THE EMALL-SAMPLE POWER OF SOME NONPARAMETRIC TEST8

by
Jean Dickinson Gibbone, A.B., M.A.

Thesis mumitted to the Graduate Faculty of the Virginia Polytechnic Institute In candidacy for the degree of DOCYOR OF PHILOSOPEY

in

statistics

Beptember $196: 2$

Blacksburg, Virginia

TABLE OI CONHENTES

Chaptex page
I INTKRODUCTION 1
II SMALIM-SNMPLE POWER OF TEEE ONE-SAMPLE SIGE TEST FOR APPROXIMAEELY NORMAL DISLRIBUEIONS 9
2.1 The Edgeworth Expansion as Representation of an Approximately Mormal Distribution. 12
2.2 Student's t Test Applied to an Approxi- mately Mormal Distribution 15
2.3 Bign Test on the Population Madian 17
2.4 sign Test on the Population Median as Approximated by the Population Maan and Coefficient of skewness 26
2.5 sign Test on the Mean 32
2.6 Comparisons of Power for Equal Signifi- cance Levels 35
III 8MALI-8AMPLE PONER OF RANK TEESHS ON TEE EQUALITY OF TWO DISIRREUYION FUACHIONS 38
3.1. The Honparametric Alternative of One Extreme Distribution 41
3.2 The Nonparametric Alternative of Two Extreme Distributions 43
3.2.1 Properties 44
3.2.2 Probabilities of Rank Orders 48
Chaptex Page
3.3 Tests Used for Power Calculations 62
3.4 Powex Functions of the Rank Tests 70
3.4.1 Results for the Alternative of Two Extreme Distributions 70
3.4.2 Comparisons with Noxmal Alterna- tives 87
IV LOCALLY MOST POWBRTUL RANK TESTS 100
4.1 Derivation of Tent 103
4.2 Properties of the Test 107
4.3 Applications to specific Alternatives 116
4.3.1 The Gamma Test 116
4.3.2 The Psi Test 121
4.3.3 Terxy's C_{1} Test 132
V LARGE-BAMPLE POWER 136
5.1 Mann-Whitney or Wilcoxon Test 137
5.2 Wald-Wolfowitz Runs Test 141
VI SUMDARY AND COACLUBIOMS 144
ACKNOWLRDCHETMYB 149
BLBLIOGRAPEY 150
VITA 154

LIST OF TRABLES AND EIGURES

Pace
Table 2.1. $\operatorname{Pr}\left(X_{1}>M_{0} \mid H_{i}^{\prime}\right)=\operatorname{Pr}\left(X_{1}>\mu_{1}\right)$ for $P_{n}^{\prime}=0$, all values of x_{4}
Table 2.2. Power of the sign test of H_{0}^{\prime} : Nmin versus
$H_{1}^{\prime}: N=M_{1}>M_{0}$, for $n=10, P_{n}^{\prime}=\sqrt{n}\left(\mu_{1}-M_{0}\right) / \sigma$, $\alpha=.05$22

Figure 2.1. Comparisons of powar between the test and the sign tast of H_{0}^{\prime} Nin H_{0} varsus $H_{i}^{\prime}: N M_{1}>\mu_{0}, n=10, P_{n}^{\prime} m \sqrt{n}\left(\mu_{1}-M_{0}\right) / \sigma, a=05.05$
rable 2.3. $\left.\operatorname{Pr}\left(X_{1}\right\rangle M_{0} \mid H_{0}^{\prime \prime}\right)$ or $\left.\operatorname{Pr}\left(X_{1}\right\rangle M_{0} \mid H_{1}^{\prime \prime}, P_{n}{ }^{m}\right)$. . . 30
Table 2.4. Power of the sign test of $\mathrm{H}_{0} \mathrm{Mm} \mathrm{M}_{0} \mu_{0}-\frac{1}{6} \mathrm{~K}_{3} \sigma$ varsus $\left.H_{1}^{\prime \prime}: M-M_{1} \mu_{1}-\frac{1}{6} x_{3} \sigma\right) K_{0}$ n=10,
$P_{n}=\sqrt{n}\left(\mu_{1}-\mu_{0}\right) / \sigma, \alpha=.05$
Figuxe 2.2. Comparisons of power between the t test and the sign test of $H_{0}^{\prime \prime} M M_{0}=\mu_{0}-\frac{1}{6} x_{3}$ a versus $H_{1}^{\prime \prime}: \sin _{2}=\mu_{1}-\frac{1}{6} x_{3} \sigma>M_{0}, n=10$, $P_{n}=\sqrt{n}\left(\mu_{1} \mu_{0}\right) / \sigma, \alpha=.05$

Table 2.5. Comparisons of power between the t test and sign test when "true" $\alpha=.05$ and $n=10$, for an axact normal distribution and for $x_{3}=6, x_{4}=.4$.

Rage
Figure 3.1. Density functions of F, $G m^{2}$, and Hmi- $(1-\mathrm{F})^{2}$ when F is normal, uniform
and exponential 46

Table 3.1. Power against H_{1} for $m=n=2, k=2,3,4$, for the elght rank testa 79

Table 3.2. Power againat H_{2} for $m=n=3, k=2,3,4$, for the eight rank tests 80

Table 3.3. Power against H_{1} for mman, $k=2$, for the eight rank tests 80
rable 3.4. Power against H_{1} for mmne4, km , for the eight rank tests 81

Table 3.5. Power against H_{1} for $\mathrm{m}_{\mathrm{m}} \mathrm{nm}=4$, $\mathrm{k}=4$. 81
rable 3.6. Power againgt H_{1} for unequal sample elzes. 85
Table 3.7. Numerical values of $\delta_{k} \frac{28_{f}\left(x_{(k)}\right)}{\sigma_{f}\left(x_{(k)}\right)}$ for
$\mathrm{k}=2(1) 7$. 90
Table 3.8. Power function of H_{0} versus H_{i} for equal mample sizes 92

Table 3.9. Power function of H_{0} versus H_{i} for unequal ample sizes 93

Table 3.10. Power of the onemsided, twomemple student 's test of $\mathrm{H}_{\mathrm{o}}^{\prime}$ varsus H_{1}. 99

Pace

Table 4.1. Power of the locally most powerful rank test against gi when $\theta=1$, manm4 120

Figure 5.2. Approximate power functions of the MannWhitney and Wald-Wolfowitz runs tests againet $H_{1}: ~ H=1-(I-F)^{2}$, GmFe for equal sample sizea, $\alpha=.05$. 140

Chapter I

INTRODUCTION

Although some nonparametric statistical techniques have a long history, most of the theoretical research in the discipline of nonparametric statistical inference is comparatively recent. Many nonparametric tests in comon use have been advanced principally on intuitive grounds, and their properties are still not completely understood: In recent years, much interesting research has been done on the asymptotic properties of such tests, and methods of constructing tests with desirable large-sample properties have been developed. However, these investigations are of limited practical value unless it is known how soon asymptotic results provide a reasonable approximation in samples of moderate size.

In this dissertation; the emphasis is on exact smallsample properties, particularly on the power of a variety of nonparametric tests. Some asymptotic results are also obtained. Two new rank tests on the equality of two distributions are proposed and their properties examinea.

The main difficulty in determining the power of nonparametric tests is brought about by their very generality and the consequent abundance of reasonable alternatives to whatever
null hypothesis may be under consideration. In view of the central role played by the normal distribution in statistics, one approach has been to attempt the evaluation of power under suitable normal alternatives.

Most of the results presently available are for nonparametric tests of the null hypothesis that two samples of sizes m and n come from identical populations against the alternative of normal distributions differing only in location. Van der Waerden $(1952,1953$) has found the exact power of the x test, Mann-Whitney, Maximum Absolute Deviation, and runs tests for isolated sample sizes. Dixon (1954) used numerical methods to find the power of the Mann-Whitney, Maximum Absolute Deviation, median, and runs twomsided tests for sample sizes $m=n=3,4,5$. The exact power of the median test has been calculated by Barton (1957) for $m=n=9$. Teichroew (1954) has computed mathematically the probabilities of the two most extreme rank orderings under normal alternatives, for a wide range of small sample sizes.

Since the extensive numerical work required for normal alternatives has greatly limited the range of results, some empirical and approximate calculations have been attempted. For $m=n=10$, Epstein (1955) found the power of the Maximum Absolute Deviation, Epstein's Exceedances, median, and MannWhitney tests. Experimental comparisons of the latter test
and the test were made by Hemelrijk (1961) also for $m=n=$ 10. The probabilities of all possible rank orderings under normal alternatives have been determined empirically by Teichroew (1955) for $(m, n)=(2,3),(2,4),(3,3)$ and $(3,4)$. The power of the c_{1} test for $m=n=4$ was determined by Terry (1952) using random sampling. Tsao (1957) used a polynomial method of approximation to the normal distribution to find all the rank order probabilities for equal sample sizes of 2 and 3. A few isolated rank order probabilities have been approximated by Sundrum (1954).

For alternatives of changes in location and scale in the uniform distribution and translation in the exponential distribution, exact power functions have been found by Leone et al. (1961) for the median test and Massey's test, and by Haynam et al. (1961) for the Mann-Whitney and median tests, for a variety of selected sample sizes.

The power function of the twomsided, two-sample sign test has been extensively tabulated by Dixon (1953) for α near . 05 and .01 , and p in intervals of .05 , where p is the expected proportion of plus signs under the alternative. Previously, Walsh (1946) investigated the power of the onesample, one-sided sign test and compared some results against normal alternatives with the power function of the test for
small sample sizes and isolated significance levels. He also found that performing the sign test on a distribution whose mean and median do not exactly coincide does not affect the significance level graatly.

Although a number of investigators have attempted the evaluation of power functions of nonparametric tests with parametric alternatives, the range of sample sizes and significance levels is very limited. Most of the results are for nonrandomized decision rules. The power functions are consequently difficult to compare.

The first portion of this paper (Chapter II) deals with power function comparisons between the one-sample, one-sided sign test and Student's test, when the underlying distribution function is assumed to be close to normal, but deviating from the exact normal distribution either by skewness, kuxtosis, or both. The Edgeworth-Cramér expansion is used to represent the population distribution function. Numerical results are given for samples of size 10, significance level .05. Srivastava (1958) has performed the power calculations for the test under similar conditions.

The natural drawback to obtaining power functions against parametric alternatives is that the results apply only to the particular distribution assumed. Especially for
comparisons among similar nonparametric tests, distributionfree properties would be desirable. If the power functions are independent of any specific distribution, the alternative can also be termed nonparametric. Consider the null hypothesis that two random samples come from the same population. Many nomparametric tests based on the ranks of the variables, obtained by combining the two samples and arranging the variables in ascending order, have been proposed for this hypothesis.

Lehmann (1953) has employed a nonparametric alternative to compare the small-sample power functions of six two-sample rank tests of this bypothesis when $m=n=4,6, \alpha=.10$. The alternative is that the random variables from the second sample, Y, are distributed as the largest of k of the variates from the first sample, X, where the distribution of X is not specified. Although the results are interesting from a theoretical point of view, the two alternative distributions are usually quite dissimilar unless k is large.

The second and major portion of this paper (Chapters III, IV and V) is concerned with power functions of two sample rank tests of the hypothesis of identical populations. But here the alternative is that the random variables from the first sample, X, are distributed as the
smallest of k random variables from some unspecified continuous distribution F, and the random variables from the second sample, X, are distributed as the largest of these k. If the density function of F is symmetrical, then the densities of X and Y are mirror images. This is another nonparametric type of alternative for tests based on ranks, since the probability of any arrangement is independent of F.

Since the power functions of rank tests are found by summing the probabilities of the rejection orderings under the stated alternative, a practical method for their computation is needed. Hoeffding (1951) has introduced a general method of calculating the probability of any rank ordering, provided that the alternative expresses a functional relationship between the two distributions. However; extensive multiple integration is required to utilize,his result. Here; more direct formulae are derived for these probabilities under the alternative of two extreme distributions, and a theorem is proved concerning the equivalence of certain pairs of order probabilities.

The power functions of eight nonparametric rank tests are tabulated for $k=2,3$ and 4. The cases included are equal sample sizes such that $m=n \leq 4$ with significance levels of $.01, .05$ and .10 , and all unequal sample sizes such
that $m+n \leq 8$ for significance levels which place only one or both of the two extreme orderings in the critical region. These results are compared with power functions against the alternative that both samples come from normal populations differing only in location. The standardized difference between the two normal populations corresponds to the standardized difference between the two extreme distributions assumed under the previous alternative.

The alternatives of one and two extreme distributions are special cases of an even more general type of alternative. This is that the X random variables are distributed as some arbitrary continuous function of the distribution of the Y random variables and a parameter θ. The locally most powerful rank test against this general alternative is derived. Its asymptotic properties are investigated by applyIng the general results obtained by Chernoff and Savage (1958), Uzawa (1960) and Capon (1961). Some specific alternatives are considered. Two of these alternatives, which are similar in spirit to the alternative of two extreme distributions, suggest new rank tests. One of them, which I have called the Pai test, is shown to have same desirable smallsample properties.
since power function calculations for small samples are
limited by the tedium of the computation of the order probabilities under the alternative, large sample power comparisons are often made when the asymptotic distributions are not too difficult to obtain. Large sample power results for the Wilcoxon and Wald-Wolfowitz runs tests are given for the alternative of two extreme distributions with $k=2$, for equal sample sizes and significance level . 05.

Chapter II

8MALL-SAMPLE POWER OF THE ONE-8AMPLE 8IGN TEBT FOR APPROXIMATELY NORMAL DISTRIBUTION8

Suppose that we wish to test a hypothesis of location, where the data consist of a single sample of independent random variables from a population with a continuous distribution function. If the form of the population distribution function is known, a parametric test of location should be employed. On the other hand, the single-sample nonparametric tests of location require no further assumptions about the specific character of the distribution. But how powerful are these nonparametric tests?

When the common assumption of an underlying normal distribution is Justified and the variance is unknown, Student's t test can be used to test the null hypothesis that the population mean μ is equal to some specified value μ_{0}. For a one-sided alternative, i.e., μ is equal to μ_{1} which is greater than μ_{0} (or less than μ_{0}), the t test is the uniformly most powerful test of the null hypothesis. There is then no need to apply any other criterion since it is impossible to find a "better" test. In spite of this handicap,
the power functions of oneasample nonparametric tests of location against a normal alternative are sometimes compared with the power function of the optimum test.

However, in the more usual situation, the investigator does not "know" that his data come from a normal population, but he may have good reason to belleve that the frequency function is approximately normal. If the t test is applied anyway, how powerful are the results? Srivastava (1958) has tried to answer this query by computing the power function of the t test for an approximately normal distribution. He characterizes the deviation from the exact normal by degrees of skewness and kurtosis, as measured by the third and fourth cumulants, x_{3} and x_{4}, and represents the distribution function by the Edgeworth-Cramer asymptotic expansion. The question naturally arises as to how powerful appropriate nonparametric tests are in comparison with the test, when the population density function deviates from the normal.

In this chapter the power function of the single-sample, one-sided sign test will be determined for comparison with Srivastava's results. The main difficulty is the difference in hypotheses, since the theory of the sign test is based on
testing a hypothesis on the location of the median. For an exact normal distribution, the mean and median coincide so that the hypotheses are the same. But if normality holds only approximately, the hypotheses will differ according to the degree of skewness in the distribution. Therefore, three different sets of hypotheses are considereds
(1) $H_{0}^{\prime}: M=M_{0}, H_{1}^{\prime}: M=M_{1}>M_{0}$,
(2) $H_{0}{ }^{\prime \prime}: M=M_{0}=\mu_{0}-\frac{1}{6} x_{3} \sigma_{2} H_{1}: M=M_{1}=\mu_{1}-\frac{1}{6} x_{3} \sigma>M_{0}$, and (3) $H_{0}: \mu=\mu_{0}, H_{1}: \mu=\mu_{1}>\mu_{0}$,
and their power functions tabulated. The results in all cases indicate that the gap between the power functions of the parametric and nonparametric tests is narrowed considerably when the population is not an exact normal distribution. The calculations and conclusions are imnediately applicable to a comparison between the paired t test and the paired sign test:in a tworsample situation, when the underlying variable is taken to be the difference between corresponding measurements on the two populations.

2.1 The Edgeworth Expansion as Representation of an

Approximately Normal Distribution

A distribution function $F(y)$ for a random variable Y which is known to be approximately normal with mean 0 and variance 1 can be approximated by $\Phi(y)$ where

$$
\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-\frac{1}{2} t^{2}} d t
$$

However, a more accurate representation of $F(y)$ might be found in the form

$$
F(y)=\Phi(y)+R(y),
$$

where $R(y)$ is some convenient expansion of the remainder terms. We wish to obtain an expression for $R(y)$ in terms of the cumulants of the distribution of Y.

If Y is considered to be a linear function of the sum of N independent random variables, $X_{1}, Y_{2}, \ldots, X_{N}$, drawn from a population with mean 0 and variance 1 , and is defined by $Y=\sum_{i=1}^{N} Y_{i} / \sqrt{N}$, then we know by the central Limit Theorem that Y is approximately normally distributed with mean 0 and variance 1 when N is large. Let $\Psi(t)$ denote the characteristic function of Y and $\Psi_{1}(t)$ the characteristic function of each of the Y_{i}. Then

$$
\Psi(t)=\left[\Psi_{1}(t / \sqrt{N})\right]^{N}
$$

The cumulant generating function of the $X^{\prime} s$, where x_{r} ' denotes the \underline{x} th cumulant of the random variables Y_{i}, is

$$
\begin{aligned}
& \log \Psi(t)=N \log \Psi(t / \sqrt{N})=N\left[\frac{(i t)^{2}}{2 \mid N}+\frac{x_{3}^{\prime}(1 t)^{3}}{31 N^{3 / 2}}\right. \\
&\left.+\frac{x_{4}^{\prime}(1 t)^{4}}{4!N^{2}}+\ldots\right]
\end{aligned}
$$

$$
=\frac{(i t)^{2}}{21}+\frac{k_{3}^{\prime}(i t)^{3}}{31 N^{\frac{1}{2}}}+\frac{k_{4}^{\prime}(i t)^{4}}{41 N}+\cdots,
$$

so that $\Psi(t)=e^{-\frac{1}{2} t^{2}} \exp \left[\frac{K_{3}^{\prime}(i t)^{3}}{6 N^{\frac{3}{2}}}+\frac{x_{4}^{\prime}(i t)^{4}}{24 N}+\ldots\right]$,
or $\quad \Psi(t)=e^{-\frac{1}{2} t^{2}}\left[1+\frac{x_{3}^{\prime}(i t)^{3}}{6 N^{\frac{1}{2}}}+\frac{x_{4}^{\prime}(i t)^{4}}{24 N}+\frac{1}{21} \frac{k_{3}^{\prime 2}(i t)^{6}}{36 N}\right]$;
the terms neglected are at most of order $1 / N^{3 / 2}$. Applying the Fourier Integral transform to $\Psi(t)$ in (2.1), we may write

$$
\begin{gather*}
f(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t y} e^{-\frac{1}{2} t^{2}}\left[1+\frac{x_{3}^{\prime}(i t)^{3}}{6 N^{\frac{1}{2}}}+\frac{x_{4}^{\prime}(i t)^{4}}{24 N}\right. \\
 \tag{2.2}\\
\left.+\frac{k_{3}^{\prime 2}(i t)^{6}}{72 N}\right] d t
\end{gather*}
$$

Introducing the same transform for the normal distribution, $\varphi(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}}$, whose characteristic function is

$$
\begin{align*}
& \Psi(t)=e^{-\frac{1}{2} t^{2}}, \text { we have } \\
& \varphi(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t y} e^{-\frac{1}{2} t^{2}} d t \tag{2.3}
\end{align*}
$$

From (2.3) we observe that

$$
\begin{equation*}
\frac{\partial^{r} \varphi(y)}{\partial y^{r}}=\varphi^{(x)}(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(-i t)^{r} e^{-i t y} e^{-\frac{1}{2} t^{2}} d t \tag{2.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
f(y)=\varphi(y)-\frac{x_{3}^{\prime}}{6 N^{\frac{1}{2}}} \varphi^{(3)}(y)+\frac{x_{4}^{\prime}}{24 N} \varphi^{(4)}(y)+\frac{x_{3}^{\prime 2}}{72 N} \varphi^{(6)}(y) \tag{2.5}
\end{equation*}
$$

from (2.2) and (2.4). The order of each term is evident. However, a more convenient expansion is in terms of the cumulants of X, K_{r}. The relationship is $k_{r}=k_{r}^{\prime} / N^{\frac{x}{2}-1}$, so that (2.5) can be written

$$
\begin{equation*}
f(y)=\varphi(y)-x_{3} \varphi^{(3)}(y) / 6+x_{4} \varphi^{(4)}(y) / 24+x_{3}^{2} \varphi^{(6)}(y) / 72, \tag{2.6}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
F(y)=\Phi(y)-x_{3} \varphi^{(2)}(y) / 6+k_{4} \varphi^{(3)}(y) / 24+k_{3}^{2} \varphi^{(5)}(y) / 72 \tag{2.7}
\end{equation*}
$$

This expression for $F(y)$ is called the Edgeworth-Cramer asymptotic expansion (Edgeworth, 1905: Cramér, 1928, 1937). We will use it to represent the distribution function of a variable which is approximately normally distributed with zero mean and unit variance. Barton and Dennis (1952) have
shown that the restrictions $0 \leq x_{4} \leq 2.4$ and $x_{3}^{2} \leq 0.2$ must be imposed to ensure a positive definite unimodal density function.

A somewhat more practical expression of the Eageworth expansion is in terms of the Hermite polynomials. The general relationship between the coefficients $\varphi^{(r)}(y)$ and $H_{r}(y)$, the rth Hermite polynomial, is $\varphi^{(r)}(y)=(-1)^{r_{H}}(y) \varphi(y)$. For example, $H_{2}(y)=y^{2}-1, H_{3}(y)=y^{3}-3 y, H_{5}(y)=y^{5}-10 y^{3}+15 y$, etc. Substituting these coefficients into (2.7), we obtain

$$
\begin{array}{r}
F(y)=\Phi(y)-k_{3}\left(y^{2}-1\right) \varphi(y) / 6+k_{4}\left(y^{3}-3 y\right) \varphi(y) / 24 \\
+k_{3}^{2}\left(y^{5}-10 y^{3}+15 y\right) \varphi(y) / 72 \tag{2.8}
\end{array}
$$

2.2 Student's test Applied to an Approximately Normal Distribution

Consider a sample of n independent random variables which are identically and approximately normally distributed with mean μ and variance σ^{2}. The standardized random variables will be denoted by $Y_{1}, X_{2}, \ldots, Y_{n}$. With the density of Y represented by the Edgeworth-Cramér expansion (ignoring terms of order at most $1 / \mathbb{N}^{3 / 2}$), Srivastava (1958) has computed the power of the one-sample test of the null
hypothesis $H_{0}: \mu=\mu_{0}$ versus the one-sided alternative $H_{1}: \mu=\mu_{1}>\mu_{0}$ for $x_{3}=-.6(.2) .6$ and $k_{4}=-1(1) 2, n=10$, $P_{n}=\sqrt{n}\left(\mu_{1}-\mu_{0}\right) / \sigma=0(1) 4$. The upper five per cent point of the ordinary t distribution with nine degrees of freedom is used as the critical value of t. Thus the true significance level is .05 only for the case $x_{3}=K_{4}=0$. His results (Table 2, p. 427) show that the power increases with k_{4} for all k_{3} when $\rho_{n}<2$, and decreases with k_{4} when $\rho_{n}>2$. The included values of k_{3} have more effect than k_{4} on the "true" Type I error probabilities, which are represented by the table entries for $\rho_{n}=0$.

Since the true significance level changes with k_{3} and K_{4}, the results are difficult to interpret. Therefore, Srivastava has computed the power of the t test for an exact .05 significance level for the one case $k_{3}=.6, x_{4}=.4$, with $\rho_{n}=0(1) 4$ and $\rho_{n}=-4(1) 0$ (which would correspond to the alternative $\mu=\mu_{1}\left\langle\mu_{0}\right.$). The correct critical value of t is found using the inverse Cornish-Fisher expansion (Cornish and Fisher, 1937). The power functions are greatly affected by which value of t defines the critical region when P_{n} is small (see Table 2.5 infra). Both of these power functions for $k_{3}=.6,{k_{4}}_{4}=.4$, are compared with the power
of the .05 level t test for an exact normal distribution, $x_{3}=x_{4}=0$. The calculations indicate that the power of the t test for an approximately normal distribution with $x_{3}=.6, x_{4}=.4$, is considerably greater than for an exact normal distribution if $p_{n}>0$ (and less if $p_{n}<0$), when the correct critical region is employed for each distribution.

Although these latter comparisons made by Srivastava are interesting from a theoretical point of view, in actual practice the upper 5% point of the ordinary t distribution would generally be used to perform a test of the hypothesis. The investigator should be aware that the true significance level is .05 only if the distribution is exactly normal. In fact, unless the values of x_{3} and x_{4} can be assessed with reasonable accuracy for the given situation, the correct critical value of t for an approximately normal distribution cannot be determined.

2.3 Sign Test on the Population Median

A nonparametric test which is often used for a hypothesis of location when no assumptions are made about the underlying population distribution function is the onesample sign test. However, here the null hypothesis to be
tested is that the population median M is equal to M_{0}, $H_{0}{ }^{\prime}: M=M_{0}$, where we have a sample of n random variables, $x_{1}, x_{2}, \ldots, x_{n}$, which are independent and identically distributea. Under the null hypothesis, $\left.\operatorname{Pr}\left(X_{i}\right\rangle_{M}\right)=\operatorname{Pr}\left(X_{i} M_{M}\right)==_{2}$, regardless of the population density function, and we would expect half of the n differences $\left(X_{i}-M_{0}\right)$ to be positive and half to be negative. If the alternative is one-sicied, $H_{1}^{\prime}: M=M_{1}>M_{0}$, the sign test would require a rejection of the null hypothesis when the number of plus signs among the n differences $\left(X_{i}-M_{0}\right)$ is greater than r_{0}, where r_{0} is chosen so that $\sum_{r=r_{0}+1}^{n}\left(\frac{n}{r}\right)\left(\frac{1}{2}\right)^{n}=\alpha \quad$ (α being the probability of the Type 1 error).: A randomized decision rule may be used when necessary to obtain the exact desired signifieance level α. Then r_{0} is chosen so that $\sum_{r=r_{0}+1}^{n}\left(\frac{n}{r}\right)\left(\frac{l_{2}}{2}\right)^{n}$ is as close as possible to α, but still less than α. The test would be to reject always when $r>r_{0}$ and with probability p when $r=r_{0}$, where p satisfies

$$
\begin{equation*}
\sum_{r=r_{0}+1}^{n}\left(\frac{n}{r}\right)\left(\frac{1_{2}}{n}\right)^{n}+p\left(\left(_{r_{0}}^{n}\right)\left(\frac{1_{2}}{2}\right)^{n}=\alpha\right. \tag{2.9}
\end{equation*}
$$

The power of this test is given by

$$
\begin{equation*}
\sum_{r=r_{0}+1}^{n}\binom{n}{r} p_{1}^{\prime r} q_{1}^{n-r}+p\left(r_{r_{0}}^{n}\right) p_{1}^{r_{0}} q_{i}^{n-r_{0}}, \tag{2.10}
\end{equation*}
$$

where $p_{1}^{\prime}=\operatorname{Pr}\left(X_{1}>M_{0} \mid H_{1}^{\prime}\right)$ and $q_{1}^{\prime}=1-p_{1}^{\prime}$.
Thus in order to calculate p_{1}^{\prime} and evaluate the power function, some assumptions must be made about the population distribution under the alternative. If the assumed distribution is symmetrical about its mean, then mean and median coincide and $H_{0}=H_{0}^{\prime}, H_{1}=H_{1}^{\prime}$. We shall assume only that, under the alternative, the $X_{1}, x_{2}, \ldots, x_{n}$ are independent random variables, identically distributed with mean μ_{1} and variance σ^{2}, and the corresponding standardized variables are distributed according to the approximately normal density function defined in (2.6). The two sets of hypotheses will be identical if $x_{3}=0$. But it is always true that $M_{0}>M_{1}$ if and only if $\mu_{0}>\mu_{1}$, and $M_{0}<M_{1}$ if and only if $\mu_{0}<\mu_{1}$. This implies that the alternative H_{i}^{\prime} is true if and only if H_{1} is true and similarly for the two null hypotheses, so that the results of the two tests will be approximately the same.

Under our assumptions, we have

$$
\begin{equation*}
\left.p_{1}^{\prime}=\operatorname{Pr}\left[\left(X_{1}-\mu_{1}\right) / \sigma\right\rangle\left(M_{0}-\mu_{1}\right) / \sigma \mid H_{1}^{\prime}\right]=1-F\left[\left(\mu_{0}-\mu_{1}\right) / \sigma\right], \tag{2.11}
\end{equation*}
$$

where $F(y)$ is given by (2.7). If we define $\rho_{n}^{\prime}=\sqrt{n}\left(\mu_{1}-M_{0}\right) / \sigma$, then

$$
\begin{equation*}
p_{i}^{\prime}=1-F\left(-p_{n}^{\prime} / \sqrt{n}\right) \tag{2.12}
\end{equation*}
$$

The standardized difference for the t test of H_{0} was defined as $\rho_{n}=\sqrt{n}\left(\mu_{1}-\mu_{0}\right) / \sigma$, and the null hypothesis H_{0} is true whenever $\rho_{n}=0$. However, $\rho_{n}^{\prime}=0$ does not indicate that the null hypothesis H_{0}^{\prime} holds true unless the mean and median of $f(x)$ coincide. For example, when $k_{3}=0, f(x)$ is symmetrical and thus $M_{1}=\mu_{1}=M_{0}$ for $\rho_{n}^{\prime}=0$. If we also assume that the x_{i} have mean μ_{0} and variance σ^{2} under the null hypothesis, we can write $\rho_{n}^{\prime}=\sqrt{n}\left(\mu_{1}-M_{0}\right) / \sigma=\rho_{n}+\sqrt{n}\left(\mu_{0}^{-M_{0}}\right) / \sigma$, so that $\rho_{n}^{\prime}=\rho_{n}$ only when $\mu_{0}=M_{0}$. The relationship between M_{1} and M_{0} when $P_{n}^{\prime}=0$ depends upon the sign of K_{3}. When a distribution is skewed to the right $\left(\mathrm{K}_{3}>0\right)$, the median M is less than the mean μ, and the reverse inequality is true for a distribution skewed to the left $\left(\kappa_{3}<0\right)$. For $\rho_{n}^{\prime}=0$ $\left(\mu_{1}=M_{0}\right)$, if $K_{3}>0$, we have $M_{1}<\mu_{1}=M_{0}<\mu_{0}$ (and $p_{1}^{\prime}<\frac{1_{2}}{2}$, and if $k_{3}<0, \mu_{0}\left\langle M_{0}=\mu_{1}\left\langle M_{1}\left(p_{1}^{\prime}\right\rangle \frac{1}{2}\right)\right.$. Thus neither the null nor the alternative relationship remains valid for $k_{3}>0, \rho_{n}^{\prime}=0$, and the alternative is true when $x_{3}<0$, $P_{n}^{\prime}=0$. However, Table 2.1 shows that M_{1} is close to μ_{1} (which is equal to M_{0}), since p_{1}^{\prime} is not too far from $\frac{1}{2}$ for all k_{3} and k_{4}.

Table 2.1. $\left.\left.\operatorname{Pr}\left(X_{i}\right\rangle M_{0} \mid H_{1}^{\prime}\right)=\operatorname{Pr}\left(X_{i}\right\rangle \mu_{1}\right)$ for $\rho_{n}^{\prime}=0$, all values of K_{4}

K_{3}	-.6	-.4	-.2	0	.2	.4	.6
p_{1}^{\prime}	.5399	.5266	.5133	.5000	.4867	.4734	.4601

For the t test, when $\rho_{n}>0$, the one-sided alternative H_{1} always holds. However, when $\rho_{n}^{\prime}>0$, the alternative H_{1}^{\prime} may or may not be true, depending on the sign of k_{3} and the magnitude of p_{n}^{\prime}. If $p_{n}^{\prime}>0$ and $x_{3}<0$, we have $\mu_{0}<M_{0}<\mu_{1}<M_{1} s o$ that H_{1} holds. However, if the distribution is skewed to the right, $\rho_{n}^{\prime}>0$ implies any one of three inequalities: $M_{0}<\mu_{0}<M_{1}<\mu_{1}, M_{0}<M_{1}<\mu_{0}<\mu_{1}$, and $M_{1}<M_{0}<\mu_{1}<\mu_{0^{\circ}}$ The alternative H_{1}^{\prime} holds in the first two cases only.

The power functions have been computed from (2.8), (2.9), (2.10), and (2.12) for $n=10, \alpha=.05$, all combinations of $\rho_{n}^{\prime}=0(1) 4, k_{3}=-6(.2) .6, k_{4}=-1(1) 2$, and are presented in Table 2.2. The randomized decision rule for the sign test when $n=10$, exact $\alpha=.05$ in all cases, is found from (2.9). We reject always when $x>8$ and with probability $201 / 225$ when $r=8$. These computations of $F(y)$ and all further calculations involving the Edgeworth-Cramer

Table 2.2. Power of the sign test of $H_{0}^{\prime}: M=M_{0}$ versus

$$
\begin{aligned}
& H_{1}^{\prime \prime}: M=M_{1}>M_{0} \text { for } n=10, \rho_{n}^{\prime}=\sqrt{n}\left(\mu_{1}-M_{0}\right) / \sigma \\
& \alpha=.05
\end{aligned}
$$

K_{4}	$\rho_{n}^{\prime K_{3}^{\prime}}$	-. 6	-. 4	-. 2	. 0	. 2	. 4	. 6
-1	0	. 081	. 070	. 059	. 050	. 042	. 035	. 029
	1	. 214	. 202	. 173	. 169	. 138	. 130	. 110
	2	. 417	. 416	. 409	. 395	. 374	. 348	. 316
	3	. 651	. 662	. 668	. 668	. 663	. 652	. 630
	4	. 846	. 857	. 867	. 875	. 883	. 889	. 895
0	0	. 081	. 070	. 059	. 050	. 042	. 035	. 029
	1	. 242	. 229	. 197	. 194	. 159	. 151	. 116
	2	. 480	. 479	. 471	. 457	. 434	. 406	. 372
	3	. 714	. 725	. 730	. 731	. 725	. 715	. 699
	4	. 877	. 887	. 896	. 903	. 910	. 916	. 921
1	0	. 081	. 070	. 059	. 050	. 042	. 035	. 029
	1	. 273	. 259	. 224	. 220	. 183	. 173	. 148
	2	. 546	. 545	. 537	. 521	. 498	. 469	. 432
	3	. 774	. 785	. 790	. 790	. 785	. 775	. 760
	4	. 905	. 914	. 921	. 928	. 934	. 939	. 943
2	0	. 081	. 070	. 059	. 050	. 042	. 035	. 029
	1	. 306	. 291	. 253	. 249	. 208	. 198	. 171
	2	. 613	. 613	. 605	. 589	. 565	. 534	. 496
	3	. 831	. 840	. 845	. 845	. 840	. 831	. 818
	4	. 929	. 937	. 944	. 949	. 954	. 958	. 962

expansion have been determinad using the form (2.8). The Hermite polynomials have been evaluated with four decimal places in y when $y<1$ and four significant figures when $y \geq 1$. $\varphi(y)$ and $\Phi(y)$ were obtained to five decimal places from tables (National Bureau of standarde, 1953). The actual power calculations from (2.10) were carried out on the IBM 1620 computer with four decimal places in p_{1}^{\prime}. The program was written in FORHRAN language.

For all values of x_{4}, the powar increases as k_{3} incraases when $p_{n}^{\prime}=4$, increases for increasing x_{3} for negative values of x_{3} and decreases with increasing x_{3} for positive x_{3} when $P_{n}^{\prime}=3$, and decreases with increasing x_{3} when $P_{n}^{\prime}=0,1$ and 2. As k_{4} increases, $F(x)$ defined by (2.7) decreases since $\varphi^{(3)}(x)<0$ for $-\sqrt{3}<x<\sqrt{3}$, thus p_{1}^{\prime} increases and therefore the power increases for all P_{n}^{\prime} and all x_{3}. The power for positive values of x_{3} is higher than the powar for the corresponding negative value of x_{3} when $\rho_{n}^{\prime}=4$, for all values of x_{4}. The opposite $1 s$ true for all other values of P_{n}^{\prime}

The powar functione are not directly comparable
with srivastava's results (2able 2, p. 427) because of the difference in hypotheses, the difference in interpretation of P_{n} and P_{n}^{\prime}, and the fact that

Srivastava's significance level varies with K_{3} and K_{4} whereas here the α level is constant. In general, the power of the sign test compares favorably with Srivastava's results for the t test under the same alternative assumptions. The graphical comparisons in Figure 2.1 of the power of the sign test versus the t test for the different values of ρ_{n} or ρ_{n}^{\prime} for the four most extreme cases considered $\left(x_{4}=-1\right.$, $x_{3}=-.6 ;{k_{4}}_{4}=2,{k_{3}}^{2}=-.6 ; x_{4}=-1, k_{3}=.6$ and $k_{4}=2$, $\left.k_{3}=.6\right)$ demonstrate the close agreement between them, especially for $k_{3}=-.6, k_{4}=2$.

Due to the disparity between the hypotheses to be tested, the differences in power cannot be attributed entirely to a distinction between the test and the sign test. However, even though the results are not directly comparable, they are enlightening; when we assume normality as a requisite for performing the t test, the coincidence of the means and medians is implied, making H_{0} and H_{0}^{\prime} equivalent. In spite of the fact that exact knowledge of the population distribution is absent in most practical situations, normality is often assumed.

Figure 2.1. Comparisons of power between the t test and the sign test of $H_{0}^{\prime}: M=M_{O}$ versus $H_{1}^{\prime}: M=M_{l}>M_{O}, n=10$, $V_{n}^{\prime}=\sqrt{n}\left(\mu_{1}-M_{0}\right) / J, \alpha=.05$
2.4 Sion Test on the Population Median as Approximated by the population Mean and the Coefficient of Skewness

Comparisons of the power functions of the sign test and Student's test for the approximately normal distribution defined by (2.7) might be more relevant theoretically if the difference between the two hypotheses could be minimized. One possible approach is to express the median as a function of the mean and the coefficient of skewness.

An approximately normal distribution with mean μ, variance σ^{2}, and standardized third cumulant x_{3} has the median

$$
\begin{equation*}
M=\mu-K_{3} \sigma / \sigma, \tag{2.13}
\end{equation*}
$$

when terms of order at most $1 / \mathrm{N}$ are neglected. This result, due to Haldane (1942), may be established as follows. M is the solution of $F(M)=\frac{1}{2}$, where $F(M)$ is given by the first two terms of (2.8), i.e.,

$$
\Phi(M)-x_{3}\left(M^{2}-1\right) \varphi(M) / \sigma=\frac{1}{2}
$$

Using the fact that

$$
\Phi(M)=\Phi(0)+[\Phi(M)-\Phi(0)]=\frac{1}{2}+(\Phi(M)-\Phi(0)),
$$

we have

$$
\int_{0}^{M} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t-k_{3}\left(M^{2}-1\right) \varphi(M) / 6=0
$$

Then $e^{\frac{1}{2} M^{2}} \int_{0}^{M} e^{-\frac{1}{2} t^{2}} d t-x_{3}\left(M^{2}-1\right) / 6=0$. Integrating by parts once, we obtain

$$
\begin{equation*}
M+e^{\frac{1}{2} M^{2}} \int_{0}^{M} t^{2} e^{-\frac{1}{2} t^{2}} d t=k_{3}\left(M^{2}-1\right) / 6 . \tag{2.14}
\end{equation*}
$$

But since $F(y)$ is approximately the normal distribution with zero mean and unit variance, the median M will be very close to zero. We will assume that M is at most of order $1 / N^{\frac{1}{2}}$. Then, neglecting the terms of order at most $1 / \mathbb{N}$ in (2.14), we obtain $M=-x_{3} / 6$ for the median of the distribution of the standardized variable Y. The relationship (2.13) then follows immediately for the distribution of X.

Using the relationship given by (2.13), we would test the null hypothesis $H_{0}^{\prime \prime} M=M_{0}=\mu_{0}-x_{3} \sigma / 6$ against the alternative $H_{1}^{\prime \prime}: M=M_{1}=\mu_{1}-k_{3} \sigma / 6, M_{1}>M_{0}$, so that $H_{0}^{\prime \prime}$ and $H_{1}^{\prime \prime}$ are roughly the same as H_{0} and H_{1}. In a practical situation, then, some estimate of $x_{3} \sigma$ is necessary, but this may be possible from previous experience with the same type of data. A comparison of the power functions for H_{0} and $H_{0}^{\prime \prime}$ is appropriate in the case where (1) the test is used to test the null hypothesis H_{0}, even though we know, or are willing to assume, that the distribution is skewed but still approximately normal, in preference to some nonparametric test of
location, and (2) the sign test is used to test the null hypothesis $H_{0}^{\prime \prime}$ so that no assumptions need be made about the distribution (except for the value of $x_{3} \sigma$) to perform the test, but the same assumptions as for H_{0} are made to determine the power.

If M_{0} is the true median of the distribution, $\operatorname{Pr}\left(X_{1}>M_{0}\right)=\frac{1}{2}$ regardless of the type of density function. However, M_{0} is only approximately equal to $\mu_{0}-x_{3} \sigma / \sigma$, where μ_{0} is the true mean, since the terms of order at most $1 / \mathbb{N}$ have been neglected in obtaining this approximation. Let

$$
\begin{align*}
p_{0}^{\prime \prime} & \left.=\operatorname{Pr}\left(x_{i}>M_{0} \mid H_{0}^{\prime \prime}\right)=\operatorname{Pr}\left[\left(x_{i}-\mu_{0}\right) / \sigma\right\rangle\left(M_{0}-\mu_{0}\right) / \sigma \mid H_{0}^{\prime \prime}\right] \\
& \left.=\operatorname{Pr}\left[\left(X_{i}-\mu_{0}\right) / \sigma\right\rangle-K_{3} / \sigma \mid H_{0}^{\prime \prime}\right] . \tag{2.15}
\end{align*}
$$

If the null hypothesis is true, we would expect np" of the n differences $\left(X_{1}-\mu_{0}+k_{3} \sigma 6\right)$ to be positive and $n\left(1-p_{0}^{\prime \prime}\right)$ to be negative. The sign test is to reject when $x>r_{0}$, where $\sum_{r=r_{0}+1}^{n}\left({ }_{r}^{n}\right) p_{0}^{\prime r}\left(1-p_{0}^{\prime \prime}\right)^{n-r}=\alpha$. Now this implies that a different critical region is needed for each value of k_{3} to have an exact significance level of α. Furthermore, we must assume the population distribution function of the X_{i} under the null hypothesis in order to perform the sign test, which is typically a nonparametric test. If we assume that
the standardized X_{1} are approximately normally distributed according to (2.7) under $H_{o}^{\prime \prime}, p_{o}^{\prime \prime}=1-F\left(-K_{3} / 6\right)$. Table 2.3 shows that $p_{0}^{\prime \prime}$ ranges between .4925 and .5075 when $-1 \leq x_{4} \leq 2$, $-.6 \leq k_{3} \leq .6$, and is exactly equal to .5000 only when $x_{3}=0$. 8ince these values of $p_{0}^{\prime \prime}$ are very close to $\frac{1}{2}$, and since in actual practice the sign test would be performed assuming that $p_{0}^{\prime \prime}=\frac{1}{2}$ so that it is a nonparametric test, we will use the single critical region determined by (2.9). Then the test for $n=10, \alpha=.05,18$ exactly the same as for H_{0}^{\prime}, ㄹ.e., to reject always when $r>8$ and reject with probability 201/225 if $x=8$.

The power function of the sign test against the alternative $\mathrm{H}_{1}^{\prime \prime}$ is given by (2.8) and (2.10), with p_{1}^{\prime} replaced by $p_{1}^{\prime \prime}$. Here

$$
\begin{align*}
p_{1}^{\prime \prime} & \left.\left.=\operatorname{Pr}\left(X_{1}\right\rangle M_{0} \mid H_{1}^{\prime \prime}\right)=\operatorname{Pr}\left[\left(x_{1}-\mu_{1}\right) / \sigma\right\rangle\left(M_{0}-\mu_{1}\right) / \sigma \mid H_{1}^{\prime \prime}\right] \\
& \left.=\operatorname{Pr}\left[\left(x_{1}-\mu_{1}\right) / \sigma\right\rangle\left(\mu_{0}-\mu_{1}\right) / \sigma-x_{3} / 6 \mid H_{1}^{\prime \prime}\right]=1-F\left[\left(\mu_{0}-\mu_{1}\right) / \sigma-k_{3} / 6\right] \\
& =1-P\left(-p_{n} / \sqrt{n}-k_{3} / 6\right), \tag{2.16}
\end{align*}
$$

with ρ_{n} defined as before for H_{0} When $\rho_{n}=0, p_{1}^{\prime \prime}=p_{0}^{\prime \prime}$ so that the entries in Table 2.3 can also be interpreted as the values of $\left.p_{1}^{\prime \prime}=\operatorname{Pr}\left(X_{1}\right\rangle M_{0} \mid H_{1}^{\prime \prime}, P_{n}=0\right)$. These $p_{1}^{\prime \prime}$ values are much closer to $\frac{1}{2}$ than the corresponding entries for p_{1}^{\prime} in

Table 2.3. $\operatorname{Pr}\left(X_{i}>M_{0} \mid H_{0}^{\prime \prime}\right)$ or $\operatorname{Pr}\left(X_{i}>M_{0} \mid H_{1}^{\prime \prime}, P_{n}=0\right)$

$$
k_{3}
$$

	K_{4}	-.6	-.4	-.2	0	.2	.4	.6
	-1	.5074	.5040	.5018	.5000	.4982	.4960	.4926
	0	.5024	.5007	.5001	.5000	.4999	.4993	.4976
1	1	.4975	.4974	.4984	.5000	.5016	.5026	.5025
	2	.4925	.4941	.4968	.5000	.5032	.5059	.5075

Table 2.1 for H_{1}^{\prime}. When $\rho_{n}=0, \mu_{1}=\mu_{0}$ and $M_{1}=M_{0}$, so that the null hypothesis H_{0} is true; $H_{0}^{\prime \prime}$ is approximately true, since M_{0} is quite close to the true median of the distribution $F(x)$. The power functions of the sign test of $H_{0}^{\prime \prime}$ versus $H_{1}^{\prime \prime}$ have been computed for the various combinations of x_{3} and $k_{4}, n=10, P_{n}=O(1) 4$, and are presented in Table 2.4. The exact significance level corresponds to the entries for $P_{n}=0$. It ranges between .045 and .055 .

The results in Table 2.4 seem to indicate that, in general, changes in k_{4} tend to have more effect on the power function than changes in K_{3}. This is eapecially evident for small values of ρ_{n}. The power increases as K_{3} increases for all K_{4} and all ρ_{n} except $\rho_{n}=0$, 1 . The values for $\rho_{n}=0$ are all close to .05 since p_{1} is close to $\frac{1}{2}$ when $p_{n}=0$. Like the power function of H_{0}^{\prime} in Table 2.2, the power

Table 2.4. Power of the sign test of $H_{0}^{\prime \prime} M=M_{0}=\mu_{0}-\frac{1}{6} x_{3} \sigma$

$$
\begin{aligned}
& \text { versus } H_{1}^{\prime \prime} M=M_{1}=\mu_{1}-\frac{1}{6} x_{3} \sigma>M_{0} \text { for } n=10, \\
& \rho_{n}=\sqrt{n}\left(\mu_{1}-\mu_{0}\right) / \sigma, \alpha=.05
\end{aligned}
$$

K_{4}	$\rho_{n}^{x_{3}}$	-. 6	-. 4	-. 2	0	. 2	. 4	. 6
-1	0	. 055	. 053	. 051	. 050	. 049	. 047	. 045
	1	. 164	. 166	. 169	. 169	. 168	. 165	. 159
	2	. 346	. 366	. 382	. 395	. 404	. 408	. 410
	3	. 577	. 612	. 642	. 668	. 691	. 713	. 734
	4	. 793	. 823	. 853	. 875	. 898	. 920	. 940
0	0	. 052	. 050	. 050	. 050	. 050	. 050	. 048
	1	. 181	. 186	. 191	. 194	. 195	. 193	. 188
	2	. 401	. 423	. 442	. 457	. 467	. 473	. 475
	3	. 645	. 679	. 707	. 731	. 751	. 770	. 788
	4	. 835	. 861	. 883	. 903	. 922	. 939	. 955
1	0	. 048	. 048	. 049	. 050	. 051	. 052	. 052
	1	. 199	. 207	. 214	. 220	. 224	. 224	. 221
	2	. 459	. 484	. 505	. 521	. 533	. 540	. 542
	3	. 712	. 743	. 769	. 790	. 808	. 823	. 838
	4	. 873	. 894	. 911	. 928	. 942	. 956	. 968
2	0	. 045	. 046	. 048	. 050	. 052	. 054	. 055
	1	. 218	. 222	. 240	. 249	. 256	. 258	. 257
	2	. 519	. 547	. 571	. 589	. 601	. 609	. 611
	3	. 777	. 804	. 827	. 845	. 859	. 871	. 883
	4	. 908	. 924	. 935	. 949	. 960	. 970	. 979

increases for all ρ_{n} and all k_{3} as k_{4} increases, and for the same reason as stated there. The power functions in Table 2.4 are greater than the corresponding values in Table 2.2 in all cases for which $x_{3}>0$, and less than the corresponding values for $k_{3}<0$. They are, of course, the same when $\mathrm{K}_{3}=0$.

A comparison with Srivastava's results reveals that although the power of the sign test of $H_{0}^{\prime \prime}$ is much less than the power of the t test of H_{0} when $x_{3}<0$, the gap is narrowed considerably when $k_{3}>0$. Even these reaults are difficult to compare directly because of the larger variation in significance level for the test. The close agreement of the power functions for $k_{3}>0$ is demonstrated graphically in Figure 2.2 for the cases $x_{3}=.4, k_{4}=2$ and $x_{3}=.6$, $x_{4}=2$.

2.5 sign Test on the Mean

There is still another possibility for minimizing the difference between the hypothesis H_{0} for the test and the hypothesis to be tested using the sign test, and this is to make the two hypotheses exactly the same, This might be called a sign test on the mean. Thus we are testing the

$K_{3}=.4, K_{4}=2$

$$
\mathrm{K}_{3}=.6, \quad \mathrm{~K}_{4}=2
$$

Figure 2.2. Comparisons of power between the t test and the sign test of $H_{0}^{\prime \prime}: M=M_{0} \neq \mu_{0}-\frac{1}{6} i_{3} \sigma$ versus $H_{1}^{\prime \prime}: M=M_{1} \neq \mu_{1}-\frac{1}{6}{ }_{3} \sigma>M_{0}, n=10, r_{n}=\overline{\sqrt{n}}\left(\mu_{1}-\mu_{0}\right) / \sigma$, $\alpha=.05$
null hypothesis $H_{0}{ }^{2} \mu=\mu_{0}$ against the alternative $H_{1}: \mu=\mu_{1}>\mu_{0}$. since we must assume that the n random variables are independent and approximately normally distributed with mean μ and variance σ^{2} : even to perform the sign test of H_{0}, this test no longer belongs in the category of nonparametric tests. The sign test on the mean would be to reject if there are too many plus signs among the n differences ($X_{i}-\mu_{0}$). The problem is how to define "too many" in order to determine the critical region.

Let us use the notation $\left.p_{0} \boxminus \operatorname{Pr}\left(X_{i}\right\rangle \mu_{0} \mid H_{0}\right)$ and $\left.p_{1}=\operatorname{Pr}\left(X_{i}\right\rangle \mu_{0} \mid H_{1}\right)$. Then the p_{0} for the various combinations of x_{3} and x_{4} are the same as those given in Table 2.1 for H_{0}^{\prime}, and the critical region for an exact significance level α would differ for each value of k_{3}. In a practical situation, we would probably use the sign test determined by $p_{0}=\frac{1}{2}$, realizing that this implies that the significance levels vary with the value of x_{3}. The p_{1} values are given by $\left.p_{1}=\operatorname{Pr}\left[\left(x_{1}-\mu_{1}\right) / \sigma\right\rangle\left(\mu_{0}-\mu_{1}\right) / \sigma\right]=1-F\left(-p_{n} / \sqrt{n}\right)$. For $n=10$, then, the power functions for this test are the same as those given by Table 2.2 for the various combinations of x_{3} and k_{4} with ρ_{n}^{\prime} replaced by ρ_{n}, and the significance levels are represented by the table entries for $p_{n}=0$. They range between . 029 and . 081 .

The power function is still difficult to compare with Srivastava's results since now the significance level is varying for both tests.

2.6 Comparisons of Power for Equal Significance Levels

Another interesting theoretical comparison between the power functions of the sign test and the test can be made by equalizing the significance levels as well as the hypotheses. Srivastava has calculated the power of the t test when the "true" significance level is . 05 for $n=10$, $x_{3}=.6, x_{4}=.4$, and $x_{3}=k_{4}=0, p_{n}=0(1) 4$ and $p_{n}=-4(1) 0$. The negative values of ρ_{n} apply if we are considering a onesided alternative where $\mu_{1}<\mu_{0}$. For the last test discussed, the sign test on the mean, $p_{0}=.4601$ when $x_{3}=.6$ and $K_{4}=.4$. The sign test for an exact .05 significance level when $p_{n}>0$, found using (2.9), is to reject the null hypothesis H_{0} always when $r>7$ and reject with probability .22141 if $x=7$. The power is given by (2.10) and (2.8). When p_{n} is negative, we should reject the null hypothesis when there are too few plus signs (or, equivalently, too many minus signs) among the n differences $\left(X_{i}-\mu_{0}\right)$. Using the same notation as before, the test for $n=10, \alpha=.05$, is to
reject always if $r<2$ and reject with probability .43474 if $x=2$.

For the previously considered sign test of $H_{0}^{\prime \prime}$, $p_{0}^{\prime \prime}=.4995$ when $k_{3}=.6, k_{4}=.4$, and the 05 level sign test would reject always if $r>8$ and reject with probability .90064 if $x=8$ for $\rho_{n}>0$. When $p_{n}<0$, the test is to reject if $r<2$ and with probability .88608 if $r=2$.

The results for both of these tests are presented in Table 2.5, along with the power of the t test of H_{0} when the population density is given by (2.6) with $x_{3}=.4$, $x_{4}=.6$. The power functions of the sign test and the t test for an exact normal distribution (i.e., $k_{3}=k_{4}=0$) are also given.

The sign test compares quite favorably, especially the test of $H_{0}^{\prime \prime}$. The power for the gign test of H_{0} when ρ_{n} is negative is considerably lower than for positive P_{n}. However, the rejection region is much smaller, since the probability of a minus sign under the null hypothesis is . 5399.

Table 2.5. Comparisons of power between t test and sign test when "true" $\alpha=.05$ and $n=10$, for an exact normal distribution and for $x_{3}=.6$, $K_{4}=.4$

$\begin{aligned} & \rho_{n} \\ & \text { or } \\ & \rho_{n}^{\prime} \end{aligned}$	$k_{3}=k_{4}=0$		$K_{3}=.6, K_{4}=.4$			
	t Test	Sign Test	t	Test	Sign 2	Test
	1.833	of $\mathrm{H}_{\mathrm{O}}, \mathrm{H}_{\mathrm{O}}^{\prime}, \mathrm{H}_{\mathrm{O}}^{\prime \prime}$	$t_{0}=1.833$	$t_{0}=1.627$	Of H_{0}	of $\mathrm{H}_{0}^{\prime \prime}$
0	. 050	. 050	. 035	. 051	. 050	. 050
1	. 236	. 194	. 198	. 259	. 193	. 202
2	. 580	. 457	. 579	. 663	. 481	. 504
3	. 868	. 731	. 910	. 940	. 792	. 810
4	. 979	. 903	. 997	. 9996	. 958	. 962
	-1.833	of $\mathrm{H}_{0}, \mathrm{H}_{0}^{\prime}, \mathrm{H}_{0}^{\prime \prime}$	$t_{0}=-1.833$	$t_{0}=2.076$	Of H_{0}	of $\mathrm{H}_{0}^{\prime \prime}$
0	. 050	. 050	. 070	. 051	. 050	. 050
-1	. 236	. 194	. 273	. 219	. 171	. 187
-2	. 580	. 457	. 585	. 530	. 375	. 422
-3	. 868	. 731	. 838	. 784	. 605	. 670
-4	. 979	. 903	. 957	. 933	. 790	. 849

Chapter III
 SMALILSAMPLE POWER OF RANK TESTS ON THE EQUALITY OF TWO DISTRIBUTION FUNCTIONS

Nonparametric tests based on ranks are especially simple to use and can be applied even when no measurement is possible, since the ranks of the random variables constitute the new random variables on which the test is performed. Consider two samples of sizes m and n of independent random variables, $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, X_{2}, \ldots, Y_{n}$, where the X's and Y's are identically distributed with continuous cumulative distribution functions H and G respectively. The null hypothesis H_{0} to be tested is that $H=G$, their common cumulative distribution function being unspecified. A rejection of the null hypothesis might indicate that the densities differ in shape, location, scale, or a combination of these. Many rank tests have been proposed to test the equality of two distribution functions. Which one of these is most appropriate in any given situation will depend partly on computational simplicity, but more basically upon what type of alternative is of interest to the investigator. The power of competing tests against the chosen alternative will
therefore be important in the selection of a test. Often the class of relevant alternatives is one-sided in form, $H(a) \geqslant G(a)$ for all a, In which case the Y 's are said to be stochastically larger than the X 's. The null hypothesis H_{0} will then be rejected if most of the X^{\prime} 's are larger than most of the X 's. For example, if X and Y represent measures on a control and a treated group, respectively, where the treatment is expected to increase the measure, or at least leave it unchanged, we would be interested in an alternative of this form.

The power of any nonparametric test based on order or ranks can be computed, at least in theory, for any alternative relating H and G . The probability of any particular ordering of the combined sample of $m X^{\prime} s$ and $n Y^{\prime} s$ arranged in ascending order is independent of the specific form of H or G, provided that G is a function of H, or both are functions of some common distribution function F. The alternative distribution functions must be specified completely enough to determine these probabilities. The power would be the sum of the probabilities for the orderings contained in the region of rejection. The rejection orderings are determined by the test, the significance level, and the fact that
the probability of any arrangement of the $\mathrm{N}=(\mathrm{m}+\mathrm{n})$ random variables is equal to $1 /\left({ }_{[\mathrm{m}}^{\mathrm{N}}\right)$ under the null hypothesis.

Lehmann (1953) has considered a nonparametric alternative of one extreme dimtribution (aee also Bavage, 1956). وhat is, the Y random variables are diatributed as the largest of k of the X variates, where the meaning of k may be extended allowing it to be any poaitive number, Using this alternative, he hat determined the power of eix wellknown two-sample rank tests -- the mont powerful one-sided rank test, the Wilcoxon or Mann-Mhitney U test, the one and two-sided median tests, the Wald-Wolfowitz runs test, and the twomsided wilcoxon test. In this chapter a similax alternative will be considered -m the Y 's are distributed as the largest of k variables from some unspecified distribution F, and the X 's are distributed as the manlleat of k from this same distribution function. This also belongs to the nonparamatric class of alternatives, aince the probability of any particular ordering under the alternative is independent of the specific form of r, provided that F is continuous. Methods for determining the probabilities of rank orders under this alternative will be found and used to calculate the small-sample power of Terry's C_{1} test and a
new test, called the Psi test, in addition to the six tests considered by Iehmann.

The other alternative to be considered in this chapter is that the X and Y randon variables are both normaliy distributed with the game variance but different means. The power functions of the tasts are given for thome significance levels which require only one or both of the two extreme orderings in the critical region. Comparisons are made between power functions for these alternatives.

3.1 The Alternative of one Extreme Diatribution

If $P(x)$ is the cumulative distribution function of a variate X, then the cumulative distribution of the largent of k variables drawn from this distribution is $p^{k}(x)$. When $P(x)$ is known, an expression for $p^{k}(x)$ can always be found, although it may be complicated. The extreme distribution may differ from the original distribution by a shift in location, scale, form, or some combination of these. How ever, Fisher and Tippett (1928) have shown that the limiting cumulative distribution of the largest of k observations satisfies the functional equation $p^{k}(x)=P\left(a_{k} x+b_{k}\right)$, which hae only three classes of solutions for $P(x)$. The argument
here is that the iiniting aistribution $P\left(a_{k} x+b_{k}\right)$ of the largest of $n=k m$ observations must be of the same form as the iimiting distribution $p^{k}(x)$ of the largest of a sample of $\operatorname{size} k$ drawn from the largest of samples of $s i z e m$ as m tends to infinity and k is held fixed, except for changes in location or scale. The solution which is called type I has $a_{k}=1$ so that $P^{k}(x)=P\left(x+b_{k}\right)$. Then P is an exponentialtype distribution with $d p=\exp \left(-x-e^{-x}\right) d x$. The iimiting distribution of the largest value in a sampla of k is of the same form but shifted a distance of $\log k$. In the other two types of limiting extreme distributions, the scale is changed. The normal distribution belonge to Type I, along with many other important distributions. In comparison with the normal distribution, the rype I density is silghtly skewed to the right and platykurtic. Although the distribution of the extreme from a normal distribution converges slowly toward the Type I asymptotic distribution, the difference between the exact and asymptotic densities for a ample of size 100 is negligible (see, e.g., Graph 6.2.1(4), p. 222, Gumbel, 1958).

The alternative of one extreme distribution considered by Lehman expreases the relationship between H and G as
$G=A^{k}$. If H belongs to the Type I caass, the asymptotic distribution of G is of the same form as B but shifted inneariy, so that asymptotically the alternative expressea a change in location. Lehmann (1953, Table x, p. 29) has calculated the exact power functions of six rank tests when $m=n=4, m=n=6$, for $k=2, k=3$, with ingnificance level .10. The onemided tents which he considers are the most appropriate for this alternative ince they are designed principally to detect the situation where the $y^{\prime} s$ are stochastically larger than the X 's. Elere $P r(X<x)=x /(x+1)$.

3.2 The Alternative of zwo Extreme Diteributions

Although the limiting distributions of H and 0 when c m H^{k} may have the same shape, maller valuen of k often effect a considerable change in the dietribution functions. the differences between B and 0 are 111ustrated in Lehmann's article for $k=2,3$, and 6, when the density of H is normal, exponential, and uniform (pp, 26-28). In a practical situation, we usually like to think of H and G as being more similar under the alternative. An alternative which meets this requirement in many situations and has some desirable properties is the alternative H_{2} of two extreme diftributions,

H and G both being functions of some common distribution function F. Will assume not only that the y^{\prime}. have a distribution function $G=F^{k}, 1 . e ., Y$ is distributed as the largest of k variables from soma unspecified dietribution F, but also that the X 's are distributed as the smallest of k from this same distribution, $H=1-(2-F)^{k}$. For any value of $k, \operatorname{Pr}(X<x)-1-k(k+1, k)$, where $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$, which is a strictiy increasing function of k. Thus the alternative expresaes the fact that the $\mathbf{Y}^{\prime} \mathrm{s}$ are atochaftioally considarably larger than the X's.

3.2.1 Proparties

Both of the alternative diutribution change their shape and location according to the value of k, but they remain "mutualiy mametrical" whenever the density of is mymetrical. We will say that two distribution functions $H(x)$ and $G(x)$ are mutually aymbatric if there axiets a constant a such that $\mathrm{H}(\mathrm{x}-\mathrm{a})=1-G(\mathrm{a}-\mathrm{x})$ for all x . If the corresponding density functions $h(x)$ and $g(x)$ exist, an equivalent definition is that $h(x-a)=g(a-x)$ for sone and all x. We can assume without lon of generality that g is equal to zero.

For the particular case of two extreme distributions, Let us assume that F is mymetrical about zero. the density function of H is

$$
h(x)=k[1-F(x)]^{k-1} f(x)=k[F(-x)]^{k-1} f(-x)=g(-x) \cdot(3 \cdot 1)
$$

Then $e_{H}\left(x^{p}\right)=E_{C}\left[(-x)^{p}\right]$, which implias that the even moments of g and a are equal, and the odd momente differ only with rempect to sign. More descriptively, the density functions of the mallest and largent values are mirror images, and, regardles. of the value of k, O and H are related to each other through their monents. Figure 3.1 illuetrates the densities of,G and A for $x=2$ when $f(x)$ is normal, undformprand axponential.

Actually, the proparty of mutual aymetry applies for the more general case in which H is the cumulative distribum tion function of the x th order statistic of $k, x m, 2, \ldots,\left[k_{2} k\right]$, and 0 is the diutribution of the $\left(k_{m}-x+1\right)$ th ordar etatistic of k. Suppose that the k independent random variables are Identically dietributad with dansity function $f(x)$, and $f(x)$ Is mymetrical about $\theta(x)$. We can asmume without loss of generality thate $\ell(x)=0$. Iat $f_{f}(x)$ denote the density function of the x th order statistic. Then

Figure 3.1. Density functions of $F, G=F^{2}$ and $H=1-(l-F)^{2}$ when F is normal, uniform, and exponential

$$
\begin{align*}
f_{r}(x) & =\frac{x_{1}}{(x-1)!(k-r) \mid}[F(x)]^{r-1}[1-F(x)]^{k-r} f(x) \\
& =\frac{k \mid}{(x-1)!(k-r+1-1) \mid}[1-F(-x)]^{x-1}[F(-x)]^{k-x+1-1} f(-x) \\
& =f_{x-r+1}(-x) \tag{3.2}
\end{align*}
$$

This holde true theoretically even when k is not an integer provided that k is a positive number (the coefficient $k \mid /[(x-1)|(k-x)|]$ must be replaced by $1 / 8(x, k-x+1))$. However, the interpretation in term of order etatistios is not very meaningful.

For the case in which f is not gymmetrical, relationohips between the momenta are more difficult to assess. It Le interenting to note, however, that for $k=2$, the pth moment of B plua the pth mament of 0 1s equal to twice the pth mement of F , regardiess of the character of F or the value of $p_{\text {, }}$ as long as the moments are all taken about some common point.

We can asaume without loss of generality that f is a eymmetrioal denality function. This will have no effect on the power functions, since the probability of any rank ordering is independent of the apecific character of I as long as it is continuous.

3.2.2 Probabilitias of Rank Orders

Under the null hypothesis $G=G$, all posmible orderings of the $m X^{\prime} s$ and $n X^{\prime} s(m+n m)$ in the combined sample are equally likely and occur with probability minl/nt. The Objective is to find a practical method of calculating the probability of any arrangement under the alternative H_{1}.

A very general theorem dua to Hoeffiling (1951) provides one expression for these order probabilitias. thaorem 3.1. Consider ample of m $X^{\prime \prime}$ mand $n X^{\prime} s_{\text {, each }}$ Independent and identically distributed with continuous cunulative distribution functions it and G respectively. Let h and g danote theix density functions. Under the alternative $B=Q(6)$, the probability of any arrangement of the X^{\prime} and y's is given by

$$
\begin{equation*}
e\left[\prod_{j=1}^{m} q\left(0_{r_{j}}\right)\right] /\left(_{m}^{\mathrm{m}}\right) \tag{3.3}
\end{equation*}
$$

where q is the density function of $0,0 \leq v_{2} \leq v_{2} \leq \ldots \leq v_{k} \leq 1$
 from the uniform distribution, and the $x_{j}(j=1,2, \ldots, m)$ are the ranks of the x random variables in the combined ample. 2wo arrangements will be conaldered the ame regardless of parmutations among the X^{\prime} s or among the $X^{\prime} s$.

Proof: We may assume without lows of generality that $g(x)=1$, since if it is not, we can use the probability integral transformation to make it uniform. Then $H=Q$ and $h=g$. Lat $m_{1}, s_{2}, \ldots, s_{n}$ denote the ranks of the Y 's. One ponsible general ordering ie

$$
\begin{aligned}
& x_{1}<\ldots<x_{n_{1-1}}<x_{1}<x_{n_{1}}<\ldots<x_{s_{2-2}}<x_{2}<\ldots \\
& \ldots<x_{n-1}<x_{s_{n-1}-n+2}<\ldots<x_{n_{n}-n}<x_{n}<x_{s_{n}-n+1}<\ldots<x_{n},
\end{aligned}
$$

and there are minl of these ame orderings corresponding to parmutations among the $m X^{\prime}$ a and among the $n X^{\prime}$. The probability of this arxangement then is
$\min \mid \operatorname{pr}\left(x_{1}<\ldots<x_{m_{1}-1}<x_{1}<x_{a_{1}}<\ldots<x_{n}<x_{m_{n}-n+1}<\ldots<x_{m}\right)$
$\left.=\frac{m|n|}{v!} \int_{0}^{1} \int_{0}^{u_{n}} \int_{0}^{u_{y j-1}} \ldots \int_{0}^{u_{2}} a \right\rvert\, \prod_{j=1}^{m} h\left(u_{x_{j}}\right) d u_{1} d u_{2} \ldots d u_{n}$,
aince the density function is $g(u)=1$ for each integral corresponding to a random variable. The multiple integral in (3.4) is $e\left[\prod_{j=1}^{m} q\left(0_{r_{j}}\right)\right]$ and thus the proof is complete.

Applying the theorem to the alternative $H=1-(1-F)^{k}$. $G=F^{k}$, lat $u=F^{k}$ and $\mathrm{E}(\mathrm{u})=1-\left(1-u^{1 / k}\right)^{k}$, then $h(u)=\left(1-u^{1 / k}\right)^{k-1} u^{(1 / k)-1}$. For example, for m $m=2$,
k - 2, we have
$\operatorname{Pr}(1010)=2121 \int_{0}^{1} \int_{0}^{u_{4}} \int_{0}^{u_{3}} \int_{0}^{u_{2}}\left(1-u_{1}^{1 / 2}\right) u_{2}^{-\frac{1}{2}} d u_{1} d u_{2}\left(1-u_{3}^{\frac{1}{2}}\right) u_{3}^{-\frac{1}{2}} d u_{3} d u_{4} \cdot$ On the left hand side a 1 denotes an X random variable and 0 denotes a Y random variable, so that Pr(1010) indicates the probability that the X 's and $X^{\prime} s$ alternate in the combined ordered sample.

For general k, m, and n, the calculations are considerably less tedious if we use the following formulae which are derived by changing the expressions $(1-F)^{k}$ to $\sum_{j=0}^{k}\left(\frac{k_{j}}{j}(-F)^{j}\right.$ (under the assumption that x is an integer). and integrating. The formulae can be extended with ease to the case of more than six groups of $X^{\prime} s$ and $X^{\prime} s$.

$$
\begin{aligned}
& \text { Lat } a=a+c+e, n=b+d+1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \sum_{a}^{k-1} \frac{\left(a_{a}^{k-1}\right)(-1)^{a}}{a_{1}+a_{2}+\ldots+a_{a}+(a-1)} \cdot \frac{1}{a_{2}+a_{2}+\ldots+a_{a}+(a-1)+k} \\
& \frac{1}{a_{1}+a_{2}+\ldots+a_{a}+(a-1)+2 k} \cdot \ldots \cdot \frac{1}{\sum a_{i}+(a-1)+b k} \\
& \sum_{c_{1}}^{k-1} \frac{\left(c_{1}^{k-1}\right)(-1)^{c_{1}}}{2 a_{1}+(a-1)+b k+c_{1}+1} \sum_{c_{2}=0}^{k-1} \frac{\left({ }_{c}^{k-1}\right)(-1)^{c_{2}}}{2 a_{1}+(a-1)+b k+c_{2}+c_{2}+2} \\
& \sum_{c}^{k-1} \frac{\left({ }_{c}^{k-1}\right)(-1)^{c} c_{c}}{\sum a_{i}^{\prime}+(a-2)+b k+\sum c_{1}+c} \cdot \frac{1}{\left.\sum a_{1}+(a-1)+b\right) k+\sum c_{1}+c+k} \\
& \text { - } \frac{1}{\sum a_{i}+(a-1)+b k+\sum c_{i}+c+2 k} \cdot \ldots \cdot \frac{1}{\sum a_{i}+(a-1)+b k+\sum c_{i}+c+d k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sum a_{1}+(a-2)+b k+\sum c_{1}+d k+\sum a_{1}+a+k} \cdot \cdots \cdot \frac{1}{\sum a_{1}+\left(a-1+b k+\sum c_{i}+D k+\sum e_{i}+a+\sum x\right.}
\end{aligned}
$$

Lat $b+d+E m n, \quad c+e+g=m$.

$\frac{1}{b k+\sum c_{1}+c+k} \cdot \frac{1}{b k+\sum c_{1}+c+2 k} \cdot \cdots \cdot \frac{1}{b k+\sum c_{1}+c+d k}$

$\cdot \frac{1}{b k+\sum c_{1}+c+d k+\sum e_{1}+e+k} \cdot \ldots \cdot \frac{1}{b k+\sum c_{1}+a+d k+\sum a_{1}+e+\Sigma k}$

The arithmetic operations can be simplified in four general cates by using the following formulae when applicable. In the initial atatement of each of the probabilities, $F(x)$ wall be represented by x and $\sigma(y)$ by y.
$\operatorname{Pr}\left(a 11 m x^{\prime}\left(<a 11 n x^{\prime}=m \int_{-\infty}^{\infty}[1-\sigma(x)]^{n}[B(x)]^{m-1} n(x) d x\right.\right.$

$$
=m n\left(\frac{n-1}{p-1}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[H(y)]^{m-1} g(y)[c(x)-\sigma(y)]^{p-1}
$$

$$
: h(x)[1-\sigma(x)]^{n-p} d y d x
$$

$$
=k^{k} \operatorname{man}\left(\frac{n-1}{p-1}\right) \int_{0}^{1} \int_{0}^{x}\left[1-(1-y)^{k}\right]^{m-1} y^{k-1}\left(x^{k}-y^{k}\right)^{p-1}(2-x)^{k-1}
$$

$$
\cdot\left(1-x^{k}\right)^{n-p} d y d x
$$

$$
\cdot(1-x)^{k-1}\left(1-x^{k}\right)^{n-p} d y d x
$$

$$
\text { - (1 } \left.1+x^{k j}\right)^{n-p} d v d x
$$

$$
=k \operatorname{man}\left({ }_{p-1}^{n-1}\right) \sum_{i=0}^{m-1}\left(\sum_{i}^{m-1}\right)(-1)^{1} \sum_{j=0}^{1 k}\left(\frac{1 k}{j}\right)(-1)^{j} \int_{0}^{1} \int_{0}^{\alpha^{k}} v^{j / k}\left(x^{k}-v\right)^{p-1}
$$

$$
\cdot(1-x)^{k-1}\left(1-x^{k}\right)^{n-p} d v d x
$$

$$
=\operatorname{kenn}\binom{n-1}{p-1}_{1}^{m-1} \sum_{=0}^{m-1}\left(\sum_{1}\right)(-1)^{1} \sum_{j=0}^{1 k}\left(\sum_{j}^{1 k}\right)(-1)^{j} \quad\left[n_{0}(j / x)+1\right]_{w=0}^{n-p}\left(\begin{array}{c}
n-p \\
w
\end{array}(-1)^{w}\right.
$$

$$
\cdot \int_{0}^{1} x^{k w}(1-x)^{k-1}\left[x^{k}\right]^{p+(1 / k)} d x
$$

$$
\begin{equation*}
\text { - } B(k, y+k w+k p+1) \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
& =m \int_{0}^{1}\left(1-x^{k}\right)^{n}\left[1-(1-x)^{k}\right]^{m-1} x(1-x)^{k-1} d x \\
& =\sum_{1=0}^{m-1}\left(\sum_{1}^{m-1}\right)(-1)^{1} \int_{0}^{1}\left(1-x^{k}\right)^{n}(1-x)^{k 1} k(1-x)^{k-1} d x \\
& =\operatorname{kan} \sum_{1=0}^{m i n}\left(\sum_{i}^{m-1}\right)(-1)^{1} \sum_{j=0}^{n}\left(j_{j}^{n}\right)(-1)^{j} \int_{0}^{1} x^{j k}(1-x)^{k i+k-1} d x \\
& =k \sum_{i=0}^{m-1}\left(\sum_{i}^{m-1}\right)(-1)^{1} \sum_{j=0}^{n}\left(\frac{n}{j}\right)(-1)^{j}(1(j k+1, k i+k) \tag{3.7}
\end{align*}
$$

$$
\begin{align*}
& =\operatorname{man}\left(\frac{n-1}{p-1}\right) \int_{-\infty}^{\infty} \int_{x}^{\infty}[\sigma(x)]^{n-1} h(x)[a(y)-B(x)]^{p-1} \\
& \text { - } g(y)[1-R(y)]^{m-p} d y d x \\
& =k^{m} \operatorname{man}(p-1) \int_{0}^{1} \int_{x}^{1} x^{k(n-1)}(1-x)^{k-1}\left[(1-x)^{k}-(1-y)^{k}\right]^{p-1} \\
& \text { - } y^{k-1}(1-y)^{k(x-p)} d y d x \\
& =\operatorname{ken}\left({ }_{p-1}^{m-1}\right) \int_{0}^{1} \int_{0}^{(1-x)^{k}} x^{k(n-1)}(1-x)^{k-1}\left[(1-x)^{k}-v\right]^{p-1} v^{m-p} \\
& \text { - } v^{(1 / k)-1}\left(1-v^{1 / k}\right)^{k-1} d v d x \\
& -\operatorname{ken}\left(\frac{m-1}{p-1}\right)_{j=0}^{k-1}\left(\sum_{j}^{k-1}\right)(-1)^{j} \int_{0}^{1} \int_{0}^{(1-x)^{k}}\left[(1-x)^{k}-v\right]^{p-1} \\
& \text { - } v(1 / x)+(2 / x)+m-p-1(1-x)^{x-1} x x^{x(n-1)} d v d x \\
& =\operatorname{kann}\left(\sum_{p-1}^{m-1} \sum_{j=0}^{x-1}\left(\sum_{j}^{k-1}\right)(x-1)^{j} \quad\left(p_{1}(1 / k)+(1 / k)+m-p\right)\right. \\
& \text { - } \int_{0}^{1}(1-x)^{k-1} x^{k(n-1)}\left[(1-x)^{k}\right]^{m-1+(1 / / k)+(1 / k)} d x \\
& =k \operatorname{man}\left(p_{p-1}^{m-1} \sum_{j=0}^{k-1} \sum_{j}^{k-1}(-1)^{j} m[p,(1 / k)+(1 / k)+m-p]\right. \\
& \text { - } B(k+1+j+1, k n-k+1) \tag{3.9}
\end{align*}
$$

$P x\left(a 12 n y^{\prime} s<a 11 m x^{\prime} s\right)=n \int_{-\infty}^{\infty}[\sigma(y)]^{n=1} g(y)[1-n(y)]^{m} d y$

$$
\begin{align*}
& =k n \int_{0}^{1} y^{k(n-1)} y^{k-1}(2-y)^{k n n} d y \\
& =k n y^{x(k n+1, k n)} \tag{3.10}
\end{align*}
$$

In (3.8) and $(3.9), 1 \leq p \leq(n-1)$, and $\ln (3.7),(3.8)$, and (3.9), k must be positive integar. The binomial coefficients
$\left(\frac{a}{b}\right)$ are dafined to be equal to zero if $b>a$. Formula (3.10) 1s true as long as k if positive number.

The computations of the order probabilities under the alternative H_{1} are further smplified by the fact that certain ordering: have equal probabilitias for all valuea of k, mand n. This is the case whenever a given oxdering is com pletely reversed (the oxiginal variables are now in a demcending order) and the m randcm variables are replaced by m Y randen variables, and the $n \mathbf{X}$ random variables become $n \times$ randon variables (the new variables are in an ascending order). An arrangement for the combined mapla of ize H will be denoted by the vector $\bar{z}=\left[z_{2}, z_{2}, \ldots, z_{M}\right]$, where the z_{1} 's are indicator variables, $z_{i}=1$ if the ith ordered random variable in the coubined sample is an X random variable, and $z_{1}=0$ otherwise. Using this notation for a given ordaring $\overline{\mathbf{z}}$, the new ordaring $\overline{\text { E }}$ 'riwith the same probability is $\bar{z}^{\prime}=\left[1-z_{N^{\prime}} 1-z_{N-1}, \cdots, 1-z_{1}\right]$. For example, $\operatorname{Pr}(111010100)=\operatorname{Pr}(110101000)$. The equivalence could be proved for each possible oxdezing using (3.7)-(3.10) and similar formulas for the spectal cases. An easier and more general proof can be accomplished using the form of the probabilities given by (3.3) for an arbitrary ordering and any H and a which are mutually mametric.

Theorem 3.2. Let $\bar{z}=\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ denote an arrangement of m randon variablea X from population with distribution function $H(x)$ and n random variables Y from $g(x)$ ($m+n m$), where $z_{i}=1$ if the ith ordered random variable in the combined sample of f variables is an X random variable, and $z_{1}=0$ otherwise. Let $\bar{z}^{\prime}=\left[z_{1}^{0}, z_{2}^{0}, \ldots, z_{1}^{\prime}\right]$, where $z_{i}^{\prime}=1-z_{z-1+1}$. If H and c are both continuous and are mutually symmetric such that $H(x-a)=1-G(a-x)$ for some a and all x, then the probabilities of the two arrangements \bar{z} and \bar{z} are equal.

Proof. Whe probability of the ordering E is
$p(\bar{z})=m|n| \int_{-\infty}^{\infty} \int_{-\infty}^{u_{2}} \ldots \int_{-\infty}^{u_{2}} \prod_{j=1}^{m} h\left(u_{x_{j}}\right) \prod_{w=1}^{n} g\left(u_{m_{w}}\right) d u_{1} d u_{2} \ldots d u_{z}$ whare the $x_{j}(j m 1,2, \ldots, r a)$ and $w^{\prime}(w m i, 2, \ldots, n)$ ara the ranks of the X 'e and Y 's in the arrangement $\bar{\Sigma}$ of the combined sample. If we let $V_{\mathrm{y}-1+1}=\mathrm{U}_{1}$ for $1=1,2, \ldots, \mathrm{~B}$, then
$-\infty \leq v_{1} \leq v_{2} \leq \ldots \leq v_{n} \leq \infty$ implies that
$-\infty \leq \mathrm{v}_{1} \leq \mathrm{v}_{2} \leq \ldots \leq \mathrm{v}_{\mathrm{n}} \leq \infty$, and
$p(\bar{z})=\min \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\alpha_{2}} \prod_{j=1} n\left(-v_{v-r_{j}+1}\right) \prod_{w=1}^{n} g\left(-v_{N-\infty}+1\right) d v_{1} \ldots d v_{N}$.
since H and G are continuous and mutually symatric,
$h(x-a)=g(a-x)$ for some $\frac{g}{}$ and all x. We can assume without lom of genexality that $a=0$. Then (3.11) becomes

$$
\begin{aligned}
& p(\bar{x})=m|n| \int_{-\infty}^{\infty} \int_{-\infty}^{\phi_{k}} \ldots \int_{-\infty}^{v_{2}} \prod_{j m 2}^{m} g\left(v_{n-x_{j}+1}\right) \prod_{w_{m}}^{n} h\left(v_{v_{-\infty}}+1\right) d v_{1} d v_{2} \ldots d v_{n} \\
& m m \ln \mid \int_{-\infty}^{\infty} \int_{-\infty}^{v_{m}} \ldots \int_{-\infty}^{w_{2}} \prod_{w=1}^{n} h\left(v_{r_{w}}\right) \prod_{j=1}^{m} g\left(v_{m_{j}}\right) d v_{2} d v_{2} \ldots d v_{r} \\
& -p\left(\bar{x}^{\prime}\right) \text {. }
\end{aligned}
$$

where the $x_{w}^{\prime}(w-1,2, \ldots, n)$ and $s_{j}^{\prime}(j m 1,2, \ldots, m)$ are the ranks of the X^{\prime} (z and $X^{\prime} s$ in the arrangement \bar{z}^{\prime}.

Corollary 3.2.1. Nore generally, the theorem continuen to be true for axrangementa of random variables drawn from popm ulations with cumulative diatribution function: of the form $H[Y(x)]$ and $G[Y(x)]$, as long as $H(x)=1-G(-x)$, Eince the probability of any arrangement in unaffected if the mame monotonic transformation is applied to all random variables.
proof. we need only to show that monotonic transformation of the X and Y random variablea drawn from $H(x)$ and $\sigma(x)$ where $\mathrm{H}(\mathrm{x})=1-\mathrm{O}(-\mathrm{x})$ will yield random variables X^{\prime} and Y^{\prime} with cumalative distribution functions $E[Y(x)]$ and $G[Y(x)]$, xespectively. Let $X^{\prime} m(X)$ and $X^{\prime}=\varphi(X)$. when
$P x\left(X^{\prime} \leq x\right)=\operatorname{Pr}\left[X \leq \varphi^{-1}(x)\right]=A\left[\varphi^{-1}(x)\right]=g[y(x)]$ where $Y(x)=e^{-1}(x)$.

Whereat Corodiary 3.2.1 is generalization of the theorem, the zollowing are epecial cases.
corohinny 3.2.2. The theorem holde EOR any two mymetric probablilty diatribution functions differing oniy in locition, since they are mutually gymetrical about a vextlcal half-way between thelx meane, and thle line may be taken to be $x=0$.

Prook. Iet the two means be and 2. Then $h(x-a) \ln (x-b) \ln (b-x)$, and $h\left(x-\frac{a+b}{2}\right)=g\left(b-x-\frac{b}{2}+\frac{n}{2}\right)=g\left(\frac{a t b}{2}-x\right)$.

Corolinyy 3.2.3. If $f(x)$ is density function mymetric about sero, the theorem holds $i f E$ and G can be exprensed as
 Proof. $G(-x)=[F(-x)]=[1-F(x)]=1-B(x)$. In view of corollary 3.2.1, the result contlnues to hold for nuy density function $f(x)$. Iet us aseume, e.g., that is uniform on $\left(-\frac{1}{2}, \frac{1}{2}\right), F(x)=x+1 z$. Then $O(-x)=\varphi(-x+2)-\varphi[1-\Gamma(x)]=1-8(x)$. With the transform mation $X^{\prime}=Y^{-1}(X+2), Y^{\prime}=Y^{-1}(Y+1), X^{\prime}, Y^{\prime}$ have crminative diatribution functions $g\left[\bar{Y}^{\prime}(x)\right]$ and $O\left[\xi^{\prime}(x)\right]$ ranpectively, whexe $I^{\prime}(x)=I(x)-\frac{1}{2}$.
sxapple. Let $p(T)=\gamma^{k}$. Man $n-1-(1-)^{k}$ and $a=r^{k}$. If k is positive integar, Q and H are the distributions of the largest and mallest of k independent variates with cumblative dietribution function 7 . In particular, if $F(x)=1-e^{-x}(x>0)$, then $a(x)-\left(1-e^{-x}\right)^{x}$ and $H(x)=1-e^{-k x}$

Even though this theorem reduces the total number of order probability calculations, Lengthy axithwetic operations are recuired to obtain the probability under the alternative of any individual arrangement. The formulae given by (3.4) (3.10) are not readily adaptable to gystematic caloulation. Wheix practicablilty decreases at m, n, or k increasem. Some type of recursive relationship would be desixable.

There is a back-recuradve rule (8avage, 1960) which permiti the calculation of the probability of any ordering EOF maplen of siser m and n, respectively, from the probam bilities of ordezing for samplas of sizes (m+1) and n_{2} ragaxdlesa of the populations frcm which the two amplea are drawn. The relationship it as follow:
theorem 3.3. The probability of any given oxdering $\bar{z} \approx\left[z_{1} * z_{2} ; \cdots, z_{m+n}\right]$ of x and $n Y$ randem variables,
$\mathrm{Pr}_{\mathrm{m}, \mathrm{n}}(\overline{\mathrm{z}})$, can be found by arming the probabilities of all possible orderings \bar{z} ' which can be obtained from \bar{z} by placing one additional X random variable in every possible position in the original ordering, and then dividing by $m+1$. That As,

$$
\begin{equation*}
P r_{m, n}(\bar{x})=\sum P r_{m+1, n}\left(\bar{z}^{\prime}\right) /(m+1) \text {, } \tag{3.12}
\end{equation*}
$$

where $\bar{z}^{\prime}=\left[z_{1}, z_{2}, \ldots, 1, z_{j}, \ldots, z_{m+n}\right], j m 1,2, \ldots, m+n+1$, and the sum is extended over the $(m+n+1)$ orderings \bar{z}, some of which will be equal.

Proof. Defining $u_{0}=-\infty$ and $u_{m+n+1}=\infty$, we can write $\Sigma \operatorname{Pr}_{m+1, n}\left(\overline{\mathrm{I}}^{\prime}\right) /(\mathrm{m}+1)=$

$$
\begin{aligned}
& =\sum_{j=1}^{m+n+1} \frac{(m+1) \ln 1}{(m+1)} \int_{-\infty}^{\infty} \int_{-\infty}^{u_{m+n}} \ldots \int_{-\infty}^{u_{2}} \prod_{j=1}^{m} h\left(u_{r_{j}}\right) \\
& \cdot \prod_{w=1}^{n} g\left(u_{m_{i}}\right) d u_{1} \ldots d u_{m+n} \int_{u_{j-1}}^{u_{j}} h(x) d x
\end{aligned}
$$

$$
=m|n| \int_{-\infty}^{\infty} \int_{-\infty}^{u_{m+n}} \ldots \int_{-\infty}^{u_{2}} \prod_{j=1}^{m} h\left(u_{r_{j}}\right) \prod_{w=1}^{n} g\left(u_{w}\right) d u_{1} \ldots d u_{m+n} \int_{-\infty}^{\infty} h(x) d x
$$

$$
=P r_{m, n}(\bar{z})
$$

For example,

$$
\begin{aligned}
P x_{2,3}(10100)= & {\left[2 P x_{3,3}(110100)+2 P x_{3,3}(101100)\right.} \\
& \left.+P x_{3,3}(201010)+P r_{3,3}(101001)\right] / 3 .
\end{aligned}
$$

The rule is of linated advantage for this alternative, since the complexity of calculations increases with k, m, and n, but it can be a check on exact numerical computations. It would be more useful if an electronic computer program could be sat up to obtain the probabilities of all the orderinge, either exactly or empirically, for a muficiently large fixed m and n, since the probabilities of all the ordering for maller sample mees could be obtained by the recursive relation.

A forward-recursive cheme adaptable to systematic computer calculation (Klotz, 1962, pp. 501-502) would perhaps be more appropriate. If \bar{Z} danotes a particular ordaring of the m and $n X$ random variables, let $\overline{z X}$ and $\bar{z} X$ denote the axrangemente obtained by adjoining an X and a to the right, respectively, Let
$P_{z}(v)=P r\left(a 11 X^{\prime} a\right.$ and $X^{\prime} s \leq v$ and in the order $\left.\bar{z}\right)$

$$
m \min \mid \int_{-\infty}^{\infty} \int_{-\infty}^{u_{2}} \ldots \int_{-\infty}^{u_{2}} \prod_{j=1}^{m} n\left(u_{x_{j}}\right) \prod_{w=1}^{n} g\left(u_{w_{w}}\right) d u_{1} \ldots d u_{n}
$$

Then

$$
\begin{aligned}
& P_{X}(v)=E(v) \quad \text { and } P_{Y}(v)=G(v) \\
& P_{X_{X}}(v)=(m+1) \int_{-\infty}^{v} P_{\frac{1}{2}}(t) h(t) d t
\end{aligned}
$$

and

$$
\begin{equation*}
n_{\bar{Z}}(v)=(n+1) \int_{-\infty}^{v} p_{\frac{Z}{2}}(t) g(t) d t \tag{3.13}
\end{equation*}
$$

The probabilities of the respective orderings $\bar{\Sigma}, \bar{\Sigma} X$, and $\bar{\Sigma} Y$ are $P_{\mathbf{Z}}(\infty), P_{\bar{Z} X}(\infty)$, and $P_{\bar{Z} Y}(\infty)$.

3.3 Teate पeed for Powar caloulations

The rank testa which will be inventigated for power calculations are:
T_{1} the most powexful rank test
T_{2} the Mann-Whitney or Wilcoxon test
T_{3} Terry's C_{1} test
T_{4} the one-sided median test
T_{5} the two-sided wilcoxon test
T_{6} the two-sided median test
F_{7} the Wald-Wolfowita runs teat
F_{8} the pei test.
All of the teste except T_{3} and T_{8} were atudied by Lehmann with the alternative of one extreme distribution. Bach of these testa deservea individual discusaion so that the power reaulte will be more meaningful.

The mont powerful nonparametric rank test T_{1} rejects for thome orderinge with the largeat probability under the alternative. Consider the problem of testing the composite hypothesis H_{0} B $=G$ unspecified, where H and O denote the cumulative distribution functions of X and Y respectively, againat the alternative $H_{1} ; H$ O. Because any tent based
on ranks depends oniy on the arrangement \bar{z} of $I^{\prime \prime}$ and $0^{\prime} m$, where 1 and 0 are indicators for X and Y random variablen, and all oxderings are equally likely under the null hypothesis, all rank tests are imilar tents. Then the problem can be reduced to testing the ample null hypothesis $H_{0}: H=O, C$ (whare can be assumed to be uniform with out loss of generality) against the alternative H_{1} above. A most powarful rank tewt of the smple hypothesis H_{0} againgt H_{1} will be most powerful rank test of the composite H_{0} versus H_{1}. The most powerful rank test then rejects for those orderings \bar{z} for which

1.e., when the probability of $\overline{\mathcal{E}}$ under H_{1} is greater than c_{α}. c_{α} being a constant determined by the desired significance level α. Whe rejection region for any rank tent will conelst of certain orderinge, and there will be $\alpha\left(\frac{\mathrm{m}}{\mathrm{m}}\right)$ of them. If $\alpha\left(\frac{\pi}{m}\right)$ is not an integer, a randomized deciaion rule may be used. Thus for the most powerful rank test of H_{0} agalnst H_{1}, the rejection region will consist of those orderings which have the largent probabilities under the alternative, and the power will be the sum of these probabilities.

For the one-mided Wilcoxon or Mann-Whitney u tast \mathbf{T}_{2} (Mann and Whitney, 1947), the cases in the rejection region are those for which the sum of the ranks of the r's, $v_{1}+m_{2}+\ldots+E_{n}$ is largent, where the number of cases in the rejection region is the mallest integer greatex than or equal to $\alpha\left(\begin{array}{l}\text { K }\end{array}\right)$ for a randomized test.

Under the null mypothesis, the average (or expected) rank of any X random variable is $(m+n+1) / 2$ and thus the expected sum of the ranks of the $Y^{\prime}: 18 n(m+n+1) / 2$. The twomided Wilcoxon tent F_{5} (Wilcoxon, 2945) rejects when the absolute value of the differance between the observed aum of the ranke and the expected an of the ranks is too large. The cases in the rejection region then are those with the largest values of

$$
\begin{equation*}
\left|\sum_{1=1}^{n} a_{1}-n(m+n+1) / 2\right| \tag{3.14}
\end{equation*}
$$

Let us define the median w of the combined sample as the variable with rank g, where $a(m+n+1) / 2$ if (m+n) is odd and a $(m+n) / 2$ if $(m+n)$ is even. Under the null hypothesis, the probability of having $u X^{\prime}$ and $v X^{\prime}$ g greater than the median w is

$$
\begin{equation*}
f(u, v)=\binom{n}{u}\left(\frac{m}{v}\right) /\binom{m}{a} \tag{3.25}
\end{equation*}
$$

where $v=m+n-a-u$. The one-sided median test \boldsymbol{T}_{4} (Mood, 1950, PP. 394-395) then is to reject H_{0} always if $u>u_{0}$ and with probability p if $u u_{0}$ where
$\sum_{u=u_{0}+1}^{n} f(u, v)+p f\left(u_{0}, v\right)=\alpha$. For the two-sided median test m_{6} when $m m n$, we reject if $u>u_{0}$ or $v>u_{0}$ and with probability p if $u=u_{0}$ or $v=u_{0}$, where

$$
\begin{array}{r}
\sum_{u_{0}+1}^{n} f(u, m+n-a-u)+\sum_{v=u_{0}+1}^{n} f(m+n-a-v, v)+p f\left(u_{0}, m+n-a-u_{0}\right) \\
+p f\left(m+n-a-u_{0}, u_{0}\right)=\alpha
\end{array}
$$

Although the power of both these madian teste can be computed by adding up the corresponding probabilities under the alternative, $i t$ is ampler to use the formula

$$
\begin{align*}
& \left.\left.f(u, v, w)=\operatorname{kma}_{\mathrm{v}}^{\mathrm{m}-1}\right)_{\mathrm{u}}^{\mathrm{n}}\right)\left[1-(1-F(w))^{k}\right]^{m-v-1} \\
& {[1-F(w)]^{k v} F(w)^{k(n-u)}\left[1-F^{k}(w)\right]^{u}\left[1_{-F} F(w)\right]^{k-1} f(w)} \\
& +\operatorname{kn}\left(\frac{m}{v}\right)\left({ }_{u}^{n-1}\right)\left[1-(1-F(w))^{k}\right]^{m-v}[1-F(w)]^{k v} \\
& F(w)^{k(n-u-1)}\left[1-F^{k}(w)\right]^{u} F^{k-1}(w) f(w) \quad . \tag{3.16}
\end{align*}
$$

When w has been integrated out of (3.16) and the ubatitution $u=m+n-a-v$ is made, the formula reduces to

$$
\begin{align*}
& \left.f(v)=\operatorname{ken}^{m-1} v\right)\left(\begin{array}{c}
n \\
m+n-2 y-1 \\
2
\end{array}\right) \sum_{j=0}^{m-v-1}\binom{m-v-1}{j}(-1)^{j} \\
& \sum_{w=0}^{\frac{m+n-1-2 y}{2}}\binom{\frac{m+n-1-2 v}{2}}{w}(-1)^{w} \beta(k j+k v+k, k w+1+k(n+2 w-m+1) / 2) \\
& +\operatorname{kn}\left(\left(_{v}^{m}\right)\binom{n-1}{m+n-2 v-1} \sum_{j=0}^{m-v}\left({ }_{j}^{m-v}\right)(-1)^{j}\right. \tag{2.17}\\
& \frac{m+n-2 y-1}{\sum_{w=0}^{2}} \\
& \binom{\frac{m+n-2 y-2}{2}}{w} \\
& (-1)^{W} \beta(k y+k v+1, k+k w+k(n+2 v-1 n-1) / 2)
\end{align*}
$$

for the case where $m+n$ is odd, $a(m+n+1) / 2$, and

$$
f(v)=\operatorname{kxn}^{m-1}\left(\begin{array}{c}
n \\
v
\end{array}\left(\frac{n+n-2 v}{2}\right) \sum_{j=0}^{m-y_{m}^{-1}}\left({ }^{m-v-1}\right)(-1)^{j}\right.
$$

$$
\begin{align*}
& \quad \sum_{w=0}^{\frac{m+n-2 v}{2}}\left(\frac{m+n-2 v}{2}\right)(-1)^{w} \beta(k j+k v+k, k w+1+k(n+2 v-m) / 2) \\
& +k n\left({ }_{v}^{m}\right)\left(\begin{array}{c}
n-1 \\
m+n-2 v \\
2
\end{array}\right) \sum_{j m 0}^{m-v}\left(\frac{m-v}{j}\right)(-1)^{j} \tag{3.18}
\end{align*}
$$

m+n-2y

$$
\sum_{w=0}^{2}\binom{\frac{m+n-2 v}{2}}{w}(-1)^{w} B(k j+k v+1, k w+k+k(n+2 v-m-2) / 2),
$$

When $m+n$ is even, $a m(m+n) / 2$. Thus when $m=n m m, u m m-v$,
we obtain

$$
\begin{align*}
& f(v)=k m\left(v_{v}^{m-1}\right)\left(v_{v}^{m}\right) \sum_{j=0}^{m-1}\left({ }_{j}^{m-v-1}\right)(-1)^{j} \\
& \sum_{w=0}^{m-v}\left(_{w}^{m-v}\right)(-1)^{w} \beta(k v+k w+1, k j+k v+k) \\
& +\operatorname{ksa}\left(\frac{m-1}{v-1}\right)\left(\sum_{v}^{m} \sum_{j=0}^{m-v}\left(\begin{array}{l}
m-v
\end{array}\right)(-1)^{j}\right. \tag{3.29}\\
& \sum_{w=0}^{m-V}\left(\begin{array}{c}
m-V \\
w
\end{array}(-1)^{w} \beta(k w+k v, k j+k v+1) \quad .\right.
\end{align*}
$$

We must define $\left(\frac{a}{b}\right)$ equal to zero if $b<0$ or $b>a . ~ A l l$ of the formulas hold for any positive integer k.

For the Wald-Wolfowitz runs tast m (Wald and Wolfowitz,
1940), under the null hypothesie we have

$$
\begin{align*}
& P x(n=2 c)-2\left({ }_{c-1}^{m-1}\right)\binom{n-1}{c-1} /\binom{m}{m} \text { and } \\
& P x(R=2 c+1)=\left[\left(\frac{m-1}{c}\right)\binom{n-1}{c}+\left(\frac{m-1}{c-1}\right)\left(\begin{array}{c}
n-1 \\
c
\end{array}\right] /\left(\frac{N}{N}\right),\right. \tag{3.20}
\end{align*}
$$

Where n 1a the total number of runs of X 's and Y 's. Whe tent is to reject if the observed $\mathrm{R}<\mathrm{r}_{0}$ and with probability p if $R=x_{0}$, where

$$
\sum_{x^{m}=2}^{x_{0}^{-1}} \operatorname{pr}(R=x)+p \operatorname{pr}\left(R-x_{0}\right)=\alpha
$$

These six tests are all dasigned to detect any type of difference between the distributions of the two sets of random variables and are thus applicable to any altexnative expressing the inequality, H G. On the other hand, Terry's d_{1} test T_{3} (Feryy, 2952) would be used principaliy when the relevant alternative is that the two populations are both normal with the same variance but different mans. Terry has shown that the c_{1} tent 18 the locally mont powarful rank test against this parametric alternative (see also Section 4.3.3). The test statistic 13

$$
\begin{equation*}
c_{1}(p)=\sum_{j=1}^{n} e\left(\xi_{m_{j}}\right) \tag{3.21}
\end{equation*}
$$

where $\xi_{1} \leq \xi_{2} \leq \ldots \leq \xi_{\mathrm{y}}$ are order mtatistics of a sample of size $\mathrm{M}_{\mathrm{m}} \mathrm{m}$ a normal distribution with mean zero and variance one, and $s_{2}, s_{2}, \ldots, s_{n}$ are the ranke of the X random variables in the combined ordered ample. For a one-sided test, 1.e., the alternative that the mean of the Y 's is greater than the mean of the $X^{\prime} s$, we reject when $c_{1} \geq$ c where c is a constant determined by the aignificance level. The cases in the rejection region are those arrangemants with the largeat values of C_{1}, and the power is the sum of the probabilities of these casee under the altexnative. Texxy's Table I
(pp. 358-361) gives the exact distribution of c_{1} (P for all possible arrangements of the $m X^{\prime} s$ and $n x^{\prime} m$, and all combinations of m and n such that $m+n \leq 10$. (the notation in this papar is the opposite of that used by serry, as he uses a 0 to represent an X and a 1 to reprement $a x a n d o m$ variable.) For example, for $m=n=4, c_{1}(11110000)=2.89$, $c_{1}(11101000)=2.59, c_{1}(11011000)=c_{1}(11100100)=2.27$, and the probability of any axrangement under the null hypothesis 1s 1/70. Thus for signizicance leval .05, the randomized teat rajecta for both of the firit two orderings and with probability $3 / 4$ for either of the last two, and the power is the m of the probabilities of these orders. If $m+n>10$, tablem of the expected values of the order atatietics from a normal distribution can be usad to determine the critical orderings (Fishar and Yates, 1953; Harter, 1961). The last test considered, g^{\prime}, the Pai test, is also a localiy most powerful rank test. The onemided tast is to reject the null hypothesis for thome orderings \bar{z} for which

$$
\begin{equation*}
\sum_{i=1}^{M}[Y(M-i+1)-Y(i)] z_{i}>c \tag{3.22}
\end{equation*}
$$

where the z_{1} 's are the indicator variables previously defined, c is a constant determined by the Eignificance
level, and $I(x)=d[\log \Gamma(x)] / d x$, which has been tabulated by Davie (1933, pp. 291-367). Properties of the test are discussed in section 4.3.2.

3.4 Powir Functions of the Rank rests

3.4.1 Racultis for the Altarnative of two Extrem pietributions

Power functions of the one and two-sided tents againet the alternative $H_{1}: B=1-(1-5)^{k}, O=r^{k}, F$ baing unspecifled are presented in mables 3.1-3.6 for mall maple Eizes. The cases consldered for equal sample mizes are all combinations of $m=n=2,3,4, k=2,3,4$, and significance levela .01, .05, .10. Power functions for unequal emple alzes are given for $k=2,3$ and $4, \alpha \leq 1 /\left(_{\text {M }}^{\text {M }}\right.$ for the onemsided tests and $\alpha \leq 2 /\binom{m j}{m}$ in the case of twomsided tests. All combinations of mand for which $m+n \leq 8$, plue $m=1$, $n=8$ orm=8, $n=1$, and $m=1, n=9$ orm $m, n=1$ axe conildered. The ignificance levels are attained exactiy in all cases by using a randonimed decision rule.

Although it is difficult to draw any agnificant conclusions from results for much small maple misam and limited ranges of α, the calculatione of the order probabilities become extramely tedious for larger maple sizes and values
of k. There are at least two practicable methods of enlargIng the range of computations, First, if an electronic computer could be programed to find the probabilities of all the orderings for sufficiently large ample sizes, savage's back-recursive relationship (3.12) could be used to find the order probabilities for all smaller ample sizes. second, atarting with samples of size one, the forwardrecursive acheme (3.13) could be programmed to build up to probabilities for larger sample sizes. The author plans to attempt this latter method on the TBM 7040 in the near future.

As an example of critical region and powar function calculations, consider $m=n=4, k=2, \alpha m .05$. where are 70 possible arrangements of the random variables, each occurring with probability $1 / 70$ under the null hypothesis. For the most powerful rank test, x_{1}, the four cases occurring with highest probability under the alternative belong to the rejection region since $\alpha \cdot\left(\frac{\mathrm{I}}{\mathrm{m}}\right)$-3.5. 2hese are (11110000), (11101000), (11011000), and (11100100). But the last two of the four cases have equal probabilities by theorem 3.2. Whas the .05 level test rejects alway for the oxderings (11110000) and (11101000) and with probability $3 / 4$ 1f either of the cases (11011000) or (11100100) occurs. The power is

$$
.24357+.13682+\frac{3}{4} \cdot 2(.08038)=.5010
$$

similarly for T_{2}, T_{3}, and T_{8}, The criterion for the onesided median test T_{4} is v, the number of X 's larger than the median of the combined sample. From (3.15) we see that there is only one ordering with no X's larger than the median, and 16 cases with one X larger than the median. In order to achieve exact significance level . 05, we reject always when $v=0$ and with probability $5 / 32$ when $v=1$. The power is

$$
.24357+\frac{5}{32}(.57258)=.3330
$$

The following chart for equal sample sizes lists the critical orders and probabilities with which they must be rejected to attain exact aignificance level α. The listings for T_{1}, T_{2}, T_{3}, and T_{8} are in descending order of probability except that certain rank orderings have equal probabilities by Theorem 3.2.

mwn	Tests	Qㅌ.01	Qum. 05	am. 10
2	$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{8}$	(1100),.06	(1100). . 3	(1100), 6
	$\mathrm{m}_{5} ; \mathrm{T}_{6} ; \mathrm{T}_{7}$	$\left.\begin{array}{l} (1100) \\ (0011) \end{array}\right\} .03$	$\left.\begin{array}{l} (1100) \\ (0011) \end{array}\right\} .15$	$\left.\begin{array}{l} (1100) \\ (0011) \end{array}\right\} .3$

$\underline{m=n}$	Tests	$\alpha=.01$	$\underline{\alpha m} .05$	$\alpha=.10$
3	$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{8}$	(111000), . 2	(111000), 1	$(111000),(110100), 1$
	\mathbf{T}_{4}	(111000), . 2	(111000), 1	$\left.\begin{array}{l} (111000), 1 \\ (--100),(--010) \\ (-\infty-001) \end{array}\right\} 1 / 9$
				where the blanks are to be filled by all possible arrangements of the remaining 0 's and 1 's (9 cases).
	$\mathrm{T}_{5}, \mathrm{~T}_{6}, \mathrm{~T}_{7}$	$\left.\begin{array}{l} (111000) \\ (000111) \end{array}\right\} \cdot 1$	$\left.\begin{array}{l} (111000) \\ (000111) \end{array}\right\} .5$	$\left.\begin{array}{l} (111000) \\ (000111) \end{array}\right\} 1$
4	$T_{1}, T_{2}, T_{3}, T_{8}$	(11110000), 7	$\left.\begin{array}{l} (11110000) \\ (11101000) \\ (11100100) \\ (11011000) \end{array}\right\} 3 / 4$	$\begin{aligned} & (11110000),(11101000), \\ & (11100100),(11011000), \\ & (11010100),(10111000), \\ & \text { (11100010), all with } \\ & \text { probability } 1 \end{aligned}$
	T_{4}	(11110000), . 7	(16 cases)	$(11110000), 1$ the same 16 cases as for $\alpha=.05$ but reject with probability 6/16

$\underline{m=n}$	Tests	$\alpha=.01$	$\alpha=.05$	$\alpha=10$
4	T 5	(11110000)]	(11110000)	(11110000) , (00001111)
		(00001111) ${ }^{(35}$	(00001111) $\}^{1}$	(11101000),$(00010111)\}^{1}$
			(11101000) 3/4	(11011000),(00100111)
			(00010111) ${ }^{3 / 4}$	(11100100) , (00011011) $)^{3 / 4}$
	T_{6}	$\left.\begin{array}{l} (11110000) \\ (00001111) \end{array}\right) \cdot 35$	(11110000)	(11110000)
			(00001111)	(00001111)
			(---1000)	the same 32 cases as
			(---0111)	for $\alpha=.05$ but reject
			(---0100)	with probability 5/32
			(---1011) $\}^{(--2 / 64}$	
			(---0010) $\}^{3 / 64}$	
			(----1101)	
			(---0001)	
			(----1110)	
			(32 cases)	
	T_{7}	$\left.\begin{array}{l} (11110000) \\ (00001111) \end{array}\right\} \cdot 35$	(11110000) ${ }_{1}$	(11110000)
			(00001111) $\}^{1}$	(00001111) $\}^{1}$
			(11100001)	the same 6 cases as
			(00011110)	for $\alpha=.05$ but reject
			(11000011) ${ }_{\text {(100111100 }}$ 1/4	with probability 5/6
			(00111100) $)^{1 / 4}$	
			(10000111)	
			(01111000)	

The probability of any arrangement of the $(m+n)=N$ random variables under the null hypothesis is $1 /\left(\begin{array}{l}\mathbb{N}\end{array}\right)$. For selected values of m, n, and N, these probabilities ares

| I | mor n | Probability | | M | mor n |
| :--- | :---: | :---: | :---: | :---: | :---: | Probability

Under the alternative H_{1}, the probability of any ordering may be found using (3.5) and (3.6), or (3.7), (3.8), (3.9) and (3.10) when applicable. An example of one of the calculations for $k=2, m=n=3$, using formula (3.5) is as follows:

$$
\begin{gathered}
\operatorname{Pr}(101100)=31312^{5} \sum_{i=1}^{2} \frac{\binom{2}{1}(-1)^{1-1}}{(1+2)} \sum_{j=0}^{1} \frac{(-1)^{j}}{(1+j+3)} \\
\cdot \sum_{w=0}^{1} \frac{(-1)^{w}}{(1+j+w+4)(1+j+w+6)(1+j+w+8)}=.09355
\end{gathered}
$$

The following chart lists some of the rank orderings and their probabilities under the alternative. Those entries left blank have not been computed.

,		Probability under H_{1}		
m=n	Order	$\underline{k}=2$	$\underline{\mathrm{k}=3}$	$\underline{k=4}$
2	1100	. 58571	. 84654	. 95086
	1010	. 21746		
	1001			
	$0110\}$. 07778		
	0101	. 02698		
	0011	. 01429	. 00108	. 00008
3	111000	. 38463	. 72845	. 90384
	110100	. 18602	. 15009	. 06135
	$110010\}$. 09355		
	101100)	. 09355		
	101010	. 04616		
	$110001\}$			
	011100	. 03797		
	100110	. 02786		
	101001	. 01851		
	011010	. 01851		
	100101	. 01101		
	010110	. 01101		
	011001	. 00737		
	100011	. 00680		
	001110	. 00680		
	010101	. 00431		
	010011			
	$001101\}$. 00264		
	001011	. 00160	. 00004	
	000111	. 00108	. 00002	. 00001
	11110000	. 24357	. 61324	. 85003
	11101000	. 13682	. 16563	. 09489
	11011000	. 08038	. 05715	. 01922
	11100100	. 08038	. 05715	. 01922
	11010100	. 04662	. 02870	. 00563
	10111000	. 04445	. 01915	. 00412
	11100010	. 04445	. 01915	. 00412
	11100001	. 01909	. 00414	. 00064
	01111000	. 01909	. 00414	. 00064
	11000011	00307		
	00111100	. 00307		
	$10000111\}$. 00055		
	00011110	. 00055		
	00011011	. 00014	. 00000	. 00000
	00100111	. 00010	. 000000	. 00000
	00001111	. 00008	. 00000	. 00000

since the critical regions for the two median testa, \mathbf{T}_{4} and T_{6}, contain 80 many orderings unique to these tests, the sum $f(v)$, of the probabilities of all the orderings with the same number v or X 's larger than the median, was found for equal sample sizes using (3.19). The results are as follows:

$\underline{m m}$	Y	$f(\mathrm{v})$		
		$\underline{k m}$	$\underline{k}=3$	$\underline{x}=4$
2	0	. 58571	. 84654	. 95086
	1	. 40000	. 15238	. 04906
	2	. 01429	. 00108	. 00008
3	0	. 38463	. 72845	. 90384
	1	. 53961	. 26412	. 09555
	2	. 07468	. 00741	. 00061
	3	. 00108	. 00002	. 00001
4	0	. 24357	. 61324	. 85003
	1	. 57258	. 36389	. 14787
	2	. 17383	. 02263	. 00210
	3	. 00995	. 00025	. 00001
	4	. 00008	. 00000	. 00000

For unequal sample sizes, only the two most extreme order probabilities need be computed to find the power for the chosen significance levels. The number of calculations required for the power functions is reduced by the fact that the probabilities for the two extreme orderings are symmetric in m and n. That is, the probability that all observations in a sample of size m are less than all observations in a second sample of size n is equal to the probability that n

Observations from the first sample are less than m observa-
tions from the second sample. This is a special case of the
equal probabilities of two orderings as defined by Theorem 3.2.
The following chart lists the extreme orderings and
their probabilities as calculated fram (3.7) and (3.10).

m, n	
or	
n, m	orders
1,3	1000,1110
	0001,0111
1,4	10000,11110
2,3	00001,01111
	11000,11100
1,5	00011,00111
	100000,111110
2,4	000001,011111
	110000,111100
1,6	000011,001111
	1000000,1111110
2,5	0000001,0111111
	1100000,1111100
3,4	0000011,0011111
	1110000,1111000
1,7	0000111,0001111
	10000000,11111110
2,6	00000001,01111111
	11000000,11111100
3,5	00000011,00111111
	11100000,11111000
1,8	00000111,00011111
100000000,111111110	
1,9	000000001,011111111
	1000000000,1111111110
	0000000001,0111111111

Probability under H_{1}		
$k=2$	$k=3$	$\underline{k=4}$
.66429	.88117	.96265
.03571	.00455	.00055
.61270	.85544	.94268
.02222	.00220	.00021
.49048	.79500	.86448
.00476	.00020	.00001
.57215	.83336	.94422
.01515	.00123	.00009
.42338	.75276	.91562
.00202	.00005	.00000
.53913	.81403	.93618
.01099	.00075	.00005
.37329	.76478	.89783
.00100	.00002	.00000
.31375	.67488	.87974
.00033	.00000	.00000
.51152	.79687	.92876
.00833	.00049	.00003
.33435	.68654	.91346
.00055	.00001	.00000
.26320	.63050	.85817
.00012	.00000	.00000
.48797	.78048	.92185
.00654	.00034	.00002
.46755	.76747	.91539
.00526	.00025	.00001

The results of the power computations for the eight rank tests, when $m=n=2$ and $3, k=2,3$, and 4, are given in Tables 3.1 and 3.2.

Table 3.1. Power against H_{1} for $m=n=2, k=2,3,4$ for the eight rank tests

Test	$\underline{\alpha=} .01$			$\alpha=.05$			$\alpha=.20$		
	$k=2$	$k=3$	k $=4$	$\mathrm{k}=2$	$\mathrm{k}=3$	k=4	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
$\begin{gathered} T_{1}, T_{2} T_{3}, T_{4} \\ T_{8}^{\prime} \end{gathered}$. 0351	. 0508	. 0571	. 1757	. 2540	. 2853	. 3514	. 5079	. 5705
$\mathrm{T}_{5} \mathrm{~T}_{7} \mathrm{~T}_{6}$,	. 0180	. 0254	. 0285	. 0900	. 1271	. 1426	. 1800	. 2543	. 2853

The powers here are low, as is to be expected for such small sample sizes. The maximum possible power for $m=n=218$.06 for $\alpha=.01, .30$ for $\alpha=.05$, and .60 for $\alpha=.10$ for the five one-sided tests, since there is only one case in the rejection region. With any two-sided test, the powers cannot exceed .03, .15, and .30 when $\alpha=.01, .05$, and .10 respectively. For $k=4$, the reaults are quite close to these maximum values. As a result, considering larger values of k would have very little effect on the power functions.

Table 3.2. Power against H_{1} for $m=n=3, k=2,3,4$ for the eight rank tests

Test	am, 01			Q $=05$			$\alpha=10$		
	$\mathrm{k}=2$	$\underline{k}=3$	$\mathrm{k}=4$	k $=2$	k $=3$	k $=4$	k $=2$	$\mathrm{k}=3$	k=4
$\mathrm{T}_{1} \mathrm{~T}_{2}{ }^{2}$. 0769	. 1457	. 1808	. 3846	. 7285	. 9038	. 5706	. 8785	. 9652
T_{4}	. 0769	. 1457	. 1808	. 3846	. 7285	. 9038	. 4446	. 7578	. 9145
$\mathrm{T}_{5} \mathrm{~T}_{7} \mathrm{~T}_{6}{ }^{0}$. 0386	. 0728	. 0904	. 1929	. 3642	. 4519	. 3857	. 7285	. 9038

For $\alpha=.01$, the maximum possible power 18.20 for $m=n=3$ for any onemsided test based on ranks. For $\alpha \sum$.05, there ie no limit on the powers. The power of any twomsided test cannot exceed. 10 for $\alpha=.01$ and . 50 for $\alpha=.05$.

In Table 3.3 the power functions of these same tests for $m=n=4, k=2, \alpha=.01, .05$, and .10 are presented, as well as Lehmann's results for the alternative $H=F, G=F^{2}, \alpha=, 10$. Table 3.3. Power against H_{1} for $m=n=4, k=2$, for the elght rank tests

Test	Hel- $(1-F)^{2}, G^{-F^{2}}$			Her cosp^{2}
	$\alpha=01$	$\underline{\alpha m} 05$	$\alpha^{\text {m }}$. 10	-
T_{1}, T_{8}	. 1705	. 5010	. 6767	. 32
$\mathrm{T}_{2}, \mathrm{~T}_{3}$. 1705	. 5010	. 6767	. 31
T_{4}	. 1705	. 3330	. 4583	. 23
T_{5}	. 0853	. 3463	. 5014	. 19
T_{6}	. 0853	. 2710	. 3347	. 15
T_{7}	. 0853	. 2550	. 2815	.14

Since the power of the Wald-Wolfowitz runs test T_{7} does not compare favorably with the other two-sided tests, and the rejection orderings are unique to this one test when $\alpha>1 / 35$, it was omitted for further computations. The power functions for the other tests when $m=n=4, k=3$ and 4, are given in Tables 3.4 and 3.5 respectively, along with Lehmann's results for the alternative $H=F, G=F^{3}, \alpha=.10$.

Table 3.4. Power against H_{1} for $m=n=4, k=3$, for the eight rank tests

Test	H=1-(1-F) ${ }^{3}, G \pm F^{3}$			HmFe $\mathrm{GmP}^{\text {m }}$
	$\alpha=.01$	Q $=.05$	$\alpha=10$	$\alpha=10$
$\mathrm{T}_{1}, \mathrm{~T}_{8}$. 4293	. 8646	. 9602	. 49
$\mathrm{T}_{2}, \mathrm{~T}_{3}$. 4293	. 8646	. 9602	. 47
T_{4}	. 4293	. 6701	. 7497	. 33
T_{5}	. 2146	. 7375	. 8646	. 32
T_{6}	. 2146	. 6303	. 6701	. 22

Table 3.5. Power against H_{1} for $m=n=4, k=4$

Test	$\mathrm{H}=1-(1-\mathrm{F})^{4} \mathrm{Cam}^{\mathrm{F}}$		
	Qm. 01	$\alpha=0.05$	$\alpha=10$
$T_{1}, T_{2}, T_{3}, T_{8}$. 5950	. 9738	. 9972
T_{4}	. 5950	. 8731	. 9055
T_{5}	. 2975	. 9212	. 9738
T_{6}	. 2975	. 8570	. 8731

It should be noted that although the power functions against H_{1} of the one-sided tests T_{1}, T_{2}, T_{3} and T_{8} are the same for the cases considered here with $m m \leq 4$, this will not be true in general. In many cases for which the sums of the ranks of the Y 's are equivalent, the probabilities of their occurrence under the alternative and/or the exact c_{1} values may differ. For example, in the case $m=n=3$, $k=2, \operatorname{Pr}(101010)=.04616$ and $\operatorname{Pr}(110001)=.03797$, but the Mann-Whitney-Wilcoxon statistic ${\underset{i=1}{3} s_{1}=12 \text { in both cases. }}_{12}$ Also for $m=n=3, \sum_{i=1}^{3} s_{i}=9$ in both of the orderings (101010) and (011100), but the corresponding exact c_{1} values are. 83 and .64. For $m=n=5$, the powers for T_{2} and T_{3} will be the same for $\alpha \leq 4 / 252$ only. It is evident from Terry's Table I (1952, pp. 358-361) that although the Wilcoxon and C_{1} statistics are similar, the C_{1} statistic is generally more sensitive than the Wilcoxon (or Mann-Whitney) statistic. A linear functional relationship between the two statistics does not exist. Terxy has shown that the limit of the correlation coefficient between them under the null hypothesis is $(3 / \pi)^{\frac{1}{2}}$, or approximately . 9772, for large samples.

As k increases, the power functions increase very rapidly in every case. This is a result of the fact that for every $m=n$, although the ranking of the probabilities of the various orderings is the same, the concentration of probability is much higher for larger values of k. The probabilities of the extreme orderings for which all or almost all the Y 's are less than the X's are negligible to four decimal places for $m=n \geq 3, k \geqslant 3$. For $m=n=3$, $57.1 \%, 87.9 \%$ and 96.5% of the total probability is concentrated in the two cases (111000) and (110100) when $k=2,3$, and 4 respectively. When $m=n=4$, however, (11110000) or (11101000) occur only 35.0% of the time for $k=2$, with the frequency jumping to 77.9% and 94.5% (85.0% in the one case 11110000) when $k=3$ and $k=4$ respectively. Also for $m=n=4$, the highest four cases account for 51.1% of the probability, and the highest seven cases account for 67.7\% when $k=2$, in contrast to 89.3% and 96.0% when $k=3$, and 98.3% and 99.7% when $k=4$. The concentration can be expected to be even more pronounced for larger k and larger sample sizes.

The tests T_{1}, T_{2}, T_{3}, and T_{8} are the most powerful of the five onemided tests, as is to be expected, since there
are so many more cases to be considered in the rejection region for the one-sided median test. For larger m and n, it is reasonable to expect on the basis of these results that the test T_{5} will be by far the most powerful of the two-sided tests considered, its power increasing rapidiy as the significance level increases. It is to be noted that the two-sided wilcoxon test is even more powerful than the onemided median test for $m=n=4, k=2,3$, and 4, $\alpha>2 / 70$. This is due to the fact that the four cases with highest probability comprise such a large proportion of the total probability. For the test \mathbf{T}_{4}, there are sixteen cases in the rejection region occurring with equal probability under the null hypothesis when $1 / 70<\alpha \leq 17 / 70$, and only a few cases for T_{5}, 8 ame of which have negligible probabilities under the alternative. However, with T_{5}, those cases with very high probabilities are given full weight.

The results for unequal sample sizes are presented in Table 3.6. The two median tests have been eliminated from consideration since the cases in the critical regions are different, and the power will be much lower because of the larger number of rejection orderings.

Table 3.6. Power against H_{1} for unequal sample sizes

$\begin{array}{r} m, n \\ \text { or } \\ n, m \end{array}$	One-sided tests$T_{1}, T_{2}, T_{3}, T_{8}$					Two-sided tests $\mathrm{T}_{5}, \mathrm{~T}_{7}$		
	α	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	α	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$
1,3	. 01	. 0266	. 0352	. 0385	. 01	. 0140	. 0177	. 0193
	. 05	. 1329	. 1762	. 1925	. 05	. 0700	. 0886	. 0963
	. 10	. 2656	. 3525	. 3851	. 10	. 1400	. 1771	. 1926
1,4	. 01	. 0306	. 0428	. 0471	. 01	. 0159	. 0214	. 0236
	. 05	. 1532	. 2139	. 2357	. 05	. 0794	. 1072	. 1179
	. 10	. 3063	. 4277	. 4713	. 10	. 1587	. 2144	. 2357
2,3	. 01	. 0490	. 0795	. 0864	. 01	. 0248	. 0398	. 0432
	. 05	. 2452	. 3975	. 4322	. 05	. 1238	. 1988	. 2161
	. 10	. 4905	. 7950	. 8645	. 10	. 2476	. 3976	. 4322
1,5	. 01	. 0343	. 0500	. 0567	. 01	. 0176	. 0250	. 0283
	. 05	. 1716	. 2500	. 2833	. 05	. 0881	. 1252	. 1416
	. 10	. 3433	. 5000	. 5665	. 10	. 1762	. 2504	. 2833
2,4	. 01	. 0635	. 1129	. 1373	. 01	. 0319	. 0565	. 0687
	. 05	. 3175	. 5646	. 6867	. 05	. 1595	. 2823	. 3434
	1/15	. 4234	. 7528	. 9156	. 10	. 3190	. 5646	. 6867
1,6	. 01	. 0377	. 0570	. 0655	. 01	. 0193	. 0285	. 0328
	. 05	. 1887	. 2849	. 3277	. 05	. 0963	. 1426	. 1638
	. 10	. 3774	. 5698	. 6553	. 10	. 1925	. 2852	. 3277
2,5	. 01	. 0784	. 1606	. 1885	. 01	. 0393	. 0803	. 0943
	1/21	. 3733	. 7648	. 8978	. 05	. 1965	. 4015	. 4714
					2/21	. 3743	. 7648	. 8978

Table 3.6 continued

$\begin{array}{r} m, n \\ \text { or } \\ n, m \end{array}$	$\begin{gathered} \text { One-sided tests } \\ T_{1}, T_{2}, T_{3}, T_{8} \end{gathered}$					Two-sided teatsT_{5}, T_{7}		
	α	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	α	$\mathrm{k}=2$	k=3	$\underline{k}=4$
3,4	. 01	. 1098	. 2362	. 3079	. 01	. 0550	. 1181	. 1540
	1/35	. 3138	. 6749	. 8797	. 05	. 2748	. 5905	. 7698
					2/35	. 3141	. 6749	. 8797
1,7	. 01	. 0409	. 0637	. 0743	. 01	. 0208	. 0319	. 0372
	. 05	. 2046	. 3187	. 3715	. 05	. 1040	. 1595	. 1858
	. 10	. 4092	. 6375	. 7430	. 10	. 2079	. 3189	. 3715
2,6	. 01	. 0936	. 1922	. 2558	. 01	. 0469	. 0961	. 1279
	1/28	. 3343	. 6865	. 9135	. 05	. 2344	. 4806	. 6394
					2/28	. 3349	. 6866	. 9135
3,5	. 01	. 1474	. 3531	. 4806	. 01	. 0737	. 1765	. 2403
	1/56	. 2632	. 6305	. 8582	2/56	. 2633	. 6305	. 8582
1,8	. 01	. 0439	. 0702	. 0830	. 01	. 0223	. 0351	. 0415
	. 05	. 2196	. 1405	. 4148	. 05	. 1113	. 0703	. 2074
	.10	. 4392	. 7024	. 8297	. 10	. 2225	. 3514	. 4148
1,9	. 01	. 0468	. 0767	. 0915	. 01	. 0236	. 0768	. 0915
	. 05	. 2338	. 3837	. 4577	. 05	. 1182	. 1919	. 4577
	. 10	. 4675	. 7675	. 9154	. 10	. 2364	. 3839	. 9154

3.4.2 Comparisons Against Normal Alternatives

Terry's c_{1} test T_{3} is designed primarily for testing the null hypothesis $H_{0}: H=G$ against the specific alternative H_{1}^{\prime} :
$H(x)=\frac{1}{\sqrt{2 \pi} \sigma^{1}} \int_{-\infty}^{x} e^{-\frac{1}{2 \sigma^{2}}\left(t-\mu_{X}\right)^{2}} d t, G(y)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{y} e^{-\frac{1}{2 \sigma^{2}}\left(t-\mu_{y}\right)^{2}} d t$,
and it is the locally most powerful rank test against this alternative when $\left(\mu_{y}-\mu_{x}\right)>0$ (see Section 4.3.3). As a result, the power comparisons for this test would be more appropriate if a normal alternative were used instead of the previousiy considered definitions of H and G where F is unspecified. The power functions are calculated by summing the probabilities for the cases in the respective rejection regions, where the probabilities are computed under the assumption that the alternative H_{1}^{\prime} applies. Thus, for example,
$\operatorname{Pr}\left(\right.$ all m $\left.X^{\prime} s<a 11 n X^{\prime} s\right)=m \int_{-\infty}^{\infty}[1-G(t)]^{n}[H(t)]^{m-1} h(t) d t$
$=m \int_{-\infty}^{\infty}\left[1-\Phi\left(\frac{t-\mu}{\sigma}\right)\right]^{n}\left[\Phi\left(\frac{t-\mu x}{\sigma}\right)\right]^{m-1} \varphi\left(\frac{t-\mu x}{\sigma}\right) d t$,
where $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} v^{2}} d v$. Letting $x=\left(t-\mu_{x}\right) / \sigma$ in (3.23),
we obtain
$\operatorname{Pr}\left(a 11 m\right.$ X:s $<$ all $\left.n Y^{\prime} s\right)=m \int_{-\infty}^{\infty}\left[1-\Phi\left(x-\frac{\mu_{Y}-\mu x}{\sigma}\right)\right]^{n}[\Phi(x)]^{m-1} \varphi(x) d x$.
Let us define $\delta_{k}=\left(\mu_{Y}-\mu_{X}\right) / \sigma$, the standardized difference between the two distributions H and G above. Then the extreme order probability (3.23) is given by
$\operatorname{Pr}\left(a 11 m X^{\prime} s<a 11 n Y^{\prime} s\right)=\int_{-\infty}^{\infty}\left[\Phi\left(\delta_{k}-x\right)\right]^{n} d\left([\Phi(x)]^{m}\right)$
since $1-\Phi\left(x-\beta_{k}\right)=\Phi\left(\delta_{k}-x\right)$. This integral must be evaluated numerically for specified values of m, n and δ_{k}. Teichroew (1954) has computed the value of (3.24) on the SWAC (National Bureau of standards Western Automatic Computer) for $\delta_{k}=0(.01) 6.40$ and $\delta_{k}=-3.20(.10) 0$ and forty-five combinations of m and n, by summing the products of the terms in the integrand evaluated at 160 values of $x, x=-8.0(.1) 7.9$. Several systematic checks were performed throughout the prom gram to ensure accuracy, and the results are believed to be correct to within one unit in the ninth decimal place. Direct linear interpolation for positive values of δ_{k} gives probabilities correct to within one unit in the fifth decimal place. When δ_{k} is negative, linearly interpolated values will be accurate to at least three decimal places.

Using Teichroew's calculations, the power of the one-sided test T_{3} of the hypothesis $H_{0} H=G$, unspecified, against the alternative H_{1}^{\prime} can be calculated for any positive or negative value of δ_{k} within the tabulated range when $\alpha \leq 1 /\left(\begin{array}{l}\mathrm{N}\end{array}\right)$

The power functions of the other tests considered are also of interest under the assumptions of the alternative H_{1}^{\prime} and can be calculated from Teichroew's results. For a onesided test where $\left(\mu_{Y}-\mu_{X}\right)>0$, which corresponds to $H(a) \sum G(a)$ for all a, we would be interested only in positiva values of δ_{k}. For twomsided tests, we need to compute $\operatorname{Pr}\left(\right.$ all $n X^{\prime} s<$ all $\left.m X^{\prime} s\right)=m \int_{-\infty}^{\infty}\left[\Phi\left(x-\delta_{k}\right)\right]^{n} \varphi(x)[\Phi(-x)]^{m-1} d x$ $=\int_{-\infty}^{\infty}\left[\Phi\left(x-\delta_{k}\right)\right]^{n} d\left[\Phi(-x)^{m}\right] \quad$.

But for any given positive value of δ_{k}, (3.25) is equivalent to (3.24) with $-\delta_{k}$ substituted for δ_{k}. Thus Teichroew's results yield the probabilities of both of the two most extreme orderings where all the observations in one sample are less than all observations in the other sample.

We will choose δ_{k} so that the power functions obtained can be compared with those presented in Tables 3.1-3.6

Where F is not specified. Thus δ_{k} will correspond to the difference between H and G under the alternative $H_{1}: H=1-(1-F)^{K}$, $G=F^{k}$ where F is the normal distribution with mean 0 and variance 1 . since F is symmetrical about the origin, the even moments of H and G are equal and the odd moments are the negatives of each other. G is the distribution of the largest of k random variables from a sample from a standard normal population. The standardized distance between H and G is measured by

$$
\begin{equation*}
\delta_{k}=\frac{\varepsilon_{G}(x)-\varepsilon_{H}(x)}{\sigma_{G}(x)}=\frac{2 \varepsilon_{G}(x)}{\sigma_{G}(x)}=\frac{2 \varepsilon_{F}(x(k))}{\sigma_{F}\left(x_{(k)}\right)} \tag{3.26}
\end{equation*}
$$

where $x_{(k)}$ denotes the $k t h$ order statistic from a standardized normal population. The value of δ_{k} can be determined by using Ruben's Table 3 (1954, p. 226) to obtain $\sigma_{F}(x(k)$) and Table $2\left(p .224, x=1\right.$) to obtain $e_{F}\left(x_{(k)}\right)$ (or equivalently Harter, 1961, Table 1, p. 158). The values of δ_{k} are presented in Table 3.7 for $k=2(1) 7$.

Table 3.7. Numerical values of $\delta_{k}=\frac{2 e_{F}\left(x_{(k)}\right)}{\sigma_{F}\left(x_{(k)}\right)}$ for $k=2(1) 7$

k	2	3	4	5	6	7
δ_{k}	1.367	2.263	2.936	3.477	3.930	4.320

The power functions for testing the null hypothesis H_{0} versus the normal alternative H_{1}^{\prime} using the one-sided tests $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{8} when $\alpha \leq 1 /\left(N_{m}^{N}\right)$ and the two-sided tests T_{5}, T_{6}, and T_{7} when $\alpha \leq 2 /\left({ }_{m}^{N}\right)$ are given in Table 3.8 for $m=n=2,3$, and 4 and the $s i x$ values of δ_{k} corresponding to $k=2(1) 7$. The power under H_{1} (Tables 3.1-3.5) is, In most cases, slightly higher than when F is assumed to be normal. The difference in power appears to increase with k as well as with the sample size.

The power functions against H_{1}^{\prime} (for all tests except the two median tests) for unequal sample sizes have also been computed from Teichroew's tables. The results are presented in Table 3.9 for $\alpha \leq 1 /\left({ }_{m}^{N}\right.$ for one-sided tests and $\alpha \leq 2 /\binom{N}{m}$ for two-sided tests, and may be compared with the power functions in Table 3.6.

Table 3.8. Power function of H_{0} versus H_{1}^{\prime} for equal sample sizes

$\mathrm{m}=\mathrm{n}$		χ^{k}	$\begin{gathered} 2 \\ \delta=1.367 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \delta=2.263 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \delta=2.936 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \delta=3.477 \end{gathered}$	$\begin{gathered} 6 \\ \delta=3.390 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \delta=4.320 \\ \hline \end{gathered}$
	One-	. 01	. 0352	. 0501	. 0562	. 0585	. 0594	. 0597
	Sided	. 05	. 1762	. 2505	. 2810	. 2926	. 2970	. 2987
	Tests	. 10	. 3524	. 5010	. 5620	. 5851	. 5840	. 5974
2								
	Two-	. 01	. 0180	. 0251	. 0281	. 0293	. 0297	. 0299
	sided	. 05	. 0902	. 1254	. 1405	. 1463	. 1485	. 1494
	Tests	. 10	. 1804	. 2509	. 2810	. 2926	. 2970	. 2987
	One-	. 01	. 0777	. 1424	. 1758	. 1900	. 1958	. 1982
	Sided Tests	. 05	. 3875	. 7119	. 8788	. 9500	. 9790	. 9909
3								
	Two-	. 01	. 0389	. 0712	. 0879	. 0950	. 0979	. 0991
	Sided	. 05	. 1943	. 3560	. 4394	. 4750	. 4895	. 4955
	Tests	. 10	. 3886	. 7119	. 8788	. 9500	. 9790	. 9909
	One-	. 01	. 1728	. 4156	. 5701	. 6438	. 6757	. 6893
	Tests	1/70	. 2468	. 5937	. 8145	. 9197	. 9653	. 9847
4								
	Two-	. 01	. 0864	. 2078	. 2851	. 3219	. 3378	. 3446
	Sided Tests	2/70	. 2469	. 5937	. 8145	. 9197	. 9653	. 9847

Table 3.9. Power function of H_{0} versus H_{1}^{\prime} for unequal sample sizes

$\begin{gathered} m_{\mathrm{n}, \mathrm{n}} \\ \text { or } \\ \mathrm{n}, \mathrm{~m} \end{gathered}$		α^{k}	2 $\delta=1.367$	3 $\delta=2.263$	4 $\delta=2.936$	5 $\delta=3.477$	6 $\delta=3.930$	$\begin{gathered} 7 \\ \delta=4.320 \\ \hline \end{gathered}$
1,3	Onesided Tests	. 01	. 0266	. 0349	. 0381	. 0392	. 0397	. 0399
		. 05	. 1328	. 1743	. 1903	. 1862	. 1985	. 1994
		. 10	. 2657	. 3486	. 3806	. 3925	. 3970	. 3987
	TwoSided Tests	. 01	. 0140	. 0175	. 0191	. 0196	. 0198	. 0199
		. 05	. 0701	. 0877	. 0953	. 0981	. 0992	. 0997
		. 10	. 1403	. 1755	. 1905	. 1963	. 1985	. 1994
1,4	One- Sided Tests	. 01	. 0306	. 0422	. 0470	. 0488	. 0495	. 0498
		. 05	. 1530	. 2110	. 2349	. 2440	. 2476	. 2490
		. 10	. 3060	. 4220	. 4697	. 4880	. 4951	. 4979
	TwoSided Tests	. 01	. 0159	. 0212	. 0235	. 0244	. 0248	. 0249
		. 05	. 0795	. 1059	. 1175	. 1220	. 1238	. 1245
		. 10	. 1589	. 2118	. 2350	. 2441	. 2476	. 2490
2,3	Onesided Tests	. 01	. 0492	. 0781	. 0912	. 0965	. 0985	. 0994
		. 05	. 2462	. 3905	. 4561	. 4824	. 4927	. 4969
		. 10	. 4925	. 7810	. 9122	. 9648	. 9855	. 9938
	Two-	. 01	. 0249	. 0391	. 0456	. 0482	. 0493	. 0497
	Sided	. 05	. 1243	. 1953	. 2280	. 2412	. 2464	. 2484
	Tests	. 10	. 2486	. 3906	. 4561	. 4824	. 4927	. 4969

Table 3.9 continued

$\begin{gathered} m, n \\ \text { or } \\ n, m \end{gathered}$		α^{k}	$\begin{gathered} 2 \\ \delta=1.367 \end{gathered}$	$\begin{gathered} 3 \\ \delta=2.263 \end{gathered}$	$\begin{gathered} 4 \\ \delta=2.936 \end{gathered}$	$\begin{gathered} 5 \\ \delta=3.477 \end{gathered}$	$\begin{gathered} 6 \\ \delta=3.930 \end{gathered}$	$\begin{gathered} \frac{7}{\delta=4.320} \end{gathered}$
1,5	Onesided Tests	. 01	. 0342	. 0492	. 0557	. 0583	. 0593	. 0597
		. 05	. 1712	. 2461	. 2786	. 2914	. 2964	. 2985
		. 10	. 3424	. 4923	. 5571	. 5828	. 5929	. 5969
	Twosided Tests	. 01	. 0176	. 0247	. 0279	. 0291	. 0296	. 0298
		. 05	. 0881	. 1233	. 1393	. 1457	. 1482	. 1492
		. 10	. 1762	. 2467	. 2786	. 2914	. 2964	. 2985
2,4	OneSided Tests	. 01	. 0638	. 1105	. 1336	. 1433	. 1472	. 1488
		. 05	. 3189	. 5526	. 6680	. 7164	. 7360	. 7439
		1/15	. 4253	. 7368	. 8907	. 9552	. 9813	. 9919
	TwoSided Tests	. 01	. 0320	. 0553	. 0668	. 0716	. 0736	. 0744
		. 05	. 1602	. 2763	. 3340	. 3582	. 3680	. 3720
		. 10	. 3205	. 5527	. 6680	. 7164	. 7360	. 7439
1,6	OneSided Tests	. 01	. 0376	. 0560	. 0643	. 0677	. 0690	. 0696
		. 05	. 1879	. 2799	. 3215	. 3484	. 3451	. 3479
		. 10	. 3759	. 5599	. 6430	. 6768	. 6903	. 6958
	Two-	. 01	. 0192	. 0280	. 0322	. 0338	. 0345	. 0348
	Sided	. 05	. 0961	. 1402	. 1608	. 1692	. 1726	. 1740
	Tests	. 10	. 1923	. 2804	. 3215	. 3384	. 3451	. 3479

Table 3.9 continued

$\begin{gathered} m, n \\ \text { or } \\ n, m \end{gathered}$		α^{k}	$\begin{gathered} 2 \\ \delta=1.367 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \delta=2.263 \end{gathered}$	$\begin{gathered} 4 \\ \delta=2.936 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \delta=3.477 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \delta=3.930 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \delta=4.320 \\ \hline \end{gathered}$
2,5	One-	. 01	. 0787	. 1469	. 1830	. 1987	. 2052	. 2079
	sided Tests	1/21	. 3748	. 6996	. 8715	. 9464	. 9773	. 9901
	Thwo	. 01	. 0395	. 0735	. 0915	. 0994	. 1026	. 1040
	sided	. 05	. 1973	. 3673	. 4576	. 4968	. 5131	. 5198
	Tests	2/21	. 3758	. 6997	. 8715	. 9464	. 9773	. 9901
3,4	One-	. 01	. 1109	. 2298	. 2974	. 3278	. 3406	. 3459
	Sided Tests	1/35	. 3168	. 6566	. 8498	. 9366	. 9730	. 9882
	Two-	. 01	. 0555	. 1149	. 1487	. 1639	. 1703	. 1729
	Sided	. 05	. 2774	. 5746	. 7436	. 8195	. 8514	. 8647
	Tests	2/35	. 3171	. 6566	. 8498	. 9366	. 9730	. 9822
1,7	One-	. 01	. 0407	. 0625	. 0727	. 0770	. 0787	. 0795
	Sided	. 05	. 2034	. 3126	. 3637	. 3850	. 3937	. 3973
	Tests	. 10	. 4068	. 6251	. 7275	. 7701	. 7874	. 7945
		. 01	. 0207	. 0313	. 0364	. 0385	. 0394	. 0397
	Sided	. 05	. 1036	. 1565	. 1819	. 1925	. 1968	. 1986
	Tests	. 10	. 2072	. 3129	. 3638	. 3850	. 3937	. 3973

Table 3.9 continued

$\begin{gathered} m, n \\ \text { or } \\ n, m \end{gathered}$		α^{k}	$\begin{gathered} 2 \\ \delta=1.367 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \delta=2.263 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \delta=2.936 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \delta=3.477 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \delta=3.930 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \delta=4.320 \\ \hline \end{gathered}$
2,6	One- sided Tests	. 01	. 0939	. 1870	. 2392	. 2695	. 2726	. 2768
		1/28	. 3353	. 6677	. 8542	. 9381	. 9735	. 9884
	Two- sided Tests	. 01	. 0470	. 0935	. 1196	. 1348	. 1363	. 1384
		. 05	. 2351	. 4674	. 5979	. 6738	. 6815	. 6919
		2/28	. 3359	. 6677	. 8542	. 9381	. 9735	. 9884
3,5	One- sided Tests	. 01	. 1489	. 3422	. 4615	. 5175	. 5417	. 5519
		1/56	. 2660	. 6110	. 8241	. 9242	. 9673	. 9856
	Two sided Tests	. 01	. 0745	. 1711	. 2307	. 2588	. 2708	. 2760
		2/56	. 2661	. 6110	. 8241	. 9242	. 9673	. 9856
1,8	Onesided Tests	. 01	. 0436	. 0688	. 0811	. 0863	. 0884	. 0893
		. 05	. 2179	. 3442	. 4054	. 4314	. 4421	. 4465
		. 10	. 4358	. 6884	. 8108	. 8628	. 8842	. 8931
	Two-	. 01	. 0221	. 0344	. 0405	. 0431	. 0442	. 0465
	Sided	. 05	. 1107	. 1722	. 2027	. 2157	. 2210	. 2233
	Tests	. 10	. 2214	. 3445	. 4054	. 4314	. 4421	. 4465

$\begin{aligned} & m, n \\ & \text { or } \\ & n, m \end{aligned}$		k	2	3	4	5	6	7
		α	$\delta=1.367$	$\delta=2.263$	$\delta=2.936$	$\delta=3.477$	$\delta=3.930$	$\delta=4.320$
1,9	One- Sided Tests	. 01	. 0463	. 0750	. 0893	. 0955	. 0981	. 0992
		. 05	. 2315	. 3749	. 4465	. 4774	. 4903	. 4958
		. 10	. 4630	. 7498	. 8929	. 9548	. 9807	. 9915
	Two Sided Tests	. 01	. 0235	. 0375	. 0446	. 0477	. 0490	. 0496
		. 05	. 1174	. 1876	. 2232	. 2387	. 2452	. 2479
		. 10	. 2347	. 3752	. 4465	. 4774	. 4903	. 4958

The alternative H_{1}^{\prime} states a imple shift in location of two normal distributions, even though the hypothesis H_{0} does not specify the comon distribution function. If a parametric test were to be employed with the alternative H_{1}^{\prime} (with $\mu_{Y} \boldsymbol{\mu}_{X}>0$), the hypothesis would be $H_{0}^{\prime} \mu_{Y} \mu_{X}=0$. If we are willing to assume that both sets of random variables are independent and normally distributed with equal but unknown variances, the twomample student's test is the uniformly most powerful test against the onemsided alternative H_{1}^{\prime}. The test is to reject H_{0}^{\prime} when

$$
\begin{equation*}
\frac{\bar{Y}-\bar{X}}{8\left(\frac{1}{m}+\frac{1}{n}\right)^{\frac{3}{2}}}>t_{m+n-2, \alpha} \tag{3.27}
\end{equation*}
$$

where $(m+n-2) s^{2}=\Sigma\left(X_{i}-\bar{X}\right)^{2}+\Sigma\left(X_{1}-\bar{Y}\right)^{2}$, and $t_{m+n-2, \alpha}$ is the upper α point of the student's t distribution with ($m+n-2$) degrees of freedom.

It is only natural to compare the power functions of the one-sided nonparametric tests of H_{0} versus B_{1} with the power of this parametric test. Under the alternative H_{1}^{\prime}, the left-hand side of (3.27), denoted by $t_{m+n-2, \rho_{k}^{\prime}}^{i s}$ distributed as a noncentral t variable with $m+n-2$ degrees of freedom and noncentrality parameter $\rho_{k}=\frac{\delta_{k} \sqrt{m n}}{\sqrt{m+n}}$. The power
for significance level α is $\operatorname{Pr}\left[t_{m+n-2,}^{\prime} p_{k}>t_{m+n-2, \alpha}\right]$. The power functions for $\alpha=.01$ and $\alpha=.05$ can be read off from Neyman's (1935, pp. 133-134) series of curves representing the probabilities of a Type II error. The results are presented in Table 3.10. The normal theory power is of course higher than the power functions given in Tables 3.1 3.5 and 3.8 for the one-sided nonparametric tests.

Table 3.10. Power of the onemsided, twomample student's t test of H_{0}^{\prime} versus H_{1}^{\prime}

	$\alpha{ }^{k}$	$\delta_{2}=\frac{2}{1.367}$	$\delta_{3}=\frac{3}{2.263}$	$\begin{gathered} 4 \\ \delta_{4}=2.936 \end{gathered}$	$\begin{gathered} 5 \\ \delta_{5}=3.477 \end{gathered}$	$\begin{gathered} 6 \\ \delta_{6}=3.930 \end{gathered}$	$\begin{gathered} 7 \\ 8=7.320 \end{gathered}$
	. 01	. 05	. 12	. 18	. 24	. 28	. 33
2	. 05	. 24	. 47	. 61	. 72	. 80	. 84
	. 01	. 13	. 34	. 52	. 69	. 79	. 86
3	. 05	. 42	. 75	. 90	. 96	. 98	. 99
	. 01	. 21	. 59	. 80	. 92	. 96	. 99
4	. 05	. 53	. 87	. 96	. 99	-	-

Chapter IV

LOCALLY MOST POWERFUL RANK TESTS

"The idea of a statistical test of a hypothesis and the related concepts introduced by Neyman and Pearson have served as a model for much of modern statistics. In nonparametric work it is seldom possible to apply all of these concepts. This results from the fact that for most of the alternatives that have been considered there do not exist optimum critical regions or analytic tools for finding power functions. The sign test gives an illustration where it is possible to find the exact power function; on the other hand, this procedure is seldom optimum." (8avage, 1956, p. 590).

For the many two-sample nonparametric tests based on ranks, it is always possible, at least in theory, to find the probability under the alternative of any arrangement of the random variables by means of Hoeffaing's theorem. The only conditions are that the two population distributions, H and G, should both be continuous and functionaliy related. Theoretically, then, the most powerful two-sample rank test of the hypothesis that both samples come from the same population can always be determined. However, at least some of
the order probabilities must be calculated if one wishes to ascertain which orderings belong in the rejection region. The evaluation of the resulting multiple integral is often difficult. Also, one must have a relatively specific alternative in mind.

Another criterion which can easily be applied to twosample nonparametric tests based on ranks is the concept of a "locally" most powerful test. Here the alternative distribution functions contain an unspecified parameter, say θ, which is equal to zero under the null hypothesis. The power of the rank test is maximized when this parameter θ is very close to zero by maximizing the slope of the power function at the point where θ is equal to zero. Thus a locally most powerful rank test admits a very general alternative.

In this chapter, we will show that a general test statistic can be obtained which will yield a rank test locally most powerful against any alternative expressing a functional relationship between the distribution functions of the two samples. The specific relationship between the distributions will depend on the parameter θ. Some of the properties of the resulting test statistic will be discussed.

The locally most powerful rank test will be found for two functional alternatives, both of which are similar to the earlier alternative of two extreme distributions. The resulting test statistics, which we will call the Gamma test and the Psi test, are considerably easier to apply than the most powerful rank test. Although the power functions of these tests would be expected to be lower than for the most powerful rank test, they are found to be quite close and indeed the same in several cases. The Psi Test was discussed briefly in Chapter III. Some of its properties will be investigated here.

The methods of this chapter can also be applied to an alternative specifying the two distribution functions. If we consider the alternative that both populations are normally distributed with the same variance but different means, we can let the parameter θ represent the difference between the population means. Terry's C_{1} test is shown to be the locally most powerful rank test against this normal alternative, a result previously established by different methods (Terry, 1952).

4.1 Derivation of Test

We are again studying the situation in which there are two independent samples, $X_{1}, X_{2}, \ldots, X_{m}$ and $X_{1}, X_{2}, \ldots, X_{n}$, of random variables, with continuous cumulative distribution functions H and G, respectively. For the null hypothesis $H_{0} H=G, a \operatorname{leneral}$ alternative involving the parameter θ is $H_{a}^{w}: ~ H=Q(G, \theta), G=G$, where θ is restricted to lie in the interval $(0, \delta)$ for some $\delta>0$. This is much more general than the alternative $H=Q(G), G=G$ discussed previously, since H_{a}^{*} represents a large class of alternatives. The specific H function depends on the value assumed by θ. We will impose the restrictions that $Q(G, \theta)$ is a continuous cumulative distribution function for all θ in $(0, \delta)$ and that $Q(G, O)=G$ so that the null hypothesis H_{0} is true when θ is equal to zero.

We wish to derive (cf., Capon, 1961) the locally most powerful rank test of the hypothesis H_{0} against the alternative H_{a}^{*} for $\theta>0$, i.e., the test which maximizes the slope of the power function at the point $\theta=0$. Again we can assume without loss of generality that G is uniform, $G(u)=u$, and then write the Q function $a s Q(u, \theta)$. The
density function of Q will be denoted by $q(u, \theta)$, and $\partial q(u, \theta) / \partial \theta \mid \theta=\varphi$ by $q_{\theta}^{\prime}(u, \varphi)$.

Let us make the following assumptions:
(1) For almost all u, the derivatives $q(u, \theta)$ and $q_{\theta}^{\prime}(u, \theta)$ exist and are continuous with respect to θ in the interval $(0,8)$.
(ii) There exist functions $M_{0}(u)$ and $M_{1}(u)$, both integrable over $(0,1)$ and independent of θ, such that

$$
q(u, \theta) \leq M_{0}(u), \quad\left|q_{\theta}^{\prime}(u, \theta)\right| \leq M_{1}(u)
$$

for $0 \leq \theta \leq \delta$.
By means of Hoeffaing's theorem, the probability under the alternative H_{a} of any arrangement \bar{z} of the N random variables is given by

$$
\begin{equation*}
p_{\theta}(\bar{z})=e_{0}\left[\prod_{j=1}^{m} q\left(U_{r_{j}}, \theta\right)\right] /\left(_{m}^{N}\right), \tag{4.1}
\end{equation*}
$$

where $0 \leq \mathrm{U}_{1} \leq \mathrm{U}_{2} \leq \ldots \leq \mathrm{U}_{\mathrm{N}} \leq 1$ are the order statistics for a random sample of alze N from the uniform distribution, and the $r_{j}(j=1,2, \ldots, m)$ are the ranks of the X random variables in the combined sample. The expectation is taken under the null hypothesis $\theta=0$. With assumption (i), we can form the Taylor's series expansion of $p_{\theta}(\bar{z})$ about the point $\theta=0$ and obtain

$$
\begin{equation*}
p_{\theta}(\bar{z})=p_{0}(\bar{z})+\left.\theta \partial p_{\theta} j \partial \theta\right|_{\theta=0}+R(u, \theta) \tag{4.2}
\end{equation*}
$$

From (4.1), since $q(u, 0)=1$,

$$
\begin{equation*}
p_{0}(z)=\varepsilon_{0}\left[\prod_{j=1}^{m} q\left(U_{r_{j}}, 0\right)\right] /\left({ }_{m}^{N}\right)=1 /\left(\left(_{m}^{N}\right)\right. \tag{4.3}
\end{equation*}
$$

Also,

$$
\left.\mathbf{N}_{m}^{N}\right)\left.\frac{\partial p_{\theta}}{\partial \theta}\right|_{\theta=0}=\left.\frac{\partial}{\partial \theta}\left\{\varepsilon_{0}\left[\prod_{j=1}^{m} q\left(u_{\Sigma_{j}}, \theta\right)\right]\right\}\right|_{\theta=0}
$$

The differentiation can be performed under the integral sign as a consequence of condition (i1) and a well-known theorem (Cramér, 1946, p. 67). Then

$$
\begin{align*}
\left(\left.\begin{array}{l}
N \\
m
\end{array} \frac{\partial p_{\theta}}{\partial \theta}\right|_{\theta=0}\right. & =e_{0}\left[\left.\frac{\partial}{\partial \theta} \prod_{j=1}^{m} q\left(v_{r_{j}} ; \theta\right)\right|_{\theta=0}\right] \\
& =e_{0}\left[\sum_{j=1}^{m} q_{\theta}^{\prime}\left(u_{r_{j}}, 0\right) \prod_{\substack{i=1 \\
i \neq j}}^{m} q\left(u_{r_{i}} ; 0\right)\right] \\
& =e_{0}\left[\sum _ { j = 1 } ^ { m } q _ { \theta } ^ { \prime } \left(v_{\left.\left.r_{j}, 0\right)\right]}\right.\right. \tag{4.4}
\end{align*}
$$

The remalnder term $R(u ; \theta)$ is of a smaller order than θ if the derivative $\partial p_{\theta} / \partial \theta$ is continuous for all θ in the admissible range (Cramér, 1946, p: 122). We have
$\frac{\partial p_{\theta}}{\partial \theta}=m|n| \int_{0}^{1} \int_{0}^{u_{2 N}} \ldots \int_{0}^{u_{2}} \sum_{j=1}^{m} q_{\theta}^{\prime}\left(u_{r_{j}}, \theta\right) \prod_{\substack{i=1 \\ i \neq j}}^{m} q\left(u_{r_{1}}, \theta\right) d u_{1} d u_{2} \ldots d u_{N}$,
and condition (i) ensures the continuity of the integrand
for almost all u. Then the integral is continuous for an arbitrary θ_{0} in $(0, \delta)$, and hence for all θ in the interval. Therefore, $\lim _{\theta \rightarrow 0} \frac{R(u, \theta)}{\theta}=0$, and we write $R(u, \theta)=0(\theta)$.

Substituting (4.2) and (4.4) in (4.1), we obtain

$$
\left({ }_{m}^{N}\right) p_{\theta}(\bar{z})=1+\theta e_{0}\left[\sum_{j=1}^{m} q_{\theta}^{\prime}\left(U_{r_{j}}, 0\right)\right]+0(\theta)
$$

For θ sufficiently small, it follows that $p_{\theta}(\bar{z})>p_{\theta}\left(\bar{z}^{\prime}\right)$ if and only if

$$
\sum_{j=1}^{m} \varepsilon_{0}\left[q_{\theta}^{\prime}\left(u_{r_{j}}, 0\right)\right]>\sum_{j=1}^{m} \varepsilon_{0}\left[q_{\theta}^{\prime}\left(u_{r_{j}}, 0\right)\right]
$$

Where the r_{j}^{\prime} are the ranks of the X random variables in the arrangement $\bar{z} '$. Thus we have proved the following theorem. Theorem 4.1. The locally most powerful rank test of $H_{0}: H=G$ against the alternative $H_{a}^{*}: H=Q(u, \theta), G=u, \theta>0$, is to reject H_{0} when

$$
\begin{equation*}
\sum_{j=1}^{m} e_{0}\left[q_{\theta}^{\prime}\left(u_{r_{j}}, 0\right)\right]>c \tag{4.5}
\end{equation*}
$$

where c is a constant determined by the size of the test.
A convenient notation for this type of test statistic is

$$
\begin{equation*}
w_{N}=\frac{1}{m} \sum_{i=1}^{N} a_{i} z_{i} \tag{4.6}
\end{equation*}
$$

where the z_{i} 's are the indicator variables previously defined, and the a_{1} are constants. T_{N} is known as a linear rank statistic.

4.2 Properties of the Test

For any linear rank statistic, it is easy to obtain exact moments under the null hypothesis. The first two of these can be determined from the following theorem (Savage, 1956).

Theorem 4.2. Let $T_{N}=\frac{1}{m} \sum_{i=1}^{N} a_{i} z_{i}$, where the a_{i} are constant, $z_{1}=1$ if the ith ordered variable in the combined sample of size \mathbb{N} corresponds to an X random variable, and $z_{1}=0$ otherwise. The exact mean and variance of T_{N} under the null hypothesis are given by

$$
\begin{align*}
& e_{0}\left(T_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} a_{i} \tag{4.7}\\
& \sigma_{0}^{2}\left(T_{N}\right)=\frac{n}{m_{N}^{2}(N-1)}\left[N \sum_{i=1}^{N} a_{i}^{2}-\left(\sum_{1=1}^{N} a_{i}\right)^{2}\right] . \tag{4.8}
\end{align*}
$$

Proof. Since $\varepsilon_{0}\left(z_{i}\right)=m / N,(4.7)$ is obvious. Also, $e_{0}\left(z_{i}^{2}\right)=m / N$ and $\underset{i \neq k}{\varepsilon_{0}}\left(z_{i} z_{k}\right)=\frac{m(m-1)}{N(N-1)}$, so that $\sigma_{0}^{2}\left(z_{i}\right)=m n / N^{2}$ and $\operatorname{cov}_{0}\left(z_{i}, z_{k}\right)=\frac{-m n}{N^{2}(N-1)}$. It follows that

$$
\begin{aligned}
\sigma_{0}^{2}\left(W_{N}\right) & =\frac{1}{m^{2}}\left[\sum_{i=1}^{N} a_{i}^{2} \sigma_{0}^{2}\left(z_{i}\right)-\sum_{i=j k} a_{i} a_{k} \operatorname{cov}{ }_{0}\left(z_{1}, z_{k}\right)\right] \\
& =\frac{1}{m^{2}}\left[\frac{m n}{N^{2}} \sum_{i=1}^{N} a_{i}^{2}-\frac{m n}{N^{2}(N-1)} \sum_{i \neq k} \sum_{i} a_{k}\right] \\
& =\frac{n}{m^{2}(N-1)}\left[N \sum_{i=1}^{N} a_{i}^{2}-\left(\sum_{i=1}^{N} a_{i}\right)^{2}\right] .
\end{aligned}
$$

Corollary 4.2.1. If $B_{N}=\frac{1}{m} \sum_{i=1}^{N} b_{i} z_{i}$ is another linear rank statistic, the covariance between B_{N} and T_{N} under the null hypothesis is given by
$\operatorname{cov}_{0}\left(T_{N}, B_{N}\right)=\frac{n}{m N^{2}(N-1)}\left[N \sum_{i=1}^{N} a_{i} b_{i}-\sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} b_{i}\right]$.
We now turn to the asymptotic properties of the linear rank statistic (Chernoff and Savage, 19e8; Capon, 1961). For the puxpose of the ensuing discussion only, we will consider the representation

$$
\begin{equation*}
s_{N}=\int_{u=0}^{1} J_{N}\left[R_{N}(u, \theta)\right] d Q_{m}(u, \theta) \tag{4.10}
\end{equation*}
$$

where $Q_{m}(u, \theta)$ and $Q_{n}(u, 0)$ are the empirical distribution functions of the X and Y random variables respectively, and

$$
R_{N}(u, \theta)=m Q_{m}(u, \theta) / N+n Q_{n}(u, 0) / \mathbb{N}
$$

Then $\mathbb{R}_{N}(u, \theta)$ is the proportion of variables in the combined
sample which are less than or equal to u, and may assume the values $0,1 / N, 2 / N, \ldots, N / N$.
$Q_{m}(u, \theta)$ is a step function which can take jumps only at the points $U_{1}, U_{2}, \ldots, U_{N}$, and will increase by $1 / m$ at U_{1} if U_{i} is an X random variable $\left(z_{i}=1\right)$. If U_{i} is a Y $\left(z_{i}=0\right), Q_{m}$ will remain constant. Then the representation of m_{N} in (4.10) means (von Mises, 1947)

$$
T_{N}=\sum_{i=1}^{N} J_{N}\left[R_{N}\left(U_{i}, \theta\right)\right] \frac{z_{i}}{m}=\frac{1}{m} \sum_{i=1}^{N} J_{N}(1 / N) z_{i}
$$

We see that (4.10) is equivalent to (4.6) when $a_{i}=J_{N}(i / N)$.
Although J_{N} need be defined only at $0,1 / N, \ldots, N / N$, we will assume that J_{N} is constant on $\left(\frac{1-1}{N}, \frac{1}{N}\right]$ so that its domain is the entire interval $(0,1)$. Denote by I_{N} the interval where $0<R_{N}(u, \theta)<1$.

Chernoff and Savage have proved the following theorem concerning the asymptotic normality of linear rank statistics. If the linear rank statistic is the locally most powerful rank test, the two regularity conditions used in the proof of Theorem 4.1 must also be satisfied.

Theorem 4.3. If
(iii) $0<\lim _{N \rightarrow \infty} m / n=x<\infty$,
(iv) $J(R)=\lim _{N \rightarrow \infty} J_{N}(R)$ exists for $0<R<1$ and is not constant, where $R=R_{\theta}(u)=m Q(u, \theta) / \Delta+n Q(u, 0) / N$, (v) $\int_{I_{N}}\left[J_{N}\left(R_{N}\right)-J\left(R_{N}\right)\right] d Q_{m}(u, \theta)=0_{p}\left(N^{-\frac{1}{2}}\right)$, (vi) $J_{N}(1)=0\left(N^{\frac{1}{2}}\right)$,
(vii) $\left|J^{(i)}(R)\right|=\left|\frac{d^{1} J}{d R^{i}}\right| \leq K[R(1-R)]^{-1-\frac{1}{2}+\delta} \quad$ for $1=0,1,2$ and some $\delta>0$, where K is a constant independent of i, N, m, n, $Q(u, \theta)$, and u, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \operatorname{pr}\left[\frac{T_{N}-\varepsilon\left(T_{N}\right)}{\sigma\left(T_{N}\right)} \leq a\right]=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon\left(T_{N}\right)=\int_{0}^{1} J\left[R_{\theta}(u)\right] q(u, \theta) d u \tag{4.12}
\end{equation*}
$$

and
$\sigma^{2}\left(T_{N}\right)=\frac{2 n}{N^{2}}\left[\begin{array}{l}\left.\int_{0<u<v^{\prime}<1} u(1-v) J^{\prime}\left[R_{\theta}(u)\right] J^{\prime}\left[R_{\theta}(v)\right] q(u, \theta) q(v, \theta) d u d v\right] \\ +\frac{n}{m} \int_{0<u<V^{\prime}} \int_{01} Q(u, \theta)[1-Q(v, \theta)] J^{\prime}\left[R_{\theta}(u)\right] J^{\prime}\left[R_{\theta}(v)\right] d u d v\end{array}\right]$.

The expression $J(R)$ can easily be determined for any locally most powerful rank test statistic by the following corollary.

Corollary 4.3.1. For the linear rank statistic $T_{N}=\frac{1}{m} \sum_{i=1}^{N} a_{i} z_{i}$ where $a_{i}=\varepsilon_{0}\left[q_{\theta}^{\prime}\left(U_{i}, 0\right)\right]$, we have

$$
\begin{equation*}
J(R)=\left.q_{\theta}^{\prime}(u, 0)\right|_{u=R} \tag{4.14}
\end{equation*}
$$

Proof. $J_{N}(i / N)=a_{i}=\varepsilon_{0}\left[q_{\theta}^{\prime}\left(U_{1}, 0\right)\right]=\varepsilon_{0}\left[f\left(U_{i}\right)\right]$ say, where $f(u)=q_{\theta}^{\prime}(u, 0)$. Asymptotically, we have $E[f(U)]=f[\mathcal{E}(U)]$. But since U_{1} is the ith smallest order statistic of a sample of size N from a uniform distribution, $\varepsilon_{0}\left(U_{i}\right)=1 /(N+1)=\frac{1 / N}{1+(1 / N)}$. Then $J(R)=\lim _{N \rightarrow \infty} J_{N}(R)=\lim _{N \rightarrow \infty} f\left(\frac{R}{1+(1 / V)}\right)=f(R)=\left.q_{\theta}^{\prime}(u, 0)\right|_{u=R}$. Corollary 4.3.2. Under the null hypothesis, the mean and variance of T_{N} are given by

$$
\begin{align*}
& \varepsilon_{0}\left(T_{N}\right)=0 \tag{4.15}\\
& \sigma_{0}^{2}\left(T_{N}\right)=\frac{n}{m N}\left\{\varepsilon_{0}\left[q_{\theta}^{1}(0,0)\right]^{2}\right\} \tag{4.16}
\end{align*}
$$

Proof. Under $H_{0}, \theta=0$ and $Q(u, 0)=u$, so that $R_{0}(u)=u$ and $J\left[R_{0}(u)\right]=J(u)=q_{\theta}^{\prime}(u, 0)$ by (4.14). From (4.12) and (4.13), we have

$$
\varepsilon_{0}\left(T_{N}\right)=\int_{0}^{1} q_{\theta}^{\prime}(u, 0) d u=\left.\frac{\partial}{\partial \theta} \int_{0}^{1} q(u, \theta) d u\right|_{\theta=0}=0
$$

$$
\begin{aligned}
& \sigma_{0}^{2}\left(T_{N}\right)=\frac{2 n}{N^{2}}\left(1+\frac{n}{m}\right) \int_{0<u<v<1} u(1-v) J^{\prime}(u) J^{\prime}(v) d u d v
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 n}{m N} \int_{0}^{1} d y \int_{0}^{y} d x \int_{x}^{y} J^{\prime}(u) d u \int_{u}^{y} J^{\prime}(v) d v \\
& =\frac{n}{\operatorname{mN}} \int_{0}^{1} d y \int_{0}^{y}[J(y)-J(x)]^{2} d x \\
& =\frac{n}{2 m N}\left[\int_{0}^{1} J^{2}(y) d y-2 \int_{0}^{1} J(y) d y \int_{0}^{1} J(x) d x+\int_{0}^{1} J^{2}(x) d x\right] \\
& =\frac{n}{m N}\left[\int_{0}^{1} J^{2}(x) d x-\left(\int_{0}^{1} J(x) d x\right)^{2}\right] \\
& \sigma_{0}^{2}\left(T_{N}\right)=\frac{n}{m N} \int_{0}^{1} j^{2}(x) d x \quad .
\end{aligned}
$$

Using (4.14), this is equivalent to the form (4.16).
since verification of the regularity conditions (iv) (vii) for a particular R function may be a time-consuming operation, Chernoff and Savage have also proved the follow1ng useful theorem.

Theorem 4.4. If $J_{N}(1 / N)$ is the expectation of the ith order statistic of a sample of size N from a population whose cumulative distribution function is the inverse function of J
and condition (vii) is satisfied, then (iv), (v) and (vi) are satisfied.

Obviously, if J is to have an inverse which is a cumulative distribution function, $J_{N}(1 / N)=a_{i}$ must be a nondecreasing function of 1 . For an alternative of the form $H(a, \theta) \leq G(a, 0)$ for all a, where our test is to reject if $T_{N}>c, a_{i}$ must increase with 1 . However, if the alternative states that the Y^{\prime} 's are stochastically larger than the X 's and we still wish to reject for $T_{N}>c$, a_{i} must be a nonincreasing function of 1. since this is equivalent to rejecting if $\sum_{i=1}^{N}-a_{i} z_{i}<c$, we can assume without loss of generality that $J_{N}(1 / N)$ is a nondecreasing function of 1 for any alternative.

In many cases, Theorem 4.4 greatly aimplifies the application of Theorem 4.3 to the locally most powerful rank test statistic. This is evident from the following corollary. Corollary 4.4.1. Let $J_{N}(1 / N)= \pm \varepsilon_{0}\left[q_{\theta}^{\prime}\left(U_{1}, 0\right)\right]$ (where the algebraic sign is determined so that $J_{N}(i / N)$ is a nondecreasing function of 1). If $q_{\theta}^{\prime}(u, 0)$ has an inverse and condition (vii) of Theorem 4.3 is satisfied, then (iv), (v) and (vi) hold.

As an example of the use of the preceding theoretical discussion, consider the alternative $H=Q(u, \theta)=(1-\theta) u+\theta u^{2}$, $0 \leq \theta \leq 1$. This is a special case of the general alternative $H(a) \leq G(a)$ for all a. When $\theta=1$, it reduces to Lehmann's alternative of one extreme distribution for the apecial case $k=2$.

$$
\text { since } q_{\theta}^{\prime}(u, 0)=2 u-1 \text { and } \varepsilon_{0}\left(U_{1}\right)=1 /(N+1) \text {, the linear }
$$ rank statistic in the form (4.6) is

$$
T_{N}=\frac{1}{m} \sum_{1=1}^{N}\left[\frac{21}{N+1}-1\right] z_{1}
$$

and we reject H_{0} if $T_{N}>C$. This statistic is a inear function of the Mann-Whitney or Wilcoxon statistic which rejects when

$$
W_{N}^{\prime}=\sum_{1=1}^{N} 1 z_{1}=m(N+1)\left(T_{N}+1\right) / 2>c
$$

Although the exact mean and variance of T_{N} can easily be computed, only the asymptotic properties will be discussed in this chapter.

From (4.14), we have $J(R)=2 R-1$ and the regularity condition (vii) is obviousiy satisfied. $J_{N}(i / N)=\frac{2 i}{N+1}-1$, an increasing function of 1 , can be considered as the expectation of the ith order statistic of a sample of size N from
the distribution $F_{X}(x)=J^{-1}(x)=(x+1) / 2,-1 \leq x \leq 1$. The other conditions of Theorem 4.3 are then satisfied. From (4.15) and (4.16), $\varepsilon_{0}\left(T_{N}\right)=0$ and

$$
\sigma_{0}^{2}\left(T_{N}\right)=\frac{n}{m N} \int_{0}^{1}(2 u-1)^{2} d u=\frac{n}{3 m N},
$$

so that the asymptotic mean and variance of W_{N} under the null hypothesis are $m(N+1) / 2$ and $m n(N+1)^{2} / 12 N$. Under the alternative, since

$$
\begin{aligned}
R_{\theta}(u) & =\frac{m}{N}\left[(1-\theta) u+\theta u^{2}\right]+\frac{n}{N} u, \text { we have } \\
\varepsilon_{a}\left(x_{N}\right) & =\int_{0}^{1}\left[2\left[\frac{m}{N}\left[(1-\theta) u+\theta u^{2}\right]+\frac{n}{N} u\right]-1\right](1-\theta+2 u \theta) d u \\
& =\frac{\theta_{n}}{3 N},
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{a}^{2}\left(T_{N}\right) & =\frac{2 n}{N^{2}}\left[\begin{array}{l}
\int_{0<u<v<1} 4 u(1-v)(1-\theta+2 u \theta)(1-\theta+2 v \theta) d u d v \\
\left.+\frac{n}{m} \int_{0<u<v^{2} 1} 4\left[(1-\theta) u+\theta u^{2}\right]\left[1-(1-\theta) v-\theta v^{2}\right] d u d v\right] \\
\end{array}\right]=\frac{n}{45 N^{2}}\left[15+\theta^{2}+\frac{5 n}{m}\left(3-\theta^{2}\right)\right]
\end{aligned}
$$

from (4.12) and (4.13). The asymptotic power function could then easily be determined using (4.11) (cf., section 5.1). In general, if the conditions (i) - (vii) are satisfied, and the mean and variance of the linear rank statistic T_{N}
under both the hypothesis and the alternative exist and can be evaluated either exactly or asymptotically, the asymptotic power of any locally most powerful rank test can be determined from (4.11).

Capon has also demonstrated the asymptotic efficiency of the locally most powerful rank test based on a sequence of ilnear rank statistics T with a corresponding sequence of alternatives $Q\left(u, \theta_{N}\right)$, with θ_{N} getting closer and closer to zero as \mathbb{N} gets large. That is, the asymptotic relative efficiency of the $T M$ test versus the likelihood ratio test of the same hypothesis and alternative is equal to one.

4.3 Application to Specific Alternatives

We will now consider various alternatives of the form $H=Q(G, \theta)$ and determine the locally most powerful rank test from Theorem 4.1. The exact power of the tests will be the sum of the probabilities under the alternative for those cases lying in the rejection region, which are determined by (4.5).

4.3.1. The Gamma Test

Our first alternative H_{i} is a mixture of the two dism tribution functions $H=1-(1-F)^{k}, G=F^{k}$, assumed under
the earlier alternative H_{1}. We write

$$
H_{1}^{*}: H=(1-\theta) F^{k}+\theta\left[1-(1-F)^{k}\right], G=E^{k} \quad(0 \leq \theta \leq 1)
$$

Thus H_{1} reduces to H_{0} for $\theta=0$ and to H_{1} for $\theta=1$. Taking $G(u)=F^{k}(u)=u$, the H function becomes

$$
H=(1-\theta) u+\theta\left[1-\left(1-u^{1 / k}\right)^{k}\right]
$$

or $\quad H=Q(u, \theta)=u+\theta\left[1-\left(1-u^{1 / k}\right)^{k}-u\right]$.
Then $Q(u, \theta)$ satisfies the requirements of a cumulative distribution function for all θ as long as F is continuous. The density function is $q(u, \theta)=1+\theta\left[\left(1-u^{1 / k}\right)^{k-1}\left(u^{-1 / k}\right)^{k-1}-1\right]$, and $q_{\theta}^{\prime}(u, 0)=\left(1-u^{1 / k}\right)^{k-1}\left(u^{-1 / k}\right)^{k-1}-1$.

The locally most powerful rank test for a general k rejects when

$$
\sum_{i=1}^{M} e_{0}\left[\left(1-u_{i}^{1 / k}\right)\left(u_{i}^{-1 / k}\right)\right]^{k-1} z_{i}>c
$$

where

$$
\begin{aligned}
& e_{0}\left[\left(1-u_{1}^{1 / k}\right)\left(u_{i}^{-1 / k}\right)\right]^{k-1} \frac{N!}{(1-1)|(N-1)|} \int_{0}^{1}\left(1-u^{1 / k)^{k-1}} u^{(1 / k)-1}\right. \\
& \text { - } u^{i-1}(1-u)^{N-1} d u \\
& =\frac{N!}{(1-1)!(N-1)!} \sum_{j=0}^{k-1}\left(\sum_{j}^{k-1}\right)(-1)^{j} \int_{0}^{1} u^{(j / k)+i+(1 / k)-2}(1-u)^{N-1} d u \\
& =\frac{N 1}{(1-1)!} \sum_{j=0}^{k-1}\left(j_{j}^{k-1}\right)(-1)^{j} \Gamma\left(\frac{j+1}{k}+1-1\right) / \Gamma\left(N+\frac{1+1}{k}\right) \quad .
\end{aligned}
$$

Neglecting constants, the Gamma test for any k is to reject when

$$
\Gamma_{N}=\sum_{i=1}^{N} \frac{z_{1}}{(i-1)!} \sum_{j=0}^{k-2}\left({ }_{j}^{k-2}\right)(-1)^{j} \Gamma\left(\frac{j+1}{k}+1-1\right) / \Gamma\left(N+\frac{j+1}{k}\right)>c .
$$

In particular, the test rejects when

$$
\begin{align*}
& \sum_{1=1}^{N} \frac{z_{1} \Gamma\left(1-\frac{1}{2}\right)}{(1-1)!}>c \quad \text { for } k=2, \tag{4.17}\\
& \sum_{i=1}^{N} \frac{z_{i}}{(1-1)!}\left[\frac{\Gamma\left(1-\frac{2}{3}\right)}{\Gamma\left(N+\frac{1}{3}\right)}-\frac{2 \Gamma\left(1-\frac{1}{3}\right)}{\Gamma\left(N+\frac{2}{3}\right)}\right]>c \quad \text { for } k=3, \tag{4.18}\\
& \sum_{1=1}^{N} \frac{z_{i}}{(1-1)!}\left[\frac{\Gamma\left(1-\frac{3}{4}\right)}{\Gamma\left(N+\frac{1}{4}\right)}-\frac{3 \Gamma\left(1-\frac{1}{2}\right)}{\Gamma\left(N+\frac{1}{2}\right)}+\frac{3 \Gamma\left(1-\frac{1}{4}\right)}{\Gamma\left(N+\frac{3}{4}\right)}\right]>c \tag{4.19}
\end{align*}
$$

for $k=4$, and so forth.
Using (4.17), (4.18) and (4.19), we find that the critical regions for $m=n=2$ and $m=n=3, k=2,3$ and 4, $\alpha=.01, .05$ and .10, are identical to those obtained for the most powerful rank test against the alternative H_{1}. Similarly for $m=n=4, \alpha=.01, k=2,3$ and 4. For $m=n=4, \alpha=.05$ and .10 , the arrangements in the rejection regions and their probabilities of rejection to attain exact significance level α are as follows:

The cases here are listed in descending order of the numerical values obtained for (4.17), (4.18) and (4.19). Note that the order differs allghtly for $\alpha=.10$, although the seven cases included are identical. For the locally most powerful test Γ_{N} then, the cases in the critical regions for $4 / 70<\alpha<6 / 70$ will depend on the value of k. On the other hand, it may be noted that, for all cases with $\alpha \leq .10$ and $m=n \leq 4$, the most powerful rank test against H_{1}, test T_{1} of Section 3.4.1, has the same critical region for all values of $k=2,3$ and 4. The critical orders for the other tests in Section 3.4.1 are always independent of k. The power functions when $\theta=1$ (then $H_{1}^{*}=H_{1}$) for $m=n=2$ and 3 are identical to those given for the test T_{1} in Tables 3.1 and 3.2. The results of the power computations for $m=n=4$ are given in Table 4.1.

Table 4.1. Power of the locally most powerful rank test against H_{1}^{*} when $\theta=1, m=n=4$

k	$\alpha=.01$	$\alpha=.05$	$\alpha=.10$
2	.1705	.4830	.6513
3	.4293	.8456	.9452
4	.5950	.9662	.9937

The power here is, of course, lower than the corresponding values for T_{1} given in Tables $3.3,3.4$ and 3.5 when $\alpha>1 / 70$. However, this is to be expected, since θ is not really sufficiently small. The teat is considerably easier to perform, as it requires no probability calculations to determine the cases in the critical regions, and it is easy to predict which orders will yield the highest values of Γ_{N}.

Although the function $J(u)=-\left[\left(1-u^{1 / k}\right)\left(u^{-1 / k}\right)\right]^{k-1}$ does have an inverse, $J^{-1}(x)=\left[1+(-x)^{1 /(k-1)}\right]^{-k},-\infty<x<\infty$, the condition (vii) of wheorem 4.3 is not satisfied for $k \geq 2$. For example, if $i=0$, we must have

$$
\left|\left(1-u^{1 / k}\right)^{k-1} u^{(1 / k)-1}\right| \leq x[u(1-u)]^{-\frac{1}{2}+\delta}
$$

or

$$
k \sum\left|u^{(1 / k)-\frac{1}{2}-\delta}(1-u)^{1_{2}-\delta}\left(1-u^{1 / k}\right)^{k-1}\right|
$$

Since for any $k \geq 2, \delta>0,(1 / k)-\frac{1}{2}-\delta<0$, the right hand side of the inequality increases without bound as $u \rightarrow 0$.

Thus the asymptotic properties of the Gama test statistic cannot be assessed by the methods of this chapter.

4.3.2 The Psi Test

Another alternative depending on θ is
or

$$
\begin{aligned}
& \text { Hiti }_{1}=\boldsymbol{H}=Q(u, \theta)=1-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}, \theta \sum 0 \text {, }
\end{aligned}
$$

where we have taken $G(u)=F^{k}(u)=u$. This alternative is the result of substituting $k=1+\theta, k \geqslant 1$, in the previous alternative H_{1} and requiring $G(u)=F^{\theta+1}(u)=u$. As θ increases, the difference between the diatributions H and G 18 magnified. since $Q(u, 0)=u$, the null hypothesis is true if $\theta=0$. Differentiating, we obtain

$$
\begin{aligned}
& q(u, \theta)=\left[u^{-1 /(1+\theta)}-1\right]^{\theta}, \text { and } \\
& q_{\theta}^{\prime}(u, 0)=\log [(1 / u)-1]=\log [(1-u) / u] .
\end{aligned}
$$

The test which maximizes the slope of the power function at $\theta=0$ then is to reject when

$$
\sum_{j=1}^{m} e_{0}\left(\log \left[\left(1-v_{r_{j}}\right) / v_{r_{j}}\right]\right)>c \quad \text { for any } k \geq 1 .
$$

We have

$$
\begin{align*}
e_{0}\left(\log \left[\left(1-U_{1}\right) / v_{1}\right]\right) & =e_{0}\left[\log \left(1-U_{1}\right)\right]-e_{0}\left(\log U_{1}\right) \\
& =e_{0}\left(\log v_{N-1+1}\right)-e_{0}\left(\log U_{1}\right) \\
& =-e_{0}\left(v_{1}\right)+e_{0}\left(v_{V-1+1}\right) \tag{4.20}
\end{align*}
$$

where $v=-\log u$ and $f(v)=e^{-v}, v \sum 0$.

The density of the ith order statistic of a sample of size N from an exponential population is

$$
f_{1}(v)=\frac{N!}{(1-1)!(N-i)!}\left(1-e^{-v}\right)^{i-1}\left(e^{-v}\right)^{N-i+1}, v 20,
$$

with the moment generating function

$$
\begin{aligned}
\Psi_{v}(t)=\varepsilon\left(e^{t v}\right) & =\binom{N}{1} 1 \int_{0}^{\infty}\left(1-e^{-v}\right)^{1-1}\left(e^{-v}\right)^{N-1-t+1} d v \\
& =\binom{N}{1} 1 \int_{0}^{1}(1-z)^{1-1} z^{N-1-t} d z \\
& =\binom{N}{1} 1 \beta(1, N-1-t+1)=\frac{N!}{(N-1)!} \frac{(N-1-t)!}{(N-t)!} .
\end{aligned}
$$

The cumulant generating function is

$$
\log \Psi_{v}(t)=\log N|-\log (N-i)|-\sum_{j=0}^{i-1} \log (N-t-j) .
$$

By taking the first derivative of $\log \Psi_{v}(t)$ and setting $t=0$, we obtain the first cumulant (or moment) as

$$
\begin{equation*}
e\left(v_{i}\right)=\sum_{j=0}^{i-2} 1 /(N-j)=\sum_{j=N-i+1}^{N} j^{-1} \tag{4.21}
\end{equation*}
$$

Substituting (4.21) into (4.20) we have

$$
\begin{equation*}
e\left\{\log \left[\left(1-U_{i}\right) / v_{i}\right]\right\}=\sum_{j=1}^{N} j^{-1}-\sum_{j=\mathbb{N}-i+1}^{N} j^{-1} . \tag{4.22}
\end{equation*}
$$

This value of a_{1} is very easy to compute but can also be found, as is well known, from tables of the Psi Distribution,

```
Where \(\Psi(x)=d[\log \Gamma(x)] / d x\). Since \(\Gamma(x+1)=x \Gamma(x)=x(x-1) \Gamma(x-1)\), etc., we can write
\[
\Gamma(x+x+1)=(x+x)(x+x-1) \ldots x \Gamma(x)
\]
\[
\text { and } \Psi(x+r+1)=(x+r)^{-1}+(x+x-1)^{-1}+\ldots+(x)^{-1}+d[\log \Gamma(x)] / d x,
\]
\[
\text { or } \quad \Psi(x+x+1)-\Psi(x)=(x)^{-1}+(x+1)^{-1}+\ldots+(x+x)^{-1} .
\]
```

Using this result, $\sum_{j=1}^{N} j^{-1}=\Psi(i+(N-1)+1)-\Psi(i)$,

(4.22) can be expressed as $\Psi(N-1+1)-\Psi(1) . \Psi(x)$ has been tabulated by Davis (1933, Tables VII - XII, pp. 291-367). The locally most powerful rank test against He* then is to reject the null hypothesis when

$$
\begin{equation*}
\Psi_{N}=\frac{1}{m} \sum_{i=1}^{N}[Y(N-i+1)-Y(i)] z_{i}>c \tag{4.23}
\end{equation*}
$$

We will call this the Rsi test. The critical regions and power functions against H_{1} were given in section 3.4.1, and were seen to be identical with those of the most powerful rank test when $m=n \leq 4$. The descending orders of the values of (4.20) turn out to be equivalent to the orders of probabilities under H_{1} for the cases considered. When two different arrangements are equally likely under H_{1}, the
corresponding values of (4.20) are the same. It is rather surprising that the two tests are equally powerful for these small sample sizes, whe Psi test has the advantage of ease in computation, and, of course, the critical regions are independent of the value of k.

The exact mean and variance of F_{w} are given by (4.7) and (4.8) as

$$
e_{0}\left(\Psi_{N}\right)-\frac{1}{N} \sum_{i=1}^{M}\left[\left(\sum_{j=1}^{N}-\sum_{j m M-1+1}^{N}\right) j^{-1}\right]=0
$$

and

Although $\sigma_{0}^{2}\left(\Psi_{n}\right)$ can easily be evaluated for mall N , a convenient closed form for general is not readily apparent.

For the asymptotic propertien, we mumt firat verify that the conditions of Theorem 4.3 are satisfied. Here

$$
J_{v}(1 / N)=-\left[\sum_{j=1}^{N}-\sum_{j=1 n-1+1}^{N}\right] j^{-1}=-e_{0}\left\{\log \left[\left(2-u_{1}\right) / u_{1}\right]\right\}
$$

where the U_{1} are order atatistics from a unlform distribution. ratting $x=-\log [(1-v) / 0], J_{n}(1 / N)$ can be conmidered the expected value of X_{1}, the ith order statistic of a sample of size \mathbb{x} from the distribution $F_{X}(x)=e^{x} /\left(e^{x}+1\right)$, $-\infty<x<\infty$. 8ince $J(u)=-\log [(1-u) / u]$, we have
$u=e^{J} /\left(e^{J}+1\right)$, so that F_{X} is the inverse of $J . \quad$ By Theorem 4.4, Theorem 4.3 can be applied if condition (vil) $1 s$ satisfied. For $1=0$, we need to verify that

$$
|J(u)|=|\log [(1-u) / u]| \leq K[u(1-u)]^{-\frac{1}{2}+\delta}
$$

or $x 2[u(1-u)]^{\frac{1}{2}-\delta}|[\log (1-u)-\log u]|=x(u)$ say for $0<u<1$. We can asaume that $\delta<k_{1}$. As $u \rightarrow 0$, $K(u) \rightarrow 0 ;$ as $u \rightarrow 1, K(u) \rightarrow 0 ;$ and $K\left(\frac{1}{2}\right)=0, K\left(u+\frac{1}{2}\right)=K\left(\frac{1}{2}-u\right)$. The maximum value of $X(u)$ for $0<u \leq \frac{1}{2}$ will occur for that u which atisfies $\log [(1-u) / u]=2 /[(1-2 \delta)(1-2 u)]$. Depending on the value of δ, the critical point iles in the interval $(0,1 / 8)$. Since $K(u)$ has a finite maximum, the condition holde for $1=0$.

For $1=1$, wo must show that

$$
\left|\frac{-1}{u(1-u)}\right| \leq x[u(1-u)](-3 / 2)+\delta
$$

or $x \sum[u(1-u)]^{(3 / 2)-\delta}[u(1-u)]^{-1}=[u(1-u)]^{\frac{1}{2}-8}$ The maximum value of $u(1-u)$ is $1 / 4$, so that if $\times 22^{28-1}$, the inequality holde.

$$
\begin{gathered}
\text { For } 1=2, \quad\left|\frac{-(2 u-1)}{u^{2}(1-u)^{2}}\right| \leq K[u(1-u)]^{(-5 / 2)+\delta} \\
K \geq(1-2 u)[u(1-u)]^{\frac{1}{2}-\delta} .
\end{gathered}
$$

or
The maximum value of the right hand side is again 2^{28-1}.

From (4.15), the asymptotic mean of Y_{y} 18 zero under H_{0} : and the variance can be determined from (4.16). We must evaluate

$$
\begin{aligned}
\sigma_{0}^{2}\left(x_{n}\right) & =\frac{n}{\operatorname{ms}} \int_{0}^{1}\{\log [(1-u) / u]]^{2} d u \\
& =\frac{n}{\operatorname{ms}} \int_{0}^{1}[\log (1-u)-\log u]^{2} d u .
\end{aligned}
$$

Then

$\frac{m y}{2 n} \sigma_{0}^{2}\left(y_{x}\right)=2+\sum_{x=1}^{\infty} \frac{1}{z} \int_{\infty}^{0} e^{-x y} y e^{-y} d y$

$$
=2-\sum_{x=1}^{\infty} \frac{1}{x} \cdot \frac{1}{(x+1)^{2}} \Gamma(2)
$$

$$
=2-\sum_{x=1}^{\infty}\left[\left(\frac{1}{x}-\frac{1}{x+1}\right)-\frac{1}{(x+1)^{x}}\right]
$$

$$
-2-\left[1-\left(\pi^{2} / 6-1\right)\right]=\pi^{2} / 6
$$

Then

$$
\begin{equation*}
\sigma_{0}^{2}\left(y_{y}\right)=n \pi^{2} / 3 m x \tag{4.24}
\end{equation*}
$$

From (4.11), under the null hypothesis, the random variable $y_{N} \sqrt{3 m / j} / \pi \sqrt{n}$ is asymptotically normally distributed with mean zero and variance one.

Terry (1952, Section 9) and Bavage (1956, Section 7) have studied the correlation under the null hypothesis betwaen the wilcoxon (or Mann-Whitney) statistic and the c_{1} and D_{n} statistics, respectively. Since the Psi test would be used for the ame type of alternative as the Wilcoxon test, their correlation under $H_{0} w 111$ also be of interest. Lat

$$
w_{M}=\frac{1}{m} \sum_{i=1}^{M} i\left(1-z_{i}\right) \quad \text { and } \quad \Phi_{N}=\frac{1}{m} \sum_{i=1}^{N} a_{i} z_{i},
$$

where $a_{1}=\left(\sum_{j=1}^{M}-\sum_{j=1 j^{-1+1}}^{M}\right) j^{-1}$, so that both tests are based on large values of the rempective test statistics. It will be more convenient to find the correlation $\rho\left(W_{H}, W_{N}\right)$ between $W_{N}^{\prime}=\sum_{1=1}^{N} 1 z_{1} / m$ and V_{N}. Bince $W_{M}^{\prime}=N(N+1) / 2-W_{N}^{\prime}$, we have $\rho\left(W_{M}, I_{N}\right)=-\rho\left(W_{M}^{\prime}, I_{N}\right)$.

Under H_{0}, the exact variance of W_{H}^{\prime} is $\sigma_{0}^{2}\left(W_{n}^{i}\right)=n(N+1) / 12 m$, and the asymptotic variance of I_{N} is $\sigma_{0}^{2}\left(\mathrm{I}_{\mathrm{N}}\right)=n \mathrm{~N}^{2} / 3 \mathrm{mN}$ from (4.24). The covariance between T_{H} and W_{N}^{\prime} can be found from (4.9). We have

$$
\begin{equation*}
\operatorname{cov}_{0}\left(W_{N}^{\prime}, Y_{N}\right)=\frac{n}{m N^{2}(N-1)}\left[N \sum_{i=1}^{N} a_{i} 1-\sum_{i=1}^{M} a_{i} \sum_{i=1}^{N} 1\right] . \tag{4.25}
\end{equation*}
$$

$$
\begin{aligned}
& \text { But } \quad \sum_{1=1}^{N} a_{1}=0 \text {, and } \\
& \sum_{i=1}^{N} a_{i} i=\sum_{i=1}^{N} i\left[\left(\sum_{j=1}^{N}-\sum_{j=\Delta j-1+1}^{N}, j^{-1}\right],\right. \\
& \text { where } \\
& \sum_{i=1}^{N} i \sum_{j=1}^{N} j^{-1}=\sum_{j=1}^{N} j^{-1}+2 \sum_{j=2}^{N} j^{-1}+\ldots+\Delta \sum_{j=1}^{N} j^{-1} \\
& =\frac{1}{1}+\left(\frac{1}{2}+\frac{2}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}+\frac{3}{3}\right)+\cdots+\left(\frac{1}{N}+\frac{2}{N}+\cdots+\frac{N}{N}\right) \\
& =\frac{2}{2}+\frac{3}{2}+\frac{1}{2}+\ldots+\frac{(n+1)}{2} \\
& =M(M+3) / 4 \quad,
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{M} 1 \sum_{j=8-1+1}^{M} j^{m 1}=\sum_{j=\mathbb{N}}^{M} j^{-1}+2 \sum_{j=8-1}^{M} j^{-1}+\cdots+N \sum_{j=1}^{M} j^{-1} \\
& =\left(\frac{1}{N}+\frac{2}{N}+\ldots+\frac{N}{N}\right)+\left(\frac{2}{N-1}+\frac{3}{N-1}+\ldots+\frac{N}{N-1}\right)+\ldots+\left(\frac{N}{1}\right) \\
& =\frac{1}{2}(N+1)+\frac{1}{2}(N+2)+\ldots+\frac{1}{2}(N+N) \\
& =\frac{1}{2}\left[N^{2}+\frac{3(N+1)}{2}\right] \\
& =2(3 x+1) / 4 \text {. }
\end{aligned}
$$

It then follows that $\sum_{i=1}^{N} a_{i}{ }_{i}=-N(N-1) / 2$. Substituting these results into (4.25), we have

$$
\begin{equation*}
\operatorname{cov}_{0}\left(W_{N}^{\prime}, \Psi_{N}\right)=-n / 2 m \tag{4.26}
\end{equation*}
$$

Hence, the correlation coefficient is asymptotically

$$
\begin{equation*}
\rho\left(W_{n}, I_{N}\right)=\lim _{V-\infty} \frac{n / 2 m}{\sqrt{\frac{n(1+1)}{12 m} \cdot \frac{n \pi^{2}}{3 m N}}}=3 / \pi \tag{4.27}
\end{equation*}
$$

or . 9550. This result is larger than $\rho\left(D_{N}, W_{N}\right)=.8660$ and slightly smallex than $p\left(C_{1}, W_{N}\right)=.9772$;

Evaluation of the asymptotic moments under the alternative from (4.12) and (4.13) is difficult with the complicated functions

$$
\begin{aligned}
& R_{\theta}(u)=\frac{m}{N}\left[1-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right]+\frac{n}{N} u, \\
& J\left(R_{\theta}\right)=\log [(1-R) / R], J^{\prime}\left(R_{\theta}\right)=-[R(1-R)]^{-1}
\end{aligned}
$$

and $Q(u, \theta)=1-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}$. For the mean,

$$
\begin{aligned}
e_{a}\left(w_{N}\right) & \left.=\int_{0}^{1} \log \left[\frac{y^{2-m+m\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}-n u}}{m-m\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}+n u}\right]\left(u^{-1 /(1} \theta\right)-1\right)^{\theta} d u \\
& =\frac{N}{m} \int_{0}^{1} \log [(1-x) / x] d x-\frac{n}{m} \int_{0}^{1} \log [(1-x) / x] d u
\end{aligned}
$$

where $u x=n u+m-m\left(1-u^{2 /(1+\theta)}\right)^{1+\theta}$. The first integral 1: equal to zero. When $m=n$,

$$
\begin{aligned}
& \log (1-x)-\log x=\log \left[\frac{1}{2}-\frac{1}{2} u+\frac{1}{2}\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right] \\
&-\log \left[\frac{1}{2}+\frac{k_{2}}{} u-\frac{\left.k_{2}\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right]}{}\right. \\
&=\log (1-y)-\log (1+y)
\end{aligned}
$$

where $\quad y=u-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}$. But

$$
\log (1-y)-\log (1+y)=-2 \sum_{x=0}^{\infty} \frac{y^{2 x+1}}{2 x+1} .
$$

$$
\begin{aligned}
e_{a}\left(y_{k}\right) & =2 \sum_{x=0}^{\infty} \frac{1}{2 x+1} \int_{0}^{1}\left[u-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right]^{2 x+1} d u \\
& =-2 \sum_{r=0}^{\infty} \frac{1}{2 x+1} \sum_{j=0}^{2 x+1}(2 x+1)(-1)^{j} \int_{0}^{1} u^{j}\left(1-u^{1 /(1+\theta)}(1+\theta)(2 x+1-1) d u\right. \\
& =-2 \sum_{x=0}^{\infty} \frac{1+\theta}{2 x+1} \sum_{j=0}^{2 x+1}\left(^{2 x+1} j\right)(-1)^{j} \int_{0}^{1} v^{j(1+\theta)}(2-v)^{(2+\theta)(2 x+1-j)} v^{\theta} d v .
\end{aligned}
$$

$$
e_{a}\left(y_{y}\right)=-2 \sum_{r=0}^{\infty} \frac{1+\theta}{2 r+1} \sum_{j=0}^{2 x+1}\left(2 r+1,(-1)^{j} B[j(1+\theta)+\theta+1),(1+\theta)\right.
$$

when $m=n$. For the variance when $m m n$, we need to find

$$
\begin{aligned}
& \sigma_{a}^{2}\left(I_{N}\right)=\frac{16}{M} \int_{0<u \ll 1} \int_{V<1}\left(1+u-\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right]^{-1} \\
& \text { - }\left[1-u+\left(1-u^{1 /(1+\theta)}\right)^{1+\theta}\right]^{-1}\left[1+v-\left(1-v^{1 /(1+\theta)}\right)^{1+\theta}\right]^{-1} \\
& \text { - }\left[1-v+\left(1-v^{1 /(2+\theta)}\right)^{2+\theta}\right]^{-1} \\
& \text { - }\left(u(1-v)\left(u^{-1 /(1+\theta)}-1\right)^{\theta}\left(v^{-1 /(1+\theta)}-1\right)^{\theta}\right. \\
& \left.+\left[1-\left(1-u^{2 /(1+\theta)}\right)^{1+\theta}\right]\left(1-v^{1 /(1+\theta)}\right)^{1+\theta}\right) d u d v \\
& =\frac{16(1+\theta)^{2}}{y} \int_{0}^{1} \int_{y}^{1}(1-x)^{\theta} y^{\theta}\left[1+(1-x)^{1+\theta}-x^{1+\theta}\right]^{-1} \\
& \text { - }\left[1-(1-x)^{1+\theta}+x^{1+\theta}\right]^{-1}\left[1+(1-y)^{1+\theta}-y^{1+\theta}\right]^{-1}\left[1-(1-y)^{1+\theta}+y^{1+\theta}\right]^{-1} \\
& \cdot\left\{x^{\theta}(1-x)\left[1-(1-y)^{1+\theta}\right]+\left(1-x^{1+\theta}\right) y(1-y)^{\theta}\right] d x d y \\
& =\frac{16(1+\theta)^{2}}{y} \int_{0}^{1} \int_{y}^{1}(1-x)^{\theta} y^{\theta}\left(1-\left[x^{1+\theta}-(1+x)^{1+\theta}\right]^{2}\right]^{-1} \\
& \text { - }\left(1-\left[y^{1+\theta}-(1-y)^{1+\theta}\right]^{2}\right]^{-1}\left\{x^{\theta}(1-x)\left[1-(1-y)^{1+\theta}\right]\right. \\
& \left.+\left(1-x^{1+\theta}\right) y(1-y)^{\theta}\right) d x d y .
\end{aligned}
$$

The integral could be evaluated by numerical methode.
It should be noted that the psi test statiatic is elmilar to the D_{y} statiatic proposed by savage. The D_{y} tent reject: for large values of $\sum_{i=1}^{N} z_{i} \sum_{j=1}^{N} j^{-1}$, and is the \because locally mont powerful rank test against the alternative $H=r^{\Delta_{2}-\Delta_{1}}, G=\Sigma^{\Delta_{2}}, \Delta_{2}>\Delta_{1}>0$. Here $Q(u, \theta)=u^{1-\theta}$ where $\theta=\Delta_{1} / \Delta_{2} \leq 1$.

4.3.3 Terry's c_{1} Test

These alternatives H_{i}^{*} and H_{1}^{*} are nonparametric in form since the only requisite assumption is that is a continuous cumulative distribution function. Terry's c_{1} test discussed previously (section 3.3) is designed primarily for a parametric alternative expressing a change of location in the normal distribution. A uniformiy most powerful rank test does not exist for this type of alternative, but Tarry's c_{1} test is the locally most powerful rank test. since A can be expressed as a function of G, the methods of this chapter can be used to prove this important property. Theorem 4.5. The locally momt powerful rank tent of the null hypothesis H_{0} H $=G$ varsus the alternative $H_{i}^{\prime}: H(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(t-\mu_{X}\right)^{2}} d t \quad$, $G(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(t-\mu_{Y}\right)^{2}} d t \quad, \quad 0<\mu_{Y}-\mu_{X}-\theta<\delta$, 1s Terry's C_{1} test. The rule is to reject when $c_{1}=\sum_{j=1}^{n} e\left(\xi_{g_{j}}\right)>c$, where a is a constant depending on α, $\xi_{1} \leq \xi_{2} \leq \ldots \leq \xi_{N}$ are order statistics from a maple of size N drawn from a population which is normally distributed
with mean zero and variance one, and $\varepsilon_{1}, s_{2}, \ldots, s_{n}$ are the ranks of the Y random variablea in the combined maple. Proof. 8ince $G(y)$ is not the uniform diatribution, make the probability integral transformation $G(y)=u$ so that the random variable 0 is uniformiy dietributed on the interval $(0,1)$. Then $y=G^{-1}(u)$, where the randou variable y is normaliy diatributed with mean μ_{y} and variance σ^{2}. We have $H(y)=\int_{-\infty}^{Y+\mu_{Y}-\mu_{X}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}\left(t-\mu_{Y}\right)^{2}}} d t=G\left(Y+\mu_{Y}-\mu_{X}\right)$, and $Q(u, \theta)=G\left(G^{-1}(u)+\theta\right)$. 2hus
$q(u, \theta)=\partial Q(u, \theta) / \partial u=g\left(G^{-1}(u)+\theta\right) \cdot \partial G^{-1}(u) / \partial u$ $=g\left(G^{-1}(u)+\theta\right) \cdot \frac{1}{\partial u / \partial G^{-1}(u)}=\frac{g\left(G^{-1}(u)+\theta\right)}{g\left(G^{-1}(u)\right)}$ $=\frac{e^{-\frac{1}{2 \sigma^{2}}\left(G^{-1}(u)+\theta-\mu_{Y}\right)^{2}}}{e^{-\frac{1}{2 \sigma^{2}}\left(\sigma^{-1}(u)-\mu_{Y}\right)^{2}}}$,
and $\partial q(u, \theta) /\left.\partial \theta\right|_{\theta=0}=-\frac{1}{\sigma^{2}}\left(c^{-1}(u)-\mu_{X}\right)$.
By (4.5), the locally most powerful rank test rejects when

$$
\begin{equation*}
-\frac{1}{\sigma^{2}} \sum_{j=1}^{m} e\left(c^{-1}\left({v_{r_{j}}}^{m}-\mu_{Y}\right)>c\right. \tag{4.28}
\end{equation*}
$$

since $U_{1} \leq U_{2} \leq \ldots S U_{V}$ are order atatistice from a uniform population, $Y_{1} \leq Y_{2} \leq \ldots S Y_{1}$, where $Y=G^{-1}\left(U_{1}\right)$, are
order statiatice from a normal population with mean μ_{y} and variance σ^{2}. Eence, $\xi_{1} \leq \xi_{2} \leq \ldots \leq \xi_{X P}$ whare $\xi_{1}=\left(\boldsymbol{Y}_{1}-\mu_{\mathbf{Y}}\right) / \sigma$, are order statistice from a normal distribution with mean zero and variance one. Then (4.28) becomes $-\sum_{j=1}^{m} e\left(\xi_{r_{j}}\right)>c$. Bince $\sum_{j=1}^{m} e\left(\xi_{r_{j}}\right)+\sum_{j=1}^{n} e\left(\xi_{j_{j}}\right)=0$, the test atatistia can be written $c_{1}-\sum_{j=1}^{n} e\left(\xi_{f_{j}}\right)$ and the theorem is proved. Uuing the notation of (4.6), Terry'm c_{1} tests rejects when

$$
\sum_{i=1}^{n}\left(1-z_{i}\right) e\left(\xi_{i}\right)>c,
$$

where c can be found in Teriy's wable 1 (pp. 358-361) or by using tables of the expected values of the oxdex etatlatics from a normal dietribution (Harter, 1961).

The axact mean and variance of the cI statistic under the null hypothesis are sero and $\frac{m n}{M(x-1)} \sum_{i=1}^{N}\left[e\left(\xi_{i}^{i}\right)\right]^{2} f r a m$ Theorem 4.2 because $\sum_{i=1}^{M} e\left(\xi_{1}\right)=0$. Bince the conditions of Theorem 4.3 are atinfled (Chernoff and 8avage, 1958), the asymptotic distribution of c_{1} is normal under any alternative as wall as undar the null hypothesin. Aleo, the c_{1} test 1s
at least as efficient as the student's test (Chernoff and savage, 1958), which is the uniformiy most powarful tent for the alternative of a change of location in the noxmal distribution.

Chapter V
 LARGE-SAYPLS PONER

Although comparisons of power function for mall samples may be considered the most realistic appraisal of the performance of tests, the computations are usually tedious. Probably for this reason, many gaps are present in the information available on exact power computations. However, considerable progress has been made with respect to asymptotic power results. In many cases, the large sample power of nonparametric tests is easily computed because the test statistic is anymptoticaliy normally distributed under the alternative. For example, any linear rank statietic (4.6) is asymptotically normal under both the hypothesis and the alternative, subject to certain regularity conditions.

Although this paper is primarily concerned with mallw sample power, some asymptotic power resulta are desirable for comparative purposes. Since the first two moments of the one-nided Mann-Whitney or Milcoxon tast and the Wald Nolfowitz runs test are easily computed and the asymptotic distributions of these test atatistics have been detemmined, the approximate powar function of these two tests will be
presented in this chapter for the previously considered alternative H_{1} of two extreme distributions, when $k=2$. In addition to the factor of ease in computation, these two tests were chosen since they are perhaps the mowt widely used of the two-sample rank tests for the purpose of testing whether two mamples come from the same population.

5.1 Mann-M2itney ox Milcoxon Test:

Whe Mann-Whitney or Wilcoxon test T_{2} has been shown to be consistent against any alternative of the form $H(a) \geq 0(a)$ for all a (Mann and Whitnay, 1947, Lehmann, 1951) which certainly applies to the alternative $H=1-(1-F)^{k}, c F^{k}$ for any value of $k>1$. The test statistic is the sum of the ranke of the Y random variables (Wilcoxon test), or, equivalently, u, the number of pairs $\left(X_{1}, X_{j}\right)$ for which $x_{1}<X_{j}$ (Mann-Whitney test). Thus we can define the statis$\operatorname{tic} u=\sum_{i=1}^{\sum_{j}} \sum_{j=1}^{n} x_{1 j}$ whare $x_{i j}=1 i f x_{i}<x_{j}$ and $x_{i j}=0$ otherwise: The tast statistics are equivalent since $0=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{1 j}=\left(m_{1}-1\right)+\left(s_{2}-2\right)+\ldots+\left(s_{n}^{-n)} \sum_{j=1}^{n}\left(s_{j}-1\right)\right.$ $\sum_{j=1}^{n} s_{j}-n(n+1) / 2, \quad$ where $s_{1} \leq a_{2} \leq \ldots \leq s_{n}$ are the ranks of the Y random variables in the combined sample.

Mann and Witney (1947) have shown that the dintribution of the randon variable [v $-e(v)] / \sigma(v)$ tends to normality with zero mean and unit variance under the nuli hypothesis $H=0$ as $\mathrm{B} \rightarrow \infty, \mathrm{m} / \mathrm{n}$ constant. Lehmann (1951) has shown that the approximation is still good when the first two moments under the alternative are miontituted.

To compute the exact first two moments, we can use

$$
\begin{align*}
& e(u)=m n \operatorname{Pr}\left(X_{1 j}-1\right)=m n \operatorname{Pr}\left(X_{i}<Y_{j}\right), \tag{5.1}\\
& \sigma^{2}(v)-e\left(v^{2}\right)-[e(v)]^{2}, \text { whare } \tag{5.2}\\
& \text { and } \\
& \sigma^{2}(v)-\varepsilon\left(v^{2}\right)-[e(v)]^{2} \text {, whare }
\end{align*}
$$

$$
\begin{align*}
& +m(m-1) n(n-1) \quad{ }_{1 \neq n, j, j k}\left(X_{i j} X_{n k}\right) \quad . \tag{5.3}
\end{align*}
$$

Onder the null hypothenis $B=0, \operatorname{Pr}\left(X_{1}<X_{j}\right)=k_{2}, 0$ that $e_{0}(v)=\mathrm{mn} / 2, e_{0}\left(x_{i j}\right)=k_{2,} e_{j \neq k}\left\langle x_{i j} x_{i k}\right)=e_{i \neq j}\left(x_{i j} x_{h j}\right)=1 / 3$,
 and (5.3). Thus, for example, the a level test rejecte when

$$
\begin{equation*}
\frac{0 / m n-\frac{1}{2}}{[(m+n+1) /(12 m n)]^{\frac{1}{2}}}>z_{\alpha} \tag{5,4}
\end{equation*}
$$

Where z_{α} ds defined by $\Phi\left(\varepsilon_{\alpha}\right)=\int_{-\infty}^{x_{\alpha}} \frac{2}{\sqrt{2 \pi}} e^{-\frac{1}{2} t t^{2}} d t=1-\alpha$. Under the alternative $H_{1}: E=1-(1-F)^{k}, G=F^{k}$, we have $\operatorname{Pr}\left(X_{1}\left\langle X_{j}\right)=1-k \beta\left(x_{j} k+1\right)\right.$ from (3.7). when

$$
\begin{equation*}
\varepsilon_{A}(U / m n)=1-k \beta(k, k+1) \tag{5.5}
\end{equation*}
$$

from (5.1). Also from (3.7), it may be easily verified that

$$
\begin{align*}
& +k \beta(k, 2 k+1) \quad, \tag{5.6}
\end{align*}
$$

and $\underset{1 \neq h, j \neq k}{e}\left(X_{i j} X_{h k}\right)=1-2 k \beta(k, k+1)+k^{2}[\beta(k, k+1)]^{2}$.
Upon substituting (5.5) - (5.7) into (5.3) and (5.2), we have $\sigma_{A}^{2}(U / m n)=\frac{k}{m n}(\beta(k, k+1)+(m+n-2) \quad \beta(k, 2 k+1)-(m+n-1) k[\beta(k, k+1)\}]$.

The power for any value of k, m, and n is $\operatorname{Pr}\left\{\frac{U / m n-\varepsilon_{A}(U / m n)}{\sigma_{A}(U / m n)} \sum c\right\}=1-\Phi\left(\frac{\sum_{\alpha}[12 m n(m+n+1)]^{-\frac{1}{2}}+\frac{z_{2}}{2}-\varepsilon_{A}(U / m n)}{\sigma_{A}(U / m n)}\right)$
where c is determined by (5.4).
The power curve $\beta\left(T_{2}\right)$ for $m=n, k=2, \alpha=.05$, as computed from (5.9) is shown in Figure 5.1. The first two moments under the alternative when $k=2$ are 5/6 and $(7 N+11) /(180 m n)$. For small samples, the approximate power function yields. 19 for $m=n=2$, 31 for $m=n=3$, and .43 for $m=n=4$. Thus, at least for these three cases, the power is underestimated when the asymptotic theory is used.

Figure 5.1. Approximate power functions of Mann-Whitney and Wald-Wolfowitz runs tests against $H_{1}: H=l-(l-F)^{2}, G=F^{2}$ for equal sample sizes, $\alpha=.05$

5.2 Wald-Wolfowitz Runs Test

The Wald-Holfowitz runs test T_{7} (Wald and Wolfowitz, 1940) is also consistent against any alternative. The random variable x, the number of runs of both $X^{\prime} s$ and $Y^{\prime} s$ in the combined sample, is asymptotically normal under the null hypothesis $H=G$ as well as under the alternative as $\mathbb{N} \rightarrow \infty$, $m / n=c$, constant. The firgt two moments of \underline{x} under any alternative are given by the following theorem due to Wolfowitz (1949).

Theorem 5.1. Let $R(x)$ and $Q(x)$ be the cumulative distribution functions from which m and n observations respectively are obtained.

Let
(a) $R(x)= \begin{cases}0 & x<0 \\ x & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}$
(b) $Q(x)= \begin{cases}0 & x \leq 0 \\ 1 & x<1\end{cases}$
(c) the derivative $q(x)$ of $Q(x)$ exist and be continuous and positive in the interval $0 \leq x \leq 1$.
(d) $m / n=c$, a constant.

Then $\quad \lim _{m \rightarrow \infty} \varepsilon_{A}(x / m)=2 \int_{0}^{1} \frac{g(x)}{\operatorname{ctg}(x)} d x$,

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \sigma_{A}^{2}(x / \sqrt{m})=4\left\{\int_{0}^{1} \frac{c q^{2}}{(c+q)^{3}} d x+\int_{0}^{1} \frac{q\left(c^{3}+q^{3}\right)}{(c+q)^{4}} d x\right. \\
& \left.-\left[\int_{0}^{1} \frac{q^{2}}{(c+q)^{2}} d x\right]^{2}-c^{3}\left[\int_{0}^{1} \frac{q}{(c+q)^{2}} d x\right]^{2}\right] \tag{5.11}
\end{align*}
$$

For the alternative H_{1} with $k=2$, we must have $x=2 F(x)-F^{2}(x)$ so that $R(x)=x ; Q(x)=F^{2}(x)$. But $1-x=1-2 P(x)+F^{2}(x)$, or $F(x)=1-\sqrt{1-x}$. Then $Q(x)=(1-\sqrt{1-x})^{2}$, and $q(x)=[1-\sqrt{1-x}] / \sqrt{1-x}$. Thus $\quad \lim _{m \rightarrow \infty} \varepsilon_{A}(x / m)=2 / 3, \quad \lim _{m \rightarrow \infty} \sigma_{A}^{2}(x / \sqrt{m})=26 / 45$, and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \operatorname{Pr}\left[\frac{U / m-2 / 3}{(26 / 45 m)^{\frac{1}{2}}} \leq x\right]=\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t \tag{5.12}
\end{equation*}
$$

Under the null hypothesis $H=G$, the exact values of the first two moments are $e_{0}(x)=\frac{2 m n}{m+n}+1$, $\sigma_{0}^{2}(x)=\frac{2 m n(2 m n-m-n)}{(m+n)^{2}(m+n-1)} \quad($ Mood, 1950, p. 393), and the test for $m=n$ at significance level $\alpha=.05$, for example, rejects when

$$
\begin{equation*}
\frac{0 / m-[1+(1 / m)]}{[(m-1) / m(2 m-1)]^{\frac{1}{2}}} \leq-1.645 \tag{5.13}
\end{equation*}
$$

Thus for $k=2$, we can easily compute the approximate power for any α and any $m=n$ using (5.13) and (5.12). The results for $m=n, k=2, \alpha=.05$, are given in Figure 5.1, labeled $\beta\left(2_{7}\right)$. For $m=n \leq 4$, the asymptotic power function does not give reasonable results.

The Mann-Whitney test is seen to be considerably more powerful than the Wald-Wolfowitz runs test, although both have high power functions for this type of alternative.

Chapter VI

SUMMARY AND CONCLUSIONS

Although nonparametric statistical techniques have generally achieved widespread acceptance, more information is needed concerning their performance in various situations. The amount of research activity in nonparametric statistical inference has grown rapidily each year, but no major breakthroughs have yet been achieved in determining small-sample power functions. Most of the results available are highly peculiar to the conditions assumed -- usually normal alternatives, isolated sample sizes, and "convenient" significance levels. In this paper, comparisons are made under as similar and general conditions as possible and for the more usual significance levels by employing randomized tests.

The problem of dealing with different conditions is particularly evident with the sign test and its parametric analogue, the test, for density functions whose mean and median do not coincide. This is dealt with here (Chapter II) by considering three different sets of hypotheses of location for the sign test. The power functions of the one-sined, onesample sign test are computed for $n=10, \alpha=.05$, against a wide range of approximately normal alternatives. The signifi-
cance level is found to be not greatly affected by noncoincidence of the mean and median. The difference between the power functions of the test and the ordinary sign test under similar conditions is slight for highly leptokurtic distributions. When the sign test is performed on the meäian as approximated by the mean and coefficient of skewness, the aifference is almost negligible for positively skewed, highly leptokurtic distributions.

The remainder of the thesis (Chapters III, IV, and V) is concerned with a different class of nonparametric techniques --two-sample tests based on the ranks of the variables in the combined sample. Many rank tests have been proposed to test the null hypothesis that the two samples of sizes m ana n are drawn from identical populations, but their power functions have been compared almost exclusively against parametric alternatives.

First, the nonparametric alternative of two extreme distributions has been considered, $H_{1}: H=1-(1-F)^{k}, G=F^{k}$, with F being unspecified. If F has a symmetrical density function, H and G are mutually symmetric distributions. More descriptively, their densities are mirror images. However, since F need not be specified, we can assume without loss of generality that F is symmetric. Formulae are presented for
the calculations of the probabilities under this alternative of any of the $\left(\frac{N}{m}\right)$ arrangements of the $N=m+n$ ranciom variables and used to calculate the small-sample power functions of nine two-sample rank tests. The cases included are all combinations of $k=2,3$, and $4, m=n \leq 4$ for $\alpha=.01, .05$ and .10, and unequal sample sizes such that $m+n \leq 8$ for $\alpha \leq 1 /\left(\frac{N}{\mathrm{~m}}\right)$ for one-sided tests and $\alpha \leq 2 /(\mathrm{N})$ for two-sicied tests. Two of the test statistics, the Gamna test and Psi test, are new. The six one-sided tests considered, the most powerful rank test, Mann-Whitney or Wilcoxon, Terry's c_{1} test, the Psi test, Gamma test, and median test, are the most appropriate for this alternative. The first four tests have the same power for all cases considered. The one-sided median test has by far the least power. Of the three twosided tests, the median, runs, and Wilcoxon tests, only the latter has high power.

These results are compared with power functions of the same tests against normal alternatives such that the standardized difference corresponds to the difference between the two extreme aistributions. The power against normal alternatives is found to be slightly lower in most cases.

No clear-cut and final conclusions can be drawn from the
limited power functions calculated in this paper. A need for
more computations for larger sample sizes is clearly indicated. Although extensive numerical work is involved, a complete picture of the performance of two-sample rank tests against these alternatives would seem worthwhile.

The locally most powerful rank test against general functional alternatives has been derived and its properties stuäled. The technique is applied to two specific alternatives, $H_{1}^{*}: H=(1-\theta) F^{k}+\theta\left[1-(1-F)^{k}\right], G=F^{k}$, and $H_{1}^{* *}: H=1-(1-F)^{\theta+1}, G=F^{\theta+1}$, where $\theta \geq 0$. Both are similar in spirit to the alternative of two extreme distributions. The resulting test statistics are called the Gamma test and the Psi test, respectively. The latter test rejects the null hypothesis when $\sum_{j=1}^{m}\left[\Psi\left(N-r_{j}+1\right)-\Psi\left(r_{j}\right)\right]>c$, where the r_{j} are the ranks of the X random variables and $\Psi(x)=d[\log \Gamma(x)] d x$. The power of the Psi test turns out to be the same as that of the most powerful rank test for all cases considered. The critical regions are independent of any parameters, and the test is very simply performed. Under the null hypothesis, the correlationbetween the Psi and Wilcoxon test statistics is asymptotically $3 / \pi$, or . 9550 .

Although the Gamma test is mainly of theoretical interest, the Psi test seems to merit further investigation.

Determination of its power function for larger sample sizes would be desirable, as well as stuciles of its performance against other alternatives. Its asymptotic properties should be more completely examined. Further, an attempt should be made to determine how soon asymptotic properties provide a reasonable approximation to the test's behavior in mocieratesizeä samples.

In the final chapter, approximate power functions of the Wilcoxon and runs tests have been examined for equal sample sizes against the alternative of two extreme distributions when $k=2$. The wilcoxon test is seen to be considerably more powerful against this alternative, and its asymptotic power function provides a good approximation to the exact power for smaller samples. A similar study for the other tests would also be of interest.

ACKNOWLEDGMENTS

The author wishes to express her appreciation for the helpful suggestions, guidance and encouragement given by Dr . Herbert A. David in the preparation and writing of this thesis.

This research was supported in part by a grant from the Office of Ordnance Research. The author is also grateful to the Southern Fellowships Fund, National Science Foundation, and National Institutes of Health, for their financial assistance during various phases of her graduate studies.

BIBLIOGRAPHY

Barton, D. E. (1957). A comparison of two sorts of test for a change of location and applicable to truncated data. I. R. Statist. Soc. (B) 19, 119-124.

Barton, D. E. and Dennis, K. E. (1952). Conditions under which Gram-Charlier and Edgeworth curves are positive definite and unimodal. Biometrika 39, 425-427.

Capon, Jack (1961). Asymptotic efficiency of certain locally most powerful rank tests. Ann. Math. Statist. 32, 88-100.

Chernoff, H. and Savage, I. R. (1958). Asymptotic normality and efficiency of certain nonparametric test statistics. Ann. Math. Statist. 29, 972-994.

Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in the specification of distributions. Revue de l'Institut International de Statistique 5, 307-320.

Cramér, H. (1928). On the composition of elementary errors. Skand. Aktuartidskr. 11, 141-180.

Cramér, H. (1937). Random Variables and Probability Distributions. Cambridge Tracts in Mathematics, No. 36. Cambridge University Press.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press.

Davis, Harold T. (1933). Tables of the Higher Mathematical Functions, Vol. I. Principia Press, Bloomington (Ind.).

Dixon, W. J. (1953). Power functions of the sign test and power efficiency for normal alternatives. Ann. Math. Statist. 24, 467-473.

Dixon, W. J. (1954). Power under normality of several nonparametric tests. Ann. Math. Statist. 25, 610-614.

Edgeworth, F. Y. (1905). The law of error. Trans. Camb. Phil. Soc. 20, 36-65, 113-141.

Epstein, Benjamin (1955). Comparison of some non-parametric tests against normal alternatives with an application to life testing. I. Amer. Statist. Ass. 50, 894-900.

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180-190.

Fisher, R. A. and Yates, F. (1953). Statistical Tables for Bioloqical, Agricultural and Medical Research. Oliver and Boyd, Edinburgh.

Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, N.Y.

Haldane, J. B. S. (1942). The mode and median of a nearly normal distribution with given cumulants. Biometrika 32, 294-299.

Harter, H. Leon (1961). Expected values of normal order statistics. Biometrika 48, 151-165.

Haynam, G. E., Leone, F. C. and Chakravarti, I. M. (1961). Exact power of some tests based on the Mann-WhitneyWilcoxon U statistic. Unpublished report.

Hemelrijk, J. (1961). Experimental comparison of Student's and Wilcoxon's two sample tests. Quantitative Methods in Pharmacology, North-Holland Publishing Co., Amsterdam, 118-134.

Hoeffding, W. (1951). "Optimum" nonparametric tests. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 83-92.

Klotz, Jerome (1962). Nonparametric tests for scale. Ann. Math. Statist. 33, 498-508.

Lehmann, E. L. (1951). Consistency and unbiasedness of certain nonparametric tests. Ann. Math. Statist. 22, 165179.

Lehmann, E. L. (1953). The power of rank tests. Ann. Math. Statist. 24, 23-43.

Leone, F. C., Chakravarti, I. M. and Alanen, J. D. (1961). Exact power of some quick tests based on Mood's and Massey's statistics. Bull. de l'Inst. Intern. de Stat., 33^{e} Session, Paris, No. 115.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18, 50-60.
von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions. Ann. Math. Statist. 18, 309-348.

Mood, A. M. (1950) . Introduction to the Theory of Statistics. McGraw-Hill Book Co., New York.

National Bureau of Standards (1953). Tables of Normal Probability Functions. Applied Mathematics Series No. 23.

Neyman, J., Iwaszkiewicz, K. and Kolodziejczyk, St. (1935). Statistical problems in agricultural experimentation. J. R. Statist. Soc. Supp. 2, 107-154.

Ruben, H. (1954). On the moments of order statistics in samples from normal populations. Biometrika 41, 200227.

Savage, I. Richard (1956). Contributions to the theory of rank order statistics -- the two-sample case. Ann. Math. Statist. 27, 590-615.

Savage, I. Richard (1960). Contributions to the theory of rank order statistics: Computation rules for probabilities of rank orders. Ann. Math. Statist. 31, 519-520.

Srivastava, A. B. L. (1958). Effect of nonnormality on the power function of the test. Biometrika 45, 421-429.

Sundrum, R. M. (1954). A further approximation to the distribution of Wilcoxon's statistic in the general case. J. R. Statist. Soc. (B) 16, 255-260.

Teichroew, Daniel (1954). A table giving the probability associated with order statistics in samples from two normal populations which have the same variance but dif-
ferent means. Technical report. U.S. Dept. of Commerce, National Bureau of Standards.

Teichroew, Daniel (1955). Empirical power functions for nonparametric two-sample tests for small samples. Ann. Math. Statiat. 26, 340-344.

Terry, Milton E. (1952). Some rank orcier tests which are most powerful against specific parametric alternatives. Ann. Math. Statist. 23, 346-366.

Tsao, Chia Kuei (1957). Approximations to the power of rank tests. Ann. Math. Statist. 28, 159-172.

Uzawa, H. (1960). Locally most powerful rank tests ror twosample problems. Ann. Math. Statist. 31, 685-702.
van der Waerden, B. L. (1952). Order tests for the twosample problem and their power. Proc. Kon. Nea. Akad. Wetensch. (A) 55, 453-458. Errata: Ibia. (1953) 80.
van der Waerden, B. L. (1953). Order tests for the twosample problem (sedond and third communications). Proc. Kon. Ned. Akad. Wetensch. (A) 56, 303-316.

Wald, A. and Wolfowitz, J. (1940). On a test whether two samples are from the same population. Ann. Math. Statist. 11, 147-162.

Walsh, John E. (1946). On the power function of the sign test for slippage of means. Ann. Math. Statist. 17, 358-362.

Wilcoxon, Frank (1945). Individual comparisons by ranking methods. Biometrics 1, 80-83.

Wolfowitz, J. (1949). Nonparametric statistical inference. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, 93-113.

The two page vita has been removed from the scanned document.

Page 1 of 2

The two page vita has been removed from the scanned document.

Page 2 of 2

Abstract

I. Small-Sample Power of the One-Sample sign Test for Approximately Normal Distributions. The power function of the one-sided, one-sample sign test is studied for populations which deviate from exact normality, either by skewness, kurtosis, or both. The terms of the Edgeworth asymptotic expansion of order more than $N^{-3 / 2}$ are used to represent the population density. Three sets of hypotheses and alternatives, concerning the location of (1) the median, (2) the median as approximated by the mean and coefficient of skewness, and (3) the mean, are considered in an attempt to make valid comparisons between the power of the sign test and Student's test under the same conditions. Numerical results are given for samples of size 10 , significance level .05, and for several combinations of the coefficients of skewness and kurtosis. II. Power of Two-8ample Rank Tests on the Equality of Two Distribution Functions. A comparative study is made of the power of two-sample rank tests of the hypothesis that both samples are drawn from the same population. The general alternative is that the variables from one population are stochastically larger than the variables from the other.

One of the alternatives considered is that the variables In the first sample are distributed as the smallest of k variates with distribution F, and the variables in the second sample are distributed as the largest of these $k-\infty$ $H_{1}: H=1-(1-F)^{k}, G=F^{k}$. These two alternative distributions are mutually symmetric if F is symmetrical. Formulae are presented, which are independent of F, for the evaluation of the probability under H_{1} of any joint arrangement of the variables from the two samples. A theorem is proved concerning the equality of the probabilities of certain pairs of orderings under assumptions of mutually symmetric populations. The other alternative is that both samples are normally distributed with the same variance but different means, the standardized difference between the two extreme distributions in the first alternative corresponding to the difference between the means. Numerical results of power are tabulated for small sample sizes, $k=2,3$ and 4, significance levels . 01, . 05 and .10. The rank tests considered are the most powerful rank test, the one and tworsided Wilcoxon tests, Terry's c_{1} test, the one and two-sided median tests, the Wald-Wolfowitz runs test, and two new tests called the Psi test and the Gamma test.

The two-sample rank test which is localiy most powerful
against any alternative expressing an arbitrary functional relationship between the two population distribution functions and an unspecified parameter θ is derived and its asymptotic properties studied. The method is applied to two specific functional alternatives, $H_{1} w_{z} H=(1-\theta) F^{k}+$ $\theta\left[1-(1-F)^{k}\right], G=F^{k}$, and $H_{1}^{* * z} H=1-(1-F)^{1+\theta}, G=F^{1+\theta}$, where $\theta \geq 0$, which are similar to the alternative of two extreme distributions. The resulting test statistics are the Gamma test and the Psi test, respectively. The latter test is shown to have desirable small-sample properties.

The asymptotic power functions of the Wilcoxon and WaldWolfowitz tests are compared for the alternative of two extreme distributions with $k=2$, equal sample sizes and significance level. 05 .

