr.U,ution functions B[f(x)J and G(t(x)], 

re•peatively. Let x• • ,<x) and y• • t(Y). !'hen 



51 

/ / -1 -1 Pr(X' x) • Pr[X~ f (x)] • B(f (x)] • B(f(x)] when 
-1 !(x) •, (x). 

Wbereu Corollazy l.2.11a a 9eneralisation of the 

th•or•, th• followin9 are apecial cu••• 

C9t911NX J, a, 2. t-be theor- holda for any two aywtr·J.c 

prob@ility dJ.atrilNtion function• differin9 only in loca-

tion, they are autually ~trical al,out a vertical 

half-way betwen their -ana, and thl• lina aay N takan to 

1M X • 0. 

Proof. Lat the two Mana i. .& and~. l'ben 

and h(x - .!:tll) • 9(1» - x • ll + .&) • 9( ... • x) • 2 2 2 2 

Cpgollagy J,2,1. If f(x) 1•. denaity function aywtric 

al»out .. ro, th• theor- holda if Band G can i. expnaaed u 

G • ·(•), B • l • f(l-F). 

Proof. G(•x) • t[F(•x)] • f(l•F(x)] • 1 - B(x) • 

In view of Corollary J.2.1, the reault continue• to hold for 

denaity function f(x). Let ws aaauae, e.g., that• 1a 

unifOl'III on (-Is,~), r(x) • ~. 'fben 

G(-x) • f(•x~) • ,£1-r(x)] • 1 • B(x). Wi~ the tranafor-
•l -1 aation X' • f (X~), y• • f (Y+'s), X', y• have C\1111\llative 

di•trDution B[f'(x)] and G(f'(x)] reapectively, 

vher• f' (x) • f(x) - • 
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IHIRlt• Let ,ti')• r. fh•n B • 1 • (l•f)k and G • rk. 

If 'k ia a pc>aitive integer, G and B are the diatril)Utiona of 

the larCJ••t and ... 11 .. t of k independent YU.lat•• With 

c1111ulatJ.ve d.tatr.U,ution fuct.ionr. %n particnllu, 1f 
•x .. •x k P(x) • l • • (x) 0), then G(x) • (1 .... • ) and 

B(x) ·. l •kx .. . -. . 
B'nn thou9h thla theoi."• reduo•• the total n\1U8r of 

order pr•uility calclll.ationa, lengthy u.t.tbiaetio operaticml 

are requind to etain the probuility under th• alternative 

Of a,q individual arrangeaent. The fomul•• 9iven - (3.4) • 

(3.10) ar• not readily adaptable to ayat ... tic calculation. 

'lh•ir practicability decreuea aa a., n, or k incraaaea. 

laae type of recur•iv• nlationahip would N c:te•uable. 

lb.er• ill a 1,ack•noura1ve rule (lavage, 1960) which 

penait• the calculation of the proboility of any ordering 

for ••Pl•• of a.tna • and n, reapeotively. fraa the proba-

1:,1111:.t.ea of orderin9a for •11111>1•• of •1•• (a+l) and n, 

regudl••• of the p<>pulatlona fr• which the two aaapl•• are 

dz-awn. Th• relationabip tau follow, 

Dfoqa ~,!• 'fbe prolJuil.1.ty of any 9iven orderin9 

'i • (a1, a2, ••• , ••+nl of• X and n 'f randca vu.laltlaa, 



60 

h 11,n(i), oan be found by eummin9 the pr~bal>ilitiee of all - . -poaai))le orderings&' which can be obtained from z by placing 

one additional l( random varial>le in every po••il>le position 

in the ori9inal ordering,- and then dividing by a+ 1. ~at 

- -Pr (a)•% trm+l {a')/(m+l) , a,n_ . ,n _ (3.12) 

where ii • [a1,a2, ••• 1 1,&J' ••• ,z11+n],. J•l,2, ••• ,.m+n+l, and 

the 8Ulll 1• extended over the (m+n+l) ordering• z', aome Of 

which will be equal. 

Proof. Defining u0 • "-"CIO and um+n+l • <D, we aan write 

Z h'a+l,n (i')/(a+l) • 

za+n+l 
*: > bntAiJntj f-+_·. n~ .~~J2 fr h(u _ ) f.;i. (a l) •QC) •Q) . .•CD J•l r J 

• PJ: (i) a,n 
for example, 

• 

Pr2, 3(10100) • [2.PJ:-313 (110100) + 2Pr313 (101100) 

+ Pr3., 1{101010) + Pr313 (101001)]/3 • 
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1.'he rule 1• of limited advantage for this alternative, 

•tnce the complexity of calculations with k, m, 

and n, but it can be a check on exact numerical computation•. 

It would be more useful if an electronic aQllp\lter program 

could be eat up to obtain the probabilities of all th• 

m:deringa, either exactly or eapiriaally, for a auff.t.c:iently 

large fixed• and n, since the probal>111t1ea of all the 

ordering'• for auller: sample aizea could be obtained by the 

recursive relation. 

A foxward•reaur•ive acheme adaptable to systematic 

computer calculation (Klotz; 19621 PP• 501•502) would per-

haps be more appropriate. If 'i denotes a particular order• 

- --J.ng of the• X and n Y randca vuiabl••• let ax and aY 

denote the arrangement• ol>tained by adJoining an X and a Y 

to the right; reapectively. Let 

P;-(V) • Pr(all x•a and y•s i., Vt:and ·inLtha order a) 

Then 

l'x(v) • B(v) and Py(v) • G(v), 

'zx(V) • (m+l) ra, 11;-(t) h(t) dt 
and 

s:a> 
(3. ll) . 

»;y(v) • (n+l) Pi'(t) g(t) dt .. 
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'fhe prol»ullitie• of the reapective orderin9• 'i, 'ix, and "iY 

3.3 ftata Y••4 m ,m,,r ca1ay1at1opf 

The rank teat• which will l:Ma imreati9ated for powr 

calculationa area 

'11 the aoat powrful rank te•t 

"2 
'l' .:'3 

"• "s .,6 
"1 
"a 

the Jlann•Whitney or Wilcoxon teat 
Terry'• c1 te•t 
the one•aidad median te•t 
the two-aided Wilcoxon teat 
the two-aided Mdian teat 
the Wald-Wolfowitz teat 
the Pai teat. 

All of the except t-3 and '.f8 ware atudied 1Jy I,ahaann 

with the alternative of one extr- cl1•tribution. Bach of 

th••• deaerve• individual ao that the power 

r••ult• will be aore Maningful. 

t'he aoat powr~ul nonpar-tric rank teat T1 

for thoae ordarin9a with the lar9eat proJ:,al,ility under the 

alternative. Conaider the prol»lea of teatln9 the acapoaite 

hypothe•i• a0 a B • G unapecified, where Band G denote the 

auaulative di•tribution functions of X and Y reapectlvely, 

a9ainat the alternative 8i• B,. a. Becawae any te•t l,ued 
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I 

on ranks 4eP41nda only on the ananve•nt 'i of l'• anc.t o••, 
where 1 and Oare indicator• for X anc.t Y randca variable•, 

and all orderin9• are equally likely under t:ha.n\111 hypoth• 

••1•, all rank teat• are eilailar teat.a. -than the probl• 

oan be reduced to teat.t.119 the·a111p1e null bypothe•t• 

B0 t B • G~_,G • G (where G can be •••umed to 1M unifcma with• 
. . 

out lo•• of generality) a9a.f.nat the alternative B1 a!>ove. 

A moat powarful rank teat of the ,111p1e hypothe•1• B0 

agaln•t 8i will be a moat powerful rank teat of the caa-

poaite B0 varaua a1• 1'he aoet powerful rank teat then 

-r•J•~• for th09e ordering• & for which 

prolJu.ll. 1ty of 'i under 8: prol»ability of 'i under . a1 
I -' = ------------> ct 

prol»ability of a under H0 (:) . . a ' 

i" e., when the preal>ility of "i under s1 1• greater than ca , 

ca 1Min9 a .conat:ant 4etena.t.ned ))y the de•1red a19nif:Loance 

level a. l'h• rejection region for any rank teat w.111 cone.tat 

of certain o:rderinga, and there will be a(:) of thea. If 

a(•) i• not an integer, a randcai&ad decision rule may JM 
II 

used. 'lhua for the moat powerful rank teat of B0 againat 8i, 
the rejection re9ion Will conaiat of thoae ordering• which 

have the larv••t probabilitie• under the alt•~nat1ve, and 

the power will N the•• of th••• prol:tabilitiea. 
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For the one-aided Wilcoxon or Jlann-Whitney V teat 1'2 
(Nann and llhitney. 1947). the in the rejection region 

are tho•• for which the a\111 of the ranu of the Y' a, 

•1 + • 2 + •·· + •n• 1• where the nualMr of cue• in 

the rejection region 1• the amalleat integer greater than or 

equal to a(•) for a randOIIJ.&ed te•t • • 
Under the null bypotheai•• the average (or expected) 

rank of any Y randca variable 1• (m+n+l)/2 and thua the 

expected •um of the ranka of the Y'• 1• 'Iha 

two-aided Wilcoxon teat 1'5 (Wilcoxon, 1M5) reject• when the 

abaolute value of the difference between the ol>aerved of 

the and the expected•• of the 1• too large. 

'l'he cu•• in the rejection region then u:e thOlle with the 

lar,eat value• of 

I • n(a+n+l)/21 
1•1 

(3.14) 

Let WI de~.t.n• the median w of the acal,ined aaaple •• 

the variable with rank .a, where a • (a+n+l)/a if (ll+n) is 
' 

odd and a • if (a+n) ia even. Vnder the null 

bypotheaia, the pro'buility of having u Y'• and v X'• greater 

than the Mdian w 1• 

(3.11) 
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where v • m+n•a--u. 'l'he one-aided 119d.1.an teat 'I 4 (Mood, 1950, 

pp. 394-395) · then 1• to reject H0 alwaya if u ) u0 and with 

prol>ability p if u • u.:~ where 
0 

f f(u,v) + p f(u0 ,v) • a • ror tbe two-aided aedian 
u-u +l - -

0 

teat 'f6 when a • n, we reject if u ) u0 or v ) u0 and with 

proba'b11ity p if u • u0 or v • u0 , where 

2 f(u,a+n-a-u) + '! 
u-a +l - vwu +1 -0 0 + p f(m+n-a•u0 ,u0 ) • a • 

Although the power of 'both these median teat• oan l>e cc:aputed 

'by adding up the correaponding pro'ba'bilitiea under the alter• 

native, it ia eimpler to uae the fomula 

f(u,.v,w) • Jcm(-;1) <:> [1 • (l•l'(w) )k]m-v-l 

[l-F(w)]kv F(w)k(n-u) [l•Fk(w)]u (1~,(w)]k•l f(w) 

+ 1cn(•)tn•l)(l • (l•r(w))k]m-v (l•F(w)]kv 
V U 

l'(w)k(n•u-1) [l-fk(w)]u ,.k•l(w) f(w) • (3.16) 

When w bu been integrated out of (3.16) and the aubatitu-

tion u • m+n•a•v ia made, the formula reduces to 
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~v-1 
f(v) • 1cm,m;1> ~m+o:IJ•l~ l ,m-;-1> (•l)J 

j-0 ... 
2 

•tn-Jr-2X ' •·• •1 r:l-il[) (-l) w. 13(JcJ+kYtk, 

+ kn(•) n•l ) 2. ,..,.v) (•l)j 
. V \Jl+l);2y:;J, J-0 . J 

(J.17) 

· 12x-l (-11• fl(kJtic....:i. -..+k(nt-2Y••:U /21 

for the oaae where m+n u odd., a• (m+n+l)/2., and 

--~1 
f(v) • lm(-;1) (8:tfa.x) Jfo t•j1H•l)J 

1 . 
' W-0 : ) (•l) w /2) 

n•l) . J (3.18) 
+ m<:> tttn-ax l <~v> <-1> 

. , 2 J-0 . 

ato-ax . (ato•2v\ l \_ ! / (•l)w fl(l<J+l<Y+l, 
waO . . 

• 

when m+n .f.• even., a• (m+n)/2. fhWI when m • n • m., u • • - v., 
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we oJxain 
. --~1 
f(v) • 1an(-;1) (:) l (m-j•l) (-l)J 

. . ... J~ .. 

• ! l"':v> l•l)" IS(lcv+lar+l, kJ+kv+k) 
W-0 .•.. . 

(3.19) 

m-v • l <"':v> (•l) w f.S(kW+lr.v, kJ+lcv+l) • 
.. 

We auat def.1.ne <:> equal to zero if J:> < o or J:> ) a. All 

of the fozaula• hold for any po•itive integer k. 

l'or the Wald•Wolfowit& runa test "1 (Wald and WOlfOWita, 

1940), under the null hypothe•1• we have 

(3.20) 

where a u the tota1 number of.runsnx'sctld Y:S. \'he teat i• to 

reject if the oJ,aerved a ( r 0 and with probeility p if 

a• r 0 , where 
r.-1 ! h(I\ • r) 
r•2 
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ft••• a1x teat• are all de•itned to detect any type of 

difference 1>etwen the diatrDutiona of the two aeta of ran-

dca vuiulea and are thua applicole to any alternative 

expna•inv the inequality, B" G. On the other hand, 

Terry'• d1 teat , 3 (l'e~Q',. 1912) would be ued principally 

when the relevant alternative La that the two population• 

are !,0th noraal with the•- variance l>ut different Mana. 

,ersy bu ahown that the c1 teat ta.the. locally aoet power-

ful rank teat arainat th1• pualliltric alternative (aee alao 

Section 4.3.3). 'lhe teat atat1at1c 1• 

o1 (•> • ! c,e. > , 
. . J•l J 

(3.21) 

where t1 C2 • • • ! C• . are oa-der atatiatica of a of 

aize • frOIII a nonal diatr.t.bution with ••n aero and variance 

one. and a1, a2, ••• , •n are the ranu of the Y randaa vari-

ulea in the ccabined ordered aample. ror a one-aided teat, 

i.e., the alternatd.ve that the aean Of the Y'• .la 9n.at.er 

than the mean of the X'a, w reject When c1 L c when c ta a 

aonatant det.eDlined by the ai9nifioance level. l'he cuea in 

the rejection region are thoae urang-nta with the larreat. 

value• of e1, and the power 1a the•• Of the prob0111tiea 

of the•• cuea under the alternative. teny • • l'able X 
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(pp. 358-361) 9ive• the •~act di•trU,ution of c1(•) for all 

possible arrangement• t of them X'• and nY'•• and all ccm-

ld.nation• of • and n auah that • + n 10. ('the notation in 

thia paper 1• the oppo.ite of that used 'b}r !'errr, •• he uaea 

a Oto repreaent an X and al to repreaent a Y randca vari• 

able.) ror example, form • n • 4, a1 (11110000) • a.et, 
c1 (11101000) • 2.59, c1 (11011000) • 0 1 (11100100) • 2.271 and 

the probability of any enangement under the null hypotheaJ.a 

i• 1/70. Thua for aig-nifiaance level .os, the randCllliaed 

teat reject• for both of the firat two ordering-a and with 

prObability l/4 for either of the laat two, and the power 1a 

the •um of the prol>abilitte• of th••• order•. If sa + n ) 10, 

tole• Of the exp1cted yaluas:ic,f the order atatiatica frca a 

normal diatril)ution can be uaed to deteraine the critical 

ordering• (Fiaher and Yates, 19531 Barter, 1961). 

t'he last teat conaidared, , 8, the »•1 teat, ia also a 

locally moat powerful rank te•t. 'lh• on•••i.dad teat 1• to 

reject the null hypotbeaia for tho•• ordering• 'i for which 

• f(i)Jz1 ) C , (3.22) 
.t.•l 

where the a1 •a are tbe ind.1.cator variable• previouly 

defined, c ia a conatant detemined >::,y the •ignificanae 
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level, and f(x) • d[l09 r(x)]/clx, which bu l)een tabulated 

1,y Davi• (1933, pp. 291-367). Propertie• of the te•t are 

di•cuaaed in Section 4.3.2. 

J. 4 rczw,r l'u.Qst1on1 .2& lhl. 11o>s Z!•t• 

J.4.1 B11u1t1 .f9.E. lh!. A1t;•mnu• at I!& Bxtr-, p11tr.1J,µt1ona 
Power functiona of the one and t••t• againat 

the alternative 8i,• B • 1 - (l•rJk, G • -,k, r being unspeci-

fied are preaented in Tcl•• 3.1 - 3.6 for ••11 •ample 

aise•. The cue• aonaidered for equal aaaple eiae• are all 

ccabinationa of•• n • 2, 3, 4, k • 2, l, 4, and ai9nifi-

cance level• .01, .05, .10. Powar for unequal 

•ample •J.se• are given fork• 2, 3 and 4, a~ 1/(11) for the • lf ; 
one-aided teat• and a~ 2/() in the ca•• of two-aided teata. 

II 

All ccabinationa of • and n for wh.t.ah • + n e, plua • • 1, 

n • 8 or•• a, n • 1, and a• 1, n • 9 or a• 91 n • 1 are 

conaidered. '!'he ai9nifiaanc• level• are attained exactly in 

all ca••• 1'}' ua1ng a randcaiaed deaiaion rule. 

AlthoU9h it 1a difficult to draw any ai9nificant aon-

cluaiona fr0111 result• for auch mnall ample aisea and liaited 

ranges of a, the aalculationa of the order probabilit1e• 

becCIN extremely tedioua for larger •aple aiHa and value• 
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of k. 'l'here are at lea•t two practicable methods of enlarg-

ing the range of ccmputatione. First, if an electronic 

ccmputer could 1,e programmed to find the pro!>abilities of 

all the ordering• for sufficiently large sample aizea, 

Savage'• back-recursive relattonahip (3.12) could be WJed to 

find the order pro!>abilitiea for all smaller sample sizes. 

Second, starting wit~ aamplea of size one, the fo.rward• 

recur•ive acheme (3.13) could be programmed to build up to 

pr®abilitiee for larger sample aizea. The author plans to 

attempt this latter method on the JIN 7040 in the near future. 

As an example of critical region and power function cal• 

culationa, consider m • n • 4, k • 2, a• .OS. there are 70 

po8sible arrangement• of the random variables, each occurring 

with probability 1/70 under the null hypothe•i•• ror the 

moat powerful rank teat, T1, the four aaaea occurring with 

highest probal>ility under the alternative belong to the 

rejection region aince a• t!> • 3.S. These are (11110000), 

(11101000), (ll0U000), and (11100100). But the last two of 

the four cues have equal probal>ilitiea by Theorem 3.2. 

ThWI the .05 level teat reject• alwaye for the orderings 

(11110000) and (11101000) and with probuility 3/4 if either 

of the caaea (11011000) or (11100100) occur•. The p<JWar is 
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.24357 + .13682 •¾ • 2 (.08038) • .5010. 

Similarly for '1'2.- 73, and s-8 • fte criterion for the one-

aided· median teat !' 4 is L the number of X • • larg•r than the 

median of the combined sample.· Fran (3.15) we see that there 

is only one ordering with no x•a larger than the median, and 

16 cases with one X larger thb the median. In order to 

achieve exact significance level .051 we reject always when 

v • 0 and with proba])ility S/32 when v • 1. The power is 

..L .24357 + 32 (.57258) • .3330. 

The following chart for equal sample sizes lists the 

critical orders and prObabilitiea with which they muat 'be 

rejected to attain exact ai9n1ficance level a. l'be listings 

for '1'1,. T2, T3, and 18 are in descencling order of probal)ility 

except that ~•rtain rank orderin9e have equal prol)abilitiea 

l1y fllaoram 3.2. 

JDS ft•t• e,01 se:-91 S!:•&9 
2 "1••2•"3•"••"a (1100),.06 filoo). .3 (1100),.6 

's'"6'"1 (ll00)J 
(0011) •03 (ll00)J 

(0011). •15 (ll00)J 
(0011) .l 



!!5l Tests a•.01 a-.05 a•,10 

3 '1' 1' T2, '1' 3' '1'8 (111000),.2 (111000),1 (111000)#(110100),l 

'1'4 (111000),.2 (111000),1 (111000),_l 
<--100) ,_ (-010~ 1/9 

(_-001) -
where the blanks are to be 
filled by all possible 
arrangements of the remain-
ing O's and l's (9 cases}. 

'1'5,'1'6,'1'7 (111000~} 
(000111) .l 

(111000)~ 
(000111) .s (lllOOO)J l 

(_000111) 

4 '1'1, '1' 2' T3, '1'8 (11110000),.7 (11110000~ l ( 11110000 l .- (_11101000) ,. , 
(11101000) (11100100).(11011000}, ..., 
(11100100) 3/4 (11010100},{10111000}~ w 
(11011000) (11100010), all with 

probability 1 

T4 (11110000),.7 (11110000),1 (11110000) ,.1 
(---1000~ the same 16 cases as for 
(---0100) 5/32 a • .05 but reject. with 
<--0010) probability 6/16 
(--0001) 
(16 cases) 



men Tests a•.01 aa=.05 a•,10 
4 TS (11110000~ ( 11110000} l (11110000)~(00001111~ l 

(00001111) •35 (00001111 (11101000)., (00010111) --
( 11101000} 
(00010111) 3/ 4 (11011000) .,.(00100111} 3/4 

(11100100)., (00011011) -

T6 (11110000~ (11110000 l ( 11110000 l 
(00001111) •35 (00001111 (00001111) 

(---1000) the same 32 cases as 
(----0111) for a• .OS but reject 
(-0100) with probability 5/32 
(---1011) 
(---0010) 3164 
(----1101) 
(--0001), 
(---1110) ,,:ii. 

"' (32 cases) 

T7 ( 111.10000 (11110000 l ( 11110000 l 
(00001111) •35 (00001111 (00001111) 

(11100001) tbe same 6 cases as 
(00011110) for a• .-05 but ~eject 
(11000011) 1/4 with p~obahiiity·S/6 
(00111100) 
(10000111) 
(Oll.11000) 
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The probability of any arrangement of the (m+n) • N 
. N 

random variables under the null hypothesis is 1/(m). For 

selected values of m, n, ands, these probal>ilities area 

.. II Si!: D 1£9.Jalla&~itz .I II !ala: !l' Pg:2babil:Ltx 
4 l 1/4 7 1 1/7 
4 2 1/6 7 .2 1/21 
5 l 1/5 7 3 1/35 
5 2 1/10 8 l 1/8 
6 1 l/6 8 2 1/28 
6 2 1/15 8 3 1/56 
6 3 1/20 8 4 1/70 

9 1 1/9 
10 l 1/10 

Under the alternative s1, the probability of any ordering 

may be found using (3.5) and (3.6), or (3.7), (3.8), (3.9) 

and (3.10) when applicable.. An example of one of the cal• 

culationa fork• 2, m • n • 3, using formula (3.5) 1a as 

followsa 

s <. 1> (-l) '\ (-llJ 2 2 1-1 Ji... 
Pr(l0ll00) • 31 31 2 f.i i•l (i+2) j-0 (i+J+l) 

• t-1>w k (i+J+w+4)(i+J+w+6)(i+J+w+8) •• 09355 • 

The following chart lists some of the rank orderings and 

their probabilities under the alternative. Those entries 

left blank have not been ccmputed. 
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Probability_under B1 
ms. Order .ea k•3 ka4 

2 1100 .58S71 .84654 .95086 
1010 .21746 
100~ 
0110 .07778 
0101 .02698 
0011 .01429 .00108 .00008 

3 111000 .38463 .72845 .90384 
110100 .18602 .15009 · .06135 
110010} 
101100 .09355 
101010 .04616 
11000~ 
011100 .03797 . 
100110 • 02786 
10100~ 
011010 .01851 

10010~ 
010110 .01101 
011001 .00737 
10001~ 
001110 .00680 
010101 .00431 
01001~ 
001101 .00264 
001011 .00160 .00004 
000111 .00108 .00002 .00001 

11110000 .24357 .61324 .85003 
11101000 .13682 .16563 .09489 
1101100~} 
11100100 .08038 .05715 .01922 

11010100 .04662 .02870 .00563 
1011100, 
11100010 .04445 .01915 .00412 

1110000~ 
Ol.!1110:::00 .01909 .00414 .00064 

1100001~ 
00111100 .00307 
1000011i 
00011110 .00055 
0001101n 
00100111 .00014 .00000 .00000 
00010111 .00010 .00000 .00000 
00001111 .00008 .00000 .00000 
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Since the critical regions for the two median tests, T4 

and T 6, contain so many orderings unique to the•e tests, the 

SUlll f(v), of the probabilities of all the orderings with the 

same number v or X's larger than the median, waa found for 

equal sample sizes using (3.19). The results are as followaa 

ms. 
2 

3 

4 

.x. 
0 
1 
2 

0 
1 
2 
3 

0 
l 
2 
3 
4 

k•2 

.58571 

.40000 

.01429 

.38463 

.53961 

.07468 

.00108 

.24357 

.57258 

.17383 

.00995 

.00008 

f(v) 
ka.4 

.84654 .95086 

.15238 .04906 

.00108 .00008 

.72845 .90384 

.26412 .09555 

.00741 .00061 

.00002 .00001 

.61324 .85003 

.36389 .14787 

.02263 .00210 

.00025 .00001 

.00000 .00000 

For unequal sample sizes, only the two moat extreme 

order probabilities need be computed to find the power for 

the chosen significance levels. The numl:>er of calculations 

required for the power functions is reduced by the fact that 

the probabilities for the two extreme orderings are symmetric 

in m and n. That is, the probability that all observations 

in a sample of size mare leas than all observations in a 

second sample of size n is equal to the probability that n 
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observations from the first sample are less than m obaerva-

tions from the second sample. 'l'hia is a special case of the 

equal probabilities of two orderings as defined by Theorem 3.2. 

The following chart lists the extreme orderings and 

their probabilities as calculated fran (3.7) and (3.10). 

m,n Probability under H1 or 
··l!.all Orders k•3 - ka.4 

1,3 1000,1110 .66429 .88117 .96265 
0001,0111 .03571 .00455 .00055 

1,4 10000,11110 .61270 .85544 .94268 
00001,01111 .02222 .00220 .00021 

2,3 11000,11100 .49048 .79500 .86448 
00011,00111 .00476 .00020 .00001 

l,5 100000,111110 .57215 .83336 .94422 
000001,011111 .01515 .00123 .00009 

2,4 110000,111100 .42338 .75276 .91562 
000011,001111 .00202 .00005 .00000 

1,6 1000000,1111110 · .53913 .81403 .93618 
0000001,0111111 .01099 .00075 .00005 

2,s 1100000,1111100 .37329 • 76478 .89783 
0000011,0011111 .00100 .00002 .00000 

3,4 1110000,1111000 .31375 .67488 .87974 
0000111,0001111 .00033 .00000 .00000 

1,7 10000000,11111110 .51152 .79687 .92876 
00000001,01111111 .00833 .00049 .00003 

2,6 11000000,11111100 .33435 .68654 .91346 
00000011,00111111 .oooss .00001 .00000 

3,5 11100000,11111000 .26320 .63050 .85817 
00000111,00011111 .00012 .00000 .00000 

1,8 100000000,111111110 .48797 .78048 .92185 
000000001~011111111 .00654 .00034 .00002 

1,9 1000000000,1111111110 .46755 .76747 .91539 
0000000001,0111111111 .00526 .00025 .00001 
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The results of the power ccmputations for the eight 

rank tests, when m • n • 2 and 3, k • 2, 3, and 4, are given 

in Tables 3.1 and 3.2. 

Table 3.1. Power against a1 form• n • 2, k • 2, 3, 4 for 
the eight rank tests 
a-.01 a-.05 a•.10 

Teat k•2 k•l k-4 k•2 k•3 k-4 k•2 k•3 k"4 
'l' 1, '1' 2' 

.0351 .0508 .0571 .1757 .2540 .2853 .3514 .5079 .5705 · T3,T4' 
TS 

T5, \1 
T7 

.0180 .0254 .0285 .0900 .1271 .1426 .1800 .2543 .2853 

The powers here are low, as ia to be expected for such small 

sample sizes. The maxim.um poaaible power for m • n • 2 is 

.06 for a• .01, .30 for a• .os, and .60 for a• .10 for 

the five one-sided teats, since there ia only one caae in 

the rejection region. With any two-sided teat, the powers 

cannot exceed .03, .15, and .30 when a• .01, .os, and .10 

respectively. Fork• 4 1 the results are quite close to 

these maximum values. Aa a result, considering larger val-

ues of k would have ~ery little effect on the power functions. 
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Table 3.2. Power against B1 form• n • 3, k • 2, 3, 4 for 
the eight rank tests 

.0769 .1457 .1808 .3846 .7285 .9038 .5706 .8785 .9652 

'1'4 .0769 .1457 .1808 .3846 .7285 .9038 .4446 .7578 .9145 

T5,T6, .0386 .0728 .0904 .1929 .3642 .4519 .3857 .7285 .9038 
T 

For a• .01; the maximum possible power is .20 form• n • 3 

for any one-sided test based on ranks. For a~ .os,. there 

ia no limit on the powers. The power of any two-aided test 

cannot exceed .10 for a• .01 and .so for a• .os. 
In Table 3.3 the power functions of theae same tests for 

m • n • 4,. k • 2,. a• .01,. .05; and .10 are presented; as well 

as Lehmann•• results for the alternative H• P,. G• r•; a• .10. 

Table 3.3. Power against B1 form• n • 4 1 k • 2 1 for the 
eight rank tests 

a 
Test a•.05 a-.10 .10~ 
Tl,T8 .5010 .6767 .32 

T2,T3 .1705 .5010 .6767 .31 

T4 .1705 .3330 .4583 .23 

Ts .Od53 .3463 · .5014 .19 

'1'6 .0853 .2710 .3347 .15 

'1'7 .0853 .2550 .2815 .14 
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Since the power of the Wald-Wolfowitz runs teat T7 doea not 

ccmpare favorably with the other two-sided tests, and the 

rejection orderings are unique to this one test when a) 1/35, 

it was anitted for further canputations. The power func-

tions for the other tests when m • n • 4, k • 3 and 4, are 

given in Tables 3.4 and 3.5 respectively, along with 

Lehmann•• results for the alternative B• F, G• r'JJ, a• .10. 

Table 3.4. Power against 8i form• n • 4, k • 31 for the 
eight rank teats 

:, 

a• 
'1'1,T8 .4293 .8646 .9602 

T2,Tl .4293 .8646 .9602 .47 

'1'4 .4293 .6701 .7497 .33 

TS .2146 .7375 .8646 .32 

'1'6 .2146 .. 6303 .6701 .22 

Table 3.5. Power against B1 for m • n • 4, k • 4 

eat a-
T 11 '1'2,T3, TS .5950 .9738 .9972 

'1'4 .5950 .8731 .9055 

Ts .2975 .9212 .9738 
T .2975 .8570 .8731 
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It should be noted that although the power functions 

against B1 of the one-sided tests T1, T2, T3 and T8 are the 

same for the cases considered here with m • n 4, this will 

not be true in general. In many cases for which the sums of 

the ranks of the Y's are equivalent, the probabilities of 

their occurrence under the alternative and/or the exact c1 

values may differ. For example, in the case m • n • 3, 

k • 2, Pr(l01010) • .04616 and Pr(llOOOl) • .03797, but the 

Mann-Whitney-Wilcoxon statistic 
3 

3 
s 1 • 12 in both cases. 

i•l 
Alao form• n • 3, s 1 • 9 in both of the orderings 

1•1 
(101010) and (011100), but the corresponding exact c1 values 

are .83 and .64. Form• n • 5, the powers for T2 and T3 

will be the same for a~ 4/252 only. It is evident frcm 

Terry's Table I (19521 pp. 358•361) that although the 

Wilcoxon and c1 statistics are similar, the c1 statistic is 

generally more sensitive than the Wilcoxon (or Mann•WhitneyJ. 

statistic. A linear functional relationship between the two 

statistics does not exist. Terry baa shown that the limit 

of the correlation coefficient between them under the null 

hypothesis is (3/v)~, or approximately .9772, for large 

samples. 
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Ask increases, the power functions increase very 

rapidly in every case. Thia is a reault of the fact that 

for every m • n, although the ranking of the probabilities 

of the various orderings is the same, the concentration of 

probability is much higher for larger values of k. The 

prol'>abilitiea of the extreme orderings for which all or 

almost all the Y's are leas than the X's are negligible to 

four decimal places for m • n 31 k 3. l'or m • n • 31 

57.1", 87.9" and 96.5" of the total probability is concen-

trated in the ~wo cases (111000) and (110100) when k • 2, 3, 

and 4 respectively. When m • n • 4, however, (11110000) or 

(11101000) occur only 35.°" of the time fork• 2, with the 

frequency Jumping to 77. 9% and 94. 5" (85. °" in the one case 

11110000) when k • 3 and k • 4 respectively. Also for 

m • n • 4, the highest four cases account for 51.l" of the 

probability, and the highest seven cases account for 67.7" 

when k • 2, in contrast to 89.3" and 96.°" when k • 3 1 and 

98. 3" and 99. 7" when k • 4. The concentration can be 

expected to be even more pronounced for larger k and larger 

sample sizes. 

The teats T1, T2, T3, and T8 are the most powerful of 

the five one-sided teats, as is to be expected, since there 
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are so many more cases to 'be conaidered in the rejection 

region for the one-sided median test. Por larger m and n, 

it is reasonable to expect on the basis of these results 

that the test T5 will be_by far the moat powerful of the 

two-sided teata considered, its power increasing rapidly as 

the significance level increases. It is to be noted that 

the two-aided Wilcoxon teat is even more powerful than the 

one-aided median teat form• n • 4, k • 2, 3, and 4, 

a ) 2/70. '!'his ia due to the fact that the four cases with 

highest probaJ:>ility cm.prise such a large proportion of the 

total probability. Por the teat T4, there are sixteen cases 

in the rejection region occurring with equal probability 

under the null hypotheaia when 1/70 ( a( 17/70, and only a 

few cases for T5, sane of which have negligible probabili-

ties under the alternative. However, with T5, those cases 

with very high probabilities are given full weight. 

The reaul.ta for unequal. sample sizes are presented in 

Table 3.6. The two median tests have 'been eliminated from 

consideration since the case• in the critical regions are 

different,, and the power will be much lower because of the 

larger number of rejection orderings. 
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Table 3.6. Power against H1 for unequal sample sizes 

One-sided tests Two-sided tests m,n 
'l'l" T2, '1'3, '1'8 '1'5,'1'7 or 

n 1 m a k•2 k•J k-4 a k•~ k•3 k-4 

.01 .0266 .0352 .0385 .01 .0140 .0177 .0193 
1,3 .05 .1329 .1762 .1925 .05 .0700 .0886 .0963 

.10 .2656 .3525 .3851 .10 .1400 .1771 .1926 

.01 .0306 .0428 .0471 .01 .0159 .0214 .0236 
1,4 .OS .1532 .2139 .2357 .05 .0794 .1072 .1179 

.10 .3063 .4277 .4713 .10 .1587 .2144 .2357 

.01 .0490 .0795 .0864 .01 .0248 .0398 .0432 
2,3 .os .2452 .3975 .4322 .os .1238 .1988 .2161 

.10 .4905 .7950 .8645 .10 .2476 .3976 .4322 

.01 .0343 .0500 .0567 .01 .0176 .0250 .0283 
1,5 .os .1716 .2500 .2833 .OS .0881 .1252 .1416 

.10 .3433 .5000 .5665 .10 .1762 .2504 .2833 

.01 .0635 .1129 .1373 .01 .0319 .0565 .0687 
2,4 .os .3175 .5646 .6867 .05 .1595 .2823 .3434 

1/15 .4234 . 7528 .9156 .10 .3190 .5646 • 6867 

.01 .0377 .0570 .0655 .01 .0193 .0285 .0328 
1,6 .OS .1887 .2849 .3277 .OS .0963 .1426 .1638 

.10 .3774 .5698 .6553 .10 .1925 .2852 .3277 

.01 .0784 .1606 .1885 .01 .0393 .0803 .0943 
2,s 1/21 .3733 .7648 .8978 .OS .1965 .4015 .4714 

2/21 .3743 • 7648 .8978 
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'l'able 3.6 continued 

One-sided teats Two-aided teats m,n Tl,'1'2,T3,T8 '1'5,'1'7 or 
Dam a is•a ]S•! k~ a k•a Js•l ls~· 

.01 .1098 .2362 .3079 .01 .0550 .1181 .1540 
3,4 1/35 .• 3138 .6749 .8797 .os .2748 .5905 .7698 

2/35 .3141 .6749 .8797 

.01 .0409 .0637 .0743 .01 .0208 .0319 .0372 
1,7 .OS .2046 .3187 .3715 .os .1040 .1595 .1858 

.10 .4092 .6375 .7430 .10 .2079 .3189 .3715 

.01 .0936 .1922 .2558 .Ol .0469 .0961 .1279 
2,6 1/28 .3343 .6865 .9135 .05 .2344 .4806 .6394 

2/28 .3349 .6866 .9135 

3.,5 .01 .1474 .3531 .4806 .01 .0737 .1765 .2403 
1/56 .2632 .6305 .8582 2/56 .2633 .6305 .8582 

.01 .0439 .0702 .0830 .01 .0223 .0351 .0415 
1,.8 .os .2196 .1405 .4148 .05 .1113 .• 0703 .2074 

.10 .4392 .7024 .8297 .10 .2225 .3514 .4148 
./ 

.01 .0468 .0767 .0915 .01 .0236 .0768 .0915 
1,9 .os .2338 .3837 .4S77 .OS .1182 .1919 .4577 

.10 .4675 • 7675 .9154 .10 .2364 .3839 .9154 
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3.4.2 Comparisons Against Normal Alternatives 

Terry•s c1 test T3 is designed primarily for testing 

the null hypothesis BI H • G against the specific alterna-o 
tive 

H(x) 

and it is the locally moat powerful rank test against this 

alternative when(µ~ - µX)) 0 (see Section 4.3.3). As a 

result, the power canparisons for this test would be more 

appr~priate if a normal alternative were used instead of the 

previously considered definitions of H and G where F is un-

specified. The pawer functions are calculated by summing 

the probabilities for the cases in the respective rejection 

regions, where the probabilities are computed under the 

assumption that the alternative Bi applies. Thus, for 

example, 

Pr(all m x•a( all n Y's)• m j [l- G(t) ]n[H(t) ]m•l h(t) dt 
-oo 

(3.23) 
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we ol>tain 

Let us define 6k • (µY - µX)/a, the standardized difference 

between the two distributions Hand G above. Then the 

extreme order probability (3.23) is given by 

Pr(all m X's ( all n Y's) • j [~(6k-x)]n d([~(x)]m) (3.24) 
-co 

since 1 - ~(x-~k) • ~(6k-x). This integral must be evaluated 

numerically for specified values of m, n and 6k. Teichroew 

(1954) has computed the value of (3.24) on the SWAC (National 

Bureau of Standards Western Automatic Canputer) for 

ok • 0(.01)6.40 and 6k • -3.20(.10)0 and forty-five canbina-

tiona of m and n, by summing the products of the terms in 

the integrand evaluated at 160 values of x, x • -8.0(.1)7.9. 

Several systematic checks were performed throughout the pro-

gram to ensure accuracy. and the results are believed to be 

correct to within one unit in the ninth decimal place. 

Direct linear interpolation for positive values of ok gives 

probabilities correct to within one unit in the fifth deci-

mal place. When 6k is negative, linearly interpolated 

values will be accurate to at least three decimal places. 
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Using Teichroew's calculations, the power of the one-sided 

teat T3 of the hypothesis H0 a H • G, unspecified, against 

the alternative Bi can be calculated for any positive or 

negative value of 6k within the tabulated range when 

a!_ 1/(N). 
m 

The power functions of the other tests considered are 

also of interest under the assumptions of the alternative Hi 
and can be calculated from Teichroew's results. For a one-

sided test where (µ.Y - µ.Jt') 0 , which corresponds to 

H(a) l. G(a) for all.!, we would be interested only in posi-

tive values of 6k. For two-sided tests, we need to canpute 

Pr(all n Y's( all m X's)• mSco [~(x-ok)]nq,(x)[~(-x)]m-l dx 
-co 

• Su, [~(x-ok)]n d[~(-x)m] • (3.25) 
-ex> 

But for any given positive value of 6k, (3.25) is equivalent 

to (3.24) with - 6k substituted for 6k. 'l'hua Teichroew•a 

results yield the probabilities of both of the two most 

extreme orderings where all the observations in one sample 

are less than all observations in the other sample. 

We will choose ok so that the power functions obtained 

can be oanpared with those presented in Tables 3. l - 3. 6 
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where Fis ·not specified. 'l'hus 6k will correspond to the 
k difference between Hand Gunder the alternative a1a H•l-(1-F) , 

G• Fk where F is the normal distribution with mean O and 

variance 1. Since Pis symmetrical about the origin, the 

even moments of Band Gare equal and the odd moments are 

the negatives of each other. G is the distribution of the 

largest of k randQm variables from a sample from a standard 

normal population. The standardized distance between Hand 

G is measured by 

(3.26) 

where x(k) denotes the kth order statistic fran a atandar• 

dized normal population. 'l'he value of 6k can be determined 

by using Ruben's Table 3 (1954, p. 226) to obtain a.,(x(k)) 

and Table 2 (p. 224, r • 1) to obtain tF(x(k)) (or equiva-

lently Harter, 1961, Table 1, p. 158). The values of 6k are 

presented in Table 3.7 fork• 2(1)7. 

Table 3.7. 
2 e,<x(k)) 

Nwnerical values of ok • ( ) for k•2(1)7 t1-, x(k) 

2 
1.367 

3 

2.263 
4 

2.936 
5 

3.477 
6 

3.930 
7 

4.320 
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The power functions for testing the null hypothesis H 
0 

versus the normal alternative Hi using the one-sided tests 
N T1, T2, T3, T4, and T8 when a~ 1/(m) and the two-sided 

tests T5, T6, and T7 when a~ 2/(:) are given in Table 3.8 

form• n • 2, 3, and 4 and the six values of 6k correspond-

ing to k • 2(1)7. The power under a1 (Tables 3.1 - 3.5) is, 

in most cases, slightly higher than when Fis assumed to be 

normal. The difference in power appears to increaae with k 

as well as with the sample size. 

The power functions against Hi (for ,all teats except 

the two median tests) for unequal sample sizes have alao 

been camputed from 'l'eichroew'a tables. The reaulta are 
111 presented in Table 3.9 for a~ 1/() for one-aided tests and m 

a~ 2/(:) for two-sided teats, and may be compared with the 

power functions in Table 3.6. 



Table 3.8. Power function of H0 versus Hi for equal sample sizes 

2 3 4 5 6 7 

m==n 6•1. 367 6•2.263 6•2.936 6•3.477 6•3.390 o-4.320 

One- .01 .0352 .0501 .0562 .0585 .0594 .0597 

Sided .05 .1762 .2505 .2810 .2926 .2970 .2987 
Tests .10 .3524 .5010 .5620 .5851 .5840 .5974 

2 

Two- .01 .0180 .0251 .0281 .0293 .0297 .0299 

Sided .OS .0902 .1254 .1405 .1463 .1485 .1494 
Tests .10 .1804 .2509 .2810 .2926 . 2970 .2987 

One- .01 .0777 .1424 .1758 .1900 .1958 .1982 \D 
N Sided .OS .3875 .7119 .8788 .9500 .9790 .9909 Tests 

3 

Two- .01 .0389 .0712 .08,79 .0950 .0979 .0991 

Sided .05 .1943 .3560 .4394 .4750 .4895 .4955 
Tests .10 .3886 .7119 .8788 .9500 .9790 .9909 

One- .01 .1728 .4156 .5701 .6438 .6757 .6893 
Sided 1/70 .2468 .5937 .8145 .9197 .9653 .9847 Tests 

4 
Two- .01 .0864 .2078 .2851 .3219 .3378 .3446 
Sided 2/70 .2469 .5937 .8145 .9197 .9653 .9847 Tests 



Table 3.9. Power function of B0 versus Bi for unequal sample sizes 
m,n 2 3 4 5 6 1 

or 
n 1m a 6•1.367 6•2.263 6•2.936 6•3.477 6•3.930 6-4.320 

One- .01 .0266 .0349 .0381 .0392 .0397 .0399 

Sided .OS .1328 .1743 .1903 .1862 .1985 .1994 
Tests .10 .2657 .3486 .3806 .3925 .3970 .3987 

1,3 
Two- .01 .0140 .0175 .0191 .0196 .0198 .0199 · 

Sided .OS .0701 .0877 .0953 .0981 .0992 .0997 
Tests .10 .1403 .1755 .1905 .1963 .1985 .1994 

One- .01 .0306 .0422 .0470 .0488 .0495 .0498 

Sided .05 .1530 .2110 .2349 .2440 .2476 .2490 '° w 
Tests .10 .3060 .4220 .4697 .4880 .4951· .4979 

1,4 

Two- .01 .0159 .0212 .0235 .0244 .0248 .0249 

Sided .OS .0795 .1059 .1175 .1220 .1238 .1245 
Tests .10 .1589 .2118 .2350 .2441 .2476 .2490 

One- .01 .0492 .0781 .0912 .0965 .0985 .0994 

Sided .OS .2462 .3905 .4561 .4824 .4927 .4969 
Tests .10 .4925 • 7810 .9122 .9648 .9855 .9938 

2,3 

Two- .01 .0249 .0391 .0456 .0482 .0493 .0497 

Sided .OS .1243 .1953 .2280 .2412 .2464 .2484 
Tests .10 .2486 .3906 .4561 .4824 .4927 .4969 



Table 3.9 continued 
m.,n 2 3 4 5 6 7 

or 
n 1 m o•l.367 6•2.263 6•2.936 6•3.477 6•3.930 6-4.32Q 

One- .01 .0342 .0492 .0557 .0583 .0593 .0597 

Sided .OS .1712 .2461 .2786 .2914 .2964 .2985 
Tests .10 .3424 .4923 .5571 .5828 .5929 .5969 

1.,5 

Two- .01 .0176 .0247 .0279 .0291 .0296 .0298 

Sided .05 .0881 .1233 .1393 .1457 .1482 .1492 
Tests .10 .1762 .2467 .2786 .2914 .2964 .2985 

One- .01 .0638 .1105 .1336 .1433 .1472 .1488 

Sided .OS .3189 .5526 .6680 .7164 .7360 .7439 \0 
Tests 1/15 .4253 .7368 .8907 .9552 .9813 .9919 

214 

Two- .01 .0320 .0553 .0668 .0716 .0736 .0744 

Sided .05 .1602 .2763 .3340 .3582 .3680 .3720 
Tests .10 .3205 .5527 .6680 .7164 .7360 .7439 

One- .01 .0376 .0560 .0643 .0677 .0690 .0696 

Sided .05 .1879 .2799 . 3215 .3484 • 3451 . .3479 
Tests .10 .3759 .5599 .6430 .6768 .6903 .6958 

1,6 

Two- .01 .0192 .0280 .0322 .0338 .0345 .0348 

Sided .OS .0961 .1402 .1608 .1692 .1726 .1740 
Tests .10 .1923 .2804 .3215 .3384 .3451 .3479 



Table 3.9 continued 
m,n 2 3 4 s 6 7 

or 
n.m 6•1.367 6•2.263 6•2.936 6•3.477 6•3.930 Q-4.3i0 

One- .01 .0787 .1469 .1830 .1987 .2052 .2079 
Sided 1/21 .3748 .6996 .8715 .9464 .9773 .9901 Tests 2,5 
'l'Wo- .01 .0395 .0735 .0915 .0994 .1026 .1040 
Sided .05 .1973 .3673 .4576 .4968 .5131 .. 5198 
Tests 2/21 .3758 .6997 .8715 .9464 .9773 .9901 

One- .01 .1109 .2298 .2974 .3278 .3406 .. 3459 
Sided 1/35 .3168 .6566 .8498 .9366 .97.30 .9882 ~sts 3,4 

'° Two- .01 .0555 .1149 .1487 .1639 .1703 •. 1729 UI 

Sided .OS .2774 .5746 .7436 .8195 .8514 .-8647 
Tests 2/35 .3171 .6566 .8498 .9366 .-9730 .9822 

One- .01 .0407 .0625 .0727 .0770 .0787- .-0795 
Sided .OS .2034 .3126 .3637 .3850 .3937 .3973 
Tests .10 .4068 .6251 .7275 .7701 .-7874- .-7945 

1,7 
'l'Wo- .01 .0207 .0313 .0364 .0385 .0394 .-0397 
Sided .05 .1036 .1565 .1819 .1925 .1968 .-1986 
Tests .10 .2072 .3129 .3638 .3850 .3937 .3973 



Table 3.9 continued 
m.,n 2 3 4 5 6 7 
or 

n.m 6•1:.367 6•2.263 6•2.936 6•3.477 6•3.930 o-4.320 
one- .01 .0939 .1870 .2392 .2695 .2726 .2768 
Sided 1/28 .3353 .6677 .8542 .9381 .9735 .9884 Tests 2.,6 
Two- .01 .0470 .0935 .1196 .1348 .1363 .l.384 
Sided .05 .2351 .4674 .5979 .6738 .6815 .6919 
Tests 2/28 .3359 .6677 .8542 .9381 .9735 .9884 

One- .01 .1489 .3422 .4615 .5175 .5417 .5519 
Sided 1/56 .2660 .6110 .8241 .9242 .9673 .9856 

3.,5 Tests 
Two .01 .0745 .1711 .2307 .2588 .2108 .2760 U) 

°' Sided 2/56 .2661 .6110 .8241 .9242 .9673 .9856 Tests 

One- .01 .0436 .0688 .0811 .0863 .0884 .0893 
Sided .OS .2179 .3442 .4054 .4314 .4421 .4465 
Tests .10 .4358 .6884 .8108 .8628 .8842 .8931 

1.,8 
Two- .01 .0221 .0344 .0405 .0431 .0442 .0465 
Sided .OS .1107 .1722 .2027 .2157 .2210 .2233 
Tests .10 .2214 .3445 .4054 .4314 .4421 .4465 



Table 3.9 continued 
m#n k 2 3 
or 

n 1 m 6•1. 367 6•2.263 

One- .01 .0463 .0750 

Sided .05 .2315 .3749 
Tests .10 .4630 . 7498 

1#9 
Two- .01 .0235 .0375 

Sided .05 .1174 .1876 
Tests .10 .2347 .3752 

4 s 
6•2.936 6•3.477 

.0893 .0955 

.4465 .4774 

.8929 .9548 

.0446 .0477 

.2232 .2387 

.4465 .4774 

6 

6•3.930 
.0981 

.4903 

.9807 

.0490 

.2452 

.4903 

7 

6-4.320 
.0992 

.4958 

.9915 

.0496 

.2479 

.4958 

'° " 
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The alternative Bi states a eimple shift in location of 

two normal distribut1~na, even though the hypothesis B0 does 

not specify the common distribution function. If a para-

metric teat were to be employed with the alternative Bi_ 
(with µ.Y-µ.X) 0), the hypothesis would be B~• JJ.y-r.Lx • O. If 

we are willing to assume that both aeta of randcm variables 

are independent and noxmally distributed with equal but 

unknown variances, the two-sample Student's t test ia the 

uniformly most powrful teat against the one-sided alterna-

tive Hi. The teat is to reject H' when 
0 

, (3.27) 

where (m+n•2)S2 • !(X1-x) 8 + E(Y1•Y)8 , and tm+n-2,a is the 

upper a point of the Student's t distribution with (m+n-2) 

degrees of freed.cm. 

It is only natural to ccmpare the power functions of 

the one-aided nonpu-ametric teats of a0 veraus Bi with the 

power of this parametric teat. Under the alternative Bi, 
the left-hand side of (3.27), denoted by t•~ 2 p is diatri-

. m .... n-,k 
buted as a noncentral t variable with m+n•2 degrees of 

6k ,/iii 
freedom and noncentrality parameter pk• • The power 

lm+n 
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for significance level a is Pr[t~+n•2,Pic) tm+n-2,a]. The 

power functions for a• .01 and a• .05 can be read off fraa 

Neyman's (19351 pp. 133-134) aerie• of curves representing 

the probabilities of a Type II error. The reaults are 

presented in Table 3.10. 'Iha normal theory power is of 

course higher than the power functions given in Tables 3.1 -

3.5 and 3.8 for the one-sided nonparametric teats. 

Table 3.10. Power of the one-aided, two-sample Student's!, 
teat of B~ versus Bi 
2 3 4 5 6 7 

m-n 62•1.367 6;!•2.263 6§.-2. 936 6~•3.477 6§•3. 930 6,•7 .320 

.01 .os .12 .18 .24 .28 .33 
2 .05 .24 .47 .61 • 72 .80 .84 

.01 .13 .34 .52 .69 .79 .86 
3 .OS .42 .75 .90 .96 .98 .99 

.01 .21 .59 .80 .92 .96 .99 
4 .os .53 .87 .96 .99 - -
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Chapter IV 

LOCALLY MOST POWERFUL RANK 'J.'BSTS 

"'1'he idea of a statistical test of a hypothesis and the 

related concepts introduced by Neyman and Pearson have served 

aa a model for much of modern statistics. In nonparametric 

work it is seldom possible to apply all of these concepts. 

'l'bis results from the fact that for most of the alternatives 

that have been considered there do not exist optimum critical 

regions or-analytic tools for finding power function•. 'l'he 

sign test gives an illustration where it is poaaible to find 

the exact power function, on the other hand, this procedure 

is seldom optimum. " (Savage, 1956, p. 590). 

For the many two-sample nonparametric teats based on 

ranks, it is always possible, at least in theory, to find 

the probability under the alternative of any arrangement of 

the random variables by means of Hoeffding•a theorem. 'l'be 

only conditions are that the two population distributions, H 

and G,sbould both be continuous and functionally related. 

'J.'heoretically1 then, the most powerful two-sample rank test 

of the hypothesis that both samples come from the same popu-

lation can always be determined. However, at least some of 
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the order probabilities must be calculated if one wishes to 

ascertain which orderings belong in the rejection region. 

The evaluation of the resulting multiple integral ia often 

difficult. Also, one must have a relatively specific alter-

native in mind. 

Another criterion which can easily be applied to two-

sample nonparametric teats baaed on ranks is the concept of 

a "locally" moat powerful teet. Here the alternative distri-

bution functions contain an unspecified parameter, say e, 

which is equal to zero under the null hypothesis. The power 

of the rank test is maximized when this parameter 0 is very 

close to zero by maximizing the slope of the power function 

at the point where e is equal to zero. 'l'hu• a locally most 

powerful rank test admits a very general alternative. 

In this chapter, we will show that a general test sta-

tistic can be obtained which will yield a rank test locally 

most powerful against any alternative expressing a functional 

relationship between the distribution functions of the two 

samples. 'l'he specific relationship between the distribu-

tions will depend on the parameter 0. Sane of the properties 

of the resulting teat statistic will 'be discussed. 
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The locally moat powerful rank test will be found for 

two functional alternatives, both of which are similar to 

the earlier alternative of two extreme diat:rU,utions. The 

:resulting test statistics, which we will call the Gamma teat 

and the Pai teat, are considerably eaaier to apply than the 

most powerful :rank teat. Although the power functions of 

these teata would be expected to be lower than for the moat 

powerful rank teat,,they are found to.be quite cloae and 

indeed the aame in several cues. The Psi Teet was discuaaed 

briefly in Chapter II%. scme of its properties will ):)a 

inveatigated here. 

'.l'he methods of this chapter can also be applied to an 

alternative specifying the two distrU,ution functiona. Xf 

we consider the alternative that both populations are nor-

mally distributed with the same variance but different means, 

we can let the parameter 0 represent the difference between 

the population means. Terry's c1 teat is shown to be the 

locally moat powerful rank teat against this normal alter-

native, a result previously established :by' different methods 

(Terry, 1952). 
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4.1 Derivation .21 fest 

We are again studying the situation in which there are 

two independent samples; x1, x2, •.• , Xm and Y1, Y2, ... , Yn, 

of randan variables, with continuous cumulative distril>ution 

functions Hand G, respectively. ror the null hypothesis 

HI H • G, a general alternative involving the parameter e 
0 

is B*• B • Q(G,e), G • G, where e is restricted to lie in a 

the interval (O,o) for acme 6) o. This is much more gen-

eral than the alternative B • Q(G), G • G di&c\18sed previ-

ously, since B* represents a large class of alternatives. a 
The specific H function depends on the value asau~d bye. 

We will impose the restrictions that Q(G;0) is a continuous 

cumulative distribution function for all e in (0;6) and that 

Q(G,O) • G so that the null hypothesis B0 is true when e is 

equal to zero. 

We wish to derive (cf., Capon, 1961) the locally most 

powerful rank teat of the hypothesis B0 against the alterna-

tive H* fore) o, i.e., the test which maximizes the slope a 

of the power function at the point e • o. Again we can 

assume without loss of generality that G is uniform, 

G(u) • u, and then write the Q function as Q(u,0). The 
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density function of Q will be denoted by q(u,e), and 

oq(u,e)/oeje - ' by qe(u,,). 

Let us make the following assumptions, 

(1) For almost all u, the derivatives q(u,0) and q0(u,e) 

exist and are continuous with respect toe in the interval 

(ii) There exist functions M0 (u) and M1 (u), both integrable 

over (0,1) and independent of e, such that 

q(u,e) {M0 (u), 

for o { e { 6 • 

By means of Hoeffding's theorem, the probability under 

the alternative H* of any arrangement 'i of the N random a 

variables is given by 

m . 
Pe (z) - eo[lT q(UrJ'e) ]/(N) ' 

J•l m 
(4.1) 

where O { u1 { u2 ••• { UN { l are the order statistics 

for a random sample of aize N from rhe uniform distribution, 

and the r J (J•l,2., ••. ,m) are the ranks of the X randan vari-

ables in the combined sample. The expectation is taken 

under the null hypothesise• o. With aasumption (1), we 

can form the Taylor's aeries expansion of p0 ('i) about the 

point e • 0 and obtain 



105 

(4.2) 

Fran (4.1), since q(u,O) • 1, 

(4.3) 

Also, 

'l'he differentiation can be performed under the integral sign 

as a consequence of condition (11) and a well-known theorem 

(Cramer, 1946, p. 67). 'l'hen 

(4.4) 

'l'he remainder term R(u;e) is of a smaller order thane if 

the derivative op0/oe is continuous for all 8 in the admis-

sible range (Cramer, 19461 p. 122); We have 

a:: •mlntS1£.'8.;. S.: 2 lie (u,, ,e) fr q(u,, ,e) du1 du2 •.. d"N , · 
0 0 0 j •l J i•l i 

i,'j 

and condition (.i) ensures the continuity of the integrand 
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for almost all u. Then the integral is continuous for an 

arbitrary e0 in (0,6), and hence for all e in the interval. 

Therefore, 11m R(u,e) • o, and we write R(u,e) • 0(0). 
e...o e 

Substituting (4.2) and (4.4) in (4.1), we obtain 

(N) Pe(i') • 1 + 0 t [ lqe(Ur ,O)] + 0(0) 
m OJ~ J 

Pore sufficiently small, it follows that p0 (z)) p0 (z') if 

and only if 

2 e0 [q9 (u,, ,o) l > 2 e0 [qii (u,, , .,o> l 
J•l j j•l · j 

, 

where the rj are the ranks of the X randan variables in the 

arrangement 'i'. Thus we have proved the following theorem. 

Deorem 4.1. The locally moat powerful rank test of H I H•G 
0 

against the alternative B*a B • Q(u,e), G • u, 8 > a, is to a 
reject H when 

0 

(4.5) 

where c is a constant determined by the size of the teat. 

A convenient notation for this type of test statistic is 

(4.6) 
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where the z1 1 s are the indicator variables previously 

defined, and the a1 are constants. TN is known as a linear 

rank statistic. 

4. 2 Properties .21 .tu. ,:ept 

ror any linear rank statistic, it is easy to obtain 

exact moments under the null hypothesis. The first two of 

these can be determined from the following theorem,, (Savage, 

1956). 

Theorem 4.3. 
stant, z1 • 1 if the .!th ordered variable in the combined 

sample of size N corresponds to an X randan variable, and 

z1 • O otherwise. The exact mean and variance of TN under 

the null hypothesis are given by 

Proof. 

eo(TN) • ¼ ! ai • 
i•l 

-A ('I' ) • n [H a2 ... ( · a >•] N mN2 (N-l) 6 1 l 1 i•l . i•l 

(4.7) 

(4.8) 
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.1 N Corgllary 4.2.1. If BN • m 1!1 b1z1 is another linear rank 

statistic, the covariance between BN and TN under the null 

hypothesis is given by 

cov0 ('1111,8.l • 111111"1»-l) [II ! aibi • ! ai ! bi] • (4.9) 
. · 1•1 1•1 i•l 

We now turn to the asymptotic properties of the linear 

rank statistic (Chernoff and Savage, 19.e.8r Capon, 1961). 

For the purpose of the ensuing diacuaaion only, 'W8 will con-

sider the representation 

(4.10) 

where Q (u,e) and O (u,O) are the empirical distribution m n 
functions of the X and Y random variables respectively, and 

l\t(u,e) • mQm(u,e)/H + nQn(u,O)/N. 

Then a.<u,e) is the proportion of variables in the canbined 



109 

·sample which are less than or equal to u, and may assume the 

values O, 1/N, 2/N, ••• , H/N. 

o.i<u,0) is a step function which can take Jumps only at 

the points u1, u2, ••. , UN1 and will increase ~Y 1/m at u1 

if ui 1• an X random varial>le (z1 • 1). If u1 is a Y 

(z1 .. O), °m will remain constant. Then the representation 

of '1'9 in (4.10) means (von Mises, 1947) 

'1'11 • ! J11[ .. (u1,e)] • .1 ! JN(i/H) 
i•l · m m i•l · 

we see that (4.10) is equivalent to (4. 6) when a1 • JN(i/N). 

Although J8 need be defined only at o, 1/H, ••• , H/11, 

we will assume that J5 ia constant on <1;1 , ;1 so that its 

domain ia the entire interval (O,l). Denote by X. the 

interval where o ( 1\r(u,e) < 1. 

Chernoff and Savage have proved the following theorem 

concerning the asymptotic normality of linear rank statis~ 

ttcs. If the linear rank statistic is the locally moat 

powerful rank test., the two regularity conditions ued in 

the proof of 'l'heorem 4.1 must also :be satisfied. 

Theorem 4.3. If 

(iii) 0 ( lim m/n • r ( CD., 
H-ta> 
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_(iv) J(R) • lim JN(a) exists for O ( R ( 1 and 1• not 
N-,ao 

constant,where a• a8 (u) • mQ(u,0)/B + nQ(u,O)/B, 

(v) Sx.cJ.<a.> - J(J\rll dQ.(u,9) • Op(B-~) , 

(vi) 

(vii) 

J5 (1) • O(NJ:i) , 

1 , .,.<1> (R) , • Id f I (K(R(l-R) 1-i-½+6 
. dR for 1 • 0,1,2 and 

some 6) o, where K is a constant independent of 1,N,m,n, 

Q(u,e), and u, then 

where 

and 

lim Pr(TN - t(TN) 
N-t00 a('l'N) ( a] Sa ...!... 

• -co /2.,,. 

e(T•) • 11 J[a0(u)] q(u,e) du 
0 

-~t• dt , e (4.11) 

(4.12) 

S S u(l•v)J'(R0(u)]J'[a8 (v)]q(u,0)q(v,9)dud· 
.aa o(u(v(1 

a8(TN) ••• 1 I • 

+ ! ; J 1 Q( u, 9)[1-o(v, 9)]J' [ a9 (u) J J' [ a9 (v)] dudv 

(4.13) 

The expreasion J(R) can eaaily be determined for any 

locally moat powerful rank teat statistic by the following 

corollary. 
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co;o11ary 4.J.1. For the linear rank statistic TN• .1 I a1z1 m i•l 

J(R) • q01 (u,o)! • 
. u•R 

(4.14) 

Proof. JN(i/N) • a1 • t 0 [ .q8(u1,0)] • e0 [f(U1)] say, where 

f(u) • q0(u,O). Aaymptotiaally, we have t[f(U)] • f[t(U)]. 

But since u1 is the ,!th smallest order statistic of a sample 

of size N from a uniform distribution, 
1/N 

CorolAary 4.3.2. Under the null hypothesis, the mean and 

variance of TN are given by 

e0 (TN) • o 

~(TN)•;; (eo[q0(U,O)]2} 

(4.15) 

(4.16) 

Proof. Under H0 , e • O and Q(u,O) • u, so that a0 (u) • u 

and J[a0 (u)] • J(u) • q8(u,O) by (4.14). From (4.12) and 

(4.13), we have 
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~('1'8 ) • J (1 + !> jJ1 u(l•v)J' (u)J' (v)du dv 

• !i j)JJ1 J' (u)J' (v)dx du dv dy 

• !; S1 dy Sy dx Sy ;,• (u)du f J• (v)dv 
0 0 X U 

• .Jl. 11 d.y f ,[J(y) - J(x) 1• dx 
mN O 0 

• [ 51 tJ'I (y) d.y - 2 sl J(y) dy sl J(x) dx + 51 _,a (x) dx) 
0 0 0 0 

• ;; c51 .,a(x)dx - <51 J(x)dx) 2 ] 
0 0 · 

a: (TN) • iii 51 J8 (x) dx • 
0 

Using (4.14). this is equivalent to the form (4.16). 

Since verification of the regularity conditions (iv) -

(vii) for a particular a function may be a time-consuming 

operation, Chernoff and Savage have also proved the follow-

ing useful theorem. 

Theorem 4.4. If JN(i/N) is the expectation of the !,th order 

statistic of a sample of size N fran a population whose cum-

ulative distribution function is the inverse function of J 
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and condition (vii) is aatiafied, then (iv), (v) and (vi) 

are satisfied. 

Obviously, if J is to have an inverae which is a CQl'llu-

lative distribution function, JN(i/Jll) • a1 must be a non-

decreasing function of 1. For an alternative of the form 

B(,,e) G(a,O) for all .1, Where our test is to reject if 

TN) .(::,, a1 muat increase with 1. However, if the alternative 

states that the Y's are stochaatically larger than the X's 

and we still wish to reject for TH) c, a1 must be a non-

increasing function of 1. Since this is Qquivalent to 
N 

rejecting if E -a1zi ( c, we can assume without loss of 
1•1 

generality that JN(i/Jll) is a nondecreasing function of i for 

any alternative. 

In many cases, Theorem 4.4 greatly aimplifiea the appli-

cation of 'l'heorem 4.3 to the locally most powerful rank test 

statistic. This ia evident frcm the following corollary. 

Corollary: 4.4.1. Let J 8 (i/111) •j: e0 [q8(Vi,0)] (where the 

algebraic sign is determined so that J•(i/Jll) is a nondecreas-

ing function of 1). If q6(u,0) has an inverse and condition 

(vii) of Theorem 4.l is satisfied, then (iv), (v) and (vi) 

bold. 
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As an example of the use of the preceding theoretical 

discussion, consider the alternative B • Q(u, e) • (l-8)u + eu2 , 

O e f 1. ~is is a special case of the general alternative 

H(a) !. G(a) for all .I.• When e • 11 it reduces to Lehmann's 

alternative of one extreme distribution for the apecial case 

k • 2. 

Since qe(u,O) • 2u-l and e0 (U1) • 1/(N+l), the linear 

rank statistic in the form (4.6) ia 

.,_ . ! ! cfu - i1 "1 • 
i•l 

and we reject H0 if TN) c. This statistic is a linear 

function of the Mann-Whitney or Wilcoxon statistic which 

rejects when 

Wi, • ! bi • m(H+l) (T8+1)/2) 
1•1 

C • 

Although the exact mean and variance of TN can easily be 

computed, only the asymptotic properties will be discussed 

in this chapter. 

Prom (4.14), we have J(R) • 2R-l and the regularity 

condition (vii) is obviously satisfied. JN(i/N) • - 1, 

an increasing function of 1, can be considered as the expec-

tation of the ,!th order statistic of a sample of size N from 

i' 
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-1 the distribution PX(x) • J (x) • (x+l)/2, •l x 1. The 

other conditions of Theorem 4.3 are than satisfied. Prem 

(4.15) and (4.16), e0 (T11) • o and 

a8(T ) • ..J!. sl (2u-1) 2 du • ..JL 
ON dO 3ml1' 

so that the asymptotic mean and variance of WR under the 

null hypothesia are m(R+l)/2 and mn(N+l) 2 /12R. Under the 

alternative, since 

a (u) .m [(1-e)u + eu•] +~ u, we have B II a 

e!8 ('1'111) • r~ ~[(1•8)u+eu• l + i u) • (1•11+2W1) du 

-~ JR , 

and 

S S 4u(l-v)(l•B+2u8)(1-8+2v9)du dv 
o(u(v(l . a: (TN)• ,. 
+ .!1 \ s 4[(1•0)u+eu8 ][1•(1•0)v-ev•]du 

m o<u<v<1 
;. 45~ [15 + e• + (J-e8 ) J 

frc:a (4.12) and (4.13). The asymptotic power function could 

then easily be determined using (4.11) (cf., Section 5.1). 

In general, if the conditions (1) - (vii) are satisfied, 

and the mean and variance of the linear rank statistic TR 
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under both the hypothesis and the alternative exist and can 

be evaluated either exactly or asymptotically, the aaympt¢ic 

power of any locally moat powerful rank test can be deter-. 

mined from (4.11). 

Capon bas also demonstrated the asymptotic efficiency 

of the locally most powerful rank test based on a sequence 

of linear rank statistics T5 with a corresponding sequence 

of alternatives O(u,e5), with 08 getting closer and closer 

to zero as It gets large. That ie, the asymptotic relative 

efficiency of the T5 teat versua the likelihood ratio test 

of the same hypothesis and alternative is equal to one. 

4.3 AP2lic1tion to Speq&fig Altern1tive1 

We will now consider various alternative• of the foxm 

H • O(G,e) and detexmine the locally moat powerful rank test 

from Theorem 4.1. The exact power of the teats will be the 

sum of the probabilitiea under the alternative for those 

caaea lying in the rejection region, which are detexmined by 

(4.5). 

4.3.1 . .DI Gama Teat 

OUr first alternative Hf 18 a mixture of the two dis• 
. k k 

tr.ibution functions H • 1 - (l•I') , G • I' , assumed under 
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the earlier alternative s1 . We write 
k k k ~• B • (1•9)F + 0(1 - (l•F) ], G • F (0 ( 6 1) . 

Thus Bf reduces to &0 for e • O · and to u1 for e • 1. Taking 
k . . . 

G(u) • P (u) • u, the B function becomes 

or 

1/k k H • (l-e)u + e[l - (1-u ) ] 

• 

. ften Q(u~e) satisfies the requireMnta of a cumulative dis-

tribution function for all e as long aa r ia continuous. The 

density function 18 q(u,e) • l+ 8[ (l-u1/k)k•l(u•l/k)k-l_ 1] , 

and qe(u,O) • (l-ul/k)k•l(u-1/k)k•l • l • 

'l'he locally moat powerful rank teat for a general k 

rejects when 

where 

! e0 [ (1-u/lk> (u1-l/k> 11<-l z1 > c , 
i•l 

e [ (l-u 1/k) (u -1/k)) k-1.. 11 ('1(l- 1/kf-l u (1/k)•l 
o 1 i U.-1) l(S•i) iJ0 u 

• ui-l (l-u)•-1 du 

• II kf (k•l)( l)JrJI- (J/k)+i+(l/k)•2 ll )111-i 
(1-1) I (H-i) I J-0 J • jo u -u . du 

k-1 
• <1!l, 1 l <kj1> <-1>J rcJ:i + 1-1)/rtu + J:1, 

J-0 . . 
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Neglecting constants, the Qamma test for any k is to reject 

when 

In particular, the test rejects when 

z rt1- l.> 1 2 
(i-1) J ) C fork• 2, (4.17) 

(4.18) 

(4.19) 

fork• 4, and ao forth. 

Using (4.17), (4.18) and (4.19), we find that the crit-

ical regions farm• n • 2 and m • n • 3, k • 2, land 4, 

a• .01, .OS and .10, are identical to those obtained for 

the most powerful rank test against the alternative a1 • 

Similarly form• n • 4, a• .01, k • 2, 3 and 4. For 

m • n • 4, a• .OS and .10, the arrangements in the rejec-

tion regions and their probabilities of rejection to attain 

exact significance level a are as followat 



k•2 

k•3 
and 
k-4 

a• .OS 

(11110000),(11101000~ l 
( 11100100) J 
(11100010), .s 

(11110000),(11101000~ l 
( 11100100) J 
(11100010), .s 
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a• .10 

(llll0000),(11101000),(11100100~ 

(11100010),(11011000),(11100001) l 
(11010100) 

(11110000),(11101000),(111001001 
(11100010) 1 (11100001). 1 (11011000) l 

(11010100) 

The cases here are listed in descending order of the nwneri-

.cal values obtained for (4.17), (4.18) and (4.19). Note 

that the order differs slightly for a• .10, although the 

seven cases included are identical. For the locally most 

powerful test rN then, the cases in the critical regions for 

4/70 ( a ( 6/70 will depend on the value of k. On the other 

hand, it may be noted that, for all cases with a~ .10 and 

m • n 4, the most powerful rank test against a1, teat T1 

of Section 3.4.1, has the same critical region for all 

values of k • 2, 3 and 4. The critical orders for the other 

tests in Section 3.4.l are always independent of k. 

The power functions when e • 1 (then Hf• B1) for 

m • n • 2 and 3 are identical to those given for the test T1 

in Tables 3.l and 3.2. The results of the power canputa-

tiona form• n • 4 are given in Table 4.1. 
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Table 4.1. Power of the locally most powerful rank test 
against sr when e • 1., m • n • 4 

--

k a•.01 a•.05 a•.10 

2 .1705 .4830 .6513 
J .4293 .8456 .9452 
4 .5950 .9662 .9937 

The power here is, of course., lower than the corresponding 

values for '1'1 given 1n 'fables 3.3, 3.4 and 3.5 when a) 1/70. 

However, thia 1a to be expected, since e ia not really auf• 

ficiently emall. The teat is considerably easier to perform, 

as it requires no probal>il.t.ty calculations to determine the 

cases in the critical .. regions, and it is easy to predict 

which orders will yield the highest values of r8 • 

Although the function J(u) • -[(1-u1/k)(u•11k)]k•l does 
. •l - - - 1/(k-1) •k _: have an inverse; J (x) • [ l + (•x) ] , •a,( x ( CD, 

the condition (vii) of Theorem 4.3 is not satisfied for 

k 2. For example, if i • O; we must have 

I (1-u1/k,k•l u(l/k)•l, K[u(l•u)f'1½+6 

or K 2- I u (l/k)-½-6 (l•u) ½-6 (l•ul/k) k-1 I . 
Since for any k~ 21 o) o, (l/k)•~-6 ( o, the right hand 

aide of the inequality increases without bound as u o. 
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'l'hua the asymptotic properties of the Gamma teat atatiatic 
\ 

cannot be aaaessed by the'methods of thia chapter. 

4. 3 . 2 !b!,. .I!.! Test 

Another alternative depending on 8 is 

s••· B • l - (l-P) 1+e. G • r1• 0• 8 0 • 1 
or Bf*• B • Q(u.,8) • l • (l•ul/(l+B)) l+e • 8 O • 

where we have taken G(u) • rk(u) • u. 'this alternative 1• 

the reault of aubatituting k • 1+6 1 k~ 11 in the previoua 
6+1 alternative 8i and requiring G(u) • P (u) • u. As 8 

increases, the difference between the diatributiona Band G 

ia magnified. Since Q(u,O) • u, the null hypotheaia i• true 

if 8 • O. Differentiating., wa 01;,tain 

q(u,e) • [u-l/(l+e) - 1] 8 , and 

q0(u,O) • log [(1/u) - 1) • log ((1-u)/u] • 

The teat which maximizes the slope of the power function at 

8 • 0 then is to reject when 

for any k 1 • 

we have 

t 0 (log [(1-ui)/U1 ]} • e0 [1og (1-u1 )] - e0 (1og u1 ) 

• eo(log us-1+1> - eo(log u1> 

•-e0 (v1) + e0 (v8_i+l> , (4.20) 

where V • -log U and f(v) • •-v, v O. 
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The density of the J,,th order statistic of a sample of 

size N from an exponential population is 

( NI ( -v 1-1 (e-v)N-i+l 
fi v) • (1-l)l(N-1)1 l - e ) ' 

with the manent generating function 

• (:) 1 51 (1-z) i-l zN-t.-t dz 
0 

N ) Ml • ( i) 1 13( i, N-i•t+l • (N-i) I 

The cumulant generating function is 

1~ 
log 'fv (t) • log NI - log Ot-1) I - l log (H-t• j) • 

j-0 

By taking the first derivative of log Tv(t): and setting t • o, 
we obtain the cumulant (or manent) ae 

... 
!(Vi) - l 1/(N-J) - I J-1 • 

J-0 j•N-1+1 
(4.21) 

Substituting (4.21) into (4.20) we have 

(4.22) 

This value of a1 is very easy to canpute but can also be 

found, as is well known, from tables of the Pai Distribution, 



123 

where !(x) • d[log r(x)]/dx. Since 

r(x+l) • xr(x) • x(x-l)r(x-1), etc., we can write 

r(x+r+l) • (x+r)(x+r-1) •.• xr(x) 
-1 -1 -1 ] and T(x+r+l) • (x+r) + (x+r-1) + ••• +(x) + d[log r(x) /dx, 

. . •l •l -1 
or f(x+r+l) • f(x) • (x) + (x+l) + ... + (x+r) • 

Ueing tbia result, ! rl • f(i + (11-i) + 1) - f(i) , 
J•l 

2 j-l • f(ll - i + l + (i-l) + l) - f(ll-i+l) , 
J•S-1+1 

and 

(4.22) can be expreased aa !(Jf-i+l) .. f(i). !(x) baa been 

tabulated by Davis (1933, Tables VII• XII, pp. 291•367). 

The locally moat powerful rank teat against Hf* then 

1a to reject the null hypothesis when 
Ji. 

'• • .1 2 ( !(N•i+l) ..;. !(i)] z1 ) a • 
· m i•l 

(4.23) 

we will call this the Pai teat. The critical regions and 

power functions againat B1 were given in Section 3.4.1, and 

were aeen to be identical with those of the moat powerful 

rank test when m • n ~. 4. The descending order• of the 

values of (4.20) turn out to be equivalent to the orders of 

probabilities under B1 for the cases considered. When two 

different arrangement• are equally likely under H1, the 



124 

corresponding values of (4.20) are the eame. It is rather 

aw:priaing that the two teats are equally powerful for the•• 

small aample eiaes. The Pai test ha• the advantage of eue 

in ccmputation, and, of course, the critical region• are 

independent of th• value of k. 

t'ha exact mean and variance of 'flf are given by (4.7) and 

(4.8) •• 

and 

e ,,., • ½ 1 [( ! - f > J-11 • o 
o 1•1 J•i J4•1+1 · 

a:c,., • llllt(:.l) ! [ ( ! - 1 ) r 11• . 
1•1 J•i 

Although 0:ft8 ) aan easily be evaluated for aall •• a con• 

venient cloaad form for general• is not readily apparent. 

For the asymptotic propertiea, we mu.at first verify 

that the condition• of Theorem 4.3 are aatiafied. Bera 

.r.,(i/11) • -( ! - 1 l r 1 •-e0 (1og( (l-111)/1111 l , 
. j•1 J•N•i+l · . 

where the u1 are order atat1st1ca from a uniform diatril:N• 

tion. Letting X • • log[ (l•U)/U], J•U./11) can be conaidered 

the expected value of x1, the .&,th 01:dar statistic of a 

aample of size JI frcm the diatribution l'x(x) • ex/(ex+l), 

.. a, < x < a,. Since J(u) • • log[ (l•u) /u], we have 
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J J u ••/(a +l) , ao that FX 1• the inverae of J. By 

Theorem 4.4, 1'beorem 4.3 can be applied if condition (vii) 

1• aatiafied. For i • o, we need to verify that 

IJ(u)I • llog[(l-u)/u]I 

or K~ [u(l-u)]~-6 I [log(l-u) - log u]I • X(u) aay 

for O ( u ( 1. we can uaume that 6 ( ~- As u o, 
X(u) u 1, K(u) Or and X(~) • 0 1 X(u+,) • X(~-u). 

The maximum value of X(u) for O ( u ~~will occur for that 

u which aatiafiea 109[(1-u)/u] • 2/[(1•26)(1-2u)]. Depend-

ing on the value of 6, the critical point lies in the inter-

val (01 1/8). Since R(u) hu a finite maximum, the condition 

holda for 1 • o. 
For i • 1, we muat ahow that 

I -l I x[u(l-u)] <-3/ 2)+6 
u(l-u) 

or X~ (u(l•u)](l/2)·6 (u(l-u)]-l • (u(l-u)]~-6 • 
, 26-1 Th• maximum value of u(l-u) 1• 1/4, eo that if XL 2 , 

the inequality holdll. 

or 

For i • 2, I :j,?:!~• I~ x(u(l•u)](-5/2)+6 

X~ (1•2u)(u(l~u)]~6 • 
26-1 'fhe maximum value of the ri9ht hand aide la again 2 • 
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rrca (4.15), the uymptotia ••n of'• 1• zero under 

B, and the variance can J>e determined from (4.16). we muat o· 
evaluate 

~ 0 (!8 ) • ..11. 11 (lOCJ( (1-u)/u] )• du 
1111 0 . 

'l'hen 

• ..IL 11 (log(l-u) - log u]8 du • 
.. 0 

-11 [log(l-u) 1• du - 2 S1 log(l-u) log u du 
O O · l 

+ r (109 u) 8 du 
0 

• 2 sl (log u)• du+ 2 ! f sl_ log u du , 
0 r-1 O r 

~o<r.> • 2 + r .! f .-ry ye-Y cir 
• r•l r a, 

• 2 - [l - (.,,.a/6 - 1)] • .,,.a/6 • a:,,., • r/3mll • (4.24) 

From (4.11), under the null hypotbeau, the randaa vm:ial:)le 

!Ni3d/Tln 1a aaymptotically normally diatril:nlted with •an 

zero and vm:iance one. 
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i'er,:y (1952, lection 9) and lavage (1956, Section 7) 

have atuclied the correlation under the null hypothesia 

l:Mltween the Wilcoxon (or Mann•Wh.1.tney) atatiatic and the c1 
and Dn atatiatiaa, reapectively. lince the Pai teat WOllld 

be uaed for the 881118 type of alternative.a• the Wilcoxon 

teat, their correlation under B0 will al•o be of interest. 

Lat 

ao that 1,oth are 

baaed on large value• of the reapeative teat atatistica. Xt 

will be more convenient to find the correlation p(w11, '•) 

)letwesi "ii• 1 iz1/la and '•• Since "ii• S(S+l)/ll • 1fJi, 
we have p (W., t11) • • p (1r.;, '•) • 

Under a0 , the exact variance of •• 1• O:<w11)•n(Jl+l)/12m, ·~,. 

and the asymptotic var.t.anae of '• 1• O: ('f•) • n,,.a /Jmll from 

(4.24). The covariance between '• and 1\i can l,e found from 

(4.9). We have 

,., a iiii?.-1,t• 2, •11 • 2, •1 2, 11 • 
.. . i•l 1•1 .t.•l 

(4.25) 
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But 2 •1. 0 • 
i•l . 

and 

2 • 1 - 2 11, 2 - l , r 1 1 • 
i•l i . i•l j•i J•H-i+l 

where 

2 1 2 r 1 • 2 J-1 • 2 2 r 1 • • . . • • 2 J-1 
i•l J•1 J•l J•2 J•lf 

· t • <½ • ½ > • <½ • f • 1> • · · · • <; • : • · · • ;> 
• .l + .! + .t + + <1+1> 2 2 2 . •. 2 

• 11(1'+3)/4 # 

and 

2 1 2 J..,1 • 2 J-1 + 2 2 J-1 
J .... 1 • •.. • • l r1 1•1 J-S-1+1 j .. j•l 

• <¼ + -:- + . • + ~) + <,,!1 + .!r + • • + .!1) + • • + · <t> 
• ½(lt+l) + ½<B+2) + • • + ½(B+R) 

.1 [ _. + IOJ+:U J 
• 2 2 

• ll(lB+l)/4 • 

It then follow that 2 a 11 • •llf(Jfol)/2. 
i•l · 

these results into (4.25), we have 

Substituting 
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(4.26) 

Hence, the correlation coefficient 1a aeymptotically 

(4.27) 

or • 9550. l'bia reault ia luger than p(D•' w11) • .8660 and 

ali9htly aaller than p(a1, ••> • .9772. 

Bvaluation of the aaymptotic aaaenta under the altema• 

tiva from (4.12) and (4.13) ia difficult with the canplicated 

function• 

a (u) • a ( 1 - (l•ul/(l+e) > 1+91 + ! u , 
6 • . -

J(a8) • 109( (l•ll)/ll), :r• (ll8) • -(a<1-a) 1·1 , 

and Q(u,e) • 1 - (l•ul/(l+e) )l+e • ror the man, 

rl 1/(l+e) l+e t (Y. ) • J_ log[l-&t!dl•,a ... > •ma1 (u•l/(1 e) - 1) e du 
a JI . 0 m-a(l•ul/(1+8))1+9 +nu . - -

• ! S_1 log( (1-x) /xi dx • ! s.1 log( (1•x) /x] du 
. 0 .. 0 . 

where ax• nu+ m - m(1-ul/(l+6))1..f8. 'l'he first integral 

1• equal to zero. 'Nhen m • n, 

log(l-x) • log x • log['s -~u +'-1 (1-ul/(l+B))l+e] 

• log(AJ +Is u • lij (l•Ul/(l+e) )1+8] 

• log(l-y.) • log(l,ty) 
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where y • u - (l-ul/(1+6))1+8. But 

2 2r+l y 
109(1-y) - 109(1-+y) • - 2 2r+~ • 

r-0 
'l'h•n 

~.<,.> 

ftua 

~.<,.> 

• 2 2 1 ll[u-(1-ul/(l+e) )l+B]2r+l du 
r-o 2r+l O 

-2 2 1 2! (2r+l)(-l)Jri-UJ (l-ul/(1<46~(1+8U2r+l-J) d r-o 2r+1 J-O J J0 . . u 

•-2 2 11/'"~\2r+l)(-1)J ('I-VJ(l46) 6 d 
r-0 2r+l J~ J J0 · . ., v v. 

2r~ 
•-2 l 1+8 l (2r+l)(-l)J ~[J(l+B)+e+l). (1+8) r-o 2r+l J-0 J 

• (2r+1-J)+l] 

when • • n. l'or the variance when m • :Jl• VII need to find 
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c,a(t ) • li \ \ [l+u•(l-ul/(1+8) )1+8)-1 
a M S ~l . 

• (l-u+(l-ul/(1+8))1+6]-l(l+v-(l-vl/(l+e))l+e]-l 

• [l•v+(l-vl/(1+6))1+8)-1 

• (u(l-v)(u-l/(l+8)_1) 8(v-l/(l+8)_1) 8 

+ (1-(l•ul/(l+e) f'9J (l•vl/(l+e) r-W)du dv 

• l§(~+e>.• fl 51 (l:9x)e Ye [l+(l-x)1+e_x1+e]-1 
0 y 

[l~{l-x)l+8+xl+e]-l[l+(l-y)l+e_yl+8]-l[l-(1-y)l+8-tyl+e]•l 

e l+B 1+e e · (x (l•x) [ 1-(1-y) ] + (1-x )y(l-y) } dx dy 

• 16(l+e>• 11 51 (l•x) 9 ye (1-.[xl+e -(lr-x) l+e]• )•1 
• 0 y 

lie 1+6 •l 8 1+8 • (1-[y •(1-y) ]8 ) (x (l•x)[l•(l-y) ] 

( l+e 8 + 1-x )y(l-y) ) dx fly • 

The integral could 1:)e evaluated by n\lllerical Mthoda. 

It ahould 1:)e noted that the h.t. teat atatiatJ.c ia 

aim1lar to the D11 •tatJ.atic proposed by lavage. 'lh• DJI teat 
H II •l . 

reject• for large value• of 1~1 z1 J!i J , and 1• the .. · J 

locally moat powerful rank teat against the alternative 

A2•A1 A2 1•8 
B • r , G • r , A2 ) A1 ) o. Bare Q(u,e) • u 

where e • A1/A2 l • 
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4.3.3 Terry••~ Teat 

Theae alternatives Bf and Ht* are nonparametric in form 

since the only requiaite assumption ia that Fis a continu• 

oua cumulative distribution function. Terry's c1 teat 

discussed previously (Section l.3) is designed primarily for 

a parametric alternative expreaaing a change of location in 

the normal distribution. A uniformly moat powerful rank 

test does not exist for thia type of alternative, but 

Terry's c1 teat 1• the locally moat powerful rank teat. 

SJ.nee B can be expreaaed a• a function of G, the methoda of 

thia chapter can be, uaed to prove thia .1.mportant property. 

D,o;em 4.5. 'Iha locally moat powerful rank teat of the 

null hypotheaia B0 a B • G versua the alternative 

Hi• B(y) • f 
-Q) 

G(y) • Sy 
-a, 

1 .-a>< t-µy>. 4t , 
-1211',, 

1• Terry's a1 teat. 

c1 • ! e((8 ) ) c , 
J•l j 

The rule ia to reject when 

where a is a aonatant depending on a, 

e1 C2 .( • • . .( eN are order atatiatica £rem a sample of 

size 1f drawn from a population which ia normally diatributed 
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with mean zero and variance one, and ••• , •n u:e th• 

ranlal of the Y randm in the cm))ined •ample. 

Proof. Since G(y) 1• not the unifona diatl'ilNtion, make the 

prol:»uility integral tranafonaation G(y) • u that the 

random variable U i• uniformly diatrJbuted on the interval 
-1 'l'hen y • G ( u) • where the random variul• Y 1• 

normally With mean 1.1.y and variance of&. we have 

_..L(t-J1 >· 
e 2a- y dt = G(y + 1.1.y • 1.1.x> • 

-1 and Q(u,e) • G(G (u) + 6). 'l'hu• 

q(u,e) • 3Q(u,e)/au • 9(a-1(u)+6) • aa•1(u)/3u 

- i)'to·1 (u)+e-1,1.y>• . -·---------
- ~(G-1 (u)~y) 8 

a 

, 

and c)q(u,8)/c:)0 I • - -:a<o•1 (u) - 1.1.y> • 
8-0 

By (4.5)., the locally moat powarful rank teat reject• when 

- ! £(G-l(U ) - .. y) ) c • 
"' J•l rj 

(4.28) 

Since u1 u2 • • • u8 are order atatiatic• frcm a uniform 

population. Y1 Y2 ••• Y8• where Y • a·1 (u1), are 
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order atatiatica frcm a normal population with mean µ.y and 

variance o'J. Bence, t1 ( 42 ( •• • ( e11, where ei • (Y1-1,1,y)/o, 

are order atatlatic• frca a n0%1Dal diatrJ.l)ution with mean ._ 
zero and variance one. 'lhen (4.28) J:aecca•• - l t(C ) ) a • 

J•l rj 

Since 2 &(( ) + ! &(( ) • 0 • the teat atatiat.f.a can 
J•l rJ J•l 8 J . 

be written c 1 • ! &(( ) the the- 1• pra,,ed, 
J•l •J 

Uain9 the notation of (4.6), 'l'erxy'• a1 teat• reject• 

where c can be found in 'fer,:y'a 'l'ule 1 (pp. 358-361) or by 

uain9 table• of the expected value• of the order 

frcn a nomal diatribution (Barter, 1961). 

The exact mean and variance of the CJ. atatiat.t.c under 
B. 

the null UII HlL"O aad .i:1, r [&((;llJ2frCIIII 
1•1 

The- 4,2 becaw,a ! &(t1 ) • o. Sine• the aoncU.t.f.ona af 
i•l 

'theorem 4.3 are (Chernoff and aava9e, 1958), the 

aaymptotic of c1 i• normal under any alternative 

••wall•• under the null hypotheaia. the c1 teat 1• 
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at leaat efficient•• the Student•• t teat (Chernoff and 

lava9e., 1958), whic:h .t.a the uniformly moat powrfUl te1t for 

the alternative of a change of location 1n -- nomal di•• 
tribution. 
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Chapter V 

LAllGB-IANfLB P01f.Bl\ 

Although coapariaona of power funationa for •all aam-

plea may be conaidered the moat appraisal of the 

performance of teats, the caputationa are uaually tedioua. 

Probal:,ly for thia reuon, 11any ga~ are in tha .t.nfol'• 

mation ava.t.lal:,le on exact power ccaputationa. However, 

conaideral>le progre•• has been made with respect to 

power resUlta. In many caeea, the luge •ample power of 

nonparametric teats 1• easily computed becawae the teat 

atatiatic ia aaymptotically nonally dtatril>uted under the 

alternative. ror exmaple1 any linear rank atatiatic (4,6) 

i• aaymptotically nomal under both the hypotheaia and the 

alternative, a\ibJect to certain rec;JUlarity conditions, 

Although thi• paper i• primarily concerned with •••11• 

•ample power; aome aaymptot.t.c power reeulta are dea1ro1e 

for aanparatJ.ve purpoasea. S:&.nce the firat two lllOll9nta of 

the one•a1ded Mann•Wh.t.,ney or Wilcoxon teat and the Wald-

Wolfowitz runa teat are euily ccaputed and the uymptotic 

diatr11>ut1on• of tbeae teat stati•tici have been determined~ 

th• approximate power function• of these two teats will be 
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preaanted in thia chapter for_the previously conaJ.dered 

alternative a1 of two extreme d.Utri))ut.tona, when k • 2. In 

addition to the factor of eue 1n·acaputation, the•• two 

teat• were choaen since they are perhapa the mo,t widely 

uaed of the two-aample rank teata_for the purpoae of teating 

whetber two auaplea cane frOII the aame population. 

5.1 "'9D•J!hitqev S: Wilaoagn bit 

.,_. Jlann•Whitney or Wilcoxon teat i-2 haa J:,een •hown to 

N coneiatent against any alternative of the foi:a B(a)~G(a) 

for all .1. (Hann and Whitney, 19471 Lebunn, 1951) which 

certainly appliea to the alternative B • l • (l••)k., G • rk 

for any value of k) 1. 'Iha teat atatilltic ie the 8\111 of 

the ranka of the Y rande11 variabl•• (Wilcoxon teat), or, 

equivalently, V, the n\11111:)er of pair• (x1,;YJ) for which 

x1 ( Y J (Nann•Whitney teat) • lfbua w can define etatia• 
·• n tic u • -Z Z x1J where X,.J • 1 if x1 ( YJ and x1J • o i•l J•l • · 

otherw1••• 'Iha teat •tatiatic• are equivalent ainc:e 
a n n 

V • Z Z XiJ •'111-1) + <•.z•2) + ••• + (•n•n) • Z (aJ•J) 
i•l J•l - - .. - -- - J•l 

n 
• Z •j • n(n+l)/a, where a1 !. , 2 !_ · ••• •n are the . J•l .. 
ranlca of the. Y randc:a vuial>lea .in · the: combined eaaple. 
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Mann and Whitney (1947) have ahown that the diatril:na-

tion of the randm varial:>le [U - t(V)]/o(V) tenda to nor• 

malit}t with uro mean and unit variance under the null 

hypoth••i• B • a aa 11/n constant. Lehaann (1951) 

baa ahown that the approxillation 1• atill good when the firat 

two mcment• under the alternative are •~•tituted. 

and 

To campute the exact fir•t two mcaenta, we can uae 

t(U) • mn l'r(Xij • l) • mn Pr(X1 ( YJ) , 

c,a(u) • t(gll) - (e(u)]• , where 

(5.1) 

(5.2) 

t(gll) • mn e(x1J•) + mn(n-1) J~(x1Jxik) + m(m-l)n 1~(x1J~} 
+ t (XiJX_) • (5.3) i,'h, J ,-Qt -'blt 

Vndar the null hypothaaia B • o, Pr(x1 ( YJ) • ~, so that 

~ 0 (U) • mn/2, e0 (x1J•) • ~, J~~x1Jxi'k) • ~(xiJXiiJ) • 1/3, 
' 

to (XiJ~) • 1/4, 
i1'b,J~ 

Then o •tu)• mn(m+n+l)/12 by (6.2) 
0 . 

an-1 (5.3). 'l'hua, for example; the a level teat reject• when 

tt/mn .,. ; II 11 > 
[(m+n+l)/(12an)]~ •a ' 

where •a 18 defined by t'1&0 ) • ra • -~• dt • 1 • a .• 
. -a, '121' 

'k 'k Under the alternative a1a B • 1 - (1-r) , a• r, we 

have Pr(X1 ( Yj) • l • k ~(k,'k+l) frc:a (3.7). 'l'ben 
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(5.5) 

fran (5.1). Also from (3.7), it may be easily verified that 

+ k f3(k, 2k+l) (5.6) 

and g (Xij~k) • 1 - 2k f3(k,k+l)+ k8 [f3(k,k+l)] 2 • (5.7) 
ir}l,j,'k 

Upon substituting (5.5) - (5.7) into (5.3) and (5.2), -we have 

~(U/mn)• !;-(t3(k1 k+l)+ (m+n-2) f3(k,2k+l)- (m+n-lJk[t3(k,k+l)JI). 
(5.8) 

The power for any value of k, m, and n ia 

(5.9) 

where c is determined by (5.4). 

The power curve f3(T2) form• n, k • 2, a• .os, aa 

computed £ran (5.9) is shown in Figure 5.1. The first two 

moments under the alternative when k • 2 are 5/6 and 

(7N+ll)/(180mn). For small samples, the approximate power 

function yields .19 form• n • 2, .31 form• n • 3 1 and 

.43 form• n • 4. Thus, at least for these three caaea, the 

power is underestimated when the asymptotic theory is used. 
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5.2 Wald-Wolfowi~z RUM !!•t 

'lhe Wald-Wolfowitz rWl8 teat T7 (Wald and Wolfowitz, 

1940) ia al•o oonaiatant againat any alternative. 'l'he ran-

dcm variables., the number of run• of both X'• and Y's in 

the ccmbined sample, is asymptotically normal under the null 

hypothesis H • G aa well as under the alternative u 8 co, 

m/n • c, a constant. '.rhe first two moments of.£ under any 

alternative are given by the following theorem due to 

Wolfowitz (1949). 

f.beorem 5.1. Let R(x) and Q(x) be the cumulative diatribu-

tion functions from which m and n obaervationa respectively 

are obtained. 

Let 

Then 

(a) R(x) • {: 
x(O 
0 S. x.( l 
X) 1 

(b) Q(x) • {: X !_ 0 

x~l 

(c) the derivative q(x) of Q(x) exiat and be continuous 

and positive in the interval O .( x !_ l. 

(d) m/n • c, a constant. 

lim • 2 sl q(x) 
m-ea, eA (r/m) o c+q (x) dx , (5.10) 
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(5.11) 

Por the alternative a1 with k • 2, we must have 

x • 2F(x) - F2 (x) so that a(x) • x, Q(x) • F2 (x). But 

l - x • 1 - 2F(x) + F2 (x), or F(x) • 1 - - x. Then 

Q(x) • (1 - {l - x )•, and q(x) • [l - Ji - x ]/ll - x. 

'l'hus 

11m Pr[P.(m - 2'( (x] 
(26/45m) 

lim 0:(r//iii ) • 26/45, 
ID-t00 

• fl>(x) • r e -~t• dt 
-Cl) 21" 

and 

• (5.12) 

Under the null hypothesia H • G, the exact values of the 

first two moments are e0 (r) • m~n + 1, 

a2(r) 2mn(2mn - m - n) 
o • (m + n) 2 (m + n - 1) (Mood, 1950, p. 393), and the 

test form• n at significance level a• .05, for example, 

rejects when 

U/m - (l+flhg)l -1.645 
[(m-l)/m(2m-l)]J; 

(5.13) 

Thus fork• 2, we can easily compute the apprOXimate power 

for any a and any m • n using (5.13) and (5.12). The reaults 

form• n, k • 2, a• .05, are given in Figure 5.1, labeled 

'3(T7). For m • n 4, the asymptotic power function does 

not give reasonable resulta. 
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'lhe Mann•Whitney teat ia seen to 'be conaiderably more 

powerful than the Wald•Wolfowitz runs test~ although both 

have high power functions for thi• type of alternative. 
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Chapter VI 

SUMMARY AND CONCLUSIONS 

Although nonparametric statistical techniques have gen-

erally achieved widespread acceptance, more information is 

needed concerning their performance in various situations. 

'l'he amount of research activity in nonparametric statistical 

inference has grown rapidly each year, but no major break-

throughs have yet been achieved in determining small-sample 

po~r functions. Most of the results available are highly 

peculiar to the conditions assumed -- usually normal alterna-

tives, isolated sample sizes, and "convenient" significance 

levels. In this paper, comparisons are made under as similar 

and general conditions as possible and for the more usual 

significance levels by employing randomized tests. 

The problem of dealing with different conditions is 

particularly evident with the sign test and its parametric 

analogue, the.:!:. test, for density functions whose mean and 

median do not coincide. This is dealt with here (Chapter II) 

by considering three different sets of hypotheses of location 

for the sign test. The power functions of the one-sided, one-

sample sign test are computed for n • 10, a• .OS, against a 

wide range of approximately normal alternatives. The signifi-
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cance level is found to be not greatly affected by noncoinci-

dence of the mean and median. The difference between the 

power functions of the .t, test and the ordinary sign test under 

similar conditions is slight for highly leptokurtic distribu-

tions. When the sign test is performed on the median asap-

proximated by the mean and coefficient of skewness, the dif-

ference is almost negligible for positively skewed, highly 

leptokurtic distributions. 

The remainder of the thesis (Chapters III, IV, and V) is 

concerned with a different class of nonparametric techniques --

two-sample tests based on the ranks of the variables in the 

combined sample. Many rank tests have been proposed to test 

the null hypothesis that the two samples of sizes m and n 

are drawn from identical populations, but their power func-

tions have been compared almost exclusively against parametric 

alternatives. 

First, the nonparametric alternative of two extreme dis-
k k tributions has been considered, H1 c H • l - (l-F) , G • F, 

with F being unspecified. If F has a symmetrical density 

function, Hand Gare mutually symmetric distributions. More 

descriptively, their densities are mirror images. However, 

since F need not be specified, we can assume without loss of 

generality that Fis symmetric. Formulae are presented for 
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the calculations of the,probabilities under this alternative 

,of any of the ( arrangements of the N a m + n random vari-

ables and used to calculate the small-sample power functions 

of nine two-sample rank tests. The cases included are all 

combinations of k • 2, 3 1 and 4, m = n 4 for a= .01, .05 

and .10, and unequal sample sizes such that m + n 8 for 

a~ 1/(~) for one-sided tests and a~ 2/(~) for two-sided 

tests. Two of the test statistics, the Gamma test and Psi 

test, are new. The six one-sided tests considered, the most 

powerful rank test, Mann-Whitney or Wilcoxon, Terry's c1 test, 

the Psi test, Gamma test, and median test, are the most ap-

propriate for this alternative. The first four tests have 

the same power for all cases considered. The one-sided me-

dian test has by far the least power. Of the three two-

sided tests, the median, runs, and Wilcoxon tests, only the 

latter has high power. 

These results are compared with power functions of the 

same tests against normal alternatives such that the stand-

ardized difference corresponds to the difference between the 

two extreme distributions. The power against normal alterna-

tives is found to be slightly lower in most cases. 

No clear-cut and final conclusions can be drawn from the 

limited power functions calculated in this paper. A need for 
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more computations for larger sample sizes is clearly indi-

cated, Although extensive numerical work is involved, a 

complete picture of the performance of two-sample rank tests 

against these alternatives would seem worthwhile. 

The locally most powerful rank test against general 

functional alternatives has been derived and its properties 

studied. The technique is applied to two specific alterna-

tives, Hf: H • (1-9)Fk + Q[l - (l-F)k], G • Fk, and 

Hf*s H l - (1-F)Q+l, G • Fe+l, where Q 2,. O. Both are simi-

lar in spirit to the alternative of two extreme distributions. 

The resulting test statistics are called the Gamma test and 

the Psi test, respectively. The latter test rejects the null 
m 

hypothesis when j~l [f(N-rj+l) - !(rj)]) c 1 where the rj are 

the ranks of the X randan variables and !(x) • d [log r(x)]dx. 

The power of the Psi test turns out to be the same as that of 

the most powerful rank test for all cases considered. The 

critical regions are independent of any parameters, and the 

test is very simply performed. Under the null hypothesis, 

the correlationbetween the Psi and Wilcoxon test statistics 

is asymptotically 3/~, or .9550. 

Although the Gamma test is mainly of theoretical in-

terest, the Psi test seems to merit further investigation. 
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Determination of its power function for larger sample sizes 

would be desirable, as well as studies of its performance 

against other alternatives. Its asymptotic properties should 

be more completely examined. Further, an attempt should be 

made to determine how soon asymptotic properties provide a 

reasonable approximation to the test's behavior in moderate-

sized samples. 

In the final chapter, approximate power functions of 

the Wilcoxon and runs tests have been examined for equal 

sample sizes against the alternative of two extreme distri-

butions when k • 2. The Wilcoxon test is seen to be con-

siderably more powerful against this alternative, and its 

asymptotic power function provides a good approximation to 

the exact power for smaller samples. A similar study for 

the other tests would also be of interest. 
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ABSTRACT 

I. Small-Sample Power of the One-Sample Sign Test for 

Approximately Hormal Distributions. The power function of 

the one-sided, one-sample sign test is studied for popula-

tions which deviate from exact normality, either by akewness, 

kurtosis, or both. The terms of the Edgeworth asymptotic 

expansion of order more than •-3/ 2 are used to represent the 

population density. Three sets of hypotheses and alterna-

tives, concerning the location of (1) the median, (i) the 

median as approximated by the mean and coefficient of skew-

ness, and (3) the mean, are considered in an attempt to make 

valid comparisons between the power of the sign teat and 

Student's t test under the same conditions. Numerical re--
sults are given for samples of size 10, significance level 

.os, and for several combinations of the coefficients of 

skewness and kurtosis. 

II. Power of Two-Sample Rank Teats on the Equality of 

Two Distribution Functions. A cc:aparative study is made of 

the power of two-sample rank tests of the hypothesis that 

both samples are drawn from the same population. The general 

alternative is that the variables from one population are 

stochastically larger than the variables from the other. 



One of the alternatives considered ia that the variables 

in the first sample are distributed as the smallest of k var~ 

iatea with distribution P, and the variables in the second 

sample are distributed as the largest of these k --
k k H11 H • 1 - (1-P) , G • P. These two alternative distribu-

tions are mutually symmetric if r is symmetrical. Formulae 

are presented, which are independent of F, for the evaluation 

of the probability under a1 of any joint arrangement of the 

variables from the two samples. A theorem is proved concern-

ing the equality of the probabilities of certain pairs of 

orderings under assumptions of mutually symmetric popula-

tions. The other alternative ia that both samples are nor-

mally distributed with the same variance but different means, 

the standardized difference between the two extreme distri-

butions in the first alternative corresponding to the dif-

ference between the means. Numerical results of power are 

tabulated for small sample sizes, k • 2, 3 and 4, signifi-

cance levels .01, .05 and .10. The rank teats considered 

are the most powerful rank test, the one and two-sided Wil-

coxon teats, Terry's c1 test, the one and two-aided median 

tests, the Wald-Wolfowitz runs test, and two new tests 

called the Psi test and the Gamma test. 

The two-sample rank test which is locally most powerful 



against any alternative·expressing an arbitrary functional 

relationship between the two population distribution func-

tions and an unspecified parameter e is derived and its as-

ymptotic properties studied. 'l'he method is applied to two 
k specific functional alternatives, a1•1 H • (l-8)P + 

k k l+e l+e 8[1 - (1-F) ], G • F • and a1••• H • l - (l•F) • G • F • 

where 9 L 0 1 which are similar to the alternative of two ex-

treme distributions. The resulting test statistics are the 

Guna test and the Psi test, respectively. The latter test 

ia shown to have desirable small-sample properties. 

The asymptotic power functions of the Wilcoxon and Wald-

Wolfowitz tests are compared for the alternative of two ex-

treme distributions with k • 2, equal sample sizes and sig-

nificance level .OS. 
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