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COURSE INFORMATION

The present self learning material “Advanced Abstract Algebra” has been designed for
M.Sc. (First Semester) learners of Uttarkhand Open University, Haldwani. This self learning
material is writing for increase learner access to high-quality learning materials.This course is
divided into 14 units of study. The first unit is devoted to the normal subgroups and quotient
groups, Unit 2 explained about Conjugate element, Normalizer and Center of group and Unit 3
explained about the homomorphism and isomorphism mapping between the groups. Unit 4
explained to Cayley’s theorem and concept of class equation Unit 5 explain about the direct
product of groups and Cauchy’s theorem for finite abelian groups and Unit 6 are focused on
Sylow’s theorems and their application. The aim of Unit 7, 8 and 9 are to introduce the concept
composition series, jordan holder theorem and solvable group. Unit 10 and Unit 11 explain
about the important concept and their related theorems of rings, ideal, integral domain and
fields. Unit 12 explained about the unique factorization domain, principal ideal domain and
euclidean domain and Unit 13 explain the polynomial ring and irreducibility criteria. Unit 14
will explain the field extension, Galois groups and Galois extension. This material also used
for competitive examinations. The basic principles and theory have been explained in a simple,
concise and lucid manner. Adequate number of illustrative examples and exercises have also
been included to enable the leaner’s to grasp the subject easily.
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BLOCK I

NORMAL SUBGROUPS AND HOMOMORPHISM
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Unit-1: NORMAL SUBGROUP AND QUOTIENT GROUPS

CONTENT:

1.1  Introduction

1.2 Objectives

1.3 Normal Subgroup
1.3.1 Simple group

1.4 Quotient group

1.5 Summary

1.6  Glossary

1.7 References

1.8  Suggested Readings

1.9  Terminal Questions

1.10 Answers

1.1 INTRODUCTION

Evariste Galois was a French mathematician born in
Bourg-la-Reine  who possessed a remarkable genius for
mathematics. Among his many contributions, Galois founded
abstract algebra and group theory, which are fundamental to
computer science, physics, coding theory and cryptography.

It is tribute to the genius of Galois that he recognized that
those subgroups for which the left and right cosets coincide are

distinguished ones. Very often in mathematics the crucial
Evariste Galois

25 October 1811 — 31 May
concepts are. 1832

problem is to recognize and to discover what the relevant
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In the previous sessions, we have already learned that how any set G can be formed a group
with respect to (w.r.t.) the given operation. We have also learned about various types of groups and
their properties. Some applications of group like subgroup, cyclic group, order of the group,
permutation group, homomorphism, isomorphism, center of the group, cosets and Lagranges theorem
are already studies in previous classes. In this unit we will learn about the Normal subgroups and its
use to construct the quotient group.

As we know that, in a group G, it is not always true that gH = Hg for all geG where, H is a
subgroup of a group G.

Example 1: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and H ={l,(12)}is a

subgroup of G. Since a=(2, 3) G then the left cosetof ain G i.e.,

aH ={(23)1,(23)(1 2)}={(23),(132)}

And the right coset of ain G is,

Ha={1(23),12)(23)}={(23),(123)}

Here clearly, we can see that aH = Ha

In other words, right cosets are not always the same as left cosets. Group theory depends heavily on
the subgroups for which this characteristic holds because they enable the creation of a new class of

groups known as factor or quotient groups. Homomorphisms, a generalisation of isomorphisms, can be

used to study factor groups.

1.2 OBJECTIVES

After reading this unit learners will be able to
e Understand the basic definition of normal subgroup and quotient group.
e Implement the application of theorems into various problem

e Construction of various types of quotient groups

1.3 NORMAL SUBGROUP

Definition: A subgroup H of a group G is normal in G if gH = Hg for all g€ G. In other words, the
right and left cosets of a group G must be exactly the same for a subgroup H to be considered normal

subgroup.

If H is a normal subgroup of the group G then symbolically it is represented as H<G .

Department of Mathematics
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Example 2: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and
H={I,(123),(132)}is asubgroup of G. Since a= (L, 2) G then the left cosetofain G i.e.,

aH ={(12)1,(12)(1 23),(12)132)}={(12),(23),(13)}

And the right coset of ain G is,
Ha={1(12),(123)(12),(132)(12)}={(12),(L3),(2, 3)}

Similarly, we can see that aH = Ha VaeG

So, we can say that H is the normal subgroup of G.

Note 1: If we are saying that H is a normal subgroup of G i.e., gH = Hg for all ge G then its mean that
there exist h e H such that gh is any element of gH which will be equal to any element of h'g where
heH ie, gh=hg.

Inexample 2, (12)(132)=(123)(12)

Proper subgroup:A subgroup H of a group G is called proper subgroup of G if H=G and it is

represented as H <G and it is read as “H is a proper subgroup of G”.

Since, G c Gi.e., Gis subset of itself so G, is called improper subgroup of G.
A subgroup H which contains only identity element i.e., H ={e} is called the trivial subgroup

of G.

1.3.1 SIMPLE GROUP

Definition: If a group has no proper normal subgroup is called a simple group.

Theorem 1: If G be a group and H is the subgroup of G. Then the following statement are equivalent.
1. The subgroup H is normal in G
2. Forall aeG,aHa'cH
3. Forall aeG,aHa'=H

Proof: (1) = (2) . We have given H is the normal subgroup of G then aH =Ha VaeG. It means for a

given he H, aeG there exist h e H such thatah =ha. Since a<G and G is the group then a™ G

= (ah)a™ = (ha)a™

—aha'*=heH

So, aHa'cH VaeG

Department of Mathematics
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(2) = (3) Let acGand H is normal subgroup of G, then we have already prove thataHa™ c H .
Now we have only to show that H c aHa™ VaeG.

Since acG=a'eG

Therefore we have a*H(a™)" c H vaeG

—a'HacH VaeG

—ala*Hajp? caHa™ VaeG

—ala'Haja? caHa® VaeG

—HcaHa™ VaeG

Now again for each ac G, aHa' cH and H caHa™

So, forallae G, H=aHa™*

(3) = (1) Suppose that H =aHa™ Va e G then we have to prove that H is normal in G.

Since, forall ac G, H =aHa™

— Ha=(aHa')a VaeG

= Ha=aH VaeG
—>each left coset of H in G is a right coset of H in G.
= H is normal subgroup of G.
Theorem 2: A subgroup H of a group G is normal in G iff the product of two right or left coset of H in
G is again a right or left coset of H in G.
Proof: Suppose H is a normal subgroup in G and Ha, Hb are two right coset of H in G where,a,b € G.
Then
(Ha)(Hb) =H(aH)b

=H(Ha)b [*-Hisnormal =>Ha=aH ]

= HHab [-HH=H]

= Hab [aeG,beG=abeCG]
Therefore, Hab is also a right coset of H in G.
Conversely, we will suppose that the product of two right cosets of H in G is again a right coset of H
in G. Let x be any arbitrary element of G then x*will also an element of G. So, Hx and Hx™ are two
distinct right cosets of H in G. Thus, HxHx"is also a right coset of H in G. Therefore we must have,

HxHx* =H vx e G
= hxhx* e HVvxeG and vh,heH

Department of Mathematics
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= h,*(hxhx?)eh*H vxeG and vh,heH

= xhx*eHVxeG and vheH [~h ™ H=H ash'eH since h eH]

—H is a normal subgroup of G.

Theorem 3: Intersection of two normal subgroup of a group is also a normal subgroup of the group.
Solution: Let G be a group and H, K are of its two normal subgroup of G. Now, we have to prove that
H n K is also a normal subgroup of G. Let a be any element of H nKii.e.,

XxeHNK=xeH and xeK
Since, H and K are both normal in G. Therefore, acG,heH = axa* e H
Similarly, aeG,xe K = axa™* eK

Now, again axa* e H,axa' e K = axa' e H nK
Hence H n K is a normal subgroup of G.
Corollary: Arbitrary collection of normal subgroup is also a normal subgroup of the group i.e., let G

be a group and let {H, :ne A} be the family of normal subgroup of G where A is the index set then

M H,, is the arbitrary intersection of the family of normal subgroups which is also a normal subgroup

nen

of G.
Solved Examples
Example 3: Show that each subgroup of the Abelian group G is a normal subgroup of the group.

Solution: Let G be a Abelian group and H is a subgroup of the group. Suppose that he Hand xG.
Now consider, xhx™* = x(x*h)

=(xx")h

=eh=heH
S0, Vx € G,he H, xhx™* € H = H is a normal subgroup of G.
Example 4: Prove that the alternating subgroup A, is the normal subgroup of the symmetric group S,
Solution: Suppose that o € S, and 8 € A, . As we know that A, is collection of all even permutation of

S, so, f is aeven permutation. Now, there are two cases arises,

Case I: If o is odd permutation then o is also an odd permutation. As we know that product of odd

and even permutation is odd permutation, it means «f is odd permutation. Similarly, product of two
odd permutation is even permutation i.e., afa " is even permutation.

So,for ¢ €S,,BeA,,afa €A, Thus, A isnormal subgroup.

Department of Mathematics
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1

Case Il: If «is even permutation then o is also an even permutation. As we know that product of

two even permutation is even permutation, it means o/ is even permutation. Similarly, product of two

even permutation a8 and o is even permutation i.e., afa " is even permutation.

So,for ¢ €S,,BeA,,afa €A, Thus, A isnormal subgroup.

From the both cases we have conclude that A, is normal subgroup of S .

Example 5: If H is a subgroup of index 2 in G then H is a normal subgroup of G.

Solution: If H is a subgroup of index 2 in G, it means, number of distinct right (left) coset of H in G
are 2. So, G can be written in the union of two of its distinct right (left) cosets i.e.,
G=HuUHx=HUxH, here x ¢ H because if itis xH = H = Hx.

As we know that no element common to H and xH therefore, we must have xH = Hxvx e G

Hence H is normal subgroup of G.

e.g. Index of alternating subgroup A, in the symmetric group S, is 2. So, A, is the normal subgroup in
the symmetric group S, .

Example 6: If H is normal in G and K is a subgroup of G such thatH < K < G. Then, show that H is
also a normal subgroup of K.

Solution: We have given that H is normal in G so, H will also a subgroup of G. Since, H < K where,
K is a subgroup of G. So we have only to show that H is also a normal subgroup of K. Let x be any
arbitrary element of K then x will also belong to G therefore we have Hx = xH . Since, H is a subgroup
of G and Vx € K we have Hx = xH . Thus, H is normal subgroup of K.

Example 7: If N is normal in G and H is subgroup of G then show that H m N is normal subgroup of
H.

Solution: As we know that intersection of two subgroup of G is also a subgroup of G then H N will
be subgroup of G. Similarly, since H N c H so, H~Nwill also subgroup of H. Now, only to
prove that H m N is normal in H.

Let x be any element of H and a be any element of H m N then a will belong in both H and N. Since,
N is normal in G then axa™ e N . Again,

Xx,aecH =axa'eH

Thus, we can say thataxa™ € H "\ N

i.e., H N is normal subgroup of H.

Example 8: Prove that every complex is commutative with normal subgroup.

Solution: Let N is a normal subgroup and H is any complex of the group G. Then we have to prove
that NH = HN.

Department of Mathematics
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Let nhe NHwherene N,heH. We can rewritt nh=hh"nh=h(h™nh). Since, N is normal

subgroup therefore, h™'nh e N . Hence nh e HN which means, NH < HN .
Again, let hne HN wherene N,he H . We can rewrite hn=hnh"h =(hnh‘1)h. Since, N is normal
subgroup therefore, hnh™ € N . Hence hn e NH which means, HN < NH .
Hence NH = HN.
Example 9: If N is normal subgroup of G and H is subgroup of G, Prove the following

(i) HN is a subgroup of G

(i) N is a normal subgroup of HN.
Solution: As, we know by theorem that if H, K are subgroup of G, then HK is subgroup of G iff HK =
KH. Using the previous example, HN will also a subgroup because N and H both are subgroup of G
such that NH = HN.

Now HN is subgroup of G and N is normal subgroup of G alsoN < HN . Therefore, N is subgroup of

HN. We have only to prove that N is a normal in HN. Let hn, be arbitrary element of HN and n be any
element of N. Then h, e H,n, e Nand we have (hn,)n(h,n,)™ = h (n,nn,")h* € N.. Since N is normal

inGand n,nn, " € N,h, e G. Therefore N is a normal subgroup of HN.

Example 10: If N and M are two normal subgroups of G such thatN "M = {e}. Then show that each
element of N commutes with each element of M.

Solution: Since N and M are two normal subgroups of G such thatN "M = {e}. Then to prove that for
any element ne N,me M

= nm=mnvm,n

Consider the elementnmn™m™. As we know mnm™ e N because N is normal and n e N therefore,
nmn™"m*eN.

Again, as we know nmn™ € M because M is normal and m € M therefore, nmn™m™ e M .

Now, nmn™m™ eN and nmn"m*eM =nmn"m* e NNM

=nmn™m™* ={e} [Because, N "M = {e}]

=nmm=mn Vme M,ne N

I.e., every element of N commutes with every element of M.
Example 11: If in a group G, H is the only subgroup of finite order m then H is normal in G.

Solution: We have given H is subgroup of G such that O(H) = m. To prove this example, first we

consider the set xHx ' = {xhx‘1 ‘he H} and we will prove that this set is the subgroup of G. As we

Department of Mathematics
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know by the theorem that any set H will subgroup of G if ab™ e H Va,be H . Let h,h, e H then
xhx™", xh,x™" e xHx™

Now consider, xh,x*(xh,x ] = xhx*(xh,x ) = xh, (x *x ) *x

= xh,(e)n,*x* = x(hh, ™ )x e xHX™

= hh,™ e xHx " Vh,, h, e xHx™. Hence, xHx™ is subgroup of G.

Now we will prove that O(xHx™")=m. Let H :{hl,hz,h3,...,hm} where all h,,i =1tomare distinct
then xHx ™ = {xhlx*l, xh,x 7, xhx74,..., thxfl}. Here, no element in xH x™* are same because if it is,
xh;x " = xh;x™* = h; = h, , which is not possible. So, O(xHx ™) =m.

But we have H is the only such subgroup of order m. Therefore we must have, xHx ' = H vx € G.
Thus, H is normal subgroup of G.

Example 12: By an example verify that if H is normal in G and K is normal in H then K may not be
normal in G.

Solution: Let us consider the following subgroup of the group S, on the four symbols a, b, c, d.

G ={l,(abc),(adch),(ab)(cd),(ac)(bd),(ad)(bc),(ac),(bd)}

H ={I,(ab)(cd),(ac)(bd),(ad)(bc)}

K ={I,(ab)(cd)}

As we can easily seen that H is a subgroup of G and K is a subgroup of H. Index of Hin Gis 2 i.e,,

[G:H]=2, it means H is normal in G. Similarly, index of KinHis 2 i.e.,,[H :K]=2, it means K is
normal in H. [ [G:H]=0(G)/O(H)=8/4=2]

Here, K is not normal in G because for the element (a,b,c,d) € G and the element(a,b)(c,d) e K.
We have (abcd)(ab)(cd)(abcd)™ =(abcd)(ab)(cd)(dcba)=(ad)(bc) ¢ K

Thus, K is not normal subgroup of G.

Example 13: If H is subgroup of G, let N(H) = {x eG:xhx*'= H} then show that

(1) N(H) is the largest subgroup of G in which H is normal.
(2) Hisnormal in G iff N(H) =G.
Solution 1: In example 11, we have already prove that N(H) is the subgroup of G which is normal in

G.

First we have to prove that H is a normal subgroup of N(H). Let he H , therefore hHh™ = H .

Department of Mathematics
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Thus he N(H)i.e., H< N(H). So, H is subgroup of N(H). To show that H is normal in N(H). Let
xe N(H), then xHx' =H
= XxH =HxVxe N(H)

= His normal in N(H).
Now, we have to prove that N(H) is largest such subgroup in which H is normal. For it, let K is a

subgroup of G in which H is normal then we have only to prove that K < N(H).
Let k € K, since H is normal in K, therefore we have Hk =kH
—kHk™" =H vk e K

=k eN(H)

= K < N(H)

2: Let H is the normal subgroup of Gandx e G. Then xH = HxVx e G
= xHx'=HVvxeG

= X e N(H)therefore G < N(H) but we know N(H) cG.

Thus, G=N(H)

Conversely, let G=N(H) then xeG = xe N(H)

= xHx"'=HVxeG

= XH =HxVvxeG

H is normal in G.

1.4 QUOTIENT GROUP

Definition: If H is a normal subgroup of a group G. Then the collection of all distinct cosets of H in G

denoted by G/H is a group with respect to the operation multiplication of cosets defined as,

(aH)(bH) = abH ‘or’ (Ha)(Hb) = Hab Va,be G
Or
If H is a normal subgroup of a group G, then the set
G/H-= {Ha ‘ae G} is always form a group under the composition multiplication of cosets such that
(Ha)(Hb) =Hab Va,beG
Note: If H is a normal subgroup of the additive group G. Then the set G/H is defined as
G/H ={H +a:aeG} with respect to the operation addition of cosets such that

(H+a)+(H+b)=H+(a+b)Va,beG

Department of Mathematics
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Theorem 13: Set of all distinct cosets of normal subgroup of a group is a group with respect to
composition multiplication of cosets.
Proof: Let us consider collection of distinct right (left) cosets of normal subgroup H under G is
G/H ={Ha:aeG}
and the composition multiplication of cosets is
(Ha)(Hb) =Hab Va,beG
Closure axioms: Let Ha,Hb e G/ H where a,b e Gthen
(Ha)(Hb)=H(aH)b=H(Ha)b =HHab=HabeG/H
Since we know that if H is normal subgroup of G then

(i) Ha=aH VvYaeG

(ii) HH=H
And also if G is a group then it will satisfy closure property i.e., if a,beG=abeG
Associativity: Let Ha, Hb,Hc e G/ H where a,b,ceG
Now consider, (Ha)[(Hb)(Hc)]= (Ha)[H (bH)c] = (Ha)[H (Hb)c] = (Ha)(Hbc)

= Ha(bc) = H (ab)c = H(ab)(Hc) = [(Ha)(Hb)](Hc)

[Because G is group so it will satisfy associative property]
Existence of identity: We know thatH = He € G/ H where e is the identity element of G, then we
have only to prove that H is the identity element of the groupG/H .
Let Hae G/H then (He)(Ha) = H(ea) = Ha
= H is the identity element of the group G/H .
Existence of inverse: LetHaeG/H. Then Ha'eG/H[Because if aeGthen
ateG=>Ha'eG/H]
Now, (Ha)(Ha™)=H(aa™"')=He=H
So, coset Hais the inverse of Ha™in G/ H

Hence, collection of distinct right (left) of normal subgroup H in G is form a group with respect to the
operation product of cosets.

Example 14: The alternating group A, ={l,(123),(132)} is the normal subgroup of the symmetric

group S, ={l,(12),(13),(23),(123),(132)} then S,/ A, = {A,,(23)A, }is the quotient group.
Example 15: Consider the normal subgroup of 3Z of Z . The coset of 3Z in Z are,
0+3Z=1{.,-6-3,0,3,6,9,.}

1+3Z ={..,-5,-2,1,4,7,10,...}
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2+3Z ={.,~4,-12,,5811...}
Here, Z=(0+32)u(@1+3Z2)u(2+32)
The composition table of the group Z /3Z is given below.

+ |0+3Z 1+3Z
0+3Z |0+3Z 1+3Z
1+3Z |1+43Z 2+3Z
2+3Z |2+3Z 0+3Z

In general, the cosets of nZ in Z are

Z=0+nZ2)u@+nZ)u(2+nZ)u@B+nZ)u..u((n-1) +nZ) then

G/nZ ={(0+nZ),(L+nZ),(2+nZ),(3+nZ),...,(n—1) +nZ)}

The sum of the cosets k+Zand | +Zisk + 1+ Z. Notice that we have written our cosets additively,

because the group operation is integer addition.

Example 16: If H is a normal subgroup of the finite group G then O[G/H] = % .

Solution: As we know that O[G/ H]=Number of distinct right coset of H in G.
= O[G/H]=Index of H in G.

Number of elementinG
Number of elementin H

= O[G/H]=

:>O[G/H]=%

Example 17: Prove that corresponding to every Abelian group its quotient group is Abelian but their
converses need not to be true.

Solution: Let G be a Abelian group and H is its normal subgroup. If elements a,b € G are such that
Ha, Hb are distinct right cosets of quotient group G/H .

Now, (Ha)(Hb) = H(ab) = H(ba) = (Hb)(Ha) [Since G is Abelian—=ab=baVa,beG]

= G/ H is Abelian group.

But converse is need not be true. Since S,/ A, ={A,,(23)A,} is Abelian group because order of

O[S,/ A;]=6/3=2which is prime and we know that every group of prime order is Abelian while S,

is not a Abelian group.
Example 18: If H is normal in G and a be any element of order n in G then order of the element Ha in

G/H is divisor of n.
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Solution: As we know that the identity element of the quotient group G/H is H itself. We have given
inagroup G, aeGs.t. O(a)=nie a"=e. Letus assumeO(Ha)=m.

Now consider,

(Ha)" = (Ha)(Ha)(Ha)....uptontimes = H(aaa...uptontimes) = Ha" = He = H

But we have already assume thatO(Ha) =mi.e., (Ha)" =H .

= O(Ha)/O(a) [If order of any element ainagroup G isnthena™ =e iff n|m]

Check your progress

Problem 1: What will be the order of the group O({lQ—gl}j ?

Problem 2: Check the distinct right and left coset of S,?

Problem 3: Check that A, is the normal subgroup of S.?

1.5 SUMMARY

In this unit, we have studied the basic definition of Normal subgroup, Simple group and Quotient
group. We have also learn about the above discussed group’s related theorems and there

implementation in various examples. The overall summarization of this units are as follows:

Right cosets are not always the same as left cosets
Alternating subgroup A, is the normal subgroup of the symmetric group S,
If a group has no proper normal subgroup is called a simple group.

Quotient group always forms a group not a subgroup because identity element of group and

subgroup are always same while quotient group and group has always different identity

GLOSSARY

H is a subgroup of the group G is represented symbolicallyasH < G.
H is a normal subgroup of the group G is represented symbolically as H<G .

» Group with no proper normal subgroup is called a simple group.
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SUGGESTED READING

P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge Press, 1994.
David S. Dummit and Richard M. Foote: Abstract Algebra (3 Edition), Wiley, 2011.

TERMINAL QUESTIONS

Long Answer Type Question:
1. Prove that alternating group (A, ) is the normal subgroup the symmetric group (S, ).
Prove that a factor group of a cyclic group is cyclic.

Suppose that a group G has a subgroup of order n. Prove that the intersection of all subgroups

of G of order n is a normal subgroup of G.
Show that S, has a unique subgroup of order 12.

Suppose that H is a normal subgroup of a finite group G . If G/H has an element of order n,

show that G has an element of ordern .
Short Answer Type Question:

6. Give one example each of the following
A subgroup H of agroup G which is not normal in G .

A non-abelian subgroup H of a non-abelian subgroup G which isnormal in G .

If |G| =30,|H|=5then what will be [G/H].

Prove that each subgroup of cyclic group is normal.

Determine the coset decomposition of the subgroup H ={I,(12)}corresponding to the

symmetric group S, .
Fill in the blanks:
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10. Product of two right coset in a group G is
11. Every subgroup Hof index 2 in His

12. If H is normal subgroup of G then G/H is called

1.10 ANSWERS

Answer of self cheque question:
1. 4 2. 1,(12),(1,2,3)

Answer of terminal question:

7. IG/H|=6  10. Rightcoset 11. . Quotient group
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Unit-2: CONJUGATE ELEMENT, NORMALIZER AND

CENTER OF GROUP

CONTENT:

2.1  Introduction

2.2  Objectives

2.3  Conjugate element

2.4 Normalizer of an element of a group
2.4.1 Self conjugate element
Centre of a group
Summary
Glossary
References
Suggested Readings

Terminal Questions

Answers

2.1 INTRODUCTION

The main purpose to learn about the conjugate element in a group is that to differentiate any group into
different conjugate classes by its property of satisfying the condition of equivalence relation. After
partition group into different conjugate classes we will learn about the important definition of
normalizer of any element in a group and centre of the group which will help us to define the class
equation.

In this unit we will also learn various theorems of conjugate element, normalizer and centre of

the group and their related application to solve different types of examples.

Department of Mathematics
Uttarakhand Open University




ADVANCED ABSTRACT ALGEBRA MATS501

Cayley table for D4 showing elements of the center, {e, a°}, commute with all other elements
(this can be seen by noticing that all occurrences of a given center element are arranged
symmetrically about the center diagonal or by noticing that the row and column starting with
a given center element are transposes of each other).

2.2 OBJECTIVES

After reading this unit learners will be able to
Understand the concept of conjugate element and equivalence relation in cojugacy.
Understand the application of normalize of an element.

Understand about the special type of normal subgroup name as center of the group.

CONJUGATE ELEMENT

Definition: Two elements a and b in a group G are said to be conjugate to each other or b is said to be
conjugate to a if Ix e Gsit.

b = x"ax
Then b is called transform of a by x. Symbolically, it is denoted by b ~a and this relation in G is

called relation of conjugacy.

Theorem 1: Conjugacy relation is an equivalence relation on G.

Proof: Reflexivity: Let a be any arbitrary element of a group G and e is the identity of the group.
Then

a=etae= a~aVaeG. Therefore the relation is reflexive.
Symmetry: We have to prove if a~bthen b ~a. Let a~bthen IxeGsit.
—a=Xx"bx
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= Xax "’ = x(x‘lbx)x‘l = xax'=b
As we know if x e Gthen x* G

Transitivity: Let a~band b ~ cthen a=x"bx,b =y 'cy for some x,y eG.

Again, a= x‘l(y‘lcy)x

= a=x"y " cyx=(yx)"c(yx) [Since G isagroupthenyx € G,(yx)" €G]

— a ~ cand thus, relation is transitive.

Hence, conjugacy is an equivalence relation.

Classes of conjugate elements: The differences between the classes are follows:
(1) Elements from the same classes will be conjugate.

(2) Different elements from different classes will be not conjugate.

The collection of all elements which are conjugate to a € G will be denoted by C(a) or a and defined
as:

C(a)={xeGJx~a} or C(a) = {p e Glb = x*ax}

For the finite group G, number of distinct element in C(a) will be denoted by c,.

2.4 NORMALIZER OF AN ELEMENT OF A GROUP

Definition: If G is a group and a be any arbitrary element of a group then normalizer of a is the
collection of such elements in G which commutes with a. It is denoted by N(a) and defined as:

N(a) = {x € Glax = xa}

Note 1: If e is the identity element of G then N(e) =G

2: If G is abelian group and a € G then N(a) =G

Theorem 2: The normalizer of a € G is the subgroup of G.

Proof: Since, N(a) = {x € G|ax = xa}. Let x, y are any element of G then ax = xa,ay = ya. First, we
will show that, y™" € G. Since, y e G = y ™ € G because G is a group.

Now, y*(ay)y™ = y™*(ya)y™ [Preand post multiply by y™ in ay = ya]

= yrla(yy ) =(y'y)ay* [G satisfied the associativity]

= y 'ae =eay [e is the identity element of G]

—yla=ay"

=y 'eN(a)
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Now we have to prove that xy ™ e N(a)

Consider, a(xy™) = (ax)y ™

=a(xy") =(xa)y* [ax = xa]

= a(xy™) =x(ay™) [G satisfied the associativity]

=a(xy ") =x(y a) [ya=ay’]

=a(xy™) =(xyHa [G satisfied the associativity]

= xy ' e N(a)

Hence, normalizer of any element a € Gi.e., N(a) is the subgroup of G.

Theorem 3: Any two elements of a group give rise to same conjugate to a € G iff they belong to the
same right coset of normalizer of a in G.

Proof: Let us consider, x,y € G then x e N(a)xandy e N(a)y . Since x, y are in the same right coset
of N(a) in G.

< N(a)x=N(a)y [If H is subgroup and x € H then Hx=H ]

< xy 't eN(a) [If H is a subgroup of G, then Ha=Hb <> ab™ e H ]

saxy 't =xy'a [By definition of normalizer of an element of G]
o xt (axy‘l )y =x" (xy‘la)y

< xax(yTy) = (x'x)yay

< X laxe =ey‘ay

< xtax=yay

< X, Y give rise to same conjugate of a.

0(G)

Theorem 4: If G is a finite group then the number of distinct element in C(a) are ON@)"

Then further prove that O(G):ZO(()I\(IC(;;», where summation runs over one element of each

conjugate class.

Proof: By the previous theorem 6, we know that two elements of a group give rise to same conjugate
to ae G if they belong to the same right coset of normalizer of a in G. In the other sense it means,
different conjugate to a € G belongs to different right coset of N(a) in G. Thus we get a “one-to-one
correspondence between the conjugates of a € G and right cosets of N(a) in G”.

Thus, ¢, = Number of distnict element in C(a)

= Number of distinct right coset of N(a) in G.
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0(G)
O(N(a))

=The index of N(a) in G =
Further, If C(a,),C(a,),...,C(a,) are k distinct conjugate class in G, Then
G=C(a)uwC(a,)u..uC(a,)
=Number of element in G = Number of element in C(a,)+ Number of element in C(a,)+ ...+
Number of element in C(a,)

= 0(G) = an , where summation runs over one element of each conjugate class

0(G)

=00 =2 5Ny

Hence proof the result.

2.4.1 SELF CONJUGATE ELEMENT

Definition: An element a € G is said to be self conjugate if a=x"axV x eGi.e, C(a) contains only
singleton element {a}. In other manner, we can say those self conjugate elements are those elements of
G which commutes with every element of G. Sometimes self conjugate element is also called invariant

element of G.

2.5 CENTRE OF A GROUP

Definition: Collection of all self conjugate element of a group is called centre of group G. It is denoted
by Z(G) and defined as,

Z(G)={xeGlxa=axvaeG}|

e.g.: The centre of the quaternion group Q, = {L—1,i,i, j,—j,k,—k} is Z(Q,) = L,-1,}.

Theorem 5: The centre of a group G, Z(G) is the normal subgroup of group.

Proof: First we will prove that Z(G) is subgroup of G. For it, let x,,x, € Z(G) then be definition
xa=axvaeG and x,a=ax,vaeG

Since we have, x,a=ax,vaeG = X, (x,a)x, " =X, ' (ax,)x, VaecG

= (X, X,)ax, =X, a(x,x, )VaecG

—eax, =X, aevaeG

=ax, =x, avaeG
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=X, €Z(G)

Now consider, (xlxz‘l)a = x,(x, 'a)

= x,(ax, ™) [x, €Z(G)=x, a=ax, ]
= (x;a)X, [By associativity]

= (ax)%, " [x €Z(G)= xa=ax]
=a(xx, ) [By associativity]
= XX, €Z(G)
Hence Z(G) is subgroup of G.
Now we have only to prove that Z(G) is always normal in G. For it let x € Z(G),a € G then,
axa™ = (ax)a™
=(xa)a™
= x(aa™)
=x(e)=xeZ(G)
Thus, xeZ(G),acG = axa ' € Z(G)

Hence, Z(G) is the normal subgroup of group of G.
Theorem 6: Any element, ae Z(G) iff N(a)=G.

Proof: Let a € Z(G) then xa=axvxeG
Also, N(a) = {x € G |xa = axvx € G}
So, aeZ(G) < xa=axvxeG
< xeN(@)vxeG [By definition of N(a)]
< N(a)=G

Corollary: If G is finitea € Z(G) iff O(N(a)) =0(G).
Theorem 7: If G be the finite group and Z(G) be the centre of the group G. Then class equation of G
can be written as,
O(G)=0[Z(G)]+ ), Ooﬂ

ai7(e) O[N(a)]
Where, summation runs over one element a in each conjugate class containing more than one element.

Proof: As we know by the previous theorem that class equation of G is

O(N () , Where, summation runs over one element a in each conjugate class.
a
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By corollary, we know that if G is finitea € Z(G) iff O(N(a)) =0(G).

oacz@)iff 28 __4
O(N(a))
< Number of elements in conjugate class of a is one whenevera e Z(G).

Thus, order of Z(G) will be equal to the number of conjugate classes each having single element which

is itself. If we take a such element which belongs any of these conjugate classes, we have O?I\(I((Be)l)) =

. Hence the class equation can be rewrite as,

0(G) 0(G)
0G)= ¥ L )
©= 2 SN@) "2, oN@)

Since, O(Z(G)) = >_ O(C)

az6) O(N(a))

0(G)
L 0(G)=0(Z(G )
Hence, () =0(z( ))+aez2(6)o(N(a))

Note: This equation (1) is called the class equation of any finite group G.

(D)

Example 1: Find the class equation for the group Ss.

Answer: We know the symmetric group (S, ) on three symbols 1, 2, 3 is

S, =1{1,(12),(13),(23),(123),(132)}.

Then we have,

Z(S,) = {e} and C(12) = {(12),(23),(13)} because (12)(13)(12) "' =(23) shows that (2 3) is a
conjugate of (1 3).

Similarly we can find, C(123) = {(123),(132)}. Hence the class equation of S,is,

1S, =1Z(S,)| +|C(12)| + [C(123)] i.e., 31 =1+ 3 +2.

Theorem 8: If O(G) = P", where P is a prime number, then Z(G) ={e}.

Proof: As we know for a finite group G the class equation of G is

0(G)
0(G) = 0(Z(G
(G) =0tz ))+a€EZZ(G)O(N(a))

containing more than one element. We have given O(G)=P"so, the divisor of O(G)are

where, summation runs over those conjugate class which

1, p, p?,..., P¥,..P" i.e., of the form P* wherel<k <n.
Since V a e G we have N(a) is subgroup of G. By Lagrange’s theorem we know that O(N(a)) | O(G) .
Also we know that if a ¢ Z(G) < N(a) G = O[N(a)] < O(G).
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Thus if a¢ Z(G) then O[N(a)] will be of the form P* wherel<k <n.

Let us consider, O(Z(G)) = m, where m is a positive integer m <n. Now by class equation

n

> P—k wherel<k<n ...(1)

a¢Z (G)

Since P | P"so, P will divide each term of the right hand side of the equation (1)

=P|m

Therefore centre of G must contain element other then identity. Therefore Z(G) = {e}.

Theorem 9: Every group of order P?is Abelian.

Proof: We have given order of the group is P? i.e., O(G) = P?. So, the positive divisors of P? are
1, P, P?. By the previous theorem 11 we know that if O(G)=P", where P is a prime number, then
Z(G) ={e}. It means, O(Z(G))>1. As we know that centre of the group is subgroup of G and by
Lagrange’s theorem “Order of every subgroup of a finite group is divisor of the order of the group”. So
either O(Z(G)) = P or O(Z(G)) = P>.

If O(Z(G)) = P?*then we have nothing to prove.

Otherwise, if O(Z(G)) =P = there exist an element x € G which is not in Z(G) i.e., x ¢ Z(G).

Since N(x) is subgroup of G and x e N(x) . Also a e Z(G) = ax=xavx e G.

= aeN(x)

= Z(G) < N(X)

Since x ¢ Z(G) = O((N(x)) > P but O(N(x)) must be divisor of P?

= O((N(x)) must be equal to P?

= NX) =G

= x e Z(G), thus we get a contradiction.

Hence, O(Z(G)) = P? = G is Abelian group because Z(G)is always Abelian group.

Example 2: Is a group of order 121 is Abelian?
Answer: Since,O(G) =121=11%, where 11 is a prime number. Hence G will be Abelian group.

Example 3: Prove that corresponding to every cyclic group its quotient group is cyclic but their
converses need not to be true.

Solution: Let G be a cyclic group such that G=<a>i.e., a is the generator of G and H is its
subgroup. Then according to theorem every subgroup of G will be normal subgroup of G. If elements

a" € G then Ha" = (Ha)" will be element of quotient group G/H .
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Therefore G/ H is acyclic group and Ha will be generator of it.
But converse is need not be true. Since S,/ A, ={A,,(23)A,} is Abelian group because order of
O[S,/ A;]=6/3=2which is prime and we know that every group of prime order is cyclic while S, is

not a Abelian group.
Theorem 10: If G/Z(G) is cyclic if and only if G is Abelian.

Proof: Let us consider G/Z(G) is cyclic. It means, if the element a is the generator of G then Z(G)a
will be generator of G/Z(G).

Let x,y e Gthen Z(G)x,Z(G)ye G/ Z(G) = 3 positive integers m,n such that
Z(G)x=(Z(G)a)" =Z(G)a" &Z(G)y = (Z(G)a)" = Z(G)a"

=we have x=xa" where x, e Z(G)and y =y,a" where y, e Z(G)

Now, xy = (xa")(y,2") = x,(a"y,)a") = x, (y,a")a" = (xy,)a"a" = (y,x)a"a"
=y, x(@"a")=yxa"a" =ya"xa" =xy

= Gis abelian.

Conversely, assume that G is Abelian. If G is Abelian then Z(G) =G.

= G/ Z(G) ={e}i.e. trivial subgroup which is always cyclic.

Hence the theorem.

Example 4: If G be a non-Abelian group of order P*where P is prime then Z(G) has exactly P

element.

Proof: We have given be a non-Abelian group of order P*where P is prime. Then According to
Lagrange’s theorem possibilities of order of Z(G) is 1, P, P?, P°.

Case I°: We know by previous theorem if O(G)=P", where P is a prime number, then

Z(G) #{e} = O[Z(G)] > 1.

Case 11"": Let O[Z(G)]=P?>=0(G/Z(G))=P*/P*=P

= G/Z(G)is cyclic and by theorem we can say that G is Abelian which is a contradiction. So our
assumption is wrong.

Case 111" Let O[Z(G)]=P*=0(G/Z(G))=P*/P* =1

=G/Z(G)={e} is cyclic and by theorem we can say that G is Abelian which is again a

contradiction. So again our one of the assumption is wrong.
So, the only possibilities is left that O[Z(G)] =P i.e., Z(G) has exactly P element.
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Check your progress

Problem 1: Find the finite number of distinct classes inQ, ={1,—1,i,—i}?
Problem 2: Find the number of element in the centre of Q, ={L,—1,i,—i}?

Problem 3: Find the class equation of Q, ={1,—1,i,—i}?

2.6 SUMMARY

In this unit, we have studied the definition and theorems related to conjugate of an element, normalizer
of an element and centre of the group and also learn their implementation on various examples. We
have also learn in this unit how these subgroup are essentials in the formation of class equation which
will further discussed briefly in the upcoming units. The overall summarization of this units are as

follows:
Conjugacy relation is an equivalence relation on G.

0(G)
0(G)=0(Z(G )
(G)=0(z( ))+aaEZZ(6)O(N(a))

Every group of order p?is abelian group.

is known as class equation of any group.

GLOSSARY

b ~ a denotes two elements a,b of a group G are conjugate to each other.
C(a) denotes collection of elements of group which are conjugate to a.

c, denotes number of elements in group which are conjugate to a.

Z(G) denotes centre of the group.

N (a) denotes the normalizer of a.
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TERMINAL QUESTIONS

Long Answer Type Question:
1. Prove that any two conjugate classes of a group are either disjoint or identical.

If the order of a group G is prime ( p), then prove of G has exactly p elements.

If H is normal subgroup of G, having prime index p then prove that G/ N is cyclic.

If G be a non-Abelian group of order O(G) =1331then prove that number of elements in
centre of group Z(G) are 11.

If G be a group of order O(G) =121then find the number of elements in its centre.

6. State and prove the class equation.

7. Prove that cojugacy is an equivalence relation.

Short Answer Type Question:

8. Find the number of elements of the in the centre of the group having order
O(G) =5,7,25,31,49.

Q. Prove that centre of the group is an abelian group

10.  If Gisanon-abelian of order 8then prove that Z(G) has exactly 2 element.
11.  Find number of element which are conjugate to (12) € S,.

12.  Prove that if G is finite,a € Z(G) iff O(N(a)) =0(G).

Fill in the blanks:

13.  Two elements a and b in a group G are such that b= x""ax then b will called to a.
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14.  Every group of order p* (p = prime) is

15.  Centre of the group G is the subgroup of G.

16. If G is non-abelian group of order 125 then Z(G) has elements.

2.11 ANSWERS

Answer of self cheque question:
1. 4 2. : Q. = 1+1+1+1
Answer of terminal question:

5. 121 8. 57,25,31,49 . : Conjugate

14. Abelian 15. Normal
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Unit-3: HOMOMORPHISM AND ISOMORPHISM

CONTENT:

3.1  Introduction
3.2 Objectives
3.3 Homomorphism
3.3.1 Kernel of homomorphism
Isomorphism
Fundamental theorems
Summary
Glossary
References
Suggested Readings

Terminal Questions

Answers

3.1 INTRODUCTION

The term "homomorphism™ appeared as early as 1892, when it

was attributed to the mathematician Felix Klein (1849-1925).

Christian Felix Kleinwas a German mathematician and

mathematics educator, known for his work with group

theory, complex analysis, non-Euclidean geometry, and on the

associations  between geometry and group  theory.  His

1872 Erlangen program, classifying geometries by their

basic symmetry groups, was an influential synthesis of much of Christian Felix Klein

the mathematics of the time. 25 April 1849 — 22 June 1925
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In this section we introduce the reader to the idea of an isomorphism which could also be
termed as an ‘indirect’ equality in algebraic systems. Indeed, if two systems have the same
number of elements and behave exactly in the same manner, nothing much is lost in calling
them equal, although at times the idea of equality may look little uncomfortable, especially in

case of infinite sets.

3.2 OBJECTIVES

After reading this unit learners will be able to

e Understand the concept of special types of mapping between two groups named as
homomorphism and isomorphism. It may be possible these groups are under the different
binary operations.

Know that under the isomorphism mapping how the properties of two groups are same.
Understand about the other type of mapping like endomorphism, automorphism.
Understand the basic properties of homomorphism and isomorphism and their related other

theorems and definitions.

HOMOMORPHISM

Definition: A mapping f from a group (G,*) into the group (G ,.) is said to be a homomorphism if it

preserve the composition under f i.e.,

f(a*b)=f(a).f(b) va,beG

Or
A mapping f :G — G is said to be homomorphism if,
f(a*b)=f(a).f(b) va,beG
where, G and G are the groups under the operation '+'and '." respectively.
Note 1: The range of f in G is called the homomorphic image of G .

2: In general, we take both the groups G and G under the same operation multiplication and write f is

a homomorphism between G to G if, f(ab) = f(a)f(b) Va,b eG, without the loose of generality.

Example 1: A mapping f:Z —E, from set of integer to the set of even integer such that
f(x)=2xVxeZ

is @ homomorphism.
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Answer: We have given the mapping f :Z — E such that

f(x)=2xVxeZ

at first, we will check mapping is well defined as x =y = 2x =2y = f(x) = f(y)
Now, we will check mapping also preserve the composition for it for any x,y € Z
f(x+y)=2(x+y)=2x+2y=f(X)+ f(y)

— f preserve the composition.

Hence given mapping f is an homomorphism.

Example 2: Show that the Mapping f : Z — G, from set of integer under the operation addition to the

group G = {1,—1} under the operation multiplication defined as

() = 1, i.f xi.s even
-1, if xisodd

is @ homomorphism.

Answer: Case I: If X,y € Z both are even integers. It means f(x) =1, f(y) =1then their sum will also
an even integer i.e.,

f(x+y)=1=11=f(X)f(y) Vx,yeZ

Case Il: If x,y e Z both are odd integers i.e., f (xX) =—1, f(y) =—1 then their sum will be even integer
ie.,

fx+y)=1=(-1).-)=f(X)f(y) VXx,yeZ

Case Ill: If x,y e Z are such that x is even integer and y is odd integer i.e., f (x) =1, f(y) =-1 then
their sum will be odd integer then,

f(x+y)=-1=1.(-)=f(x)f(y) VXx,yeZ

Case IV: If x,y e Z are such that x is odd integer and y is even integer i.e., f (x) =-1, f(y) =1 then
their sum will be odd integer then,

f(x+y)=-1=(-D.Q=f(X)f(y) Vx,yeZ

Hence the given mapping f is an homomorphism.

Example 3: Show that the Mapping f : R — R, from set of positive real numbers to the set of real

number defined as f(x) =log xV x € R"is an homomorphism.

Answer: As we know that set of positive real numbers (R") is form group under the operation
multiplication and the group R is form group under the operation addition.

Here, clearly the mapping is well-defined since, for

X=Yy
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= logx=Ilogy [Taking logarithm both side]

= f(X)=f(yY)VXx,yeR"

Now, f(xy)=log(xy)=logx+logy=f(x)+ f(y) VXx,yeR"

Hence f is a homomorphism.

Homomorphism onto: A onto mapping from a group (G,*) into the group (G,.)is said to be a
homomorphism onto if it preserve the composition under f i.e.,

f(a*b)=f(a).f(b) va,beG.

Endomorphism: A homomorphism from a group G to itself is called an endomorphism.

Example 4: If G be a group and a mapping such that, f:G —Gsuch that f(x)=x" be a
homomorphism then show that G is a Abelian group.

Proof: Since G be a group then for any elementsx,y € G, G will satisfies the closure property i.e.,
Xy € G and for every element belongs to G there exist its inverse in G.

Now, xy = (y )" = f(y )= f(y)f(x )= yx

— G is Abelian group.

Theorem 1: If f :G — G be a homomorphism then,
(i) If e is the identity of G, then f(e) is the identity of G’
(i)  Foranyelement aeG, f(a?)=[f(a)]"

(iii)  If His subgroup of G then f(H)is subgroup of G

(iv)  If Kis subgroup of G, then f*(K)= {k € G‘ f(k)e G'} is a subgroup of G. Furthermore, if

K is normal in G then f *(K) is normal in G.
(v) If order of any element a<G is finite then the order of f(a) is divisor of the order of

aeG.

Proof (i): Let e and e are the identity elements of the group G and G . Since f is the mapping from

Gto G then f(e) will be the elements of G .

Now, e f(e) = f(e) = f (ee) = f(e) f (e), then by the right cancellation law

e =f(e)

i.e., f(e) isthe identity of G .

(ii): Let a be any element of G then a™ will be also in G because G itself a group. Since we have,

e=fe)=f(aaH)="f(@f@" .. (D)
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As we know that if ae G = f(a) € G'and G is also a group then [f(a)]" € G’

Now multiplying by [f (a)]™ both side in equation (1)

Then, [f @] e =[f @]*[f @ f@@")]=(f @] f@)f @™ = f(a)

So, [f(@)]" = f(a)

(iii): We have given H is subgroup of G then to prove that f(H) is subgroup of G. If

X, yeH=xy"eH [By the subgroup test of any nonempty subset of G]
Since f is the homomorphism then there exist a,b e f(H) st. a= f(x),b= f(y)

Now consider, ab™ = f (x)[f(y)]" = f() f(y™") = f(xy™) e f(H)

Hence we have prove that if a,be f(H)then ab™ e f(H)

= f(H) is subgroup of G'.

(iv): Let K is subgroup of G and define H to be f *(K); that is H is the set of all g € Gsuch that
f(g)eKcG.If a,beH, then f(ab?)=f(a)f(b*)= f(a)f(b)]" K. Since K is subgroup of
G . Therefore, ab™ € H and H is the subgroup of G.

If K is normal in G then we have to show g*hg e H for he H,g e G

But, F(97*hg) = (g ™) F([f (@)™ =[F @] *(FMF @] =[f(@)]* f(9))f (h) = f(h) e K

Since K is normal in G therefore g~*hg e H

=H is normal subgroup of G.

(v): Let acG and O(@)=m i.e., a" =¢
Taking f-image both side we get, f(a™) = f(e)
= f(a)f(a)f(a)...f(a) (mtimes)= f(e)

= [f@] =¢

If order of f(a) in G is nthen o(f(a))|O(a)

3.3.1 KERNEL OF A HOMOMORPHISM

Definition: If f:G—G is a homomorphism then kernel of homomorphism is the collection of all

elements of domain set which are mapped into the identity elements of range set.

OR

If f:G—G isahomomorphism then,
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ker f ={xeG| f(x) =€}

Where e is the identity element of G

Theorem 2: If f :G — G’ is a homomorphism then ker f is the normal subgroup of G.
Proof: Since we have given f :G — G is an homomorphism and we know that

ker f = {x eG| f(x)= e'} then first we will prove that ker f is a subgroup of G. for it let
x,yekerf = f(x)=¢e,f(y)=¢

Now, f(xy™)=f()f(y?)=ff (Y] =ele]" =€

= xy " eker f

Hence VX, y e ker f we have xy™ eker f it means ker f is the subgroup of G.

Now we have to prove that ker f is the normal subgroup of G. For it let g be any element of G and k
be any element of ker f . Then f (k) =€, we have

f(gkg™) = F(Q)F()f(g7™)=F(g)e f(g™)=F(f ()] =¢

= xgkg " e ker f

Hence, ker f is normal subgroup of G.

Theorem 3: A homomorphism f : G — G is one-one if and only if ker f ={e}.

Proof: We have given f :G — G is an homomorphism and let mapping is ono-one. If x e ker f be
any element

Then f(x)=eandalso f(e)=¢e

Since f isone-oneso, f(x)=f(e)=>x=eVxekerf

Hence, ker f ={e}.

Conversely, let ker f contains only the identity element.

Foritlet, f(x)= f(y)

then f(X)[f(y)] ' =¢e

= f(xy ) =¢

= xy " eker f ={e}

=xy" ={e}

= X=Yy

— f is one-one.
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3.4 ISOMORPHISM

Definition: A mapping f from a group (G,*) into the group (G ,.)is said to be isomorphism if it

satisfies the following condition,

(i) f isono-onei.e, f isinjective

(ii) fison-toi.e, f issurjective

(iii)  f(a*b)=f(a).f(b) Va,beGi.e., f preserve the composition
Example 5: Show that the Mapping f : R* — R, from set of positive real numbers to the set of real
number defined as f (x) =log xV x € R"is an isomorphism.

Answer: In the previous example we have already proved that given mapping is a homomorphism.

Now, we are going only to show that mapping (f) is a bijective mapping (i.e., f is one-one and on-to)
One-One: Let x,y e R*s.t,, f(x)=f(y)

= logx=logy

= e" 9% =g"9Y

=X=Yy

=T is one-one mapping.

On-to: If y € Rbe any real number then clearly e’ e R". It means for each y € Rwe have e’ e R*
such that f(e’)=log(e’)=yeR

=T is on-to mapping.

Hence, f is an isomorphism.

Example 6: Show that there is no isomorphism from f : Q — Q —{O} where, Q is set of rational

number.

Answer: To prove this example let we assume that f : Q — Q—{0} is an isomorphism. Since f is an

isomorphism so f will also a on-to function i.e., for 2 Q —{0}3Ix €Qs.t.,

[Since, f preserve the compostion]
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= y? =2 where, y= f(%) which is a contradiction because there is no rational number which is

the solution of quadratic equation x* —2=0. Hence our assumption is wrong. So, there is no map
f :Q —» Q—{0} which is an isomorphism.

Theorem 4: Let N be a normal subgroup of a group G. A mapping f, f:G—>G/N defined as
f(X) =NxVxeGthen fisahomomorphismof Gonto G/Nand kerf =N.

Proof: We have given the mapping f :G — G/ N such that f (x) =NxVxeG. As we know if xeG
then NxeG/N.

First we will check that f is a onto homomorphism from Gto G/N . Foriit, let a,b € G/ N then,

f (ab) = Nab = (Na)(Nb) = f (a) f (b) [N is normal subgroup of G]

= f isahomomorphism from Gto G/N.

Since for each element Nx € G/ N there exist an element x € G such that f (x) = NxVx €G.

Hence, f is on-to mapping.

Let ker f is the kernel of this homomorphism then, ker f = {x eG|f(x)= N}

Now, we have only to prove that ker f =N . Let x be any element of ker f . Then f(x) =N, where N
is the identity of G/N. But according to mapping f(x)=Nx=Nie, Nx=N=xeN

[Because if H is normal subgroup of G and Hx =H thenx e H ]

So, xeker f = xe N. Therefore ker f = N
Conversely, let y be any element of N . Then Ny =N
We have f(n)=Nn=N. Therefore neker f

Thus, ne N = neker f . Therefore N  ker f

Hence, ker f =N.

3.5 FUNDAMENTAL THEOREMS

Theorem 5: Fundamental theorem on group homomorphism: If f:G—G is onto

homomorphism then% ~G where K =ker f

OR
In other word, “Every homomorphic image of a group G is isomorphic to some quotient group of G”.
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Proof: We have given a on-to homomorphism f from GtoG . Let we define amap ¢: % — G st

¢p(Ka)=f(a),aecCG
First, we have to show that ¢ is an isomorphism. For it initially we shall show the mapping ¢ is well-
defined by, Ka =kb
=abt eK =ker f
= f(ab™)=¢
= f@f(b™")=¢e
= f()[f(b)]" =¢
= f(a)= f(b)
= ¢(Ka) = ¢(Kb)
On retracing theses steps backwards, we will get that ¢ is one-one.
Again as ¢(KaKb) = ¢(Kab) = f (ab) = f (a) f (b) = g(Ka)@(Kb)
= ¢ is an homomorpshism.
Now we will check ¢ is onto, let g° € G be any element. Since f :G — G is onto then there exist
g € G such that,
f(@=9
Now, ¢[Kg]=f(9)=g".
= ¢ison-to

.. ¢ is an isomorphism.

Theorem 6: (Second fundamental theorem of Isomorphism). If H and K are two subgroups of the
group G where H is normal subgroup of G then,
HK K

H HNK
Proof: By the previous theorems in normal subgroups we can easily seen that H n K will be normal
subgroup of KbecauseH "K cHandH K < K. Similarly, as H c HK < G, H will be normal
in HK.

Now, we defineamap f:K — % s.t.,
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f (k) = Hk

Thenas k, =k, = Hk, = Hk, = f (k) = f (k,)

Which shows the mapping is well-defined.

Again, f(kk,)=Hkk, = HkHk, = f (k) f (k,)

= f is an homomorphism.

Obviously, the mapping is on-to also then by using the first fundamental theorem we find that

HK_ K
H kerf

Since, k ekerf < f(k)=H
< Hk=H
<keH [As H is normal subgroup of G]
okeHNK [k e Kasker f < K]

So, kerf =H K

Hence the theorem is proved.

Lemma: LetinagroupG, if H,K are normal in G such that H < K, then % is a normal subgroup of
G .
m and converse of the theorem is also true.

Proof: g is a non empty subset of%, by definition.

Now, for any Hk;, Hk, € E

(Hk,)(Hk,)™ = (Hk,)(Hk, ) = Hkk, ™ 5

K .
= a is a subgroup.

Again for any Hk e E andHg € % , We notice that

(Hg) “(HK)(Hg) = Hg *HkHg = Hg kg e g

as g € G,k e K,K is normal in G gives g 'kg e K.
Conversely, let any element x e Gand k € K. In order to prove that K is normal inG we must show
that xkx ™ e K.
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We know that Hx e %Wherex eGand Hk e %Wherek e K. Since we have given 5 is a normal
G
subgroup of q therefore
4 K
(HX)(Hk)(HXx) eﬁ

= Hxkx™' e % [As H is normal in G]

= xkx ' e K
.. K'is normal subgroup of G . Also the quotient group % implies that H is normal in G. Therefore, K

is normal subgroup of Gand H c K.

Theorem 7: (Third isomorphism theorem). If two subgroups H,Kare normal in G such that
H < K, then

G_G\H

Proof: By the above lemma we know that if H, K are normal in G such thatH < K, then Eis a

G\H

normal subgroup of % and, therefore, we can talk about

First, we will define amap f :%—)%s.t.,

f(Ha)=Ka,aeG

Since, H is well defined as

Ha = Hb

—ab'eHcK

= Ka=Kb

= f(Ha) = f (Hb)

Now, we will check f isahomomorphism as

f (HaHb) = f (Hab) = Kab = (Ka)(Kb) = f (Ha) f (Hb).
Here, ontoness of f is obvious.

Using first fundamental theorem of group homomorphism we can write that,

———, so, we will claim that ker f = %
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A member of ker f will be some member of%.

Now, Haeker f < f(Ha)=K
< Ka=K

<aekK

<:,>Hae5

Hence we find % =~ G/—H

K/H

Hence our result is proved. This theorem is also named as “Freshman’s Theorem™.

Remarks: In the above theorem, since we have put 5 =ker f because we have notice that 5is

normal in %and hence we are talking about E;: . Thus we do not need to prove separately that E

) . G
is normal in—.

Theorem 8: Let the mapping f:G — G be an onto homomorphism with ker f = K. Let the
subgroup H of the group G, define
H={xeG|f(x)eH |
Then
(i) H is subgroup of Gand K < H.

(i) H'is normal in Giff H is normal in G.

(iii)  H'isnormal in G then G— ~ G
H ~H

(iv)  There exist a one to one association from the from the family S of all subgroup of G' onto

the family S of all subgroup of G, that contain K.
Proof (i): Since, f(e)=e eH =eeH,itmeans H = ¢.
Let x,yeH = f(x),f(y)eH
= f(x), f(y)eH
= f(Q[f ()] eH
= f(xy)eH

=xy'eH
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Thus H is subgroup of G.

Since xekerf =K=f(x)=e eH

Hence for each xe Kwe have xeH =K cH.

(ii): Suppose H is normal subgroup of G . Let the elementsg € G',h € H . Since the given mapping
isontoso 3geG,heHst f(g)=g,f(h)=h.Since heH,h eH

Now,

g™hg =(f(9))" f(Mf(g)

=f(g ") f(h)f(g)=f(g'hg)e H [Because H is normal subgroup in G means g 'hg € H ]

Thus H'is normal in G .

Conversely, assume that H'is normal in G .

For any elements he H, g €G,
f(g™hg)=(f(g)* f(h)f(g)eH

as f(h)eH f(g)eG

as f(hyeH ,f(g)eG [His normal in G ]
=g*hgeH

i.e., Hisnormal in G

(iii)  Let us defining a mapping ¢:G — %s.t.,

#(9)=H 1(9)

Since ¢ is well defineas g, =g, = f(g,) = f(9,)

=H f(g,)=H (g,)

= ¢(9,) = #(g,) , which shows mapping is well defined.

Now, we will verify that the mapping ¢ preserve the composition as

#(9:9,) = H 1(9,9,) =H 1(9,) f(9.) =H f(9)H T(g,) = #(9,)¢(9.)

Again, forany H'g’ e%, since g eGand fisonto 3geGst., f(g)=9g

Or that ¢(g) = H f(g) = H g showing that ¢ is onto.
By using fundamental theorem then
G _ G

H ~ kerg
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Now, xekerg < ¢(x)=H
SHIf(X)=H

o f(X)eH ©xeH

Hence ker¢g =H

(iv)  Define mapping :S — S, sit.,

w(H)=H

MATS501

Where H is {x eG|f(x)e H'} forany H'in S by (i) we know that it is subgroup of G, containing K

and thus a member of S. v is well defined mapping.

Letnow w(H)=w(T) where H,T €S’

Then H =T where

H={xeG|f(x)eH |

T={xeG|f(x)eT}

Now forany h e H = G, since f :G — G is onto, we can find h e G, s.t.,
f(hy=h eH’

But this shows he H =T

= f(h)eT

—heT =DH cT

Similarly T cH’

i.e., T =H or yis one-one.

We will show now that y is onto.

Let H € S be any member, H is a subgroup of GandK — H .
Consider f(H)={f(h)|heH}

Then f(H)2zgaseecH = f(e)=¢e e f(H)

Again, forany f(h), f(h,)e f(H),h,h, eH

And f(h)(f(h))™" = f(hh, ) e f(H)

i.e., f(H)issubgroupof G .

We show f(H) = H is the required pre-image of H under v,

i.e., we show w(H)=H,

For it we have to show H ={X€G| f(x)e H'}
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Let xeHthen f(x)e f(H)=H'
—Xxei{xeG|f()eH |
Orthat H = {xeG| f(x)eH'}

Again, if xe{xeG| f(x)eH |

Then f(x)eH = f(H)
3heH,st f(x) = f(h)

= f(xht)=¢

= xh™ eker f =K

—=xeKhcH [KcH]

Thus {xeG| f(x) e H'J<H
Hence H ={X€G| f(x)eH'}

Or that w(H) =H and so y is onto

Hence the theorem proved.

Example 7: Show that any infinite cyclic group is isomorphic to G =< Z,+ > the group of integers.
Solution: Let G =< a > be any infinite cyclic group.

Define, f :G > Z, s.t,

f@)=iiez

Since G =<a > is of infinite order, a' eGforall ieZand a' =a'forno i = j

Thus a' =a' =i=j= f(a') = f(a')or that f is well defined.

Again f(a')=f(al)=>i=j=a =a’ = fis1-1.

f@a)=f@")=i+j="f(@)+f@)

Shows that f is a homomorphism.

f is obviously onto and hence the isomorphism is established.

Corollary: Every subgroup of an infinite cyclic group is an infinite cyclic group which is isomorphic
to the group itself.

Example 8: Any finite cyclic group of order n is isomorphic to Z the group of integers

addition modulo n.

Solution: Let G =<a >be a cyclic group s.t.,
O(G)=0(a)=n
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then G =1{e,a,a%,...a"*}Z, ={0,1,2,...,n -1}

Define f:G —Z, st, f(@)=i

f is clearly well defined 1-1 onto mapping.

Again f(a'a')=f(@™) =i+ j=f()+, f(a)
Thus f is a homomorphism and hence an isomorphism.

Remark: Any two cyclic groups of same order (finite or infinite) are isomorphic.

Check your progress

Problem 1: Since Q, = Z, x Z,, then find whether the identity element 1 of Q, map in
Z,x72,?
Problem 2: Is Z, = Q, and why?

3.6 SUMMARY

In this unit, we have studied about the mapping like homomorphism, isomorphism and also learn their
implementation on various examples. After completions of this unit we have learned that two groups if
isomorphic to each other than their all properties in terms of cardinality, order of elements, cyclic will
be same. On the other manner we can say that if two groups are isomorphic in which one group is
completely given then on the basis of given group we can unfold the unknown group completely even
these groups are under the different binary operations. We have also learned about the fundamental

theorems of isomorphism which are helpful to solve out various problems.

One of the important concept we have learned in this unit that every infinite cyclic group is

isomorphic to the set of integers (Z).

3.7 GLOSSARY

> G =G represents two groups G,G' are isomorphic to each other.

> ker f represents the kernel of homomorphism mapping f.
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TERMINAL QUESTIONS

Long Answer Type Question:

1. If f:G — G is an homomorphism then prove that the set A= {x eG|f(x)= e'} where ¢'is

the identity element of G is the normal subgroup of G .

Prove that every finite cyclic group of order n is isomorphic to the set of integer under the
operation addition modulo 7.

Prove that every infinite cyclic group is isomorphictoZ .

Prove that if Hand K are two subgroups of the group G where H is normal subgroup of G

Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.

Prove that there is no isomorphism from QtoQ" = Q —{0}.

If f:G — G is an homomorphism then order of any element f(a) e G is divisor of the order

ofaeG.

If two subgroups H, K are normal in G such that H < K, then

G _G\H

K~ K\H

Prove that relation of isomorphism is an equivalence relation.
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Short Answer Type Question:

10. If f:G — G isan homomorphism and H is subgroup of G then f(H)is subgroup ofG

11. If f is a homomorphism from f : G — G then prove that f is one-one if and only if ker f ={e}.

12. Prove that any finite cyclic group of order n is isomorphic to the quotient group Z /N , where
N =<n>

13.  Anendomorphism f in a group G such that f (x) = x™* then G is abelian.

Fill in the blanks:

14, If f:G — G be ahomomorphism then for any element ac G, f(a™')=

15.  If two groups G,G are isomorphic then O(G) =

16. If two groups G,G of finite order are isomorphic then number of elements of order n in G are

If f:G — G be ahomomorphism and e is the identity element of G then identity element of
G will be
18. is the infinite cyclic group

19. A cyclic group of order 123456789 is isomorphic to

3.11 ANSWERS

Answer of self cheque question:
1. 0, 0) 2. No, because z, X z, is abelian group while Qg is not

Answer of terminal question:

14.  [f@)]* 15. O(G) 16.  Number of elements of order nin G’

17. f(e) 18. VA 19. Z 53456789
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BLOCK II

CLASS EQUATION AND SYLOW’S THEOREM
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Unit-4: CAYLEY’S THEOREM AND CLASS EQUATION

CONTENT:

4.1  Introduction

4.2  Objectives

4.3  Cayley’s theorem

4.4  Class Equation

4.5  Partition of an integer
4.6  Summary

4.7  Glossary

4.8 References

4.9  Suggested Readings

Terminal Questions

Answers

4.1 INTRODUCTION

British mathematician Arthur Cayley FRS, who lived from 16
August 1821 to 26 January 1895, was very active and focused
primarily on algebra. He contributed to establishing the current

British school of pure mathematics.

Cayley used to find it amusing to solve challenging arithmetic
problems as a kid. He enrolled in Trinity College in

Cambridge, where he excelled in mathematics, Greek, French,

German, and Italian. He practised law for 14 years. Arthur Cayley FRS

16 August 1821 — 26 January 1895
https://en.wikipedia.org/wiki/Arthur _Cayley
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Theorizing that every square matrix is a root of its own characteristic polynomial, he established what
is now known as the Cayley-Hamilton theorem for matrices of orders 2 and 3. He was the first to
introduce the contemporary definition of a group as a set with a binary operation that complies with
certain rules. Mathematicians used to refer to permutation groups when they used the term "groups.” In

honour of Cayley, Cayley's theorem, Cayley tables, and Cayley graphs all bear his name.

4.2 OBJECTIVES

After reading this unit learners will be able to
Understand the concept that how we can define an isomorphism from any group to the
permutation group which is named as Cayley’s theorem.
Solve more examples on class equation.
Understand the basic properties of Cayley’s theorem and class equation and also their related

other theorems.

CAYLEY’S THEOREM

Theorem 1: Every group G is isomorphic to a permutation group.

Proof: A(G) is the collection of all permutations of the set G, where G is the any group. Let us define a

map f, :G — G such that

f,(x) =ax, where aeG

First we will check the mapping is well defined as,
x=y=ax=ay= f,(x)=f,(y)

One-One: f,(x)=f,(y)

—ax=ay

=>X=Y [By cancellation rule in G]

= mapping is one-one

Onto: Forany yeG, since f,(a'y)=a(a™y)=y. Here we can easily see that a™'y is pre-image of

y or that f, is onto and hence permutation on G .
Thus, f, € A(G)
Assume that K be set of all such permutations. Now we will show that K s a subgroup of A(G).

Since Kis non-empty set because f, € K .
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Let f,, f, eK

Then since f,of ., (x) = ,(f_.(x))= f,(bx) =b(b™x)

=ex= f (x) VX
We find f, =(f,)" [Note f, =1, identity of A(G)]
Also as (f,o f, )(x) = f,(bx) = a(bx) = (ab)x = f_, (X) Vx
Wefind f, =f,of,
So, f,o(f,) =f,0 f.=1f,.€ekK
= K is subgroup of A(G).
Define mapping ¢:G — K, s.t.,
#(@) =1,
then ¢ is well defined as well as one-one map as,
a=b
< ax =bx
< f(x)=f,(x) Vx
< f, =1,
> d =
Obviously, ¢ is onto and
g(ab) = f,, = f, 0 f, = ¢(a) #(b)
Hence, ¢ is a homomorphism and also an isomorphism which proves the result that every group G is
isomorphic to a permutation group.

Remarks: We can define other statement of Cayley’s theorems like “ If G is finite group of order n

then G will be isomorphic to the subgroup of symmetric group S, .

Example 1: Using Cayley’s theorem find the permutation group which is isomorphic to the group
G ={2,4,6,8}under the operation multiplication modulo (x,,) .

Answer: Let A be any permutation group such as defined in the Cayley’s theorem.

A={f, |acG}, where f, isdefinedas f, =axst. a,xeG
So, f,(2)=4, f,(4)=8, f,(8) =6, f,(6)=2

f,(2)=8, f,(4)=6, f,8=2, f,(6)=4

f;(2) =6, f3(4) =2, f;(8) =4, f,(6)=8
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f.(2)=2, f,(4)=4, f,(8)=8, f,(6)=6

Thus, f,=land K ={f,, f,, f,, f, =1}

If we identify f, with the permutation(1234), other permutations are (13)(24),(1432). Hence
A={(123),(13)(24),(1432), 1} is required permutation group isomorphicto G .

Example 2: Using Cayley’s theorem find the permutation group which is isomorphic to the D,

Answer: As we know that the dihedral group ( D,) of order 8 is
D, ={a,a? a%,a’,ab,a’h,a’b,a’b|a’ =e =h’, ab=ba™}

Let the set defined in the Cayley’s theorem is given by K = {fx | x e G} where function defined by,
f.(y)=xyand D, = K by the theorem. Now we determine K , the required permutation group as
f.(a)=a% f,(a*)=a’ f (a’)=a’ =¢, f,(ab) =a’b
f.(a’h)=b, f,(a%h) =b, f,(b)=ab, f,(e)=a

Thus f, can be identified with the permutation (1234)(5678)

Again, f.(a)=a’f.(@")=e f.(a’)=a, f.(ab)=a’b
f.(@%)=b,f.(a’h)=ab, f,(b)=a’h, f,(e)=a’

Thus, f_, can be identified with (13)(24)(57) (68).

In the continuation, we can say, f_, =(1432)(5876)

Again, f,(a)=aba=Db, f, (a’)=aba’ =a’b etc., we get
f,, =(18)(27)(36)(45)

Similarly, f_, =(15)(28)(37)(46)

f . =(16)(25)(38)(47)
f. = (17)(26)(35)(48)

Therefore, K ={

(1234)(5678), (13)(24)(57)(68), (1432)(5876), I, (18)(27)(36)(45),
(15)(28)(37)(46), (16)(25)(38)(47), (17)(26)(35)(48)

Hence, K =D,

4.4 CLASS EQUATION

In the unit 2 we have already learned about some important theorems of class equations and their proof

which are as follows:
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Theorem 2: If G be the finite group and Z(G) be the centre of the group G. Then class equation of G
can be written as

0G)=01z@)]+ ¥ %
agZ(G)

In this section we will learn applications part of class equation in different type of examples. Example

3: If nisthe index of Z(G)ina group G then the conjugate class has at most n elements.

Answer: We have n = 0(©) and O(cl(a)) = O(C)
0(2(G)) O(N(a))

Since, Z(G) < N(a) always
O(Z(G)) = O(N(a)) = O(N(a)) = k-O(Z(G))

O(G) nO(Z@G) n
O(N(@) kO(Z(G)) k

ie., O(C(a)) =

Hence, maximum value of O(C(a)) is whenk =1.

Example 4: If P*be order of a non-abelian group then determine O(Z(G)) and also number of
conjugate classes of G.

Solution: We have given group (G) is non-abelian, 3a e G, s.t., Z(G)g N(a)EG

Since we know that O(Z(G)) | O(G) = P*

So, the possibilities that O(Z(G)) will be 1, P, P?,P?

Similarly O(N(a)) =1, P, P?, P®

But by the previous theorems we know that O(Z(G))=1. Since group is non-abelian then

0O(Z(G)) # P*. So, the only possibilities will be O(Z(G)) = Por P2.

Similarly, O(N(a)) = Por P*and as Z(G)c N(a)

So, we find O(Z(G)) =P, O(N(a)) = P*
Let we assume k be the total number of conjugate classes. Since
G=uC(a)

aeG

O(G)=>.0(C(a)) = >, O(C(a)+ > O(C(a))

acG acZ(G) agZ(G)

p*=0(Z(G))+ ».0(C(a))

agZ(G)
When a e Z(G) then number of conjugate classes is O(Z(G)) = p
[Since ae Z(G) < C(a) ={a}orO(C(a)) =1]
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So, k — p are remaining classes and each have order given by

_0@©G) _p’
O(N(a)) p*

Hence, p’=p+(k-p)p=k=p°+p-1

O(C(a)) = =p

Example 5: Write the class equation of quaternion group Q, = {+1,+i,+ j,+k}

Solution: We have the quaternion group Q, = {il,i L+ j,* k}.

First we determine the conjugate class of i. Since we know that in any group <a >c N(a)
[xe<a>=>x=a"andas aa™ =a".a,wefind a" = N(a)]

Thus, <i>c N(i) or {i,i%,i%,i* =1} < N(i)

Therefore, <i>c N(i) <Q;, gives 4| O(N(i))|8

Since j ¢ N(i) because ji#ij

And jeQ, = N(i)EQg

Hence O(N(i)) =4 or N(i) =<i >

0(G)

As we know that O(C(a)) = O(N@)

8

— O(C(i)) = OO(LQ(B;) =7 =2

= C(i)={i,—i} [as i e C(i)and —i =kik™*,—i e C(i)]

Similarly other conjugate classes are C(j) = {j,—j},C(k) = {k,—k , {3} {~3
Since we know that O(C(a)) =1« a e Z(G) thenas O(C())=1,0(C(-1))=-1
= Z(Qy) = {11}

Now, we verify the class equation as

O(G)=0(Z(G))+ >,0(C(a))

aeZ (G)
8=1+1+(2+2+2), which is the class equation of the group Q,.
Example 6: For a finite group G let number of conjugate class is 3. Then prove that either group is
cyclic or isomorphic to S,.
Solution: Since we have given that group G has number of conjugate classes are 3. If these conjugate
classes are of order 1, then O(G) =3, which is of order prime that means group will be cyclic. If G has

a class of order >1 then G is non-abelian because if G will abelian then there does not exist any class

of order >1.
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Let three classes of Gare C,,C,,C,.

Assume that O(C;) > 1.

If O(C,)=0(C,)=1=0(C;)=n-2 [If we have assume thatO(G) =n]
~O(C,;) =n—-2]|0(G) and also we have n—2|n—-2

=m-2)[n-(n-2)=2

=n-2=1or2

=n=30r4

= G s abelian. [Because we know every group of order por p? is abelian]

Now there is only one possibility left that inGone class is of length 1. Let
O(C)) =10(C,) >1,0(C,) >1. It meansO(Z(G)) =1.

By class equation, n=0(G) = O(C,) + O(C,) + O(C,) =1+ 0O(C,) + O(C,)
But O(C,) | O(G) =n,0(C,) | O(C,)

= 0O(C;)|In—0(C,) =1+0(C,)

= 0(C,)<1+0(C,)

Similarly, O(C,) <1+ 0(C,)

If O(C,) <1+0(C,) and O(C,) <1+0(C,)

Then O(C,) <0O(C,), O(C,) <0O(C,)

~.0(C,)=0(C,)

~.0(C,)|1+0(C,) = 0O(C,) |11=0(C,) =1

This is a contradiction

Thus either O(C,) =1+0(C,)

Or O(C,) =1+0(C,)

If O(C,) =1+0(C,)

Then O(G) =1+ 0(C,) +1+0O(C,)

— O(G)-20(C,) =2

But O(C,) | O(G),0(C,) | O(C,) = O(C,) | 20(C,)
- O(C,)|O(G)-20(C,) =2

- O(C,)=2and O(C;) =3

Or that O(G) =6
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Similarly, if O(C,) =1+0(C,), then O(G) =6
.. G Is non-abelian group of 6 which is isomorphicto S, i.e., G=S,.
Example 7: Let G be a group such that e # a € G, O(a) =finite. If G has only two conjugate classes
then prove that G is a group of order 2.
Answer: Let e b e G. Since G has only 2 conjugate classes, namely {e}and C(a).
beC(a)..b=g'ag forsome geG.
. O()=0(a) forall b~ein G.
Suppose O(a)=mn,m>1n>1
Then O(@™)=m
Since order of all non identify elements in G is same, O(a™) =mn
~.n=mn=m=1; a contradiction
-.0(a) = p= prime
~O()=p=forall exbeG
Suppose p #2
then a’ ze = a’ eC(a)
-.a’ =g ag forsome g eG
(a%)*=(g7ag)’ =g a’g
-.(a®)*=(9"ag)* =9 (9 'ag)g = g “ag’
In this way, we get a® = g "ag”
Since O(g) =0(a)=p
a’ —eae=a
—a’t=e=0(a)=p|2° -1
By Fermat’s theorem, p|2° —2
- pl(2° -1 —(2° —2) =1, a contradiction
Lp=2
= 0(a)=2.So, O(b)=2 forall ezbeG
= G is abelian.

So, each conjugate class in G is of length one. Since G has only two classes, which means G is of

order 2.
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Note: There are infinite group having non-trivial element has finite order and group has only 2

conjugate classes. Therefore, it is necessary to assume that 3e = a € Gs.t. O(a) =finite.

45 PARTITION OF AN INTEGER

Let n be a positive integer. A sequence of positive integers n,,n,,...,n, where n, <n, <...<n, such

that n=n, +n, +...+n, is called a partition of nand n,,n,,...,n, are called parts of partition.

For example, let n =3, then number of partition are 3 i.e.,

1+1+1
3=<1+2
3

let n =4, then number of partition are 5 i.e.,

1+1+1+1
1+1+2
2+2
1+3

4

The number of partition of any integer n is denoted byP(n). For example, P(1) =1,
P(2) =1,P(3) =4,P(4) =5 e.tc.

Theorem 3: The number of conjugate classes in S, is P(n).

Proof: Let A=Collection of all conjugate classes in S, .

B =Collection of all partition of n.

Let C(o),0 €S, .

Assume that o as product of disjoint cycles as (a, ...a,)(d, ...b, ) where n, +...+n, =n.
the selection of cycles in a pattern such that n, <...<n,. This gives a partition
{n,n,,...n,} of n.

Now we define f: A—Bs.t,

f(C(0)) ={n,n,,....n, }

f iswell defined as C(o) =C(7)

= o,ne€C(o)

= o,nare conjugate in S,
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= o,naresimilarin S,

o Lt

n = (ai',...,a'nl)..(b'l,...,b'nk)

= f(C(0)) = {n, n,,.y f= F(C()

Suppose C(o) = C(n)

So, o,n are not conjugate = o, 7 are not similar

= o, n have different cycle structure

= Corresponding partitions are different

ie., i, Nyt b= 01N, n'r} where, of course,

N=n+N,+..+N =N1+N2+..+Ny

= F(C(0)) = T(C(7))

= f is one-one

f is onto for, let {n,,n,,...,n, } € Bbe a partition of n. Then n=n, +n, +...+n,
Define o = (ai,...,anl)..(bl,...,bnk )e S,

Then C(o) € A

And f(C(o))={n,n,,...n, }

.. T is both 1-1 and onto

So, O(A) =0(B) = P(n)

= number of conjugate classes in S, is P(n)

Example 8: Verify the class equation in S, and also find its all conjugate classes.
Answer: By the theorem 4 we know that number of conjugate classes in S, are P(4)which is 5. Also

we know that two conjugate classes of any group are either disjoint or identical. In other word we can

say that two permutations are conjugate if and only they are similar. In S, the base elements of

conjugate classes are 1,(12),(123),(1234),(12)(34)

. . - 1 n .
As we know that in the permutation group S, number of distinct r-cycle are —( N So, in S,
r(n-r)!

I
number of distinct cycle of length 2 are 14 =
2 (4-2)!

Similarly, in S, number of distinct cycle of length 3 are 1 =8
3(4-3)!
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Similarly, in S, number of distinct cycle of length 4 are 1 =
4 (4-4)!

in S, number of permutation of type (ab)(cd)are (12)(34),(13)(24),(14)(23)
so, O(C((12)(34))=3
Since centre of S,contains only identity element so, O(Z(S,)) =1 i.e., O(C(l)) =1

Now the class equation of S, is,

_ 0(s,) _
0(8) =8N+ 3. o =06+ 30(C(@)

ie, 24=1+6+8+6+3
Example 9: Find the class equation of a group of order 6.
Answer: Let G be a group of order 6. So, there are two cases arises that either group is abelian or not.

Case I: Let group is abelian then we know that Gwill be isomorphic to Z, i.e,
G=ZsorG=Z,xZ,
Since G is abelian then O(Z(G)) =6

So, the class equation will be, 6 =1+1+1+1+1+1

Case Il: If group is non-abelian then we know that G will be isomorphic to S;or D, i.e,
G=S5,=D,

As we know that the permutation on group on the 3 symbol {L 2,3} is
S,=1{1,(12),(13),(23), (123), (132)}.

Initially we examine the conjugacy classes of S, for it first we will find center element of S,.

Since, (12)(13)=(132)# (123)=(13)(12) and (12)(23)=(123)=#(132)=(23)(12) and so
(12),(23),(13) ¢ Z(S,)

Further, (123)(12) = (13) #(23) =(12)(123) and (132)(12) =(23) = (13) =(12)(132).

So, (123),(132)2Z(S;). So the only trivial conjugacy class is[(1)]={1} i.e., Z(S;)=1 or
O(Z(S,)) =1.

Now observe that for the element (12) we have that:

(12)12)(12) " = (12)(12)(21) = (12)

(13)(12)(13) " = (13)(12)(31) = (23)

(23)(12)(23) " = (23)(12)(32) = (13)

(123)(12)(123) " = (123)(12)(321) = (23)
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(132)(12)(132) ™ = (132)(12)(231) = (13)

So, the conjugacy class of (12)is C((12)) = {(12),(13),(23)} and the conjugacy classes of remaining
elements are C((123)) = C((132)) = {(123), (132)}

So, the conjugacy classes of S,is,

S; =C(l)uC((12)) L C((123))

And the class equation is,

6=1+3+2

Hence,

GzZ,27,x/Z,

IF group
is Class equation is

Abelian

6=1+1+1+1+1+1

G=z=S, =D,

IF group

is non- Class equation is
Abelian

6=1+3+2

Note: Two permutations in S are conjugates iff they have the same cycle type. Let 0 €S,
and also let m,, m,,...,m_ are the distinct integers which appear in a,, a,,...,a, times respectively in the

cycle type of o (including 1 cycles). Let &, be the number of cycles of length m,,i =1tor, so that

Zr:aimi =n
i=1

n!
(ma,!)(m<a,!)...(m"a,!)

OR

then, number of conjugate of o =

n!
(mia,1)(mia,!)...(ma,!)

Example 10: Find the number of cycle which commute with o =(543)(26)(78910) € S,,

Number of element commutes with ¢ =

Solution: We first rewrite the given permutation as & = (1)(543)(26)(78910) € S,,. Since all cycles of
permutations are disjoint so they are commutes i.e., o =(1)(26)(543)(78910) € S,,. So, cycle type of
a s,
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Cycle of length 1= (1)

Cycle of length 2= (26)

Cycle of length 3=(543)

Cycle of length 4=(78910)

i.e., cycle type of ¢ = (1,2,3,4), where 1+2+3+4 =10

10! 1o
@@ 4'r)  2.34

So, number of conjugate of « =

Example 11: Find the number of cycle which commute with « =(596)(874)(12) € S,

Solution: We first re-write the given permutation asa = (12)(596)(874) € S,,. Since all cycles of
permutations are disjoint so they are commutes i.e., « = (3)(4)(L0)(L1D) (1 2)(596)(874) €S, . So, cycle
type of ais,

Cycle of length 1= (3)(4)(10)(11)

Cycle of length 2= (1 2)

Cycle of length 3=(596)

Cycle of length 4= (87 4)

i.e., cycle type of o =(1L1,11,2,33), where 1+1+1+1+2+2+3=11

11 _1
144N (21)(3%2)  41.2.9.2

So, number of conjugate of « =

Example 12: Evaluate all permutations in A, which commutes with
(i) a =(12345) (i) S =(123) (i)  y=(12)(34)

O(Ss) _120 _

Solutions (i): As we know that O(As)zT 5

60. Since «a=(12345)e A and

a,a’,a’,a',a® =1 are distinct permutation in A, .

-~ O(N(a)) =5in A,

: _ _O(A) _60_.,.
= O(C(a)) = ON(@)) = 12 in A

As we know (12345) and (13245) break up into two conjugate classes each conjugate classes are of
length 12 in A, .

(ii): Let @ e S,s.t. @ fixes 1,2, 3. Then either &= (45)or @=1. Since B0, 5°0,0 are all permutation
in S; commuting with 8. Thus 3, #%,1 are only permutation in A, commuting with /3.

L O(N(B)) =3in A
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. _ _O(A) _60_ ..
..O(C(ﬂ))_O(N(ﬂ))_ 5 =20in A

. C(p) hasall cycles of length 3'in S

(iii): As we know that there are 8 permutations in S, commuting with y which are:

{I ,(12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}. From this set only even permutation
{1,(12)(34), (13)(24), (14)(23)} € A, . All these permutations of A, commuting with y = (12)(34)

S O(N(y)) =4in A

~O(C(>y) = O(A) —@:15 in A, which is same like .. O(C(y)) in S;.

O(N(y) 8
Hence conjugate class of y in A, and S, remains same.
Example 13: Find all the conjugate classes of A, and also show that A, is simple.
Answer: By using the previous examples we can verify that A, has 5 conjugate classes and these are:
c(n={1}
C((2123)) ={All 20 permutation commute with cycle (123) of length 3in S;.}
C((12)(34)) = {All 15 permutation commute with cycle (12)(34)in S;.}
C((12345)) = {12 cycles of length 5}
C((13245)) = {12 cycles of length 5}
These are the total 60 elements in A, .
Let Hbe any subgroup of A which is normal s.t H ={l}, H={A}. As His the union of some
conjugate classes in A . Since | € H,O(H) cannot divide O(A,) =60 .

Hence, Ajissimple.

Check your progress

Problem 1: What will be the class equation of any group of order 3?

Problem 2: What will be the class equation of Klein group (Klein group: Any group of
order 4 such that each of its non-identity elements are self inverse, generally this group is
denoted by K, -group)?

Problem 3: Which of the following isomorphism relation is correct and why?

() D,=Z, (i) D,=Z,xZ,
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4.6 SUMMARY

In this unit, we have studied about the Cayley’s theorem, various examples related to the class
equations and partition of an integer. After completions of this unit learners will be able to
characterized to any group into distinguish conjugacy classes and also by the class equation of any
group learners will be able to find the number of element in the centre, number of different conjugate
classes, number of element in the different conjugate class and order of the group. In a simple way we
can say that with the help of conjugate classes we can get most of the information about the group

without any prior knowledge.

4.7 GLOSSARY

» P(n) denotes the partition of any positive integer.

n!

» In the permutation group S, number of distinct r-cycle is1 ( 1
r(n-r)!

n!

Number of element commutes with cyclec =-— . _ _
(mia)(ma,!)...(m*a,!)
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4.10 TERMINAL QUESTIONS

Long Answer Type Question:
State and prove the Cayley’s theorem.

Prove that dihedral group D, is isomorphic to the symmetric group S, .

Find number of conjugate classes in S;.

Find the class equation of a non-abelian group of order 8.

Find the number of cycle which commute with o =(596)(874) €S,;.
Prove that A, is simple.

Let G be a group such that e = a e G, O(a) =finite. If G has only two conjugate classes then

prove that G is a group of order 2.

8. Prove that the number of conjugate classes in S, isP(n).
Q. Find the conjugate class of iand -1 in Q, and also find the class equation of Q,.
Short Answer Type Question:

10.  Write the class equation of non-abelian group of order 2°.
11.  Write all the partition of 5 i.e., P(5).

12. Find the number of elements in the centre of the group having class equation
8=1+1+(2+2+2).

13.  Write the class equation of U(7) = {1,2,3,4,5,6} under the operation multiplication modulo 7.
Fill in the blanks:

14.
15.

16.
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17.  The class of non-abelian group of order 6 is

18. If the class equation of any group is 4 =1+1+1+1 then group is

4.11 ANSWERS

Answer of self cheque question:

1. 1+1+1 2. 1+1+1+1

3. D, = Z, X Z, is correct because D, is abelian group not cyclic.
Answer of terminal question:

11

W C(i) ={i,—i},C(-) ={-1} and class equation is

8=1+1+(2+2+2) 14.  Permutation group 15.Simple 16. P(n)

17. 6=1+2+3 18.  Abelian
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Unit-5: DIRECT PRODUCT OF GROUPS AND CAUCHY’S
THEOREM FOR FINITE ABELIAN GROUPS

CONTENT:

5.1 Introduction

5.2  Objectives

5.3  External direct product
5.4  Internal direct product
5.5  Cauchy’s theorems

5.6  Summary

5.7 Glossary

5.8  References

5.9  Suggested Readings

Terminal Questions

Answers

5.1 INTRODUCTION

Baron Augustin-Louis Cauchy, a French mathematician, engineer,
and physicist who lived from 21 August 1789 to 23 May 1857,
produced groundbreaking discoveries in the fields of continuum
mechanics and mathematical analysis. He rejected the prior authors'
heuristic principle of the universality of algebra and was one of the
first to state and formally verify calculus truths. He practically

Augustin-Louis Cauchy
single-handedly founded abstract algebra's study of permutation 21 August 1789 to 23 May 1857

groups and Comp|ex ana|y3is_ https://en.wikipedia.org/wiki/Augustin-
Louis Cauchy
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According to Cauchy's theorem, which is found in mathematics and more especially group theory, if
G is a finite group and p is a prime integer that divides G's order (the number of its members), then
G includes one element of order p.

The direct product is an operation in mathematics, notably in group theory, that takes two
groups, G and H, and creates a new group, commonly designated G xH . One of the crucial ideas of

direct product in mathematics, this operation is the group-theoretic equivalent of the Cartesian product

of sets.

5.2 OBJECTIVES

After reading this unit learners will be able to
Implementation of Cauchy’s theorem in different types of group.
Describe the direct product of two or more than two groups.

Analyze the theorems related to Cauchy’s theorem and direct product of groups.

EXTERNAL DIRECT PRODUCT

In this section, we create an appropriate binary operation (*) that we term the external direct product
of groups on the cartesian product G, *G, of two groups, G, and G, . This method is frequently used

to create new groups out of existing ones as well as to break down existing groups into their
component parts. Thus, an essential idea in the structure theory of finite groups is the external direct

product of groups.

Let the n—groups, G;,G,,G;,...,G,are such that G =G, xG, xG, x...xG, under the operation *,
defined by

(a,a,,a,,...,a,)*(0,b,,b,,....b, )= (ab,,ab,,ab;,..,ab,)

Where each (a,,a,,a,,..,a, ),(b,b,,b,,...,0,)e G=G, xG, xG, x...xG, and ab,,i =1ton

For e.g., if the binary operation * between the groups K, x Z defined by
(a,m)=(b,n)=(@b,m+n)Vv(a,m),(b,n)e K, xZ

Since the group K, xZ have the identity element (e,0)and for every element (a,n) e K, x Z there

exist (a,n)" =(a,-n)eK,xZ [Because every element in K, is self inverse and K, is additive

inverse of n inZ]
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Similarly, (G*) is a group with identity elements e=(e,e,,e;,..€,) and

(a,a,,8,,.,a,) " =@ ',a, ,a, ,.,a, ) forevery (a,a,,a,,.,a,)ecG where e is the element of

G,forevery i=12,...,n
Definition: Let G,,G,,G;,...,G, are n groups and G =G, xG, xG, x...xG, then (G,*)is called the
external direct product of the groupsG,,i =1 to n.
Example 1: Consider the group S, and infinite group (Z,+) . Then the operation *on S, x Z is given
by: (&, m) *(8,n) = (a5, m+n)
Since identity element is (e,0) and (o, m)™" =(a',-m)Va € S,,m e Z . For example,
(12)4)7 =(12),-4)
And ((123),2)™" =((132),-2)
Now,
((12),4) =((13),7) = (12)(13),4+7) = ((132),11)
And ((13),7) *((12),4) = ((13)(12),7 + 4) =((123),1))
Which shows that S; x Z is non-commutative. Also S, x Z is an infinite group.
Note: It is interesting to observe that non-commutativity of S, x Z comes from the non-commutative
group S, whereas the infiniteness comes fromZ .
Theorem 1: Let G, and G, are two groups. Then G, xG, =G, xG,.
Proof: First, we define the mapping f : G, xG, — G, xG, by,
f(a,b)=(b,a)V(a,b) eG, xG,.
Then
f((a,b)*(a,,0,)) = f(aa,,bb,)
= f(bb,,a,a,)
=(b,a)*(b,,a,)
= f(a,b)*(a,,b,)
= f is a homomorphism and also f is one-one and on-to
= f is an isomorphism.
Hence, G, xG, =G, xG,
Theorem 2: Let G,,G,,...,G,, are n-groups. Then the group G =G, xG, x...xG, is abelian if and only

if each of the group G;,i =1to n is abelian.
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Proof: First we assume that G is abelian then we will prove that each G;,i =1to n will also abelian.

Let us assume for 1<i<n and a,beG,. Then (e,,€,,....€;,8,€.,,-.€,), (€,€,...6.5,0,€.,...

A R R
G and commutativity of G implies that
(el’eZ""’ei SRR ’en)* (el’EZ""’ei—llbiei+l""'en): (el’e27""ei—l’b’ei+l""’en)*
(el’eZ""’ei—l’a7e|+l’ ’en)

= (el’eZ""’eifl’ ab’eHl""’en): (el’e2’ i l’ba’ e|+l’ ’en)

= ab=Dba
Thus Vi=1to n,G, is abelian.

Conversely, assume that each G,,i=1ton is abelian. Let (a,a,,..a,),(b,b,,...,b,)eG. Then

a,b, € G,and since each G;is abelian, so ab, =ba, ,1<i<n.

Now, (a,,8,,...,a,) *(b,,b,,...b, )=(ab,ab,,..,ab,)
= (ba,b,a,,...b,a,)
=(b,b,,...,b, Xa,a,,...,a
= G, is abelian
Theorem 3: If G,,G,,...,G, are n-groups then Z(G, xG, x...xG, )= Z(G,) x Z(G,) x...x Z(G,) .
Proof: To prove the mentioned theorem, it will be sufficient to prove that result is true for n=2. Let
two groups are G,,G, and also considerx e G;,y € G, . Then
(X, y) € Z(G, xG,)
< (%) €(91,95) = (91, 92) * (X, Y)V(91, 9,) € G, x G,
< (X9, ¥9,) = (9:% 9,Y)V(91, 9,) € G, x G,
< Xxg, =9,x and yg, =9,yvg, €G,, 0, €G,
< xeZ(G)and yeZ(G,)
< (X, Yy)eZ(G)*xZ(G,)
Thus Z(G, xG,) = Z(G,)x Z(G,)
Example 2: Prove by example that product of two cyclic may or may not be cyclic.

Proof: As we know that Z,,Z; are two cyclic group while Z, x Z, is not a cyclic group because order
of Z,xZ, is24 but Z, x Z, have no element of order 24.
In another example Z,,Z, are two cyclic group and Z, xZ, is also a cyclic group because order of

Z,xZyis6and (1,2) e Z, xZ, have order 6. Then by theorem Z, x Z, is cyclic.
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Theorem 4: Let two finite cyclic group G,,G,of order m,n respectively. Then G, xG, is cyclic if and
only if gcd(m,n) =1

OR
Element (a,b) is a generator of G, xG, iff elements a,bare individually generators of the group G,,G,
respectively.
Proof: First we assume that G, xG, is cyclic group and also assume that (a,b) is generator of G, xG,

l.e.,, G, xG, =<(a,b) >. Then O((a,b)) =mn. Let d =gcd(m,n).

mn

Now (a,b)¢ =(a ¢,b"

m
d

):(elvez)

n
= mn|—
d

=d=1

Conversely, assume that gcd(m,n) =1. Let us consider that a is the generator of G,

(G,=<a>) and b is the generator of G,(G,=<b>). If we denote O(a,b)=Kkthen
(a,b)™ =@™,b™)=(e,e,)

= k|mn

Now, (a*,b*) =(a,b)* =(e,,e,)

= a“ =¢, and b* =e,; and so, = m|k,n|k

Then gcd(m,n) =1=mn|k

Therefore, k =mn =0(G, xG,) =[G, xG,|.

Hence G, xG, =< (a,b) > is cyclic group.

Corollary: z_xz =z iff gcd(m,n)=1

Proof: By the previous theorem we know that in a group for any element a <G, of order m and
b € G, of order n, if gcd(m,n) =1, then

O((a,b)) =mn

Hence, Z xZ =7, < gcd(m,n)=1

e.g., Since gcd(23)=1<=2Z,xZ,=Z,, 0r Z,xZ, =7,

Theorem 5: For the finite groups G, and G, the order of (ab)eG xG, is
O((a,b)) =1lcm(O(a),O(b)) .
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Proof: As we know by definition that if (a,b)eG xG,<aeG,beG,. Thus
vV aeG,beG,,0()in G, O(a)in G,and O((a,b)) in G, xG,all are finite.

Now, let n is the least positive integer such that (a,b)" = (e;,e,),

< nis the least positive integer such that a" =e, and b" =e,

< 0(a)|n,O(b) | n [By theorem that for any integer n,a" =e < O(a) | n]

Thus, O((a, b)) =Ilcm(O(a), O(b))

Note: It is not necessary that external direct product of two cyclic group is always a cyclic group. For
e.g. let ZxZis a cyclic group such thatZxZ =<(a,b)>. Since (L) eZxZ, so IreZst,

r(a,b)=@11) =a=b=1lor-1.

=< (a,b) >={(n,n)|ne Z}# Z xZ. Which is a contradiction.

=>our assumption is wrong that ZxZ isacyclici.e., ZxZ is nota cyclic group.

Theorem 6: Let two groups are G,and G, . Then
G,xG, /G, x{e}=G, and G, xG, /[{e}xG,x =G,
Proof: First we define mapping, f :G, xG, »>G, s.t,
f(x,y)=y V(x,y) e HxK.
So, f is a homomorphism and
ker f ={(x,y) €G,xG, | f(x,y) =€}
={xy)eG,xG, | f(x,y) =€
= {(x,e') | X eGl}
=G, x{e}
Since f is also onto function. Hence by using the first isomorphism theorem G, xG, /G, x{e}=G,.
Similarly, we have G, xG, {e}xG,x=G,;.
Theorem 7: Let Gand G are two groups. If Hand H are two normal subgroups of Gand G’
respectively, then H x H 'is normal in GxG and
GxG/HxH =G/HxG /H
Proof: First we will define the mapping, f :GxG —G/HxG /H by,
f(x,y)=(xH,yH) V(x,y) eGxG .
Then, vV (x,Y),(z,w) e GxG',
f((x y) *(z,w)) = f(xy,zw)

Department of Mathematics
Uttarakhand Open University




ADVANCED ABSTRACT ALGEBRA MATS501

=(xyH,zwH )

= (xHzH, yH wH ")

= (xH,yH ) *(zH,wH )

=f(x,y)* f(z,w)
= f is a homomorphism and also f is onto. Then by first isomorphism theorem,
GxG /kerf =G/HxG/H
Now we have only to show that ker f =H xH’
So, ker f ={(x,y) eGxG'| f(x,y)=(H,H)}

—{(xy) eGxG | (xH,yH) = (H,H")}

:{(x,y)erG'|xH:Hand yH':H'}

:{(x,y)erG'|XEHandyeH'}

=HxH
Hence the theorem proof.

5.4 INTERNAL DIRECT PRODUCT

The external direct products of groups, which give us a way to think of a family of different
groups as subgroups of a bigger group, were introduced and described in the preceding section.

Consider two groups G,and G, with identical elements eand e,, respectively, to be more precise.
Then two normal subgroups of G, xG,are N, =G, x{e,}=G, and N, ={g }xG, =G, . In this section
we will consider the reverse problem i.e., in a given group whether there is family of subgroups
H,,H,,...H, of G such that,

G=H,xH,x..xH,

As we may anticipate, not all groups can achieve it. Even if a group G can exist, certain requirements
must be met by any subgroups whose exterior direct product is isomorphic to G. The result below
gives us an idea of the requirements that the subgroups must meet. Going forward, we will no longer
use * to denote the group operation of the direct product, but rather just multiplicative notation.

Theorem 8: Let the family of groups are G,,G,,...G,. If G=G xG,x..xG, and

H, ={e.6,6.a,6...6 )& €G,| foreach i=12,..,n. Then

DI Mo il

1. H; isanormalin Gand H, =G Vi=1to n
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2. Every element of G can be expresses uniquely as hh,...h, where h, € H, foreach i=1,2,...,n.
Proof 1: Since we know that H, = ¢ because (e,,e,,....e,) € H,

Let us consider a=(g,,e,,....6,,8,€,,...€, ), b=(e,€,,..6,,0,€.,...6 )cH, Then

i+11°** ~n L M Vil

abil:(el’eZ""’ei—l’ai7ei+1""7en)(el’e2""’e b;,e e )_1

i—17 M il Mn

-1
= (elieZ""’ei—l’ 8y €iq5e- 8y )(el’ €€y, 8 € )

1 €110 By

-1
:(el,ez,...,ei_l,aibi ,em,...,en) e H,

So, by the necessary and sufficient condition for being subgroup of any group H; is subgroup of G .
Now for each g =(g,,9,,...9,)€G,

gag™' = ( N - giagi’l,em,...,en)e H,

Hence H,isnormal in G.

2: Let any element a=(a,,a,,..,a,)eG where a, €G,so h =(eg,e,,..e,,a,6.,,..6 )cH, for

i+1ree
each i=12,..,nares.t, a=hh,,..h,

Now we will prove the uniqueness property. For it suppose a =kk,,...,k, where k; € H,
=k, =(e,€,,...6,,8,8,,,....6,) for some b, € G;. Then

5 S A5 G

(a,a,,...a,)=a=kk,..k, =(b,b,,..b)

—a =b and hence h, =k, Vi=12,...,n

Since each element in Gis of the form hh,,...,h, where h eH, Vi=1ton, it follows that
G=H,H,..H .Also G =H, Vi=12..,n

=GzH,;xH,x..xH,

Definition: Let N,,i =1to k are the normal subgroup of a group G . If each element of G is uniquely
expressed as a=aya,..a, Where a eN,Vi=12,..,n then Gis called internal direct product of
N;,,i=1tok.

The word "internal” emphasises the fact that all of the components of the group N, must be subgroups
of the same group G and that the product a=aa,...a, formed by the members of the group
N,,N,,..., N, is truly a product of the group G .

Example 3: For the Klein’s 4-group K, ={e,a,b,c}, H, ={e,a} and H, ={e,b}are normal subgroup
of K, —group. Now, H,H, ={e,a}{e,b}={e,a,b,c}=K,
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= Each element of K, —group is expressed as product of an element of normal subgroup H, and an
element of H,.

Now, we have only to prove the uniqueness property, for it assume x,x, € H, and vy,,y, € H, such
that Xy, = X,¥,. Then x,7x, = v,¥, - € N, "N, ={e}

=X, X =e=VY,y,

=x=Xand y =Y,.

Hence, K, —group is internal direct product of normal’s H,and H, .

Example 4: As we know for every nonzero complex number z has unique representation z =re'
where r=z| and @=ampz. Then group of positive real numbers (reR") and
e’ eSt = {u eC’|lu |:1}. Hence C* is internal direct product of R* and S'.

Example 5: Set of integer (Z ) cannot be represented as internal direct product of two subgroup of Z .

It is to note that for distinct non zero integer mand n, mn e mZ NnZ = mZ NnZ = {0}.

A group must meet the following requirements in order to be an internal direct product of a certain
family of normal subgroups. This lemma is required in order to demonstrate this result.

Lemma 1: Let H,H,,..,H, are normal subgroup of G.

H, A(HH,.  HHp H ) = {6} Vi =12,k then XX, = X% V x e Hy, X, e H i = j.

Proof: Let us consider x, € H; and X, € H,. Then xxx X, e(xiHjxi‘l)Hj cH,, since His

normal in G . Similarly, xx;x "X, € H,.
Hence xx;x, "%, e H,nH, < H; n(H,H,...H_,H,,..H, ) ={e}

And so XX; = X;X;.

Theorem 9: Let H,,H,,...,H, are normal subgroup of G. Then G is the internal direct product of
H, H,,...H, iff

(i) G=HH,..H, and

(ii) H,~n(HH,..H,H,,..H)={e}foreach i=12,... k

Proof: Let we assume that G internal direct product of normalsH,,H,,....H, of G. Then VaeG,3

unique x,eH; st, a=xXx..xand so aeHH,.H,. Hence GcHH,.H,. Also

H,H,..H, cG,since every H,;is subgroup of G. Thus G=H,H,..H,. Now consider
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aeH n(HH,.H_H. .H) Then aeN, and a=xX..X,X,...X,  for some

X, €N, j=L.,i-Li+1..k

—e.eae.e=a=a,..a ,€a,..a,.

Since each  such  representation is  unique, it follows that a=e.
H, n(HH,..H, H,,..H,)={e} foreach i=12,... k.

Conversely, assume the given condition satisfies by the family of normal subgroup H,,H,,...,H,.
Then,

G=H,,H,,..,H, =VxeG can be represented as X = x,X,...x, where x; e H,.
Now we have to prove that such representation is unique. For it, let us suppose that another
representation is x =vy,Y,...y, wherey; € H,. Then by lemma 1, x,X,...x, =V,Y,...y, implies that
X Vi = (0 VX e (YiaXin D) WieaXia (VX )
eH, N(HH,..H_H,..H)={e}
Thus, x, =y, Vi=12,...k
=representation is unique for every xe G.
Corollary: Let N, and N, are normal subgroup of G. Then G is internal direct product of N, and
N, ifand only if G=N,N, and N, "N, ={e}.
By the definition of internal direct product we can stated it as: If G =N, x N, then G is internal direct
product of the normals G = N, and G = N, .

Conversly, up to isomorphism, every internal direct product can also be realised as an external direct
product.

Theorem 10: If Gis the internal direct product of the normal subgroups H,,H,,..,H,, then
Gz=H; xH,x..xH,.
Proof: First we define, f :G — H, xH, x...xH, by,
F (XXX ) = (X% %) YV (X, %p 000, X ) €G
By the previous theorem we know that every element in G has the unique representation xXx,...x, for
X; € G,so f iswell defined and also one-one and on-to both.
Now for each X =X X,..X,Y=V,Y,..Y, €G,
f(xy) = (XXX Y1 Ys--Yy)
= (XY %Yo X Vi) [By Lemma 1]
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= f(X1Y1' X5 Yo0mees Xkyk)
= (Xl’ Xy yeees Xk)! (y1a Yoreen yk)
=f(x)f(y)

= f is an isomorphism.

5.5 CAUCHY’S THEOREM

Theorem 11: Let p isaprime and G is a finite group s.t. p| O(G), then Ix e G s.t., O(x) = p.

Proof: First we prove the result for finite abelian group G by the induction on n=0O(G). Since result
is true for n=1. Assume that it is true for all group having order less than O(G). If Group has non-
trivial subgroup then G is cycilc group of prime order.

Since p|O(G),0(G) = p,G =< x >s.t. O(X) =0(G) = p. So result follows.

Let now H be a non-trivial subgroup of Gi.e., H #{e}, G. Since G is abelian, His normal in G . If
p|O(H), then, by induction hypothesis as O(H)<O(G),His abelian, 3JIxeHs.t.
O(X)=p,xe H=xeG. So, result is again true.

Let p is not divisor of O(H).

Since O(G) =0O(G/H). O(H) and p|O(G), we find p|O(%).O(H)

But p is not divisor of O(H), hence p|O(G/H). Also O(%)<O(G) as H ={e}and G is abelian
G . :
means q is abelian.

So, by induction hypothesis % has an element Hy of order p.

(Hy)" =H
= Hy? =H
=y’ eH
= (y°)' =e where t=0(H)
=(y)* =e
=0(y")|p
=0(y')=1 or p
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If y'=e (i.e. (O(y')=1then Hy' =He=H
= (Hy)' =H

= O(Hy) |t

= p|t=0(H), which is a contradiction
~O(y)=p,y €G

Hence for this case result is true.

By induction, result is true for all abelian groups.

Let now G be a any group. We again use induction on O(G). The result is vacuously true for
O(G) =1. Assume result is true for all groups with order less then O(G) . If T <G and p|O(T) then
by induction hypothesis 3x e T s.t. O(X) = p . So, result is true in this case. Assume p is not divisor of

O(T) forall T <G. Consider the class equation of G

0O(G)
O(G)=0(Z(G
(©)=0@E)+ 2, i)
Now a¢ Z(G)= N(a) <G

= p is not divisor of O(N(a))
O(G)

00) s 06)= 29 o)

AT ~O(N()

0(G)
=P 2 SN

Since p|O(G), we have p|O(G)—| >’ () =0(Z(G))

46 O(N(@)
But p is not divisor of O(T) VT <G
And Z(G) =G = G is abelian.

But result is true for abelian groups. Hence, by induction, result is true for all groups.

Example 6: Prove that an abelian group of order pg (where p, q are distinct primes) is cyclic.
Solution: Using the Cauchy’s theorem, 3da,beG st, O(a)=p,0O(b)=q. Also as
gcd(p,g) =L ab=ba

O(ab) =0O(a).0(b) = pq

i.e., abis an element of G having order equal to O(G) . Hence by theorems G is cyclic groups.

For e.g., abelian group of order 6, 10, 15 are all cyclic

Example 7: Any group (G) of order 2n, where nis odd integer (>1), is not simple.
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Solution: Let abe any element of the group G . Define,

f,:G—>G sit,

f,(x) =ax

Then f, is 1—-1 onto map, i.e., a permutation

Let G =Collection of such permutations then G forms a group and G=G .

Since 2|O(G), then by Cauchy’s theorem there exist an element g €G, s.t., O(g)=2and f, €G .

As we know every permutation can be written as product of disjoint cycles either 1-cycle or 2-cycle as

O(g)=2ie, g°=¢e

Notice f,*(x) = f,(fg(x)) = g’x =x=1(X)

sfr =1

For permutation of 3-cycle (abc),(abc)® = 1.

Since, permutation f in the cycle form cannot have any 1-cycle also, as suppose (X) is a 1-cycle then
X —> X

e, f,(X)=x=gx=x=>g=e

not true as O(g) =2.

Hence f; as permutation can be expressed as product of 2-cycles only. Since O(G) = 2n there can be
n two cycles.

So f, can be expressed as product of n (odd) number of transposition or that f; js an odd permutation.

Thus in the even permutation G hasn/ 2 elements. f, e G, f, is odd, so G contains both even and

odd permutations.
If H contains only even permutations then,

0©)_ 0©) _,
2 O(H)

O(H) =

—H is of index 2 in G and is, therefore, normal.

Since G =G and G has a normal subgroup, G will have a normal subgroup or that G is not simple.

For e.g., any group having order 30 is not simple as O(G) =30 = 2.15.

Check your progress

Problem 1: Check that the group having order 34 is simple or not?

Problem 2: Check that the abelian group having order 34 is cyclic or not?
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Problem 3: Which of the following external direct product of groups are cyclic and why?

() Z,xZ, (i) Z,xZ,

5.6 SUMMARY

In this unit, we have studied about the external direct products, internal direct products and Cauchy’s
theorem for finite abelian group and also there related theorems and examples. After completions of

this unit learners are able to memorise the following things:

> External direct product of groups is also a group and this direct product does not affected by the
operations of each individual groups.
External direct product of infinite cyclic groups is not cyclic group and also external direct
product of finite cyclic groups may or may not be cyclic.

Any group of order 2n, where nis odd integer (>1), is not simple

GLOSSARY

G, xG, xG; x...x G, denotes the external direct product of the groups G,,G,,G;,...,G,
IfH,,H,,...,H, are normal subgroup of G. Then Gis the internal direct product of

H, H,,...H, iff G=H,H,..H, and H, A (H,H,..H ,H

i+1*

.H,)={¢e} foreach i =12,...,k
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5.10 TERMINAL QUESTIONS

Long Answer Type Question:

If G, and G,are two finite groups. Then prove that for each element aeG,and beG,, the
order of the element (a,b) in the group G, xG, is lcm(O(a), O(b)) .

If G, and G, are two groups. Then G, xG, /G, x{e,}=G, and G, xG, {e,}xG, =G,

If G, and G, are two groups and H,, H, are two normals of G,, G, respectively then prove that
H, x H,isnormal in G, xG,and G, xG,/H, xH, =G,/ H, xG, /H, and

G, xG, {e}*xG, =G,

Let H,,H,,....H, are normal subgroup of G. Then prove that G is the internal direct product
of H,,H,,...H, iff

G=HH,..H, and

H, n(H,H,..H,_H,,.H)={e}foreach i =12,....k

i+l

If G,G,,..,G, are the family of groups st, G=G xG,x..xG, and

H ={e.e,...6,,a,6.,,.,6 )| a G} foreach i=12,..,n. Then prove that

5 Ci11 HAjr G e

H; isanormalin Gand H, =G Vi=1to n
Every element of G can be expresses uniquely as hh,...h, where h, € H, foreach i=12,...,n.
Prove that if any groupG is internal direct product of normal subgroups H,,H,, H,,....H,
then, G=H, xH, xH; x..xH,
If any prime p divides the order of any group G then 3x e G s.t.,, O(x) = p.
Prove that for any group (G) having order 2n, where nis odd integer (>1), is not simple.
Provethat Z xZ =Z_ ifandonlyif gcd(m,n)=1

Short Answer Type Question:

10. Prove that S, x Z non-commutative and non-cyclic infinite group.

11. Prove that the external direct product of two cyclic groups Z,and Zis not cyclic.
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12. Prove that the external direct product G, x G, of two groups G, and G, is abelian if and only if
G, and G, both are abelian.
Prove that external direct product of two infinite cyclic group is not cyclic.
If Hand K are two normal subgroup of G. Then G is internal direct product of H and K if and
onlyif G=HKandH nK ={e}.

Fill in the blanks:

15. Z, x Z, is isomorphic to

16.  Group of order 74 is

17. Any abelian group of order 35 is

18.  The external direct product of N (set of natural numbers) and Z (set of integers) is

19. zm X Zn = Zmn iff ng(m! n) =

5.11 ANSWERS

Answer of self cheque question:
1. No 2. Yes : Z, X Z5 is cyclic because gcd(2,3) = 1.

Answer of terminal question:

15. zZ, 16.  Simple

18. notagroup 19.
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Unit-6: SYLOW SUBGROUPS, SYLOW’S THEOREM AND

THEIR APPLICATIONS

CONTENT:

6.1  Introduction

6.2  Objectives

6.3 p- Group

6.4  Sylow’s Theorems
6.4.1 Sylow’s First Theorem
6.4.2 Sylow’s Second Theorem
6.4.3 Sylow’s Third Theorem
Summary
Glossary
References
Suggested Readings

Terminal Questions

Answers

6.1 INTRODUCTION

Norwegian mathematician Peter Ludwig Mejdell Sylow (12 December 1832 — 7 September 1918)
established key ideas in group theory.

He was born and passed away in Christiania, which is now Oslo. Sylow was the brother of Carl Sylow,
a military commander and sports figure, and the son of government minister Thomas Edvard von
Westen Sylow. He attended Christiania Cathedral School in 1850 and Christiania University in 1856.
Sylow taught in the high school at Hartvig Nissen School before going on to lead Halden as its
headmaster from 1858 to 1898.
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Peter Ludwig Mejdell Sylow
12 December 1832 —7 September 1918

https://en.wikipedia.org/wiki/Peter_Ludwig_Mejdell_Sylow#:~:text=Sylow%20was%20a%20high%20school,his%620theorems%20regarding%20Sylow%
20subgroups

In 1862, he taught Galois theory as a guest lecturer at Christiania University. He then raised the
query that resulted in his theorems concerning Sylow subgroups. After publishing the Sylow theorems
in 1872, Sylow spent the next eight years of his life working with Sophus Lie to edit his countryman's
mathematical writings, Niels Henrik Abel. He was appointed as a professor at the University of
Christiania in 1898.

He received the Kronprinsens gullmedalje (Crown Prince's Gold Medal) from the University of
Oslo in 1853. He was chosen for admission to the Norwegian Academy of Science and Letters in
1868. He received an honorary degree from the University of Copenhagen in 1894, and he afterwards
joined Acta Mathematica as an editor.

Three conclusions on the structure of finite groups were proven by the French mathematician
M. L. Sylow, and they are used to describe simple groups. It's noteworthy to note that M. L. Sylow
was able to demonstrate same conclusions for permutation groups. George Frobenious was inspired by
the Cayley's Theorem to demonstrate the Sylow Theorems in a broader context. Here, we demonstrate
the Sylow Theorems using group action methods. To do this, we must first demonstrate the following
two findings on group behaviour.

We will talk about Sylow's three theorems, p-groups, and their applications in this unit. The
concepts created are so valuable that much about a group's nature may be understood just by knowing

its arrangement.

6.2 OBJECTIVES

After reading this unit learners will be able to

e Memorized about the Sylow’s group which is the extension of Lagrange’s theorem.

e Implementation of Sylow’s theorems to find the number of subgroups of the group on the basis

of order of the group.
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e Analyze the theorems related to Sylow’s theorem and Sylow groups.

6.3 p-Group

Definition: Any group is called p-group if its each element has order p"where p=prime. Here it
should be remember that p will be same for all element of group and only r may different for different
elements.

eg., In the K,={1,12)(34),(13)(24),(14)(23)} group and the Quaternian group
Q= {il +i,tj,* k}, each elements are of order 2". So, these groups are called 2-group.

Here we will learn about mainly about the finite groups.

Theorem 1: Any finite group G is p-group iff O(G) = p".

Proof: Let we assume that G is p-group then there exist prime qs.t., q|O(G). Then by Cauchy’s
theorem there exist an element a € Gs.t., O(a) = q. But according to definition of p-group O(a) = p'.
=q=p

=q=p i.e, pistheonlyelements.t., p|O(G). Thus O(G) = p"

Conversely, let we consider O(G) = p" and any element aeG. Then by Lagrange’s theorem
O(X)|O(G) = p" = O(x) = p’

Hence, order of each element of group is of the form p". So, G is p-group.

Note (i): Each p-group has non-trivial centre because each group of order p", O(Z(G)) >1.

(if): Any p-group may or may not be abelian. For e.g., K, is abelian and Qgis not abelian while both
are 2-group.

Example 1: Let H, K are two subgroup of finite group G then either H — K or K < H . Then prove
that G is p-group.

Solution: If G is a cyclic group of prime order and G has no proper subgroup, thus result is true.

Let us suppose that H (= G) is a proper subgroup of G .

First we will prove that G will be cyclic.

Since HcG,3xeG, s.t., xgH.

Let K=<x>,then KgHas xeK,x¢H
So, according to given condition, H c K
If K=G then Gis cyclic (as K is cyclic)
Suppose K =G then 3y eGsit, Jy¢ K
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Let L=<y > then L ¢ Kand by given condition K c L
If L=G, G will be cyclic, L = G proceed as above and as G is finite, after a finite steps, we find that
G is cyclic.
To prove that G is p-group, suppose two distinct primes p,qs.t., p,q|O(G). Since G is cyclic,
3 subgroup Hand Kof Gwith O(H)= p,O(K)=q (For the cyclic group convers of Lagrange’s
theorem holds)
Now, H ¢ Kas O(H) | O(K)
K & Has O(K) | O(H)
Wherever there is a conflict with the claimed statement.
Hence only one prime dividing O(G) or that G is a p-group.
Converse of this example also holds.
Example 2: If Hand K are two subgroup of a finite cyclic p- group G then either Kc HorH c K.
Proof: Let G =< x> is cyclic group and x is its generator, then O(G) =O(x) = p" where p =prime.
Let H=<x" >
Let d =gcd(m, p")
Then x® = x™P® = x™ xP® = (x™)" e H [as O(x) = p"]
Thus, < x* >c H
Againas d|m, m=dq
So, x" =(x")% e<x? >
Orthat H =< x™ >c< x* >
And hence H =<x® > where d | p"
Andso H =<x" >
Let K is another subgroup of G, then K =<x® >. Suppose i >kand let i =k +twhere t>0 is an

integer.

i K+ kpt
Now x” = xP ‘:(xp) eK

— H =<xp‘>gK

If k>1i, then K< H

Hence prove the result.

Example 3: Prove that each proper subgroup is proper subgroup of its normalizer in finite p-group G .
OR
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If O(G)=p",H<G,H=G, then 3geG,geH,st. gHg™' =H

Solution: We will prove result by induction method on n. Let n=1. Then O(G) = p. Since H =G,
O(H) =1.

~H={e}or gHg" =g{e}g ™ ={e}=H Ve= g eG.

g=e=>0g¢H

Thus it is true for n=1. Let it is true for all groups which have order less than p". Let O(G) = p".
Suppose H = N(H).

Since Z(G)c N(H)=H,H =G

is a proper subgroup of
Z(G) prop group Z(G)

Now, O G =p",m<n
Z(G)

For convenience, we write Z(G) = N, then by induction hypothesis, 3Ng e % Ng ¢ % s.t.

H 4 H
Ng— (Ng)™* =
gy (Na)™ =
4 H

= Nghg™ = Nh, for some h, e H
=ghg*h " eN=Z(G)cH
=ghgteHVheH

=gHg " c H

= gHg ™' =H as = O(gHg ™) =O(H)

Thus g e N(H) and as Ng ¢ % g ¢ H,orthat N(H) = H, a contradiction. Hence H — N(H)

Thus result is true for nalso.

By induction, result is true for all n>1.

Example 4: Let for a prime (p)O(G) = p". If H <Gs.t. O(H) = p"*, then show that H is normal
subgroup in G.

Solution: H = N(H) <G

Since O(H) = p"*|N(H)|O(G) = p"
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O(N(H))=p""or p

If O(N(H)) = p" = 0(G)
Then N(H)=G

And so Hisnormalin G.
If O(N(H))=p™"

Then N(H)=H

Since Z(G) cN(H)=H

H n-1-m _AMm
O(mj =p , Where O(Z(G))=p",m>0

G n-m
n O(mj .

Now we will prove result by induction method on n. When n=1,H ={e} and so His normal in G .

Assume result to be true for all p —groups with order less then O(G) . Here G isa p—group s.t.,

Z(G)

O( G J= p"™,n—m<n (as m>0) and O[LJ p" ™. By induction hypothesis, %is

2(G) 2(6)

normal %: H is normal in G. So N(H)=G = H =G, a contradiction. Thus, O(N(H)) = p"™*.

So result is true for nalso. Hence, result is true for all n >0

Lemma 1: Let Gbe a group of orderp", pbe a prime and S be a finite G-set. If
S, ={aeS|ga=avg G}, then | S|4 S, |(mod p)

Proof: Let aeS. Then ae S, if and only if the orbit [a] ={a}, equivalently|[a] |=1 . Hence

S can be written as a disjoint union S=S;uU[a]ula,]u..u[a] where [a][a,]..,[a,] are

distinct orbits of Gon S and disjoint with S;. Then |S|HS, |+|[a]]+]|[a,]]+.+|[a]]|. Since
|G|

a; ¢Sy, so there is g G such that ga, #a = g ¢G, and so |G, [<|G|. Thus l[a‘]”>G—

a |
k

Then|[a,]|>1 and|[a]=[G:G,1lIG|= p" = pll[a;]|V1<i<k.Hence| p> |[a;] and it follows that
i=1

S| =S| (mod p).

Recall that if every element of a group G has order p";n > 0for some fixed prime p, then G
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is called a p - group. With the help of Cauchy's Theorem we have proved that a finite group G isap -

group if and only if |G| = p" for some n>0.

We call a subgroup H of agroup Ga p-subgroup if H isa p -group. In particular, for every

prime p, {e}isa p-subgroup of every group G, since {e}{=1= p°.

Lemma 2: If Hisa p-subgroup of a finite groupG , then [N, (H): H] =[G : H](mod p) .

Proof: Let S be the set of all left cosets of H in G. Then H xS — S given by (g,aH) — (ga)H is an
actionof Hon S. Since H isa p -group, |S| =|S,|(mod p).

Here |S|=[G:H] . Now for aeG,

aHeS, < gaHVvVgeG

<a'gaeHVgeG

< a'HacH

< aeNg(H)

shows that S, is the set of all left cosets aH such that that a € Ng(H), that is |Sy|=[Ng(H): H.
Hence [G:H]=[Ng;(H):H](mod p).

Corollary 1: Let p be a prime and H be a p-subgroup of a finite group G. If p|[G:H], then
Ng(H) = H.

Proof: Since G is afinite groupand H isa p -subgroup of G, so

[G:H]=[Ng(H):H](mod p)

Then p|[G:H]= p|[Ns;(H):H]. Since [N;(H):H]=0it follows that [N;(H):H]> pand the

result follows.

6.4 SYLOW’S THEOREMS

Now we will discuss about the three main fundamental theorem of Sylow’s named as Sylow’s theorem

and also their implementation in various examples.

6.4.1 SYLOW'S FIRST THEOREM

Theorem 2: (Sylow's First Theorem) Let G be a finite group of order p"m, where p is a prime,
n>0 and gcd(p,m)=1. Then Ghas a subgroup of order p'Vv1<i<n. Moreover, for every

subgroup of order p' Vi <n, there is a subgroup K of order p'*'such that H is normal in K.
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Proof: We prove that G has a subgroup H of order p' V1<i < n by induction on i. Since

n>0,p| |G| and it follows from the Cauchy's Theorem that G has a subgroup H of order p .

Assume that H is a subgroup of order p',1<i<n. Since H is a subgroup of order p', so
[G:H]=[N(H):H](mod p). Then p|[G:H]= p|[N(H):H]=|N(H)/H|, and
it follows from the Cauchy's Theorem that the quotient group N(H)/H has a subgroup K/H of

order p. Thus G has a subgroup K such that [K|=|K/H|/H|= p'*. Hence, by the principle

of mathematical induction, G has a subgroup of order p'for every 1<i<n. Finally, K = N(H)

shows that H is normal in K.

As an immediate consequence we have following extension of Cauchy's Theorem:

Corollary: Let G be afinite group and p be a prime. If p"|| G|, then G has a subgroup H of order

p". The second part of the Sylow's first theorem motivates us to introduce the notion of maximal

p -subgroups.

Definition: Let p be a prime, then a subgroup P of G is called a Sylow p -subgroup if it is a

maximal p -subgroup of G, that is, if Hisa p-subgroup of Gand Pc H <G then P=H . If Gis
a finite group then G can have only finitely many subgroups and a maximal p -subgroup.

If Gis infinite then, also G has a maximal p -subgroup, by the Zorn's Lemma. Thus, for every prime
p every group G has a Sylow p -subgroup, though they may be trivial.

We have following equivalent characterization of Sylow p -subgroups.

Theorem 3: Let G be a finite group of order p"m,n>0and gcd(p,m)=1. Then a subgroup His a
Sylow p -subgroup of G ifandonlyif |H |= p".

Proof: First assume that H is a subgroup of G such that |H |= p". Let Kbe a p -subgroup of G such

that H c K. Since K isa p-subgroup, so |K| = p"for somer >0. Now by the Lagrange's Theorem,

IK||G| i.e. p"# p"m and gcd(n, m) =1together implies that r <n.Also Hc K =n<r.Thus r=n
and |H|==|K|=p". Hence H =K andH is a maximal p —subgroup.

Conversely, suppose that H is a Sylow p-subgroup. Then |H|= p'for some r>0. Now, by the
Lagrange's Theorem, [H|G|, thatis p’ | p"m and gcd(n,m)=1=r<n.If r<n

then, the Sylow's first theorem H is contained in a subgroup K of order p"*which contradicts that H

is a maximal p -subgroup of G. Thus r =nand |H|= p"
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Following result has an important role to characterize the nilpotent groups.
Theorem 4: Let Gbe a finite group. If every Sylow subgroup of Gis normal, then Gis a direct

product of its Sylow subgroups.

Proof: Let |G|= p,"p,™...p, where p,are distnict primes. Since each Sylow subgroups of G is
normal, so G has unique Sylow p;-subgroup for every p;, say P,. Let a; € R and a; € P;, where

i # j.Since both Pand P,are normal, so a;a;a;‘a;' e P N P,.

Now ged(R[P,)=1

=by the Lagrange's Theorem, that [P ~P,|=1 and so P P, ={e}. Thus aa, =a;a. Now let

aeP n(PP,..P_P

r+lee

P ). Then a=aa,..a ,a,,..a,

where a; € P.. Now O(a;)||R[, thatis O(a;)| p;". Thus O(a)| p," and a,a; =a;a, Vi # j

=0@) ]| p," ...p,, P, p . Since gcd(pr”', R le”'”...pk”“):l. So O(a)=1 and
a=e.Thus P n(PP,..P_P...P)={e}

PP PP P = PR, [ Py TP o] Pl B D™ p ™ | G

Hence G=PP,..P P

r+!*

.P.and Gis an internal direct product of the Sylow subgroups
P,Ps P Py B

Lemma: Let G be a finite group of order p"m, where pisa prime, n>0and gcd(m,n) =1.

(1) Every conjugate of a Sylow p -subgroup is also a Sylow p -subgroup.

(i) If G has unique Sylow p -subgroup P, then Pisnormalin G.

Proof (i): Let Hbe a Sylow p-subgroup of G and K be a conjugate of H. Then K =aHa ™ for

some a e G which implies that|K|=|H| = p". Hence K is a Sylow p -subgroup of G .
(ii): Let H be the unique Sylow p -subgroup of G. ThenV g € G, gHg ™, is a Sylow p -subgroup and

uniqueness of H implies that gHg™ = H . Hence H is a normal subgroup of G .

The converse of this results is also true and can be verified by following theorems.

6.4.2 SYLOW'S SECOND THEOREM

Theorem 5: (Sylow's Second Theorem) Let G be a finite group of order p"m, where pis a prime,

n>0 and gcd(m,n) =1. Then any two Sylow p -subgroups of G are conjugate, and also isomorphic.
Proof: Let K and H are two Sylow p -subgroups of G.
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Denote S = {aH|a € G}and define an action of Kon Sby (k,aH) — (ka)H . Since K isa p-group,
so it follows that

S| =S| (mod p), where

S, ={aH eS|(ka)H —aH Vk e K}=faH eS|a'kacH VkeK}={aH eS|a*Kac H /.

Now |S|:[G:H]=%:m: p1|S|, since ged(p,m)=1 and p [|S,|. Thus |[So|>0. Let aH =S,.

Then a*Kac H. Since [a*Ka|=|K |= p" =/ H |, 50 aKa=H . Hence Kand H are conjugate.

We have following useful corollaries.

Corollary: Let K be afinite group and P be a Sylow p -subgroup of G. Then P is normal inG iff it
is the unique Sylow p -subgroup of G .
Proof: First assume that Pis normal. Let Qbe a Sylow p-subgroup of G. Then Pand Qare

conjugate, by the Sylow's second theorem. Hence there is a<G such that Q =apa™. Since Pis

normal in G, so aPa™ = P. Therefore Q =P and G has unique Sylow p -subgroup.
The converse follows from the Lemma 1.

Corollary: Let G be a finite group. Then for every Sylow p -subgroup P of G

N(N(P)) =N(P)

Proof: Let ae N(N(P)) then aN(P)a™ = N(P)and so aPa™ < N(P).

Now |P|=|aPa*| = both P and aPa *are Sylow p-subgroup of G and hence N(P).

Since P is normal in N(P), so Pis the unique Sylow p-subgroup of N(P), and it follows that
P=aPa™. Thus ae N(P)and N(N(P)) = N(P). Therefore N(N(P)) = N(P)

The number of Sylow p -subgroups within a group G has been defined via Sylow's third theorem.
Assume S is the collection of all Sylow p-subgroups. Every Sylow p-subgroup's conjugate is
likewise a Sylow p -subgroup, hence for any subgroup H of G,

HxS — S, given by

(a,P) »>aPa™, is an action of H on S . Also any two Sylow p -subgroup are conjugate on S, which

implies that if G acts on S by conjugation then there is single orbit of G on S.

6.4.3 SYLOW'S THIRD THEOREM

Theorem 6: (Sylow's Third Theorem) Let G be a finite group of order p"m, where p is a prime,
n>0and gcd(m, p) =1.
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Then the number of Sylow p-subgroup (n,) is of the form 1+kp for some k>0 and is such that
n,[p"m.

Proof: Let S be the set of all Sylow p-subgroups of G and P be a Sylow p -subgroup. Consider

action of P on S by conjugation, that is

(p,H) > pHp™

Since Pis a p-group, so [S|=]|S,|(mod p), where S;= {H eS|pHp =HVpe P} =

={HeS|P<=N(H)}. Then PeSyand S, #¢. Let Q eS,then P < N(Q). Since both P,Q are
Sylow p - subgroups of G, so they are Sylow p -subgroups of N(Q) and are conjugate in N(Q). Let
ae N(Q)such that P=aQa™. But then P=Q, since aQa =Q. Hence S, ={P}and it follows that
| S |=1(mod p), that is | S |=1+ kp for some k > 0.

To prove the second part, consider action of G on S by conjugation. Then there is only one

orbitof Gon S, andso S =[p] for every Sylow p -subgroup P of G. Thus

n, = SHIPI=IG:G,]

and hence n, |[G|

Applications of Sylow’s theorem for finite group are given below,

Example 5: Let G be a group of order 45=3%5. Denote the number of Sylow 3-subgroups of G by

n,. Then n, =3k +1for some k >0and n,|45. Hence n, =1 and G has unique Sylow 3-subgroup

H . Thus H is a normal subgroup of G of order 3° =9.

Example 6: We will prove that each group having order 99 is abelian.

Let G be a group of order 99=11.3?. Let n, be the number of Sylow 3-subgroups of G . Then,

n, =3k +1 for some integer k >0and n, |99. It follows that G has unique Sylow 3-subgroup, say H
which is normal in G and |H |=9. Similarly G has unique Sylow 11-subgroup, say K which is
normal in Gand | K |=11. Then H nK ={e} and | HK | H || K |=99 implies that G = HK . Thus G
is an internal direct product of H and K. Hence G=H xK. Since |H |=3%, so H is abelian and
| K |=11implies that K is abelian. Therefore G is abelian. Also note that G = Z, or Z, ® Z,,.

Example 7: We will prove that each group having order 15 is cyclic.

Let G be a group of order 15=3x5. Denote the number of Sylow 3-subgroups of G byn,.

Then n, =1+ 3k for some k >0 and n, |15 . Hence n, =1and G has unique Sylow 3-subgroup,
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say H.Then H isnormal in G. Similarly G has unique Sylow 5-subgroup K and so K is normal in
G. Since gcd(| H |,| K|) =10 | H nK |=1and we have

[HIIK] _

| HK |=
|HNK|

15

Thus G =HK and G becomes an internal direct product of K andH . Now |H |=3, a prime

implies that H = Z,. Similarly K = Z, . Therefore,

G=zHxK=Z,xZ,=27,

Example 8: Prove that each group having order 255 is cyclic.

Let G be a group of order 255=17.5.3. Let n; be the number of Sylow 17-subgroups. Then

n, =17k +1for some integer k >0 and n,, | 255 implies that n; =1. Thus G has unique Sylow 17-

subgroup, say H which is normal in G and | H |=17. Then the normalizer of H is N(H)=G. Since

% is isomorphic to a subgroup of Aut(H), so ’C\:((I:I))‘ divides | Aut(H) |H Aut(Z;,)|. Now

G

L G ..
Aut(Z.,) =U., implies that divides 16. Also
( 17) 17 p C(H)‘ C(H)

‘| G |=255. Then gcd(16,255) =1

%‘ =1and G=C(H). Thus every element of H commutes with every element of G, whence

j ‘

H < Z(G). Then 17||Z(G)|, which also divides 255. Hence |Z(G)|=17,51,850r255 and so

i:15,5,30r1. But every group of order 15,5,30rlis cyclic; and it follows that G is abelian.

ZG)

Now, by the fundamental theorem for finite abelian groups, G=Z7,®Z. ®Z,=27,.
Now we characterize all groups of order 2p, where p is a prime.

Theorem 7: Let p be an odd prime. If G is a group of order 2p, thenG=Z, or G=D,.

Proof: Let G be a group of order 2p. Then Cauchy's Theorem implies that G has an element a of

order p and an element b of order 2. Denote H =<a >. Then [G:H]=2 implies that H is normal
in G. So bab=bab*eH which implies that bab=a' for some O0<i<p. Then
a’ =(a')' = (bab)' = (bab)' =ba'b. Also bab=a' = a=b"ab’=bab. Thus a" =a, that is,
a*=eandso p|i?—1=(i—-1)(i+1),since O(a)=p.Since pisaprimeso pli—lor p|i+1.

If pli-1, then i<p=i-1=0 ie. i=1. Then bab=ajand so ba=ab™*=ab, forcing
O(ab) =lcm(O(a), O(b)) =lcm(2, p) = 2p, since p is an odd prime. Hence G = Z,,.
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If p|i+1 then i= pk—1 for some integer k , and we have bab=a' =a* =a"*that

is, ba=a*=a""b. Also we have H=<a>is normal in Gsuch that ‘%‘:2. Since

Ob)=2fpSH]|, so bgHand bH #H. Thus G/H =<H,bH >. Therefore every element of G
can be written as b™a"and so G =< a,b >. SinceO(a) = p,O(b) = 2and ba =a’™b, it follows

that G=D,.

Example 9: Let O(G) =30. Then show that

(1) Either Sylow 3-subgroup or Sylow 5-subgroup is normal in G .

(i) G has a normal subgroup of order 15.

(i)  Both Sylow 3-subgroup and Sylow 5-subgroup are normal in G.

Solution: O(G) =30=2x3x5

The number of sylow 3-subgroup is 1+ 3k and (1+3k)|10=k =0 or 3

If k=0, then sylow 3-subgroup is normal.

Let k =0, then k =3. This gives 10 Sylow 3-subgroup H, of order 3 and so we have 20 elements of
order 3.

[For i= j, O(H;nH;)|O(H;)=3=0(H; nH;)=1 only and so these 20 elements are different.
Each H;has one element eof order 1 and other two of order 3.
aeH, =0(a)|O(H,)=3=0(a)=13].

The number of sylow 5-subgroup is 1+ 5k and (1+5k)|6 =k =0 or 1.

If k =0. Then sylow 5-subgroup is normal.

Let k #0. Then k' =1. This gives 6 Sylow 5 subgroup each of order 5 and we get 24 elements of

order 5. But we have already counted 20 elements of order 3. Thus we have more than 44 elements in
G, a contradiction. So, either k =0or k' =0.

.e., either Sylow 3-subgroup or Sylow 5-subgroup is normal in G .

Which proves (i).

Let H be a Sylow 3-subgroup of order 3 and K, a Sylow 5-subgroup of oder 5.

By (i), either His normal in G or Kisnormal in G.

In any case, HK <G,0(HK) =15as O(H nK)divides O(H)=3 and O(K)=5= O(H nK)=1.
Since index of HK in Gis 2, HK is normal in G . This proves (ii).

Suppose, His normal in G, Kis not normal in G. By (i) G has 6 Sylow 5-subgroup and so 24
element of order 5. But O(HK) =15= HKiis cyclic
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— HK has ¢(15) =8 elements of order 15.
Thus G has 24 +8 =32 elements, a contradiction.

~. K isnormal in G.

If Hisnotnormal in G, they by (i), G has 10 sylow 3-subgroup and so 20 elements of order 3. From
above HK has 8 elements of order 15 and K has 4 elements of order 5. This gives 20+8+4 =32
elements in G, a contradiction.

. H isnormal in G. So both H and Kare normal in G .

This proves (iii).

Check your progress

Problem 1: Check that O i cannot be 77.
Z(G)

Problem 2: Check that S, has Sylow 2-subgroup or not?

Problem 3: Check that groups have following order must contain normal Sylow subgroup?
(i) 12 (i) 28 (iii) 56

6.5 SUMMARY

In this unit, we have studied about the p — groups and three fundamental Sylow’s theorem ( Sylow

first, second and third theorem) and also their applications and implementation on various examples.
After completions of this unit learners are able to memorise the following things:

> Sylow’s theorems are the extension of Lagrange’s theorem.
> Using the Sylow’s theorem we can find mainly normal subgroups or sugroups in any finite

groups.

GLOSSARY

Any group is called p-group if its each element has order p" where p =prime.
Sylow’'s First Theorem: Let G be a finite group of order p"m, where p is a prime, n>0
and gcd(p,m) =1. Then G has a subgroup of order p' v1<i<n.

Sylow's Second Theorem: Let G be a finite group of order p"m, where pisaprime, n>0
and gcd(m,n)=1. Then any two Sylow p-subgroups of G are conjugate, and also
isomorphic.
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» Sylow's Third Theorem: Let G be a finite group of order p"m, where p is aprime, n>0

and gcd(m, p) =1. Then the number of Sylow p-subgroup ( n,) is of the form 1+kp for some

k>0 andissuchthat n | p"m.
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TERMINAL QUESTIONS

Long Answer Type Question:

1. If Gbe a group of orderp", pbe a prime and Shbe finite G- set. |If

S, ={aeS|ga=aVvgeG}, then prove that |S|=|S,|(mod p)

State and prove the Sylow first theorem.

State and prove the Sylow second theorem.

State and prove the Sylow third theorem.

If G be a finite group and every Sylow subgroup of G is normal then prove that G is direct
product of its Sylow subgroup.

Prove that for a odd prime p, if Gisa group of order 2p,thenG=Z, or G=D,.
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If Gbe a finite group of order p"m,n>0and gcd(p, m)=21then prove that His Sylow p-
subgroup of Gifandonlyif |H |= p".
Let G be a finite group then prove that for each Sylow p —subgroup P of G N(N(P)) = N(P)
Let G be a finite group and P be a Sylow p—subgroup G. Then Pis normal in G if and only
if it is the unique Sylow p —subgroup of G .

Short Answer Type Question:

10. Prove that group G having order 30 has a normal subgroup of order 15.

11. Prove that the group G having order 255 is cyclic.

12. Prove that the group G having order 33 is cyclic.

13. Prove that group G having order 45 has unique Sylow 3-subgroup.

14, Prove that each proper subgroup is proper subgroup of its normalizer in finite p-group.

Fill in the blanks:

15.  Any group having each element of order p"is called

16. If every Sylow subgroup of finite group G is normal, then Gis a direct product of its

17. If G has unique Sylow p —subgroup P, then Pis

18. If Gisanon-abelian group having order 14 then G=.............

19. Z. xZ =7 iff gcd(m,n)=

6.10 ANSWERS

Answer of self cheque question:
1. No 2. Yes
Answer of terminal question:

15. p —group 16. Sylow subgroups 17. Normal

18. D, 19. 1
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BLOCK Il

COMPOSITION SERIES, JORDAN HOLDER
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Unit-7: NORMAL AND SUBNORMAL SERIES,

COMPOSITION SERIES

CONTENT:

7.1  Introduction

7.2  Objectives

7.3 Normal series

7.4  Composition series
7.5  Summary

7.6  Glossary

7.7 References

7.8 Suggested Readings

7.9  Terminal Questions

Answers

INTRODUCTION

A composition series in abstract algebra offers a technique to decompose an algebraic structure,
such as a group or a module, into manageable parts. Since many naturally occurring modules are not
semi-simple, they cannot be broken down into a straight sum of simple modules, necessitating the
consideration of composition series in the context of modules. The direct sum decomposition of a
module M into its simple constituents is replaced by a finite growing filtration of M by submodules

such that the subsequent quotients are simple.

There may not be a composition series, and if there is, it need not be unique. However, a
collection of findings together referred to as the Jordan-Holder theorem states that wherever
composition series exist, the isomorphism classes of simple pieces and their multiplicities are defined
uniquely (albeit possibly not their exact locations within the composition series in issue). Thus,

Artinian modules and finite groups' invariants may be defined using composition series.
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A related but distinct concept is achief series: a composition series is a

maximal subnormal series, while a chief series is a maximal normal series.

7.2 OBJECTIVES

After reading this unit learners will be able to
Memorized about the maximal subgroup and simple group.
Analyze of normal and subnormal series and composition series.

Analyze the theorems and application of normal and composition series.

NORMAL SERIES

Definition: In a group G any normal subgroup H = Gis called a maximal normal subgroup of G if

there does not exist any normal subgroup K of Gsuchthat H c K = G.

Thus normal subgroup H = Gis maximal in G if whenever K < Gsuch that H — K < G then either

K=Hor K=G.

In fact, any subgroup H = Gis maximal in G whenever H < K <Gthen either K=Hor K=G.
Similarly, any normal subgroup M of G is called minimal or minimal normal subgroup of G

which are contained in M are {e}and M . Thus, if N is normal subgroup of Gs.t., {e} = N < M then

either N ={e} or N=M.

Example 1: A,is a maximal normal subgroup of S,. O(A,) =3 whereas O(S,) =6. Clearly there

cannot be any subgroup of order 4 or 5 in S,. We also notice that O(ij =2, a prime and thus S is

a simple group.
Example 2: If G is a simple group then it has no non trivial normal subgroup and so {e} will be a (and
only) maximal normal subgroup in G.

Theorem 1: H is maximal normal subgroup of G iff G/H is simple.
Proof: Let Hbe maximal normal in G. Any subgroup of G/H is of the form K/H where K <G
and H c Kandalso K/H isnormalin G/H < KiG.

Thus any subgroup K /H will be non trivial normal subgroup of G/H if H <K <G, which

Is not true as His maximal normal. So G/H has no non trivial normal subgroup and is, therefore

simple.
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Conversely, let G/ H be simple. Suppose H is not maximal normal, then 3 a normal subgroup K of
Gs.t.,

HcKcG and thus K/H will be normal subgroup of G/Hwhere K/HcG/H, a
contradiction as G/ H is simple.
Example 3: Any finite group G (with at least two elements) has a maximal normal subgroup.

Solution: If G is simple then it has no proper normal subgroup except {e}and thus {e}is a maximal

normal subgroup of G .

Suppose G is not simple. Then it has at least one normal subgroup N =G, N ={e}. If Nis
maximal normal, we are done. If not, then there exist at least one normal subgroup M where
NcMcG. If Mis maximal normal, we are done. We continue in this way if not. Given that and
only allow a finite number of subgroups, the aforementioned procedure must end after a finite number
of steps. A maximal normal subgroup will thus exist.

Example 4: Illustrate example of maximal normal subgroup while it is not a maximal subgroup.

Solution: Consider G =27, x A,
Then H =2Z,x{l}is normal in Gand G/H = A and so G/H will be simple and hence maximal

normal subgroup of G .
Since H <{(0,1),(1,1),(0123),(0132)}cG

Hence H is not a maximal subgroup of G .

Example 5: Let H, K be two distinct maximal normal subgroup of Gthen G=HKand HNKis a
maximal normal subgroup of Has well as K.

Solution: Since H, K are normal, HK is normal in G..

Since H c HK <« Gand HKisnormal in G.

We must have HK =H or =G

Similarly HK =K or HK =G

Hence HK =G (as HK #G = HK =H,HK =K = H =K).

Again by isomorphism theorem

HK - K

~

G
K™ H

. . . G. .
Since H is maximal normal, ﬁIS simple
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. K . .
ie., is simple
HNK

= H K is maximal normal in K
Similarly, it is maximal normal in H .

Example 6: Show that < Q,+ > has no maximal normal subgroup.

Q Q

Solution: Suppose H is a maximal normal subgroup of <Q,+ >, then b is simple and so m has no

non trivial normal subgroup i.e., it will have no non trivial subgroup (Q being abelian, all subgroups

Q

are normal). Thus H is a cyclic group of prime order p.

Q

Let H+xe a be any element

Then p(H+x)=H
e, H+px=H orthat pxeH VxeQ

let now y e Q be any element, then Y Q
p

If %:xthen y=px=YyeH orthat

QcHcQ=H =Q, acontradiction

Hence the result follows.

Definition: Let G be a group and sequence of subgroups
{&}=H,cH,cH,c...cH, =G

is called a normal series of G if H,is normal subgroup of H, ,, Vi=0,12,...,n-1

i+l

The factor (quotient) groups % (V1) are called the factors of normal series.

Here each H,is normal in H, ,, although it may not be normal in G . Also it is possible that H, = H,_;
for some i. The number of distinct number of (1) excluding G is called the length of the normal series.
The above is expressed in short by saying that N =(HO, H,,..., Hn) is a normal series of G. If N and
M are two normal series of Gs.t., N < M then M is called a refinement of N (a proper refinement if
(N c M).

Remark: Some author mostly prefer to name the above subnormal series. It is then called a normal

series if H, isnormal in G Vi.
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If Gis any group then

{e}=H,cH, =G

Is an general example of a normal series.

Example 7: {I} < A, < S,is a normal series of S,.
{I}cEcK, c A <SS, isanormal series of S,, where
E={1,12)(34)}, K, ={1,(12)(34),(13)(24),(14)(23)}

We have seen earlier that E<K,, but Eis not normal in A, (and soin S,).

7.4 COMPOSITION SERIES

Definition: Let G a group. A sequence of subgroup

{e}=H,cH,cH, c

of Gis called a composition series of G if

0] every H,is normal subgroup of H,,, (i=0,1,...,n-1)
(ii) H, = H,, forany iand

i+1

(iii) % is a simple group Vi.

: H, -
The quotient groups H—'*l are called factors of the series.

By using the theorem 1 condition (iii) can be replaced by H, is a maximal normal subgroup of

H.,,Vi.

i+1
We notice that aforesaid composition series is a normal series. Converse of above is not true and that
composition series has no gaps.

It is possible that group may have more than one composition series.

Example 8: In the group (Z,+)

{0} c<8 >c< 4 >c Zis a normal series while it is not a composition series as < 4 > is not maximal in
Z . Itis also to be notify that <4 >c<2>c Z.

Example 9: In the Quaternion group Qg,
Bc{l-Dcfl-Li-i}cQ,
Lcll-Bcfl-1)-3cQ
Bcll-Bc{l-1k-k}=Q,
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All are the composition series of Q,. If we rewrite the first series as G, ={1},G, ={L -1}

G, ={L-1i,—i} then G, G, =G, =G

So,00 S ]=8_00[C2|-4_00/&|-2_>
G,) 4 G, ) 2 G,) 1

i.e., all quotient groups are of prime order and thus have no trivial normal subgroup and hence are
simple.

Theorem 2: Each finite group G has a composition series. (Here group has more than one element)
Proof: We prove this by induction method on order of the group.

If O(G) =2 then the only composition series of Gis {e}=G, c G, =G. Since % = {%} =G and as
0

O(G) =2, a prime it is simple group and therefore G is simple.
0

Suppose for the groups with order less than O(G) result holds. Now we will show results holds for G .
If Gissimple then {e} — Gis the composition series for G . Suppose G is not simple.

Although G is finite, it has a maximal normal subgroup N =G and as O(N) < O(G)), results holds for
N which then has a composition series, say

{&=N,cN,c..cN

Then the series

{e} =N, =N, c...c N <G will be a composition series for G .

Hence results holds.

Remark: If O(G) =1, Sometimes, we claim that the results holds trivially since (G ) is a composition

series of G .

Check your progress

Problem 1: Check composition series of Z,,

Problem 2: Check out example of maximal normal subgroup while it is not a maximal

subgroup.

7.5 SUMMARY

In this unit, we have studied about following major topics and their related theorems and examples.

> Maximal subgroup and on the basis of it to described the simple group.

Department of Mathematics
Uttarakhand Open University Page 104




ADVANCED ABSTRACT ALGEBRA MATS501

> Illustration of normal series, subnormal series and on the basis of these to describe the

composition series.

GLOSSARY

Sequence of subgroup of the group G, {e}=H,<cH, cH, c.....cH,=Gis called a normal
series of G if H,is normal subgroup of H,,;, Vi=0,12,...,.n-1

{&}=H,cH,cH, c....cH, =Gof Gis called a composition series of G if

(1) every H.is normal subgroup of H., (i=0,1,...,n-1)

(i) H, = H,, forany iand

i+1

H., . . ) H, .
(iii) H—'“ is a simple group Vi, where H—'*l are called factors of the series.
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TERMINAL QUESTIONS

Long Answer Type Question:

1. Define normal series and also prove that H is maximal normal subgroup of G iff G/H is
simple.
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Define maximal subgroup and prove that finite group has maximal subgroup.

Prove that if H, K be two distinct maximal normal subgroup of G then G=HKand H nKisa
maximal normal subgroup of H as well as K .

Prove that group of rational number has no maximal normal subgroup.

Define the composition series and also prove that each finite group G has a composition series.

Short Answer Type Question:

6.

7
8.
9

10.

Prove that alternating group A, is maximal normal subgroup of S, .

Give an example of maximal normal subgroup while it is not a maximal subgroup.
Define maximal subgroup, simple group, normal series, composition series.

Find normal series of S,.

Find the composition series of Q.

Fill in the blanks:

11.

12.
13.

A, is maximal normal subgroup of
If Gis asimple group then it has no non trivial

Each finite group has a

7.10 ANSWERS

Answer of self cheque question:

1.

{0} =<8>c<d4>c<2>c 7, {0} <12 >c<4d>c<2>c Z,,,

{0} =<12>c<6>c<2>c Z,, {0} <12 >c<6>c<3>c Z,, 2. See example 4

Answer of terminal question:

7.

12.

Z,xA 9. {I}cAcS, 17.  Normal

Normal subgroup 13.  Composition series
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Unit-8: JORDAN HOLDER THEOREM

CONTENT:

8.1 Introduction

8.2  Objectives

8.3  Jordan-Holder theorem
8.4  Summary

8.5  Glossary

8.6  References

8.7  Suggested Readings

8.8  Terminal Questions

8.9  Answers

8.1 INTRODUCTION

German mathematician Ludwig Otto Hoélder was born in
Stuttgart on December 22, 1859, and he passed away on
August 29, 1937.

In addition to being the grandson of professor Christian
Gottlieb Holder (1776-1847) and the youngest of three sons
of professor Otto Holder (1811-1890), Holder also had two
brothers who went on to become professors. He began his
education at what is now the University of Stuttgart's
Polytechnikum before moving to Berlin in 1877 to study

. Ludwig Otto Holder
under Leopold Kronecker, Karl Weierstrass, and Ernst December 22 1g8597 August 29, 1937

Kummer https://en.wikipedia.org/wiki/Otto_H%C3%B6lder
He enrolled in the University of Berlin in 1877, and in 1882, he received his doctorate from the
University of Tibingen. His PhD dissertation was titled "Beitrdge zur Potentialtheorie” (translation:

"Contributions to potential theory™). His next stop was the University of Leipzig, but he was unable to
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complete his habilitation there. Instead, he earned a second doctorate and habilitation at the University
of Géttingen, both in 1884.

He was given a job as an exceptional professor at Tlbingen in 1889 after failing to obtain
government clearance for a teaching seat in Gottingen. Despite a temporary mental impairment
delaying his admission, he started working there in 1890. He assumed Sophus Lie's previous position
as a full professor at the University of Leipzig in 1899. He served there as rector in 1918 after serving
as dean from 1912 to 1913.

In 1899, he wed Helene, a politician's and a bank director's daughter. They have two girls and
two boys. His daughter Irmgard married a mathematician named Aurel Wintner, and his son Ernst
Holder went on to become another mathematician.

Holder ratified the German university and high school professors' oath of loyalty to Adolf Hitler and
the National Socialist State in 1933.

Leonard James Rogers established Holder's inequality, which bears Hélder's name, first. It is
named after a publication in which Hoélder criticises it while referencing Rogers. This paper also
contains a demonstration of what is now known as Jensen's inequality, along with certain side
conditions that Jensen eventually deleted. Other theorems by Holder include the Jordan-Hoélder
theorem, which states that every linearly ordered group satisfying an Archimedean property is
isomorphic to a subgroup of the additive group of real numbers, the classification of simple groups
with orders up to 200, the anomalous outer automorphisms of the symmetric group S6, and Holder's
theorem, which states that the Gamma function does not satisfy any algebraic differential equation.
The Hoélder condition (or Hélder continuity), another concept bearing his name, is applied in many

analytical fields, including the theories of partial differential equations and function spaces.

8.2 OBJECTIVES

After reading this unit learners will be able to
e Memorized about the Jordan- Holder theorem.

e Analyze the theorems related to Jordan- Holder theorem.

8.3 JORDAN-HOLDER THEOREM

Theorem 1: Let G be a finite group with two composition series
G,H,H,,..H ={e} ..(1)

and G,K,,K,,.... K ={e} ..(2)
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Then n=m and the two equivalent series of composition quotient groups., viz.,

G/H,H,/H,,..H, ,/H,

And G/ K, K, /K,,..K_,IK_

are abstractly identical i.e., they can be put into 1-1 correspondence such that the corresponding
quotient groups are isomorphic.

Proof: By using the induction technique on the order of the group G, we will demonstrate the
theorem. We will demonstrate that the theorem also holds true for G by making the assumption that it
holds true for all groups with orders lower than G . The theorem is obviously valid for every group of
order one; therefore we need not be concerned about where to begin the induction.

There are two cases arise:

Case I: H, =K,. In this case, after removing G from (1) and (2), we obtain the remaining series as
two composition series for H,. However, because H, is a proper normal subgroup of G, its order is

lower than that of G . Therefore, the theorem holds true for H, according to our induction hypothesis.

Since G/H, =G/K_, therefore the theorem will remain true if we replace G in each of the series (1)

and (2).
Case Il: H, # K;. Using the third law of isomorphism, we have
H,K,/H, =K, /H, nK,
And H,K, /K, =H,/H, nK,
Also H,K; is a normal subgroup of G containingH,. Since H, is maximal in G, therefore we must
have H,K, =G
~G/H, =K, /D whereD=H, nK|
and G/K,=H,/D
Now H, is a maximal in G implies that G/H,is simple. Therefore K, /D is simple and this

implies that D is a maximal normal subgroup of K;. Similarly D is a maximal normal subgroup of H,

Let D,D,,D,,...,D, ={e} be composition series for . Then
G,H,,D,D,,D,,..., D, ={e} ...(3)
and G,K,,D,D,,D,,...,D, ={e} ...(4)

are two composition series for G. Let us write the composition quotient groups of (3) and (4) in the

order
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G/H, H,/D,D/D,D,/D,,..D,/D,  ...(5)

and K,/D,G/K,,D/D,,D,/D,,...,D_,/D, ...(6)

The quotient groups in (5) and (6) are equal in number and the corresponding quotient groups
isomorphici.e., G/H, and K, /D, H,/Dand G/K;,D/D, and D/D,,..., are isomorphic.

The two composition series for G at this point, (1) and (3), each have H, in the second position. Due

to instance 1, it is possible to place the quotient groups described by (1) and (3) into 1-1
correspondence, making the respective quotient groups isomorphic. To make the respective quotient
groups isomorphic, it is possible to put the quotient groups described by (2) and (4) into 1- 1
correspondence. As a result, the quotient groups defined by (1) and (2) are equal in number and are
isomorphic in some order since the relation of isomorphism in the set of all groups is an equivalence

relation. This completes the theorem's proof.

8.4 SUMMARY

After completing this unit we analyze that for any finite group (G) two composition series are always
identical i.e., they can be put into one-one correspondence such that the corresponding quotient groups

are isomorphic.

8.5 GLOSSARY

> For a finite group (G) the Jordan- Holder theorem states that two composition series
G,H,,H,,.. . H, ={e} .. (D

and G,K,K,,..., K, ={e} ...

the two corresponding series of composition quotient groups,

G/H, H,/H,,..H /H

G/K, K, /K,,...K /K., where m=n

are abstractly identical.
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SUGGESTED READING
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David S. Dummit and Richard M. Foote: Abstract Algebra (3 Edition), Wiley, 2011.
Michael Artin: Algebra (2" edition), Pearson, 2014.

TERMINAL QUESTIONS

Long Answer Type Question:

1. State and prove the Jordan- Holder theorem.
Short Answer Type Question:

2. Write the statement of Jordan- Holder theorem.
Fill in the blanks:

3. For a finite group (G) two composition series, the two composition quotient groups are

8.9 ANSWERS

Identical
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Unit-9: SOLVABLE GROUPS, SIMPLICITY OF A, (n=9)

NILPOTENT GROUPS

CONTENT:

9.1 Introduction

9.2  Objectives

9.3  Nilpotent group

9.4  Solvable group-I
9.5  Solvable group-II
9.6  Summary

9.7 Glossary

9.8 References

9.9  Suggested Readings

Terminal Questions

Answers

9.1 INTRODUCTION

A group having an upper central series that ends with G is referred to as a nilpotent group G in
mathematics, more especially group theory. In other words, either its lower central series ends in 1 or
its central series has a limited length. A group that is "almost abelian” is what we would term a
nilpotent group. The fact that nilpotent groups may be solved and that for finite nilpotent groups, two
members with relatively prime orders must commute serves as the inspiration for this concept.
Additionally, it is true that supersolvable finite nilpotent groups exist. The Russian mathematician
Sergei Chernikov is credited with developing the idea in the 1930s. Nilpotent groups appear in both
group classification and Galois theory. They play a significant role in the categorization of Lie groups

as well.
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A group that can be created from abelian groups via extensions is referred to as a solvable
group or soluble group in mathematics, more especially in the subject of group theory. A group is

solvable if its derived series terminates in the trivial subgroup, to put it another way.

9.2 OBJECTIVES

After reading this unit learners will be able to
Memorized about the Nilpotent group.
Analyze the definition and important theorems related to Solvable groups.

Analyze the further theorems on the alternating group (A,,n>5).

NILPOTENT GROUP

On commutative groups, the converse of the Lagrange's Theorem is true. In this chapter, we
characterise a broader category of groups called nilpotent groups, which satisfy the opposite of
Lagrange's Theorem. Additionally, every nilpotent group is a direct result of the subgroups of Sylow,

and vice versa.

Definition (i): Let G be a group and denote

Z,(G)=4e},2,(G)=2(G) and Z ,(G)=2Z(G) is the unique normal subgroup of G such that
Z(G) < Z,,(G) and Z,,,(G)/ Z,(G) = Z(G/ Z,(G))

Then the chain of normal subgroups

(&< 2,(G)c Z,(G) ..

is called upper central series and ascending central of G .

Definition (ii): A group G is defined to be nilpotent if Z (G) =G for some ne N

Example 1: Each abelian group G is also a nilpotent group, since Z,(G) =Z(G) =G. Converse of this

is also not true which shows in following result.
Theorem 1: Each finite p-group is nilpotent.

Proof: Let G be a finite p—group. If |G |=1, then G is nilpotent. Suppose that | G |~ 1. Then G being
a nontrivial p —group, it follows that Z,(G) = Z(G) ={e}. IfZ,(G) =G, then G/Z,(G) is a nontrivial
p—group and |Z(G/Z,(G))|>1. This implies Z,(G)contains Z,(G) properly, that is

Zl(G)EZz(G)- If Z,(G) =G, then similarly Z,(G) #Z,(G). If forall ne N, Z (G) =G, then we

get an infinite number of strictly ascending chain of subgroups
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{B}<2,(6) < Z,(G) ..

But it is not possible because G is finite group. Thus there is ne Zsuch that Z (G)=G and Gis
nilpotent.

Now we give an example of a subgroup which is not nilpotent.

Example 2: We know that Z(S,)={e}. Thus Z,(S,)={e}and S,/Z,(S,)~S,. This implies
Z(SSIZI(SS))={{e}}. Since Z,(S,) is the unique normal subgroup of S,such that
Z,(S5)1Z,(S;)=2(S,12,(S,))={{e}}, so it follows that Z,(S;)/Z,(S;)={e}. Similarly,
Z.(S;)={e}VvneN.Hence S,is not nilpotent.

Theorem 2: The direct product of finite number of nilpotent groups is nilpotent.

Proof: It will be sufficient to prove the result for the direct product of two groups. Let H and K be
two nilpotent groups and denote G =H x K.

First we prove that Z_ (G)=2Z,(H)xZ,(K)Vne N by the induction on n. We have already proved
that the external direct product of groups and results holds for n=1. Assume that
Z.(G)=2,(H)xZ, (K) for some n>1. Since Z (HxK)=2Z (H)xZ (K), so there is an

H x K

isomorphism v :H/Z (H)xK/Z (K) em.

Now we have,
Z(G/Z,(G))=Z(HxK/Z (HxK))
=Z(w(H/Z,(H)xK/Z, (K)))

=y (Z(H/Z,(H)xK/Z,(K)))
=yw(ZH/Z, (H))xZ(K/Z,(K)))

=y (Z,,(H)/Z,(H)xZ,,(K)/ Z,(K))
=Z,,(H)xZ,,(K)/Z,(H)xZ,(K))

=Z ,(H)xZ ,(K)/Z (HxK)

n+1
It follows that Z,_,,(G) =Z,.,(H)Z,.,(K)because Z_,,(G)is the only normal subgroup of G such that
2,,(G)/Z2,(G)=2(G/Z,(G)).

Accordingly, for all n=0,1,2,... Z (G)=2,(H)xZ,(K)according to the principle of mathematical

induction.

There is a positive integer nsuch that Z (H)=H and Z, (K) =K since H and K are both nilpotent.

Hence
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As H x K isnilpotent, Z (HxK)=2Z (H)xZ,(K).

Using a descending central series, we now provide an alternate equivalent characterisation of nilpotent
groups. Assume G is a group and H and Kare its two subgroups. The subgroup produced by all
elements of the form hkh™k™ for every he H and all k e K is denoted by [H K]. Next, we have
Lemma 1: Let G be a group, H,Kbe two subgroups of G and K normal inG. Then
[H,G]< K if and only if HK/K < Z(G/K).

Definition: Let G be a group. Define inductively

Gl =G

G =[G G]forall i >1

Then the chain of normal subgroups

G=G"oGH ..

is called the descending central series of G.

Theorem 3: Let G be a group. Then Gis nilpotent if and only if GI"*" ={e}for some integer
n=0.

Proof: First assume that there is an integer n>0such that GI"*" ={e}. Consider the series
{e}=G"1 G c..cGM =G

it is easy to check that G /G < Z(G/G"™) for all i =12,...,n and G"*" = Z,(G) for all
i=12,..,n.Thus G=G" < Z (G), and so Gis nilpotent.

Conversely, suppose that Gis nilpotent. Then there is an integer n>1 such that Z (G)=G
Thus we have a series of normal subgroups

{&4=2,6)cZ2,(6) c..cZ,(G)=C

Then it follows that GMcz . (G)Vi=12..,n+1. Thus G" cZ (G)={e}, and so

nil-i
G ={e} .

Theorem 4: Each subgroup of a nilpotent group is nilpotent.

Proof: Let Gbe a group and H be a subgroup of G. Since Gis nilpotent, so there is an

integer n>0 such that GI"¥ ={e}. Now we show that H" = G"by the induction on i. Now

HY=HcG=G". Assume that HY cGM.  Then HI =[HY H]<[G",G]< G and

hence, by the principle of mathematical induction, H™ cGM for all i=12,...,n+1. Hence

H™ - GI"™ = {e}, and so H is nilpotent.
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Example 3: LetG=S,xZ. Since S, is not nilpotent, so Gis not nilpotent. Thus Gis an

infinite group which is not nilpotent.

Theorem 5: A finite group Gis nilpotent if and only if it is the direct product of its Sylow
subgroups.

Proof: Let G be a nilpotent group. First we show that every Sylow subgroup of G is normal. If
possible, let Pbe a Sylow subgroup of Gsuch that N(P)=G. DenoteH =N(P). Since G

nilpotent, there is n e N such that

{}=2,(G)c 2,(G) c..< Z,(G) =G

Since H is proper and Z,(G) < H, so there is the largest index m < nsuch that Z_(G) c H . Then
Z. .(G) c H. Consider aeZ, ,(G)\H, then Z .(G)\z (G)implies that
aZ, (G)ezZ(G/Z,(G)) and SO haz (G)=ahz (G)for  every heH. Hence
h™a"ha e Z,,(G) < H which implies that a*ha=h(h™a*ha) e H. Thus a'Hac H andae N(H)
. Therefore H < N(H) that is N(P)g N(N(P)), which contradicts thatP is a Sylow subgroup.

Thus N(P) =G and every Sylow subgroup of G is normal. Hence, G is a direct product of its
Sylow subgroups.

Conversely, let G be a direct product of its Sylow subgroups B, P,,...,B,. SinceP, is a p,-group for
some primep,, so P. is nilpotent for every i=12,..,k Hence their direct product Gis also

nilpotent.

The result that follows now demonstrates that the converse of Lagrange's Theorem is true for all
nilpotent groups.

Corollary 1: Let Gbe a finite nilpotent group. Then for every positive divisor mof |G|, G

hasa subgroup of order m.

Proof: Let |G |=p,"p,™...p, . Since Gis nilpotent, 50 G =P, xP, x...xP,, whereP,is the sylow

p;, —subgroup of Gfor i=12,... k. Also |P |= lpik‘% Let rﬁ be a positive integer such that m | |G|

Then |Gl=p,"p,™...p, ", where 0<m, <n,. SincePis p, —group of order p," and m <n,, so
P. has a subgroup H, of order p,", by the Sylow’s first theorem. Then H = H, xH, x..xH, is a

subgroup of Gof order|H, || H,|...|H, |= p,"p,"...p, ™ =m.
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9.4 SOLVABLE GROUP-I

Solvable groups first appeared in the setting of Galois theory. Galois developed this idea to explore the
quintics' radical solvability over an extended period of time. Solvable groups are a class of groups that
are fascinating in and of themselves, particularly in relation to the idea of finite groups. Here, we treat
the solvable groups using only group theory.

Definition 1: Let G be a group. Then a chain

G=H,oH,o..H ;oH, ={e}

is commutative for

of subgroups is called a solvable series of G if H,,is normal in H,and H,/H

i+1 i+1
every i=01,...,n—1.
A group G is called a solvable group if G has a solvable series.

Each abelian group is solvable. For, if G is abelian, then G =H, o H, ={e} is a solvable series for G
Example 4: S, =H, o{e, (123), (132)} o{e}is a solvable series for S,. Thus S,is a solvable group
while S,is not nilpotent.

Theorem 6: Every nilpotent group is solvable.

Proof: Let G be a nilpotent group. Then Z_(G) = G for some positive integer n. Then the series of

normal subgroups
G=2,(6)22,4(G) 2..2Z,(G) ={e}
is a solvable series, since Z,(G)/Z, ,(G)=2(G/Z,_,(G)) which is abelian for every i=12,..,n.
Hence G is a solvable group.

Now, taking into account subgroups and homomorphic images, we demonstrate that the class
of all solvable groups is closed under finite direct product.
Theorem 7: Each finite direct product of solvable group is solvable.
Proof: This is adequate to establish the conclusion regarding the direct product of two solvable groups.
Let Gand H be two solvable groups. Then both G and H have a series of subgroups that can be
solved, say
G=G,2G, 2..0G, ={e}
And H=H,oH,o..oH,, ={e}
Consider following series of subgroups of Gx H :

GxH=G,xH, 26, xH, o...o{e}xH, o{e}xH, o...o{e}xH,, o{e}.
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This is a solvable series for GxH , since G,,, xH, is normal in G, x H,and {e}x H,,, is normal in

i+l
GixHo G, /G, and AepxH; H; /H,,, are abelian.

xH, {e}xH;,

{e}x H,, and both

i+
Hence G x H is a solvable group.

Theorem 8: Let G be a solvable group. Then every subgroup of G is solvable.
Proof: Let H be a subgroup of G . Since G is solvable, so it has a solvable series, say
G=G,2G, 2..0G, ={e}

Then G,

i+1

Is a normal subgroup of G, which implies that H N G, , is normal subgroup of H NG, .

i+1
Denote H, = H NG, and consider the series
G=H,oH,o..oH, ={e}

Of subgroup of H. Now

H,=HnNG, =HNG NG, =H, NG,

Then using the second isomorphism theorem, that Hi __H, = H.G,
Hi mGHl

=L Since the quotient

i+1

i+1

group HG. is a subgroup of the abelian group G, /G, ,, so it is abelian group. Thus

i+1
Is a solvable series for H and the subgroup H is a solvable group.
Theorem 9: Let G be a solvable group. Then the quotient group G/H is solvable for every normal
subgroup H of G.

Proof: Let G=G, oG, ... G, ={e} be a solvable series of G. Since H is a normal subgroup, so
G,H is a subgroup of G and H < G,H for each i. Consider the series
G/H=G,/HoGH/HoG,H/H>..oG,H/H ={H}

Of subgroup of G/H . Also G, ,is normal in G, and hence G, ,H is a normal subgroup of G,H .

i+1 i+1

Thus G.

i+1

H /H isanormal subgroup of GH/H .

Now using the third isomorphism theorem
GH/H
G, ,H/H

i+1

=GH/G,H.

i+1

Define v : G, /G,,; > GH/G,,;Hby

i+1

‘//(aGiJrl) = aG' H.

i+1

Then G,,; < G, ,H implies that y is well-defined and for every ahe G H ,

i+1

ahG_,H = (aG,

i+l i+l

H )(hGi+lH ) = a(3i+lH = l//(aGiJrl)
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= is onto.

Also y is a homomorphism. Since G, /G,,, is abelian it follows that GH /G, ,H =w(G, /G,,,) is
abelian. Thus the series

G/H=G,/HoGH/HoGH/H2..oG,H/H={H} is a solvable series and the quotient
group G/ H is solvable group.

Corollary 2: Each homomorphic image of solvable group is solvable.

Proof: Let G be a solvable group and f :G — G be an epimorphism. Then by the first isomorphism

theorem G/ker f =G. Since G is solvable, the quotient G/ker f is a solvable group. Hence Gis
solvable.

Theorem 10: If H be a normal subgroup of a group G. If both Hand G/H are solvable, then G is
solvable.

Proof: The correspondence theorem implies that every subgroup of G/ H is of the form K/H , where
K is a subgroup of G such that H < K, and K/H isnormal in G/H if and only if K is normal in G.
Since G/ H is a solvable group, so it has a solvable series, say
G/H=K,/HoK,/H>..oK,/H={H}.

}f_i //|_I|—| = ;i , by the third

i+1 i+1

Since K,,/H is normal in K;/H, so K,, is normal in K, and

isomorphism theorem. Thus K, /K, is abelian.

i+
Since H is a solvable group, it has a solvable series, say

H=H,oH,o..oH,={e}

Hence

G=K,2K 2..o0K,=HoH, o..oH, ={e}

is solvable series for G and G is solvable.

Now we have the following two intersection consequences.

Corollary 3: Let G be a group, Hand K be two subgroup of Gand H be normal in G. If both H
and K are solvable then HK is solvable.

Proof: First note that HKis a subgroup ofG, since His normal inG. Now, using the second
isomorphism theorem, we have HK/H =K/H nK. Since H nK s a subgroup of the solvable
group K, it is solvable; and so K/H mKis a solvable group. Then both H and HK / H are solvable,
whence HK is solvable.
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Corollary 4: Let G be a solvable group and H, K be two normal subgroup of G such that both the

quotients G/H and G/K are solvable. Then G is solvable if and only if H K is solvable.

Proof: Let G be a solvable group. Since H nK is a subgroup of G, so it is solvable.

Conversely, assume that H n K is a solvable group. Both Hand Kare normal. Now using second
isomorphism theorem, HK/H = K/H n K. Since HK /H is a subgroup of the solvable group G/H
,so itisand hence K/H nK issolvable. Then it follows that K is solvable, Since H n K is solvable.
Thus both G/K and K are solvable, and hence G is solvable.

Example 5: Let G be a group of order 14 =7x 2. Then it follows from the Sylow theorems that G has

a normal Sylow 7-subgroup 7 —subgroup H. Since |H |=7 which is a prime, so His a solvable
group. Similarly, | G/ H |= 2 =the quotient G/H is solvable. Hence G is solvable.
Example 6: Let G be a group of order 2002 =143x7x2. Then it follows from the Sylow theorem

that G has a normal Sylow 143—subgroup H . Since | H |=143 which is a prime, so H is asolvable

group. Now |G/ H |=14 and hence it is solvable. Thus G is a solvable group.

9.5 SOLVABLE GROUP-II

In this section, we characterise solvable groups in a way that is equivalent to the series of derived

subgroups. This similar characterization aids in our demonstration that S, cannot be solved for all

n>5. A discussion of the opposite of Lagrange's Theorem on solvable groups marks the end of this

section.

Definition: Let G be a group. Then subgroup generated by the set {aba™b™|a,b e G} is called the
commutator subgroup of G .

It is denoted by G and the elements of the form aba*b™|a,b G are called commutators.

If Gis an abelian group, then for each a,b € G,aba™b™ =e and hence G ={e}. Conversely,
if G ={e} then abab* =e=ab=baVa,beG. Thus G is abelian. Hence G is abelian if and only
if G ={e}. In some sense G is a reverse measure of how much G is commutative.

Theorem 11: Let G be a group. Then the derived subgroup G'is a normal subgroup of G and the
quotient group G/G'is abelian.

Proof: Let xeGand geG. Then gxg'x™" eG'. Since G'is a subgroup, gxg™* = (gxg’lx’l)x eG.

Hence G is a normal subgroup of G.
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Let a,beG. Then ab(ba)™ =aba'b™eG = abG =baG, ie., (aG)(OG)=(bG)@G).
Hence G/G'is abelian.
Theorem 12: Let G be a group and N be a normal subgroup of G . Then G/ N is abelian if and only if
G cN.
Proof: Initialy first we assume that G/ N is abelian, then (aN)(bN)=(bN)(aN)Vva,be N, and so
abN =baN . Hence aba™b™ =ab(ba) ' e NVa,beG
— N contains all commutators of Gandso G < N

Conversely, if G = N, then aba™b™ e N = abN =baN Vv a,b € G.Hence G/ N is abelian.
Definition: Let G be a group and we define the following,
GW =G
G —g®
Then G® s called the i —th commutator subgroup or derived subgroup of G .
Thus a sequence of subgroups G 5G® 5G® o..., where each G is a normal subgroup of G©
and G® /G is abelian for every i =1,2,...
Theorem 13: Let G be a group. Then G is solvable if and only if there is a positive integer n such that

G™ ={e}.

Proof: If G™ ={e}, then the chain G 2G® 5G? 5..G™ ={e} become a solvable series for G.

Hence G is solvable.

Conversely assume that Gis a solvable group. Then Ghas a solvable series, say
G=G,2G, oG, o..G, ={e}. Since for every i,G,is normal subgroup of G, and G,,/G;is
abelian, so G'ix = G,. Hence

GY =G =G, cG,,G® =G, c G, and s0 on.

Thus we get G™ = G, ={e} and so G™ ={e}.

Now we will prove that permutation group S, is not solvable for n>5.

Lemma 2: IfH is a subgroup of S, (n >5) that contains all 3-cycles, then H contains all 3-cycles in
S...
Proof: Let o= (abc)be a 3-cycle in S,. Since n>5, we have two symbols xand ysuch that
a,b,c, x, y are distinct. Denote « = (abx) and g =(acy). Then

a,feH =c=(abc)=(abx)facyfaxb)ayc)=afa ' eH
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Hence H contains all 3-cyclesin S, .

Theorem 14: S, is not solvable for n>5.

Proof: Let Abe the set containing all 3—cycle in S_. Since n>5, so by the above lemma Ac S, .
Applying the same repeatedly, we get A < S for each k e N. Hence S ={e}for each k e N and

S, 1s not solvable.

The Sylow theorems, which are valid for finite solvable groups, are now generalised as follows. P.
Hall demonstrated this outcome in 1928.

Definition: Let G be a group. A subgroup H of Gis called a characteristic in Gif ¢(H) < H for
every automorphism¢:G — G; and H is called fully invariant if f(H) < H for all endomorphism
f:G—>G.

Let Hbe a characteristic of Gand ¢:G —>Gbe an automorphism. Then ¢(H)<H. Also

¢! :G —Gis an automorphism and hence ¢*(H)c<H. Then H =¢(¢‘1(H))g #(H) and hence

g(H)=H.
Lemma 3: Let G be a group and H, K be two subgroup of G .

(i) If His characteristic in Kand Kis normal inG, then H isnormal in G.
(i) Every normal Sylow subgroup is fully invariant.

(i)  If Gissolvable and N is a minimal normal subgroup of G, then N is an abelian p —group for
some prime p.

Proof (i): Let aeG. Then ¢:G — Gdefined by ¢(g)=aga™ is an automorphism. Since K is
normal in G, so ¢|,: K — K is an automorphism. Then ¢|, (H) < H, since H is a characteristic in
K.Thus aha* cHVheHandso Hisnormalin G.

(iii):  Since the commutator subgroup N'is fully invariant in N and N is normal in G, so it follows
that N'is normal in G. Then, the minimality of N implies that N ={e}or N =N. Since N is
solvable, N' = N and so N" ={e}. Hence N is an abelian group. Also, by the minimality of N,| N |>1
. Let pbe a prime such that p|| N | and P be a Sylow p —subgroup of N . Then |P|>1. Since N is

abelian, so Pis normal; and it follows that Pis fully invariant. Hence Pis normal inG. Then
minimally of N impliesthat N =P.
We also require the conclusion regarding Sylow subgroups, which we declare here without providing

any evidence.
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Lemma 5: (Frattini Argument) Let K be a normal subgroup of a finite group G. If Pis a Sylow p—
subgroup of Kand M = N (P), then G=KM .

Proof: We prove this result by induction on |G |. The result is trivial for all groups G with |G |<5.
Consider a group G and assume that the result holds for all groups of order </ G|. Let |G |= mnand
gcd(m,n) =1.

Now two cases are arises:

Case I: G has a proper normal subgroup N such that n || N|. By Lagrange’s theorem, | N |=mn,

where m, [m and n, |n. Also nf| N | implies that n, <n. Since G is solvable, so G/ N is a solvable

group and |G/N |=m.n1 < mn together with gcd(mﬂ,nﬂ] =1 implies, by the induction hypothesis
1 1 1 1

that, G/ N has a subgroup K/N of ordermm, where K is a subgroup of G. ThenKis solvable, and
1

IKEK/N]IN 2 mn, =mn, <mn
ml

K has a subgroup H of order m.
Case Il: n divides the order of every normal subgroup of G. Since Gis finite, it has a minimal

normal subgroup, say H. Then His abelian and |H |= p" for some prime p, Since G is solvable.
Now, using Lagrange’s theorem, p'||G|=mn. Then n|p" and H is a Sylow p —subgroup of G.
Since His normal inG, it is the unique Sylow p —subgroup of G. If Kis minimal normal subgroup
of G, then arguing similarly we have | K |=q®for some prime gand Kis the unique Sylow q-—
subgroup of G. Since n|| H |and n|| K|, so p,qcannot be distnict. Thus H is the unique minimal

normal subgvroup of G, that is H is contained in every proper normal subgroup of G ..

Let K/H be a minimal normal subgroup of G/H . Since G/H is solvable, |G/H |=q®for

some prime q#= p. Then Kis a normal subgroup of G such that |K |= p"g®. If Qis a Sylow q-

subgroup of K, then HQgKand|HQ|:M:|H .1Q= p'q° 5 K|
|HNQ|

= K=HQ. Let M = Ng(Q) . We shall show that | M |=m.

Set N=MNnK=N,(Q). Then Fratini argument gives us us G=KM and we have

M _IGLIN

G/K=KM/K=M/KAM=-". Then IM | K Now QcNcK

= K =HQc HN c K, thatis K =HN . Thus,
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_IGLIN|
K]

_IGLIN|
[HN |

_IGI.IHAN]
[H |

sHANN]|.

M|

=m|HNAN| [.JH]=p" =n]

Thus it is only to show | H n N |=1, which will prove in two parts

(i) HANN c Z(K) and ()  zZ(K)={e}

(i) Let ae HN. Since K =HQ, every element of K is of the form hbwhere he H,b Q.

Since H is abelian, acommutes with h. So it suffices to show that a commutes with every b e Q.
Now (aba*)b™ eQ,since ae N =N, (Q)and (aba™)b™ e H, since Hisnormal in G. Thus

aba'b™ e H nQ ={e}and hence ab=ba.

(i)  Since K< G,s0 Z(K) <G, if Z(K)={e}. Then it contains a minimal subgroup, say U .
Since U < Z(K), so U is normal in G and becomes a minimal normal subgroup of G . SinceH is

unique subgroup which is normal in G. Thus U =H < Z(K). Now K =HQ,

= P is a character subgroup of K.

Since K <G, it follows by Lemma that Q < G.
Since H is the unique minimal normal subgroup of G,s0o H c Q

Which is a contradiction. Hence Z(K) ={e}.

Check your progress

Problem 1: Check that for which value of n, S, is solvable.

Problem 2: Check that Z,, is solvable or not?

Problem 3: Give an example of a group which is solvable group but not nilpotent group?

9.6 SUMMARY
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In this unit, we have studied about major topics in group theory like nilpotent group, solvable group

and symmetric groups S, for (n>5) and their related theorems and examples. After completion of

this unit we have learned the following important concepts:

YV V.V V V V V V V

Each abelian group G is also a nilpotent group and solvable group.
Each finite p-group is nilpotent.

Direct product of finite number of nilpotent groups is nilpotent.
Each subgroup of a nilpotent group is nilpotent.

Each nilpotent group is solvable.

Finite direct product of solvable group is solvable.

Each subgroup of solvable group is solvable.

Homomorphic image of solvable group is solvable.

S, isnot solvable for n>5.

GLOSSARY

Nilpotent group: Any group is nilpotent if Z_(G) =G forsome ne N
Solvable group: Let G be a group. Thenachain G=H,oH, o..H,, oH,A ={e}
of subgroups is called a solvable series of Gif H,,is normal in H;and H,/H,is

commutative for every i =01,...,n—1.

A group G is called a solvable group if G has a solvable series.
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9.10 TERMINAL QUESTIONS

Long Answer Type Question:

Prove that every finite p —group is abelian.

Prove that a finite group G is nilpotent if and only if it is the direct product of its Sylow
subgroups.

If G be a solvable group. Then the quotient group G/ H is solvable for every normal subgroup
Hof G.

If G be agroup, Hand K be two subgroup of G and H be normal in G. If both H and K are
solvable then HK is solvable.

If G beagroup, Hand K be two normal subgroup of G such that both the quotients G/H and
G/K are solvable. Then G is solvable if and only if H n K is solvable.

6. S, is not solvable for every n>5.

Short Answer Type Question:
Prove that direct product of a finite number of nilpotent groups is nilpotent.
Prove that every subgroup of a nilpotent group is nilpotent.
If G be a finite nilpotent group then prove that for every positive divisor m of |G|, G has a
subgroup of order m.
Prove that every nilpotent group is solvable.
Every homomorphic image of a solvable group is solvable.
If H be a normal subgroup of agroup G . If both Hand G/ H are solvable, then G is solvable.
If G be a solvable group. If |G |=mn such that gcd(m,n) =1, then G has a subgroup of order
m.
If G be a group. Then prove that G is solvable if and only if there is a positive integer n such
that G™ ={e}.

Fill in the blanks:

15. Every finite p—group is

16. i nilpotent group

17.  Direct product of finite number of nilpotent group is
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18. Every subgroup of nilpotent group is

19. S, is not solvable for every

20.  Every nilpotent group is

21.  Every finite direct product of solvable groups is

22. Every subgroup of solvable group is

9.11 ANSWERS

Answer of self cheque question:

1. n=1234 2. Solvable

Answer of terminal question:
15. Nilpotent 16. 17. Nilpotent
18. Nilpotent 19. n>5 20.  Solvable

21. Solvable 22. Solvable
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BLOCK IV

COMPOSITION SERIES, JORDAN HOLDER
THEOREM AND SOLVABLE GROUP
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10.23 Terminal questions

10.24 Answers

10.1 INTRODUCTION

In algebra, the study of rings is known as ring theory. In rings, addition and multiplication are
defined and have characteristics in common with those of the operations specified for integers. Ring
theory explores the structure of rings, their representations, or in other words, modules, special classes
of rings (such as group rings, division rings), as well as a variety of properties that have proven useful
both for the theory's own purposes and for its practical applications, such as homological properties
and polynomial identities. Rings that are commutative are significantly easier to understand than those
that are not.

Commutative ring theory, often known as commutative algebra, is a significant branch of
modern mathematics that has its roots in algebraic geometry and algebraic number theory, which offer
several natural instances of commutative rings. The relationship between these three disciplines
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algebraic geometry, algebraic number theory, and commutative algebra is so close that it is sometimes
impossible to determine which discipline a given result belongs to. A basic theorem for algebraic
geometry is, for instance, Hilbert's Nullstellensatz, which is formulated and proven in terms of
commutative algebra.

Noncommutative rings have a very distinct character since they have a greater potential for
strange behaviour. Although the theory has grown on its own, a relatively recent tendency has
attempted to mirror the commutative growth by geometrically modelling the theory of some classes of
noncommutative rings as if they were rings of functions on (inexistent) "noncommutative spaces."
With the advancement of noncommutative geometry and the discovery of quantum groups, this
movement began in the 1980s. Noncommutative rings, particularly noncommutative Noetherian rings,

have been better understood as a result.

An ideal of a ring in mathematics, and more specifically in ring theory, is a unique subset of its
constituent parts. Certain subsets of the integers, such as the even numbers or the multiples of 3, are
generalized by ideals. The defining characteristics of an ideal are closure and absorption: adding and
subtracting even numbers maintains evenness, and multiplication an even number by any integer (even
or odd) yields an even number. Similar to how a normal subgroup may be used to create a quotient

group in group theory, an ideal can be used to create a quotient ring.

The ideals are the non-negative integers that correspond one-to-one with the integers; each
ideal in this ring is a main ideal made up of multiples of a single non-negative number. However, in

other rings, the ideals might not exactly match the ring components, and when certain integer qualities

are generalized to rings, they tend to attach to the ideals rather than the ring components more

naturally. For instance, the Chinese remainder theorem may be used to ideals and the prime ideals of a
ring are comparable to prime integers. The ideals of a Dedekind domain, a significant type of ring in

number theory, have a variant of unique prime factorization.

10.2 OBJECTIVES

The study of rings is a deep and multifaceted field with applications in various areas of mathematics
and beyond, the importance of ideals in the study of rings and algebraic structures. Ideals provide a
powerful framework for understanding the algebraic properties of rings and their connections to

various mathematical fields.
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10.3 RING

Let R be a non empty set and a, b, c € R be arbitrary.The set R with two binary operations addition

and multiplication is called a ring if the following conditions are satisfied:

I. (R, +) is an abelian group.
ii. (R,.) is semi group.
Distributive laws holds, i.e.,
a(b+c) =ab+ac [Right dstributive law]
(b +ca)a=ba+ca [Left DISTRIBUTIVE law]

10.4 RING WITH UNITY

A ring having multiplicative identity element is called Ring with Unity or Ring with identity element.

10.5 COMMUTATIVE RING

A ring for which multiplicative is commutative is called commutative ring.

Example:
(Z,+,.) isaring. This ring is called ring of integers.
(mZ,+,.) is aring, m being fixed integer. This ring is Commutative ring.
(R, +,.) isaring. This ring is called ring of real numbers.This ring is a commutative ring with
unity element.

(Q,+,.) is a commutative ring. This ring is called ring of rational numbers.

10.6 BOOLEAN RING

Aring (R, +,.) is called Boolean ring if all elements are indempotent.i.e.,

a.a=a,i.e.,a’? =aVa€R.

10.7 p- RING

Aring (R, +,.) is called p-ring if

aP? = a and pa = 0Va € R.
Similarly we define 2-ring.

10.8 ZERO DIVISOR
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The non zero elements a,b of a ring R are knows as proper divisors of zero or zero divisors if ab = 0
or ba = 0.

Example:
1. The ring has matrices has zero divisors, for example if

a=lpol B3]

Then
_[007_
AB_[O 0 =0

Hence the ring R = {0,1,2,3,4,5,6,7} of matrices has zero divisors.
2. The rings of a number do not have zero divisors. For3 no two non-zero numbers such that their
product is zero.

10.9 RING WITHOUT ZERO DIVISORS

A ring is called without zero divisors if product of two non-zero elements of R is not zero if ab =0
wherea,b € R,a=0o0rb =0botha=0and b = 0.

If we say that R is aring with zero divisors {a # 0 b # 0 then ab = 0}

10.10 CHARACTERISTIC OF A RING

The characteristic of a ring R is explained as the smallest positive in integern. s.t. na = 0Va € R. If
their exist no positive integer, then R is called characteristic zero. Therefore R is of characteristic zero

if na # OVa € R and for any positive integern.

Theorem 1: (Elementary properties of ring) If a, b, c are arbitrary elements of a ring R, then
Prove that.
I. a0 =0a=0
Solution: Let 0+0=0
a(0+0)=a0 by left distribution law
a0+ a0 = a0
a0+a0=a0+0 asx+0=x
Now we get
a0=0 (D
Again
0+0=0
(0+0)a =0a by right distribution law
O0a + 0a = 0a
0a+0a=0a+0

By cancellation law in (R,+), we obtain

0a=0 . (2)
ii. a(—b) = —(ab) = (—a)b
Solution: From (1) and (2) ,we obtain the results

a(—=b+ b) =a(—b) +ab For =b+b =0
a(0) = a(—b) + ab
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0=a(=b) +ab
a(—=b) = —(ab)
Since the additive inverse of ab is aa(—b)
Similarly
(—a+a)b =b(—a)+ ba
(—a+a)=0and 0b =0
0= (—a)b+ ba
Since the additive inverse of ab is a(—a)b.
—(ab) = (—a)b
From (3) and (4), we obtain
—(ab) = (—a)b = a(-b)
iii. (—a)(—=b) = ab
Solution: Let (—a)(—b) = —[a(—b)], by (ii)
= —[—(ab)] again by (ii)
=ab For-(—x) = x Vx € R.
iv.
Solution: a(b——c) =alb+ (—c)]
=ab + a(—c)
=ab + [—ac]
=ab —ac
V.
Solution: (b—c)a=1[b+ (—0)]a
=ba + (—c)a
= ba + [—ca]
= ba — ca

Theorem 2: If R is a ring with unity element 1, then
(-Da=-a=a(-1) Va€ Rand (-1)(—-1) = 1.

Proof: (-1+1a=(-1a+1.a
0.a=(-1a+1.a
0=(Da+a

Since (-1)a = —a, [Fora+x =0,a = —x]
Again a(-1+1)=a(-1)+a.l

a.0=a(-1)+a.l1

0O=a(-1)+a
This implies a(—1) = —a Also (—1)a = —a
(-Da=-a=a(-1)
Now taking a = —1in above equation
EDED =EDED =-(-D
EDED=-(-D =1

For —(—x) = x in additive group or (—1)(—1) = 1.

Theorem 3: A ring without zero divisors iff the cancellation laws hold in R.
Proof: Suppose R be a ring without zero divisors.
To prove that cancellation laws hold in R.

Sinceleta,b,c €R s.t.ab = ac and a # 0.
Then ab=ac=>ab—c)=0

Department of Mathematics
Uttarakhand Open University Page 133




ADVANCED ABSTRACT ALGEBRA

Also a # 0 and R has no zero divisors.
Henceb—c=0=>b=c

Thus ab=ca,a#0=>b=c

Similarly we can show that ba = ca,a # 0=>b =c
Conversely, Let R be aring s.t. cancellation laws hold in R.
To prove that R has no zero divisors.

Suppose the contrary. Then R has zero divisors, then

da,b € Rs.t.ab=0anda,b # 0

ab =0,a # 0 = ab = a.0 fora.0=0 = b = 0. By left cancellation law
A Contradiction, for b # 0

Similarlyab = 0,b # 0 = a = 0. A Contradiction, for a # 0.

Theorem 4: If R is a Boolean ring then
(1) 2a=0Va€eR
(i)  ab = ba i.e.R is commutative.

PROOF:
(i) Suppose
2a=a+a
= (a + a)? + Ris Booleanring, x? =xVx € R
=(a+a)a+a)
=a?+a*+a*+a?
5
= 4q?
2a =4a a? = a (R is Boolean)
4a—2a =0
2a=00ra+a=0.
(i)  Now
(a+b)>=a+b *+ R is Boolean
(a+b)(a+b)=a+b
a(a+b)+ala+b)=a+b
(a?+ab) + (bha+b?>)=a+b By distributive law
(a+ab)+ (ba+b)=a+b v a’=ab?*>=b
Finally, (a+ b) + (ab+ ba) =a+b
(a+b)+(ab+ba)=a+b+0.
Left cancellation law of addition in R givesab + ba = 0.
Takingab = a’, ba = b’, we get
a+b' =0
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a+b =0=a+b'=0=a+ad
=a +b' =ad +ad
=b' =d, by left cancellation law

= ba = ab.
Theorem 5: If R is any ring with identity 1, show that R has positive characteristic n iff n is the at

least positive integer for whichn .1 = 0, 0 being additive identity of R.
Proof: Let R be a ring with unity element e.
o(e) = 0 = characteristic of R is 0.
Suppose o(e) = n = a finite number so that n is at least positive integer s.t. ne = 0. Let a be any
element of R. Then

na = n(ea). Forea = a = ae.

(ne)a = 0a = 0.
Thus n is the least positive integer s.t. na = 0.
This proves that the characteristic of R is n.

SOLVED EXAMPLE

Example 1: Let a and b be arbitrary elements of a ring R whose characteristic is two and ab = ba.

Then prove that, (a + b)? = a? + b? = (a — b)?

Solution: Suppose ab = ba = x € R
The characteristicof Ristwo = 2x =0 Vx €R
>x+x=0
(a+b)2=(a+b)a+b)=ala+b)+b(a+b)
=a’+ab+ba+b?>=a*+ (x+x)+b?=0a*+0+ b?
= a? + b?
(a—b)>=(a—b)(a—b)=ala—b) —b(a—D>b)
=a’—ab—ba+b?=a?—(x+x)+b%?=0a?-0+b?
=a% + b?
Hence, (a + b)? = a® + b? = (a — b)?
Example 2:1f any element a has the multiplicative inverse, then a cannot be a divisor of zero, where
the underlying set of a ring.
Solution: Suppose let R be aringand a € R s.t. a has the inverse a™ € Rsoa # 0
To prove that a is not zero divisor of zero. Suppose not then
a is divisor of zeroso 3 theelementb € R s.t. b # 0 and ab = 0.

ab=0=a(ab) = a0
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= (aa)b=0
=>1b=0=>b=0

Contraryb # 0. Hence required the solution.

10.11 SUBRING

Let R be a ring. A non empty subset s of the set R is said to be a subring of R if S is closed under

addition and multiplication in R and S itself is a ring for those operations.

iff S is closed for compositions in R
iffv abeS=a+b€eS,ab€S.
Theorem 1: The necessary and sufficient conditions for a non empty subset S of a ring R to be a
subring of R are (i) a,b € S = a-bes. (i))abeS=abes.
Proof: Let S be a Subring of a ring R so that S itself is a ring.
To prove that
(i) abeS=abes. (ii) a,b eS = ab €S.
Sisring = (S, +) is an abelian group.
Hence a,b € S = a, -b € S [Each elemant of S has additive inverse in S]
= a+(-b)e S [Sis closed w.r.t.(+)]
= a-b € S. Hence the condition (i)
Again S is ring =(S, -) is a semi group
= S is closed w.r.t. multiplication
=abeS V a,beS. Hence the condition (ii)

Conversely, let S is non empty subset of R s.t. the conditions (i) and (ii) hold.

To prove that S is a subring of R, it is enough to show that S is a ring.

The condition (i) says that
3,a €S = a-a €S =0e€S.

Again 0€ S, aeS = 0-a €S =-a€Ss.
Ie. aES=-a€Ss.
Consequently, a, b €S =4, -b €S

=a-(-b) €S by condition (i)

= atb €S

a,be S= abe R
=a+b= b+a. Fot (R, +) is a abelian group.

Similarly, we can show that
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a+ (b+c) = (ath)+c v ab, ceS.
Hence the above facts prove that (S, +) is an abelian group. Associatively of multiplication over
addition holds in S. Since they hold in R. Finally we have show that (S, +, - ) is a ring.
Theorem 2: The intersection of two subring is again a subring.
Proof: Let S; and S, be two subring of ring R.
Since O€ S;and O€ S, at least 0 S;NS,. Therefore S; NS, is non-empty.
Leta,b € S;NS,, then
a€e S;NS, =ae S; and ae S,
and be S;NS, =be S;and be §,.
But S; and S, are subring of R, therefore
a, be §; =a-be S, and abe S,
and a, be S, =a-be S, and abe S,.
Consequently, a,b € S;NS, =a-be S;NS, and ab € S$;NS,.
Hence S; NS, is a subring of R.

10.12 PROPER AND IMPROPER SUBRING

If R is any ring, then {0} and R are always subring of R. These are said to be improper subrings. The

subrings of R other than these two, if any, are said to be proper subrings of R.
Example:
(i) The ring of Gaussian integers is a subring of ring of complex numbers.
(i)  The ring of rational numbers is a subring of ring of real numbers.

The ring of integers is a subring of a ring of rational numbers.

10.13 IDEALS

A non empty Subset S of aring R is called a left ideal of R if:
(1) S is additive Subgroup of R.
(i) VreR, €seS=rseSs.
A non empty subset S of aring R is called a right ideal of R if:
M S is additive subgroup of R.
(i) VreER, V SeES=rseS.
A non empty subset of a ring R is called an ideal or two sides ideal if it is both left ideal and right

ideal, i.e. if:
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(i) S is additive Subgroup of R.
(i) VIER,V SES=TSES, sresS.
Example:

(1) The subring of even integers is an ideal of ring integers.

(i)  The set {mx:x € Z} is an ideal of the ring of integers. M being any fixed integer.

(iii)  If Ris aring, then the set {x € R:ax = 0} is a right ideal of R. a being any fixed element
of R.

(iv) If Risaring, then the set {x € R: xa = 0} is a left ideal of R. a being any fixed element of
R.

10.14 IMPROPER AND PROPER IDEALS

Let (R,+, ) be aring. The ideal R and {0} are called improper or trivial ideals of R. Any ideal other

than these two ideals is called a proper (or non trivial) ideal of R.

10.15 PRINCIPAL IDEAL

A left ideal generated by single element a €R is also called principal left ideal of R. The set
{ra+ ma:r e R,m e 7}
is a principal left ideal of R. a being fixed element of R.

If R is a ring with unity element e, and a €R, then Ra is principal left ideal of R.

A right ideal generated by single element a €R is also called right principal ideal of R. The set

{ar + ma:r e R,m € Z}
is a principal right ideal of R. a being fixed element of R.
If R is a ring with unity element e, then aR is defined as right ideal generated by an element a €R. aR
is also defined as principal right ideal of R.
An ideal of aring R is called principal ideal of R, if it is generated by single element of R.
That is to say, the set
{ra+as+ma:r,s ER,meZ}
is a principal ideal of R, generated by single element a€ R. This set is also called ideal generated by an
element a€ R. The expression for principal ideal can be simplified if R is a ring with unity element e.
In this case
ra+as+ma=ra+ as+m(ea). Fora = ea
=ra+as+r'a wherer' =me €R
=(r+rHa+as
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=s'a + as,wheres'=r+1r' €R.

Hence a principal ideal of R is the set {s'a + as:s, s’ € R} if R is a ring with unity element e.

10.16 PRINCIPAL IDEAL RING

A commutative ring with unity for which every ideal is a principal ideal is said to be a principal ideal

ring.

10.17 PRIME IDEAL

Let R be a commutative ring. An ideal S of ring R is said to be a prime ideal of R if

ab € SS= a €Sorb €S.
If an ideal S of aring R is generated by an elementa € R, then we write
S =(a).
Similarly if an ideal S of a ring R is generated by elementsa, b € R, then we write
S = ({a,b}).
Example: The ideal S = {3r:r € Z} is prime.
Solution: Let S = {3r:r € Z} is prime ideal of R generated by 3 and we also write S = (3).
Here ab € S = 3|ab. Also 3 is prime
= 3|a and 3|b
= a€Sorbes
= S is prime
Theorem: If R is a commutative ring with unity and a € R, then Ra = {ra:r € R} is a principal ideal
of R, generated by a.
Proof: Let R be a commutative ring with unity element e and a € R,
Ra = {ra:r € R}
(1) To prove that Ra is ideal of R.

(i)  To prove that Ra = (a), i.e., the ideal Ra is generated by a.

Let S be an ideal generated by an element of a, so that S = (a)
S=(a)= {rat+as+ma:r,s ER,meZ}
ra + as + ma = ra + sa + ma. For R is commutative.
=ra + sa + (me)a.
=ra+sa+r'a,whereme=7r"€R
=(r+s+1r)a

=xa,wherex =r+s+r' €R.
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Finally, ra + as + ma = xa, x € R.

Hence, S = {xa:x € R} = Ra.

But S = (a).

Hence Ra = (a).

Now we have shown that Ra is an ideal generated by a single element a. By definition, Ra is a

principal ideal of R.

10.18 QUOTIENT RING

Let R be aring and S be an ideal of R. Let R/S denote the family of cosets of Sin R, i.e.,

R
§={S+a:aER}.

Let S+ a,S + b be arbitrary elements of R/S. Define the operations of addition and multiplication on
R/S as follows:
S+a)S+b)=S+(a+Db)
S+a)S+b)=S5+ab.

Then R/S is a ring w.r.t. these operations. This ring (R/S, +,) is called quotient ring or factor ring.
Theorem: The intersection of two ideals is an ideal.
Proof:

(1) S; and S, both are additive subgroups of R.

(i) r€eRa€S; =raare€s;
and r€R,a€S, =raar €S,.
To prove that $; NS, is an ideal of R. For this we have to prove the following:

(iii)  S;NS, is additive subgroup of R.

(iv) re€eR,a€S;NS,=raar €S NS,
Evidently (i) = (iii)
r€R,a€eSNS,=reRaeS;anda €S,
=re€eRa€eS;andr eR,a€ES,
= ra,ar € S;and ra,ar €S, , by (ii)

= ra,ar € $;NS, = (iv).

Check your progress

Problem 1: Check that the singleton set {O}is ring or not?

Problem 2: Check that the singleton set contain the identity element form a ring?
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Problem 3: Check that the set {0,1}is ring with unity or not?

10.19 SUMMARY

In this unit, we have studied the basic terminology used in ring theory. We have also read about the
basic idea of ring with some theorems and examples. We have defined commutative and non
commutative. In this unit first we have defined subring, Boolean ring, characteristic of ring with
examples. After that we have described the definition of ideal, prime ideal, principal ideal and quotient
ring with examples then important theorem related to these topic described. This unit is basic outlook
of ring theory and concepts of this unit will be beneficial for the learners in the upcoming units.

10.20 GLOSSARY

Ring

Characteristic of ring
Subring

Ideal

Principal ideal

Quotient ring
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10.23 TERMINAL QUESTIONS

Long Answer Type Question:

Prove that set of integers is a commutating ring ‘or’ (Z,+,.) iS a commutative ring.

Prove that set of rational numbers is a commutative ring.

Prove that ring without zero divisors iff the cancellation laws hold in R

Prove that set of rational numbers is a subring of set of real number.

1
2
3
4. State and prove the necessary and sufficient condition for any subset of ring to be a subring.
5
6

Prove that subring of even integers is an ideal of ring of integers.
Short Answer Type Question:
7. If R is any ring with identity 1, then prove that R has positive characteristic n iff n is the at
least positive integer for which n.1 = 0, 0 being additive identity of R.
In any ring (R) any element a has the multiplicative inverse, then prove that a cannot be a
divisor of zero.
Prove that intersection of two subring of a ring is also a subring.
Prove that intersection of two ideal of a ring is also an ideal of ring.
Define the ring and subring with example.
Define the ideal, prime ideal and principal ideal with example.
Define proper and improper ideal with example.

Let a and b be arbitrary elements of a ring R whose characteristic is two and ab = ba. Then
prove that,
(a + b)? = a? + b? = (a — b)?
Fill in the blanks:

15. Intersection of two subring of any ring is also a
16. Intersection of two ideal of any ring is also an

17.  Set of rational number is subring of set of

18.  Arring (R) without zero divisors iff the cancellation laws
19.  Setofintegersisa ring with unity

10.24 ANSWERS

Answer of self cheque question:

1. Yes 2. Yes 3. Yes

Answer of terminal question:

15.  Subring 16. Ideal 17. Real 18. R  19. Commutative

Department of Mathematics
Uttarakhand Open University Page 142




ADVANCED ABSTRACT ALGEBRA MATS501

Unit-11: INTEGRAL DOMAIN AND FIELDS

CONTENT:

11.1 Introduction
11.2  Obijectives
11.3 Integral domain
114 Field
11.4.1 Subfield
11.5 Division ring or skew-field
11.6  Summary
11.7 Glossary
11.8 References
11.9 Suggested Readings

11.10 Terminal Questions
11.11 Answers

11.1 INTRODUCTION

In this unit we will learned about the more important tools used in the ring theory like integral domain,
field and division ring or skew field. A field in mathematics is a set on which the operations addition,
subtraction, multiplication, and division are defined and function in the same manner as they do for
rational and real numbers. As a result, a field is a basic algebraic structure that is often utilised in

number theory, algebra, and many other branches of mathematics.

The domains of rational numbers, real numbers, and complex numbers are the most well-
known ones. Mathematicians frequently utilise and study a variety of different fields, notably in
number theory and algebraic geometry, including fields of rational functions, algebraic function fields,
algebraic number fields, and p-adic fields. On finite fields, or fields with a finite number of elements,

the majority of cryptographic procedures are based.
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The idea of a field extension expresses the relationship between two fields. The goal of the

Galois theory, which Evariste Galois founded in the 1830s, is to comprehend the symmetries of field

extensions. This theory demonstrates, among other things, that it is impossible to square a circle and
trisect an angle with a compass and straightedge. Additionally, it demonstrates that quintic equations

are typically algebraically intractable.

In many areas of mathematics, fields are fundamental concepts. This comprises many
mathematical analysis disciplines that are based on fields with extra structure. Analysis's fundamental
theorems rely on the real numbers' structural characteristics. What's more, any field may be utilised as
the scalars for a vector space, which is the usual generic setting for linear algebra. In-depth research is
done on number fields, the siblings of the subject of rational numbers. Geometric object attributes may

be described with the use of function fields.

11.2 OBJECTIVES

After reading this unit learners will be able to
Memorized about the integral domain which is the extension of ring.
Analyze about the field which further essential tool used is Linear Algebra.
Memorized the concept of division ring or skew field.

Implementation of the concept of integral domain, field and division ring or skew field.

11.3 INTEGRAL DOMAIN

Definition: Any ring (R)is called integral domain, if it satisfies the following conditions

(i) R should be commutative ring

(i) R has unit element

(i) R should be without zero divisors.

Some authors defining to integral domain in a different way that an integral domain is a commutative
ring without zero divisors. They do not demand that an integral domain have the unit element without
a doubt.

Set of integer (1 ) is @ most common example of a ring to be an integral domain. We know that | is a

commutative ring with unity and also | does not possess zero divisors. We know that if a,bare

integers such that ab =0, then either a or b must be zero.
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The other rings which are examples of infinite integral domains are (C,+,.),(Q,+,.),(R,+,.) and the

example of finite integral domain is ({0,1,2,3,4},+,%;).

Inversible elements in a ring with unity: In a ring (R) each element possess additive inverse.
Therefore when we talking about inversible of an element, we only asking about invertiablity with
respect to the operation multiplication. If Ris a ring with unity, then an element a<R is called
inversible, if there exist b e R such that ab=1=ba. Then we rewrite b=a™.
Examples (i): In the ring of integers 1 and -1 are the only two inversible elements.
(if): In the set of nxn non singular matrices with real numbers as elements are the only inversible
elements of the ring of all nxnmatrices with elements as real numbers.
Theorem 1: A commutative ring R is an integral domain iff Va,b,c € R(a #0)
ab=ac=b=c
Proof: Let Ris an integral domain.
Also let ab=ac (a=0)
Then ab—ac=0
—a(b-c)=0
—a=0o0orb-c=0
Since a=0,wegetb=c
Conversely, let the given condition holds good.
Let a,b € Rbe a arbitrary elements with a=0.
Suppose ab=0
Then ab=a.0
— b =0 using given condition
Hence ab =0=b =0 whenever a =0 or that R is an integral domain.
Remark: Any ring (R) is said to satisfy left cancellation law if ¥ a,b,c € R(a #0)
ab=ac=b=c
Similarly we can talk of right cancellation law. It is to notify that cancellation is of only non zero

elements.

11.4 FIELD

Definition: A ring (R) with at least two elements is called a field (F) if it satisfies following
conditions,

M It should be commutative
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(i) It has unity

(iii)  Each non-zero element possess multiplicative inverse.

For example, ring of rational numbers (Q,+,.) is a field because it satisfies aforementioned following
conditions. Similarly, rings of real numbers (R,+,.) and complex numbers (C,+,.) are also common
example of fields.

({0,1,2,3,4},+,,%;) is an example of finite fields

If a,0 = bare elements of a finite field F, then we shall often write

ab™® = % =bta. Inafield F, we have

% + % = (ab™) +(cd™) = (bd ")(bd)[(@b™") +(cd )]

ad +bc

= (bd ™M)[(bd)(ab™) + (bd *)(bd)(cd )] = (bd *)(ad + bc) = od
[Because in the field ( F ) multiplication is commutative]

ac
bd

Also %% — (ab)(cd ™) = (ac)(bd ) = (ac)(bd)* =

1141 SUBFIELDS

Definition: A non-empty subset K of a field F is said to be subfield if K is closed w.r.to. operation
addition and multiplication in F and K itself is a field for these operation.

Conditions for a subfield: The necessary and sufficient condition for a non-empty subset K of field
F to be subfield are

(i) aeK,beK=a-bekK

(i) acK,0zbeK=ab'eK

Proof: Necessary condition: Let the subset K of field F is itself a field.

— K is a group w.r.to. addition i.e. foreach a,be K =>a-beK

Now each non-zero element of  Kpossesses multiplicative inverse.  Therefore
acK,0zbeK=abt'ekK

Hence condition is necessary.
Sufficient condition: Suppose K is non-empty subset of F and satisfying the condition (i) and (ii). As

similar we have proved in case of subring that (K,+) is abelian group, in similar we will prove (i) that

(K,+) is abelian group.
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Now let abe any non-zero element of K. Then from (i) we have
acK,0zacK=aa'teK=1lekK

Now 1€ K, therefore again from (ii), we have

leK,0zaeK=la'eK=a'eK.

..Each non-zero element of K possesses multiplicative inverse.

Now let ac Kand 0=be K. Then b™ e K. From (ii), we have

acK,0zb'eK=ab") ' eK=abeK

Alsoif b=0, then ab=0and 0 e K

abeKVabekK

Associativity of multiplication and distributivity of multiplication over addition must hold in K since
they hold in F

11.5 DIVISION RING AND SKEW FIELD

Definition: A ring (R) with at least two elements is called a division ring or a skew field if is satisfies
following conditions

(1) Has unity

(i) Each non-zero element possesses its multiplicative inverse.

Thus a commutative division ring is a field.

A division ring is a field if it is also commutative but every field is also a division ring.

Theorem: Every field is an integral domain.

Proof: As we know that a field (F) is a commutative ring with unity, therefore to prove that every field
is an integral domain we have only to prove that a field has no zero divisors.

Let a,b be elements of F with a = 0such thatab=0
Since a = 0,a™" exists and we have
ab=0=a'(ab)=a"0

= (a'a)b=0

=1b=0
=b=0
Similarly, let ab=0and b=0

Since b = 0,b™* exists and we have

ab=0=>(ab)b =0b™*
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=abb’)=0=al=0=a=0
Hence in a field ab=0=a=0 or b=0. Since field has no zero divisors therefore every field is an
integral domain.
The converse of this theorem is not true i.e., every integral domain is not a field. For example, ring of
integer is an integral domain while it is not a field because only inversible element in the ring of
integer are 1 and -1.

Note: In the field unity and zero are different elements i.e., 1= 0. Let abe any non-zero element of a
field. Then a'exists and is also non-zero. For, a' =0=aa "’ =a0=1=0=al=a0=a=0

This is a contradiction. Now, field has no zero divisors. Therefore, 1=a"a 0.

Remarks: As we know field has no zero divisors. Therefore in the field product of two non-zero
elements will again a non-zero element. Also each non-zero element and unit element possesses non-
zero multiplicative inverse. Since multiplication is commutative as well as associative, therefore the
non-zero elements of a field form abelian group w.r.to. multiplication.

Theorem 2: A skew field (D) has no zero divisors.

Proof: Let D be a skew-field. Then D is a ring with unit element 1 and each non-zero element of D
possesses multiplicative inverse.

Let a,b be elements of Dwith a=0s.t. ab=0
Since a = 0,a ‘exists and we have
ab=0=a"'(ab)=a"0

=(@'ab=0=1b=0=b=0
Similarly, let ab=0 with b=0

Since b = 0,b™* exists and we have

ab=0=>(ab)b =0b™*

=alb)=0=al=0=a=0
Hence a skew field has no zero divisors.
Theorem 3: Every finite integral domain is a field ‘OR’ A finite commutative ring without zero
divisor is a field.
Proof: Let D be a finite commutative ring without zero divisor having nelements a ,a,,...,,a,. In

order to prove that D is a field, we must produce an element 1€ Dsuch that la=aVvae D. Also we

should show that for every element a = 0 € D there exist an element b € D such that ba=1.

Let a=0e D. Consider the nproducts aa,, aa,,aas,...,aa, .
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All these are element of D . Also they are all distinct. For suppose that aa, =aa;for i= j.
Then a(a; —a;) =0 ... (D)
Since D is without zero divisors and a = 0, therefore (1) implies
8, —a; =0=a, =a;, contradicting i+ j.
.. aa,,aa,, aa,,...,aa, are all ndistinct elements of D placed in some order. So one of these elements
will be equal to a. Thus there exists an element, say, 1< D such that
al=a=1a [-.- Dis commutative]
We shall show that this element 1 is the multiplicative identity of D. Let y be any element of D.
Then from the above discussion for some x € D, we shall have ax =y = xa
Now, 1y =1(ax) [-ax=Y]
= (1a)x
=ax [‘-la=a]
=Y [vax=y]
=yl [~ Dis commutative]
Thus 1y =y =yl Vy e D. Therefore 1lis the unit element of the ring D.
Now 1€ D . Therefore from the above discussion one of the n products aa,,aa,, aa,,...,aa, will be

equal to 1. Thus there exists an element, say b € D such that

ab=1=ba

..b is the multiplicative inverse of the non-zero element a € D. Thus every non-zero element of D is
inversible.

= Disafield.
Definition: In aring Rany element ais said to be idempotent if a®> =a. Any ring R will be called
Boolean Ring if and only if all of its elements are idempotent i.e., if a* =aVaeR.

Example 1: In the ring of set M of 2 x 2matrices over the field of real number with respect to matrix
addition and multiplication evaluate the following:

M Is it a commutating ring with unity elements?

(i) Find the zero elements.

(ili)  Does this ring possess zero divisors?

Solution: Let ABeM .Then A+BeM and AB € M. Therefore M is closed with respect addition

and multiplication of matrices.

As we know that both addition and multiplication of matrices are associative composition.
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~A+(B+C)=(A+B)+CVAB,CeM

and A(BC)=(AB)C VA B,CeM

Commutative property holds in addition of matrices. Hence, VA Be M, we have A+ B=B+ A.
If Obe the null matrix of the type 2x2,then OeMand O+ A=AVAecM.

Further multiplication of matrices is distributes w.r.to. addition.

~A(B+C)=AB+AC

and (B+C)A=BA+CAVAB,CeM

.M is aring with respect to the given compositions.

Multiplication of matrices is not in general a commutative composition. For example, if
2 4 1 2

A= ,B=
3 5 01

2 8 8 14
Then, AB = and BA=
3 11 3 5

Thus AB = BAand so the ring is a non-commutative ring

10
If | be the unit matrix of the type 2x2 i.e., | :{0 J then 1 € M . Also we have

Al =A=1AVAecM
. | is the multiplicative identity.
Thus the ring possesses the unit element and we have | =1 (the unit element of the ring)

The ring possesses zero divisors. For example if

01 2 3 00
A= B = ,then AB =
01 00 00

Thus the product of two non-zero elements of the ring is equal to the zero element of the ring.
Example 2: DO the following sets from integral domains w.r.to. ordinary addition and multiplication?
If so state if they are fields.

(1) The set of numbers of the form b~/2 with b rational.

(i)  The set of even integers.

(ili)  The set of positive integers.

Solution (i): Let A=1{pv/2:beQ}.

We have 32 € A and 542 € A. Then (&/EXS\/E): 30 . Now 30 can not be put in the form b~/2
where b is rational number. Therefore 30 ¢ A. Thus Ais not closed with respect to multiplication.

Therefore the question of Abecoming a ring does not arises.
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(if):  Let Rbe setof all even integers. Then R is a ring with respect to addition and multiplication
of integers. Additionally, the composition of multiplication is commutative. Since the product of two
non-zero even integers cannot equal zero, which is the zero element of this ring, R has no zero
divisors. Since the integer 1¢ R, therefore R is a ring without unity. If the presence of the unit clement
is not a requirement for an integral domain, then R will be one. However, since the multiplicative
identity does not exist, R is not a field.

(iii): N should be the collection of positive integers. The additive identity does not exist since the

number 0 ¢ N. N won't be a ring, then.

Example 3: Show that collection of numbers of the form a-+b+/2, with aand b as rational numbers

is a field.

Solution: Let R = {a+b\/§:a,b € Q}
Let a1+b1\/§e R and a, +b,+/2 € R where a.b,a,,b, €Q
We have (a1 +b1\/§)+(a2 +b2\/§): (a, +a,)+ (b, +b,)v2eR. Since (a, +a,) (b, +b,)eQ

Also (3, +1,v2) (g, +b,v2)= (a,a, + 20,)+ (ab, + a,b, W2 < R.

Since aa, +2bb,,ab, +a,b €Q
Thus Ris closed w.r.to. addition and multiplication.
We know that addition and multiplication are both associative and commutative compositions in the

set of real numbers since all the components of R are real numbers.
Further we have 0+0+/2 e Rsince 0eQ.

If a+b2 eR, then

O+O\/§+(a+b\/§):(0+a)+(0+b)\/§: a+h/2

- 0+ 0+/2 is the additive identity.

Now again if a+ bv2 e R, then (-a) + (—b)\/E € R and we have
[(-a) + (~b)v/2] + [a + b~/2] = 0+ 042

.. each element of R posses its own additive inverse.

Since multiplication is distributive w.r.to. addition in the set of real number.
Again 1+0+/2 € Rand we have
(1+ O\/EXa+bx/§)= a+by2 = (a+bx/§X1+ O\/E)e R
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So, (1+ O\/E) is the multiplicative identity. Thus R is commutative ring with unity and the zero

element of the ring is 0+0+2 and 1+0+/2 is the unit element. If each non-zero element of R has a

multiplicative inverse, then R will now be a field.

Let a+by2 0+0v2 be any element of this ring i.e., one of the element aand b is not zero.

1 a—by2 _a-hy2
a+bv2 (a+bv2)(a-by2) a®-2b’

:(az —a2b2]+(_ a’ —b2b2j\/§

Now if a, b are rational numbers, then we can have a® = 2b? only if a=0,b=0. As we know that at

Then

least one of the rational numbers aand b is not 0. There we cannot have a® = 2b’i.e., a> —2b? =0.

a :
. Both numbers Z—szand EPerTS are rational number and not both of them are zero.
a - a® -

(ﬁj + (— —ﬁjﬁ is non-zero multiplicative inverse of a+b+/2 . Hence the given
system is a field.

Example 4: Give an example of an infinite commutative ring without zero divisors which is not a
field.

Solution: Let Z be the set of integers. Then (Z,+,.) is an infinite commutating ring without zero
divisors and is not a field.

Example 5: If (R, +,.)be aring with n elements, n > 2 with no zero divisors, show that R is a
division ring.

Solution: Let R be a finite consisting of nelements, wheren > 2s.t., R has no divisor of zero.

To prove that Ris a division ring we have enough to prove that.

(1) R has a unit element 1.

(i) Every non-zero element of R has multiplicative inverse in R.

(i) Prove of (i) is the part of Theorem 3.

(i) leR=3Jax;eRst ax;=11<j<n
= a s left inverse of xjin R.

But left inverse = Right inverse.

— a is the multiplicative inverse of x;in R

Theorem 4: In the ordered integral domain D, the unity element is a positive element of D .
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Proof: Let P be the collection of positive elements of integral domain D . We have to prove that 1< P
, for it we assume that 1¢ P .

Since 1¢ P, 10= -1 P [By definition of P]
=)D eP
= 1e P, which is a contradiction.

Hence the unity element is positive element of D.

Theorem 5: The field (I, +

) is not ordered, where 1/ ={0,1,2,..., p—1}and p =prime.

P’XP

Proof: To prove (I ,,+ ) is not ordered.

p,Xp

Suppose the contrary. Then (I, + ) is ordered. Let P be the set of positive element of | . Since

P’XP

additive identity of 1 is '0". By definition of P, 1€,
= only one of the following is true:
1=0,1€< P or additive inverse of 1 P.

Evidently 1+ 0. Hence 1< P or additive inverse of 1< P. Since P is closed w.r.to +.
leP=1+ 1eP=>2eP=2+,1eP=3eP

Repeating this process, we find that Lle P= p-1<P,i.e., 1P
= additive inverse of 1 belongs to P . Which is a contradiction.
For both the possibilities 1 P, p—1< P cannot holds simultaneously.

Here our initial assumption is wrong.
Therefore the required result follows.
Theorem 6: The set of complex number is not ordered integral domain.

Proof: Let C be the set of complex numbers. We know that (C,+,.)is an integral domain. Let P be the
set of positive element of C . Evidently ieCand i =#0.

Hence either ie P or —ieP.

I € P=i.ieP, by definition of P

—-1eP. For i’ =-1.

A contradiction . For —1e P, by theorem 4.
sigP.

Again,—ieP = (-i)(H)eP=i*eP=-1cP.
Again we get a contradiction,—i ¢ P.
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Thus i #0,i = P,—i ¢ P, i.e., any one of the following:
i=0,ieP,—-ieP,
does not hold. Hence C is not an ordered integral domain.

Theorem 7: The characteristic of a ring with unity is zero or n > 0 according as the unity element
regarded as a member of additive group of R of order Oor n.

OR

If Risany ring with identity 1, shows that R has positive characteristic n iff n is the least positive
integer for which n.1=0,0being additive identity of R.

Proof: Let R be a ring with unity element e.

O(e) = 0 = Characteristic of Ris 0.

Suppose O(e) = n = afinite number so that nis the least positive integer s.t. ne=0. Let a be any
element of R. Then

na=n(ea).lFor ea=a=ae

=(ne)a=0a=0

Thus nis the least positive integer s.t. na = 0. Hence the characteristics of Ris n.
Theorem 8: Every finite integral domain D is of finite characteristics.

Proof: Let (D, +,.) be a finite integral domain so that (D, +,.) is a finite abelian group. We also known
that characteristic of D is the order of unity element e of (D, +,.).

(D,+,.) is finite group =0O(e) finite.
= Characteristic of Dis finite.

Theorem 9(a): The characteristic of an integral domain is either 0 or a prime number according as the
unity element e regarded as a member of the additive group of integral domain is of order 0 or a prime
number.

Proof: (i) Let D be an integral domain. Then we prove that characteristic of D is eitherOor p>0.
[Proved in theorem 8]

(i) If the characteristic is zero, the proof is complete.

Let the characteristic be p > 0. We have to show that p is a prime number.
Suppose p is not prime. Then p is composite integer. So we can write p= p,p,: where 1< p,, p, < p.
Characteristic of Dis p = order of e of the group (D,+)is p. [eis unity element of D]

=o0(e)=p=pe=0

=pp,e=0= p,(p,e)=0
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= (p.e)(p.e) =0

= pe=0orp,e=0 [For D has no zero divisor]

— Characteristic of Dis either p, or p, < p

—=Ch.D< p. A contradiction.
Hence p is not composite.
Therefore pis prime.

Theorem 9(b): The characteristic of an integral domain is 0 or n > 0 according as the order of any
non-zero element regarded as member of the additive group of the integral is either O or n.

Proof: Let (D,+,.) be an integral domain and a< Dand a=0 and O(a) =0or n regarded as a
member of (D,+).

Then na=0,0a=0 (1)
Aim: Characteristic of DisOor n.
For this have to show that nx=0V xeD.
If xeD,then (1) =>(ha)x=0=(a+a+...+atonterms)x =0
= (ax+ax+...+atonterms)=0
=a(x+X+...tonterms) =0=a(nx) =0,a=0
=nx=0as Dis free from zero divisors. Hence nis the least positive integer, according to (1).

Example 6: If there exist a positive integer msuch that ma=0V a € F, then show that m is a prime.
What is this integer? F being a field.

Answer: Let F be afield and a < F be arbitrary. Also let
ma=0
where m is a positive integer. Let e be the multiple identity of F .
Then ae=ea=0
(1) —=m(ea)=0=(me)(a)=0—=me=00ra=0
= in particular me =0
For F has no divisor of zero
F is field = F is integral domain s.t. (2) holds.
It means that mis the characteristic of F . To prove that mis prime.

Now write proof of theorem 9a.
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Theorem 10: Each non-zero element of an integral domain D, regarded as an element of the additive
group D, is of the same order.
Proof: Let a,b be arbitrary non-zero elements of an integral domain D s.t. a=b.
Let O(a) =n,0O(b) =m, where a,b are regarded as element of (D,+) so that na=0,mb =0,
D is an integral domain = D has no zero divisors.
= cancellation law hold in D.

na=0=a+a+..uptonterms=0

=b(a+a+..uptonterms)=b.0=0

—ba-+ba+..uptonterms=0

—=n(ba) =0= (nb)a=0=0a = (nb)a=0a

=nb =0, by cancellation law

=0() <n=m<n.For O(b)=m

mb=0—=b+b+...uptonterms=0

=a(b+Db+...uptonterms)=a.0=0

—ab-+ab+...uptonterms=0

=m(ab)=0=0b

—=(ma)b=0b. Also b=0

—=ma =0, By cancellation law

=0(@)<m=n<m.For O(a)=n
Thus we have shown that n<m,m>n.
~.m=n, i.e.,, O(@)=0(b).

When considered as members of an additive group, any two non-zero components of D have the same
order.

Therefore, when considered a member of (D, +) , every non-zero element of D is of the same order.

Example 7: Give an example of skew-field which is not field.

Solution: Let R be a set of matrices of the form,

Where a and b are complex numbers.
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C= be any two member of R. Then

{ a+c b+d}
A+B=

—(b+d a+c

AB:{ ac —bd ad+bc}

—(bc—ad —bd +ac
If we take @ =a+c,f=b+d,y =ac—bd,s =ad +bc, then we have

A+B:{a_ g:|ER

-8B a

ABz{ 4 qeR
—5 -y

(i) (R,+)is an abelian group.
Closure axiom: A+ B € R (already proved)
Commutativity: A+ B =B+ A.

This flows from the fact that a+b=b+a

00
Existence of identity: O = {O O} eR

is additive identity s.t. A+O=0+A=A
Associative law: A+(B+C)=(A+B)+C

It follows from the fact that

a+((b+c)=(a+b)+c

-a -c
Existence of inverse: — A= { - _} eR
c -a

is inverse of As.t. A+(-A)=0
(i) (R,.) isagroup

Closure axioms: AB e R (already proved)

10
Existence of identity: | = {0 J e Ris identity s.t. Al =1A=A.
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Associative law: (AB)C = A(BC)
For (ab)c =a(bc)

Existence of inverse: If A= Q, then

At adiA_ 1 a_beR
|A| (aa+bb)|b a

isinverse of As.t. AAt=ATA=
Commutative law: AB = BA is not satisfied here.

{ c df a
For BA=| —
d

| ac-bd  bc-ad
—ad—bc —hd+ac

__} + BA, by (1)

Or BA= AB

(iii) Distributive law: A(B+C)= AB+ AC
(B+C)A=BA+CA

It is true in general in case of matrices.

These fact show that (R,+,.) is askew field but not field.

Example 8: Prove that the set 1, ={0,1,2,...,6} forms a field w.r.t. addition and multiplication modulo
7.

Solution: Let 1, ={0,12,...,6}.
Let a,b,cel,

a+bif a+b<7
r if a+b>7

We define a+, b= {

Where ris remainder when a+b is divided by 7,

~ 0<r<6

Evidently, a+, bel,

(i) First, we have to prove that (I,,+,) is an abelian group.
Closure axioms: a+, b e |, (already proved)

Existence of identity: 30 € |,, called additive identity s.t.
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a+,0=0+,a=a

Commutative law: a+,b=Db+; a.

This follow from the fact that, a+b=b+a

Associative law: (a+, b)+, c=a+, (b+, c)

Since (a+b)+c=a+(b+c¢)

Therefore each side leaves the same remainder when divided by 7.

- (@a+b)+,c=a+,(b+c)

Or - (a+;b)+c=a+, (b+,c)

Existence of inverse: V ael,,3 itsinverse
(7—a)el, (if a=0)s.t.
(7-a)+,a=a+, (7—a)=0.

Inverse of 0 is O itself.

(i)  Write 17 ={1,2,3,...,6} =1, —{0}.

Let a,b,c € 17. Define

ax, b=

ab if ab<7
s if ab>7

Where s is the remainder when ab is divisible by 7.
0<s<6
s=0= ab isdivisible by 7.
But 7 has divisor = a or bis divisible by 7
—ax>7,b>7.
A contradictionas a,b<7.
. 8 #0.Consequently 0<s<6.
This =sel, =ax,bel,
Aim: Now we have to prove that (I,,x.) is an abelian group.

Closure axioms: ax, be I, (already proved)

Commutative law: ax, b=bx, a
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Associative law: (ax, b)x, c=ax, (bx, c).

Since (ab)c =a(bc)

Existence of identity: 1< I, is identity element s.t.
1x,a=ax;1=a.

Existence of inverse: Va e I, we have its inverse x e I, s.t.
ax, Xx=Xx,a=1.

For the equation ax=1 (mod p) has a solution X if p is prime.

[Inverse of 1, 2, 3, 4, 5, 6 are respectively 1, 4, 5, 2, 3, 6]

Thus (1.,x,) is an abelian group.

(iii)  Distributive law: ax, (b+, c) =(ax, b)+, (ax, c)

(b+,c)x,a=(bx, a)+, (Cx, a)

This follows from the fact that

a(b+c)=ab+ac and (b+c)a=hba+ca

Above arguments lead to the fact that (1,,+,, x,) is a field.

Similar example 9: Let p be a positive prime number. Prove that the set 1, ={0,1,..., p—1} forms a

field w.r.t. addition and multiplication modulo p ’OR’Ring of integers modulo a prime number p, is a
field.

Example 10: If 1, ={0,1,2,3,4} then prove that (I, +,x%;) is a field, where +,and x. respectively
denote addition and multiplication modulo 5.

Answer: The composition tables for two operations are given below:

(i) Closure axiom: From the two composition tables it is quite clear that all the entries in both
composition tables belong to I, . Hence I, is closed w.r.to. both operation

(ii) Commutative law: The entries in the 1%, 2", 3™ 4™ rows are coincident with the corresponding
element of the 1%, 2", 3", 4™ columns respectively relative to the both operations. Hence +; and x

both are commutative in I, .
(iii) Associative law: It is easy to verify that the associative law holds for +;,
e, a+;(b+,c)=(a+;b)+,c Va,b,cel,.

Similarly, ax; (bx;c)=(ax;b)x,c Va,b,cel,
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ts

2 3
2 3
3 4
4 0
0 1

0
1
2
3

4 4 01 2 3
(iv) 0 is the additive identity and 1 is the multiplicative identity for I,.

For O+;a=aVael,
Ix;a=aVvVael; st.a=#0

This follows from the composition tables.

(v) Existence of inverse: The additive inverse of 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively. The
multiplicative inverses of non-zero elements 1, 2, 3, 4 are 1, 3, 2, 4 respectively.

(vi) Distributive law: Multiplication is distributive over addition, i.e.,
ax;(b+;c)=ax;b+;ax,c Vab,cel,
(b+,c)x;a=bx;a+,a+;cx;a Va,bcel,
For ax, (b+;c)=ax, (b+c).For b+, c=b+c(mod5)
=least positive remainder when ax (b +c) is divided by 5.
=least positive remainder when ab + ac is divided by 5.
=ab+, ac
=ax;b+;ax;c.For ax, b=axb(mod5)
In similar way, we can prove other distributive law.
Hence (l4,+5,%;) is a field.

Example 10: The set of all residue classes modulo a positive integer pis an integral domain iff pis
prime.

Solution: Let R denote the set of all residue classes modulo a positive integer p so that
R={[x]:x=0,1,2,3,...,p—1}

Then we know that R is a commutative ring with unity element [1], [0] being the zero element of R.
Let [a],[b] € R be arbitrary so that

0<a,b<p-1
R will be an integral domain iff it is free from zero divisors, i.e., iff
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[a][b] =[0] = [a] =[0] or[b] =0

So we have to show that p is prime iff

[a][b] =[0] =[a] =[0] or[b] =0

(i) pisprime, [a][b]=[0]= pis prime, ab=0(mod p)

= a=0(mod p)or b=0(mod p)

= [a]=[0] or [b] =[0] or b =0(mod p)

(ii) Conversely supplies,

[a][b] =[0] = [a] =[0] or [b] =[0].

Now we have to prove that p is prime. For it let pis of composite order.

If pis of composite order = pis expressible as, p=p,p,, where 1< p,, p, < p

= [pI=[p;.p.1.[p,]1#[0].[p.]1+[O]
= [p-p,1=[0]. For [p]=[0]
=[p,]=0 or [p,]=[0], by assumption.
Which is a contradiction.
For [p,]=0 and [p,]=[0].
Which shows our assumption is wrong. Therefore p is prime.

Similar problem 11: The set of all integers modulo a positive integer pis an integral domain iff pis
prime.

Hint: (1,,+,,%,) is integral domain, where 1, ={0,1,2,3,..., p—1}.

Check your progress

Problem 1: Check 1, ={0,1,2,3} is field or not?
Problem 2: Check that the set {0,1}form a field?
Problem 2: Check that the singleton set {0} form a field and why?

11.6 SUMMARY

In this unit, we have studied about the integral domain, field, division ring or skew field in a ring.
Throughout the all units we have learned about the basic definitions and their related theorems and
examples on these major topics. In many areas of mathematics, fields are fundamental concepts. This
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comprises many mathematical analysis disciplines that are based on fields with extra structure.
Analysis's fundamental theorems rely on the real numbers' structural characteristics. What's more, any
field may be utilised as the scalars for a vector space, which is the usual generic setting for linear
algebra. In-depth research is done on number fields, the siblings of the subject of rational numbers.
Geometric object attributes may be described with the use of function fields. The overall

summarization of this units are as follows:

> A nonzero commutative ring without any nonzero zero divisors is referred to as an integral
domain.
Having no nonzero zero divisors, an integral domain is a nonzero commutative ring.
Every field is an integral domain.

Every finite integral domain is field.

GLOSSARY

Integral Domain: Any ring without zero divisor is called integral domain

Field: A commutative ring with unity having each non-zero element possess its multiplicative
inverse is called field.

Division ring: A ring with unity having each non-zero element possess its multiplicative

inverse is called division ring.
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11.10 TERMINAL QUESTIONS

Long Answer Type Question:

1. Show that in an integral domain all non-zero elements generate additive cyclic groups of the
same order which is equal to the characteristic of the integral domain.
Give without proof, an example of an integral domain which contains only five elements. Is

this an ordered integral domain? Give reason?

a
Show that the matrices { 0

2} , a, b real, forms a field.

Prove that a non-zero finite integral domain is a field.

Prove that (I,,+,,%x,) is a field, where +,and x, respectively denote addition and

multiplication modulo 5.

Give an example of skew-field which is not field.

Show that collection of numbers of the form a+b+/2, with aand bas rational numbers is a
field
Short Answer Type Question:
8. If Dis anon-zero integral domain, then characteristic of D is either zero or a prime number.
9. The set of complex number is not ordered integral domain
10. Prove that a skew field has no zero divisor.
11.  Write the definition of following with suitable example.
(i) Field
(i) Integral domain
(iii)  Skew-field
A commutative ring R is an integral domain iff Va,b,c e R(a#0)
ab=ac=b=c
Fill in the blanks:

13. A commutative R is an integral domain iff
14. Every field is an

15. A skew field has no
16. Every finite integral domain is

17. The set of all residue classes modulo a positive integer pis an integral domain iff pis
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11.11 ANSWERS

Answer of self cheque question:
1. No 2. Yes 3. No, because it does not contain unity element

Answer of terminal question:

13.  Cancellation law holds 14. Integral domain 15.  Zero divisor

16. Field 17. Prime
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Unit-12: UNIQUE FACTORIZATION DOMAIN, PRINCIPAL

IDEAL DOMAIN, EUCLIDEAN DOMAIN

CONTENT:

12.1 Introduction

12.2 Obijectives

12.3  Isomorphism of rings

12.4 Field of quotient

12.5 Ideals
12.5.1 More about ideals
Principal ideals
Euclidean and principal ideal domain
Unique factorization domain
Summary
Glossary
References
Suggested Readings

Terminal Questions

Answers

INTRODUCTION

In this unit we will learn about the more important tool in ring theory is that isomorphic

relation between two rings, ideals of the ring and their applications and theorems.

The existence of gcd, Euclid's Lemma and Unique Factorization Theorem in Z and in F[x],

where F is a field, all are consequences of the Division Algorithm. In this unit, we consider integral
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domains having a division algorithm. In this we will learn the fundamental theorem of arithmetic states
that every integer n > 1 is a product of primes and this product is unique up to the order of the prime
factors. Here we characterize the integral domains D such that every nonzero non unit element of D
can be expressed as product of irreducible elements uniquely in some sense. We call such integral
domains UFD. In a UFD, irreducible and prime elements are precisely the same. Thus every nonzero

non unit element of a UFD is a product of prime elements also.

12.2 OBJECTIVES

After reading this unit learners will be able to
Memorized about the isomorphism of two rings.
Analyze about the ideals of the ring.
Memorized about the Euclidean domain (ED), principal ideal domain (PID) and unique
factorization domain (UFD).
Analyze the relation between ED, PID and UFD.

12.3 ISOMORPHISM OF RINGS

Definition: Any ring R is said to be isomorphic to other ring R if there exists a one-one and onto

mapping f from Rto R such that

(i) f(a+b)= f(a)+ f(b)
(ii) f(ab)=f(a)f(b)vVa,beR.
Also such a mapping f is said to be an isomorphism of Ronto R. Symbolically it is denoted as

R=R,also Ris said to be isomorphic image of R".
Note: The compositions in the two rings have been represented by the identical symbols in the
aforementioned definition of ring isomorphism. The constituent parts of any composition are revealed

to us by the elements. For example, a,beR. When we write a-+b,ab then the respective

compositions are addition and multiplication of R. Again f(a), f(b)eR. When we write

f(a)+ f(b), f(a)f(b) then the respective compositions are addition and multiplication of R

Relation of isomorphism in the set of all rings.

We can demonstrate that the relation of isomorphism in the set of all rings is an equivalence relation,
as we have done in groups. In order to ensure that rings of the same class are all isomorphic to one
another and rings of other classes are not, the set of all rings will be divided into disjoint equivalence

classes. One can say that any two rings in the same equivalence class are abstractly similar.
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Properties of isomorphism of rings:

Theorem 1: If f is an isomorphism of aring Ronto aring R', then

(i) The image of 0eR is 0eR i.e, the additive identity element of ring R map into additive
identity of the ring R .

(i) The negative of the image of an element of Ris that element's image of its negative i.e.,
f(-a)=—f(a)VaeR.

(iii)  If R is the commutative ring, then R is also a commutative a commutative ring.

(iv)  If Ris without zero divisors, then R'is also without zero divisors.

(v) If Ris with unit element, then R'is also with unit element.

(vi)  If Ris field, then R'is also a field.

(vii) If Ris skew field, then R'is also a skew field.

Proof (i): Let ac R. Then f(a) eR'. Let 0 denote the zero element of R". To prove that f(0)=0'.

We have f(a)+0 = f(a)= f(a+0)= f(a)+ f(0). By cancellation law for addition in R, we get
from f(a)+0 = f(a)+ f(0), the result that 0 = f (0).

(i) We have f(a)+ f(-a) = f[a+(-a)]= f(0)=0
. f(—a) s the additive inverse inverse of f(a)in R . Thus f(a)=-f(-a)

(iii) Let f(a)and f(b) be any two elements of R. Then a,beR

We have f(a)f(b) = f(ab)= f(ba) [Ris commutative = ab =ba]
=f(b)f(a).

. R'is also commutative.

(iv) We have f(0)=0". Also f is one-one. Therefore 0 is the only element of Rwhose f -image is 0

(v) Let 1 be the unit element of R. Then f(1) e R. If f(a) is any element of R', we have
f@Qf(@="Ffla)=f(a)and f(a)f ()= f(al) = f(a).
. f(@) is the unit element of R'.

(vi) R is commutative with unity if R is a field, and each non-zero element of Rwill have a

multiplicative inverse. Now that this has been shown in (iii) and (v), R will be commutative and

possess the unit element i.e., f(1).
Let f(a) be any non-zero element of R". Then
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f@#0 =>a=0=a" exists.
Now f(a™) e R and we have

f(al)f(a)=f(a'a)=f() and f(a)f(a?)=f(aa?)= f(L).

- f(a™) is the multiplicative inverse of f(a).

Hence R'is a field.

(vii) As shown in (v) R will be with unit element i.e., f (1) as shown in (vi) each non-zero element of
R will be inversible. Therefore R'is a skew-field.

Imbedding of a ring: A ring R is said to be imbedded in a ring R’ if there is a subring S of R's.t. R
is isomorphicto S .

Any ring Ris imbedded to other ring R'if there exists a one-one and onto mapping f from Rto R
such that,

f(a+b)=f(a)+ f(b), f(ab)=f(a)f(b)vVa,beR.

Theorem 2: Any ring R without a unity element may be imbedded in a ring that contains a unity

element.

Proof: Let Rbe any ring without unity element. Let Zis the ring of integers and
R =RxZ={(a,m):aeR,meZ}.

When appropriate binary operations have been specified in Rx Z, then it becomes a ring with a unity
element containing a subring, isomorphic toR .

If (a,m) and (b, n) are any two elements of Rx Z, then we define addition in R x Z by the equation
(a,m)+(b,n)=(a+b,m+n) (1)

And multiplication in Rx Z by the equation

(a,m)(b, n) = (ab + na + mb, mn) ... (2)

Since a+beR and m+neZ, therefore (a+b,m+n)e RxZ. Thus RxZis closed w. r. to addition.
Further, ab,na,mbe R=ab+na+mbeR. Also mne Z. Therefore (ab-+na+ mb,mn) e RxZ and

RxZis closed w. r. to. multiplication.

Now let (a,m),(b,n),(c, p) be any element of RxZ . Then we observe:
Associativity in addition: We have
[(a,m)+(b,n)]+(c, p)=(a+b,m+n)+(c, p)
=([a+b]+c,[m+n]+ p)=(a+[b+c],m+[n+p])
=(a,m)+{o+c,n+p)=(a,m)+[(b,n)+(c, p)]
Commutativity in addition: We have
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(@,m)+(b,n)=(a+b,m+n)
=(b+a,n+m) [-.- Commutativity holds in addition]
=(b,n)+(a,m).

Existence of identity: We have (0,0) € Rx Z . Here the first 0is the zero element of R and the second

0 is the zero integer.

Since, (0,0)+(a,m)=(0+a,0+m)=(a,m)

.. (0,0) is the additive identity.

Existence of inverse: If (a,m) e RxZ, then

(—a,—m) e Rx Z and we have

(—a,—m)+(a,m) =(-a+a,—m+m)=(0,0).

.. (—a,—m) is additive inverse of (a, m)

Associativity of multiplication: We have

[(a, m)(b, n)](c, p) = (ab+ na -+ mb, mn)(c, p)

= ((ab+na+mb)c + p(ab + na+mb) + (mn)c, (mn) p)

= (abc +n(ac) + m(bc) + p(ab) + (pn)a + (pm)b + (mr)c, (mn) p)

Also (a,m)[(b,n)(c, p)] = (a,m)(bc + pb+nc,np)

= (a(bc + pb + nc) + (np)a + m(bc + pb -+ nc), m(np))

= (abc + a(pb) + a(nc) + (np)a + m(bc) + m( pb) + m(nc), (mn) p)

= (abc + a(pb) + a(nc) + (np)a + m(bc) + m(pb) + m(nc), (mn) p)
= (abc + p(ab) + n(ac) + (np)a + m(bc) + (mp)b + (mn)c, (mn) p).
We see that, (a, m)[(b,n)](c, p) = (a,m)[(b, n)(c, p)]

Distributive law: We have

(&, m)[(b,n)+(c, p)] = (&, m)(b+c,n+ p)

=(a+c)+(n+ p)a+mb+c),mn+ p))

= (ab+ac-+na+ pa+mb+mc, mn+mp)

= (a,m)(b,n)+(a,m)(c, p)

In a similar manner, we may demonstrate that the other distributive law is equally valid.
In light of the operations described on it, RxZ isaring.
Existence of identity: We have

(0,))eRxZ.If (a,m)e RxZ, then

(0,1 (a,m)=(0a+m0+1a,1m)=(0+0+a,m)=(a,m)
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Also (a,m)(0,1) =(a0+1la+mo0,ml)=(0+a+0,m)=(a,m).

.. (0,2) is the multiplicative identity. So, Rx Z is a ring with unity element (0, 1).

Now consider the subset S' = R x{0}of R x Z which consists of all pairs of the form (a,0) . We shall
show that R x{0}is a subring of Rx Z . Let (a,0), (b, 0) be any two elements of Rx{0}.
Then (a,0) —(b,0) = (a,0) + (-b,—0) = (a—b,0) € Rx{0}.
Also, (a,0)(b,0) =(ab+0a+0b,00) =(ab+0+0,0) =(ab,0) € Rx{0}.

. Rx{0}is asubringof RxZ.
Finally we have to show that R = Rx{0}. Let ¢ be a mapping from R to R x{0} defined as
#p(@)=(a,0)VaeR.

¢ is one-one: For it, let ¢(a) = ¢(b) = (a,0) = (b,0) =>a=b = ¢ is one-one.

¢ isonto: Let (a,0) e Rx{0}. Then a € Rand we have ¢(a) =(a,0). Therefore ¢ is onto.
¢ preserves addition and multiplication: If a,b € R, then

#(@a+b)=(a+b,0)=(a 0)+(b,0) =¢(a)(b).

Hence ¢ preserve the composition. i.e., R = Rx{0}.

12.4 FIELD OF QUOTIENT

Definition: If ring S has a subset S such that ring R is isomorphic to ring S, then the two rings can
be embedded.

We shall demonstrate that D can be embedded in a field F, i.e., there exists a field F that includes a
subset D isomorphic to D, if D is a commutative ring without zero divisors. The elements of D will
be used to build a field F , and this field F will have a subset D' such that D and D' are isomorphic.
The "field of quotients" of D, or simply the "quotient field" of D, is referred to as this field F .

We can claim that D and D' are abstractly the same since D is isomorphic onto D'. We can
then state that the quotient field F of Dis a field containing D if we identify D with D. We will
also see that the smallest field that contains D is F .

Construction of quotient field: The ring of integer | is well known to all of us. Additionally, the set

of quotients of the components of | is the same as our familiar set Q of rational numbers.
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Thus Q ={§:p el,0=qe I}. Since set of rational numbers (Q) are ..., —

with the integers (1) ...,—3,—2,—-1,0,1,2,3,...then | Q. Also (Q,+,.) is a field. It is the smallest
field containing | . Also if %and % € Q, then we remember that

) % =§iff ad =bc (i) %+§= adb;bc (iii) %%: %
These facts serve as our inspiration as we move on with creating the quotient field of any integral
domain. The following theorem applies.
Theorem 3: A commutative ring without zero divisors can be imbedded in a field.
OR
Each integral domain can be imbedded in a field.
OR

It is feasible to create a field F from the components of an integral domain D that has a subset D that
isomorphic to D.

Proof: Let us suppose that D is a commutative ring without zero divisors. Let D, be the collection of
all non-zero elements of D. Let S =Dx D, i.e., let S be the set of all ordered pairs (a,b) where
a,beD and b=0. Let us define a relation (~) in Ss.t.,

(a,b) ~ (c,d) iff ad =bc. Now we have to show that this relation is an equivalence relation.
Reflexivity: As we know D is commutative, therefore ab=baVva,b e D

Thus, (a,b) ~(b,a)V(a,b) €S

Transitivity: Let (a,b) ~ (c,d) and (c,d) ~ (e, f)

—ad =bc and cf =de

-.adf =bcf and bcf =bde.

-.adf =bde

= adf =hde [~ Dis a commutative ring]

— adf —bde=0= (af —be)d =0

—af —be=0 [-d #0and D is without zero divisors]

= af =be=(a,b)~ (e, f).

= given relation is an equivalence relation ~ in S.
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= S can be partitioned into disjoint equivalence classes and we denote the equivalence classes

containing (a,b) by % and other notations are (a,b) or [a,b].

Then %: {c,d)eS|(c.d) ~ (ab)

Obviously, % - %iff (c,d) ~ (a,b)i.e., iff ad = bc

Also, 2= yye D,. The reason is that (a,b) ~ (ax,bx) since abx = bax.

b bx

These equivalence classes are quotients. Let F be the set of all such quotients i.e., F = {% (a,b) € S}

Now defines operations addition and multiplication in F as follows:

a ¢ ad+bc ac ac
—+—= and —.—=—
b d bd b d bd

ad +bc ac

Since D is without zero, therefore b #0,d # 0 = bd # 0. Since both the element v and od are

belongs to field. F is therefore closed in terms of addition and multiplication. Now, we'll demonstrate
that addition and multiplication in F have clear definitions. For it we have to show that if,
c a ¢ a ¢

=—,then —4+—=—+— and ——

a a C
—=—and —
b b d d b d b d bd

We have E:i:ab' —ba and &
b b d

a ¢ a ¢c
Now to show that — + — = — + —, we are to show that

b d b d
ad+bc _ad +bc
bd bd
Now (ad +bc)bd =adbd +bcbd =abdd +bbcd

i, (ad +bc)bd =bd(@d +b’c).

=badd +bbdc [.ab =ba and cd =dc]
=bdad +bdbc =bd(ad +bc), which was desired.

Again we have to show that ac_ i C— we have to show
bd bd

ac_ac e, -.achd =bdac

bd

Now achd =abcd =badc =bdac, which was desired.
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Hence both operations addition and multiplication are well defined on F.Now we have that F is a
field.

Associativity of addition: We have,

a ¢ e ad+bc e (ad+bc)f +bde
B+E +—= +—=

f bd f bdf

bdf bdf b \d f

_adf +bcf +bde  adf +b(cf + de) _3{3 e]
Commutativity in addition: We have

a ¢ ad+bc ch+da c a

— 4 — = — = — 4 —

b d bd db d b

Existence of identity: We have

9 e Fwhere a=0.If % is any element of F, then

Od+ac Od+ac ac ¢

=—=— [-wacd=adc]
ad ad ad d

a
0
a

C
+ — =
d
0 . . . .
So, — € F is the identity element. It is also noted tthat,
a

Ovaben, Also &= iffca=d0 ie., c=0
b d b

Existence of inverse: If % e F, then —a eF.

Also we have, _—a+§:w:%—9
b b b b

—a. .. . a
T is the additive inverse of B

Associativity of multiplication: [E.EJE _ e (acje = a(ce) _ace_afce
bd)f bdf (bd)f b(df) baf bldf

Commutativity of multiplication: We have
ac_a _ca_ca

b'd bd db db

Existence of multiplicative identity: We have

EeF where a=0. Also if%eF,then
a

Department of Mathematics
Uttarakhand Open University Page 174




ADVANCED ABSTRACT ALGEBRA MATS501

ac ac c
—— === “(ac,ad) ~ (c,d) because *.-acd =adc
~d 2  d [+ (ac,ad) ~ (c,d) ]
-2 isthe multiplicative identity. It is also notify that

a

E=9Va,beD0
a b

Existence of multiplicative inverse: Let 0 # % e F.Thena # 0.

b .
i € F. Since we have

_ab _ab _

=2 _ Z = the unity element
ba

ab  a
Zis the inverse of % w.r. to. the operation multiplication.

Distribution of multiplication over addition: We have

a(c e\ a(cf+de) acf+ade (acf+ade)bdf acfbdf + adebdf
E(E+f) “b df  bdf  bdfbdf bdf bdf

acf ade ac ae ac a
bdf bdf bd bf bd d

In similar way other distributive law also holds.

¢
f

Under the definitions of addition and multiplication given above, F is a field. The field of quotients of
D is the name given to this field, F. We will now demonstrate that the field F includes a subset D' such

that D and D' are isomorphic.
LetD' = {‘;—x €F:a, 0#xE€ D}. Then D' € F. If x # 0,y # 0 are element of D, then% ‘3’
Since axy = xay. Therefore if x is any non-zero fixed element of D, we re-write
v jax .
D'={ZeF:aep}
Let us defined the function ¢: D - D's.t.,
¢(a) = ‘;—xv a € D is an isomorphism of D onto D",
¢ is one-one: Since we have, ¢(a) = ¢(b) = % = b;" = axx = xbx = ax? = bx?
= (a—Db)x?=0
= a—b=0,sincex? #0
=a=»b
= ¢ IS one-one.

¢ is onto: If ‘;—x € D', then a € D. Also we have ¢(a) = ‘;—x Thus ¢ is onto D",
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__(a+b)x _ (a+b)x? _ ax?+bx? _ axx+xbx

Also ¢p(a + b)

x x3 x3 x3

=T+ 2= ¢(@) +$(b)

(ab)x _ (ab)x? _ (ax)(bx) _ ax bx _

x x3 x2 x x

and ¢(ab) =

P(a)p(b).

= ¢ is an isomorphism from D onto D'i.e.,,D = D"

12.5 IDEALS

Definition (a): In a ring (R) a non empty subset (S)is said to be left ideal of Rif:

@) S should be subgroup of R w.r.to addition.
(i) rseSvreR,seS

Definition (b): In a ring (R) a non empty subset (S)is said to be right ideal of R if:

@) S should be subgroup of R w.r.to addition.
(i) sreSVreR,seS

Definition (Ideal): A non-empty subset S of aring Ris said to be an ideal (also a two-sided ideal or
left ideal/right ideal) if and only if it is both a left ideal and a right ideal. As a result, it may be claimed
that a non-empty subset S of aring R is an ideal of R. If,

(i) S is a subgroup of the additive group of R, or a subgroup of R under addition.

(i) rseS and rseS VreR,seS.

S is a subring of R if S is an ideal of the ring R because S is a subgroup of R under addition and

from condition (ii), we have XSe SV X,s e Sbecause XeS = XeR. Sis hence closed in terms of

multiplication. Sis a subring of Ras a result. Each ideal of a ring R is a subring of R as a result.
However, not all subrings are perfect. A stronger closure feature than the subring is necessary for an
ideal. If S 1is a subgroup of R under addition, then Swill be a subring if Sis closed under
multiplication, meaning that the result of two components of S is once more contained in S . However,
S will be an ideal if S contains the result of any element of S and any element of R .

Every left ideal will also be a right ideal if R is a commutative ring. Thus, every left (right) ideal is an
ideal in a commutative ring.

Note: Every ring R always has two improper ideals: one that is R itself and the other that is made up
entirely of zeros. These are referred to as the unit ideal and the null ideal, respectively. Other ideals
are called proper ideal. Any ring having no proper ideals is called simple ring.

Theorem 4: The intersection of two left ideals/right ideals of a ring is again left ideals/right ideals of
the ring.
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Proof: LetRbe aring and |, |, be two ideals of the ring. Then we have to prove that I, N1,
is also an ideal of R. For it, we will first show that 1, N1, is left ideal of Ri.e.,
reRsel,nl,=rsel Nl,.

Wehave, sel,nl,=sel,,sel,.

Since both 1., |, are left ideals of the ring (R). Therefore,

reRsel,=rsel andreRsel,=rsel,

Now, rsel,rsel,=rsel, nl,

Hence, I, N 1,1s a left ideal of R.

In a similar way we can prove that |, N1, 1s also a right ideal of R.

Theorem 5: Arbitrary intersection of left ideal/right ideal of a ring is also left ideal/right ideal of the
ring.
Proof: Let R be aring and let {S, :t € T }be the family of left ideal of R where T is the index set such

that t €T . S, be the left ideal of R. Let S = n {X eR:xe§Vte T} be the intersection of family of

left ideal of R. We will prove this theorem same as theorem 4.

a 0
Example 1: The set N of all 2x2 matrices of the form {b O}’ where a,bare integers is a left ideal

but not a right ideal in the ring ( R ) of all 2x 2matrices with elements as integers. In this case, N is

the portion of R that consists of all the entries with zeros in the second column.

a 0 c O
Answer: Let A= ,B= be any two elements of N .
b 0 d 0

a o0 c O a-c 0
Then, A—B = - = eN.
{b O} [d O} {b—d 0}

.. N is a subgroup of R under addition.

WX a o0
Now let U = { } be any element of Rand A= {b 0} be any element of N .
y z

X a 0
Then UA = , be any element of Rand A= {b O} be any element of N.

x[a 0 wa+xb 0
Then UA = = eN
z|b O ya+zb 0

Therefore N is a left ideal of R. It is not a right ideal, since

Department of Mathematics
Uttarakhand Open University Page 177




ADVANCED ABSTRACT ALGEBRA MATS501

10 1 2
e N, eR,
L O} {O J

1 0|1 2| |1 2].
And the product = is not an element of N.
1 0{l0 1| |1 2

Theorem 6: A field has no proper ideals i.e., any field ( F ) has only two ideals (0) and F is itself.
Proof: Let S be any non-zero ideal of the field F and let abe any non-zero element of S. We have

a ' e F. Since Sis an ideal, therefore

acS,a‘teF=aateS=1eS

Now let X € F. Then

leS,xeF=1xeS=xeS

Thus each element of field (F) belongs to S. Therefore F < S. Since we know that S < F .
Therefore S =F

Hence the only ideals of the field (F) are 0 and F itself.

Theorem 7: If R is a commutative ring anda € R, then

Ra={ra:r e R} is an ideal of R.

Proof: In order to prove that Rais an ideal of R, we should prove that Rais a subgroup of Runder
addition and that if u e Raand X e Rthen xuand uxare also in Ra. Since Ris a commutative ring,
therefore xu = ux. Thus we only need to check that xuis in Ra.

Now, let u,v e Ra. Then u=ra,,vera forsome r,,r, €R.

We have u—v=ra-ra=(r—r,)acRasince ,—r, e R. Thus u,ve Ra=u-veRa.

— Ra is a subgroup of Runder addition.

Now again, X € R.

Then xu = x(r,a) = (xr;)a € Ra. Since xr, e R.

. Rais an ideal of R.

Theorem 8: A commutative ring with unity is a field if it has no proper ideals.

Proof: Assume that R is a commutative ring of unity with no appropriate ideals, meaning that the
only two ideals of R are (0) andR. We must demonstrate that each nonzero element of Rhas a
multiplicative inverse in order to prove that R is a field.

Let abe any non-zero element of R .

The set Ra= {ra: re R} is an ideal of R.Since 1€ R, therefore la=acRa. Thus O=aecRa.

Therefore the ideal Ra# (0). Since Rhas no proper ideals, therefore the only possibility is that
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Ra=R. Thus each element of R is a multiple of aby some element of R. In particular, 1€ R so it can
be realised as a multiple of a. Thus there exist an element b € R such that ba =1.

a =b. Hence each non-zero element of R possesses multiplicative inverse.

Hence R is a field.

12.5.1 MORE ABOUT IDEALS

In a ring (R)ideal generated ideal generated by given subset of R : We can locate ideals containing

M if M is any subset of a ring. As an illustration, the ring R is an ideal that may include any subset of
R.
Smallest ideal containing subset: Let M represent any arbitrary subset of a ring. The smallest ideal of
R containing M if is therefore an ideal S of if,
McS,
and if every ideal of R containing M contains S.
Definition: Let M be any arbitrary subset of R and let R be a ring. The ideal created by M is stated to
be the smallest ideal of R containing M, and it is indicated by the symbol (M).

In particular, we write (@) in instead of M if M only consists of one element, let's say a, of the

ring R. A principal ideal is an ideal like (a) that is produced by just one ring element.

12.6 PRINCIPAL IDEAL

Definition: Any ideal S of a ring R will be called principal ideal if there exist an element a €S s.t.
any ideal T of R that contain aalso contains Si.e., S =(a).
Therefore, the principal ideal is an ideal generated by a single element in itself.

In a ring (R) if 1€ R, then the ideal generated by 1 is whole ring i.e., (1) =R, since each
element of R can be expressed as rl. Ring itself is referred to be the unit ideal for this reason. The null
ideal is the ideal produced by the zero element of R, or (0), which only contains the zero element.
Every ring R has (0) as at least one of its primary ideals. Every ring with unity has two primary ideals

at a minimum, namely (0) and (1).

Theorem 9: If a is an element in a commutative ring R with unity, then the set S = {ra|r € R} is a

principal ideal of R generated by the element ai.e., S =(a).

Proof: First we have to prove that a € S . Since R is ring with unit element 1, therefore la=aeS.
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We must now demonstrate that S is an ideal of R. Therefore, we must first demonstrate that S is a
subgroup of R under addition. Let the two element of Sare u,v. Then u=ra,v=r,afor some
r,r,eR.

Wehave u—v=ra-ra=(,—-r,)aeS.Since r,—r, eR.

Since S is a subgroup of R under addition.

Now we have to prove that Xe R,u€ S = xue Sand ux € S. But R is a commutating ring then,

XU = ux and thus we have only to prove that xue S .

We have xu=x(ra) =(xr)aesS.

As we know xr, € R

.. Sis anideal of Rand a €S.

Now to prove that Sis an ideal which is generated by the element a, We have only to show that if T
isanideal of Rand aeT ,then ScT.

Let racSthen reR.If Tisanideal of Rst. aeT thenreR,aeT =raeT.Thus ScT.
Hence S is principal ideal of Rs.t. S=(a).

Example 2: To find the principal ideal in the ring (R) of integer generated by 5.

Solution: Since we know ring of integer (I) is a commutative ring with unity.

Since (5)={5r|rel}

Thus, principal ideal of R generated by 5 is

(5)=1{..,-10,-5,0,5,10,...}

and obviously, (-5) = (5)

12.7 EUCLIDEAN AND PRINCIPAL IDEAL DOAMIN (PID)

Definition: Let E be an integral domain. A function v: E~ — Z* is called a Euclidean
valuation on E if

(i) for all a,beEwith a=0, there exist g,r € Esuch that b=aq+r, where either r=0 or
v(r) <v(a) and

(ii) v(r) <v(ab), forall a,be E”

An integral domain E together with a valuation v on E is called a Euclidean domain. It is denoted by
(E,v).

Example 3: The ring Z of all integers can be considered as a Euclidean domain with the valuation

v:Z" — Z* defined by v(a) =|a], Va=0.
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Example 4: Consider polynomial ring F[x], where F is a field. Then F[x] is an integral domain.

Define as v: F[x]\{0} — Z*by

v(f(x)) =deg f (x),V f(x) e F[x]\{0}.

Let f(x),g(x)eF(x),g(x)=0. Since F is a field, so every nonzero element in F and hence the
leading coefficient of g(x) is a unit. It follows, by the Division Algorithm for polynomials, that there
exist unique q(x),r(x)e F[x] such that f(x)=0q(x)g(x)+r(x)where either r(x)=0or
degr(x) <degg(x). Hence, we have f(X) =q(X)g(x) +r(x), where either
r(x) =0 or v(r(x)) <v(g(x)).

Since there is no zero divisors in F, so for any two nonzero elements f(x) and g(x) in F[x], we have
deg(f (x)g(x)) =deg f (x) + degg(x) >deg f (x),i.e. v(f(x)g(x))=>v(f(x)). Hence, F[x] is a
Euclidean domain.

Now we show that every field is a Euclidean domain. In search of a suitable Euclidean valuation on a

field, we first prove the following result:

Theorem 10: Let E be a Euclidean domain with the valuation v. Then for every a e E",v(a) =v(l) if
and only if ais a unitin E.

Proof: Forall a < E",v(a) =v(1a) > v (1).

Suppose a is a unit. Then there exists an element beE such that ab=21which implies that
v(2) =v(ab) >v(a) . Hence v(a) =v(1).

Conversely, suppose that v(a) =v(l) Vae E . Now a=0 implies that there exist g,r e E such that
1=qa+r, where r=0o0r v(r)<v(@)=v(@Qr = 0. Since v(r)<v(l)is impossible, we have r = 0.

Thus 1=gaand hence a is a unit. Hence, if it is possible to define a Euclidean valuation v on a field

F, then v(a) =v(l) for every ae F’, since every nonzero element of F is a unit. Thus v is a constant

mapping.

Example 5: Let F be a field. Then v: F~ — Z*given by:

v(@ =2VaeF~

is a Euclidean valuation. (Note that image of v may be any nonnegative integer.) Thus C, R and Q all
are Euclidean domain. Every ideal of Z is a principal ideal. Now we consider the integral domains
such that every ideal is a principal ideal.

Definition: An integral domain R is called a principal ideal domain (PID) if every ideal of R is a
principal ideal. Thus Z is a PID. Also every field is a PID.

Theorem 11: Every Euclidean domain is a principal ideal domain.
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Proof: Let (E,v)be a Euclidean domain. Consider an ideal | of E. If | ={0}, then | =<0>. Let
| #{0}. Then N = {v(x) [xel,x# O} is @ nonempty set of non negative integers; and so, by the well-
ordering principle, it has the least element. Let a € I,a = 0be such that v(a) is the least element of N,
ie. v(@)<v(x)Vxel,x=0.Weshow that | = Ea. Since ae, it follows that E(a)c 1. Let belb
2 1. Since E is a Euclidean domain, there exist q,reEsuch that b=qga+r, where
r=0orv(r)y<v(a). If r=0, then r=b—aqelshows that v(r)e N; and since v(r)<v(a)this
contradicts the minimality of v(a) in N. Therefore, r =0 and so b=aq e Ea. Thus | < Ea, and hence
| = Ea.

Now we characterize the polynomial rings which are Euclidean domains.

Theorem 12: Let F be a commutative ring with 1. Then the following conditions are equivalent:

1. F is a field;

2. F[x] is a Euclidean domain;

3. F[x] is a principal ideal domain.

Proof (1)= (2):Follows from Example 4.

(2)= (3): Follows from Theorem 11.

(3)= (1): First note that F[x] is an integral domain, since F is so. Let a e F be a nonzero element of F.

Consider | =<a, x >, the ideal of F[x] generated by a and x. Since F[x] is a principal ideal domain,

there exists u(x) € F[x] such that 1 =<u(x) >={u(x)f(x)| f(x) € F[x]}. Now a, x e<u(x) >implies

that there exist g(x), h(x) e F[x]such that u(x)g(x) =aand u(x)h(x) = x.

Since F is an integral domain, u(x)g(x) =a shows that u(x)is nonzero and deg(u(x)) =0 which
implies that u(x)=beF. Again, bh(x)=x=bc=1 for some ceF. Thus b is a unit and so
| =<b>=F[x]. Then 1lel =1=af (x)+xf,(x)for some f(x), f,(x) e F[x]. This implies that
1=da forsome d € F. Thus ais a unit in F and hence F is a field.

Since Z is not a field, It follows that Z[x] is not a principal ideal domain. In the following example we

give an example of an ideal of Z[x], which is not principal.

Example 6: In Z[x], we show that the ideal < Xx,2>is not a principal ideal. On the contrary, if
possible, assume that <x,2> is a principal ideal and <Xx,2>=<u(x)>u(x)eZ[x]. Now
2 e<u(x) > implies that 2=u(x) f(x) for some f(x)e Z[x]. Since Z is an integral domain, so
degu(x) =0 andu(x) =aeZ . Since xe<a>,there is g(x) e Z[x]such that x =ag(x). It follows
that ab=1for some beZ, and so le<a>=<x,2>.Hence there are h(x),k(x) e Z[x] such that

1= xh(x) + 2k(x) =1 = 2cfor some c € Z, a contradiction. Therefore < x,2 > is not a principal ideal.
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Theorem 13: Let R be a Euclidean domain (principal ideal domain) and a,b € R not both zero. Then

aand b have a gcd d.

Proof: For every gcd d of a and b, there exist s,t € R such that d =sa+tb. a, b are relatively prime if
and only if there exist s,t € Rsuch that 1= sa +tb. Now we show that the irreducible elements and the

prime elements coincide in a PID.

Theorem 14: Let R be a principal ideal domain and p e R. Then p is irreducible if and only if it is
prime.
Proof: As we know that every prime element is irreducible in an integral domain. Suppose that p is
an irreducible element in R. Consider a,b € Rand assume that p|ab. Then ab = pcfor some ceR.
Since R is a principal ideal ring, there is d € Rsuch that < p,b >=<d >. Then there exists g € Rsuch
that p=dq. Since p is irreducible, either d or g must be a unit. If d is a unit, then < p,d >=<d >=R
Hence le<p,b> and so 1 = sp + tb for some s,teR. This implies that
a=asp+atb=asp+tcp=(as+tc)p. Thus p|a. If qis a unit, then d =q*p e< p>. This implies
that <d >c< p>c< p,b>=<d >. Hence < p>=<p,b>and so be<p>. Thus p|b. Recall that if
F is a field then a polynomial p(x) is irreducible if and only if F[x]/ < p(x) >is a field. Hence p(x) is
irreducible if and only if < p(x) > is a maximal ideal in F[x]. We show that this result holds in every

PID.
Theorem 15: Let R be a principal ideal domain. Then M is a maximal ideal of R if and only if

M =< g >for some irreducible elementg e R.
Proof: Already we know that if M =< q >is a maximal ideal then q is an irreducible element.
Conversely, suppose that q is an irreducible element and M =< q >.Consider an ideal I of R such that

M c | < R. Since R is a principal ideal domain, there exists ae R such that | =<a>. Now

g e M c< a >shows that g =abfor some b e R. Irreducibility of g implies that either a or b is a unit.

If ais a unitthen I =<a>=R. If b is a unit then a=qgb™ e<q>=M . This implies that <a >c M

and hence M = 1. Thus M is a maximal ideal of R.

If a ring R becomes a PID then primality and irreducibility are no longer different, and as a
consequence we have the following important corollary.

Corollary: Let R be a principal ideal domain. Then a nonzero proper ideal P of R is prime if and only

if it is maximal.
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12.8 UNIQUE FACTORIZATION DOAMINS (UFDs)

Definition : An integral domain D is called a factorization domain if every nonzero non unit element a
of D can be expressed as a product a = p, p, ps...p,, of irreducible elements.

2: A factorization domain D is called a unique factorization domain (UFD) if for every nonzero non
unit element a of D, a = p,p,P;.-.P,, =4,0,0-..,, are two irreducible factorizations of a then m=n

and there is a permutation o such that each p; is an associate of g, .

The fundamental theorem of arithmetic shows that the ring Z of integers is a unique factorization
domain. Later we see that every principal ideal domain is a unique factorization domain.

Recall that in an integral domain every prime element is irreducible. Now we have the following
theorem:

Theorem 16: In a unique factorization domain, every irreducible element is prime.

Proof: Suppose that D is a unique factorization domain and let p be an irreducible element of D.
Consider a,b e D and assume that p|ab. Then ab= pcfor some ceD. If a=0 then p|a andifa
is a unit then b = pa~c shows that p|b. Similarly for b. Now we assume further that a and b are

neither zero nor units. Thenc = 0. Also c is not a unit, otherwise pc is irreducible and then either a or b

becomes a unit which is against our assumption. Since D is a unique factorization domain, a,band c
have irreducible factorizations, say a=a@a,a,..a,,b=bb,b,..b, and c=cc,c,.c,. Then
a=a,a,a,...a,bb,b,..b, = pcc,c,..c, implies that p is associate of one of the irreducible elements
a,a,,a,,..,a,,b,b,,b,,..b,. If p is associate of some a;, say a =pu, u is a unit, then
a= pua,a,a,..a, ,;a,,...a,shows that P|a. Similarly, if p is associate of some b; , then p|b. Thus p

is a prime element.
Theorem 17: Let a and b be two nonzero elements in a unique factorization domain D. Then
gcd(a,b) exists in D.

Proof: If either of a and b, say a is a unit, then a|bimplies that a is a gcd(a,b). Suppose that neither

a nor b is a unit and a=P"P,*..P"and b=P™P,"*..P.™ where p,, p,, Ps.... p,are irreducible

elements, 1,1,,...,1.,m,m,...,m_are nonnegative integers (most likely some of them are zero). Let
n. =min{l,,m}. We show that d = P"P,™...P." is a gcd(a,b). It follows directly that d |aandd |b.

Let c|a and c|b. If c is a unit, then c|d. Otherwise the uniqueness of the irreducible factorizations
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of a and b implies that ¢ = up,“ p,“...p," where 0 <k, <I,,m, Vi. Then k, <n. and it follows thatc|d .

Hence d =gcd(a,b)

Now we show that every principal ideal domain is a unique factorization domain. For this let us first
prove a series of lemmas:

Lemma 1: Every ascending chain of ideals in a principal ideal domain is finite.

Proof: Let D be a principal ideal domain. Let <a, >c<a, >c<a, >...be an ascending chain of
ideals in D. Then | =y, <a, >is an ideal of D and so, since D is a principal ideal domain, there is
aeD such thatl =<a>. Now aewu, <a > implies that ae<a, >for some keN. Then
ae<a; > and so <a>c<a;>forall j>k.Also <a; >c<a>. Thus <a>=<a;>forall jxk.

Thus the sequence of ideals is finite.

Lemma 2: A factorization domain is a unique factorization domain if and only if every irreducible
element is prime.

Proof: The necessary part follows from the Theorem 16.

Conversely, suppose that D is a factorization domain in which every irreducible element is a prime
element. Since D is a factorization domain, every nonzero nonunit element of D has an irreducible
factorization. We prove that this factorization is unique (up to associates and order of the factors) by
induction on the number n of irreducible factors in irreducible factorization of an element. If n=1 then
the result follows from the definition of irreducible elements. Assume that the result is true for n<s.

Suppose a e D and assume that a= p,p,...p, =0,0,...0, be two irreducible factorizations of a. Now
p, is prime; and so p, | q,d,...0, which implies that p, | q,, upon rearrangement. Since both p and g,
are irreducible elements in D, this implies thatq, = up, for some unit u. Then we have

P P,--Psy = Q0,0 4U

which implies, by the induction hypothesis, that s —1=t -1 and each p; is associate to some ¢,
1<i<s-11<j<t-1.Also p,is associate toq,. Thus the result follows.

Now we prove the main theorem.

Theorem 18: Every principal ideal domain is a unique factorization domain.

Proof: In a principal ideal domain, every irreducible element is prime; and so due to the Lemma 2 it is
sufficient to show that every principal ideal domain is a factorization domain. Let D be a principal
ideal domain and a e Dbe a nonzero and non unit element of D. We show that a is a product of

irreducible elements. If possible, let a be not a product of irreducibles. Then a is not an irreducible
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element, and so there are two non units a,,a, € D such that a=a,a, and at least one, say a,is Nnot a

product of irreducible element. Since a, is not a unit, we have <a >c <a, >.
+

Again since a, is not a product of irreducibles, similarly we get a, e Dsuch that

<a>g<al>g<a2 >and a,is not a product of irreducibles. We continue and get a strictly

ascending infinite chain of ideals

<a>c<a >c<a,>C..
# # #

in D. This contradicts that D is a principal ideal domain. Thus a has an irreducible factorization. The
converse of the above theorem is not true, in general. We know that Z[x] is not a principal ideal
domain; in the following we show that Z[x] is a UFD. In fact, we prove a more general result that D[X]

Is a UFD whenever D is so.

Definition: Let D be a unique factorization domain and f(x) =a,x" +a,x"" +...+a_ be a nonzero
polynomial on D. Then gcd(a,, &, ,...,a,) is called content of f(X) .

This is denoted by c(f).

Since gcd is not unique, in fact it is unique up to associates, it follows that c(f) is unique up to

associates.

Definition: Let D be a unique factorization domain. A nonzero polynomial f(x) e D[x]is called a
primitive polynomial if c(f)is unit.

If D is a unique factorization domain, and f(x) =a,x" +ax"" +...+a ,x+a, € D[x] be a nonzero
polynomial. Since some &, is nonzero the gcd(a,, a,,...,a,) exists in D, sayd =gcd(a,,a,,...,a,) . Then
there are a, € Dsuch that a =da and gcd(ay,a,,..,a,)=1. Thus f(x)=aX" +ax" +.+a, is
primitive and f (x) =c(f)f,(x)

Lemma 3: Product of two primitive polynomials is primitive.

Proof: Let D be a unique factorization domain and f(x)=a,x" +ax"" +..+a ,x+a, and

g(x) =b,x" +bx"* +...+b, ,x+b,be two primitive polynomials over D. If possible, let

h(x) = f(x)g(x) = Zcix”’i be not primitive. Then d =gcd(c,,c,,..

i=0

) is not a unit and so there is

e Cm+n

an irreducible element p in D such that p|c; Vi. Suppose k, | be the smallest nonnegative integers
such that pJacand pfb. Then pj|c., =a.b, +a.,,b +...+a.,.b,+ab+a b, +..+ab.

and p|a,, b, +a.,,40 +...+a,b, +ab +a, b, +..+ab,,
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= p|a, or p|b . This contradicts the choice of k and .

Lemma 4: Let R be a UFD and f (x), g(x) € R[x] be two primitive polynomials. Then f(x) and g(x)

are associates in R[x] if and only if they are associates in Q(R)[X].
Proof: Let f(x) and g(x) be associates in Q(R)[x]. Since Q(R) is a field, so the units in Q(R)[x] are

precisely the nonzero elements of Q(R). Hence there is a unit w=ab™" eQ(R) such that

g(x) = ab™ f (x) which implies that bg(x) = af (x). It follows that a =bu for some unit u e R, since
both f(x) and g(x) are primitive in R[x]. Therefore g(x) =uf(x)and so f(x) and g(x) are associates in
R[X].

Converse is trivial, since every unit in R[x] is a unit in Q(R)[X].

Lemma 5: Let R be a UFD and f(x) € R[x] be a non constant primitive polynomial. If f(x) is
irreducible over R then it is irreducible over Q(R).

Proof: On the contrary, if possible, let f(x) be reducible over Q(R). Since Q(R) is a field, so the units in

Q(R)[x]are precisely the nonzero elements of Q(R). Hence there are two non constant polynomials

g(x),h(x) e Q(R)[x] such that f(x)=g(x)h(x). Let g(x)=a,b, " +ab, x+...+ab, 'x". Then for

b=bybb,..b, eR,bg(x) e R[x]. Denote a=cont(b(g(x))in R. Then bg(x)=ag (x)where
9" (x) e R[x] is a primitive polynomial. Similarly there are c,d € Rsuch that dh(x) =ah"(x)where
h"(x) € R[x]is a primitive polynomial. Thus bdf (x) = acg”(x)h"(x). Since product of two primitive
polynomials is primitive, it follows that both f(x) and g”(x)h"(x) are primitive. Hence ac = ubd for

some unit ue R, and f(x) =ug (x)h"(x) which shows that f(x) is reducible over R, a contradiction.

Therefore f(x) is irreducible in Q(R)[x].

Lemma 6: If R is a unique factorization domain, then the polynomial ring R[x] is also a unique
factorization domain.

Proof: We first show that R[x] is a factorization domain. We apply induction on deg f(x), where f(x) is

a nonzero non unit element of R[x]. If deg f(x) = 0, then f(X) e Rand it is a product of irreducibles,
since R is a UFD. Let degf(x)>0. Then f(x)=c,f (x) where f"(x)eR[x] is a primitive
polynomial. Since ¢, € R so c, is either unit or a product of irreducible elements in R. If f (x)is
irreducible, we are done. Otherwise, there are two nonzero non units g(x),h(x) € R[x]such that
f°(x)=g(x)h(x). Since f"(x)is primitive, so neither g(x) nor h(x)is a constant. Hence

degg(x) <deg f"(x) =deg f (x) and degh(x) <deg f " (x) =deg f (x). Then both g(x) and h(x) are
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products of irreducible elements in R[x], by induction hypothesis. Therefore,
f(X) =a,..a, 0, ()P, (X)...p, (Y where  a,,a,,..,a, €R and  p,(x), p,(X),..., p,() €R[X] are
irreducible elements.

To prove the uniqueness of the factorization, assume that

f(X) =aa,..a, p,(X) P, (X)...p, (X) = bib,..b,q, (X)q, ()., (X)

Where a,a,,...a,,b,b,,...,b,eR and p,(X), p,(X),..., P,,(X),0,(X), 0, (X),...,q,(X) € R[X] are
irreducible elements. Since a,a,...a, =bb,..b, =c,, so it follows that

P1(X) P (X)-. Py (X) = Uq (X) G, (X)--.G, (X)

for some unit ueR. Since Q[R] is a field, so Q(R)[x]is a UFD. Also the irreducible polynomials
P, (X), P, (X),-.s Py (%), 0,(X), 0, (X),...,qQ,(X) € R[X] are primitive, which implies that they are also
irreducible in Q(R)[x]. Hence it follows that m = nand there is a permutation o € S, such that p, (x)
is an associate of g, (x) in Q(R)[x] and so p,(x) is an associate of q,,,(x)in R[x], by Lemma 4.
Therefore the factorization f(x) in R[x] is unique.

This result shows that Z[x] is a unique factorization domain. Similar result is not true for principal
ideal domain or Euclidean domain; e.g. Z is a principal ideal domain but Z[x] is not.

Unlike to the PID, Bezout's identity does not hold in UFD. For example, consider the UFD Z[x]. Then
ged(x+2,x+4) =1, but there are no f (x), g(x) € Z[x] such that

1=(x+2)T(X)+(x+4)g(x)
otherwise 1=2a, +4b,

In most of the deductions regarding divisibility in Z, we prefer to use B_ezout's identity, hardly we use
the Fundamental Theorem of Arithmetic. Here we show that the Fundamental Theorem of Arithmetic
can also be used in these deductions.

Example 7: Let D be a UFD and a,b,c be there non zero elements of D such that a|bcand

gcd(a,b) =1. We show thata|c. If a or b is a unit, the result follows trivially. Assume that neither a
nor b is a unit. Let a=a/*ay...a/"and b=b™b;..b™ where a;and b;are irreducible elements and
1<n;,m; forevery i=12..,r and j=12,..,s. Since gcd(a,b)=1, so no a;is an associate of any

b;. If ¢ is a unit then bc = aq,q € D implies that b = agc . This contradicts that D is a UFD, since no

a; is an associate of any b;. Thus c is a non unit. Let ¢ = cic..c be an irreducible factorization of c.
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Then bc = agimplies that b™bJ..b™cic?..c! = aaj..a™q. Since no a, is an associate of anyb;, so
every a is an associate to some ¢, and n, <I, . Hence a|c.

Check your progress

Problem 1: What are the ideals of the set 1, ={0,1,2,3,4}?

Problem 2: Check out the principal ideal in the ring (R) of integer generated subgroup while it is not a

maximal subgroup.

12.9 SUMMARY

In this unit, we have learned about the important relation between two rings name as isomorphic
relation. If two ring are isomorphic to each other then we can unfold the information about the
unknown ring on the basis of known ring. In this unit we have also learned about the ideals of the
ring. On the basis of ideals we have further learned about the principal ideal domain. The other
important topics of this unit are Euclidean domain and unique factorization domain. The overall

summarization of this units are as follows:

Every field has no proper ideal.

Each integral domain can be imbedded in a field.

In a unique factorization domain, every irreducible element is prime.
Every principal ideal domain (PID) is unique factorization domain (UID).
Arbitrary intersection of ideals of ring is again an ideal of the ring.

Each field has no proper ideal.

Commutative ring with unity is a field if it has no proper ideals

>
>
>
>
>
>
>
>

Every Euclidean domain is a PID.

12.10 GLOSSARY

R=R : Denotes two rings R, R are isomorphism to each other.
UFD: Unique factorization domain.

PID: Principal ideal domain.

ED: Euclidean domain.
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12.13 TERMINAL QUESTIONS

Long Answer Type Question:

1.

Prove that any ring R without a unity element may be imbedded in a ring that contains a unity
element.

Prove that each integral domain can be imbedded in a field?

In a unique factorization domain, every irreducible element is prime.

Prove that every principal ideal domain (PID) is unique factorization domain (UID).

If a is an element in a commutative ring R with unity, then prove that the set S = {ra|r € R} is

a principal ideal of R generated by the element ai.e., S =(a).

Short Answer Type Question:

Prove that intersection of two ideal of a ring is again a ideal of the ring.

Prove that arbitrary intersection of ideals of ring is again an ideal of the ring.

Prove that each field has no proper ideal

Prove that a commutative ring with unity is a field if it has no proper ideals.

To find the principal ideal in the ring (R) of integer generated by 7.

Prove that product of two primitive polynomials is primitive.

Let a and b be two nonzero elements in a unique factorization domain D. Then prove that

gcd(a,b) exists in D.

Fill in the blanks:
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13. In a UFD, every irreducible element is
14, Every PID is

15. Product of two primitive polynomials is

16. Every Euclidean domain is a

17. If every ideal of integral domain is principal ideal then an integral domain is called .....

12.14 ANSWERS

Answer of self cheque question:
1. {0} and F itself 2. <7>={..,-14,-7,0,714,..}
Answer of terminal question:

13. Prime 14. UFD 15. Primitive 16. PID
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Unit-13: POLYNOMIAL RINGS AND IRREDUCIBILITY

CRITERIA, EINESTEIN’S CRITERIA OF IRREDUCIBILITY

CONTENT:

13.1 Introduction

13.2 Obijectives

13.3 Introduction of polynomials
13.4 Division algorithm

13.5 Arithmetic of polynomial
13.6 Irreducibility of polynomial
13.7  Eisenstein's criteria for rreducibility
13.8 Summary

13.9 Glossary

13.10 References

13.11 Suggested Readings

13.12 Terminal Questions

13.13 Answers

13.1 INTRODUCTION

In this unit we give some results to test irreducibility of polynomials over a field, specially over

the field Q of all rational numbers. If K is a subfield of F , then every polynomial p(x) over K can

also be considered as a polynomial over F . It follows that if p(x) is irreducible over F then it is so

over K, but the converse is not true. For example, x* —3 is irreducible over Q but reducible over R

Eisenstein's criteria in mathematics provides a necessary condition for a polynomial with
integer coefficients to be irreducible over the rational numbers, that is, not factorizable into the product
of non-constant polynomials with rational coefficients. This condition does not apply to all
polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow

irreducibility to be shown with minimum effort in certain crucial examples. It can be used immediately

Department of Mathematics
Uttarakhand Open University Page 192




ADVANCED ABSTRACT ALGEBRA MATS501

or after the original polynomial has been transformed. This criteria is named after Gotthold Eisenstein.
It was known as the Schénemann-Eisenstein theorem in the early twentieth century since Theodor
Schénemann was the first to publish it.

Theodor Schénemann, commonly known as Schoenemann, was a German mathematician who
produced numerous significant discoveries in number theory involving the theory of congruences,
which are published in Crelle's journal volumes 17 to 40. Notably, he obtained Hensel's lemma before
to Hensel, Scholz's reciprocity rule prior to Scholz, and Eisenstein's criteria prior to Eisenstein. He also
investigated what are now known as finite fields (more general than those of prime order) in the form
of integer polynomials modulo both a prime number and an irreducible polynomial (remaining

irreducible modulo that prime number).

13.2 OBJECTIVES

After reading this unit learners will be able to
Memorized about the polynomial ring.
Analyze about the division algorithm in terms of polynomials.
Analyze about the irreducibility criteria of polynomials

Analyze the Eisenstein’s criteria for irreducibility over Q.

13.3 INTRODUCTION OF POLYNOMIALS

LetR be a commutative ring with unity 1. A polynomial over R is defined as an infinite sequence

(ay,8;,8,,...)such that all but finitely many a; are 0, i.e. there is a nonnegative integer n (depending
on the sequence (a,,a,,a,,...) under consideration) such that a, =0for all i>n; and the set of all

polynomials on R is denoted by R[x]. Thus

RIx]={(a, a,,a,,...)| & € Rand a =0 forallbut finitelymany i}
We now define addition and multiplication on R[x] as follows:
(ag,a,,8,,...)+(0,,b,b,,..)=(a, +by,a, +b,,a, +b,,...)

and (a,,a,,8,,...).(0,,b,,b,,...) =(c,,C;, Cy ...,

where ¢, = > ab,, fori=0,12,...
r=0
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We leave it to the reader to verify that (R[x],+,.)is a commutative ring with unity (1,0,0,...). Also
(O, 0, 0,...)is the zero element of R[x] and the additive inverse of (a,,a,,a,,...)is (-a,,—a,,—a,,...) The
mapping

a—(a,0,0,..)
is @ monomorphism of the ring R into R[x]. Thus,R can be considered as a subring of R[x] and we
no longer distinguish between a and (a,0,0,...).
The particular element (0,1,0,0,0...) is called the indeterminate over R and is usually denoted by x.
Then according to the definitions of addition and multiplication in R[x], we have
x* =(0,1,0,0,..Y0,1,0,0,...)=(0,1,0,0,...)
x*=(0,1,0,0,..Y0,1,0,0,..)=(0,0,0,1,0,...)

and then
ax=(a,0,0,0,..}0,10,0,..)=(0,a,,0,0,0,...)
a,x* =(a,,0,0,0,..0,0,1,0,...)=(0,0,a,,0,0,...)

Thus we have
(a,8,a,,..,4,,0,..)=(a,,0,0,..)+(0,4,0,0,..)+...+(0,...,0,a,,0,...)
=a, +aX+ax +..+ax"

The elements ay,8;,8,,..., 4, are called the coefficients of the polynomial
P(X)=a, +a,x+a,x’ +..+a,x". Ifa, #0, then a, is called the leading coefficient and if the leading
coefficient a, =1, then p(x) is called a monic polynomial. We define the zero element (0,0,0,...) of
the ring R[x]as the zero polynomial, and it will be denoted by 0. Thus a polynomial
P(x)=a, +a,x+a,x* +..+a,x" iszeroifand only if a, =a, =a, =...=a, =0.
Example 1: Consider the polynomial ring Z,[x]. Then f(x)=[2]x*and g(x) = [3]x*are two nonzero

elements of Z[x] but f(x)g(x) =[0]. This shows that Z[x] is not an integral domain.

Now we characterize the rings R for which the associated polynomial ring R[x] is an integral domain.
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Theorem 1: Let R be a commutative ring with unity 1. The R[x] is an integral domain if and only if R

is an integral domain.

Proof: First assume thatR is an integral domain. Then R[x] is a commutative ring with 1. Let
f(x)=a, +a,x+a,x* +..+a x"and g(x)=b, +bx+b,x* +...+b, x"be two nonzero polynomials in

R[x]. Then, we may consider a, = 0and b, =0 and so a,b, # 0, since R is an integral domain. Then

the polynomial f(x)g(x)=c, +C,X+C,X* +...+C,,X"™"is such that ¢ =ahb_ =0. This implies

that f(x)g(x) #0.Thus, R[x] is an integral domain.

The converse follows directly.

In fact, even if R is a field then also R[x] is not a field, for x has no multiplicative inverse.

Definition: Let f (x) = a, + a,x + a,x* +...+a,X"be a nonzero polynomial inR[x]. If a, = Othena, is
called the leading coefficient of p(x); and n is called the degree of p(x). It is denoted by deg f (x). In
this case, a, is called the leading coefficient of f (x) . If the leading coefficient is 1, then f (x) is called

a monic polynomial.

We do not define degree of the zero polynomial.

Example 2: Consider the polynomial ring Z,[x]. Then f(x) =[2]x* + x+[1] and g(x) = [3]x* +[2]are
two nonzero polynomials of degree 3 and 2, respectively. Now f (x)g(x) = x> +[3]x* +[2]x +[2]
shows that f(x)g(x) <deg f (x) +deg g(x)

In general, we have the following inequality.

Theorem 2: Let be a commutative ring with unity and f (x), g(x) be two nonzero polynomials in R[x]
1. If f(x)g(x) =0, then deg f(x)g(x) <deg f (x) +degg(x) . Equality holds if Ris an
integral domain.
If f(X)+g(x)=0, ,then deg(f(x)+ g(x)) < max{deg f(x),degg(x)}
Proof 1: If f(X)=a,+ax+ax +..+ax"and g(x)=b, +bx+b,x*+...+b x", then
f(X)g(x) = a,b, + (a,h, +aby)x+...+a,b, x"™. If f(x)g(x) =0, then at least one of the coefficients
of f(x)g(x)is nonzero. Supposea.,b, #0, then deg(f(x)g(x))=n+m=deg f(x)+degg(x). If
a,b, =0 (which can hold if R has zero divisors), then deg(f (x)g(x)) <n+m=deg f (x)+degg(x).
2: If deg f(x)>degg(x), then f(x)+g(x)=(a,+b,)+(a, +b)x+..+(a, +b,)x" +...+a,x"
shows that the leading coefficient of f(xX)+g(x) is a, =0and o)

deg(f (x) + g(x)) =n=max{deg f (x),degg(x)}. If deg f (x) =deg g(x), then
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f(X)+g(x)=(a, +b,) +(a, +b)x+...+ (a, +b,)x" shows that either f(x)+g(x)=0o0r
deg(f (x) +9g(x)) <n=max{deg f (x),deg g(x)} (=or <accordingly a, +b, = 0or=0)

Now we characterize the units in a polynomial ring R[X].

Theorem 3: Let Rbe a commutative ring with 1. Then f(x)=a, +a,x+a,x’ +...+a,x" e R[X] is a
unit if and only if a,is a unitand a, is nilpotentin RVi=12,...,n

Proof: First assume thata,is a unit and a,,a,,...,a,an are nilpotents inR. Then a,x,a,x>,...,a x"are
nilpotents and so a,x+a,x” +...+a,x" is a nilpotent inR[x]. Since a, is a unit, so it follows that
a, +a,X+a,x* +...+a,x" is a unit.

We prove the converse by induction on the deg f (x).If deg f (x) =0, then the result follows directly.

Let us make our induction hypothesis that the result holds for every nonzero polynomial of degree less

than n . Let f(x)=a,+aXx+a,x*+..+a,x"be a unit in R[x]. Then there is a polynomial
by +b,x +b,x* +...+b_x" € R[x] such that
(@, + X +a,X* +...+a,x")(b, +bx+b,x* +...+b x" =1
This implies that
ah, =1
a,b, +ab, =0
a,b, +abab, =0

a, b,+a, b,,+ab,,=0
a b, +ab, ,=0
ab,=0

We multiply a, to both sides of (5) and get

a’b =0

Again multiplying an2 to both sides of (4), we get
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Proceeding similarly we geta ""b, =0. Since, by (1), b, is a unit, so a™ =0. Thus a,=0isa
nilpotent and so is a,x" = 0. Then it follows that g(x) = f(x)—a,Xx" =a, + a,X+...+a,,X" " is a unit,
since f(x)is a unit. Since degg(x) <n, so a,is a unit and &, a,,...,a, ,are nilpotents inR, by the

induction hypothesis. Thus the result follows.

13.4 DIVISION ALGORITHM

In the ring Z of all integers, for any two nonzero integers mand n, we have unique integersqand r
such that n=mq+r, where 0 <r < m|. The usual process, we do for computing gandr, is known as

long division (Division Algorithm).

Let us define divisibility first. Let f(x)and g(x) be two nonzero polynomials in R[x]. If there exists
g(x) € R[x] such that f (x) =q(x)g(x), then we say that g(x) divides f(x) orthat g(x) is a factor of
f(x). Itis denoted by g(x)| f(x)

Theorem 4 (Division Algorithm): Let R be a commutative ring with 1and f(x), g(x) be two nonzero
polynomials in R[x]such that the leading coefficient of g(x)is a unitinR. Then there exist unique
polynomials q(x), r(x) € R[x] such that

f(x) =a(x)g(x) +r(x)

where either r(x) =0 or degr(x) < degg(x)

Proof: We initially prove the existence of such polynomials q(x) and r(x). Note that g(x)is a
nonzero polynomial, since the leading coefficient is nonzero. If g(x)| f (x), then there exists

g(x) e R[x] s.t. f(x)=g(x)q(x) which gives the desired presentation where r(x) =0. If g(x) | f(x),
then consider the set

s ={f(0-a()9(x)|a(x) € RIx}.

Now, by the well-ordering principle, the set N ={degh(x) | h(x) € S}(since g(x) | f(x),so S does not
contain the zero polynomial), we have a polynomial r(x) having the least degree among all

polynomials in S . Then there exists q(x) € R[x]such that f(x) = g(x)q(x)+r(x). So it is sufficient to

show that degr(x) <degg(x). Let g(x) =a, +a,x+...+a,x" and r(x) =b, +bx+...+b,x". Since

a, isaunitso a, existsin R. Suppose, on the contrary, degr(x) > degg(x) . Let we define

s(x) =r(x) ~b,a,"x""g(x).
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Then s(x) # 0, otherwise r(x) =b_a*x™"g(x) and f(x)=(q(x)+b,a,*x"")g(x)which contradicts

g(X) | f(x). Now s(x) = f(x)—(q(x) +b,a,x"")g(x) shows that s(x) € S and then
degs(x) < degr(x)
contradicts the choice of r(x)in S. Therefore degr(x) <degg(x).
To prove the uniqueness of g(x)and r(x), assume that there are polynomials q (x), r (x) € R[x] such
that
f(x)=a0()g(x)+r(x) =q ()g(x) +r (x)
where r(x) =0or degr(x) <degg(x),r (x) =0ordegr (x) < degg(x) . Then
r(x)—r (x)=(a(x)-90x))g(x).
If r(x)—r'(x)=0then q'(x)—q(x) = 0, and since the leading coefficient of g(x) is a unit,
deg((a (x) —q(x))g(x) = deg(q (x) —q(x)) + deg g(x) > deg g(x), that is
deg(r(x) —r (x)) > deg g(x),
Which is impossible since degr(x),degr (x) <degg(x). Thus, r(x)—r (x) =0. Then
0=(q (x)-a(x))g(x),
= (X) —q(x) = 0, since the leading coefficient of g(x) is a unit.
Thus r(x) =r (x) and q (x) = q(X)
Definition: Let R be a commutative ring with 1 and f (x), g(x) be two nonzero polynomials in R[X]
such that the leading coefficient of g(x)is a unitin R.Then the unique polynomials q(x),r(x) € R[X]
in the above Theorem, are called the quotient and remainder, respectively, after dividing f (x) by
9(x).
Let R be a commutative ring with 1 and f(a)=a, +a,a+...+a,x" € R[x]. For all a R we define
f(a)=a,+aa+..+a,a"
Definition: Let Rbe a commutative ring with 1and f(x) € R[x] be two nonzero polynomials. If r e R
is such that f(r)=0,then ris called a root or zero of f(x).Aroot r is said to be of multiplicity
m=>1if f(x)=(x-r)"g(x) where g(x) € R[x]is such that g(r) #0.
Theorem 5 (Remainder theorem): Let R be a commutative ring with1, f(x) € R[x]be a nonzero
polynomial and a € R. Then there exists unique q(X) € R[x] such that
f(x) =(x—a)a(x)+ f(a)
Proof: Denote g(x) = (x—a). Then the leading coefficient of g(x) is 1, aunitin R, and so there are
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unique q(x),r(x) € R[x]such that f(x)=(x—a)q(x)+r(x), where r(x) =0 or degr(x) <degg(x).
Now if r(x) =0, then deg r(x) <1shows that r(x) € R. Thus in either case r(x)=beR,, and we
have f(x)=(x—a)q(x)+b. Thisimpliesthat f(a)=b, and hence f(x)=(x—a)q(x)+ f(a).
Corollary 1(Factorization Theorem): Let R be a commutative ring with 1, f(Xx) € R[x]a non zero
polynomial and ae R. Then x—a| f(x)if and only if a is arootof f(X).

Thus ais aroot of f(x)ifandonlyif f(x)=(x—a)q(x)forsome q(x)e R[x]. This
immediately

gives us the following result

Theorem 6: If Ris an integral domain and f(x) is a nonzero polynomial in R[x] of degree n, then
f(x) has at most n roots in R counted according to multiplicity.

Proof: We will prove this theorem by induction on deg f (x) =n. If n=0, then f(X) is a nonzero

constant in R and hence has no roots. Let us assume n > 0. If f(x)has no roots inR, the result holds.

Suppose f(x) has aroot, say ae R. Then f(x)=(x—a)f,(x). Since R is an integral domain, so
deg f,(x) =n—1. Then f,(x)has at most n—1roots in R, by the induction hypothesis. Also, if b = a

isarootof f(x) in R,then f(b)=(b—a)f,(b)

= f,(b)=0

since Ris an integral domain, that is, b is a root of f,(x). Therefore f(x) hasat most n rootsin R.

Corollary 2: Let R be an integral domain and f(x), g(x) € R[x]such that deg f (x),degg(x) <n.

If f(a)=g(a) for n+1 elements ae R, then f(x)=g(x)

Proof: If, on the contrary, f(x) = g(x),then h(x)= f(x)— g(x) is a nonzero polynomial over R

such that degh(x) <nand h(x) has at least n+1roots in R. This theorem is the contradiction of

theorem 6. Therefore f(x) = g(x).

13.5 ARITHMETIC OF POLYNOMIAL

Theorem 7: Every ideal in F[x] is principal ideal, where F is principal ideal.

Proof: Let | be an ideal of F[x]. If 1 ={0}, then | =<0 >. Suppose | ={0}. By the well-ordering

principle on the set N = {deg f (x) | 0= f(x) € F[x]} we have a polynomial, say d(x) € | with the

least degree in | . Then <d(x) >c | . For the reverse inclusion, let f (x) € | . By the Division
Algorithm, there are q(x), r(x) e F[x] such that f(x) =d(x)q(x)+ r(x)where either r(x) =0or
degr(x) <degd(x). If r(x) =0, then r(x) = f(x)—d(x)q(x) € I contradicts that d(x) is a polynomial
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of least degree in | . Hence r(x) =0, f(x) =d(x)q(x) e<d(x) >,and so | c<d(x) >.Thus
| =<d(x) >.is a principal ideal.

Suppose f(x), g(x) € F[x]be two polynomials. A nonzero polynomial d(x) e F[x]is called a
common divisor of f(x)and g(x)if d(x)| f(x)and d(x)|g(x). If f(x) and g(x)are not both zero,
then the ideal < f(x),g(x)> is a principal ideal and so there is d(x)e F[x]such that
< f(x),g(x) >=<d(x) > then d(x)| f(x)and d(x)|g(x). This shows that every divisor of d(x)is a
common divisor of f(x) and g(x). Thus common divisor of polynomials f (x) and g(x) exists in
F(x) and there may be several common divisors. To introduce a polynomial equivalent of the concept

of the greatest common divisor (gcd) of two integers, the first difficulty is that there is no natural or

standard partial ordering between polynomials that allows us to make our choice unique by
considering the 'greatest' among all common divisors. If d(x) and d(x)are two gcd of f(x) and
g(x), then our experience in Z shows that d(x)|d (x)and d (x)|d(x)
=d'(x) =ad(x) forsome acF~
To get some degree of uniqueness, we need begin with the monic common divisors.
Definition: Let f(x),g(x) € F[x]be two polynomials not both zero. Then a polynomial d(x) € F[x]is
called a greatest common divisor of f(x),g(x) if d(x) isa monic polynomial such that:

1. d(x)| f(x)and d(x)| g(x)

2 c(x)| F(x) and c(x)[g(x) = c(x)|d(x)
Now we have to show that the gcd of f(x), g(x) exists in F[x]uniquely.
Theorem 8: Let f(X),g(x) € F[x]be two polynomials not both zero. Then gcd of f(x), g(Xx) exists in
F[x]and it is unique.

Moreover, if d(x) is the gcd of f(x),g(x), then there exist u(x),v(x) e F[x] such that
d(x) = FOu(x) + g(x)v(x)
Proof: Consider | ={f (X)r(x)+g(x)s(x)|r(x),s(x) e F[x]}. Thenl is the ideal < f(x),g(x) >of
F[x] generated by f (x) and g(x). It is a nonzero ideal since either of f(x)and g(x) is nonzero. Since

Fis a field, every ideal of F[x]is principal. Suppose d,(X)=a,+aXx+...+a,x" € F[x],a, #0 is

such that | =<d,(x)>. SinceF is a field, so that a, "exists in Fand d(x)=a, 'd,(x) e F[x] is a

monic polynomial such that < d(x) >=<d,(x) >=< f(x),g(x) >. Then f(x),g(x) e<d(x)>
= d(x) d(x) is common divisor of the polynomials f (x), g(x). Now d(x) e< f(x), g(x) >

d(x) = FOu(x) + g(x)v(x)
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for some u(x),v(x)eF[x]. If h(x)eF[x]is a common divisor of f(x),g(x), then

h(x)| f (X)u(x)+g(x)v(x) =d(x). Thus d(x) is a greatest common divisor of f(x),g(x).

To prove the uniqueness of gcd, consider a gcd c(x) € F[x] of f(x),g(x). Then c(x)|d(x)and

d(x)|c(x), and so d(x)=ac(x)for some a a<F . Since both c(x)and d(x) are monic, it follows

that c(x) =d(x)

We denote the gcd of f(x), g(x) bygcd(f(x),g(x)).

Example 3: Consider two polynomials f(x) =2(x-1)(x—2)and g(x) =2(x—2)(x—3) overR. Then

d(x)=x-2 is the monic common divisor of f(x) and g(x)of greatest degree. Thus

ged(f (x),9(x)) =x-2

Definition: Let f(x)and g(x)two polynomials in F[x]not both zero. If gcd(f(x),g(x))=1, then

f(x), g(x) are said to be relatively prime.

Theorem 9: Two polynomials f(x),g(x) e F[x]are relatively prime if and only if

1= (X)u(x) + g(x)v(x) for some u(x),v(x) € F[x].

Proof: Let 1= f(x)u(x)+g(x)v(x), where u(x),v(x)eF[x]. If d(x)=gcd(f(x),g(x)), then

=d(x) | f(x),d(x)[g(x)

=d(x)|1

Since d(x) is monic, so it follows that d(x) =1. Hence f(x)and g(x) are relatively prime.

Converse of this theorem will be follows from Theorem 8.

Corollary 3: Let Kbe a subfield of F and f(x),g(x) e K[x]. Then f(x) and g(x)are relatively

prime in K[x]if and only if so in F[x].

Proof: Let f(x)and g(x)be relatively prime inK[x]. Then 1= f(x)u(x)+ g(x)v(x) for some

u(x),v(x) € K[x]. Since K[x] < F[x], it follows that 1=gcd(f (x), g(x))in F[x], by Theorem 9.
Conversely, assume that f(x)and g(x)be relatively prime inF[x]. Then

1= f(x)u(x) +g(x)v(x)for some u(x),v(x) e F[x]. Let d(x)=gcd(f(x),g(x))in K[x]. Then

d(x)| f(x),d(x)| g(x)and d(x)| f (x)u(x)+g(x)v(x)in F[x]. It follows that d(x)|1, and since d(Xx)

is monic, so d(x) =1. Thus f(x)and g(x)are relatively prime in K[Xx].

Definition: Let F be a field. A nonconstant polynomial f(x) € F[x]of degree n is called irreducible

over F if there is no factorization f(x)= g(x)h(x)in F[x]such that deg f (x) <n and degg(x) <n.

In the other way f (x) is said to be reducible.
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Thus, a nonconstant polynomial p(x) is irreducible iff it has only two monic divisors 1 and

ap(x) where, ais leading coefficient of p(x).
Theorem 10: Let F be a field and f (x), p(x) € F[x]. If p(x) is irreducible, then

ged(p(x), f(x)) =1 if p(x) f f(x)

=a 'p(x) if p(x) | f(x)

Where, a is leading cofficient of p(x).
Proof: Let p(x)| f(x). Since p(x)is irreducible, so it has no monic divisors other than 1 and
a”p(x)
Where, ais leading coefficient of p(x).But a™*p(x) is not a divisor of f (x), since p(x) | f(X).
Hence ged(p(x), f(x)) =1
If p(x)| f(x), then a'p(x)is the monic common divisor of highest degree. It follows that
ged(p(x), f(x)) =a"p(x).
Theorem 11: LetFbe a field and p(x)eF[x]. Then p(x)is irreducible iff for any
f(x),9(x) € F[x], p(x) | f(x)g(x) implies either p(x)| f(x)or p(x)| g(x).
Proof: Let p(x)| f(xX)g(x)and p(x) | f(X). Since p(x)is irreducible, so 1=gcd(p(x), f (X)). Then
1= p(X)u(x) + f (x)v(x) for some u(x),v(x) € F[x]. It follows that
9(x) = p()g(x)u(x) + £ ()g(x)v(x) . Now p(x) | f(x)g(x)
= p(x) | pP)g(Yu(x) + F(X)g(x)v(x), i.e., p(x)|g(x)
Conversely, let p(x) = f(x)g(x). Then either p(x)| f(x) or p(x)|g(x). If p(x)| f(x), then
deg p(x) < deg f (x) <deg f (x) +deg g(x) <deg p(x)
= deg p(x) = deg g(x).
Similarly, if p(x)|g(x), then deg p(x) =degg(x). Thus p(x)is an irreducible polynomial.
The relevance of prime integers is undeniably demonstrated in the Fundamental Theorem of
Arithmetic. A similar conclusion is obtained here, demonstrating that every nonconstant polynomial

over a field may be represented as a combination of irreducible polynomials.

Theorem 12: LetF be a fied. Then every non constant polynomial f(x)e F[x] can be written
uniquely as a product of a nonzero constant and monic irreducible polynomials in F[x] up to the order

of the irreducible factors.

Proof: We initially prove that, the existence of such factorization by using the mathematical induction

on n=deg f(x). If n=1 then f(x)=ax+b;a=0. Since F is a field, so a™1 exists in F and
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X +abis a monic irreducible polynomial in F[x]. Then f(x)=a(x+a 'b) shows that we are done
for n=1. Let f(x) be a polynomial of degree n >1and leading coefficienta. If f (x)is irreducible,
then f(x)=a(a™f(x))is a desired factorization. If f(x)is reducible then f(x)=g(x)h(x) € F[x]in
F[x] with degg(x)<degf(x)and degh(x)<degf(x). By the induction hypothesis,
9(x) = bpy (X) P, (X)-.- P, (X), h(X) = gy (X)q, (x)..9, (X) and
f (x) =bep, (X) p, (X)...p, (X)g,(X)9, (X)..q,(x) where b,ceFand p,(x),q;(x)are monic irreducible
polynomials in F[x].

Now, to prove the uniqueness of the factorization, let us suppose

ap; (X) P, (X)... Py (X) = by (x)0 (¥)...G, (X)

where a,b e Fand p,(x),q;(x) are monic irreducible polynomials in F[x]. Since all p,(x),q;(x) are
monic, so a=Db. Then p,(x)p,(X)...p,,(X) = g,(X)q, (X)...q,(X)

= 01 (%) | pL(X) P2 (X)-.- Py (X)
Since q,(x)is irreducible, so either of p,(x)p,(X)...p,(X)is divisible byq,(x), say q,(x)| p,(x). It

follows that p, (x) =q,(x), since both p,(x) and g,(x)are monic and irreducible

= p,(X)...p,,(X) =0, (x)..q,(X)  (By the cancellation property)

Continuing cancelation of irreducible factors, we get p.,(X)p,(X)...p,(X)=1if m>n or
Omer (X0, (X)...0,(X) =1if n>m, which is a contradiction, since every irreducible polynomial is non

constant. Thus m = nand after reindexing, p,(x) =q;(x).

13.6 IRREDUCIBILITY OF POLYNOMIAL

There is a simple characterization on irreducibility of polynomials of degree 2 or 3.

Theorem 13: Let f(x) e F[x] be a polynomial of degree 2 or 3. Then f(x) is reducible over F if and

only if f(x) hasarootin F.

Proof: First suppose that deg f(x) =3and f(x)has a rootinF, say a. Then x—a divides f(x)in
F[x] and so f(x)=(x—-a)q(x) for some q(x) € F[x]. Thus f(x) is reducible over F .

Conversely suppose that f (x) is reducible over F . Then f(x)=g(x)h(x)for some g(x),h(x) € F[x]
with degg(x)>1 and degh(x)>1. Now deg(g(x)h(x))=3shows that either degg(x)=21and
degh(x)=2 or degg(x)=2and degh(x)=1. If degg(x)=1, then g(x)=ax+b for some
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a,beF,a=0. Now —a'beF shows thag(—a'b) =0 shows that f(-a'b)=0has a root inF . If

h(x) =1, then similarly f(x) hasarootin F.
A similar argument can be used for the case when deg f (x) =2.

Example 4: Consider f(x) =x*+x+[{]€Z,[x]. Then  f([0])=[0]" +[0]+[1]=[0] and
f ([1) = [1]° +[1]+[1] = [0] shows that f(x) has no roots in Z,. Also deg f (x) =2. Thus, by theorem

13, f(x) isirreducible over Z,.

Example 5: Consider f(x) = (x> +1)(x* +2) € Q[x]. Then f(x) has no root in Q, still it is reducible

over Q. Thus the above result does not hold for polynomials of degree more than 3.

Theorem 13 is an appropriate criteria for assessing polynomial irreducibility over finite fields. Because
the nonexistence of roots in an infinite field is difficult to verify, it does not operate well over an
infinite field. Now we demonstrate a lovely strategy for checking the nonexistence of roots of a

polynomial over Q in a finite number of steps. We'll start with a well-known lemma known as Gauss's
Lemma.

If f(x)=a,+ax+..+a,x" € Z[x], then for any m e N denote
f(x) =[a,]+[a]x+..+[a,]x" € Z,[x]. Since w:Z—>Z, defined by w(@)=[a] is a ring
homomorphism, so it follows that w :Z[x]=2Z_[X] given by v (f(x))= f(x)is a ring
homomorphism.

Lemma 1: Let f(x) e Z[x]. If f(x)=G(x)H(x) over Q where degG(x),degH(x) <deg f(x) then
there are g(x),h(x) € Z[x]with degG(x) =degg(x) and degH(x) =degh(x)s.t. f(x)=g(xX)h(x).

Proof: Let n;,n, € Z be such thatn,G(x),n,H(x) € Z[x] . Consider g,(x) = n,(X)G(x), h,(x) =n,H(X)

and n=nn,. Then
nf (x) =GN, H (x) = g;hi (%)

If pis a prime divisor ofn, then the identity nf (x) = g,(x)h,(x) becomes g,(x)h,(x)=0 in Z [x].

Since Z [x] is an integral domain, so at least one of g,(x)andh,(x) say is 0. Hence p divides all the

coefficients of g,(x), thatis, g,(x) = pg,(x) for some g,(x) € Z[x]. If n=pm, then

pmf (x) = pg, ()h.(x)
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=mf (x) = g, (x)h,(x) . Note that deg g, (x) =degg,(x) =degG(x) and degh,(x) =degH(x).
Continuing cancelation of prime factors of n, we reach our desired factorization f(x)=g(x)h(x)in
Z[x].

Theorem 14: Let f(x)=a, +a,x+...+a,x" € Z[x] be a polynomial of degree n >1. If there exists a

prime p such that f(x)=[a,]+[a,]x+...+[a,]x"is of degree nand irreducible overZ , then f(x)is

irreducible overQ.

Proof: Suppose that pis a prime such that deg f(x)is nand f(x) is irreducible overZ . If possible,

let f(x) be reducible over Q. Then there exist polynomials g(x) =b, +bx+...+b x*and

h(x) =c, +¢,x+...+¢,x' in Z[x], 0<k,| <nsuch that f(x)=g(x)h(x). Then n=k +1. Since degree
of f(x)=([b,]+[bx+...+ [0 Ix)([c,]+[c]x+...+[c,Ix") is n=k +1, it follows that [b, ][c,]+ [O]

in Z,, and hence [b,]#[0] and [c,] = [0]. Consequently, g(x)and h(x)are nonconstant polynomials

in Z,[x]. = g(x)and h(x)are non units, since the nonzero elements

of Zp are the only units of Z [X]. Hence f(x)is reducible overZ,, a contradiction. Thus f(x) is

irreducible over Q.

Example 6: Suppose the polynomial f(x)=7x*+8x+2over Q. Then in Z,[x],
f(x) =x3+[2]x+[2]. Now f([0]) =[2], f([1]) =[2] and f([2]) =[2] shows that f(x) has no root in

Z,[x]. Thus f(x) is irreducible over Z,and hence f(x)is irreducible overQ.

13.7 EISENSTEIN’S CRITERIA FOR IRREDUCIBLITY

Now we will learn about the famous Eisenstein's criterion for irreducibility of polynomials over Q.

Theorem 15: Eisenstein's irreducibility criterion (EIC) Let f(x)=a,+aXx+..+a,Xx" € Z[x]. If

there is a prime integer p such that p|a forall i<n, pfa, and p®Ja,, then f(x)isirreducible over
Q.

Proof: Assume, on the contrary, that f (x) is reducible over Q. Then by Gauss's lemma

f(x) = (b, +bx+...+ b x)(c, +C, X +...+ ¢, x")
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in Z[x]where k,m<n. Let g(x)=b, +bx+...+b x*and h(x)=c, +¢,x+...+¢, x". Then we have

f(x)=g()h(x) in Z [x]. Since pJa,, so [a,]is a unit in Z . Then p|afor all i<n implies
f(x) =ux". Because irreducible polynomial factorization over a field is unique, so we have and

g(x) = ux*and h(x) =vx"where u and v are units in Z_. Thus [b,]=[0] =[c,]in Z,,
= p|b, and p|c,. Then p?|b,c, = a,, a contradiction. Hence f(x) is irreducible in Q[X].

Example 7: Let f(x)=x>+12x*+9x*+6. Then 3|6,3]|9,3|12,3/13° |6 shows that f(x) is

irreducible over Q, by Eisenstein's criterion.
Corollary 4: For every prime integer p, the p -th cyclotomic polynomial
G, (X) =1+ X +...+x"*

is irreducible over Q.

P-1
Proof: Note that ¢, (X) = Xx 1 which implies

g, (x+1) =x""+x"2+. .+ p
Since pis prime, we have p|Vi,0<i< p.Hence ¢,(x+1) isirreducible in Q[X], by
Eisenstein's criterion and it follows that ¢, (X) is irreducible over Q.

Irreducible polynomials are commonly utilised in abstract algebra applications such as coding theory,
Galois theory, and so on. We show how to employ irreducible polynomials to build finite fields of

non-prime order. First, we show the following fact, which is essential for building finite fields.

Theorem 16: Let F be a field and p(x) be a nonzero polynomial over F. Then the following

conditions are equivalent:
(1) p(x)is irreducible;
(ii) F[x]/ < p(x) >is an integral domain;

(i)  F[x]/ < p(x) > isafield.
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Proof: (i) = (iii): F[x]/ < p(x) > is a commutative ring with unity, since F[x] is so. Consider a
nonzero element F[x]+< p(x) > of F[x]/< p(x)>. Then f(x)g< p(x)>and so p(x)} f(x) in

F[x]. Since p(x) is irreducible, so 1= ged(p(x), f (x)). Then u(x) f () +v(x) p(x) =1, for some
u(x), v(x) € F[x]

= (U()+ < p(x) >)(f (x)+ < p(x) >) =1+ < p(x) >. Thus

f (X)+ < p(x) > isaunitin F[x]/ < p(x) >and hence F[x]/< p(x) >is a field.

(iii) = (ii) : Follows trivially.

@ii)= (1) (ii) ): F[x]/ < p(x)> is an integral domain and so contains at least two elements. Thus
F[x]# p(x)> and so p(x) is a non constant. Suppose that p(x)= f(x)g(x), for some

f(x),g(x) € F[x]. Then f(x),g(x) e< p(x) >
= (f(X)+ < p(X) >)(g(X)+ < p(x) >) =0+ < p(x) >.
Since F[x]/ < p(x) > contains no zero divisor, it follows that f (x)+ < p(X) >= 0+ < p(x) >or

g(x)+ < p(x) >=0+< p(x) >, equivalently f(x)e< p(x)>org(x)e<p(x)>. If f(x)e<p(x)>
then there is g(x) e< p(x) > such that f(x) = p(x)q(x). Hence p(x) = f(x)g(x) = p(x)q(x)g(x) and
so degg(x)=0. Thus g(x) is a unit. Similarly, if g(x) e< p(x) >, then f(x) isa unit. Thus p(x) is

irreducible over F .

Example 8: Consider the irreducible polynomial f(x)=x*+x+[1] e Z,[X]. Then it follows that

F=Z,[X]/ <X+ x+[] >={f (x)+ < x* +x+[1] > f(x) € Z,[x]} is a field. We show that this is a
field of four elements. Now the Division Algorithm implies that for every f(x)eZ,[x] there are

unique polynomials q(x), r(x) € Z,[x] such that
f(X) = (X* + x+[1a(x) +r(x)

where r(x)=0r(x) = 0 or degr(x)<deg(x*+x+[1])=2. Then r(x)=[a]x+[b]for some
[a],[b]l€ Z,. Now f(x)—([a]x+[b]) = (x* +x+[1])q(X) e< x* + x+[1] >

=F =Z,[x]/ <x* +x+[1]>
={f(X)+<x* +x+[1] > f(X) € Z,[x]}
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={([a]x +[b])+ < x* + x+[1] >|[a],[b] € Z,}
={0+ < X* + X+ [ > [+ < x* + X+ [1] > x+ < X* + X +[1] >, X + [+ < x* + x +[1] >}.
Thus F is afield of four elements.

Check your progress

Problem 1: Check the polynomial f(x) =1+ x+ x> + x>+ x* is irreducible over Q?
Problem 2: Check the polynomial f(x) = x> +15x* +10x* +5 is irreducible over Q?

13.8 SUMMARY

In this unit, we have learned about the important definition of polynomial ring, irreducible polynomial
and important concept of Eisenstein's criteria of irreducibility of a polynomial over Q. The overall

summarization of this units are as follows:

If Fisa field then every ideal in F[x] is principal ideal.

R[X] is an integral domain if and only if R is an integral domain.

Two polynomials in F[x], f(x)and g(x) not both zero are said to be relatively prime if
ged(f (x),9(x)) =1.

A nonconstant polynomial p(x) is irreducible iff it has only two monic divisors 1 and a™*p(x)
where, ais leading coefficient of p(x).

Eisenstein's irreducibility criterion: Let f(x)=a,+aXx+...+a,X" € Z[x]. If there is a prime

integer p such that p|aforall i<n, p}a, and p®fa,,then f(x)is irreducible over Q.

13.9 GLOSSARY

> GCD: Greatest common divisor

> EIC: Eisenstein's irreducibility criterion
> Eisenstein's irreducibility criterion: Let f(x)=a,+aX+...+a,X" € Z[x]. If there is a prime

integer p such that p|a,forall i<n, pJa, and p* | a,,then f(x)is irreducible over Q.
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13.12 TERMINAL QUESTIONS

Long Answer Type Question:

1. State and prove the Eisenstein’s criteria for irreduciblity over Q.

2. If Fbe a field and p(x) e F[x]. Then prove that p(x)is irreducible iff for any
f(x),9(x) € FIx], p(x) | f(x)g(x) implies either p(x)| f(x)or p(x)|g(x).
Prove that, if K be a subfield of F and f(x),g(x) € F[x]. Then f(x),g(x) are relative prime
in K[x] iff soin F[Xx].
If Fbe a field and p(x)eF[x]. Then prove that p(x)is irreducible iff
f(x),g(x) € F[x], p(x)| T (x)g(x) implies that either p(x)| f(x) or p(x)| g(x)
Prove that each non constant polynomial f(x) € F[x] can be expressed uniquely as a product
of a nonzero constant and monic irreducible polynomials in F[x] up to the order of the

irreducible factors.

6. Prove that every ideal in F[x] is principal ideal, where F is field.
Short Answer Type Question:

Show that the polynomial f(x) = x® +15x* +10x” +5 is irreducible over Q.

Prove that p -th cyclotomic polynomial ¢, (x) =1+ X +...+ xP™ is irreducible over Q.

Prove that two polynomials f(x), g(x) € F[x] are relatively prime if and only if
1= f (X)u(x) + g(x)v(x) for some u(x),v(x) € F[x].
Find the gcd of the polynomials f (x) =2(x—-1)(x—2) and g(x) =2(x—2)(x-3).
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11. If Dis an integral domain and f(x) = 0 is a polynomial in D[x] of degree n, then prove that
f (x) has at most nroots in D counted according to multiplicity.

12.  Prove that in a commutative ring R with unity, D = f(x) € R[X] and a € R then x—a| f (x) iff
aisroot of f(x).

Fill in the blanks:
13. If Fisafield then every ideal in F[x] is

14. A non constant polynomial p(x) is irreducible iff it has only two monic divisors a™p(x) and

15.

13.13 ANSWERS

Answer of self cheque question:

1. Yes 2. Yes
Answer of terminal question:

9. (x=2) 13.  Principal ideal
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Unit-14: FIELD EXTENSION, GALOIS GROUPS

AND GALOIS EXTENSION

CONTENT:

14.1 Introduction

14.2  Objectives

14.3  Extension of fields
14.4  Minimal polynomial
14.5 Galois group

14.6 Summary

14.7 Glossary

14.8  References

14.9 Suggested Readings

14.10 Terminal Questions
14.11 Answers

14.1 INTRODUCTION

A field extension in mathematics, specifically algebra, is a pair of fields K < Lwhere the
operations of K are L operations confined to K. In this instance, K is a subfield of L and L is an
extension field of K. For instance, under the conventional definitions of addition and multiplication,
the real numbers are a subfield of the complex numbers, which are an extension field of the real

numbers.

The Galois group of a certain kind of field extension is a particular group connected to the field
extension in mathematics's branch of abstract algebra known as Galois theory. Galois theory is the
study of field extensions and how they relate to the polynomials that give birth to them via Galois

groups. It is named after Evariste Galois who made the initial discovery of field extensions.

In algebraic number theory, the study of polynomial roots via Galois theory, and algebraic

geometry, field extensions play a key role.
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14.2 OBJECTIVES

After reading this unit learners will be able to
e Memorized about the extension of fields.
e Analyze about the minimal polynomial in terms of field extension.

e Analyze about the Galois group of polynomial over a field F .

14.3 EXTENSION OF FIELDS

As we know that complex numbers are generally ordered pair of real numbers i.e., C = RxR, and so,
in its strict sense R C. Still R is considered as a subfield of C. We can identifying each real
number a with the complex number (a,0).
So, what is the justification in doing this?
In the sense of isomorphism. Let we define a mapping f :R—>C,forall aeR s.t,,

f(a) =(a,0)
Then f isa monomorphism and R = f (R) ={(a,0) | a € R} which is a subfield of C.

Definition: Let F and K be two fields. F is called an extension or a field extension of K if there is a
monomorphism
f:K>F

Itis denoted by F/K

Since, K is a field and we also know that a field has no ideal other than{O}and F itself, every
homomorphism f : K — Fis either a zero homomorphism or a one-to-one homomorphism. Thus F is
a field extension of K iff there is a nonzero homomorphism f:K — F.
Example 1: The mapping f : R — C defined by for all ae R,

f(a)=(a0)
is a monomorphism. Thus C is a field extension of R .
Similarly, Ris a field extension of Q. There are more several field extensions of Q. Now we give

some examples.

Example 2: Consider p(x) =x*+1 on R. Since p(x)is irreducible overR, F =R[x]/ < x* +1> isa

field. Also we have F ={f (x)+ < x® +1>| f(x) e R[x]}. SinceR is a field, by the division algorithm
f(X) = (x* +Dq(x) + (a+bx),where a,b e R. Then f(x)—(a+bx)=(x*+1q(x) e< x* +1> implies

that f(X)+ < x*+1>=a+bx+<x”+1>.Thus
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F ={a+bx+<x*+1>/a,beR}
Define a mapping f : R — Fby: forallaeR,
f(@)=a+<x*+1>
Then f is a homomorphism. Now for a,b e R,
f@=fb)=ar<x’+1>=b+r<x’+1>
=a-be<x’+1>
=a-b=(x*+1)q(x)
for some q(x) e R[x]. If a—b=0then a—beR
—deg(a—b) =0, and q(x) is nonzero.
Then deg((x* +1)q(x)) = deg(x*> +1) +degq(x) > 2 leads to a contradiction. Thus a=band so f is a

monomorphism. Hence F is an extension of R.
Also note that o : F — C defined by:

o(@+bx+<x’+1>)=a+ib
for every a+bx+ < x*> +1>eF isanisomorphism. Thus F =C.
Example 3: Let F =Q[x]/ <x?—2>. Since x*—2 is irreducible over Q, F is a field. Also, by the

Division Algorithm on Q[x], we have

F={a+bx+<x*-2>a,beQ}
Define a mapping f :Q - Q[x]/ < x*—-2> by VaeQ

f@Q=a+<x*-2>

Then f is a homomorphism. Since Q is a field, so f is either a zero homomorphism or a
monomorphism. Now f (1) =1+ < x* —2 >= 0implies that f is a nonzero homomorphism. Thus f is a
monomorphism. Hence F is an extension of Q.
Also note that o : F — Q(+/2) defined by

oc@+bx+<x?-2>)=a+by2

for every a+bx+ < x? —2 >e F is an isomorphism. Thus F = Q(~/2) .

Example 4: Give examples of two fields which are not an extension of a field.

1. Q has no proper subfield.
Let K be asubfield of Q. Then 1€ K, and so —1< K. This shows that for all nonzero aeZ,

a=1+1+..+1(atimes),ifa>0
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=(-D)+(-D+..+(-1)(—a times),if a<0
and hence ae K. Thus Z < Kwhich shows that Q =Q(Z) c K.
2. Z, has no proper subfield
If K< Z isasubfieldofZ, then [1] e K
=[a]l=[]+[1]+...+[1] (a times) e K
forevery[a]e Z,. Thus K =Z,
Definition: A field K is called a prime field if it has no proper subfield.
In other words, such domains cannot be thought of as extensions of other disciplines. Q and Z are
prime fields for any prime integer p. We will now demonstrate that any prime field is isomorphic to
any of these fields.
Theorem 1: Every field F is either an extension of Q or an extension of Z, for some prime p.
Proof: Define amapping f :Z > F
st, f(nN)=nL neZ
Then f is a homomorphism. Now either char F =0or char F = p for some prime integer p .
Assume that charF = p. Then, p1=0
= pekerf
= kerf #¢
Hence, ker f =mZ for some m>0
Again Imfbeing a subring of F with the same unity, charlmf =charF=p. Then

Imf=Z/kerf =Z shows that m=charimf =p. Thus Imf =Z_ , and hence F has a subfield
which is isomorphicto Z,,.

Now assume that char F =0. In this case, ker f ={0}, and so f is one-to-one. Now we shall

show that this f induces an one-to-one homomorphism

v Q-oF

s.t., W(%) = f(a)f(b)™, where %e Q [Since fis1-1, f(b)=0Vb=0]

Let %,%eQ.Then %=§@ad=bc:@ f(ad) = f (bc) < f(a)f(d) = f(b) f(c) = f(a)f(b)™

— fO)f(d) o w[%j - w(ﬁ
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= is one-one and as well as defined.

Now "”[S gj y/(adb;bcj:f(ad +be) f(bd)™ = (f(a)f(d)+ f(b)F(c))f (b)™ f(d)™

— f(a)f(b)*+ f(c)f(d)" = W(E}WGJ and V’(Z ;j (%} _ f(ac)f (bd)™

— f@F Q) () () = f@)f(b) f(d)* = f(a)f(b)* f(c)f(d)* = w(g)w@ |

Thus F has a subfield which is isomorphic to Q.

Corollary 1: Let F be a prime field.
1. If charF =0, then F Q.

2. If charF=p,then F=Z .

Let F/K be a field extension. Then there is a monomorphism o: K — F, and so K is isomorphic to

o(K), a subfield of F. Also, if K is a subfield of F, then the inclusion mapping f:K — Fis a

monomorphism. Hence F is an extension of K. Thus it is of no harm to identify K and its isomorphic

image o(K) is an extension F .
Let F/K be afield extension. As we know that arbitrary intersection of subfields of F is a subfield of

F, given any c,c,,...,c, € F there is the smallest subfield that contains K u{c,,c,,...,c,}. This is

called the subfield of F generated by c,,c,,...,c,over K and is denoted by K(c,c,,...,.C,). For

¢ € F,K(c) is of our special interest.

Definition: A field extension F /K is called a simple extension if there is ¢ € F such that F =K(c) .
Now let us look after the explicit form of the elements of K(c). Now c,c?,...e K(c)

= K(c)contains the elements of the form k,+kc+..+k,c". Thus for any f(x)eK[x],

f(c) e K(c),i.e.,, K[c]={f(c)| f(X) e K[X]}< K(c). Since K|[c]is an integral domain, the field of

quotients Q(K][c]) of K]c] exists, and if follows from the fact K[c]is the smallest subfield that

contains K u{c,,c,,...,c,}that K[c]=Q(K[c]). Thus we have:

K(c) ={f (©)g(c) | f(x),9(x) e K[x],g(c) = O}

Example : Consider Q(2)= {fﬁ//—_) f(x), g(x) € Q[x], g(~/2) ¢O}

f(x)=a, +ax+...+a,x" €Q[x]. Then

f(v2) = a, +a,v/2 +5a, + 2a,/2...+a, (~/2)"
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= (a,+2a, +..)+ (8, + 22, +..)v/2
=a+b+/2 ,where =a,beQ
Prove that if € Q(ﬁ), then

_f(V2)
9(2)

_a+by2
c+d+2

=r+5v2 for some r,seQ

Also I +5v2 € Q(v/2)Vr,s € Q. Thus we have Q(+/2) ={a+b+/2 |a,b e Q}.

We demonstrate in the example below how extensions produced by many parts might be

straightforward extensions.

Example 6: Let us consider the extension Q(\/E\/E) of Q. Then \/g\/g € Q(\/E\/E)

—5-3¢ Q(\/E\/g). Since Q(\/g—\/g) is the smallest field which contains Qand J5-43,
which follows that = Q(+/5 —+/3) = Q(+/3,/5).

Again, = /5 —+/3 € Q(+/5 -+/3)

== IGQ(I J3) e, (J§+J§)EQ(J§—J§)

=3 =2 (/5 +8) (5 -3) € QY5 - 3] and 5 = 2 (45 +/3)+~ (/5 - 3) QY5 - 43)

= Q(/3./5) c Q(5 -3).
Thus Q(+/3,4/5) = Q(+/5 - +/3)

Recall that C is a vector space over R of dimension 2 and {L,i} is a basis of C overR. Also Q(\/E)

is a vector space over Q and {1, \/5} is a basis.

Let F/K be a field extension. Then the multiplication in F induces an external composition

KxF —>F.Thenforall ce Kand «, f € F, we have

(i) (c+d)a=ca+da, (right distributivity law of multiplication over addition in F)
(i) (cd)a =c(da), (associativity of multiplication in F)

(iii) c(a+ p) =ca+cp, (left distributivity law of multiplication over addition in F)

(iv) L.a =«,
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which shows that F is a vector space over K.

Definition: Let F /K be a field extension. Then the dimension of F as a vector space over K is called
the degree of the extension of F /K.

It is denoted by [F : K].

Thus [C:R] =2 and [Q(2):Q]=2

Example 7: Now we prove that [F : K] =1iff K=F.

If F=K,then dimF =1 as a vector space over K. Hence [F:K]=L1.

Conversely, let [F : K]=1. Consider c e Fand c=0. Then {c}is linearly independent and so a basis
of Fover K. Then there is k e K such that 1=Kkc. This implies that k #0and c=k* e K. Thus
F < K and hence F =K

Definition: A field extension F /K is called finite if [F : K]is so, otherwise F /K is called an infinite
extension.

If [F:K]=2,then F is called a quadratic extension of K.

Example 8: 1. Q(+/2)/Q,C/R,Q(¥/2)/Q are finite extension of fields.

2. R/Q is an infinite extension.

3. Q(\/E)/Q, C/R are quadratic extension.

4, Q(i/E)IQ is not a quadratic extension.

Following results are very important to find the degree of field extension and also known as tower rule.
Theorem 2: Let F/Land L/Kbe two finite extensions of fields. Then F/K is also a finite
extension and [F:K]=[F:L][L:K]

Moreover, if {u;,u,,u,,...,u,}is a basis of F/Land {v,v,,V,,..,v }is a basis of L/K, then
B={uyv,;|1<i<m,1< j<n}isabasisof F/K.

Proof: Suppose that [F:L]=m =m and [L:K]=n. Consider bases {u,,u,,u,,...,u, }of F over L
and

{v,,V,,Vs,...,v,} of Lover K. Thenforany aeF, thereare I,1,,u,,...,1, € L such that

a=lu +Lu, +u, +...+1 u_.

Since for each I, € L there are k,,K;,,...,k;, € K such that
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L =k,v, +k,v, +...+k V.

TRV AV TAVA
TRV ATASSRTAY

Thus,
a=Kk,uVv, +Kk,uv, +...+k, uv,

+ KU,V + KooV, + .+ K UV, +

+ KUV, +K UV, KUY

mn~¥m-“n*

which shows that B ={u;v; [1<i<m]1< j<n}generates F as a vector space over K. This is left for

learners to checking that B:{uivj|lsi3m,1£j3n}is linearly independent. Thus

B={uyV;|1<i<m,1< j<n{isa basis of FoverK.

Note: Let F/K be a field extension of finite degree and Lis an intermediate field. Then aforesaid
theorem implies that L/ Kis finite extension and [F : K]=[F : L][L: K]

=[L:K]|[F:K]

Corollary 2: If F/Kis a finite field extension and L is an intermediate field, then [L: K]|[F : K].
There are several uses for the tower rule. We demonstrate its application to determine the degree of an
extension in the further books. Let's now think about the case below.

Example 9: Let Land M be two intermediate fields of a field extension F/K. If [L:K] is prime,
theneither LM =K or Lc M

Denote N=L~M.Then KcNcL

= N is an intermediate field of L/ K, and

hence [L:K]=[L:N][N:K] . Since [L:K] is prime, [L:N]=1=1or [N:K]=1. Then N=L or
N=K,ie, LcMor LM =K.
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14.4 MINIMAL POLYNOMIAL

In this unit we defined degree [F : K]of a field extension F /K to be the dimension of F as a vector

space over K. Though we have results ensuring existence of basis of every vector space, but there is

no for finding a basis in general. In this unit we set the theory a step forward to find [F : K]. The
degree of a simple extension K(c)/K is finite if and only if c is a root of some nonconstant
polynomial f(x) over K. Here we discuss how to find a basis and dimension of such simple

extensions K(c)/ K.
Definition: Let F/K be afield extension. Then c € F is called an algebraic element over K, if there
is a non constant polynomial f(x) € K[x] s.t. f(c) =0, i.e. if there exists k,,k,,...,k, € Knot all
k; =0 s.t.,
ko +kc+..+k,.c"=0

Otherwise cis called a transcendental element over K.

Example 10: 1, V2,35, ietcare algebraic over Qand e, z,e® are transcendental over Q.

Definition: A complex number « is called an algebraic number if « is an algebraic element over Q
that is, if there is a non constant polynomial f(x) with rational coefficients such that

f(a)=0
Otherwise « € Cis called a transcendental number.
Let « e F be an algebraic element over K. Now we show that uniqueness can be imposed to the
polynomials f(x) e K[x]such that f(a)=0up to some restrictions.

Theorem 3: Let F / K be a field extension and « € F be algebraic over K. Then there is a unique

monic polynomial m(x) e K[x]of least degree such that m(a) =0

Proof: Since « is algebraic over K , there is a nonconstant polynomial f (x) € K[x]such that f («) =0.
= P ={f(x) e K[x]| f(x)is nonconstant and f (<) = 0}is nonempty and hence

N ={deg f (x) | f (X) € P}is a nonempty subset of N . By the well-ordering principle of natural
numbers, N has the least element, say n and correspondingly a polynomial

koX" + kX" +...+ Kk, ,x+k, € K[x] of degree n inP. Then k, = 0and hence m(x) = k,* f ()
becomes a monic polynomial of the least degree n such that m(«) =0.

Suppose p(x)is a monic polynomial of degree n and p(«) =0. Since K is a field, there
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are q(x),r(x) e K[x] such that p(x) =m(x)q(x) +r(x) where r(x) =0 or degr(x) <degm(x). If
degr(x) <degm(x), then r(x) becomes a non constant polynomial such that

r(a) =r(a) —m(a)g(a) =0, which contradicts the choice of m(x) as a polynomial of least degree
such that m(«) =0. Thus r(x) =0 and we have p(x) =m(x)q(x) which implies that degq(x) =0, i.e.
g(x) =k € K. Since both p(x) and m(x) are monic, p(x)=km(x) implies that k =1 and thus the
uniqueness of m(x) is established.

Definition: Let F/K be a field extension and « € F algebraic over K . Then the unique monic
polynomial m(x) € K[x] of least degree such that m(«) =0 is called the minimal polynomial of «
over K.

If n=degm(x), then « is called algebraic of degree n over K.

Example 11: Consider the extension R/Q. Then x* —3 is the minimal polynomial of J3 R over

Q. Thus /3 is algebraic of degree 2 over Q.

Example 12: Let F/K be a field extension and ¢ be algebraic over K of degree 5. We show that
K(c) = K(c?).

Let m(x) = x* + k,x* +k,x* + k,x* + k,x + k, be the minimal polynomial of cover K. Then ¢ can not
be a root of any polynomial of degree less than 5, and so ¢* +k,c* +k, #0. Then

¢’ +k,c* +k,c® +k,c* +kc+k, =0

—k, —k,c* —k,c*
>c=—"—4—1
k, +ksc” +cC

e K(c®), and hence K(c) = K(c?)

Although the aforementioned evidence for the existence and uniqueness of the minimum polynomial

m(X) is inherent, it does not offer any guidance on how to go about locating the minimal polynomial.

We now present evidence that irreducibility may serve as an effective comparable criteria for our
practical goal.
Let's start by demonstrating the lemma that follows, which follows directly from the minimum

polynomial's leastness in degree such that m(a) =0
Lemma 1: Let F /K be a field extension « € F and algebraic over K. Then for every
f(X) eK[x], f(@)=0=m(x)| f(X)
Proof: By the Division Algorithm, there are q(x),r(x) € K[x]such that f(x) =m(x)q(x) +r(x)
where r(x) =0 or degr(x) <degm(x). If degr(x) <degm(x), then r(x) becomes a non constant

polynomial such that r(«) = p(er) — m(a)q(e) =0, which contradicts the choice of m(x)as a
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polynomial of least degree such that m(e) =0. Thus r(x) = 0and we have
f(x) =m(x)a(x) = m(x)| f(x).

If f(x)is anonconstant polynomial such that f () =0, then the above lemma shows that some
factor of f(x) is the minimal polynomial of « . Thus if we have some irreducible polynomial p(x)

such
that p(a) =0, then this must be the monic polynomial up to a unit multiple, that is m(x) = up(x).

Since K[x]is a UFD, there are irreducible polynomials p,(x), p,(X),..., p,,(X) € K[X] s.t.
f(x) = p(X), P, (X),..., Py (X). Then f(a)=0

= p,(@)p,(a)...p,, (@) =0 and hence p;(«) =0 for some i. Thus we have an irreducible polynomial

p; (X) having a root « . Now we show that irreducibility is enough to characterize minimal
polynomials.
Theorem 4: Let F /K be a field extension and « € F algebraic over K. Then m(x) € K[x] is the
minimal polynomial of « over K iff it is a monic irreducible polynomial such that m(«) =0.
Proof: First, let us assume that m(x) € K[x] is the minimal polynomial of « over K. Suppose
m(x) = u(x)v(x),u(x),v(x) € K[x] . Then m(e) =0
=either u(a) =0 or v(ex) =0. If u(ex) =0, then degu(x) can never be less than degm(x)and hence
degu(x) =degm(x).
= degVv(x) = 0and hence v(x) is a unit. Similarly v(a) =0
= u(x)is a unit. Thus m(x) is irreducible.
Conversely, consider a monic and irreducible polynomial p(x) € K[x]such that p(«r) =0. Then
p(x) = m(x)q(x). Then the irreducibility of p(x) implies that either m(x) is a unit or q(x) is a unit.
Since m(x) is non constant, it is not a unit. Thus q(x) is a unit. Since both p(x) and m(x) are monic
we have g(x) =1. Thus p(x) =m(x).
Corollary 3: Let F/K be a field extension and « € F . Then « is algebraic over K if and only
if K[a]=K(«).Moreover in this case, K[a]=K(a) = K[x]/ <m(x) >.
Proof: First assume that « is algebraic over K. Define y : K[x] — K[a] by for every f (x) € K[X],
w(f(x) = f(a)
Then  is an onto homomorphism. Now,
kery ={f(x) e K[x]| f(«) =0}
={f(x) e KIX][m(x) | f(x)}
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=<m(x) >
Now, by first isomorphism theorem, that K[x]/ < m(x) >= K[«]. Since m(x) is irreducible, it follows
that K[x]/ <m(x) > is a field forcing K[a]to be a field. Hence K[a]=K(«).

Conversely, suppose that K[a]= K(a). That o =0 is algebraic follows directly. Let o #0.
Since K(a)is afield, a* € K(a) = K[a] and hence ™ =k, +k,a +...+ k. a" for somek, e K,
where, k;,i =0,1,2,...,n notall k, are zero. Then k.a" +k_,a" +...+K,a —1=0which shows that «

is algebraic over K.
In the following we show that K(c) is an infinite extension of K for every transcendental element c.
Corollary 4: Let F /K be afield extension and ¢ e F . Then cis transcendental over K if and
only if K[c]g K(c). In this case, K[c] = K[x] and K(c)= K(X).
Proof: First part of this result follows from the above corollary, since K[c] < K(c). For the second
part, consider the onto homomorphism v : K[x] — K][c]for every f (x) € K[X],

w(f(x)=f(c)
Since c is transcendental over K , there is no nonzero polynomial f(x) € K[x]such that f(c) =0
Thus kery ={0}showing that y is one-to-one. Thus K[x] = K[c]
Since K(x)and K(c)are the quotient fields of K[x]and K]c] respectively, v : K[x] — K]c] induces

an isomorphism y': K(x) — K(c) defined by, for every % e K(x)

y/[mj _1© . Therefore K(c) = K(X).

g(x)) 9(c)
If m(x)is a polynomial of degree n, then by division algorithm for polynomial over the field defined
that K[x]/ <m(x) >is a n dimension vector space over the field K having basis
{1+ <m(X) >, x+<m(xX) >,..., X"+ < m(x) >}.
If m(x) is irreducible over K, then
F =K[x]/ <m(x) > is afield and ¢ = x+ <m(x) > Fis a root of m(x). Thus, by the Corollary 3, we
have the results.
Theorem 5: Let F/K be a field extension, ¢ € F be algebraic over K and m(x) be the minimal
polynomial of ¢ over K. If degm(x) =n, then {1,¢,c?,...,c"*}is a basis of K(c) over K. Thus

[K(c): K]=degm(x).

Proof: Let a € K(c). Since cis algebraic over K, K(c) = K]c].
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Which shows that « = f(c) for some f(x) € K[x]. By division algorithm 3q(x), r(x) € K[x], s.t.
f(x) = m(x)a(x) +r(x)

where r(x) =0or degr(x) <degm(x). In other case we will assume that

r(x)=r, +rX+..+r_x"* where r e K. Then m(c) =0

a=f@)=rc)=r+rc+..+r,_c""

Thus, {1,c,c?,...,c"}generates K(c) over K. By the definition of linearly independent if there are
ko +k,C+...+k,,c" =0

Then p(x) =k, +kx+...+k,_,x"* e K[x] will be non zero polynomial s.t. its degree will be less
degm(x)

s.t. p(c) =0which is the contradict that m(x) is minimal polynomial of cover K. Thus
{1,c,c?,...,c""}is a basis of K(c) over the field K.

Example 13: Let us consider the extension Q(i/i) over Q. The minimal polynomial of 3/2 over Qis

given by m(x) = x* —2. So [Q(/2): Q] =3 and {L.%/2,(3/2)?} is a basis of Q(3/2) over Q. Thus

QR/2)={a+b2"* +c2?° |ab,ceQ)

Example 14: Consider Q(v2,+/3) as Q(+/3)(+/2). Since x* —2 is irreducible over Q(+/3), the
minimal polynomial 2 over Q(+/3) is x? —2. Then [Q(3)(~/2) : Q(+/3)] = 2 and {L,~/2} is basis of
Q(3)(v2) over Q(v/3). Also [Q(v2,+3) : Q] =[Q(~/2,+3) : Q(v3)][Q(~/3) : Q] = 4

{1,723
{1,723 < {1, +/3}
={1,+/2,+/3,/6}

{1,v3}

K
Since {1, ~/2}is basis of Q(+/3)(v/2) over Q(~/3) and {L,~/3} is a basis of Q(+/3) over Q, it follows
that {1,\/5,\@,\/5} is a basis of Q(\/E, \/5) over Q. Thus
Q(2,+/3) = {a+b\/§+c\/§+d\/5|a,b,c,d eQ}.
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14.5 GALOIS GROUP

In this section we will discuss important definition of Galois group of polynomial over a field

Splitting Field: If f (x) € F[X], a finite extension E of F is said to be a splitting field over F for f(x)
if over E (i.e., in E[X]), but not over any proper subfield of E, f(x) can be factored as a product of

linear (first degree) factors.
The field F is called the base field or the initial field.
Theorem 6: There exist a splitting field for every f(x) € F[x].

Proof: Let n degree polynomial f(x)e F[x]. Initially, we will prove that 3 finite extension E of

F of degree at most n! in which f(x) has nroots.

Let f(x)=a,x"+ax"" +..+a,,a,=0.

Let o;,...,, be n rootin E of f(x).Then f(x) can be factored as
f(X)=a,(X—)(X—a,)...(X—¢,)

As a product of first degree factors, f(x) divides up fully across E in this manner. Thus, we can

show that there is a finite extension of F called E that decomposes f(x) into a linear product. As a

result, there is a finite extension of F of minimum degree that shares this feature. Because no suitable

subfield of this minimal extension can divide f(x) as a product of linear factors, this minimal
extension will operate as a splitting field for f (x).

Another way

An extension E of afield F is said to be a splitting field of f (x) e F[x], if f(x) e E[X] is expressible
as

f(x)=a,(X—)(X—,)...(x—«,), where a, e F, o, a,,...,a, € E and E =F(, a,,...,2,).

Note. Uniqueness of splitting field: This is to note that a polynomial's splitting field is distinct from
isomorphism. Let E; and E, be two splitting field of f(X) € F[x] s.t.
f(x)=a(x—a)(X—a,)...(Xx—«,) over E,

and f(x)=a(x—L)(x-2,)...(x—p,) over E,

Here, fields F(e«,, @,,...,a,)and F(S,, 5,,..., 5,) are isomorphic by an isomorphism leaving every
element of F fixed.

Normal extension: A finite extension K of a field F is name as a normal extension of F if the fixed
field of G(K,F) is F.
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By the definition it is obvious that if any element of K which is not in F , then we must have some
automorphism o in G(K,F) s.t., o(a) = a

Definition (Galois group): Let f(x) be polynomial in F[x] and let K be its splitting field over F.
The Galois group of f(x)is the group G(K, F) of all those automorphisms of K which leave every

element of F is fixed.
Note: If K is an extension of a field F , then an automorphism of K which leaves every element of
F fixed is also called an F —automorphism of K. If Kis a normal extension of a field F of

characteristic 0, then Kis the splitting field of some polynomial f(x) in F[x]. The group G(K, F) of

F —automorphism of K is also called the Galois group of K over F .
Theorem 7: The Galois group of a polynomial is isomorphic to a group of permutations of its roots.
Proof: Let the polynomial f (x) over the field F and K be the splitting field of f(x) over F . Then K

is normal extension of F . Thus the Galois group G(K, F) of f(x)is of finite order ni.e., [K,F]=n.
Let ndistinct element of G(K, F)are o,,0,,...,0,. Let us suppose that in K, f(x) has m distinct
roots. It can be possible that f(x) has multiple roots. Assume that S ={«,, @,,..., ¢, } be the collection
of mdistinct root of f(x) in K. Let P be the collection of all those permutation on S such that
which are notin F i.e., P contain those element of S in which element of F is fixed (if any exist). If
p,, P, are two element of Pthen p,p, should also in P because p, p,will also leave each element of
F fixed. So we can say that P is closed w.r.to product of two permutation. Thus P is subgroup of
group of all permutation on S. Now we have to prove that group G(K, F) is isomorphic to group P .
Let the permutation o € G(K,F) and & be the restriction of oto S. As we know that if M is the
extension of F and if f(x)e F[x] and if ¢ is an automorphismof M s.t. it leaving each element of
F fixed then ¢ must take a root of f(x) lyingin M into a root of f(x)in M . Using this theorem we
can say that if a is any root of f(x) in K, then o(a) is also aroot of f(x) in K.

Therefore acS=o(@)=0c (a) €S

= o is function from S to S.

Further o is one-one because o is one-one. As we know that S is finite set then,

o is one-one = o is also a onto function.

= o is also a permutation on S.

Since o leaves each element of F fixed, in similar way o will also leave each element of F fixed.

=0 eP.
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Let us consider ¢:G(K,F) > P

st. ¢(0) =0 Vo eG(K,F)

¢ is one-one: Let us consider o,,0, € G(K,F). Then

#(0,) = ¢(o,)

= Ul* = 0'2*

=0, (a)=0, (a)Vae$s

=o0,(@)=0,(a)Vae$S

Now K =F(a,a,,..,a,). Each element of Kmay therefore be obtained by performing a limited
number of addition, subtraction, multiplication, and division operations on the components of F and
on (a,a,,...,a,), but o,and o, are automorphisms of K. Each one maps every element of S the

same way while leaving every element of F fixed.

¢ isonto: Let b e P then b is a permutation on S while keeping fixed the S elements that are in F .

Now consider there is an automorphism o of K that maps each element of S in the same way as b
maps it while leaving every element of F fixed. The automorphism o of K will be fully determined
since each element of K may be obtained by performing a limited number of addition, subtraction,

multiplication, and division operations on the elements F and (a,a,,...,a,,).
¢ preserve the composition: Let o;,,0, € G(K, F) be arbitrary. Then
#(o,0,) = (0,0,), the restriction of 5,0,t0 S. Since Vae S, we have
(0,0,) (a) = (6;0,)(a)

=00, (a)]

= ay[o; (a)]

=0, [0, (@)1= (0,0, )(@)

*

(0_102)* =0,0,

- #(0,0,) =0, 0, =¢(,)d(0,)

Thus ¢ is an isomorphic mapping. Hence G(K,F) = P.

Department of Mathematics
Uttarakhand Open University Page 226




ADVANCED ABSTRACT ALGEBRA MATS501

Now we will discuss about fundamental theorem of Galois group.

Theorem 8: Let K be the normal extension in a field F with characteristic 0. Prove that there exist a

one to one correspondence between set of subgroups of G(K, F) and set of subfield of K. Further,

show that if M is any subfield of K which contains F , then

(1) [K:M]=0(G(K,M)), and [M : F]=indexof G(K,M)inG(K, F)

(i) M is normal extension in F iff G(K, M) is normal subgroup of G(K, F)

(iti)  If M is anormal extension of F , then G(M, F) is isomorphic to G(K, F)/G(K,M)

Proof: For any subfield M of K which contains F, consider G(K, M) be the group of all

automorphism of K which leave each element of M fixed. We have

o € G(K,M) = o leaves each element of M fixed

—> o leaves each element of F fixed

Since F c M

= oeG(K,F)

Thus G(K,M) c G(K, F)

= G(K, M) s subgroup of G(K, F)

So, for any subfield T of K who contains F we will found a subgroup G(K, M) of G(K, F). Now
define a mapping ¢ between set of subfields of K which contains F into set of subgroup of G(K, F)

s.t.,

#(M) =G(K, M) for each subfield M of K which contains F .

¢ ison-to: Let K, ={x e K:o(x) = xVo e H} denote the fixed field of H, where H is any
subgroup of G(K, F). Then K, is a subfield of K. Also

oeH = oeG(K,F). Since H is subset of G(K, F).

—=o(@)=avVaeF.

Thusif o € H, then o(a)=aVaeF. Therefore F c K, andso K, is a subfield of K containing

F . Since we have ¢(K,)=G(K,K,) [By definition]
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[By the Theorem: If Kis the finite extension of a field F with characteristic 0 and H is subgroup of

G(K,F). Let K,, be the fixed field of H. Then (i) [K:K,]=0(H) (i) H=G(K,K,)]
By using this theorem we can say that,

#(K,)=H.

. ¢ isonto.

¢ is one-one: As we know that K is the normal extension with characteristic O of a field F .

= K is the splitting field for some polynomial f(x) € F[x]. If M is any subfield of K containing F
then K will also the splitting field of f (x) regarded as a polynomial over M . Then by using the

theorem (K is the normal extension with characteristic zero of a field F iff K is the splitting field of
some polynomial over F) K is normal extension of M . Thus according to the definition of normal
extension the fixed field of G(K,M) is M .

= Kemy =M

Let us consider two subfield of K are M,, M, which contain F .
Then consider, ¢(M,) =¢(M,)

= G(K,M,)=G(K,M,) [By definition]

= The fixed field of G(K, M,) =The fixed field of G(K,M,)

= KG(K,Ml) = KG(K,MZ)

= ¢ IS One-one.

Thus we can say that ¢ gives the one to one correspondence. Now we have only to prove that (i), (ii)
and (iii).
(1) If M is any subfield containing F , then as in previous part we have prove that K is normal

extension of M . Therefore we have O(G(K,M))=[K : M]. Since K is normal extension of F,

therefore
O(G(K,F))=[K: F]
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=[K:M][M : F]
=0(G(K,M))[M : F]

_ O(G(K,F))

Fl= O(G(K,M))

=indexof G(K,M)inG(K, F).
(i)  Let M issubfield of K containingF. Then M is normal extension of F
ooM)cMVYVoeG(K,F)
ie, @o(MeMVmeM and o e G(K, F)
ie., @ rfo(m]=c(mMVmeM,VoeG(K,F)and VzeG(K,M)
[Note thatz e G(K,M) < z(m)=mVme M ]
ie., o '[flo(M]l=c'[c(M]VmeM,VoeG(K,F)and Vz e G(K,M)
ie., © (o 'to)(M=mVmeM,VoeG(K,F)andVz eG(K,M)
i, ©oroeG(K,M)VoeG(K,F)and Vz eG(K, M)
[Note that 670 € G(K,M) < (o 'ro)(m) = mVm e M ]
i.e., iff G(K, M) is normal subgroup of G(K, F) (By definition of normal subgroup)
(iii)  If M is normal extension of F , then for any o € G(K, F), we have
oM)cM

=ot)eMVmeM

Therefore o induces an automorphism o of M, defined as

o (m=mvVmeM

Since o leaves each element of F fixed, therefore o also leaves each element of F fixed.
=0 eG(M,F).If 5,0, eG(K,F) then meM , we have

(0,0, ) (m) = (010,)m

=o,[(e,m]=oy[(c, ] =0, [(c, m)]
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= (0-1*0-2*)(m)

*

(0'10-2)* =0, 0,

So we conclude that the mapping y : G(K,F) = G(M, F) defined as w(c) =0 Vo eG(K,F)isa
homomaorphism. The kernel of this homomorphism consists all such element o in G(K, F)s.t.
w(c) = o is the identity of the group G(M, F) and the identity of the group G(M, F) is identity map

on M . Therefore,
kernel(y) ={o € G(K,F)|m=0c"(m) = o(m)Yme M}

But c(m)=mVme M < o € G(K,M). Therefore kernel of y is exactly G(K,M). Now using
fundamental theorem on homomorphism of groups, image of G(K, F) in G(M, F) under the mapping

w is isomorphic to the quotient group G(K, F)/G(K,M).

O(G(K,F))
O(G(K,M))

Now, O(G(K, F)/G(K,M)) =
=indexof G(K,M)inG(K, F)

=[M :F] [By part (i) of theorem]

=0(G(M, F)) [ T is normal over F ]

Thus image of G(K,F)in G[M, F] is isomorphic to a group of order O(G(M, F)) . Since image of
G(K,F)in G[M, F] is a subgroup of G[M, F], therefore it is all of G[M, F]. Hence
G(K,F)/G(K,M)=G(M,F).

Check your progress

Problem 1: Check that B = {uivj |1<i<m,1< j<n | is linearly independent?

Problem 2: Check that Q and Z, has proper subfield or not?

14.6 SUMMARY

In this unit, we have learned about the important concept of extension of field, minimal polynomial
over a field of extension field and important group name as Galois group of a polynomial over a field.

The overall summarization of this units are as follows:
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R is a field extension of Q.

Q, Z, has no proper subfield.

Each field F is either an extension of Q or an extension of Z .

If F is prime field and if char(F) =0 then F =Qand if char(F) =pthen F=Z .

R/Q is an infinite extension.

C /R finite extension of field and quadratic extension.

For every f (x) € F[x] there exist a splitting field.

YV V.V ¥V V¥V VY VYV V¥V

The Galois group of a polynomial is isomorphic to a group of permutations of its roots.

14.7 GLOSSARY

> F/K: Fis called field extension of K
> [F : K]: Denote degree of the extension of F/K ’or’ the dimension of F as a vector space

over K
> G(K, F): Called the Galois group of all those automorphisms of K which leave every element

of F is fixed.
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14.10 TERMINAL QUESTIONS

Long Answer Type Question:

1. Prove that every field F is either an extension of Q or an extension of Z , for some prime p.
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Let F /K be a field extension and « € F be algebraic over K. Then prove that there is a unique
monic polynomial m(x) e K[x]of least degree such that m(e) =0.

If F/K be afield extension « € F and algebraic over K. Then prove that for every

f(x) eK[x], f(@) =0=m(x)| f(X)

Let F/K be afield extension and « € F algebraic over K . Then prove that m(x) € K[x] is the
minimal polynomial of « over K iff it is a monic irreducible polynomial such that m(e) =0.

If F/K be afield extension, c € F be algebraic over K and m(x) be the minimal polynomial

of ¢ over K. If degm(x) =n, then prove that {1, c,c?,...,c" " }is a basis of K(c) over K. Thus

[K(c): K]=degm(x).
Prove that the Galois group of a polynomial is isomorphic to a group of permutations of its
roots.
7. State and prove the fundamental theorem of Galois group.

Short Answer Type Question:

8. Let F/K be a field extension and « € F . Then prove that « is algebraic over K if and only
if K[a]=K(«).Moreover in this case, K[a]=K(a) = K[x]/ <m(x) >.

Prove that for every f(x) e F[x] there exist a splitting field.

Prove that [F : K]=1iff K=F.

Prove that if Land M be two intermediate fields of a field extension F/K . If [L:K] is prime,
theneither LAM =K or Lc M

If F/K be a field extension and ¢ be algebraic over K of degree 5. Then prove that
K(c) = K(c?).

Define the following.

(i) Field extension

(i) Normal extension

(ilf)  Galois group

Fill in the blanks:
proper subfield

proper subfield
16.
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14.11 ANSWERS

Answer of self cheque question:
1. Yes 2.
Answer of terminal question:

14. No 15.
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