
Controlled and Effective Interpolation

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Leonardo de Sá Alt

under the supervision of

Natasha Sharygina

December 2016

Dissertation Committee

Fernando Pedone Università della Svizzera italiana, Switzerland
Jan Kofroň Charles University in Prague, Czech Republic
Philipp Rümmer Uppsala University, Sweden
Robert Soulé Università della Svizzera italiana, Switzerland

Dissertation accepted on 09 December 2016

Research Advisor PhD Program Director

Natasha Sharygina Michael Bronstein / Walter Binder

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Leonardo de Sá Alt
Lugano, 09 December 2016

ii

Abstract

Model checking is a well established technique to verify systems, exhaustively
and automatically. The state space explosion, known as the main difficulty in
model checking scalability, has been successfully approached by symbolic model
checking which represents programs using logic, usually at the propositional or
first order theories level.

Craig interpolation is one of the most successful abstraction techniques used
in symbolic methods. Interpolants can be efficiently generated from proofs of
unsatisfiability, and have been used as means of over-approximation to generate
inductive invariants, refinement predicates, and function summaries.

However, interpolation is still not fully understood. For several theories
it is only possible to generate one interpolant, giving the interpolation-based
application no chance of further optimization via interpolation. For the theories
that have interpolation systems that are able to generate different interpolants,
it is not understood what makes one interpolant better than another, and how
to generate the most suitable ones for a particular verification task.

The goal of this thesis is to address the problems of how to generate multiple
interpolants for theories that still lack this flexibility in their interpolation
algorithms, and how to aim at good interpolants.

This thesis extends the state-of-the-art by introducing novel interpolation
frameworks for different theories. For propositional logic, this work provides
a thorough theoretical analysis showing which properties are desirable in a
labeling function for the Labeled Interpolation Systems framework (LIS). The
Proof-Sensitive labeling function is presented, and we prove that it generates
interpolants with the smallest number of Boolean connectives in the entire
LIS framework. Two variants that aim at controlling the logical strength of
propositional interpolants while maintaining a small size are given. The new
interpolation algorithms are compared to previous ones from the literature
in different model checking settings, showing that they consistently lead to a
better overall verification performance.

The Equalities and Uninterpreted Functions (EUF)-interpolation system,

iii

iv

presented in this thesis, is a duality-based interpolation framework capable of
generating multiple interpolants for a single proof of unsatisfiability, and pro-
vides control over the logical strength of the interpolants it generates using
labeling functions. The labeling functions can be theoretically compared with
respect to their strength, and we prove that two of them generate the inter-
polants with the smallest number of equalities. Our experiments follow the
theory, showing that the generated interpolants indeed have different logical
strength. We combine propositional and EUF interpolation in a model checking
setting, and show that the strength of the interpolation algorithms for different
theories has to be aligned in order to generate smaller interpolants.

This work also introduces the Linear Real Arithmetic (LRA)-interpolation
system, an interpolation framework for LRA. The framework is able to generate
infinitely many interpolants of different logical strength using the duality of
interpolants. The strength of the LRA interpolants can be controlled by a
normalized strength factor, which makes it straightforward for an interpolation-
based application to choose the level of strength it wants for the interpolants.
Our experiments with the LRA-interpolation system and a model checker show
that it is very important for the application to be able to fine tune the strength
of the LRA interpolants in order to achieve optimal performance.

The interpolation frameworks were implemented and form the interpolation
module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has
been integrated to the propositional interpolation-based model checkers Fun-
Frog and eVolCheck, and to the first order interpolation-based model checker
HiFrog. This thesis presents real life model checking experiments using the
novel interpolation frameworks and the tools aforementioned, showing the vi-
ability and strengths of the techniques.

Acknowledgements

I start by stating that even though this thesis has my name as the author, it
would not exist without many other people.

I am grateful for the reviewers of this thesis, Professor Fernando Pedone
(Università della Svizzera italiana), Professor Robert Soulé (Università della
Svizzera italiana), Professor Jan Kofroň (Charles University in Prague) and
Professor Philipp Rümmer (Uppsala University), who took the time to thor-
oughly analyse this work and give valuable criticism. I especially thank Profes-
sor Rümmer for the insights on EUF when I felt stuck. In fact, it is interesting
to notice how the smallest observation, insight, recommendation or criticism
can easily turn into great guidance. I thank Professor Natasha Sharygina, my
thesis supervisor, for sharing her experience, expertise, and guiding me through
the last years, regarding a vast amount of topics. Doctor Antti Hyvärinen is
also a big insight provider to this work, as a SAT/SMT mentor, reader of all
my proofs (tough person to convince), climbing instructor, and friend.

I received financial support from the Swiss National Science Foundation,
and I am grateful for that.

Universitá della Svizzera italiana is a great place to be, and I enjoyed both
the place and the people there, of various research groups. My colleagues were
supportive, helpful and good people to be around. I will not mention names
because they are many, but I also thank my family, my friends and my girlfriend
Sarah for their support during the completion of this work.

Finally, I thank Pizzeria da Franco for providing immediate happiness.

v

vi

Contents

Contents vii

List of List of Figures xi

List of List of Tables xiii

1 Introduction 1
1.1 SAT and SMT solving . 1
1.2 Symbolic Model Checking . 2
1.3 Craig Interpolation . 4
1.4 Contributions . 6

1.4.1 Analyzing Labeling Functions for Propositional Logic . . 8
1.4.2 Flexible and Controlled Propositional Interpolants 9
1.4.3 Controlling EUF Interpolants 10
1.4.4 Controlling LRA Interpolants 10
1.4.5 Interpolating OpenSMT2 11
1.4.6 HiFrog . 12

1.5 Organization of the thesis . 13

2 Interpolation-based Model Checking 15
2.1 Interpolation as Means of Over-Approximation 15
2.2 Function Summarization for Bounded Model Checking 16

3 Technical Background 19
3.1 Propositional Logic Preliminaries 19
3.2 Integration of Propositional and Theory Interpolation. 23
3.3 EUF Preliminaries . 24
3.4 LRA Preliminaries . 28

3.4.1 LRA Interpolation . 34

vii

viii Contents

4 Flexible and Controlled Propositional Interpolants 39
4.1 Labeling Functions for LIS . 40

4.1.1 Analysing Labeling Functions Experimentally 40
4.1.2 Analysing Labeling Functions Theoretically 43
4.1.3 Proof-Sensitive Interpolation 44

4.2 Experimental Evaluation . 47
4.2.1 Interpolants as Function Summaries 48
4.2.2 Over-approximating pre-image for Hardware Model Check-

ing . 50
4.2.3 Strength of PS . 55
4.2.4 Effects of Simplification 55

4.3 Related work . 57
4.4 Summary and Future Work . 59

4.4.1 Related Publications . 60

5 Controlling EUF Interpolants 61
5.1 Generalizing Interpolation Systems 61

5.1.1 Duality-based Interpolation and Strength 62
5.1.2 Related Work . 64

5.2 The EUF-Interpolation System 66
5.2.1 The Strength . 69
5.2.2 Labeling Functions . 75

5.3 Experimental Evaluation . 76
5.3.1 Interpolation over smt-libbenchmarks 76
5.3.2 Interpolation-Based Incremental Verification 79

5.4 Related Work . 83
5.5 Summary and Future Work . 84

5.5.1 Related Publications . 85

6 Controlling LRA Interpolants 87
6.1 LRA Interpolation System . 88

6.1.1 The Strength Factor . 90
6.2 Experimental Evaluation . 94
6.3 Related work . 95
6.4 Summary and Future Work . 101

6.4.1 Related Publications . 101

ix Contents

7 Implementation 103
7.1 OpenSMT2 . 103

7.1.1 Basic functionalities . 103
7.1.2 Modularity . 104
7.1.3 Interpolation Modules 104

7.2 HiFrog . 106
7.3 Summary of the Experimental Evaluation 107

8 Conclusions 111
8.1 Future work . 113

Bibliography 115

x Contents

List of Figures

3.1 Different interpolants obtained from the refutation using the
partitioning P1. 22

3.2 Computation of the congruence graph 26
3.3 Congruence graph GC that proves the unsatisfiability of A ∪B . 28

4.1 Interpolants obtained by PS. 46
4.2 Overall verification time of FunFrog using different interpolation

algorithms. 49
4.3 Overall verification time of eVolCheck using different interpola-

tion algorithms. 52
4.4 Relation SizeTree/SizeDAG on FunFrog benchmarks for different

interpolation algorithms . 56

5.1 Computing partial interpolants for the EUF-interpolation sys-
tem. The bottom left dag illustrates the computation in terms
of the dag-like interpolation algorithm. 70

5.2 Tree of factors that represents the congruence graph from Ex-
ample 14. 74

5.3 The relative strength of the propositional interpolation algo-
rithms Alt et al. [2016] . 78

5.4 Comparison between interpolation combinations with respect to
the number of Boolean connectives in the final interpolant . . . 78

5.5 Comparison between interpolation combinations with respect to
the number of equalities in the final interpolant 80

6.1 LRA problem and different interpolants. 92

7.1 Overview of the architecture of OpenSMT2. 103
7.2 Overall verification/interpolation framework. 106
7.3 HiFrog’s architecture overview. 108

xi

xii List of Figures

List of Tables

3.1 LRA proof system from McMillan [2005]. 35
3.2 Interpolation system from McMillan [2005]. 36

4.1 FunFrog experiments results using previous interpolation systems 42
4.2 Performance results of FunFrog when using various labeling func-

tions. 43
4.3 Performance results of eVolCheck when using various labeling

functions. 43
4.4 Sum of overall verification time and average interpolants size for

FunFrog using the applicable labeling functions. 50
4.5 Detailed information about the benchmarks ran with FunFrog. . 51
4.6 Sum of overall verification time and average interpolants size for

eVolCheck using the applicable labeling functions. 52
4.7 Detailed information for the benchmarks run with eVolCheck . 53
4.8 Average size and increase relative to the winner for interpolants

generated when interpolating over A (top) and B (bottom) in
A ∧B with PdTRAV. 54

5.1 Verification results of a set of C benchmarks. 81
5.2 Verification time of HiFrog using different combinations of in-

terpolation algorithms. 82

6.1 Dual interpolation system. 89
6.2 Verification time for HiFrog using different combinations of propo-

sitional and LRA interpolation algorithms. 96
6.3 Number of function refinements for HiFrog using different com-

binations of propositional and LRA interpolation algorithms. . . 97
6.4 Comparison between propositional and LRA encoding in HiFrog. 98

xiii

xiv List of Tables

7.1 Abstract methods that must be overridden to implement new
theories. 105

Chapter 1

Introduction

1.1 SAT and SMT solving

Deciding the satisfiability (SAT) of a propositional formula is one of the most
important problems in computer science. The problem consists in finding an
assignment to the variables of the formula that make the formula true. The
Cook-Levin theorem, which states that SAT is NP-Complete, led to the dis-
covery that several other problems are also NP-Complete. This brought mag-
nificent importance to the P ?

= NP problem, one of the most important open
problems nowadays.

Algorithms that aim at solving SAT are known as SAT solvers. For the past
20 years, SAT solvers have improved drastically, and enabled its practical use
in many different applications, such as software and hardware model checking,
planning and integrated circuits McMillan [2003]; Biere et al. [1999]; Bjesse
et al. [2001]; Rintanen et al. [2006]; Sheeran et al. [2000]; Chen and Keutzer
[1999].

Even though applying SAT solving to various problems became a successful
approach, some applications need a more expressive logic, such as first order
logic. However, first order logic is undecidable. The notion of first order
theory became then common: a decidable or semi-decidable fragment of first
order logic related to a specific domain. Some examples of first order theories
are linear arithmetic, equalities and arrays. This led to the creation of decision
procedures for specific theories. The problem of deciding the satisfiability of
a formula in the language of a specific theory became known as Satisfiability
Modulo Theories (SMT). Nowadays, SMT solvers are very efficient and flexible
tools that support many theories and their combination, which has enabled
practical software model checking and has been responsible for the success or

1

2 1.2 Symbolic Model Checking

optimization of many applications, such as hardware verification, verification
of hybrid systems and compilers Ranise and Déharbe [2003]; Barrett et al.
[2005]; Audemard et al. [2002a].

Research about SMT solvers has also led to the creation of smt-lib Barrett
et al. [2015], an international initiative to aid SMT development containing a
language to describe formulas in different theories and benchmarks for differ-
ent theories and their combination. SMT solvers under current development
include z3 de Moura and Bjørner [2008], CVC4 Barrett et al. [2011], Math-
SAT5 Cimatti et al. [2013b], Yices2 Dutertre [2014], and OpenSMT Hyvärinen
et al. [2016]. OpenSMT is a compact and open source SMT solver that has
as main goal to make SMT solvers easy to understand and extend. Its open
source license and modular architecture allows new theories and algorithms to
be quickly added to the framework. OpenSMT supports the theories of Equal-
ities and Uninterpreted Functions (EUF) and Linear Real Arithmetic (LRA).
The used solving algorithms for EUF and LRA are, respectively, congruence
closure Nelson and Oppen [1980]; Nieuwenhuis and Oliveras [2005] and general
simplex Dutertre and de Moura [2006], both used by most SMT solvers.

1.2 Symbolic Model Checking

Model checking Clarke and Emerson [1982]; Queille and Sifakis [1982] is a highly
successful technique for verifying hardware and software systems in a fully au-
tomated manner. The technique is based on analysing the state space of the
system and verifying that the behavior of the program does not violate its spec-
ifications. A system P is described as a set of states S, a set I ⊆ S of initial
states, and a transition relation T ⊆ S × S specifying how the system state
evolves over time. A possibly infinite sequence of states s0, s1, . . . where s0 ∈ I,
and (si, si+1) ∈ T for all i is called an execution of the system. Safety properties
are a practically important class of specifications expressing that certain states
describing errors in the system behavior should not be contained in any exe-
cution. Safety properties are particularly important in verification since they
can be expressed as a reachability problem making the related computations
efficient.

For most systems, the concrete state space S is too large to be expressed
explicitly. Symbolic model checking addresses this problem by expressing the
state over a set of variables and the transition relation as a formula over these
variables. The problem of reachability can this way be reduced to determining
the satisfiability of a logical formula, a task that has received a significant

3 1.2 Symbolic Model Checking

amount of interest lately with the development of efficient SAT and SMT solvers
(see, e.g., Cimatti et al. [2013a]; de Moura and Bjørner [2008], Bruttomesso,
Pek, Sharygina and Tsitovich [2010]; Rollini et al. [2013]).

SAT-based bounded model checking Biere et al. [1999, 2003] (BMC) is a
powerful approach to assure safety of software up to a fixed bound k. BMC
works by 1) unwinding the symbolic transition relation up to k steps, 2) en-
coding negation of an assertion (that essentially expresses a safety property) in
the state reached after k steps, and 3) passing the resulting formula to a SAT
solver for determining the satisfiability. If the BMC formula is unsatisfiable,
the program is safe. Otherwise, the program is unsafe, and each model of the
formula corresponds to a counterexample. BMC has been successfully used in
several contexts Audemard et al. [2002b]; Armando et al. [2006]; Junttila and
Dubrovin [2008] and forms the basis of several techniques aiming at unbounded
model checking with safe inductive invariant generation.

Even though symbolic encoding of the system can be logarithmic in the
size of its search space S, the problem of determining satisfiability is often still
overwhelming. To make computing more practical in such cases the system is
abstracted by grouping several states together and expressing the transitions
over these grouped states. There are several ways how abstraction can be im-
plemented in practice. Most of them can be reduced to generating an abstract
system P̂ from a given system P in such a way that the set of executions of S
is a sub-set of those of Ŝ. Thus, any property that can be shown to hold for
all executions of the abstraction Ŝ also holds for all executions of S.

In abstract interpretation the target is to compute inductive, but not nec-
essarily safe, invariants for the program using an abstract simulation of the
program Cousot and Cousot [1977]. The abstraction is obtained by substi-
tuting concrete program with abstract domains suitable for the properties of
the analyzed program (for examples, see Cousot and Cousot [1977]; Clarisó
and Cortadella [2004]; Halbwachs and Péron [2008]). While greatly simplify-
ing the model-checking task, abstraction might allow property violations not
present in the original software. Such spurious counterexamples can be used
to refine the abstractions through methods such as predicate abstraction Graf
and Saïdi [1997] and its refinements, counter-example guided abstraction re-
finement (CEGAR) Clarke et al. [2000], and lazy abstraction Henzinger et al.
[2002]; McMillan [2006].

The capability of the refinement procedure to find a suitable abstraction
level is a critical factor in determining the practical success of a model checker
based on abstract interpretation and refinement. With the emergence of ex-
tended SAT/SMT solvers and symbolic encoding, approaches based on Craig

4 1.3 Craig Interpolation

interpolation Craig [1957]; McMillan [2003] have become very important tools
for computing abstractions. However, it has been widely acknowledged that
interpolation has been used as a black box, limiting its flexibility and usability.
Applications have no control whatsoever on the resulting interpolants. This
thesis addresses the problem of the ability to control interpolants.

1.3 Craig Interpolation

An important component in many tasks related to symbolic model checking
is to divide an unsatisfiable formula into two parts, A and B, and compute a
Craig interpolant I, defined over symbols appearing both in A and B, such that
A implies I and I∧B is still unsatisfiable Craig [1957]. Assuming that A∧B is
a symbolic encoding of the system P , the interpolant I can be seen as an over-
approximation of the part of the program described in A that is sufficiently
detailed to guarantee unsatisfiability with the problem description in B. Let
I ′ be another interpolant for A. If I → I ′, we say that I is stronger than
I ′, which in turn is weaker than I. This type of problems shows up naturally
in various verification approaches. For instance, if A describes a set of states
and B encodes an example of error-free behavior, a suitable interpolant I can
be used to construct a safe inductive invariant for the states in A McMillan
[2003]. Similarly, if A consists of a description of a program function f and
B consists of the rest of the program together with negation of an assertion,
I can be interpreted as an over-approximation of the function f satisfying
the assertion Sery et al. [2012c]. Other applications of interpolation in model
checking include the refinement phase to synthesize new predicates Henzinger
et al. [2004], or to approximate the transition relation Jhala and McMillan
[2005]. Model checkers supporting interpolation include CPAChecker Beyer
and Keremoglu [2011], CBMC Clarke et al. [2004], FunFrog Sery et al. [2012a],
and eVolCheck Fedyukovich et al. [2013], just to name a few.

Depending on the first-order theory in which A and B is defined, inter-
polants may be effectively computed from a proof of unsatisfiability of A ∧B.
For purely propositional formulas, the methods described in Pudlák [1997] (P)
Krajícek [1997] and McMillan [2005] (Ms) can be used to traverse the proof
obtained from a propositional satisfiability solver and compute interpolants.
Another method, presented in D’Silva et al. [2010], is the labeled interpolation
system (LIS), a powerful and generic framework able to compute propositional
interpolants of different strength. It also introduces Mw, the dual of Ms, and
generalizes the main previous algorithms P and Ms. When the theory of A and

5 1.3 Craig Interpolation

B is more expressive than propositional logic, it still is often possible to resort
to an SMT solver to compute an interpolant. In this case the resolution proof
of unsatisfiability will contain original clauses from A∧B plus theory-lemmas,
clauses produced by a theory solver representing tautologies. Given this proof,
it is possible to extract an interpolant using the method described in Yorsh
and Musuvathi [2005a], provided that the theory-solver is able to compute an
interpolant from a conjunction of literals in the theory.

In order to use interpolants in a straightforward manner, it is necessary
that they are quantifier-free. It can be shown that every recursively enumer-
able theory that eliminates quantifiers is quantifier-free interpolating, and every
quantifier-free interpolating theory eliminates quantifiers Kapur et al. [2006].
Examples of such theories are equality with uninterpreted functions (EUF) McMil-
lan [2005]; Fuchs et al. [2009], difference logic (DL) Cimatti et al. [2008], linear
real arithmetic (LRA) McMillan [2005]; Cimatti et al. [2008], and the bit-vector
(BV) theories. The case for theory of linear integer arithmetic (LIA) is, how-
ever, more complicated. For example the Presburger arithmetic (in its original
formulation) does not admit quantifier-free interpolants; however the addition
of stride predicates to the language makes the theory quantifier-free interpolat-
ing Pugh [1991]; Brillout et al. [2011b]; Jain et al. [2008]. Similarly also theory
of arrays (A) needs to be extended to obtain quantifier-free interpolants Brut-
tomesso et al. [2011].

Interpolants computed from proofs are known to be often highly redun-
dant Cabodi et al. [2015a], necessitating different approaches for optimizing
them. One way of compacting propositional interpolants is through applying
transformations to the resolution refutation. For example, Rollini et al. [2013,
2012] compare the effect of such compaction on interpolation algorithms on
three widely used interpolation algorithms Ms, P and Mw D’Silva et al. [2010]
in connection with function-summarization-based model checking Fedyukovich
et al. [2013]; Sery et al. [2012a]. A similar approach is studied in D’Silva et al.
[2010] combined with an analysis on the strength of the resulting interpolant.
Different size-based reductions are further discussed in Cabodi et al. [2015a];
Fontaine et al. [2011a]. While often successful, these approaches might produce
a considerable overhead in large problems. An interesting analysis in Bloem
et al. [2014] concentrates on the effect of identifying subsumptions in the res-
olution proofs. A significant reduction in the size of the interpolant can be
obtained by considering only CNF-shaped interpolants Vizel et al. [2013]. A
light-weight interpolant compaction can be performed by specializing through
simplifying the interpolant with a truth assignment Jancik et al. [2014].

In many verification approaches using counterexamples for refinement, it

6 1.4 Contributions

is possible to abstract an interpolant obtained from a refuted counterexample.
For instance, Rümmer and Subotić [2013], and Alberti et al. [2012] present a
framework for generalizing interpolants based on templates. A related approach
for generalizing interpolants in unbounded model-checking through abstraction
is presented in Cabodi et al. [2006] using incremental SAT solving. It is also
possible to produce interpolants without the proof Chockler et al. [2013], and
there is a renewed interest in interpolation techniques used in connection with
modern ways of organizing the high-level model-checking algorithm McMillan
[2014]; Cabodi et al. [2014].

Open problems. While Craig Interpolation has an established track record as
an over-approximation tool in symbolic model checking, its behavior is still not
fully understood. Moreover, the model checking applications have no control
over the interpolants, their suitability, size, and strength. This thesis aims to
solve the following open problems:

• Why aren’t the current interpolation algorithms able to generate good
interpolants regardless the interpolation problem?

• How can one generate interpolants that increase the performance of the
overall verification process?

• How can the applications have more control over the interpolants it
needs?

Our goal in this dissertation is to answer those questions in a sound way,
and provide a framework that allows interpolation based model checking to
move forward.

1.4 Contributions

This dissertation presents contributions both on the theoretical and practi-
cal sides. On the theoretical side we thoroughly study and propose different
interpolation algorithms in various logics. For propositional logic, this work
presents new algorithms that are able to generate small interpolants and con-
trol the strength of interpolants at the same time. For first order theories, we
introduce the interpolation system template, and instantiate it for the theories
of equalities and uninterpreted functions and linear real arithmetic, providing
a new way of creating different interpolants that can be partially ordered with

7 1.4 Contributions

respect to logical strength for these two theories. We also show how the size of
different interpolation algorithms resulting from these systems vary.

Our practical contributions include implementation of all the techniques
mentioned above and evaluation of the approach when used by model checkers.

The contributions are summarized as follows:

• Experimental and theoretical study on the quality of previous proposi-
tional interpolation algorithms.
We study previous propositional interpolation algorithms experimentally
searching for the best one, and give theoretical reasons why those algo-
rithms fail to generate small interpolants in general.

• Flexible propositional interpolation to generate small interpolants.
Following the previous theoretical analysis, we overcome the efficiency
problems by developing the Proof-Sensitive (PS) interpolation algorithm
for propositional logic, which aims at constructing small interpolants.

• Adjustment of the strength of propositional flexible interpolants.
Different applications may have specific strength requirements, so we
also developed extensions of the flexible algorithm PS, which control the
strength of interpolants as needed.

• Interpolation System Template (IST).
Many interpolation algorithms rely on a dag-like proof of unsatisfiability.
We created an interpolation system template that can be instantiated to
first order theories and uses labeling functions and the duality of inter-
polants to control their strength.

• EUF Interpolation System.
We instantiated the IST for the theory of Equalities and Uninterpreted
Functions. The EUF Interpolation Systems is capable of generating in-
terpolants of different strength in a controlled way.

• Analysis of labeling functions for the EUF Interpolation Systems.
We theoretically analyzed how different labeling functions can have an
impact on the size of interpolants.

• LRA Interpolation System.
The LRA Interpolation System is able to generate infinitely many inter-
polants of different strength in a controlled way.

8 1.4 Contributions

• All the new techniques above are implemented in OpenSMT2, an efficient
SMT-solver.
With all the techniques combined, interpolation for propositional logic,
EUF and LRA now can be tailored to meet the needs of the model
checker.

• Development of the model checker HiFrog.
HiFrog encodes C programs into the first-order theories EUF and LRA,
and uses interpolants to represent function summaries.

• Real life study, combining a model checker and the developed tool.
The real life context is model checking with function summaries. We
compare variants of the tool HiFrog that use propositional logic, EUF or
LRA and make use of the interpolants provided by OpenSMT2.

1.4.1 Analyzing Labeling Functions for Propositional Logic

Craig interpolation is a successful technique in symbolic model checking. Since
its introduction, several interpolation-based applications have benefited from
this novel technique. However, it became evident that generating an interpolant
is not enough: we need control. Before the Labeled Interpolation Systems, in-
terpolation procedures cared about generating an interpolant, any interpolant.
Even though the LIS framework gives flexibility on the generation of inter-
polants for propositional logic, it was not clear which labeling function would
behave best in a model checking scenario.

Research contribution. We contribute to propositional interpolation by
conducting an experimental and theoretical study on labeling functions. We
compared the labeling functions Ms, P, prior to LIS, and Mw, a natural con-
sequence of LIS, in two model checking settings: incremental checking with
FunFrog Sery et al. [2012a] and upgrade checking with eVolCheck Fedyukovich
et al. [2013]. Both tools are interpolation-based bounded model checkers that
use interpolants as over-approximations of function summaries.

For FunFrog, we show that stronger interpolants behave best, whereas
weaker interpolants are good for eVolCheck.

The labeling functions Ms, P and Mw are the most simple ones within LIS,
and do not aim at any optimization. The second part of our contribution is a
thorough theoretical analysis of LIS labeling functions. We show that uniform
labeling functions yield smaller interpolants, and that it is very hard to remove

9 1.4 Contributions

all the occurrences of a specific variable from the interpolant, since the proof
has to be p-annihilable, which is very rare in practice.

The results of our work have been published in Rollini et al. [2013], Alt
et al. [2016], and Rollini et al. [2015], and are discussed in Chapter 4.

1.4.2 Flexible and Controlled Propositional Interpolants

Most interpolation algorithms rely on a proof of unsatisfiability of A∧B, such
that A is the part to be over-approximated. Propositional logic is the language
of SAT solvers and central for SMT solving, therefore is essential for symbolic
model checking. Thus, interpolation for propositional logic is a topic that
must be heavily studied by different techniques, if the community wants to
keep optimizing program verification.

Several different approaches try to improve the performance and usability
of interpolation-based applications by providing better interpolants. Of course
the idea of what a good interpolant varies, yielding for instance, algorithms
that care about the strength of interpolants D’Silva et al. [2010]; Rollini et al.
[2013], the size and structure of interpolants Rollini et al. [2012]; Vizel et al.
[2013]; Cabodi et al. [2006, 2015b], or the semantics of variables Rümmer and
Subotić [2013]; Jancik et al. [2014].

Since the suitability of interpolants depends ultimately on the needs of
the interpolation-based application, each of these topics has to be extended
in order to give to the application more control on the interpolants that are
generated by the interpolation algorithms. This is still an issue even though
several interpolation approaches exist for propositional logic.

Research contribution. We have created the Proof-Sensitive labeling func-
tion that is proven to generate small interpolants in an efficient way. The
strength of interpolants is also a very important feature, so we have developed
a weaker and a stronger labeling functions that are variants of the Proof-
Sensitive. The goal of these two labeling functions is to provide strength con-
trol while still aiming at small interpolants. We show experimentally that the
new Proof-Sensitive labeling functions are able to increase the performance of
model checkers by generating interpolants that are small and more suitable to
the applications, compared to prior work.

The results of our work have been published in Alt et al. [2016] and Hyväri-
nen et al. [2015], and are discussed in Chapter 4.

10 1.4 Contributions

1.4.3 Controlling EUF Interpolants

The theory of Equalities and Uninterpreted Functions is essential to program
verification for two reasons. The first reason is that in many cases it is enough to
assume that a given function returns the same values when invoked with same
arguments to prove that a program is safe. Furthermore, proving program
equivalence Godlin and Strichman [2013] and modeling memory Stump et al.
[2001] benefit from EUF abstraction. The second reason is the importance
of EUF to theory combination. Since equality is usually the only common
operator between theories, when theories are combined EUF plays a central
and essential role.

Even though the EUF theory is so important for program verification, the
current interpolation algorithms McMillan [2005]; Fuchs et al. [2009] for EUF
are used as black-boxes, without providing any means for the interpolation-
based application to tune its interpolants. This may lead to bottlenecks in
program verification to the point that a technique becomes impractical.

Research contribution. We contribute by providing the EUF-interpolation
system, the first interpolation framework for EUF that is able to control the
strength of the generated interpolants. The strength control is done via labeling
functions that can have their strength compared a priori. This is particularly
useful for the applications for which the necessary strength of interpolants is
known. As a theoretical study about the size of the interpolants generated by
different EUF labeling functions, we prove that the strongest and the weak-
est labeling functions in the framework are also the ones that generate the
interpolants with the smallest number of equalities. We provide extensive ex-
perimentation in two different settings, experiments with a controlled set of ex-
periments where we interpolate over several complex smt-libbenchmarks, and
experiments with the interpolation-based model checker HiFrog. Our experi-
ments show the viability of the method, and how valuable new interpolation
algorithms are for an interpolation-based application.

The results of our work will appear in the FMCAD 2017 Alt, Asadi, Hyväri-
nen and Sharygina [2017] proceedings and are discussed in Chapter 5.

1.4.4 Controlling LRA Interpolants

The theory of Linear Real Arithmetic is one of the oldest and most impor-
tant first order fragments used for program verification. Almost every real
life system needs reasoning over numbers, and if reasoning over integers is not

11 1.4 Contributions

necessary, the LRA theory provides a very efficient and practical solving frame-
work that enables the verification of programs that would be infeasible with
the theory of Linear Integer Arithmetic.

Despite the success and usability of the LRA theory in contemporary SMT
solvers, the control that a verification application has over LRA interpolation
is still an issue. Different LRA interpolation algorithms have focused on the
simplicity Albarghouthi and McMillan [2013]; Scholl et al. [2014], efficiency Ry-
balchenko and Sofronie-Stokkermans [2007], or a simple proof system McMillan
[2005]; Pudlák [1997], but none of them allow the application to interfere in
the interpolation process in order to obtain interpolants most suitable for ver-
ification tasks.

Research contribution. This thesis contributes by introducing the LRA-
interpolation system, an LRA interpolation framework that is able of not only
producing multiple interpolants for a single refutation proof, but an infinite
amount of them. The infinitely many generated interpolants can be sorted by
strength using a strength factor that is normalized (between 0 and 1) and pro-
vides a very easy way to control interpolants. We show that different strength
factors can be used in different parts of the proof, allowing the interpolation-
based application to fine-tune different parts of the system. Our experiments
show the viability and usability of the LRA-interpolation system in a controlled
setting consisting of smt-libbenchmarks and when integrated with a real life
model checker.

The results of our work will appear in the HVC 2017 Alt, Hyvärinen and
Sharygina [2017] proceedings and are discussed in Chapter 6.

1.4.5 Interpolating OpenSMT2

Interpolants are mostly computed from a proof of unsatisfiability. There-
fore, interpolation procedures require a tight cooperation with SAT and SMT
solvers, and in some cases, among each other. Besides, interpolation procedures
are non-trivial and must be implemented efficiently to ensure good performance
for the interpolation-based application.

Research contribution. We have implemented the interpolation modules of
OpenSMT2, containing all the theoretical contributions listed above.

The implemented propositional interpolation algorithm is LIS, with built-
in support to the labeling functions Ms, P, Mw and Dmin from the literature,
and the labeling functions PS, PSw and PSs presented in this thesis. Our

12 1.4 Contributions

implementation is integrated with the SMT solver and theory interpolation
algorithms which compute partial interpolants for some specific nodes of the
SAT refutation proof.

Our implementation of the EUF-interpolation system introduced in this
work relies on an extra congruence graph data structure built while solving
an EUF problem. It has built-in support to the EUF interpolation algorithms
Itps, Itpw and Itpr, described in Chapter 5.

The LRA-interpolation system is implemented based on the explanation
set derived from the simplex algorithm. No extra data structure is needed,
since the explanation set has to be built for convergence of the SMT solver. It
supports custom strength factors from 0 to 1, and has the built-in options of
using Itps and Itpw.

The results of these implementation efforts together with the experimen-
tation evaluation of the tools FunFrog, eVolCheck and HiFrog have been pub-
lished in Hyvärinen et al. [2016]; Alt et al. [2016]; Hyvärinen et al. [2015].

1.4.6 HiFrog

Interpolants are used in several different ways in symbolic model checking. One
of the successful applications of interpolants is in function summarization. In
this approach, when an assertion (i.e., the safety property of the program) is
proven safe, summaries of the involved functions are computed and stored for
further reuse while proving either a sequence of assertions in a single program,
as in incremental checking, or the same assertion in different versions of the
code, as in upgrade checking. Tools based on this approach exist, for instance
FunFrog and eVolCheck. The issue with these two tools (and other tools based
on bit-blasting) is that they rely on propositional logic to encode C programs.
This process can easily blow up and generate huge formulas, which might make
verification impossible.

Research contribution. To improve efficiency of interpolation-based incre-
mental checking, we have developed HiFrog, a summarization-based bounded
model checker that uses interpolants to represent function summaries. HiFrog
supports the first order theories EUF and LRA, which represent different levels
of abstraction and lead to different performances. HiFrog relies on the inter-
polation module from OpenSMT2 to create tailored interpolants, and extends
this support to the user.

The results of our work on HiFrog have been published in Alt, Asadi, Chock-
ler, Even Mendoza, Fedyukovich, Hyvärinen and Sharygina [2017].

13 1.5 Organization of the thesis

1.5 Organization of the thesis
Chapter 2 describes two interpolation-based model checking algorithms. A brief
explanation of how each technique works and uses interpolants is given, justify-
ing the need for better interpolants. Chapter 3 presents a thorough description
of all the logical concepts need in this thesis. That includes terminology and
concepts related to propositional logic, and the first order theories EUF and
LRA. The following chapters present the novelties of this work, in an order
that follows Section 1.4. Chapter 4 presents our theoretical studies on previous
interpolation algorithms for propositional logic and novel labeling function that
guarantee small interpolants. Chapter 5.1 introduces the Interpolation System
Template (IST), showing how labeling functions and the duality of interpolants
are used to control interpolant strength. Chapter 5 instantiate the IST into the
EUF -Interpolation System, which allows the generation of a multitude of new
interpolants with strength guarantees. An analysis of labeling functions is also
given, showing how to generate interpolants with a small number of equalities.
Chapter 6 presents the LRA-Interpolation System, which is able to generate
infinitely many interpolants with strength guarantees. Chapter 7 describes the
architecture and implementation of the tools developed along this thesis, and
summarizes the experimental results. Finally, Chapter 8 gives final remarks
and concludes this thesis.

14 1.5 Organization of the thesis

Chapter 2

Interpolation-based Model Checking

2.1 Interpolation as Means of Over-Approximation

The first use of Craig interpolants in model checking was the interpolation and
SAT-based model checking algorithm from McMillan [2003]. The basic idea of
the algorithm is to use bounded model checking as a subroutine, and find a
closed safe set of states to prove the safety property or a counterexample that
proves that the safety property is unsafe. This section describes this algorithm
in a high level.

We would first like to clarify the difference between the two meanings that
bounded model checking might have in the context of verification. The most
common and practical use of the term bounded model checking is to charac-
terize model checking algorithms that, given a bound k, unroll program loops
and recursive calls up to k, and verify safety properties with the unrolled code.
The second use is to refer to a similar approach, but related specifically to tran-
sition systems, in the sense that the bound k is used as the number of steps
from the initial states. In this case, a bounded model checking (BMC) problem
consists of a set of initial state, a transition function, a set of error states, and
the bound k. The bounded model checker has then as a goal to determine if
an error state can be reached from some initial state after the application of at
most k steps. In this section we refer to the latter definition of bounded model
checking.

Let S be a transition system representing a program to be verified with
respect to a safety property. Let I be the set of initial states, T the transition
function, E the set of error states, and k an integer. A BMC problem that

15

16 2.2 Function Summarization for Bounded Model Checking

verifies the safety of S up to a bound k can be represented as the formula

BMC(S, k) = I ∧
(∧

0≤i<k
T (si, si+1)

)
∧
(∨
se∈E

se

)
. (2.1)

If BMC(S, k) is satisfiable (SAT), the states represent an assignment for
the variables that is a counterexample for S. On the other hand, if BMC(S, k)

is unsatisfiable (UNSAT), the program is safe up to k and interpolants can
be used to search for an inductive invariant. Suppose BMC(S, k) is UN-
SAT. Then, it can be partitioned such that A1 = I ∧ T (s0, s1) and B1 =(∧

1≤i<k T (si, si+1)
)
∧
(∨

se∈E se
)
, and an interpolant P1 for this partitioning is

computed. The interpolant P1 is an over-approximation of the states that are
reachable from the set of initial states in one transition step. It is also unsatis-
fiable when conjoined with B1, meaning that no assignment satisfying P1 can
reach E in k−1 steps. Let R be an over-approximation of the reachable states,
initialized such that R = I. If P1 → R, R is an inductive invariant and S is safe
for the general unbounded case. Otherwise, we update R such that R = R∨P1,
compute an interpolant P2 for the partitioning A2 = I ∧ T (s0, s1) ∧ T (s1, s2)

and B2 =
(∧

2≤i<k T (si, si+1)
)
∧
(∨

se∈E se
)
, and check if P2 → R to see if R is

an inductive invariant. This process repeats until (i) an inductive invariant is
found; (ii) a counterexample is found; or (iii) no inductive invariant or coun-
terexample is found after the generation of k+ 1 interpolants. If (iii) happens,
k needs to be increased and the process continued.

The work in McMillan [2003] also proves that by increasing k, eventually
either a counterexample or an inductive invariant is found.

2.2 Function Summarization for Bounded Model Check-
ing

In Sery et al. [2012c,b], a set of techniques to make BMC incremental by al-
lowing the handling different assertions and different versions of a software
source code was introduced. The key concept behind this approach is function
summarization, a technique to create and use over-approximation of the func-
tion behavior via Craig Interpolation. Assume that a safety property has been
shown to hold for a BMC unwinding of a given program by showing the corre-
sponding formula unsatisfiable. The constructed interpolants are then stored
in a persistent storage and are available for the use by the model checker on
demand.

17 2.2 Function Summarization for Bounded Model Checking

This technique handles the unwound static single assignment (USSA) ap-
proximation of the program, where loops and recursive function calls are un-
wound up to a fixed limit, and each variable is only assigned at most once.
The benefit of the USSA-approximation is that it allows encoding into a suit-
able first order theory, as well as propositional logic, and can be passed to an
SMT solver supporting the theory, or a SAT solver. The constructed func-
tion summaries can be used in two applications: A1 incremental substitution
while checking the same program with respect to different assertions; and A2
upgrade validation by localized checking of summaries with respect to the old
assertions.

The approach of A1 considers given assertions one at a time. It computes
function summaries with respect to the first assertion (if possible) and attempts
to substitute summaries for the function while checking consecutive assertions.
If a check fails after such substitution (i.e. the solver returns SAT), refinement
is needed: the summaries are discarded and the check is repeated with concrete
function bodies. The approach of A2 , in contrast, considers a new version of
the program, previously proven safe. The idea is to check whether the updated
code is still over-approximated by the old summaries, and if needed, also to
perform refinement.

The next paragraphs discuss the details of the model checking algorithm
that uses function summaries. In particular, Alg. 1 outlines the method for
constructing function summaries (non-empty if the program is SAFE) in SMT-
based BMC.

BMC formula construction. The USSA approximation is encoded into a BMC
formula as follows:

CreateFormula(f̂) , φf̂ ∧
∧

ĝ∈F̂ :nested(f̂ ,ĝ)

CreateFormula(ĝ)

For a function call f̂ ∈ F̂ , the formula is constructed recursively, by con-
joining the subformula φf̂ corresponding to the body of the function with a
separate subformula for every nested function call. The logical formula φf̂ is
constructed from the USSA form of the body of the function f using the theory
T .

Summarization. If the BMC formula is unsatisfiable, i.e., the program is safe,
the algorithm proceeds with interpolation. The function summaries are con-
structed as interpolants from a proof of unsatisfiability of the BMC formula. In
order to generate the interpolant, for each function call f̂ the BMC formula is

18 2.2 Function Summarization for Bounded Model Checking

split into two parts. First, φsubtree
f̂

corresponds to the subformulas representing

the function call f̂ and all the nested functions. Second, φenv
f̂

corresponds to

the context of the call f̂ , i.e., to the rest of the encoded program and possible
erroneous behaviors error.

φsubtree
f̂

,
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ φenv
f̂

, error ∧
∧

ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ

Therefore, for each function call f̂ , the Interpolate method splits the BMC
formula into A ≡ φsubtree

f̂
and B ≡ φenv

f̂
and generates an interpolant If̂ for

(A,B). We refer to If̂ as a summary of function call f̂ .

Algorithm 1 Function summarization in SMT-based BMC

Input: USSA Pν with function calls F̂ and main function fmain
Ouput: Verification result: {SAFE, UNSAFE}, summaries {If̂}
Data: BMC formula φ
1: φ← CreateFormula(f̂main)

2: result, proof ← Solve(φ) . run SAT/SMT-solver
3: if result = SAT then
4: return UNSAFE, ∅
5: end if
6: for each f̂ ∈ F̂ do . extract summaries
7: If̂ ← Interpolate(f̂)
8: end for
9: return SAFE, {If̂}

Various verification techniques implement the idea of function summariza-
tion in different forms McMillan [2006, 2010]; Albarghouthi et al. [2012]. This
thesis uses three tools that implement Craig interpolation-based function sum-
maries as described above. The tools FunFrog, eVolCheck, and HiFrog are used
in model checking experiments with the interpolation techniques presented in
Chapters 4, 5 and 6. Depending on the specific technique using interpolants
as function summaries, the interpolation algorithms that are enabled need to
be restricted. For instance, the tool eVolCheck requires tree interpolation, as
provided in Rollini et al. [2013].

Chapter 3

Technical Background

This chapter describes all the technical background necessary for the under-
standing of the contributions presented in this thesis.

We introduce first propositional logic, the foundation of computer science.
Besides its many related and important topics outside verification, proposi-
tional logic was responsible for the beginning of symbolic model checking, and
much of the success of formal verification is due to the developments in SAT
solvers.

We then move on to introduce two of the most important first order theories
in SMT solving, the quantifier-free fragments of Equalities and Uninterpreted
Functions (EUF) and Linear Real Arithmetic (LRA). These two theories give
different levels of abstraction, and are essential to represent programs. They are
also part of the reason for the success of SMT-based software model checking.

3.1 Propositional Logic Preliminaries

Given a finite set of propositional variables, a literal is a variable p or its nega-
tion ¬p. A clause is a finite set of literals and a formula φ in conjunctive normal
form (CNF) is a set of clauses. We also refer to a clause as the disjunction of
its literals and a CNF formula as the conjunction of its clauses. A variable p
occurs in the clause C, denoted by the pair (p, C), if either p ∈ C or ¬p ∈ C.
The set var(φ) consists of the variables that occur in the clauses of φ. We
assume that double negations are removed, i.e., ¬¬p is rewritten as p. A truth
assignment σ assigns a Boolean value to each variable p. A clause C is satis-
fied if p ∈ C and σ(p) is true, or ¬p ∈ C and σ(p) is false. The propositional
satisfiability problem (SAT) is the problem of determining whether there is a
truth assignment satisfying each clause of a CNF formula φ. The special con-

19

20 3.1 Propositional Logic Preliminaries

stants > and ⊥ denote the empty conjunction and the empty disjunction. The
former is satisfied by all truth assignments and the latter is satisfied by none.
A formula φ implies a formula φ′, denoted φ → φ′, if every truth assignment
satisfying φ satisfies φ′. The size of a propositional formula is the number of
logical connectives it contains. For instance the unsatisfiable CNF formula

φ = (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1) (3.1)

of size 14 consists of 4 variables and 5 clauses. The occurrences of the variable
x4 are (x4,¬x2 ∨ x4) and (x4,¬x2 ∨ ¬x3 ∨ ¬x4).

For two clauses C+, C− such that p ∈ C+, ¬p ∈ C−, and for no other
variable q both q ∈ C− ∪ C+ and ¬q ∈ C− ∪ C+, a resolution step is a triple
C+, C−, (C+ ∪C−) \ {p,¬p}. The first two clauses are called the antecedents,
the latter is the resolvent and p is the pivot of the resolution step. A resolution
refutation R of an unsatisfiable formula φ is a directed acyclic graph where
the nodes are clauses and the edges are directed from the antecedents to the
resolvent. The nodes of a refutation R with no incoming edge are the clauses of
φ, and the rest of the clauses are resolvents derived with a resolution step. The
unique node with no outgoing edges is the empty clause. The source clauses
of a refutation R are the clauses of φ from which there is a path to the empty
clause. Example 1 shows a proof of unsatisfiability for a simple formula in CNF
using subsequent uses of the resolution rule.

Example 1. Let ψ be a propositional CNF consisting of the conjunction of the
following set of clauses: {(x1 ∨ x2), (x1 ∨¬x2), (¬x1)}. The tree below presents
the proof that ψ is unsatisfiable. The leaves are the original clauses from ψ,
and the edges are the application of a resolution rule to infer a new clause.
When the contradiction is reached (⊥) we have a proof of unsatisfiability.

⊥

¬x1x1

(x1 ∨ ¬x2)(x1 ∨ x2)

The labeled interpolation system D’Silva et al. [2010] (LIS) is a framework
that, given propositional formulas A, B, a refutation R of A ∧B and a labeling
function L, computes an interpolant I for A based on R. The refutation
together with the partitioning A,B is called an interpolation instance (R,A,B).

21 3.1 Propositional Logic Preliminaries

The labeling function L assigns a label from the set {a, b, ab} to every variable
occurrence (p, C) in the clauses of the refutation R. A variable is shared if
it occurs both in A and B; otherwise it is local. For all variable occurrences
(p, C) in R, L(p, C) = a if p is local to A and L(p, C) = b if p is local to B. For
occurrences of shared variables in the source clauses the label may be chosen
freely. The label of a variable occurrence in a resolvent C is determined by
the label of the variable in its antecedents. For a variable occurring in both
its antecedents with different labels, the label of the new occurrence is ab, and
in all other cases the label is equivalent to the label in its antecedent or both
antecedents.

An interpolation algorithm based on LIS computes an interpolant with a
dynamic algorithm by annotating each clause of R with a partial interpolant
starting from the source clauses. The partial interpolant of a source clause C
is

I(C) =

{ ∨{l | l ∈ C and L(var(l), C) = b} if C ∈ A, and∧{¬l | l ∈ C and L(var(l), C) = a} if C ∈ B,
(3.2)

The partial interpolant of a resolvent clause C with pivot p and antecedents
C+ and C−, where p ∈ C+ and ¬p ∈ C−, is

I(C) =


I(C+) ∨ I(C−) if L(p, C+) = L(p, C−) = a,
I(C+) ∧ I(C−) if L(p, C+) = L(p, C−) = b, and
(I(C+) ∨ p) ∧ (I(C−) ∨ ¬p) otherwise.

(3.3)
The LIS framework also provides a convenient tool for analyzing whether

the interpolants generated by one interpolation algorithm always imply the
interpolants generated by another algorithm. If we order the three labels so
that b ≤ ab ≤ a, it was shown D’Silva et al. [2010] that given two labeling
functions L and L′ resulting in the interpolants IL and IL′ in LIS and having
the property that L(p, C) ≤ L′(p, C) for all occurrences (p, C), it is true that
IL → IL′ . In this case we say that the interpolation algorithm obtained from
LIS using the labeling L′ is weaker than the interpolation algorithm that uses
the labeling L (stronger).

The interpolation algorithms Ms McMillan [2003] and P Pudlák [1997], con-
sidered pioneers, can be obtained as special cases of LIS by providing a labeling
function returning b and ab, respectively. By using the labels, LIS provides a
lattice that partially orders labeling functions, with Ms being the strongest
labeling function. A labeling function that always returns a is considered dual
to Ms, and is named Mw D’Silva et al. [2010], since it is the weakest labeling
function in LIS.

22 3.1 Propositional Logic Preliminaries

x1 ∨ x2 [⊥]¬x2 ∨ x4 [x2] ¬x2 ∨ ¬x3 ∨ ¬x4 [x2] x1 ∨ x3 [¬x1]

¬x1 [x1]
x1 ∨ ¬x2 ∨ ¬x4 [¬x1 ∧ x2]

x1 ∨ ¬x4
[¬x1 ∧ x2]

¬x4 [(¬x1 ∧ x2) ∨ x1]
¬x2

[((¬x1 ∧ x2) ∨ x1) ∧ x2]

x2 [x1]

⊥
I = [(((¬x1 ∧ x2) ∨ x1) ∧ x2) ∨ x1]

[x1 ∨ x2][⊤] [⊤] [⊤]

[⊤]
[⊤]

[x1 ∨ x2]

[x1 ∨ x2]

[x1 ∨ x2]

[x1 ∨ x2]

I = [x1 ∨ x2]

A = (x1 ∨ x2) B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)Partitioning P1:

L = {(x2,C1):b, (x4,C1):b,
(x2,C2):b, (x3,C2):b, (x4,C2):b,
(x1,C3):b, (x3,C3):b, (x1,C4):b,
(x1,C5):b, (x2,C5):b}

L = {(x2,C1):a, (x4,C1):b,
(x2,C2):a, (x3,C2):b, (x4,C2):b,
(x1,C3):a, (x3,C3):b, (x1,C4):a,
(x1,C5):a, (x2,C5):a}

C1 C2 C3

C4

C5

Mw
Ms

Mw

Ms

Ms

Mw Mw Mw Mw

Mw

Mw

Mw

Mw

Mw

Mw

Ms Ms Ms

Ms

Ms

Ms

Ms

Ms

Ms

Figure 3.1. Different interpolants obtained from the refutation using the par-
titioning P1.

We define here two concepts that will be useful in Chapter 4: the class of
uniform labeling functions, and the internal size of an interpolant.

Definition 1. A labeling function is uniform if for all pairs of clauses C,D ∈ R
containing the variable p, L(p, C) = L(p,D), and no occurrence is labeled
ab. Any interpolation algorithm with uniform labeling function is also called
uniform.

An example of non-uniform labeling function is Dmin, presented in D’Silva
[2010]. Dmin labels occurrences of shared variables by copying its class, is
proven to produce interpolants with the least number of distinct variables.

Definition 2. The internal size IntSize(I) of an interpolant I is the number of
connectives in I excluding the connectives contributed by the partial interpolants
associated with the source clauses.

The following example illustrates the concepts discussed in this section by
showing how LIS can be used to compute interpolants with two different uni-
form algorithms Ms and Mw.

Example 2. Consider the unsatisfiable formula φ = A ∧ B where φ is from
Eq. (3.1) and A = (x1 ∨ x2) and B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧
(x1 ∨ x3) ∧ (¬x1). Fig. 3.1 shows a resolution refutation for φ and the par-
tial interpolants computed by the interpolation algorithms Ms and Mw. Each

23 3.2 Integration of Propositional and Theory Interpolation.

clause in the refutation is associated with a partial interpolant ψ generated by
labeling LMs (denoted by [ψ]Ms) and a partial interpolant ψ′ generated by label-
ing LMw (denoted by [ψ′]Mw). The generated interpolants are ItpMs

= x1 ∨ x2
and ItpMw

= (((¬x1 ∧ x2) ∨ x1) ∧ x2) ∨ x1. Now consider a different par-
titioning φ′ = A′ ∧ B′ for the same formula where the partitions have been
swapped, that is, A′ = B and B′ = A. Using the same refutation, we get
the interpolants Itp ′Ms

= (((x1 ∨ ¬x2) ∧ ¬x1) ∨ ¬x2) ∧ ¬x1 = ¬ItpMw
and

Itp ′Mw
= ¬(x1 ∨ x2) = ¬ItpMs

The internal size of ItpMs
is 0, whereas the

internal size of ItpMw
is 4.

3.2 Integration of Propositional and Theory Interpola-
tion.

Before we introduce the preliminaries for the first order theories studied in this
thesis, we describe how theory interpolants are used in an SMT solver.

An SMT solver takes as input a propositional formula where some atoms are
interpreted over a theory, in our case equalities over uninterpreted functions
and inequalities over rational numbers. If a satisfying truth assignment for
the propositional structure is found, a theory solver is queried to determine
the consistency of its equalities. In case of inconsistency the theory solver
adds a reason-entailing clause to the propositional structure. The process ends
when either a theory-consistent truth assignment is found or the propositional
structure becomes unsatisfiable.

The SMT framework provides a natural integration for the theory and
propositional interpolants. The clauses provided by the theory solver are
annotated with their theory interpolant and are used as partial interpolants
as leaves of the refutation proof. The propositional interpolation algorithm
then proceeds as normal and uses the theory interpolants instead of computing
propositional interpolants for theory clauses. The propositional interpolation
algorithms control the strength of the resulting interpolant by choosing the
partition for the shared variables through labeling functions Alt et al. [2016].
The theory interpolation systems presented in this thesis also use labeling func-
tions to generate interpolants of different strength. If this is the case for the
framework in use, the labeling given by the propositional interpolation algo-
rithm has to be followed by the theory interpolation algorithm to preserve
interpolant soundness.

24 3.3 EUF Preliminaries

3.3 EUF Preliminaries

The theory of equalities and uninterpreted functions extends propositional logic
by adding equality (=) and disequality (6=) to the logical symbols, and allowing
functions and predicates as non-logical symbols. It has the following axioms:

x = x (3.4)

x = y ⇒ y = x (3.5)

(x = y ∧ y = z)⇒ x = z (3.6)

(x1 = y1 ∧ . . . ∧ xn = yn)⇒ f(x1, . . . , xn) = f(y1, . . . , yn) (3.7)

Most EUF solvers rely on the congruence closure algorithm Nelson and
Oppen [1980]; Nieuwenhuis and Oliveras [2005] to decide the satisfiability of a
set of equalities and disequalities. The algorithm, described in Alg. 2, has as
input a finite set Eq of equalities, and the set T of subterm-closed terms over
which Eq is defined. The main idea of the algorithm is to compute equivalence
classes, that is, sets of terms that are equivalent. If in the end of the compu-
tation of the equivalent classes, there are two nodes u and v such that they
belong to the same equivalent class and (u 6= v) is an element of the set of
problem disequalities, the problem is unsatisfiable. If no such pair exists, the
problem is satisfiable. During the execution the algorithm builds an undirected
congruence graph G using the set T as nodes, that represents the equivalence
classes. If two nodes are connected, they are equivalent. We write (x ∼ y) if
there is a path in G connecting x and y.

Theorem 1 (c.f. Nelson and Oppen [1980]; Nieuwenhuis and Oliveras [2005]).
Let S ⊇ Eq be a set containing EUF equalities and disequalities over the terms
T . The set S is satisfiable if and only if the congruence graph G constructed
by CongruenceClosure(T ,Eq) has no path (x ∼ y) such that (x 6= y) ∈ S.

During the creation of G, an edge (x, y) is added only if (x ∼ y) does not
hold, which ensures that G is acyclic. Therefore, for any pair of terms x and
y such that (x ∼ y) holds in G, there is a unique path xy connecting these
terms. Empty paths are represented by xx. Example 3 shows in detail how
Alg. 2 works.

25 3.3 EUF Preliminaries

Algorithm 2 Congruence closure
1: procedure CongruenceClosure(T ,Eq)
2: Initialize E ← ∅ and G ← (T ,E)

3: repeat pick x, y ∈ T such that (x 6∼ y)

4: if (a) (x = y) ∈ Eq or
5: (b) x is f(x1, . . . , xk), y is f(y1, . . . , yk), and
6: (x1 ∼ y1), . . . , (xk ∼ yk) then
7: E ← E ∪ {(x, y)}
8: end if
9: until E does not grow
10: end procedure

Example 3. Let Eq = {x = f(z), y = f(w), z = w}. We have that T =

{x, y, z, w, f(x), f(y), f(z), f(w)} is the set of nodes of the congruence graph,
which in the beginning of the algorithm contains no edges. Fig. 3.2 shows a
graphical representation of the steps of the algorithm. We can pick the pairs
(x, y), (x, z), (x,w), (x, f(x)) and (x, f(y)), but none of the conditions from
the algorithm is satisfied for those pairs. Let us then pick (x, f(z)). Condition
(a) of the algorithm is satisfied, so this pair is added as an edge in the con-
gruence graph (Fig. 3.2b). Let us now pick (y, f(w)). Condition (a) is also
satisfied for this pair, therefore it becomes an edge (Fig. 3.2c). Now the next
and only pair we can pick that changes the graph is (z = w). Condition (a)
is satisfied and it becomes an edge (Fig. 3.2d). This edge enables the use of
pair (f(z), f(w)), which satisfies condition (b), resulting in a new edge. Now
no pair can be picked, and the algorithm terminates (Fig. 3.2e). We can see
that Eq is satisfiable and the algorithm proved that the set {x, f(z), f(w), y} is
one of the equivalence classes. Notice that if (x 6= y) ∈ Eq, it would be unsat-
isfiable, since the algorithm proved that (x = y) is true, which would contradict
an original disequality.

For an arbitrary path π, we use the notation JπK to represent the equality of
the terms that π connects. If, for example, π connects x and y, then JπK := (x =

y). We also extend this notation over sets of paths P so that JP K :=
∧
σ∈P JσK.

An edge may be added to a congruence graph G because of two different
reasons in Alg. 2 at line 7. Edges added because of Condition (a) are called
basic, while edges added because of Condition (b) are called derived. Let e
be a derived edge (f(x1, . . . , xk), f(y1, . . . , yk)). The k parent paths of e are
x1y1, . . . , xkyk.

In order to generate an interpolant, the formula, or in this case, the set

26 3.3 EUF Preliminaries

x

y

z

t

w

r

f(x) f(y)

f(z)f(t)

f(w)

f(r)

(a) Initial state of the algorithm,
with an empty set of edges.

x
f(z)

y
z

w
f(x)

f(y)

f(w)

(b) Introduction of the edge (x, f(z))

x
f(z)

y
f(w)

z

w

f(x)

f(y)

(c) Introduction of the edge (y, f(w))

x
f(z)

y
f(w)

z
w

f(x)

f(y)

(d) Introduction of the edge (z, w)

x

f(z)

y

f(w)

z
w

f(x)

f(y)

(e) Final congruence graph

Figure 3.2. Computation of the congruence graph

27 3.3 EUF Preliminaries

of equalities, must be split into two partitions: A ∪ B. Terms, equalities and
formulas are a-colorable if all their non-logical symbols occur in A, and b-
colorable if all their non-logical symbols occur in B. They are colorable if they
are a or b-colorable, and ab-colorable if both. An edge (x, y) of a congruence
graph has the same color as the equality (x = y). A path in a congruence graph
is colorable if all its edges are colorable, and a congruence graph is colorable if
all its edges are colorable.

While it is possible to construct a non-colorable congruence graph, the
following lemma and its constructive proof in Fuchs et al. [2009] state that we
may assume without loss of generality that congruence graphs are colorable.

Lemma 1 (c.f. Fuchs et al. [2009]). If x and y are colorable terms and if
A,B |= (x = y), then there exist a term set T and a colorable congruence
graph over the equalities contained in A ∪B and T in which (x ∼ y).

Let A and B be two sets of equalities and disequalities. A coloring of
a congruence graph G = (E, T) created by a run of the congruence closure
algorithm over the equalities and terms of A ∪B is a function C : E → {a, b},
that is, C assigns a color a or b to each edge, considering two restrictions: (i)
basic edges e must be colored with a if e ∈ A and with b if e ∈ B; and (ii) if an
edge has color c, both its endpoints must be c-colorable. ab-colorable derived
edges can be colored arbitrarily.

We denote a congruence graph G colored with a function C by GC . A path
is called an a-path if all its edges are colored a, and a b-path if all its edges
are colored b. A factor of a path in GC is a maximal subpath such that all its
edges have the same color. Notice that every path is uniquely represented as a
concatenation of the consecutive factors of opposite colors.

Example 4. Let A := {(v1 = f(y1)), (f(y2) = v2), (y1 = t1), (t2 = y2), (s1 =

f(r1)), (f(r2) = s2), (r1 = u1), (u2 = r2)} and B := {(x1 = v1), (v2 = x2), (t1 =

f(z1)), (f(z2) = t2), (z1 = s1), (r1 = r2), (s2 = z2), (u1 = u2), (x1 6= x2)}.
Fig. 3.3 shows a colored congruence graph GC built while proving the unsatis-
fiability of A and B with Alg. 2. The congruence graph GC demonstrates the
joint unsatisfiability of A and B, since it proves (x1 = x2) and (x1 6= x2) is an
original term. Edges are represented by rectangles, and dotted arrows point to
the parents of derived edges. Black rectangles and circles represent a-colorable
nodes (terms) and a-colored edges, white edges and circles represent b-colorable
nodes and b-colored edges by, and half filled circles represent ab-colorable nodes.
In the first (top) path of GC, we can see that basic edges (original equalities from
A ∪ B) are used to prove (r1 = r2). This fact is used to infer (f(r1) = f(r2)),

28 3.4 LRA Preliminaries

x1 v1 f(y1) f(y2) v2 x2

y1 t1 f(z1) f(z2) t2 y2

z1 s1 f(r1) f(r2) s2 z2

r1 u1 u2 r2

Figure 3.3. Congruence graph GC that proves the unsatisfiability of A ∪B

which is in turn used as a derived edge in the path below, proving (z1 = z2).
The equality (f(z1) = f(z2)) is then inferred and used to prove (y1 = y2) in
the path below. In the last (bottom) path of GC, the derived edge representing
(f(y1) = f(y2)) is created and finally (x1 = x2) is proved.

We discuss interpolant generation from congruence graphs in Chapter 5.

3.4 LRA Preliminaries

This section introduces the quantifier-free theory of Linear Real Arithmetic
and the most common decision procedure for conjunctions of inequalities. We
summarize Kroening and Strichman [2008] and Dutertre and de Moura [2006]
with respect to the basics to understand the theory of LRA and the algorithm
general simplex, used by most SMT solvers to decide satisfiability of LRA
formulas.

Definition 3 (c.f. Kroening and Strichman [2008]). The syntax of a formula
in linear arithmetic is defined by the following rules:

formula : formula ∧ formula | (formula) | atom
atom : sum op sum

sum : term | sum + term

op : = | < | ≤
term : identifier | constant | constant identifier

Even though the syntax may seem restrictive, some transformations can be
done to achieve the common use of arithmetic. For example, subtraction is
not used in Def. 3, but x1 − x2 can be read as x1 + (−1x2). Also the relation

29 3.4 LRA Preliminaries

operators > and ≥ can be replaced by < and ≤ by negating the coefficients.
This definition of linear arithmetic is valid for multiple domains, but in this
thesis we are interested in the domain of rational numbers.

The simplex method is a widely used algorithm that aims at maximizing
an objective function if a set of constraints is satisfiable. Here we interested in
the decision problem of whether a set of constraints is satisfiable, rather than
the maximization problem. For that, we use the general simplex algorithm.
The general simplex algorithm allows two types of constraints as input: (i)
equalities of the form

a1x1 + a2x2 + . . .+ anxn = 0, (3.8)

and (ii) bounds for the variables:

li ≤ xi ≤ ui, (3.9)

where li and ui are real constants.
This representation of an input formula is called the general form. Repre-

senting input in this way does not affect the power of the algorithm, since it
is possible to transform any linear constraint L ./ R with ./∈ {=,≤,≥} into
the form described above in the following manner. Let m be the number of
constraints. For each i-th constraint, where 1 ≤ i ≤ m:
(i) Move all addends in R to the left-hand side obtaining L′ ./ b, where b is a
constant.
(ii) Introduce a new variable si, and add the constraints L′−si = 0 and si ./ b.
If ./ is =, replace si = b by si ≤ b and si ≥ b.

Example 5. Consider the following conjunction of constraints:

x1 + x2 ≥ 3

x1 − 2x2 ≤ 0

The constraints are rewritten into general form:

x1 + x2 − s1 = 0

x1 − 2x2 − s2 = 0

s1 ≥ 3

s2 ≤ 0

The m new variables s1 and s2 are called additional variables. The n vari-
ables that occur in the original constraints are called problem variables.

30 3.4 LRA Preliminaries

It is common to represent the input constraints as a m-by-(n+m) matrix
A, where each row represents a constraint, each column represents a variable,
and the cells are the coefficients. The n problem variables and m additional
variables are represented by the elements of a vector x of length n+m. Using
this notation, the problem is equivalent to deciding whether there is a vector
x such that

Ax = 0 and
m∧
i=1

li ≤ si ≤ ui, (3.10)

where li and ui are constants that bound the additional variables si.

Example 6. Using the variable ordering x1, x2, s1, s2, the matrix representa-
tion for the constraints given in Example 5 is(

1 1 −1 0

1 −2 0 −1

)
(3.11)

Notice that the part of the matrix corresponding to the additional variables
is an m-by-m diagonal matrix, where the coefficients are -1. This is a direct
consequence of applying the general form transformations on the original con-
straints. The matrix A changes throughout the computation of the algorithm,
but the number of columns of this kind is always the same. The set of m vari-
ables corresponding to these columns are called basic variables and denoted by
B. The nonbasic variables are denoted by N .

It is also convenient to use a tableau to manipulate matrix A. This tableau
is matrix A without the diagonal matrix with -1 coefficients. The tableau is an
m-by-n matrix, where the columns represent the nonbasic variables, and each
row now represents the basic variable that has the -1 entry at that row in the
diagonal sub-matrix, since this basic variable depends on the nonbasic ones.

Example 7. Continuing Example 6, the tableau and the bounds so far are:
x1 x2

s1 1 1
s2 1 -2

3 ≤ s1

s2 ≤ 0

The tableau is just a different way to represent matrix A, since Ax = 0 can
be rewritten into ∧

xi∈B

xi =
∑
xj∈N

aijxj

 . (3.12)

The algorithm uses additionally an assignment α : B ∪ N → Q. The
initialization process of the algorithm works as follows: (i) the set of additional

31 3.4 LRA Preliminaries

Algorithm 3 General Simplex
1: procedure GeneralSimplex(Set of constraints S)
2: Transform the linear system into the general form.
3: B ← set of additional variables s1, . . . , sm.
4: Construct the tableau.
5: Decide a fixed order for the variables.
6: while True do
7: if every basic variable satisfies its bounds then
8: return SAT
9: else
10: xi ← first basic variable in the order that does not satisfy its

bounds.
11: xj ← first suitable nonbasic variable in the order.
12: if xj could not be set then
13: return UNSAT
14: end if
15: end if
16: Apply the Pivot operation on xi and xj.
17: end while
18: end procedure

variables is assigned to the set of basic variables B; (ii) the set of problem
variables is assigned to the set of nonbasic variables N ; (iii) α(xi) = 0 and
α(sj) = 0, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Algorithm 3 summarizes all the necessary steps for the decision. The main
loop of the algorithm checks if all the bounds are satisfied. If that is the case,
the problem is satisfiable and the algorithm terminates, and α represents an
assignment satisfying the constraints.

Suppose now that basic variable xi violates one if its bounds (according to
α), and therefore its value needs to be adjusted. From Eq. 3.12, we know that

xi =
∑
xj∈N

aijxj. (3.13)

Assume, without loss of generality, that xi violated its upper bound. We
can reduce the value of xi by decreasing the value of a nonbasic variable xj such
that aij > 0 and α(xj) > lj, or by increasing the value of a nonbasic variable
xj such that aij < 0 and α(xj) < uj. A nonbasic variable that satisfies at least
one of these conditions is called suitable. If no suitable variable exists at this

32 3.4 LRA Preliminaries

point of the algorithm, the set of constraints is unsatisfiable and the algorithm
terminates.

After finding a suitable xj, we have to adjust its value so that xi satisfies
its bounds li and ui. Let θ be this adjustment value:

θ =
ui − α(xi)

aij
. (3.14)

By adjusting xj, xi now satisfies its bounds, but it may be the case that
xj does not satisfy its bounds anymore. Therefore, we need to swap xi and
xj in the tableau. As a result, xi becomes nonbasic and xj becomes basic.
This transformation is called the pivot operation. Notice that an analogous
process can be applied if xi violates its lower bound instead of its upper bound
(substituting ui by li).

Definition 4 (c.f. Kroening and Strichman [2008]). Given two variables xi
and xj, the coefficient aij is called the pivot element. The column of xj is
called the pivot column. The row i is called the pivot row.

The pivot element must be nonzero in order to apply the swapping.
The pivot operation is done by following the steps: (i) solve row i for xj;

and (ii) for all rows l 6= i, eliminate xj by using the equality for xj obtained
from row i.

Example 8. We move on from Example 7. As part of the initialization of
the algorithm, we have that α(xi) = 0 and α(si) = 0 for every problem and
additional variable. Recall the tableau and the bounds:

x1 x2
s1 1 1
s2 1 -2

3 ≤ s1

s2 ≤ 0
The lower bound of s1 is 3, which is violated since α(s1) = 0. The next

nonbasic variable in the ordering is x1, which has a positive coefficient and no
upper bound, therefore it is suitable for pivoting. Variable s1 has to be increased
by 3, which means that also x1 has to be increased by 3 (θ = 3). This changes
the assignment such that α = {x1 7→ 3, x2 7→ 0, s1 7→ 3, s2 7→ 3}. As described
before, step (i) of pivoting is solving s1’s row for x1:

s1 = x1 + x2 ⇔ x1 = s1 − x2. (3.15)

Now we can use this equality to replace x1 in the other row:

s2 = (s1 − x2)− 2x2 ⇔ s2 = s1 − 3x2. (3.16)

33 3.4 LRA Preliminaries

The result of the pivot operation is:
s1 x2

x1 1 -1
s2 1 -3

Now the upper bound of s2 is violated. The next suitable variable for pivoting
is x2. Variable s2 needs to be reduced by 3 to meet its requirements, which means
that x2 needs to be increased by 1 (θ = 1). This changes the assignment such
that α = {x1 7→ 2, x2 7→ 1, s1 7→ 3, s2 7→ 0}.

Solving row 2 for x2:

s2 = s1 − 3x2 ⇔ x2 =
s1 − s2

3
. (3.17)

Substituting in row 1:

x1 = s1 −
s1 − s2

3
⇔ x1 =

2s1 − s2
3

. (3.18)

The result of the pivot operation is:
s1 s2

x1
2
3

1
3

x2
1
3
−1

3

Since all the basic variables satisfy their bounds, the problem is satisfiable
with α containing a satisfying assignment.

Example 9. We now modify the set of constraints from Example 5 such that
it is unsatisfiable. We add the constraint x2 ≤ 0. The new set of constraints
is:

x1 + x2 ≥ 3

x1 − 2x2 ≤ 0

x2 ≤ 0

The constraints are rewritten into the general form:

x1 + x2 − s1 = 0

x1 − 2x2 − s2 = 0

x2 ≤ 0

s1 ≥ 3

s2 ≤ 0

34 3.4 LRA Preliminaries

In this run, the algorithm general simplex starts in the same way as in
Example 8, fixing the assignment for s1. Recall from Example 8 that the as-
signment at this point was α = {x1 7→ 3, x2 7→ 0, s1 7→ 3, s2 7→ 3} and the
tableau was

s1 x2
x1 1 -1
s2 1 -3

The upper bound of s2 was violated. To fix the violation, we chose x2 since
s1 was not suitable. In the current run x2 is also not suitable because of its
upper bound. Therefore the problem is unsatisfiable.

When the general simplex algorithm is used as the LRA solver in an SMT
solver, it needs to create an explanation for the unsatisfiability of the set of
constraints, which works as a proof of unsatisfiability. Let xi be the variable
that violated its bounds and could not be fixed, li its lower bound, and ui its
upper bound. Let N+ = {xj ∈ N | aij > 0} and N− = {xj ∈ N | aij < 0}.
Eq. 3.19 and Eq. 3.20 show how the explanation Γ is constructed, respectively,
as Γl for a lower bound violation and as Γu for an upper bound violation,
according to Dutertre and de Moura [2006].

Γl = {xj ≤ uj | xj ∈ N+} ∪ {xj ≥ lj | xj ∈ N−} ∪ {xi ≥ li}. (3.19)

Γu = {xj ≥ lj | xj ∈ N+} ∪ {xj ≤ uj | xj ∈ N−} ∪ {xi ≤ ui}. (3.20)

In the case of Example 9, we have an upper bound violation for variable
s2, so we use Eq. 3.20. We have that N+ = {s1} and N− = {x2}, so Γ =

{s1 ≥ 3} ∪ {x2 ≤ 0} ∪ {s2 ≤ 0}. Since s1 = x1 + x2 and s2 = x1 − 2x2,
Γ = {x1 + x2 ≥ 3} ∪ {x2 ≤ 0} ∪ {x1 − 2x2 ≤ 0}.

3.4.1 LRA Interpolation

The explanation is a minimal subset of the original constraints, and can be used
to create a proof of unsatisfiability which leads to an interpolant, as follows.

A simple approach to create LRA interpolants is presented in McMillan
[2005]. The idea is to create a tree that represents the proof of unsatisfiabil-
ity of the set of constraints and annotate the nodes with partial interpolants,
similar to what is done in propositional logic. A term in this system is a lin-
ear combination c0 + c1v1 + . . . + cnvn, where v1 . . . vn are distinct variables

35 3.4 LRA Preliminaries

and c0 . . . cn are constants. This proof system accepts constraints of the form
0 ≤ term. Let x be a term c0 +c1v1 + . . .+cnvn and c a constant. The notation
cx is equivalent to the term c ∗ c0 + c ∗ c1v1 + . . . + c ∗ cnvn. The rules of the
proof system from McMillan [2005] are presented in Table 3.1, where x and y
are terms:

Table 3.1. LRA proof system from McMillan [2005].

Hyp Comb

φ
φ ∈ Γ

0 ≤ x 0 ≤ y
0 ≤ x+ y

Taut Mult

0 ≤ c
c is a constant, c ≥ 0

0 ≤ c 0 ≤ x
0 ≤ cx

c is a constant, c > 0

Example 10. Using the rules above, we can create a proof tree for Exam-
ple 9. First we have to transform our atoms into the form accepted by the
proof system:

(1) 0 ≤− 3 + x1 + x2

(2) 0 ≤− x2
(3) 0 ≤− x1 + 2x2

Applying the Hyp rule to all the constraints is straightforward. We can then
apply rule Comb to combine (1) and (3) and infer (4):

0 ≤ −3 + x1 + x2 0 ≤ −x1 + 2x2
(4) 0 ≤ −3 + 3x2

We can apply rule Taut to use the tautology (5) 0 ≤ 3 and then Mult to
multiply (2) by (3) to infer (6) 0 ≤ −3x2. Now we can apply Comb to combine
(4) and (5) to finally infer (7) 0 ≤ −3, a contradiction.

The tree representing this proof is the following:

(7) 0 ≤ −3

(6) 0 ≤ −3x2

(2) 0 ≤ −x2(5) 0 ≤ 3

(4) 0 ≤ −3 + 3x2

(3) 0 ≤ −x1 + 2x2(1) 0 ≤ −3 + x1 + x2

36 3.4 LRA Preliminaries

The main idea in the interpolation procedure presented in McMillan [2005]
is to use the contribution from the constraints from A to the sum that leads to
the contradiction, where the contribution from A is effectively an interpolant.
This contribution fulfills the requirements of an interpolant, because (i) it is
clearly implied by A; (ii) when summed with B leads to the contradiction;
(iii) when all the constraints from A are summed the local symbols from A are
removed, therefore only common symbols from A and B remain.

The interpolation rules from McMillan [2005] are given in Table 3.2, where
x, y, x′ and y′ are terms, and [φ] is the annotated term such that 0 ≤ φ is the
partial interpolant for that node:

Table 3.2. Interpolation system from McMillan [2005].

Hyp-A Hyp-B

0 ≤ x[x]
(0 ≤ x) ∈ A

0 ≤ x[0]
(0 ≤ x) ∈ B

Comb Mult
0 ≤ x[x′] 0 ≤ y[y′]

0 ≤ x+ y[x′ + y′]

0 ≤ c 0 ≤ x[x′]

0 ≤ cx[cx′]

Example 11. Suppose A = {0 ≤ −3 + x1 + x2, 0 ≤ −x1 + 2x2} and B = {0 ≤
−x2}. We have shown in the previous examples that the conjunction of these
sets of constraints is unsatisfiable, and how the rules of the proof system from
McMillan [2005] are used to create a proof of unsatisfiability. Now we use the
extended interpolation rules to generate an interpolant for A.

Using the Hyp-A and Hyp-B rules we can infer the following partial inter-
polants:

(1) 0 ≤ −3 + x1 + x2[−3 + x1 + x2]
(0 ≤ −3 + x1 + x2) ∈ A

(3) 0 ≤ −x1 + 2x2[−x1 + 2x2]
(0 ≤ −x1 + 2x2) ∈ A

(2) 0 ≤ −x2[0]
(0 ≤ −x2) ∈ B

Following the proof from Example 10, we apply the Comb rule on (3) and
(1) to infer (4):

0 ≤ −3 + x1 + x2 0 ≤ −x1 + 2x2
(4) 0 ≤ −3 + 3x2[−3 + 3x2]

37 3.4 LRA Preliminaries

We now apply the Taut rule to use the tautology (5) 0 ≤ 3 and then Mult
rule on (5) and (2) to infer (5) 0 ≤ −3x2[0]. By applying Comb on (4) and
(5) we infer (6) 0 ≤ −3[−3 + 3x2].

We have the following annotated proof of unsatisfiability:

(7) 0 ≤ −3

[− 3 + 3x2]

(6) 0 ≤ −3x2
[0]

(5) 0 ≤ 3(2) 0 ≤ −x2
[0]

(4) 0 ≤ −3 + 3x2
[− 3 + 3x2]

(3) 0 ≤ −x1 + 2x2
[− x1 + 2x2]

(1) 0 ≤ −3 + x1 + x2
[− 3 + x1 + x2]

The final interpolant for A is 0 ≤ −3 + 3x2. Notice that it contains only
symbols that are common between A and B. The proof of unsatisfiability shows
that it is the result of the sum of the constraints from A, which means it is
implied by A. The proof also shows that when conjoined with B, the interpolant
leads to a contradiction.

We use this interpolation system and the duality of interpolants to create
a new interpolation system for LRA, described in Chapter 6.

38 3.4 LRA Preliminaries

Chapter 4

Flexible and Controlled Propositional
Interpolants

In SAT-based model checking, a widely used workflow for obtaining an inter-
polant for a propositional formula A is to compute a proof of unsatisfiability for
the formula φ = A∧B, use a variety of standard techniques for compressing the
proof (see, e.g., Rollini et al. [2013]), construct the interpolant from the com-
pressed proof, and finally simplify the interpolant Cabodi et al. [2015a]. LIS
is a commonly used, flexible framework for computing the interpolant from
a given proof that generalizes several interpolation algorithms parameterized
by a labeling function. Given a labeling function and a proof, LIS uniquely
determines the interpolant. However, the LIS framework allows significant
flexibility in constructing interpolants from a proof through the choice of the
labeling function.

Arguably, the suitability of an interpolant depends ultimately on the appli-
cation Rollini et al. [2013], but there is a wide consensus that small interpolants
lead to better overall performance in model checking Bloem et al. [2014]; Vizel
et al. [2013]; Rollini et al. [2013]. However, generating small interpolants for a
given partitioning is a non-trivial task. This chapter provides a thorough and
rigorous analysis on how labeling functions in the LIS framework affect the size
of propositional interpolants. Based on the analysis, the proof-sensitive inter-
polation algorithm PS is presented. PS produces small interpolants by adapting
itself to the proof of unsatisfiability. We prove under reasonable assumptions
that the resulting interpolant is always smaller than those generated by any
other LIS-based algorithms, including the widely used algorithms Ms (McMil-
lan McMillan [2003]), P (Pudlák Pudlák [1997]), and Mw (dual to Ms D’Silva
et al. [2010]).

39

40 4.1 Labeling Functions for LIS

In some applications it is important to give guarantees on the logical strength
of the interpolants. Since the LIS framework allows us to argue about the re-
sulting interpolants by their logical strength D’Silva et al. [2010], we know that
for a fixed problem A ∧ B and a fixed proof of unsatisfiability, an interpolant
constructed with Ms implies one constructed with P which in turn implies one
constructed with Mw. While PS is designed to control the interpolant size,
we additionally define two variants controlling the interpolant strength: the
strong and the weak proof-sensitive algorithms computing, respectively, inter-
polants that imply the ones constructed by P and that are implied by the ones
constructed by P.

We implemented the new algorithms in OpenSMT2, and confirm the prac-
tical significance of the algorithms with experiments presented in this chapter.

4.1 Labeling Functions for LIS

This section studies the algorithms based on the labeled interpolation system
in (i) an experimental and (ii) an analytic setting. Our main objective is to
provide motivation and a basis for developing and understanding labeling func-
tions that construct interpolants having desirable properties. In particular, we
will concentrate on three syntactic properties of the interpolants: the number
of distinct variables; the number of literal occurrences; and the internal size
of the interpolant. In most of the discussion in this section we will ignore the
two classical optimizations on structural sharing and constraint simplification.
While both are critically important for practicality of interpolation, our exper-
imentation shows that they mostly have similar effect on all the interpolation
algorithms we studied, and therefore they can be considered orthogonally (see
Sec. 4.2.4). The exception is that the non-uniform labeling functions allow a
more efficient optimization compared to the uniform labeling functions through
constraint simplification. We recall from Def. 1 that a uniform labeling func-
tion consistently leads all the occurrences of a variable in a formula with the
same label.

4.1.1 Analysing Labeling Functions Experimentally

We start this section by presenting an experimental work that motivated the
following detailed theoretical analysis on labeling functions. We recall Exam-
ple 2 from Chapter 3.1, where we prove the unsatisfiability of the formula φ:

41 4.1 Labeling Functions for LIS

φ = (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1). (4.1)

Please see Fig. 3.1 for the refutation proof. If we partition the formula φ such
that A = (x1 ∨x2) and B = (¬x2 ∨x4)∧ (¬x2 ∨¬x3 ∨¬x4)∧ (x1 ∨x3)∧ (¬x1),
and interpolate using Ms and Mw, we have that the generated interpolants are,
respectively, ItpMs = x1 ∨ x2 and ItpMw = (((¬x1 ∧ x2) ∨ x1) ∧ x2) ∨ x1. If
we change the partitioning such that A′ = B and B′ = A, and interpolate
over A′ using the same refutation proof, we have that Itp′Ms

= (((x1 ∨ ¬x2) ∧
¬x1) ∨ ¬x2) ∧ ¬x1 and Itp′Mw

= ¬(x1 ∨ x2). It is straightforward to see that
neither Ms or Mw was able to generate small interpolants after a simple change
of partitioning.

Generating small interpolants is not a trivial task. Attempts on it include,
for example, proof compression and interpolant simplification, heavy proce-
dures that may lead to large overheads. Crafting labeling functions from LIS
is a light way to generate interpolants with a specific property, as suggested
by D’Silva et al. [2010] in the interpolation system Dmin. In our research inves-
tigation regarding the problem of interpolants not being effective for program
verification, we experimented with Dmin and the abilities of LIS. Dmin labels
the literals by copying its class (a if it is in a clause from A or b otherwise) and
is proven to generate interpolants with the least number of distinct variables.

Table 4.1 shows results of our preliminary experiments with the tool Fun-
Frog using the interpolation algorithms Ms, P, Mw and Dmin. FunFrog was used
to verify safety properties in C programs that contain a complex function call
tree structure, with assertions on various levels of the tree. Since FunFrog uses
interpolation to create, store and reuse summaries for the program functions,
the choice of interpolation algorithm may impact the number of refinements
used in the process of verifying a certain property, which finally impacts the
overall verification performance. Row Time(s) shows the total verification time
that FunFrog spent to verify all the benchmarks using each labeling function,
where the following row represents how much worse FunFrog was using each
labeling function compared to the best of them (0). The row Avg size repre-
sents the average number of Boolean connectives in the interpolants generated
using each of the labeling functions, where the following row shows how much
larger were the interpolants generated using each labeling function compared
to the one that led to the smallest average (0). Surprisingly, Dmin behaved
poorly and led to the worst verification time in FunFrog.

Based on this preliminary evidence, we conducted a thorough experimen-
tal analysis on the properties of labeling functions Ms, P and Mw. We used

42 4.1 Labeling Functions for LIS

the three labeling functions as the interpolation algorithm in two interpolation-
based applications: (i) FunFrog, an incremental model checker, and (ii) eVolCheck,
an upgrade checker. Both approaches use Craig interpolants to compute func-
tion summaries in the same manner as presented in Chapter 2.2, such that
they are stored and reused. For eVolCheck, only Ms and P can be used, since
Mw does not guarantee soundness of tree interpolants Rollini et al. [2012], a
necessary property for upgrade checking. We used the model checkers to ver-
ify a set of C benchmarks characterized by a non-trivial call tree structure.
These benchmarks contain assertions in different levels of the call-tree, which
makes them particularly suitable for summarization-based verification. Ta-
bles 4.2 and 4.3 show, respectively, the performance results for FunFrog and
eVolCheck, where #Refinements represents the number of function summaries
that had to be discarded and recomputed, Avg|I| is the average number of
Boolean connectives in the interpolants, and Time(s) is the total time spent
to verify all the benchmarks.

From Tables 4.2 and 4.3 we can observe the following. The strength of
the interpolants have an impact on the convergence of the model checker. We
can see that stronger interpolants lead to a smaller number of refinements for
FunFrog, and weaker interpolants lead to a smaller number of refinements for
eVolCheck. The other information we can extract from the experiments is
that interpolants with a small number of Boolean connectives lead to a smaller
verification time, as we can see from both tools. However, it is not clear how
different labeling functions behave with respect to the size of the interpolants
they generate.

The next section presents a theoretical analysis on the properties of labeling
functions and how to derive small interpolants from LIS and refutation proofs
simply by using a different labeling function.

FunFrog
Ms P Mw Dmin

Time (s) 2333 3047 3207 3811
increase % 0 23 27 38

Avg size 48101 79089 86831 119306
increase % 0 39 44 59

Table 4.1. FunFrog experiments results using previous interpolation systems

43 4.1 Labeling Functions for LIS

Table 4.2. Performance results of FunFrog when using various labeling func-
tions.

Ms P Mw

#Refinements 290 298 308
Avg |I| 38886.62 39372.07 72994.08
Time(s) 4568.08 4929.93 6805.81

Table 4.3. Performance results of eVolCheck when using various labeling func-
tions.

Ms P

#Refinements 65 63
Avg |I| 334554.64 377903.11
Time(s) 4322.57 4402.00

4.1.2 Analysing Labeling Functions Theoretically

An interesting special case in LIS-based interpolation algorithms is when the
labeling can be used to reduce the number of distinct variables in the final
interpolant. To make this explicit we define the concepts of a p-pure resolution
step and a p-annihilable interpolation instance.

Definition 5. Given an interpolation instance (R,A,B), a variable p ∈ var(A)∪
var(B) and a labeling function L, a resolution step in R is p-pure if at most one
of the antecedents contain p, or both antecedents C,D contain p but L(p, C) =

L(p,D) = a or L(p, C) = L(p,D) = b. An interpolation instance (R,A,B) is
p-annihilable if there is a non-uniform labeling function L such that L(p, C) = a

if C ∈ A, L(p, C) = b if C ∈ B, and all the resolution steps are p-pure.

The following theorem shows the value of p-annihilable interpolation in-
stances in constructing small interpolants.

Theorem 2. Let (R,A,B) be an interpolation instance, p ∈ var(A)∩ var(B),
and I an interpolant obtained from (R,A,B) by means of a LIS-based algo-
rithm. If p 6∈ var(I), then (R,A,B) is p-annihilable.

Proof. Assume that (R,A,B) is not p-annihilable, p ∈ var(A) ∩ var(B), but
there is a labeling L which results in a LIS-based interpolation algorithm that
constructs an interpolant not containing p. The labeling function cannot have
L(p, C) = b if C ∈ A or L(p, C) = a if C ∈ B because p would appear in

44 4.1 Labeling Functions for LIS

the partial interpolants associated with the sources by Eq. (3.2). No clause
C in R can have L(p, C) = ab since all literals in the refutation need to be
used as a pivot on the path to the empty clause, and having an occurrence
of p labeled ab in an antecedent clause would result in introducing the literal
p to the partial interpolant associated with the resolvent by Eq. (3.3) when
used as a pivot. Every resolution step in the refutation R needs to be p-
pure, since if the antecedents contain occurrences (p, C) and (p,D) such that
L(p, C) 6= L(p,D) either the label of the occurrence of p in the resolvent clause
will be ab, violating the condition that no clause can have L(p, C) = ab above,
or, if p is pivot on the resolution step, the variable is immediately inserted to
the partial interpolant by Eq. (3.3).

While it is relatively easy to artificially construct an interpolation instance
that is p-annihilable, they seem to be rare in practice (see Section 4.2.4). Hence,
while instances that are p-annihilable would result in small interpolants, it has
little practical significance at least in the benchmarks available to us. However,
we have the following practically useful result which shows the benefits of
labeling functions producing p-pure resolution steps in computing interpolants
with low number of connectives.

Theorem 3. Let (R,A,B) be an interpolation instance. Given a labeling func-
tion L such that the resolution steps in R are p-pure for all p ∈ var(A ∧ B),
and a labeling function L′ such that at least one resolution step in R is not
p-pure for some p ∈ var(A ∧B), we have IntSize(ItpL) ≤ IntSize(ItpL′).

Proof. For a given refutation R, the number of partial interpolants will be the
same for any LIS-based interpolation algorithm. By Eq. (3.3) each resolution
step will introduce one connective if both occurrences in the antecedents are
labeled a or b and three connectives otherwise. The latter can only occur if
the labeling algorithm results in a resolution step that is not p-pure for some
p.

Clearly, p-pure steps are guaranteed with uniform labeling functions. There-
fore we have the following corollary:

Corollary 3.1. Uniform labeling functions result in interpolants with smaller
internal size compared to non-uniform labeling functions.

4.1.3 Proof-Sensitive Interpolation

The main result of this chapter is the development of a labeling function that is
uniform, therefore producing small interpolants by Corollary 3.1, and results in

45 4.1 Labeling Functions for LIS

the smallest number of variable occurrences among all uniform labeling func-
tions. This proof-sensitive labeling function works by considering the refutation
R when assigning labels to the occurrences of the shared variables.

Definition 6. Let R be a resolution refutation for A∧B where A and B consist
of the source clauses, fA(p) = |{(p, C) | C ∈ A}| be the number of times the
variable p occurs in A, and fB(p) = |{(p, C) | C ∈ B}| the number the variable
p occurs in B. The proof-sensitive labeling function LPS is defined as

LPS(p, C) =

{
a if fA(p) ≥ fB(p)

b if fA(p) < fB(p).
(4.2)

Note that since LPS is uniform, it is independent of the clause C. Let ShA
be the set of the shared variables occurring at least as often in clauses of A as
in B and ShB the set of shared variables occurring more often in B than in A:

ShA = {p ∈ var(A) ∩ var(B) | fA(p) ≥ fB(p)} and
ShB = {p ∈ var(A) ∩ var(B) | fA(p) < fB(p)} (4.3)

Theorem 4 states the optimality with respect to variable occurrences of the
algorithm PS among uniform labeling functions.

Theorem 4. For a fixed interpolation instance (R,A,B), the interpolation
algorithm PS will introduce the smallest number of variable occurrences in the
partial interpolants associated with the source clauses of R among all uniform
interpolation algorithms.

Proof. The interpolation algorithm PS is a uniform algorithm labeling shared
variables either as a or b. Hence, the shared variables labeled a will appear
in the partial interpolants of the source clauses from B of R, and the shared
variables labeled b will appear in the partial interpolants of the source clauses
from A of R. The sum of the number of variable occurrences in the partial
interpolants associated with the source clauses by PS is

nPS =
∑
v∈ShB

fA(v) +
∑
v∈ShA

fB(v).

We will show that swapping uniformly the label of any of the shared vari-
ables will result in an increase in the number of variable occurrences in the
partial interpolants associated with the source clauses of R compared to nPS.
Let v be a variable in ShA. By (4.2) and (4.3), the label of v in PS will be a.
Switching the label to b results in the size n′ = nPS−fB(v)+fA(v). Since v was

46 4.1 Labeling Functions for LIS

A = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)
B = (x1 ∨ x2)

LPS= {(x 2,C1):a, (x4,C1):a, (x2,C2):a, (x3,C2):a, (x4,C2):a,
 (x1,C3):a, (x3,C3):a, (x1,C4):a, (x1,C5):a, (x2,C5):a}

Sh = {x1, x2}, ShA = {x1, x2}, ShB = {}

x1∨x2 [¬(x1∨x2)]¬x2∨x4 [⊥] ¬x2∨¬x3∨¬x4 [⊥] x1∨x3 [⊥]

¬x1 [⊥]
x1∨¬x2∨¬x4 [⊥]

 x1∨¬x4[¬(x1∨x2)]

¬x4 [¬(x1∨x2)]

 ¬x2[¬(x1∨x2)]

 [¬(x1∨x2)]

⊥
IPS = [¬(x1∨x2)]

x2

A = (x1 ∨ x2)
B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1)

LPS = {(x2,C1):b, (x4,C1):b, (x2,C2):b, (x3,C2):b, (x4,C2):b,
 (x1,C3):b, (x3,C3):b, (x1,C4):b, (x1,C5):b, (x2,C5):b}

Sh = {x1, x2}, ShA = {}, ShB = {x1, x2}

x1∨x2 [x1∨x2]¬x2∨x4 [⊤] ¬x2∨¬x3∨¬x4 [⊤] x1∨x3 [⊤]

¬x1 [⊤]x1∨¬x2∨¬x4 [⊤]

 x1∨¬x4[x1∨x2]

¬x4 [x1∨x2]

 ¬x2[x1∨x2]

[x1∨x2]

⊥
IPS = [x1∨x2]

x2

C1 C2 C3

C4

C5 C1 C2 C3

C4

C5

Figure 4.1. Interpolants obtained by PS.

in ShA we know that fA(v) ≥ fB(v) by (4.3), and therefore −fB(v)+fA(v) ≥ 0

and n′ ≥ nPS. An (almost) symmetrical argument shows that swapping the la-
bel for a variable v ∈ ShB to a results in n′ > nPS. Hence, swapping uniformly
the labeling of PS for any shared variable will result in an interpolant having at
least as many variable occurrences in the leaves. Assuming no simplifications,
the result holds for the final interpolant.

Example 12. Fig. 4.1 shows the interpolants that PS would deliver if applied
to the same refutation R of φ and partitionings A ∧ B and A′ ∧ B′ given in
Example 2. Notice that PS adapts the labeling to the best one depending on the
refutation and partitions, and gives small interpolants for both cases.

From Theorems 2, 3 and 4 we immediately have the following:

Corollary 4.1. For not p-annihilable interpolation instances, for any vari-
able p, the proof-sensitive labeling function will result in interpolants that have
the smallest internal size, the least number of distinct variables compared to
any other labeling function from LIS, since only p-annihilable interpolation in-
stances are capable of variable elimination, and least variable occurrences in
the source partial interpolants.

Because of the way LPS labels the variable occurrences, we cannot before-
hand determine the strength of PS relative to, e.g., the algorithms Ms,P, and
Mw. Although it is often not necessary that interpolants have a particular
strength, in some applications this has an impact on performance or even
soundness Rollini et al. [2013]. To be able to apply the idea in applications
requiring specific interpolant strength, for example tree interpolation, a weak

47 4.2 Experimental Evaluation

and a strong version of the proof-sensitive interpolation algorithm are also in-
troduced, PSw and PSs. The corresponding labeling functions LPSw and LPSs

are defined as

LPSw(p, C) =


a if p is not shared and C ∈ A or p ∈ ShA
b if p is not shared and C ∈ B
ab if p ∈ ShB

(4.4)

LPSs(p, C) =


a if p is not shared and C ∈ A
b if p is not shared and C ∈ B, or p ∈ ShB

ab if p ∈ ShA

(4.5)

Finally, it is fairly straightforward to see based on the definition of the
labeling functions that the strength of the interpolants is partially ordered as
shown in the diagram below.

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms

4.2 Experimental Evaluation

We compared the seven labeling functions for propositional interpolation de-
scribed in this chapter in the context of three different model-checking tasks:
(i) incremental software model checking with function summarization using
FunFrog; (ii) checking software upgrades with function summarization using
eVolCheck; and (iii) pre-image over-approximation for hardware model check-
ing with PdTRAV Cabodi et al. [2006]. The wide range of experiments permits
the study of the general applicability of the new techniques. In experiments
(i) and (ii) the new algorithms are implemented within the verification process
allowing us to evaluate their effect on the full verification run. Experiment (iii)
focuses on the size of the interpolant, treating the application as a black box.
Unlike in the theory presented in Section 4.1, all experiments use both struc-
tural sharing and constraint simplification, since the improvements given by
these practical techniques are important. Experiments (i) and (ii) use a large
set of benchmarks each containing a different call-tree structure and assertions
distributed on different levels of the tree. For (iii), the benchmarks consisted of
a set of 100 interpolation problems constructed by PdTRAV. All experiments
use OpenSMT2 both as the interpolation engine and as the SAT solver.

48 4.2 Experimental Evaluation

Different verification tasks may require different kinds of interpolants. For
example, Rollini et al. [2013] reports that the FunFrog approach works best
with strong interpolants, whereas the eVolCheck techniques rely on weaker
interpolants that have the tree-interpolation property. As shown in Rollini
et al. [2012], only interpolation algorithms stronger than or equisatisfiable to
P are guaranteed to generate sound tree interpolants. The tree interpolation
strength requirement is restricted to this technique, and does not apply to
other similar interpolation problems, such as sequence interpolants. Therefore,
we evaluated only Ms, P and PSs for (ii), and Ms, P, Mw, PS, PSw and PSs
for (i) and (iii). Dmin was evaluated against the other algorithms for (i), but
couldn’t be evaluated for (ii) because it does not preserve the tree interpolation
property. For (iii), Dmin was not evaluated due to its poor performance in (i).

In the experiments (i) and (ii), the overall verification time of the tools and
average size of interpolants were analysed. For (iii) only the size was analysed.
In all the experiments the size of an interpolant is the number of connectives
in its DAG representation.

4.2.1 Interpolants as Function Summaries

FunFrog and eVolCheck are SAT-based model checkers for C implement the
approach presented in Chapter 2.2, using interpolants to represent summaries
of program functions. FunFrog is based on the incremental checking approach,
whereas eVolCheck relies on the upgrade checking technique.

Experiments with FunFrog. The set of benchmarks consists of 23 C programs
with different number of assertions. Each benchmark contains a complex func-
tion call tree with assertions on different levels of the tree. FunFrog verified
the assertions one-by-one incrementally traversing the program call tree. The
main goal of ordering the checks this way is to maximize the reuse of function
summaries and thus to test how the labeling functions affect the overall ver-
ification performance. To illustrate our setting, consider a program with the
chain of nested function calls

main(){f(){g(){h(){}assertg}assertf}assertmain},

where assertF represents an assertion in the body of function F . In a successful
scenario, (a) assertg is detected to hold and a summary Ih for function h

is created; (b) assertf is efficiently verified by exploiting Ih, and Ig is then
built over Ih; and (c) finally assertmain is checked against Ig. In this set of
benchmarks, generating good interpolants for the first assertions can strongly

49 4.2 Experimental Evaluation

 10

 100

 1000

 0 5 10 15 20 25

V
e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

M
P

Ms
PS

PS
PSs

Dmin

Figure 4.2. Overall verification time of FunFrog using different interpolation
algorithms.

impact the chain verification of the subsequent assertions, given its complex
characteristic.

Fig. 4.2 shows FunFrog’s performance with each interpolation algorithm.
Each curve represents an interpolation algorithm, and each point on the curve
represents one benchmark run using the corresponding interpolation algorithm,
with its verification time on the vertical axis. The benchmarks are sorted by
their run time. The PS and PSs curves are mostly lower than those of the other
interpolation algorithms, suggesting they perform better. Table 4.4 shows the
sum of FunFrog verification time for all benchmarks and the average size of
all interpolants generated for all benchmarks for each interpolation algorithm.
We also report the relative time and size increase in percents. Both PS and
PSs are indeed competitive for FunFrog, delivering interpolants smaller than
the other interpolation algorithms. Table 4.5 shows FunFrog verification time
for each benchmark (row) and labeling function, together with the average size
of the interpolants used to prove that benchmark. In each row, the smallest
verification time and interpolant size are highlighted. The labeling functions
PSs and PS have the most wins, 7 and 5 respectively. Notice that in most of
the cases the labeling function that had the smallest size of interpolants had
either the smallest verification time or a verification time close to the smallest.
The latter happened in several benchmarks for PS.

50 4.2 Experimental Evaluation

Table 4.4. Sum of overall verification time and average interpolants size for
FunFrog using the applicable labeling functions.

FunFrog
Ms P Mw PS PSw PSs Dmin

Time (s) 2333 3047 3207 2272 3345 2193 3811
increase % 6 39 46 3 52 0 74

Avg size 48101 79089 86831 43781 95423 40172 119306
increase % 20 97 116 9 137 0 197

Experiments with eVolCheck. The benchmarks consist of the ones used in
the FunFrog experiments and their upgrades. We only experiment with Ms, P

and PSs since eVolCheck requires algorithms at least as strong as P. Fig. 4.3
demonstrates that PSs, represented by the lower curve, outperforms the other
algorithms also for this task. Table 4.6 shows the total time eVolCheck requires
to check the upgraded versions of all benchmarks and average interpolant size
for each of the three interpolation algorithms. Also for upgrade checking, the
interpolation algorithm PSs results in smaller interpolants and lower run times
compared to the other studied interpolation algorithms. Table 4.7 shows de-
tailed information for each benchmark. Each row shows the verification time
for eVolCheck using each of the labeling functions, and the average size of the
interpolants used to prove that benchmark, with the best of each highlighted.
The performance of PSs is even better in this experiment, being the winner in
16 out of 23 benchmarks. Even when PSs does not lead to the best verification
time, it is close to the best.

4.2.2 Over-approximating pre-image for Hardware Model Check-
ing

PdTRAV Cabodi et al. [2006] implements several verification techniques includ-
ing a classical approach of unbounded model checking for hardware designs ?.
Given a design and a property, the approach encodes the existence of a coun-
terexample of a fixed length k into a SAT formula and checks its satisfiability.
If the formula is unsatisfiable, proving that no counterexample of length k ex-
ists, Craig interpolation is used to over-approximate the set of reachable states.
If the interpolation finds a fixpoint, the method terminates reporting safety.
Otherwise, k is incremented and the process is restarted.

51 4.2 Experimental Evaluation

Ta
bl
e
4.
5.

D
et
ai
le
d
in
fo
rm

at
io
n
ab

ou
t
th
e
be

nc
hm

ar
ks

ra
n
w
it
h
Fu

nF
ro
g.

M
s

P
M
w

P
S

P
S
w

P
S
s

D
m
in

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

T
im

e(
s)

S
iz
e

B
1

74
.9

37
97

1
13

9.
3

63
25

4
20

6.
1

18
77

19
70

.8
30

70
7

13
3.
1

62
94

5.
7

71
.5

31
01

6
10

2
53

44
4

B
2

13
8.
5

12
25

76
10

4.
3

44
98

9
10

4.
8

40
81

6
11

7
39

13
2

56
2.
1

54
80

79
86

.8
35

57
8

10
0.
5

46
75

5
B
3

16
.5

99
07

19
.5

95
84

18
.5

85
46

15
.8

67
34

20
.8

15
08

2
14

.1
72

12
16

.8
72

04
B
4

23
.2

66
24

23
.3

65
27

21
.3

44
93

19
.4

32
32

23
.1

48
37

20
.6

44
77

20
.3

38
58

B
5

47
.6

52
12

56
.3

91
02

46
47

97
45

.8
47

38
45

.6
48

12
48

.2
50

93
44

.7
48

15
B
6

11
1.
8

16
53

3
19

3.
4

91
67

8
95

.7
15

74
9

95
.4

14
81

9
74

.7
14

94
3

86
.5

22
31

5
89

.1
15

74
5

B
7

22
3.
1

14
40

65
22

2.
4

17
88

79
24

5.
4

92
29

0
21

0.
5

12
18

26
25

8.
7

95
58

9
19

3.
6

93
15

4
88

3.
8

67
41

42
B
8

10
7.
7

30
21

9
10

4.
5

23
10

8
19

9
11

32
30

10
8.
8

25
69

1
10

8.
8

26
78

8
10

6.
3

25
81

1
10

7.
4

26
57

1
B
9

12
1.
1

62
33

4
80

.1
27

96
5

15
9.
3

10
97

00
94

.6
42

68
5.
62

5
15

2
10

13
64

97
.7

28
57

2
16

0.
4

13
07

82
B
10

14
1.
2

69
82

1
10

5.
5

86
53

6
16

6.
4

56
26

8
10

5.
4

82
69

4.
5

12
8.
5

84
89

7
12

6.
5

56
20

7
10

7.
6

83
71

9
B
11

78
.7

26
97

0
82

.7
30

39
1

13
1

90
56

5
91

.3
43

32
6

17
5.
4

83
77

0
10

7.
6

46
88

0
18

3.
9

82
33

5
B
12

16
9.
1

86
97

8
23

6.
3

23
50

21
16

6.
5

16
09

13
17

2.
5

76
33

5
31

5.
8

34
37

54
21

1.
6

16
07

16
62

6.
3

87
43

05
B
13

97
.9

56
23

0
22

5
10

44
27

38
6.
8

28
29

49
98

.8
39

54
5

11
5.
5

43
16

2
84

.1
40

42
4

18
8.
5

86
78

5.
62

5
B
14

52
.1

16
92

8
48

.7
11

80
5

53
.7

12
54

9
73

.9
49

69
9

26
1.
5

31
25

89
48

.6
11

22
9

49
.2

11
85

1
B
15

58
.2

34
81

5
61

23
06

0
59

.2
29

23
5

56
.1

21
75

6
84

.9
57

36
2

59
.4

29
96

7
64

.6
24

56
7

B
16

74
.9

23
85

2
10

9
10

45
25

71
.9

19
55

4
72

19
63

2
71

.5
19

58
5

74
20

35
0

72
.1

19
65

7
B
17

10
0.
5

54
86

4
11

0
43

68
7

92
.6

43
92

3
93

.4
37

80
4

12
8.
6

13
72

25
11

1.
5

63
36

5
10

4.
9

46
82

3
B
18

14
5.
7

53
49

1
15

1.
8

49
37

3
15

9.
8

60
09

4
15

8.
3

47
65

4
15

5.
6

48
62

0
14

8.
6

48
27

2
14

8.
7

50
84

2
B
19

13
6.
6

91
68

4
45

0.
1

37
04

56
22

7.
7

28
86

37
13

9.
9

80
77

0
14

5
82

78
6

12
7.
7

81
27

4
14

7.
8

81
93

7
B
20

33
.5

76
02

33
.9

68
06

29
.8

60
79

29
.9

60
21

32
.9

78
84

32
.3

63
30

36
.5

11
84

3
B
21

41
.6

96
96

43
.5

10
37

8
56

.8
22

99
6

59
.6

23
95

4
81

.3
39

74
6

40
.1

79
21

40
.9

83
42

B
22

80
.9

13
12

0
82

.4
16

12
5

67
.9

10
79

9
73

.6
14

42
8

89
.5

31
99

8
84

.1
17

38
3

10
2.
1

46
53

0
B
23

11
6.
7

41
73

0
11

7.
2

40
41

0
11

8.
6

39
88

1
11

1.
3

39
80

4
12

3.
8

47
51

1
13

6.
41

43
1

11
8.
5

41
09

6

52 4.2 Experimental Evaluation

 10

 100

 1000

 0 5 10 15 20 25

V
e
ri

c
a
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Benchmarks

P

Ms

PSs

Figure 4.3. Overall verification time of eVolCheck using different interpolation
algorithms.

Table 4.6. Sum of overall verification time and average interpolants size for
eVolCheck using the applicable labeling functions.

eVolCheck
Ms PSs P

Time (s) 4867 4422 5081
increase % 10 0 16

Avg size 246883 196716 259078
increase % 26 0 32

53 4.2 Experimental Evaluation

Table 4.7. Detailed information for the benchmarks run with eVolCheck

M P PSs
Time(s) Size Time(s) Size Time(s) Size

B1 117.3 181954 165.5 319241 104.6 155759
B2 27.2 82183 20.8 41203 20.4 34608
B3 66.4 89123 64.2 85081 61.9 64025
B4 46.2 37877 58.8 66023 41.8 22568
B5 237.3 32822 246.8 48865 236.6 32385
B6 73.1 180422 73.4 155281 70.9 141749
B7 6.6 817 6.0 619 6.3 745
B8 364.8 498117 446.2 682687 365.1 454416
B9 139.5 136516 149.3 192747 112.9 118989
B10 193.2 169636 203.3 156927 169.4 107000
B11 212.0 398903 224.6 298583 216.1 254480
B12 337.1 332379 354.3 307082 347.6 326373
B13 354.5 353376 444.7 525151 345.5 300324
B14 316.3 683982 368.2 842993 278.8 589807
B15 133.3 157633 132.2 163467 138.5 194351
B16 305.6 493254 285.8 237692 247.7 196568
B17 29.5 799 54.0 180849 40.1 29723
B18 225.5 210548 213.1 165406 215.2 167407
B19 20.1 70870 16.3 39637 15.0 32528
B20 52.4 56261 55.8 66972 51.0 65388
B21 1082.2 1148482 998.8 1099093 871.8 846222
B22 198.2 287381 175.7 212919 158.5 194488
B23 126.3 167410 136.7 207696 122.8 155301

54 4.2 Experimental Evaluation

Table 4.8. Average size and increase relative to the winner for interpolants
generated when interpolating over A (top) and B (bottom) in A ∧ B with
PdTRAV.

PdTRAV
Ms P Mw PS PSw PSs

Avg size 683233 724844 753633 683215 722605 685455
increase % 0.003 6 10 0 6 0.3

Avg size 699880 694372 649149 649013 650973 692434
increase % 8 7 0.02 0 0.3 7

Experiments. For this experiment, the benchmarks consist of interpolation
instances generated by PdTRAV. We compare the effect of applying different
interpolation algorithms on the individual steps of the verification procedure.

Table 4.8 (top) shows the average size of the interpolants generated for
all the benchmarks using each interpolation algorithm, and the relative size
compared to the smallest interpolant. Also for these approaches the best results
are obtained from Ms, PS and PSs, with PS being the overall winner. We note
that Ms performs better than Mw likely due to the structure of the interpolation
instances in these benchmarks: the partition B in A∧B is substantially larger
than the partition A. This structure favors algorithms that label many literals
as b, since the partial interpolants associated with the clauses inB will be empty
while the number of partial interpolants associated with the partition A will
be small. To further study this phenomenon we interchanged the partitions,
interpolating this time over B in A ∧ B for the same benchmarks resulting
in problems where the A part is large. Table 4.8 (bottom) shows the average
size of the interpolants generated for these benchmarks and the relative size
difference compared to the winner. Here Mw and PSw perform well, while PS

remains the overall winner.

PdTRAV experiments confirm in addition that PS is very capable in adapt-
ing to the problem, giving best results in both cases while the others work well
in only one or the other.

We conclude that the experimental results are compatible with the analysis
in Sec. 4.1. In the FunFrog and eVolCheck experiments, PSs outperformed the
other interpolation systems with respect to verification time and interpolant
size.

55 4.2 Experimental Evaluation

4.2.3 Strength of PS

Section 4.1 states that we cannot know for sure the strength of the PS algo-
rithm, because it uses both a and b labels. In order to have an idea of what kind
of interpolants ItpPS would deliver with respect to strength, the interpolants
used in approaches i) and ii) were also stored and compared to ItpP .

In such a comparison, four cases may arise:

1. ItpPS → ItpP . Meaning that ItpPS is stronger than ItpP . This case did
not happen for any benchmark.

2. ItpP → ItpPS. Meaning that ItpPS is weaker than ItpP . This case
happened in 35 benchmarks.

3. ItpPS ↔ ItpP . Meaning that ItpPS is as strong as ItpP (and also as
weak as). This case happened in 50 benchmarks.

4. No implication. Nothing can be said about ItpPS’s strength. This case
happened in 219 benchmarks.

We observed that out of 50 proofs from approach i) and 254 proofs from
approach ii), in most of them ItpPS was equivalent or weaker than ItpP . So
even though it was shown in Section 4.1 that we cannot know precisely the
strength of ItpPS, this experimentation gives us evidence that we can expect
ItpPS to be a slightly weaker than ItpP .

4.2.4 Effects of Simplification

It is interesting to note that in our experiments the algorithm PS was not always
the best, and the non-uniform interpolation algorithm PSs sometimes produced
the smallest interpolant, seemingly contradicting Corollary 4.1. A possible
reason for this anomaly could be in the small difference in how constraint
simplification interacts with the interpolant structure. Assume, in Eq. (3.3),
that I(C+) or I(C−) is either constant true or false. As a result in the first
and the second case respectively, the resolvent interpolant size decreases by
one in Eq. (3.3). However in the third case, potentially activated only for
non-uniform algorithms, the simplification if one of the antecedents’ partial
interpolants is false decreases the interpolant size by two, resulting in partial
interpolants with smaller internal size. Therefore, in some cases, the good
simplification behavior of non-uniform algorithms such as PSs seems to result
in slightly smaller interpolants compared to PS. We believe that this is also
the reason why P behaves better than Ms and Mw in some cases.

56 4.2 Experimental Evaluation

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 0 5 10 15 20 25

S
iz

e
T
re
e
 /

 S
iz

e
D
A
G

Benchmarks

Mw
P

Ms
PS

PSw
PSs

Figure 4.4. Relation SizeTree/SizeDAG on FunFrog benchmarks for different
interpolation algorithms

We also observed that in only five of the benchmarks a labeling function led
to interpolants with less distinct variables, the difference between the largest
and the smallest number of distinct variables being never over 3%, suggesting
that p-annihilable interpolation instances are rare. Finally, we measured the
effect of structural sharing. To investigate the effect of structural sharing on
simplifications, we analysed two parameters: the number of connectives in
an interpolant on its pure tree representation (SizeTree), and the number of
connectives in an interpolant on its DAG representation (SizeDAG), which is
the result of the application of structural sharing. Thus, we believe that the
ratio SizeTree/SizeDAG is a good way to measure the amount of simplifications
due to structural sharing.

Fig. 4.4 shows the results of this analysis on FunFrog benchmarks. Each
vertical line represents a benchmark, and each point on this line represents the
ratio SizeTree/SizeDAG of the interpolant generated by each of the interpola-
tion algorithms for the first assertion of that benchmark. The reason why only
the first assertion is considered is that from the second assertion on, summaries
(that is, interpolants) are used instead of the original code, and therefore it is
not guaranteed that the refutations will be the same when different interpola-
tion algorithms are applied.

It is noticeable that the existence of more/less simplifications is not related

57 4.3 Related work

to the interpolation algorithms, since all of them have cases where many/few
simplifications happen. Therefore, there is no difference between any of the
algorithms with respect to structural sharing.

4.3 Related work

This section describes interpolation algorithms related to propositional logic.
For work related to other theories please see Sections 5.1.2, 5.4, and 6.3.

Different aspects of interpolation for propositional logic have been studied
since its introduction in model checking in McMillan [2003]. One of the most
important recent results is D’Silva [2010], where LIS (Labeled Interpolation
Systems) is introduced. LIS is a framework capable of generating multiple
interpolants for a single proof of unsatisfiability. This is done by the appli-
cation of different labeling functions which can also control the strength of
the generated interpolants. Two specific labeling functions from LIS are also
able to generalize the previous interpolation algorithms from Pudlák [1997]
and McMillan [2005]. The authors also present two new labeling functions:
Dmin, a labeling function that generates interpolants with the smallest amount
of distinct variables in the framework, and a labeling function that behaves
as the dual of McMillan [2005]. The Proof-Sensitive interpolation algorithms
described in this chapter are built on top of LIS.

A comparison between the interpolation algorithms from Pudlák [1997],
McMillan [2005] and its dual when used by two different model checkers was
done in Rollini et al. [2013]. The two applications used interpolants to com-
pute function summaries for incremental verification and upgrade checking.
It was shown that for one of the applications a logically stronger interpola-
tion algorithm led to less refinements, whereas for the other application this
was achieved by a logically weaker interpolation algorithm. This led to the
conclusion that the suitability of interpolants depends on the application.

Even though it is hard to say whether an interpolant is good or not based
only on its logical strength, there is a consensus that the size of the interpolant
might have a direct impact on the performance of the interpolation-based appli-
cation. There are different techniques that try to reduce the size of interpolants.

Interpolants can be compacted through applying transformations to the
refutation proof. The work presented in Rollini et al. [2012] applies several
proof compression techniques in order to reduce the size of the interpolants
generated using that proof. The approach works well, as shown in Rollini et al.
[2013], but compressing a proof requires heavy computation, and this might be

58 4.3 Related work

an impractical overhead in many cases.
It is also possible to apply post-interpolation reduction. In Cabodi et al.

[2015a] circuit reduction techniques such as ODC, BDD-based sweeping and
Constant Propagation are used to reduce the size of propositional interpolants.
Also this technique, even though often successful, is computationally expensive
and may create an overhead.

The Proof-Sensitive interpolation algorithms presented in this chapter are
a lightweight alternative to reduce the size of interpolants, since they require
little extra computation and are proved to generate small interpolants.

A significant reduction in the size of the interpolant can be obtained by
considering only CNF-shaped interpolants Vizel et al. [2013]. The main idea of
this technique is to first compute an approximation for the interpolant. Then,
as a second stage, inductive reasoning is applied to transform the interpolant
approximation into a sound interpolant. However, the strength of these in-
terpolants is not as easily controllable as in the LIS interpolants, making the
technique harder to apply in certain model checking approaches.

The extension of LIS presented in Jancik et al. [2014] enables new op-
timization methods for interpolation-based model checkers. By specifying a
truth assignment, the application can make a single SAT query and generate
interpolants for different interpolation problems for the same proof, reducing
the number of SAT queries and increasing its performance. This work has an
orthogonal goal compared to the Proof-Sensitive interpolation algorithms, and
can be used together.

In Rümmer and Subotić [2013] a semantic framework to explore different
interpolants is presented, with the goal of finding suitable interpolants that
ensure fast convergence for model checkers. The semantic framework is based
on the notion of interpolation abstraction. The authors show that by using
interpolation abstraction with interpolant templates they were able to increase
convergence of interpolation-based applications. Even though the goal of most
work related to interpolation is to find more suitable interpolants, this tech-
nique is orthogonal to the Proof-Sensitive interpolation algorithms in the sense
that they use different methods to achieve that goal, which leads to different
results.

A related approach for generalizing interpolants in unbounded model-checking
through abstraction is presented in Cabodi et al. [2006] using incremental SAT
solving. While this direction is orthogonal to ours, we believe that the ideas
presented here and addressing the interpolation back-end would be useful in
connection with the generalization phase.

59 4.4 Summary and Future Work

4.4 Summary and Future Work

Even though reducing the size of propositional interpolants has been studied
using different approaches, a lightweight technique that is able to generate
small interpolants without leading to a considerable computation overhead was
missing.

This chapter presented a theoretical study on properties of labeling func-
tions from the LIS framework. More specifically, the main results are the
following theorems.

(i) If an interpolation instance is not p-annihilable (see Def. 5), which in
our experimentation turns out almost always to be the case, then all LIS
interpolants constructed from the refutation have the same number of
distinct variables (Theorem 2);

(ii) For a given interpolation instance, the interpolants In obtained with any
non-uniform labeling function and Iu obtained with any uniform labeling
function satisfy IntSize(Iu) ≤ IntSize(In). (Theorem 3); and

(iii) Among uniform labeling functions, the proof-sensitive labeling function
(see Def. 6) results in the least number of variable occurrences in the
partial interpolants associated with the source clauses (Theorem 4).

The proof-sensitive interpolant strength can only be given the trivial guar-
antees: it is stronger than IMw and weaker than IMs . At the expense of the
minimality in the sense of Corollary 3.1, we introduce in Eq. (4.4) and Eq. (4.5)
the weak and strong versions of the proof-sensitive labeling functions.

The proof-sensitive interpolation algorithms are part of the LIS framework.
This might be seen as a limitation of the approach, but the LIS framework has
shown to be very general in the sense that it is able to generate a multitude
of interpolants of different strength, and also generalizes previous interpolation
algorithms for propositional logic.

Our experiments in two different settings, incremental software model check-
ing and interpolation problems from hardware verification, show that the proof-
sensitive algorithms consistently lead to smaller interpolants. For the model
checkers this meant performance improvement in the total verification time.

Even though LIS and interpolation for propositional logic have been stud-
ied with respect to strength and size of interpolants, there are still unsolved
questions. For instance, it would be interesting to be able to know what makes
p-annihilable proofs rare, and how to make them common.

60 4.4 Summary and Future Work

4.4.1 Related Publications

The results described in this chapter have been published in the following
papers:

• Hyvärinen, A. E. J., Alt, L. and Sharygina, N. [2015]. Flexible interpola-
tion for efficient model checking, Mathematical and Engineering Methods
in Computer Science - 10th International Doctoral Workshop, MEMICS
2015, Telĉ, Czech Republic, October 23-25, 2015, Revised Selected Pa-
pers, pp. 11–22.

• Alt, L., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2016].
A proof- sensitive approach for small propositional interpolants, in A.
Gurfinkel and S. A. Seshia (eds), Verified Software: Theories, Tools, and
Experiments: 7th International Conference, VSTTE 2015, San Francisco,
CA, USA, July 18- 19, 2015. Revised Selected Papers, Springer Interna-
tional Publishing, Cham, pp. 1–18.

• Rollini, S. F., Alt, L., Fedyukovich, G., Hyvärinen, A. E. J. and Shary-
gina, N. [2013]. Periplo: A framework for producing effective interpolants
in sat- based software verification, in K. McMillan, A. Middeldorp and A.
Voronkov (eds), Logic for Programming, Artificial Intelligence, and Rea-
soning: 19th International Conference, LPAR-19, Stellenbosch, South
Africa, December 14-19, 2013. Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 683–693.

Chapter 5

Controlling EUF Interpolants

5.1 Generalizing Interpolation Systems

Satisfiability modulo theories (SMT) is a modeling approach based on express-
ing a decision problem as a propositional function where some Boolean variables
have a special interpretation as equalities and inequalities over a theory τ . SMT
has an increasingly important role in model checking, and as a result there is
a similar need to construct not only propositional but also theory interpolants
fit for a particular application.

Several existing Craig interpolation algorithms (e.g., D’Silva et al. [2010];
McMillan [2005]; Fuchs et al. [2009]; Gao and Zufferey [2016]) rely on travers-
ing a directed, rooted, acyclic graph that represents a proof of unsatisfiability.
We call such interpolation algorithms dag-like. The nodes of the graph are the
logical concepts used in the proof systems, such as clauses for propositional
logic, and equalities in the theory of equalities. This chapter presents an ap-
proach for controlling the logical strength of theory interpolants for a class of
interpolation algorithms based on constructing partial interpolants on a dag-
like structure. Our idea is based on the observation that a dual interpolant
for A can be obtained by the negation of the over-approximation of B. The
idea is presented as an interpolation system template which is instantiated to
an interpolation algorithm by a theory τ and a labeling function determining
which partial interpolants will be computed as the duals.

We call τ -interpolation system the system resulting from instantiating the
interpolation system template for the theory τ , and (τ, L)-interpolation algo-
rithm the τ -interpolation system with the labeling function L. If the strength
relationship between an interpolant and its dual can be established for the τ -
interpolation system, the function L controls the strength of the interpolants

61

62 5.1 Generalizing Interpolation Systems

produced by the (τ, L)-interpolation algorithm.

5.1.1 Duality-based Interpolation and Strength

Let T be the graph proving the unsatisfiability of A ∧ B. The interpolation
procedure annotates each node n of T with a partial interpolant In such that

(a) A |= In;

(b) B, In |= n;

(c) The non-logical symbols in In are common to A and B.

A dag-like interpolation algorithm consists of two procedures: (i) ItpAL for
computing partial interpolants for leaf nodes; and (ii) ItpAC for computing a
partial interpolant for an inner node as a combination of its children. Fig. 5.1
(bottom left) illustrates this schematically.

The interpolation system template allows constructing several strength-
controlled interpolants through the notion of duality.

Let ItpA be an interpolant for A computed with a given algorithm. Its dual
is the negation of the interpolant ItpB computed for B by the same algorithm.
Since ItpA is an interpolant, it satisfies the following criteria: (i) A→ ItpA; (ii)
ItpA → ¬B; and (iii) var(ItpA) ⊆ var(A) ∩ var(B). Similarly, ItpB satisfies
(iv) B → ItpB; (v) ItpB → ¬A; and (vi) var(ItpB) ⊆ var(A) ∩ var(B). From
(v) we can see that A → ¬ItpB, and from (iv) that ¬ItpB → ¬B. Since (iii)
and (vi) are equal conditions, also ¬ItpB is an interpolant for A.

We generalize this idea to partial interpolants by specifying ItpBL and ItpBC
for computing the dual partial interpolants for leaf and non-leaf nodes respec-
tively. The control over strength of the interpolants then follows if the strength
relation of a partial interpolant and its dual can be established for both ItpAL
and ItpAC :

Theorem template. Let τ be a theory using a proof system that yields a refu-
tation proof that has a dag-like structure. Let ItpAL and ItpBL be, respectively,
an algorithm to compute partial interpolants for leaf nodes and its dual. Let
ItpAC and ItpBC be, respectively, an algorithm to compute partial interpolants for
non-leaf nodes and its dual. If (i) for every leaf node n, ItpAL(n)→ ItpBL (n) and
(ii) for every non-leaf node m, ItpAC(m) → ItpBC(m), then the strength of the
final interpolant can be controlled by a labeling function L : N → {s, w}, such
that a dual interpolant is used if the node’s label is w, and the conventional

63 5.1 Generalizing Interpolation Systems

Algorithm 4 Interpolation System Template
1: procedure ComputeInterpolant(node)
2: if node is a leaf then
3: if L(node) = s then
4: return ItpAL(c)

5: else
6: return ItpBL (c)

7: end if
8: end if
9: Children’s partial interpolants C ← {}
10: for each child c of node do
11: C ← C ∪ ComputeInterpolant(c)
12: end for
13: if L(node) = s then
14: return ItpAC(C)

15: else
16: return ItpBC(C)

17: end if
18: end procedure

interpolant is used if the label is s. In particular, given a strength operator
w such that s w s, s w w and w w w, we also have that a labeling functions
L results in a stronger interpolant than a labeling function L′ (weaker) if for
every node n, L(n) w L′(n).

To instantiate the interpolation system template for a theory τ , conditions
(i) and (ii) above need to be shown for τ and its proof system. In Sec. 5.2 we
establish this relation for EUF, and in Chapter 6 we use the notion of duality
of interpolants to create the LRA-interpolation system.

Algorithm 4 describes on a high level the interpolation system template for
constructing interpolants for a dag-like interpolation algorithms as the partial
interpolant of the root node based on the dual interpolants. The template
can be instantiated to a (τ, L)-interpolation algorithm by specifying the proce-
dures ItpAL , Itp

B
L , Itp

A
C , and ItpBC for the theory τ , and by providing the labeling

function L for the nodes.

Sec. 5.2 describes the EUF-interpolation system, an instance of the inter-
polation system template.

64 5.1 Generalizing Interpolation Systems

5.1.2 Related Work

This section describes parametric interpolation systems that generalize inter-
polation procedures for first order theories. For work related to specific theories
please see Sections 4.3, 5.4, and 6.3.

The work presented in Weissenbacher [2012] presents a parametric inter-
polation system that extends D’Silva et al. [2010] (LIS), supporting hyper-
resolution and providing more flexibility than LIS, in the sense that the strength
of the interpolants it generates can be controlled with more freedom than their
previous work in D’Silva et al. [2010]. Hyper-resolution is a compact infer-
ence system that avoids intermediate clauses, and therefore does not need to
generate the entire refutation proof. Interpolation for hyper-resolution is done
introducing extra interpolation rules that generalize the rules from LIS. When
the presented algorithm is applied to proofs of unsatisfiability that are local, it
is able to generalize certain interpolation systems for first order logic.

The technique given in Kovács et al. [2013] goes even further and general-
izes Weissenbacher [2012] by providing the parametric interpolation framework,
which generalizes inference systems and interpolation systems for arbitrary first
order theories that are based on recursive procedures that generate interpolants
based on refutation proofs. This is achieved by providing their own inference
system that produces RB -derivations and using their specific set of interpo-
lation rules. The parametric interpolation framework is able to handle both
quantified and quantifier-free instances, and is able to compute interpolants of
different shape and strength. Unlike the work from Weissenbacher [2012], the
framework presented in Kovács et al. [2013] can be applied to non-local proofs.

Even though both techniques from Weissenbacher [2012] and Kovács et al.
[2013] do support strength control, the basic difference between them and
the interpolation system template presented in this chapter is the concep-
tual approach and focus. The techniques presented in Weissenbacher [2012]
and Kovács et al. [2013] are theoretical frameworks that have as a goal to
generalize previous Boolean interpolation systems and first order theories that
satisfy locality. The aim of the interpolation system template is to formalize
the approach of duality-based interpolation, allowing the applications to con-
trol the strength of interpolants for a specific theory if certain requirements are
met for the interpolation algorithms of that specific theory.

The technique presented in Totla and Wies [2016] gives a generic framework
to create new interpolation procedures for theories without support by reducing
them to theories that do have interpolation procedures. The main idea is to
formalize an application-specific theory as an extension of a base theory, by

65 5.1 Generalizing Interpolation Systems

adding symbols and universally quantified axioms. The generalization may
lead to interpolation systems that are not complete, and the authors present a
model-theoretic requirement that allows the identification of theories for which
the instantiation is complete.

The interpolation system template and the work from Totla and Wies [2016]
also differ in their main focus. The goal of Totla and Wies [2016] is to allow
interpolation for theories for which direct interpolation algorithms is too hard,
whereas the focus of the interpolation system template is to provide a common
way to control the strength of interpolants.

An important skill in constructing mathematical proofs is to identify the
aspects of the problem that are relevant. When applied to formal reasoning
about the correctness of a software this means ignoring the parts of the system
that play no role in its correctness. One such approach that seems to work
well in automated software verification is to employ the theory of equality
of uninterpreted functions (EUF): in some cases it suffices to assume that a
given function returns the same value when invoked with the same arguments.
This technique is particularly useful, for example, when modeling memory
or arrays Stump et al. [2001], and proving program equivalence Godlin and
Strichman [2013].

Generalizing a formula over the states reachable by a program is a natural
subtask when summarizing the behavior of a procedure Sery et al. [2012a],
or computing a fixed-point of a transition function McMillan [2003]; Bradley
[2011]. These techniques are now popular in software model-checking Beyer and
Keremoglu [2011]; Gurfinkel et al. [2015]; Cimatti and Griggio [2012], resulting
in a growing interest in interpolation over uninterpreted functions.

The EUF theory is also very important for theory combination. The equal-
ity operator is usually the common symbol between different theories, and EUF
plays a central and essential role when theories are combined. Theory combi-
nation is a non-trivial task that attracts a lot of research, since new algorithms
for solving and interpolating are necessary.

The existing interpolation systems for EUF are treated as black-boxes, and
only generate one interpolant out of a refutation proof or give very little room
for flexibility when generating interpolants. This limits the applicability of
interpolants, in the sense that it might affect the performance of interpolation-
based applications in a way that makes it impractical. Therefore it is necessary
to allow the application to choose what kind of interpolants should be gener-
ated, such that optimal performance is achieved.

This chapter presents the EUF-interpolation system, a duality based inter-
polation system that aims at giving more control over the strength and size of

66 5.2 The EUF-Interpolation System

EUF interpolants. We show that the EUF-interpolation system is an instance
(EUF, L) of the interpolation system template presented in Chapter 5.1, based
on the EUF interpolation algorithm presented in McMillan [2005]; Fuchs et al.
[2009]. The EUF-interpolation system is able to generate several different in-
terpolants for the same interpolation problem, and allows strength control by
means of labeling functions. To simplify the analytical discussion we describe
the approach in a notation slightly different from Fuchs et al. [2009] that,
with a specific labeling function L (see Example 13) constructs interpolants
syntactically equivalent to Fuchs et al. [2009]. Once we have presented the
EUF-interpolation system, we proceed to showing the strength result.

Section 5.3 presents experiments involving the EUF-interpolation system
and various labeling functions in a controlled setting and in a model checker.

5.2 The EUF-Interpolation System
An EUF interpolation problem is a 5-Tuple P = (A,B,GC , π, L) where A and
B are two sets of equalities and disequalities such that A ∪ B is unsatisfiable,
GC is a congruence graph with coloring C, π is a path xy in G, such that the
disequality (x 6= y) exists in A∪B, and L is a labeling function. Our goal is to
compute an interpolant for A. The two constant labeling functions Ls(π) := s

and Lw(π) := w will be useful in the analysis. We omit A, B, GC and L

when they are clear from the context, referring to the interpolation problem as
Itp(π).

The interpolation algorithms in McMillan [2005] and Fuchs et al. [2009]
essentially compute an interpolant by collecting the A-factors that prove (x =

y) in GC . To maintain the unsatisfiability with the B part of the problem,
the A factors will then be implied by their B-premise set. A premise set for
a color is the set of equalities of the opposite color justifying the existence of
a parent edge. As stated in Chapter 5.1, it is also possible to compute a dual
interpolant for A as the negation of an interpolant for B. More technically, the
B-premise set B for a path π is

B(π) :=



⋃{B(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is a B-path; and⋃{B(σ)|σ is a parent of an edge of π},
if π is an A-path.

(5.1)

To compute the dual interpolant we will need similarly to collect the B-factors
that prove (x = y) in GC , implied by their A-premise set. The A-premise set

67 5.2 The EUF-Interpolation System

A for a path π is defined as

A(π) :=



⋃{A(σ)|σ is a factor of π}, if π has ≥ 2 factors;
{π}, if π is an A-path; and⋃{A(σ)|σ is a parent of an edge of π},
if π is a B-path.

(5.2)

We extend the notation of A and B over a set S of paths with a ‘syntac-
tic sugar’ A(S) :=

⋃
σ∈S A(σ) and B(S) :=

⋃
σ∈S B(σ). For any two opera-

tors O,O′ whose range contains this domain we define the composite operator
OO′(σ) := O(O′(σ)); and define recursively O0(σ) := σ, and On := O(On−1).

The functions JA and JB give, respectively, the contribution of an individual
A-factor and an individual B-factor to the interpolants.

JA(π) := JB(π)K→ JπK (5.3)

JB(π) := JA(π)K→ JπK (5.4)

Let S be a set of paths. The notation S|c represents the subset of S contain-
ing the paths σ such that L(σ) = c. The number of paths in an interpolation
problem is exponential in the size of the problem, resulting in potential chal-
lenges in defining the labeling function. However this is not an issue since the
interpolation algorithm presented in this section almost always handles only
factors and therefore it suffices to label the linear number of factors. The only
path that is not necessarily a factor that needs to be labeled is the path in
the congruence graph that contradicts an original disequality. The (EUF, L)-
algorithm for computing the EUF interpolant over A for a path xy, Itp(P),
where P = (A,B,GC , π, L), is defined using four sub-procedures IA, I ′A, IB, and
I ′B that are invoked depending on which partition the conflict x 6= y lies and
what color the path has as:

Itp(P) :=


IA(xy) if (x 6= y) ∈ B and L(xy) = s,

I ′A(xy) if (x 6= y) ∈ A and L(xy) = s,

¬IB(xy) if (x 6= y) ∈ A and L(xy) = w, and
¬I ′B(xy) if (x 6= y) ∈ B and L(xy) = w.

(5.5)

The sub-procedures for IA and IB are defined as

IA(π) := (
∧

σ∈A(π)
JA(σ)) ∧ (

∧
σ∈BA(π)|s

IA(σ)) ∧ (
∧

σ∈BA(π)|w

¬I ′B(σ)) (5.6)

68 5.2 The EUF-Interpolation System

IB(π) := (
∧

σ∈B(π)
JB(σ)) ∧ (

∧
σ∈AB(π)|s

IB(σ)) ∧ (
∧

σ∈AB(π)|w

¬I ′A(σ)). (5.7)

For the cases where the conflict x 6= y ∈ A and L(xy) = s and x 6= y ∈ B

and L(xy) = w the path xy = π needs to be decomposed for computing the
partial interpolant as π1θBπ2 or π1θAπ2, where θC is the longest subpath of π
with c-colorable endpoints. Hence, I ′A and I ′B are

I ′A(π) := IA(θB) ∧ (
∧

σ∈B(π1)∪B(π2)
IA(σ)) ∧ (JB(π1) ∪ B(π2)K→ ¬JθBK). (5.8)

I ′B(π) := IB(θA) ∧ (
∧

σ∈A(π1)∪A(π2)
IB(σ)) ∧ (JA(π1) ∪ A(π2)K→ ¬JθAK). (5.9)

Theorem 5. Given two sets of equalities and disequalities A and B such that
A∪B is unsatisfiable, a colored congruence graph GC containing a path π := xy

such that (x 6= y) ∈ A ∪ B, and a labeling function L, Eq. (5.5) computes a
valid interpolant for A using L over GC.

Proof. Depending on whether A or B contains π and on the labeling function,
Eq. (5.5) may use Eq. (5.8), Eq. (5.9), Eq. (5.6) or Eq. (5.7). Therefore we
have to analyze the four equations as separate cases. We show that each case
leads to a sound interpolant, and therefore the theorem holds.

(i) I ′A(π)

Eq. (5.8) behaves as the algorithm presented in Fuchs et al. [2009], and com-
putes interpolants for A when the disequality (x 6= y) is in A.

(ii) ¬I ′B(π)

Eq. (5.9) is the dual of Eq. (5.8), and clearly computes interpolants for B
when the disequality is in B. We can transform it into an interpolant for A by
negating it, as it is done in Eq. (5.5).

(iii) IA(π)

Eq. (5.6) behaves similarly to the interpolation procedure presented in Fuchs
et al. [2009], with the addition of dual interpolants and labeling functions. First
JI computes the individual contribution of the A-factors that prove π in GC

(A(π)) to the interpolant, and then conjoins it with the interpolants of their
B-premise sets (BA(π)).

(iv) ¬IB(π)

Eq. (5.7) is the dual of Eq. (5.6) and computes an interpolant for B, which can
be transformed into an interpolant for A by negating it.

69 5.2 The EUF-Interpolation System

The EUF-interpolation system of Eq. (5.5) is an instance of the interpola-
tion system template. The congruence graph represents the dag-like structure
using factors as dag nodes and a labeling function as presented in Chapter 5.1.
Using Eq. (5.6) and Eq. (5.7), we have that ItpAL := JA and ItpBL := JB, since
leaf nodes represent factors in a congruence graph that have empty premise
sets. Finally we have that ItpAC := IA (or I ′A if A contains the disequality that
the congruence graph contradicts) and ItpBC := IB (or I ′B if B contains the
disequality that the congruence graph contradicts).

Notice that in Eq. 5.5, Eq. 5.6 and Eq. 5.8, if Ls is used as the labeling
function, only IA and I ′A are used. This makes the algorithm collect only A-
factors and their premises for the interpolant, which is the same approach as
in Fuchs et al. [2009]. This shows that the interpolation algorithm from Fuchs
et al. [2009] is an instance of the EUF-interpolation system represented by the
labeling function Ls. The following example shows how Eq. (5.5) can be used
to compute the interpolants from Fuchs et al. [2009] using Ls.

Example 13. Let A := {(x1 = f(x2)), (f(x3) = x4), (x4 = f(x5)), (f(x6) =

x7)} and B := {(x2 = x3), (x5 = x6), (x1 6= x7)}. Fig. 5.1 shows a possi-
ble congruence graph GC that proves the joint unsatisfiability of A and B (by
proving (x1 = x7) such that (x1 6= x7) ∈ A ∪ B) and its tree representation,
with each node annotated by its partial interpolant. Notice that the labeling
function Ls used in GC labels all the factors as s. From Eq. (5.5) we have that
Itp(x1x7) = IA(x1x7), because Ls(x1x7) = s and (x1 6= x7) ∈ B. The call to
IA(x1x7) is represented by the root node in the tree in Fig. 5.1. First we com-
pute A(x1x7) = {x1x7} and BA(x1x7) = {x2x3, x5x6}. Then from Eq. (5.6)
we have that IA(x1x7) = JA(x1x7)∧ IA(x2x3)∧ IA(x5x6). The calls to IA(x2x3)

and IA(x5x6) are represented by the edges from the root to the leaf nodes in the
tree in Fig. 5.1. We then proceed computing A(x2x3) = ∅ and BA(x2x3) = ∅
which lead to IA(x2x3) = >; and A(x5x6) = ∅ and BA(x5x6) = ∅ which lead
to IA(x5x6) = > (the partial interpolants of the leaf nodes). Finally we have
that IA(x1x7) = ((x2 = x3) ∧ (x5 = x6))→ (x1 = x7) is the partial interpolant
of the root node, representing the final interpolant for A.

5.2.1 The Strength

Let P = (A,B,GC , π, Ls) and P ′ = (A,B,GC , π, Lw) be two interpolation
problems differing only in the labeling function. We will show in Theorem 6
that Itp(P) → Itp(P ′), and then in Example 14 that there are cases where
the strength relation is strict in the sense that there are models that satisfy

70 5.2 The EUF-Interpolation System

x1

x6x5x3x2

f(x2) f(x3) x4 f(x5) f(x6) x7

[ItpC(n1, n2, . . . , nk)]

n1 n2

nr

nk. . .

[ItpL(n1)] [ItpL(n2)] [ItpL(nk)]

x2 = x3
[⊤][⊤]

x5 = x6

x1 = x7 [x2 = x3 ∧ x5 = x6 → x1 = x7]

Figure 5.1. Computing partial interpolants for the EUF-interpolation system.
The bottom left dag illustrates the computation in terms of the dag-like inter-
polation algorithm.

Itp(P ′) but do not satisfy Itp(P). Theorem 6 needs Lemma 4 which in turn
is a generalization of Lemma 2. We then show our main result on EUF in
Theorem 7 that the new interpolation procedure for EUF presented here meets
all the requirements described in Chapter 5.1, that is, we provide a way to
compare the strength of interpolants based on the labeling functions used.

Definition 7. Let G be a congruence graph, and σ an arbitrary factor from
G. We say that σ is relevant to ω if either JA(σ) or JB(σ) is called during the
computation of IA(ω) or IB(ω).

Lemma 2. Let GC be a congruence graph with coloring C, and ω a factor from
G. Then IA(ω) ∧ IB(ω)→ JωK.

Proof. Let Rω be the set of factors relevant (Def. 7) to ω in a congruence
graph, Rω

A the subset of Rω containing only A-factors and Rω
B the subset of Rω

containing only B-factors.
From Eq. (5.6) we can clearly see that

Rω
A := A(ω) ∪ A(BA(ω)) ∪ . . . ∪ A((BA)k(ω)) ∪ . . . , (5.10)

and from Eq. (5.7) that

Rω
B := B(ω) ∪ B(AB(ω)) ∪ . . . ∪ B((AB)k(ω)) ∪ (5.11)

Because congruence graphs are acyclic and finite, for any ω there exists an
integer n such that A((BA)n(ω)) = ∅ and B((AB)n(ω)) = ∅, which allows us
to rewrite the previous equations as

Rω
A := A(ω) ∪ A(BA(ω)) ∪ . . . ∪ A((BA)n(ω)), (5.12)

71 5.2 The EUF-Interpolation System

Rω
B := B(ω) ∪ B(AB(ω)) ∪ . . . ∪ B((AB)n(ω)). (5.13)

If ω is an A-factor, we have that A(ω) = {ω} and therefore we can write
B(ω) ≡ BA(ω). Using that we can infer that A((BA)n+1(ω)) = ∅ (by the
definition of n), and we can change Eq. (5.13) to

Rω
B := BA(ω) ∪ (BA)2(ω)) ∪ . . . ∪ (BA)n+1(ω). (5.14)

We follow the proof assuming that ω is an A-factor, using Eq. (5.12) and
Eq. (5.14) to represent Rω

A and Rω
B respectively, and then argue that the proof

is symmetrical for the case where ω is a B-factor.
From Eq. (5.12) and Eq. (5.14), we can then see that

Rω := A(ω) ∪ BA(ω) ∪ A(BA(ω)) ∪ . . . ∪ A((BA)n(ω)) ∪ (BA)n+1(ω)

(5.15)
and therefore

IA(ω) ∧ IB(ω) = (
∧
σ∈Rω

A

JA(σ)) ∧ (
∧
σ∈Rω

B

JB(σ)). (5.16)

When JA and JB are computed over a set that has an empty premise set,
the result is not a conjunction of implications, but a conjunction of equalities.
In this case, JB((BA)n+1(ω)) = J(BA)n+1(ω)K because A((BA)n+1(ω)) = ∅.
Thus, after applying the functions JA and JB we have that

IA(ω) ∧ IB(ω) =
(∧n

i=0

∧
σ∈A((BA)i(ω))(JB(σ)K→ JσK)

)
∧
(∧n

i=0

∧
σ∈(BA)i(ω)(JA(σ)K→ JσK)

)
∧J(BA)n+1(ω)K.

(5.17)

We know that formulas of the form ((a1 → b1)∧. . .∧(an → bn))→ ((
∧
i∈1..n ai)→

(
∧
i∈1..n bi)) are tautologies. Using that and Eq. (5.17), we can then show that

IA(ω) ∧ IB(ω) → (
∧n
i=0(J(BA)i+1(ω)K→ JA((BA)i(ω))K))

∧ (
∧n
i=0(JA((BA)i(ω))K→ J(BA)i(ω)K))

∧J(BA)n+1(ω)K
(5.18)

Because J(BA)n+1(ω)K has no implicant, it has to be true in the formula,
starting a chain that satisfies the antecedents of all the implications in Eq. (5.18),
since (BA)n+1(ω) is the premise set of A((BA)n(ω)), which is the premise set
of (BA)n(ω) and so on. Because of that, we can simplify the formula to

IA(ω) ∧ IB(ω)→
(

n∧
i=0

JA((BA)i(ω))K

)
∧
(
n+1∧
i=0

J(BA)i(ω)K

)
. (5.19)

72 5.2 The EUF-Interpolation System

Therefore, we have that

∀r ∈ Rω.(IA(ω) ∧ IB(ω))→ JrK. (5.20)

For the case where ω is a B-factor, we have that B(ω) = {ω}, which implies
that AB(ω) ≡ A(ω). Using that, we can infer that B((AB)n+1(ω)) = ∅ and we
can also change Eq. (5.12) to

Rω
A := AB(ω) ∪ (AB)2(ω) ∪ . . . ∪ (AB)n(ω). (5.21)

Using Eq. (5.21) and Eq. (5.13) to represent Rω
A and Rω

B respectively, the same
reasoning is followed and we can show that Eq. (5.20) holds also if ω is a
B-factor.

If ω is an A-factor, then A(ω) = {ω} and JA is called for ω in the first
iteration of Eq. (5.6). On the other hand, if ω is a B-factor, then B(ω) = {ω}
and JB is called for ω in the first iteration of Eq. (5.7). This shows that ω is a
relevant factor and by Eq. (5.20) we conclude the proof.

Lemma 3. Let π be an arbitrary path in the congruence graph, and φ(π) the
set of all factors in π. Then IA(π) =

∧
σ∈φ(π) IA(σ) and IB(π) =

∧
σ∈φ(π) IB(σ).

Proof. By the definition of A in Eq. (5.2), we know that A(π) =
⋃
σ∈φ(π)A(σ).

By the definition of IA, we can see that JA is computed individually for each
element of A(π) in IA(π), and IA is called recursively for the B-premise sets
of each individual element of A(π). Therefore,

∧
σ∈φ(π) IA(σ) =

∧
σ∈A(π) IA(σ),

which has the same effect of IA(π). The result is analogous for IB(π).

Lemma 4. Lemma 2 holds when ω is a path containing multiple factors.

Proof. Let ω be a path built by multiple factors and φ(ω) the set containing
these factors. By Lemma 3 we know that IA(ω) =

∧
σ∈φ(ω) IA(σ) and IB(ω) =∧

σ∈φ(ω) IB(σ); by Lemma 2 we know that ∀σ ∈ φ(ω).(IA(σ) ∧ IB(σ)) → JσK.
Because the elements of φ(ω) are factors linking nodes to prove ω, we know
that (

∧
σ∈φ(ω)JσK)→ JωK. Therefore we have that (IA(ω) ∧ IB(ω))→ JωK.

Theorem 6. For fixed A,B,GC , and xy, for the corresponding interpolants
defined in Eq. (5.5) it holds that Itp(A,B,GC , xy, Ls)→ Itp(A,B,GC , xy, Lw).

Proof. We only consider the case where (x 6= y) ∈ B and note that the case
where (x 6= y) ∈ A is completely symmetrical. Let π := xy and ψ = IA(π) ∧
I ′B(π). By Eq. (5.9) we have that

ψ = IB(θA) ∧
∧

σ∈A(π1)∪A(π2)
IB(σ) ∧ (JA(π1) ∪ A(π2)K→ ¬JθAK) ∧ IA(π),

(5.22)

73 5.2 The EUF-Interpolation System

where π is decomposed as π1θAπ2, and θA is the largest subpath of π with
A-colorable endpoints. In order to show that IA(π) → ¬I ′B(π), we prove that
ψ → ⊥, which leads to the theorem. In I ′B(π), π is split into π1θAπ2. From
the definition of θA, we know that π1 and π2 are B-factors. Therefore, using
Lemma 3, we can say that IA(π) = IA(π1) ∧ IA(θA) ∧ IA(π2). Because π1 and
π2 are subpaths of π, we know that A(π1),A(π2) ⊆ A(π). Using Lemma 3, we
have that (IA(π1) ∧ IA(π2)) =

∧
σ∈A(π1) IA(σ) ∧∧σ∈A(π2) IA(σ).

We can now see that both
∧
σ∈A(π1)∪A(π2) IB(σ) and

∧
σ∈A(π1)∪A(π2) IA(σ) are

contained in ψ. From Lemma 2 we know that (i) ψ → JA(π1) ∪ A(π2)K. IA(θA)

and IB(θA) are also contained in ψ, therefore from Lemma 2 we have that (ii)
ψ → JθAK. From (i) and (ii) we see that ψ → (JθAK ∧ ¬JθAK).

Theorem 6 proves one of the requirements of Theorem 5.1.1, which is
that ItpAL → ItpBL , that is, the interpolation algorithm that generates con-
ventional interpolants implies the interpolation algorithm that generates dual
interpolants. As described earlier in this section, these two algorithms are
instances of the EUF-interpolation system when using, respectively, labeling
functions Ls and Lw.

To show that the implication is not trivial in general, we show by example
that three different labeling functions being applied to the congruence graph
from Example 4 result in three interpolants which do not share models pairwise.

Example 14. Consider again the sets A and B and the congruence graph GC

from Example 4 and Fig. 3.3. Let Lc a custom labeling function mapping the
paths to labels as {x1x2 : s, x1v1 : s, v1v2 : s, v2x2 : s, y1t1 : w, t1t2 : w, t2y2 :

w, z1s1 : w, s1s2 : w, s2z2 : w, r1u1 : w, u1u2 : w, u2r2 : w}. We recall that
the labeling function only needs to be defined on the factors and the path that
contradicts the original disequality in A ∪ B, in this case x1x2. The labels are
shown over curves representing which path is being labeled. The custom labeling
function Lc represents the intent of generating stronger partial interpolants
closer to (x1 = x2), and weaker partial interpolants in the inner explanations.
Let Itps and Itpw be, respectively, the interpolants generated by Eq. (5.5) using
Ls and Lw. The computed interpolants are Itps = ((t1 = t2) → (v1 = v2)) ∧
((u1 = u2) → (s1 = s2)) and Itpw = ¬((u1 = u2) ∧ ((s1 = s2) → (t1 =

t2)) ∧ ¬(v1 = v2)).
To show how the EUF-interpolation system uses the duality of interpolants,

Fig. 5.2 shows the tree of factors that represent the congruence graph used in
this example, labeled by Lc. Notice that at every node, the label controls if an
interpolant for A or B (dual) should be derived for that node. Let Itpc be the
interpolant generated using Lc. Because the disequality (x1 6= x2) is in B and

74 5.2 The EUF-Interpolation System

v1=v2

s1=s2

t1=t2

u1=u2

S

W

W

W

Figure 5.2. Tree of factors that represents the congruence graph from Exam-
ple 14.

the root node, that represents the equality (v1 = v2), has label s, we have that
Itpc = IA(v1v2). The function IA, at this point, computes JI(v1v2) and moves
to the dual interpolation algorithm for the node that represents (t1 = t2), since
its label is w, by computing ¬I ′B(t1t2). The labels of the following nodes are also
w, so the dual interpolation algorithm is used again. Therefore, we have that
Itpc = ((t1 = t2)→ (v1 = v2))∧¬(((s1 = s2)→ (t1 = t2))∧ (u1 = u2)∧¬(t1 =

t2)).
We also have that Itps → Itpc → Itpw, and none of them is equivalent to

another.

Finally our main result is presented providing a way to partially order
interpolants into a lattice based on their strength only by looking at the labeling
function used. As a result it follows that the constant labeling functions Ls
and Lw give, respectively, the strongest and the weakest interpolants within
this framework.

Theorem 7. Let w be a label strength operator such that s w s, w w w

and s w w. Let P = (A,B,GC , xy, L) and P ′ = (A,B,GC , xy, L′) be two
interpolation problems where L and L′ are two labeling functions such that
L(σ) w L′(σ) for all the factors σ of GC. Then Itp(P)→ Itp(P ′).

Proof. If (x 6= y) ∈ B, we can either use IA or ¬IB to create an interpolant for
A. On the other hand, if (x 6= y) ∈ A, we can use either I ′A or ¬IB. Since only

75 5.2 The EUF-Interpolation System

Eq. (5.6) and Eq. (5.7) use labeling functions, we analyze only those equations
in this proof.

From Eq (5.6) we can see that when a factor σ has label a a weakening
step is applied, using ¬I ′B(σ) instead of IA(σ). Let Itp be the interpolant
generated without weakening, and Itp ′ the interpolant generated having applied
the weakening step. We know that IA(σ) ⊆ Itp and ¬I ′B(σ) ⊆ Itp ′. From
Theorem 6 we know that IA(σ)→ ¬I ′B(σ), therefore we have that Itp → Itp ′.

Following the same reasoning, from Eq. (5.7) we can see that when a factor
σ has label b a strengthening step is applied, using ¬I ′A(σ) instead of IB(σ). Let
Itp be the interpolant generated without strengthening, and Itp ′ the interpolant
generated having applied this strengthening step. We know that ¬IB(σ) ⊆
Itp and ¬¬I ′A(σ) ⊆ Itp ′. From Theorem 6 we have that I ′A(σ) → ¬IB(σ).
Therefore we have that Itp ′ → Itp.

Theorem 7 shows that by using labeling functions s and w and Theorem 6,
the second and final requirement of Theorem 5.1.1 is met, and therefore the
strength of EUF interpolants can be controlled by the labeling functions.

5.2.2 Labeling Functions

The EUF-interpolation system presented above introduces a way of computing
interpolants of different strength by labeling the factors of a congruence graph
as s or w, depending on the required strength. Each labeling function leads
to a potential new interpolant, and creating meaningful labeling functions is a
very hard task on its own. In this paper we restrict ourselves to the study of
the two extreme labeling functions with respect to strength, Ls and Lw, and
prove the following important result related to the size of interpolants.

Theorem 8. Let P = (A,B,GC , π, L). If π ∈ B, L = Ls leads to the inter-
polant Itp(P) that contains the smallest number of equalities, and if π ∈ A,
L = Lw leads to the interpolant Itp(P) that contains the smallest number of
equalities.

Proof. Consider the labeling function Ls and the computation of IA(π). The
usage of this labeling function makes the formula be entirely computed by IA,
never using IB. Now let IA(δ) be some arbitrary subcomputation of IA(π).
First,

∧
σ∈A(δ) JA(σ) is computed. From Eq. 5.3 we know that this formula

contains the equality JσAK for every σA ∈ A(δ) and the equality JσBK for every
σB ∈ BA(δ). Suppose then that a factor γ from BA(δ) has label w, which
results in the computation of ¬I ′B(γ). We know that γ is a B-factor because

76 5.3 Experimental Evaluation

it came from BA(δ), therefore (i) θA = γ; and (ii) B(γ) = {γ}. From (i)
we have that I ′B(γ) computes IB(γ), and from (ii) we have that B(γ) = {γ}
and JB(γ) is then computed. This reintroduces JγK in the interpolant (as the
implicated part of JB(γ)), since IA(δ) already introduced it in the implicant
part of some implication in

∧
σ∈A(δ) JA(σ). Notice that if γ had label s this

equality would not be reintroduced. The reasoning is symmetrical for the case
where Lw is used for the computation of IB. Therefore we have that IA(π) and
IB(π) contain exactly the same equalities, with the difference being the side of
the implication (implicant or implicated) that an equality appears in (because
of Eq. 5.3 and Eq. 5.4). We can also see that any other labeling function L

will introduce at least one equality in the interpolant more than once (when it
changes from IA to ¬I ′B or from IB to ¬I ′A).

If π ∈ B, an interpolant can be computed by either IA(π) or ¬I ′B(π). The
interpolant IA(π) has less equalities because it does not introduce the conflict
in the interpolant, as ¬I ′B(π) does with the term (JA(π1) ∪ A(π2)K→ ¬JθAK).
Therefore, Ls leads to the interpolant with the least number of equalities.

If π ∈ A, an interpolant can be computed by either ¬IB(π) or I ′A(π). Sym-
metrically, the interpolant ¬IB(π) has less equalities because it does not intro-
duce the conflict in the interpolant, as I ′A(π) does with the term (JB(π1) ∪ B(π2)K→
¬JθBK). Therefore, Lw leads to the interpolant with the least number of equal-
ities.

5.3 Experimental Evaluation

We implemented and integrated the system into the existing propositional in-
terpolation implementation in the OpenSMT2 solver. We report experiments
in two different settings in the implementation: (i) interpolating over un-
satisfiable QF_UF benchmarks from smt-lib; and (ii) running the approach
integrated in HiFrog, an interpolation-based incremental model checker for
C. The benchmarks and the software are available at verify.inf.usi.ch/
euf-interpolation. Before describing the experiments we give a concise ex-
planation on how EUF and propositional interpolation are integrated.

5.3.1 Interpolation over smt-libbenchmarks

The motivation for this experiment is to stress-test the implementation with
respect to generating interpolants of different strength and size. The chosen
benchmarks lead to complex congruence graphs, and therefore the interpolation

verify.inf.usi.ch/euf-interpolation
verify.inf.usi.ch/euf-interpolation

77 5.3 Experimental Evaluation

problems are non-trivial. Following Fuchs et al. [2009]; Cimatti et al. [2008],
we randomly split the assertions in each benchmark to partitions A and B.
The set consists of 106 QF_UF instances resulting in total over two and a half
million EUF interpolants.

Logical strength. The theory interpolation algorithms use three labeling
functions Ls, Lw (see Chapter. 5), and Lr, a labeling function that labels all
components randomly as either s or w. The algorithms are called, respectively,
Itps, Itpw, and Itpr. We use the proof-sensitive interpolation algorithm Alt
et al. [2016] in the propositional structure. This results in three final inter-
polants Is, Iw and Ir for each benchmark.

We computed the strength relationship for each theory partial interpolant
as well as the final SMT interpolants. Even though the EUF interpolants are
often simple, in 71% of them it was possible to generate at least two interpolants
of different strength, and 5.73% resulted in all three having different strength.

After solving and interpolating, we ran extra experiments to check the
strength relations of the final interpolants Is, Iw and Ir. Since the final inter-
polants are much more complex, of the 106 benchmarks, 55 ran out of memory
while computing the strength relations. For the remaining 51, all the three
final interpolants were pairwise inequivalent, confirming that the framework is
able to generate interpolants of different strength.

Interpolant size. Since the propositional and EUF interpolation algorithms
are to a large degree independent, it is natural to ask what combination of
the algorithms is most efficient. This experiment studies the question using
the interpolant size as a measure of efficiency. We use several propositional
interpolation algorithms from the literature to study the combinations, all in-
stances of the labeled interpolation system D’Silva et al. [2010]; Alt et al. [2016]
supported by OpenSMT2. Fig. 5.3 shows the algorithms ordered with respect
to the logical strength of the interpolants they compute, which resulted from
the theoretical analysis presented in Chapter 4. The algorithms Ms,P, and Mw

use a fixed labeling for the shared variables whereas the algorithms PS,PSs,
and PSw use the proof structure to optimize the labeling. The six proposi-
tional and three EUF interpolation algorithms result in 18 combinations. We
measure the sizes of the final interpolants both in (i) the number of Boolean
connectives (Fig. 5.4); and (ii) the number of EUF equalities (Fig. 5.5). Ex-
cluding the instances where we encountered memory outs we report the results
on 82 of the original 106 benchmarks. For each benchmark, we computed the

78 5.3 Experimental Evaluation

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms

Figure 5.3. The relative strength of the propositional interpolation algo-
rithms Alt et al. [2016]

 0

 1

 2

 3

 4

 5

M
+
Itp

M
+
Itp

M
+
Itp

P+
Itp

P+
Itp

P+
Itp

M
+
Itp

M
+
Itp

M
+
Itp

PS+
Itp

PS+
Itp

PS+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

Figure 5.4. Comparison between interpolation combinations with respect to
the number of Boolean connectives in the final interpolant

smallest number of Boolean connectives or equalities in the interpolant among
all the configurations (best) and the ratio combination/best for each possible
combination, which shows us how much worse each combination did compared
to the best combination for that benchmark. Notice that the ratio of the best
combination for a benchmark is one and therefore no ratio can be less than
one. The bars present the average and the crosses the median of those ratios
among all the benchmarks for each combination.

In Fig. 5.4 the combination Mw + Itpw gives the smallest number of Boolean
connectives, and Ms + Itps appears in the second place. The median of Mw

+ Itpw is 1, which means that it was responsible for the smallest number of
connectives in at least half of the benchmarks, and its average of 1.2 shows
that even when this was not the case, the combination was still close to the
optimum. On the losing side, we make two observations. The EUF interpola-

79 5.3 Experimental Evaluation

tion algorithm Itpr leads to a larger number of Boolean connectives, and the
propositional interpolation algorithm P leads to larger interpolants.

Interestingly the combinations PS + Itps and PSs + Itps have low medians
and average, which are good, but not the best. This seemingly contradicts our
earlier observation in Alt et al. [2016] that PS and PSs consistently lead to small
number of connectives in the interpolant. Based on the experiments the likely
reason is the soundness restriction in integration (see Sec. 3.2). This restric-
tion occurs when using a propositional and a theory interpolation system that
use labeling functions to control strength. If the propositional interpolation
algorithm labels a certain term aiming at a specific strength, the theory inter-
polation algorithm has to follow this label (see Sec. 3.2). If the strength aimed
by the propositional interpolation algorithm is the opposite of the theory inter-
polation algorithm, redundant equalities are added by the EUF-interpolation
system. We can see our hypothesis in the experiments, since the results get
gradually worse when the propositional and the EUF interpolation algorithms
disagree more on the labeling (strength), best being PSs + Itps and the worst
PSw + Itps.

We can observe the same trend in Fig. 5.5 in the number of EUF equalities.
A strong propositional interpolation algorithm (Ms, PSs) combined with Itps
leads to smaller interpolants compared to their combination with Itpw; and
a weak propositional interpolation algorithm (Mw, PSw) combined with Itpw
leads to smaller interpolants compared to their combination with Itps. Also
notice that PS, a propositional interpolation algorithm that tends to balance
the distribution of variables Alt et al. [2016], leads to very similar results when
combined with Itps and Itpw.

5.3.2 Interpolation-Based Incremental Verification

We integrated the EUF-interpolation system with the incremental model checker
HiFrog as part of OpenSMT2, and used it to verify a set of C benchmarks from
SV-COMP (https://sv-comp.sosy-lab.org/) and other sources.

We use both purely propositional logic and QF_UF to model the programs.
Table 5.1 shows the verification time for HiFrog with propositional logic in the
column Bool Ver. Time; and QF_UF in the columns marked EUF Verification
Time.

Unlike the bit-precise propositional model, the QF_UF model provides an
over-approximation of the program behavior. If HiFrog reports that a safety
property is true under QF_UF it is also true for the propositional model. How-
ever, if a property is reported false, it may indicate either a real or a spurious

https://sv-comp.sosy-lab.org/

80 5.3 Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

M
+
Itp

M
+
Itp

M
+
Itp

P+
Itp

P+
Itp

P+
Itp

M
+
Itp

M
+
Itp

M
+
Itp

PS+
Itp

PS+
Itp

PS+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

PS
+
Itp

Figure 5.5. Comparison between interpolation combinations with respect to
the number of equalities in the final interpolant

counterexample introduced by the EUF abstraction. In case of false proper-
ties the model checker can for instance consult the propositional encoding to
get the correct result. We report run times for three variations of the model
checker. Column EUF only reports the time used only by the EUF check. Col-
umn +Spurious Overhead reports the time when HiFrog is allowed to query
the spuriousness of the counter-example from an oracle and only needs to con-
sult the propositional encoding if the answer is yes. Column +Full Overhead
reports the time when HiFrog needs to resort to the propositional encoding
always in case of a failure to verify. Notably the use of EUF as an abstraction
technique usually speeds up the solving even in the case of the full overhead.

We also report the effect of interpolation algorithm strength to the number
of required refinements for the four combinations Ms + Itps, Ms + Itpw, Mw +

Itps and Mw + Itpw in the last four columns. We note that the number of
summary refinements varies sometimes considerably over the combinations,
demonstrating the advantage of the flexibility our framework provides for the
EUF-interpolation. Table 5.2 shows the comparison between combinations
of interpolation algorithms with respect to the overall verification time spent
by HiFrog. We can see that no specific combination is the overall winner,
and that the EUF-interpolation system is necessary to achieve general optimal
performance.

81 5.3 Experimental Evaluation

Ta
bl
e
5.
1.

V
er
ifi
ca
ti
on

re
su
lt
s
of

a
se
t
of

C
be

nc
hm

ar
ks
.

#
A
sr
t

E
U
F
R
es
u
lt
s

B
oo

l
V
er
.

T
im

e
(s
)

E
U
F
V
er
ifi
ca
ti
on

T
im

e
(s
)

S
u
m
m
ar
y
R
efi

n
em

en
ts

C
or
re
ct

S
A
T

S
p
u
ri
ou

s
S
A
T

E
U
F

O
n
ly

+
S
p
u
ri
ou

s
O
ve
rh
ea
d

+
Fu

ll
O
ve
rh
ea
d

M
s
+

It
p
s

M
s
+

It
p
w

M
w
+

It
p
s

M
w
+

It
p
w

fl
op

py
1

18
15

3
3

69
.5
98

8.
29
6

34
.7
39

34
.7
39

28
67
2

27
64
8

24
32
0

32
25
6

fl
op

py
2

21
18

3
3

19
2.
07
9

46
.6
5

12
2.
54
4

12
2.
54
4

37
12
0

41
21
6

37
63
2

40
70
4

kb
fi
lt
r1

10
10

0
0

4.
12
3

1.
30
4

1.
30
4

1.
30
4

48
64

48
64

48
64

48
64

d
is
kp

er
f1

14
11

3
3

19
3.
69
5

29
.7
31

67
.7
8

67
.7
8

45
56
8

44
54
4

47
10
4

48
38
4

fl
op

py
3

19
16

4
3

76
.2
12

9.
58
3

36
.4
21

43
.7
37

28
92
8

34
30
4

26
62
4

29
95
2

kb
fi
lt
r2

13
13

0
0

10
.2
3

3.
10
7

3.
10
7

3.
10
7

48
64

48
64

48
64

48
64

fl
op

py
4

22
19

4
3

20
7.
26
1

52
.5
64

12
7.
86
9

14
4.
07
3

41
47
2

43
00
8

40
70
4

43
77
6

kb
fi
lt
r3

14
14

1
0

18
.6
64

5.
64
9

5.
64
9

14
.5
63

10
24
0

10
49
6

10
24
0

10
49
6

tc
as
_
as
rt

16
2

14
9

14
5

13
86
.0
32

16
.7
53

21
.6
48

99
.9
5

59
64
8

60
16
0

59
64
8

60
16
0

ca
fe

11
5

10
0

10
0

15
19
.1
64

4.
27
3

5.
77

14
.6
65

66
56

66
56

66
56

66
56

s3
13
1

12
3

11
2

8
1.
49
9

1.
72
2

1.
80
4

2.
98

0
0

0
0

m
em

14
9

14
6

52
3

44
.6
27

59
.8
67

59
.9
4

78
.4
66

23
80
8

25
08
8

23
80
8

25
08
8

d
d
v

15
2

56
10
5

96
26
0.
28
3

11
.6
09

12
2.
03

12
2.
93
8

79
36

79
36

79
36

79
36

to
ke
n

54
54

20
0

96
2.
27
7

15
0.
97
7

15
0.
97
7

99
8.
56
8

15
61
6

13
56
8

15
61
6

13
56
8

d
is
k

79
62

72
17

81
94
.9
63

24
1.
26
8

63
8.
20
9

81
51
.2
12

94
72

38
91
2

94
72

38
91
2

82 5.3 Experimental Evaluation

Table 5.2. Verification time of HiFrog using different combinations of interpo-
lation algorithms.

Ms +Itps Ms +Itpw Mw +Itps Mw +Itpw
floppy1 37.314 36.255 34.739 39.186
floppy2 138.579 144.93 122.544 139.768
kbfiltr1 1.489 1.469 1.304 1.464
diskperf1 68.17 58.597 67.78 64.015
floppy3 43.783 47.744 43.737 44.988
kbfiltr2 2.961 3.082 3.107 3.001
floppy4 152.531 142.452 144.073 154.35
kbfiltr3 14.626 15.379 14.563 15.2
tcas_asrt 100.467 99.95 99.869 100.473

cafe 14.608 14.665 14.582 14.718
s3 2.98 2.98 2.859 2.903

mem 78.728 78.466 79.325 78.727
ddv 122.487 122.938 122.884 123.005
token 999.015 998.568 1000.373 998.166
disk 8147.576 8151.212 8150.354 8156.35

TOTAL 9925.314 9918.687 9902.093 9936.314

83 5.4 Related Work

5.4 Related Work

This section describes interpolation algorithms for EUF and other similar theo-
ries, such as Arrays and theory combination. For work related to other theories
please see Sections 4.3, 5.1.2, and 6.3.

The interpolation algorithms given for the theories of LRA and EUF in McMil-
lan [2005] pioneer the field. First, proof systems for the individual theories of
EUF and LRA are given. These proof systems are based on inference rules
that resemble the resolution rule for propositional logic. The interpolation
algorithms then extend each of those rules by annotating each formula (orig-
inal or inferred) with a partial interpolant. The work presented also presents
a proof system for the Boolean combination of EUF and LRA formulas, and
extend those for interpolation.

The main idea of the interpolation procedures from McMillan [2005] is to
collect the contribution from partition A to the proof of unsatisfiability. This
leads to the fact that these interpolation procedures are able to generate only
one interpolant for a given interpolation problem.

The approach presented in Fuchs et al. [2009] is a graph-based generalization
of McMillan [2005]. Instead of using its own proof system, this approach is built
on top of congruence graphs resulting from the congruence closure algorithm.
The main idea is similar to McMillan [2005], in the sense that it traverses
the congruence graph collecting the contribution to the proof that comes from
partition A.

A fundamental difference to the algorithm presented in McMillan [2005] is
the fact that the interpolation algorithm presented in Fuchs et al. [2009] notices
equalities that contain only shared symbols and allows these equalities to be
placed in A or B, without losing soundness. This flexibility can potentially
lead to different interpolants.

By using duality of interpolants and labeling function, the EUF-interpolation
system presented in this chapter generalizes the work from Fuchs et al. [2009],
which can be instantiated in our system by one of the many possible label-
ing functions. The EUF-interpolation system also works on top of congruence
graphs and shares the flexibility of choosing the partition of equalities that
contain only shared symbols.

After presenting the literature work closely related to the EUF-interpolation
system, we describe orthogonal work about interpolation for the theory of
Arrays and theory combination.

The theory of Equalities and Uninterpreted Functions is often used by model
checkers to abstract arrays, but in many cases that is not enough and the pro-

84 5.5 Summary and Future Work

gram needs to be encoded using the theory of Arrays, therefore extending this
need to interpolation algorithms for Arrays. In Bruttomesso et al. [2012], an
interpolation procedure is given for an extension of the theory of Arrays. This
extension contains the diff operator which tells if two arrays of different and
is not considered in the classic theory of Arrays. They present an interpolat-
ing solver for the theory of Arrays, using metarules that prepare the proof of
unsatisfiability for interpolation.

EUF is very important to theory combination, since equality is usually
the common operator between different theories. When interpolating over a
combination of theories is necessary the interpolation procedures have to be
specialized. The work presented in Yorsh and Musuvathi [2005b] introduced
the idea of equality-interpolating solvers, a necessary concept for the soundness
of interpolants. Their technique uses interpolation procedures for individual
theories as black-boxes, and interpolates over the equalities that are propagated
between theories. In Goel et al. [2009], an extension of Fuchs et al. [2009]
is given for combined theories, overcoming one possible issue of the equality
propagation from Yorsh and Musuvathi [2005b]. This overhead is removed by
transforming the proof of unsatisfiability from almost-colorable to colorable,
and then constructing a sound interpolant from the colorable proof.

5.5 Summary and Future Work

Interpolation over EUF formulas so far has been done using algorithms that
do not provide flexibility for the application. Seen as black-boxes, prior EUF
interpolation algorithms generate only one interpolant out of a refutation proof,
without offering any means of control.

This chapter presented a novel framework to generate interpolants for the
quantifier-free theory of Equalities and Uninterpreted Functions. Our frame-
work, the EUF-Interpolation System, is able to generate a multitude of inter-
polants of different strength. The strength of interpolants can be controlled by
labeling functions. We show how two labeling functions can be compared with
respect to the strength of the interpolants they generate.

We also prove that the strongest and weakest labeling functions of the
framework generate the interpolants with the smallest number of equalities
among all the possible labeling functions.

We report on experiments using the EUF-Interpolation System in combi-
nation with different propositional interpolation algorithms and in a model
checker. The experiments show that it is important to match the strength

85 5.5 Summary and Future Work

of the propositional algorithm with the EUF labeling function, and that the
choice of labeling function can impact the performance of the model checker.

The EUF-Interpolation System allows new challenges to be studied, since
for the first time EUF interpolation can be controlled. An interesting topic
would be to analyze the effect of more complex labeling functions in the EUF-
interpolation system, that generate interpolants that are more suitable to the
needs of the interpolation-based application.

Another interesting topic is theory combination in SMT solving. Adapting
the EUF-interpolation system for theory combination would be a non-trivial
task that could lead to optimizations in interpolation for combined theories.

5.5.1 Related Publications

The results described in this chapter will appear in the FMCAD 2017 proceed-
ings in the following paper Alt, Asadi, Hyvärinen and Sharygina [2017]:

• L. Alt, A. E. J. Hyvärinen, S. Asadi, and N. Sharygina. Duality-based
Interpolation for Quantifier-Free Equalities and Uninterpreted Functions.

86 5.5 Summary and Future Work

Chapter 6

Controlling LRA Interpolants

Software verification gained a boost with the introduction of SMT solvers. En-
coding software with propositional logic became a burden that higher level
theories try to soften by introducing different levels of abstraction, on arith-
metic operations or function bodies, for example.

One of the most important theories to represent programs is the theory
of Linear Arithmetic, since it is essential in the verification and synthesis of
practical applications. Different decision and interpolation procedures exist for
Linear Arithmetic in different domains, such as LRA (Linear Real Arithmetic)
and LIA (Linear Integer Arithmetic). Even though reasoning over integers may
be necessary for software verification in many cases, LRA is specially important
since its decision procedure is much faster compared to LIA and reasoning over
reals is enough in several situations, such as verification of device drivers and
hybrid systems. Given the importance and the central role of interpolation in
program verification, it is natural to desire LRA interpolants that meet the
needs of the model checkers.

Different approaches to interpolate over LRA formulas exist, attending dif-
ferent needs: efficiency in generating interpolants, simplicity of the formulas,
and integration with SMT solvers. Even though these different approaches ex-
ist, the flexibility of LRA interpolation systems is still an issue, since none of
these techniques allow the interpolation-based application to interfere in the
interpolant generation.

This chapter presents the LRA-interpolation system, a novel duality based
interpolation framework that is able to generate infinitely many interpolants of
different strength for a single interpolation problem. The framework is based
on McMillan [2005] and extended with a parameter controlling the strength
of the interpolants. In Section 6.1 we introduce the interpolation framework,

87

88 6.1 LRA Interpolation System

and in Section 6.1.1 we present the parameter that controls the strength of
interpolants and prove its properties. To the best of our knowledge, this chapter
presents the first flexible interpolation system for LRA capable of generating
an infinite amount of interpolants for a given interpolation problem.

Section 6.2 presents experiments involving the LRA-interpolation system
and various strength factors in a controlled setting and in a model checker.

6.1 LRA Interpolation System
An LRA interpolation problem is a 3-tuple P = (A,B,R) where A and B are
two sets of LRA constraints such that they are unsatisfiable when conjoined,
and R is the proof of unsatisfiability for A ∪ B. The main idea in this Chap-
ter is to apply the duality of interpolants to the LRA interpolation algorithm
presented in Chapter 3.4, and obtain new interpolation algorithm. This can be
done by interpolating over B instead of A, and then negating the interpolant.
Let ItpM be the interpolation algorithm from McMillan [2005] and ItpD its
dual. Given an interpolation problem P = (A,B,R), we define the interpola-
tion algorithm ItpD such that ItpD(A,B,R) = ¬ItpM(B,A,R), following the
duality of interpolants.

Example 15. Recall Example 11, where we had A = {0 ≤ −3 + x1 + x2, 0 ≤
−x1 + 2x2} and B = {0 ≤ −x2}. If we interpolate over B instead of A (by
using ItpD), we generate the following annotated proof of unsatisfiability:

(7) 0 ≤ −3

[− 3x2]

(6) 0 ≤ −3x2
[− 3x2]

(5) 0 ≤ 3(2) 0 ≤ −x2
[− x2]

(4) 0 ≤ −3 + 3x2
[0]

(3) 0 ≤ −x1 + 2x2
[0]

(1) 0 ≤ −3 + x1 + x2
[0]

The dual interpolant for this problem is then ¬(0 ≤ −3x2).

Formally, the dual interpolation algorithm works as shown in Table 6.1,
where x, y, x′ and y′ are terms, and [φ] is the annotated term such that 0 ≤ φ

is the partial interpolant for that node:

89 6.1 LRA Interpolation System

Table 6.1. Dual interpolation system.

Hyp-A Hyp-B

0 ≤ x[0]
(0 ≤ x) ∈ A

0 ≤ x[x]
(0 ≤ x) ∈ B

Comb Mult
0 ≤ x[x′] 0 ≤ y[y′]

0 ≤ x+ y[x′ + y′]

0 ≤ c 0 ≤ x[x′]

0 ≤ cx[cx′]

Let γ be the term annotated for the root of the proof tree (the contradic-
tion). The inequality 0 ≤ γ is an interpolant for B. By duality of interpolants,
we can assert that ¬(0 ≤ γ) is an interpolant for A.

Lemma 5. Let P = (A,B,R) be an interpolation problem. Let the inequality
c1 ≤ x be the interpolant generated by ItpM , where c1 is a constant and x is
an LRA term. Then ItpD generates an interpolant of the form ¬(c2 ≤ −x),
where c2 is a constant.

Proof. Let R be a proof tree that proves the unsatisfiability of A∧B, annotated
with partial interpolants. We know that R is constructed by summing the
inequalities from A and B, occasionally multiplied by a constant. The proof
can be seen as a way to parenthesize these operations. Using associativity
of sum, we can rearrange any arbitrary proof such that the contradiction is
inferred via an application of the Comb rule on two inequalities (1) 0 ≤ −c1+x

and (2) 0 ≤ −c2−x such that: (i) 0 ≤ −c1+x is inferred only using inequalities
from A; and (ii) 0 ≤ −c2 − x is inferred only using inequalities from B, where
x is an LRA term and −c1 − c2 > 0. Because of (i), we have that the partial
interpolants for (1) and (2) when computing ItpM are, respectively, [− c1 + x]

and 0; because of (ii), we have that the partial interpolants for (1) and (2) when
computing ItpD are, respectively, 0 and [− c2− x]. Therefore, we can see that
the term annotated with the contradiction node is [− c1 + x] when computing
ItpM and [− c2−x] when computing ItpD. Because of that, we know that the
interpolant ItpM is c1 ≤ x and the interpolant ItpD is ¬(c2 ≤ −x).

Lemma 6. Given an interpolation problem P = (A,B,R), then ItpM(P) →
ItpD(P).

Proof. From Lemma 5 we know that we can rearrange any proof of unsatisfia-
bility R such that the contradiction is inferred via an application of the Comb
rule on two inequalities (1) 0 ≤ −c1 + x and (2) 0 ≤ −c2 − x such that: (i)

90 6.1 LRA Interpolation System

0 ≤ −c1+x is inferred only using inequalities from A; and (ii) 0 ≤ −c2−x is in-
ferred only using inequalities from B, where x is an LRA term and −c1−c2 > 0.
Let PD = (B,A,R) be the problem of interpolating over B instead of A. We
know that ItpM(P) = c1 ≤ x and ItpM(PD) = c2 ≤ −x. We also know that
applying the Comb rule on (1) and (2) leads to a contradiction, so ItpM(P) im-
plies that ItpM(PD) cannot be true. Since ItpD(P) = ¬ItpM(PD), the Lemma
follows.

Lemma 7. Let c1 ≤ x and ¬(c2 ≤ −x) be the interpolants generated for the
same interpolation problem by ItpM and ItpD, respectively. The interpolants
generated by ItpM and ItpD represent lower bounds for x, where −c2 ≤ c1.

Proof. In ItpM(P), c1 is clearly a lower bound for x. Transforming ItpD(P)

we have that ¬(c2 ≤ −x) ≡ ¬(−c2 ≥ x) ≡ −c2 < x. Lemma 6 shows that
ItpM(P)→ ItpD(P), therefore, because c1 and −c2 are lower bounds for x, it
is true that −c2 ≤ c1.

6.1.1 The Strength Factor

Now that we have established the strength relation between ItpM and ItpD,
we can introduce the LRA-interpolation system. Our idea is based on the fact
that ItpM and ItpD represent lower bounds for the same term (Lemma 7),
which means that any constant c in the interval [− c2, c1] can substitute c1 in
ItpM = c1 ≤ x, to create a new interpolant Itpc = c ≤ x.

Lemma 8. Let c1 ≤ x and ¬(c2 ≤ −x) be the interpolants generated for
the same interpolation problem P by ItpM and ItpD, respectively. Let c be a
constant such that −c2 < c ≤ c1. Then Itpc = c ≤ x is an interpolant for P .

Proof. Because c ≤ c1, we have that ItpM(P) → Itpc(P). Because −c2 < c,
we have that Itpc(P)→ ItpD(P). Therefore Itpc is an interpolant for P .

Since the bounds c1 and −c2 change from problem to problem, it is easier to
normalize this interval and apply a strength factor. Let P be an interpolation
problem such that ItpM(P) = c1 ≤ x and ItpD(P) = −c2 ≤ −x. Given a
factor f such that 0 ≤ f ≤ 1, we can create a new interpolant Itpf = cf ≤ x,
where cf = c1 − (f ∗ (c1 −−c2)).

We extend the notion of LRA interpolation problem to include the strength
factor: P = (A,B,R, f).

Notice that if −c2 < c1 it is possible to generate infinitely many interpolants
of different strength for a given interpolation problem.

91 6.1 LRA Interpolation System

Algorithm 5 LRA-interpolation system
1: procedure Itp(P = (A,B ,R, f))
2: Requires 0 ≤ f ≤ 1.
3: if f = 1 then
4: return ItpD(P)
5: end if
6: if f = 0 then
7: return ItpM(P)
8: end if
9: IM ← ItpM(P)
10: ID ← ItpD(P)
11: boundM ← bound(IM)
12: boundD ← bound(ID)
13: δ ← boundM − boundD
14: c ← boundM − δ ∗ f
15: x← term(IM)
16: If ← (c ≤ x)

17: return If
18: end procedure

Theorem 9. Let f and f ′ be two different strength factors such that f ≤ f ′.
We have that Itp(A,B,R, f)→ Itp(A,B,R, f ′).

Proof. Analogous to the proof of Lemma 8.

Theorem 9 shows that the strength of the LRA interpolants can be con-
trolled by the strength factor (hence the name). The interpolation algorithm
ItpM from McMillan [2005] is represented by the strength factor 0, and gen-
erates the strongest interpolants among the LRA-interpolation system. The
dual interpolation algorithm ItpD generates the weakest interpolants.

The main advantage of the LRA-interpolation system can be visualized
when it is combined with propositional interpolation in an SMT solver.

Example 16. Let A = x ≤ 1 ∧ y ≤ 1 and B = (y ≥ 4 ∧ x ≥ 0 ∧ x ≤
3) ∨ (x ≥ 3 ∧ y ≥ 0) be two Boolean formulas such that the atoms are LRA
terms. Notice that we cannot decide satisfiability of A ∧B using simplex only.
We can, for instance, use an SMT solver. The formula A ∧B is unsatisfiable,
proven by two unsatisfiable queries to the LRA solver, where each query consists
of a conjunction of LRA constraints and is solved using the simplex algorithm.

92 6.1 LRA Interpolation System

1 0 1 2 3 4
1

0

1

2

3

4

5

Figure 6.1. LRA problem and different interpolants.

The LRA interpolants that are generated by these queries are then used in
propositional interpolation. Using a fixed propositional interpolation algorithm
we get the following interpolants for A when changing the LRA interpolation
algorithm:

ItpM : IM = x ≤ 1 ∧ y ≤ 1

ItpD : ID = ¬x ≥ 3 ∧ ¬y ≥ 4

Itp0.5 : I0.5 = x ≤ 2 ∧ y ≤ 2.5

Notice that naturally we have that IM → I0.5 → ID.
Fig. 6.1 shows the graphical representation of the problem. The blue region

is A and the red region is B. We can see graphically that they are unsatisfiable
when conjoined. The interpolant IM happens to be the same as A. Interpolants
I0.5 and ID are represented, respectively, by the light and dark green areas of
the graph.

93 6.1 LRA Interpolation System

Lemma 9. Since the strength of the LRA interpolants is given in the level
of the theory interpolants, if a propositional interpolation algorithm from the
Labeled Interpolation Systems is used, the strength of the final interpolant is
maintained.

Proof. Let f and f ′ be two strength factors such that Itpf and Itpf ′ are the
interpolation algorithms from the LRA-interpolation system derived by f and
f ′, respectively. Let Itp be an arbitrary propositional interpolation algorithm
from LIS (see Chapter 3.1). Let P = (A,B,R) be an interpolation problem,
If be the interpolant generated using Itp and Itpf , and I ′f the interpolant
generated using Itp and Itpf ′ .

Eq. 3.2 and Eq. 3.3 show how an interpolation algorithm from LIS creates
interpolants from the leaves to the root. Eq. 3.2 is only applied to Boolean
clauses and not to theory clauses, so we can disregard it. Let n be a non-leaf
node of R that has as children two theory leaves, t1 and t2. Let x1 = Itpf (t1),
x2 = Itpf (t2), y1 = Itpf ′(t1) and y2 = Itpf ′(t2). We know that x1 → y1 and
x2 → y2.

We now analyze the three possibilities to build the partial interpolant for
n in Eq. 3.3:

• The first is a disjunction of the partial interpolants of t1 and t2. We know
that ((x1 → y1 ∧ x2 → y2))→ ((x1 ∨ x2)→ (y1 ∨ y2)), so the strength is
maintained.

• The second is a conjunction of the partial interpolants of t1 and t2. We
know that ((x1 → y1 ∧ x2 → y2)) → ((x1 ∧ x2) → (y1 ∧ y2)), so the
strength is maintained.

• The third is a conjunction of two disjunctions, formed by the partial
interpolants of t1 and t2 and the pivot of the resolution rule which is
an arbitrary variable. It is also true that ((x1 → y1 ∧ x2 → y2)) →
(((x1 ∨ p) ∧ (x2 ∨ ¬p)) → ((y1 ∨ p) ∧ (y2 ∨ ¬p))), so the strength is
maintained.

The case where n has as children a theory leaf and a Boolean leaf clearly
holds. Since the rest of R is annotated in the same way we have that the
Lemma holds.

Lemma 9 states that the LRA-interpolation system allows strength control
for the final interpolant (containing a Boolean combination of LRA atoms)

94 6.2 Experimental Evaluation

even when different strength factors are applied to different theory leaves in
the refutation proof. This gives the application even more chances of generating
an interpolant that suits its needs.

6.2 Experimental Evaluation

We implemented and integrated the LRA-interpolation system into the existing
propositional interpolation in OpenSMT2.

LRA can be used in software model checking to abstract the heavy-weight
bit-precise propositional encoding to gain speed-up due to the higher-level the-
ory. In this case, if a model checker reports that a certain property is true
when using LRA, it is also true for the propositional model. However, if a
property is determined unsafe in LRA, the generated counterexample might be
spurious and introduced by the LRA abstraction. We report the integration of
the LRA-interpolation system in OpenSMT2 with the C model checker HiFrog,
verifying a set of benchmarks that consists of C code both from the industry
and from SV-COMP (https://sv-comp.sosy-lab.org/). HiFrog uses inter-
polants to create, store, and reuse function summaries to incrementally check
different assertions in a program. We describe two different results: (i) compar-
ison between different strength factors for the LRA-interpolation system and
their effects on the model checker; (ii) comparison between propositional logic
and LRA encoding within the model checker.

Tables 6.2 and 6.3 show, respectively, the verification time and number of
function refinements in HiFrog for each benchmark using different combina-
tions of propositional and LRA interpolation algorithms, where Itp0.5 is the
LRA strength factor 0.5, and the bold numbers are the smallest verification
time or number of refinements for that benchmark. We chose the LRA strength
factor of 0.5 to have the strongest and weakest interpolants in the experiment,
as well as the middle factor, expected to have a mid-level of strength. In a
model checking scenario where the suitable strength is not known, a simple
approach would be to start with the strength factor 0.5, and tune the factor
depending on whether the generate interpolants were too precise or too ab-
stract for the model checking instance. Interestingly the per-instance winning
algorithms are almost evenly distributed, making it hard to predict which al-
gorithm provides the lowest run time on our benchmarks, the exception being
the strong propositional algorithms Ms and PSs, which score no wins. Inside
each propositional algorithm Itps scores in total 18 wins compared to five wins
of Itp0.5 and 11 wins of Itpw. However, for certain instances a given LRA al-

https://sv-comp.sosy-lab.org/

95 6.3 Related work

gorithm is consistently better: in particular for kbfiltr1 Itp0.5 almost always
wins, and for diskperf1 Itpw always wins. Finally we note that there is little
correlation between the number of refinements and the run times, suggesting
that the run time invested in the solving phase may pay off in higher quality
interpolants in applications where convergence is the dominating performance
criterion as opposed to run time.

Similarly to EUF, LRA provides an abstraction to the bit-precise proposi-
tional encoding. If HiFrog reports that a certain property is true when using
LRA, it is also true for the propositional model. Otherwise, if a property is
said to be unsafe, it may be the case that the generated counterexample is spu-
rious, introduced by the LRA abstraction. In this case, one approach that may
be used by the model checker to decide the final answer is to use the precise
encoding instead of the abstraction. We report run times for three settings
of the model checker in Table 6.4. Column LRA only reports the time used
only by the LRA check. Column +Spurious Overhead reports the time when
HiFrog is allowed to query the spuriousness of the counter-example from an or-
acle, in case the LRA formula is SAT. In this case, HiFrog has to be executed
again with the propositional encoding only if the answer is yes, that is, the
counterexample is spurious. Column +Full Overhead reports the time when
HiFrog cannot query an oracle regarding the spuriousness of a counterexample,
and has to run again using the propositional encoding. Surprisingly many of
the assertions can be checked only using LRA logic, as indicated by the big
numbers in correct. However, in the current implementation, especially when
resorting to the +Full Overhead mode, we see that the spuriousness checks re-
sult in a significant overhead. In the +Spurious Overhead mode where a more
intelligent strategy for refinement is used, the use of LRA in encoding provides
almost a three-fold speed-up for the solving.

In general the experiments implicate that modelling with LRA can provide
big speed-ups with respect to propositional models and that the LRA interpo-
lation algorithms are not forming a bottleneck for the solver performance.

6.3 Related work

This section describes interpolation algorithms for LRA and other similar the-
ories, such as Linear Integer Arithmetic, Nonlinear Real Arithmetic and the
combination of Presburger Arithmetic with Uninterpreted terms and Arrays.
For work related to other theories please see Sections 4.3, 5.1.2, and 5.4.

The pioneering work in LRA interpolation is Pudlák [1997], which shows

96 6.3 Related work

Table
6.2.

V
erification

tim
e
for

H
iFrog

using
different

com
binations

of
propositional

and
LR

A
interpolation

algo-
rithm

s.

M
s
+

Itp
s

M
s
+

Itp
0
.5

M
s
+

Itp
s

P
+

Itp
s

P
+

Itp
0
.5

P
+

Itp
w

M
w
+

Itp
s

M
w
+

Itp
0
.5

M
w
+

Itp
w

fl
op

py1
28.242

33.824
28.154

28.017
34.123

28.076
27.464

34.135
27.905

tcas_
asrt

66.648
65.97

65.982
66.595

66.188
66.599

65.431
66.981

67.278
kb

fi
ltr1

5.234
5.424

5.282
5.376

5.153
5.384

5.296
5.161

5.45
d
iskp

erf1
603.58

561.444
476.029

586.589
547.595

439.785
608.748

607.272
475.023

cafe
4.861

4.785
4.858

4.949
4.821

4.807
4.753

4.738
4.798

s3
1.765

1.75
1.774

1.779
1.749

1.785
1.77

1.801
1.788

m
em

105.547
135.58

106.736
104.484

135.294
106.198

106.097
137.287

106.24
d
d
v

12.74
12.963

12.997
12.737

12.807
13.085

12.488
12.856

12.725
d
isk

809.027
988.197

1203.24
799.117

997.529
1285.17

799.523
977.445

1254.65
T
O
T
A
L

1637.644
1809.937

1905.052
1609.643

1805.259
1950.889

1631.57
1847.676

1955.857
P

S
+

Itp
s

P
S
+

Itp
0
.5

P
S
+

Itp
w

P
S
w
+

Itp
s

P
S
w
+

Itp
0
.5

P
S
w
+

Itp
w

P
S
s
+

Itp
s

P
S
s
+

Itp
0
.5

P
S
s

Itp
w

fl
op

py1
28.125

34.139
28.049

27.782
34.099

28.054
28.052

34.176
27.78

tcas_
asrt

67.56
65.509

66.211
65.895

65.387
66.911

66.341
66.41

68.155
kb

fi
ltr1

5.44
5.098

5.565
5.506

5.282
5.567

5.49
5.121

5.623
d
iskp

erf1
666.463

557.978
472.857

616.047
534.862

452.984
603.903

548.572
446.217

cafe
4.81

4.796
4.787

4.818
4.751

4.827
4.847

4.768
4.801

s3
1.779

1.79
1.726

1.755
1.744

1.752
1.758

1.773
1.772

m
em

105.141
134.812

106.866
103.7

135.601
105.707

105.124
135.805

106.601
d
d
v

12.79
13.011

12.673
12.779

12.518
12.793

12.958
12.607

12.467
d
isk

803.73
1001.47

1238.24
826.235

998.468
1248.02

815.055
996.464

1293.55
T
O
T
A
L

1695.838
1818.603

1936.974
1664.517

1792.712
1926.615

1643.528
1805.696

1966.966

97 6.3 Related work

Ta
bl
e
6.
3.

N
um

be
r
of

fu
nc
ti
on

re
fin

em
en
ts

fo
r
H
iF
ro
g

us
in
g
di
ffe

re
nt

co
m
bi
na

ti
on

s
of

pr
op

os
it
io
na

l
an

d
LR

A
in
te
rp
ol
at
io
n
al
go

ri
th
m
s.

M
s
+

It
p
s

M
s
+

It
p
0
.5

M
s
+

It
p
s

P
+

It
p
s

P
+

It
p
0
.5

P
+

It
p
w

M
w
+

It
p
s

M
w
+

It
p
0
.5

M
w
+

It
p
w

fl
op

py
1

27
13

6
25

08
8

24
83

2
27

13
6

25
08

8
24

83
2

27
13

6
25

08
8

24
57
6

tc
as
_
as
rt

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

kb
fi
lt
r1

51
20

51
20

53
76

51
20

51
20

53
76

51
20

51
20

53
76

d
is
kp

er
f1

39
93

6
39

16
8

39
16

8
39

68
0

39
16

8
39

16
8

41
47

2
37
37
6

39
16

8
ca
fe

64
00

64
00

64
00

64
00

64
00

64
00

64
00

64
00

64
00

s3
0

0
0

0
0

0
0

0
0

m
em

25
60

0
25
08
8

25
60

0
25

60
0

25
08
8

25
60

0
25

60
0

25
08
8

25
60

0
d
d
v

79
36

79
36

79
36

79
36

79
36

79
36

79
36

79
36

79
36

d
is
k

47
61

6
41
47
2

64
00

0
47

61
6

41
47
2

64
00

0
47

61
6

41
47
2

64
00

0
T
O
T
A
L

21
35

04
20

40
32

22
70

72
21

32
48

20
40

32
22

70
72

21
50

40
20
22
40

22
68

16
P

S
+

It
p
s

P
S
+

It
p
0
.5

P
S
+

It
p
w

P
S
w
+

It
p
s

P
S
w
+

It
p
0
.5

P
S
w
+

It
p
w

P
S
s
+

It
p
s

P
S
s
+

It
p
0
.5

P
S
s

It
p
w

fl
op

py
1

27
13

6
25

08
8

24
57
6

27
13

6
25

08
8

24
83

2
27

13
6

25
08

8
24
57
6

tc
as
_
as
rt

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

53
76
0

kb
fi
lt
r1

51
20

51
20

53
76

51
20

51
20

53
76

51
20

51
20

53
76

d
is
kp

er
f1

40
19

2
39

16
8

38
14

4
39

68
0

39
16

8
39

93
6

39
16

8
39

16
8

39
16

8
ca
fe

64
00

64
00

64
00

64
00

64
00

64
00

64
00

64
00

64
00

s3
0

0
0

0
0

0
0

0
0

m
em

25
60

0
25
08
8

25
60

0
25

60
0

25
08
8

25
60

0
25

60
0

25
08
8

25
60

0
d
d
v

79
36

79
36

79
36

79
36

79
36

79
36

79
36

79
36

79
36

d
is
k

47
61

6
41
47
2

64
00

0
47

61
6

41
47
2

64
00

0
47

61
6

41
47
2

64
00

0
T
O
T
A
L

21
37

60
20

40
32

22
57

92
21

32
48

20
40

32
22

78
40

21
27

36
20

40
32

22
68

16

98 6.3 Related work

Table
6.4.

C
om

parison
betw

een
propositionaland

LR
A

encoding
in

H
iFrog.

#
A
ssertion

s
L
R
A

R
esu

lts
B
ool

V
erifi

cation
T
im

e
(s)

L
R
A

V
erifi

cation
T
im

e
(s)

C
orrect

S
A
T

S
p
u
riou

s
S
A
T

L
R
A

O
n
ly

+
S
p
u
riou

s
O
verh

ead
+
Fu

ll
O
verh

ead
fl
op

py1
21

16
5

5
192

27.5
193

193
tcas_

asrt
162

162
132

0
86

65.5
65.5

144
kb

fi
ltr1

10
10

0
0

4.12
5.3

5.3
5.3

d
iskp

erf1
14

10
4

4
194

609
667

667
cafe

115
105

95
10

19.2
4.75

5.9
14.8

s3
131

126
109

5
1.5

1.77
1.82

3
m
em

149
146

52
3

44.6
106

106
125

d
d
v

152
56

105
96

260
12.5

123
124

d
isk

79
62

72
17

8190
800

1200
8710

99 6.3 Related work

that an interpolant can be generated by first creating a proof of unsatisfiability
for A ∧ B such that a contradiction of the form 0 ≤ c is derived, where c < 0.
The interpolant is then obtained out of the proof by combining inequalities
from A. This work has been used in McMillan [2005], where inference rules are
given and extended to accommodate the interpolation algorithm from Pudlák
[1997].

The work presented in Dutertre and de Moura [2006] aims at integrating
SMT solving and LRA interpolation in a better way. This is done by extracting
the proof of unsatisfiability from the simplex algorithm, which is the most used
LRA decision algorithm by SMT solvers.

Our work uses the technique from Dutertre and de Moura [2006] and gen-
eralizes McMillan [2005], in the sense that the LRA-interpolation system is
able to generate an infinite amount of interpolants for a single interpolation
problem, whereas the interpolation algorithm from Pudlák [1997]; McMillan
[2005] can only generate one.

The work presented in Albarghouthi and McMillan [2013] aims at construct-
ing interpolants that are “beautiful”. In practice, this is reflected in an attempt
to construct convex interpolants for A∧B, where A and B are disjunctions of
constraints. Their idea is to interpolate over subsets of A and B first, trying
to converge to an interpolant that covers A and B without using A and B en-
tirely, which can lead to interpolants that are more general and have a simpler
geometrical shape.

The LRA-interpolation system is orthogonal to Albarghouthi and McMillan
[2013], since it aims at creating interpolants of different strength. The tech-
niques can also be used together, with the algorithm from Albarghouthi and
McMillan [2013] using the LRA-interpolation system to generate interpolants
for specific subsets of A and B.

Although it is common that interpolation procedures work on a proof of un-
satisfiability, it is also possible to generate interpolants without a structure rep-
resenting the proof of unsatisfiability. Rybalchenko and Sofronie-Stokkermans
[2007] gives an interpolation procedure for LRA following this approach. Their
idea is to first reduce the interpolation problem to constraint solving in linear
arithmetic, and then, to apply a linear programming solver as a black box to
generate the interpolant.

The goal of Rybalchenko and Sofronie-Stokkermans [2007] is to provide
an efficient interpolation procedure for LRA. The main practical issue with
their approach is that most of SMT solvers already use the simplex algorithm
for LRA solving, which makes proof-based LRA interpolation very efficient
afterwards. The algorithm from Rybalchenko and Sofronie-Stokkermans [2007]

100 6.3 Related work

is also not able to generate multiple interpolants for a given problem, and does
not provide strength control as the LRA-interpolation system does.

The work presented in Scholl et al. [2014] extends Rybalchenko and Sofronie-
Stokkermans [2007] in the sense that it also computes LRA interpolants by
linear programming. Instead of computing interpolants for the single theory
conflicts, it optimizes the computation by computing shared interpolants for a
maximal number of conflicts, thus minimizing the number of linear equations
in the interpolant. This work shares the disadvantages of Rybalchenko and
Sofronie-Stokkermans [2007], and also does not provide control on the strength
of the generated interpolants.

A basic difference between the LRA-interpolation system and other inter-
polation algorithms is the control over strength. The interpolation procedure
for Nonlinear Real Arithmetic presented in Gao and Zufferey [2016] is sim-
ilar to the LRA-interpolation system in the sense that it is able to provide
interpolants of different strength, controlled by a labeling function. The inter-
polation system from Gao and Zufferey [2016] uses the proof of unsatisfiability
generated by a decision procedure based on Interval Constraint Propagation.
In a high level, their system is similar to Pudlák [1997].

After presenting the closer related work, we proceed to presenting inter-
polation procedures that support other theories, therefore being orthogonal to
the LRA-interpolation system presented here. When reasoning over the in-
tegers is necessary, a specialized interpolation algorithm needs to be applied.
In Brillout et al. [2011b], an interpolating sequent calculus is presented for
the quantifier-free fragment of Presburger Arithmetic (PA). This proof system
is then extended to support annotation with partial interpolants. This work
introduces an interpolating cut-rule called strengthen which subsumes many
cut-rules for linear integer programming. This cut-rule is able to handle mixed
cuts, a known difficulty when interpolating over PA. The work in Brillout et al.
[2011a] extends Brillout et al. [2011b] by introducing interpolation procedures
for quantified Presburger Arithmetic and its combination with Uninterpreted
Predicates, Uninterpreted Functions and Extensional Arrays. In another at-
tempt at reducing the difficulty of interpolating over LIA, the work presented
in Jain et al. [2009] aims at efficiently creating interpolants for subsets of Liner
Integer Arithmetic, such as Diophantine and modular equations, and Diophan-
tine disequations. Griggio et al. [2011] give an efficient interpolation procedure
for an augmented version of LIA: the theory is extended by adding a ceiling
function. This leads to a simplification in the interpolation procedure and in
simpler interpolants.

101 6.4 Summary and Future Work

6.4 Summary and Future Work
Several works have been trying to improve LRA interpolation, given the im-
portance of the LRA theory for software verification. The current LRA inter-
polation algorithms do not provide flexibility or control over the interpolants
it generates, which may lead to a drawback in the performance and usability
of an interpolation-based application.

We introduced in this chapter the LRA-interpolation system, an interpola-
tion framework for the theory of Linear Real Arithmetic that is able to generate
an infinite amount of interpolants for a given interpolation problem. These in-
terpolants have different strength which can be controlled by a strength factor.

This chapter presented also experiments both combining several proposi-
tional interpolation algorithms with the LRA-interpolation system and inte-
grated with the interpolation-based model checker HiFrog.

The LRA-interpolation system opens new possibilities for LRA interpola-
tion. Since it allows the application to define the strength of the interpolants,
it would be interesting to see, for instance, what happens to interpolants when
different factors are applied in different parts of the system that is being veri-
fied. This way the application can give a different focus to parts of the system
that matter the most.

Another interesting task would be to combine the LRA-interpolation system
with the technique from Albarghouthi and McMillan [2013] to help on conver-
gence of simple interpolants. This could potentially give a great performance
boost to systems that are based on LRA interpolation.

6.4.1 Related Publications

The results described in this chapter will appear in the HVC 2017 proceedings
in the following paper Alt, Hyvärinen and Sharygina [2017]:

• L. Alt, A. E. J. Hyvärinen, and N. Sharygina. LRA Interpolants from
No Man’s Land.

102 6.4 Summary and Future Work

Chapter 7

Implementation

7.1 OpenSMT2

We implemented the previous and novel interpolation algorithms for propo-
sitional logic from Chapter 4, the EUF -interpolation system from Chapter 5
and the LRA-interpolation system from Chapter 6 in OpenSMT2. This section
describes the architecture and implementation details of OpenSMT2 which can
be found at http://verify.inf.usi.ch/opensmt. OpenSMT2 was used in
the evaluation experiments for Chapters 4, 5 and 6, and the results can be
found in those chapters.

7.1.1 Basic functionalities

OpenSMT2 is build on the foundations of the previous OpenSMT genera-
tions, while providing more efficient data structures and native support to
smt-libversion 2. Besides, OpenSMT2 offers a wide range of new features, such
as parallel solving, incremental solving, interpolation for different theories, and
SAT proof compression. Fig. 7.1 shows a high level overview of the architecture
of OpenSMT2.

to CNF

SMT parser Theory solvers
SAT solver

APIProgram

Theory specific

simplification

results

smt2 file

results

translation
c

c′φs
φCNF

φ

σ

Figure 7.1. Overview of the architecture of OpenSMT2.

103

http://verify.inf.usi.ch/opensmt

104 7.1 OpenSMT2

OpenSMT2 supports receiving a problem either from an smt-libfile or from
an interface as a library. The problem is transformed into an SMT formula
φ which is the simplified into a formula φs, using simplifications from both
the Boolean and theory levels. The simplified formula φs is then converted
into CNF resulting in the formula φCNF . The SAT solver then receives φCNF
and starts the search. When there is a satisfying assignment found by the
SAT solver, the corresponding theory solver has to certify that this is indeed
a satisfying assignment. In case this assignment is actually unsatisfiable, the
theory solver returns a new clause c and the problem is updated to φCNF :=

φCNF ∧ c. The search terminates when either the SAT solver says that φCNF
is unsatisfiable or the theory solver accepts an assignment as SAT.

7.1.2 Modularity

OpenSMT2 is an open source SMT solver written in C++ that has as one of
its goals modularity and easy approachability by newcomers. In an ideal case,
one would be able to create a solver for a new theory without even touching
the existing code, only by plugging in new files.

A theory τ in OpenSMT2 consists of three elements: a logic Lτ that rep-
resents the language of τ ; a solver Sτ containing the solving algorithms; and
a theory Tτ that connects the logic and the solver. There are four abstract
classes that have to be derived when implementing a new solver: Theory, Logic,
TSolver and TSolverHandler. Table 7.1 describes the necessary methods that
have to be implemented for each class when supporting a new theory.

7.1.3 Interpolation Modules

Fig. 7.2 shows the overall architecture of OpenSMT2 from a new perspective,
highlighting the interpolation modules. When the given problem is UNSAT, it
is possible to retrieve interpolants. The application must tell OpenSMT2 what
should be the partitioning (A,B) of the problem such that the interpolant is an
over-approximation of A. If this information is not given OpenSMT2 assumes
the first asserted formula as A and the rest as B.

It is also possible for the application to make extra requirements to the
interpolation module.The application can request proof reduction and the in-
terpolation algorithm for each theory.

The proof reduction module implements the following proof reduction tech-
niques: (i) RecyclePivotsWithIntersection (RPI) from Bar-Ilan et al. [2009];
Fontaine et al. [2011b]; (ii) LowerUnits (LU) from Fontaine et al. [2011b]; (iii)

105 7.1 OpenSMT2

Table 7.1. Abstract methods that must be overridden to implement new theo-
ries.

Method Description

Theory
simplify Entry point for theory specific simplifications.

Logic
mkConst Create logic-specific constants.
isUFEquality Check whether a given equality is uninterpreted.
isTheoryEquality Check whether a given equality is from a theory.
insertTerm Insert a theory term.
retrieveSubstitutions Get the substitutions based on the logic.

TSolverHandler
assertLit_special Assert literals in the simplification phase.

TSolver
assertLit Assert a theory literal.
pushBacktrackPoint,
popBacktrackPoint

Incrementally add and remove asserted theory literals.

check Check theory consistency of the asserted literals.
getValue obtain a value of a theory term once a model has been found.
computeModel compute a concrete model for the theory terms once the theory solver

finds a model consistent.
getConflict return a compact explanation of the theory-inconsistency in the form

of theory literals.
getDeduction get theory literals implied under the current assignment.
declareTerm inform the theory solvers about a theory literal.

a structural hashing approach (SH) similar to Cotton [2010]; (iv) and the local
rewritting rules from Rollini et al. [2011, 2014]; Bruttomesso, Rollini, Sharygina
and Tsitovich [2010].

The LIS framework D’Silva et al. [2010] is implemented for propositional
logic, with the built-in interpolation algorithms from the literature Ms McMil-
lan [2005], P Pudlák [1997], Mw D’Silva et al. [2010], and the novel interpolation
algorithms presented in Chapter 4 PS, PSw and PSs. If no interpolation algo-
rithm is chosen, Ms is used. The application can also provide its own labeling
function to be used by LIS.

The EUF-interpolation system from Chapter 5 is implemented for EUF,
together with the build-in interpolation algorithms Itps, Itpw and Itpr from
Chapter 5, where Itps is equivalent to the algorithm from Fuchs et al. [2009].
If no interpolation algorithm is chosen, Itps is used. The application can also
provide its own labeling function for the congruence graph.

106 7.2 HiFrog

Application

SMT Solver

Interpolation Module

Boolean

EUF

LRA

Proof Analysis

Boolean

EUF

LRA

Labeling

Boolean

EUF

LRA

Interpolator

OpenSMT2 φ = A ∧ B SAT / UNSAT

Partitions A and B
Proof of UNSAT

Proof statistics

Strength
requirements

Partitions A and B

Proof of UNSAT
Labeling functions
Partitions A and B

Proof of UNSAT

Interpolant

Figure 7.2. Overall verification/interpolation framework.

The LRA-interpolation system from Chapter 6 is implemented for LRA, and
accepts the normalized strength factors from Chapter 6, where 0 is equivalent
to the algorithm from McMillan [2005]. If no strength factor is given, 0 is
chosen.

After this information is given, OpenSMT2 starts by explicitly building the
SAT proof of unsatisfiability of the given problem. The Boolean interpolation
module might need to collect statistics from the proof before the interpolation
process starts, in case the Proof-Sensitive interpolation algorithms are used.
After applying a topological sorting, the graph is traversed bottom up applying
the interpolation rules from LIS using the specified propositional interpolation
algorithm to annotate each node with its partial interpolant. For the theory
leaves, the specific theory interpolation system is used with the specified label-
ing function (for EUF) or strength factor (for LRA). When the interpolant is
constructed it is finally returned to the application.

7.2 HiFrog

The novel first order interpolation techniques presented in this thesis were in-
tegrated in a new model checker, HiFrog. HiFrog is an SMT-based bounded
model checker for C that uses interpolants to create function summaries and
reuse them in the incremental checking way presented in Chapter 2.2. Besides,
it supports different levels of abstraction by using an SMT-solver and the theo-
ries EUF, LRA, and propositional logic. This section describes the architecture

107 7.3 Summary of the Experimental Evaluation

and implementation details of HiFrog.
The basic verification flow applied by HiFrog is the following: the C pro-

gram to be verified is given, along with previously computed or user defined
function summaries. The assertions in the C program are processed incremen-
tally, using the applicable function summaries. If the result of the verification
of an assertion is SAT, refinement is done. Otherwise, the interpolator SMT
solver provides interpolants for the UNSAT query, which then are stored as
function summaries.

Fig. 7.3 gives an overview of the many components of HiFrog. The parser
consists of the goto-cc symbolic compiler. It transforms the C code into a goto-
program such that all loops and recursive calls are unwound up to a certain
bound. The SMT encoder is called for each assertion, and starts by creating
an SSA version of the unwound program. This guarantees that each function
call has its own SSA representation. At this point, the SMT encoder applies
the chosen logic (propositional, EUF or LRA) and a theory-specific formula
is generated, along with the applicable function summaries in that theory.
Function summaries can be either previously generated or user defined. The
formula is then given to the SMT solver, which determines if that assertion is
safe or not. If the SMT solver returns UNSAT, we have that the assertion is
true, and function summaries are extracted. Otherwise, refinement is needed.
If function summaries were used, it may be the case that they introduced
spurious behaviors into the formula. In this case, the summaries involved
in this assertion are replaced by the precise encoding of the functions they
summarize, and the SMT solver is called again.

The different theories supported by HiFrog allow performance improvement
and scalability, since encoding arithmetic operations, for instance, using bit-
precise encoding can be expensive. Replacing bit-precision encoding with linear
arithmetic or uninterpreted functions can significantly reduce verification time
and still be effective, since an UNSAT result for the theory-abstracted formula
also holds for the original problem. If the theory-abstracted formula leads
to a SAT result, it may be because of spurious behaviors introduced by the
abstraction, in which case the theory has to be refined to a more precise one.

7.3 Summary of the Experimental Evaluation

This thesis presented thorough experimental evaluation for the novel inter-
polation systems and algorithms that were provided for propositional logic in
Chapter 4, EUF in Chapter 5, and LRA in Chapter 6. We have implemented all

108 7.3 Summary of the Experimental Evaluation

summary
refiner

symbolic
execution

SSA
slicing

SMT encoder
QF_BOOL

QF_LRA

QF_UF

parser

summaries

*.c
*.h

sources +
assertions

assertion holds

assertion violated
& error trace

SAT

UNSAT

assertions
traversal

QF
BOOL

QF
LRA

QF
UF

user-defined
summaries

interpolation-
based

summaries

assertions
optimizer

Interpolating SMT solver
theory
solvers

proof
compressor

itp for
QF_UF

itp for
QF_BOOL

itp for
QF_LRA

proof

	

theory
refinerselection of

precision and size

selection

of theory

settings

Figure 7.3. HiFrog’s architecture overview.

the new algorithms in OpenSMT2, and integrated it with interpolation-based
model checkers.

For propositional logic, we analyzed the effect of different labeling functions
for the LIS interpolation framework in two model checking scenarios: (i) in-
cremental checking with FunFrog; and (ii) upgrade checking with eVolCheck.
Both scenarios had as a task the verification of a set of C benchmarks with a
complex call-tree, and both tools are bounded model checkers for C that rely
on propositional logic to encode the program, and use interpolants to create
function summaries which are stored and reused.

From the initial comparison between the LIS labeling functions from the
literature Ms, P, and Mw, we could see that the strength of propositional
interpolants is very important for the application, and knowing what level
of strength an application needs may increase convergence. In our case, we
had that FunFrog is an application that works well with stronger interpolants,
whereas weaker interpolants are good for eVolCheck. Considering the integra-
tion of propositional and theory interpolants, this difference for HiFrog which
works better with stronger interpolants, for instance, becomes even more ap-
parent. We also saw that creating small interpolants in a lightweight manner,
avoiding the overhead of expensive procedures such as proof reduction and
interpolant minimization, is important for the overall model checking perfor-
mance. This became clear in the next set of experiments with propositional

109 7.3 Summary of the Experimental Evaluation

interpolation, when we introduced the Proof-Sensitive labeling functions. The
experiments confirmed the theory, showing that the labeling function PS is able
to generate small interpolants. We also had that PSs, combining the ability
of generating interpolants of small size and guaranteeing strength, consistently
led to a model checking performance that was better than the other labeling
functions, both in FunFrog and eVolCheck.

For the experiments with the first order theories EUF and LRA we have in-
tegrated OpenSMT2 with HiFrog, relying, respectively, on the EUF-interpolation
system and on the LRA-interpolation system, both implemented in the OpenSMT2
interpolation module.

In the experiments where HiFrog used EUF, we wanted to observe the
viability of the EUF-interpolation system, that is, if the newly introduced in-
terpolation algorithms Itpw and Itpr, derived from the labeling functions for
the EUF-interpolation system Ls and Lr, would not lead to an overhead in
EUF interpolation. Our experiments followed the theory, showing that Itps
and Itpw do generate the EUF interpolants with the smallest number of equal-
ities. As a second goal, we observed the strength of the generated interpolants,
and we have that indeed the interpolants had different strength, showing that
the EUF-interpolation system is capable of generating interpolants that are dif-
ferent not only syntactically but also with respect to their logical strength. For
these two first observations we used complex smt-libbenchmarks, partitioning
the problem into A and B arbitrarily. Our last observation is the combina-
tion of the various propositional interpolation algorithms studied previously
with Itps, Itpw and Itpr in a model checker, responsible for verifying a set of
benchmarks from SV-COMP. To the best of our knowledge this is the first
experiment combining propositional and theory interpolation algorithms. Our
experiments show interesting results, such as the need to align the strength
of the propositional and theory interpolation algorithms in order to generate
smaller interpolants.

For the LRA experiments, we knew theoretically that the size of the in-
terpolants generated by different LRA interpolation algorithms cannot be dif-
ferent. Our goal with this set of experiments was again to combine propo-
sitional interpolation algorithms with theory interpolation algorithms, in this
case LRA, and analyze their effect in the performance of the model checker.
These experiments also show very interesting results, such as the fact that the
LRA strength factor that led to the smallest number of refinement steps in
the model checker, that is, faster convergence, was not the strongest nor the
weakest, but 0.5, the central strength factor. This shows that interpolants of
very fine tuned strength are necessary to achieve optimal performance.

110 7.3 Summary of the Experimental Evaluation

Chapter 8

Conclusions

Craig interpolants have been successfully used in symbolic model checking as
means of over-approximation in different approaches. Interpolants can be com-
puted from resolution proofs of unsatisfiability, and being able to generate
multiple interpolants from a fixed proof is essential in the search for optimized
interpolants.

This thesis addresses the problems of how to give control over the generation
of interpolants to the application for different theories, and how to generate in-
terpolants that increase the performance of the application. The main research
contributions are summarized as follows.

Experimental and Theoretical Analysis of Labeling Functions for
Propositional Logic. The first half of Chapter 4 starts by presenting prelim-
inary experiments that motivated a theoretical study on the labeling functions.
These experiments showed which general properties of interpolants are impor-
tant, and that the labeling function from the literature should be improved.
A thorough theoretical analysis then follows, showing which characteristics a
labeling function needs in order to generate interpolants with a small number
of Boolean connectives.

Proof-Sensitive Labeling Functions for Propositional Logic. Follow-
ing on the theoretical analysis of labeling functions for propositional logic,
Chapter 4 presents the Proof-Sensitive (PS) labeling function, proven to gen-
erate small interpolants in an efficient way. Two variants of PS, PSw and
PSs also guarantee the strength of the created interpolants, which might be
an important requirement in different interpolation-based applications. Our
experiments show that the Proof-Sensitive labeling functions PS and PSs out-

111

112

perform the others when used in two model checking scenarios, incremental
checking and upgrade checking, by generating smaller interpolants.

Controlling EUF interpolants Chapter 5 presents the EUF-interpolation
system, a duality-based interpolation framework capable of generating mul-
tiple interpolants for a single EUF proof of unsatisfiability. The framework
allows control over the interpolants using labeling functions which can be com-
pared with respect to strength. We also show that the strongest and weakest
labeling functions within the EUF-interpolation system are also the ones that
lead to the smallest number of equalities in an EUF interpolant. Our ex-
periments with smt-libbenchmarks show that the framework indeed generates
interpolants of different strength. We also integrated it with a model checker,
combining propositional and EUF interpolation. We compared different com-
binations of interpolation algorithms, and showed that (i) it is important to
align the strength of the interpolation algorithms for the different theories; and
(ii) the strongest and the weakest EUF labeling functions do lead to a better
performance in the model checker.

Controlling LRA interpolants Chapter 6 introduces the LRA-interpolation
system, an interpolation framework capable of generating an infinite amount of
LRA interpolants from the same proof of unsatisfiability. The main idea of the
LRA-interpolation system is to compute a conventional interpolant, using an
LRA interpolation algorithm from the literature, and its dual. We prove that
these two interpolants are different bounds represented as inequalities, and that
it is possible to derive an interval of real numbers leading to infinite possibilities
for LRA interpolants. We show how the strength of such interpolants can
be controlled using a normalized strength factor. We integrated the LRA-
interpolation system with a model checker and our experiments show that it
is very important to be able to fine tune the strength of interpolants to help
convergence in the model checker.

Interpolating OpenSMT2. We have implemented all the novel interpo-
lation frameworks for propositional logic, EUF and LRA in the SMT solver
OpenSMT2, creating an interpolation module. OpenSMT2 is an efficient and
open source SMT solver that has support to solving propositional logic, EUF
and LRA, interpolation, and parallelism. Chapter 7.1 describes the architec-
ture and implementation details of OpenSMT2. OpenSMT2 is available at
http://verify.inf.usi.ch/opensmt.

http://verify.inf.usi.ch/opensmt

113 8.1 Future work

HiFrog. Function summarization-based incremental model checkers suffer
from the exponential explosion in the size of the formulas when translating pro-
grams into propositional logic. We attend this need by creating HiFrog, an in-
cremental bounded model checker that uses interpolants as over-approximations
of function summaries, and uses the theories EUF and LRA to encode C pro-
grams. Bit-precision is often not necessary to prove safety properties, and
our experiments show that by using these first order theories, SMT-based ver-
ification can be much faster than only SAT-based verification. Chapter 7.2
describes the architecture and implementation details of HiFrog which can be
found at http://verify.inf.usi.ch/hifrog.

8.1 Future work
The use of Craig interpolants in symbolic model checking still has a lot of poten-
tial to be further explored, especially in SMT. The EUF-interpolation system
enables the possibility of fine tuning interpolation for theory combination which
is commonly relied on because of the equality operator. Theory combination
is a non-trivial topic that attracts the attention of many researchers, and im-
proving interpolation in this topic is essential for optimal performance when
interpolating over combination of theories.

The LRA-interpolation system, even though already able to generate an in-
finite amount of interpolants of different strength, may be improved. One pos-
sible approach is to use Farkas’ lemma to generate even more interpolants that
have a different geometrical shape. The strength might not be directly com-
parable to the ones currently generated by the LRA-interpolation system, but
theoretical work on it could provide means of controlling the general strength of
LRA interpolants. Combining the LRA-interpolation system with the Beautiful
Interpolants Albarghouthi and McMillan [2013] technique also sounds promis-
ing, leading to an approach that could be able to generate simple interpolants
that guarantee strength control.

In a more general discussion, the idea of duality-based interpolation can be
further applied to different theories, leading to more theory interpolation algo-
rithms that provide control over the created interpolants. It would be interest-
ing to analyze this idea specially for the theories of Linear Integer Arithmetics
and the Theory of Arrays.

http://verify.inf.usi.ch/hifrog

114 8.1 Future work

Bibliography

Albarghouthi, A., Gurfinkel, A. and Chechik, M. [2012]. Whale: An
interpolation-based algorithm for inter-procedural verification, in V. Kun-
cak and A. Rybalchenko (eds), Verification, Model Checking, and Abstract
Interpretation: 13th International Conference, VMCAI 2012, Philadelphia,
PA, USA, January 22-24, 2012. Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 39–55.

Albarghouthi, A. and McMillan, K. L. [2013]. Beautiful interpolants, in
N. Sharygina and H. Veith (eds), Computer Aided Verification: 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 313–329.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S. and Sharygina, N. [2012].
Lazy abstraction with interpolants for arrays, in N. Bjørner and A. Voronkov
(eds), Logic for Programming, Artificial Intelligence, and Reasoning: 18th
International Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 46–61.

Alt, L., Asadi, S., Chockler, H., Even Mendoza, K., Fedyukovich, G., Hyväri-
nen, A. E. J. and Sharygina, N. [2017]. Hifrog: Smt-based function summa-
rization for software verification, Tools and Algorithms for the Construction
and Analysis of Systems: 23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part
II, pp. 207–213.

Alt, L., Asadi, S., Hyvärinen, A. E. J. and Sharygina, N. [2017]. Duality-
based interpolation for quantifier-free equalities and uninterpreted functions,
FMCAD 2017, to appear.

Alt, L., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2016]. A proof-
sensitive approach for small propositional interpolants, in A. Gurfinkel and

115

116 Bibliography

S. A. Seshia (eds), Verified Software: Theories, Tools, and Experiments: 7th
International Conference, VSTTE 2015, San Francisco, CA, USA, July 18–
19, 2015. Revised Selected Papers, Springer International Publishing, Cham,
pp. 1–18.

Alt, L., Hyvärinen, A. E. J. and Sharygina, N. [2017]. LRA interpolants from
no man’s land, HVC 2017, to appear.

Armando, A., Mantovani, J. and Platania, L. [2006]. Bounded model checking
of software using smt solvers instead of sat solvers, in A. Valmari (ed.), Model
Checking Software: 13th International SPIN Workshop, Vienna, Austria,
March 30 - April 1, 2006. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 146–162.

Audemard, G., Cimatti, A., Kornilowicz, A. and Sebastiani, R. [2002a].
Bounded model checking for timed systems, in D. A. Peled and M. Y. Vardi
(eds), Formal Techniques for Networked and Distributed Sytems — FORTE
2002: 22nd IFIP WG 6.1 International Conference Houston, Texas, USA,
November 11–14, 2002 Proceedings, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 243–259.

Audemard, G., Cimatti, A., Kornilowicz, A. and Sebastiani, R. [2002b].
Bounded model checking for timed systems, in D. A. Peled and M. Y. Vardi
(eds), Formal Techniques for Networked and Distributed Sytems — FORTE
2002: 22nd IFIP WG 6.1 International Conference Houston, Texas, USA,
November 11–14, 2002 Proceedings, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 243–259.

Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O. and Strichman, O. [2009].
Linear-time reductions of resolution proofs, in H. Chockler and A. J. Hu
(eds), Hardware and Software: Verification and Testing: 4th International
Haifa Verification Conference, HVC 2008, Haifa, Israel, October 27-30,
2008. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 114–
128.

Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanović, D., King,
T., Reynolds, A. and Tinelli, C. [2011]. Cvc4, in G. Gopalakrishnan and
S. Qadeer (eds), Computer Aided Verification: 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 171–177.

117 Bibliography

Barrett, C., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A. and Zuck, L. [2005].
Tvoc: A translation validator for optimizing compilers, in K. Etessami and
S. K. Rajamani (eds), Computer Aided Verification: 17th International Con-
ference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 291–295.

Barrett, C., Fontaine, P. and Tinelli, C. [2015]. The SMT-LIB Standard: Ver-
sion 2.5, Technical report, Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

Beyer, D. and Keremoglu, M. E. [2011]. Cpachecker: A tool for configurable
software verification, in G. Gopalakrishnan and S. Qadeer (eds), Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 184–190.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M. and Zhu, Y. [1999]. Symbolic
model checking using sat procedures instead of bdds, Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, DAC ’99, ACM, New
York, NY, USA, pp. 317–320.

Biere, A., Cimatti, A., Clarke, E., Strichman, O. and Zhu, Y. [2003]. Bounded
model checking, Advances in Computers 58: 118–149.

Bjesse, P., Leonard, T. and Mokkedem, A. [2001]. Finding bugs in an alpha mi-
croprocessor using satisfiability solvers, in G. Berry, H. Comon and A. Finkel
(eds), Computer Aided Verification: 13th International Conference, CAV
2001 Paris, France, July 18–22, 2001 Proceedings, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 454–464.

Bloem, R., Malik, S., Schlaipfer, M. and Weissenbacher, G. [2014]. Reduction
of resolution refutations and interpolants via subsumption, in E. Yahav (ed.),
Hardware and Software: Verification and Testing: 10th International Haifa
Verification Conference, HVC 2014, Haifa, Israel, November 18-20, 2014.
Proceedings, Springer International Publishing, Cham, pp. 188–203.

Bradley, A. R. [2011]. Sat-based model checking without unrolling, in R. Jhala
and D. Schmidt (eds), Verification, Model Checking, and Abstract Inter-
pretation: 12th International Conference, VMCAI 2011, Austin, TX, USA,
January 23-25, 2011. Proceedings, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 70–87.

118 Bibliography

Brillout, A., Kroening, D., Rümmer, P. and Wahl, T. [2011a]. Beyond
quantifier-free interpolation in extensions of presburger arithmetic, in
R. Jhala and D. Schmidt (eds), Verification, Model Checking, and Abstract
Interpretation: 12th International Conference, VMCAI 2011, Austin, TX,
USA, January 23-25, 2011. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 88–102.

Brillout, A., Kroening, D., Rümmer, P. and Wahl, T. [2011b]. An interpo-
lating sequent calculus for quantifier-free presburger arithmetic, Journal of
Automated Reasoning 47(4): 341–367.

Bruttomesso, R., Ghilardi, S. and Ranise, S. [2011]. Rewriting-based quantifier-
free interpolation for a theory of arrays, Proceedings of the 22nd International
Conference on Rewriting Techniques and Applications, RTA 2011, May 30
- June 1, 2011, Novi Sad, Serbia, Vol. 10 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 171–186.

Bruttomesso, R., Ghilardi, S. and Ranise, S. [2012]. Quantifier-free interpola-
tion of a theory of arrays, Logical Methods in Computer Science 8(2).

Bruttomesso, R., Pek, E., Sharygina, N. and Tsitovich, A. [2010]. The opensmt
solver, in J. Esparza and R. Majumdar (eds), Tools and Algorithms for
the Construction and Analysis of Systems: 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 150–153.

Bruttomesso, R., Rollini, S., Sharygina, N. and Tsitovich, A. [2010]. Flexi-
ble interpolation with local proof transformations, Proceedings of the Inter-
national Conference on Computer-Aided Design, ICCAD ’10, IEEE Press,
Piscataway, NJ, USA, pp. 770–777.

Cabodi, G., Loiacono, C. and Vendraminetto, D. [2015a]. Optimization tech-
niques for craig interpolant compaction in unbounded model checking, For-
mal Methods in System Design 46(2): 135–162.

Cabodi, G., Loiacono, C. and Vendraminetto, D. [2015b]. Optimization tech-
niques for craig interpolant compaction in unbounded model checking, For-
mal Methods in System Design 46(2): 135–162.

Cabodi, G., Murciano, M., Nocco, S. and Quer, S. [2006]. Stepping forward
with interpolants in unbounded model checking, Proceedings of the 2006

119 Bibliography

IEEE/ACM International Conference on Computer-aided Design, ICCAD
’06, ACM, New York, NY, USA, pp. 772–778.

Cabodi, G., Palena, M. and Pasini, P. [2014]. Interpolation with guided re-
finement: Revisiting incrementality in sat-based unbounded model checking,
Proceedings of the 14th Conference on Formal Methods in Computer-Aided
Design, FMCAD ’14, FMCAD Inc, Austin, TX, pp. 12:43–12:50.

Chen, P. and Keutzer, K. [1999]. Towards true crosstalk noise analysis, Proceed-
ings of the 1999 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’99, IEEE Press, Piscataway, NJ, USA, pp. 132–138.

Chockler, H., Ivrii, A. and Matsliah, A. [2013]. Computing interpolants without
proofs, in A. Biere, A. Nahir and T. Vos (eds), Hardware and Software: Ver-
ification and Testing: 8th International Haifa Verification Conference, HVC
2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 72–85.

Cimatti, A. and Griggio, A. [2012]. Software model checking via ic3, in P. Mad-
husudan and S. A. Seshia (eds), Computer Aided Verification: 24th Interna-
tional Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 277–293.

Cimatti, A., Griggio, A., Schaafsma, B. J. and Sebastiani, R. [2013a]. The
mathsat5 smt solver, in N. Piterman and S. A. Smolka (eds), Tools and Al-
gorithms for the Construction and Analysis of Systems: 19th International
Conference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 93–107.

Cimatti, A., Griggio, A., Schaafsma, B. and Sebastiani, R. [2013b]. The Math-
SAT5 SMT Solver, in N. Piterman and S. Smolka (eds), Proceedings of
TACAS, Vol. 7795 of LNCS, Springer.

Cimatti, A., Griggio, A. and Sebastiani, R. [2008]. Efficient interpolant gener-
ation in satisfiability modulo theories, in C. R. Ramakrishnan and J. Rehof
(eds), Tools and Algorithms for the Construction and Analysis of Systems:
14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceedings, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 397–412.

120 Bibliography

Clarisó, R. and Cortadella, J. [2004]. The octahedron abstract domain, in
R. Giacobazzi (ed.), Static Analysis: 11th International Symposium, SAS
2004, Verona, Italy, August 26-28, 2004. Proceedings, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 312–327.

Clarke, E., Kroening, D. and Lerda, F. [2004]. A tool for checking ansi-c
programs, in K. Jensen and A. Podelski (eds), Tools and Algorithms for
the Construction and Analysis of Systems: 10th International Conference,
TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 168–
176.

Clarke, E. M. and Emerson, E. A. [1982]. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic, in D. Kozen (ed.), Logics
of Programs: Workshop, Yorktown Heights, New York, May 1981, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 52–71.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. [2000].
Counterexample-guided abstraction refinement, in E. A. Emerson and A. P.
Sistla (eds), Computer Aided Verification, 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, Vol. 1855 of
LNCS, Springer, pp. 154–169.

Cotton, S. [2010]. Two techniques for minimizing resolution proofs, inO. Strich-
man and S. Szeider (eds), Theory and Applications of Satisfiability Testing –
SAT 2010: 13th International Conference, SAT 2010, Edinburgh, UK, July
11-14, 2010. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 306–312.

Cousot, P. and Cousot, R. [1977]. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints, Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’77, ACM, New York, NY,
USA, pp. 238–252.

Craig, W. [1957]. Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory, The Journal of Symbolic Logic 22(3): 269–285.

de Moura, L. and Bjørner, N. [2008]. Z3: An efficient smt solver, in C. R.
Ramakrishnan and J. Rehof (eds), Tools and Algorithms for the Construc-
tion and Analysis of Systems: 14th International Conference, TACAS 2008,

121 Bibliography

Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337–340.

D’Silva, V. [2010]. Propositional interpolation and abstract interpretation, in
A. D. Gordon (ed.), Programming Languages and Systems: 19th European
Symposium on Programming, ESOP 2010, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 185–204.

D’Silva, V., Kroening, D., Purandare, M. and Weissenbacher, G. [2010]. In-
terpolant strength, in G. Barthe and M. Hermenegildo (eds), Verification,
Model Checking, and Abstract Interpretation: 11th International Conference,
VMCAI 2010, Madrid, Spain, January 17-19, 2010. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 129–145.

Dutertre, B. [2014]. Yices 2.2, in A. Biere and R. Bloem (eds), Computer-Aided
Verification (CAV’2014), Vol. 8559 of Lecture Notes in Computer Science,
Springer, pp. 737–744.

Dutertre, B. and de Moura, L. [2006]. A fast linear-arithmetic solver for dpll(t),
in T. Ball and R. B. Jones (eds), Computer Aided Verification: 18th Inter-
national Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 81–94.

Fedyukovich, G., Sery, O. and Sharygina, N. [2013]. evolcheck: Incremen-
tal upgrade checker for c, in N. Piterman and S. A. Smolka (eds), Tools
and Algorithms for the Construction and Analysis of Systems: 19th Interna-
tional Conference, TACAS 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 292–307.

Fontaine, P., Merz, S. and Woltzenlogel Paleo, B. [2011a]. Compression of
propositional resolution proofs via partial regularization, in N. Bjørner and
V. Sofronie-Stokkermans (eds), Automated Deduction – CADE-23: 23rd In-
ternational Conference on Automated Deduction, Wrocław, Poland, July 31 -
August 5, 2011. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 237–251.

122 Bibliography

Fontaine, P., Merz, S. and Woltzenlogel Paleo, B. [2011b]. Compression of
propositional resolution proofs via partial regularization, in N. Bjørner and
V. Sofronie-Stokkermans (eds), Automated Deduction – CADE-23: 23rd In-
ternational Conference on Automated Deduction, Wrocław, Poland, July 31 -
August 5, 2011. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 237–251.

Fuchs, A., Goel, A., Grundy, J., Krstić, S. and Tinelli, C. [2009]. Ground inter-
polation for the theory of equality, in S. Kowalewski and A. Philippou (eds),
Tools and Algorithms for the Construction and Analysis of Systems: 15th
International Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 413–427.

Gao, S. and Zufferey, D. [2016]. Interpolants in nonlinear theories over the re-
als, in M. Chechik and J.-F. Raskin (eds), Tools and Algorithms for the Con-
struction and Analysis of Systems: 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 625–641.

Godlin, B. and Strichman, O. [2013]. Regression verification: proving the
equivalence of similar programs, Softw. Test., Verif. Reliab. 23(3): 241–258.

Goel, A., Krstić, S. and Tinelli, C. [2009]. Ground interpolation for combined
theories, in R. A. Schmidt (ed.), Automated Deduction – CADE-22: 22nd
International Conference on Automated Deduction, Montreal, Canada, Au-
gust 2-7, 2009. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 183–198.

Graf, S. and Saïdi, H. [1997]. Construction of abstract state graphs with
PVS, in O. Grumberg (ed.), Computer Aided Verification, 9th International
Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, Vol. 1254
of LNCS, Springer, pp. 72–83.

Griggio, A., Le, T. T. H. and Sebastiani, R. [2011]. Efficient interpolant gen-
eration in satisfiability modulo linear integer arithmetic, in P. A. Abdulla
and K. R. M. Leino (eds), Tools and Algorithms for the Construction and
Analysis of Systems: 17th International Conference, TACAS 2011, Held as
Part of the Joint European Conferences on Theory and Practice of Software,

123 Bibliography

ETAPS 2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 143–157.

Gurfinkel, A., Kahsai, T., Komuravelli, A. and Navas, J. A. [2015]. The seahorn
verification framework, in D. Kroening and C. S. Păsăreanu (eds), Com-
puter Aided Verification: 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, Springer Inter-
national Publishing, Cham, pp. 343–361.

Halbwachs, N. and Péron, M. [2008]. Discovering properties about arrays in
simple programs, in R. Gupta and S. P. Amarasinghe (eds), Proceedings of
the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation, Tucson, AZ, USA, June 7-13, 2008, ACM, pp. 339–348.

Henzinger, T. A., Jhala, R., Majumdar, R. and McMillan, K. L. [2004]. Ab-
stractions from proofs, Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’04, ACM, New
York, NY, USA, pp. 232–244.

Henzinger, T. A., Jhala, R., Majumdar, R. and Sutre, G. [2002]. Lazy ab-
straction, in J. Launchbury and J. C. Mitchell (eds), Conference Record
of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, OR, USA, January 16-18, 2002, ACM,
pp. 58–70.

Hyvärinen, A. E. J., Alt, L. and Sharygina, N. [2015]. Flexible interpolation
for efficient model checking, Mathematical and Engineering Methods in Com-
puter Science - 10th International Doctoral Workshop, MEMICS 2015, Telč,
Czech Republic, October 23-25, 2015, Revised Selected Papers, pp. 11–22.

Hyvärinen, A. E. J., Marescotti, M., Alt, L. and Sharygina, N. [2016].
Opensmt2: An SMT solver for multi-core and cloud computing, Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pp. 547–553.

Jain, H., Clarke, E. and Grumberg, O. [2008]. Efficient craig interpolation for
linear diophantine (dis)equations and linear modular equations, in A. Gupta
and S. Malik (eds), Computer Aided Verification: 20th International Confer-
ence, CAV 2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 254–267.

124 Bibliography

Jain, H., Clarke, E. M. and Grumberg, O. [2009]. Efficient craig interpolation
for linear diophantine (dis)equations and linear modular equations, Formal
Methods in System Design 35(1): 6–39.

Jancik, P., Kofroň, J., Rollini, S. F. and Sharygina, N. [2014]. On interpolants
and variable assignments, Proceedings of the 14th Conference on Formal
Methods in Computer-Aided Design, FMCAD ’14, FMCAD Inc, Austin, TX,
pp. 22:123–22:130.

Jhala, R. and McMillan, K. L. [2005]. Interpolant-based transition relation
approximation, in K. Etessami and S. K. Rajamani (eds), Computer Aided
Verification: 17th International Conference, CAV 2005, Edinburgh, Scot-
land, UK, July 6-10, 2005. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 39–51.

Junttila, T. and Dubrovin, J. [2008]. Encoding queues in satisfiability mod-
ulo theories based bounded model checking, in I. Cervesato, H. Veith and
A. Voronkov (eds), Logic for Programming, Artificial Intelligence, and Rea-
soning: 15th International Conference, LPAR 2008, Doha, Qatar, Novem-
ber 22-27, 2008. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 290–304.

Kapur, D., Majumdar, R. and Zarba, C. G. [2006]. Interpolation for data
structures, Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, SIGSOFT ’06/FSE-14, ACM, New
York, NY, USA, pp. 105–116.

Kovács, L., Rollini, S. F. and Sharygina, N. [2013]. A parametric interpolation
framework for first-order theories, in F. Castro, A. Gelbukh and M. González
(eds), Advances in Artificial Intelligence and Its Applications: 12th Mexi-
can International Conference on Artificial Intelligence, MICAI 2013, Mex-
ico City, Mexico, November 24-30, 2013, Proceedings, Part I, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 24–40.

Krajícek, J. [1997]. Interpolation Theorems, Lower Bounds for Proof Sys-
tems, and Independence Results for Bounded Arithmetic, J. Symb. Log.
62(2): 457–486.

Kroening, D. and Strichman, O. [2008]. Linear Arithmetic, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 111–147.

125 Bibliography

McMillan, K. L. [2003]. Interpolation and sat-based model checking, in W. A.
Hunt and F. Somenzi (eds), Computer Aided Verification: 15th International
Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–13.

McMillan, K. L. [2005]. An interpolating theorem prover, Theor. Comput. Sci.
345(1): 101–121.

McMillan, K. L. [2006]. Lazy abstraction with interpolants, in T. Ball and R. B.
Jones (eds), Computer Aided Verification: 18th International Conference,
CAV 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 123–136.

McMillan, K. L. [2010]. Lazy annotation for program testing and verification, in
T. Touili, B. Cook and P. Jackson (eds), Computer Aided Verification: 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 104–118.

McMillan, K. L. [2014]. Lazy annotation revisited, in A. Biere and R. Bloem
(eds), Computer Aided Verification: 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, Springer International Publishing,
Cham, pp. 243–259.

Nelson, G. and Oppen, D. C. [1980]. Fast decision procedures based on con-
gruence closure, J. ACM 27(2): 356–364.

Nieuwenhuis, R. and Oliveras, A. [2005]. Proof-producing congruence closure,
in J. Giesl (ed.), Term Rewriting and Applications: 16th International Con-
ference, RTA 2005, Nara, Japan, April 19-21, 2005. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 453–468.

Pudlák, P. [1997]. Lower bounds for resolution and cutting plane proofs and
monotone computations, Journal of Symbolic Logic 62(3): 981–998.

Pugh, W. [1991]. The omega test: A fast and practical integer programming
algorithm for dependence analysis, Proceedings of the 1991 ACM/IEEE Con-
ference on Supercomputing, Supercomputing ’91, ACM, New York, NY, USA,
pp. 4–13.

126 Bibliography

Queille, J. P. and Sifakis, J. [1982]. Specification and verification of concurrent
systems in cesar, in M. Dezani-Ciancaglini and U. Montanari (eds), Interna-
tional Symposium on Programming: 5th Colloquium Turin, April 6–8, 1982
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337–351.

Ranise, S. and Déharbe, D. [2003]. Applying light-weight theorem proving to
debugging and verifying pointer programs, Electronic Notes in Theoretical
Computer Science 86(1): 105 – 119.

Rintanen, J., Heljanko, K. and Niemelä, I. [2006]. Planning as satisfiabil-
ity: parallel plans and algorithms for plan search, Artificial Intelligence
170(12): 1031 – 1080.

Rollini, S. F., Alt, L., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina,
N. [2013]. Periplo: A framework for producing effective interpolants in sat-
based software verification, in K. McMillan, A. Middeldorp and A. Voronkov
(eds), Logic for Programming, Artificial Intelligence, and Reasoning: 19th
International Conference, LPAR-19, Stellenbosch, South Africa, December
14-19, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 683–693.

Rollini, S. F., Alt, L., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina,
N. [2015]. Optimizing Function Summaries Through Interpolation, Springer
International Publishing, Cham, pp. 73–82.

Rollini, S. F., Bruttomesso, R. and Sharygina, N. [2011]. An efficient and flexi-
ble approach to resolution proof reduction, in S. Barner, I. Harris, D. Kroen-
ing and O. Raz (eds), Hardware and Software: Verification and Testing: 6th
International Haifa Verification Conference, HVC 2010, Haifa, Israel, Oc-
tober 4-7, 2010. Revised Selected Papers, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 182–196.

Rollini, S. F., Bruttomesso, R., Sharygina, N. and Tsitovich, A. [2014]. Resolu-
tion proof transformation for compression and interpolation, Formal Methods
in System Design 45(1): 1–41.

Rollini, S. F., Sery, O. and Sharygina, N. [2012]. Leveraging interpolant
strength in model checking, in P. Madhusudan and S. A. Seshia (eds),
Computer Aided Verification: 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 193–209.

127 Bibliography

Rümmer, P. and Subotić, P. [2013]. Exploring interpolants, Proceedings of the
13th Conference on Formal Methods in Computer-Aided Design, FMCAD
’13, IEEE, pp. 69–76.

Rybalchenko, A. and Sofronie-Stokkermans, V. [2007]. Constraint solving
for interpolation, in B. Cook and A. Podelski (eds), Verification, Model
Checking, and Abstract Interpretation: 8th International Conference, VM-
CAI 2007, Nice, France, January 14-16, 2007. Proceedings, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 346–362.

Scholl, C., Pigorsch, F., Disch, S. and Althaus, E. [2014]. Simple interpolants
for linear arithmetic, Proceedings of the Conference on Design, Automation
& Test in Europe, DATE ’14, European Design and Automation Association,
3001 Leuven, Belgium, Belgium, pp. 115:1–115:6.

Sery, O., Fedyukovich, G. and Sharygina, N. [2012a]. Funfrog: Bounded
model checking with interpolation-based function summarization, in
S. Chakraborty and M. Mukund (eds), Automated Technology for Verifica-
tion and Analysis: 10th International Symposium, ATVA 2012, Thiruvanan-
thapuram, India, October 3-6, 2012. Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 203–207.

Sery, O., Fedyukovich, G. and Sharygina, N. [2012b]. Incremental upgrade
checking by means of interpolation-based function summaries, 12th Interna-
tional Conference on Formal Methods in Computer-Aided Design (FMCAD
2012), IEEE, pp. 114 – 121.

Sery, O., Fedyukovich, G. and Sharygina, N. [2012c]. Interpolation-based func-
tion summaries in bounded model checking, in K. Eder, J. Lourenço and
O. Shehory (eds), Hardware and Software: Verification and Testing: 7th In-
ternational Haifa Verification Conference, HVC 2011, Haifa, Israel, Decem-
ber 6-8, 2011, Revised Selected Papers, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 160–175.

Sheeran, M., Singh, S. and Stålmarck, G. [2000]. Checking safety properties
using induction and a sat-solver, in W. A. Hunt and S. D. Johnson (eds),
Formal Methods in Computer-Aided Design: Third International Confer-
ence, FMCAD 2000 Austin, TX, USA, November 1–3, 2000 Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 127–144.

Stump, A., Barrett, C. W., Dill, D. L. and Levitt, J. [2001]. A decision pro-
cedure for an extensional theory of arrays, Proceedings of the 16th Annual

128 Bibliography

IEEE Symposium on Logic in Computer Science, LICS ’01, IEEE Computer
Society, Washington, DC, USA, pp. 29–.

Totla, N. and Wies, T. [2016]. Complete instantiation-based interpolation,
Journal of Automated Reasoning 57(1): 37–65.

Vizel, Y., Ryvchin, V. and Nadel, A. [2013]. Efficient generation of small
interpolants in cnf, in N. Sharygina and H. Veith (eds), Computer Aided
Verification: 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 330–346.

Weissenbacher, G. [2012]. Interpolant strength revisited, in A. Cimatti and
R. Sebastiani (eds), Theory and Applications of Satisfiability Testing – SAT
2012: 15th International Conference, Trento, Italy, June 17-20, 2012. Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 312–326.

Yorsh, G. and Musuvathi, M. [2005a]. A combination method for generating
interpolants, in R. Nieuwenhuis (ed.), Automated Deduction – CADE-20:
20th International Conference on Automated Deduction, Tallinn, Estonia,
July 22-27, 2005. Proceedings, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 353–368.

Yorsh, G. and Musuvathi, M. [2005b]. A combination method for generating
interpolants, in R. Nieuwenhuis (ed.), Automated Deduction – CADE-20:
20th International Conference on Automated Deduction, Tallinn, Estonia,
July 22-27, 2005. Proceedings, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 353–368.

	Contents
	List of List of Figures
	List of List of Tables
	Introduction
	SAT and SMT solving
	Symbolic Model Checking
	Craig Interpolation
	Contributions
	Analyzing Labeling Functions for Propositional Logic
	Flexible and Controlled Propositional Interpolants
	Controlling EUF Interpolants
	Controlling LRA Interpolants
	Interpolating OpenSMT2
	HiFrog

	Organization of the thesis

	Interpolation-based Model Checking
	Interpolation as Means of Over-Approximation
	Function Summarization for Bounded Model Checking

	Technical Background
	Propositional Logic Preliminaries
	Integration of Propositional and Theory Interpolation.
	EUF Preliminaries
	LRA Preliminaries
	LRA Interpolation

	Flexible and Controlled Propositional Interpolants
	Labeling Functions for LIS
	Analysing Labeling Functions Experimentally
	Analysing Labeling Functions Theoretically
	Proof-Sensitive Interpolation

	Experimental Evaluation
	Interpolants as Function Summaries
	Over-approximating pre-image for Hardware Model Checking
	Strength of PS
	Effects of Simplification

	Related work
	Summary and Future Work
	Related Publications

	Controlling EUF Interpolants
	Generalizing Interpolation Systems
	Duality-based Interpolation and Strength
	Related Work

	The EUF-Interpolation System
	The Strength
	Labeling Functions

	Experimental Evaluation
	Interpolation over smt-libbenchmarks
	Interpolation-Based Incremental Verification

	Related Work
	Summary and Future Work
	Related Publications

	Controlling LRA Interpolants
	LRA Interpolation System
	The Strength Factor

	Experimental Evaluation
	Related work
	Summary and Future Work
	Related Publications

	Implementation
	OpenSMT2
	Basic functionalities
	Modularity
	Interpolation Modules

	HiFrog
	Summary of the Experimental Evaluation

	Conclusions
	Future work

	Bibliography

