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Abstract. The present work is mainly concerned with the suitability of a high-
resolution centered numerical scheme, namely the slope limiter centered scheme,
in the context of simulation of detonation waves. In this paper, the results of
computations with this centered scheme on a suite of one-dimensional and two-
dimensional benchmark test problems are presented. It is demonstrated that the
quality of the results obtained by the central differencing scheme is comparable with
those of the upwind schemes at a moderate numerical resolution typically used in
literature. Nevertheless, it is found that the centered scheme cannot achieve the same
accuracy at coarser spatial resolutions due to its large dissipative nature. In this
paper, we study a possible improvement by constructing the SLIC scheme in a multi-
stage predictor-corrector fashion. It is shown that the modified k-stage SLIC scheme
based on such approach can provide sufficiently accurate results for low-resolution
simulations, while retaining its advantages of simplicity, robustness and generality.
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1. Introduction

For high-speed combustion phenomena, the fluid dynamics are generally governed by a
system of hyperbolic conservation laws with an addition of source terms to the governing
equations for the chemistry. A variety of efficient high-resolution numerical schemes for
hyperbolic systems of partial differential equations has been devised in the recent past.
Many of these modern high-resolution numerical schemes are often based on upwind
differencing, which are generally most suitable for the numerical solution of systems of
hyperbolic conservation laws as they introduce characteristic information regarding the
local directionality of the flow along the discontinuous interfaces of the spatial cells.
Nevertheless, these upwind differencing schemes generally require the solution of the
corresponding local Riemann problem to evaluate the flux terms at the cell interfaces
and this in turn greatly complicates the upwind algorithm. Furthermore, the quality of
the global solution depends quite crucially on the particular Riemann solver being used
(Toro 2003). It sometimes lacks of generality in a sense that small modifications of the
physics of a model can lead to major changes in the implementation of higher-Godunov
upwind methods and their Riemann solvers.

In contrast, it is possible to construct centered schemes, which do not require
information to be provided about the Riemann problem of the evolved equations. No
intricate and time-consuming Riemann solvers and related characteristic decomposition
are necessary, which are the building block of the high-resolution upwind schemes. In
recent years, central differencing schemes for the approximate solution of hyperbolic
systems of conservation laws received a lot of attention (for instance, see Nessyahu &
Tadmor 1990). The main feature of such centered schemes is simplicity: they usually
have a low computational cost and do not have user-adjusted parameters. Due to their
simple structure, the methods can be applied very easily to any hyperbolic system in
flux-conservative form. While central schemes are usually more simple and flexible
than a Riemann-solver based integration method, there is a cost of an increase in
numerical diffusion. Thus, the numerical results (discontinuities and rarefraction waves)
are slightly more smeared than would be expected if a Riemann-solver based method
were used at a similar resolution. Nevertheless, centered schemes do not compromise
the qualities of the high-resolution family, albeit at a small loss of ‘sharpness’ of the
solution (Anile et al. 2000).

Due to the recent interest in the pulse detonation wave engine concept (Lynch &
Edelman 1996), research in detonation physics, both experimentally and numerically,
is becoming increasingly significant. Numerical simulations of detonation wave, i.e.
high-speed combustion wave which consists of a shock wave traveling at supersonic
velocity followed by a chemical reaction zone, deal with strong non-linear interactions
between gas-dynamics and chemistry. A full understanding of these coupled phenomena
thus requires reliable and highly resolved numerical simulations. As a result, these
simulations are often very computationally intensive. An increasing attention is also
recently devoted for the inclusion of detailed chemical kinetic mechanisms in the
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simulation of multi-dimensional detonation problem. Many more complex systems are
being developed to study multi-phase detonations for industrial applications as well
as magnetohydrodynamics (MHD) detonations in astrophysics. For these reasons, we
revisited here a centered scheme in the context of detonation simulation due to its
low computational cost, ease of implementation and generality. The objective of this
paper is therefore to report on the suitability of the use of a centered scheme for
high-speed combustion modeling. It also forms part of a validation and assessment
procedure for the developed numerical code and provides all the numerical details for
our recent papers (Radulescu et al. 2003; Ng & Lee 2003; Ng et al. 2003a, Ng et al.
2003b). To this end, a well-established high-resolution centered scheme, namely the
slope limiter centered (SLIC) scheme by Toro is considered here (see Toro 1997; Toro &
Billet 2000). This particular numerical scheme has been used in other disciplines such as
hydrodynamical semiconductor simulations (Anile et al. 2000), which also involve highly
nonlinear phenomena. In the present study, the proposed centered scheme is assessed
against several numerical examples of time-dependent problems as benchmark tests,
including the simulations of one-dimensional pulsating instabilities of planar detonations
and two-dimensional cellular detonations with simple chemistry, as well as detonation
initiation by reflected shock with a realistic detailed hydrogen-oxygen-argon chemical
kinetic mechanism. Finally, we discuss some possible improvements on the SLIC scheme
to achieve the accuracy of the best of upwind schemes, while retaining simplicity and
generality.

2. Description of the numerical method

2.1. Slope limiter centered scheme

The numerical method used here for approximating the solution of hyperbolic
conservation laws employs the finite volume approach where the integral formulation
of the conservation laws is discretized directly in the physical space. For a 1-D system
of partial differential equations written in conservative form, this can be expressed as
oU JF (U)
Bt + Ox
where U is the vector of conserved variables and F(U) the convective fluxes. The
resulting update finite volume formula derived by considering the equivalent integral

=0 (1)

formulation,
]{ [Udz + F (U)dt] =0 )
can be written as:
" IVAN
Ui +1 _ Uz + A_.Z‘ |:Fz‘_]_/2 — Fi+1/2] (3)

where UT*! and U? are the conserved variables at the next and current time-levels,
n+ 1 and n, respectively. F;_;/» and F;/; are the numerical fluxes at the interfaces of
the computational cells of the discretized space. For a known value of Az (based on the
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desired resolution) and At (based on CFL stability criterion), we can advance the vector
of conserved variables U, from time level t* to t**! if the fluxes are known. To this end
the centered scheme uses a nonlinear combination of a good second (or higher)-order
scheme with a first-order monotone scheme.

The slope limiter centered scheme described here is a combination of the second-
order MUSCL-Hancock and the first-order centered (FORCE) scheme (see Toro 1997;
Toro & Billet 2000). In the MUSCL-Hancock approach, a second-order scheme can be
achieved by reconstructing the data as piecewise linear function in every cell. Such a
modification gives the boundary extrapolated values for cell ¢

UF=UP- A, UR=UT+ A, @
where A is a slope vector. These new boundary values are then evolved in time by half

a time-step using the usual conservative formula
1 At _
L, 28 Ly _ R R R, =
U =Uf + 51 [F(U}) — F(UF)], T =0+ 5

Instead of relying on the solution of the Riemann problem, the inter-cell numerical

LA RUE) —FUB] (5)

fluxes in the finite volume formula (equation (3)) are evaluated using the first-order
centered (FORCE) scheme, which is a combination of the first-order Lax-Friedrichs and
second-order Richtmyer fluxes

szﬂ% zfﬂ(;;(U z+1) =0.5 {Fz+1/2(U z+1) FR11/2(U z+1)] (6)
where the first-order Lax-Friedrichs flux FL¥ is given by:

Ax
At

and the second-order Richtmyer flux Ff is found by first evaluating an intermediate
state UR

Fifip =Fifp(UF, U,) =05 {F(UR) + F(Uz+1)] +0.5-— {UR Uz+1] (7)

U, ), = UR, ,(OF, OF,) = 05 [OF + OL,] +0. 5g [F(OF) -F(Thy)]  8)
which is then used to compute F¥; , = F*(U¥, ). The resulting numerical scheme
is second-order accurate in space and time. So to avoid spurious oscillations in the
vicinity of steep gradients, the slope A is ”limited” using a slope limiter function. The
solution is then updated by evaluating the conservative finite volume formula (equation
(3)). For further details on this high-resolution non-oscillatory centered scheme, as well

as different slope limiter function and validation problems for non-reactive compressible
flow, see the textbook by Toro (1997).

2.2. Method of fractional steps

The governing equations for the chemically reactive flow problem are generally of the
form:

U  OF (U)

% " oz

=S (U) (9)
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where an additional source term S(U) appears in the formulation in order to model the
chemical energy release from the reactions. We therefore adopt the method of fractional
steps for the numerical integration to treat separately the hydrodynamics process and
the chemical reaction process, where the homogeneous hyperbolic part of (equation (9))
oU JF (U)
ot + Ox
is first solved by using the SLIC scheme (with initial and boundary conditions as specified
for the complete system). The remaining ordinary differential equations describing the

=0 (10)

chemical reactions

dU

—=5S(U 11

- =S(U) (1)
are then integrated implicitly using conventional techniques. To maintain second-order

accuracy, the Strang splitting method (Strang 1964) is used with the following algorithm:
Ut = Lo L5 LUy (12)

where Lo and Lg denote the operator for the convective and reactive source terms,
respectively.

3. Time-dependent detonations with simplified single-step chemistry

3.1. One-dimensional pulsating detonation instabilities

Detonation phenomenon has been a subject of intense theoretical and computational
studies for a long time, beginning with the earlier classical theory by Chapman-
Jouguet (C-J theory) for determining the unique detonation velocity corresponded to the
combustible mixture. In the 1940s, Zeldovich, von Neumann and Doéring independently
proposed a model for the structure of a detonation wave (see Fickett & Davis 1979).
This classical model for the detonation structure, which has come to be referred as
the ZND model, consists of a steady ”laminar” detonation structure where a leading
shock triggers the chemical reaction by adiabatic shock compression. This simple one-
dimensional description still retains many of the essential physical phenomena associated
with detonations. In addition, the ZND detonation structure and instabilities associated
with this one-dimensional representation are mostly used as the canonical problem
against which numerical schemes are validated (Hwang et al. 2000).

Experimentally, it is well-known that all real detonations are unstable and have
a complicated three-dimensional structure. Instabilities associated with the one-
dimensional planar ZND structure have been revealed by Erpenbeck (1962, 1964) via a
linear stability analysis. The non-linear intrinsic oscillatory behavior of one-dimensional
detonations with simple chemistry has also been shown numerically by Fickett & Wood
(1966) using the method of characteristics. Since then, more thorough studies on one-
dimensional pulsating detonations have been carried out by numerous researchers (see,
for example, Bourlioux et al. 1991; He & Lee 1996; Sharpe & Falle 1999; etc.). Because
of the extensive numerical examination of this canonical 1-D unsteady detonation
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problem over the past, it is used widely as a benchmark problem for high-resolution
numerical schemes for detonation simulations. Therefore, we will first use this problem
to evaluate the performance of the described SLIC method together with the operator
splitting for combustion driven flow. The propagation of detonation wave with a single-
step, irreversible chemical reaction can be modeled by the Euler equations coupled with
a species equation. In one space dimension, the governing equations can be written in
non-dimensional form as

U  OF (U)
+

— =S (U 13
5 e (U) (13)
where the conserved variable U, the convective flux F and reactive source term S are,
respectively,
P pU 0
2
ou pu”+p 0
- © = b1 =, (14
PA PUA w
with
2
p pu
= + — + pAQ 15
(y-1 2 (15)
Y
T==<= 16
P (16)
—E,

In the above equations, p,u,p,T and E are density, particle velocity, pressure,
temperature and total energy per unit volume, respectively. The variable A is the
reaction progress variable, which varies between 1 (for unburned reactant) and 0
(for product). The mixture is assumed to be ideal and calorically perfect (with
constant specific heat ratio ). The parameter ) and E, represent the non-dimensional
heat release and activation energy, respectively. These variables have been made
dimensionless with reference to the uniform unburned state ahead of the detonation
front. The pre-exponential factor k£ is an arbitrary parameter that merely defines
the spatial and temporal scales. It is chosen such that the half-reaction length L, /s,
i.e. the distance required for half the reactant to be consumed in the steady ZND
wayve, is scaled to unit length. The simulations were always initialized by imposing the
corresponding steady ZND solution onto the computational grids. In the present study
of instabilities of 1-D unsteady detonations, we follow Bourlioux et al.(1991) and fix
the dimensionless parameters with the values Q) = 50,y = 1.2, E, = 50 and overdriven
factor f = 1.6 (i.e. f = (D/D¢cys)? where D is the detonation velocity of the equivalent
steady ZND detonation and D¢y is the minimum Chapman-Jouguet detonation velocity)
so that detailed comparison can be made. According to a number of linear stability
analysis (Bourlioux et al.1991; Lee & Stewart 1991), the corresponding ZND profile has
a single instability mode. Various numerical computations also show that the nonlinear
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Figure 1. Pressure behind the shock front versus position for the overdriven
detonation with @ = 50, v = 1.2, E, = 50 and f = 1.6, using 20 grid points per
Li/2. The dashed line indicates the steady-state ZND value of the von Neumann
pressure Py .
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Figure 2. Comparisons of peak pressure behind the shock front as a function of
relative mesh spacing among different numerical schemes for the overdriven pulsating
detonation (Q = 50, vy = 1.2, E, = 50 and f = 1.6).

manifestation of this instability is a regular periodic pulsating detonation (Bourlioux et
al.1991; He & Lee 1996; etc.). Figure 1 shows the leading shock pressure versus position
plot generated using the SLIC scheme. Note that there is no perturbation applied to
the ZND initial condition but the instability grows quickly from the numerical startup
error. After the transient development, it correctly predicts the single instability mode
of the detonation front.

Following the work by Hwang et al. (2000), a convergence study for the peak
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Figure 3. Comparisons of the period of pressure oscillation as a function of
relative mesh spacing obtained by different ENO schemes (Hwang et al. 2000), the
WAF scheme (Toro 1997) and the present SLIC scheme for the overdriven pulsating
detonation (Q = 50, vy = 1.2, E, = 50 and f = 1.6).

pressure magnitude behind the overdriven detonation reached during the limit-cycle
pulsations is performed. The present results are compared with those obtained
previously from various numerical schemes (Bourlioux et al. 1991; Quirk 1994;
Papalexandris et al. 1997; Hwang et al. 2000; Toro 1997) and they are presented
in Figure 2, showing the peak shock pressure vs. the relative mesh spacing (i.e., a
relative mesh spacing of 0.5 corresponds to a resolution of 20 grid points per Ly/s).
From this graph, we can see that the SLIC scheme, like the other schemes, converges to
approximately the peak pressure value of ~ 98.6 as first predicted by Fickett & Wood
(1966). Nevertheless, one may notice that the SLIC scheme approaches the correct value
at a slightly higher resolution compared to other Riemann-solver based methods. At low
resolution (less than 20 cells per L/5), the SLIC method is less accurate. This is to be
expected because the SLIC method is more diffusive than Riemann-solver based method
and the numerical results are slightly more smeared. Since the effects of numerical
diffusion are decreased as the solution resolution increases, therefore, higher resolution
for SLIC is generally necessary to accurately converge to the solution than would be
expected if a Riemann-solver based methods were used.

Beside the convergence in peak pressure, it is also important to consider the period
of oscillation for the pulsating detonations (see Hwang et al. 2000). Figure 3 compares
the period of pressure oscillation with the relative mesh spacing obtained by the SLIC
scheme as well as different ENO (Essentially Non-Oscillating) schemes used by Hwang
et al. (2000). The period of oscillation is determined by taking the average of several
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cycles between successive pressure peaks. The results show that the present SLIC scheme
converges to a period in the range 7.4-7.5 at high resolutions. These are comparable
with the non-linear stability analysis by Erpenbeck (1967), which predicted a period of
7.41-7.49. However, it is interesting to note that the converged value is slightly different
to that obtained by different ENO schemes, which indicates that the predicted period
depends on the numerical schemes. Overall, it is found recently by Hwang et al. (2000),
that a reaction zone resolution of at least 20 points per L/, is usually required for
accurate resolution of the detonation wave with an overdrive of f = 1.6 if an upwind
numerical scheme is used. Similar conclusion can be made here using the SLIC scheme.
Above this numerical resolution, both centered and upwind achieve the same accuracy.

3.2. Two-dimensional cellular detonation simulations

Multi-dimensional detonation waves generally exhibit a complex and unsteady reaction
zone structure. Two-dimensional detonation waves are characterized by an ensemble
of interacting transverse waves sweeping laterally across the leading shock front of the
detonation wave, see Fickett & Davis (1979). The interaction of incident shocks, Mach
stems and transverse waves form a characteristic cellular pattern, producing so-called
detonation cells. In the present study, we also conducted two-dimensional simulations to
validate the present SLIC scheme. In 2-D case, the reactive Euler equations (equations
(13) - (17)) extends to the form:

U | 9F (U) , 9G (U)

= 1

ot O0x Oy S(U) (18)
) ou pv 0
U pu? +p puv 0

U=| pv | F(U)=]| pw GU)=| p®+p S(U)=1]0 (19)
E (E+p)u (E+p)v 0
PA PUA PUA w

p pu? +v?)
E = + + pAQ 20

where an additional convective flux term G and velocity component v are included for
the transverse direction. Analogously to the fractional step operator splitting approach,
one can obtain a second-order splitting scheme as follows:

U = LI I I LT o)

where the convective operators Lc, and L¢, were of the same form as the one-
dimensional convective vector in equation (10), and integrated with the same one-
dimensional flow solver. For meaningful comparison, we perform the test problem
considered in prior studies (Bourlioux & Madja 1992; Helzel 2000; Quirk 1994) with
parameter set to @) = 50, v = 1.2, E, = 10 and f = 1.2. This corresponds to the case
of high energy release and low activation energy, producing a regular cell pattern with
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Figure 4. Numerical smoked foil record for the overdriven detonation with @ = 50,
v =12, E, =10 and f = 1.2, using 24 grid points per L;/, and channel width = 10
half reaction lengths (shown twice).

a complex structure of transverse waves. The same degree of numerical resolution as
Bourlioux & Madja (1992), i.e. 24 cells per Ly/s, is used in the present study so that
direct comparison can be made. We impose the solution for the planar steady ZND
wave as initial data and perturbed the wave by introducing a small curvature into the
front to accelerate the growth of transverse instability. The width of the computational
domain is 10 half-reaction zone lengths. Periodic boundary conditions are used along
the top and bottom boundaries.

The cellular pattern so obtained is shown in Figure 4. This is a typical "numerical
smoked foil” showing the time-integrated maximum pressure contour from the numerical
simulation, which corresponds to the trajectories of the triple shock interactions (i.e.
triple point). The obtained transverse characteristic length scale, so-called the cell size,
is in agreement with that found in other published literature, which has a value of 10
for the given channel width. To look at the flow field behind the detonation front in
more detail, Figures 5 show a sequence of Schlerien-type or gradient plots of pressure
and density. They are very similar to Bourlioux’s results and most of the characteristics
of the flow field can be correctly resolved. More importantly, these results indicate the
capability of the present computational method for producing highly complex simulation
of multi-dimensional detonation cell phenomena. Nevertheless, it is worth noting that
to resolve all the various length scales involved in the problem, a higher resolution than
the one used here is indeed required as pointed out in the paper by Sharpe (2001).

4. Time-dependent detonations with realistic chemistry

So far, the numerical scheme is assessed against one and two-dimensional time-dependent
detonations with only simple one-step Arrhenius chemistry. In this section, we extend
the numerical scheme to include multi-species and perform simulations to validate the
SLIC method coupled with detailed realistic chemistry. To include detailed chemistry,
the one-dimensional Euler equations (equations (13) -(16)) can be modified to account
for compressible flows with more than one species, which become:

oU JF (U)

Bt + Ox

=S (U) (22)
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Figure 5. Sequence of five Schlieren-type plots showing the pressure (top) and density
(bottom) flow field behind the shock for the overdriven detonation with @ = 50, v =
1.2, E, = 10 and f = 1.2, using 24 grid points per L/, and channel width = 10 half
reaction lengths (shown twice).

P1 1 i

U= pn, | FU=| pyu S(U) = | w, (23)
U pu? +p 0
E (E+p)u 0

where N; is the total number of species being considered and p; are the density of the
i* chemical species. The total density of the gas mixture p is therefore given by:

N,
p=>_pi (24)
=1

The total energy per unit volume for the gas mixture is designated by E, which can be

written as

2
E = pe + % (25)
where e is the internal energy per unit mass of the mixture and is calculated based on

a mass-weighted average of the internal energy per unit mass of each species e;
N,
€= Z Yi€i (26)
i=1

where y; = p;/p is the mass fraction of i** species. For a mixture of perfect gases, each
gas species has its partial pressure p; and the equation of state for multi-species flow is
therefore written as:

N N n
p=> pi=pRT, M (27)
=1 =1 2

where R, = 8.314J/mol°K is the universal gas constant and M; is the molecular weight
of the i** species. In addition, the internal energy, enthalpy, and specific heats are
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functions of the temperature only. Here, all gaseous species are also assumed to be
thermally perfect of which the specific heats are non-constant functions of temperature.
In this case, the enthalpy of each species is given by:

hi(T) = hf + [ ¢ (T)dT (28)

where h{ = h; (0) is the heat of formation and c,,(T) is the specific heats at constant
pressure of the i** species, which are generally tabulated as a function of temperature
for many gases. Using the following thermodynamic relation:

TNS

Ns
e=h—"=3 uh(T) - ——zyzhf+/2ych<T a-o (29
=1

and the ideal gas equation of state, we can rewrite the total energy per unit volume for
the gas mixture as:
2

i=1
which gives an implicit relation for determlmng the temperature 7' from the conserved
variable, but requiring an iteration procedure.

For the chemical kinetic model, the mass production/destruction rate of i** species
due to chemical reaction is represented by w;, generally derived from a given detailed
chemical reaction mechanism of elementary reactions, having the form:

Z X o Zu’;xi G=1, . Nrcac (31)

where v;; and v/ are respectively the forward and backward stochiometric coefficients
of species X; in the jth reaction. Nye.c is the total number of chemical reactions in the
mechanism. Subsequently, the net mass production rate of species ¢ can be expressed
by:

NTCGC

wi=M Y (Vv (32)
=1

where g¢; is the net rate of progress for reaction j and can be written as:
Ns J Ns I’
g =k TL (X" - B TT X0 (33)
i=1 i=1

where kf and k;’ are respectively the forward and backward reaction rate constant for
reaction j. [X;] is the mole concentration of species i. The forward rate coeflicients is
generally given by the Arrhenius form:

—E,,
f — 5 aj
kI (T) = Ap, TP exp ( T ) (34)
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with the pre-exponential constant Ay, the temperature exponent 3 and activation
energy E,.. Knowing the forward reaction rate, the corresponding backward rate can
be found by chemical equilibrium consideration and calculated by:

k;) (T) _ kjf (T)

- k;quil. (T) (35)

where the qu”il' (T) is equilibrium constant based on thermodynamic calculation. In
this work, the rate w; as well as other thermodynamic data for each gaseous species,
such as the values of the enthalpy h;(T'), the specific heats C,,(T) or C,,(T), etc., were
obtained from the CHEMKIN package (Kee et al. 1989). For further explanation of the
governing equations and other thermodynamic relations, see the paper by Fedkiw et al.
(1997).

4.1. Detonation initiation by reflected shock in hydrogen-oxygen-argon mixture

We look at the detonation initiation process for a hydrogen-oxygen-argon mixture due
to reflection of a shock wave in a shock tube closed at one end. The initial conditions
for the computations correspond to the evolution of a strong ignition case by Oran et al.
1984. This particular one-dimensional example has been used extensively in the past to
test numerical schemes (Deiterding 2000; Im 2002; etc). and thus, data are available in
the literature so that direct comparison can be made with the results obtained from the
present computations. The general configuration is a shock tube of length L = 12 cm
filled with stoichiometric hydrogen-oxygen-argon mixture of molar ratios 2:1:7. Initially,
an incident shock wave is created, which propagates through the shock tube from right
to left. Once the incident shock is reflected at the end wall, a detonation wave is formed
by the reflected shock heating after some induction period. For the computation, the
calculation is performed in cartesian geometry covered with 4800 uniform numerical
cells. The hydrogen-oxygen-argon chemistry is modeled with the same 9 species and
24-steps reaction mechanism, which was developed in reference (Oran et al. 1982).

To look at the flow evolution for the detonation initiation after the shock reflection
from the end wall, Figure 6 shows the pressure, density and temperature profiles at
subsequent time interval. These transient results obtained during different stages of
the initiation process, i.e. the ignition, development and final onset of detonation, are
found to be in good agreement with those from the literature (Im et al. 2002). After
its formation behind the reflected shock, the detonation wave eventually catches up
and merges with the reflected shock, causing a split into 3 waves (i.e., the rarefaction,
contact surface and the detonation front). Note that these different waves are clearly
captured by the present numerical schemes, as shown in the density profile of Figure 6.

Figure 7 shows the trajectory of different waves in the flow field, including the
position of the shock front, reaction wave, transmitted detonation and the contact
discontinuity due to the merging of the shock with reaction wave. The positions of these
different waves agree well with previous results. From this plot, we can find that the
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Figure 6. (a)Pressure, (b) Density and (c) temperature profiles showing the time
evolution of the detonation intiation process by reflected shock.
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Figure 7. Wave diagram for the detonation initiation process by reflected shock.

time when the detonation and reflected shock wave merge is at a value of approximately
180usec, which is also obtained by previous studies(Oran et al. 1982; Deiterding 2000;
Im et al. 2002;). Here, comparison with previously numerical results from literatures
illustrates the similar accuracy of the present approach using this SLIC scheme for the
simulation with detailed chemistry.

5. An improved SLIC scheme

For moderate grid resolution, we demonstrate on several benchmark test problems
that the centered SLIC method can lead to accurate approximations of detonation
waves, comparable to those obtained using different best upwind schemes but has the
advantage of lower computational cost and simplicity without the use of Riemann-solver.
Nevertheless, in section 3.1 we have discussed that the SLIC method used in this study
cannot achieve the same accuracy at coarser spatial resolutions due to large dissipative
nature of the centered scheme. In this section, we study a possible way to improve the
SLIC scheme for low-resolution simulations, while retaining its advantages of simplicity,
robustness and generality.

A computational technique based on a multi-stage predictor-corrector approach has
been recently proposed by Toro (2003) to construct numerical flux for the use in finite
volume methods. The idea is that in the predictor step, a simple and robust numerical
flux is used to open the Riemann fan without making use of precise knowledge of the
structure of the solution of the Riemann problem. It extracts the relevant information for
the corrector step, which involves the final inter-cell flux evaluation. The attractiveness
of this approach is that the implementations can rely on centered fluxes at each stage.
See the paper by Toro (2003) for more details. This procedure is expected to produce a
numerical flux very close to that of the upwind method of Godunov scheme. Hence, the
use of MUSTA approach opens up a possibility to improve existing centered scheme.
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Figure 8. Comparisons of peak pressure behind the shock front as a function of
relative mesh spacing between the original SLIC scheme, modified multi-stage SLIC
scheme and WAF scheme for the overdriven pulsating detonation (@ = 50, v = 1.2,
E, =50 and f = 1.6).

Using the MUSTA approach, an improved SLIC scheme is obtained here by
replacing the single evaluation process of the inter-cell numerical flux with a multi-
stage FORCEX scheme. It is derived by applying the centered FORCE flux described
in equation (6) for both the multi-stage predictor and the corrector in the MUSTA

—_ — O’l‘cel
approach (Toro 2003). By starting with k = 1, U = OF, U, = UL, Fz(-{l /2 )
(UZR, [_I{“_,_l) given by equations (6) - (8), the general algorithm for the k-stage FORCE

scheme is given as:

Open Riemann fan:

(b+1) _ y1k) _ Db [ (foree®) (k) 11(k) (k)
U —u® - SR (U0, ul) - F (UP) (36)
At force®
k+1 k k k k
Ul = vl - 2 F (Ul) - FUT (U, ul)| (37)
Flux evaluation:
forcekt! force® k+1 k+1
Fi(+§ ):Ff+g ) (U, ul) (38)

To illustrate the performance of the multi-stage SLIC scheme, we look at once
again the canonical problem of the one-dimensional pulsating overdriven detonations
considered in section 3.1. Similarly, figures 8 and 9 show the peak pressure amplitude
and the period of oscillation as a function of relative mesh spacing of the overdriven
detonation computed using the original SLIC scheme, the improved k-stage SLIC
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mesh spacing between the original SLIC scheme, modified multi-stage SLIC scheme
and WAF scheme for the overdriven pulsating detonation (@ = 50, v = 1.2, E, = 50
and f = 1.6).

scheme (k =2, 3 and 4) and the 2°¢ order upwind WAF scheme for comparison. The
improvement using the MUSTA approach can be readily shown in these plots. The
multi-stage SLIC schemes are clearly able to predict more accurate results for a given
mesh spacing (clearly at low resolution) than the original SLIC scheme. By increasing
the number of stages in the modified SLIC scheme, the results converge faster to the
correct value of peak pressure P ~ 99 and period of oscillations €2 ~ 7.4 at coarser
grid resolution. For the 3- and 4-stage SLIC schemes, they are able to approach the
correct peak pressure with a relatively coarse resolution (10 points per L;/2) and have
indeed similar accuracy (or even better) to that of the upwind (WAF) method. It
should be pointed out that although we can achieve better accuracy as the number of
stages is increased, at the same time the computational time for evaluating the inter-
cell numerical flux is also increased, which can become comparable to most existing
Riemann-solver based upwind schemes. Nevertheless, the multi-stage approach retains
the simplicity, robustness and generality of centered scheme. In this study, we found
that the 3-stage scheme should be sufficiently accurate and is probably the preferred
scheme to be used for practical high-speed flow computations.

6. Conclusion

In this paper we have presented the applicability of a high-order centered scheme, namely
the SLIC scheme, for the simulation of transient detonation waves. The SLIC method



Assessment of centered scheme for detonation modelling 18

belongs to the high-resolution class of methods, which is conservative, explicit, second-
order accurate in space and time. The SLIC method is ‘limited’ such that in the
numerical solution any discontinuities are well-resolved and are not accompanied by
the spurious oscillations, which occur typically for unlimited second-order schemes. In
this study, we have applied this centered scheme to several canonical problems of time-
dependent detonation waves with both the simple and complex chemistry. Detailed
comparisons with previous published results reveal that the quality of the results
obtained from this simple numerical scheme is comparable with those of the upwind
schemes at typical resolution used in literature.

Our motivation to use this centered scheme comes from the fact that it does
not require information about the characteristic structure of the hyperbolic equation
system to be provided. Therefore, it generally has a lower computational cost and
simple structure compared to most Riemann-solver based methods. However, the latter
typically have the advantage when it comes to accuracy and this is more transparent
for computations with coarser spatial resolution in the present study. Here, we discuss
a possible way to improve the accuracy of the centered schemes using Toro’s MUSTA
approach. By constructing the numerical flux based on a multi-stage predictor-corrector
fasion, the modified k-stage SLIC scheme achieves the accuracy of upwind methods
even for low-resolution simulations but retains the simplicity and robustness of centered
methods.

From the formulation of centered method, it is also apparent that once a skeleton
algorithm for the scheme is coded, any system of hyperbolic conservation laws can
be solved, simply by typing the corresponding vectors of the conserved variables and
the numerical fluxes for the system. Indeed, this is convenient when we are solving
the numerical solution of detonation wave with detailed chemistry or multi-phase
components. One should also realize that the flexibility of the scheme should generalize
straightforwardly to higher dimensions and also it can be incorporated easily with
adaptive mesh refinement without any implementation complications.
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