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Abstract

We review in this article the current theoretical understanding of collective and
single particle di� usion on surfaces and how it relates to the existing experimental
data. We begin with a brief survey of the experimental techniques that have been
employed for the measurement of the surface di� usion coe� cients. This is
followed by a section on the basic concepts involved in this ®eld. In particular,
we wish to clarify the relation between jump or exchange motion on microscopic
length scales, and the di� usion coe� cients which can be de®ned properly only in
the long length and time scales. The central role in this is played by the memory
e� ects. We also discuss the concept of di� usion under nonequilibrium conditions.
In the third section, a variety of di� erent theoretical approaches that have been
employed in studying surface di� usion such as ®rst principles calculations,
transition state theory, the Langevin equation, Monte Carlo and molecular
dynamics simulations, and path integral formalism are presented. These ®rst three
sections form an introduction to the ®eld of surface di� usion. Section 4 contains
subsections that discuss surface di� usion for various systems which have been
investigated both experimentally and theoretically. The focus here is not so much
on speci®c systems but rather on important issues concerning di� usion meas-
urements or calculations. Examples include the in¯uence of steps, di� usion in
systems undergoing phase transitions, and the role of correlation and memory
e� ects. Obviously, the choice of topics here re¯ects the interest and expertise of the
authors and is by no means exhaustive. Nevertheless, these topics form a collection
of issues that are under active investigation, with many important open questions
remaining.
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Glossary of notation and acronyms
S‰xŠ action,
EA activation energy,

VA…r† adiabatic potential,
D! angular di� usion coe� cient,
V angular velocity,

hvdi average drift velocity,
¢ bare barrier parameter in the Transition Dynamics Algorithm,

¢Vb…r† bias potential,
EB binding energy at the step edge,
kB Boltzmann constant,

DCM centre-of-mass di� usion coe� cient,
R centre-of-mass position,
·xx centroid,
· chemical potential,

S…q; !† coherent dynamic structure factor,
fc collective correlation factor,

Dc collective or chemical di� usion coe� cient,
²c; ~²² collision frequencies (rates),

Z0; Zs con®guration integrals,
¹c correlation length,

W …r; q† coupling function,
³ coverage,

³e coverage at step edges of stepped surfaces,
³t coverage on the terraces of stepped surfaces,
³c critical coverage,
Tc critical temperature,

S…r; t† density correlation function,
»S…t† density matrix,

¸S ; ¸B; ¸2 di� usion prefactors on stepped surfaces,
d dimensionality of the system,

® ˆ ¡=ns directional jump rate,
¢d dissipation,

Eeff ; ED
A ; Es e� ective di� usion barriers,

D
…n†
c;¬¬ e� ective collective di� usion (mobility) coe� cient within the nth

time regime,

D
…n†
T ;¬¬ e� ective tracer di� usion (mobility) coe� cient within the nth time

regime,
e electron charge,

ns electron density per unit volume,
²el electronic friction,
ES Ehrlich±Schwoebel additional barrier,
E2 energy barrier for jumps along lower step edges,
E0 energy barrier for jumps on terraces,

¢S entropy change,
Eex…T ; t† excess energy,

F external force,
f…t† ¯uctuating random force,

Á…t† ¯ux±¯ux (collective) autocorrelation function,
«0…q† frequency function,
Cc…t† generalized ¯ux autocorrelation function,
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Ct…t† generalized velocity autocorrelation function,
H Hamiltonian,

Ss…q; !† incoherent dynamic structure factor,
ÀT isothermal compressibility,

¡0 ; ¡1; ¡ 0
1; ¡u; ¡d jump rates on stepped surfaces,

u lattice displacement vector,
a lattice spacing,

LB linear system size (in simulation studies),
L Liouville operator,

»…r; t† local density,
J…r; t† local particle ¯ux,

»0 mass density of the substrate,
m mass of the particle,

¢r2…t† ² hjr…t† ¡ r…0†j2i mean square displacement of a single particle,

¢R2…t† ² hjR…t† ¡ R…0†j2i mean square displacement of the centre of mass,

hl2i mean square jump length,P
…t; t 0† memory function in the generalized Langevin equation,

M…q; i!† memory function of S…q; !†,
² microscopic friction,

rd…t†; ra…t† minimal paths,
!…i† normal mode frequency,

F…T ; t† normalized excess energy,
²* normalized microscopic friction,
ns number of equivalent saddle points from a minimum position,
¿c order parameter,
N particle number,

h…¢N†2i particle number mean square ¯uctuation,
nl particle occupation variable,
r particle position,
v particle velocity,
Z partition function,

P…r; v; t†; P…n; t† phase space distribution functions,
²ph phononic friction,

h; ·h ˆ h=2º Planck’s constant,
V…r† potential energy,

¿ potential of the external force,
©…l; t† probability distribution of displacement l after time t,

P‰r…t†Š, P…x† probability functional (distribution),
pl probability of a jump from the origin to a site l,

P, Q projection operators,
f· random number,

¢» resistivity change (in a thin ®lm),
ª…T ; ³; t† response function,

VS…r† rigid substrate potential,
Dr rotational di� usion coe� cient,

e…x† scaled (position dependent) energy,

C·; Cy
· scattering operators,

¯p· scattering probability,
Dt single-particle or tracer di� usion coe� cient,

·²² sliding friction,
¸osc ˆ !osc=2º small-oscillation frequency,

½osc small-oscillation period,
S…q; t† spatial Fourier transform of the density correlation function,

S…q† ˆ S…q; t ˆ 0† structure factor,
S0 ˆ S…q ˆ 0† structure factor at zero momentum,

R`; P` substrate coordinates and momenta,

T ;  ˆ …kBT†¡1
temperature,
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L terrace width,
k thermal transition rate,

ds thickness of the substrate,
t time,

S…n†…r; r 0; t† time dependent (transient) density ¯uctuation correlation
function,

«…n†
¬¬…t† time-dependent (transient) mean square deviation,
½0; ¯t time intervals (steps),

tm time of onset of the hydrodynamic regime,
¡ total jump rate,

JT …t† ˆ
PN

iˆ1 vi…t† total particle (velocity) ¯ux,
ft tracer correlation factor,

p…n; n 0† transition probability,
w…n>n 0† ˆ p…n; n 0†=½0 transition rate,

x* transition state coordinate,
cT transverse sound velocity,

` tunnelling length,
P` tunnelling length distribution,

u…t† unit vector (e.g. parallel to a polymer molecule),
·!!s unstable frequency (at the saddle point),
tf upper limit for (simulation) time,

¿…t† velocity±velocity (tracer) autocorrelation function,
jª…t†i wave function,

¢! width of the quasi-elastic peak of the dynamic structure factor,

BM Boltzmann±Matano,
CJ Concerted Jump,

CEM Corrected E� ective Medium,
DFT Density Functional Theory,

DR Dissociation±Reassociation,
DMF Dynamical Mean Field,
EMT E� ective Medium Theory,

EAAFW Embedded Atom in Adams±Foiles±Wolfer parametrization,
EAFDB Embedded Atom in Foiles±Daw±Baskes parametrization,

EAVC Embedded Atom in Voter±Chen parametrization,
EAM Embedded Atom Method,

EC Evaporation±Condensation,
FIM Field Ion Microscopy,

FEM Field Emission Microscopy,
FLL Flux Line Lattice,

FWHM Full Width at Half Maximum,
GGA Generalized Gradient Approximation,
GLE Generalized Langevin equation,
HAS Helium Atom Scattering,

HRLEED High Resolution Low Energy Electron Di� raction,
IVA Initial Value Approximation,

LITD Laser Induced Thermal Desorption,
LOD Linear Optical Di� raction,
LDA Local Density Approximation,

MCFM Matrix Continued Fraction Method,
MEM Memory Expansion Method,

MW Metastable Walk,
MPA Minimal Path Approximation,
MD Molecular Dynamics,
MC Monte Carlo,

MCWF Monte Carlo Wave Function,
ML Monolayer(s),
NN Nearest Neighbour,
PD Periphery Di� usion,
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PEEM Photoemission Electron Microscopy,
PES Potential Energy Surface,
PO Projection Operator,

QTST Quantum Transition State Theory,
QHAS Quasi-elastic Helium Atom Scattering,
SCPM Scanning Contact Potential Microscopy,

STM Scanning Tunnelling Microscopy,
TAD Temperature Accelerated Dynamics,

TD Terrace Di� usion,
TBSMA Tight-Binding Second Moment Approximation,

TDA Transition Dynamics Algorithm,
TST Transition State Theory,
TO Truncated Octahedron,
TP Truncated Pyramid,

WKB Wentzel±Kramers±Brillouin.

1. Introduction
1.1. Theoretical overview of surface di� usion

The ®eld of surface di� usion has seen explosive growth in the past decade. It has
of course long been recognized that the di� usion of adparticles is the key controlling
rate in most dynamical processes occurring on surfaces such as chemical reactions
and growth of islands and epitaxial layers [1, 2]. Indeed, the knowledge of the
di� usive properties of single adatoms and of clusters on crystal surfaces is a
fundamental step in surface nanostructuring [3], the latter being of increasing
technological importance in recent years. However, until recently, there were
relatively few direct measurements of surface di� usion rates. For example, the
motion of single adatoms was observed in the 1960s on the tip of the ®eld ion
microscope [4], thus giving a direct demonstration of the atomic motion on crystal
surfaces. However, the use of FIM was limited to refractory metal surfaces, such as
tungsten, iridium, platinum and a few others [5, 6]. The advent of many new
experimental techniques such as STM (which reaches full atomic resolution, see
®gure 1, taken from reference [7]), QHAS, and optical di� raction grating changed

T. Ala-Nissila et al.954

Figure 1. STM image of a terrace on the missing row surface of Pt(110) [7]. Adatoms and
clusters (chains of three and four atoms) can be seen in the atomic channels. A
detailed discussion of di� usion on this surface can be found in section 4.2.



the whole ®eld. Now surface di� usion coe� cients for more and more systems have
been measured directly and with high accuracy. The new experimental data quite
often challenge the simple accepted theoretical framework and further stimulate new
theoretical investigations using di� erent approaches in this area.

In this review, we will try to present an overview of the theoretical approaches to
the study of surface di� usion and the progress made in the last few years in
understanding the di� erent issues in this ®eld. There already exist several excellent
reviews focussing mainly on the experimental side of surface di� usion (see the
reviews of references [8, 9, 5, 10±14]; a very nice short introductory review article is
found in reference [15]). For this reason, we have decided to omit a systematic
discussion of the di� erent experimental techniques and survey of the experimental
data. However, many of the recent theoretical investigations are stimulated by
experimental ®ndings, and our understanding is often advanced by a detailed
comparison of the theoretical and experimental results. Thus in this regard, many
recent experimental investigations will be discussed throughout this review.

For most adsorbed atoms and molecules their masses are so heavy that for the
entire temperature range of practical relevance, the motion can be treated as
classical. The exception is for the adsorption of H atoms and the related isotopes
where there is strong evidence that di� usion by the quantum tunnelling mechanism
dominates at low temperatures [8]. We will discuss this interesting subject in a
separate section. Otherwise in the review, we concentrate on the classical motion of
the adsorbates. Also, in most of the studies, the internal degrees of freedom of the
adsorbed atoms and molecules do not come into play; the adatoms can just be
viewed as point particles and we will use indiscriminately the expression adatom or
adparticle for this purpose. In cases where the internal degrees of freedom become
important, the speci®c nature of the adsorbed molecule will be considered more
explicitly.

The simplest type of surface di� usive motion occurs when the substrate is not
active in the role of mass transport. In this case, the substrate atoms just perform
small vibrations around their equilibrium positions. Let us place a single adatom
above such a substrate. The in¯uence of the substrate on the adatom dynamics can
be separated into two categories. The ®rst is the adiabatic potential VA…r† which is
just the free energy of the entire adsorption system with the positions of the substrate
atoms ®xed. This is an e� ective potential that the adatom experiences with the
electronic and vibrational excitation degrees of freedom averaged out. The di� erence
between the value of VA…r† at the saddle point and at the minimum is the classical
activation barrier EA for the di� usion process (see ®gure 2). At low temperatures, the
motion of the adatom consists of localized oscillations around the minima of VA…r†
with occasional jumps to the neighbouring minima, i.e., of jumps from one
adsorption site to another. As with all thermally activated processes [16], an
Arrhenius form separating the rate into a prefactor and an exponential of the form
exp‰¡EA=…kBT†Š is usually employed to analyze the temperature dependence.

However, the adiabatic barrier is an equilibrium quantity. Even though the
magnitude of the di� usion coe� cient is controlled mainly by the activation barrier,
the real dynamical information is all contained in the prefactor. Microscopically, the
dynamical information comes from the non-adiabatic coupling of the adatom to the
substrate excitations. This gives rise to the ¯uctuation and damping of the adatom
motion and changes its character from ballistic to Brownian. Without this coupling,
there is no means for the adatom to acquire enough energy to jump over the barrier
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and equilibrate at a new adsorption site. In the simplest Markovian approximation,

the stochastic forces acting on the adatom at di� erent times can be treated as

statistically independent. In this approximation, the non-adiabatic coupling can be

characterized by a simple friction parameter ². For the more general case, the
¯uctuation and damping of the adatom at any moment depends on its past history,

that is the `memory’ e� ects become important and the frictional coupling has to be in

this case characterized by a memory function M…t; t 0† which is essentially the

correlation function of the random stochastic force at the times t and t 0.
The above scenario of an isolated adatom performing thermally activated

hopping between adjacent adsorption sites is conceptually the simplest picture for

surface di� usion. In recent years it has been recognized that, in particular for
homoepitaxial metallic systems, exchange processes where an adatom exchanges

with a substrate atom which continues the di� usive motion, could be comparable or

even become the dominant mechanism over the simple hopping motion. Other more

exotic mechanisms such as multiple exchanges or concerted movements involving a

large complex of atoms have also been proposed to explain observed data and seen
in numerical simulation studies. Moreover, experiments and simulations have

revealed the occurrence of long jumps, where the adatom directly hops to distant

sites.
So far, we have discussed the motion of the adatom at short time and length

scales. The proper single particle (or tracer) di� usion coe� cient Dt, however, is

de®ned through the mean square displacement of the adatom at asymptotically long

times. For isolated adatoms, subsequent jumps are statistically independent (un-

correlated jumps), and there exists a simple relation between the transport coe� cient
Dt and the microscopic jump rate: Dt is proportional to the product of the jump rate

with the average square jump length. The relation becomes much more complicated

when the jumps are correlated, as happens at ®nite coverages, this being another

example of memory e� ects.
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(a) (b)

Figure 2(a). An adatom sitting in a fourfold minimum on a substrate of square symmetry.
(b): Schematic representation of the adiabatic potential VA…x† along a 1D path
connecting subsequent minima along the x direction. The activation barrier EA is the
di� erence between the saddle points and minima. The former correspond to the
maxima in the 1D case.



At ®nite coverages, as long as one can follow the trajectory of individual adatoms
or more generally the center of mass of each individual moving complex, the concept
of single particle or tracer di� usion is still useful. However, in this case we do not
have a single well-de®ned adiabatic barrier. Because of the adatom±adatom inter-
actions, the actual activation barrier depends on the con®guration of all the other
adatoms and the e� ective barrier that controls the di� usion results from a
complicated average over all the ¯uctuating con®gurations. Obviously, a strict
Arrhenius form for the temperature dependence is no longer correct. Also, successive
con®gurations of the adsorbate are highly correlated which results in correlations
between the jumps and additional memory e� ects. In addition to the single particle
di� usion, there is also a new transport coe� cient at ®nite coverages, namely the
collective di� usion coe� cient Dc which measures the rate at which deviations from
the equilibrium density spread out in the long time limit. The relation of Dc to the
microscopic individual adatom jump rates or to Dt is more complicated and a
qualitative understanding only begins to develop with the detailed study of memory
e� ects as discussed in the following chapters.

Another interesting issue concerns the role of nonequilibrium e� ects in di� usion.
The system has to be either in equilibrium or only slightly out of equilibrium for the
transport coe� cient Dc to be able to describe the actual mass transport. Under many
experimental situations, the system can be either in the nonlinear and/or non-
equilibrium regime and the linear response di� usion coe� cients cannot account
for the mass transport rate. When the length scale of the density variations is
su� ciently long, one can invoke the concept of local equilibrium and introduce a
coverage dependent Dc which is a function of the local coverage and analyze the data
even when the density varies over a wide range of values. In particular, the
Boltzmann±Matano analysis can be used when the geometry involves only a density
variation along one spatial direction [8, 17]. Attempts have been made to generalize
the de®nition of the di� usion coe� cients to nonlinear and non-equilibrium situa-
tions, but this is on a much less ®rm theoretical basis and probably has to be
carefully de®ned for di� erent systems.

To study these challenging problems, a number of theoretical approaches have
been adopted. With the advances in semi-empirical potential and ®rst principles (ab
initio) calculations for the interaction energy between atoms and molecules, the
adiabatic di� usion barriers (at least at T ˆ 0) have been evaluated for many systems.
This itself of course does not yet determine the jump rates or the di� usion coe� cients
as one still needs to determine the prefactor and the entropic contributions. The
transition state theory (TST), which was ®rst developed for chemical reaction rate
calculations [16], provides a simple and intuitive picture of the activated hopping,
and yields naturally the Arrhenius form of the temperature dependence. However,
TST only involves equilibrium properties of the adsorption system. It provides an
approximate expression for the prefactor but does not provide any insights into the
true dynamics of the di� usion process. In the Langevin equation and equivalently
the Fokker±Planck equation approaches [18, 19], there is a natural separation of the
adiabatic potential and non-adiabatic frictional coupling. They have been studied
both at an empirical level with model friction parameters, and at a more detailed
microscopic level involving explicitly the substrate degrees of freedom [20]. Mol-
ecular dynamics simulation studies [21] with either simple model or more accurate
semi-empirical, or even ab initio interactions would provide the most complete
picture. In MD studies, both the adiabatic potential and the nonadiabatic coupling
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to the phonon degrees of freedom can be included exactly. The only missing
ingredient is the frictional coupling to electronic excitations.

At low temperatures and with relatively weak adatom interactions, the adatoms
are mostly localized around the adsorption sites. In this case, the lattice gas model
characterized by a lattice gas Hamiltonian and a prescribed dynamical algorithm for
transitions between di� erent con®gurations becomes a very useful model for the
study of surface di� usion. This can be accomplished by the analytical projection
operator techniques [22], or more commonly through Monte Carlo (MC) simula-
tions of the corresponding master equation [21]. However, as we will discuss in this
review in some detail, the lattice-gas approach to calculating dynamical quantities
must be executed with particular care due to the dependence of the results on the
transition rates chosen for the simulations.

The outline of this review is as follows. We will ®rst expand on the basic concepts
discussed above in section 2 and then describe the di� erent modern theoretical
approaches to surface di� usion in section 3. In section 4 we discuss the application of
these approaches to the study of surface di� usion for many adsorption systems.
Rather than carrying out an exhaustive survey of the vast number of di� erent
systems that have been studied in the literature, the emphasis here is on some speci®c
issues which we deem important in surface di� usion studies, and the physics behind
such issues. Examples of topics that we have chosen and which play an important
role include di� usion near a phase transition boundary of either the substrate or the
adsorbate layer, in¯uence of steps and impurities on observed di� usion rates,
memory e� ects, nonequilibrium conditions, quantum e� ects, and di� usion of
adatom complexes (islands). In selecting these topics we have been of course limited
by our own knowledge and expertise in the ®eld. Nevertheless, we have tried to
choose the topics discussed in this review in such a way that they hopefully spur
further research on the many remaining open issues in the ®eld.

1.2. Brief discussion of di� erent experimental techniques for measuring surface
di� usion

Even though we have emphasized that this review mainly focusses on the
theoretical aspects of surface di� usion, many of the theoretical results cannot be
discussed without touching upon the relevant experimental data. Fortunately, in a
very recent review article [12], the relative merits of the various experimental
techniques for surface di� usion and the systems that have been studied, have been
discussed in some detail. Rather than repeating the discussion here, we will
summarize some of the salient features in table 1, and add some observations that
perhaps have not been emphasized previously. We refer the reader to the article by
Barth [12] for detailed references and results for various systems obtained with these
techniques. There are also some promising new techniques such as measuring the
temporal ¯uctuation in HRLEED [23]; they are not included here since it is too early
to judge their potential. For the meaning of the various acronyms, we refer the
reader to the list of notations and acronyms at the beginning of this review.

We want to make the following observations about the techniques listed in
table 1. First these techniques can be classi®ed into two main groups. The ®rst group,
including STM and FIM, can image and follow the motion of individual adatoms.
As such, they can provide a true measure of the single particle tracer di� usion
coe� cient Dt. This includes the case where exchange processes take place and where
the moving particle is not always the same one. The second group, including QHAS,
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FEM, HAS, LOD, PEEM, LITD, SCPM, and HRLEED, constitute the majority of

the techniques. They are all based on the measurement of either equilibrium density
¯uctuations (QHAS, FEM, HRLEED) or the decay of (hopefully) small non-

equilibrium density pro®les (HAS, LOD, PEEM, LITD, SCPM). As such, they
measure the collective di� usion coe� cient Dc. However, for the techniques that have

high sensitivity and can operate at very low coverages such as QHAS, the tracer
di� usion coe� cient Dt can also be studied by taking the limit of the result for Dc…³†
at small coverages, based on the fact that in the limit ³>0 the two di� usion
coe� cients Dc and Dt are identical. It should also be noted that the STM technique is

constantly being re®ned. The latest advance is that the motion of all the adatoms can
be followed in real time, so a time series of the entire con®guration is generated. This

can then be used to obtain the collective di� usion coe� cient Dc as well.
Second, the length scales listed in the table deserve some comments. Aside from

the direct imaging methods such as STM and FIM which obviously probe atomic
length scales, most of the other techniques with the exception of QHAS have rather

long length scales amounting to many lattice constants. For example, LOD has a
length scale of a few mm. This is basically the maximum wavelength of the decaying
density that is being probed. The large wavelength is advantageous in the sense that

the gradient corrections to Fick’s law are negligible and one is truly observing the
linear response transport coe� cient Dc. However, it also means that for real systems

steps and impurities cannot be avoided at this length scale, and their in¯uence must
be taken into account in the extraction of the di� usion coe� cient(s) from the data.

The resulting value could be dramatically di� erent from the corresponding value on
a perfect terrace. This e� ect may be the reason for many mutually inconsistent data

of di� usion coe� cients obtained for the same system [24]. The techniques which
have intrinsically short length scales have the advantage that over a length scale of

µ10 lattice spacings or so, steps or impurities can be avoided. However, other
complications such as nonlinearity or nondi� usive motion can complicate the

analysis. For example, the length scale of QHAS is limited by the resolution to be
µ10 Ð . At this length scale, the anharmonic components of the adatom vibrational

motion have been shown [25±27] to substantially contribute to the quasi-elastic
scattering peak. Thus the proper extraction of the di� usion coe� cient from the data

is a non-trivial task as will be discussed in section 4.1 of this review. The other
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Table 1. Principal experimental techniques for surface diffusion studies; for a thorough
description of the different techniques the reader can refer to references [9, 8, 5, 12]
and references therein.

Technique Remarks Sensitivity Length scale Range of D (cm2s±1)

STM Direct Imaging ³ ¶ 0 few Ð 10¡19-10¡16

FIM Direct Imaging ³ ¶ 0 few Ð 10¡19-10¡16

QHAS Density Fluctuations ³ ¶ 0:010 10 Ð 0 5 £ 10¡6

FEM Density Fluctuations ³ ¶ 0:10 100±1000 Ð 10¡14-10¡9

HAS Density Decay ³ ¶ 0:01 1 mm 10¡12-10¡14

LOD Density Decay ? 1 mm 10¡15-10¡7

PEEM Density Decay ³ ¶ 0 0:1-1000 mm 10¡9-10¡5

LITD Density Decay ³ ¶ 0:1 10-1000 mm 10¡8-10¡5

SCPM Density Decay ³ ¶ 0:01 01 mm 10¡10-10¡4



comments on short length scales apply to the case of ®nite coverages where memory
e� ects are strong and successive jumps are correlated. In this case, in a STM
measurement for example, to deduce the intrinsically long length scale and time
scale di� usion coe� cient Dt or Dc from the short length scale measurements, one
must measure the correlation between the jumps in addition to the jump rates.

Third, and ®nally, we note that in some of these techniques, the di� usion
coe� cients are not directly measured but deduced indirectly by ®tting the data to
a rather elaborate analysis involving the di� usion coe� cient as a parameter. The
most representative example of this is the use of STM in the static rather than the
dynamic mode to measure the distribution of island sizes after adatom deposition in
a growth experiment [11]. The di� usion coe� cient can then be extracted from a
scaling analysis that involves some assumptions about the nucleation process and the
mobility of the adatoms on the terrace. Recent works have demonstrated that, in
some cases (in particular, in systems characterized by low activation barriers, as in
the case of metal-on-metal di� usion on fcc(111) surfaces), a small change in the other
parameters can have signi®cant impact on the value of the di� usion coe� cient
deduced in this manner [28±30].

2. Basic concepts
In this section, we introduce some basic concepts and formulae for surface

di� usion. First, we focus on the short time and length scales and examine the
microscopic nature of the di� usive motion of the adatoms. The most common
elementary move at low temperatures is the so-called di� usion jump (or hop). In
some systems, substitutional di� usion (exchange di� usion) also takes place. This
latter mechanism is especially relevant in homoepitaxial metallic systems, where the
di� using particles are of the same species as the substrate particles. Then we de®ne
the tracer and collective di� usion coe� cients Dt and Dc. These transport coe� cients
are intrinsically de®ned only in the long time and long length scale `hydrodynamic’
limit. They are related to the short time jump rates in a simple way only when the
jumps are treated as being uncorrelated or, in other words, when memory e� ects are
neglected. After de®ning the di� usion coe� cients and the relevant correlation
functions, we introduce the memory expansion method (MEM). Through the
memory expansion, we not only gain insight into the connection between the long
time de®nitions of the di� usion coe� cients to the short time jump rates, but also a
better understanding of the relation between Dt and Dc. The last section of this
section is devoted to non-equilibrium di� usion.

2.1. Microscopic mechanisms for adatom di� usion: jumps and exchanges
2.1.1. Jump diffusion: single and long jumps

Let us consider the di� usion of an isolated adatom on a crystal surface, and
assume that the adatom does not enter the substrate, i.e., that exchange di� usion (see
the following section for the de®nition) does not take place. If temperature is low
enough, the adatom spends most of its time making small-amplitude oscillations in
the minima localized at the adsorption sites. Occasionally, it receives enough energy
from the substrate (heat bath) to make a successful jump, after which it thermalizes
again in another adsorption site. If thermalization occurs in a nearest-neighbour cell
from the original site of departure, we call it a single jump; if not, we speak of a long
jump or of a multiple jump. Assuming that the site of departure is the origin (site 0),
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the important quantities with respect to jump di� usion are the total jump rate ¡ and
the probability pl of thermalizing in the adsorption site at l ˆ …lx; ly†.

The temperature dependence of the jump rate can be written in the so-called
Arrhenius form [31] (see also an interesting historical survey by Van’t Ho� [32]),
where any rate constant is written in an activated form as

¡ ˆ ¡0 exp ¡ EA

kBT

³ ´
: …1†

This can be shown to arise from a microscopic theory of surface di� usion at low
temperatures in the appropriate limits [33, 20, 34]. It can also be derived from the
more phenomenological Transition State Theory (TST) in the harmonic approxima-
tion [16] (see discussions on TST and the solution of the Langevin equation in
sections 3.2 and 3.3, respectively). Obviously, the di� usion of hydrogen at low
temperatures (below about 100 K) needs to be ruled out, since then the role of
quantum tunnelling e� ects is very important [35, 8, 36]. Quantum di� usion will be
treated separately in section 4.8. In the simplest limit of high friction and rigid
substrate, the activation barrier EA is precisely the di� erence in the potential between
the lowest saddle point that the particle has to cross to move from one unit cell to
another, and its value at the minimum [33, 20] (see ®gure 2). The prefactor ¡0 then
contains all the dynamical information.

Mostly due to its simplicity, the Arrhenius description is widely used to analyze
and interpret experimental di� usion data [8, 5]. We wish to emphasize here that this
approach can be dangerous, however, even for the single adparticle case. First,
as mentioned above, proofs of the Arrhenius form exist only in some special limits
[33, 20, 34]. In all these approaches, the Arrhenius form only emerges when the
temperature is su� ciently low (see below). The reason is easy to see. The path of
di� usion through the saddle point to the next well only dominates at low
temperatures. At higher temperatures, many other paths become increasingly
important and one has to average over a continuous distribution of barriers and a
simple Arrhenius form is no longer valid. Moreover, anharmonicity and thermal
expansion can also cause high-temperature deviations [37±41]. Also memory e� ects
arising from the surface excitations can change the e� ective Arrhenius barrier, as will
be discussed in section 4.6. Barring these complications, a rough estimate of ¡0 is
given by

¡0 ˆ ns¸osc; …2†

where ¸osc is a typical vibrational frequency of the adatom in the adsorption site, and
ns is the number of equivalent saddle points from a minimum position (ns ˆ 4 and 6
on square and triangular lattices, respectively). Typically, the jump di� usion
description is valid provided that ¡ ½ ¸osc; from equation (2) it follows that
EA=kBT04 is a su� cient criterion for the temperature to be low enough in the
Arrhenius regime. From the random-walk theory [42±44], an expression for the
di� usion coe� cient Dt for the isolated particle (see section 2.2 for the formal
de®nition of Dt) follows easily:

Dt ˆ
1

4
¡hl2i; …3†

where hl2i is the mean square jump length.
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The occurrence of long jumps can be discussed qualitatively in the framework of
a one-dimensional model of di� usion in a periodic potential VA…x† (see ®gure 3),
where the adatom dissipates energy to the substrate with a constant friction per unit
mass ². Here we discuss the general condition for the occurrence of long jumps, and
in section 3.3 we shall calculate explicitly the long-jump distribution within the
Langevin model. Let us calculate how much energy the adatom dissipates in crossing
a lattice cell [45]. We let the particle start at the saddle point at the left side of the cell
(in ¡a=2, see ®gure 3) with an initial kinetic energy kBT , corresponding to a total
initial energy E0 ˆ kBT ‡ EA. Then the particle crosses the cell dissipating an energy

¢ which is given by:

¢ ˆ
…a=2

¡a=2

m²v…x† dx; …4†

where m and v…x† are the mass and the velocity of the particle. Long jumps are likely to
occur when ¢ < kBT , so that the particle does not dissipate all of its kinetic energy by
crossing a single cell. When this condition is ful®lled, v…x† can be estimated as

v…x† ’
��������������������������������
2

m
‰E0 ¡ VA…x†Š

r
; …5†

leading to

¢ ’ ²

…a=2

¡a=2

���������������������������������
2m‰E0 ¡ VA…x†Š

p
: …6†

In the limit of low temperatures, the integral in equation (6) can be approximated by
EA½osc, where ½osc is the period of small oscillations at the bottom of the well. This
leads to the following condition for long jumps:

²

¸osc
<

kBT

EA
: …7†

Concerning the behaviour of the jump probabilities pl in one dimensional models,
both analytical and numerical results [46±48, 25, 49±52] show that the decay is
asymptotically exponential for large l, while at small l the decay can be even faster.
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Figure 3. A periodic potential VA…x† where the particle starts at the saddle point at the left
side of the cell, with potential energy EA and kinetic energy kBT , and crosses the cell
dissipating energy to the thermal bath due to the friction ².



In higher dimensions, there is strong indication that the precise topology of the
adiabatic potential plays a role. In fact, it has been shown by the solution of two

dimensional models, that the percentage of long jumps is considerably reduced when
the minima and saddle points are not along the same straight line [53, 54], or even
when the saddle points are on the same straight line of the minima, but they are

narrower than the minima [55±57]. The latter result is evident also from MD
simulations [58]. This happens because long jumps are favoured when the most

probable di� usion paths are straight lines, along which inertial trajectories can easily
propagate. Any geometrical restrictions leading to non-straight paths (which arise
when the potential is not separable, i.e., when coupling terms among di� erent co-
ordinates are present) e� ectively increase the dissipation parameter ¢ [59] thus

causing an easier retrapping and reducing the probability of long jumps. On the
other hand, the probability of long jumps can be enhanced by applying external
®elds, such as those obtainable by using an STM tip [61±63].

Long jumps have been observed in several molecular-dynamic s simulations
[64±66, 37, 67±69, 40, 70, 71, 58, 72], see an example in ®gure 4. The percentage of
long jumps is typically about 10% for metal-on-metal systems at intermediate

temperatures [58]. On the other hand, the experimental observation of long jumps
is a challenging task. Indeed, long jumps are not directly observed in the
experiments, because it is not possible at present to resolve the motion of the

adatoms on such a fast time scale as to distinguish a true long jump from a sequence
of single jumps. Thus the evidence of long jumps is indirect. In STM or FIM
experiments [73, 6, 74, 7], one can deduce the occurrence of long jumps by measuring

the probability distribution of the ®nal displacements ©…l; t† (which is the probability
for a given adatom of being at site l at time t if it was at position 0 at time zero). The
random-walk expression for ©…l; t† depends on the probabilities pl as parameters
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Figure 4. Molecular dynamics trajectory for an Ag adatom di� using on Ag(110) at
T ˆ 550 K. The simulation method is described in references [70, 58]. Full and open
circles correspond to the equilibrium positions of the ®rst and second layer atoms,
respectively. A long jump (of two lattice cells) is evident, followed by a sequence of
single jumps (back and forth between two equilibrium sites). The adatom oscillates in
the well for hundreds of ps; the `time of ¯ight’ during a jump (either single or double)
is of the order of 1 ps.



[74, 7]. Therefore, after assuming this expression, the pl can be extracted from a ®t to

the experimental ®nal-displacement distribution. Such a method requires huge
statistics of atomic displacements, not easily achieved in experiments (see the case
of Pd/W(211) [74]). On the other hand, this method does not allow to separate the

true long jumps from other mechanisms which cause `e� ective’ long jumps (see the
case of Pt/Pt(110) …1 £ 2† [7], which is discussed in more detail in section 4.2).
Another piece of indirect evidence for long jumps comes from helium scattering

experiments, for example on Na/Cu(001) [75, 25] and on premelting of Pb/Pb(110)
[76, 77]. In these experiments, the width ¢! of the quasi-elastic peak of the dynamic

structure factor is measured as a function of the parallel momentum exchange q; the
functional form of ¢!…q† depends on the long jump probabilities as parameters,
which are thus ®tted on the experimental data. The main shortcoming of helium

scattering is that it cannot separate single-particle from collective e� ects. Moreover,
the coupling between di� usive and vibrational motion complicates the ®tting at large

q (see section 4.1 for a detailed discussion).

Finally, we would like to remark that the occurrence of long jumps may induce
an additional temperature dependence in hl2i and thus in the prefactor of the

di� usion coe� cient, causing deviations from the Arrhenius law. This is especially
true at high temperatures, where long jumps become more and more likely.
However, in some cases, competing e� ects may compensate each other. For example,

MD simulations of di� usion of Cu on Cu(110) [58] have shown that ¡ deviates from
the low T Arrhenius behaviour at T > 400 K, in such a way that the real rate is
smaller than the one predicted from the extrapolation of the low T Arrhenius law.

However, a signi®cant number of long jumps appear at T > 400 K, causing an
increase of hl2i which compensates the deviation of ¡, so that the di� usion

coe� cient, given by equation (3), is almost perfectly ®tted by an Arrhenius law.
The fact that long jumps may cause deviations from the Arrhenius law in the

di� usion coe� cient can be understood also by noticing that di� erent barriers (and

di� erent Arrhenius behaviour) can be associated to jumps of di� erent lengths,
because on the average, jumps of di� erent lengths need di� erent energies (remember
the meaning of the energy dissipation ¢ above) [45, 7]. In this case the di� usion

barrier is given by some average over the di� erent activation energies.

2.1.2. Exchange di� usion

Even on ¯at surfaces the di� usion of adatoms may take place by other
mechanisms than the jumps. The most common of such alternative processes is
the exchange mechanism. In exchange di� usion, the adatom enters the substrate

pushing up and replacing a substrate atom. At the end of the process, a new adatom
di� uses on the surface (see ®gures 5±8). As mentioned earlier, the de®nition of the

di� usion coe� cient requires a modi®ed de®nition of the `adatom’ co-ordinates. They
should be replaced by the centre of mass coordinates of the moving complex. When
dealing with homoepitaxial di� usion of well isolated adatoms, one considers the

di� usive motion as if it were the random walk of an `equivalent’ single particle
which is moving on the surface, forgetting that after each move, the di� using particle
is not the same as before. Indeed, exchange di� usion is especially important in

homoepitaxial systems: in heteroepitaxy, if the adatom tends to incorporate into the
substrate, it usually stays at the site where incorporation takes place (an exception to

this behaviour is found in systems where vacancies are moving very fast, so that the
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incorporated adatom moves by a vacancy-assisted mechanism. See for example the
system In/Cu(001) [78]).

The exchange mechanism was ®rst discovered in metal-on-metal di� usion, and in
such systems exchange often plays a major role. Because of this, in the following
examples we focus our attention on the di� usion of metal adatoms on metal surfaces.
We treat both the simple exchange processes which have been observed both in
experiments and in simulations, and the more complicated multiple-exchange and
jump-exchange processes which have only been seen in simulations up to now, and
are still waiting for an experimental veri®cation.

Simple exchange on rectangular symmetry: fcc(110) surfaces Ð The role of
exchange di� usion was ®rst recognized in the case of the unreconstructed fcc(110)
surfaces. These surfaces are highly anisotropic, with rows along the ‰110Š direction
(see ®gure 5). In 1978, Bassett and Webber [79] discovered by FIM that Pt/Pt(110)
di� uses rapidly in the cross-channel direction already at very low temperatures. Since
jump di� usion is unlikely in the ‰001Š (cross-channel ) direction, due to the very
unfavourable position of the saddle point, this result was unlikely to be due to a
simple thermally activated jump. A concerted exchange mechanism was proposed by
Halicioglu and Pound [80]. In the concerted exchange (see ®gure 5), the adatom
(atom A) pushes one atom of the row (atom B) out of it to an intermediate
con®guration (the dumb-bell con®guration) where A and B occupy symmetric
positions. This is often a slightly metastable con®guration [81]. Simple bond-
counting indicates that this con®guration is more favourable than the saddle point
for the cross-channel jump. After reaching the dumb-bell con®guration, the two
atoms may either come back to their original positions or complete the exchange
move. In the latter case, atom B becomes the new adatom in the nearby channel.
Atom B can end either in position (c) of ®gure 5 or in position (d). Ending up in (c)
leads to a diagonal exchange. Ending up in (d) causes mass transport only along the
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Figure 5. Simple exchange on an fcc(110) surface. The adatom (atom A) is initially on a
hollow site in a channel along the ‰110Š direction (x direction in (a)); then atom A
pushes one of the close-packed row atoms (atom B) into the symmetric dumb-bell
con®guration (shown in (b)). After staying for some time in this metastable
con®guration, the exchange can be completed either as in (c) (diagonal exchange) or
in (d). Finally, B becomes the new adatom.



‰001Š direction. Experiments on Pt/Ni(110) and Ir/Ir(110) [82, 83] indicate that the
diagonal exchange should be more likely; on the other hand, in MD simulations of
Ag/Ag(110) [70] it has been found that both possibilities are equally likely. This
di� erent behaviour can be related to the depth of the metastable minimum in the
dumbbell con®guration. If the minimum is deep, the intermediate con®guration is
rather long-lived; atom B loses the memory of the initial direction of atom A, and the
®nal position is chosen at random. The simulations show that a depth of about
0.02 eV is enough to randomize the ®nal direction up to 600 K in the case of Ag.
Many semiempirical total-energy calculations and MD simulations have been
performed for exchange di� usion on the (110) surfaces of transition and noble
metals [84±89, 58]. All these calculations agree in predicting that cross-channel
mobility on such surfaces is possible essentially only by exchange. Unfortunately,
both experiments and ab initio calculations are still lacking for exchange di� usion on
noble metal surfaces. Ab initio calculations were performed for Al/Al(110) [90, 91],
con®rming that exchange is dominant. In this case, the calculations predict that also
in-channel di� usion should occur through an exchange mechanism.

Simple exchanges on square symmetry: fcc(001) surfaces Ð Exchange was not
believed to take place frequently on fcc and bcc(001) surfaces because they are less
open than the fcc(110). However, this belief was contradicted ®rst by the MD
simulations [92] of bcc Lennard-Jones crystals, and by ab initio calculations for the
Al/Al(001) system [93]. In particular, Feibelman [93] showed that a symmetrical
position as in ®gure 6(b) is a favourable saddle-point con®guration, because both the
Al adatoms which are involved in the exchange can retain three covalent bonds in
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Figure 6. Simple exchange and single jump on an fcc(001) surface. The adatom (atom A) is
initially at the fourfold hollow site (see (a)). In the exchange process, atom A pushes
one of the neighbouring surface atoms (atom B) to the saddle point con®guration as
shown in (b). The exchange ends up as in (c), and causes mass transport in the
diagonal direction. On the other hand, the jump process ends as in (d), and causes
mass transport either in the x or in the y direction at each step. Therefore, the jump
mechanism allows the exploration of the complete lattice of adsorption sites, while
the exchange process allows the exploration of only one sublattice, i.e., of the one
containing the sites that can be reached by making only diagonal moves from the
starting point. This fact is the key point in the experimental demonstration of the
occurrence of exchange di� usion on Pt/Pt(001) and Ir/Ir(001) [94, 95].



such a con®guration. It has been demonstrated by FIM experiments that exchange

di� usion is dominant for Pt/Pt(001) and Ir/Ir(001) [94, 95]. However, not in all

fcc(001) metals is exchange di� usion more likely than jump di� usion. To a good

approximation, the latter mechanism has barriers close to one sixth of the bulk metal
cohesive energy [96]. Both semiempirical [87, 58] and ab initio [97] calculations

predict that in Cu and Ag the activation barrier for jump is lower than the one for

exchange, while on 5d metals (Ir, Pt, Au) the opposite is true. A ®rst explanation of

this ®nding was related to the surface tensile stress, which is higher in 5d metals [97].

This explanation has been criticized in [98], where it has been pointed out that the

barrier for exchange is lower on those transition metal surfaces where the energy gain

due to the substrate relaxation of the adatom is greater. On the other hand, tensile
stress calculations along the exchange di� usion path show that lower exchange

barriers do not correspond in general to larger tensile stress reductions [98].

Multiple-exchange and jump-exchange processes Ð The occurrence of multiple

exchanges on metal surfaces was ®rst observed in high-temperature simulations of

Cu di� usion on ¯at Cu(001) [99]. Later, multiple exchanges were observed at terraces

of stepped Cu(11m) surfaces (m ˆ 5; 7; 9; . . .) vicinal to Cu(001) [100, 101], and in

other simulations [38, 69, 70, 58] on ¯at (001) and (110) surfaces. In a multiple
exchange (see ®gure 7), the adatom enters the substrate and creates a strain along a

close-packed row. Then an atom in the strained row is ejected above the substrate

thus relieving the strain. The multiple exchanges may involve many atoms, and are

usually characterized by large activation barriers [38]. However, at high tempera-

tures, they become frequent (almost dominant) because the activation barrier is

lowered when the substrate expands and its vibration amplitudes increase [38, 100,

101]. This is even more true at descending steps [39]. The multiple-exchange
processes can be also described in the framework of the Frenkel±Kontorova model

[102]; within this description, mass transport is caused by a solitonic mechanism.

Jump-exchange and exchange-jump processes have been observed in simulations of
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Figure 7. Schematic representation of a double exchange on an fcc(001) surface. Three
atoms are involved in this process. Atom A enters the substrate, and a metastable
con®guration with the three atoms in the substrate is created as in (b). The successful
completion of the process may end up either as in (c) or in (d).



adatom di� usion on Ag, Cu and Au(110) (the latter in the unreconstructed
geometry) [70, 58, 103, 104]. In a jump-exchange (see ®gure 8), the adatom di� uses
®rst along the channel in the ‰110Š direction without stopping in the nearest-
neighbour cell. Then the adatom is pushed (or pulled) along the cross-channel
direction while it is crossing the second saddle point, by one of the atoms of a nearby
close-packed row. In this way, instead of performing a double in-channel jump, the
adatom exchanges with the row atom and stops in the row. At high temperatures,
these correlated events become a considerable fraction of the total exchanges,
especially in Cu [58].

2.2. Tracer and collective di� usion coe� cients
In this section, we consider the case of adparticles moving on an ideal substrate.

The motion of the adparticles is di� usive rather than ballistic because of the
frictional coupling to substrate excitations. The purpose of this section is to de®ne
precisely the two relevant transport coe� cients for surface di� usion: the single-
particle or tracer di� usion coe� cient Dt and the collective or chemical di� usion
coe� cient Dc. For any interacting many-particle system, it is important to make a
distinction between these two. Moreover, we shall introduce two well-known
approximations to the di� usion coe� cients, namely the Dynamical Mean Field
(DMF) theory and the Darken equation. These approximations are discussed in the
framework of the Memory Expansion Method (MEM), which gives a systematic
procedure to develop better and better approximations to the di� usion coe� cients.
The MEM is also a very useful practical tool in numerical simulations or even
experimental measurements of di� usion.

2.2.1. Single-particle (tracer) di� usion
We consider here a system of adparticles in equilibrium with the substrate. This is

the only limit in which the di� usion coe� cients of the adparticles can be de®ned
precisely. In section 2.3 we will discuss approaches to generalize the concept of
di� usion to nonequilibrium systems. The tracer di� usion coe� cient Dt is the relevant
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Figure 8. Schematic representation of the jump exchange ((a1)>(b)) and exchange jump
processes ((a2)>(b2)) on an fcc(110) surface.



transport coe� cient for the simplest case where we can follow the di� usive motion of
each individual adparticle [8]. In this case, Dt is de®ned as

Dt ˆ lim
t>1

1

2Ntd

XN

iˆ1

hjri…t† ¡ ri…0†j2i ˆ lim
t>1

1

2Nd

d

dt

XN

iˆ1

hjri…t† ¡ ri…0†j2i; …8†

where N is the total number of adparticles in the system, d is the spatial dimension
(for surface di� usion d ˆ 2), ri…t† denotes the position of the ith particle at time t,
and h ¢ i is the equilibrium ensemble average. The di� usion coe� cient Dt is well
de®ned only when the asymptotic mean square displacement of each di� using
particle increases linearly with time [105, 106]. Equation (8) is valid for an isotropic
system. The generalization to anisotropic systems is straightforward. In that case,
one can de®ne the corresponding di� usion coe� cient along each principal axis with
the coordinates xi…t† replacing ri…t† in equation (8). There are several alternate forms
of Dt that are useful, and they follow readily from the de®nition in equation (8) [105].
The ®rst is in terms of the velocity autocorrelation function:

Dt ˆ 1

Nd

XN

iˆ1

…1

0

dthvi…t† ¢ vi…0†i: …9†

Equation (9) is known as the Green±Kubo formula [105]. From the Green±Kubo
formula, a third expression for the tracer di� usion coe� cient can be derived as

Dt ˆ º lim
!>0

!2 lim
q>0

1

q2
Ss…q; !†: …10†

This expression relates Dt to the incoherent part of the dynamic structure factor
Ss…q; !†, a quantity of immediate experimental relevance, for example in incoherent
neutron scattering [107], de®ned as

Ss…q; !† ˆ 1

2º

…‡1

¡1
dt exp …¡i!t† 1

N

XN

iˆ1

hexp ‰¡iq ¢ …ri…t† ¡ ri…0††Ši: …11†

Despite the apparent simplicity of the various de®nitions for Dt, there are many
cases where the concept of tracer di� usion must be considered carefully. For many-
particle di� usion, the concept of Dt is useful only if individual particle trajectories
can be identi®ed Ð a task of considerable challenge for experiments. It is also
possible that the substrate participates actively in the di� usion process. For example,
in the exchange mechanism (discussed in section 2.1), an adatom can exchange
position with the substrate particles, meaning that the particle di� using along the
surface is not the original one. Thus the strict de®nition of Dt becomes meaningless.
In more complicated mechanisms involving the concerted motion of a group of
particles, the failure of the concept of tracer di� usion is even more obvious.
However, we can extend the de®nition of Dt to include such cases by interpreting
the coordinate ri…t† that appears in the formulae above as the centre of mass
coordinate of the complex of atoms that is moving at time t.

The tracer di� usion coe� cient Dt can be expressed in terms of the total jump rate

¡ and the jump length distribution pl (see section 2.1.1) in the ideal case where the
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jumps are uncorrelated. In this case, we simply have

Dt ˆ 1

2d
¡

X

l

l2pl ˆ 1

2d
¡hl2i; …12†

where l2 ˆ l · l. If only nearest neighbour jumps are allowed then l2 ˆ a2, where a is
the lattice constant. In general, there will be correlations between the jumps and
there are corrections to the simple formula in equation (12). The generalization to
include the correlation or memory e� ects is discussed in the following section 2.2.3.

Finally, we would like to mention that there are some cases where the adparticles
can have rotational degrees of freedom characterized by a ®nite angular velocity Vi.
This is the case for, e.g., polymers of rigid rodlike molecules on surfaces [108]. For
such cases, the rotational (tracer) di� usion coe� cient Dr can be de®ned by [109]

Dr ˆ lim
t>1

1

2Ntd

XN

iˆ1

hjui…t† ¡ ui…0†j2i; …13†

where ui…t† is a unit vector parallel to the polymer. This de®nition is only valid for
short times Drt ½ 1; for a more general de®nition the corresponding Smoluchowski
equation for rotational Brownian motion must be examined [109]. Another useful
quantity is the angular (tracer) di� usion coe� cient D! de®ned by [108]

D! ˆ
1

Nd

XN

iˆ1

…1

0

dthVi…t† ¢ Vi…0†i: …14†

This quantity can be used to study orientational correlations for rodlike molecules.

2.2.2. Collective di� usion
The collective di� usion coe� cient Dc measures the rate at which long-wavelength

density ¯uctuations of particle (mass) density decay in the system [8, 110, 111, 22].
To this end, consider a system of N interacting particles in d dimensions. We denote
by »…r; t† the coarse grained density at point r and at time t. Coarse graining means
that it is averaged over a time scale around t much larger than the microscopic time
scale. Now we denote the deviation of the density from its equilibrium value as

¯» ˆ »…r; t† ¡ h»i: …15†

This deviation of the local density from the average can be either due to an external
perturbation or just a thermal ¯uctuation.

In the presence of a density deviation, there is a corresponding ¯ux J…r; t† trying
to restore the system to equilibrium. Expanding J…r; t† to lowest order in the gradient
of density (Fick’s ®rst law), we can write:

J…r; t† ˆ ¡Dcr»…r; t†: …16†

The proportionality constant Dc in equation (16) is by de®nition the collective
di� usion coe� cient. Combining the ®rst Fick’s law with the local continuity
equation yields the di� usion equation (Fick’s second law),

@¯»

@t
ˆ r ¢ …Dcr¯»†: …17†

Because we have kept only the lowest order gradient term in the expansion of J…r; t†
in the above derivation, Fick’s law is only valid for small long wavelength density
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¯uctuations. Furthermore, Fick’s law is also restricted to ¯uctuations at time scales
much longer than the time scale required for the coarse graining procedure to obtain

¯». This means that the collective di� usion coe� cient Dc is a measure of the decay of
density ¯uctuations only at very large length and time scales.

It follows directly from Fick’s law [8, 22] that the collective di� usion coe� cient is
related to the dynamical structure factor as

Dc ˆ º

S0

lim
!>0

!2 lim
q>0

1

q2
S…q; !†: …18†

Here the coherent dynamic structure factor S…q; !† is the Fourier transform of the
time-dependent dynamic structure factor S…q; t† de®ned as

S…q; t† ˆ
…

dr
…

dr 0 exp ‰¡iq ¢ …r ¡ r 0†ŠS…r ¡ r 0; t†; …19†

where the density correlation function S…r ¡ r 0; t† is given by

S…r ¡ r 0; t† ˆ
1

N
h¯»…r 0; 0†¯»…r; t†i ˆ

1

N
h¯»…0; 0†¯»…r ¡ r 0; t†i: …20†

Equation (18) can be derived easily since an equation identical to equation (17) holds
also for S…q; !† [22]. The quantity S0 is de®ned by S0 ² S…q ˆ 0; t ˆ 0†. We note
that the q>0 and !>0 limit in equation (18) is a re¯ection of the long wavelength
and slow time variation restrictions for the validity of Fick’s law.

In analogy to the case of tracer di� usion, one can also derive an Kubo±Green
expression for the collective di� usion coe� cient in terms of ¯ux correlations [110]:

Dc ˆ
1

NS0d

…1

0

dthJT…t†JT…0†i; …21†

where JT…t† is the total (velocity) ¯ux given by

JT…t† ˆ
XN

iˆ1

vi…t†: …22†

The term 1=S0 is the so-called thermodynamic factor related to the isothermal
compressibility ÀT of the system as follows [105]:

ÀT ˆ S0

h»ikBT
: …23†

In the grand canonical ensemble, the thermodynamic factor can be expressed also in
terms of the derivative of the chemical potential ·, or the particle number ¯uctuation
h…¢N†2i:

1

S0

ˆ 1

kBT

@·

@ log ³
ˆ hNi

h…¢N†2i
; …24†

where ³ is the surface coverage de®ned as the ratio of the number of adatoms to the
number of adsorption sites. These expressions are quite useful in numerical
calculations, cf. section 3.5. The ¯ux correlation function can be related to the
mean square displacement of the collective co-ordinate R ˆ

P
i ri (which is N times

the co-ordinate of the centre of mass), in analogy to the case of tracer di� usion. It is
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convenient to introduce the centre of mass (CM) di� usion coe� cient DCM de®ned as

DCM ˆ lim
t>1

1

2Ntd
hjR…t† ¡ R…0†j2i: …25†

Comparing this with (8), we recognize that DCM is just N times the tracer di� usion
coe� cient for a ®ctitious single particle located at the CM position R=N. Dc can now
be expressed as the product of two factors:

Dc ˆ 1

S0

DCM : …26†

Equation (26) is a useful starting point for calculation and interpretation of Dc

because it separates Dc into the product of a true dynamical quantity DCM and a
thermodynamic factor 1=S0 which is an equilibrium quantity related to the
isothermal compressibility. Thus, all the dynamical correlations are contained in
DCM . However, DCM itself is also a meaningful physical quantity that can be directly
compared with experimental measurements. An example where the concept of DCM

is useful is the di� usion of an island or a cluster of atoms on a surface. This topic has
received much attention recently [112±119], and will be discussed in section 4.9. Here,
the traditional de®nitions of the collective di� usion coe� cient Dc and tracer
di� usion coe� cient Dt are not appropriate, and the quantity relevant to the
experimental measurement is closely related to DCM .

We have already discussed above the close relationship between the two di� usion
coe� cients DCM and Dc. However, in general, no simple relation exists between
either DCM and Dt, or Dc and Dt. A simple relation between DCM and Dt would
indeed be very useful in practice, because (as we will discuss in the section on MC
simulations) DCM is often much more di� cult to calculate numerically than Dt. A
rather popular approximate expression connecting DCM and Dt is the so-called
Darken equation [8], which reads

Dc ˆ 1

S0

Dt: …27†

By comparing equation (26) and equation (27), it can be easily seen that the Darken
equation simply amounts to approximating DCM by Dt. However, it can be shown
rigorously [110] that the two coe� cients Dt an DCM are equal only for non-
interacting systems. For any realistic interacting system (including even the simple
Langmuir gas model, a lattice-gas model where the only interaction is site exclusion,
see ®gure 9), the validity of this heuristic approximation of setting them equal is not
apparent, and will be discussed later on. Because of that, a more systematic method
for deriving approximations for the di� usion coe� cients is needed, and this is the
subject of the next section.

2.2.3. The memory expansion method
In the last two sections, we have introduced several expressions for the tracer and

collective di� usion coe� cients. Some of them, equations (8), (10) and equations (18),
(25) explicitly involve correlations in the long-time or small-frequency limit. In the
numerical evaluation of di� usion coe� cients, for example through Monte Carlo or
Molecular Dynamics simulations, these expressions present di� culties because of the
decreasing statistics at longer and longer times. Consider for example the co-ordinate

r…t† of a particle, to calculate ¢r2…t† ˆ h‰r…t† ¡ r…0†Š2i. The tracer di� usion coe� cient
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Dt is related to the asymptotic slope of ¢r2…t† at long times. In interacting systems at
low temperatures, for example when ordered phases are present, the asymptotic
regime will be reached at very late times only (see ®gure 10). The time tm when this
happens signals the onset of the hydrodynamic regime. After having reached this
regime, one has to go further for rather long times in order to get a good estimate of
the slope. In many cases, this is cumbersome, essentially because the statistical
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Figure 9. Behaviour of Dt (full line), Dc (dashed line) and DCM (dash-dotted line) as
functions of the coverage ³ for the Langmuir gas on a square lattice. D0 is the
common value of the di� usion coe� cients in the limit ³>0. The Langmuir gas is a
lattice gas model where the only interaction among the particles is site exclusion. In
this case DCM=D0 ˆ 1 ¡ ³ (the DMF is exact for DCM in the Langmuir gas) and
S0 ˆ 1 ¡ ³, so that Dc ˆ D0 independent of ³ [8]. Dt is very well approximated by the
expression Dt=D0 ˆ …1 ¡ ³† ‰1 ¡ 2³=…6 ¡ ³ ¡ 2¹ ‡ ¹³†Š, where ¹ ˆ 10440=9443 [148].
Even in this simple case memory e� ects on Dt are di� erent than those on DCM , and
the Darken equation (27) is not exact.

Figure 10. Typical behaviour of the mean square displacement ¢r2…t†. The onset of the
hydrodynamic regime is at t ˆ tm; at tm the memory expansion also converges. On the
other hand, for a direct evaluation of the di� usion coe� cient via equations (8), (25),
¢r2…t† must be followed for some ta ¾ tm.



accuracy of ¢r2…t† decreases with increasing time for a ®xed number of simulation
runs and particles in the system. Therefore, an accurate calculation of the asymptotic
slope becomes time consuming. The other expressions involving the velocity
correlations, equation (9) (or equation (21)), have contributions mainly from the
short time regime. However, the evaluation of the velocity variable is more
challenging than the position variable, and in the case of Monte Carlo simulations
(see section 3.5.), the velocity is not even well-de®ned. The familiar expression in
equation (12) gives the di� usion coe� cient in terms of the product of jump rate and
the mean square jump length and is widely used. This involves only the short time
physical quantities and is easy to compute. However, as mentioned earlier, it neglects
the correlations (memory e� ects) between successive jumps.

In this section, we present alternate expressions for the di� usion coe� cients
under the name of `Memory Expansion Method’ (MEM) [120, 121]. They provide a
better insight into the connection between the collective and tracer di� usion
coe� cients, the role of interactions, and most importantly, a much better practical
expressions for numerical evaluation of the di� usion coe� cients. The MEM
essentially converges at tm (see ®gure 10), and therefore the calculation of Dt

necessitates much shorter simulations (or gives better statistics from the same
simulation) than the use of the straightforward de®nition through ¢r2…t†. The same
happens for the CM di� usion coe� cient DCM , and this is even more important since,
as we shall see in the following, DCM is not a self-averaging quantity (each simulation
gives a single sample), and therefore is much more di� cult to calculate than Dt.

In the following we ®rst derive the MEM for DCM , and then consider the MEM
for Dt. From equation (25), it turns out that if we de®ne R…t† as

R…t† ˆ
XN

iˆ1

‰ri…t† ¡ ri…0†Š; …28†

in an isotropic 2D system, then DCM is given by

DCM ˆ lim
t>1

1

4Nt
hR2…t†i: …29†

Now divide the time t into P equal intervals of length ½0, so that tp ˆ p½0 and
p ˆ 0; 1; . . . ; P. From these de®nitions it follows that R…t† ˆ R…P½0† ˆ

PP
pˆ1 ¯R…tp†,

where ¯R…tp† ² R…tp† ¡ R…tp¡1†. We remark that, in principle, the observation
interval ½0 can be chosen arbitrarily, but it should be considerably less than tm so
that no information is lost [120, 122]. Having then de®ned the coe� cients

Cc…p½0† ˆ h¯R…½0† ¢ ¯R……p ‡ 1†½0†i; …30†

the following expansion can be obtained:

DCM ˆ 1

4N½0

µ
Cc…0† ‡ 2

X1

pˆ1

Cc…p½0†
¶
: …31†

In the case of Dt, the MEM leads to the analogous expression:

Dt ˆ 1

4N½0

µ
Ct…0† ‡ 2

X1

pˆ1

Ct…p½0†
¶
; …32†
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where

Ct…p½0† ˆ
XN

iˆ1

h¯ri……p ‡ 1†½0† ¢ ¯ri…½0†i; …33†

and ¯ri……p ‡ 1†½0† is the displacement of particle i between times …p ‡ 1†½0 and p½0.
There are several remarks to be made regarding the MEM. First, it should be

noted that it is not a trivial discretization of the integral in equation (9) (or
equation (21)). Rather, for discrete time steps it is a formally exact decomposition
of equations (8) and (25). As such, it o� ers a better way of controlling the approach
to tm than the traditional methods. We note that the MEM is valid for an arbitrary
choice of ½0. Second, MEM allows one to de®ne generalized velocity autocorrelation
functions for cases, where true velocities are not available (e.g., MC simulations).
This facilitates the quantitative study of memory e� ects, as will be demonstrated in
section 4.6.

At low temperatures, the adparticles are localized most of the time about the
adsorption sites with occasional jumps to neighbouring sites. This is the so-called
lattice gas limit. The MEM yields a particularly simple insight into the memory
e� ects and the relation between DCM and Dt in this limit. Consider the ®rst term in
the memory expansion. Each of the N particles in the system is jumping between the
lattice sites at a frequency ¡ ˆ ½¡1, where ½ is the average time interval between
subsequent jumps. This means that, on the average, each of the N particles jumps
once during ½ , so that N jumps are expected in the interval ½ . Now we choose

½0 ˆ ½=N so that on the average, only one particle jumps in the time interval ½0. In
this case, this jump alone (say of a particle i1) contributes to the sums in Cc…0† and
Ct…0† such that

Cc…0† ˆ
XN

iˆ1

‰ri…½0† ¡ ri…0†Š ¢
XN

jˆ1

‰rj…½0† ¡ rj…0†Š
* +

ˆ ‰ri1…½0† ¡ ri1 …0†Š2 ˆ a2; …34†

where a is the lattice spacing and we have assumed jumps to the nearest neighbours
only. The same result can be obtained also for Ct…0†. If the successive jumps of the
adparticles are uncorrelated, then all the other terms in the MEM vanish. Thus, the
approximation of keeping the ®rst term only in the MEM amounts to neglect
memory e� ects or correlations between jumps and has been dubbed the `Dynamical
Mean Field’ (DMF) theory [123, 111, 124, 125]. Thus the DMF expressions for the
di� usion coe� cients in the lattice-gas limit are:

DDMF
CM ˆ DDMF

t ˆ a2¡

4
: …35†

In interacting systems ¡ depends both on the coverage ³ and on the temperature T .
On the other hand, the exact expressions for Dt and Dc can be decomposed as
follows:

DCM ˆ a2¡

4
ft;

Dc ˆ
a2¡

4S0
fc;

…36†
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where ft…³; T† and fc…³; T† are the tracer and collective correlation factors, respect-
ively, which take into account all the memory e� ects. The DMF is recovered at
ft ˆ fc ˆ 1.

Alternatively, the DMF for the lattice gas model can also be derived through the
Mori Projection operator (PO) formalism [126, 127], or using the Greens Function
method [128±130]. The PO technique leads to the following expression [131, 124, 22]:

S…q; !† ˆ 1

º
R S…q†

i! ‡ «0…q† ‡ M…q; i!†

» ¼
; …37†

where Rf ¢ g indicates the real part, «0…q† is the frequency function, and M…q; i!† is
the memory function. «0…q† has a simple expression

«0…q† ˆ a2¡

nsS…q†
X

a
‰1 ¡ exp…iq · a†Š; …38†

where the sum is extended to all NN site vectors a. When the memory function M is
set to zero, applying equation (18) to S…q; !† in equation (37) leads to precisely the
DMF expression for Dc as given in equation (35). A similar expression can be
derived for Dt.

Although equation (37) is more compact than the MEM expansion, the memory
function M…q; i!† involves complicated expressions and is not tractable in practice.
It incorporates all the terms in the MEM beyond the leading term. Neglecting the
memory function, the advantage of equation (37) is that a complete expression for
the dynamic structure factor is given, and not only an expression for the di� usion
coe� cient.

Examples of the behaviour of S0, ¡ and Dc for some lattice-gas models are given
in ®gures 9, 12, 13 and 14, just to show that complex behaviours arise already in
quite simple models. For details, the reader is referred to the original literature (see
the captions of the above ®gures). Other examples, related to a model of O/W(110)
are found in section 4.5.
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Figure 11. Example of the convergence of the memory expansion for the model of
O/W(110) described in section 4.5, at ³ ˆ 0:45 and T ˆ 0:833Tc, in the case of DCM

[121]; the inset shows the partial sums S…t ˆ p½0† ˆ C…0† ‡ 2
Pp

kˆ1 C…k½0† (see
equation (31)).



We wish to make some ®nal comments about the relationship between the exact
values of the di� usion coe� cients, the DMF approximation and the Darken
equation. From the above expressions, it turns out that the DMF amounts to
treating subsequent transitions in the system as if they were independent (this
corresponds to the Markovian limit, i.e. neglecting the memory e� ects). On the
other hand, the Darken equation approximates DCM with Dt and therefore this
amounts to assuming that memory contributions to DCM and to Dt are the same. But
from equations (31) and (32) it follows that memory corrections cannot be the same
for both di� usion coe� cients, so that DCM and Dt must be di� erent for any system
with interparticle interactions. In section 4.6, we shall show through a practical
example how both approximations (DMF and Darken) compare to the `exact’
numerical results. Here we remark only that the DMF (equation (35)), or its
equivalent formulations, have been used rather extensively in connection with
lattice-gas models [125, 122, 132±145] giving always a very good qualitative estimate
of the behaviour of Dc. Very often, also the quantitative agreement can be quite good
[125, 146], especially in the disordered regions of the phase diagram. However, when
ordered phases are present, memory e� ects must be included for a precise evaluation
of Dc and they even in¯uence the e� ective activation barriers [147, 122]. Concerning
Dt, equation (35) is a much poorer approximation, which can be somewhat improved
by multiplying it by the tracer correlation factor of the Langmuir gas [125, 148].
Usually, memory e� ects slow down di� usion which is evident in the fact that the
correlation factors are smaller than unity. In fact, the leading memory e� ect is the
backward correlation of the second jump with respect to the ®rst, since the ®rst jump
leaves a vacancy behind. On the other hand, memory e� ects are stronger on single-
particle motion than on centre-of-mass motion, where most of the above backward
correlations cancel out. This is the reason why the DMF approximation usually
overestimates the di� usion coe� cients, while the Darken equation gives a lower
bound to Dc.

2.3. Nonlinear and nonequilibrium di� usion
2.3.1. Modi®ed diffusion equations

In the previous sections, we have introduced the collective di� usion coe� cient Dc

which is actually a transport coe� cient introduced through the Fick’s law in the
current response of a system to a density gradient, as given in equation (16). For
simplicity of discussion, we have assumed an isotropic system so that Dc is just a
scalar. It is important to note that for the Fick’s law to be valid, one has to be in the
linear regime of vanishingly small density gradient [149]. In general, the total ¯ux Jtot

can be expressed as a complicated functional f of the density function »…r† in the
form

Jtot ˆ f‰»…r†Š ˆ ¡Dcr» ‡ O……r»†2††: …39†

In the limit of a vanishingly small density gradient, one can discard the higher order
terms and recover equation (16), de®ned earlier in the linear regime which then leads
to Fick’s law. We are not aware of any works on the corresponding macroscopic
nonlinear di� usion equation in surface di� usion problems. There exists a general
mesoscopic theory of di� usion for the case where there is a large gradient present
and the microscopic dynamics follows Arrhenius behaviour [150]; however this has
not been applied to surface di� usion, either.
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The special case of a constant gradient in density has been analyzed recently by
Chvoj [151] in the context of a lattice gas model and quasi-chemical approximation.
The basic assumption is that the relaxation of the gradient is a slow process and only
the ¯uctuations around this mean density are taken into account. In this case, the
tracer di� usion coe� cient Dt is always reduced in magnitude proportional to …r»†2

as compared to its equilibrium value. On the other hand, the e� ective Dc is
proportional to the di� erence between the mean jump rates in the direction of r»
and to the opposite direction. It remains positive for repulsive and weakly attractive
interactions in the model, but may become negative in general indicating the need to
include additional nonlinear terms. The analysis indicates that deviations of the
e� ective di� usion coe� cients from their equilibrium values are more pronounced
near the phase boundaries of order-disorder transitions, in accordance with
Boltzmann±Matano analysis [152, 153] (see the following section 2.3.2). The same
case of a constant gradient in density has also been analyzed [154] by the projection
operator techniques developed by Kawasaki [155]. This leads to a general (but
complicated) equation of motion for the dynamic structure function, from which Dc

can be extracted in principle.
Far-from-equilibrium order-disorder dynamics has been studied for lattice-gas

models (see section 3.5) in the mean-®eld approximation [156, 157]. In this
approximation, the occupation variables in the master equation (see equation (98)
in section 3.5) are replaced by their averages. The di� usion in a square lattice-gas
with repulsive interactions has been studied within this approach [157], extracting Dc

via the Boltzmann±Matano analysis, and obtaining, below Tc, a sharp increase of Dc

at ³ > 0:5, in analogy with the equilibrium results shown in ®gure 12.
Another version of the di� usion equation with an additional term of the form

»jr»j has been analyzed extensively in the context of hydrodynamics [158]. However,
perhaps a more relevant equation from the surface di� usion point of view is the case
where there are additional (non-equilibrium) relaxational processes present with a
¯ux term ½r…@J=@t†, leading to the Telegrapher’s equation [159]

@»

@t
‡ ½r

@2»

@t2
ˆ Dr2»; …40†

where ½r is a relaxation time of the ¯ux. Physically, this equation corresponds to
correlated random walk [159]. We are not aware of any analysis of surface di� usion
problems with equation (40), either.

2.3.2. Di� usion and spreading of density pro®les
A classical and widely used method to determine the collective di� usion

coe� cient Dc…»† is based on the so-called Boltzmann±Matano (BM) method
[8, 160, 161]. In the BM method, an inhomogeneous density pro®le »…x; t† is created
at the beginning, and then allowed to spread di� usively. Assuming that the di� usion
equation is valid, an expression for Dc…»† can be obtained from scaled density
pro®les as

Dc…»† ˆ ¡ 1

2t

dx

d» 0

³ ´
»

…»

0

x…» 0† d» 0: …41†

The BM method is based on the assumption that, in the long-time limit, the density
pro®les »…x; t† collapse to a single scaling function when expressed as »…x=

��
t

p
†. If this

condition is truly satis®ed, Dc…»† obtained from equation (41) corresponds to the
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actual di� usion coe� cient in equilibrium. However, the BM method can be taken as
an operational tool and applied to any density pro®le measured from an experiment
or computer simulation, as long as the pro®les change slowly enough that they
exhibit scaling behaviour within some time regime. The corresponding Dc…»† as
determined from equation (41) then corresponds to an e� ective, non-equilibrium
quantity, which may show signi®cant deviations from its equilibrium limit [152, 153].
This is particularly the case for multilayer droplet spreading [162], or cases where
there are density-dependent ordered phases present in the overlayer [163, 164, 152,
153]. Nevertheless, the BM method constitutes a useful tool to measure the e� ects of
nonequilibrium conditions to surface di� usion.

2.3.3. Di� usion during domain growth
A particularly interesting special case on nonequilibrium mass transport occurs

under growth conditions where large density gradients may exist on the surface. In
fact, in practice such conditions occur more often than the small gradient
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Figure 12. Numerical results for S0, ¡ and Dc (the latter in the DMF approximation) in a
square lattice gas model with repulsive NN interactions and Initial Value kinetics
with saddle point interactions (see section 3.5). Details about the model are found in
references [22, 135]. In the top left panel, a schematic picture of the phase diagram is
given. The results are calculated well below the critical temperature, at kBT=J ˆ 1=3
(J is the strength of the NN repulsion). The full dots correspond to no saddle-point
interactions, the open squares and circles correspond to positive and negative saddle
point interactions J 0 respectively (J 0 ˆ §kBT). The general trend is that positive
(repulsive) values of J enhance the average jump rate ¡ and lower S0, i.e., the
compressibility. Positive values of J 0 raise the saddle-point energy, thus depressing ¡;
negative values of J 0 have the opposite e� ect. Both S0 and ¡ show deep minima at
³ ˆ 0:5, corresponding to the perfect ordered phase. The complicated behaviour of
Dc at low temperatures arises from the competition between these e� ects (Dc ˆ ¡=S0

in the DMF approximation).



environment required for the linear equilibrium di� usion analysis. The di� usive
motion of the adatoms clearly plays an important role in these nonequilibrium
processes which include epitaxial growth, catalysis and ordering. The BM method
presented above gives an operational way to compute an e� ective Dc…»† from a set of
density pro®les. The question now is that is it possible under suitable conditions to
de®ne generalized non-equilibrium `di� usion coe� cients’ in the same manner that
we de®ne the equilibrium di� usion coe� cients, in terms of measurable correlation
functions? This question has been addressed in the work of Vattulainen et al. [165],
where the concept of equivalent time scales is introduced. To this end, let us assume
that the system is in a state of nonequilibrium with excess free energy, and relaxing
toward equilibrium in time such as in the case of domain ordering. First we de®ne
the normalized excess energy of the system as

F…T ; t† ˆ Eex…T ; t†
Eex…T ; 0† ; …42†

with Eex…T ; t† de®ned as the excess energy of the system over the equilibrium value,

Eex…T ; t† ˆ E…T ; t† ¡ E…T ; 1†: …43†

The equivalent time regimes at di� erent temperatures are chosen as intervals between
times tn…T† with integer n > 0, which satisfy

F …T ; tn…T†† ˆ exp …¡n†: …44†

Using these ideas, the tracer and collective di� usion coe� cients within each time
interval ‰tn; tn‡1Š can be de®ned as follows. For tracer di� usion, we consider the
quantity

«…n†
¬¬…¯t† ˆ 1

4N

XN

kˆ1

hjr¬;k…tn ‡ ¯t† ¡ r¬;k…tn†j2i …45†

with the time di� erence ¯t restricted to 0 µ ¯t < tn‡1…T† ¡ tn…T†. The e� ective tracer
di� usion (or mobility) coe� cient within the nth time regime D

…n†
T ;¬¬ can be de®ned as

the e� ective slope of «
…n†
¬¬ within the nth time interval.

Similarly, an e� ective collective di� usion (mobility) coe� cient D…n†
c;¬¬ can be

extracted from the spatially and temporally dependent density ¯uctuation correla-
tion function

S…n†…r; r 0; ¯t† ˆ h¯»…r; tn ‡ ¯t†¯»…r 0; tn†i: …46†

In section 4.7, we will demonstrate and discuss the application of this formalism to
non-equilibrium di� usion for a lattice-gas model of O/W(110).

2.3.4. Sliding friction and di� usion
In recent years, the dynamical response of a system to an external driving force

has been the focus of many studies in connection with the problem of boundary
lubrication [166] as well as electrical conductance in type II superconductors [167].
For these systems, the dynamical response is commonly analyzed in term of the
sliding friction ·²². This is de®ned through the relation

hvdi ˆ 1

m·²²
F: …47†
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Thus 1=…m·²²† is the ratio of the induced drift velocity vd to a driving force F. It is
important to note that the sliding friction is a macroscopic transport coe� cient and
is in general di� erent from the microscopic friction that enters the Langevin
description of the stochastic dynamics of the system as discussed in section 3.3.

There is an interesting relation between the sliding friction ·²² and the collective
di� usion constant Dc in the linear regime. Consider a closed system with the driving
force F as arising from an external potential ¿. At equilibrium, the current resulting
from this external driving force is exactly balanced by the current generated by the
density gradient in the opposite direction. Thus from equations (16) and (47) the
following relation results:

Dc ˆ ¡ »

m·²²

@¿

@»
: …48†

The quantity @¿=@» can be related to the isothermal compressibility ÀT through the
well-know relation

@¿

@»
ˆ ¡ 1

»2ÀT
: …49†
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Figure 13. Numerical results for S0, ¡ and Dc (the latter in the DMF approximation) in a
hexagonal lattice gas model with repulsive NN interactions, and Initial Value kinetics
with saddle point interactions (see section 3.5). Details about the model are found in
references [22, 135]. In the top left panel, a schematic picture of the phase diagram is
given. The results are calculated at kBT=J ˆ 1, 0.5 (above the critical temperature Tc)
and 0.25 (below Tc; full, dashed and dash-dotted lines, respectively). J is the strength
of the NN repulsion. At low temperatures, two perfect ordered phases are found at
³ ˆ 1=3 and 2/3. Around these coverages, the behaviour of Dc results from the
competition between a small S0 (low compressibility) and a small jump rate ¡.



The relation between Dc and ·²² as shown in equation (48) has also been derived by
Persson [166] in a slightly di� erent form. It follows from the general theory of linear
response [106] that the sliding friction de®ned in equation (47) can be expressed in
terms of the equilibrium time dependent ¯ux±¯ux correlation function as

1

m·²²
ˆ 1

dNkBT

…1

0

dthJT…t† ¢ JT…0†i: …50†

Combining the results of equations (48) and (50) then leads to the well know Green±
Kubo relation for Dc in equation (21). Thus, the sliding friction is related to the
centre of mass or mobility factor DCM without the thermodynamic factor which
depends only on equilibrium properties of the system.

As discussed previously, in the nonlinear response regime where there exist large
density gradients and the system is strongly inhomogeneous, the di� usion coe� cient
introduced through Fick’s law is not of much use and at best one can only hope to
describe a local region by a density dependent Dc. However, in the context of a
system subject to a large external driving force F, the sliding friction de®ned through
equation (47) remains a perfectly useful concept. For an open system or a system
with a source or a sink, the driven system under a large external force can be in a
steady state with a constant drift velocity and uniform density. The corresponding
sliding friction ·²² would of course depend on the magnitude of the force F itself in
this nonlinear regime. Beyond a critical force Fc, the nature of the di� usion changes
from an activated form with a ®nite di� usion barrier to nonactivated behaviour with
the drift velocity vd rising rapidly in proportion to the driving force.

The whole subject of the dynamical response of an adsorbate layer under a
driving force has received much attention recently. It is relevant for such diverse
areas as boundary lubrication and vortex lattice dynamics in type II superconduc-
tors. The critical force basically determines the static friction between two macro-
scopic blocks with a boundary layer of lubricant in the microscopic contact areas in
the case of boundary lubrication, and the magnitude of the critical current for the
type II superconductors [167]. In the steady drifting state, the nonlinear nature of the
problem gives rise to a rich variety of dynamical phases and the transitions between
them lead to macroscopic observable behaviour such as stick-slip motion. For a
detailed discussion of physics in this rich nonlinear regime, we refer the reader to the
literature [166].

3. Theoretical approaches
This section treats the modern theoretical approaches relevant to the study of

classical surface di� usion. First, we focus on the di� usion of isolated adatoms. In
section 3.1 we introduce the concept of an adiabatic potential. The adiabatic
potential is an equilibrium temperature-dependen t quantity; the adiabatic potential
di� erence between the saddle point along the di� usion path, and the nearby
minimum de®nes the adiabatic barrier EA, which enters the Arrhenius law (equation
(1)). In the limit T>0, EA coincides with the potential energy barrier. This is the
most commonly calculated quantity by di� erent approaches, either ab initio or semi-
empirical. However, the dynamical coupling between the adatom and the substrate is
not contained in the adiabatic potential: in terms of the Arrhenius law, the dynamics
enters the prefactor and not the activation barrier. The exact study of this dynamical
coupling being well outside present possibilities, one has to resort to approximate
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dynamical descriptions. The simplest, and very widely used, is the Transition State
Theory (TST), which is the subject of section 3.2. Even in its most complete form,
TST is not suited for the study of systems where the dynamical coupling is weak.
This drawback can be overcome within the Langevin (Fokker±Planck) approach,
which indeed includes TST as a special limit. The Langevin approach is treated in
section 3.3. A powerful tool for solving the Langevin dynamics is the path integral
approach (section 3.4).

The theoretical study of surface di� usion is often accomplished also by
simulation methods, such as Monte Carlo (MC) and Molecular Dynamics (MD).
These are the subjects of sections 3.5 and 3.6, respectively. MC simulations are more
commonly used when treating dense overlayers within the lattice gas model. This is a
very useful approximation when dealing with di� usion in strongly interacting
systems of many particles, and especially when studying long-wavelength and slowly
decaying density ¯uctuations. The MD technique, on the other hand, solves
explicitly the equations of motion for a given interaction potential. MD simulations
are much more accurate than MC modelling from the microscopic point of view,
but they are limited to much shorter time scales and to much smaller systems, even if
the situation has improved recently due to the development of accelerated MD
methods.

All the theoretical methods described in the following have both merits and
drawbacks, and preference to one or to another is given depending on the issues on
hand and the system under study. Generally, analytic approaches such as Langevin
or Fokker Planck equation yield more insights to the underlying physics at the
expense of some simpli®cations, such as using a model friction to describe the non-
essential degrees of freedom. The simulation methods yield more realistic results for
actual physical systems but give relatively little insight into the basic physics.
Whatever the approach chosen, the theoretical study of surface di� usion is not
simply the accurate determination of static energy barriers as often overemphasized
in the literature. The determination of the di� usion barrier is an important step, and
it is the main factor that controls the magnitude of the di� usion constant at low
temperatures. However, the di� usion coe� cient is intrinsically a dynamic quantity.
While the barrier plays an important role, it is only an equilibrium property. It is the
prefactor which contains the true dynamical information, and the theoretical
challenge is to understand this quantity properly within a dynamical theory. Quite
often, the prefactor is arbitrarily assigned some typical values or evaluated in the
framework of TST. This works reasonably for several systems but misses out some
important physics. In many systems, the frictional coupling with the substrate must
be taken explicitly into account, and memory e� ects cannot be left out. Finally, at
high temperatures, the separation itself of the di� usion coe� cient into prefactor and
exponential factor becomes arbitrary, and the Arrhenius law does not hold.

3.1. Adiabatic surface potentials
3.1.1. Adiabatic surface potential in diffusion

The problem of adparticles moving on a surface is inherently of many-body type
even in the case of a single adparticle due to the coupling of the particle to the
substrate degrees of freedom. The fundamental quantity in surface di� usion is the
so-called adiabatic potential VA…r† experienced by the di� using adparticle. To
properly de®ne this quantity, one has to look into microscopic theories of surface
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di� usion. A convenient way of de®ning VA…r† is to consider an interaction
Hamiltonian of the form [20]:

Ha ˆ Hs ‡ H0 ‡ Hint: …51†

Here Hs is the Hamiltonian for the substrate excitations (phonons and possible
electronic excitations). The adparticle Hamiltonian H0 is given by

H0 ˆ
1

2mA
p2 ‡ VS…r†; …52†

where mA, r, and p denote the mass, position, and momentum of the adparticle, and
VS…r† de®nes the rigid substrate potential. This is de®ned to be the periodic potential
seen by the adparticle when the substrate atoms are in their ideal positions
corresponding to an unperturbed surface. The last term Hint consists of two parts.
It has an average adiabatic component which is due to the (local) relaxation caused
by the presence of an adparticle. Its second component is called the nonadiabatic
part and it is due to the rapid thermal ¯uctuations of the substrate. The adiabatic
potential can then be de®ned as the sum of VS…r† and the adiabatic part of Hint.
Formally, we can write Hint ˆ V…r; R`† where V…r; R`† is a general interaction
potential which contains the substrate co-ordinates R` as well. Then the adiabatic
potential can be de®ned by [20]

exp f¡ ‰VA…r† ¡ VS…r†Šg ² 1

Zs

…
¦` dP` dR` exp f¡ ‰Hs ‡ V…r; R`†Šg; …53†

where Zs is a con®guration integral over the substrate degrees of freedom fP`; R`g:

Zs ˆ
…

¦` dP` dR` exp …¡ Hs†: …54†

As can be seen from the de®nitions above, the adiabatic potential contains all the
static information associated with the inclusion of an adparticle on the substrate.
The absolute minima of VA…r† de®ne the stable equilibrium adsorption sites of the
adparticle, while the saddle points associated with VA…r† control the di� usion rates in
the appropriate limits. More precisely, the adiabatic barrier appearing in the simple
Arrhenius form of di� usion is given by the di� erence between the lowest energy
saddle point and the minimum of VA…r† along a di� usion path connecting any two
neighboring unit cells of the surface.

3.1.2. Calculating the adiabatic potential
The formal equations presented in the previous section for VA…r† are useful for

understanding the physical nature of the adiabatic potential, but are perhaps of less
practical importance. For any system with realistic interactions, the many-body
nature of the various interactions signi®cantly complicates the analytic calculation of
VA…r†. However, given the interaction potentials between the adparticle and the
substrate, and the substrate atoms themselves, it is relatively straightforward to
calculate VA…r† numerically. This can be done by simply ®xing the co-ordinates …x; y†
of the adparticle on the plane along the surface, and bringing it in the vicinity of the
substrate allowing the substrate to fully relax. The stable minimum of the potential
corresponding to a particular point …x; y† on the surface of the adiabatic potential is
given by the value of the vertical co-ordinate z where the force component along the
z axis is zero. Repeating this procedure over a ®ne mesh of points within the periodic
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unit cell maps out the entire potential VA…x; y†. In practice this is done by moving the
adparticle systematically along the x and the y directions in the vicinity of the surface
and allowing its z co-ordinate to relax.

More recently, a number of extremely powerful saddle-point extrapolation
methods have been developed to e� ciently calculate reaction paths for many-body
systems [168±173]. These methods can be readily applied to ®nd saddle points and
the corresponding adiabatic minimum energy paths for di� usion events [170, 174]. In
particular, the so-called Nudged Elastic Band method [169] has proven to be an
e� ective tool to ®nd the path, when initial and ®nal states of the transition are
known.

There are two things that should be noted here regarding the adiabatic potential.
First, the description above applies to the horizontal degrees of freedom only.
Strictly speaking VA…r† is a function of the vertical co-ordinate z as well. For
example, if the vibrational states of the adparticle were to be studied, the adiabatic
potential should be known for all its three variables. If it can be assumed that while
di� using, the motion of the adparticle along the z direction on the surface of VA…r†
consists of small oscillations only, the inclusion of this degree of freedom only
renormalizes the value of the di� usion coe� cient and the e� ective barrier at
intermediate temperatures, but does not a� ect the adiabatic barrier in the low
temperature limit [20]. The second point is that according to its de®nition, VA…r† is a
function of temperature and should be averaged over all substrate excitations at
di� erent temperatures. However, unless the surface undergoes structural transitions,
roughens or is close to its melting point, the dominant factor in determining VA…r†
comes from the direct surface relaxation caused by the adparticle, and the
contribution from the vibrational degrees of freedom can be neglected to a ®rst
degree of approximation.

First Principles MethodsÐThe two main approaches that are commonly used in
the practical calculation of VA…r† are ®rst-principles (or ab initio) methods, and
e� ective interaction potential methods. In the ®rst-principles methods, the force
®elds between all the atoms in the system are calculated quantum-mechanicall y
within some approximations (such as the density functional theory). The great
advantage of these methods is that there are in principle no ®tting parameters, and
almost all cases except for strongly ionic systems and Van der Waals forces can be
dealt with within the same framework. Indeed, there are many examples of ®rst-
principles calculations of adiabatic barriers in the recent literature, both for metallic
systems (see the bibliography related to sections 2.1, 4.2 and 4.3) and for
semiconductors (see for example references [175±178]). In actual electronic structure
calculations [179±181], several approximations have to be made however. The local
density approximation (LDA) is commonly used in bulk calculations, but does not
always work well for surface problems. In the case of metal-on-metal di� usion,
recent comparison between LDA calculations and additional gradient correction
terms included show that the surface energetics is rather sensitive to these corrections
terms, with signi®cant changes in the adiabatic barriers even for simple di� usion
events [182, 183]. The ®rst-principles calculations are also highly demanding in terms
of their numerical complexity, scaling at best proportional to Ne log…Ne† where Ne is
the number of electrons that must be included in the computations . At present, the
practical limitation for most surface-adparticle systems is a system consisting of
about 102 atoms. Also, ®nite-temperature dynamical calculations using, e.g., the
Car±Parrinello [184] method are very costly for the study of di� usion events, the
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typical time scale extending to ¹ 102 ps [185, 186]. At present, the ®rst-principles
calculations are thus limited to rather small systems and simple di� usion events such
as jump and exchange.

E� ective Interaction Potential MethodsÐIn e� ective interaction potential
methods, all the relevant interaction potentials are given explicitly as a function of
the relative positions of the atoms, and the forces are classical, the dynamics
following Newton’s equations of motion. There are many classes of such potentials,
varying in their degree of complexity and relation to ®rst-principles calculations. For
metallic systems, these include the e� ective medium theory [187], the embedded atom
method [188, 189], second-moment tight-binding [190±194] and Finnis±Sinclair
methods [195], and the glue model [196, 197]. For semiconductors, accurate tight-
binding potentials have been developed for example for Si [200]. In these phenom-
enological methods, the total energy of the system has been parametrized in terms of
a nonlinear expression, usually related to the local electronic density around each
atom in the system, and a pair interaction potential. Of all these methods, the
e� ective medium theory is least based on experimental data, with parameters ®tted
to LDA calculations. The main advantage of using classical many-body potentials is
that the MD method is immediately feasible (see section 3.6), allowing the direct
observation of di� usion events at high temperatures [201, 202]. The main drawback
of all the phenomenological potentials is the ®tting procedure which has to be done
and tested for each case separately, and the accuracy of the results is sometimes
questionable. Nevertheless, these methods allow the study of larger systems such as
stepped surfaces or adatom islands, and the observation of direct di� usion events
even up to the ·s time scale by standard MD, and up to the ms time scale using
modern MD acceleration methods [189, 199] (see section 3.6).

The most straightforward way of calculating the adiabatic potential is through
the canonical MD algorithm, where the whole system is coupled to a heat bath at a
constant temperature. The temperature can be reduced in small steps, allowing the
system to relax towards stable equilibrium where VA…r† can be computed as
explained above. A commonly used technique to improve convergence for all the
degrees of freedom is the so-called MD cooling algorithm. In this algorithm, the
initial velocities of the particles in the system are obtained from the Boltzmann
distribution corresponding to a ®nite temperature. In each step, the velocity of each
particle is reduced in magnitude proportional to a component it has in the direction
opposite to the local forces, and eventually the system ends up to a relaxed
con®guration at a very low temperature.

3.2. Transition State Theory and approximate dynamics
In the last section, we have described how the adiabatic di� usion barrier for a

single adatom can be calculated either with ®rst principles methods or through the
use of semi-empirical potentials. However, while the adiabatic barrier is an import-
ant ingredient in determining the magnitude of the di� usion coe� cient, it is only part
of the story. After all, the adiabatic barrier is only an equilibrium quantity, while the
di� usion coe� cient is a transport coe� cient and an explicit dynamic quantity. The
dynamical information is contained in the prefactor, which is determined by how the
adsorbed particle gets enough energy to climb over the barrier and then re-
equilibrate in another well. The exact dynamical description of these activation
and deactivation processes is di� cult and various theoretical approaches are
described in the following sections. Here we will discuss the simplest approach,
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Figure 14. Collective di� usion in a model of a square lattice with two non-equivalent
sublattices, and repulsive interactions of magnitude J . Sites on di� erent sublattices
di� er in adsorption energy by the quantity ¢E. Here the results are reported at ®xed
exp ‰2J=…kBT †Š ˆ 100 and for di� erent values of k ˆ exp ‰¡¢E=…kBT†Š: k ˆ 10¡3, 0.3,
and 1 (corresponding to curves 1, 2 and 3, respectively). The ®gure is reprinted from
[138], with permission from Elsevier Science. From top to bottom: Dc, average jump
rate ¡ and the inverse thermodynamic factor S¡1

0 as functions of the coverage ³. The
di� usion coe� cient shows a steplike increase at a critical coverage ³c, whose value
changes from ³c ˆ 1=3 at J ˆ 0 to ³c ˆ 1=2 at large J. At J ˆ 0 and small k, the
steplike increase takes place when the low-energy sublattice (which contains 1/3 of the
total sites) is completely ®lled, so that the remaining adatoms jump fast on the high-
energy sublattice.



namely the application of the Transition State Theory (TST) to the calculation of the
tracer di� usion coe� cient Dt. It is like the `mean-®eld theory’ in other branches of
many-body physics. It is relatively easy to apply, and has been shown to be fairly
accurate at least for metal on metal systems, and could be expected to be semi-
quantitative for other systems as well.

We ®rst make the Markovian assumption that the adatom can jump only to its
nearest neighbor site and that successive jumps are uncorrelated. This is strictly
correct only in the zero coverage limit when we consider independent adatom
motion, and neglect long jumps and memory e� ects arising from the substrate
excitations (see section 4.6). In this case, as we have seen from equation (12), the
tracer di� usion coe� cient Dt can be easily expressed in terms of the total jump rate ¡
as

Dt ˆ
1

4
¡ a2: …55†

Thus the task of calculating Dt is reduced to that of calculating the total jump rate ¡,
which is connected to the directional jump rate ® by ¡ ˆ ns®, where ns is the number
of equivalent saddle points from a given minimum. The jump rate is just a special
case of a general rate of chemical reaction for which TST was developed [203, 16].

In order to apply TST one has to de®ne a reaction co-ordinate x and a dividing
surface (see ®gure 15). The reaction co-ordinate can be de®ned following the
minimum energy path from one adsorption site to another through the saddle point.
The conventional choice for the TST dividing surface is the hypersurface perpendi-
cular to the unstable mode at the saddle point. Let us choose x ˆ 0 as the dividing
surface containing the saddle point separating the two neighbouring wells. In the
simplest form of TST, the rate ® can be expressed as the ratio of two partition
functions

® ˆ kBT

h

Zs

Z0
: …56†

Here Z0 is the partition function for the well region and Zs is a partition function for
the saddle point region restricted to the hypersurface x ˆ 0 separating the two wells,
such that the reaction co-ordinate x with negative curvature at the saddle point is
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Figure 15. Left panel: periodic adiabatic potential VA…x; y†. Right panel: contour plot of
VA…x; y†. The minima in A and B are connected by the reaction path (solid line)
through the saddle point S. The dividing surface is perpendicular to the reaction path
in S (dashed line).



excluded from the integration. Equation (56) is often explicitly written in terms of the
energy change EA and the entropy change ¢S between the minimum and the saddle
point, i.e. in the form

® ˆ kBT

h
exp

¢S

kB

³ ´
exp ¡ EA

kBT

³ ´
: …57†

It is also possible to formulate a more general form for the TST in terms of the ¯ux
at the saddle point [204, 16]. At low temperatures, the harmonic approximation is
often used to further simplify the TST. In this case, equation (56) simpli®es to the
following expression

® ˆ 1

2º

¦i!0…i†
¦i!s…i†

exp ¡ EA

kBT

³ ´
: …58†

Here, !s…i† and !0…i† are the stable normal mode frequencies around the saddle point
and the well, respectively, in the presence of the adatom. Equation (58) results in an
explicit Arrhenius form for the jump rate ® which is often assumed in phenomen-
ological analysis. The prefactor can be interpreted as an attempt frequency, although
it cannot be equated simply to the vibrational frequency of the adatom in the
potential well. Calculations of prefactors in the TST framework are found for
example in references [87, 210, 41].

The TST relies essentially on two assumptions:

(i) each particle crossing the dividing surface is assumed not to return back to
the well of departure (i.e., recrossings are neglected);

(ii) the coupling with the thermal bath is strong enough to ensure that the energy
distribution of the escaping particles at the dividing surface is a Boltzmann
distribution.

As will be detailed in the sections below, the real dynamics is controlled by the
rate of exchange of energy of the adatom reaction co-ordinate degree of freedom
with the excitations of the rest of the system, such as phonons and electronic
excitations. This results in both ¯uctuations in energy and frictional damping of the
motion of the adatom. In the limit of high friction, recrossing of the dividing surface
would lead to a reduction in the real rate from the TST expression. From this point
of view, an improved TST rate may sometimes be obtained by choosing a non-
conventional dividing surface in such a way to minimize recrossings. In the other
limit of low friction, the assumption of an equilibrium distribution for the escaping
particles at the dividing surface is no longer satis®ed [205], and this again leads to a
reduction of the rate. In addition, long jumps can occur in this low friction limit, and
long jumps are not accounted for in the simplest version of TST theory.

It is important to note that in practice, the accuracy of the TST rate depends also
on the level of coarse graining, i.e., on which part of the system phase space is
explicitly taken into account in evaluating the partition functions Zs and Z0, and
which part is treated as a heat bath represented by a frictional coupling to the rest of
the system. Consider ®rst the simplest case where only the reaction co-ordinate
degree of freedom is explicitly included in the phase space and the rest of the system
is represented by a frictional coupling ² to the adatom. It was demonstrated in the
pioneering work of Kramers [206] treating the one dimensional problem of escape of
a particle from a well that the TST gives an upper limit to the true rate, and it only
works reasonably well in the region of intermediate friction. When only a subset of
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the co-ordinates of the full system is taken into account, then the validity of the TST
depends again on the value of the frictional coupling coming from the heat bath
variables that are not explicitly included, with best results in the intermediate friction
regime.

When the full phase space of all the co-ordinates and momenta of the di� using
particle and of the substrate are included explicitly, it is commonly stated [16] that
assumption (i) is practically satis®ed, because recrossings tend to become negligible.
This has been demonstrated explicitly [207] for a model of one reaction co-ordinate
coupled to a system of harmonic phonons. In this case, the TST is shown to give the
same results as the exact Kramers theory when the coupling of the reaction co-
ordinate to the phonons is su� ciently strong. For a more realistic multidimensional
TST, the absence of recrossing corrections probably requires the further condition
that the curvatures at the saddle point in all directions other than the reaction path
be steep enough for the harmonic approximation to be a good one. This can be
qualitatively understood in the sense that if the bottleneck at the saddle point is
narrow, there is little chance for a trajectory to recross.

As far as assumption (ii) is concerned, the situation cannot be helped by the
inclusion of all degrees of freedom in TST. When the e� ective coupling of
the reaction co-ordinate to the excitations of the rest of the system is weak, the
distribution of the energy of the di� using particle at the TST surface will deviate
from the Boltzmann distribution, being larger on lower energies [205], and there will
still be corrections to the TST result. In section 3.3 we shall compare the TST rate to
the exact rate in models which can be exactly solved.

Some of the corrections to TST such as recrossings of the dividing surface and
long jumps can be numerically implemented to obtain a jump rate that goes beyond
the TST [208, 64, 209]. For example, dynamical corrections to the TST have been
calculated for adatom di� usion on fcc …100† and …111† metal surfaces [208, 209]. In
this framework, the conventional TST rate is calculated; after that, the adatom is
started from the dividing surface with a (positive) velocity extracted from the
Maxwell distribution. The trajectory of the adatom is propagated by Molecular
Dynamics techniques, and recrossings and long jumps are counted. The recrossing
percentage is then subtracted from the TST rate, and the distribution of the long
jumps is employed for correcting the di� usion coe� cient. While this procedure
corrects for the recrossing of the adatom over the dividing surface, it still cannot
account for the fact that in low-friction systems, the assumption of an underlying
Boltzmann distribution for the energy of the escaping particles is incorrect, and the
escape rate is lower than the TST estimate also because of the breaking down of the
assumption (ii).

3.3. Langevin and Fokker±Planck equation approaches
A treatment of surface di� usion including all the adsorbate and substrate degrees

of freedom is at the moment limited to systems being described by model or semi-
empirical interparticle interactions. An entirely ab initio calculation is still out of
reach at this point. Even with the approximation of using a model interaction
potential between adatoms, full MD calculations include only the vibrational and
translational degrees of freedom. The nonadiabati c coupling terms to the electronic
excitations are still missing. Moreover, microscopically detailed MD simulations are
perhaps not very illuminating with regard to the fundamental main issues in surface
di� usion. A simpler approach is to ®rst integrate out all the substrate degrees of
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freedom in the equations of motion, leaving only an e� ective stochastic equation for
the adatoms. This is precisely the content of the Langevin equation approach for
the study of surface di� usion. In this equation for the adatoms, the e� ects of the
substrate appear in two places. First, there is the adiabatic potential, which is just the
free energy of the entire system with the position of the adatoms treated as ®xed
parameters, see section 3.1. In addition, a ¯uctuating frictional force arises from the
non-adiabatic coupling of the adatom to the electronic and vibrational excitations of
the substrate. This coupling leads to ¯uctuations in the energy and momentum of the
adatom as well as to damping of its motion. Being a stochastic equation, the
Langevin equation has an in®nite number of solutions given a ®xed boundary
condition. This is too much information for most applications. It can be useful to
focus instead on a distribution function P…r; v; t† that describes these solutions. The
distribution function P…r; v; t† satis®es a Fokker±Planck equation that is equivalent
to the Langevin equation for the evaluation of physical averages.

The Langevin equation (and equivalently the Fokker±Planck equation) is often
used in a phenomenological approach, with the choice of a model adiabatic potential
and a friction parameter ². However, it could be derived rigorously from a
microscopic Hamiltonian that incorporates the full degrees of freedom of the
adsorbate and the substrate. Here we outline an approach using the Mori PO
formalism [126, 127, 211±214, 20]. The basic idea is to separate the variables into two
Hilbert spaces, one for the `slow degrees’ of freedom denoted by r to be treated
explicitly, and one for the `fast’ degrees of freedom to be integrated out. For the
surface di� usion problem, an obvious choice is to identify all adatom variables as
slow variables and the substrate variables as the fast degrees of freedom. However,
this need not be the only choice. For example, the ®rst few layers of the substrate or
alternatively an active cluster of substrate atoms surrounding the adatoms can be
included in the slow variables to be treated explicitly. For the purpose of simplicity in
our discussion, we will identify the two Hilbert spaces as adatom space and the
substrate space. We can de®ne a projection operator P into the adatom space and
the orthogonal projection operator Q such that P ‡ Q ˆ 1. By projecting out
substrate degrees of freedom, we end up with a generalized Langevin equation
(GLE) of motion for the adatoms of the form

m�rr…t† ˆ ¡
…t

¡1
§…t; t 0†r…t 0† dt 0 ¡ rV…r…t†† ‡ f…t†: …59†

Here r…t† stands for a multicomponent vector with dimension Nd, where N is the
number of adparticles and d is the physical dimension of the system. V…r† is a general
potential including both the adiabatic potential exerted by the substrate on the
adsorbate as well as the interactions between the adatoms. From the PO formalism,
it can be shown rigorously [214] that V…r† is exactly the free energy of the adsorption
system including averages over all the substrate electronic and vibrational excitations
while the adatom co-ordinates r are treated as ®xed parameters.

Equation (59) serves to illustrate a number of important points concerning the
motion of the adatom. First, the damping of the adatom motion is characterized by a
memory function §…t; t 0† that depends in a complicated manner on the past history
of the motion of the adsorbate and the substrate. Second, it is not surprising to see
that the damping in the form of the memory function § and the ¯uctuating force f
are not independent since they both arise from the coupling to the substrate
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excitations. These quantities are related by the second ¯uctuation±dissipation
theorem [215]:

§…t; t 0† ˆ 1

kBT
hf…t† ¢ f…t 0†i: …60†

This expression is deceptively simple. In fact, the ¯uctuating force is the component
of the total force projected out of the adatom space and has a complicated time
dependence given by

f…t† ˆ ¡ exp …¡iQLQt†rV…r†; …61†

where L is the Liouville operator. In the literature, the memory function is often
approximated in the form of a simple exponential decay [16, 216, 217]. This is often
an oversimpli®cation in surface di� usion, since in the important short and
intermediate time regimes, the memory function can deviate strongly from the
asymptotic exponential form [218, 251], as will be shown in section 4.6. The only
simple form of the memory function occurs in the Markovian limit when the time
scale for the substrate motion is much faster than the adatom time scale. In this case,
the memory function can be approximated by a delta function

§…t; t 0† ¹ 2²¯…t ¡ t 0†: …62†

This is equivalent to assuming that the ¯uctuating forces f…t† at di� erent times are
uncorrelated. This is also commonly referred to as the `white noise’ because of the
independence on the frequency of the Fourier transform of §…t; t 0†. In this limit, the
damping reduces to the familiar Langevin form ²vi that depends only on the
instantaneous velocity of the adatom.

3.3.1. The Markovian (white noise) case
While the GLE illustrates the important concepts and provides a separation of

the adiabatic and non-adiabatic e� ects, the memory function § and the ¯uctuating
force f are complicated objects and not practical for actual computation. Thus, the
GLE amounts to a reformulation of the many-particle problem in di� erent terms. In
practice, the damping is often approximated by the Markovian form characterized
by a phenomenological friction constant. In this case, the Langevin equation
becomes a powerful tool to study surface di� usion beyond the simple TST theory.
To simplify the discussion, we consider now the di� usion of an isolated particle on a
periodic substrate. The Langevin equation then takes the form

m
dv
dt

ˆ ¡m²v ‡ F…r† ‡ f…t†; …63†

where f…t† is white noise, related to the friction by the ¯uctuation±dissipation
theorem. The probability density in phase space P…r; v; t† obeys the corresponding
Fokker±Planck (or Klein±Kramers) equation [18], which can be written as:

@P

@t
ˆ ¡v ¢ @P

@r
¡ F…r†

m
¢ @P

@v
‡ ²

@

@v
¢ vP ‡ kBT

m

@P

@v

³ ´
; …64†

where F…r† is the adiabatic force, derived from the adiabatic potential VA…r† [211±
213, 20], and ² is the friction per unit mass. The adiabatic potential is periodic along
the surface plane. The above model can be solved in di� erent ways: the matrix
continued fraction method (MCFM) [18], the path-integral method [173], and
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through a direct simulation [21]. In the MCFM, one starts from the Fokker±Planck
equation or the Langevin equation and develops a solution for the dynamic structure
factor [219] on an orthonormal basis: plane waves for the spatial part and Hermite
functions for the velocity part. The coe� cients of the expansion are then related by a
tridiagonal recurrence relation which is solved in terms of matrix continued
fractions. From the dynamic structure factor, in addition to the usual correlation
functions (mean-square displacement, velocity correlation function), also the jump
rate and the probability distribution of the jump lengths can be extracted [48]. The
MCFM is extremely precise and fast when dealing with one-dimensional problems
for barriers µ 20 kBT , and for any practical friction of interest in surface di� usion.
On the other hand, the MCFM becomes cumbersome for higher barriers and much
more di� cult [55] for 2D problems even at medium-low barriers. In 3D, the MCFM
is of no practical use.

The qualitative features of the Langevin description of di� usion can be easily
understood in the case of one-dimensional di� usion in a periodic potential of lattice
spacing a. Four di� erent regimes can be singled out [45, 219]:

(i) at low T , when exp ‰¡EA=…kBT†Š ½ 1 and ²=¸osc < kBT=EA, we have long-
jump di� usion;

(ii) at low T , when exp ‰¡EA=…kBT†Š ½ 1 and ²=¸osc > kBT=EA, we have single-
jump di� usion;

(iii) at high T , when exp ‰¡EA=…kBT†Š º 1 and ² <
�����������������������
kBT=…ma2†

p
, we have liquid-

like low-friction di� usion;
(iv) at high T , when exp ‰¡EA=…kBT†Š º 1 and ² >

�����������������������
kBT=…ma2†

p
we have liquid-

like high-friction di� usion.

These di� usion regimes can be easily identi®ed by inspecting the behaviour of the
mean square displacement ¢x2…t† ˆ h‰x…t† ¡ x…0†Š2i as a function of time [219]. In
regime (i), ¢x2…t† displays several oscillations, before accommodating on the
asymptotic straight line; in regime (ii) no oscillations are evident, but a pronounced
slope change in between the short and long-time behaviour is present; in regime (iii)

¢x2…t† starts o� parabolic, retains the parabolic behaviour on time scales of the
order of 1=², and then accommodates on a straight line; in regime (iv) the initial
parabolic behaviour is restricted to very short times and ¢x2…t† becomes readily
rectilinear.

In ®gure 16 we compare the total jump rate ¡ as a function of ² as calculated by
the exact solution of the Fokker±Planck equation to the constant result from TST,
rTST ˆ 2¸osc exp ‰¡EA=…kBT†Š. TST gives an overestimate of the rate which is
acceptable when ² is in the so-called turnover regime, where ¡ reaches a maximum.

Concerning the behaviour of long-jump probabilities [48], a logarithmic plot of
pn as a function of n (see ®gure 17) reveals an exponential decay at large n, whereas
the decay at small n is even faster. This can be explained by the fact that, at low
friction, the energy distribution of the particles which are escaping from the well of
departure is not the Maxwell distribution, but it contains more low-energy particles.
The latter are more likely retrapped in the ®rst wells; after crossing the ®rst wells, the
energy distribution of the jumping particles becomes Maxwell-like, and the prob-
ability of retrapping scales exponentially.

The Langevin equation has also been applied to the study of surface di� usion in
higher dimensions. For the 2D case, the xy coupling of the potential causes a
reduction of the long-jump probabilities [53, 55, 56, 59, 220]. This does not mean
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Figure 16. Ratio ¡=¡TST for di� usion in a 1D cosine potential as a function of ²=!osc. The
circles correspond to exact numerical results obtained by the MCFM; the full and
dashed lines) which practically coincide in the ®gure) are results from the Kramers
approximation of equation (67). The full and open circles correspond to barriers
EA ˆ 4kBT and 16kBT , respectively.

Figure 17. Probability pl of a long jump of length l for di� usion in a 1D cosine potential at
a barrier EA ˆ 4kBT and ²=!osc ˆ 0:05 (full circles) and ²=!osc ˆ 0:5 (open circles).
The results are obtained by the MCFM.



that long jumps are forbidden, but simply that their probability is reduced relative to
the 1D situation, due to an enhancement of retrapping. This reduction takes place

both in geometries where minima and saddle points are not on the same straight line

(see reference [53] for a Langevin simulation of a bcc(110) crystal surface) and in

geometries where minima and saddle points are on the same line, but the saddles are

narrower than the minima (see reference [56], where di� usion in a 2D egg-carton

potential is studied). Indeed, the coupling may induce localization in conservative

systems at energies above the saddle-point energy [221]. This enhancement of
retrapping has also important consequences on the behaviour of the di� usion

coe� cient as a function of the friction ² in the low friction limit. For 1D (or

decoupled) potentials, Dt / ²¡1 [18, 47] at low friction. This arises from the fact that

while the rate of escape from a well is proportional to ², the mean square jump

distance varies as ²¡2. For the 2D coupled potentials with enhanced retrapping,

Dt / ²¡¬, with ¬ < 1 [53, 56]. The exponent ¬ is not universal but depends on the
precise topology of the potential.

At high and intermediate friction there are some useful analytical formulae for

the di� usion coe� cient and the jump rate. Here we recall them and discuss their

limits of validity; for their derivation the reader can refer to the original literature

[18, 222, 55]. In the limit of high friction ²>1 (physically, when ²¡1 is by far the

shortest time scale in the system), an accurate multidimensional approximation to

the di� usion coe� cient is available [33, 55]. Here we write it for di� usion along the x
direction in the case of a 2D rectangular lattice with spacings a and b along the x and

y directions, respectively (the generalization to 3D and to position-dependent friction

is straightforward) :
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barriers EA ˆ 4kBT (full circles) and EA ˆ 16kBT (open circles) as a function of
²=!osc. The results are obtained by the MCFM.



Dxx
t ˆ a2kBT

m²

„ b

0
dy

„ a

0
dx exp ‰ VA…r†Š

© ª¡1

„ b

0
dy

„ a

0
dx exp ‰¡ VA…r†Š

: …65†

In 2D and 3D, this expression is very precise when the di� usion trajectories are
dominated by rectilinear paths; in 1D it reduces to the following expression, which is
exact in the high-friction limit [222]:

Dt ˆ
a2kBT

m²

…a

0

dx exp ‰¡ VA…x†Š
…a

0

dx exp ‰ VA…x†Š
» ¼¡1

: …66†

These formulae nicely extrapolate between the high-temperature Brownian limit and
the low-temperature Arrhenius behaviour [20]. On the other hand, at intermediate
friction (² 0 ¸osc) and high barriers, the following expression for the directional jump
rate ® holds [223]:

® ˆ 1

2º

¦i!0…i†
¦i!s…i†

����������������

1 ‡ ²2

4!2
s

s

¡ ²

2!s

" #
exp …¡ EA†: …67†

Here, !s…i† and !0…i† are the stable normal mode frequencies around the saddle point
and the well respectively in the presence of the adatom, and !s is the unstable
frequency at the saddle point. In 1D, the total jump rate ¡ ˆ 2® from equation (67)
is compared to exact numerical results in ®gure 16. From equation (67), an estimate
for the di� usion coe� cient Dt is given by Dt ˆ ®nsa

2, where ns is the number of
equivalent saddle points from a minimum position. Equation (67) takes into account
recrossings and reduces formally to the TST expression in equation (58) at ²>0;
however in this limit TST is not valid due to the breaking down of the thermal
equilibrium assumption (see the discussion in section 3.2). Analytical approxima-
tions at low friction do exist; they are however much more complicated (because one
has to evaluate both the jump rate and the mean-square jump length to obtain Dt)
and restricted to the 1D case, but valid in the whole range ¸osc 0 ². These formulae
can be found in references [46, 48, 49, 173]. A simple formula for Dt has been given
by Risken [18]:

Dt ’ ºkBT

2m²
exp ¡ EA

kBT

³ ´
; …68†

but its validity is restricted to extremely low friction [47], which is probably not
common in surface di� usion. For a derivation of this formula, see also section 3.4.
Finally, a quite accurate interpolation formula between high and low friction in 1D
is given in reference [224].

The Langevin equation has also been applied to study di� usion of adatoms at
®nite coverages, i.e., in dense overlayers; in this case, the equation is usually solved
by direct simulation [225, 226, 108, 227]; the interaction between each adsorbed
particle and the substrate is treated within the Langevin scheme, while the inter-
actions among di� using particles are treated in full Hamiltonian description.

Finally, we remark that the Langevin model with white noise is quite often
inadequate to describe quantitatively surface di� usion in real systems. It has been
shown that for homoepitaxial di� usion of a Lennard±Jones particle on a Lennard±
Jones crystal [211±213], the above simple description is quantitatively adequate
(provided that a position-dependent friction is adopted) essentially because the
adsorbed particles vibrates on a somewhat slower scale than the substrate, due to
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its weaker bonding. On the other hand, when the mass of the particle is lighter, or the
adparticle-substrat e interaction is sti� er, the simple white-noise Langevin description
is inadequate, and memory e� ects (see section 4.6) must be taken into account [218].

In the case of light adsorbates, when the typical time scale of the adatom is faster
than the substrate vibrations, also a treatment based on di� erent kinetic equations,
like the Boltzmann equation with Bhatnagar±Gross±Krook (BGK) [228, 229]
collision kernel [230, 51, 231, 232] may be considered an useful approximation. In
the BGK scheme, the di� using particle su� ers well-separated collisions with the
thermal bath phonons. These collisions happen at a frequency ²c, and after each
collision the particle thermalizes suddenly its velocity. In the limit ²c>1, both the
Langevin approach and BGK reduce to the same Smoluchowski equation [18]. At
low ²c, the two models give quantitatively di� erent results, but no qualitatively
di� erent behaviour arises [231, 232]. The main di� erence between the Langevin and
the BGK model is thus in the physical interpretation of ² (and ²c): in the Langevin
model ² is a friction, which ensures a gradual energy transfer from the adparticle to
the substrate; in the BGK model, ²c is a collision frequency, and all collisions are
strong, so that each of them thermalizes the kinetic energy. At large ² and ²c, both
physical interpretations coincide.

3.3.2. Evaluation of the friction
The friction ² in the Langevin model is often taken as a phenomenological

parameter which is ®tted to experimental or simulation data. However, it is possible
to give an estimate of the friction from the energy exchange between the adatom and
the substrate. A very nice discussion of this subject is given in Chapter 8 of the recent
book by Persson [166]; here we report only the main points.

The energy exchange between the adatom and the substrate occurs via phononic
and electronic excitations. Thus ² can be written as a sum of an electronic and a
phononic contribution:

² ˆ ²el ‡ ²ph: …69†

We remark that the use of a static phononic friction is valid when the substrate
vibrates much faster than the adatom; otherwise a memory (function) friction is
needed. On the other hand, the typical time scale of electronic excitations is so fast
that memory e� ects are always negligible in electronic friction.

The electronic contribution ²el can be measured via the resistivity change ¢» in a
thin ®lm (substrate) induced by the adsorbed layer; at low coverages the following
relation holds [233]:

²el ˆ n2
ee2ds

m³
¢»; …70†

where ne is the electron density per unit volume in the substrate, and ds is the
thickness of the substrate. On the other hand, a theoretical evaluation of ²el has been
done for covalent and van der Waals bonding. The formulae are reported in
references [166, 233]. Here we remark that, for example, in the case of Ag/Ag, both
the experimental (via equation (70)) and theoretical (via the formula for covalent
bonding) evaluations of ²el give an estimate of ²el ’ 1010 s¡1. For other adsorption
systems, ²el can be in the range of 108-1012 s¡1 [166, 233] (for example, ranging from

²el ˆ 2:8 £ 108 s¡1 for C2H6/Ag to ²el ˆ 1:0 £ 1012 s¡1 for H/Ni).
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The phononic contribution ²ph can be evaluated in the framework of the elastic
continuum model [234]

²ph ˆ 3m

8º»0

!osc

cT

³ ´3

!osc; …71†

where »0 is the mass density of the substrate and cT is the transverse sound velocity.
Equation (71) gives ²ph ’ 1012 s¡1; this estimate is supported also by MD results
of Ag/Ag(110) di� usion [58] at temperatures up to 600 K, and MD simulations of
Cu/Cu(111) and Cu/Cu(100) systems [237]. Therefore, at least for Ag/Ag di� usion,

²ph is larger than ²el by two orders of magnitude. Other analytical and MD estimates
of ²ph ’ 1012 s¡1 have been given also for homoepitaxial di� usion on Cu and Au
surfaces [58, 235, 236].

In MD simulations (see section 3.6), the friction can be estimated by di� erent
methods. A very simple one [58, 72, 237] works in the limit of low temperatures. In
that limit, the adatom is localized at the well bottom in such a way that it is exploring
essentially the harmonic part of the well. The method is based on the calculation of
the velocity-velocity correlation function Z…t†, and to its ®tting with the expression
deriving from the solution of the Fokker±Planck equation in a harmonic well:

Z…t† ˆ kBT

2m
exp …¡²t=2† cos …!t†: …72†

More generally, one can calculate the force±force ¯uctuation correlation function,
whose time integral is proportional to the static friction [235, 237]. However, this
method includes all dissipation in the system and gives results slightly di� erent from
those obtained from the correlation function. In the low temperature (and high
friction) limit, the the di� usion is controlled by the saddle point value of the friction
[20] which could be estimated numerically from a MD simulation.

3.4. Path integral approach to stochastic processes and application to surface
di� usion

3.4.1. Path integral formalism for stochastic events
We discussed the Langevin equation in the previous section and showed that it

can be derived from a microscopic Hamiltonian by integrating out the substrate
degrees of freedom, resulting in the explicit separation of adiabatic and non-
adiabatic e� ects. Given a set of boundary conditions, the Langevin equation does
not have a unique solution like the ordinary equations of motion. Instead, at thermal
equilibrium, each trajectory compatible with the boundary condition occurs with a
given probability, and physical quantities are obtained through the average of all
these stochastic trajectories distributed according to a ®xed probability distribution
function. It has been shown [238, 173] that this stochastic averaging over the
di� erent trajectories can also be cast in the path integral formalism more familiar
in the context of quantum mechanical averaging. According to this path integral
formulation, the probability for an arbitrary path connecting the initial and the ®nal
con®gurations is determined by a positive-de®nite `action’ functional. Again, we
limit the discussion here to the simple case of Markovian limit where the friction per
unit mass can be characterized by a simple constant ². The extension to the more
general case is straightforward.

Following the notation of the last section, we denote by r…t† the multicomponent
vector representing the co-ordinate of all the atoms that are explicitly treated. The
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remaining degrees of freedom are integrated out and represented by a friction
parameter ². In the path integral formalism for stochastic motion, the probability
functional P‰r…t†Š for the system to take a particular path r…t† starting at …r1; v1; t1†
and ending at …r2; v2; t2† is given by the following expression [239]:

P‰r…t†Š ˆ 1

N
exp ¡

…t2

t1

dt

4m²kBT
m�rr ‡ m² _rr ‡ rV…r†‰ Š2

» ¼
fr…t2†ˆr2 ;_rr…t2†ˆv2g

fr…t1†ˆr1 ;_rr…t1†ˆv1g:

…73†

The total joint probability for the particle to be in …r1; v1† at t ˆ t1 and in …r2; v2† at
t ˆ t2 is then given by the path (functional) integral [238, 240]

P r1; v1; t1jr2; v2; t2… † ˆ
…

‰DrŠP‰r…t†Š: …74†

The functional integral is over all the possible paths r…t† subject to the boundary
conditions …r; _rr† ˆ …r1; v1† at t ˆ t1 and …r2; v2† at t ˆ t2. The integrand in
equation (74) though complicated, is positive-de®nite and thus the numerical
implementation of the path integral in equation (74) is well-de®ned. When compared
with the Langevin equation as described in equation (63), it can be seen that the
combination m�rr ‡ m² _rr ‡ rV…r†‰ Š is exactly the random force f…t† acting on the
system due to coupling to the background. Thus, the path integral can be understood
simply from the fact that f…t† obeys a Gaussian distribution with a self-correlation
function related to the friction ² through the ¯uctuation-dissipation theorem.

The path integral formalism provides an alternative method to a direct solution
of the Langevin or Fokker±Planck equation. All physical quantities can be
calculated as path integrals with the distribution function P‰r…t†Š in equation (74)
as the weighting factor. In the study of quantum systems, many powerful methods
have been developed for the evaluation of path integrals. Moreover, as demonstrated
below, the extremal path contribution to the path integral completely dominates at
low temperatures and provides a powerful practical way of approaching stochastic
events and the evaluation of di� usion coe� cients. Recently, Dellago et al. [241] have
applied a similar idea of path sampling to evaluate the rate of simple activated
events. Instead of having an explicit functional with an analytic action as in
equation (73), they employed a numerical approach using `shooting’ and `wiggling’
algorithms to generate paths that are distributed according to the proper governing
equation. They demonstrated that this path sampling method provides a practical
way of evaluating the rates of activated processes without the approximations and
limitations of the transition state theory. It is particularly powerful when the
knowledge of the transition state is not known a priori.

3.4.2. Minimal path approximation
For a direct numerical or analytic simulation study or solution of the Langevin

equation for activated events, the most challenging regime is at low temperatures
such that the thermal energy kBT is much less than the activation barrier. In this
case, the adatoms spend most of the time performing localized motion around an
adsorption site and the jump events to neighbouring sites are of rare occurrence. A
direct simulation study becomes increasingly impractical while analytic solutions of
the Langevin equation are limited to one or two dimensional problems only.
Unfortunately, this is also the regime of most experimental interest. In this section,
we will show that this is precisely the regime in which the evaluation of the path

Collective and single particle di� usion 999



integral discussed in the previous section can be simpli®ed, owing to the dominance
of the path that minimizes the action in equation (74) at low temperatures and/or
low friction.

To illustrate this more clearly, we introduce a length scale r0, an energy scale V0 and

a time scale ½0 ²
����������������
mr2

0=V0

q
² 1=!0 for the system under consideration. Equation (74)

can then be expressed in terms of dimensionless, scaled variables in the form

P r1; v1; t1jr2; v2; t2… † ˆ
…

‰DrŠ exp ¡ 1

¶
I

» ¼
; …75†

with the boundary conditions fr…t1† ˆ r1; _rr…t1† ˆ v1g and fr…t2† ˆ r2; _rr…t2† ˆ v2g,
and an e� ective action

I ˆ
…t2

t1

dt �rr…t† ‡ ²*_rr…t† ‡ rV…r…t††‰ Š2; …76†

where r; t; V are all in their dimensionless form. The dimensionless friction parameter

²* is de®ned as ²* ² ²=!0, and the dimensionless parameter ¶ appearing in the
exponential of the functional integrand is ¶ ˆ 4²*kBT=V0.

Clearly, in the low temperature …kBT ½ V0† and/or underdamped regime
(²* ½ 1), ¶ ½ 1, the minimal path of the functional I ‰r…t†Š carries the dominant
weight in the path integration of equation (75). Since the action functional I is
positive-de®nite, deviations from the minimal path carry negligible contribution to
the path integral in equation (75). The minimal path is determined from the
condition that the functional derivative ¯I=¯r…t† vanishes. This leads to the standard
Euler equations for the minimal path

�zz…t† ¡ ²* _zz…t† ‡ z ¢ rrV…r…t†† ˆ 0; …77†

z…t† ˆ �rr…t† ‡ ²*_rr…t† ‡ rV…r…t††: …78†

Here, all the quantities are in dimensionless form.
An obvious solution to equation (77) is z ˆ 0, i.e.

�rrd…t† ‡ ²*_rrd…t† ‡ rV…rd…t†† ˆ 0: …79†

Solving equation (79) with boundary conditions rd…tM† ˆ rM; _rrd…tM† ˆ vM and

rd…tf † ˆ rf ; _rrd…tf † ˆ vf , for tM < tf , a minimal path rd…t† is obtained that charac-
terizes deactivation from state …rM; vM† at tM to state …rf ; vf † at tf . Along this path

rd…t† the energy of the system decreases monotonously and the action I ˆ
„ tf
tM

dt±…t†2

assumes its minimal value Id ˆ 0.
A less obvious solution to the minimal path equation (77) is that z ˆ 2²*_rra, i.e.

�rra…t† ¡ ²*_rra…t† ‡ rV…ra…t†† ˆ 0: …80†

Solving equation (80) with boundary conditions ra…ti† ˆ ri; _rra…ti† ˆ vi and ra…tM† ˆ
rM; _rra…tM† ˆ vM , for ti < tM , a minimal path ra…t† is obtained that characterizes
activation from …ri; vi† at ti to …rM; vM† at tM. Along this path ra…t† the energy of the
system increases monotonously and the action I ˆ

„ tM
ti

dt±…t†2 assumes its minimal
value Ia ˆ 4²*…EM ¡ Ei†, where EM ˆ v2

M=2 ‡ V…rM† and Ei ˆ v2
i =2 ‡ V…ri† are the

energies in dimensionless form at times tM and ti, respectively.
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Sewing the activation path ra…t† and deactivation path rd…t† together, we obtain
the following joint probability, within the minimal path approximation,

P ri; vi; tijrM ; vM; tM jrf ; vf ; tf

¡ ¢
ˆ ¯…ri ¡ ra…tijM††¯…vi ¡ _rra…tijM†† exp ¡…Ia ‡ Id†=¶‰ Š

£ ¯…rf ¡ rd…tf jM††¯…vf ¡ _rrd…tf jM††: …81†

Here … ¢ jM† indicates that the activation path ra…t† and the deactivation path rd…t†
are joined at tM, i.e., ra…tM† ˆ rd…tM† ˆ rM and _rra…tM† ˆ _rrd…tM† ˆ vM. This three-
con®guration joint probability can be used, together with the initial (equilibrium or
non-equilibrium) distribution P…ri; vi†, to conveniently evaluate the expectation
values of physical observables. This minimal path approach is accurate at low
temperatures and thus complements the existing methods that work better at higher
temperatures. For a temperature not low enough, ¯uctuations around the minimal
paths can be sampled numerically to improve the computation. As an example, this
approach has been applied to study the activation of a cluster of three Lennard±
Jones particles over a narrow passage from one stable state to another in a two
dimensional external potential [242]. With moderate numerical e� orts, this formal-
ism holds the promise of being able to identify the relevant activation mechanisms
and to locate new stable/metastable states.

3.4.3. Application to surface di� usion
In the previous section, we have demonstrated that the path integral at low

temperatures and/or low friction is dominated by the minimal path, and can be well
approximated by the minimal path contributions only. In this section, we want to
demonstrate the application of the minimal path approximation (MPA) to the study
of surface di� usion and show that for simple low dimensional systems, the known
analytical results discussed in the previous section through the solution of the
Langevin equation are recovered in the MPA. We have seen in the last section that
the minimal path can be decomposed into an activation part and a deactivation part.
The activation part of the minimal path is useful for escaping the well in the absence
of any knowledge about the saddle point. However, for many systems the saddle
point location is known. They can also be determined by a number of powerful
methods such as the Nudged Elastic Band and Eigenvector Following methods [169,
168, 172, 171]. For this reason, we will only consider the deactivation part of the
minimal path in our discussion here.

To illustrate the application of the MPA, we consider a simple model system of a
single particle moving in a 1D adiabatic potential V…x† ˆ 1 ¡ cos…2ºx† (in dimen-
sionless form with energy scale V0 and length scale r0), while the coupling with the
substrate vibrational (and electronic) degrees of freedom is characterized by a
friction ². The deactivation part of the minimal path equation (79) becomes a
simple Newtonian equation with friction,

�xx…t† ‡ ²* _xx…t† ‡ V 0…x…t†† ˆ 0: …82†

Integration of this mimimal path equation produces a ®nal con®guration …xf ; vf †
from a given initial con®guration …xi; vi†. From equation (82), it follows easily that
the scaled energy e…x† ˆ …1=2† _xx2 ‡ V…x† decreases monotonously along the minimal
path as

de…x†
dt

ˆ ¡²* _xx2 ˆ ¡2²*‰e…x† ¡ V…x†Š: …83†
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Thus, starting from the initial location at xi with initial energy ei ˆ …1=2†v2
i ‡ V…xi†,

the energy e…x† at a new location x following the minimal path is

e…x† ¡ ei ˆ ¡²*

…x

xi

dx…§†
�������������������������������
2…e…x† ¡ V…x††

p
; …84†

for e; ei ¶ 2 (i.e. when the actual energy E is larger than or equal to the di� usion
barrier Vb ˆ 2V0). Here the § sign corresponds to _xx > 0 or _xx < 0. Once e…x† drops
below the value of 2, i.e., when the energy falls below the barrier, the minimal path in
equation (82) starts to oscillate between two potential maxima with decreasing
energy and eventually settles down to the well bottom, corresponding to the
deactivation of the particle. Therefore, following the minimal path (vi > 0) from
¡1=2 < xi < 1=2 to the point x where e…x† ˆ 2, we conclude that the ®nal position
xf ˆ l ˆ ‰x ‡ 0:5Š [i.e., …l ¡ 1=2† < x < …l ‡ 1=2†] with the ®nal velocity vf ˆ 0
(noting that we are interested in tf ˆ 1). Thus, we have

xf ˆ l; vf ˆ 0 for el…xi† < ei < el‡1…xi†; …85†

where the energy boundary

el ˆ 2 ‡ ²*

… l¡1=2‡0

xi

dx
������������������������������
2‰e…x† ¡ V…x†Š

p
; …86†

is determined by solving equation (84) for an e…x† that satis®es the boundary
conditions e…x ˆ xi† ˆ el and e…x ˆ l ¡ 1=2 ‡ 0† ˆ 2.

The solution of these di� erent minimal paths corresponds nicely to the physical
picture that at low temperatures, the actual motion of the adatom can be
characterized by series of uncorrelated jumps of variable lengths. To evaluate the
di� usion coe� cient for this system, we can use the formula

Dt ˆ
…1

0

dt v…0†v…t†h i dt: …87†

Applying the conclusion about the ®nal con®guration xf for a given ei in
equation (85), we can decompose the expression for Dt in equation (87) into
contributions from di� erent minimal paths of various jump lengths l as

Dt ˆ 4d2

Z½0

…1=2

¡1=2

dxi

X1

lˆ1

…el‡1

el

dei exp ¡ V0ei

kBT

³ ´
l: …88†

Here the initial position xi, velocity vi and energy ei ˆ …1=2†v2
i ‡ V…xi† are all in

dimensionless form. In the underdamped and overdamped limits corresponding to

²* ½; 1 or ²* ¾ 1, analytical results can be obtained. First, we examine the
underdamped limit. In this case, the energy of the particle in transit di� ers only
slightly from the threshold value of e ˆ 2 (i.e. E ˆ 2V0). Thus, to lowest order in ²*,
we can replace the energy function e…x† in the integrand of equation (86) by the
constant value of 2, leading to the expression

el ˆ 2 ‡ ²*

… l¡1=2

xi

dx
��������������������������������
2‰1 ‡ cos…2ºx†Š

p
: …89†

For l ¶ 1,

el ˆ 2 ‡ …l ¡ 1† 4

º
²* ‡ ²*

2

º
…1 ¡ sin ºxi†: …90†
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Substitution of the result for el in equation (90) into the expression for Dt in
equation (88) yields the following result valid for ²* ½ 1:

Dt ˆ 4d2kBT

Z½0V0

…1=2

¡1=2

dxi

X1

lˆ1

exp ¡ V0el

kBT

³ ´
¡ exp ¡ V0el‡1

kBT

³ ´µ ¶
l

ˆ 4d2kBT

Z½0V0
exp ¡ 2V0

kBT

³ ´
1 ¡ exp ¡ 4V0²*

ºkBT

³ ´µ ¶¡1

g…²*; V0; T†; …91†

with

g…²*; V0; T† ˆ
…1=2

¡1=2

dxi exp ¡ V0²*

kBT

2

º
…1 ¡ sin ºxi†

µ ¶
: …92†

This expression for Dt can be simpli®ed even further in the `low friction’ limit when
we have ²* ½ kBT=V0. In this case, equation (91) simpli®es to

Dt ˆ ºkBT

2m²*!0
exp ¡ 2V0

kBT

³ ´
; …93†

which coincides with the result of equation (68) derived by other means as discussed
section 3.3. Note that in the low temperature regime s.t. V0 ¾ kBT , the condition for
the low friction limit required for the validity of equation (93) is much more stringent
than the mere requirement of underdamping, i.e. ²* ½ 1.

In the high friction regime, when ²* ¾ 1, the minimal path approximation again
recovers the known analytical results. For ²* ¾ 1, energy dissipates rapidly along
the minimal path at a rate / ²* (see equation (83)). It is clear that el ¶ e1 ‡ O…²*†
for l ˆ 2; 3; . . . and therefore activated jumps are dominantly over one single barrier.
Furthermore, considering a minimal path starting from ¡1=2 < xi < 1=2 with
vi > 0, e1…xi† strongly depends on the initial position xi and, in fact, the minimal
path can reach the next well region x > 1=2 only when xi is very close to the barrier
x ˆ 1=2. Approximating the potential around x ˆ 1=2 as V…x† ˆ 2 ‡ 2º2…x ¡ 1=2†2,
the minimal path solution of equation (82) gives

e1 ˆ 2 ‡ 1
2
…²*†2…xi ¡ 1=2†2; …94†

where the energy e…x† (in the minimal path solution) satis®es the boundary
conditions e…x ˆ xi† ˆ e1 and e…x ˆ 1=2 ‡ 0† ˆ 2. In this, integrating equation (88),
the di� usion coe� cient is found to be

Dt ˆ !2
0

2º²*
exp ¡ 2V0

kBT

³ ´
; …95†

which is in exact agreement with the low-T limit of equation (66).
These results demonstrate the power of the MPA in the path integral approach.

The MPA is valid over a wide range of values of temperature and friction of
experimental interest. Moreover, it can be generalized in a straightforward manner
to the multidimensional case. In this case, the sampling over the initial states …xi; vi†
can be achieved through Monte Carlo methods, while the integration of the
deactivation path starting from …xi; vi† is straightforward. Thus, the MPA is
complementary to the direct simulation approach. It works precisely in the regime
where a direct simulation study is no longer feasible. The rare activation problem at
low temperatures is avoided by starting at or above the threshold energy at the
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saddle point and sampling the neighborhood of these starting points. The MPA
approach is a direct generalization of the transition state theory (TST) including all
the dynamical corrections [243]. The e� ect of recrossings or long jumps are
automatically included in the minimal paths. Unlike TST which breaks down at
low friction, the sampling over the initial states in equation (79) is over all the states
whether they start from the given well or on transit from another well. Thus the use
of the Boltzmann distribution is correct even in the low friction limit. These minimal
paths also are similar to the `transition paths’ discussed by Jacobsen et al. [71] in a
di� erent approach.

3.5. Monte Carlo simulations
Di� usion in dense adsorbed layers is often treated by means of lattice gas models.

Apart from some analytical results obtained in the framework of the Frenkel±
Kontorova model [244, 245], when dealing with 2D interacting systems, one has to
resort to simulations [225, 226, 246], or to treat simpli®ed models, such as the lattice
gas. The lattice-gas description of di� usion is reasonable when the temperature is
su� ciently low so that the di� using particles are well localized about adsorption sites
which form an ordered array, and move among these sites with a rate which is much
smaller than the typical vibrational frequencies (see section 2.1). Lattice-gas models
are most commonly studied by Monte Carlo (MC) simulations. Here we treat the
lattice-gas models addressing the following issues: How does one choose the
microscopic rates to mimic surface di� usion within the lattice gas description? Given
the knowledge of the rates of the di� erent microscopic processes, how can one
extract information about the collective and the tracer di� usion coe� cients in a MC
simulation?

3.5.1. Lattice gas model and transition algorithms
Let us consider a 2D lattice of M sites, labelled by vectors l. The lattice is ®lled by

N particles (for simplicity we assume that they are identical), with coverage

³ ˆ N=M. To each site, an occupation variable nl is associated; if site exclusion is
assumed, each nl can be either 0 or 1 and

P
nl ˆ N. The particles interact with each

other with a Hamiltonian H which depends on the full con®guration of the lattice
gas n ˆ fnlg:

H…n† ˆ 1

2

X

l1;l2

Vl1;l2 nl1 nl2 ‡ 1

6

X

l1 ;l2 ;l3

Vl1;l2;l3 nl1 nl2nl3 ‡ ¢ ¢ ¢ ; …96†

where two-body and many-body interaction terms can be included. If translational
invariance is assumed on the lattice, Vl1;l2 depends only on l1 ¡ l2.

The lattice gas Hamiltonian has been widely used in the literature to study both
static and dynamic properties. For static properties such as critical exponents and
phase transition boundaries, the lattice Hamiltonian as de®ned in equation (96)
completely determines the problem. All one needs to do is to perform averages over a
canonical or grand canonical distribution of con®gurations as de®ned by the
Hamiltonian. This can be achieved either analytically (usually through some
approximate schemes) or numerically through MC simulations which generate a
set of con®gurations that satis®es the correct distribution. In particular, the rules for
generating a new con®guration from an existing one, i.e. the dynamical algorithms,
can be rather arbitrary as long as the correct distribution is obtained. For the
evaluation of dynamical properties such as di� usion coe� cients or any other time
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dependent correlation functions, the situation is entirely di� erent, since the lattice
gas Hamiltonian itself does not provide the dynamics for the transition from one
state to another. We thus need to consider the speci®c form for the transition
probabilities. Provided that detailed balance is satis®ed, all choices give the same
equilibrium properties, but they do not give the same dynamical properties. This
point will be further discussed in section 4.5, with a speci®c example.

The evolution of the lattice gas can be described by a master equation. The
master equation generally applies to the evolution of the probability P…n; t† of being
in a given con®guration n at time t, and it reads:

dP…n; t†
dt

ˆ
X

n 0

w…n 0>n†P…n 0; t† ¡ w…n>n 0†P…n; t†‰ Š; …97†

where the w are the transition rates among di� erent con®gurations. The master
equation can be also written in terms of the time evolution of the occupation
variables (see reference [22] for a detailed derivation) as

dnl

dt
ˆ

X

a
…nl‡a ¡ nl†wl;l‡a…n†; …98†

where wl;l‡a…n† is the transition rate between con®guration n and the con®guration n 0

in which the occupations of the two sites l and l ‡ a have been exchanged with each
other (i.e. when the particle in l moves to l ‡ a or vice versa). A su� cient condition
for the attainment of equilibrium in the lattice gas is the detailed balance condition

wl;l‡a…n† exp ‰¡ H…n†Š ˆ wl‡a;l…n 0† exp ‰¡ H…n 0†Š: …99†

We remark again that the detailed balance condition does not uniquely determine
the transition rates. Di� erent choices are still possible; and the best choice would
follow from a detailed knowledge of the microscopic dynamics of the system. This is
in most cases not known in detail, because it is extremely di� cult to calculate (or
measure) barriers and prefactors for all processes in a dense overlayer with
complicated interactions; therefore transition rates based on simple model assump-
tions are very often employed. This point must be always kept in mind when
comparing lattice-gas calculations or simulations with experimental data. The
transition rates w…n>n 0† are usually written in terms of the transition probabilities
p…n; n 0†; the latter are related to the transition rates by

w…n>n 0† ˆ p…n; n 0†
½0

; …100†

where ½0 is the elementary time unit in the system, chosen usually as the inverse of the
frequency of the fastest possible transition in the system. Possible choices for p are:

° The Metropolis algorithm [247, 21]:

p…n; n 0† ˆ
1; if ¯E µ 0;

exp …¡ ¯E†; otherwise;

»
…101†

where ¯E ˆ E…n 0† ¡ E…n†.
° The Kawasaki algorithm [248, 21]:

p…n; n 0† ˆ
1

1 ‡ exp … ¯E† : …102†
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° The initial value algorithm [249, 17, 250]: This is the perhaps the simplest form
such that p…n; n 0† only depends on the initial con®guration of the system
before the transition (i.e. before the jump of the particle in our case). This
algorithm assumes that lateral interactions among particles act only at the
minima and not at saddle points [22]. The transition probability is written as

p…n; n 0† ˆ p0 exp … Ei†; …103†

where Ei is the energy shift of the jumping particle in its initial position due to
lateral interactions, and p0 ˆ exp …¡ Emax†, where Emax is the maximum of
such energy shifts. A microscopic justi®cation of this algorithm can be given
when the lateral interactions are among nearest-neighbour sites only [22]. In
other cases, the use of this algorithm can be questionable, and it may be
necessary to explicitly introduce the e� ect of the interactions at the saddle
point [146, 135].

° The transition dynamics algorithm (TDA) [20]: an intermediate state I is
introduced and the transition probability of each jump is written as a product
of two probabilities as

p…n; n 0† ˆ p…n; I† p…I ; n 0†: …104†

In this algorithm, the transition actually proceeds by two successive steps via
the intermediate state with energy E…I†. Here E…I† has to be chosen to describe
a jump attempt of a particle in the presence of interactions as realistically as
possible without violating the detailed balance condition. One possible choice
is [20]

E…I† ˆ ‰E…n† ‡ E…n 0†Š
2

‡ ¢; …105†

where the quantity ¢ characterizes the activation barrier in the zero coverage
limit due to the substrate±adatom interaction (i.e. from the adiabatic
potential). For the rates p…n; I† and p…I ; n 0† any suitable form such as the
Metropolis form satisfying the condition of detailed balance is applicable. The
instantaneous activation barrier EA for a jump attempt from a ®lled to a vacant
site is then given by

EA ˆ max…E…I† ¡ E…n†; E…n 0† ¡ E…n†; 0†: …106†

This illustrates the main advantage of the TDA method. Namely, for ¢ > 0
the rates can be of activated form also for jumps with E…n† ¶ E…n 0†. Satisfying
the detailed balance [20], the TDA method therefore complements the
description of the Hamiltonian given by equation (96).

In section 4.5, we will discuss in the framework of the MC simulation study of
speci®c systems how the results for the di� usion coe� cient explicitly depend on the
choice of the transition algorithm. This is especially important for systems near a
phase transition where the di� erent choice of dynamic algorithms lead to vastly
di� erent critical temperature dependence for the di� usion coe� cients [251, 252]. In
this case, proper conclusions can only be drawn when the transition algorithm
chosen bears a close relation to the real dynamics as for example determined by a
comparison with, e.g. MD simulations.
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3.5.2. Implementation of Monte Carlo simulations for surface di� usion studies
A very convenient way of calculating di� usion coe� cients and correlation

functions in lattice-gas models relies on MC simulations. As underlined in section
3.5.1, analytical or semi-analytical methods become untractable in many cases. On

the other hand, the MC method is a general tool for solving the master equation, and
to calculate both static equilibrium properties and time-dependent correlation
functions.

In the following we outline two methods based on MC simulations. The standard
method originates from equilibrium statistical mechanics, and has its starting point
in the development of the Metropolis algorithm [247, 21], followed later by several

variants. They have been successfully adapted to the study of kinetic problems. The
second method [112] is known as time-dependent Monte Carlo [253], and even

though it was developed at ®rst for the study of equilibrium properties [254], it is
now often used for simulations of crystal growth and related problems [253, 300].

All MC methods are based on the general theory of Markov chains [21]. With
numerical applications in mind, we assume that the state space of the lattice gas S is

discrete and of ®nite size jSj. The transitions from any state n to any other state n 0

are determined by the individual transition probabilities p…n; n 0†. A Markov chain is

then speci®ed by the following two ingredients:

(i) The initial distribution «. Thus, the process will be de®ned in such a way that

the probability density of state n at time t ˆ 0 is «…n†.
(ii) The transition probabilities p…n; n 0†. They give the conditional probability of

being in con®guration n 0 at a given step in the chain, knowing that the system

was in n at the step immediately before.

These two conditions imply that the state of the system at the next step depends

only on the state of the system at present, and not on the previous steps. This method
of generating the con®gurations then yields a distribution function P…n; t† as

obtained from the solution of the master equation in equation (97). A su� cient
condition to attain equilibrium in the Markov chain is the detailed balance condition
(see equation (99)), which can be easily written for the transition probabilities. Static

equilibrium properties and time-correlation functions can be measured by sampling
the di� erent con®gurations in the chain, once the chain itself has reached the
stationary state.

In the standard implementation of the MC simulation method for dynamical
studies, at each step in the simulation a particle is randomly chosen. Then a

jump direction is chosen, again randomly, towards a possible arrival site (which
characterizes a possible ®nal con®guration n 0). If the arrival site is full, the move is
rejected. If it is empty, the probability p…n; n 0† is computed and a random number

0 < r µ 1 is generated. If r µ p…n; n 0†, the move is accepted, otherwise it is rejected.
Each MC step corresponds to one unit of time whose precise microscopic interpret-
ation is di� cult. For simple systems, this can be compared with, say, MD

calculations to map out the dynamics back to real time. The main shortcoming of
this implementation of MC simulations becomes evident at low temperatures, where
the transition probabilities can become very small. Thus, a large part of the

computing time is spent in attempting moves which are rejected, so that the
generation of statistically independent con®gurations is very time-consuming. This

drawback may be overcome by a MC scheme in which moves are chosen on the basis
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of their a priori probability, so that no moves are rejected [254, 112]. This is the basis
of the so-called time-dependent MC method.

In the time-dependent MC method, consider the system in a con®guration n and
label all the possible transitions n>n 0 to all the possible ®nal states which can be
reached from n, with an index k ˆ 1; . . . ; K . Then, a rate w…n>n 0† is associated to
each of these transitions. The total transition rate W…n† and the partial sums W…n; k†
are built up as

W…n† ˆ
X

n 0

w…n>n 0† ˆ
XK

kˆ1

w…n; k†;

W…n; k† ˆ
Xk

lˆ1

w…n; l†; …107†

with W…n; 0† ˆ 0 by de®nition. A random number r is generated such that
0 < r µ W…n†; if W…n; k ¡ 1† < r µ W…n; k†, then event k is chosen and executed.
In this procedure, detailed balance is satis®ed provided that time is incremented
proportionally to the lifetime ½…n† of the con®guration; the latter is inversely
proportional to its total rate: ½…n† ˆ ½0=W…n†. The actual time increment of the
transition is chosen randomly from the distribution of intervals with decay time ½…n†
[254]. By choosing a variable time step scaled according to the inverse of the
transition probability, the time-dependent MC overcomes the problem of rare
transitions encountered in the standard Monte Carlo method. However, in this
implementation, a large part of the computer time is spent in calculating the total
and partial rates at each simulation step, and in choosing the process to execute. A
very important point is thus to organize the simulation in such a way that these rates
are calculated e� ciently [253], and that the choice of the process is easy. Either
processes are organized in classes ([254], an implementation of this kind for surface
di� usion studies is found in reference [255]), or rates are associated to particles and
grouped by a binary-tree scheme [256, 119]. Thus, when one considers complex
systems, where many di� erent jump processes are possible depending on the
environment of each particle, the advantage of the time-dependent Monte Carlo
over the standard method may be lost. It should also be noted that the method is
useful only at temperatures low as compared to the energy barriers between the
di� erent states.

After the generation of the ensemble of time dependent con®gurations in a
Monte Carlo simulation, one still has a di� erent choice of evaluating the di� usion
coe� cient via the di� erent formulae discussed in section 2.2. Here we outline the
most e� cient strategies to calculate the quantities of interest for surface di� usion in
interacting lattice gases; we focus ®rst on Dt, then on the thermodynamic factor and
®nally on DCM , which is the most di� cult quantity to calculate. The collective
di� usion coe� cient Dc given by the product of the thermodynamic factor and of
DCM (see equation (26)); however it can be directly calculated by di� erent methods,
which are brie¯y outlined in the ®nal part of this section.

Tracer di� usion coe� cient DtÐThe calculation of Dt by MC simulations is not
usually very di� cult, since Dt is a self-averaging quantity: each particle in the lattice
gas is sampled, so that a simulation with N particles gives N samples, and it is easy to
accumulate a good statistics. The simple-minded way to calculate Dt is to monitor
the mean-square displacement ¢r2…t† until the asymptotic linear behaviour is

T. Ala-Nissila et al.1008



reached, say at t ˆ tm (see ®gure 10), and then to numerically calculate the slope of

the linear part of the curve. This implies an accurate sampling of ¢r2…t† for t ¾ tm,

and because of that, some problems may arise within this approach. In fact, it must

be kept in mind that given a ®xed number of simulations in a system of a given ®xed
size, the statistical accuracy of ¢r2…t† decreases with t, so that the numerical estimate

of the asymptotic slope may become di� cult. In the case of Dt this is not usually a

very serious drawback, since a huge statistics can be accumulated rather easily.

However, when strong memory e� ects come into play, tm may be large, and the

sampling at t ¾ tm may be di� cult. In this case, there is a noticeable advantage in

using the MEM which converges at t ¹ tm [120]. As shown in the following, this is

much more important when calculating DCM .
Thermodynamic factorÐThe thermodynamic factor is e� ciently calculated by

means of grand-canonica l simulations; there the chemical potential · is ®xed, and the

number of particles (and the coverage ³) ¯uctuates. By simulating at di� erent ·, the

curve ·…³† can be constructed, and the thermodynamic factor is then obtained by

numerical derivation. This method works fairly well in almost all cases. However,

when approaching phase boundaries, ·…³† may become a rapidly varying function;

moreover, the statistical accuracy of each single point in ·…³† decreases due to the
onset of long time correlations in the system. In this case, it may be very di� cult to

have a reliable estimate of the numerical derivative, and it may be convenient to

monitor directly, again in grand-canonical simulations, the mean square ¯uctuation

h…¢N†2i of the particle number, which is directly related to the thermodynamic

factor by equation (24). Also canonical simulations (i.e. at ®xed particle number) can

be used to calculate the thermodynamic factor. One possibility [250] is to single out a

part of the simulation box (usually a square, say of size ` at the centre of the box of
size LB), and to monitor particle-number ¯uctuations in this part. At given `, this

method however converges very slowly with LB [121]. This means a waste of

computer time to reach a good numerical accuracy (see ®gure 19). Reasonable
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Figure 19. Thermodynamic factor ¹ ˆ 1=S0 versus the simulation box size LB using the
canonical simulation method where a probe system of size l £ l (l ˆ 30 here) is
embedded in a larger system of size LB £ LB. This example [121] is for the model of
O/W(110) described in section 3.5., at ³ ˆ 0:45 and T ˆ 2:14Tc. The convergence of
the results is seen at LB ’ 200. Grand canonical simulations on the other hand
converge already at LB ˆ 30 to the value represented by the dashed line.



numerical accuracy in this canonical method can only be reached for LB ¾ `, while

grand-canonical simulations already give comparable results for a system of total

size `. However, there exists a very e� cient method in the canonical ensemble which

can be easily used. It is based on the direct evaluation of S0 as S0 ˆ limq>0 S…q†
using simple and e� cient Fast Fourier transform (see section 2.2.2).

Centre-of-mass di� usion coe� cient DCMÐThe centre-of-mass di� usion coe� cient

DCM is not a self-averaging quantity: even if all atomic displacements contribute to

DCM (so that memory e� ects partially cancel out and become weaker than in the case

of Dt) each simulation for a system of N particles gives a single sample, and therefore

several simulations are necessary to achieve a reasonable statistical accuracy. On the

contrary, for Dt a single simulation on a su� ciently large sample is usually su� cient.
This explains why the numerical calculation of DCM is very often cumbersome, and

the direct estimation of the asymptotic slope of ¢r2…t† is di� cult, even if memory

e� ects in DCM are usually weaker that in Dt. Because of that, the use of the MEM is

highly recommended.

Other methods: direct evaluation of DcÐAlternative methods allow a direct

evaluation of Dc without calculating the thermodynamic factor and DCM separately.

The advantage of these methods is that Dc can be calculated directly from standard
canonical simulations. The disadvantage is that (as explained in the following) it is

much more di� cult to reach the same numerical accuracy as in the `indirect’ methods

with the memory expansion, because the direct methods need the evaluation of

asymptotic slopes, and the numerical evaluation of limits. However, these direct

methods are well suited to explore the behaviour beyond the hydrodynamic limit, up

to wavelengths close to the size of the lattice itself, and to mimic rather closely the

real experimental situations. The direct methods can be divided into two classes:
equilibrium and non-equilibrium methods. The equilibrium methods are based on

the numerical computation of the characteristic function S…q; t† (equation (19)) and

on the ®tting of its asymptotic exponential decay with time in the hydrodynamic

limit [257]. Here, two limits must be performed: a small q limit, in order to reach the

hydrodynamic regime of long distances, and a long-time limit in order to single out

the asymptotic decay. The non-equilibrium methods are based on the monitoring of

the decay of an initial pro®le, which can be either sinusoidal [258] or step-like [405,
259, 260, 152, 153]. In order to estimate the equilibrium Dc by non-equilibrium

methods, the initial perturbation should be su� ciently smooth to be treated within

the linear-response regime. The sinusoidal pro®le is to be preferred with this respect

since it is smoother than the step-like pro®le. The latter however mimics some typical

experimental con®gurations, and can be treated also within the Boltzmann±Matano

analysis [8]. The analysis of the decay of any kind of pro®le involves again both small

q and long-time limits, and moreover a limit to small periodic perturbations for
linear response theory must be applied.

In conclusion, we would like to emphasize that as far as the calculation of Dc is

concerned, the most e� cient method relies on the use of equation (26), with DCM

calculated by the memory expansion, and the thermodynamic factor from the small q

limit of S…q†. For example, the extraction of Dc from the decay of Sc…q;t† requires

larger simulation sizes than the memory expansion for a given accuracy, because
quite small values of q are needed. Moreover, the asymptotic decay in time is reached

on a somewhat longer time scale [257], and this implies longer simulations (and a

larger number of them, since statistical accuracy decreases at long times).
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3.6. Molecular Dynamics methods
In Molecular Dynamics (MD) simulations, the equations of motion for a system

of N atoms are numerically solved [21]. In most of the studies concerning surface
di� usion, classical MD has been employed. In this framework, a potential energy
function V…r1; r2; . . . ; rN† for the atomic cores is built up. The functional form of V is
derived by some approximation within the theory of electronic structure, and it
contains parameters which are ®tted on known properties of the element under study
(semiempirical approach, see section 3.1., and references therein). In this way,
electrons do not appear in the numerical calculations, and the motion of the cores
in the potential V is followed. Because of that, the coupling of the adatom to
phononic excitations is automatically included in MD calculations, while the non-
adiabatic electronic coupling (which is the cause of the electronic contribution to
friction, see section 3.3) is missing. The Newton’s equations of motion read

miai ˆ ¡ @V

@ri
; …108†

where mi and ai are the masses and the accelerations of the particles. In the simplest
scheme, which is actually recommended for the study of surface di� usion, the total
energy is conserved (microcanonical MD), and temperature is calculated as the
average kinetic temperature [21]. In some cases, it is necessary to employ canonical
MD, where the system is coupled to a thermostat. For example, when simulating
growth, the adsorption energy of incoming adatoms must be taken away to avoid the
heating of the system [261]. The thermostat usually alters the di� usive properties of
the adatoms and thus it must be used with considerable care. In fact, the thermostat
must be tuned in such a way that its e� ects on time-dependent correlation functions
are negligible [261, 237]. This is rather easy to achieve in the case of Langevin or
Andersen thermostats [21], where the energy exchange between the system and the
thermostat is controlled by a parameter which has a simple physical meaning (an
additional friction for the Langevin thermostat, a collision frequency for the
Andersen thermostat), and the tuning of the parameter is relatively simple.

Compared to Monte Carlo modelling, MD is much more detailed from the
microscopic point of view and has a natural dynamics arising from the Hamiltonian
description, while in MC the dynamics is superimposed to the Hamiltonian
description (see the discussion in section 3.5). On the other hand, standard MD
can at present be performed on rather short time scales. In fact, the numerical
solution of (108) is achieved by discretizing time in steps ¯t. The steps ¯t must be
much shorter than the typical vibrational periods which are of the order of 10¡12±
10¡13 s. Therefore ¯t is usually chosen in the range of say 10¡15 s. For system sizes of
a few hundreds of atoms, the maximum number of time steps which can be
reasonably simulated is less than 109 by the present computational means. This sets
an upper limit on the simulation time scale tf : tf < 1 ms, provided that the system
under study is not too large. This indeed allows the study of the basic processes in
surface di� usion at high temperatures (see for example references [37, 100, 68, 69, 40,
70, 58, 72, 104]; a sequence of snapshots from a MD simulation of a rather
complicated event is reported in ®gure 20). When EA=…kBT† µ 10, a good statistics
of events can be rather easily accumulated [58]. Compared to the typical experi-
mental conditions the MD scale is however much faster, and usually MD simulations
are performed at higher temperatures in order to speed up the di� usion processes.
This gives very useful information in simple cases, for example when following the
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motion of a single adatom or of a small cluster. On the other hand, when studying

the di� usion of many adsorbed particles (for example, dense adsorbed layers, or
large islands) standard MD, even if it can be still useful [262, 263], is of less help for

the direct interpretation of experiments. In the case of adsorbed layers on

(approximately) inert substrates, a possibility is to simulate the adsorbed layer by

full MD, and the coupling with the rigid substrate within a Langevin description [53,

226, 225]. This can extend both the size and the time scale reachable by the

simulations. However, even within this approach, in many cases there is still a

considerable gap in the time scales between the MD simulations and experiments. In
order to try to ®ll this gap, retaining at the same time the detailed microscopic

description, accelerated MD methods have been recently developed.

3.6.1. Accelerated Molecular Dynamics methods

The fundamental reason for the slowness of straightforward MD calculations of

surface di� usion at low temperatures is the fact that the adatom spends most of its
time oscillating around the potential minimum. The rate of transitions is propor-

tional to exp …¡EA=kBT† which becomes very small for EA=kBT ¾ 1. Recently, A.

F. Voter [198, 264] has proposed two variants of the MD method, the hyper-MD
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Figure 20. Example of a rather complicated di� usion event followed by standard classical
MD. The snapshots are taken from a MD simulation of an Au trimer on the missing-
row Au(110) surface at T ˆ 450 K [118]. The leapfrog process is taking place (see
section 4.2.): a side atom of the trimer is promoted above the trimer itself (b), then it
remains trapped in a deep metastable minimum (d) and ®nally jumps down at the
opposite side of the trimer ((e) and (f)). The con®guration in (d) may persist of the
order of 102 ¡ 103 ps around this temperature, while con®gurations (b) and (e) have a
shorter lifetime because they correspond to shallow metastable minima (see also
®gure 30).



method and the Temperature Accelerated Dynamics (TAD), in order to overcome
this di� culty, thus extending the time scale of MD simulations.

Hyper-MDÐThe hyper Molecular Dynamics method is based on the idea of
modifying the potential energy V…r† by adding a bias potential ¢Vb…r† to it as shown
schematically in ®gure 21. The application of the bias potential is based on the TST
approximation, according to which the transition rates are determined by the ¯ux
through the dividing surface which in simple systems is located at the relevant saddle
point. The bias potential is constructed in such a way as to keep the total potential at
the saddle point unchanged. This leads to an enhanced escape rate from the
minimum given by

½e ˆ 1

ne

Xntot

iˆ1

¯t exp f ¢Vb‰r…ti†Šg; …109†

where ¯t is the regular MD time step, ntot is the total number of MD steps, ti ˆ i¯t,
and ne is the number of escape attempts from the minimum. This equation
shows that the application of a bias potential leads to a boost in the ith MD step
given by

¯tb
i ˆ ¯t exp f ¢Vb‰r…ti†Šg: …110†

This means that at low temperatures, there is in principle an exponential boost of the
simulation time available through hyper-MD as compared to ordinary MD.

The main di� culty in the actual implementation of the hyper-MD method is the
design of an appropriate bias potential ¢Vb…r†. First of all, it must be exactly zero at
the dividing surface not to a� ect the relative transition rates within the TST. Second,
it must not introduce any correlations between the transitions which would violate
the TST assumption. Third, it must not block any transition paths or hamper
ergodic sampling of the system. In the case of complicated many-body systems, there
is an additional di� culty in that the position of the TST dividing surface is not
necessarily known. However, Voter has demonstrated that a bias potential can be
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Figure 21. Potential energy of a two-state system (solid line). The vertical line located at the
saddle point S denotes the TST dividing surface. A bias potential (dashed line) is
added to raise the positions of the two minima A and B relative to S outside of the
dividing surface.



constructed from the local properties of ¢VA…r† using its gradient and the Hessian

matrix [264].
Concerning surface di� usion, in hyper-MD the local vibrational properties of the

adatoms are lost, but the asymptotic behaviour of the temporal correlation functions

remains unchanged within the TST. Voter [264] has tested the hyper-MD method

against dynamically corrected TST for Ni/Ni(001) di� usion using the EAM
potential, with good agreement between the two methods. More recently, hyper-

MD has been extensively tested for Cu adatom di� usion on the Cu(111) surface
against regular MD, using two di� erent bias potentials [237]. In the low temperature

limit, a very good agreement was obtained between MD and hyper-MD data for Dt,

both for the Arrhenius behaviour and the prefactor for di� usion. In practice, boost

factors of the order of 102-103 are readily obtained for di� usion studies [264, 237],
and much larger boost is in principle possible.

Temperature Accelerated Dynamics (TAD)ÐThis method has been developed
very recently [199] and as hyper-MD, relies on the assumption of the validity of TST.

The TAD makes an even more restrictive assumption, namely that the harmonic TST

is valid. From this point of view, the applicability of TAD is more restricted.

However, the TAD method avoids all the di� culties connected with the construction
of the bias potential, so that its applicability is more easily extended to di� erent

systems. Given a temperature of interest Tlow, the essence of the TAD method is to
run MD simulations at a higher temperature (Thigh) and correct for the temperature-

induced bias by ®ltering out some of the transitions and allowing only those

transitions that should occur at the original temperature Tlow. Harmonic TST is

assumed to be valid at both temperatures, and this implies that kBThigh < mink‰Ek
AŠ,

where the expression on the right means the lowest barrier between the minima in

the system. At Thigh , basin-constrained MD simulations are performed. In such
simulations, the system trajectory is con®ned to a particular potential energy basin.

When the system tries to escape from that basin through a dividing surface, it is

re¯ected back to the original state. During a basin-constrained simulation, the
transition times ti

high (i ˆ 1; . . . ; npath) related to the npath escape pathways are

recorded. Then the sequence of escape times is extrapolated at Tlow by the following

relation [199]:

ti
low ˆ ti

high exp E i
A

1

kBTlow

¡ 1

kBThigh

³ ´µ ¶
; …111†

where Ei
A is the activation barrier of the ith pathway. Then the simulation is

advanced by letting the process corresponding to the smallest ti
low take place. In

this way, a boost which increases exponentially 1=Tlow is obtained, and this allows
even the simulation of crystal growth on realistic time scales at low temperatures

[265] (see an example in ®gure 22).

The TAD method has been tested in several surface systems [199], such
as adatom and trimer di� usion on Ag(001), and ®lm ripening on Cu(111),

obtaining boosts of several orders of magnitude. In the case of Ag(100), also the
validity of the harmonic approximation has been tested, showing that anharmonic

corrections are important only at very high temperatures. Therefore, the TAD

method seems to be very promising for simulation studies of surface di� usion and

growth.
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4. Speci®c issues illustrated by results from model systems
In this section, we have selected some issues which we think to be important in

the ®eld of surface di� usion, and discuss them in close relation to speci®c systems. Of
course, our choice of topics here re¯ects both the personal bias and expertise of the
authors; therefore, we do not pretend to treat here the most interesting or important
issues in surface di� usion, but simply problems that have been interest to us.
However, we would like to note that each of the issues discussed in this section
has been and continue to be under considerable experimental and theoretical
activity. We hope that the discussion here will encourage further experimental and
theoretical works in the many problems that still remain unsolved.

4.1. The potential energy surface and coupling of di� usive and vibrational motion
The di� usive motion of adsorbed atoms and their vibrational motion near the

minima of the adsorption potential are usually studied as separate topics because
they involve di� erent length and time scales [8, 266±268, 42, 269, 234, 75]. At low
temperatures, the adatom spends most of its time vibrating rapidly around an
adsorption potential minimum and di� usion proceeds by thermally activated rare
events of jumping from one adsorption site to another in its neighborhood. Indeed,
in a real space experimental probe such as STM, the local vibrational motion is
automatically averaged out and only the jump events to neighboring sites are
observed. In a q space experiment such as HAS, however, the separation between
the di� usive and vibrational motion is not as easy. In principle, information about
the di� usive motion can be extracted from the quasi-elastic spectrum of the dynamic
structure factor at small wave vectors and small frequencies [270], whereas the
adatom vibrational motion can be studied at ®nite frequencies. Qualitatively, the
dynamic structure factor S…q; !† has a quasi-elastic peak at ! ˆ 0 due to the di� usive
motion of adatom and a peak near ! ˆ !0 due to the localized vibrational motion.
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Figure 22. Temperature Accelerated Dynamics (TAD) simulation of the growth of Ag/
Ag(001) at T ˆ 70 K. Four layers are deposited at a ¯ux of 0.075 ML/s, which is a
typical experimental ¯ux. The snapshots are taken at each monolayer completion,
and the whole simulation covers a time scale of about 50 s. Top layer atoms are
represented in dark grey, substrate atoms are represented in white, and intermediate
layers are represented in light grey. This ®gure has been supplied by Dr Francesco
Montalenti.



As the wave vector increases, the strength of the vibrational peak increases at the
expense of the di� usive peak. The full width of the quasi-elastic peak can be written
in the following form:

S…q; !† ˆ A…q†
!2 ‡ ‰¢ED…q†=…2·h†Š2

‡ ~SS…q; !†; …112†

where ~SS…q; !† is slowly varying near ! ˆ 0 but peaks at ! º !0. In equation (112),
the pure Lorentzian part represents the contribution of the adatom jumping
randomly from one site to another, whereas ~SS…q; !† contains the dynamics of
motion in a continuous potential including vibrational motion which is neglected
in a lattice gas model. To better understand the nature of these two terms, let us
consider the zero coverage limit where only single adatom motion needs to be
considered. In a square lattice, according to the Chudley±Elliott model [42], the
contributions to ¢ED…q† can be written as

¢ED…q† ˆ ·h¡
X

n

Pn‰2 ¡ cos…naqx† ¡ cos…naqy†Š: …113†

Here ¡ is the total jump rate and it is assumed that the particle jumps either along the
x or the y direction; Pn is the total probability (four directions together) for the event
of jumping n sites. Note that, in the limit of q>0, this reduces to the familiar
expression ¢ED…q† ˆ 2·hDtq

2. Thus, if the second term in equation (112) were
absent, an analysis of ¢ED…q† would not only yield the di� usion coe� cient, but
also microscopic information such as the jump path and long jump probabilities.

To illustrate the discussion above, we show in ®gure 23 the data on the width of
the quasi-elastic peak from a He scattering study for the Na/Cu(001) system [27].
Experimentally, an e� ective ¢E…q† containing contributions from both the di� usive
and vibrational motion was extracted after deconvoluting from the intrinsic
instrumental resolution. The interaction e� ects are weak at the lowest experimental
Na coverage (³ º 0:03) and the adatom motion can be considered to be in the zero
coverage limit. It has also been explicitly veri®ed that the data remain unchanged
between the coverage values of 0.03 and 0.1. Thus, the single adatom limit is
appropriate for the analysis. For this system, the adsorption sites are the four-fold
hollow sites. The jump paths crossing the saddle points are along the x and y
directions correspond to [1,1,0] and [¡1,1,0], and a ˆ 2:56 AÊ . The dynamical
structure factor was measured for wavevector q along both the [1,0,0] and the
[1,1,0] directions. Beyond the ®rst Brillouin zone, ¢E…q† increases rather than
decreasing to zero toward the center of the second Brillouin zone as predicted by
the Chudley±Elliott theory in equation (113). This indicates clearly the contribution
of the vibrational mode to the quasi-elastic spectrum. The same conclusion about the
importance of the contribution of the vibrational motion to the quasi-elastic peak
has also been reached via MD simulation studies [75]. Along the x ([1,1,0]) or
equivalently the y ([¡1,1,0]) direction, the behaviour of ¢E…q† is closer to the simple
predictions of the multi-jump theory whereas the deviation from the simple jump
model is much more prominent along the [1,0,0] direction. As will be demonstrated
below, this is due to the fact that the potential energy surface (PES) for Na on
Cu(100) is much more anharmonic along the [1,0,0] direction than the [1,1,0]
direction, leading to a larger contribution of the vibrational mode to the quasielastic
peak along the [1,0,0] direction.
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In principle, one can go to the q>0 limit to eliminate the vibrational
contribution to the quasielastic peak. In practice, the ®nite resolution of the He
scattering method means that the quasi-elastic peak can only be studied at larger
wavevectors corresponding to the motion of the adatom at small length scales. While
the coupling of the di� usive and vibrational motion makes it di� cult to extract the
di� usion coe� cient from the quasielastic peak directly, the wealth of information
provided by the scattering data at the full range of wavevector values contain
detailed information of the adiabatic PES as well as on the nonadiabatic frictional
coupling of the Na adatom to the Cu substrate. Thus, a full theoretical analysis of
the scattering data should yield information not just about the macroscopic di� usion
coe� cient Dt, but also microscopic information about the PES and the friction ².
This kind of analysis has indeed been performed for Na/Cu(100) [225] and we
describe the results below.

To analyse the data fully from the quasi-elastic He scattering experiment for Na/
Cu(100), the Langevin equation as described in section 3.3 was solved numerically:

m
dv
dt

ˆ ¡m²v ¡ rVA…r† ‡ f…t†; …114†
with

1

kBT
hf…t† ¢ f…t 0† ˆ 2²¯…t ¡ t 0†: …115†
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Figure 23. Parallel wave vector transfer dependence of the quasielastic peak width (FWHM)
¢E (K) for Ts ˆ 200 K, 250 K, and 300 K along the Cu(001) [100] and [110] azimuths.
The incident beam energy was 11.2 meV and the sodium coverage was ³ ˆ 0:028 for
the [100] azimuth and ³ ˆ 0:047 for the [110] azimuth. The solid lines are the
theoretical results from a numerical solution of the Langevin equation as discussed in
the text.



The input to the equation is the (adiabatic) PES VA…r† and the friction ². Several
comments need to be made about this model. First, the motion of the adatom is
restricted to be 2D in the surface plane. This is justi®ed since the motion of the Na
adatom normal to the surface involves a vibrational mode with a much higher
frequency than the in-plane mode. Also, recent calculations for a similar system Na/
Al(111) show that the height of the Na atom above the surface is nearly independent
of the adsorption site [271]. Thus the potential VA…x; y† is taken to be dependent only
on the in-plane coordinates …x; y†. Second, the Markovian approximation has been
adopted so the damping is instantaneous and characterized by a friction parameter ²
rather than a frequency dependent memory function. This is justi®ed because the in-
plane vibrational mode (T-mode) has a frequency of º 1:5 THz which is consider-
ably less than the Debye frequency of the substrate at about 5.7 THz. As discussed in
section 3.3, the di� erence in time scales allows one to approximate the random
¯uctuating force at di� erent times to be uncorrelated.

Within these assumptions , equation (114) was solved numerically and the
dynamic structure factor calculated to extract the width of the quasi-elastic peak
at di� erent wavevectors. The adiabatic potential VA…x; y† and the friction ² were
adjusted until a best ®t of the data shown in ®gure 23 was achieved. In the earlier
theoretical treatments of this system [25, 34], a simple cosine potential was chosen for
the PES as

V0…x; y† ˆ V0 2 ¡ cos
2º

a
x

³ ´
¡ cos

2º

a
y

³ ´µ ¶
: …116†

For this simple PES, the potential rises to a maximum of 2V0 at the bridge sites along
the x and y ([110] and [1·110]) directions. For trajectories along the [100] and [010]
directions, the barrier is two times higher at 4V0 so that jumps along these directions
are negligible at low temperatures. This would then lead to a prediction that the ratio
of the maxima of the quasielastic peak width ¢ED…q† along [100] and [110] should be
1 to 2. The actual observed value in the experiment is 1 to 1.2. This indicates that the
actual motion of the adatom also involves paths other than those directly over the
saddle point. Moreover, the sizable width beyond the ®rst Brillouin zone boundary
along [100] also indicates a highly anharmonic potential along this direction. All
these lead to the conclusion that the potential at the on-top sites needs to be lowered
relative to the simple cosine PES. This was achieved by adding a term of the form

V1…x; y† ˆ ¡
X

n;m

A exp f¡B‰…x=a ¡ n ¡ 1=2†2 ‡ …y=a ¡ m ¡ 1=2†2Šg; …117†

localized at the on-top sites. The parameter A was chosen to be large enough to
lower the barrier for di� usion paths along the [100] direction while B was chosen
such that V1…x; y† decays su� ciently fast that it does signi®cantly alter V0…x; y† at the
minima or the saddle points. Finally, another correction term V2…x; y† which is
centred at the equilibrium four-fold hollow sites was added:

V2…x; y† ˆ CV0º
2

X

n;m

‰…x=a ¡ n†2 ‡ …y=a ¡ m†2Š exp ‰¡…x=a ¡ n†2 ¡ …y=a ¡ n†2Š:

…118†

This term serves to slightly alter the curvatures and the anharmonicity near the
minima. Following extensive optimization, the parameters that yield the best ®t
between the experimental and theoretical values were found to be: A ˆ 2V0,
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B ˆ 11:8, C ˆ ¡0:2, and V0 ˆ 41:4 meV. The best ®t value of the friction was
determined to be ² ˆ 0:9 THz.

As seen in ®gure 23, the theoretical results for the half width ¢E…q† from the
solution of the Langevin equation with this choice of the adiabatic potential VA…ur†
and friction ² agree very well with the data. Furthermore, if we now look at the
position and width of the T-mode as a function of temperature, there is also excellent
agreement between the theory and experiment as shown in ®gure 25. Thus, we
believe that while minor details of the PES may depend on the speci®c ®tting
procedures, the overall feature of the PES is very robust and completely determined
by the He atom scattering data.

Finally, we note that from the theoretical analysis of the quasielastic peak in the
long wavelength limit, the pure di� usive contribution of the Na adatom motion to
the peak width can be extracted. It was found that there are sizable contributions
from long jumps of two and three lattice sites. This is consistent with the pictures
discussed in sections 2.1 and 3.3, since for this adsorption system the dimensionless
friction ²=!0, where !0 is the T-mode frequency, is about 0.1 and we are in the low
friction regime, which favours long jumps.

4.2. Di� usion of adatoms and clusters on strongly anisotropic surfaces
The di� usion on strongly anisotropic surfaces has been a subject of considerable

interest in recent times. Indeed, strongly anisotropic surfaces are the natural
candidates for studying 1D (or better quasi 1D) di� usion processes, where mass
transport takes place only along one direction. In this restricted geometry, the
experimental determination of the microscopic di� usion mechanisms is expected to
be easier, and issues such as the occurrence of long jumps should be more easily
investigated, and compared to simple theoretical models (for example, 1D models).
In the case of metals, the most studied anisotropic surfaces are W(211) [74], and the
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Figure 24. The adsorption potential energy surface VA…x; y† for sodium adatoms on Cu(001)
surface determined from the quasi-elastic He scattering data. The copper atoms are
located at (x; y) positions (§1:28, §1:28). The deep minimum in the potential at the
centre corresponds to the hollow sites and the small dimples are directly above the
copper atoms at the on-top sites. The barrier for motion along the [110] or ‰110Š
azimuths is 75 meV and for motion along [100] or [010] azimuths 84 meV.



(110) faces of fcc transition and noble metals. These latter (110) faces are

characterized by channels along the easy ‰110Š in-channel direction. However, in
the unreconstructed …1 £ 1† geometry, which is the most stable for Ag and Cu for
example, these surfaces show also a signi®cant di� usion along the cross-channel

‰001Š direction, due to the occurrence of the exchange mechanism [87, 70, 58]. On the
other hand, in the reconstructed …1 £ 2† geometry (missing-row geometry), which is
the most favourable for Au and Pt, the situation is better: the channels are much

deeper, and cross-channel di� usion is very slow [272]. In the following we focus on
di� usion of adatoms, dimers and chains (n ¶ 3 atoms) on missing-row Au and Pt,

and show that, unexpectedly, a rich phenomenology is found, which goes well
beyond a simple 1D description of di� usion even on such strongly anisotropic
surfaces.

4.2.1. Adatom di� usion
In the case of Pt(110)…1 £ 2†, isolated adatom di� usion has been studied by STM

[7], and a considerable percentage of long jumps (of the order of at least 10%) have

been found quite close to room temperature. The simplest di� usion mechanism on
this surface is the jump along the channel bottom (the sequence 1a>1f>1e in

®gure 26). However, MD simulations [71] show that (essentially 1D) in-channel
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Figure 25. Temperature dependence of the frustrated translation vibration (T mode) peak
position and FWHM for a sodium coverage ³ ˆ 0:028. The solid line shows the T
mode frequency and FWHM predicted by the theory.



trajectories would justify a much lower percentage of long jumps than what is

observed. But another mechanism is possible, and we shall refer to it as the
metastable walk (MW) [273, 183] mechanism. In this new mechanism, the full 3D

topology of the channel is explored by the di� using adatom. In a MW, the adatom
climbs up on one of the (111) facets of the channel, di� uses there passing through a
network of metastable minima (see 1b, 1c and 1d in ®gure 26), and ®nally falls down

again to the channel bottom. The barriers between the metastable minima are low,
being very close to the barriers for di� usion on a (111) ¯at surface. From semi-

empirical calculations it turns out that the MW mechanism has a larger barrier than
the simple jump on Au (and on Pt too). On the other hand, ab initio calculations

indicate that the MW trajectory could be the most favourable in Pt, even if these
results are still somewhat under debate, since di� erent density-functiona l schemes
give qualitatively di� erent results about the ordering of the barriers [183, 274].

However, for all available density-functiona l calculations incorporating some form
of gradient correction, MW di� usion is at least as much favourable as jump

di� usion. In any case, it is relatively easy to make e� ective long jumps by MW,
because once the adatom is on the (111) facet, it can easily di� use there for several
lattice spacings before being retrapped at the channel bottom; at low T the

probability of an e� ective jump of l lattice spacings decays as exp ‰¡l¢E=…kBT†Š,
where ¢E is the di� erence between the barrier for going from 1b to 1c and the

barrier from 1b to 1a in ®gure 26. ¢E can be rather small [273, 183]. This leads to a
considerable percentage of e� ective long jumps, giving the most likely explanation of
the experimental observations in reference [7] (STM cannot distinguish between a

MW and a jump trajectory, but only record the adatom initial and ®nal positions at
the channel bottom).

4.2.2. Dimer di� usion
In the case of dimers, climbing on channel facets is even more important, and a

new di� usion mechanism, the leapfrog, is likely to be the dominant one. In the dimer
leapfrog, one of the atoms of the dimer is promoted on the (111) facet, where it ®nds

two equivalent metastable minima, see 2b and 2d in ®gure 27, connected through a
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Figure 26. Schematic representation of the metastable-walk sequence (1a>1b>1c>1d>1e)
and of the jump sequence (1a>1f>1e). Positions 1, 1c and 1d are metastable
minima on the facet.



saddle point (2c). Again, the barrier between these metastable minima is low for pure

Au/Au; the situation is di� erent in the case of heterodimers, such as Cu2 on Au or

AuCu on Au [275]. On the other hand, for these heterodimers the leapfrog is not a

favourable di� usion mechanism. Once the adatom is promoted, it jumps back and

forth between the two minima for several times. At the end, the adatom has almost

equal probability of coming back to the site of departure and of jumping down at the
opposite side of the dimer, thus completing a di� usion move. The leapfrog

mechanism resembles somewhat dimer rotation on fcc(111) surfaces, the latter being

a quite important mechanism on such surfaces [276]. Calculations by semiempirical

potentials [118] predict that leapfrog is the lowest-energy dimer-di� usion process for

Au and Pt. Dimer-leapfrog has not yet been experimentally observed (and probably

it would be extremely di� cult to observe due to its very fast time scale [118]). Also ab

initio results on Pt [274] indicate that leapfrog should be by far dominant. However,
there are experimental results showing that Pt dimers easily dissociate, and thus

di� use by a dissociation-reassociation (DR) mechanism [277]. It has been suggested

that the small dissociation barrier may be caused by CO contamination in the
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Figure 27. Schematic representation of the dimer leapfrog sequence (2a>2b>2c>2d>2e),
of the concerted-jump sequence (2a>2f>2h), and of the dissociation-reassociation
sequence (2a>2g>2h). In the leapfrog sequence, positions 2b and 2d are metastable
minima, whereas 2c is a saddle point.



experiments [274], but there is no evidence of such contamination from the usual
spectroscopic methods [277]. In any case, whatever the cause of the low dissociation
barrier is, DR can induce a considerable mobility of dimers. In the DR mechanism,
the dimer breaks up, then the two adatoms di� use independently and ®nally meet
again in a position which can be quite far apart from the position of departure. If the
di� usion of isolated adatoms is much faster than dissociation itself, only initial and
®nal positions are observed, and the move looks as an e� ective long jump of the
dimer. The length distribution of these e� ective long jumps falls o� as 1=l2 [278].

4.2.3. Chain di� usion
When chains (with N ¶ 3 atoms) are considered, the concerted jump (CJ) can be

easily ruled out: its activation barrier is roughly proportional to N , because N atoms
have to be displaced together from their hollow position to close saddle points. Also
the moves caused by DR have increasing e� ective barriers with nN . Let us consider
for example a trimer, and try to move it by DR. In order to do that, two bonds must
be broken, instead of the single bond of dimer DR. Analytical calculations [279]
show that, at low T , the trimer e� ective-jump rate follows an Arrhenius law with
barrier Eeff …3†:

Eeff …3† ˆ Ed3 ‡ …Ed2 ¡ Ej†
2

; …119†

where Ed3 is the barrier for detaching a side atom from the trimer, Ed2 is the dimer
dissociation barrier, and Ej is the jump barrier of an isolated adatom. The
contribution in parenthesis comes from the breaking of the second bond. For a
tetramer, Eeff …4† is even larger. Moreover, one should consider that the probability
that dissociated adatoms, during their walk, to meet other adatoms or chains and
stick to them increases with N, so that there is a considerable probability of
observing a ®nal chain with a di� erent length from the initial chain. Therefore,
chains should either change their length or to be practically immobile.

However, this is not the case for chains on missing-row surfaces, where, from the
STM experiments performed by Linderoth et al. [117] (see the images of ®gure 28),
there is evidence of chain di� usion. Therefore, chain di� usion must be caused by
another mechanism, di� erent from CJ and DR, and the mechanism is again the
leapfrog (see ®gures 29 and 30). In fact, it is easily understood that the leapfrog
di� usion barrier should depend weakly on the chain length N. Essentially, the rate-
limiting step of the leapfrog sequence is the upward promotion (in ®gure 29, from the
initial con®guration 3a to the quite deep metastable minimum in 3c passing through
3b), whose barrier Eup depends on the local environment of the promoted adatom,
which is initially at the end of the chain. This local environment is practically
independent on n, and thus Eup is nearly the same for dimers, trimers and so on [279,
280]. However, a further point must be taken into account. Once one of the side
adatoms is promoted above the chain, there is a probability PLF that it will jump
down at the opposite end of the chain, thus completing the leapfrog sequence. Before
jumping down, the adatom must di� use above the chain (process 3c>3d in ®gure
29) with a rate rabove (this is indeed the rate for di� usion on a locally unreconstructed
…1 £ 1† surface) and, once it has reached the border, it can jump down with a rate
rdown (in ®gure 29, the sequence is 3d>3e>3f; usually the descent is by jump, the
exchange barrier being much larger). The probability PLF depends on N according
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Figure 28. STM images of a leapfrog sequence for a Pt tetramer on missing-row Pt(110)
(from reference [117]).

Figure 29. Schematic representation of the chain leapfrog process for a tetramer, the same
process of the STM images in ®gure 28.



to the following expression [279]:

PLF ˆ b

N ¡ 3 ¡ b…N ¡ 5† ; …120†

where

b ˆ rabove

rabove ‡ rdown
: …121†

In Au and Pt [118], rabove ¾ rdown at the temperatures of experimental interest, so
that b ’ 1. This implies that PLF is constant for a wide range of nN. Asymptotically,
PLF / N¡1 for N>1, but this limit is not physically important because multiple
promotions become likely at large N. Multiple promotions stop the leapfrog
mobility because they lead to the formation of new chains above the original chain.
These new chains are in a local …1 £ 1† geometry, so that they are practically
immobile. Finally, it has been shown (by semiempirical calculations with EAM
potentials [280]) that the presence of adatoms or chains in nearby channels, can
cause some reduction of the energy barriers for leapfrogging; moreover, leapfrogging
should be dominant also for chains on locally reconstructed Ag, Cu and Ni.

4.3. Di� usion of adatoms along and across steps
In the previous sections we have dealt with di� usion on perfectly ¯at surfaces,

either isotropic or anisotropic. However, in most experimental situations, the
presence of defects is unavoidable , and steps are probably the most common kind
of defects. Indeed, terraces have always a ®nite extension (the maximum being of the
order of some 103 Ð even on the best quality crystals) and, even more important,
steps are created continuously during crystal growth processes. In the latter pro-
cesses, di� usion along and across steps is a key point for understanding the building
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Figure 30. Potential energy pro®le along the path of the tetramer leapfrog sequence in ®gure
29. For a chain of N atoms, N ¡ 2 deep metastable minima (as 3c and 3d) are found,
plus two shallow minima (3b and 3e). The latter minima play little role in the kinetics
of the sequence. The promotion energy Eup is given by the energy di� erence between
the saddle S0 and 3a. The barrier for descending Edown is the di� erence between S0

and 3c. The barrier for di� using above the chain Eabove is the di� erence between S1

and 3c.



up of growth morphologies. For example, in the submonolayer regime, the shape of
growing 2D islands is determined by the interplay between the ¯ux of atoms coming
from the surrounding terrace and the smoothing processes around the island edges
[281±285, 1, 286, 287], the latter including di� usion along the lower edge of steps and
corner crossing between adjacent steps as elementary constituents. When smoothing
processes are active, the islands grow in compact shapes; otherwise instabilities
develop, and fractal or dendritic islands grow. In the multilayer growth, on the other
hand, also di� usion across steps becomes crucial. Indeed, smooth layer-by-layer
growth can take place when interlayer downward mass transport is possible, and the
latter implies that adatom can cross steps. In many cases, the crossing of steps is
hindered by an additional barrier (the Ehrlich±Schwoebel barrier [4, 288]) because of
the poor coordination of the adatom at the saddle-point con®guration of the step-
crossing process. If this happens, an upward adatom current can be built up during
growth [289, 1]; this current causes instabilities such as mounding [290±296] and
rippling [297, 298]. The same situation applies to the morphologies on individual step
edges as well. For di� usion along the step edge, the kink Ehrlich±Schwoebel barrier
controls the instability of the ledge [299, 300]. Finally, the presence of steps can a� ect
the di� usion of adatoms not only just at the step edge, but also at larger distances. A
well known consequence is the depletion of adatoms around 2D islands, which is
caused by the lowering of di� usion barriers for the adatoms moving towards the
island [301-303, 54, 41]. The literature on the subject of di� usion along and across
steps, and on its consequences on growth is enormous. Here we intend to give only a
general sketch of the elementary di� usion processes. In order to do that we focus on
speci®c and widely studied systems, essentially on the low-index surfaces of Ag,
comparing when possible Ag with other fcc metals, such as Pt and Al. These systems,
which are rather simple indeed, shall display a very rich phenomenology, with
strongly di� erent behaviour taking place on di� erent surfaces of the same element,
showing that the presence of steps can deeply in¯uence the di� usive properties of
adatoms.

4.3.1. Di� usion along steps and corner crossing
Adatom di� usion along the upper edges of steps is usually not very di� erent from

terrace di� usion for metal-on-metal systems. Owing to the vicinity of the step, local
relaxation may somewhat alter the di� usion barrier, but the coordination remains
the same as in the middle of the terrace. On the other hand, at the lower edges of
steps adatom coordination is usually increased with respect to the inner terrace.
Therefore, the di� usive properties along lower step edges can be qualitatively
di� erent from those on the terrace. In the following, we consider di� usion along
the lower edges of straight high-symmetry steps on the (001), (111) and (110) surfaces
of an fcc crystal, mainly with reference to the case of Ag.

(001) surfacesÐLet us consider ®rst the (001) surface (see ®gure 31). Here two
kinds of high-symmetry steps can be built up. A step of the ®rst kind can be built up
for example along the [110] direction. Atoms of this step are close-packed, being
separated by a ®rst-neighbour distance, and (111)-like microfacets are on the step
riser. The second kind of step is built up for example along the [100] direction; it is
not close-packed, since the atoms of the step are second neighbours and the
microfacets on the riser are (110)-like. The di� usion of adatoms along the two steps
has very di� erent properties, being much faster along the [110] step than along the
[100] step. For example (see table 2), in Ag, semiempirical and ®rst-principle
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Figure 31. Di� usion along (top panels) and across (bottom panel) [110] close-packed steps
and [100] steps. At left and right, starting and saddle-point positions, respectively, are
shown. Di� usion along [110] steps is by jump, while di� usion along [100] steps and
di� usion across both steps is preferentially by exchange. The crossing of the [001]
steps is equivalent to the crossing of a kinked [110] step.

Table 2. Energy barriers (in eV) for diffusion on the ¯at Ag(001) surface, and along …k† and
across …?† steps. Diffusion across [100] steps is the same as diffusion across kinked [110]
steps. Several theoretical results are reported: Tight Binding Second Moment Approx-
imation (TBSMA, as developed by Rosato, GuillopeÂ and Legrand (RGL) [194, 308]),
from reference [58] and this work, Effective Medium Theory (EMT) from reference
[101], Corrected Effective Medium (CEM) from reference [304], Embedded Atom in
Voter±Chen parametrization (EAVC) from references [87, 41], Embedded Atom in
Foiles±Daw±Baskes parametrization (EAFDB) from reference [41], Embedded Atom
in Adams±Foiles±Wolfer parametrization (EAAFW) from reference [87], density func-
tional theory in the Local Density Approximation (LDA) and with Generalized Gra-
dient Corrections (GGA) from references [305, 97]. The experimental results are taken
from references [306, 307].

Di� usion Process TBSMA EMT CEM EAVC EAFDB EAAFW LDA GGA Exp.

Flat surface, jump 0.43 0.37 0.41 0.48 0.48 0.48 0.52 0.45 0:40 § 0:05

0.38

Flat surface, exch. 0.61 0.61 0.58 0.60 0.78 0.75 0.93 0.73

k [110] step, jump 0.25 0.22 0.26 0.26 0.26 0.30 0.27

k [100] step, jump 0.71 0.78 0.73

k [100] step, exch. 0.69

? [110] step, jump 0.59 0.48 0.70 0.59 0.70 0.55

? [110] step, exch. 0.55 0.52 0.51 0.64 0.52 0.45

? [100] step, jump 0.47 0.55 0.51

? [100] step, exch. 0.38 0.31 0.38



calculations [58, 100, 101, 304, 87, 41, 305, 97] show that di� usion along the [110]
step has a barrier of about 0:25 eV, which is even smaller than the barrier for adatom
di� usion on the ¯at surface (the latter being of about 0:40 eV, as found both by
experiments [306, 307] and calculations, see table 2). Di� usion along this step is
therefore the fastest process on the (001) surface of silver. Similar results are found
also for other metals such as Cu and Au (see reference [58]), indicating that this
result has some general explanation. Indeed, the reason why the di� usion along this
step is faster than the di� usion on the ¯at terrace can be understood by a simple
bond-counting argument. In silver, adatoms on the ¯at surface di� use preferentially
by jumping among NN lattice sites [58, 100, 101, 304, 87, 41, 305, 97]. In the jump
process, the adatom starts from a fourfold minimum to reach the saddle-point
con®guration, which is half way among the NN sites. In the saddle point
con®guration, only two bonds are retained, so that the jump process costs the
breaking of two NN bonds. In the di� usion along [110] steps, the starting position
has coordination ®ve (see the left panel of ®gure 31): four NN in the layer below and
one NN in the step. On the other hand, the saddle-point position has coordination
four: two NN in the layer below and two in the step (see the right panel of ®gure 31).
Therefore the process costs the breaking of a single NN bond, and this is the cause of
the lower barrier. Indeed, the barrier for di� usion along [110] steps is not far from
one half of the barrier for di� usion on the ¯at surface. Along the [100] step, the
starting con®guration has coordination six, while the saddle point for jumping has
coordination three (with the NN bonds rather stretched), so that the barrier is much
higher (about 0:71 eV in silver by semiempirical calculations in the Tight Binding
Second Moment ApproximationÐTBSMAÐas developed by Rosato, GuillopeÂ and
Legrand (RGL) [194, 308], see table 2). Indeed, the same type of calculation indicates
that the exchange process (see the right panel of ®gure 31) is slightly better (0:69 eV)
than the jump. Bond counting arguments can show that also in this exchange three
NN bonds are lost at the saddle point.

These results show that here bond-counting arguments give useful predictions,
provided that bond counting is done both at the minimum and at the saddle point;
bond counting in the initial and in the ®nal position would give clearly incorrect
results in the above examples. Even more care has to be taken in the case of (111)
surfaces (see below).

By the same line of reasoning as above, one could understand that corner
crossing is much slower than di� usion along [110] steps; crossing from a [110] step to
another step of the same symmetry costs two bonds (plus some stretching), so that
semiempirical calculations give a barrier of 0:51 eV. In this case, at low temperatures
the rate-limiting process in the smoothing of square islands limited by close-packed
steps is thus corner crossing. However, this corner-crossing barrier is not far from
the barrier for di� usion on the ¯at terrace. Therefore, when terrace di� usion is active
so that adatom can di� use, meet each other and form islands, also di� usion along
steps and corner rounding are active, so that islands grow smooth, and it is
practically impossible to grow fractal aggregates.

(111) surfacesÐOn fcc(111) surfaces there are two kinds of close-packed steps,
usually referred to as A and B steps in the literature [309]. A steps have square (001)-
like microfacets on the steps riser, while (111) steps present triangular microfacets
(see ®gure 32). Semiempirical calculations for Ag [54] give that di� usion is by
hopping mechanism and somewhat easier along step A than along step B. However,
the important point is that di� usion along both steps is much slower than di� usion
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on the ¯at terrace (see table 3). Another widely studied system in this geometry is Pt/
Pt(111). On this system, a quite complete set of ab initio calculations is available
[310]. These calculations are in good agreement with the experimental data [79].
According to reference [310] di� usion along both steps A and B occurs preferentially
by hopping, as in Ag. This is di� erent from what is found in Al, again by ab initio
calculations: there, di� usion along B steps is by exchange with an atom of the step
itself. In Pt, di� usion along A steps has a barrier which is lower by about 10% than
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Figure 32. An fcc(111) surface with a hexagonal island on top of it. The island is limited by
three A steps (square microfacets on the step riser) and by three B steps (triangular
microfacets on the step riser). Adatoms A and B are along the A and B steps,
respectively; adatom C is at a corner site.

Table 3. Energy barriers (in eV) for diffusion on the ¯at Ag(111) surface, and along …k† and
across …?† steps. For diffusion processes across steps also the Ehrlich±Schwoebel barrier
ES is given. The latter is determined experimentally by growth experiments where island
may comprise kinked and unkinked steps of both A and B types. For the acronyms, see the
caption of table 2. TBSMA results are taken from reference [315] and from this work,
EMT, EAFDB and LDA results are taken from references [316], [317] and [318] respect-
ively. The experimental result for terrace diffusion is taken from reference [316]; the experi-
mental results on ES come from references [333], [334] and [335], from top to bottom.

Di� usion Process TBSMA EMT EAFDB LDA Exp.

¯at surface 0.067 0.067 0.055 0.082 0.097 § 0.010
…k† A step, jump 0.25
…k† B step, jump 0.29
? A step, jump 0.35, ES ˆ 0:28
? A step, exch. 0.36, ES ˆ 0:29
? A step at kink, jump 0.28, ES ˆ 0:21
? A step at kink, exch. 0.24, ES ˆ 0:17
? B step, jump 0.33, ES ˆ 0:26
? B step, exch. 0.21, ES ˆ 0:14
? B step at kink, jump 0.24, ES ˆ 0:17
? B step at kink, exch. 0.31, ES ˆ 0:24
average ES 0.120 § 0.015

0.150 § 0.020
0.13



for di� usion along step B (0:71 against 0:77 eV [310]), again with the same qualitative
behaviour as in Ag. On the other hand, in Al, the di� erence in the barriers is of the
order of 30% [90, 91], and it would be even larger if the hopping mechanism along
step B were considered. Also in Pt, terrace di� usion is much faster than di� usion at
steps. The barrier for terrace di� usion is 0:29 eV [310] which compares well with the
experimental result of ’ 0:26 eV [311±313]. This means that di� usion along steps
costs 0:4 ¡ 0:5 eV more than di� usion on the ¯at surface. NN bond counting (at the
saddle point and at the minimum) gives that one bond is lost in both di� usion on the
¯at terrace and in di� usion along steps A and B. But at a closer inspection, the saddle
points for di� usion along the steps are characterized by the net loss of a NN bond
(from ®ve bonds to four), plus considerable stretching or compression of the four
remaining bonds [314]. This explains why di� usion along steps is much more di� cult
here than di� usion on the terrace (contrary to what happens on the (001) surface);
this result is common to all calculations (®rst-principle and semiempirical) to our
knowledge [314, 54, 315±319, 91, 320±322]. These results show that bond counting
needs considerable care, since the relaxation (or compression) of bonds plays an
important role.

Corner crossing on fcc(111) surfaces occurs through the intermediate (or corner)
position C in ®gure 32. An adatom in C has a higher energy than at the step positions
A and B in ®gure 32, but a lower energy than on the ¯at surface. The barriers for
corner crossing are somewhat larger than those for di� usion along steps: for
example, in Pt a sequence from the last site along an A step to C and then to the
nearest site along the adjacent B step has to surmount an overall barrier of 0:84 eV
[310], while the reverse costs 0:82 eV. On the other hand, according to ab initio
calculations, atoms directly arriving at C ®nd a lower barrier for going towards step
B than towards step A. This is in some contradiction with the growth experiments in
[285], where the resulting island-growth morphologies were explained by MC
simulations assuming that the displacement from a corner site is easier towards an
A step than towards a B step.

In any case, island-edge smoothing processes on fcc(111) surfaces are by far
slower than terrace di� usion. In fact, on these surfaces, fractal or dendritic islands
are easily grown [309, 285], contrary to what happens on the (001) surfaces.

(110) surfacesÐContrary to the previous cases, these surfaces are highly
anisotropic (see ®gure 33). The energetics of these surfaces has been studied by
semiempirical potentials in references [308, 323]. On Ag, a complete set of barriers
has been calculated by semiempirical potentials [81]; these barriers have been
successfully used in the interpretation of several experiments of submonolayer and
multilayer growth, and of island dissolution [324±326, 298, 327], and they are
reported in table 1. The RGL barriers for di� usion on the ¯at surface are in good
agreement with the available experimental data, obtained by STM (from island
counting) and by QHAS [327±329]. On these surfaces, we consider two kinds of steps
of di� erent symmetry. In ®gure 33 steps along the in-channel ‰110Š direction and the
cross-channel ‰001Š direction are represented. Di� usion along the in-channel steps is
not very di� erent from in-channel di� usion on the ¯at surface, the only di� erence
being the breaking of a second neighbour bond (the cross-channel bond with the
closest adatom of the step), which costs a few hundredths of eV. On the other hand,
di� usion along the [001] step is much more di� cult. In fact, one has to add to the
cross-channel di� usion barrier (which is already higher than the in-channel di� usion
barrier) the breaking of a ®rst-neighbour bond, which costs about 0:2 eV more.
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Because of that, ‰110Š steps are usually smooth, while [001] steps are rough, with a
high density of kinks. Direct corner crossing from [001] to ‰110Š steps is very di� cult,
while the reverse costs more or less the same as cross-channel di� usion on the ¯at
surface. Indeed, contrary to what happens on (001) and (111) surfaces, the barriers
for di� usion along steps can be rationalized by a simple bond-breaking model, where
bonds are counted at the initial position of the adatom [330].

Because of the above results, islands are smooth in the ‰110Š direction, and rough
in the [001] direction. The interplay of terrace and step-edge di� usion leads to the
growth of long chains of monoatomic width in a wide range of temperatures
(130-200 K for Ag at the experimental ¯uxes [330]). These chains grow when
di� usion along the ‰110Š direction is active both on the terrace and at step edges,
but the strong ®rst neighbour bonds are still stable. At higher temperatures, the
breaking of ®rst-neighbour bonds causes the transition to compact island shapes.

4.3.2. Di� usion across steps: the Ehrlich±Schwoebel barrier
There is strong evidence coming from both experimental results and from

theoretical calculations, that the adiabatic potential felt by the adatom in the vicinity
of a step is quite di� erent from the adiabatic potential on a ¯at terrace.
Schematically, for metal-on-metal di� usion, while the minimum at the upper side
of the step can be slightly di� erent than the minima on the ¯at terrace, the minimum
at the lower side is much deeper (because of a gain in co-ordination) and the barrier
in between the two can be signi®cantly di� erent than the barrier on the terrace. If the
terrace barrier is Eterrace and the barrier for crossing the step is Estep , the di� erence
ES ˆ Estep ¡ Eterrace is known as the Ehrlich±Schwoebel barrier [4, 288]. ES is usually
positive, because the saddle-point con®guration at the step crossing has a poor co-
ordination, as can be easily understood in the case of crossing by a hopping
mechanism (see ®gure 34). However, step crossing may take place also by (simple
or multiple [100, 101]) exchanges. These mechanisms are often characterized by a low
ES [91], and in some cases (for example at kinks, see below) ES can be even negative
[41]. Also the size of the terrace can in¯uence the crossing of the steps: descent at
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Figure 33. An fcc(110) with an island on top of it. The in-channel ‰1·110Š direction is
horizontal, the cross-channel [001] direction is vertical. Adatoms are placed along the
lower and upper edges of steps.



straight steps can be very di� erent on small and large islands [302, 81]. Moreover, the

e� ects of high-temperature relaxation of the step atoms may induce an e� ective
reduction of ES , in such a way that step crossing becomes more likely than re¯ection
back to the inner terrace [70], even if the latter has a lower adiabatic barrier in the
limit of T>0.

In the following, as we have done for di� usion along steps, we compare the
crossing of monoatomic steps on the (001), (111) and (110) surfaces of Ag and other
fcc metals, and then consider the crossing between di� erent facets on fcc 3D clusters.

(001) surfacesÐFor Ag, several theoretical results are available (see table 2). At
[110] steps, most calculations indicate that descent by exchange should be preferred,

the jump having a somewhat higher barrier. In any case, if we compare the barrier
for descent with the one for di� usion on the ¯at surface, we see that ES is rather low,
of the order of 0:1 eV in maximum. On the other hand, descent at [100] steps (which
is analogous to descent at kinked [110] steps) has a negative ES for the exchange
process [41]. In fact, the exchanging atom of the step is well coordinated at the saddle
point, in analogy to what happens to the case of adatom di� usion along [110] steps
(see ®gure 31). These results indicate that interlayer mobility on Ag(001) should be
very easy, and this is con®rmed by the observation of layer-by-layer growth in a wide
range of experimental conditions [331, 332]. At high temperatures, also multiple
exchanges at [110] steps become likely. Indeed, multiple exchanges have been

observed in MD simulations of Cu di� usion on vicinal …11m† surfaces (which have
(001) terraces separated by close-packed steps of the [110] kind) [100, 101]; we expect
that such processes should take place on Ag, too.

(111) surfacesÐContrary to what happens in the case of the (001) face, di� usion
across steps on Ag(111) is always hindered by Ehrlich±Schwoebel barriers. Indeed,
semiempirical calculations (see table 3) indicate that ES is always larger than 0:1 eV,
for both A and B steps even at kinks. Therefore ES is in any case considerably larger
than the barrier for terrace di� usion. With this respect, Ag(111) is very di� erent from
Ag(001), where ES is always a quite small fraction of the terrace-di� usion barrier,
and in some cases is even negative. However, interlayer mobility is relatively easier

across B steps, and at kinked A steps, where ES º 0:15 eV. The latter value compares
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Figure 34. Descent at steps by jump, simple exchange and multiple exchange.



well with the available experimental determinations [333±335], which give ES in the

range of 0:11±0:17 eV, as reported in table 3. In the experiments, the symmetry of the
steps where the crossing is taking place is not controlled, so that the measured

barriers are very likely related to the dominant process, i.e. to the crossing at sites
where ES is lower. With this in mind, the agreement between experiments and

calculations is very good. In any case the important point is that Ag(111) grows
three-dimensionally [336], and this in complete agreement with the above large

Ehrlich±Schwoebel barriers.
In Pt and Al, the situation is di� erent. Indeed, according to ab initio calculations

[314], di� usion across steps in Pt is strongly anisotropic: crossing A steps is much

easier than crossing B steps. ES is practically negligible at A steps. Since adatoms
cross at A steps, Pt islands grown on Pt(111) should be bounded by B steps, and this

is what is experimentally observed [337]. The situation is opposite in Al where ab
initio calculations [90] give that crossing is easier at B steps, where ES is negligible. At

A steps, ES is as large as the barrier for di� usion on the ¯at terrace.
(110) surfacesÐSemiempirical calculations (see table 4) indicate that di� usion

across steps on Ag(110) is much easier in the in-channel direction (i.e. across [001]
steps) than in the cross-channel direction (i.e. across ‰110Š steps). The former takes

place by jumps, the latter by exchange, and in both case descent is easier at kinks.

This is especially important for [001] steps, which have usually a high density of
kinks. All intralayer and interlayer processes on this surface are thus leading to an

easy in-channel mobility and to a slow cross-channel mobility. The anisotropy of
interlayer di� usion plays a key role in the building up of peculiar surface instabilities,

the ripples, both in sputtering [324] and growth experiments [297]. In growth
experiments ripples rotate with increasing temperature: at low temperatures they

are along the [001] direction, at intermediate temperatures they disappear, and at
high temperatures they are placed along the ‰110Š direction [297]. The formation and

rotation of ripples is due to the interplay of the anisotropy of bonding and the
anisotropy of di� usion [298].

Interfacet di� usion on 3D nanoclustersÐMetal 3D nanoclusters, either supported

or free, are often found as truncated octahedra (TO, in the case of free clusters) and
square truncated pyramids (TP, in the case of supported clusters on square lattices)
[338±340]. Both the TO and the TP expose (111) and (001) facets. For example, a TO

has eight (111) and six (001) facets (see ®gure 35), while a TP (TP) has four (111)

facets and a single (001) facet on the top. Therefore, interfacet di� usion processes are
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Table 4. Energy barriers (in eV) for diffusion on the ¯at Ag(110) surface, and along (k) and
across (?) steps. TBSNA, EMT, EAVC and EAAFW results are taken from [81], [84],
and [87].

Di� usion Process TBSMA EMT EAVC EAAFW

¯at surface along [110] 0.28 0.29 0.25 0.32

¯at surface along [001], jump 0.38 0.56 0.31 0.42

k ‰110Š steps, jump 0.30
k ‰001Š steps, exch. 0.56

? ‰110Š steps, exch. 0.56

? ‰001Š steps, jump at kinks 0.35



important on such clusters: adatom crossing between two facets is analogous to

adatom crossing at steps and the concept of an additional Ehrlich±Schwoebel barrier

apply the same. On TO and TP structures, one expects that adatoms can cross
between adjacent (111) facets, or from a (001) facet to an adjacent (111) and vice versa.

This can indeed happen, as shown by TBSMA calculations [261], and the preferred
mechanism is the exchange (see table 5). The …111†>…111† and the …111†>…001†
crossings are indeed rather easy, with quite low barriers. To the opposite, the

crossing …001†>…111† is much more di� cult, because of the higher coordination of

the adatom on a (001) facet. However, the most surprising result is that interfacet

mobility is possible also between non adjacent (111) facets, and more precisely
between two (111) facets on the opposing sites of the same (001) facet. This is

possible through the chain process (see ®gure 35), which is a multiple-exchange
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Table 5. Energy barriers (in eV) for interface dif-
fusion on truncated octahedra and square
truncated pyramids for Ag; the results are
taken from reference [261].

Di� usion Process TBSNA

(111)>(111) jump 0.34
(111)>(111) exch. 0.23
(111)>(001) jump 0.36
(111)>(001) exch. 0.32
(001)>(111) jump 0.64
(001)>(111) exch. 0.60
chain through a 3 £ 3 (001) facet 0.19

Figure 35. Step crossing on a truncated octahedron. Top row: exchange crossing by the
chain mechanism which connects two (110) facets on opposite edges of a (001) facet.
Middle row: exchange crossing between two adjacent (111) facets. Bottom row:
exchange from a (001) facet to an adjacent (111) facet and (from right to left) vice
versa.



process of a special kind. In fact, while multiple exchanges at steps and on vicinal

surfaces [100, 70] are characterized by quite high barriers, and thus become
important only at high temperatures, the chain process on TO and TP has such a

low barrier that it is the dominant interfacet process, provided that the (001)
intermediate facet is not too large (up to facet sizes of 5 £ 5 on Ag). The chain

process was found in simulations of di� usion on Al TO clusters [341]; the
calculations in reference [261] con®rm that it should be important also in Ag and

Au. Jump, exchanges and chain processes are possible also on non-crystalline
structures such as decahedra and icosahedra [342], and play a key role in the

morphology transitions during cluster growth [343, 344].

4.4. Collective di� usion on stepped surfaces
4.4.1. Langmuir model for stepped substrates

The macroscopic collective di� usion coe� cient Dc is unavoidably a� ected by the

existence of surface defects, especially in the form of impurities and surface steps
[345, 346] even on a well-prepared sample substrate. There exist only limited e� orts

[347±351] in trying to understand how macroscopic collective di� usion depends on
the microscopic jump rates near the steps. This is the question we address in this

section. We will describe the theoretical results from a lattice gas model for the

stepped substrates and compare the theory with a series of experimental studies of
CO on Pt(111) surfaces with well characterized step densities.

Theoretically, this problem has been investigated [352, 353] within a Langmuir

gas model, where the interaction between adsorbate particles is the exclusion of

double occupancy of lattice sites. The model includes the e� ect of the Schwoebel
barrier, extra binding at step edge, and enhanced di� usion along step edges as well as
di� erent prefactors at these sites. The corresponding (adiabatic) potential energy

pro®le in direction perpendicular to step edges (x direction) is shown in ®gure 36(a).
An additional binding energy EB at the lower step edges can arise as a consequence

of extra coordination for the adsorption sites there. Similarly, a Schwoebel barrier

ES (see section 4.3.2) for jumps from the terrace to the lower step edges [288] can
exist due to the reduced coordination at the saddle point as compared to the one for
a jump on a terrace, for which the activation barrier is denoted by E0. The barrier for

jumps along lower step edges, E2, is taken to be lower than E0, leading to a higher

jump rate along the lower step edges. The inert substrate surface is assumed to have a
periodic array of straight steps separated by terraces of width of L lattice sites.

The energy barriers lead to the following rates for nearest-neighbor jumps as

shown in ®gure 36(b) and ®gure 36(c): ¡0 on the terraces, ¡1 from the lower edge to

the same terrace, ¡0
1 from the terrace to lower edge, ¡u from the lower edge across the

step up to the neighboring terrace, ¡d from the upper edge across the step down to

the lower edge on the neighboring terrace, and ¡2 along the lower step edge. These
set of rates allow for modi®ed prefactors ¸S, ¸B and ¸2, for jumps over step edge,
detachment from (attachment to) step edge and jumps along the lower step edge,

respectively [352]. They can be written as

¡0 ˆ ¸0 exp ‰¡E0=…kBT†Š ˆ ¸0

¸B
¹¡1 ˆ ¸0

¸B
¡ 0

1 ˆ ¸0

¸S
¼¡d ˆ ¸0

¸S
¹¼¡u; …122†

¡2 ˆ ¸2 exp ‰¡E2=…kBT†Š; …123†
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where the parameters ¹ and ¼ de®ned by ¹ ˆ exp‰EB=…kBT†Š and ¼ ˆ exp‰ES=…kBT†Š
describe the e� ective strengths of the binding at step edge and the Schwoebel barrier.

Each adsorption site is labelled by the coordinate …lLa; mb† of the unit cell together
with a site index s ˆ 1; 2; . . . ; L within the unit cell (see ®gure 36(c)). Here a and b are
the nearest neighbour distances along the x and y directions, respectively. For each
site we then de®ne a stochastic occupation variable ns

l;m…t†, which due to the
exclusion of double occupancy can take on only the values 0 and 1. In the present
model, the adsorption potential is modi®ed only for lattice sites at the lower step
edge, and therefore one has only two distinct row coverages ³e and ³t, for lower step
edges and terraces, respectively, de®ned by

³e ˆ hn1
l;mi;

³t ˆ hn2
l;mi ˆ hn3

l;mi ˆ ¢ ¢ ¢ ˆ hnL
l;mi:

9
=

; …124†

These occupation numbers are independent of the cell indices …l; m† by symmetry,
and they obey the detailed balance condition. To satisfy detailed balance corre-
sponding to the potential pro®le of ®gure 36(a), the intrinsic prefactors were chosen
to be symmetric with respect to reversal of each jump, i.e. the prefactors are identical
for the rates ¡d and ¡u, and also for the pair ¡1 and ¡0

1. Also the Schwoebel barrier
results in a symmetric temperature-dependen t modi®cation of rates ¡u and ¡d by the
factor ¼. Therefore, the prefactors ¸B and ¸S and the Schwoebel factor ¼ do not
a� ect static quantities like ³e and ³t. Note that these symmetry properties guarantee

that there is no di� usion bias although the potential pro®le of ®gure 36(a) is
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Figure 36. Geometry and jump rates of the lattice model for di� usion on a stepped
substrate. (a) The potential pro®le in x direction. (b) Side view of the model showing
the various intrinsic hopping rates for jumps in the x direction near step edges. The
rate ¡ 0

1 (not shown) is for the process reverse to that with the rate ¡1. (c) Top view of
the model showing the size of one unit cell with the indices s ˆ 1; 2; . . . ; L of each
lattice site within the cell.



asymmetric. The partial coverages are related by

³e…1 ¡ ³t†
³t…1 ¡ ³e†

ˆ ¹; …125†

which allows us to express ³e and ³t as a function of the total coverage

³ ˆ ³t ‡ …³e ¡ ³t†=L as

³e ˆ ³e…¹; L; ³† ˆ 1

2…¹ ¡ 1†  ‡ ¡
���������������
 2

¡ ‡ ¬
q³ ´

;

³t ˆ ³t…¹; L; ³† ˆ
1

2…¹ ¡ 1†…L ¡ 1†  ¡ ‡
���������������
 2

¡ ‡ ¬
q³ ´

;

9
>>>=

>>>;
…126†

where  § ˆ …¹ ¡ 1†…L³ § 1† § L and ¬ ˆ 4…¹ ¡ 1†…L ¡ 1†L³.
Under conditions typical to experiments on smooth surfaces, the value of the

terrace width L ranges from 50 to 500, and the extra binding at the step edges,
characterized by ¹ ˆ exp ‰EB=…kBT†Š, satis®es the condition ¹ ¾ 1. Equation (126)
then leads to the following observations. At very low coverages s.t. ³ µ 1=L, the
particles adsorb preferentially at the step edges because of the extra binding there so
that ³e º ³L while terraces are practically empty with ³t º 0 [352]. This situation
continues as the coverage is increased until one reaches the value ³ ˆ 1=L. At this
point, the step edges are fully occupied and the terraces remain empty with ³e º 1
and ³t º 0. Beyond that point, for ³ > 1=L, terraces start to be populated while the
edge rows remain fully occupied, i.e. ³e º 1 with ³t º ³. This can be seen more
explicitly by expanding ³e and ³t in equation (126) to lowest order in the deviation

³ ¡ 1=L. For ¹ ¾ L one ®nds

³e º 1 ¡

������������
L ¡ 1

¹

s

‡ L

2
³ ¡ 1

L

³ ´
‡ O ³ ¡ 1

L

³ ´2
" #

;

³t º

������������������
1

…L ¡ 1†¹

s

‡ L

2…L ¡ 1† ³ ¡ 1

L

³ ´
‡ O ³ ¡ 1

L

³ ´2
" #

:

9
>>>>>=

>>>>>;

…127†

This behaviour of ³e and ³t is the key to understand the variation of the di� usion
coe� cient with the coverage ³. Since typically for large terraces the inverse width
1=L is less than a few percent, the experimental situation usually corresponds to the
regime ³ > 1=L, and the in¯uence of the steps on the measured values of di� usion rates
di� ers substantially from the zero-coverage behaviour described in reference [354].

4.4.2. Dynamical mean ®eld solutions
Two equivalent analytic approaches to study collective di� usion, the Mori

projection operator formalism [126] and the Green’s functions techniques [128±
130] have been applied to solve for the collective di� usion coe� cient Dc for the
model described above [352]. In both approaches, the di� usion coe� cient is obtained
by identifying the pole of the density correlation function in the DMF approxima-
tion as discussed in section 2.2. For small terrace widths …2 µ L µ 8†, MC simulation
studies were also performed [352] and the analytic theory agrees very well with the
MC data, with no discernible systematic deviations. Thus the DMF provides a very
accurate description of the present system. The computational e� ort in the MC
simulations increases rapidly for increasing terrace width, and a full numerical study
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of stepped surfaces with realistic terrace widths and system sizes is not feasible. The
analytic DMF thus provides an accurate and powerful tool for studying problems
such as the crossover from step-dominated to terrace-dominated di� usion as a
function of temperature and terrace width. In the following, we shall discuss the
analytic DMF result for the di� usion coe� cient perpendicular to the steps (Dxx) and
that parallel to the steps (Dyy) as given by the equations from reference [352]):

Dxx ˆ ¡0L2a2

L ¡ 1 ‡ ³e

³t

³ ´2

¹¡1

" #
L ¡ 2 ‡ ³t

³e

¸0

¸B

‡ ¸0

¸S
¼

³ ´
¹

µ ¶ ; …128†

Dyy ˆ 1 ‡ ¡2=¡0 ¡ 1

1 ‡ …L ¡ 1† ³t

³e

³ ´2

¹

2

64

3

75
¡0b2: …129†

4.4.3. Di� usion perpendicular to the steps
In this section we examine the coverage and temperature dependence of the

di� usion coe� cient Dxx perpendicular to the steps as given by equation (128). For
EB ˆ 0 all row coverages are equal with ³e ² ³t ² ³ so that all coverage dependence
of Dc cancels out, and even with large Schwoebel e� ect the properties of Dc are
relatively simple. Therefore, the main emphasis will be on cases where the extra
binding at step edge is strong, i.e., ¹ ˆ exp ‰EB=…kBT†Š ¾ 1. Based on the analysis
below, behaviour of D in other cases can be easily understood. Since step spacings of
the order of few hundred lattice constants can be achieved for good sample surfaces,
the regime ³ ¾ 1=L is the most relevant one for most experiments. In this limit, with
exp ‰EB=…kBT†Š ¾ 1 and L ¾ 1, we have ³e º 1 and ³t º ³, and the expression of
Dxx in equation (128) reduces to

Dxx º ¡0La2

L ‡ ³
¸0

¸B
‡ ¸0

¸S
exp ‰ES=…kBT†Š

µ ¶
exp ‰EB=…kBT†Š

: …130†

With ®xed values of intrinsic barriers and prefactors, this expression is an increasing
function of L and a decreasing function of ³. The above equation has two regimes,
one with ¸S=¸B ¾ exp ‰ES=…kBT†Š, which leads to the elimination of ES in the
di� usion coe� cient over steps so that Dxx ˆ ¸a2 exp f¡‰…E0 ‡ EB†=…kBT†Šg; the
other with ¸S=¸B ½ exp ‰ES=…kBT†Š. In both regimes Dxx has a simple Arrhenius
form to allow a straightforward ®tting procedure. In the intermediate regime,
¸S=¸B º exp ‰ES=…kBT†Š, however, the situation is more complicated.

In recent experimental studies, Xiao et al. [347, 355±357] have measured the
di� usion coe� cient of CO on Pt(111) as a function of temperature at coverages
0.3 ML and 0.5 ML for a number of substrates with controlled miscuts corre-
sponding to di� erent terrace widths L described in the model here. They also
distinguish between the di� erent kind of steps labelled as A, B and AB types
as shown in ®gure 37. Their results are shown in ®gure 38 for a CO coverage of
0.3 ML and in ®gure 39 for CO coverage of 0.5 ML. Assuming an Arrhenius
behaviour for the di� usion coe� cient Dxx perpendicular to the steps, their data
can be ®tted by equation (130) quite well for all step densities (L ˆ 48; 24; 12, for
miscuts of 1, 2 and 48, respectively) with E0 ˆ 3:9 § 0:2 kcal/mol [24, 358, 359] and
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E0 ‡ …ES† ‡ EB ˆ 9:3 § 0:8 kcal/mol, where ES in the parentheses appears only for
the second regime. The corresponding prefactors from the ®tting are Dt0 ˆ 6 £ 10¡7

cm2/sec and Dxx0 ˆ 6:4 £ 10¡4 cm2/sec (Dxx0 ˆ ¸Ba2 in the ®rst regime or ¸Sa2 in the

second regime of equation (130)). Judging from the quality of the ®t, the meas-

urement does not fall into the intermediate regime. The prefactor across the steps is
about three orders of magnitude larger than over the terraces, similar to what has

been reported for Ag/Ag(111) [335]. In the case of CO/Pt(111), the extra binding
energy at the trapping site EB is found to be EB ’ 71 kcal/mol at low coverages.

Now, with the terrace barrier E0 independently measured, this leads to the value for

the Schwoebel barrier of ES ’ ¡1:6 ¡ 1:3 kcal/mol. Based on the above argument, it

was concluded that the Schwoebel barrier for CO on Pt(111) is small if not negative
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Figure 37. Di� erent types of step orientations for CO on the Pt(111) surface.

Figure 38. CO di� usion coe� cient D in the direction perpendicular or parallel to steps on vicinal
to Pt(111) surfaces vs. reciprocal temperature in an Arrhenius plot for a number of step
orientations and at 0.3 ML coverage. The data are from reference [357]. The solid lines
represent ®ts to analytic results discussed in the text and in reference [357]. Dt and Ds

represent limiting cases where terrace di� usion or step di� usion dominates.



and di� usion perpendicular to steps is dominated only by the step edge trapping
well. This is in contrast to the metal-on-metal systems studied by FIM and STM
[360, 361, 333, 334] where the Schwoebel barrier was the only one of interest. In these
experiments, the di� usion process after trapping at the step sites was not followed
and di� usion out of the steps, i.e. dissociation of atoms from steps, was studied as an
independent process [361]. For gas atom/molecule di� usion on stepped surfaces, this
observation for CO/Pt(111) with the comparison with the theory is the ®rst example
illustrating that the additional trapping potential well at step edges could be the main
factor that controls the di� usion perpendicular to steps.

4.4.4. Di� usion parallel to step edges
In general, di� usion in the direction parallel to the steps appears to have a

relatively simple dependence on coverage and terrace width. The zero-coverage limit
of Dyy is particularly simple: in the absence of blocking we have

³e=³t º exp ‰EB=…kBT†Š so that equation (129) leads to

D³>0
yy ˆ 1 ‡ ¡2=¡0 ¡ 1

1 ‡ …L ¡ 1† exp ‰¡EB=…kBT†Š

µ ¶
¡0b2; …131†

which is the result obtained in reference [354]. Here the e� ects of the extra binding
and the enhanced jump rate at step edges both increase Dyy.

For a ®xed coverage ³ ¾ 1=L at low temperatures two e� ects compete with each
other. First, for E2 < E0 the ratio ¡2=¡0 / exp ‰…E0 ¡ E2†=…kBT†Š and di� usion
along the step edge row is increasingly faster than in the terrace region. At the same
time, the occupation of the edge row increases as the factor ¹ ˆ exp ‰EB=…kBT†Š,
which leads to an exponential increase in the blocking factor for di� usion along the
step edge. These two e� ects determine the coverage and temperature dependence of
di� usion in the direction parallel to the steps. In the low temperature limit with
L ¾ 1, we have ³e º 1 and ³t º ³ so that equation (129) reduces to

Dyy º 1 ‡ exp ‰…E0 ¡ E2 ¡ EB†=…kBT†Š ¸2

L¸0³2

» ¼
¡0b2: …132†
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Figure 39. As for ®gure 38, but the CO coverage is 0.5 ML.



From this form we see that for E0 ¡ E2 > EB the main contribution at low
temperatures comes from di� usion along the lower step edge, i.e. from the second
term on the right hand side. If, on the other hand, E0 ¡ E2 < EB, then at low
temperatures the increase in the edge rate ¡2 is not large enough to compensate the
enhanced blocking, and the less-blocked terrace jumps with rate ¡0 dominate. In
other words, the behaviour of Dyy depends on whether the larger proportion of mass
transport occurs at step edges or on terraces.

This result can be readily compared with the experimental observations. As can
be seen from ®gure 38 and ®gure 39, at temperatures above 225 K, data from all
three samples (A, B, and AB type of steps) fall on a single line and can be interpreted
as due to the same mechanism of di� usion via step edges. However, the di� usion
data parallel to A and AB type of steps clearly follow another trend at low
temperatures. It has been suggested that this is due to the opening of other easy
channels of di� usion for these step orientations [357]. Here we concentrate on
di� usion parallel to B type steps on the 28 miscut sample as shown in ®gure 38 and
®gure 39. Using ¸0a2 ˆ 6 £ 10¡7 cm2/sec and E0 ˆ 3:9 kcal/mol to ®t the data with
equation (132) one obtains E2 ‡ EB ˆ 10:3 kcal/mol, and ¸2a

2 º 5 cm2/sec, about
107 times ¸0a2. With the established value of EB of 7 kcal/mol [362, 358, 359, 363,
364], one then deduces the value E2 ˆ 3:3 kcal/mol. The ®tting quality is excellent
over the entire temperature range of the experiment, spanning close to four orders of
magnitude of values of D, as shown by the solid line in ®gure 38 and ®gure 39.

However, the large value of ¸2 is puzzling and does not seem to have simple
physical origin. Recently, Xiao et al. [357, 365] have performed a MC simulation
study using a normal prefactor at the step edges (10¡3 cm2/sec). They were able to ®t
the data with the same quality as with (132) using the anomalously large prefactor
for the step edge. The most likely explanation for this apparent paradox is that both
the experimental studies and the MC simulation study are under highly non-
equilibrium conditions and the initial mass transport cannot be described by the
linear di� usion theory such as that given in (132). When the di� raction grating is
created parallel to the step edges, the relaxation time for the step edge population to
return to equilibrium value (³e º 1) is anomalously long. During the transient period
before the step edge population reaches its equilibrium value, there is a mechanism
such that the adsorbed CO can hop from the high coverage terrace site to the step
edge, di� use along the step edge, and then hop back to the low coverage terrace site.
This process appears in the actual mass transport with an e� ective large prefactor

¸2a2. As the equilibrium situation is approached in the asymptotic long time limit,
the net cross-channel mass transport between the terrace and the step edge is no
longer e� ective and the di� usion should then be dominated by the terrace.
Preliminary MC studies for longer times indeed con®rm this slow approach to
equilibrium for this geometry [366]. Thus, the accurate linear di� usion coe� cient Dyy

must be extracted in the long time regime of the coverage grating decay, which
imposes a signi®cant experimental challenge. This example also indicates the care
one must take in analysing the di� usion data with a linear analysis. In the presence
of steps leading to new time scales and energy scales, nonlinear and non-equilibrium
conditions such as those discussed in section 2.3 can often prevail.

4.5. Di� usion coe� cients near phase transition boundaries
As discussed in the earlier chapters, there is no rigorous basis for the Arrhenius

activated behaviour for the temperature dependence of the di� usion coe� cients.
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However, over the limited temperature range of the experiments, both the experi-
mental and theoretical studies have shown that the di� usion coe� cients obey an
apparent Arrhenius form with an e� ective activation barrier. The most notable
exception is when one is near a phase transition boundary. This could be due to
either a phase transition for the substrate surface, as for example the surface
reconstruction of W(100), or in the case of ®nite coverages, a phase transition
between an ordered and disordered phases of the adsorbate layer or even between
two ordered phases. Under these conditions, theoretical studies have shown that
¯uctuation e� ects near the phase boundary can lead to a strong non-Arrhenius
temperature dependence as well as non-monotoni c coverage dependence. Experi-
mentally, these anomalous temperature and coverage dependencies have also been
observed [8, 9]. This is the subject of the present section.

4.5.1. Di� usion near a phase boundary for a substrate reconstruction
First, we consider the case where the phase transition is that of the intrinsic

substrate. In this case, we will show that the dominant e� ects of the phase transition
on the adatom di� usion coe� cient arise from its e� ect on the nonadiabatic frictional
coupling rather than the adiabatic barrier. Consider the random frictional force
acting on the adatom at the position r due to coupling with the vibrational
excitations of the substrate. In the simple pair interaction model, this can be
expressed in terms of the linear displacement uq;¬ of each substrate atom from its
equilibrium position as

f¬…r† ˆ
X

q
W…r; q†uq;¬: …133†

Here, q stands for the normal mode index of the phonon mode, ¬ is the Cartesian
component label and W represents the coupling function. The frictional damping (in
the Markovian limit) on the adatom is given by the self correlation function of this
random force [126, 214] as

² ˆ
X

q

W 2…r; q†S…q; ! ˆ 0†; …134†

where S…q; ! ˆ 0† is the (isotropic) dynamic structure factor of the substrate in the
zero frequency limit de®ned as

„ 1
0

dthuq;¬…t†*uq;¬…0†i. According to general dyna-
mical scaling arguments [367, 368], S…q; !† should take the scaling form near Tc for a
continuous phase transition as

NdS…q; !† ˆ ¹z‡®=¸
c g§…q¹c; !¹z

c†; …135†

where g§ is a scaling function, ¹c / jT=Tc ¡ 1j¡¸ is the divergent correlation length,
d is the system dimension, ® the susceptibility exponent and z is the dynamical
critical exponent. Substitution of (135) back into (134) then leads to the conclusion
that as one approaches Tc, the friction ² has a singular part that goes as

² / jT=Tc ¡ 1j¡x with x ˆ ¸…z ¡ d† ‡ ®. The dimension d enters explicitly through
the q integration in (134) where we have assumed a typical short ranged coupling
potential W…q† that is regular at q ˆ 0. Thus the friction ² can either diverge if x > 0
or be ®nite with a cusp only. For the surface reconstruction transition of the W(100)
surface [369], the exponent x has been explicitly evaluated for a model Hamiltonian
and shown to have the value [369, 370] x º 1:8. Thus the di� usion coe� cient of
adatoms on this surface is predicted to vanish at the transition. One caveat here is
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that the Markovian approximation tends to overestimate the critical e� ect. This is
easy to understand because in the Markovian approximation, the magnitude of the
single friction parameter ² is controlled by the memory function §…!† evaluated at
the characteristic adatom frequency !0 which is set to zero. As one approaches Tc,
the central peak in S…q; !† responsible for the divergence of the friction gets
narrower and narrower and eventually the Markovian approximation is going to
break down when the width of the central peak becomes less than !0. The critical
e� ects can be maximized for an overdamped substrate in which the scale of the
central peak in the dynamic structure factor is controlled by the intrinsic damping
factor ²s which could be much larger than !0.

An analogous critical divergence of the frictional coupling occurs in type-II
superconductors in the mixed phase when there is a partial penetration of an external
magnetic ®eld. The ®elds are concentrated in ¯ux vortices which arrange themselves
as a regular `Abrikosov’ lattice [371]. When a current I is passed through, the ¯ux
line lattice (FLL) moves in response to the Lorentz force, leading to dissipation and
an induced voltage V which is proportional to the drift velocity of the lattice. Thus
the conductance C ˆ I=V is just the inverse of the center of mass mobility DCM of
the ¯ux lattice. The conductance is expected to decrease monotonically towards the
Hc2 phase boundary where the superconductor becomes normal because of the
diminishing order parameter and hence a reduced pinning strength. However,
experimentally, it was found that the conductance peaks sharply to a large value
before dropping at the superconducting-norma l transition [372, 373]. To date,
however, there has been no satisfactory explanation for this peak e� ect. Recent
experiments [374] have shown that the peak e� ect occurs at exactly the melting point
of the ¯ux lattice. This con®rms the ideas that the mobility DCM for the ¯ux lattice
would vanish [375, 167] and hence the conductance would be anomalously large near
a continuous or very weak ®rst order melting transition due to the enhanced
coupling of the pinning centers to the FLL through the critical ¯uctuations.
Following the same argument leading to equation (134), we can ®nd a similar
expression for the random force acting on the pinning center due to the vibrational
motion of the ¯ux lattice. The force due to pinning centre on the ¯ux lattice is exactly
equal and opposite to this force. Thus, it can be easily seen that the friction on the
¯ux lattice is proportional to the expression given in equation (134) and should
diverge or become very large at a continuous or weakly ®rst order transition of the
¯ux lattice. This then lead naturally to the dip in the mobility of the ¯ux lattice and
the corresponding peak in the conductance which is the inverse of the mobility.

4.5.2. Di� usion near the phase boundary of an adsorbate layer
In this section, we ®rst discuss the general theory of di� usion close to phase

transition boundaries of a surface adsorbate system. The behaviour of the di� usion
coe� cients near second-order transition points can be analyzed using general scaling
theory [376]. The collective di� usion coe� cient is dominated by the scaling behav-
iour of the static structure factor, which leads to the following dependence:

Dc…T† / j1 ¡ T=Tcj® ; ³ ˆ ³c;

Dc…³† / j1 ¡ ³=³cj®= ; T ˆ Tc;

)
…136†

where Tc and ³c denote the critical temperature and coverage, respectively, and ® and

 are the usual susceptibility and order parameter critical exponents, respectively.
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Thus, Dc is expected to vanish close to second-order transition points. It is important
to note that equations (136) apply only when the coverage (density) is the order
parameter. When this is not the case, e.g., in the case of Model C discussed below
[368], the critical behaviour is much weaker and may be virtually absent.

The case of tracer di� usion is more subtle due to the fact that within mean ®eld
theory, short range correlations do not play any role [376]. General scaling analysis
reveals [376] that Dt should have a non-singular part, and another part that has an
energy-like singularity which along the critical coverage goes as j1 ¡ T=Tcj1¡¬. This
means that Dt itself remains ®nite at Tc, but its slope has a singularity for ¬ > 0.

We now illustrate these general principles in the context of the lattice-gas model
of O/W(110). The O/W(110) system is undoubtedly one of the most studied
adsorption systems. Its phase diagram has been determined through experimental
studies [377±380] using LEED spot pro®le analysis and STM. Its main features can
be summarized as follows. At temperatures T ¶ 710 K [379], the system is in a
disordered phase, while at lower temperatures there is a wide variety of ordered
phases at di� erent coverages, namely the p…2 £ 1), p…2 £ 2), and (1 £ 1) phases
corresponding to ideal coverages of 1/2, 3/4, and 1, respectively. At intermediate
coverages, some coexistence regions also appear [380]. The substrate remains
unreconstructed at all coverages [381±383], the oxygen atoms have well-de®ned
adsorption sites on the surface, [380, 384, 385] and desorption of oxygen occurs only
at temperatures as high as 1600 K or above [382, 383]. Therefore, this system is
suitable for simulation studies using a lattice-gas description over a wide temperature
range.

We summarize here the results from MC simulation studies [386, 387] based on a
lattice-gas model including the three-particle interactions [388]. The phase diagram
in the T ¡ ³ plane is shown in ®gure 40. The dynamic algorithm used is the TDA
discussed in section 3.5. earlier. We will come back and discuss the signi®cance and
di� erence of choosing di� erent dynamic algorithms later. In ®gures 41 and 42, the
behaviour of the di� usion coe� cients is shown. First, we note that the DMF (see
section 3.5) gives quite a good approximation of Dc, while it is much less satisfactory
for Dt, which is clearly overestimated at low temperatures. On the other hand, the
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Figure 40. Schematic phase diagram of the O/W(110) system in the T ¡ ³ plane [338]. The
energy parameters of the model have been scaled so that the critical temperature of
the order-disorder phase transition at ³ ˆ 0:45 is Tc ˆ 710 K. DO denotes the
disordered region, while (2 £ 1) and (2 £ 2) denote the ordered phases. The CXi,
i ˆ 1, 2, 3, are the coexistence phases.



use of the Darken equation for Dc would lead to an evident underestimation of Dc at

low temperatures. More importantly, it is evident that the behaviour displayed by

the di� usion coe� cients in ®gures 41 and 42 cannot be reasonably described by a

constant e� ective activation barrier over the whole temperature regime. Further, for

this kind of a non-Arrhenius temperature dependence, there is no unique way of

de®ning a temperature dependent barrier. One way is to use the local slope while
another possibility is to choose a constant e� ective prefactor and leave all the

temperature dependence in the e� ective barrier. These two procedures would lead to

very di� erent values for the barrier. We now follow the practice commonly used in

analysis of experiments and de®ne an e� ective di� usion barrier ED
A as the local slope

Collective and single particle di� usion 1045

Figure 41. Results for Dc in an Arrhenius plot at ³ ˆ 0:45. The results along the two
principal axes (x; y) are based on the density ¯uctuation method and are given by
squares and circles, respectively. The error bars are of the size of the symbols. The
lines are approximate results neglecting memory e� ects. The critical temperature Tc

of the order-disorder phase transition is denoted by a dotted line.

Figure 42. Results for Dt in an Arrhenius plot at ³ ˆ 0:45. The results along the two
principal axes (x; y) are given by squares and circles, respectively. The error bars are
much smaller than the size of the symbols. The lines are approximate results
neglecting memory e� ects. Again, the critical temperature Tc is denoted by a dotted
line.



of an Arrhenius plot, namely

ED
A ² ¡ @

@…1=kBT† ln D: …137†

In ®gures 41 and 42, the local slope is approximately constant at low and high
temperatures away from Tc. This implies that the di� usion coe� cients obey simple
Arrhenius behaviour in these limits. Overall, however, the Arrhenius form with a
single activation barrier cannot successfully describe their temperature dependence
since near Tc the di� usion coe� cients show strong temperature variation.

Since the de®nition of Dc contains the inverse compressibility [8] it is often
assumed that this is the main origin of the anomalous temperature dependence near
phase transitions [389, 390], as discussed above. However, for the O/W(110) system
which is in the symmetry class of a 2D xy model with a cubic anisotropy ®eld, the
critical e� ects in Dc are controlled by the speci®c heat exponent ¬ which is
nonuniversal and negative [391]. It is thus expected that near Tc there is just a
rounded cusp for the compressibility ÀT whose size dependence is very weak, and
thus the non-Arrhenius behaviour of both Dt and Dc is predominantly determined by
the average local jump rate ¡ of single particles. Indeed, the temperature dependence
of ¡ shown by circles in ®gure 43 is very similar to that of Dc as well as Dt, with a
turning point and sharp temperature variations near Tc. It is evident that ¹ only
slightly steepens the slope of Dc vs. 1=T around Tc.

The e� ective di� usion barrier ED
A as extracted from (137) for Dt is shown in ®gure

44. It has a very pronounced peak centered at Tc, accompanied by a strong increase
in the value of the corresponding prefactor D0 shown in the inset of ®gure 44. This is
yet another example of the well-known compensation e� ect [8, 392]. Here the
compensation simply results from the fact that when the temperature dependence
is non-Arrhenius , there is no unique way of separating the prefactor and the barrier
contributions. Since the temperature dependence of the di� usion coe� cient itself
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Figure 43. Results for the (dimensionless) thermodynamic factor ¹ (squares for LB ˆ 30 and
triangles for LB ˆ 120) and the average transition rate ¡ (circles) in an Arrhenius
plot. For ¹, results with two system sizes LB are given to demonstrate the cusp-like
behaviour; the critical regime is further illustrated in the inset. The LB dependence
(not shown) of ¡ is extremely weak. The error bars are smaller than the sizes of the
symbols. The thermodynamic factor has been shifted for clarity’s sake. The critical
temperature of the order-disorder phase transition is denoted by Tc and a dotted line.



near Tc is smooth and nonsingular, any dramatic change in the temperature

dependence of the e� ective barrier ED
A must be followed by a corresponding change

in the e� ective prefactor D0.

To understand the observed strong temperature variation of ED
A near Tc, we need

to consider the energetics of the microscopic jump processes which determine the

average jump rate ¡. At ®nite coverages, there is a very complex distribution P…EA†
for the instantaneous activation barriers EA which an adatom needs to overcome in a

jump attempt from one con®guration to another. For the particular model under

study, the range of values is illustrated in ®gure 45. At high temperatures, P…EA† is
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Figure 44. Results for the e� ective activation barriers EA. The squares denote results based
on the Arrhenius form, while open circles represent the data based on the tail of the
waiting-time distribution. For the former, a typical error bar is shown, while for the
latter the errors are smaller than the size of the symbols. Behaviour of the prefactor
D0 is illustrated in the inset. The critical temperature is denoted by a dotted line.

Figure 45. Normalized probability distributions P…EA† of the instantaneous activation
barriers EA at three di� erent temperatures: (a) T ˆ 0:714Tc, (b) T ˆ 1:012Tc, and (c)
T ˆ 2:143Tc. The barrier which correspond to a jump from a fully ordered row in the
perfect p…2 £ 1† phase to an empty channel nearby, thus forming a vacancy behind is
0.392 eV. In all the three ®gures, one of the peaks extends beyond the vertical scale:
In (a) P…0:392 eV† ˆ 0:496, in (b) P…0:392 eV† ˆ 0:171, and in (c) P…0:0 eV† ˆ 0:120.
For these histograms, more than 107 samples were taken.



strongly peaked at small values of EA, while at low temperatures the situation is
completely the opposite. The change in the distribution takes place around Tc, thus
characterizing the ordering of the adlayer as the temperature is decreased below Tc.
This change in turn results in a strong temperature dependence of the average
transition rate ¡ around Tc, as shown in ®gure 43. The peak in ED

A does not refer to
any microscopic rate-limiting jump process. Instead, it arises from an entropic
contribution to ¡ which has a strong temperature dependence in the vicinity of
Tc. We note that these conclusions apply to both tracer and collective di� usion since
the qualitative behaviour of Dt and Dc around Tc is similar.

Uebing and Zhdanov (UZ) [393] have also studied the critical e� ects on di� usion
coe� cients for the same system (using a di� erent model Hamiltonian) and observe a
near-Arrhenius behaviour for ¡ as re¯ected in their results for Dt. This is in sharp
contrast to the results of Vattulainen et al. [386, 147, 387, 394] shown above. In the
study of UZ, the dynamic algorithm chosen is a variation of the initial value (IV)
dynamics algorithm. As emphasized before in section 3.5, a dynamical quantity such
as ¡, unlike the equilibrium properties, does not depend only on the lattice-gas
Hamiltonian but also on the details of the stochastic dynamics chosen in the MC
studies. It was found through comparison of simulation studies [395] using di� erent
dynamic algorithms, that other dynamics such as Metropolis and Kawasaki are
consistent with TDA results and show a prominent non-Arrhenius behaviour for the
rate ¡ near Tc. A comprehensive study of the validity of various MC dynamic
algorithms was made through comparison with MD simulations which does not
have the unrealistic dynamics of MC [395, 251]. It was found that the initial value
dynamics of the type used by UZ does not describe the activation barrier
qualitatively correctly in all cases.

The importance of how the adatom±adatom interaction part is treated
becomes evident, when transition algorithms are analyzed using the cumulant
expansion [396]. For IV dynamics this gives [251] hwi; f i ¹ hexp ‰ E…n†Ši ˆ
exp ‰ hE…n†i ‡  2…hE…n†2i ¡ hE…n†i2†=2 ‡ ¢ ¢ ¢Š; while for, e.g., Kawasaki dynamics
hwi; f i ¹ exp‰ hE…n† ¡ E…n 0†iŠ: Thus, in IV dynamics wi; f depends only on the single
particle initial energy E…n† and its ¯uctuations, while in other transition algorithms
wi; f involves the energy di� erence E…n 0† ¡ E…n†. This seemingly minor fact leads to a
major di� erence as regards the critical behaviour of Dt. We conclude that the choice
of the transition algorithm close to a critical point is nontrivial. This highlights the
fact that one should not use results for simple model kinetics to draw general
conclusions on critical behaviour of dynamic quantities as done in a recent study of
the critical exponents for the di� usion coe� cients [397].

4.6. Memory e� ects in surface di� usion
As can be seen from the de®nitions of Dt and Dc presented in section 2.2, the

single-particle velocity correlation function ¿…t† ² hv…t† ¢ v…0†i and the ¯ux±¯ux
correlation function Á…t† ² hJT…t† ¢ JT…0†i are the fundamental quantities from
which the di� usion coe� cients arise. In surface di� usion, an exponential decay (or
an exponentially damped oscillation) of ¿…t† is observed, if adparticle di� usion is
considered to be the Brownian motion of independent particles in a periodic
potential, with uncorrelated collisions with the substrate excitations [398, 20, 219,
45, 34, 53, 218]. This result is an immediate consequence of the assumption of a
constant friction in the Langevin equation of equation (63). However, in real systems
the temporal behaviour of the correlation functions is in¯uenced by the presence of
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substrate-particle and particle-particle interactions. It is instructive to examine these
two sources of memory e� ects separately.

4.6.1. Memory e� ects due to surface phonons
As already discussed in the context of the GLE in section 3.3, the friction is in

general related to the time-dependent memory function §…t; t 0† which contains both
substrate and adparticle degrees of freedom. Thus, even in the case of a single
adparticle di� using on an active substrate, memory e� ects can be present if the
substrate has no time to relax during the adparticle motion. The importance of such
memory e� ects can be estimated by considering the ratio between the time scale of
the surface excitations (phonons) and that of the adparticle motion (electronic
excitations are usually too fast to contribute to the memory e� ects, cf. section
3.3.2). The magnitude of these two time scales can be approximated by the Debye
frequency !D for the substrate (or the maximum phonon frequency), and by the
vibrational frequency of the adparticle in the potential minima !0. Then, the
Markovian limit of no memory e� ects is given by the condition !D=!0 ¾ 1, i.e.
when the particle motion is much slower than the substrate vibrations. In this limit,
the memory function can be approximated by a delta function in time, leading to the
so-called initial value approximation (IVA) for the time-dependent microscopic
friction coe� cient [211±214, 33, 20]. For adatom di� usion on metal surfaces, typical
magnitude of the vibrational frequency is !D ˆ O…1013† Hz while !0 ˆ O…1012† Hz.
Thus, at least in these systems the Markovian approximation should be reasonable.

For the case of single adparticles, the memory e� ects have been examined for
various model systems [211±213, 25, 34, 45, 218, 58]. In particular, Cucchetti and
Ying (CY) [218] carried out a systematic study of the in¯uence of memory e� ects to
adparticle di� usion and its vibrational motion. They used a simple adiabatic model
potential, with the adparticle coupled to a set of phonon modes described by a
collection on harmonic oscillators. By using such e� ective phonons, the phonon
density of states can be tuned to correspond to a realistic situation. CY studied the
simple Debye model of phonons using MD techniques in three di� erent cases
corresponding to !D ˆ 10!0, !D ˆ !0, and !D ˆ 0:1!0. In the ®rst case, the IVA
describes Dt very accurately corresponding to a constant friction in the GLE. Also,
at low temperatures the di� usion barrier is given by its adiabatic value. However, for
the two other cases where memory e� ects are important, both the magnitude of Dt

and the e� ective Arrhenius barrier di� er from the Markovian limit. Owing to the
lack of relaxation of the substrate during the adparticle motion, the e� ective barrier
has a higher value than its adiabatic value. The increase in the barrier is proportional
to the relaxation energy of the substrate atoms, and can be a signi®cant fraction of
the original barrier.

4.6.2. Memory e� ects in many-particle systems
In the case of interacting many-particle systems, the memory e� ects are even

more subtle. Memory e� ects can be studied in terms of the behaviour of the time-
dependence of the correlation functions ¿…t† and Á…t† and the associated memory
functions [398, 399], through the MEM as discussed in section 2.2. For many-particle
di� usion, a distinction has to be made between the corresponding tracer and
collective di� usion coe� cients.

Tracer di� usion in a lattice gas model of O/W(110):ÐRecently, the role of
memory e� ects in di� usion of oxygen adatoms on a W(110) surface was considered
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in a lattice-gas model with TDA using MC simulations [125, 147, 387, 394, 387, 120,
122, 400]. The model is described in section 4.5.2, and the phase diagram is given in
®gure 40. In the case of O/W(110), the exact separation of dynamical correlations (cf.
section 2.1, equation (36)) was used to study the contribution of memory e� ects to
di� usion. A detailed comparison between the di� usion coe� cients and their DMF
counterparts at T ˆ 590 K and 465 K revealed [122] that directional correlations
between successive jumps of the adatoms are indeed responsible for the memory
e� ects. Such memory e� ects are strongest at low temperatures and close to the ideal
coverages corresponding to ordered phases, i.e., around ³ ˆ 1=2 and ³ ˆ 3=4 in the
model of O/W(110). These e� ects can be studied by introducing the generalized
velocity autocorrelation function ¿g…t† in the lattice gas. ¿g…t† is de®ned by

¿g…t† ˆ 1

N½ 2
0

Ct…p½0†; …138†

with t ˆ p½0 and Ct de®ned in equation (33) in section 2.2. In all ®nite-coverage cases
studied, it was found that the velocity autocorrelation function ¿g…t† can be well
®tted to the form [400, 401]

¿g…t† ˆ ¿g…0†
1 ‡ Atx

; …139†

which leads to an algebraic decay ¿g…t† ¹ t¡x for Atx ¾ 1. The same is true for Ág…t†
as well. Figure 46 shows typical correlation functions for di� erent coverages showing
the algebraic decay, and ®gure 47 shows the e� ective exponent x as a function of
temperature [400]. At high temperatures where interaction e� ects become less
important, x approaches the value of two in accordance with the Langmuir gas
limit [402]. Within the ordered phases, however, the value of x was found to depend
on the details of ordering in a nontrivial way. Within the disordered phase, ordering
plays no signi®cant role and then the nature of interactions seems to be a su� cient
criterion to determine the value of x: for repulsive interactions x ’ 2 (or larger),
while attractive interactions lead to x < 2. In ordered phases, however, the same idea
is not su� cient for a proper description of x. Namely, if one considers the case at
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Figure 46. Typical results for ~¿¿g…t† ² ‰¿g…t†=¿g…0†Š¡1 ¡ 1 at T ˆ 465 K in the O/W(110)
model system [400]. At later times the decay of ¿g…t† starts to cross over to an
exponential form. Results are shown for four coverages from top to bottom:
³ ˆ 0:84, 0.74, 0.59 and 0.54, respectively. Full lines are ®ts to the data. Some curves
have been shifted for clarity.



high coverages and at low temperatures, then the system is dominated by repulsive
interactions, but nevertheless x < 2 within the ordered phases and in the vicinity of
phase boundaries. Therefore, within the ordered phases, the behaviour of x is
governed by ordering e� ects that determine the local structure in which adatoms
di� use, while the nature of interactions is less important.

Tracer di� usion in a model polymer systemÐAnother model where the memory
e� ects were studied is that for ¯exible, chainlike molecules on ¯at surfaces. The chains

were modelled by the 2D ¯uctuating-bond model with MC dynamics [403, 404], in
which each segment excludes four nearest and next-nearest neighbour sites on a square
lattice. The exclusion induces a strong entropic repulsion between the molecules even if
there are no direct interactions present. The repulsion strongly in¯uences di� usion in
this system, and has been studied in detail in references [405±407]. For this study the
model was augmented with an additional direct Lennard±Jones type of attraction
between the segments of di� erent chains. This model allows a systematic tuning of the
interplay between repulsive and attractive interactions. Details on the model and
parameters can be found in reference [120]. The results are in complete qualitative
agreement with the results for the O/W(110) system. In all cases studied, it was again
found that there is a power-law decay regime ¿g…t† / t¡x at intermediate times, with an
exponent x whose value depends on the interaction strength. At a ®xed coverage

³ ˆ 0:25, x ˆ 2:0 § 0:1 in the athermal limit, x ˆ 1:7 § 0:2 for a weak attractive

interaction between the segments of di� erent chains, and x ˆ 1:5 § 0:2 for strongly
attractive chains. In this case there are no ordered phases and the e� ective value of x
decreases when attractive interactions become stronger. The dependence on the
coverage ³ was also studied, and in the case of exclusion interactions only it was found
that x ˆ 2:0 § 0:1, 2:6 § 0:2 and 2:6 § 0:4 for ³ ˆ 0:25, 0.5, and 0.75 in respective
order. These results indicate that the e� ective x may be larger than two with increasing
repulsion.

Tracer di� usion in hard circles on surfacesÐThe third model studied recently is
for 2D Brownian hard spheres (circles) on surfaces [259, 108]. The surface was taken
to be completely smooth with no periodic potential. The results for the velocity
autocorrelation and memory functions indicate that these functions display an
intermediate power law decay; however, the memory e� ects are relatively weak
and x º 1:2. In reference [108], the memory function for the case of tracer di� usion

was also calculated using the mode-mode coupling approximation.
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Figure 47. Results for the temperature dependence of the ®tted decay exponent x at various
coverages ³ in the O/W(110) model system. Error bars are smaller than the size of the
symbols.



Collective di� usion results in the model system O/W(110)ÐThe decay of velocity
correlations in collective di� usion was also considered in the O/W(110) model system
by calculating Ág…t† numerically at ³ ˆ 0:55 [251]. The memory e� ects in collective
di� usion are expected to be much weaker than in the tracer case. The correlation
function Ág…t† was found to have a positive leading term, Ág…0†, and a negative tail at
times t > 0. After a very small crossover time, an e� ective power-law form,

Ág…t† / t¡y was found at intermediate times, with y ˆ 1:23 § 0:05 at T ˆ 676 K
and y ˆ 1:02 § 0:10 at T ˆ 270 K. Therefore, the results for Ág…t† are in qualitative
agreement with previous results for ¿g…t† and suggest that the exponent y is non-
universal, and thus subject to interaction e� ects.

Collective di� usion in the model polymer systemÐThe FB model polymer system
was also studied, and an approximate power-law decay Ág…t† ¹ t¡y found at relatively
short times [251]. Exponents were found to be y ˆ 1:8 § 0:1 at ³ ˆ 0:40 and y ˆ
2:0 § 0:1 at ³ ˆ 0:65. With strong interchain attractions, y ˆ 1:5 § 0:1 at ³ ˆ 0:40 was
found. These results are in qualitative agreement with the tracer di� usion case.

4.7. Nonequilibrium di� usion in the lattice-gas model of O/W(110)
4.7.1. Diffusion during domain growth

We now illustrate the approaches on di� usion under nonequilibrium conditions
presented in section 2.3, in the context of the lattice-gas model of O/W(110). The
di� usion of oxygen adatoms in the model was studied during domain growth with
MC simulations combined with the TDA (¢ ˆ 0:0437 eV) by Vattulainen et al.
[165]. The system was prepared at a fully disordered state at ³ ˆ 0:45 corresponding
to in®nite temperature, and then instantaneously quenched to several temperatures
(465±635 K) below the order-disorder transition temperature of the p…2 £ 1† phase.
The concept of equivalent times scales presented in section 2.3 was used to calculate
the correlation functions of equation (45) and equation (46) for the e� ective (non-
equilibrium) tracer and collective di� usion coe� cients, and the corresponding
average single-particle transition rates ¡…T ; t† [408].

Figure 48 shows the results for the e� ective Arrhenius barriers as extracted in
di� erent time intervals. The e� ective Arrhenius barriers at very early times are close
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Figure 48. (a) Results for the e� ective Arrhenius barriers as extracted from the generalized
correlation functions following a quench into the p…2 £ 1† phase. Circles are data for
tracer di� usion …ET

A †, squares for collective di� usion …EC
A †, and the full line for the

jump rate …E¡
A†. Equilibrium limits for tracer and collective di� usion are about

4:8kB T. The bare TDA barrier is denoted by an arrow. (b) Temporal behaviour of
the order parameter for the p…2 £ 1† phase after a quench to T ˆ 465 K. The dashed
line shows the equilibrium limit.



to the bare TDA barrier ¢, after which they rapidly increase towards their
equilibrium values. In the present case the attractive interactions dominate within

the p…2 £ 1† phase leading to larger barriers than within the disordered phase. The
results are in good agreement with the experimental data of Tringides et al. [409, 377].

More recently, Vattulainen [408] has also studied the origin of the none-
quilibrium barriers using the decomposition of equations (36) for tracer and
collective di� usion under nonequilibrium conditions. He has concluded that the

contribution from the (nonequilibrium) jump rate ¡…T ; t† to the barriers is relatively
small, and for tracer di� usion the deviation from equilibrium comes mostly from
dynamical correlation e� ects, while for collective di� usion it is due to the thermo-

dynamic factor.

4.7.2. Nonequilibrium di� usion during pro®le spreading
The lattice-gas model of O/W(110) has also been used to study the temporal

evolution of density pro®les, and the collective di� usion coe� cient as extracted from
the Boltzmann±Matano (BM) analysis of section 2.3. [152, 153]. The studies were
carried out again using MC dynamics with the TDA algorithm. The initial state of

the system was prepared to mimic typical BM experiments. The spreading coverage
pro®le ³…x; t† is de®ned for a semi-in®nite system which ranges from ¡1 to ‡1 in

the x direction, and whose width is Ly ˆ 30 ¡ 1000 in the y direction with periodic
boundary conditions. The initial pro®le at t ˆ 0 is a step function at x ˆ 0, and the
pro®le then evolves in the x direction. The temperature was chosen to be T ˆ 590 K.

First, Nikunen et al. [152] studied the evolution of coverage pro®les throughout
the whole range of coverages starting from ³…x; t ˆ 0† ˆ 1 for x < 0. A series of
scaled density pro®les ³…x=

��
t

p
† are shown in ®gure 49. As can be further seen in

®gure 50, the e� ective Dc as extracted using the BM analysis shows marked time
dependence and has not reached the equilibrium linear response regime even in the

Collective and single particle di� usion 1053

Figure 49. Scaled coverage pro®les at three di� erent times during the pro®le evolution
process. In the data, several pro®les from the time regimes 10000±12000 MCS,
50000±60000 MCS, and 250000±300000 MCS have been collapse to obtain the scaled
pro®les. The inset shows the details of the pro®les within the p…2 £ 1† phase.



longest times studied. There are particularly large deviations near phase boundaries
and within the ordered phases. Nikunen et al. used the decomposition of
equations (36) for Dc to deduce that the deviations from equilibrium are mainly
due to the non-equilibrium e� ects in the particle number ¯uctuations, in accordance
with the domain growth case discussed in the previous section.

Most recently, Nikunen et al. [153] also studied the in¯uence of the initial
conditions on the nonequilibrium e� ects during pro®le spreading. They considered
the so-called partial spreading case where the initial coverage ³…x; t ˆ 0† ˆ 1=2 for
x < 0 instead of unity. As expected, the nonequilibrium e� ects in both the scaled
density pro®les and Dc’s extracted from them are considerably weaker than those
from the full spreading case. They also found that these e� ects did not depend much
on the initial degree of order within the overlayer at x < 0. However, there was a
di� erence in the degree of nonequilibrium e� ects when spreading was considered
either along or perpendicular to the atomic rows, starting from a perfectly ordered
p…2 £ 1† phase. The di� erence between the full and partial spreading cases can also
be illustrated by considering the response function

ª…T ; ³; t† ² @¿c…T ; ³; t†
@³




T

; …140†

where ¿c…T ; ³; t† is the (non-equilibrium) local order parameter. The maxima of ª…³†
can be used to characterize the location of the phase boundaries in the system. In
®gure 51 we show typical results for ª for the case of full and partial spreading. The
phase boundaries as approximated by maxima in ª are much closer to the
equilibrium limit for the case of partial spreading, as expected from the BM results.

4.8. Quantum di� usion
We have been focusing in this review mainly on the thermally activated di� usive

behaviour of adatoms on surfaces. However, for light adatoms such as Hydrogen
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Figure 50. Coverage dependence of the e� ective Dc’s as extracted from BM analysis
corresponding to the pro®les shown in ®gure 49. The true equilibrium result is also
shown for comparison. The dashed lines indicate the locations of the phase
boundaries in the model of O/W(110).



and its isotopes, the dominant mechanism for transport to neighboring sites at low

temperatures is through tunnelling rather than thermal activation over the barrier.
The crossover point can be estimated by equating the tunnelling probability to the

thermal activation factor exp …¡EA=kBT†. For a simple 1D cosine potential with a
barrier of 160 meV, this yields a crossover temperature of 60 K from a simple WKB
estimate of the tunnelling probability. This transition from a classical to quantum

mechanical dynamics is therefore easily within the experimentally observable range
with most of the standard techniques outlined in section 1.2.

Experimentally, the ®rst measurements of di� usion of hydrogen atoms on metal

surfaces were made by ®eld emission microscopy (FEM) [410, 411]. Clear transitions
from activated di� usion to approximately temperature independent di� usion were
observed for Ni and W surfaces and attributed to the onset of quantum tunnelling at

low temperatures. Other experimental techniques were subsequently applied to study
the di� usion of hydrogen adatoms, including QHAS, STM and various optical
techniques [412±415]. However, at present there does not seem to be a universal

pattern for the details of crossover from the classical activated di� usion behaviour to
the quantum tunnelling regime. In the FEM study for Ni and W substrate surfaces
[410, 411, 416] and in the latest STM study for H/Cu(001) [413], a sharp crossover

from classical di� usion to very weak temperature dependence was observed at a
crossover temperature in the range of 60-100 K. The data for H/Cu(001) from [413]

are shown in ®gure 52. However, the QHAS study for H/Pt(111) [412] yields no
crossover down to T ¹ 100 K as shown in ®gure 53. For the system H/Ni(111),
recent optical studies [414] showed a crossover behaviour from the classical regime to

a second activated regime with a much lower activation energy below T º 100 K as
shown in ®gure 54. This is in direct contradiction with the FEM data on the same
system [411] (see ®gure 55) which showed a crossover to a temperature independent

di� usion at low temperatures. Thus, it is fair to say that while there are strong
indications that quantum tunnelling is active at low temperatures, the detailed
mechanism of quantum di� usion for hydrogen adatoms is not yet understood.

Theoretically, there have been a number of studies addressing this problem [417±
420, 35, 421±423]. One popular approach is through the quantum transition state

theory (QTST) [417, 418]. This is a generalization of the classical TST by replacing
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Figure 51. Results for the response function ª for 0 µ ³ µ 1=2 at T ˆ 590 K corresponding
to (a) partial spreading from ³…x; t ˆ 0† ˆ 1=2 …x < 0†, and (b) full spreading. Dashed
lines show the phase boundary as determined from the maximum of ª in equilibrium.



the probability density in the classical theory with the probability distribution of the
centroid:

P…x† ˆ Q¡1

…
D‰x…½†Š¯…x ¡ ·xx† exp ¡ 1

·h
S‰x…½†Š

» ¼
; …141†

with the centroid ·xx de®ned as

·xx ˆ 1

 ·h

…  ·h

0

x…½† d½: …142†
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Figure 52. Arrhenius plot of the hopping rate of H (circles) and D (+) from [413]. The
right axis gives the equivalent di� usion coe� cient D related to the hopping rate ¡ by
D ˆ 1

4 a2¡, where a is the lattice constant.

Figure 53. Arrhenius plot of the temperature dependence of the quasielastic peak width ¢!
at ¢K ˆ ¡0:44 Ð

¡1
near the zone centre. From Graham et al. [412].
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Figure 54. Arrhenius plot of the di� usion rate for hydrogen (crosses) and deuterium (solid
circles) at coverage ³ ˆ 0:3 from Cao et al. [414]). The solid lines represent the ®t
using the sum of two activated Arrhenius terms. The inset shows the orientation of
the sample and the arrow points along the direction that the di� usion rates are
measured.

Figure 55. Log Dc versus
1

T
for H on Ni(111) for a number of coverages from the FEM
study of Lin and Gomer [411].



The thermal transition rate is then given by

k ˆ 1
2

·vvP…x*†; …143†

where x* is the co-ordinate of the transition state and ·vv is a (weakly) temperature
dependent factor. At high temperatures, the cyclic paths x…½† contract to points and
the centroid coincides with the position of the classical co-ordinate. At low
temperatures, the dominant contribution to P…x† comes from paths which are
located at two stable minima simultaneously, so-called instantons. When applied
to H/Ni(100), the QTST study yielded a sharp crossover from classical activation
behaviour to a weakly temperature independent regime in qualitative agreement with
the experimental observations [421, 422]. However, the theoretical value of the
crossover temperature of 60 K is low compared to the experimental value of 100 K.
Moreover, the theoretical value for the di� usion coe� cient at low temperatures is
about three orders of magnitude smaller than the observed value. Also, the
tunnelling rate for deuterium is a further ®ve orders of magnitude down from
hydrogen, in strong disagreement with the observed anomalous isotope e� ect that
the di� usion coe� cient for hydrogen and deuterium at low temperatures is of the
same order of magnitude [411]. Part of this discrepancy could be due to the fact
that the QTST essentially yields the WKB expression for the tunnelling probability
at low temperatures, which could be quantitatively inaccurate for the parameters of
the H/Ni(100) in which the zero point energy is a large fraction of the total barrier.

We should point out that, typically in the theoretical studies, only the phonon
frictional coupling is included. In addition to the non-adiabatic friction contribution,
the coupling to phonons could lead to an activated behaviour even in the tunnelling
regime, with an activation energy equal to the so-called small polaron activation
energy. Physically, this is due to the fact that the lattice relaxes and lower its energy
when the hydrogen adatom is at a minimum site. Thus, for tunnelling to occur, the
system must ®rst go into an excited states where only the symmetric phonons
contributing to the relaxation are present whereas the asymmetric modes are absent.
This implies that the small polaron activation energy is a fraction of the relaxation
energy which is typically a few meV for H on metal surfaces [421, 422, 413]. For
adsorption on metal surfaces, the electronic friction is also present and it could lead
to a weak temperature dependence at low temperatures that behaves as T 2K¡1, where
K is a constant [424]. These e� ects are actually observed in a recent STM study of the
H/Cu(001) system [413]. In this system, the data indicate a crossover from a classical
thermal activated regime to a quantum tunnelling regime with a small activation
energy of º 3 meV that was attributed to be the small polaron activation behaviour.
For temperatures below 25 K, the observed weak temperature dependence was
attributed to the electronic friction which obeys the T2K¡1 power law with
K ˆ 0:25 § 0:05.

The quantum di� usion problem has also been studied with the Mori PO
formalism [126]. Just like the classical case as described in section 3.3., a matrix
continued fraction expansion can be developed for the velocity self-correlation
function. The only di� erence is that in the quantum case the equilibrium correlation
functions occurring in the expansion have to be evaluated fully quantum mechani-
cally, taking into account the non-commutability of the position and momentum
variables. This was accomplished by a path integral formalism. In a study applying
this formalism to H/Ni(100) [35], it was found that there is a sharp crossover from
the classical thermal activated behaviour to a temperature independent low
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temperature tunnelling regime at T º 100 K, in good agreement with the experi-
mental data. The di� erence of this study from the QTST approach is that in the
implicit evaluation of the tunnelling probability, the WKB approximation is avoided
and also the broadening of the levels due to frictional coupling with the substrate is
included. However, this study was performed in the high friction limit with a friction
parameter ² as an adjustable parameter. While the high friction limit may not
properly correspond to the real H/Ni(001) system, it is expected to give the right
order of magnitude for Dt, and correct qualitative behaviour. Indeed, when the
polaron mass of the hydrogen atom is taken into account, the value of the
dimensionless friction parameter ²=! needed to ®t the experimental value of
Dt º 10¡12 cm2=sec is of order of unity which is reasonable.

Recently, yet another approach known as the Monte Carlo Wave Function
(MCWF) method [425, 426] has been applied to the problem of quantum di� usion.
In the MCWF approach, the evolution of a quantum state jª…t†i is described by a
stochastic wave equation, in which the adiabatic Hamiltonian HS is only a part of
the evolution operator:

jª…t ‡ ¯t†i ˆ
f0��������������

1 ¡ ¯p
p exp

¡iH¯t

·h

³ ´
jª…t†i

‡
X

·

f·��������������
¯p·=¯t

p C·jª…t†i: …144†

Here the e� ect of each operator C· acting on the quantum system represents a
collision with the reservoir degrees of freedom that takes the system from one
quantum state to another. The new Hamiltonian H is non-Hermitian, built from the
original adiabatic Hamiltonian HS with an imaginary part added to account for
dissipation:

H ˆ HS ¡ i·h

2

X

·

C‡
· C·: …145†

The stochastic nature of quantum evolution here is described by the quantities f0 and
f·. They are random numbers such that the mean value of f· is related to the
scattering probabilities

¯p· ˆ ¯thª…t†jCy
·C·jª…t†i; …146†

with h f·i ˆ ¯p·, and h f0i ˆ 1 ¡ ¯p, with ¯p ˆ
P

p· giving the probability for
coherent propagation under H. With this choice of dynamics, it can be shown
[425, 426] that the quantity ·¼¼…t† obtained by averaging ¼…t† ˆ jª…t†ihª…t†j over all
possible outcomes at time t of the MCWF evolution equation, coincides with the
density matrix »S…t† obtained from the solution of the so-called Linblad form of
the master equation [427] at all times t, provided that they coincide at t ˆ 0. The
particular form of the collision operators chosen in equation (144) is the most
general one that preserves the normalization and positive de®niteness of the
corresponding »S…t†. The MCWF method allows direct analysis of trajectories in
real space and time. It also allows to examine the e� ect of individual scattering
events to the dynamics of the wave packet. In this sense the di� erence between the
MCWF and density matrix approaches is similar to that between the Langevin and
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Fokker±Planck equation descriptions of stochastic classical motion (see the discus-
sions in section 3.3).

Badescu et al. [36] have recently applied the MCWF formalism to study quantum

di� usion for the system H/Ni(111). An empirical potential was adjusted to yield the
correct classical activation barrier of º 200 meV and the observed parallel vibra-
tional mode of º 96 meV. The result for the di� usion coe� cient in the low
temperature regime (T µ 120 K) is shown in ®gure 56. There is clear activated
behaviour Dt / exp ‰¡EA=…kBT†Š, with an activation energy EA ˆ 98:1 § 0:5 meV.
This is in excellent agreement with the experimental data of Cao et al. [414] shown in
®gure 56 as well. The absolute value depends on the parameter ~²² which is the collision
rate of the H atom with the background normalized by the bandwidth of the ®rst
excited vibrational band. Previously, this low temperature activated regime has been
attributed to small polaron activated behaviour as opposed to the classical thermal

activation of º 200 meV in the high temperature regime. However, this explanation is
rather implausible since all theoretical calculations for the relaxation energy (an upper
bound for the polaron activation energy) for hydrogen on metal surfaces have yielded a
value of only a few meV [421, 422], which is also con®rmed by experimental
observations for H/Cu(001) [413]. Instead, the MCWF study has shown that the more
plausible mechanism for this low temperature activation barrier comes from the fact
that the lowest lying vibrational ground states are extremely localized and correspond
to bands of negligible bandwidth (º 10¡6 meV). The actual di� usion mechanism
occurs through thermal excitation to the ®rst vibrational excited states which are more

delocalized and then tunnelling to the neighbouring sites. This is why the activation
energy for the di� usion coe� cient at low temperatures tracks almost exactly the
vibrational excitation energy. In this regard, we also note that recent vibrational
spectroscopy measurements [428, 429] for this system show evidence of delocalization
of the hydrogen atoms through the doublet splitting of the higher vibrational states,
in agreement with the observation with the di� usion study.

As mentioned above, one major advantage of the MCWF formalism is the ability
to visualize the trajectories directly in real space. A typical trajectory from reference
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Figure 56. Temperature dependence of Dt between 80 K and 140 K, for values of
normalized collision rate ~²² ˆ 1, 5, 10 from Badescu et al. [36]. The Arrhenius
dependence is evident. The experimental data of Cao et al. [414] are shown for
comparison.



[36] is shown in ®gure 57. The other point to note is that there are sections of the
trajectory where the wave packet tunnels coherently through several sites before its

motion becomes randomized through de-excitation to the lower band. This can be
quanti®ed by studying the tunnelling length distribution P` which is displayed in

®gure 58 for the values ~²² ˆ 0:1; 0:4; 1 and 4. We de®ne the tunnelling length ` as the
distance travelled by a wave packet in the upper band before it su� ers a collision. As

can be seen in ®gure 58, P` decreases exponentially with `. At small collision rates,
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Figure 57. Portion of a trajectory for the quantum stochastic motion of hydrogen adatom
on Pt(111) at T ˆ 70 K, for ~²² ˆ 1 from reference [36]. The black ®lled circles are
points of interband transitions. During an excitation and a subsequent deexcitation, a
particle su� ers several intraband collisions, represented by the broken lines between
the black circles. The large white circles are the fcc and hcp adsorption sites.

Figure 58. Histograms of tunnelling lengths ` for di� erent values of ~²² 2 f0:1; 0:4; 1; 4g from
reference [36]. T ˆ 90 K, and the unit of length is the nearest neighbour distance s. Points
on the plot at ` ˆ ns represent the fraction of jumps with lengths between ` ˆ …n § 1

2†s.



long coherent tunnelling processes are much more likely. This is analogous to the
long jumps in the small friction limit as discussed in sections 2.1 and 3.3.

All the theoretical results point to the fact that the details of the crossover
from the classical activation regime to the quantum di� usion regime depend
sensitively on the shape of the potential and not just on gross features such as the
barrier height for tunnelling. Thus, it is probably not too surprising that very
di� erent temperature dependence and crossover behaviour have been observed for
di� erent systems. Future progress in this area would require good ®rst principle or
semi-empirical adsorption potentials as the input for any theoretical analysis of
quantum di� usion.

4.9. Island di� usion on metal surfaces
The modern methods for manufacturing thin ®lms and surface nanostructures

have in recent years acquired such precision that atomic-level control of the surface
structures is beginning to come within reach. Surface growth is a process where many
microscopic processes operate at a same time a� ecting the properties of the growing
®lm [3, 11]. In the present review, we have already discussed extensively many issues
associated with the di� usion of simple adparticles (adatoms and molecules). As
already seen in section 4.2 in the case of chains on missing-row fcc(110) surfaces, the
motion of single adatoms also leads to the movement of 2D clusters on the surface,
known as island di� usion [430±432]. This process a� ects the surface growth process,
and its role in determining the island size distribution already in the early stages of
submonolayer growth has been demonstrated [433±436, 3, 437±439]. Even 3D
clusters can di� use fast on surfaces, as it has been experimentally observed for gold
and antimony clusters on graphite [440], and explained in terms of the mismatch
between the adatoms on the cluster bottom and the graphite substrate [441, 442]. We
will in the following concentrate on 2D adatom island di� usion on metal surfaces.

4.9.1. Di� usion of large islands
In the limit of large island sizes with the number of atoms in the island N ¾ 1,

the theoretical arguments of Khare et al. [114, 115] explain island di� usion in terms
of the shape ¯uctuations of the outer boundary. This makes it possible to relate the
macroscopic motion of islands to the atomistic processes occurring on the boundary.
The three basic mechanisms considered are periphery di� usion (PD), terrace
di� usion (TD) where a particle can detach from and attach to the edge, and
evaporation-condensatio n (EC) events. These processes lead to a general dependence
of the (tracer) di� usion coe� cient of the centre of mass of the island on its size as

D / e¡ Es N¡¬; …147†

where Es is an e� ective Arrhenius barrier, and ¬ is a scaling exponent. The island
di� usion coe� cient D is related to DCM , as de®ned in section 2.2, by D ˆ DCM=N .
For 2D islands, a general expression for ¬ is given by

2¬ ˆ 2 ‡ 1

1 ‡ …R=Rst†…Rsu=Rst†

¡ 2 ‡ …R=Rst†…Rsu=Rst†
1 ‡ …R=Rst†…Rsu=Rst† ‡ …R=Rst†2

; …148†
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where R ˆ
�������
s=º

p
. The parameters Rst and Rsu are related to periphery and terrace

di� usion coe� cients, respectively. Allowing only one of the mass transport mechan-
isms EC, TD or PD at a time for large enough islands, the exponents 1/2, 1, 3/2 are
obtained, respectively (see ®gure 3 in reference [115]). We note that the case of 1D
islands such as the chains on missing row fcc(110) surfaces (see section 4.2) is quite
di� erent. There, the leapfrog mechanism [118] (which can be thought as a peculiar
kind of periphery di� usion) induces a N-independent mobility for a wide range of
chain lengths (up to N ’ 20 in typical experimental conditions [279]); asymptoti-
cally, the exponent ¬ is equal to 1, provided that multiple promotions above the
chain are negligible [279]. On the other hand, TD is completely ine� cient in
displacing 1D chains already for tetramers [279].

When both the TD and the PD mechanisms are present, clear dependence of ¬ on
N should be observed, and ®nally one should always ®nd ¬ ˆ 1 for N>1.
Simulation studies tailored to correspond exactly to one of the possible processes
and based on idealized energetics have indeed yielded one of the exponents
¬ ˆ 1=2; 1 and 3/2 depending on the process included [430±432, 115].

The existence of a scaling law of the type in equation (147) was predicted already
prior to the treatment of Khare et al. After the ®rst computer simulations [430±432],
several studies have been conducted on models of fcc(111) [443±446] and fcc(100)
[112, 119, 447±449] metal surfaces. Experiments on island di� usion have been carried
out on (111) [450, 451] and (100) [113, 116] metal surfaces. A scaling law for the
di� usion coe� cient with a scaling exponent ¬ in accordance with equation (147) has
been reported in several simulation studies [443, 445, 446, 448, 452, 119, 449].
However, there has been controversy regarding the value of ¬ and its relation to the
microscopic di� usion mechanisms. In particular, the STM experiments of Pai et al.
[116] showed that the di� usion of Cu islands on Cu(100) and Ag islands on Ag(100)
surfaces is characterized by exponents ¬ º 1:25 and ¬ º 1:14, respectively, at room
temperature. The range of island sizes in their experiments varied from about 80 to
800. They attributed these results to the interplay between atoms and kinks at the
island periphery. Heinonen et al. [119] have shown using MC simulations and
energetics based on EMT that for fcc(001) metals (Ag, Cu, Ni) the scaling exponent
for large islands in the size region N > 102 is di� erent from that for smaller islands
(see ®gure 59). They found a crossover from the PD to the TD mechanism in the
limit of large islands, with the e� ective ¬ changing towards the TD value of unity. In
their model, the TD mechanism was due to the rapid di� usion of vacancies within the
island. The value of ¬ at room temperature was very close to the experimental results
of Pai et al. [116] for the same island sizes.

Some other simulations of island di� usion on metallic fcc surfaces have given
values 1:75 < ¬ < 2:1 in the size range N º 100 [112, 444, 445]. On the other hand,
in simulations where attachment/detachment is dominant, scaling exponent attains
values close to ¬ ˆ 1=2, as expected for the EC process [448]. The deviations of the
simulation results from the predictions of the idealized theories have been explained
in terms of the dimensional arguments very similar already used in the earliest
studies. The density of kinks and the number of adatoms on the boundary have been
used in many phenomenological models devised to explain the simulation results
[443, 445±447]. Also more exotic boundary processes have been suggested to
in¯uence the value of ¬ [448]. However, at least for fcc(001) metals, at least some
of the results reported in the simulations can be more naturally explained by the
crossover e� ect suggested by Heinonen et al. [119].
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Figure 59. Monte Carlo results for the adatom island di� usion coe� cient D for island sizes
s ² N in the range 1 ¡ 104, at T ˆ 1000, 700, 400 and 300 K (from top to bottom).
The ®gure is taken from reference [119]. For T ˆ 300 K, the island with size s ˆ n2,
with n integer, are indicated by stars. The dotted lines are just guides to the eye. The
dashed lines indicate ®ts to equation (36) of reference [115]. Error bars are of the size
of the symbols or less except for the case of 300 K for s 0 300, where the scatter in
the data indicates the errors. The thick line at 300 K shows the experimental results of
reference [116] for Cu. At large sizes, the asymptotic exponent ¬ ˆ 1 is reached (D
scales as s¡1), while at intermediate sizes e� ective exponents in the range 1 µ ¬ µ 3=2
are obtained.

Figure 60. Sequence of frames from a Molecular Dynamics simulation showing di� usion via
reptation of 2D platinum hexamers on Pt(111). The ®gure is reprinted from reference
[455], with permission from Elsevier Science. Top panels: locations of Pt6 atoms
(white) on the substrate at the times shown. Initial adatom positions are in black.
Lower panels: schematic illustration (triangles) of subcluster units (trimers)
undergoing reptational glide motion. (a) t ˆ 0, homogeneous fcc hexamer in a
minimum-energy con®guration, oriented along [01]. (b) t ’ 1 ps, the hexamer
becomes a mixed fcc/hcp cluster due to the gliding of the top trimer (triangle) into
adjacent hcp sites. (c) T ’ 2 ps, the double-shear di� usion event is completed via the
gliding of the lower trimer (triangle) into hcp sites.



4.9.2. Di� usion of small islands
As discussed in section 4.2, single adatom motion leads naturally to the di� usion

of smaller islands. On fcc(111) surfaces, additional collective di� usion mechanisms
have been proposed, such as gliding [463, 454], and dislocation motion [454]. Also,
snake-like `reptation’ of small islands has been suggested based on MD simulations
[455]. However, experimental evidence for such processes is mostly lacking at present
[456]. What is clearly seen in experiments is the nonmonotonic size-dependence of
adatom cluster di� usion [457, 458]. For fcc(111) surfaces, it has been shown by EAM
calculations [459, 460] and ®rst-principles energetics [461] that this is due to
concerted atomic di� usion mechanisms. For the fcc(001) case, such oscillations
persist to relatively large island sizes at low temperatures [119, 462, 463]. Qualita-
tively, the oscillations can be explained by single-atom energetics, but recently it has
been discovered that concerted many-body mechanisms play an important role for
island sizes up to about N ˆ 20 [174, 464]. Such mechanisms include dimer shearing
[464] and trimer shearing within and on the periphery of the islands which constitute
the rate-limiting steps for di� usion of many small islands.

5. Conclusions and outlook
In this article, we have presented a discussion of the various aspects of single

particle and collective di� usion processes on solid surfaces. In view of the existing
recent review articles focusing on the experimental situation of this subject, we have
decided to concentrate on the theoretical issues. However, the nature of this ®eld is
such that theoretical advances go hand in hand with the experimental measurements.
Thus, it is not productive to discuss the theoretical concepts without making direct
contact with the experimental data and using real systems to illustrate the relevance
of the theoretical approaches and concepts. Thus, theoretical discussions in this
article are invariably accompanied by presentations of the relevant experimental
data.

While we have witnessed an explosion of measurements of surface di� usion
coe� cients for a large number of systems, some of the central concepts such as
memory e� ects and dependence of the prefactor on microscopic parameters have not
received su� cient attention, and are sometimes even misunderstood or misinter-
preted in the literature. It is for this purpose that we have here started the discussion
of speci®c issues with chapters introducing the basic concepts, before discussing the
more involved theoretical approaches to study surface di� usion. Particular care has
been devoted to distinguish the jump rates, which deal with motion on microscopic
length and time scales, from the di� usion coe� cients which are only properly de®ned
in the `hydrodynamic’ limit of long length and time scales. It is also pointed out here
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Figure 61. Schematic representation of the dimer shearing di� usion mechanism for a
tetramer on a fcc(001) surface [464]. At ®rst, half of the tetramer is displaced into the
intermediate metastable con®guration of the middle panel, and then the second half
follows.



that care must be taken to ensure that one is in the linear response regime to be able
to characterize the mobility of the surface adatoms by the collective or the tracer
di� usion coe� cients. These aspects are particularly relevant for STM measurements
where most of the attention has been focused on the microscopic jump rates. Recent
advances in STM techniques have showed that real time and real space snapshots are
also possible [465], and in this case a detailed experimental study of the relation
between microscopic and macroscopic motion would be extremely interesting.

For what concerns the theoretical approaches, we have avoided going into
technical details, but have tried to give an overview of the most commonly used
modern approaches. With the advances in ®rst principles computation techniques,
they have been increasingly applied to the study of surface di� usion. Within the
harmonic TST theory, both the adiabatic barrier and the prefactor have been
determined for a number of systems [12]. It seems that for systems such as metal
on metal substrates, this is an excellent approximation. However, the TST probably
does not work as well at a quantitative level for other systems. From the theoretical
point of view, the most interesting aspect of the physics that determines the di� usion
coe� cients lies in the nonadiabatic coupling of the adatoms with the substrate
excitations, as well as with each other at ®nite coverages. This nonadiabatic coupling
gives rise to ¯uctuation and damping which ultimately determines the value of the
prefactor. In fact, in the case where the time scales of the motion of the adatom and
the substrate are comparable, it has been demonstrated that the damping depends on
the history of the adatom motion, i.e., memory e� ects are important. In this case, not
only is the prefactor dependent on the nonadiabati c coupling, but even the di� usion
barrier di� ers from the adiabatic value [218]. For the collective di� usion case, the
situation is even more complicated as one has to average over all the system
con®gurations even just for the di� usion barrier. At present, the main theoretical
approaches beyond the TST rely on using numerical simulation methods either
through the MD or MC approaches. Finally, some of the qualitative issues such as
long jumps and validity of TST can be understood through the Langevin equation
approach, which separates the coupling of the adatom with the substrate naturally
into an adiabatic potential and nonadiabatic ¯uctuation and damping terms.

The ®nal section in this article deals with the speci®c applications of the various
theoretical approaches to di� erent systems and comparison with experimental data
when available. Our aim has not been to present an exhaustive study of the di� erent
systems, but rather to understand many of the issues that are common to the study of
surface di� usion in various systems. Example of these are the e� ects of steps and
impurities in the measurement of surface di� usion coe� cients, memory e� ects and
how they manifest themselves in measured quantities, dominant mechanisms in
cluster di� usion and quantum di� usion etc. Obviously, we cannot hope to have
covered all the topics and systems that are actively under investigation. Our choice of
the subjects here has been biased by our own view as to the importance of the issues
and by the limitations of our expertise. Many interesting topics such as electro-
migration [466±470], di� usion of adatoms and dimers on semiconductor surfaces
[471±474, 176, 475, 202], di� usion of 3D clusters on solid and liquid surfaces [440±
442, 476, 477], di� usion of adatoms on heterogeneous surfaces [478, 347, 479],
stochastic resonance [60, 61, 63], and di� usion of polymers and colloids [405±407,
259, 108] have been left out because of space limitations. None the less, we hope that
the issues covered here are of su� cient interest and illustrate how rich the ®eld is and
how much progress has been made in this ®eld over the past few years. We feel that
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at this stage, the challenges of the accurate determination of the di� usion coe� cients
for di� erent systems both conceptually and experimentally have largely been met,
although many systems remain to be investigated. The challenge of better under-
standing the underlying physics and the microscopic factors controlling the di� usion
rates still remains. The continued re®nement of the experimental techniques such as
optical di� raction and QHAS methods in k space, and the STM method in real space
is certain to yield more and more di� usion measurements with increasing accuracy
for di� erent adsorption systems. Together with the advance in the theoretical
approaches, this means that the ®eld should remain active and exciting for many
years to come.
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