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"I am going to look at the stars.

They are so far way and their light takes so long to reach us...

all we ever see of stars are their old pictures."

Dr. Manhattan - "Watchmen"
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Abstract

We conduct a population synthesis study of the white dwarf population within 100 pc from the
Sun. Such simulations are based on a detailed Monte Carlo code, which provides synthetic samples
of both single and binary stars for different input parameters. Synthetic outcomes are compared
with observed data obtained from the recent Gaia mission in its early data release 3. In a first
step we compute the outcome of the synthetic sample in the Gaia magnitude system, introduce the
photometric and astrometric errors according to Gaia prescriptions and apply the corresponding
selection cuts. Then we analyze the general statistical properties, such as the number-counts and
percentages of the complete range of sub-populations which contain at least one white dwarf com-
ponent, i.e. single and merger white dwarfs, white dwarf plus main sequence binaries, and double
white dwarfs; in its two modalities, resolved and unresolved systems. The comparison between
the observed and the several outcomes of the simulations are mainly based of the fractions of the
different sub-samples and their distribution within the Hertzsrpung-Russell diagram. To assist
the statistical analysis of observed and synthetic distributions we introduce a generalization of the
Kolmogorov-Smirnov test applied to two-dimensional density distributions. Our analysis reveals
that any of the models analyzed in this project perfectly agrees with the observed percentages of all
the different sub-populations. However, a flat or even a decreasing initial mass ratio distribution
seems to be a reasonable first guess, while an increasing relation can be discarded. Further work
is needed expanding the number of models and input parameters.
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Introduction

White dwarfs (WD) are the most common stellar remnants and carry an incredible amount of
valuable information about our Galaxy’s past history, formation and evolution. WDs can be found
not only isolated but also as part of binary systems (Althaus et al., 2010). These objects are of
vital importance for the understanding of some of the top actual astrophysical problems, such as
the age-metallicity relation of the Galaxy or the formation of Type Ia supernovae, among other
examples. The Gaia mission has gathered an unprecedented wealth of information of our galaxy,
in particular the third Gaia data release (Gaia Collaboration 2020) has identified about 350,000
high-confidence WD candidates. This vast amount of data is expected to help us constraining
some of the previous mentioned unknowns.

The present work focuses on the study of a sample of single and WD binaries in the solar
neighbourhood, in particular a volume of 100 pc radius. As we will explain in Chapter 3, this is
thought to be the largest and most complete volume-limited sample of WDs available from Gaia
observations (Torres et al., 2005; Jiménez-Esteban et al., 2018). The ultimate goal is to compare
this observed data with the outcome of several simulations that we perform based on a Monte Carlo
code that generates synthetic samples of both binary and single stars in the solar neighborhood.
The code, developed by the GAA (Grup d’Astronomia i Astrofísica) at UPC in Castelldefels, has
been extensively used in the study of several single and binary system populations and different
Galactic components such as the thin and thick disk, the halo, the bulge and open and globular
clusters (e.g. García-Berro et al., 1999, 2010; Torres et al., 2001, 2016, 2018, 2020; Camacho et al.,
2014; Cojocaru et al., 2017). This long trajectory has consolidated the robustness of the code and
guarantees the solidity of the results.

The population synthesis code makes use of a wide variety of assumptions and input parameters
to build the Galactic model and to evolve its constituent stars. We will change only two of these
key parameters: the initial mass ratio distribution (defined as the quotient between the mass of the
primary and secondary stars), and the binary fraction (the proportion of binary and single systems);
both will be explained in detail in Chapter 2. The decision on which of the assumed models yields
synthetic data in better agreement with the observations will be based on the comparison of various
characteristics of the populations, for instance the proportion of certain sub-populations or their
stellar parameter distributions, as described in Chapter 5. In the statistical comparison between
distributions, in particular the two dimensional distribution of objects within the Hertzsprung-
Russell diagram, we will make use of a multivariate Kolmogorov-Smirnov test (Peacock 1983).

The project is organized as follows. In Chapter 1 we present a general outlook of the theoretical
background on stellar and binary evolution, with special emphasis on WDs. We also provide
information about the different Galactic components that constitute the solar neighbourhood. In
Chapter 2 we provide a brief explanation of the population synthesis code to simulate the single
and binary star populations. In Chapter 3 we present the observed sample and the outcome of
the simulations and preform a preliminary comparison between them in order to decide which
adjustments or corrections are required. In Chapter 4 we describe in more detail all the different
sub-populations and analyse those with at least one WD. This allows us to familiarize with the
different sub-populations and have a first approach on the relations between the observed and
simulated samples. In Chapter 5 we compare different models with the observed sample in order
to try to reach a conclusion on which one fits best with observed population. Finally, a summarize
of the main results and future work is discuss in 5.3.
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Chapter 1

Theoretical background: basic
overview

In this Chapter we provide a brief introduction into stellar evolution, specially focused in under-
standing the phases from when a star is born until it becomes a white dwarf. In addition, we give
a general description of the evolution of binary stars, also focused on white dwarfs as their stellar
remnants. This will be of extreme use to build the population synthesis code described in the next
Chapter.

1.1 Single stellar evolution

1.1.1 From ZAMS to the TPAGB phase

It is widely accepted to start counting the age of a star from the zero-age main-sequence (ZAMS),
that is, once nuclear reactions begin to consume hydrogen (H) in its core (e.g., Hurley et al. 2000,
Kippenhahn 2012). Previous stages take place in a relatively short time and the energy source
is governed by gravitational contraction. Therefore, the ZAMS is considered the beginning of the
star’s evolution and the main-sequence (MS) stage is defined as the stage in which the H in the
core burns into helium (He). Once there is no more H in the core the MS stage finishes and the
star is composed by a He core and outer H-burning shells.

The post-MS evolution is characterized by an increase in the radius of the convective H-rich
envelope of the star, decreasing its effective temperature (Teff), and consequently displacing the star
horizontally into the right of the Hertzprung-Russell (HR) diagram (which displays the luminosity
of a star as a function of its effective temperature; see Figure 1.1) and transforming it into a red
giant (RG). Such process of expansion occurs quickly enough to leave a gap in the observed stars
between the MS and RG branch known as the Hertzprung gap. In the RG phase the inner core
shells contract increasing the temperature in the center and producing the He ignition. The core
helium burning (CHeB) produces carbon (C), oxygen (O) and neon (Ne). During this process the
star moves back near the MS branch until the He is finished in the core. Then a similar process as
when the H was completely burned takes place, moving the star into the asymptotic giant branch
(AGB). The star consists of a CO core surrounded by a He and H shells.

The AGB is generally divided into two parts, the early AGB (EGB) and the thermally pulsating
ABG (TPAGB). In the EAGB the degenerate CO core is surrounded by a He-burning shell and a
H shell. Eventually the He-burning layer caches up with the H shell, igniting it. Then the He shell
becomes unstable, resulting in a giant release of luminosity that causes the star to expand and,
as before, the H stops burning. The process can be repeated, the star contracts and the H shell
reignites, He shell flash occurs and the subsequent expansion of the star extinguishes the burning

2



3 CHAPTER 1. THEORETICAL BACKGROUND: BASIC OVERVIEW

Figure 1.1: Hertzsprung-Russell diagram. The MS is clearly identified as a diagonal path, while
white dwarfs are located below MS stars. From: R. Hollow, CSIRO.

shells. This is the TPAGB.

From the AGB on, the future of the star is determined by its mass: for relatively massive stars
(above 8-10 M�) the CO core reaches high enough temperatures to star a C-burning phase that,
after several intermediate steps, it will lead into a supernova explosion, the remnant of which will
form a neutron star (NS), or if it was massive enough, a black hole (BH). Lower mass stars do
not reach C-fusing temperatures in their cores and evolve through a planetary nebula phase. The
outer layers are ejected to the interstellar medium and the massive core is left behind forming a
white dwarf (WD).

1.1.2 White dwarf remnant

WD stars are the more common final evolutionary stage. In fact, more than 97% of all MS stars
have already become or will become a WD, as will our Sun (Althaus et al. 2010). Following the
evolution through the AGB, low and intermediate mass stars begin to loss their envelope and stop
any nuclear reactions in the core. Consequently, as they release their stored thermal energy, WDs
will slowly cool down and their luminosity will fade with a typical time scale of 10 Gyr (as an
illustrative example we show in Figure 1.2 the full evolutionary sequences from ZAMS to WD
stage for different initial masses; Althaus et al. 2016). This fact made them a valuable source of
information regarding the Galaxy’s history (e.g., Isern 2019).

WDs are compact objects with a size comparable to Earth and a mass distribution that peaks at
' 0.6M� and deeply declines towards lower and higher masses. The cores of WDs of masses lower
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Figure 1.2: Theoretical evolutionary sequences of stars from ZAMS to WD with initial masses
0.85 M�, 1.05 M�, 1.5 M�, and 2.0 M�. The color scale on the right shows the fraction of the total
luminosity from hydrogen burning. From: Althaus et al. (2016).

than '0.45M� are composed of He and they are believed to form when mass transfer interaction in
binary systems truncate the RG phase (Rebassa Mansergas et al. 2011). From ' 0.45 to ' 1.05M�,
the WDs have a CO core, and these are the most abundant. The progenitors of higher-mass WDs
manage to ignite C in consecutive C-burning shell flashes that conclude with the exhaustion of C
and leaving an ONe core. The mass of a WD can never be higher than a certain threshold, known
as Chandrasekhar mass (' 1.4M�), for which no stable WDs are theoretically allowed to exist.

Independently of the type of core the WD has, all of them share the characteristic of having
a thin layer of atmosphere. It is generally formed by an inner layer of He and an outer (even
thinner) layer of H. For most of the WDs, ' 80% of them, the spectral lines we detect are those
from the outer H layer at the surface. These are the so called DA WDs, the other 20% that
have lost the H envelope and are known as non-DA. Among the non-DA WDs there are several
subcategories, which include the DO and DB spectral types, which feature ionized and neutral He
lines, respectively. The evolution of DO WDs results in the recombination of the ionized He to
transform it into a DB. Other subclasses include DQs, which show C atmospheres, DZs with metal
rich spectral lines and DCs with no detectable spectral features.
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1.2 Binary evolution

1.2.1 Basic ingredients

Binary systems evolve in a similar way to single stars if the different components do not interfere
with each other, that is, if the orbit is large enough so that there is no mass transfer interaction
between the two stars (larger than '10 AU; Hurley et al. 2002). In the opposite case, if the orbit
is relatively close, there are mass transfer interactions between the two components of the system
with repercussions in the evolution of the stars and the orbit they follow. In some occasions, even
if the two components are considerably separated, some sort of interaction can still occur. In this
section we describe briefly these interactions.

A possible outcome is when one of the stars of the system starts losing mass in form of a stellar
wind and the companion accretes this material. Such mass loss represents a lost in the angular
momentum of the star too, which is gained by the accreting star. In the case of eccentric obits,
the process of mass loss and subsequent accretion leads to a transformation of the orbit into a
more circular one. Another interaction experimented in binary systems are tidal frictions, which
are widely believed to be the cause of the synchronisation between the stellar rotation and orbital
motion.

If the binary system contains a star that has achieved the evolutionary state of supernova and
explodes, becoming a BH or NS, it generates what is called a velocity kick, accelerating the binary
system, in case it has survived the explosion. For those remaining systems, it is almost certain
that the kick has changed their shape, as well as a loss of angular momentum due to mass loss, as
stated before.

A very common process when the two MS stars in a binary are relatively close is mass transfer via
Roche-lobe overflow. Mass transfer is generally initiated when the more massive star evolves into a
RG or an AGB, although it can also be initiated by an excessive angular momentum loss that leads
to a contraction of the orbit. Because the donor star is generally more massive, mass transfer is
dynamically unstable and leads to the formation of a common envelope (CE) (Ivanova et al. 2013).
Once the system enters this CE phase, the friction between the two stars and the material of the
envelope reduces the orbital energy of the binary, thus reducing the orbital separation. This energy
is deposited into the envelope and used to eventually eject it. Once the envelope is dissipated, the
result is a close WDMS system with a short period. Another possibility may be that the cores
coalesce into a single one and form a single star. Roche-lobe overflow in binary systems with an
eccentric orbit, follows in most cases a circularization of the orbit. The outcome of such mass
transfer depends on the type of stars that form the system and the radius-mass exponents.

Another channel of binary evolution that does not necessarily involve mass transfer is collisions.
Collisions are considered to be a more violent process that coalescence, furthermore, coalescence
comes from an advanced stage of a Roche-lobe overflow, while in a collision there is no need to
have gone that process.

1.2.2 White dwarf binary systems

Given that in this project we aim at simulating the single and binary WD populations in the
Galaxy, it is important to consider all the possible types of WD binaries and single WDs that we
can observe.

In binary systems a WD can be found with another WD (we call these double WD systems
or DWD) or with a MS (WDMS systems) (Toonen et al. 2017). Depending on their orbital
separations, DWDs and WDMS can be resolved or unresolved, meaning that for a resolved system
the angular separation is large enough to be able to observationally distinguish the two components
of the system, contrary to the unresolved ones, where the angular separation is below a certain
threshold that does not allow to detect the two stars separately, but as a single one. It is very
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likely that such unresolved systems have undergone mass transfer interactions that led to (at least)
one CE phase. It is also worth noting here that mergers can take place in binary evolution, as
explained in the previous sections. Thus, DWD mergers and WDs whose progenitors were binary
systems that merged during their evolution (for example during the CE phase) would be observed
as single WDs.

Figure 1.3: Evolutionary channels of close binary systems. From: Postnov & Yungelson (2006)

The evolutionary channels leading to one or another type of binaries containing one or two WDs
are very diverse. In Figure 1.3 we show a typical evolution diagram illustrative of the different
channels that results in close binary systems. The physics involved in the evolution of those systems
implies the use of a wide set of parameters, such as the initial separation, the rate of mass transfers,
the treatment of the CE phase, the angular momentum losses equation, and many others. Many
of these parameters are poorly constrained. However, the analysis of a significant statistical large
sample may provide some clues about them.

Finally, other types of binary systems including a WD are WD+BH or WD+NS binaries, how-
ever, in this work we will not take them into consideration since these systems are not observed
within the volume we are considering.
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1.3 The solar neighbourhood and the Galactic components

As explained before, WDs are generally dim objects, therefore, we see them at relatively close
distances. For instance, for a relatively hot WD with an effective temperature of Teff = 10, 000K
its absolute magnitude is MG ≈ 12, which implies that for a magnitude limiting survey of G ≈ 21
such as Gaia, the maximum distance that we will be able to see this WD is ' 630 pc. Recalling
that the Sun is located at 8.5 kpc from the Galactic center (see the left panel of Figure 1.4), that
implies we can only sample a relatively small region of the Galaxy around the Sun, generally called
the solar neighborhood.

Thanks to the outcome of the Gaia mission, there are now ' 350,000 high-confidence WD candi-
dates identified to distances up to a few kpc (Gentile-Fusillo et al. 2021). However, the completeness
of the observed sample peaks at a volume of radius 100 pc. Indeed, Jiménez-Esteban et al. (2018)
found that the 100 pc sample has a completeness of ' 97%, and about the 94% of them had a
parallax error smaller than the 10%. For larger samples the completeness decreases considerably
to ' 60% for 250 pc and to ' 22% for 500 pc.

Figure 1.4: An artist’s impression of our Galaxy, the Milky Way, showing the location of our Sun
in one of its arms and the different components of the Galaxy: bulge, disk and stellar halo. From:
Left: NASA/JPL-Caltech; right: ESA; layout: ESA/ATG medialab.

As shown in the right panel of Figure 1.4, our Galaxy is believed to be divided into different
components. In the center we find the nucleus surrounded by a spherical bulge. The vast number
of stars are in a flatten disk around the nucleus with a thin and a thick component. Finally, there
is the halo, which is a region with a spheroid like shape around the main body of the Galaxy with
a considerably extension around the center. Given that that the current work is restricted to the
solar neighborhood, we will only consider stars placed in the thin and thick disks and the halo, as
those are the only components visible from 100 pc from the Sun. The proportion of WDs that we
can observed in each region is different, although dominated by the disk component, in particular
the thick disk component. Torres et al. (2019) found this distribution to be 74-25-1% for the thin
and thick disk and halo components, respectively. Stars in the different components have different
properties, for instance thick disk and halo stars tend to be older and colder, and their metallicity
is considerably lower than thin disk stars. The tangential velocity is another example, with halo
stars being faster than thick disk stars, and these, in turn, being faster than stars in the thin disk.



Chapter 2

The population synthesis code

2.1 The GAA Monte Carlo simulator

Monte Carlo methods are a widely set of numerical calculation techniques based on random sam-
pling with uncountable applications in science and engineering. Particularly in the Astrophysics
field, these methods allow, among many other applications, to build a population of stars taking
into account all the characteristics of its history, evolution and possible observational biases. This
artificial population, oftenly call simulated or synthetic population, eventually can be compared
with the real observed data. The result of this comparison, with the use of proper statistical
techniques, allows us to derive a wealth of information about the population under study.

The GAA (Grup d’Astronomia i Astrofísica) at UPC in Castelldefels, Spain, has been pioneer in
using the Monte Carlo techniques in the study of the WD population. The code, initially designed
for the simulation of the single Galactic WD population (Torres, S., 2002), has later on incorporated
a full treatment of binary systems (Camacho, J., 2014; Cojocaru E.R., 2016). A constant update
of the cooling physics of WDs, through the use of the most innovative cooling sequences provided
by the La Plata group has allow to apply the Monte Carlo code to a wide range of situations.
For instance, the study of the thin and thick disk population of our Galaxy, the Galactic halo,
the bulge or the population in open and globular clusters (e.g. García-Berro et al., 1999, 2004,
2010; Torres et al., 2001, 2002, 2015, 2016, 2018, 2020; Camacho et al., 2007, 2014; Cojocaru et
al., 2017; Canals et al., 2018). Of relevant interest in recent years has been the studies devoted
to the Gaia mission. As a few illustrative examples, we can mention the study of the capabilities
of Gaia mission (Torres et al. 2005), or the recent analysis of the Gaia-DR2 100 pc white dwarf
population (Jiménez-Esteban et al. 2018). The GAA Monte Carlo simulator has thus become a
versatile and robust code, which is considered an international reference model in the simulation
of the population of WDs.

2.2 General structure of the Monte Carlo code

The GAA population synthesis code used in this work can be divided in two sub-codes: one for the
simulation of the single WD population and another one for the simulation of binary systems. This
latter was initially based on the stellar evolution code (BSE) developed by Hurley et al. (2002) but
incorporated several updates provided by Camacho, J. (2014), Cojocaru E.R. (2016) and Canals
et al. (2018).

A general flowchart of the structure of the Monte Carlo code is shown in Figure 2.1. The code is
initialized by a set of input parameters: the initial mass function (IMF), the star formation history
(SFH), and the age-metallicity relation (AMR). These parameters, or strictly speaking distribution
functions characterize each Galactic population. In recall that in this work we use three-component

8
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Figure 2.1: Simplified flowchart representation of the Monte Carlo population synthesis code. The
acronyms used in the diagram stands for: IMF initial mass function, SFH star formation history,
AMR age-metallicity relation, fbin binary fraction, IMRD initial mass ratio distribution, WD white
dwarf, MS main sequence,M1 progenitor/initial primary mass,M2 initial secondary mass, tborn age
at which the star is formed, Z progenitor metallicity, tcool white dwarf cooling time, Teff effective
temperature, and g surface gravity. From: Cojocaru E.R. (2016).

Galactic model that includes the thin and thick disk and the halo spheroid.

2.2.1 Sample input parameters

In the case of the thin disk population these are a disk age of 9.2Gyr with a constant star formation
rate. For the thick disk, stars are modelled according to a star formation rate peaked at 10Gyr in
the past. In the case of the halo population, the born time is chosen randomly according to a burst
of constant star formation lasting 1Gyr that happened 13.5Gyr in the past. The age-metallicity
relation for the different Galactic components is chosen to be a constant model with: a solar
value of Z = 0.02 for the thin disk objects, a subsolar value of Z = 0.01 for thick disk stars, and
even a lower value of Z = 0.00173 for the halo members. Finally, and regardless of the Galactic
component, the initial masses of the MS stars are randomly chosen according to an IMF defined
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by Kroupa et al. (1993) which, for the range of masses (0.5-10M�) that typically evolve into WDs,
is equivalent to the Salpeter IMF (Salpeter, 1955) with the standard slope set to α = −2.35.

Once this set of input parameters is specified, the code follows, according to the random sampling
of the binary fraction parameter, two main branches: the single or the binary evolution. In what
follows we briefly describe the main ingredients of each evolutionary path.

2.2.2 Single stellar evolution

If the single stellar evolution is adopted, the subsequent steps are quite straightforward. Once we
know the initial mass and metallicity of the star we can derive its main-sequence life-time, TMS

(from BaSTI models1). Then, by computing tcool (the WD cooling time) as

tcool = Tage − TMS − tborn, (2.2.1)

where Tage is the age of the Galactic component, and tborn the born age, we know if the stars
have had enough time to become WDs, that is, if tcool > 0. In that case, we adopt then the WD
evolutionary sequences of La Plata group (Althaus et al. 2015; Camisassa et al. 2016, 2017; and
references therein) to evolve the WD until present time and according to the specific metallicity
and core composition (CO or ONe core for single WDs). Besides, the spectral type of the WD,
being that DA or non-DA, is randomly chosen according to the known average percentages of 80%
and 20% respectively.

With respect to the spatial distribution of stars, both thin and thick disk stars followed a double
exponential spatial distribution, however, for the thin disk the scale height was set to 250 pc and
the scale length to 2.6 kpc, while for the thick disk these take considerably higher values, 1.5 kpc
and 3.5 kpc respectively. Halo stars, on the other hand, are distributed according to an isothermal
sphere density. Velocity distributions can be also introduced at this point, however, we can skip
this step provided that no specific analysis of the space velocities is going to be done in the present
project.

Magnitudes and colors are then calculated on the specific photometric system under study; in
our case, in the Gaia system. Given that this process is one of the goals of the present project, a
detailed description of the procedure can be found in Chapter 3.

2.2.3 Binary stellar evolution

Contrary to the single stellar evolution case, binary evolution involves a more complex treatment
given that physical interactions between objects may occur. As a result, an extra set of initial
parameters need to be defined. If that is the case, once the mass of the primary MS is chosen
according to the IMF of Kroupa et al. (1993), we also need to determine the mass of its companion
(the secondary). That is perform according to an initial mass ratio distribution (IMRD) n(q),
with q = M2/M1 being the mass ratio, considering M1 to be the primary and M2 the secondary
masses. In the current work we will take into consideration three different ways to define the
IMRD: a flat distribution (n(q) = 1), a distribution proportional to the mass ratio (n(q) ∝ q), and
a distribution inversely proportional to the mass ratio (n(q) ∝ q−1). Initially, we will make use
of the flat distribution, however in Chapter 5 we will discuss the properties of the other models,
together with different initial binary fractions which initially takes a value of 50%.

The time at which the stars are born, the total possible ages for the different Galactic compo-
nents, the spatial distributions and the evolution of the formed WDs in these binaries are the same
as described in the previous section for single stars.

The initial separation between the components of the system is chosen accordingly to a log-
arithmic flat distribution f(a) ∝ ln(a), 3 ≤ a/R� ≤ 106 (Davis et al. (2010) and references

1http://basti.oa-teramo.inaf.it/

http://basti.oa-teramo.inaf.it/
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therein), where a stands for the initial semi-major axis of the binary system orbit. In turn, the
initial eccentricities of the orbits, e, are randomly chosen according to a thermal distribution
g(e) = 2e, 0.0 ≤ e ≤ 0.9 (Heggie , 1975).

As explained in Chapter 1, binary systems can evolve with or without mass transfer episodes,
that can be stable or not. An unstable mass transfer episode implies the system evolves through a
CE phase. In the code, such stage is modeled according to the α-formalism presented in Tout et
al. (1997), which is summarized below.

The CE efficiency parameter αCE describes how efficiently the release of orbital energy of the
system is transformed into kinetic energy to eject the envelope. Therefore, one has Ebind =
αCE∆Eorb, where ∆Eorb stands for the variation in the orbital energy and Ebind is the binding
energy of the envelope of the primary star. This last parameter is calculated as follows:

Ebind = −GMdonorMenv

λR1
. (2.2.2)

where Mdonor is the mass of the primary star, Menv is the mass of the envelope and λ is the binding
energy parameter that symbolizes the ratio between the approximate and exact value of the binding
energy. It depends on several variables, such as the mass of the donor or the internal energy, αint,
that accounts for the fraction of internal energy that is used to expel the CE (including thermal,
recombination and radiation energy; Han et al. 1995). Alternatively, the binding energy can be
computed according to

Ebind =

∫ Mdonor

Mcore

(
− GM(r)

r
+ αintUint

)
dm (2.2.3)

Finally, the code incorporates a set of prescriptions that account for the rest of the aspects
of binary evolution such as: tidal evolution, stellar winds, gravitational radiation and magnetic
braking, and angular momentum losses.



Chapter 3

The Gaia sample: callibrating the
population synthesis model

In this chapter we present the observed Gaia sample and compare it with the outcome of our pop-
ulation synthesis model. Some initial corrections and effects need to be included in the simulated
sample in order to mimic the observed one. For example, the astrometric and fotometric errors
need to be implemented and calibrated.

3.1 The observed Gaia sample

The ESA mission Gaia has provided an unprecedented wealth of information of our Galaxy. In
particular, the number of observed (high-confidence) WDs has dramatically increased to ' 350 000.
However, given that WDs are faint objects, they are difficult (or impossible) to observe at distances
farther away than a few kpc. Moreover, observational biases dominate at such large distances. In
order to avoid these problems we focus on a closer sample, 100 pc from the Sun. This is expected
to be the largest and most complete volume-limited sample available from Gaia observations and,
at the same time, it contains a reasonable large number of objects, for instance ' 13 000 white
dwarfs (Jiménez-Esteban et al. 2018) and ' 300 000 M9-stars (Gaia Collaboration, 2021).

In Figure 3.1 we show the observational sample within 100 pc from the Sun obtained from Gaia
on its early data release 3 (EDR3), the latest to date. It can be clearly identified the typical region
of MS stars at the upper right side of the HR diagram with evolving red giants at the top of
that track and WD stars at the lower left part. Additionally, a certain number of objects can be
observed closer to the WD and MS tracks and, in particular, in between them. These last objects
are of especial interest in our study because they probably represent WDMS binary systems.

As previously stated, the 100 pc sample can be assumed to be complete. Consequently we will
use the number of objects found in the WD region as a normalization criteria for our simulations.
Following Torres et al. (2019), this region is defined by MG > 2.95 × (GBP − GRP) + 10.83 for
(GBP − GRP) < 1.2 and MG > 1.87 × (GBP − GRP) + 12.16 for (GBP − GRP) > 1.2 and up to
(GBP − GRP) = 2.0. These cuts are illustrated as dashed lines in Figure 3.1. Additionally, we
apply the following restrictions in order to select objects with good photometric and astrometric
values:

i) $ > 10mas and $/σ$ > 10: to select objects below 100 pc with parallax errors
under 10%.

ii) FBP/σFBP
> 10, FRP/σFRP

> 10 and FG/σFG
> 10: to select objects with flux

relative errors under 10%.

iii) RUWE > 2 or (astrometric_excess_noise> 2 and astrometric_excess_noise_sig>

12
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Figure 3.1: Gaia HR diagram of the observed 100 pc sample. It can be clearly identified the MS
region at the upper and right side of the diagram, and the WD region on the lower left part.

2): to avoid contamination from nearby sources or bright background stars.

The final number of objects thus found in the WD region is 15753.

3.2 The population synthesis model

The output of the population synthesis model characterizes each star by some of its physical
parameters such as the mass, the effective temperature (Teff) or the luminosity. In order to
compare with the observational sample it is required to obtain the corresponding Gaia magnitudes
(G, GBP and GRP). The first step we made to derive the magnitudes was to interpolate Teff and
the decimal logarithm of the surface gravity (log10(g) ≡ log(g)) from MIST models 1 (Dotter, A.,
2016; Choi et al., 2016) . This was carried out by performing a bilinear interpolation of the input
variables. In the case of MS stars the tables provide the bolometric correction for each magnitude.
To obtain the magnitude it is required to perform the following calculation:

MG = 4.75− 2.5 · log

(
L

L�

)
− BCG, (3.2.1)

where MG is the absolute Gaia magnitude, L the luminosity of the star in solar units, L� the
luminosity of the sun and BCG the bolometric correction for the magnitude MG. Equation 3.2.1
is also valid for the rest of Gaia magnitudes, i.e., GBP and GRP, but using the corresponding
bolometric corrections. For WD stars, the MIST model table provides the magnitudes for the
EDR3 passbands, GEDR3, BPEDR3 and RPEDR3, calculated at a fixed distance of 100 pc. To
obtain the absolute magnitudes the following calculation is needed:

1http://waps.cfa.harvard.edu/MIST/

http://waps.cfa.harvard.edu/MIST/
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MG = GEDR3 − 2.5 · log

(
R2

102

)
. (3.2.2)

where R is the radius of the star in parsecs. The value of the radius is not provided by the
simulation, but it can be calculated from the Stefan-Boltzman equation: L = 4πσR2T 4, being
L the luminosity, σ = 5.670374 · 10−8 m−2K−2 the Stefan-Boltzman constant, T the effective
temperature, and R the radius.

The value of Teff is given directly by the simulation, however log(g) is not and therefore it has
to be calculated as the logarithm of g = GM/R2, where G stands for the gravitational constant,
M the mass of the star and R its radius expressed all of them in cgs units. This last value,
as previously stated, is not provided by the simulation and it is calculated through the Stefan-
Boltzmann equation.

In the case of the MS the metallicity of the star plays an in important role (for instance, in its
life-time) and depending on its value the interpolation table should be adequately selected. As a
consequence we preformed a double bilinear interpolation. On the other hand, metallicty plays
only a minor role in the WD evolution, and this is the reason why we applied a simple bilinear
interpolation for this case.

The previous procedure permits deriving the synthetic Gaia magnitudes for single stars. For
WDMS and DWD binaries, once we know the magnitudes for each component, we determine
whether the systems would be detected as two separated objects (resolved) or as a single one (un-
resolved). For that, we made use of the angular separation, s. The threshold chosen to distinguish
those two cases is a limiting value of slim = 2 arcsec, meaning that, for s > slim we will consider the
systems as resolved (in these cases the magnitudes are those directly obtained for each component
in the same way as for single stars), otherwise we will regard them as unresolved. Although the
Gaia mission is able to resolve systems with smaller angular separations (theoretically the limit-
ing value is around ∼ 0.5 arcsec), this limits increases to 2 arcsec for samples selected with good
astrometric and photometric parameters, as it is our case. Hence, for the unresolved systems, we
obtain the combined Gaia magnitudes of the systems as the sum of fluxes of the individual stars
according to:

mf = −2.5 · log
(
10−0.4·m1 + 10−0.4·m2

)
, (3.2.3)

where mf is the final magnitude, (any of the three used in the Gaia system), and m1 and m2 the
individual magnitudes of each star.

In Figure 3.2 we show the Gaia HR diagram containing all the different population of stars and
binaries that we simulated: the upper right region contains the MS, the lower left one encloses the
WD, while the area in between would be the unresolved WD+MS systems area.

3.3 Calibrating the synthetic sample

3.3.1 Adjusting the MS minimum mass

A first comparison between the observed sample and the simulated one reveals that the synthetic
population of MS reached values of GBP−GRP up to 6.5. Nonetheless, the maximum value of the
observed MS is BP−RP ∼ 5. This discrepancy is a consequence of the minimum mass used in the
simulated models. Theoretically the minimum mass required for a star to fuse hydrogen in its core
is ≈ 0.08M� (see Kroupa et al. 1993 and references therein). However, the lowest mass of a certain
sample of stars could be higher than this minimum mass, given that it depends on how these stars
have locally been formed. In our case, we are considering the solar neighborhood up to 100 pc, and
the analysis of the Gaia sample allows us to establish this limit. In order to do this, we represent
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Figure 3.2: Gaia HR diagram of the different simulated populations when no photometric errors
are taken into account: MS stars (including single MS stars and resolved MS from WDMS systems;
red dots), WD stars (including single WDs, WDs that evolve from or as a result of mergers, resolved
WDs from WDMS systems and resolved and unresolved DWD systems; green dots) and unresolved
WDMS systems (blue dots).

in Figure 3.3 a plot of the mass of the single MS stars as a function of the color GBP −GRP. The
plot reveals that a threshold for the mass of 0.095M� guarantees that the value of GBP − GRP

does not exceed 5. Such value for the minimum mass is a conservative guess, given that we need to
take into account that photometric errors will spread the final color distribution. Further checks
have been made using the distribution of GBP−GRP to make sure that the limits of the simulated
sample and the observed one indeed coincide, and therefore the simulated populations of MS stars
are located in the same region as the observed ones. In figure 3.2 it can be observed that the
simulated sample extends to the upper limit of GBP−GRP that the observed population does not.
Once the mass cut has been made (Figure 3.4), the upper edges of both populations coincide.

3.3.2 Adjusting the MS track

The initial comparison between the simulated and the observed samples reveals a displacement
of the MS populations (thin and thick disk and halo), that is, the simulated ones are are located
slightly lower than the observed ones in the HR diagram. This can be observed in both panels of
Figure 3.4, where the MS tracks are visibly lower than the bulk of the observed population. Even
for the case of the thin disk population (the track that is highest of the three) it does not match
the peak of density of the observed sample and it is located below it. After several checks we could
not find the source of the discrepancy, being a possible explanation the flux calibration criteria
employed in the MIST tables. In consequence, we decided to perform an adjustment by hand as
an ad hoc solution, waiting for future studies to provide a clearer explanation of this discrepancy.
The adjustment is made looking into the MG vs. GBP −GRP and MG vs. G−GRP density maps
that result from the simulated sample and comparing them with the observed one. We find that
the following shifts should be applied to the MIST tables: MG+0.02, MBP+0.2 and MRP+0.05. It
is worth saying that this artificial shift is specially important in the BP passband, while the other
passbands are only marginally affected.
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Figure 3.3: In blue the raw MS singles stars track; the black horizontal line represents the chosen
threshold of 0.095M�.

An alternative method to calculate the Gaia magnitudes for MS stars consists in applying the
evolutionary models from PARSEC 2 (Bressan et al. 2012). The parameters used in this case were:
the version 1.2S of the PARSEC tracks, without COLIBRI tracks, meaning no limit in Z, and the
values for ninTPC and ηReimers as default (ninTPC = 10, ηReimers = 0.2); the photometric system
is the Gaia EDR3 with the OBC bolometric corrections; no circumstellar dust; null interstellar
extinction (Av = 0.0); long period variability; Kroupa initial mass function; the metal fraction Z
according to the ones we need (see table 3.1); finally the output being the isochrone tables. In
figure 3.5 we show (red lines) the MS track from top to bottom corresponding, respectively, to the
three Galactic populations thin and thick disk and halo. The reference one, which is the thin disk
track, perfectly fits the densest region of the observed sample. Therefore we can conclude that
both populations, simulated and observed, coincide in their general shape (for a further checking
see figure 3.6, where it is displayed a density map once dispersion in metallicity is added). It is
worth saying that these new models give directly the absolutes magnitudes in Gaia filters, avoiding
the need to calculate the bolometric correction as in the MIST models. This way we avoid the flux
calibration problem and we do not need to add an artificial shift. Although the final population
obtained through both models, PARSEC and MIST, is practically equivalent, the PARSEC models
provide more satisfactory results since there is no need of an extra calibration. Henceforth, in what
follows, we consider the PARSEC model for calculating the MS population tracks.

3.3.3 The effects of the metallicity dispersion

As previously stated, synthetic single MS stars follow straight and well defined tracks in the HR
diagram (see figure 3.5). The three distinct tracks correspond to the three different metallicities
adopted for each of the three Galactic components (see Table 3.1). However, it is well known that
even in a certain population, for instance, the thin disk, there is a dispersion on the metallicity
values at a given age (see e.g. Cassagrande et al. 2011). This dispersion in metallicity translates
into a dispersion of points around the MS tracks, as reflected in the observed sample.

2http://stev.oapd.inaf.it/cgi-bin/cmd

http://stev.oapd.inaf.it/cgi-bin/cmd
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Figure 3.4: HR diagrams in Gaia magnitudes of MG vs GBP −GRP (left) and MG vs G−GRP of
the observed MS star sample (in cyan) and the raw MS single simulated tracks (in red).

Z [Fe/H] σ

Thin disk 0.02 0.073 0.005
Thick disk 0.01 -0.234 0.003
Halo 0.00173 -1.00 0.001

Table 3.1: Summary of the metallicity and the standard deviation used for each one of the three
galactic components.

In order to mimic the observed sample, in which MS stars do not follow a single point track but a
broaden area, we add a dispersion into the value of the metallicity. For such dispersion we adopted
a Gaussian-like distribution with mean value zero (µ=0) and a different standard deviation for
each Galactic component (see Table 3.1).

In Figure 3.6 it can be observed the result of adding the metalicity dispersion to the MS stars.
MS tracks for the different Galactic populations increase their width, which represents a better
resemblance with the observed sample. The chosen values of the standard deviation make sure of
such resemblance; for lower values the simulated sample remains very near the tracks, while for
higher values of sigma the simulated population spreads too much around the tracks. At the same
time we have to consider that the addition of photometric and astrometric error (see the next
section) will most likely introduce an extra broadening in the sample, therefore higher values of
the standard deviation are not required.

As mentioned before, the effect of metallicity in the WD tracks is nearly negligible. Therefore,
there is no need for introducing a dispersion due to metallicity in these tracks.

3.4 The effects of the photometric and astrometric errors

So far our synthetic stars do not contemplate any source of error. However, when comparing
with observed data, physical and instrumental limitations introduce some physical errors in the
measured values. These are specific of the process of observation and depend on the particularities
of the instruments used. In our case, the astrometric and photometric errors have been introduced
into the simulated populations according to the prescriptions described in the Gaia performance3.
In both cases, we treat the errors as a Gaussian noise, in the same way as section 3.3.3 with
µ = 0 but adopting a standard deviation that is calculated for each star regardless the Galactic
component to which it belongs. The procedure is to first compute the standard deviation and add

3https://www.cosmos.esa.int/web/gaia/science-performance

https://www.cosmos.esa.int/web/gaia/science-performance
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Figure 3.5: In red the raw single MS star tracks, in cyan the observed population of MS stars.

the corresponding astrometric error to the parallax. Next we compute the standard deviation and
add the error to the three magnitudes (G, GBP and GRP) to recalculate the apparent magnitudes.
Finally we obtain the absolute magnitudes using the new parallax and apparent magnitude values.

The parallax standard deviation error is computed according to the Gaia performance as follows:

σ$ = Tfactor · (40 + 800 · z + 30 · z2)0.5, (3.4.1)

where the standard deviation is given in µas, Tfactor is a scale factor and z is an auxiliary variable
defined as z ≡ max[100.4·(13−15), 100.4·(G−15)]. The choice of the scale factor Tfactor is made using
the criteria that the simulated sample has to look like the observational one, that is, to have
a similar dispersion of points. For high values of Tfactor, the WD population spreads too much
entering into the unresolved WD+MS area, and even reaching the MS tracks. In contrast, for
values around unit, such Tfactor provides a satisfactory configuration of the resulting populations
that perfectly resembles the observational data. As the general shape does not vary significantly
for vales of Tfactor close to one, it has been chosen Tfactor = 1 as the most appropriate value.

In a similar way the standard deviation of the apparent magnitude G is computed as:

σG = 1.2 · 10−3 · (0.0001985 + 1.8633 · z + 0.04895 · z2)0.5, (3.4.2)

where, on this occasion, the auxiliary variable z is z ≡ max[100.4·(12−15), 100.4·(G−15)]. Similarly,
the standard deviation of magnitudes GBP and GRP are calculated as:

σBP/RP = 10−3 · (10cBP/RP + 10bBP/RP · z + 10aBP/RP · z2)0.5. (3.4.3)

but now with a value of z of z ≡ max[100.4·(11−15), 100.4·(G−15)].

The prescription used by Gaia performance when computing the auxiliary variables aBP/RP,
bBP/RP and cBP/RP in equation 3.4.3, are a function of the Johnson’s color (V −Ic). Our population
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Figure 3.6: HR diagrams in Gaia magnitudes of MG vs GBP −GRP (left) and MG vs G−GRP of
the density map of the simulated MS singles population superposed to the observational sample.

synthesis model does not provide this, however we can made adopt the reasonable approximation
that V − Ic ∼ GBP −GRP (table C.2. of Riello et al. 2021).



aBP = −0.000562(GBP −GRP)3 + 0.044390(GBP −GRP)2 + 0.355123(GBP −GRP) + 1.043270

bBP = −0.000400(GBP −GRP)3 + 0.018878(GBP −GRP)2 + 0.195768(GBP −GRP) + 1.465592

cBP = +0.000262(GBP −GRP)3 + 0.060769(GBP −GRP)2 − 0.205807(GBP −GRP)− 1.866968

aRP = −0.007597(GBP −GRP)3 + 0.114126(GBP −GRP)2 − 0.636628(GBP −GRP) + 1.615927

bRP = −0.003803(GBP −GRP)3 + 0.057112(GBP −GRP)2 − 0.318499(GBP −GRP) + 1.783906

cRP = −0.001923(GBP −GRP)3 + 0.027352(GBP −GRP)2 − 0.091569(GBP −GRP)− 3.042268
(3.4.4)

Once the photometric and astrometric errors are added, we obtain the absolute G magnitudes,
MG, through the standard formula:

MG = G+ 5 + 5 · log($) (3.4.5)

where G is the apparent magnitude and $ is the parallax expressed in arcsec. Similarly we obtain
the apparent magnitudes for GBP and GRP.

Finally, we introduce a threshold to the value of apparent magnitude G given that observationally
it has an upper limit of G < 20.7 (Gaia Collaboration 2021). Figure 3.7 shows our final synthetic
population after applying the metallicity dispersion and the photometric and astrometric erros.
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Figure 3.7: Gaia HR diagram of the synthetic population once the metallicity dispersion and the
photometric and astrometric errors are added. Simulated stars belonging to the MS, WD and
unresolved WD+MS systems are colored in red, green and blue, respectively.



Chapter 4

The white dwarf sub-populations

In Chapter 4 we analyzed the different sub-populations of single and binary systems containing at
least one WD. It has to be emphasised that an incredible amount of information can be extracted
from each simulation and one could study in detail every aspect of it, which is clearly beyond the
scope of the present work. Because of this, here we broadly discuss the statistical properties of
each sub-population with the aim of showing the potential of the results obtained for future works.
To do so we chose a standard reference model for our binary population synthesis simulation.
This reference model, which is the same used in Chapter 3, is not necessarily the one that better
fits the observed sample, but uses the most commonly adopted assumptions. The discussion on
which model best fits the observed samples is later addressed in Chapter 5. The simulated data is
compared with currently observed populations extracted from the Gaia mission.

Figure 4.1: HR diagram in Gaia magnitudes of all stars populations.

21
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4.1 The HR diagram regions: general counts

First of all, we analyze the location within the HR-diagram of the different sub-populations under
study. Those are represented by different colors in Figure 4.1. Also, for a visual reference, the
WDMS region defined by Rebassa-Mansergas et al. (in press) is marked as a solid black line. In
view of this, three big regions or areas can be defined: the WDMS region itself, and the WD and
MS regions, respectively, below and above the former region. The WD region is dominated by
single and merger WDs. But it is also possible to find a sizeable fraction of assimilated WDs, that
is, resolved and unresolved DWD, and resolved WDMS. The MS region is dominated by MS stars
belonging to single or binary systems. Finally, the WDMS region is a bridge region in between the
WD and MS regions. As its name indicates, the WDMS area has been defined in order to mainly
locate unresolved WDMS systems, although some contamination of single low metallicity MS stars
or unresolved DWD can occur.

Table 4.1 includes a summary of the number of objects of each sub-population that fall into the
three general regions defined in the HR diagram. The values have been normalized to the value of
the total observed objects in the WD area, i.e, 15753 objects. Doing so allows us to make a proper
comparison between the observational and simulated populations.

Total MS region WDMS region WD region
WD singles 7841 0 4 7837
WD mergers 4311 0 13 4298
MS singles 104022 99334 4688 0
MS resolved 1177 1146 31 0
WD resolved 1177 0 0 1177
WDMS unresolved 1507 1361 139 7
WD 1 866 0 0 866
WD 2 866 0 1 865
DWD unresolved 755 0 53 702

Table 4.1: Summary of the number of objects of each sub-population falling on the different three
general regions considered, once the normalization is made.

For a better understanding of the distribution of the different sub-populations across the HR
diagram, Table 4.2 provides the percentages of the amount of objects of a certain sub-population
that is placed within a determined region in relation to the total amount of stars of this sub-
population (in blue). In other words, it indicates how a fixed sub-population is distributed along
the three different regions. On the other hand, we show in red the proportion that represents a
sub-population in relation to the total number of stars that are placed in a given region.

Total MS area WDMS area WD area
WD singles 7841 0% 0% 0.08% 0.05% 49.75% 99.95%
WD mergers 4311 0% 0% 0.26% 0.3% 27.28% 99.70%
MS singles 104022 97.54% 95.50% 95.11% 4.50% 0% 0%
MS resolved 1177 1.12% 97.40% 0.63% 2.6% 0% 0%
WD resolved 1177 0% 0% 0% 0% 7.47% 100%
WDMS unresolved 1507 1.34% 90.32% 2.28% 9.22% 0.04% 0.46%
WD 1 866 0% 0% 0% 0% 5.50% 100%
WD 2 866 0% 0% 0.02% 0.12% 5.50% 100%
WDWD unresolved 755 0% 0% 1.08% 7.08% 4.46% 92.98%

Total 122521 101841 4928 15752

Table 4.2: Summary of the percentages of the different sub-populations according to the three
general regions once the normalization is made. In red, the percentage that the sub-population
represents with respect to the total number of stars in the region. In blue, the percentage of the
sub-population that falls into that region.

As expected, the different WD populations (singles, mergers, resolved components of a WDMS
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binary, resolved components of a DWD system or unresolved DWD systems) mainly fall into the
WD area and in any case they are found within the MS zone. However, occasionally they may
be placed into the WD+MS area, always a small fraction, in general lower that 1% except for the
case of unresolved DWD systems in which the percentage rises to 7% (this issue will be discussed
in section 4.4.2).

A similar situation occurs with the MS stars (singles and resolved components of WDMS sys-
tems); the majority of them are in the MS region with some objects that are also located within
the WDMS area (none are found in the WD region, as expected). Interestingly, in the WDMS
region the dominant population is that of single MS stars, being more than 95% of the total (see
also Figure 4.1). This can be understood by looking at Table 4.3, which provides the number and
percentage of single MS stars according to their Galactic membership within the MS and WDMS
areas. We see that in the MS region the dominant stars are those which are members of the thin
disk, representing almost all thin disk stars in this zone. In this region there are the majority
of the thick disk stars as well. However, the halo stars, which are intrinsically less luminous, are
generally located below the solar-metallicity MS track and therefore within the WDMS area.

MS region WDMS region
Thin disk 83155 83.71% 99.95% 41 0.88% 0.05%
Thick disk 15300 15.40% 98.00% 311 6.63% 2.00%
Halo 879 0.89% 16.86% 4336 92.49% 83.14%

Table 4.3: Summary of the numbers and percentages of MS stars into the MS and WDMS region
according to their Galactic membership, which can be used as a proxy for metallicity. In red the
percentage that the stars with that membership represents for the total number of single MS stars
in the area (black numbers). In blue the percentage of the stars with that membership that falls
into that area.

4.2 Comparison with previous works

In Toonen et al. (2017) they made a similar statistical analysis of the different sub-populations
as have been done here. Even though their sample had a high-level of completeness (80-90%), it
suffered from a significant paucity in the number of objects (∼ 130) given that the sample was
restricted to only 20 pc from the Sun. In Figure 4.2 we plot a pie chat representing the fraction
of the different sub-populations found in their observed sample (right panel) and their simulated
predictions (left panel).

Figure 4.2: Fractions found by Toonen et al. (2017) of the different sub-populations observed (right
panel) and by their simulations (left panel) within the WD area for a 20 pc sample. From: Toonen
et al. (2017).

The major discrepancy found by Toonen et al. (2017) concerns the resolved DWD population.
9-14% of this population is expected in the 20 pc sample, however, only 1.7% is observed. Even
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taking into account statistical errors and several prescriptions for the synthetic population models,
the difference persists as an order of magnitude.

Now, returning to our analysis of the Gaia 100 pc sample, we show in Figure 4.3 a comparison
of the fraction of the different simulated populations (left panel) with those found in the observed
sample (right panel) in the WD region. In this particular case, the observational data has been
derived from a common-proper motion analysis of the systems located in the WD region (Jiménez-
Esteban et al. priv. comm.). In order to follow a similar analysis as done in Toonen et al. (2017)
we count in this case the number of systems instead of individual objects. That is, we compute
resolved DWD systems as one system, and not by its components, WD1 and WD2; resolved WDMS
are considered according to the WD component of these resolved systems. We also need to take
into account that observationally speaking we only have the information on the total number of
objects within the WD area and the number of resolved DWD and WDMS systems but not, for
instance, of the fraction of single WDs and merger WDs (which are in principle indistinguishable).
Moreover, we also assumed that unresolved systems represents only a small fraction.

Figure 4.3: Simulated (left panel) and observed (right) fraction of the different sub-populations
within the WD area for our 100 pc sample, being Others the sum of the WDs, WDm, WDMS
unresolved and DWD unresolved populations.

Several discrepancies arise between the fractions of the observed and simulated populations.
The first is the percentage of resolved DWD. While in the observed sample it remains as a value
of 1.20%, in the simulated one it goes up to 5.82%, which is relatively larger. In the case of the
resolved WDMS sub-population the difference is not as large as in the DWD situation, however it is
not a perfect fit either. As previously commented, Toonen et al. (2017) found similar discrepancies
for the observed and predicted samples for the 20 pc. In what follows we will analyse the different
sub-populations one by one and in Chapter 5 we will analyse how the percentages of the predicted
populations change for different models.

4.3 The WDMS sub-population

4.3.1 Unresolved WDMS systems

The first sub-population we will be looking at is the unresolved WDMS systems. The left panel
of Figure 4.4 shows the location of these systems in the HR diagram (blue solid dots). The right
panel shows the location of the two separated components (note that the simulation provide the
information of both stars even though they are unresolved). It can be noticed that in the majority
of the unresolved WDMS systems the dominant star is the MS, and therefore, such systems are
placed in the MS track. Another interesting fact that we can observe from the right panel is a
group of MS companions that concentrate at the right lower part, out of the MS track. Those
systems, likely, have evolved through mass transfer episodes so that the MS star has lost a great
amount of mass thus becoming a brown dwarf.
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Figure 4.4: HR diagrams in Gaia magnitudes. Left panel: in blue the WDMS unresolved systems,
in gray the other populations. Right panel: in green the WD component of the unresolved WDMS
system, in red the MS component, in gray the other populations.

The left panel of Figure 4.5 shows the distribution of the unresolved WDMS population that are
located inside the defined WDMS region (black solid lines), as well as the location of its individual
components. While the WDs mostly remain in the WD area, some of the MS component fall
within the WDMS region. Nonetheless, in both cases the stars remain close to the edges of their
respective areas. The right panel shows the distribution of the components across the HR diagram
in units of log(Teff) vs log(L/L�) for both the simulated and the observed (Rebassa-Manserga et
al. in press) WDMS unresolved populations inside the WDMS region. As it can be seen, the two
populations follow a similar tendency.

The observed sample consists in a set of 112 unresolved WDMS binary candidates, of which
98 have reliable estimates of their parameters. According to our simulated population, we expect
to find within the WDMS region 139 unresolved systems. This number represents the maximum
number of unresolved WDMS objects that we could observationally find if our model is true.
Assuming that this is the case, we can estimate the completeness of the observed sample, yielding
a value of ' 80 ± 9 per cent. Moreover, we can derived the space density for the 139 stars,
obtaining a value of 3.3× 10−5 pc−3, in agreement previous results (Schreiber & Gänsicke 2003).
The unresolved WDMS objects within the WDMS region represent only the 9.22% of the total
unresolved WDMS population (see Table 4.2), and, consequently, the total space density of these
objects can be estimate as 3.6× 10−4 pc−3. Finally, the unresolved WDMS population represents
a ∼ 7.3% of the WD space density calculated by Jiménez-Esteban et al. (2018).

Figure 4.5: Left panel: HR diagram in Gaia magnitudes of the unresolved simulated WDMS
populations and its components. Right panel: the HR diagram in log(Teff ) vs log(L) units of the
components of the WDMS unresolved systems, simulated and observed.

A comparison between the density distributions of the simulated and observed samples belonging
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to this sub-population is shown in Figure 4.6. For this particular model there are notable differences
between them, for instance there is an isolated cluster at the upper part of the area in the simulated
population, at the edge between the WDMS and MS zones, that does not exist in the observed
one. This can be explained as the region of the MS stars with spectral types F and G is highly
dense for the unresolved WDMS population, and therefore some of them leak through the edge of
the MS area into the WDMS one. For this model as well, the distribution does not occupy all the
width of the WDMS region as the observed one does. However, in the observed population there
is a perturbation in the lower part of the region that it is reproduced by this simulated model
sample.

Figure 4.6: Density map of the unresolved WDMS systems within the WDMS area (black solid
line). The left panel shows the simulated population, the right one the observed population.

Figures 4.7 and 4.8 provide histograms for different stellar parameters of the MS and WD
components, respectively, that are part of unresolved WDMS systems. In the same figures it is
displayed as well the data from the observed population. We can see that the distributions of
those systems that fall inside the WDMS area agree reasonably well with the observed ones. For
the MS components, those that are inside the area have an intrinsically lower masses and effective
temperatures and a average surface gravity of 5 dex. With respect to the Teff distribution, there
is a gap in the simulated sample around 4, 500 to 5, 500K that does not appear in the observed
one. Moreover, the simulated distribution extends towards higher Teff . In a similar way, the mass
of the simulated MS components inside the WDMS region extends to larger values. For the WD
components of these systems, in general there is no visible pattern for the ones inside the WDMS
region. The exception would be that systems with a high mass WD (or high surface gravity)
component do not fall inside the region in both, simulated and observed, cases. Another peculiarity
in the WD mass distribution histogram is that in the observed sample there is a considerably larger
number of objects at around 0.2M� that are not present in the simulated sample.

Figure 4.7: Histogram distribution of the Teff , log(g) and M , respectively, of the MS components
of unresolved WDMS systems.

In Figure 4.9 we can take a look at the relation between the effective temperatures (left panel)
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Figure 4.8: Histogram distribution of the Teff , log(g) and M , respectively, of the WD components
of unresolved WDMS system

and masses (right panel) of the two components of the unresolved WDMS binary systems. Most of
the systems have a WD Teff between 5, 000K and 10, 000K with some values going up to 15, 000K,
and a MS Teff in the range between 3, 000K and 7, 000K. However, there are exceptions for this
general tendency, for instance, there are some clusters formed for very low MS temperatures, that
contain simulated systems inside and outside the WDMS region as well as some of the observed
ones. In any case, it seems that the systems that fall inside this region, simulated or observed,
have no specific range of temperatures for the WD component, and the simulated and observed
populations agree reasonable well.

For the mass distribution, the bulk of systems is concentrated in a rectangular zone where the
WD masses range from 0.4M� to 0.7M� and the MS companion between 0.1M� (as we defined
the minimum in Chapter 3), and 1.5M�. Again, there are some objects that do not follow the
general tendency, for example those that have the WD companion with higher masses, up to near
the Chandrasekhar limit, and the systems with MS component masses up to 2.5M�. As explained
before, the MS component tends to be less massive, while the WD mass takes all possible values.
There are significant differences between the observed and the simulated populations that include
the ones previously mentioned, i.e. the group of simulated systems with higher MS masses, and the
observed systems with extremely low-mass WDs. At the same time there is a significant cluster of
objects with low mass WDs that have MS companions with masses around 1.5M�.

Figure 4.9: Left panel: WD Teff vs. MS Teff for WDMS unresolved systems. Right panel: the
same as the left panel but for the component masses.
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4.3.2 Resolved WDMS systems

The two components that are part of resolved WDMS systems are displayed in the left panel of
Figure 4.10. In this case, the fact of being resolved translates into a considerably larger angular
separation, therefore it is not likely that the components of such systems interacted with each
other, or at least this interaction would be significantly less important than for the unresolved ones.
Consequently, we can assume that the components evolved avoiding mass transfer episodes and fall
exactly in the same regions as single stars are located. Also shown in the right panel of of Figure
4.10 is the observed population of resolved WDMS systems (cyan dots) derived from the common-
proper motion analysis of the Gaia sample (Jiménez-Esteban et al. priv. comm). Although the
general agreement of both samples, observed and simulated, is good some peculiarities can be
detected. The most significant is the lack of observed cool and massive WDs (that is objects with
MG > 16) that, on the other hand, seem to be very numerous in the simulated sample.

Figure 4.10: HR diagrams in Gaia magnitudes. Left panel: the MS stars (red) and WDs (yellow)
that are part of resolved WDMS systems. In gray we show all the remaining sub-populations from
our simulations. Right panel: superposed the observed Gaia population (cyan; (Jiménez-Esteban
et al. priv. commm).

For comparison with the unresolved WDMS case, we show in Figure 4.11 the relation between
the effective temperatures (left panel) and masses (right panel) of the two components. In this
case, since there is not yet an estimation of the previous parameters for the observed sample,
we only considered the simulated ones. At a first glance it seems that the general shape of the
distributions are maintained with respect to the unresolved case. For the temperatures however
there is no single MS component below 2, 500K, unlike the case of the unresolved systems. For
the masses, one can see that no WD component reaches a value lower than ∼ 0.5M�, as expected
since there is no mass transfer episodes.

Figure 4.11: Left panel: WD Teff vs. MS Teff for WDMS resolved systems. Right panel: the same
as the left panel but for the masses of the components.
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4.4 The DWD sub-population

4.4.1 Unresolved DWD systems

The location of the unresolved DWD population in the HR diagram is shown in purple in the top
panel of Figure 4.12. The vast majority of them (92.98%) lie in the WD region, while only an
small fraction (7.08%) can be found in the WDMS region. In the bottom left and right panel of
Figure 4.12 we take a closer look to the WD region and display the density maps of the simulated
unresolved DWD and single WD population (WDs), respectively, superimposed to the observed
WD sample. From these panels we can see that the unresolved DWD systems tend to have higher
values of MG than WDs, as expected because of the combined fluxes of the two WD components.
However, the unresolved DWD sub-population is brighter, while the single WDs do not reach the
upper limit in the WD region of the observed sample. At the same time, DWD systems tend to be
cool objects, i.e., MG > 14 and 1 < GBP −GRP < 2. This effect has been discussed by Bergeron
et al. (2019) (see their figure 3). In their analysis, no WD atmospheric model, nor hydrogen pure
nor helium pure models, of single WD is able to reproduce those values of magnitudes and colors.
However, the concentration of DWD systems in that particular region of the HR diagram (MG > 14
and 1 < GBP −GRP < 2) appears as a plausible explanation of the excess of objects discussed by
Bergeron et al. (2019).

Figure 4.12: HR diagrams in Gaia magnitudes. In the top panel the unresolved DWD sub-
population is shown in purple, in gray the other populations. In the bottom left panel we zoom-in
to the WD region where we display the observed WD in cyan and the density map of the simulated
unresolved DWD population. In the bottom right panel we display the observed WD in cyan and
the density map of the simulated WDs.
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4.4.2 Resolved DWD systems

For the previously analyzed resolved WDMS sub-population, it was easy to tag the two different
components, i.e. WD and MS. However, for the resolved DWD case we use the terminology WD1
and WD2, where WD1 is the brighter and WD2 is the fainter component of the system. In other
words, MGWD1 < MGWD2 .

In Figures 4.13 and 4.14 we show in the left panels the loci of the WD1 and WD2 components,
respectively, and in the right panels, the simulated populations superposed to the observed one
(Jiménez-Esteban, priv. comm.). The observed sample has considerably fewer objects, therefore
it is expected some sort of discrepancy between the two samples. However, in both cases, WD1
and WD2, the simulated objects seem to be more spread over the HR diagram than the observed
population.

Figure 4.13: HR diagrams in Gaia magnitude. The left panel displays in dark blue the WD1
synthetic population, in gray the other populations. In the right panel the simulated WD1 sample
is displayed together with the observed WD1 population.

Figure 4.14: HR diagrams in Gaia magnitude. The left panel displays in light blue the WD2
synthetic population, in gray the other populations. In the right panel the simulated WD2 sample
is displayed together with the observed WD2 population.

Figure 4.15 represents the relation between the Teff of the two components in our resolved
DWD systems for both the simulated population and the observed one. It can be seen that both
populations follow the same tendency. That is, for lower values of the effective temperature (under
10, 000K approximately) the two components tend to have similar Teff , whilst the dispersion around
equal temperatures increases for higher temperature values.
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Figure 4.15: The relation between the effective temperatures of WD1 and WD2 that are part of
resolved DWD systems.

4.5 The single WD population

The two possible types of genuine single WD populations are shown in figure 4.16, the left panel
corresponds to purely single WDs and the right one to single WDs that arise as a result of mergers,
i.e. the WDm.

Figure 4.16: HR diagrams in Gaia magnitudes. In the left panel we show in green the purely single
WDs, in gray the other populations. In the right panel we show in orange the single WDs that
result from mergers, in gray the other populations.

Observationally it is not possible to distinguish between WDs that came from a merger of a
binary system or that have been always isolated, as there is not footprint that allow to decipher the
evolutionary history of the progenitor of the WD. It is possible, though, to make such distinction in
our simulations. For this reason in Figure 4.17 we compare the mass distributions of the single WD
observed data from Jiménez-Esteban et al. (2018) with the simulated mass distributions, including
a breakdown into purely single and mergers for the last sample. The mass distribution histogram
has been normalized to the observed sample. At a firs glance it may seem that the simulated WD
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masses dangerously extend towards values too close to 1.5M�, but in any case they exceed the
Chandrasekhar mass limit.

As expected, the simulated purely-single WDs tend to be less massive than the WDm, even so,
both populations occupy the same rang of masses, from ∼0.4M� up to the limit. To give some
numbers, the peak for the isolated WDs is placed at 0.53M� and for the WDm it is a little bit
higher, at 0.59M�. An analogous situation occurs with the mean value of the two populations,
which are 0.640M� and 0.7531M� for the WDs and WDm stars, respectively. Therefore, as one
may expect, the total simulated population, being the sum of the isolated WDs and the WDm,
the peak is somewhere in between, at 0.55M�, as it is the main value, 0.6845M�. It is reasonable
to expect that the values of the total population are closer to the ones for the isolated WD stars
as the number of WDs is considerably higher than the WDm (see table 4.1). When comparing the
total simulated population with the observed one, the maximum of the distribution falls into the
same bin, and the observed mean value is very similar, 0.6886M�. Nonetheless there is a rather
shocking difference between them, the observed population has a second peak for higher masses,
at ∼0.75M�. This phenomena was already reported by Jiménez-Esteban et al. (2018) and is still
a matter of debate.

Figure 4.17: Left panel: mass histogram distribution of the single WDs, merger WDs populations
and the two populations together. Right panel: mass histogram of the simulated single and merger
WD population, superposed the observed sample from Jiménez-Esteban et al. (2018).



Chapter 5

Fitting the binary population models

So far, we have only considered one model in our simulations, with the parameters of the binary
fraction fixed to 50% and the IMRD as a flat distribution, as specified in Chapter 2. However,
those are not necessarily the ones that provide the best fit to the observed population. In this
Chapter we present the results for different values of the previous mentioned parameters. To be
precise, we take a closer look at the results obtained when assuming two other IMRD, as well as
when using a wide range of values for the binary fraction. Then we discuss which one best agrees
with the observational data. To compare the different models with the observed population we
focus on analysing the number of unresolved WDMS that are in the WDMS region, as well as
the shape of the corresponding stellar parameter distributions, and the fraction of resolved DWD
systems and resolved WDMS in the WD region.

5.1 Varying the IMRD

As stated in Chapter 2, there are mainly three different definitions for the IMRD, n(q) = 1,
n(q) ∝ q and n(q) ∝ q−1. The model presented so far was build according to the flat distribution
(n(q) = 1). Henceforth we refer to it as Model 1. We name the n(q) ∝ q model as Model 2 and
the n(q) ∝ q−1 model as Model 3. For now we keep the same binary fraction of 50%.

As we did for Model 1 in Chapter 4, we summarize the information of these two new models
in Tables 5.1 and 5.2 respectively for Models 2 and 3. From them we can see that there are
some general features that remain unchanged. The WD populations are mostly in the WD region
with some of them entering the WDMS area, and the MS populations are placed in the MS zone
with some also falling within WDMS area. In other words, the distribution across the three main
regions in the HR diagram remain practically constant, as it can be verified at looking to the blue
percentages from Tables 4.2, 5.1 and 5.2. Nonetheless, there are significant differences in the total
number of objects belonging to each sub-population (percentages in red), that directly affect the
composition of a given region. The exception is the MS region, which maintains a predominance
of single MS stars with some MS from resolved WDMS systems and WDMS unresolved systems
that represents just ∼1% each one.

Despite the fact that in all three models the majority of objects within the WDMS region is
dominated by single (halo) MS stars (more than the 89%), there is an important change in the
percentage of unresolved WDMS that are in this region, due to the differences in the number of
these systems in the area among the three models. Model 1 had 139 unresolved WDMS inside;
Model 2 has about one third of that, 53; and Model 3, 404, which is three times more that the
number of Model 1. This tendency goes in line with the total number of unresolved WDMS,
therefore it is reasonable that the more stars there are, the more fall into this zone. Given that
the number of simulated stars from Model 1 is closer to the observed one, Models 2 and Models 3
seem, a priori, less favoured. In any case, the percentage of the WD populations within this area
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Total MS region WDMS region WD region
WD singles 8453 0 0% 0% 9 0.23% 0.11% 8444 53.60% 99.89%
WD mergers 3712 0 0% 0% 8 0.20% 0.22% 3704 23.51% 99.78%
MS singles 85536 81701 98.03% 95.52% 3835 96.07% 4.48% 0 0% 0%
MS resolved 689 674 0.81% 97.82% 15 0.38% 2.18% 0 0% 0%
WD resolved 689 0 0% 0% 0 0% 0% 689 4.37% 100%
WDMS unres 1027 968 1.16% 94.26% 53 1.33% 5.16% 6 0.04% 0.58%
WD 1 1048 0 0% 0% 1 0.02% 0.10% 1047 6.65% 99.90%
WD 2 1048 0 0% 0% 1 0.02% 0.10% 1047 6.65% 99.90%
DWD unres 886 0 0% 0% 70 1.75% 7.90% 816 5.18% 92.10%

Total 103088 83343 3992 15753

Table 5.1: Summary of the percentages of the different sub-populations according to the three
general regions once the normalization is made for Model 2. In red, the percentage that the
sub-population represents with respect to the total number of stars in that region. In blue the
percentage of a given sub-population that falls into that region.

always represents less than the 3% of stars in the area.

Total MS region WDMS region WD region
WD singles 9219 0 0% 0% 7 0.15% 0.08% 9212 58.48% 99.92%
WD mergers 3889 0 0% 0% 10 0.22% 0.26% 3879 24.62% 99.74%
MS singles 93053 88867 96.61% 95.50% 4187 89.26% 4.50% 0 0% 0%
MS resolved 1626 1571 1.71% 96.62% 55 1.17% 3.38% 0 0% 0%
WD resolved 1626 0 0% 0% 3 0.06% 0.18% 1623 10.30% 99.82%
WDMS unres 2000 1544 1.68% 77.20% 404 8.61% 20.20% 52 0.33% 2.60%
WD 1 369 0 0% 0% 0 0% 0% 369 2.34% 100%
WD 2 369 0 0% 0% 1 0.02% 0.27% 368 2.34% 99.73%
DWD unres 275 0 0% 0% 24 0.51% 8.73% 251 1.59% 91.27%

Total 112426 91982 4691 15754

Table 5.2: Same as Table 5.1 but for Model 3.

The fraction of the different populations considered inside the WD region vary considerably
depending on the adopted IMRD model. The most notable changes are the ones suffered by the
resolved WDs that are part of WDMS systems and the DWD systems, which is a direct result
of the variation of the total number of these systems. The variations in the number of resolved
WDMS systems follows the same pattern as the unresolved WDMS ones, meaning that Model 2
has the lowest amount, Model 3 the highest, and Model 1 lies somewhere in between. For the
DWD systems, resolved or not, we see the opposite trend: Model 2 is the one with most DWD
systems and Model 3 the lowest. Consequently, the fraction for those populations inside the WD
region changes according to these tendencies. On the other hand, purely-single WDs and WDm
always represents about 1/2 and 1/4 of the population in the WD area, respectively. Similarly, for
all three models, the number of unresolved WDMS inside this area remains extremely low, <1%,
which means that only for a small fraction of unresolved WDMS the WD component is the one
that dominates.

In table 5.3 we summarize the information of the fractions of the different populations that
are located within the WD region for the three models as well as for the observed ones. The
information for Model 1 is the same of the diagram in Figure 4.3. As explained in Chapter 4,
the only observational values that we have access to, within the WD region, are the ones for the
resolved WDMS and DWD sub-populations.

Figure 5.1 shows the density maps of the unresolved WDMS inside the WDMS region for the
two new models. It is obvious that both distributions are extremely different from each other.
Model 2 exhibits two well defined peaks in the density map (like Model 1), a cluster in the upper
part of the area (but more populated) and another one for GBP−GRP ≈ 1.75, both in the frontier
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Observed Model 1 Model 2 Model 3
WDMS res 6.30% 7.90% 4.69% 10.55%
DWD res 1.20% 5.82% 7.12% 2.40%
WD singles

92.50%

52.69% 57.42% 59.87%
WD mergers 28.92% 25.18% 25.21%
WDMS unres 0.04% 0.04% 0.34%
DWD unres 4.63% 5.55% 1.63%
Total others 92.50% 86.28% 88.19% 87.05%

Table 5.3: The fractions of the different populations in the WD region for the observed data and
the simulations of Models 1, 2 and 3, being Total others the sum of the WDs, WDm, WDMS
unresolved and DWD unresolved populations

Figure 5.1: Density maps of the unresolved WDMS systems in the WDMS region for Models 2
(left panel) and 3 (right panel).

with the MS region. On the other hand, Model 3 presents a more spread distribution across the
WDMS region, which has a higher resemblance to the observed distribution. An upper cluster
is still present, however, it is a minority compared to the rest. In both cases, it seems that the
distributions tend to be closer to the MS limit, while in the observed case, it is quite centered in
the area.

5.2 Varying the binary fraction

In this section we analyse how the changes in the assumed binary fraction affect the outcome of the
simulations. Given that Model 1 provides a numbers of binaries and single stars that are in better
(although not full) agreement with the observed values, we adopt n(q) = 1 as our reference model
when varying the binary fraction. The binary fractions that we considered are 30%, 40%, 60% and
70% in addition to the 50% that we previously presented. For all those values, the distribution in
the MS region remains practically unaltered in comparison with the original assumed value of 50%.
However, there is a significant change in the number of unresolved WDMS that are placed inside
the WDMS region, with this number increasing as the binary fraction increases. The 30% model
includes 69 stars in the area, 100 the 40% one, 173 the 60% binary fraction model, and finally, 200
the 70% one. This behaviour should be expected since an increase in the binary fraction translates
into an increase in the number of WDMS systems that fall into that area.

As shown in table 5.4, the percentages of the different sub-populations that are located in the
WD region change also according to the assumed binary fraction. As expected, there is a clear
tendency for increasing the proportion of binary systems, WDMS or DWD, resolved or not, with
the binary fraction. The WDm population follows this pattern as well due to the fact that these
WDs are formed as a result of a merger of a binary system, therefore an increase in the binary
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Observed 30% model 40% model 50% model 60% model 70% model
WDMS res 6.30% 3.74% 5.34% 7.90% 7.04% 10.30%
DWD res 1.20% 3.21% 4.14% 5.82% 6.37% 7.59%
WD singles

92.50%

76.68% 67.90% 52.69% 49.70% 37.92%
WD mergers 14.12% 19.53% 28.92% 31.90% 38.05%
WDMS unres 0.07% 0.09% 0.04% 0.10% 0.15%
DWD unres 2.18% 3.00% 4.63% 4.89% 5.99%
Total others 92.50% 93.05 90.52 86.28 86.54 82.11

Table 5.4: Fraction of the different sub-populations in the WD region for the observed data and
the simulations of the different binary fractions from 30% to 70% in steps of 10%, being Total
others the sum of the WDs, WDm, WDMS unresolved and DWD unresolved populations.

fraction will also result in a growth in the number of WDm stars. The only sub-population
that shows an inverse relation with the binary fraction is that of purely-single WDs, as it is the
only population that involved a single star from the beginning of its evolution. Comparing the
proportion of resolved WDMS systems to the observed one, we see that the values are in better
agreement when assuming the 40% or 50% binary fractions. Meanwhile, all the simulations give
a percentage of the resolved DWD systems that is larger than the observed one, independently of
the assumed binary fraction.

Figure 5.2: Density maps of the unresolved WDMS systems in the WDMS region for different
binary fractions (top left 30%; top right 40%; bottom left 60%; bottom right 70%.

In Figure 5.2 we compare the distributions of the unresolved WDMS systems inside the WDMS
region of the HR diagram for the different binary fraction models. The main difference between
them is that, as the binary fraction increases, so does the number of objects and the cluster in the
top right gains importance. In all cases most of the objects are located near the MS area, however
not always the synthetic objects reach the other extreme of the zone, that is, the frontier with the
WD region.
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5.3 A first approach to the best fitting model

To summarise, the different models we presented are: Model 1, with n(q) = 1 and binary fraction
50%; Model 2, with n(q) ∝ q and binary fraction 50%; Model 3, with n(q) ∝ q−1 and a binary
fraction of 50%; 30% model, with n(q) = 1 and 30% of binary fraction; 40% model, with n(q) = 1
and 40% of binary fraction; 50% model and n(q) = 1, which is the the same as Model 1; 60%
model, with n(q) = 1 and 60% of binary fraction; and 70% model, with n(q) = 1 and 70% of
binary fraction.

With all the information presented in this chapter we find that there is no straightforward way for
choosing the model that best fits with the observed sample. For instance, Model 3 has the closest
proportion of resolved DWD systems to the observed one, however, the number of unresolved
WDMS systems in the WDMS region is four times the number observed. On the other hand,
Model 1 provides a reasonably close value to the observed one for the unresolved WDMS systems
in the WDMS zone and the percentage of resolved WDMS in the WD area, but the fraction of
resolved DWD is considerably higher and the upper cluster seems more populated that the one
in Model 3. Nonetheless, we can confidently conclude that Model 2 does not present a good
resemblance with the observed population, as the distribution is too different from the observed
one, there are too few unresolved WDMS and too many resolved DWD systems in the WD area.

We stated in Section 5.2 that higher values of the binary fraction result in higher values of the
fraction of resolved DWD and WDMS systems in the WD area as well as in more unresolved
WDMS placed in the WDMS region. By comparing these percentages to the observed ones, we
consider that the best fit is the one with a binary fraction of 40%. This model yields 100 unresolved
WDMS inside the WDMS area, which agrees very well with the 98 observed, and the proportion
of resolved WDMS in the WD area has a difference of less than 1%. Of course, this model can not
yet be considered as optimal because there are issues such as the high fraction of DWD systems
that are not reconciled with the observations.

For a further check we preformed a two-dimensional two-sample Kolmogorov-Smirnov test, which
allowed us to make a more exhaustive and quantitative comparison between the different distri-
butions, for instance, of unresolved WDMS systems placed in the WDMS region, than simply
looking at their shapes. This test gives the largest absolute difference between the two cumula-
tive probability distributions, therefore a lower value means a better resemblance between the two
distributions.

The results of the test, summarized in Table 5.5, pointed out that the best fit is Model 1 with a
40% of binary fraction, being a close second the 30% case. Model 3 obtained the third best results
in the Kolmogorov-Smirnov test, probably because of the low number of stars in the upper cluster,
and the higher spread of the main group across the area.

KS
Model 1 0.3150
Model 2 0.5241
Model 3 0.2961
30% model 0.2913
40% model 0.2871
60% model 0.3108
70% model 0.3355

Table 5.5: Values of the outcome of the Kolmogorov-Smirnov test for the different models, being
KS the largest absolute difference between the two cumulative probability distributions.

In the present work we have discussed how the outcome of the simulations change depending
on only two parameters. This is providing us a first guess of the general tendencies regarding the
changes in the numbers and fractions of the different populations across the HR diagram. So far,
Model 3 exhibits a nice distribution of the stars in the WDMS region and has the lowest value of
the resolved DWD proportion, but the values of the unresolved WDMS systems in the WDMS area
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and the resolved WDMS in the WD area remain too high. If we lower the binary fraction there
is a chance that those values decrease to match with the observed ones. However, lowering the
fraction would not be a realistic solution. So other parameters that characterize the modeling of
the binary population should be taken into account, such as the common-envelope efficiency, initial
separation distribution, mass losses, among others. A thorough analysis involving such parameters
and comparison between the simulated and observed distributions is beyond the present work,
although is currently underway and will be part of a forthcoming publication.



Conclusions

We have conducted a population synthesis study of the white dwarf population within 100 pc from
the Sun based on a detailed Monte Carlo code, which provided synthetic samples of both single
and binary stars for different input parameters.

We firstly derived the Gaia magnitudes from the output parameters of the simulated samples.
Two models were considered: MIST and PARSEC. Despite some issues with the MIST models
presumably due to flux calibration of the bolometric corrections, that imply a shift in the HR-
diagram of the position of the MS trackfor, we presented a temporal solution to this situation, which
consisted in preforming an adjustment by hand. Afterwards we found an alternative method, based
on PARSEC models, to derive the Gaia magnitudes which did not exhibit such visible displacement.

Other adjustments were required in order to compare the observed and simulated populations.
For instance the addition of a metallicity dispersion for the MS stars, as the simulation outcome
drew three perfectly distinct tracks in the MS region of the HR diagram, which is not realistic when
comparing to the observed data. Another important effect we had to consider was the inclusion
of photometric and astrometric errors in all simulated sub-populations, to take into account the
instrumental limitations and physical errors affecting the observed sample, following the Gaia
prescriptions. The implemented dispersion and inclusion of photometric and astrometric errors
broadened the MS sub-populations achieving a very good resemblance with the observed MS data
in the HR diagram.

Once the synthetic populations were adequately calibrated, the simulated data proved to be
an excellent source of information. Among the most relevant results we derived an estimation of
the completeness of the unresolved WDMS population. From the observed sample, consisting in
112 unresolved WDMS binary candidates and the expected number of objects in our synthetic
population, we were able to derive a completeness value of ' 80 ± 9 per cent, yielding a number
density of these objects of 3.3 × 10−5 pc−3. These results have been summarized and included in
Rebassa-Mansergas et al. (2021), in press.

The comparison between the outcome of our population synthesis model and the observed sub-
populations showed a satisfactory degree of resemblance between them. Nonetheless, some im-
portant differences raised between the two samples. A clear example is the mass distribution of
the single WD population, see section 4.5, were the observed distribution exhibits a second peak
for higher masses that could to be explained with the information provided by the simulations.
Another significant discrepancy is found in the fraction of each sub-population placed in the WD
region of the HR diagram. While we obtained reasonably close values for the resolved WDMS sub-
population, in the case of resolved DWDs the observed sample represented a considerably smaller
fraction than the simulated one. Both issues were reported in previous works and still remain as
a matter of debate.

Finally, our last objective was to determine the optimal parameters of our population synthesis
model which resulted in a better fitting with the observed Gaia samples. When searching for
the best fitting model, we focused on comparing the value of simulated versus observed fraction
of resolved WDMS and DWD systems in the WD region and the number of unresolved WDMS
systems that are located in the WDMS area as well as on their distribution across this region.
For the last one we made use of a two-dimensional two-sample Kolmogorov-Smirnov test in order
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to obtain a more quantitative estimation than a simple visual comparison. The models available
to compare were three with different IMRD (n(q) = 1, n(q) ∝ q and n(q) ∝ q−1) with the same
binary fraction of 50%; and four more models with the same IMRD as the n(q) = 1 but changing
the binary fractions to 30%, 40%, 60% and 70%.

In view of the results we can conclude that there is not a single model that fits all the different
observed percentages of the white dwarf sub-populations. Regarding the IMRD, it seems obvious
that the directly proportional IMRD does not provide a satisfactory result, as most of its features
differ from the observed sample, specially the distribution of the unresolved WDMS sub-population
across the WDMS region. With respecto to Model 1 (n(q) = 1) and Model 3 (n(q) ∝ q−1) not all
results are completely positive or negative, as one model’s strengths are the other’s weaknesses.
Therefore there is no clear decision in which of them fits best with the observed sample. Similarly,
when changing the binary fraction, the 40% model obtained the most optimal results in all param-
eters except for the fraction of resolved DWDs in the WD area, which has been the one with more
problems to fit. This change of the binary fraction allowed us to draw the general tendencies and
showed us that, besides the variation in the proportion of the different binary populations, there
is an important difference in the ratio of WDs and WDm.

The current project is limited to seven different outcomes of the simulations, which only consider
the variation of two parameters, and always one at the time. For future works we suggest a study of
a wider range of models, which take into consideration other parameter modification. For instance,
the variation of the different parameters that rule the CE phase (αCE, αint and λ) would probably
have a huge impact not only in the calculated fraction of the different sub-populations in the WD
area or the number of unresolved WDMS that falls in the WDMS region, but also in the evolution
of the close binary systems and their distribution across the HR diagram. To give another example,
the initial separation is likely to influence the ratio of resolved and unresolved, and consequently,
all the parameters we used to discuss the fitting.
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Appendix

Matlab code

1 close all
2 clear all
3

4

5 %% Load data
6

7 % Load the data and change the variables name
8

9 % MS+WD binary systems
10 % mWD(Msun) mMS(Msun) log10(Teff_wd) log10(Teff_MS) log10(L_wd/Lsun)
11 % log10(L_MS/Lsun) s(arc sec) par(mas) index
12

13 load('MSWDfb40.out'); MSWD=MSWDfb40;
14

15 % WD mergers
16 % mWD(Msun) log10(Teff) log10( L/Lsun) par(mas) index
17

18 load('WDmergersfb40.out'); WDmergers=WDmergersfb40;
19

20 % WD singles
21 % mWD(Msun) Teff logg R(Rsun) G BP RP par(mas) index
22

23 load('WDsinglesfb40.out'); WDsingles=WDsinglesfb40;
24

25 % WD+WD binary systems
26 % mWD1(Msun) mWD2(Msun) log10(Teff1) log10(Teff2) log10(L1/Lsun)
27 % log10(L2/Lsun) s(arc sec) par(mas) index
28

29 load('WDWDfb40.out'); WDWD=WDWDfb40;
30

31 % MS singles
32 % mMS(Msun) log10(Teff) log10(R) log10(L) par index
33

34 load('MSfb40.out'); MS=MSfb40;
35

36 % Load tables for WD and MS
37 % Teff log g G_dr3 BP_dr3 RP_dr3
38 load('WD_Gaia_magn.txt')
39

40 % Z logL logTe logg G BP RP
41 load('PARSEC0p001.txt');
42 load('PARSEC0p005.txt');
43 load('PARSEC0p010.txt');
44 load('PARSEC0p015.txt');
45 load('PARSEC0p020.txt');
46 load('PARSEC0p025.txt');
47 load('PARSEC0p030.txt');
48 load('PARSEC0p035.txt');
49 load('PARSEC0p040.txt');
50 load('PARSEC0p045.txt');
51

52

53 %% Reorganize data for WD
54

43
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55 % Find the values of Teff and logg for which the Gaia magnitudes are available
56 TeffWD=unique(WD_Gaia_magn(:,1)); loggsWD=unique(WD_Gaia_magn(:,2));
57

58 % For some Teff the values of the Gaia magnitudes are available for a range
59 % of logg from 5−9.5 others from 6−9.5, therefore we need to organize the
60 % tables into two groups
61

62 G_dr3=reshape(WD_Gaia_magn(1:1596,3),length(loggsWD),[]);
63 G_dr3_2=reshape(WD_Gaia_magn(1597:end,3),length(loggsWD(5:end)),[]);
64 BP_dr3=reshape(WD_Gaia_magn(1:1596,4),length(loggsWD),[]);
65 BP_dr3_2=reshape(WD_Gaia_magn(1597:end,4),length(loggsWD(5:end)),[]);
66 RP_dr3=reshape(WD_Gaia_magn(1:1596,5),length(loggsWD),[]);
67 RP_dr3_2=reshape(WD_Gaia_magn(1597:end,5),length(loggsWD(5:end)),[]);
68

69

70 %% Reorganize data for MS
71

72 % To interpolate Matlab require that the vectors do not include repeated
73 % values and that they are sorted
74

75 [P01a,i01a,¬]=unique(PARSEC0p001(:,2)); G01a=PARSEC0p001(i01a,5);
76 BP01a=PARSEC0p001(i01a,6); RP01a=PARSEC0p001(i01a,7);
77 [P01,i01]=sort(P01a); G01=G01a(i01);
78 BP01=BP01a(i01); RP01=RP01a(i01);
79 [P05a,i05a,¬]=unique(PARSEC0p005(:,2)); G05a=PARSEC0p005(i05a,5);
80 BP05a=PARSEC0p005(i05a,6); RP05a=PARSEC0p005(i05a,7);
81 [P05,i05]=sort(P05a); G05=G05a(i05);
82 BP05=BP05a(i05); RP05=RP05a(i05);
83 [P10a,i10a,¬]=unique(PARSEC0p010(:,2)); G10a=PARSEC0p010(i10a,5);
84 BP10a=PARSEC0p010(i10a,6); RP10a=PARSEC0p010(i10a,7);
85 [P10,i10]=sort(P10a); G10=G10a(i10);
86 BP10=BP10a(i10); RP10=RP10a(i10);
87 [P15a,i15a,¬]=unique(PARSEC0p015(:,2)); G15a=PARSEC0p015(i15a,5);
88 BP15a=PARSEC0p015(i15a,6); RP15a=PARSEC0p015(i15a,7);
89 [P15,i15]=sort(P15a); G15=G15a(i15);
90 BP15=BP15a(i15); RP15=RP15a(i15);
91 [P20a,i20a,¬]=unique(PARSEC0p020(:,2)); G20a=PARSEC0p020(i20a,5);
92 BP20a=PARSEC0p020(i20a,6); RP20a=PARSEC0p020(i20a,7);
93 [P20,i20]=sort(P20a); G20=G20a(i20);
94 BP20=BP20a(i20); RP20=RP20a(i20);
95 [P25a,i25a,¬]=unique(PARSEC0p025(:,2)); G25a=PARSEC0p025(i25a,5);
96 BP25a=PARSEC0p025(i25a,6); RP25a=PARSEC0p025(i25a,7);
97 [P25,i25]=sort(P25a); G25=G25a(i25);
98 BP25=BP25a(i25); RP25=RP25a(i25);
99 [P30a,i30a,¬]=unique(PARSEC0p030(:,2)); G30a=PARSEC0p030(i30a,5);

100 BP30a=PARSEC0p030(i30a,6); RP30a=PARSEC0p030(i30a,7);
101 [P30,i30]=sort(P30a); G30=G30a(i30);
102 BP30=BP30a(i30); RP30=RP30a(i30);
103 [P35a,i35a,¬]=unique(PARSEC0p035(:,2)); G35a=PARSEC0p035(i35a,5);
104 BP35a=PARSEC0p035(i35a,6); RP35a=PARSEC0p035(i35a,7);
105 [P35,i35]=sort(P35a); G35=G35a(i35);
106 BP35=BP35a(i35); RP35=RP35a(i35);
107 [P40a,i40a,¬]=unique(PARSEC0p040(:,2)); G40a=PARSEC0p040(i40a,5);
108 BP40a=PARSEC0p040(i40a,6); RP40a=PARSEC0p040(i40a,7);
109 [P40,i40]=sort(P40a); G40=G40a(i40);
110 BP40=BP40a(i40); RP40=RP40a(i40);
111 [P45a,i45a,¬]=unique(PARSEC0p045(:,2)); G45a=PARSEC0p045(i45a,5);
112 BP45a=PARSEC0p045(i45a,6); RP45a=PARSEC0p045(i45a,7);
113 [P45,i45]=sort(P45a); G45=G45a(i45);
114 BP45=BP45a(i45); RP45=RP45a(i45);
115

116

117 %% Some constants
118

119 % g=GM/R^2, L=sigm*4*pi*R^2*T^4 −> R^2=L/(sigm*pi*4*T^4) now g in Si units
120 % [g]=m/s*100cm/1m −−>g_cgs=g_si*100
121

122 G=6.67430e−11; sigm=5.670374e−8; Ls=3.828e26; Msun=1.9885e30; Rs=6.96e8;
123 % m^3 kg^−1 s^−2; W m^−2 K^−4; W; kg; m;
124

125 pc=3.0857e16;
126

127 % Threshold for the angular separation
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128 s_lim=2;
129

130 % Values for the metalicities acording to the index
131 % index =0 thin; =1 thick, =2 halo
132 Z0=0.02; Z1=0.01; Z2=0.00173;
133

134

135

136 %% WD+WD systems
137

138 % Calculate the logg
139

140 loggWD1=log10(100.*G.*Msun.*WDWD(:,1)./(10.^(WDWD(:,5))*Ls./...
141 (4.*pi.*sigm.*(10.^(WDWD(:,3))).^4)));
142 loggWD2=log10(100.*G.*Msun.*WDWD(:,2)./(10.^(WDWD(:,6))*Ls./...
143 (4.*pi.*sigm.*(10.^(WDWD(:,4))).^4)));
144 G_dr3_WD1=zeros(1,length(WDWD(:,1)));
145 BP_dr3_WD1=zeros(1,length(WDWD(:,1)));
146 RP_dr3_WD1=zeros(1,length(WDWD(:,1)));
147

148 G_dr3_WD2=zeros(1,length(WDWD(:,1)));
149 BP_dr3_WD2=zeros(1,length(WDWD(:,1)));
150 RP_dr3_WD2=zeros(1,length(WDWD(:,1)));
151

152 % Interpolation to find Gaia magnitudes
153 for ii=1:length(WDWD(:,1))
154 % WD1 component
155 if 10^(WDWD(ii,3))≤TeffWD(84)
156 G_dr3_WD1(ii)=interp2(TeffWD(1:84),loggsWD,G_dr3,...
157 10^(WDWD(ii,3)),loggWD1(ii),'makima');
158 BP_dr3_WD1(ii)=interp2(TeffWD(1:84),loggsWD,BP_dr3,...
159 10^(WDWD(ii,3)),loggWD1(ii),'makima');
160 RP_dr3_WD1(ii)=interp2(TeffWD(1:84),loggsWD,RP_dr3,...
161 10^(WDWD(ii,3)),loggWD1(ii),'makima');
162 else
163 G_dr3_WD1(ii)=interp2(TeffWD(85:end),loggsWD(5:end),G_dr3_2,...
164 10^(WDWD(ii,3)),loggWD1(ii),'makima');
165 BP_dr3_WD1(ii)=interp2(TeffWD(85:end),loggsWD(5:end),BP_dr3_2,...
166 10^(WDWD(ii,3)),loggWD1(ii),'makima');
167 RP_dr3_WD1(ii)=interp2(TeffWD(85:end),loggsWD(5:end),RP_dr3_2,...
168 10^(WDWD(ii,3)),loggWD1(ii),'makima');
169 end
170 %WD2 component
171 if 10^(WDWD(ii,4))≤TeffWD(84)
172 G_dr3_WD2(ii)=interp2(TeffWD(1:84),loggsWD,G_dr3,...
173 10^(WDWD(ii,4)),loggWD2(ii),'makima');
174 BP_dr3_WD2(ii)=interp2(TeffWD(1:84),loggsWD,BP_dr3,...
175 10^(WDWD(ii,4)),loggWD2(ii),'makima');
176 RP_dr3_WD2(ii)=interp2(TeffWD(1:84),loggsWD,RP_dr3,...
177 10^(WDWD(ii,4)),loggWD2(ii),'makima');
178 else
179 G_dr3_WD2(ii)=interp2(TeffWD(85:end),loggsWD(5:end),G_dr3_2,...
180 10^(WDWD(ii,4)),loggWD2(ii),'makima');
181 BP_dr3_WD2(ii)=interp2(TeffWD(85:end),loggsWD(5:end),BP_dr3_2,...
182 10^(WDWD(ii,4)),loggWD2(ii),'makima');
183 RP_dr3_WD2(ii)=interp2(TeffWD(85:end),loggsWD(5:end),RP_dr3_2,...
184 10^(WDWD(ii,4)),loggWD2(ii),'makima');
185 end
186 end
187

188 % Calculate the absolute magnitudes
189 G_abs_WD1=G_dr3_WD1−2.5.*log10((10.^(WDWD(:,5))*Ls./(4.*pi.*sigm.*...
190 (10.^(WDWD(:,3))).^4))/(10*pc)^2)';
191 BP_abs_WD1=BP_dr3_WD1−2.5.*log10((10.^(WDWD(:,5))*Ls./(4.*pi.*sigm.*...
192 (10.^(WDWD(:,3))).^4))/(10*pc)^2)';
193 RP_abs_WD1=RP_dr3_WD1−2.5.*log10((10.^(WDWD(:,5))*Ls./(4.*pi.*sigm.*...
194 (10.^(WDWD(:,3))).^4))/(10*pc)^2)';
195

196 G_abs_WD2=G_dr3_WD2−2.5.*log10((10.^(WDWD(:,6))*Ls./(4.*pi.*sigm.*...
197 (10.^(WDWD(:,4))).^4))/(10*pc)^2)';
198 BP_abs_WD2=BP_dr3_WD2−2.5.*log10((10.^(WDWD(:,6))*Ls./(4.*pi.*sigm.*...
199 (10.^(WDWD(:,4))).^4))/(10*pc)^2)';
200 RP_abs_WD2=RP_dr3_WD2−2.5.*log10((10.^(WDWD(:,6))*Ls./(4.*pi.*sigm.*...
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201 (10.^(WDWD(:,4))).^4))/(10*pc)^2)';
202

203 % Sort WD1 and WD2 according to MG_{WD1}<MG_{WD2}
204 G_abs_WD1_aux=G_abs_WD1; BP_abs_WD1_aux=BP_abs_WD1;
205 RP_abs_WD1_aux=RP_abs_WD1;
206 G_abs_WD2_aux=G_abs_WD2; BP_abs_WD2_aux=BP_abs_WD2;
207 RP_abs_WD2_aux=RP_abs_WD2;
208 WDWD_aux=WDWD;
209

210 for ii=1:WDWD(:,1)
211 % If it is not fulfilled change WD1 and WD2
212 if G_abs_WD1_aux(ii)>G_abs_WD2_aux(ii)
213 G_abs_WD1(ii)=G_abs_WD2_aux(ii); BP_abs_WD1(ii)=BP_abs_WD2_aux(ii);
214 RP_abs_WD1(ii)=RP_abs_WD2_aux(ii);
215 G_abs_WD2(ii)=G_abs_WD1_aux(ii); BP_abs_WD2(ii)=BP_abs_WD1_aux(ii);
216 RP_abs_WD2(ii)=RP_abs_WD1_aux(ii);
217 WDWD(ii,1)=WDWD_aux(ii,2); WDWD(ii,2)=WDWD_aux(ii,1);
218 WDWD(ii,3)=WDWD_aux(ii,4); WDWD(ii,4)=WDWD_aux(ii,3);
219 WDWD(ii,5)=WDWD_aux(ii,6); WDWD(ii,6)=WDWD_aux(ii,5);
220 end
221 end
222

223

224 G_WDWD=[]; BP_WDWD=[]; RP_WDWD=[]; Teff_WDWD=[]; logg_WDWD=[]; par_WDWD=[];
225 index_WDWD=[]; L_WDWD=[]; M_WDWD=[];
226 G_WD1=[]; BP_WD1=[]; RP_WD1=[]; Teff_WD1=[]; logg_WD1=[]; par_WD1=[];
227 index_WD1=[]; L_WD1=[]; M_WD1=[];
228 G_WD2=[]; BP_WD2=[]; RP_WD2=[]; Teff_WD2=[]; logg_WD2=[]; par_WD2=[];
229 index_WD2=[]; L_WD2=[]; M_WD2=[];
230

231 % Check if the system is resolved or not and save variables
232 for ii=1:length(WDWD(:,1))
233 if WDWD(ii,7)<s_lim
234 G_WDWD=[G_WDWD −2.5*log10(10^(−G_abs_WD1(ii)*0.4)+10^...
235 (−G_abs_WD2(ii)*0.4))];
236 BP_WDWD=[BP_WDWD −2.5*log10(10^(−BP_abs_WD1(ii)*0.4)+10^...
237 (−BP_abs_WD2(ii)*0.4))];
238 RP_WDWD=[RP_WDWD −2.5*log10(10^(−RP_abs_WD1(ii)*0.4)+10^...
239 (−RP_abs_WD2(ii)*0.4))];
240 Teff_WDWD=[Teff_WDWD; 10^WDWD(ii,3),10^WDWD(ii,4)];
241 logg_WDWD=[logg_WDWD; loggWD1(ii), loggWD2(ii)];
242 L_WDWD=[L_WDWD; WDWD(ii,5),WDWD(ii,6)];
243 M_WDWD=[M_WDWD; WDWD(ii,1),WDWD(ii,2)];
244 par_WDWD=[par_WDWD WDWD(ii,8)];
245 index_WDWD=[index_WDWD WDWD(ii,9)];
246 else
247 G_WD1=[G_WD1 G_abs_WD1(ii)]; BP_WD1=[BP_WD1 BP_abs_WD1(ii)];
248 RP_WD1=[RP_WD1 RP_abs_WD1(ii)];
249 G_WD2=[G_WD2 G_abs_WD2(ii)]; BP_WD2=[BP_WD2 BP_abs_WD2(ii)];
250 RP_WD2=[RP_WD2 RP_abs_WD2(ii)];
251 Teff_WD1=[Teff_WD1 10^WDWD(ii,3)];
252 Teff_WD2=[Teff_WD2 10^WDWD(ii,4)];
253 logg_WD1=[logg_WD1 loggWD1(ii)];
254 logg_WD2=[logg_WD2 loggWD2(ii)];
255 par_WD1=[par_WD1 WDWD(ii,8)];
256 par_WD2=[par_WD2 WDWD(ii,8)];
257 L_WD1=[L_WD1 WDWD(ii,5)];
258 L_WD2=[L_WD2 WDWD(ii,6)];
259 M_WD1=[M_WD1 WDWD(ii,1)];
260 M_WD2=[M_WD2 WDWD(ii,2)];
261 index_WD1=[index_WD1 WDWD(ii,9)];
262 index_WD2=[index_WD2 WDWD(ii,9)];
263 end
264 end
265

266

267

268 %% MS+WD systems
269

270 % Calculate the logg
271

272 loggWD=log10(100.*G.*Msun.*MSWD(:,1)./(10.^(MSWD(:,5))*Ls./...
273 (4.*pi.*sigm.*(10.^(MSWD(:,3))).^4)));
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274 loggMS=log10(100.*G.*Msun.*MSWD(:,2)./(10.^(MSWD(:,6))*Ls./...
275 (4.*pi.*sigm.*(10.^(MSWD(:,4))).^4)));
276 G_dr3_WD=zeros(1,length(MSWD(:,1))); BP_dr3_WD=zeros(1,length(MSWD(:,1)));
277 RP_dr3_WD=zeros(1,length(MSWD(:,1)));
278 G_dr3_MS=zeros(1,length(MSWD(:,1))); BP_dr3_MS=zeros(1,length(MSWD(:,1)));
279 RP_dr3_MS =zeros(1,length(MSWD(:,1)));
280

281 % Interpolation to find Gaia magnitudes
282 for ii=1:length(MSWD(:,1))
283 %WD component
284 if 10^(MSWD(ii,3))≤TeffWD(84)
285 G_dr3_WD(ii)=interp2(TeffWD(1:84),loggsWD,G_dr3,10^...
286 (MSWD(ii,3)),loggWD(ii),'makima');
287 BP_dr3_WD(ii)=interp2(TeffWD(1:84),loggsWD,BP_dr3,10^...
288 (MSWD(ii,3)),loggWD(ii),'makima');
289 RP_dr3_WD(ii)=interp2(TeffWD(1:84),loggsWD,RP_dr3,10^...
290 (MSWD(ii,3)),loggWD(ii),'makima');
291 else
292 G_dr3_WD(ii)=interp2(TeffWD(85:end),loggsWD(5:end),G_dr3_2,10^...
293 (MSWD(ii,3)),loggWD(ii),'makima');
294 BP_dr3_WD(ii)=interp2(TeffWD(85:end),loggsWD(5:end),BP_dr3_2,10^...
295 (MSWD(ii,3)),loggWD(ii),'makima');
296 RP_dr3_WD(ii)=interp2(TeffWD(85:end),loggsWD(5:end),RP_dr3_2,10^...
297 (MSWD(ii,3)),loggWD(ii),'makima');
298 end
299 % MS component
300 % Metallicity dispersion
301 if MS(ii,6)==0
302 Z=abs(Z0+normrnd(0,0.005));
303 elseif MS(ii,6)==1
304 Z=abs(Z1+normrnd(0,0.003));
305 elseif MS(ii,6)==2
306 Z=abs(Z2+normrnd(0,0.001));
307 end
308 if Z≤0.005 % 0.001/0.005
309 G_dr3_MS(ii)=interp1([0.001 0.005],[interp1(P01,G01,MSWD(ii,6),...
310 'linear','extrap') interp1(P05,G05,MSWD(ii,6),...
311 'linear','extrap')],Z,'linear','extrap');
312 BP_dr3_MS(ii)=interp1([0.001 0.005],[interp1(P01,BP01,MSWD(ii,6),...
313 'linear','extrap') interp1(P05,BP05,MSWD(ii,6),...
314 'linear','extrap')],Z,'linear','extrap');
315 RP_dr3_MS(ii)=interp1([0.001 0.005],[interp1(P01,RP01,MSWD(ii,6),...
316 'linear','extrap') interp1(P05,RP05,MSWD(ii,6),...
317 'linear','extrap')],Z,'linear','extrap');
318 elseif Z>0.005 && Z≤0.010 % 0.005/0.010
319 G_dr3_MS(ii)=interp1([0.01 0.005],[interp1(P10,G10,MSWD(ii,6),...
320 'linear','extrap') interp1(P05,G05,MSWD(ii,6),...
321 'linear','extrap')],Z,'linear','extrap');
322 BP_dr3_MS(ii)=interp1([0.01 0.005],[interp1(P10,BP10,MSWD(ii,6),...
323 'linear','extrap') interp1(P05,BP05,MSWD(ii,6),...
324 'linear','extrap')],Z,'linear','extrap');
325 RP_dr3_MS(ii)=interp1([0.01 0.005],[interp1(P10,RP10,MSWD(ii,6),...
326 'linear','extrap') interp1(P05,RP05,MSWD(ii,6),...
327 'linear','extrap')],Z,'linear','extrap');
328 elseif Z>0.010 && Z≤0.015 % 0.010/0.015
329 G_dr3_MS(ii)=interp1([0.01 0.015],[interp1(P10,G10,MSWD(ii,6),...
330 'linear','extrap') interp1(P15,G15,MSWD(ii,6),...
331 'linear','extrap')],Z,'linear','extrap');
332 BP_dr3_MS(ii)=interp1([0.01 0.015],[interp1(P10,BP10,MSWD(ii,6),...
333 'linear','extrap') interp1(P15,BP15,MSWD(ii,6),...
334 'linear','extrap')],Z,'linear','extrap');
335 RP_dr3_MS(ii)=interp1([0.01 0.015],[interp1(P10,RP10,MSWD(ii,6),...
336 'linear','extrap') interp1(P15,RP15,MSWD(ii,6),...
337 'linear','extrap')],Z,'linear','extrap');
338 elseif Z>0.015 && Z≤0.020 % 0.015/0.020
339 G_dr3_MS(ii)=interp1([0.02 0.015],[interp1(P20,G20,MSWD(ii,6),...
340 'linear','extrap') interp1(P15,G15,MSWD(ii,6),...
341 'linear','extrap')],Z,'linear','extrap');
342 BP_dr3_MS(ii)=interp1([0.02 0.015],[interp1(P20,BP20,MSWD(ii,6),...
343 'linear','extrap') interp1(P15,BP15,MSWD(ii,6),...
344 'linear','extrap')],Z,'linear','extrap');
345 RP_dr3_MS(ii)=interp1([0.02 0.015],[interp1(P20,RP20,MSWD(ii,6),...
346 'linear','extrap') interp1(P15,RP15,MSWD(ii,6),...
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347 'linear','extrap')],Z,'linear','extrap');
348 elseif Z>0.020 && Z≤0.025 % 0.020/0.025
349 G_dr3_MS(ii)=interp1([0.02 0.025],[interp1(P20,G20,MSWD(ii,6),...
350 'linear','extrap') interp1(P25,G25,MSWD(ii,6),...
351 'linear','extrap')],Z,'linear','extrap');
352 BP_dr3_MS(ii)=interp1([0.02 0.025],[interp1(P20,BP20,MSWD(ii,6),...
353 'linear','extrap') interp1(P25,BP25,MSWD(ii,6),...
354 'linear','extrap')],Z,'linear','extrap');
355 RP_dr3_MS(ii)=interp1([0.02 0.025],[interp1(P20,RP20,MSWD(ii,6),...
356 'linear','extrap') interp1(P25,RP25,MSWD(ii,6),...
357 'linear','extrap')],Z,'linear','extrap');
358 elseif Z>0.025 && Z≤0.030 % 0.025/0.030
359 G_dr3_MS(ii)=interp1([0.03 0.025],[interp1(P30,G30,MSWD(ii,6),...
360 'linear','extrap') interp1(P35,G35,MSWD(ii,6),...
361 'linear','extrap')],Z,'linear','extrap');
362 BP_dr3_MS(ii)=interp1([0.03 0.025],[interp1(P30,BP30,MSWD(ii,6),...
363 'linear','extrap') interp1(P35,BP35,MSWD(ii,6),...
364 'linear','extrap')],Z,'linear','extrap');
365 RP_dr3_MS(ii)=interp1([0.03 0.025],[interp1(P30,RP30,MSWD(ii,6),...
366 'linear','extrap') interp1(P35,RP35,MSWD(ii,6),...
367 'linear','extrap')],Z,'linear','extrap');
368 elseif Z>0.030 && Z≤0.035 % 0.030/0.035
369 G_dr3_MS(ii)=interp1([0.03 0.035],[interp1(P30,G30,MSWD(ii,6),...
370 'linear','extrap') interp1(P35,G35,MSWD(ii,6),...
371 'linear','extrap')],Z,'linear','extrap');
372 BP_dr3_MS(ii)=interp1([0.03 0.035],[interp1(P30,BP30,MSWD(ii,6),...
373 'linear','extrap') interp1(P35,BP35,MSWD(ii,6),...
374 'linear','extrap')],Z,'linear','extrap');
375 RP_dr3_MS(ii)=interp1([0.03 0.035],[interp1(P30,RP30,MSWD(ii,6),...
376 'linear','extrap') interp1(P35,RP35,MSWD(ii,6),...
377 'linear','extrap')],Z,'linear','extrap');
378 elseif Z>0.035 && Z≤0.040 % 0.035/0.040
379 G_dr3_MS(ii)=interp1([0.04 0.035],[interp1(P40,G40,MSWD(ii,6),...
380 'linear','extrap') interp1(P35,G35,MSWD(ii,6),...
381 'linear','extrap')],Z,'linear','extrap');
382 BP_dr3_MS(ii)=interp1([0.04 0.035],[interp1(P40,BP40,MSWD(ii,6),...
383 'linear','extrap') interp1(P35,BP35,MSWD(ii,6),...
384 'linear','extrap')],Z,'linear','extrap');
385 RP_dr3_MS(ii)=interp1([0.04 0.035],[interp1(P40,RP40,MSWD(ii,6),...
386 'linear','extrap') interp1(P35,RP35,MSWD(ii,6),...
387 'linear','extrap')],Z,'linear','extrap');
388 elseif Z>0.040 % 0.040/0.045
389 G_dr3_MS(ii)=interp1([0.04 0.045],[interp1(P40,G40,MSWD(ii,6),...
390 'linear','extrap') interp1(P45,G45,MSWD(ii,6),...
391 'linear','extrap')],Z,'linear','extrap');
392 BP_dr3_MS(ii)=interp1([0.04 0.045],[interp1(P40,BP40,MSWD(ii,6),...
393 'linear','extrap') interp1(P45,BP45,MSWD(ii,6),...
394 'linear','extrap')],Z,'linear','extrap');
395 RP_dr3_MS(ii)=interp1([0.04 0.045],[interp1(P40,RP40,MSWD(ii,6),...
396 'linear','extrap') interp1(P45,RP45,MSWD(ii,6),...
397 'linear','extrap')],Z,'linear','extrap');
398 end
399 end
400

401 % Calculate the absolute magnitudes of the WD component
402 G_abs_WD=G_dr3_WD−2.5.*log10((10.^(MSWD(:,5))*Ls./(4.*pi.*sigm.*...
403 (10.^(MSWD(:,3))).^4))/(10*pc)^2)';
404 BP_abs_WD=BP_dr3_WD−2.5.*log10((10.^(MSWD(:,5))*Ls./(4.*pi.*sigm.*...
405 (10.^(MSWD(:,3))).^4))/(10*pc)^2)';
406 RP_abs_WD=RP_dr3_WD−2.5.*log10((10.^(MSWD(:,5))*Ls./(4.*pi.*sigm.*...
407 (10.^(MSWD(:,3))).^4))/(10*pc)^2)';
408

409 % Rename the absolute magnitudes of the MS component
410 G_abs_MS=G_dr3_MS';
411 BP_abs_MS=BP_dr3_MS';
412 RP_abs_MS=RP_dr3_MS';
413

414 G_MSWD=[]; BP_MSWD=[]; RP_MSWD=[]; Teff_MSWD=[]; logg_MSWD=[];
415 index_MSWD=[]; par_MSWD=[]; L_MSWD=[]; M_MSWD=[];
416 G_MS=[]; BP_MS=[]; RP_MS=[]; Teff_MS=[]; logg_MS=[];
417 index_MS=[]; par_MS=[]; L_MS=[]; M_MS=[];
418 G_WD=[]; BP_WD=[]; RP_WD=[]; Teff_WD=[]; logg_WD=[];
419 index_WD=[]; par_WD=[]; L_WD=[]; M_WD=[];
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420

421 G_MSWD_MS_WD=[]; BP_MSWD_MS_WD=[]; RP_MSWD_MS_WD=[];
422

423 % Check if the system is resolved or not and save variables
424 for ii=1:length(MSWD(:,1))
425 if MSWD(ii,7)<s_lim
426 G_MSWD=[G_MSWD −2.5*log10(10^(−G_abs_MS(ii)*0.4)+10^...
427 (−G_abs_WD(ii)*0.4))];
428 BP_MSWD=[BP_MSWD −2.5*log10(10^(−BP_abs_MS(ii)*0.4)+10^...
429 (−BP_abs_WD(ii)*0.4))];
430 RP_MSWD=[RP_MSWD −2.5*log10(10^(−RP_abs_MS(ii)*0.4)+10^...
431 (−RP_abs_WD(ii)*0.4))];
432 G_MSWD_MS_WD=[G_MSWD_MS_WD; G_abs_MS(ii) G_abs_WD(ii)];
433 BP_MSWD_MS_WD=[BP_MSWD_MS_WD; BP_abs_MS(ii) BP_abs_WD(ii)];
434 RP_MSWD_MS_WD=[RP_MSWD_MS_WD;RP_abs_MS(ii) RP_abs_WD(ii)];
435 Teff_MSWD=[Teff_MSWD; 10^MSWD(ii,4),10^MSWD(ii,3)];
436 logg_MSWD=[logg_MSWD; loggMS(ii), loggWD(ii)];
437 L_MSWD=[L_MSWD; MSWD(ii,6), MSWD(ii,5)];
438 M_MSWD=[M_MSWD; MSWD(ii,2), MSWD(ii,1)];
439 index_MSWD=[index_MSWD MSWD(ii,9)];
440 par_MSWD=[par_MSWD MSWD(ii,8)];
441 else
442 G_MS=[G_MS G_abs_MS(ii)]; BP_MS=[BP_MS BP_abs_MS(ii)];
443 RP_MS=[RP_MS RP_abs_MS(ii)];
444 G_WD=[G_WD G_abs_WD(ii)]; BP_WD=[BP_WD BP_abs_WD(ii)];
445 RP_WD=[RP_WD RP_abs_WD(ii)];
446 Teff_MS=[Teff_MS 10^MSWD(ii,4)]; Teff_WD=[Teff_WD 10^MSWD(ii,3)];
447 index_MS=[index_MS MSWD(ii,9)]; index_WD=[index_WD MSWD(ii,9)];
448 par_MS=[par_MS MSWD(ii,8)]; par_WD=[par_WD MSWD(ii,8)];
449 L_MS=[L_MS MSWD(ii,6)]; L_WD=[L_WD MSWD(ii,5)];
450 M_MS=[M_MS MSWD(ii,2)]; M_WD=[M_WD MSWD(ii,1)];
451 logg_MS=[logg_MS loggMS(ii)]; logg_WD=[logg_WD loggWD(ii)];
452 end
453 end
454

455

456

457 %% WD mergers
458

459 % Calculate the logg
460

461 loggWDm=log10(100.*G.*Msun.*WDmergers(:,1)./(10.^(WDmergers(:,3))*Ls./...
462 (4.*pi.*sigm.*(10.^(WDmergers(:,2))).^4)));
463 G_dr3_WDm=zeros(1,length(WDmergers(:,1)));
464 BP_dr3_WD1=zeros(1,length(WDmergers(:,1)));
465 RP_dr3_WD1=zeros(1,length(WDmergers(:,1)));
466

467 % Interpolation to find Gaia magnitudes
468 for ii=1:length(WDmergers(:,1))
469 if 10^(WDmergers(ii,2))≤TeffWD(84)
470 G_dr3_WDm(ii)=interp2(TeffWD(1:84),loggsWD,G_dr3,10^...
471 (WDmergers(ii,2)),loggWDm(ii),'makima');
472 BP_dr3_WDm(ii)=interp2(TeffWD(1:84),loggsWD,BP_dr3,10^...
473 (WDmergers(ii,2)),loggWDm(ii),'makima');
474 RP_dr3_WDm(ii)=interp2(TeffWD(1:84),loggsWD,RP_dr3,10^...
475 (WDmergers(ii,2)),loggWDm(ii),'makima');
476 else
477 G_dr3_WDm(ii)=interp2(TeffWD(85:end),loggsWD(5:end),G_dr3_2,...
478 10^(WDmergers(ii,2)),loggWDm(ii),'makima');
479 BP_dr3_WDm(ii)=interp2(TeffWD(85:end),loggsWD(5:end),BP_dr3_2,...
480 10^(WDmergers(ii,2)),loggWDm(ii),'makima');
481 RP_dr3_WDm(ii)=interp2(TeffWD(85:end),loggsWD(5:end),RP_dr3_2,...
482 10^(WDmergers(ii,2)),loggWDm(ii),'makima');
483 end
484 end
485

486 % Calculate the absolute magnitudes
487 G_WDm=G_dr3_WDm−2.5.*log10((10.^(WDmergers(:,3))*Ls./(4.*pi.*sigm.*...
488 (10.^(WDmergers(:,2))).^4))/(10*pc)^2)';
489 BP_WDm=BP_dr3_WDm−2.5.*log10((10.^(WDmergers(:,3))*Ls./(4.*pi.*sigm.*...
490 (10.^(WDmergers(:,2))).^4))/(10*pc)^2)';
491 RP_WDm=RP_dr3_WDm−2.5.*log10((10.^(WDmergers(:,3))*Ls./(4.*pi.*sigm.*...
492 (10.^(WDmergers(:,2))).^4))/(10*pc)^2)';
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493

494 % Save variables
495 Teff_WDm=10.^WDmergers(:,2);
496 logg_WDm=loggWDm;
497 par_WDm=WDmergers(:,4);
498 index_WDm=WDmergers(:,5);
499 L_WDm=WDmergers(:,3);
500 M_WDm=WDmergers(:,1);
501

502

503

504 %% WD singles
505

506 % Calculate the absolute magnitudes
507

508 par_WDs=WDsingles(:,8)/1000;
509 G_abs_WDs=WDsingles(:,5)+5+5*log10(par_WDs);
510 BP_abs_WDs=WDsingles(:,6)+5+5*log10(par_WDs);
511 RP_abs_WDs=WDsingles(:,7)+5+5*log10(par_WDs);
512

513 % Save variables
514 Teff_WDs=10.^WDsingles(:,2);
515 logg_WDs=WDsingles(:,3);
516 index_WDs=WDsingles(:,9);
517 L_WDs=log10((4.*pi.*sigm.*(WDsingles(:,4).*Rs).^2.*(10.^WDsingles(:,2)).^4)/Ls);
518 M_WDs=WDsingles(:,1);
519

520

521

522 %% MS singles
523

524 % Calculate the logg
525

526 loggMSs=log10(100.*G.*Msun.*MS(:,1)./(10.^(MS(:,3)).*Rs).^2);
527 G_MSs=zeros(1,length(MS(:,1))); BP_MSs=zeros(1,length(MS(:,1)));
528 RP_MSs=zeros(1,length(MS(:,1)));
529

530 % Interpolation to find gaia mag
531 for ii=1:length(MS(:,1))
532 % Metallicity disperssion
533 if MS(ii,6)==0
534 Z=abs(Z0+normrnd(0,0.005));
535 elseif MS(ii,6)==1
536 Z=abs(Z1+normrnd(0,0.003));
537 elseif MS(ii,6)==2
538 Z=abs(Z2+normrnd(0,0.001));
539 end
540 if Z≤0.005 % 0.001/0.005
541 G_MSs(ii)=interp1([0.001 0.005],[interp1(P01,G01,MS(ii,4),...
542 'linear','extrap') interp1(P05,G05,MS(ii,4),...
543 'linear','extrap')],Z,'linear','extrap');
544 BP_MSs(ii)=interp1([0.001 0.005],[interp1(P01,BP01,MS(ii,4),...
545 'linear','extrap') interp1(P05,BP05,MS(ii,4),...
546 'linear','extrap')],Z,'linear','extrap');
547 RP_MSs(ii)=interp1([0.001 0.005],[interp1(P01,RP01,MS(ii,4),...
548 'linear','extrap') interp1(P05,RP05,MS(ii,4),...
549 'linear','extrap')],Z,'linear','extrap');
550 elseif Z>0.005 && Z≤0.010 % 0.005/0.010
551 G_MSs(ii)=interp1([0.01 0.005],[interp1(P10,G10,MS(ii,4),...
552 'linear','extrap') interp1(P05,G05,MS(ii,4),...
553 'linear','extrap')],Z,'linear','extrap');
554 BP_MSs(ii)=interp1([0.01 0.005],[interp1(P10,BP10,MS(ii,4),...
555 'linear','extrap') interp1(P05,BP05,MS(ii,4),...
556 'linear','extrap')],Z,'linear','extrap');
557 RP_MSs(ii)=interp1([0.01 0.005],[interp1(P10,RP10,MS(ii,4),...
558 'linear','extrap') interp1(P05,RP05,MS(ii,4),...
559 'linear','extrap')],Z,'linear','extrap');
560 elseif Z>0.010 && Z≤0.015 % 0.010/0.015
561 G_MSs(ii)=interp1([0.01 0.015],[interp1(P10,G10,MS(ii,4),...
562 'linear','extrap') interp1(P15,G15,MS(ii,4),...
563 'linear','extrap')],Z,'linear','extrap');
564 BP_MSs(ii)=interp1([0.01 0.015],[interp1(P10,BP10,MS(ii,4),...
565 'linear','extrap') interp1(P15,BP15,MS(ii,4),...
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566 'linear','extrap')],Z,'linear','extrap');
567 RP_MSs(ii)=interp1([0.01 0.015],[interp1(P10,RP10,MS(ii,4),...
568 'linear','extrap') interp1(P15,RP15,MS(ii,4),...
569 'linear','extrap')],Z,'linear','extrap');
570 elseif Z>0.015 && Z≤0.020 % 0.015/0.020
571 G_MSs(ii)=interp1([0.02 0.015],[interp1(P20,G20,MS(ii,4),...
572 'linear','extrap') interp1(P15,G15,MS(ii,4),...
573 'linear','extrap')],Z,'linear','extrap');
574 BP_MSs(ii)=interp1([0.02 0.015],[interp1(P20,BP20,MS(ii,4),...
575 'linear','extrap') interp1(P15,BP15,MS(ii,4),...
576 'linear','extrap')],Z,'linear','extrap');
577 RP_MSs(ii)=interp1([0.02 0.015],[interp1(P20,RP20,MS(ii,4),...
578 'linear','extrap') interp1(P15,RP15,MS(ii,4),...
579 'linear','extrap')],Z,'linear','extrap');
580 elseif Z>0.020 && Z≤0.025 % 0.020/0.025
581 G_MSs(ii)=interp1([0.02 0.025],[interp1(P20,G20,MS(ii,4),...
582 'linear','extrap') interp1(P25,G25,MS(ii,4),...
583 'linear','extrap')],Z,'linear','extrap');
584 BP_MSs(ii)=interp1([0.02 0.025],[interp1(P20,BP20,MS(ii,4),...
585 'linear','extrap') interp1(P25,BP25,MS(ii,4),...
586 'linear','extrap')],Z,'linear','extrap');
587 RP_MSs(ii)=interp1([0.02 0.025],[interp1(P20,RP20,MS(ii,4),...
588 'linear','extrap') interp1(P25,RP25,MS(ii,4),...
589 'linear','extrap')],Z,'linear','extrap');
590 elseif Z>0.025 && Z≤0.030 % 0.025/0.030
591 G_MSs(ii)=interp1([0.03 0.025],[interp1(P30,G30,MS(ii,4),...
592 'linear','extrap') interp1(P35,G35,MS(ii,4),...
593 'linear','extrap')],Z,'linear','extrap');
594 BP_MSs(ii)=interp1([0.03 0.025],[interp1(P30,BP30,MS(ii,4),...
595 'linear','extrap') interp1(P35,BP35,MS(ii,4),...
596 'linear','extrap')],Z,'linear','extrap');
597 RP_MSs(ii)=interp1([0.03 0.025],[interp1(P30,RP30,MS(ii,4),...
598 'linear','extrap') interp1(P35,RP35,MS(ii,4),...
599 'linear','extrap')],Z,'linear','extrap');
600 elseif Z>0.030 && Z≤0.035 % 0.030/0.035
601 G_MSs(ii)=interp1([0.03 0.035],[interp1(P30,G30,MS(ii,4),...
602 'linear','extrap') interp1(P35,G35,MS(ii,4),...
603 'linear','extrap')],Z,'linear','extrap');
604 BP_MSs(ii)=interp1([0.03 0.035],[interp1(P30,BP30,MS(ii,4),...
605 'linear','extrap') interp1(P35,BP35,MS(ii,4),...
606 'linear','extrap')],Z,'linear','extrap');
607 RP_MSs(ii)=interp1([0.03 0.035],[interp1(P30,RP30,MS(ii,4),...
608 'linear','extrap') interp1(P35,RP35,MS(ii,4),...
609 'linear','extrap')],Z,'linear','extrap');
610 elseif Z>0.035 && Z≤0.040 % 0.035/0.040
611 G_MSs(ii)=interp1([0.04 0.035],[interp1(P40,G40,MS(ii,4),...
612 'linear','extrap') interp1(P35,G35,MS(ii,4),...
613 'linear','extrap')],Z,'linear','extrap');
614 BP_MSs(ii)=interp1([0.04 0.035],[interp1(P40,BP40,MS(ii,4),...
615 'linear','extrap') interp1(P35,BP35,MS(ii,4),...
616 'linear','extrap')],Z,'linear','extrap');
617 RP_MSs(ii)=interp1([0.04 0.035],[interp1(P40,RP40,MS(ii,4),...
618 'linear','extrap') interp1(P35,RP35,MS(ii,4),...
619 'linear','extrap')],Z,'linear','extrap');
620 elseif Z>0.040 % 0.040/0.045
621 G_MSs(ii)=interp1([0.04 0.045],[interp1(P40,G40,MS(ii,4),...
622 'linear','extrap') interp1(P45,G45,MS(ii,4),...
623 'linear','extrap')],Z,'linear','extrap');
624 BP_MSs(ii)=interp1([0.04 0.045],[interp1(P40,BP40,MS(ii,4),...
625 'linear','extrap') interp1(P45,BP45,MS(ii,4),...
626 'linear','extrap')],Z,'linear','extrap');
627 RP_MSs(ii)=interp1([0.04 0.045],[interp1(P40,RP40,MS(ii,4),...
628 'linear','extrap') interp1(P45,RP45,MS(ii,4),...
629 'linear','extrap')],Z,'linear','extrap');
630 end
631 end
632

633 % Rename variables
634 G_abs_MSs=G_MSs';
635 BP_abs_MSs=BP_MSs';
636 RP_abs_MSs=RP_MSs';
637

638 % Save variables
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639 Teff_MSs=10.^MS(:,2); logg_MSs=loggMSs;
640 M_MSs=MS(:,1); index_MSs=MS(:,6); par_MSs=MS(:,5);
641 L_MSs=MS(:,4); M_MSs=MS(:,1);
642

643

644

645 %% Add error
646

647 % See functions below
648

649 [MG_WDm_e, MBP_WDm_e, MRP_WDm_e, par_WDm_e,id_WDm_e] = ...
650 p_error(par_WDm', G_WDm, BP_WDm, RP_WDm);
651 [MG_MSWD_e,MBP_MSWD_e,MRP_MSWD_e, par_MSWD_e, id_MSWD_e]= ...
652 p_error(par_MSWD, G_MSWD, BP_MSWD, RP_MSWD);
653 [MG_WDWD_e,MBP_WDWD_e,MRP_WDWD_e, par_WDWD_e, id_WDWD_e]= ...
654 p_error(par_WDWD, G_WDWD, BP_WDWD, RP_WDWD);
655 [MG_MSs_e, MBP_MSs_e, MRP_MSs_e, par_MSs_e, id_MSs_e] = ...
656 p_error(par_MSs, G_abs_MSs, BP_abs_MSs, RP_abs_MSs);
657

658 [MG_MS_e,MBP_MS_e,MRP_MS_e,MG_WD_e,MBP_WD_e,MRP_WD_e,par_MS_e,par_WD_e,...
659 id_MS_WD_e]=p_error2(par_MS,par_WD,G_MS,BP_MS,RP_MS,G_WD,BP_WD,RP_WD);
660 [MG_WD1_e,MBP_WD1_e,MRP_WD1_e,MG_WD2_e,MBP_WD2_e,MRP_WD2_e,par_WD1_e,...
661 par_WD2_e,id_WD12_e]=p_error2(par_WD1,par_WD2,G_WD1,BP_WD1,RP_WD1,...
662 G_WD2,BP_WD2,RP_WD2);
663

664

665

666 %% Eliminate stars with G>20.7
667

668 Teff_WDm_e=Teff_WDm; Teff_WDm_e(id_WDm_e)=[];
669 logg_WDm_e=logg_WDm; logg_WDm_e(id_WDm_e)=[];
670 index_WDm_e=index_WDm; index_WDm_e(id_WDm_e)=[];
671 L_WDm_e=L_WDm; L_WDm_e(id_WDm_e)=[];
672 M_WDm_e=M_WDm; M_WDm_e(id_WDm_e)=[];
673 Teff_MSWD_e=Teff_MSWD; Teff_MSWD_e(id_MSWD_e,:)=[];
674 logg_MSWD_e=logg_MSWD; logg_MSWD_e(id_MSWD_e,:)=[];
675 index_MSWD_e=index_MSWD; index_MSWD_e(id_MSWD_e)=[];
676 L_MSWD_e=L_MSWD; L_MSWD_e(id_MSWD_e,:)=[];
677 M_MSWD_e=M_MSWD; M_MSWD_e(id_MSWD_e,:)=[];
678 Teff_WDWD_e=Teff_WDWD; Teff_WDWD_e(id_WDWD_e,:)=[];
679 logg_WDWD_e=logg_WDWD; logg_WDWD_e(id_WDWD_e,:)=[];
680 index_WDWD_e=index_WDWD; index_WDWD_e(id_WDWD_e)=[];
681 L_WDWD_e=L_WDWD; L_WDWD_e(id_WDWD_e,:)=[];
682 M_WDWD_e=M_WDWD; M_WDWD_e(id_WDWD_e,:)=[];
683 Teff_MSs_e=Teff_MSs; Teff_MSs_e(id_MSs_e)=[];
684 logg_MSs_e=logg_MSs; logg_MSs_e(id_MSs_e)=[];
685 index_MSs_e=index_MSs; index_MSs_e(id_MSs_e)=[];
686 L_MSs_e=L_MSs; L_MSs_e(id_MSs_e)=[];
687 M_MSs_e=M_MSs; M_MSs_e(id_MSs_e)=[];
688 Teff_MS_e=Teff_MS; Teff_MS_e(id_MS_WD_e)=[];
689 logg_MS_e=logg_MS; logg_MS_e(id_MS_WD_e)=[];
690 index_MS_e=index_MS; index_MS_e(id_MS_WD_e)=[];
691 L_MS_e=L_MS; L_MS_e(id_MS_WD_e)=[];
692 M_MS_e=M_MS; M_MS_e(id_MS_WD_e)=[];
693 Teff_WD_e=Teff_WD; Teff_WD_e(id_MS_WD_e)=[];
694 logg_WD_e=logg_WD; logg_WD_e(id_MS_WD_e)=[];
695 index_WD_e=index_WD; index_WD_e(id_MS_WD_e)=[];
696 L_WD_e=L_WD; L_WD_e(id_MS_WD_e)=[];
697 M_WD_e=M_WD; M_WD_e(id_MS_WD_e)=[];
698 Teff_WD1_e=Teff_WD1; Teff_WD1_e(id_WD12_e)=[];
699 logg_WD1_e=logg_WD1; logg_WD1_e(id_WD12_e)=[];
700 index_WD1_e=index_WD1; index_WD1_e(id_WD12_e)=[];
701 L_WD1_e=L_WD1; L_WD1_e(id_WD12_e)=[];
702 M_WD1_e=M_WD1; M_WD1_e(id_WD12_e)=[];
703 Teff_WD2_e=Teff_WD2; Teff_WD2_e(id_WD12_e)=[];
704 logg_WD2_e=logg_WD2; logg_WD2_e(id_WD12_e)=[];
705 index_WD2_e=index_WD2; index_WD2_e(id_WD12_e)=[];
706 L_WD2_e=L_WD2; L_WD2_e(id_WD12_e)=[];
707 M_WD2_e=M_WD2; M_WD2_e(id_WD12_e)=[];
708

709

710 %% Add error to Teff, logg and M
711
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712 Teff_WDs_ee=Teff_WDs+normrnd(0,0.05*Teff_WDs);
713 logg_WDs_ee=logg_WDs+normrnd(0,0.05*logg_WDs);
714 M_WDs_ee=M_WDs+normrnd(0,0.05*M_WDs);
715 Teff_WDm_ee=Teff_WDm_e+normrnd(0,0.05*Teff_WDm_e);
716 logg_WDm_ee=logg_WDm_e+normrnd(0,0.05*logg_WDm_e);
717 M_WDm_ee=M_WDm_e+normrnd(0,0.05*M_WDm_e);
718 Teff_MSWD_ee=Teff_MSWD_e+normrnd(0,0.05*Teff_MSWD_e);
719 logg_MSWD_ee=logg_MSWD_e+normrnd(0,0.05*logg_MSWD_e);
720 M_MSWD_ee=M_MSWD_e+normrnd(0,0.05*M_MSWD_e);
721 Teff_WDWD_ee=Teff_WDWD_e+normrnd(0,0.05*Teff_WDWD_e);
722 logg_WDWD_ee=logg_WDWD_e+normrnd(0,0.05*logg_WDWD_e);
723 M_WDWD_ee=M_WDWD_e+normrnd(0,0.05*M_WDWD_e);
724 Teff_MSs_ee=Teff_MSs_e+normrnd(0,0.05*Teff_MSs_e);
725 logg_MSs_ee=logg_MSs_e+normrnd(0,0.05*logg_MSs_e);
726 M_MSs_ee=M_MSs_e+normrnd(0,0.05*M_MSs_e);
727 Teff_MS_ee=Teff_MS_e+normrnd(0,0.05*Teff_MS_e);
728 logg_MS_ee=logg_MS_e+normrnd(0,0.05*logg_MS_e);
729 M_MS_ee=M_MS_e+normrnd(0,0.05*M_MS_e);
730 Teff_WD_ee=Teff_WD_e+normrnd(0,0.05*Teff_WD_e);
731 logg_WD_ee=logg_WD_e+normrnd(0,0.05*logg_WD_e);
732 M_WD_ee=M_WD_e+normrnd(0,0.05*M_WD_e);
733 Teff_WD1_ee=Teff_WD1_e+normrnd(0,0.05*Teff_WD1_e);
734 logg_WD1_ee=logg_WD1_e+normrnd(0,0.05*logg_WD1_e);
735 M_WD1_ee=M_WD1_e+normrnd(0,0.05*M_WD1_e);
736 Teff_WD2_ee=Teff_WD2_e+normrnd(0,0.05*Teff_WD2_e);
737 logg_WD2_ee=logg_WD2_e+normrnd(0,0.05*logg_WD2_e);
738 M_WD2_ee=M_WD2_e+normrnd(0,0.05*M_WD2_e);
739

740 % Calculate error and take the systems that fulfill G<20.7 of the
741 % unresolved MSWD systems components
742

743 G_MSWD_MS_WD_a=G_MSWD_MS_WD; BP_MSWD_MS_WD_a=BP_MSWD_MS_WD;
744 RP_MSWD_MS_WD_a=RP_MSWD_MS_WD; par_MSWD_a=par_MSWD;
745 G_MSWD_MS_WD_a(id_MSWD_e,:)=[]; BP_MSWD_MS_WD_a(id_MSWD_e,:)=[];
746 RP_MSWD_MS_WD_a(id_MSWD_e,:)=[]; par_MSWD_a(id_MSWD_e)=[];
747

748 [MG_MSWD_MS_e, MBP_MSWD_MS_e, MRP_MSWD_MS_e] =p_error3(par_MSWD_a, ...
749 G_MSWD_MS_WD_a(:,1)', BP_MSWD_MS_WD_a(:,1)', RP_MSWD_MS_WD_a(:,1)');
750 [MG_MSWD_WD_e, MBP_MSWD_WD_e, MRP_MSWD_WD_e] =p_error3(par_MSWD_a, ...
751 G_MSWD_MS_WD_a(:,2)', BP_MSWD_MS_WD_a(:,2)', RP_MSWD_MS_WD_a(:,2)');
752 \end{verbatim}
753

754

755 %% Position in the HR diagram
756

757 % Decide if the stars is placed in the MS zone, the WD+MS area or the WD
758 % area
759 % i=0 => MSWD area
760 % i=1 => MS area
761 % i=2 => WD area
762

763 iWDs=zeros(length(G_abs_WDs),1);
764 iWDm=zeros(length(MG_WDm_e),1);
765 iMSs=zeros(length(MG_MSs_e),1);
766 iMS=zeros(length(MG_MS_e),1);
767 iWD=zeros(length(MG_WD_e),1);
768 iWD1=zeros(length(MG_WD1_e),1);
769 iWD2=zeros(length(MG_WD2_e),1);
770 iMSWD=zeros(length(MG_MSWD_e),1);
771 iWDWD=zeros(length(MG_WDWD_e),1);
772

773 % Check if the star is in the area, if not, then decide if it is in the MS
774 % area or WD area
775 for ii=1:length(G_abs_WDs)
776 res=det_res(G_abs_WDs(ii),BP_abs_WDs(ii),RP_abs_WDs(ii));
777 if res==1
778 iWDs(ii)=0;
779 elseif res==0
780 if G_abs_WDs(ii)<2*(BP_abs_WDs(ii)−RP_abs_WDs(ii))+9
781 iWDs(ii)=1;
782 else
783 iWDs(ii)=2;
784 end
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785 end
786 end
787 for ii=1:length(MG_WDm_e)
788 res=det_res(MG_WDm_e(ii),MBP_WDm_e(ii),MRP_WDm_e(ii));
789 if res==1
790 iWDm(ii)=0;
791 elseif res==0
792 if MG_WDm_e(ii)<2*(MBP_WDm_e(ii)−MRP_WDm_e(ii))+9
793 iWDm(ii)=1;
794 else
795 iWDm(ii)=2;
796 end
797 end
798 end
799 for ii=1:length(MG_MSs_e)
800 res=det_res(MG_MSs_e(ii),MBP_MSs_e(ii),MRP_MSs_e(ii));
801 if res==1
802 iMSs(ii)=0;
803 elseif res==0
804 if MG_MSs_e(ii)<2*(MBP_MSs_e(ii)−MRP_MSs_e(ii))+9
805 iMSs(ii)=1;
806 else
807 iMSs(ii)=2;
808 end
809 end
810 end
811 for ii=1:length(MG_MS_e)
812 res=det_res(MG_MS_e(ii),MBP_MS_e(ii),MRP_MS_e(ii));
813 if res==1
814 iMS(ii)=0;
815 elseif res==0
816 if MG_MS_e(ii)<2*(MBP_MS_e(ii)−MRP_MS_e(ii))+9
817 iMS(ii)=1;
818 else
819 iMS(ii)=2;
820 end
821 end
822 end
823 for ii=1:length(MG_WD_e)
824 res=det_res(MG_WD_e(ii),MBP_WD_e(ii),MRP_WD_e(ii));
825 if res==1
826 iWD(ii)=0;
827 elseif res==0
828 if MG_WD_e(ii)<2*(MBP_WD_e(ii)−MRP_WD_e(ii))+9
829 iWD(ii)=1;
830 else
831 iWD(ii)=2;
832 end
833 end
834 end
835 for ii=1:length(MG_WD1_e)
836 res=det_res(MG_WD1_e(ii),MBP_WD1_e(ii),MRP_WD1_e(ii));
837 if res==1
838 iWD1(ii)=0;
839 elseif res==0
840 if MG_WD1_e(ii)<2*(MBP_WD1_e(ii)−MRP_WD1_e(ii))+9
841 iWD1(ii)=1;
842 else
843 iWD1(ii)=2;
844 end
845 end
846 end
847 for ii=1:length(MG_WD2_e)
848 res=det_res(MG_WD2_e(ii),MBP_WD2_e(ii),MRP_WD2_e(ii));
849 if res==1
850 iWD2(ii)=0;
851 elseif res==0
852 if MG_WD2_e(ii)<2*(MBP_WD2_e(ii)−MRP_WD2_e(ii))+9
853 iWD2(ii)=1;
854 else
855 iWD2(ii)=2;
856 end
857 end
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858 end
859 for ii=1:length(MG_MSWD_e)
860 res=det_res(MG_MSWD_e(ii),MBP_MSWD_e(ii),MRP_MSWD_e(ii));
861 if res==1
862 iMSWD(ii)=0;
863 elseif res==0
864 if MG_MSWD_e(ii)<2*(MBP_MSWD_e(ii)−MRP_MSWD_e(ii))+9
865 iMSWD(ii)=1;
866 else
867 iMSWD(ii)=2;
868 end
869 end
870 end
871 for ii=1:length(MG_WDWD_e)
872 res=det_res(MG_WDWD_e(ii),MBP_WDWD_e(ii),MRP_WDWD_e(ii));
873 if res==1
874 iWDWD(ii)=0;
875 elseif res==0
876 if MG_WDWD_e(ii)<2*(MBP_WDWD_e(ii)−MRP_WDWD_e(ii))+9
877 iWDWD(ii)=1;
878 else
879 iWDWD(ii)=2;
880 end
881 end
882 end
883

884

885 %% Reorganize the results
886

887 % MG MBP MRP Teff_e logg_e log(L) M_e par location index
888

889 WDs_e= [G_abs_WDs BP_abs_WDs RP_abs_WDs Teff_WDs_ee logg_WDs_ee ...
890 L_WDs M_WDs_ee par_WDs iWDs index_WDs];
891 WDm_e= [MG_WDm_e' MBP_WDm_e' MRP_WDm_e' Teff_WDm_ee logg_WDm_ee ...
892 L_WDm_e M_WDm_ee par_WDm_e' iWDm index_WDm_e];
893 MSs_e= [MG_MSs_e MBP_MSs_e MRP_MSs_e Teff_MSs_ee logg_MSs_ee ...
894 L_MSs_e M_MSs_ee par_MSs_e iMSs index_MSs_e];
895 MS_e= [MG_MS_e' MBP_MS_e' MRP_MS_e' Teff_MS_ee' logg_MS_ee' ...
896 L_MS_e' M_MS_ee' par_MS_e' iMS index_MS_e'];
897 WD_e= [MG_WD_e' MBP_WD_e' MRP_WD_e' Teff_WD_ee' logg_WD_ee' ...
898 L_WD_e' M_WD_ee' par_WD_e' iWD index_WD_e'];
899 WD1_e= [MG_WD1_e' MBP_WD1_e' MRP_WD1_e' Teff_WD1_ee' logg_WD1_ee'...
900 L_WD1_e' M_WD1_ee' par_WD1_e' iWD1 index_WD1_e'];
901 WD2_e= [MG_WD2_e' MBP_WD2_e' MRP_WD2_e' Teff_WD2_ee' logg_WD2_ee'...
902 L_WD2_e' M_WD2_ee' par_WD2_e' iWD2 index_WD2_e'];
903

904 % MG MBP MRP Teff_MS_e Teff_WD_e logg_MS_e logg_WD_e
905 % logL_MS logL_W M_MS_e M_WD_e par location index
906

907 MSWD_e=[MG_MSWD_e' MBP_MSWD_e' MRP_MSWD_e' Teff_MSWD_ee logg_MSWD_ee...
908 L_MSWD_e M_MSWD_ee par_MSWD_e' iMSWD index_MSWD_e'];
909

910 % MG MBP MRP Teff_WD1_e Teff_WD2_e logg_WD1_e logg_WD2_e logL_WD1
911 % logL_WD2 M_WD1_e M_WD1_e par location index
912

913 WDWD_e=[MG_WDWD_e' MBP_WDWD_e' MRP_WDWD_e' Teff_WDWD_ee logg_WDWD_ee...
914 L_WDWD_e M_WDWD_ee par_WDWD_e' iWDWD index_WDWD_e'];
915

916 % MG MBP MRP
917 MSWD_MS=[MG_MSWD_MS_e' MBP_MSWD_MS_e' MRP_MSWD_MS_e'];
918 MSWD_WD=[MG_MSWD_WD_e' MBP_MSWD_WD_e' MRP_MSWD_WD_e'];
919

920

921

922 %% Save the results
923

924 % Save the results in a .txt file
925

926 save('WDs_e_fb40.txt','WDs_e','−ASCII');
927 save('WDm_e_fb40.txt','WDm_e', '−ASCII');
928 save('MSs_e_fb40.txt','MSs_e', '−ASCII');
929 save('MS_e_fb40.txt','MS_e', '−ASCII');
930 save('WD_e_fb40.txt','WD_e', '−ASCII');
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931 save('MSWD_e_fb40.txt','MSWD_e', '−ASCII');
932 save('WD1_e_fb40.txt','WD1_e', '−ASCII');
933 save('WD2_e_fb40.txt','WD2_e', '−ASCII');
934 save('WDWD_e_fb40.txt','WDWD_e', '−ASCII');
935 save('MSWD_MS_e_fb40.txt','MSWD_MS', '−ASCII');
936 save('MSWD_WD_e_fb40.txt','MSWD_WD', '−ASCII');
937

938

939

940

941 %% Functions
942

943 %Returns a 1 if the star is in the MSWD area and a 0 if not
944

945 function [res]=det_res(Gabs,bp,rp)
946 if ((Gabs>21.22759−118.35415*(bp−rp)+305.43033*(bp−rp)^2−393.13909*...
947 (bp−rp)^3+294.22156*(bp−rp)^4−135.40159*(bp−rp)^5+38.90143*...
948 (bp−rp)^6−6.80771*(bp−rp)^7+0.66434*(bp−rp)^8−0.02773*(bp−rp)^9 ...
949 && bp−rp ≥ 0.58 && bp−rp < 4.5)|| (Gabs > −0.4+6.16332−1.00990*...
950 (bp−rp)−0.78017*(bp−rp)^2+4.21489*(bp−rp)^3+1.71673*(bp−rp)^4−...
951 25.49710*(bp−rp)^5−13.68387*(bp−rp)^6+24.16992*(bp−rp)^7 &&...
952 bp−rp > −0.65 && bp−rp < 0.58))&& ((Gabs < 11.13367+3.51045*...
953 (bp−rp)−1.13132*(bp−rp)^2+0.30628*(bp−rp)^3 && bp−rp > −0.65 ...
954 && bp−rp < 1.7)|| (Gabs < 14.587+0.45098*(bp−rp) && bp−rp ≥...
955 1.7 && bp−rp < 4.25) || (Gabs < 40.3−5.6*(bp−rp) && bp−rp ≥...
956 4.25 && bp−rp < 4.5))&& bp−rp > −0.65 && bp−rp < 4.5
957 res=1;
958 else
959 res=0;
960 end
961

962 end
963

964

965 % Calculate error for single stars or unresolved systems
966

967 function [MG_e, MBP_e, MRP_e,par_e,id]=p_error(paral, G, BP, RP)
968 par=paral/1000;
969

970 aG=G−5−5*log10(par); aBP=BP−5−5*log10(par); aRP=RP−5−5*log10(par);
971 % eliminate G>20.7
972 id=0;id=find(aG>20.7);
973 aG(id)=[]; aBP(id)=[]; aRP(id)=[]; par(id)=[];
974

975 % parallax error
976 %sigm=T_factor*(40+800z+30z^2)^1/2
977 %T_factor=1 z=max(10^(0.4(13−15)),10^(0.4(G−15)));
978 Tf=1; mu=0;
979 z3=max(10^(0.4*(13−15)),10.^(0.4*(aG−15)));
980 sigmp=Tf*(40+800.*z3+30.*z3.^2).^0.5*1e−6;
981 par_e=par+normrnd(mu,sigmp);
982

983 % G error
984 % sigm=1.2*10^−3(0.04895z^2+1.8633z+0.0001985)^1/2
985 % z=max(10^(0.4(12−15)),10^(0.4(G−15)))
986 z2=max(10^(0.4*(12−15)),10.^(0.4*(aG−15)));
987 sigmg=1.2e−3*(0.0001985+1.8633.*z2+0.04895.*z2.^2).^0.5;
988 aG_e=aG+normrnd(mu,sigmg);
989

990 % BP and RP error
991 % sigm_bp/rp=1e−3(10^az^2+10^bz+10^c)^1/2
992 % z=max(10^(0.4(11−15)),10^(0.4(G−15)))
993 [aaBP,bbBP,ccBP,aaRP,bbRP,ccRP]=abc(aBP,aRP);
994 z1=max(10^(0.4*(11−15)),10.^(0.4*(aG−15)));
995 sigmb=1e−3*(10.^ccBP+10.^bbBP.*z1+aaBP.*z1.^2).^0.5;
996 sigmr=1e−3*(10.^ccRP+10.^bbRP.*z1+aaRP.*z1.^2).^0.5;
997 aBP_e=aBP+normrnd(mu,sigmb);
998 aRP_e=aRP+normrnd(mu,sigmr);
999

1000 [MG_e,MBP_e,MRP_e]=Me(aG_e,aBP_e,aRP_e,par_e);
1001

1002 end
1003
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1004

1005 % Calculate error for resolved systems, so that when eliminating the stars
1006 % with G>20.7 it eliminates the system
1007

1008 function [MG_e1, MBP_e1, MRP_e1,MG_e2, MBP_e2, MRP_e2,par_e1,par_e2,id]=...
1009 p_error2(paral1, paral2, G1, BP1, RP1, G2, BP2, RP2)
1010 par1=paral1/1000; par2=paral2/1000;
1011

1012 aG1=G1−5−5*log10(par1); aBP1=BP1−5−5*log10(par1); aRP1=RP1−5−5*log10(par1);
1013 aG2=G2−5−5*log10(par2); aBP2=BP2−5−5*log10(par2); aRP2=RP2−5−5*log10(par2);
1014

1015 % eliminate G>20.7
1016 id1=0;id1=find(aG1>20.7); id2=0;id2=find(aG2>20.7);
1017 id=unique([id1 id2]);
1018 aG1(id)=[]; aBP1(id)=[]; aRP1(id)=[]; par1(id)=[];
1019 aG2(id)=[]; aBP2(id)=[]; aRP2(id)=[]; par2(id)=[];
1020

1021 % parallax error
1022 %sigm=T_factor*(40+800z+30z^2)^1/2
1023 %T_factor=1 z=max(10^(0.4(13−15)),10^(0.4(G−15)));
1024 Tf=1; mu=0;
1025

1026 z31=max(10^(0.4*(13−15)),10.^(0.4*(aG1−15)));
1027 sigmp1=Tf*(40+800.*z31+30.*z31.^2).^0.5*1e−6;
1028 par_e1=par1+normrnd(mu,sigmp1);
1029

1030 z32=max(10^(0.4*(13−15)),10.^(0.4*(aG2−15)));
1031 sigmp2=Tf*(40+800.*z32+30.*z32.^2).^0.5*1e−6;
1032 par_e2=par2+normrnd(mu,sigmp2);
1033

1034 % G error
1035 %sigm=1.2*10^−3(0.04895z^2+1.8633z+0.0001985)^1/2
1036 % z=max(10^(0.4(12−15)),10^(0.4(G−15)))
1037

1038 z21=max(10^(0.4*(12−15)),10.^(0.4*(aG1−15)));
1039 sigmg1=1.2e−3*(0.0001985+1.8633.*z21+0.04895.*z21.^2).^0.5;
1040 aG_e1=aG1+normrnd(mu,sigmg1);
1041

1042 z22=max(10^(0.4*(12−15)),10.^(0.4*(aG2−15)));
1043 sigmg2=1.2e−3*(0.0001985+1.8633.*z22+0.04895.*z22.^2).^0.5;
1044 aG_e2=aG2+normrnd(mu,sigmg2);
1045

1046 % BP and RP error
1047 % sigm_bp/rp=1e−3(10^az^2+10^bz+10^c)^1/2
1048 % z=max(10^(0.4(11−15)),10^(0.4(G−15)))
1049

1050 [aaBP1,bbBP1,ccBP1,aaRP1,bbRP1,ccRP1]=abc(aBP1,aRP1);
1051 z11=max(10^(0.4*(11−15)),10.^(0.4*(aG1−15)));
1052 sigmb1=1e−3*(10.^ccBP1+10.^bbBP1.*z11+aaBP1.*z11.^2).^0.5;
1053 sigmr1=1e−3*(10.^ccRP1+10.^bbRP1.*z11+aaRP1.*z11.^2).^0.5;
1054

1055 [aaBP2,bbBP2,ccBP2,aaRP2,bbRP2,ccRP2]=abc(aBP2,aRP2);
1056 z12=max(10^(0.4*(11−15)),10.^(0.4*(aG2−15)));
1057 sigmb2=1e−3*(10.^ccBP2+10.^bbBP2.*z12+aaBP2.*z12.^2).^0.5;
1058 sigmr2=1e−3*(10.^ccRP2+10.^bbRP2.*z12+aaRP2.*z12.^2).^0.5;
1059

1060 aBP_e1=aBP1+normrnd(mu,sigmb1);
1061 aRP_e1=aRP1+normrnd(mu,sigmr1);
1062

1063 aBP_e2=aBP2+normrnd(mu,sigmb2);
1064 aRP_e2=aRP2+normrnd(mu,sigmr2);
1065

1066 [MG_e1,MBP_e1,MRP_e1]=Me(aG_e1,aBP_e1,aRP_e1,par_e1);
1067 [MG_e2,MBP_e2,MRP_e2]=Me(aG_e2,aBP_e2,aRP_e2,par_e2);
1068

1069 end
1070

1071

1072 % Calculate error for the components of an unresolved system, where the
1073 % systems with G>20.7 have already been chosen
1074

1075 function [MG_e, MBP_e, MRP_e]=p_error3(paral, G, BP, RP)
1076 par=paral/1000;
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1077

1078 aG=G−5−5*log10(par); aBP=BP−5−5*log10(par); aRP=RP−5−5*log10(par);
1079

1080 % parallax error
1081 %sigm=T_factor*(40+800z+30z^2)^1/2
1082 %T_factor=1 z=max(10^(0.4(13−15)),10^(0.4(G−15)));
1083 Tf=1; mu=0;
1084 z3=max(10^(0.4*(13−15)),10.^(0.4*(aG−15)));
1085 sigmp=Tf*(40+800.*z3+30.*z3.^2).^0.5*1e−6;
1086 par_e=par+normrnd(mu,sigmp);
1087 % G error
1088 %sigm=1.2*10^−3(0.04895z^2+1.8633z+0.0001985)^1/2
1089 % z=max(10^(0.4(12−15)),10^(0.4(G−15)))
1090

1091 z2=max(10^(0.4*(12−15)),10.^(0.4*(aG−15)));
1092

1093 sigmg=1.2e−3*(0.0001985+1.8633.*z2+0.04895.*z2.^2).^0.5;
1094

1095 aG_e=aG+normrnd(mu,sigmg);
1096

1097 % BP and RP error
1098 % sigm_bp/rp=1e−3(10^az^2+10^bz+10^c)^1/2
1099 % z=max(10^(0.4(11−15)),10^(0.4(G−15)))
1100

1101 [aaBP,bbBP,ccBP,aaRP,bbRP,ccRP]=abc(aBP,aRP);
1102

1103 z1=max(10^(0.4*(11−15)),10.^(0.4*(aG−15)));
1104

1105 sigmb=1e−3*(10.^ccBP+10.^bbBP.*z1+aaBP.*z1.^2).^0.5;
1106 sigmr=1e−3*(10.^ccRP+10.^bbRP.*z1+aaRP.*z1.^2).^0.5;
1107

1108 aBP_e=aBP+normrnd(mu,sigmb);
1109 aRP_e=aRP+normrnd(mu,sigmr);
1110

1111 [MG_e,MBP_e,MRP_e]=Me(aG_e,aBP_e,aRP_e,par_e);
1112

1113 end
1114

1115 % Calculate the absolute magnitudes
1116 function [MG,MBP,MRP]=Me(G,BP,RP,par)
1117 MG=real(G+5+5*log10(par));
1118 MBP=real(BP+5+5*log10(par));
1119 MRP=real(RP+5+5*log10(par));
1120 end
1121

1122

1123 % Calculate the auxiliary variables a,b,c for BP and RP
1124

1125 function [aBP,bBP,cBP,aRP,bRP,cRP]=abc(BP,RP)
1126 aBP=−0.000562*(BP−RP).^3 + 0.044390*(BP−RP).^2 ...
1127 + 0.355123*(BP−RP) + 1.043270;
1128 bBP=−0.000400*(BP−RP).^3 + 0.018878*(BP−RP).^2 ...
1129 + 0.195768*(BP−RP) + 1.465592;
1130 cBP=+0.000262*(BP−RP).^3 + 0.060769*(BP−RP).^2 ...
1131 − 0.205807*(BP−RP) − 1.866968;
1132 aRP=−0.007597*(BP−RP).^3 + 0.114126*(BP−RP).^2 ...
1133 − 0.636628*(BP−RP) + 1.615927;
1134 bRP=−0.003803*(BP−RP).^3 + 0.057112*(BP−RP).^2 ...
1135 − 0.318499*(BP−RP) + 1.783906;
1136 cRP=−0.001923*(BP−RP).^3 + 0.027352*(BP−RP).^2 ...
1137 − 0.091569*(BP−RP) − 3.042268;
1138 end


	Acknowledgements
	Abstract
	List of figures
	List of tables
	Introduction
	Theoretical background: basic overview
	Single stellar evolution
	From ZAMS to the TPAGB phase
	White dwarf remnant

	Binary evolution
	Basic ingredients
	White dwarf binary systems

	The solar neighbourhood and the Galactic components

	The population synthesis code
	The GAA Monte Carlo simulator
	General structure of the Monte Carlo code
	Sample input parameters
	Single stellar evolution
	Binary stellar evolution


	The Gaia sample: callibrating the population synthesis model
	The observed Gaia sample
	The population synthesis model
	Calibrating the synthetic sample
	Adjusting the MS minimum mass
	Adjusting the MS track
	The effects of the metallicity dispersion

	The effects of the photometric and astrometric errors

	The white dwarf sub-populations
	The HR diagram regions: general counts
	Comparison with previous works
	The WDMS sub-population
	Unresolved WDMS systems
	Resolved WDMS systems

	The DWD sub-population
	Unresolved DWD systems
	Resolved DWD systems

	The single WD population

	Fitting the binary population models
	Varying the IMRD
	Varying the binary fraction
	A first approach to the best fitting model

	Conclusions
	References
	Appendix: code

