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COURSE INFORMATION 

 

The present self learning material “Advanced Abstract Algebra” has been designed for 

M.Sc. (First Semester) learners of Uttarkhand Open University, Haldwani. This self learning 

material is writing for increase learner access to high-quality learning materials.This course is 

divided into 14 units of study. The first unit is devoted to the normal subgroups and quotient 

groups, Unit 2 explained about Conjugate element, Normalizer and Center of group and Unit 3 

explained about the homomorphism and isomorphism mapping between the groups. Unit 4 

explained  to Cayley’s theorem and concept of class equation Unit 5 explain about the direct 

product of groups and Cauchy’s theorem for finite abelian groups and Unit 6 are focused on 

Sylow’s theorems and their application. The aim of Unit 7, 8 and 9 are to introduce the concept 

composition series, jordan holder theorem and solvable group. Unit 10 and Unit 11 explain 

about the important concept and their related theorems of rings, ideal, integral domain and 

fields. Unit 12 explained about the unique factorization domain, principal ideal domain and 

euclidean domain and Unit 13 explain the polynomial ring and irreducibility criteria. Unit 14 

will explain the field extension, Galois groups and Galois extension. This material also used 

for competitive examinations. The basic principles and theory have been explained in a simple, 

concise and lucid manner. Adequate number of illustrative examples and exercises have also 

been included to enable the leaner’s to grasp the subject easily.  
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Unit-1: NORMAL SUBGROUP AND QUOTIENT GROUPS 

CONTENT: 
 

1.1 Introduction  

1.2   Objectives 

1.3  Normal Subgroup  

 1.3.1 Simple group 

1.4  Quotient group  

1.5  Summary  

1.6  Glossary  

1.7   References 

1.8  Suggested Readings 

1.9  Terminal Questions 

1.10 Answers 

1.1 INTRODUCTION 

        Évariste Galois was a French mathematician born in 

Bourg-la-Reine who possessed a remarkable genius for 

mathematics. Among his many contributions, Galois founded 

abstract algebra and group theory, which are fundamental to 

computer science, physics, coding theory and cryptography. 

       It is tribute to the genius of Galois that he recognized that 

those subgroups for which the left and right cosets coincide are 

distinguished ones. Very often in mathematics the crucial 

problem is to recognize and to discover what the relevant 

concepts are.  

 

 

Évariste Galois 

25 October 1811 – 31 May 

1832 
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In the previous sessions, we have already learned that how any set G can be formed a group 

with respect to (w.r.t.) the given operation. We have also learned about various types of groups and 

their properties. Some applications of group like subgroup, cyclic group, order of the group, 

permutation group, homomorphism, isomorphism, center of the group, cosets and Lagranges theorem 

are already studies in previous classes. In this unit we will learn about the Normal subgroups and its 

use to construct the quotient group.  

As we know that, in a group G, it is not always true that gH = Hg for all g G where, H is a 

subgroup of a group G.  

Example 1: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and { ,(1 2)}H I is a 

subgroup of G. Since (2, 3)a G   then the left coset of a in G i.e.,  

 {(2 3) ,(2 3)(1 2)} (2 3),(1 3 2)aH I   

And the right coset of a in G is, 

 {I(2 3),(1 2)(2 3)} (2 3),(1 2 3)Ha    

Here clearly, we can see that aH Ha  

In other words, right cosets are not always the same as left cosets. Group theory depends heavily on 

the subgroups for which this characteristic holds because they enable the creation of a new class of 

groups known as factor or quotient groups. Homomorphisms, a generalisation of isomorphisms, can be 

used to study factor groups. 

1.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic definition of normal subgroup and quotient group.  

 Implement the application of theorems into various problem 

 Construction of various types of quotient groups 

1.3 NORMAL SUBGROUP 

Definition: A subgroup H of a group G is normal in G if gH = Hg for all g  G. In other words, the 

right and left cosets of a group G must be exactly the same for a subgroup H to be considered normal 

subgroup. 

If H is a normal subgroup of the group G then symbolically it is represented as H G . 
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Example 2: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and 

{ ,(1 2 3),(1 3 2)}H I is a subgroup of G. Since (1, 2)a G   then the left coset of a in G i.e.,  

 {(1 2) ,(1 2)(1 2 3),(1 2)(1 3 2)} (1 2),(2 3),(1 3)aH I   

And the right coset of a in G is, 

 {I(1 2),(1 2 3)(1 2),(1 3 2)(1 2)} (1 2),(1 3),(2, 3)Ha    

Similarly, we can see that aH Ha a G    

So, we can say that H is the normal subgroup of G. 

Note 1: If we are saying that H is a normal subgroup of G i.e., gH = Hg for all g  G then its mean that 

there exist h H such that gh is any element of gH which will be equal to any element of 'h g where 

'h H  i.e., 'gh h g . 

In example 2, (1 2)(1 3 2) (1 2 3)(1 2)  

Proper subgroup:A subgroup H of a group G is called proper subgroup of G if H G  and it is 

represented as H G  and it is read as “H is a proper subgroup of G”.  

Since, G G i.e., G is subset of itself so G, is called improper subgroup of G.  

 A subgroup H which contains only identity element i.e.,  H e  is called the trivial subgroup 

of G.  

1.3.1 SIMPLE GROUP 

Definition: If a group has no proper normal subgroup is called a simple group. 

Theorem 1: If G be a group and H is the subgroup of G. Then the following statement are equivalent.  

1. The subgroup H is normal in G 

2. For all 1,a G aHa H   

3. For all 1,a G aHa H   

Proof: (1) (2) . We have given H is the normal subgroup of G then aH Ha a G   . It means for a 

given h H , a G  there exist 'h H such that 'ah h a . Since a G  and G is the group then 1a G 

. 

1 1

1

( ) ( )ah a ha a

aha h H

 



 

  
 

So, 1aHa H a G     
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)3()2(   Let Ga and H is normal subgroup of G, then we have already prove that HaHa 1 . 

Now we have only to show that GaaHaH  1 .  

Since GaGa  1  

Therefore we have   GaHaHa 
 111  

GaHHaa  1  

  GaaHaaHaaa   111  

  GaaHaaHaaa   111  

GaaHaH  1  

Now again for each Ga , HaHa 1  and 1 aHaH  

So, for all Ga , 1 aHaH  

)1()3(   Suppose that GaaHaH  1  then we have to prove that H is normal in G. 

Since, for all Ga , 1 aHaH  

  GaaaHaHa  1  

GaaHHa   

each left coset of H in G is a right coset of H in G. 

H is normal subgroup of G. 

Theorem 2: A subgroup H of a group G is normal in G iff the product of two right or left coset of H in 

G is again a right or left coset of H in G. 

Proof: Suppose H is a normal subgroup in G and Ha, Hb are two right coset of H in G where, Gba , . 

Then 

baHHHbHa )())((   

                bHaH )(                 [ H is normal aHHa  ] 

                HHab                     [ HHH  ] 

               Hab                         [ GabGbGa  , ] 

Therefore, Hab is also a right coset of H in G. 

Conversely, we will suppose that the product of two right cosets of H in G is again a right coset of H 

in G. Let x be any arbitrary element of G then 1x will also an element of G. So, Hx  and 1Hx  are two 

distinct right cosets of H in G. Thus, 1HxHx is also a right coset of H in G. Therefore we must have, 

GxHHxHx 1  

GxHxhxh  1

1 and Hhh  ,1
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  GxHhxhxhh 
 1

1

1

1

1

1  and Hhh  ,1
 

GxHxhx  1  and Hh    [ HHh 
1

1  as Hh 
1

1  since Hh 1
] 

H is a normal subgroup of G. 

Theorem 3: Intersection of two normal subgroup of a group is also a normal subgroup of the group.  

Solution: Let G be a group and H, K are of its two normal subgroup of G. Now, we have to prove that 

KH  is also a normal subgroup of G. Let a be any element of KH  i.e.,  

KxandHxKHx   

Since, H and K are both normal in G. Therefore, HaxaHhGa  1,  

Similarly, KaxaKxGa  1,  

Now, again Haxa 1 , Kaxa 1 KHaxa  1  

Hence KH  is a normal subgroup of G.  

Corollary: Arbitrary collection of normal subgroup is also a normal subgroup of the group i.e., let G 

be a group and let  nH n :  be the family of normal subgroup of G where   is the index set then 

n
n

H

  is the arbitrary intersection of the family of normal subgroups which is also a normal subgroup 

of G. 

Solved Examples 

Example 3: Show that each subgroup of the Abelian group G is a normal subgroup of the group.  

Solution: Let G be a Abelian group and H is a subgroup of the group. Suppose that Hh and Gx . 

Now consider, )( 11 hxxxhx    

                                  hxx )( 1  

                                  Hheh   

So, HHxhxHhGx  1,, is a normal subgroup of G.  

Example 4: Prove that the alternating subgroup nA  is the normal subgroup of the symmetric group nS   

Solution: Suppose that nS and nA . As we know that nA is collection of all even permutation of 

nS  so,   is a even permutation. Now, there are two cases arises, 

Case I: If  is odd permutation then 1  is also an odd permutation. As we know that product of odd 

and even permutation is odd permutation, it means  is odd permutation. Similarly, product of two 

odd permutation is even permutation i.e., 
1  is even permutation. 

So, for nnn AAS  1,,  . Thus, nA  is normal subgroup. 
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Case II: If  is even permutation then 1  is also an even permutation. As we know that product of 

two even permutation is even permutation, it means  is even permutation. Similarly, product of two 

even permutation   and 1  is even permutation i.e., 1  is even permutation. 

So, for nnn AAS  1,,  . Thus, 
nA  is normal subgroup. 

From the both cases we have conclude that
nA  is normal subgroup of nS .  

Example 5: If H is a subgroup of index 2 in G then H is a normal subgroup of G.  

Solution: If H is a subgroup of index 2 in G, it means, number of distinct right (left) coset of H in G 

are 2. So, G can be written in the union of two of its distinct right (left) cosets i.e., 

xHHHxHG  , here Hx because if it is HxHxH  .  

As we know that no element common to H  and xH  therefore, we must have GxHxxH   

Hence H is normal subgroup of G.  

e.g. Index of alternating subgroup nA  in the symmetric group nS  is 2. So, nA  is the normal subgroup in 

the symmetric group nS . 

Example 6: If H is normal in G and K is a subgroup of G such that GKH  . Then, show that H is 

also a normal subgroup of K.  

Solution: We have given that H is normal in G so, H will also a subgroup of G. Since, KH  where, 

K is a subgroup of G. So we have only to show that H is also a normal subgroup of K. Let x be any 

arbitrary element of K then x will also belong to G therefore we have xHHx  . Since, H is a subgroup 

of G and Kx we have xHHx  . Thus, H is normal subgroup of K.  

Example 7: If N is normal in G and H is subgroup of G then show that NH  is normal subgroup of 

H.  

Solution: As we know that intersection of two subgroup of G is also a subgroup of G then NH  will 

be subgroup of G. Similarly, since HNH   so, NH  will also subgroup of H. Now, only to 

prove that NH  is normal in H. 

Let x be any element of H and a be any element of NH  then a will belong in both H and N. Since, 

N is normal in G then Naxa 1 . Again,  

 

Thus, we can say that NHaxa 1  

i.e., NH  is normal subgroup of H.  

Example 8: Prove that every complex is commutative with normal subgroup.  

Solution: Let N is a normal subgroup and H is any complex of the group G. Then we have to prove 

that NH = HN. 

HaxaHax  1,
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Let HhNnwhereNHnh  , . We can rewrite ).( 11 nhhhnhhhnh    Since, N is normal 

subgroup therefore, Nnhh 1 . Hence HNnh  which means, HNNH  . 

Again, let HhNnwhereHNhn  , . We can rewrite  hhnhhhnhhn 11   . Since, N is normal 

subgroup therefore, Nhnh 1 . Hence NHhn  which means, NHHN  . 

Hence NH = HN. 

Example 9: If N is normal subgroup of G and H is subgroup of G, Prove the following 

(i) HN is a subgroup of G 

(ii) N is a normal subgroup of HN. 

Solution: As, we know by theorem that if H, K are subgroup of G, then HK is subgroup of G iff HK = 

KH. Using the previous example, HN will also a subgroup because N and H both are subgroup of G 

such that NH = HN. 

Now HN is subgroup of G and N is normal subgroup of G also HNN  . Therefore, N is subgroup of 

HN. We have only to prove that N is a normal in HN. Let 11nh be arbitrary element of HN and n be any 

element of N. Then NnHh  11 , and we have Nhnnnhnhnnh   1

1

1

111

1

1111 )()()( . Since N is normal 

in G and GhNnnn 


1

1

11 , . Therefore N is a normal subgroup of HN.  

Example 10: If N and M are two normal subgroups of G such that  eMN  . Then show that each 

element of N commutes with each element of M.  

Solution: Since N and M are two normal subgroups of G such that  eMN  . Then to prove that for 

any element MmNn  ,  

nmmnnm ,  

Consider the element 11  mnmn . As we know Nmnm 1  because N is normal and Nn therefore, 

Nmnmn  11 . 

Again, as we know Mnmn 1  because M is normal and Mm therefore, Mmnmn  11 . 

Now, Nmnmn  11  and Mmnmn  11 MNmnmn   11  

}{11 emnmn        [Because,  eMN  ] 

NnMmmnnm  ,  

i.e., every element of N commutes with every element of M. 

Example 11: If in a group G, H is the only subgroup of finite order m then H is normal in G.  

Solution: We have given H is subgroup of G such that O(H) = m. To prove this example, first we 

consider the set  HhxhxxHx   :11  and we will prove that this set is the subgroup of G. As we 
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know by the theorem that any set H will subgroup of G if HbaHab  ,1 . Let Hhh 21,  then 

11

2

1

1 ,   xHxxxhxxh  

Now consider,       11

2

1

1

11

2

1

1

11

2

1

1

  xhxxxhxxhxxhxxhxxh  

  111

21

11

21 )(   xHxxhhxxhexh  

1

21

11

21 , 
 xHxhhxHxhh . Hence, 1xHx  is subgroup of G. 

Now we will prove that mxHxO  )( 1 . Let  mhhhhH ,...,,, 321  where all mtoihi 1,  are distinct 

then  11

3

1

2

1

1

1 ,...,,,   xxhxxhxxhxxhxHx m . Here, no element in xH 1x  are same because if it is, 

jiji hhxxhxxh   11 , which is not possible. So, mxHxO  )( 1 . 

But we have H is the only such subgroup of order m. Therefore we must have, GxHxHx 1 . 

Thus, H is normal subgroup of G.  

Example 12: By an example verify that if H is normal in G and K is normal in H then K may not be 

normal in G.  

Solution: Let us consider the following subgroup of the group 4S  on the four symbols a, b, c, d.  

 )(),(),)((),)((),)((),(),(, dbcacbdadbcadcbabcdacbaIG   

 ))((),)((),)((, cbdadbcadcbaIH   

 ))((, dcbaIK   

As we can easily seen that H is a subgroup of G and K is a subgroup of H.  Index of H in G is 2 i.e., 

2]:[ HG , it means H is normal in G. Similarly, index of K in H is 2 i.e., 2]:[ KH , it means K is 

normal in H.                          [ 24/8)(/)(]:[  HOGOHG ] 

Here, K is not normal in G because for the element Gdcba ),,,(  and the element Kdcba ),)(,( .  

We have Kcbdaabcddcbadcbadcbadcbadcba  ))(())()()(())()()(( 1  

Thus, K is not normal subgroup of G.  

Example 13: If H is subgroup of G, let  HxhxGxHN  1:)(  then show that 

(1) N(H) is the largest subgroup of G in which H is normal. 

(2) H is normal in G iff GHN )( . 

Solution 1: In example 11, we have already prove that N(H) is the subgroup of G which is normal in 

G.  

First we have to prove that H is a normal subgroup of N(H). Let Hh , therefore HhHh 1 . 
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Thus )(HNh i.e., )(HNH  . So, H is subgroup of N(H). To show that H is normal in N(H). Let 

)(HNx , then HxHx 1  

)(HNxHxxH   

  H is normal in N(H).  

Now, we have to prove that N(H) is largest such subgroup in which H is normal. For it, let K is a 

subgroup of G in which H is normal then we have only to prove that )(HNK  .  

Let Kk , since H is normal in K, therefore we have kHHk   

KkHkHk  1  

)(HNk  

)(HNK   

2: Let H is the normal subgroup of G and Gx . Then GxHxxH   

GxHxHx  1   

)(HNx therefore )(HNG  but we know GHN )( . 

Thus, )(HNG   

Conversely, let )(HNG   then Gx )(HNx  

GxHxHx  1  

GxHxxH   

H is normal in G.  

1.4 QUOTIENT GROUP 

Definition: If H is a normal subgroup of a group G. Then the collection of all distinct cosets of H in G 

denoted by G/H is a group with respect to the operation multiplication of cosets defined as,  

 (aH)(bH) = abH ‘or’ (Ha)(Hb) = Hab Gba  ,  

Or 

If H is a normal subgroup of a group G, then the set 

 GaHaHG  :/  is always form a group  under the composition multiplication of cosets such that 

(Ha)(Hb) = Hab Gba  ,  

Note: If H is a normal subgroup of the additive group G. Then the set HG /  is defined as 

 GaaHHG  :/  with respect to the operation addition of cosets such that 

GbabaHbHaH  ,)()()(  



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 13  

Theorem 13: Set of all distinct cosets of normal subgroup of a group is a group with respect to 

composition multiplication of cosets.  

Proof: Let us consider collection of distinct right (left) cosets of normal subgroup H under G is 

 GaHaHG  :/  

and the composition multiplication of cosets is  

(Ha)(Hb) = Hab Gba  ,  

Closure axioms: Let HGHbHa /,   where Gba , then 

HGHabHHabbHaHbaHHHbHa /)()())((    

Since we know that if H is normal subgroup of G then  

(i) GaaHHa   

(ii) HHH   

And also if G is a group then it will satisfy closure property i.e., if GabGba ,  

Associativity: Let HGHcHbHa /,,   where Gcba ,,  

Now consider, ))((])()[(])()[()])()[(( HbcHacHbHHacbHHHaHcHbHa   

                                ))]()([())(()()( HcHbHaHcabHcabHbcHa   

[Because G is group so it will satisfy associative property] 

Existence of identity: We know that HGHeH / where e is the identity element of G, then we 

have only to prove that H is the identity element of the group HG / . 

Let HGHa /  then HaeaHHaHe  )())((  

H is the identity element of the group HG / . 

Existence of inverse: Let HGHa / . Then HGHa /1  [Because if Ga then 

HGHaGa /11   ] 

Now, HHeaaHHaHa   )())(( 11  

So, coset Ha is the inverse of 1Ha in HG /  

Hence, collection of distinct right (left) of normal subgroup H in G is form a group with respect to the 

operation product of cosets. 

Example 14: The alternating group  )231(),321(,3 IA   is the normal subgroup of the symmetric 

group  )231(),321(),32(),31(),21(,3 IS   then  3333 )32(,/ AAAS  is the quotient group. 

Example 15: Consider the normal subgroup of Z3 of Z . The coset of Z3 in Z are,  

 ,...9,6,3,0,3,6...,30  Z  

 ,...10,7,4,1,2,5...,31  Z  
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 ...11,8,5,,2,1,4...,32  Z  

Here, )32()31()30( ZZZZ   

The composition table of the group ZZ 3/ is given below. 

ZZZZ

ZZZZ

ZZZZ

ZZZ

31303232

30323131

32313030

323130









 

In general, the cosets of nZ in Z are 

))1((...)3()2()1()0( nZnnZnZnZnZZ   then 

 ))1((),...,3(),2(),1(),0(/ nZnnZnZnZnZnZG   

The sum of the cosets Zk  and Zl  is Zlk  . Notice that we have written our cosets additively, 

because the group operation is integer addition. 

Example 16: If H is a normal subgroup of the finite group G then 
)(

)(
]/[

HO

GO
HGO  . 

Solution: As we know that ]/[ HGO Number of distinct right coset of H in G. 

 ]/[ HGO Index of H in G. 

HinelementofNumber

GinelementofNumber
HGO  ]/[  

)(

)(
]/[

HO

GO
HGO   

Example 17: Prove that corresponding to every Abelian group its quotient group is Abelian but their 

converses need not to be true. 

Solution: Let G be a Abelian group and H is its normal subgroup. If elements Gba ,  are such that 

HbHa, are distinct right cosets of quotient group HG / . 

Now, ))(()()())(( HaHbbaHabHHbHa        [Since G is Abelian Gbabaab  , ] 

HG / is Abelian group. 

But converse is need not be true. Since  3333 )32(,/ AAAS   is Abelian group because order of 

23/6]/[ 33 ASO which is prime and we know that every group of prime order is Abelian while 3S  

is not a Abelian group.  

Example 18: If H is normal in G and a be any element of order n in G then order of the element Ha in 

G/H is divisor of n.  
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Solution: As we know that the identity element of the quotient group G/H is H itself. We have given 

in a group G, Ga s.t. eaeinaO n  ..)( . Let us assume mHaO )( . 

Now consider, 

HHeHatimesnuptoaaaHtimesnuptoHaHaHaHa nn  )...().....)()(()(  

But we have already assume that mHaO )( i.e., HHa m )( . 

)(/)( aOHaO    [If order of any element a in a group G is n then mniffeam | ] 

Check your progress 

Problem 1: What will be the order of the group 








 }1,1{

8Q
O ? 

Problem 2: Check the distinct right and left coset of 3S ? 

Problem 3: Check that 5A is the normal subgroup of 5S ? 

 

1.5 SUMMARY 

In this unit, we have studied the basic definition of Normal subgroup, Simple group and Quotient 

group. We have also learn about the above discussed group’s related theorems and there 

implementation in various examples. The overall summarization of this units are as follows: 

 Right cosets are not always the same as left cosets 

 Alternating subgroup nA  is the normal subgroup of the symmetric group nS   

 If a group has no proper normal subgroup is called a simple group. 

 Quotient group always forms a group not a subgroup because identity element of group and 

subgroup are always same while quotient group and group has always different identity 

1.6 GLOSSARY 

 H is a subgroup of the group G is represented symbolically as GH  . 

 H is a normal subgroup of the group G is represented symbolically as H G . 

 Group with no proper normal subgroup is called a simple group. 

1.7 REFERENCES 
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th 

Edition), Narosa, 1999. 
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1.8 SUGGESTED READING 
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 David S. Dummit and Richard M. Foote: Abstract Algebra (3
rd

 Edition), Wiley, 2011. 

1.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that alternating group ( nA ) is the normal subgroup the symmetric group ( nS ). 

2. Prove that a factor group of a cyclic group is cyclic. 

3. Suppose that a group G  has a subgroup of order n . Prove that the intersection of all subgroups 

of G of order n  is a normal subgroup of G . 

4. Show that 4S  has a unique subgroup of order 12. 

5. Suppose that H is a normal subgroup of a finite group G . If HG / has an element of order n , 

show that G  has an element of order n . 

Short Answer Type Question: 

6. Give one example each of the following 

(a) A subgroup H  of a group G which is not normal in G . 

(b) A non-abelian subgroup H  of a non-abelian subgroup G which is normal in G . 

7. If 5,30  HG then what will be HG / . 

8. Prove that each subgroup of cyclic group is normal. 

9. Determine the coset decomposition of the subgroup  )21(,IH  corresponding to the 

symmetric group 3S . 

Fill in the blanks: 
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10. Product of two right coset in a group G is …….. in G . 

11. Every subgroup H of index 2 in H is ……. in G . 

12. If H is normal subgroup of G then HG / is called …….. 

1.10 ANSWERS 

Answer of self cheque question: 

1. 4  2.                 3. Yes 

Answer of terminal question: 

7. 6/ HG  10. Right coset 11. Normal 12. Quotient group 
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Unit-2: CONJUGATE ELEMENT, NORMALIZER AND 

CENTER OF GROUP 

CONTENT: 
 

2.1 Introduction  

2.2   Objectives 

2.3  Conjugate element 

2.4  Normalizer of an element of a group  

 2.4.1 Self conjugate element 

2.5  Centre of a group  

2.6 Summary 

2.7  Glossary  

2.8   References 

2.9  Suggested Readings 

2.10  Terminal Questions 

2.11 Answers 

2.1 INTRODUCTION 

The main purpose to learn about the conjugate element in a group is that to differentiate any group into 

different conjugate classes by its property of satisfying the condition of equivalence relation. After 

partition group into different conjugate classes we will learn about the important definition of 

normalizer of any element in a group and centre of the group which will help us to define the class 

equation.  

 In this unit we will also learn various theorems of conjugate element, normalizer and centre of 

the group and their related application to solve different types of examples. 
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Cayley table for D4 showing elements of the center, {e, a
2
}, commute with all other elements 

(this can be seen by noticing that all occurrences of a given center element are arranged 

symmetrically about the center diagonal or by noticing that the row and column starting with 

a given center element are transposes of each other). 

∘ E B a a2 a3 ab a2b a3b 

E E B a a2 a3 ab a2b a3b 

B B E a3b a2b ab a3 a2 a 

A a Ab a2 a3 e a2b a3b b 

a2 a2 a2b a3 e a a3b b ab 

a3 a3 a3b e a a2 b ab a2b 

Ab ab A b a3b a2b e a3 a2 

a2b a2b a2 ab b a3b a e a3 

a3b a3b a3 a2b ab b a2 a e 

 

 

2.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of conjugate element and equivalence relation in cojugacy. 

 Understand the application of normalize of an element. 

 Understand about the special type of normal subgroup name as center of the group. 

2.3 CONJUGATE ELEMENT  

Definition: Two elements a and b in a group G are said to be conjugate to each other or b is said to be 

conjugate to a if ..tsGx  

  axxb 1  

Then b is called transform of a by x. Symbolically, it is denoted by ab ~  and this relation in G is 

called relation of conjugacy. 

Theorem 1: Conjugacy relation is an equivalence relation on G.  

Proof: Reflexivity: Let a be any arbitrary element of a group G and e is the identity of the group. 

Then 

Gaaaaeea   ~1 . Therefore the relation is reflexive. 

Symmetry: We have to prove if ba ~ then ab ~ . Let ba ~ then ..tsGx  

bxxa 1  

https://en.wikipedia.org/wiki/Cayley_table
https://en.wikipedia.org/wiki/Dihedral_group_of_order_8
https://en.wikipedia.org/wiki/Transpose
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  bxaxxbxxxxax   1111  

As we know if Gx then Gx 1  

Transitivity: Let ba ~ and cb ~ then cyybbxxa 11 ,    for some Gyx , .  

Again,  xcyyxa 11   

)()( 111 yxcyxcyxyxa      [Since G is a group then   GyxGyx 
1

, ] 

ca ~ and thus, relation is transitive.  

Hence, conjugacy is an equivalence relation.  

Classes of conjugate elements: The differences between the classes are follows: 

(1) Elements from the same classes will be conjugate. 

(2) Different elements from different classes will be not conjugate. 

The collection of all elements which are conjugate to Ga will be denoted by C(a) or 
~

a  and defined 

as:  

 }~)( axGxaC   or  })( 1axxbGbaC   

For the finite group G, number of distinct element in C(a) will be denoted by ca. 

2.4 NORMALIZER OF AN ELEMENT OF A GROUP 

Definition: If G is a group and a be any arbitrary element of a group then normalizer of a is the 

collection of such elements in G which commutes with a. It is denoted by N(a) and defined as: 

 xaaxGxaN )(  

Note 1: If e is the identity element of G then GeN )(  

2: If G is abelian group and Ga  then GaN )(  

Theorem 2: The normalizer of Ga  is the subgroup of G. 

Proof: Since,  xaaxGxaN )( . Let x, y are any element of G then yaayxaax  , . First, we 

will show that, Gy 1 . Since, GyGy  1
 because G is a group.   

Now,   1111 )(   yyayyayy    [Pre and post multiply by 1y  in yaay  ] 

1111 )()(   ayyyyyay         [G satisfied the associativity] 

11   eayaey                          [e is the identity element of G] 

11   ayay  

)(1 aNy  
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Now we have to prove that )(1 aNxy   

Consider, 11 )()(   yaxxya  

11 )()(   yxaxya                             [ax = xa] 

)()( 11   ayxxya                             [G satisfied the associativity] 

)()( 11 ayxxya                              [ 11   ayay ] 

axyxya )()( 11                             [G satisfied the associativity] 

)(1 aNxy    

Hence, normalizer of any element Ga i.e., )(aN  is the subgroup of G. 

Theorem 3: Any two elements of a group give rise to same conjugate to Ga  iff  they belong to the 

same right coset of normalizer of a in G. 

Proof: Let us consider, Gyx ,  then xaNx )( and yaNy )( . Since x, y are in the same right coset 

of N(a) in G. 

yaNxaN )()(                       [If H is subgroup and Hx then HHx  ] 

)(1 aNxy                      [If H is a subgroup of G, then HabHbHa  1 ] 

axyaxy 11                       [By definition of normalizer of an element of G] 

   yaxyxyaxyx 1111    

ayyxxyyaxx 1111 )()(    

ayeyaxex 11    

ayyaxx 11    

yx,  give rise to same conjugate of a.  

Theorem 4: If G is a finite group then the number of distinct element in C(a) are 
))((

)(

aNO

GO
. 

Then further prove that 
))((

)(
)(

aNO

GO
GO , where summation runs over one element of each 

conjugate class.  

Proof: By the previous theorem 6, we know that two elements of a group give rise to same conjugate 

to Ga  if they belong to the same right coset of normalizer of a in G. In the other sense it means, 

different conjugate to Ga  belongs to different right coset of N(a) in G. Thus we get a “one-to-one 

correspondence between the conjugates of Ga and right cosets of N(a) in G”. 

Thus, ca = Number of distnict element in C(a) 

             = Number of distinct right coset of N(a) in G.  
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             = The index of N(a) in G = 
))((

)(

aNO

GO
 

Further, If )(...,),(),( 21 kaCaCaC are k distinct conjugate class in G, Then 

)(...)()( 21 kaCaCaCG   

Number of element in G = Number of element in )( 1aC + Number of element in )( 2aC + …+ 

Number of element in )( kaC  

  acGO )( , where summation runs over one element of each conjugate class 

 
))((

)(
)(

aNO

GO
GO  

Hence proof the result. 

2.4.1 SELF CONJUGATE ELEMENT 

Definition: An element Ga  is said to be self conjugate if Gxaxxa  1 i.e, C(a) contains only 

singleton element {a}. In other manner, we can say those self conjugate elements are those elements of 

G which commutes with every element of G. Sometimes self conjugate element is also called invariant 

element of G.  

2.5 CENTRE OF A GROUP 

Definition: Collection of all self conjugate element of a group is called centre of group G. It is denoted 

by Z(G) and defined as, 

 GaaxxaGxGZ )(  

e.g.: The centre of the quaternion group  kkjjiiQ  ,,,,,,1,18  is  ,1,1)( 8 QZ . 

Theorem 5: The centre of a group G, Z(G) is the normal subgroup of group.  

Proof: First we will prove that Z(G) is subgroup of G. For it, let )(, 21 GZxx   then be definition 

Gaaxax  11
and Gaaxax  22

 

Since we have, Gaaxax  22
  Gaxaxxxaxx 

 1

22

1

2

1

22

1

2 )(  

Gaxxaxaxxx 


)()(
1

22

1

2

1

22

1

2  

Gaaexeax 
 1

2

1

2  

Gaaxax 
 1

2

1

2  
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)(
1

2 GZx 


 

Now consider,   )(
1

21

1

21 axxaxx


  

                                           )(
1

21


 axx                                 [ ])(

1

2

1

2

1

2


 axaxGZx  

                                           
1

21 )(


 xax                                 [By associativity] 

                                           
1

21)(


 xax                                 [ ])( 111 axaxGZx   

                                           )(
1

21


 xxa                                 [By associativity] 

)(
1

21 GZxx 


 

Hence Z(G) is subgroup of G. 

Now we have only to prove that Z(G) is always normal in G. For it let GaGZx  ),( then, 

11 )(   aaxaxa  

           1)(  axa  

          )( 1 aax  

          )()( GZxex   

Thus, )(),( 1 GZaxaGaGZx    

Hence, Z(G) is the normal subgroup of group of G.  

Theorem 6: Any element, )(GZa  iff GaN )( .  

Proof: Let )(GZa then Gxaxxa   

Also,  GxaxxaGxaN  |)(  

So, )(GZa Gxaxxa   

                         GxaNx  )(             [By definition of N(a)]  

                    GaN  )(  

Corollary: If G is finite )(GZa  iff O( )())( GOaN  . 

Theorem 7: If G be the finite group and Z(G) be the centre of the group G. Then class equation of G 

can be written as, 





)( )]([

)(
)]([)(

GZa aNO

GO
GZOGO  

Where, summation runs over one element a in each conjugate class containing more than one element.  

Proof: As we know by the previous theorem that class equation of G is 


))((

)(
)(

aNO

GO
GO , where, summation runs over one element a in each conjugate class. 
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By corollary, we know that if G is finite )(GZa  iff O( )())( GOaN  . 

1
))((

)(
)( 

aNO

GO
iffGZa  

Number of elements in conjugate class of a is one whenever )(GZa . 

Thus, order of Z(G) will be equal to the number of conjugate classes each having single element which 

is itself. If we take a such element which belongs any of these conjugate classes, we have 1
))((

)(


aNO

GO

. Hence the class equation can be rewrite as, 





)()( ))((

)(

))((

)(
)(

GZaGZa aNO

GO

aNO

GO
GO  

Since, 



)( ))((

)(
))((

GZa aNO

GO
GZO  

Hence, 



)( ))((

)(
))(()(

GZa aNO

GO
GZOGO                                              …(1) 

Note: This equation (1) is called the class equation of any finite group G.  

Example 1:  Find the class equation for the group S3. 

Answer: We know the symmetric group ( 3S ) on three symbols 1, 2, 3 is  

 )231(),321(),32(),31(),21(,3 IS  .  

Then we have, 

Z( 3S ) = {e} and C(12) = {(12),(23),(13)} because )32()21)(31)(21( 1   shows that (2 3) is a 

conjugate of (1 3). 

Similarly we can find, C(123) = {(123),(132)}. Hence the class equation of 3S is, 

| 3S | = |Z( 3S )| + |C(12)| + |C(123)|  i.e., 3! = 1 + 3 + 2. 

Theorem 8: If nPGO )( , where P is a prime number, then }{)( eGZ  . 

Proof: As we know for a finite group G the class equation of G is  





)( ))((

)(
))(()(

GZa aNO

GO
GZOGO  where, summation runs over those conjugate class which 

containing more than one element. We have given nPGO )( so, the divisor of )(GO are 

nk PPpp ,...,...,,,1 2  i.e., of the form nkwherePk 1 .  

Since Ga we have N(a) is subgroup of G. By Lagrange’s theorem we know that )(|))(( GOaNO .  

Also we know that if )()]([)()( GOaNOGaNGZa  .  
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Thus if )(GZa  then )]([ aNO  will be of the form nkwherePk 1 . 

Let us consider, mGZO ))(( , where m is a positive integer nm  . Now by class equation  





)()( GZa

k

n
n

GZa
k

n
n

P

P
Pm

P

P
mP nkwhere 1        … (1)  

Since nPP | so, P will divide each term of the right hand side of the equation (1) 

mP |  

Therefore centre of G must contain element other then identity. Therefore }{)( eGZ  . 

Theorem 9: Every group of order 2P is Abelian. 

Proof: We have given order of the group is 2P  i.e., 2)( PGO  . So, the positive divisors of 2P  are 

2,,1 PP . By the previous theorem 11 we know that if nPGO )( , where P is a prime number, then 

}{)( eGZ  . It means, 1))(( GZO . As we know that centre of the group is subgroup of G and by 

Lagrange’s theorem “Order of every subgroup of a finite group is divisor of the order of the group”. So 

either PGZO ))(( or 2))(( PGZO  .  

If 2))(( PGZO  then we have nothing to prove.  

Otherwise, if PGZO ))((  there exist an element Gx  which is not in Z(G) i.e., )(GZx .  

Since N(x) is subgroup of G and )(xNx . Also GxxaaxGZa  )( . 

)(xNa  

)()( xNGZ   

Since )(GZx PxNO  ))((( but ))(( xNO  must be divisor of 2P  

))((( xNO  must be equal to 2P  

GxN  )(  

)(GZx , thus we get a contradiction. 

Hence, GPGZO  2))(( is Abelian group because )(GZ is always Abelian group.  

Example 2: Is a group of order 121 is Abelian? 

Answer: Since, 211121)( GO , where 11 is a prime number. Hence G will be Abelian group. 

Example 3: Prove that corresponding to every cyclic group its quotient group is cyclic but their 

converses need not to be true. 

Solution: Let G be a cyclic group such that  aG i.e., a is the generator of G and H is its 

subgroup. Then according to theorem every subgroup of G will be normal subgroup of G. If elements 

Gan   then nn HaHa )(  will be element of quotient group HG / . 
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Therefore HG / is a cyclic group and Ha  will be generator of it.  

But converse is need not be true. Since  3333 )32(,/ AAAS   is Abelian group because order of 

23/6]/[ 33 ASO which is prime and we know that every group of prime order is cyclic while 3S  is 

not a Abelian group.  

Theorem 10: If )(/ GZG  is cyclic if and only if G is Abelian.  

Proof: Let us consider )(/ GZG  is cyclic. It means, if the element a is the generator of G then aGZ )(

will be generator of )(/ GZG . 

Let Gyx , then  )(/)(,)( GZGyGZxGZ  positive integers nm,  such that  

    nnmm
aGZaGZyGZaGZaGZxGZ )()()(&)()()(   

we have maxx 1  where )(1 GZx  and nayy 1  where )(1 GZy   

Now, nmnmnmnmnm aaxyaayxaayxayaxayaxxy )()()())())(( 1111111111   

xyaxayaaxyaaxy mnmnnm  111111 )(  

G is abelian. 

Conversely, assume that G is Abelian. If G is Abelian then GGZ )( .  

}{)(/ eGZG  i.e. trivial subgroup which is always cyclic.  

Hence the theorem.  

Example 4: If G be a non-Abelian group of order 3P where P is prime then Z(G) has exactly P 

element.  

Proof: We have given be a non-Abelian group of order 3P where P is prime. Then According to 

Lagrange’s theorem possibilities of order of Z(G) is 32 ,,,1 PPP . 

Case I
st
: We know by previous theorem if nPGO )( , where P is a prime number, then 

1)]([}{)(  GZOeGZ . 

Case II
nd

: Let 2)]([ PGZO    PPPGZGO  23 /)(/  

)(/ GZG is cyclic and by theorem we can say that G is Abelian which is a contradiction. So our 

assumption is wrong. 

Case III
rd

: Let 3)]([ PGZO    1/)(/ 33  PPGZGO  

}{)(/ eGZG   is cyclic and by theorem we can say that G is Abelian which is again a 

contradiction. So again our one of the assumption is wrong. 

So, the only possibilities is left that PGZO )]([  i.e., Z(G) has exactly P element.  
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Check your progress 

Problem 1: Find the finite number of distinct classes in },,1,1{4 iiQ  ? 

Problem 2: Find the number of element in the centre of },,1,1{4 iiQ  ? 

Problem 3: Find the class equation of },,1,1{4 iiQ  ? 

 

2.6 SUMMARY 

In this unit, we have studied the definition and theorems related to conjugate of an element, normalizer 

of an element and centre of the group and also learn their implementation on various examples. We 

have also learn in this unit how these subgroup are essentials in the formation of class equation which 

will further discussed briefly in the upcoming units. The overall summarization of this units are as 

follows: 

 Conjugacy relation is an equivalence relation on G. 

 



)( ))((

)(
))(()(

GZa aNO

GO
GZOGO  is known as class equation of any group. 

 Every group of order 2p is abelian group. 

2.7 GLOSSARY 

 ab ~  denotes two elements ba,  of a group G are conjugate to each other. 

 )(aC  denotes collection of elements of group which are conjugate to a. 

 ac  denotes number of elements in group which are conjugate to a. 

 )(GZ  denotes centre of the group. 

 )(aN  denotes the normalizer of a.  
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2.9 SUGGESTED READING 

 P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge Press, 1994. 

 David S. Dummit and Richard M. Foote: Abstract Algebra (3
rd

 Edition), Wiley, 2011. 

2.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that any two conjugate classes of a group are either disjoint or identical. 

2. If the order of a group G is prime ( p ), then prove of G has exactly p elements. 

3. If H is normal subgroup of G, having prime index p then prove that NG / is cyclic. 

4. If G be a non-Abelian group of order 1331)( GO then prove that number of elements in 

centre of group Z(G) are 11. 

5. If G be a group of order 121)( GO then find the number of elements in its centre. 

6. State and prove the class equation. 

7. Prove that cojugacy is an equivalence relation. 

Short Answer Type Question: 

8. Find the number of elements of the in the centre of the group having order

49,31,25,7,5)( GO . 

9. Prove that centre of the group is an abelian group 

10. If G is a non-abelian of order 8 then prove that )(GZ has exactly 2 element.  

11. Find number of element which are conjugate to 3)21( S . 

12. Prove that if G is finite, )(GZa  iff O( )())( GOaN  . 

Fill in the blanks: 

13. Two elements a and b in a group G are such that axxb 1  then b will called ……… to a. 
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14. Every group of order )(2 primepp   is ……. 

15. Centre of the group G is the ……… subgroup of G.  

16. If G is non-abelian group of order 125 then Z(G) has …….. elements.  

2.11 ANSWERS 

Answer of self cheque question: 

1. 4   2. 4   3.     1+1+1+1 

Answer of terminal question: 

5. 121 8. 49,31,25,7,5   11. 3 13. Conjugate 

14. Abelian 15. Normal 16. 5 
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Unit-3: HOMOMORPHISM AND ISOMORPHISM 

 

CONTENT: 

3.1 Introduction  

3.2   Objectives 

3.3  Homomorphism 

 3.3.1 Kernel of homomorphism 

3.4  Isomorphism 

3.5 Fundamental theorems  

3.6 Summary 

3.7  Glossary  

3.8   References 

3.9  Suggested Readings 

3.10  Terminal Questions 

3.11 Answers 

3.1 INTRODUCTION 

The term "homomorphism" appeared as early as 1892, when it 

was attributed to the mathematician Felix Klein (1849–1925).  

Christian Felix Klein was a German mathematician and 

mathematics educator, known for his work with group 

theory, complex analysis, non-Euclidean geometry, and on the 

associations between geometry and group theory. His 

1872 Erlangen program, classifying geometries by their 

basic symmetry groups, was an influential synthesis of much of 

the mathematics of the time. 

 
Christian Felix Klein 

25 April 1849 – 22 June 1925
 

 

https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Non-Euclidean_geometry
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Erlangen_program
https://en.wikipedia.org/wiki/Symmetry_group
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In this section we introduce the reader to the idea of an isomorphism which could also be 

termed as an ‘indirect’ equality in algebraic systems. Indeed, if two systems have the same 

number of elements and behave exactly in the same manner, nothing much is lost in calling 

them equal, although at times the idea of equality may look little uncomfortable, especially in 

case of infinite sets. 

3.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of special types of mapping between two groups named as 

homomorphism and isomorphism. It may be possible these groups are under the different 

binary operations. 

 Know that under the isomorphism mapping how the properties of two groups are same. 

 Understand about the other type of mapping like endomorphism, automorphism. 

 Understand the basic properties of homomorphism and isomorphism and their related other 

theorems and definitions.  

3.3 HOMOMORPHISM 

Definition: A mapping f  from a group ),( G  into the group .),( 'G is said to be a homomorphism if it 

preserve the composition under f  i.e.,  

Gbabfafbaf  ,)().()*(  

Or 

A mapping ': GGf  is said to be homomorphism if, 

Gbabfafbaf  ,)().()*(  

where, G and 'G are the groups under the operation '' and '.'  respectively.  

Note 1: The range of f  in G is called the homomorphic image of 'G . 

2: In general, we take both the groups G and 'G under the same operation multiplication and write f is 

a homomorphism between G to 'G if, Gbabfafabf  ,)()()( , without the loose of generality.  

Example 1: A mapping EZf : , from set of integer to the set of even integer such that 

Zxxxf  2)(  

is a homomorphism. 
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Answer: We have given the mapping EZf :  such that 

Zxxxf  2)(  

at first, we will check mapping is well defined as )()(22 yfxfyxyx   

Now, we will check mapping also preserve the composition for it for any Zyx ,  

)()(22)(2)( yfxfyxyxyxf   

f preserve the composition.  

Hence given mapping f is an homomorphism. 

Example 2: Show that the Mapping GZf : , from set of integer under the operation addition to the 

group  1,1 G  under the operation multiplication defined as 








oddisxif

evenisxif
xf

,1

,1
)(  

is a homomorphism. 

Answer: Case I: If Zyx , both are even integers. It means 1)(,1)(  yfxf then their sum will also 

an even integer i.e.,  

Zyxyfxfyxf  ,)()(1.11)(  

Case II: If Zyx ,  both are odd integers i.e., 1)(,1)(  yfxf  then their sum will be even integer 

i.e.,  

Zyxyfxfyxf  ,)()()1).(1(1)(  

Case III: If Zyx ,  are such that x is even integer and y is odd integer i.e., 1)(,1)(  yfxf  then 

their sum will be odd integer then, 

Zyxyfxfyxf  ,)()()1.(11)(  

Case IV: If Zyx ,  are such that x is odd integer and y is even integer i.e., 1)(,1)(  yfxf  then 

their sum will be odd integer then, 

Zyxyfxfyxf  ,)()()1).(1(1)(  

Hence the given mapping f is an homomorphism.  

Example 3: Show that the Mapping RRf : , from set of positive real numbers to the set of real 

number defined as  Rxxxf log)( is an homomorphism. 

Answer: As we know that set of positive real numbers ( R ) is form group under the operation 

multiplication and the group R is form group under the operation addition.  

Here, clearly the mapping is well-defined since, for  

yx   
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yx loglog    [Taking logarithm both side] 

 Ryxyfxf ,)()(  

Now,  Ryxyfxfyxxyxyf ,)()(loglog)log()(  

Hence f is a homomorphism.  

Homomorphism onto: A onto mapping from a group ),( G  into the group .),( 'G is said to be a 

homomorphism onto if it preserve the composition under f  i.e.,  

Gbabfafbaf  ,)().()*( . 

Endomorphism: A homomorphism from a group G to itself is called an endomorphism.  

Example 4: If G be a group and a mapping such that, GGf : such that 1)(  xxf  be a 

homomorphism then show that G is a Abelian group.  

Proof: Since G be a group then for any elements Gyx , , G will satisfies the closure property i.e., 

Gxy and for every element belongs to G there exist its inverse in G.  

Now,         yxxfyfxyfxyxy   1111111  

G  is Abelian group.  

Theorem 1: If ': GGf  be a homomorphism then, 

(i) If e is the identity of G, then )(ef  is the identity of 'G  

(ii) For any element Ga ,   11 )()(
  afaf  

(iii) If H is subgroup of G then )(Hf is subgroup of 'G  

(iv) If K is subgroup of 'G , then  '1 )()( GkfGkKf 
 is a subgroup of G. Furthermore, if 

K is normal in 'G then )(1 Kf   is normal in G.  

(v) If order of any element Ga  is finite then the order of )(af  is divisor of the order of 

Ga . 

Proof (i): Let e  and 'e are the identity elements of the group G and 'G . Since f  is the mapping from 

G to 'G  then )(ef  will be the elements of 'G . 

Now, )()()()()(' efefeefefefe  , then by the right cancellation law 

)(' efe   

i.e., )(ef  is the identity of 'G . 

(ii): Let a be any element of G then 1a  will be also in G because G itself a group. Since we have, 

)()()()( 11'   afafaafefe                                                               … (1) 
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As we know that if ')( GafGa  and 'G is also a group then   '1
)( Gaf 


 

Now multiplying by   1
)(


af  both side in equation (1) 

Then,          )()()()()()()()( 1111'1
afafafafafafafeaf  

 

So,   )()(
1

afaf 


 

(iii): We have given H is subgroup of G then to prove that )(Hf  is subgroup of 'G . If 

HxyHyx  1,                        [By the subgroup test of any nonempty subset of G]  

Since f  is the homomorphism then there exist )(),(..)(, yfbxfatsHfba   

Now consider,   )()()()()()( 1111 Hfxyfyfxfyfxfab  
 

Hence we have prove that if )(, Hfba  then )(1 Hfab   

 )(Hf  is subgroup of 'G . 

(iv): Let K is subgroup of 'G  and define H to be )(1 Kf  ; that is H is the set of all Gg such that 

')( GKgf  . If Hba , , then   Kbfafbfafabf 
 111 )()()()()( . Since K is subgroup of 

'G . Therefore, Hab 1 and H is the subgroup of G. 

If K is normal in 'G then we have to show Hhgg 1 for GgHh  ,  

But,           Khfhfgfgfgfhfgfgfhfgfhggf 
 )()()()()()()()()()()(

11111
 

Since K is normal in G therefore Hhgg 1  

H is normal subgroup of G. 

(v): Let Ga  and maO )(  i.e., eam   

Taking f-image both side we get, )()( efaf m   

)()....()()( afafafaf  (m times) )(ef  

  ')( eaf
m
  

If order of )(af  in 'G is n then )(|))(( aOafo  

3.3.1 KERNEL OF A HOMOMORPHISM 

Definition: If ': GGf   is a homomorphism then kernel of homomorphism is the collection of all 

elements of domain set which are mapped into the identity elements of range set.  

OR 

If ': GGf   is a homomorphism then, 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 35  

 ')(|ker exfGxf    

Where 'e is the identity element of 'G  

Theorem 2: If ': GGf   is a homomorphism then fker is the normal subgroup of G.  

Proof: Since we have given ': GGf  is an homomorphism and we know that 

 ')(|ker exfGxf   then first we will prove that fker is a subgroup of G. for it let 

'' )(,)(ker, eyfexffyx   

Now,   '1''111 ][)()()()()( eeeyfxfyfxfxyf  
 

fxy ker1    

Hence fyx ker,  we have fxy ker1  it means fker is the subgroup of G. 

Now we have to prove that fker is the normal subgroup of G. For it let g be any element of G and k 

be any element of fker . Then ')( ekf  , we have  

  '11'11 )()()()()()()()( egfgfgfegfgfkfgfgkgf 


 

fxgkg ker1    

Hence, fker is normal subgroup of G.  

Theorem 3: A homomorphism ': GGf  is one-one if and only if }{ker ef  . 

Proof: We have given ': GGf  is an homomorphism and let mapping is ono-one. If fx ker  be 

any element 

Then ')( exf  and also ')( eef   

Since f is one-one so, fxexefxf ker)()(   

Hence, }{ker ef  . 

Conversely, let fker contains only the identity element. 

For it let, )()( yfxf   

then '1)]()[( eyfxf   

'1)( exyf    

}{ker1 efxy    

}{1 exy    

yx   

f is one-one. 
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3.4 ISOMORPHISM 

Definition: A mapping f  from a group ),( G  into the group .),( 'G is said to be isomorphism if it 

satisfies the following condition, 

(i) f  is ono-one i.e, f  is injective 

(ii) f is on-to i.e, f  is surjective 

(iii) Gbabfafbaf  ,)().()*( i.e., f preserve the composition 

Example 5: Show that the Mapping RRf : , from set of positive real numbers to the set of real 

number defined as  Rxxxf log)( is an isomorphism. 

Answer: In the previous example we have already proved that given mapping is a homomorphism. 

Now, we are going only to show that mapping (f) is a bijective mapping (i.e., f is one-one and on-to) 

One-One: Let Ryx, s.t., )()( yfxf   

yx loglog   

yx ee loglog   

yx   

 f is one-one mapping. 

On-to: If Ry be any real number then clearly Re y . It means for each Ry we have Re y  

such that Ryeef yy  )log()(  

 f is on-to mapping. 

Hence, f  is an isomorphism.  

Example 6: Show that there is no isomorphism from }0{: QQf where, Q is set of rational 

number. 

Answer: To prove this example let we assume that }0{: QQf  is an isomorphism.  Since f is an 

isomorphism so f will also a on-to function i.e., for QxQ  }0{2 s.t.,  

2)( xf  

2
22











xx
f  

2
22



















x
f

x
f        [Since, f preserve the compostion] 

2
22



















x
f

x
f  
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 22  y  where, 









2

x
fy , which is a contradiction because there is no rational number which is 

the solution of quadratic equation 022 x . Hence our assumption is wrong. So, there is no map

}0{: QQf  which is an isomorphism.  

Theorem 4: Let N be a normal subgroup of a group G. A mapping f , NGGf /:   defined as 

GxNxxf )( then f is a homomorphism of G onto NG / and Nf ker . 

Proof: We have given the mapping NGGf /:  such that GxNxxf )( . As we know if Gx

then NGNx / . 

First we will check that f  is a onto homomorphism from G to NG / . For it, let NGba /,  then, 

)()())(()( bfafNbNaNababf                   [ N is normal subgroup of G] 

f  is a homomorphism from G to NG / . 

Since for each element NGNx / there exist an element Gx such that GxNxxf )( .  

Hence, f is on-to mapping.  

Let fker is the kernel of this homomorphism then,  NxfGxf  )(|ker  

Now, we have only to prove that Nf ker . Let x be any element of fker . Then Nxf )( , where N 

is the identity of NG / . But according to mapping NNxxf )( i.e., NxNNx                  

[Because if H is normal subgroup of G and HHx  then Hx ] 

So, Nxfx ker . Therefore Nf ker  

Conversely, let y be any element of N . Then NNy   

We have NNnnf )( . Therefore fn ker  

Thus, fnNn ker . Therefore fN ker  

Hence, Nf ker .  

3.5 FUNDAMENTAL THEOREMS 

Theorem 5: Fundamental theorem on group homomorphism: If ': GGf   is onto 

homomorphism then
'G

K

G
  where fK ker  

OR 

In other word, “Every homomorphic image of a group G is isomorphic to some quotient group of G”.  
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Proof: We have given a on-to homomorphism f from 'GtoG . Let we define a map ': G
K

G
 s.t. 

GaafKa  ),()(  

First, we have to show that   is an isomorphism. For it initially we shall show the mapping   is well-

defined by, kbKa   

fKab ker1    

'1)( eabf    

'1)()( ebfaf    

  '1
)()( ebfaf 


 

)()( bfaf   

)()( KbKa    

On retracing theses steps backwards, we will get that  is one-one. 

Again as )()()()()()()( KbKabfafabfKabKaKb    

 is an homomorpshism. 

Now we will check  is onto, let '' Gg  be any element. Since ': GGf  is onto then there exist 

Gg  such that, 

 ')( ggf   

Now,   ')( ggfKg  . 

 is on-to 

  is an isomorphism. 

Hence, 
'G

K

G
 . 

Theorem 6: (Second fundamental theorem of Isomorphism). If H and K are two subgroups of the 

group G where H is normal subgroup of G then,  

KH

K

H

HK


 . 

Proof: By the previous theorems in normal subgroups we can easily seen that KH  will be normal 

subgroup of K because KKHandHKH  .  Similarly, as HGHKH , will be normal 

in HK. 

Now, we define a map 
H

HK
Kf : s.t.,  
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Hkkf )(  

Then as )()( 212121 kfkfHkHkkk   

Which shows the mapping is well-defined.  

Again, )()()( 21212121 kfkfHkHkkHkkkf   

f is an homomorphism.  

Obviously, the mapping is on-to also then by using the first fundamental theorem we find that 

 

 

Since, Hkffk  )(ker  

                                HHk   

                                Hk                                      [As H is normal subgroup of G] 

                                KHk                          [ ]ker KfasKk   

So, KHf ker  

Hence the theorem is proved.  

Lemma: Let in a group G , if KH , are normal in G such that ,KH  then 
H

K
is a normal subgroup of 

H

G
and converse of the theorem is also true. 

Proof: 
H

K
is a non empty subset of

H

G
, by definition. 

Now, for any 
H

K
HkHk 21,  

H

K
kHkHkHkHkHk 

 1

21

1

21

1

21 ))(())((  

H

K
  is a subgroup.  

Again for any 
H

K
Hk   and

H

G
Hg  , we notice that 

H

K
kgHgHkHgHgHgHkHg   111 ))(()(  

as ,, KkGg  K is normal in G gives Kkgg 1 . 

Conversely, let any element Gx and Kk . In order to prove that K  is normal inG we must show 

that Kxkx 1 . 

f

K

H

HK

ker

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We know that Gxwhere
H

G
Hx  and Kkwhere

H

K
Hk  . Since we have given 

H

K
is a normal 

subgroup of 
H

G
, therefore 

H

K
HxHkHx 1))()((  

H

K
Hxkx  1                            [As H is normal in G] 

Kxkx  1  

K is normal subgroup of G . Also the quotient group 
H

K
implies that H is normal in G. Therefore, K

is normal subgroup of G and KH  . 

Theorem 7: (Third isomorphism theorem). If two subgroups KH , are normal in G such that 

KH  , then  

HK

HG

K

G

\

\
  

Proof: By the above lemma we know that if KH , are normal in G such that KH  , then 
H

K
is a 

normal subgroup of 
H

G
 and, therefore, we can talk about 

HK

HG

\

\
. 

First, we will define a map 
K

G

H

G
f : s.t.,  

GaKaHaf  ,)(  

Since, H is well defined as  

HbHa   

KHab  1  

KbKa   

)()( HbfHaf   

Now, we will check f  is a homomorphism as 

)()())(()()( HbfHafKbKaKabHabfHaHbf  . 

Here, ontoness of f is obvious. 

Using first fundamental theorem of group homomorphism we can write that, 

f

HG

K

G

ker

/
 , so, we will claim that 

H

K
f ker . 
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A member of fker will be some member of
H

G
. 

Now, KHaffHa  )(ker  

KKa   

Ka  

H

K
Ha  

Hence we find 
HK

HG

K

G

/

/
  

Hence our result is proved. This theorem is also named as “Freshman’s Theorem”.  

Remarks: In the above theorem, since we have put f
H

K
ker  because we have notice that 

H

K
is 

normal in 
H

G
and hence we are talking about

HK

HG

/

/
. Thus we do not need to prove separately that 

H

K

is normal in
H

G
.  

Theorem 8: Let the mapping ': GGf  be an onto homomorphism with Kf ker . Let the 

subgroup 'H of the group 'G , define  

 ')(| HxfGxH   

Then 

(i) H is subgroup of G and HK  . 

(ii) 'H is normal in 'G iff  H is normal in G . 

(iii) 'H is normal in 'G  then 
H

G

H

G


'

'

 

(iv) There exist a one to one association from the from the family 'S of all subgroup of 'G  onto 

the family S of all subgroup of G , that contain K . 

Proof (i): Since, HeHeef  '')( , it means H . 

Let ')(),(, HyfxfHyx   

')(),( Hyfxf   

  '1
)()( Hyfxf 


 

'1)( Hxyf    

Hxy  1  
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Thus H is subgroup of G. 

Since '')(ker HexfKfx   

Hence for each Kx we have HKHx  . 

(ii): Suppose H is normal subgroup of G . Let the elements '''' , HhGg  . Since the given mapping 

is onto so HhGg  , s.t. '' )(,)( hhfggf  . Since '', HhHh   

Now, 

  )()()(
1''1 gfhfgfghg
   

'11 )()()()( Hhggfgfhfgf      [Because H is normal subgroup in G means Hhgg 1 ] 

Thus 'H is normal in 'G . 

Conversely, assume that 'H is normal in 'G . 

For any elements Hh , Gg , 

  '11 )()())(( Hgfhfgfhggf    

as '' )(,)( GgfHhf   

as '' )(,)( GgfHhf            [ 'H is normal in 'G ] 

Hhgg  1  

i.e., H is normal in G  

(iii) Let us defining a mapping 
'

'

:
H

G
G  s.t., 

)()( ' gfHg   

Since   is well define as 
21 gg  )()( 21 gfgf   

)()( 2

'

1

' gfHgfH   

)()( 21 gg   , which shows mapping is well defined. 

Now, we will verify that the mapping  preserve the composition as 

)()()()()()()()( 212

'

1

'

21

'

21

'

21 gggfHgfHgfgfHggfHgg    

Again, for any 
'

'
''

H

G
gH  , since '' Gg  and f is onto Gg s.t., ')( ggf   

Or that ''' )()( gHgfHg  showing that   is onto. 

By using fundamental theorem then 

ker'

' G

H

G
  
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Now, ')(ker Hxx    

'' )( HxfH   

HxHxf  ')(  

Hence Hker  

(iv) Define mapping ,: ' SS  s.t., 

HH )( '  

Where H is  ')(| HxfGx   for any 'H in 'S by (i) we know that it is subgroup of G, containing K 

and thus a member of S.   is well defined mapping. 

Let now )()( '' TH    where ''' , STH   

Then TH  where 

 ')(| HxfGxH   

 ')(| TxfGxT   

Now for any ''' GHh  , since ': GGf  is onto, we can find ,Gh s.t.,  

'')( Hhhf   

But this shows THh   

')( Thf   

'''' THTh   

Similarly '' HT   

i.e., '' HT  or  is one-one. 

We will show now that   is onto. 

Let SH  be any member, H is a subgroup of G and HK  . 

Consider  HhhfHf  |)()(  

Then )(Hf  as )()( ' HfeefHe   

Again, for any HhhHfhfhf  2121 ,),()(),(  

And )()())()((
1

21

1

21 Hfhhfhfhf 


 

i.e., )(Hf is subgroup of 'G . 

We show ')( HHf  is the required pre-image of H under  , 

i.e., we show HH )( ' , 

For it we have to show  ')(| HxfGxH   
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Let Hx then ')()( HHfxf   

 ')(| HxfGxx   

Or that  ')(| HxfGxH   

Again, if  ')(| HxfGxx   

Then )()( ' HfHxf   

)()(.., hfxftsHh   

'1)( exhf    

Kfxh   ker1  

 HKHKhx   

Thus   HHxfGx  ')(|  

Hence  ')(| HxfGxH   

Or that HH )( ' and so   is onto 

Hence the theorem proved. 

Example 7: Show that any infinite cyclic group is isomorphic to  ,ZG  the group of integers. 

Solution: Let  aG  be any infinite cyclic group. 

Define, ZGf : , s.t., 

Ziiaf i  ,)(  

Since  aG  is of infinite order, Gai  for all Zi and ji aa  for no ji   

Thus )()( jiji afafjiaa  or that f is well defined. 

Again  jiji aajiafaf )()(  f is 1-1. 

)()()().( jijiji afafjiafaaf    

Shows that f is a homomorphism. 

f  is obviously onto and hence the isomorphism is established. 

Corollary: Every subgroup of an infinite cyclic group is an infinite cyclic group which is isomorphic 

to the group itself. 

Example 8: Any finite cyclic group of order n is isomorphic to nZ  the group of integers 

addition modulo n. 

Solution: Let  aG be a cyclic group s.t., 

naOGO  )()(  
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then    1....,,2,1,0,,...,,, 12   nZaaaeG n

n
 

Define 
nZGf :  s.t., iaf i )(  

f  is clearly well defined 1-1 onto mapping. 

Again )()()().( j

n

i

n

jiji afafjiafaaf n 


 

Thus f is a homomorphism and hence an isomorphism. 

Remark: Any two cyclic groups of same order (finite or infinite) are isomorphic. 

Check your progress 

Problem 1: Since 
224 ZZQ  , then find whether the identity element 1 of 

4Q map in        

22 ZZ  ? 

Problem 2: Is 84 QZ   and why? 

 

3.6 SUMMARY 

In this unit, we have studied about the mapping like homomorphism, isomorphism and also learn their 

implementation on various examples. After completions of this unit we have learned that two groups if 

isomorphic to each other than their all properties in terms of cardinality, order of elements, cyclic will 

be same. On the other manner we can say that if two groups are isomorphic in which one group is 

completely given then on the basis of given group we can unfold the unknown group completely even 

these groups are under the different binary operations. We have also learned about the fundamental 

theorems of isomorphism which are helpful to solve out various problems. 

 One of the important concept we have learned in this unit that every infinite cyclic group is 

isomorphic to the set of integers (Z). 

3.7 GLOSSARY 

 'GG   represents two groups ',GG  are isomorphic to each other. 

 fker  represents the kernel of homomorphism mapping f. 

3.8 REFERENCES 

 Joseph A Gallian, (1999), Contemporary Abstract Algebra (4
th 

Edition), Narosa, 1999. 

 N. Herstein,(1975), Topics in Algebra, Wiley Eastern Ltd., New Delhi. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 46  

 V. K. Khanna and S. K. Bhambri (2021 ), A Course in Abstract Algebra (5
th

 Edition), Vikas 

Publication House. 

 Vasishtha, A. R., & Vasishtha, A. K. (2006). Modern Algebra (Abstract Algebra). Krishna 

Prakashan Media. 

 https://en.wikipedia.org/wiki/Center_(group_theory)#:~:text=By%20definition%2C%20the%2

0center%20is,of%20each%20element%20of%20G. 
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 P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge Press, 1994. 

 David S. Dummit and Richard M. Foote: Abstract Algebra (3
rd

 Edition), Wiley, 2011. 

3.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. If ': GGf  is an homomorphism then prove that the set  ')(| exfGxA   where 'e is 

the identity element of 'G is the normal subgroup of G . 

2. Prove that every finite cyclic group of order n  is isomorphic to the set of integer under the 

operation addition modulo n. 

3. Prove that every infinite cyclic group is isomorphic to Z . 

4. Prove that if H and K are two subgroups of the group G where H is normal subgroup of G

then, 
KH

K

H

HK


 . 

5. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G. 

6. Prove that there is no isomorphism from Q to }0{*  QQ . 

7. If ': GGf  is an homomorphism then order of any element ')( Gaf  is divisor of the order 

of Ga .  

8. If two subgroups KH , are normal in G such that KH  , then  

HK

HG

K

G

\

\


 

9. Prove that relation of isomorphism is an equivalence relation. 
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Short Answer Type Question: 

10. If ': GGf  is an homomorphism and H is subgroup of G then )(Hf is subgroup of 'G . 

11. If f is a homomorphism from ': GGf  then prove that f is one-one if and only if }{ker ef  . 

12. Prove that any finite cyclic group of order n  is isomorphic to the quotient group NZ / , where 

 nN  

13. An endomorphism f in a group G such that 1)(  xxf  then G is abelian.  

Fill in the blanks: 

14. If ': GGf  be a homomorphism then for any element Ga , ............)( 1 af  

15. If two groups ',GG are isomorphic then ..........)( GO  

16. If two groups ',GG of finite order are isomorphic then number of elements of order n in G are 

= …………. 

17. If ': GGf  be a homomorphism and e is the identity element of G then identity element of 

'G will be ………… 

18. ……… is the infinite cyclic group 

19. A cyclic group of order 123456789 is isomorphic to ………. 

3.11 ANSWERS 

Answer of self cheque question: 

1. (0, 0)  2. No, because        is abelian group while    is not 

Answer of terminal question: 

14.   1
)(


af  15. )( 'GO   16. Number of elements of order n in 'G   

17. f(e)  18. Z  19. 123456789Z  
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BLOCK II 

CLASS EQUATION AND SYLOW’S THEOREM 
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Unit-4: CAYLEY’S THEOREM AND CLASS EQUATION 

 

CONTENT: 

4.1 Introduction 

4.2   Objectives 

4.3  Cayley’s theorem 

4.4  Class Equation 

4.5 Partition of an integer 

4.6 Summary 

4.7  Glossary  

4.8   References 

4.9  Suggested Readings 

4.10  Terminal Questions 

4.11 Answers 

4.1 INTRODUCTION 

British mathematician Arthur Cayley FRS, who lived from 16 

August 1821 to 26 January 1895, was very active and focused 

primarily on algebra. He contributed to establishing the current 

British school of pure mathematics. 

Cayley used to find it amusing to solve challenging arithmetic 

problems as a kid. He enrolled in Trinity College in 

Cambridge, where he excelled in mathematics, Greek, French, 

German, and Italian. He practised law for 14 years. 

 

 

Arthur Cayley FRS 

16 August 1821 – 26 January 1895 

https://en.wikipedia.org/wiki/Arthur_Cayley 

https://en.wikipedia.org/wiki/Arthur_Cayley
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Theorizing that every square matrix is a root of its own characteristic polynomial, he established what 

is now known as the Cayley-Hamilton theorem for matrices of orders 2 and 3. He was the first to 

introduce the contemporary definition of a group as a set with a binary operation that complies with 

certain rules. Mathematicians used to refer to permutation groups when they used the term "groups." In 

honour of Cayley, Cayley's theorem, Cayley tables, and Cayley graphs all bear his name. 

4.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept that how we can define an isomorphism from any group to the 

permutation group which is named as Cayley’s theorem. 

 Solve more examples on class equation. 

 Understand the basic properties of Cayley’s theorem and class equation and also their related 

other theorems.  

4.3 CAYLEY’S THEOREM 

Theorem 1:  Every group G is isomorphic to a permutation group. 

Proof: A(G) is the collection of all permutations of the set G, where G is the any group. Let us define a 

map GGfa :  such that 

axxfa )( , where Ga  

First we will check the mapping is well defined as, 

)()( yfxfayaxyx aa   

One-One: )()( yfxf aa   

ayax   

yx             [By cancellation rule in G] 

  mapping is one-one 

Onto: For any Gy , since yyaayafa   )()( 11
. Here we can easily see that ya 1 is pre-image of 

y or that af is onto and hence permutation on G .  

Thus, )(GAfa   

Assume that K be set of all such permutations. Now we will show that K is a subgroup of )(GA . 

Since K is non-empty set because Kfe  . 
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Let Kff ba ,  

Then since   )()()()( 11
11 xbbxbfxffxff bbbbb

    

          xxfex e  )(  

We find   1
1


 bb

ff             [Note Ife  , identity of )(GA ] 

Also as   xxfxabbxabxfxff ababa  )()()()()(  

We find 
baab fff   

So,   Kfffff
abbaba  


11

1
  

K is subgroup of )(GA . 

Define mapping KG : , s.t., 

afa )(  

then  is well defined as well as one-one map as, 

ba   

bxax   

xxfxf ba  )()(  

ba ff   

ba    

Obviously,   is onto and  

)()()( bafffab baab    

Hence,   is a homomorphism and also an isomorphism which proves the result that every group G is 

isomorphic to a permutation group. 

Remarks: We can define other statement of Cayley’s theorems like “ If G is finite group of order n

then G will be isomorphic to the subgroup of symmetric group nS .  

Example 1: Using Cayley’s theorem find the permutation group which is isomorphic to the group 

}8,6,4,2{G under the operation multiplication modulo )( 10 . 

Answer: Let A be any permutation group such as defined in the Cayley’s theorem. 

 GafA a  | , where af  is defined as axfa  s.t. Gxa ,  

So, 2)6(,6)8(,8)4(,4)2( 2222  ffff  

4)6(,2)8(,6)4(,8)2( 4444  ffff  

8)6(,4)8(,2)4(,6)2( 8888  ffff  
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6)6(,8)8(,4)4(,2)2( 6666  ffff  

Thus, If 6
and  IffffK  6842 ,,,  

If we identify 2f  with the permutation )4321( , other permutations are )42()31( , )2341( . Hence 

 IA ),2341(),42()31(),321(  is required permutation group isomorphic to G . 

Example 2: Using Cayley’s theorem find the permutation group which is isomorphic to the
4D . 

Answer: As we know that the dihedral group (
4D ) of order 8 is  

 124432432

4 ,|,,,,,,,  baabbeabababaabaaaaD  

Let the set defined in the Cayley’s theorem is given by  GxfK x  |  where function defined by,

xyyfx )( and KD 4
by the theorem. Now we determine K , the required permutation group as 

baabfeaafaafaaf aaaa

243322 )(,)(,)(,)(   

aefabbfbbafbbaf aaaa
 )(,)(,)(,)( 32

2  

Thus af  can be identified with the permutation )8765)(4321(  

Again,  baabfaafeafaaf
aaaa

3323 )(,)(,)(,)( 2222   

2222 )(,)(,)(,)( 2222 aefbabfabbafbbaf
aaaa

  

Thus, 2a
f can be identified with )86()75)(42()31( . 

In the continuation, we can say, )6785()2341(3 a
f  

Again, baabaafbabaaf abab

322 )(,)(   etc., we get 

)54)(63)(72)(81(abf  

Similarly, )64)(73)(82)(51(2 
ba

f  

)74)(83)(52)(61(3 
ba

f  

)84)(53)(62)(71(bf  

Therefore, 









)48)(35)(26)(17(),47)(38)(25)(16(),46)(37)(28)(15(

),45)(36)(27)(18(,),5876)(1432(),68)(57)(24)(13(),5678)(1234( I
K  

Hence, 
4DK   

4.4 CLASS EQUATION 

In the unit 2 we have already learned about some important theorems of class equations and their proof 

which are as follows: 
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Theorem 2: If G be the finite group and Z(G) be the centre of the group G. Then class equation of G 

can be written as 





)( )]([

)(
)]([)(

GZa aNO

GO
GZOGO  

In this section we will learn applications part of class equation in different type of examples. Example 

3: If n is the index of )(GZ in a group G then the conjugate class has at most n  elements. 

Answer: We have 
))((

)(

GZO

GO
n   and 

))((

)(
))((

aNO

GO
aclO   

Since, )()( aNGZ   always 

))((.))(())(())(( GZOkaNOaNOGZO   

i.e., 
k

n

GZOk

GZOn

aNO

GO
aCO 

))((.

))((.

))((

)(
))((  

Hence, maximum value of ))(( aCO  is when 1k .  

Example 4: If 3P be order of a non-abelian group then determine ))(( GZO  and also number of 

conjugate classes of G. 

Solution: We have given group )(G  is non-abelian, Ga , s.t., GaNGZ

 )()(  

Since we know that 3)(|))(( PGOGZO   

So, the possibilities that ))(( GZO  will be 32 ,,,1 PPP  

Similarly 32 ,,,1))(( PPPaNO   

But by the previous theorems we know that 1))(( GZO . Since group is non-abelian then 

3))(( PGZO  . So, the only possibilities will be 2))(( PorPGZO  . 

Similarly, 2))(( PorPaNO  and as )()( aNGZ

  

So, we find 2))((,))(( PaNOPGZO   

Let we assume k be the total number of conjugate classes. Since 

)(aCG
Ga
  

 
 


)( )(

))(())(())(()(
GZa GZaGa

aCOaCOaCOGO  





)(

3 ))(())((
GZa

aCOGZOp  

When )(GZa then number of conjugate classes is pGZO ))((  

[Since 1))((}{)()(  aCOoraaCGZa ] 
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So, pk   are remaining classes and each have order given by 

p
p

p

aNO

GO
aCO 

2

3

))((

)(
))((  

Hence,   123  ppkppkpp  

Example 5: Write the class equation of quaternion group  kjiQ  ,,,18
 

Solution: We have the quaternion group  kjiQ  ,,,18
. 

First we determine the conjugate class of i . Since we know that in any group )(aNa   

[ maxax  and as aaaa mm ..  , we find )(aNam  ] 

Thus, )(iNi   or )(}1,,,{ 432 iNiiii   

Therefore, 
8)( QiNi   gives 8|))((|4 iNO  

Since )(iNj  because ijji   

And 88 )( QiNQj

  

Hence 4))(( iNO  or  iiN )(  

As we know that  
))((

)(
))((

aNO

GO
aCO   

2
4

8

))((

)(
))(( 8 

iNO

QO
iCO  

 iiiC  ,)(                 [as )(iCi and )(,1 iCikiki   ] 

Similarly other conjugate classes are     }1{,}1{,,)(,,)(  kkkCjjjC  

Since we know that )(1))(( GZaaCO   then as 1))1((,1))1((  COCO  

 1,1)( 8  QZ  

Now, we verify the class equation as  





)(

))(())(()(
GZa

aCOGZOGO  

)222(118  , which is the class equation of the group 8Q . 

Example 6: For a finite group G let number of conjugate class is 3. Then prove that either group is 

cyclic or isomorphic to 3S . 

Solution: Since we have given that group G has number of conjugate classes are 3. If these conjugate 

classes are of order 1, then 3)( GO , which is of order prime that means group will be cyclic. If G has 

a class of order >1 then G is non-abelian because if G will abelian then there does not exist any class 

of order >1.  
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Let three classes of G are 1C ,
2C ,

3C . 

Assume that 1)( 3 CO .  

If 2)(1)()( 321  nCOCOCO                         [If we have assume that nGO )( ] 

)(|2)( 3 GOnCO   and also we have 2|2  nn  

2)2(|)2(  nnn  

212 orn   

43orn   

G is abelian.                          [Because we know every group of order 2porp  is abelian] 

Now there is only one possibility left that inG one class is of length 1. Let

1)(,1)(,1)( 321  COCOCO . It means 1))(( GZO . 

By class equation, )()(1)()()()( 32321 COCOCOCOCOGOn   

But )(|)(,)(|)( 333 COCOnGOCO   

)(1)(|)( 233 COCOnCO   

)(1)( 23 COCO   

Similarly, )(1)( 32 COCO   

If )(1)( 23 COCO   and )(1)( 32 COCO   

Then )()( 23 COCO  , )()( 32 COCO   

)()( 23 COCO   

1)(1|)()(1|)( 3333  COCOCOCO  

This is a contradiction 

Thus either )(1)( 23 COCO   

Or )(1)( 32 COCO   

If )(1)( 23 COCO   

Then )(1)(1)( 22 COCOGO   

2)(2)( 2  COGO  

But )(2|)()(|)(),(|)( 22222 COCOCOCOGOCO   

2)(2)(|)( 22  COGOCO  

2)( 2  CO  and 3)( 3 CO  

Or that 6)( GO  
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Similarly, if )(1)( 32 COCO  , then 6)( GO  

G is non-abelian group of 6 which is isomorphic to 3S  i.e., 3SG  . 

Example 7: Let G be a group such that  )(, aOGae finite. If G has only two conjugate classes 

then prove that G is a group of order 2.  

Answer: Let Gbe  . Since G has only 2 conjugate classes, namely }{e and )(aC . 

aggbaCb 1)(   for some Gg . 

)()( aObO   for all eb   in G . 

Suppose 1,1,)(  nmmnaO  

Then maO m )(  

Since order of all non identify elements in G is same, mnaO m )(  

1 mmnn ; a contradiction 

primepaO  )(  

 pbO )( for all Gbe   

Suppose 2p  

then )(22 aCaea   

agga 12  for some Gg  

gagagga 212122 )()(    

22112122 )()()( agggagggagga    

In this way, we get ppagga
p 2  

Since paOgO  )()(  

aeaea
p

2
 

12|)(12   ppaOea
p

 

By Fermat’s theorem, 22| pp  

1)22()12(|  ppp , a contradiction 

2 p  

2)(  aO . So, 2)( bO  for all Gbe   

G  is abelian. 

So, each conjugate class in G  is of length one. Since G has only two classes, which means G is of 

order 2. 
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Note: There are infinite group having non-trivial element has finite order and group has only 2 

conjugate classes. Therefore, it is necessary to assume that Gae  s.t. )(aO finite. 

4.5 PARTITION OF AN INTEGER 

Let n  be a positive integer. A sequence of positive integers knnn ...,,, 21 where 
knnn  ...21
 such 

that 
knnnn  ...21

is called a partition of n and knnn ...,,, 21 are called parts of partition.  

For example, let 3n , then number of partition are 3 i.e., 















3

21

111

3  

let 4n , then number of partition are 5 i.e., 
























4

31

22

211

1111

4  

The number of partition of any integer n  is denoted by )(nP . For example, 1)1( P ,

5)4(,4)3(,1)2(  PPP  e.tc. 

Theorem 3: The number of conjugate classes in nS  is )(nP . 

Proof: Let A Collection of all conjugate classes in nS . 

B Collection of all partition of n.  

Let nSC  ),( . 

Assume that  as product of disjoint cycles as )...)(...( 11 1 knn bbaa where nnn k  ...1 . 

the selection of cycles in a pattern such that knn  ...1 . This gives a partition 

 knnn ,...,, 21  of n . 

Now we define BAf : s.t., 

 knnnCf ,...,,))(( 21  

f  is well defined as )()(  CC   

)(,  C  

 , are conjugate in nS  
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 , are similar in nS  

   
knn bbaa ,...,...,..., 11 1

  

   
knn bbaa '

1
'''

1 ,...,...,...,
1

  

  ))((,...,,))(( 21  CfnnnCf k   

Suppose )()(  CC   

So,  ,  are not conjugate  , are not similar 

 ,  have different cycle structure 

Corresponding partitions are different 

i.e.,    rk nnnnnn '
2

'
1
'

21 ,...,,,...,,   where, of course, 

rk nnnnnnn '
2

'
1
'

21 ......   

))(())((  CfCf   

f is one-one 

f is onto for, let   Bnnn k ,...,, 21
be a partition of n . Then 

knnnn  ...21
 

Define     nnn Sbbaa
k
 ,...,...,..., 11 1

  

Then AC )(  

And  knnnCf ,...,,))(( 21  

f is both 1-1 and onto 

So, )()()( nPBOAO   

number of conjugate classes in nS  is )(nP  

Example 8: Verify the class equation in 4S  and also find its all conjugate classes. 

Answer: By the theorem 4 we know that number of conjugate classes in 4S  are )4(P which is 5. Also 

we know that two conjugate classes of any group are either disjoint or identical. In other word we can 

say that two permutations are conjugate if and only they are similar. In 4S  the base elements of 

conjugate classes are )43)(21(),4321(),321(),21(,I  

As we know that in the permutation group nS  number of distinct r-cycle are 
)!(

!1

rn

n

r 
. So, in 4S  

number of distinct cycle of length 2 are 6
)!24(

!4

2

1



 

Similarly, in 4S  number of distinct cycle of length 3 are 8
)!34(

!4

3

1



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Similarly, in 4S  number of distinct cycle of length 4 are 6
)!44(

!4

4

1



 

in 4S  number of permutation of type ))(( dcba are )32)(41(),42)(31(),43)(21(  

so, 3))43)(21((( CO  

Since centre of 4S contains only identity element so, 1))(( 4 SZO  i.e., 1))(( ICO  

Now the class equation of 4S is,  





)(

4

)(

4
44

44

))(())((
))((

)(
))(()(

SZaSZa

aCOSZO
aNO

SO
SZOSO  

i.e., 3686124   

Example 9: Find the class equation of a group of order 6. 

Answer: Let G be a group of order 6. So, there are two cases arises that either group is abelian or not. 

Case I: Let group is abelian then we know that G will be isomorphic to 
6Z  i.e., 

326 ZZGorZG   

Since G is abelian then 6))(( GZO  

So, the class equation will be, 1111116   

Case II: If group is non-abelian then we know that G will be isomorphic to 3S or 3D   i.e., 

33 DSG   

As we know that the permutation on group on the 3 symbol  3,2,1  is 

 )132(),123(),32(),31(),21(,3 IS  .  

Initially we examine the conjugacy classes of 3S  for it first we will find center element of 3S . 

Since, )21)(31()321()231()31)(21(   and )21)(32()231()321()32)(21(   and so 

)()31(),32(),21( 3SZ   

Further, )321)(21()32()31()21)(321(   and )231)(21()31()32()21)(231(  . 

So, )()231(),321( 3SZ . So the only trivial conjugacy class is [(1)]={1} i.e., ISZ )( 3  or 

1))(( 3 SZO . 

Now observe that for the element (12) we have that: 

)12()21)(12)(12()12)(12)(12( 1   

)23()31)(12)(13()13)(12)(13( 1   

)13()32)(12)(23()23)(12)(23( 1   

)23()321)(12)(123()123)(12)(123( 1   
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)13()231)(12)(132()132)(12)(132( 1   

So, the conjugacy class of )12( is  )23(),13(),12())12(( C  and the conjugacy classes of remaining 

elements are  )132(),123())132(())123(( CC  

So, the conjugacy classes of 3S is, 

))123(())12(()(3 CCICS   

And the class equation is, 

2316   

Hence, 

  

Note: Two permutations in nS are conjugates iff they have the same cycle type. Let nS  

and also let 
rmmm ,...,, 21
are the distinct integers which appear in 

raaa ,...,, 21
times respectively in the 

cycle type of  (including 1 cycles). Let ia be the number of cycles of length rtoimi 1,  , so that 

nma i

r

i

i 
1

 

then, number of conjugate of 
)!)...(!)(!(

!

2211
21

r

a

r

aa
amamam

n
r

  

OR 

Number of element commutes with 
)!)...(!)(!(

!

2211
21

r

a

r

aa
amamam

n
r

  

Example 10: Find the number of cycle which commute with 10)10987)(62)(345( S  

Solution: We first rewrite the given permutation as 10)10987)(62)(345)(1( S . Since all cycles of 

permutations are disjoint so they are commutes i.e., 10)10987)(345)(62)(1( S . So, cycle type of 

 is, 

6)( GO  

33 DSG   

Class equation is  

2316   

 

IF group 

is 

Abelian 

IF group 

is non-

Abelian 

326 ZZZG   

Class equation is  

1111116   
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Cycle of length 1 )1(  

Cycle of length 2 )62(  

Cycle of length 3 )345(  

Cycle of length 4 )10987(  

i.e., cycle type of )4,3,2,1( , where 104321   

So, number of conjugate of 
4.3.2

!10

)!14)(!13)(!12)(!11(

!10
1111

  

Example 11: Find the number of cycle which commute with 
11)21)(478)(695( S  

Solution: We first re-write the given permutation as
11)478)(695)(21( S . Since all cycles of 

permutations are disjoint so they are commutes i.e., 
11)478)(695)(21)(11)(10)(4)(3( S . So, cycle 

type of  is, 

Cycle of length 1 )11)(10)(4)(3(  

Cycle of length 2 )21(  

Cycle of length 3 )695(  

Cycle of length 4 )478(  

i.e., cycle type of )3,3,2,1,1,1,1( , where 113221111   

So, number of conjugate of 
2.9.2!.4

!11

)!23)(!12)(!41(

!11
214

  

Example 12: Evaluate all permutations in 5A which commutes with 

(i) )12345(  (ii) )123(  (iii) )34)(12(  

Solutions (i): As we know that 60
2

120

2

)(
)( 5

5 
SO

AO . Since 
5)12345( A and 

I5432 ,,,,   are distinct permutation in 5A .  

5))((  NO in 5A  

12
5

60

))((

)(
))(( 5 




NO

AO
CO  in 5A  

As we know )12345(  and )13245(  break up into two conjugate classes each conjugate classes are of 

length 12 in 5A . 

(ii): Let 5S s.t.   fixes 1, 2, 3. Then either )54( or I . Since  ,, 2  are all permutation 

in 5S  commuting with  . Thus I,, 2  are only permutation in 5A  commuting with  . 

3))((  NO in 5A  
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20
3

60

))((

)(
))(( 5 




NO

AO
CO  in 

5A  

)(C  has all cycles of length 3 in 5S  

(iii): As we know that there are 8 permutations in 5S  commuting with   which are: 

 )1423(),1324(),23)(14(),24)(13(),34)(12(),34(),12(,I . From this set only even permutation

  5)23)(14(),24)(13(),34)(12(, AI  . All these permutations of 
5A commuting with )34)(12(  

4))((  NO in
5A  

15
8

60

))((

)(
))(( 5 




NO

AO
CO  in 

5A  which is same like ))(( CO  in 5S . 

Hence conjugate class of   in 
5A  and 5S  remains same. 

Example 13: Find all the conjugate classes of
5A and also show that 

5A is simple. 

Answer: By using the previous examples we can verify that
5A has 5 conjugate classes and these are: 

}{)( IIC   

))123((C {All 20 permutation commute with cycle )123(  of length 3 in 5S .} 

))34)(12((C  {All 15 permutation commute with cycle )34)(12( in 5S .} 

))12345((C  {12 cycles of length 5} 

))13245((C  {12 cycles of length 5} 

These are the total 60 elements in
5A . 

Let H be any subgroup of 
5A which is normal s.t }{IH  , }{ 5AH  . As H is the union of some 

conjugate classes in 5A . Since )(, HOHI  cannot divide 60)( 5 AO . 

Hence, 5A is simple. 

Check your progress 

Problem 1: What will be the class equation of any group of order 3? 

Problem 2: What will be the class equation of Klein group (Klein group: Any group of 

order 4 such that each of its non-identity elements are self inverse, generally this group is 

denoted by 4K -group)? 

Problem 3: Which of the following isomorphism relation is correct and why? 

                    (i)    
42 ZD                                                                 (ii)    

222 ZZD   
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4.6 SUMMARY 

In this unit, we have studied about the Cayley’s theorem, various examples related to the class 

equations and partition of an integer. After completions of this unit learners will be able to 

characterized to any group into distinguish conjugacy classes and also by the class equation of any 

group learners will be able to find the number of element in the centre, number of different conjugate 

classes, number of element in the different conjugate class and order of the group. In a simple way we 

can say that with the help of conjugate classes we can get most of the information about the group 

without any prior knowledge.  

4.7 GLOSSARY 

 )(nP  denotes the partition of any positive integer. 

 In the permutation group nS  number of distinct r-cycle is
)!(

!1

rn

n

r 
. 

 Number of element commutes with cycle  
)!)...(!)(!(

!

2211
21

r

a

r

aa
amamam

n
r

 . 
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4.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. State and prove the Cayley’s theorem. 

2. Prove that dihedral group 3D  is isomorphic to the symmetric group 3S . 

3. Find number of conjugate classes in 5S . 

4. Find the class equation of a non-abelian group of order 8. 

5. Find the number of cycle which commute with 
11)478)(695( S . 

6. Prove that
5A  is simple. 

7. Let G be a group such that  )(, aOGae finite. If G has only two conjugate classes then 

prove that G is a group of order 2.  

8. Prove that the number of conjugate classes in nS  is )(nP . 

9. Find the conjugate class of i and -1 in 8Q  and also find the class equation of 8Q . 

Short Answer Type Question: 

10. Write the class equation of non-abelian group of order 32 . 

11. Write all the partition of 5 i.e., )5(P . 

12. Find the number of elements in the centre of the group having class equation 

)222(118  . 

13. Write the class equation of  6,5,4,3,2,1)7( U  under the operation multiplication modulo 7. 

Fill in the blanks: 

14. Every group G is isomorphic to a …………. 

15. 5A  is …………………. group. 

16. Number of conjugate classes in nS  are …………. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 65  

17. The class of non-abelian group of order 6 is  ………… 

18. If the class equation of any group is 11114   then group is ……………… 

4.11 ANSWERS 

Answer of self cheque question: 

1. 1+1+1   2. 1+1+1+1   

3.          is correct because    is abelian group not cyclic. 

Answer of terminal question: 

3. 6 5. 
)!2.3)(!51(

!11
25

  9. }1{)1(},,{)(  CiiiC  and class equation is 

)222(118    14. Permutation group 15. Simple   16. )(nP  

17. 6 = 1+2+3  18. Abelian  
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Unit-5: DIRECT PRODUCT OF GROUPS AND CAUCHY’S 

THEOREM FOR FINITE ABELIAN GROUPS 

 

CONTENT: 

5.1 Introduction 

5.2  Objectives 

5.3  External direct product 

5.4  Internal direct product 

5.5 Cauchy’s theorems 

5.6 Summary 

5.7  Glossary  

5.8   References 

5.9  Suggested Readings 

5.10  Terminal Questions 

5.11 Answers 

5.1 INTRODUCTION 

Baron Augustin-Louis Cauchy, a French mathematician, engineer, 

and physicist who lived from 21 August 1789 to 23 May 1857, 

produced groundbreaking discoveries in the fields of continuum 

mechanics and mathematical analysis. He rejected the prior authors' 

heuristic principle of the universality of algebra and was one of the 

first to state and formally verify calculus truths. He practically 

single-handedly founded abstract algebra's study of permutation 

groups and complex analysis. 

 

 

Augustin-Louis Cauchy 

21 August 1789 to 23 May 1857 

https://en.wikipedia.org/wiki/Augustin-
Louis_Cauchy 

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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According to Cauchy's theorem, which is found in mathematics and more especially group theory, if 

G is a finite group and p  is a prime integer that divides G's order (the number of its members), then 

G  includes one element of order p . 

The direct product is an operation in mathematics, notably in group theory, that takes two 

groups, G  and H , and creates a new group, commonly designated HG . One of the crucial ideas of 

direct product in mathematics, this operation is the group-theoretic equivalent of the Cartesian product 

of sets. 

5.2 OBJECTIVES 

After reading this unit learners will be able to  

 Implementation of Cauchy’s theorem in different types of group. 

 Describe the direct product of two or more than two groups. 

 Analyze the theorems related to Cauchy’s theorem and direct product of groups.  

5.3 EXTERNAL DIRECT PRODUCT 

In this section, we create an appropriate binary operation ( ) that we term the external direct product 

of groups on the cartesian product 
21 GG  of two groups, 1G  and 

2G . This method is frequently used 

to create new groups out of existing ones as well as to break down existing groups into their 

component parts. Thus, an essential idea in the structure theory of finite groups is the external direct 

product of groups. 

Let the n groups, nGGGG ,...,,, 321
are such that nGGGGG  ...321

under the operation  ,  

defined by 

     nnnn bababababbbbaaaa ,...,,,,...,,,*,...,,, 332211321321   

Where each     nnn GGGGGbbbbaaaa  ...,...,,,,,...,,, 321321321
 and ntoiba ii 1,   

For e.g., if the binary operation   between the groups ZK 4
defined by 

ZKnbmanmabnbma  4),(),,(),(),(),(  

Since the group ZK 4
 have the identity element )0,(e and for every element ZKna  4),( there 

exist ZKnana 

4

1 ),(),(        [Because every element in 4K is self inverse and 4K  is additive 

inverse of n  in Z ] 
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Similarly, ),( G  is a group with identity elements ),...,,,( 321 neeeee   and 

),...,,,(),...,,,(
11

3

1

2

1

1

1

321

  nn aaaaaaaa  for every Gaaaa n ),...,,,( 321
 where 

ie  is the element of 

iG for every ni ,...,2,1  

Definition: Let 
nGGGG ,...,,, 321
 are n groups and 

nGGGGG  ...321
then ),( G is called the 

external direct product of the groups ntoiGi 1,  . 

Example 1: Consider the group 3S  and infinite group ),( Z . Then the operation on ZS 3 is given 

by: ),(),(),( nmnm    

Since identity element is )0,(e  and ZmSmm   ,),(),( 3

11  . For example, 

)4),21(()4),21(( 1   

And )2),231(()2),321(( 1   

Now,  

)11),231(()74),31)(21(()7),31(()4),21((   

And )11),321(()47),21)(31(()4),21(()7),31((   

Which shows that ZS 3 is non-commutative. Also ZS 3 is an infinite group. 

Note: It is interesting to observe that non-commutativity of ZS 3 comes from the non-commutative 

group 3S  whereas the infiniteness comes from Z . 

Theorem 1: Let 1G  and 
2G  are two groups. Then 

1221 GGGG  . 

Proof: First, we define the mapping 
1221: GGGGf   by, 

21),(),(),( GGbaabbaf  . 

Then  

),()),(),(( 21212211 bbaafbabaf   

            ),( 2121 aabbf  

               ),(),( 2211 abab   

            ),(),( 2211 babaf   

f  is a homomorphism and also f  is one-one and on-to 

f  is an isomorphism. 

Hence, 
1221 GGGG   

Theorem 2: Let nGGG ,...,, 21  are n-groups. Then the group nGGGG  ...21 is abelian if and only 

if each of the group ntoiGi 1,   is abelian. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 69  

Proof: First we assume that G is abelian then we will prove that each ntoiGi 1,   will also abelian. 

Let us assume for ni 1  and iGba , . Then  nii eeaeee ,...,,,,...,, 1121 
,  nii eebeee ,...,,,,...,, 1121 

, 

G  and commutativity of G implies that 

  nii eeaeee ,...,,,,...,, 1121   nii eebeee ,...,,,,...,, 1121   nii eebeee ,...,,,,...,, 1121

 nii eeaeee ,...,,,,...,, 1121 
 

   niinii eebaeeeeeabeee ,...,,,,...,,,...,,,,...,, 11211121    

baab   

Thus iGntoi ,1  is abelian. 

Conversely, assume that each ntoiGi 1,   is abelian. Let  naaa ,...,, 21 ,   Gbbb n ,...,, 21
. Then 

iii Gba  and since each iG is abelian, so niabba iiii  1, . 

Now,  naaa ,...,, 21    nnn babababbb ,...,,,...,, 221121   

            nnababab ,...,, 2211  

              nn aaabbb ,...,,,...,, 2121  

iG is abelian 

Theorem 3: If nGGG ,...,, 21  are n-groups then   )(...)()(... 2121 nn GZGZGZGGGZ  . 

Proof: To prove the mentioned theorem, it will be sufficient to prove that result is true for 2n . Let 

two groups are 
21,GG  and also consider

21, GyGx  . Then 

)(),( 21 GGZyx   

21212121 ),(),(),(),(),( GGggyxggggyx   

21212121 ),(),(),( GGggygxgygxg   

22112211 , GgGgygygandxgxg   

)()( 21 GZyandGZx   

)()(),( 21 GZGZyx   

Thus )()()( 2121 GZGZGGZ   

Example 2: Prove by example that product of two cyclic may or may not be cyclic. 

Proof: As we know that 64 , ZZ  are two cyclic group while 64 ZZ   is not a cyclic group because order 

of 64 ZZ   is 24 but 64 ZZ   have no element of order 24. 

In another example 32 , ZZ  are two cyclic group and 32 ZZ   is also a cyclic group because order of 

32 ZZ   is 6 and 32)2,1( ZZ   have order 6. Then by theorem 32 ZZ   is cyclic. 
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Theorem 4: Let two finite cyclic group 
21,GG of order nm,  respectively. Then 

21 GG  is cyclic if and 

only if 1),gcd( nm   

OR 

Element ),( ba  is a generator of 
21 GG  iff elements ba, are individually generators of the group 

21,GG

respectively. 

Proof: First we assume that 
21 GG   is cyclic group and also assume that ),( ba is generator of 

21 GG 

i.e.,  ),(21 baGG . Then mnbaO )),(( . Let ),gcd( nmd  . 

Now ),(),(),( 21 eebaba d

m
n

d

n
m

d

mn

  

d

mn
mn |  

1 d  

Conversely, assume that 1),gcd( nm . Let us consider that a is the generator of 
1G  

(  aG1
) and b is the generator of 

2G (  bG2
). If we denote kbaO ),( then 

),(),(),( 21 eebaba mnmnmn   

mnk |  

Now, ),(),(),( 21 eebaba kkk   

1eak   and 
2ebk  ; and so, knkm |,|  

Then kmnnm |1),gcd(   

Therefore, 2121 )( GGGGOmnk  . 

Hence  ),(21 baGG is cyclic group. 

Corollary: mnnm ZZZ   iff 1),gcd( nm  

Proof: By the previous theorem we know that in a group for any element 
1Ga  of order m and 

2Gb of order n, if 1),gcd( nm , then  

mnbaO )),((  

Hence, 1),gcd(  nmZZZ mnnm  

e.g., Since 3.2321)3,2gcd( ZZZ   or 632 ZZZ   

Theorem 5: For the finite groups 1G  and 
2G  the order of 

21),( GGba   is 

))(),(()),(( bOaOlcmbaO  . 
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Proof: As we know by definition that if 
2121 ,),( GbGaGGba  . Thus 

)(,, 21 aOGbGa  in 1G , )(aO in 
2G and )),(( baO  in 

21 GG  all are finite.  

Now, let n is the least positive integer such that ),,(),( 21 eeba n   

n is the least positive integer such that 
1ean   and 

2ebn   

nbOnaO |)(,|)(             [By theorem that for any integer naOean n |)(,  ] 

Thus, ))(),(()),(( bOaOlcmbaO   

Note: It is not necessary that external direct product of two cyclic group is always a cyclic group. For 

e.g. let ZZ  is a cyclic group such that  ),( baZZ . Since ZZ )1,1( , so Zr s.t., 

11)1,1(),(  orbabar .  

  ZZZnnnba  |),(),( . Which is a contradiction. 

our assumption is wrong that ZZ   is a cyclic i.e., ZZ  is not a cyclic group. 

Theorem 6: Let two groups are 1G and 
2G . Then  

2

'

121 }{/ GeGGG   and 
1221 }/{ GGeGG   

Proof: First we define mapping, 
221: GGGf   s.t.,  

KHyxyyxf  ),(),( . 

So, f is a homomorphism and  

 '21 ),(|),(ker eyxfGGyxf   

             '21 ),(|),( eyxfGGyx   

             1' |),( Gxex   

            }{ '

1 eG   

Since f  is also onto function. Hence by using the first isomorphism theorem 
2

'

121 }{/ GeGGG  . 

Similarly, we have 
1221 }/{ GGeGG  . 

Theorem 7: Let G and 'G are two groups. If H and 'H are two normal subgroups of G and 'G

respectively, then 'HH  is normal in 'GG  and  

'''' /// HGHGHHGG   

Proof: First we will define the mapping, ''' //: HGHGGGf   by, 

'' ),(),(),( GGyxyHxHyxf  . 

Then, '),(),,( GGwzyx  , 

),()),(),(( zwxyfwzyxf   
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                                  ),( 'zwHxyH  

                                  ),(
'''wHyHxHzH   

                                  ),(),(
''' wHzHyHxH   

                                  ),(),( wzfyxf   

f  is a homomorphism and also f is onto. Then by first isomorphism theorem, 

'' //ker/ HGHGfGG   

Now we have only to show that 'ker HHf   

So,  ),(),(|),(ker '' HHyxfGGyxf   

                   ),(),(|),( ''' HHyHxHGGyx   

                   ''' |),( HyHandHxHGGyx   

                   '' |),( HyandHxGGyx   

                   'HH   

Hence the theorem proof. 

5.4 INTERNAL DIRECT PRODUCT 

The external direct products of groups, which give us a way to think of a family of different 

groups as subgroups of a bigger group, were introduced and described in the preceding section. 

Consider two groups 
1G and 

2G  with identical elements 
1e and 2e , respectively, to be more precise. 

Then two normal subgroups of 
21 GG  are   1211 GeGN   and   2212 GGeN  . In this section 

we will consider the reverse problem i.e., in a given group whether there is family of subgroups 

kHHH ,...,, 21  of G such that, 

kHHHG  ...21
 

As we may anticipate, not all groups can achieve it. Even if a group G can exist, certain requirements 

must be met by any subgroups whose exterior direct product is isomorphic to G . The result below 

gives us an idea of the requirements that the subgroups must meet. Going forward, we will no longer 

use   to denote the group operation of the direct product, but rather just multiplicative notation. 

Theorem 8: Let the family of groups are nGGG ,...,, 21 . If nGGGG  ...21  and 

  iiniiii GaeeaeeeH   |,...,,,,...,, 1121  for each ni ...,,2,1 . Then 

1. iH  is a normal in G and ntoiGHi 1  
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2. Every element of G can be expresses uniquely as 
nhhh ...21

where 
ii Hh   for each ni ...,,2,1 . 

Proof 1: Since we know that iH  because   in Heee ,...,, 21  

Let us consider     iniiiniii Heebeeebeeaeeea   ,...,,,,...,,,,...,,,,...,, 11211121
. Then 

   1

11211121

1 ,...,,,,...,,,...,,,,...,,




  niiiniii eebeeeeeaeeeab  

            niiiniii eebeeeeeaeee ,...,,,,...,,,...,,,,...,, 1

1

1211121 



  

           niiii eebaeee ,...,,,,...,, 1

1

121 



  iH  

So, by the necessary and sufficient condition for being subgroup of any group iH is subgroup of G . 

Now for each   Ggggg n  ,...,, 21
,  

  iniiii Heeaggeegag  





 ,...,,,,...,, 1

1

11

1
 

Hence iH is normal in G . 

2:  Let any element   Gaaaa n  ,...,, 21
 where 

ii Ga  so   iniiii Heeaeeeh   ,...,,,,...,, 1121
 for 

each ni ...,,2,1  are s.t., 
nhhha ,...,21  

Now we will prove the uniqueness property. For it suppose 
nkkka ,...,21  where ii Hk   

 niiii eeaeeek ,...,,,,...,, 1121   for some ii Gb  . Then 

  ),...,,(...,...,, 212121 nnn bbbkkkaaaa   

ii ba  and hence nikh ii ,...,2,1  

Since each element in G is of the form nhhh ,...,21  where ntoiHh ii 1 , it follows that 

nHHHG ...21 . Also niHG ii ,...,2,1  

nHHHG  ...21  

Definition: Let ktoiNi 1,  are the normal subgroup of a group G . If each element of G is uniquely 

expressed as kaaaa ...21  where niNa ii ...,,2,1  then G is called internal direct product of 

ktoiNi 1,  . 

The word "internal" emphasises the fact that all of the components of the group iN  must be subgroups 

of the same group G  and that the product kaaaa ...21  formed by the members of the group 

kNNN ,...,, 21 is truly a product of the group G . 

Example 3: For the Klein’s 4-group },,,{4 cbaeK  , },{1 aeH   and },{2 beH  are normal subgroup 

of 4K group. Now, 
421 },,,{},}{,{ KcbaebeaeHH   
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  Each element of 4K group is expressed as product of an element of normal subgroup 
1H  and an 

element of 
2H . 

Now, we have only to prove the uniqueness property, for it assume 
121, Hxx   and 

221, Hyy   such 

that 
2211 yxyx  . Then }{21

1

121

1

2 eNNyyxx 


 

1

121

1

2


 yyexx  

21 xx   and 
21 yy  . 

Hence, 4K group is internal direct product of normal’s 
1H and

2H .  

Example 4: As we know for every nonzero complex number z  has unique representation irez   

where || zr   and ampz . Then group of positive real numbers ( Rr ) and  

 1|||1   uCuSei . Hence C  is internal direct product of R  and 1S . 

Example 5: Set of integer ( Z ) cannot be represented as internal direct product of two subgroup of Z . 

It is to note that for distinct non zero integer m and n ,  0 nZmZnZmZmn . 

A group must meet the following requirements in order to be an internal direct product of a certain 

family of normal subgroups. This lemma is required in order to demonstrate this result. 

Lemma 1: Let kHHH ,...,, 21  are normal subgroup of G . If 

    kieHHHHHH kiii ,...,2,1......, 1121  
 then jiHxHxxxxx jjiiijji  ,, . 

Proof: Let us consider ii Hx   and jj Hx  . Then   jjijijiji HHxHxxxxx 
 111

, since jH is 

normal in G .  Similarly, ijiji Hxxxx 
 11

. 

Hence 


jijiji HHxxxx
11   }{......, 1121 eHHHHHH kiii  

 

And so ijji xxxx  . 

Theorem 9: Let kHHH ,...,, 21  are normal subgroup of G . Then G is the internal direct product of 

kHHH ,...,, 21  iff 

(i) kHHHG ...21  and 

(ii) }{)......( 1121 eHHHHHH kiii   for each ki ,...,2,1  

Proof: Let we assume that G internal direct product of normals kHHH ,...,, 21  of G . Then  ,Ga  

unique ii Hx   s.t., kxxxa ...21 and so kHHHa ...21 . Hence kHHHG ...21 . Also  

,...21 GHHH k  since every iH is subgroup of G . Thus kHHHG ...21 . Now consider 
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)......( 1121 kiii HHHHHHa  . Then iNa  and 
kii xxxxxa ...... 1121   for some 

kiijNx jj ,...,1,1,...,1,   

kii aeaaaaeeaee ............ 111  . 

Since each such representation is unique, it follows that ea  . Thus 

}{)......( 1121 eHHHHHH kiii  
 for each ki ,...,2,1 . 

Conversely, assume the given condition satisfies by the family of normal subgroup kHHH ,...,, 21 . 

Then , 

GxHHHG k  ,...,, 21
 can be represented as kxxxx ...21  where ii Hx  . 

Now we have to prove that such representation is unique. For it, let us suppose that another 

representation is 
kyyyx ...21  where ii Hy  . Then by lemma 1, 

kk yyyxxx ...... 2121   implies that 

))...()()...()((
11

11

1

11

1

22

1

11

1 








 kkiiiiii xyxyxyxyxyyx  

              }{)......( 1121 eHHHHHH kiii  
 

Thus, kiyx kk ...,,2,1  

representation is unique for every Gx .  

Corollary: Let 
1N  and 2N  are normal subgroup of G . Then G is internal direct product of 

1N  and 

2N  if and only if 
21NNG   and }{21 eNN  . 

By the definition of internal direct product we can stated it as:  If 
21 NNG   then G is internal direct 

product of the normals 
1NG   and 

2NG  . 

Conversly, up to isomorphism, every internal direct product can also be realised as an external direct 

product. 

Theorem 10: If G is the internal direct product of the normal subgroups kHHH ,...,, 21 , then 

kHHHG  ...21
. 

Proof: First we define, 
kHHHGf  ...: 21
 by, 

Gxxxxxxxxxf kkk  ),...,,()...()...( 212121  

By the previous theorem we know that every element in G has the unique representation kxxx ...21  for 

Gxi  , so f  is well defined and also one-one and on-to both. 

Now for each Gyyyyxxxx kk  ...,... 2121 , 

)......()( 2121 kk yyyxxxfxyf   

             )...( 2211 kk yxyxyxf          [By Lemma 1] 
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             ),...,,( 2211 kk yxyxyxf  

             ),...,,(),,...,,( 2121 kk yyyxxx  

             )()( yfxf  

f  is an isomorphism. 

5.5 CAUCHY’S THEOREM 

Theorem 11: Let p  is a prime and G is a finite group s.t. )(| GOp , then Gx  s.t., .)( pxO   

Proof: First we prove the result for finite abelian group G by the induction on )(GOn  . Since result 

is true for 1n . Assume that it is true for all group having order less than )(GO . If Group has non-

trivial subgroup then G is cycilc group of prime order. 

Since  xGpGOGOp ,)(),(| s.t. pGOxO  )()( . So result follows. 

Let now H be a non-trivial subgroup of G i.e., }{eH  , G . Since G is abelian, H is normal in G . If 

)(| HOp , then, by induction hypothesis as HGOHO ),()(  is abelian, Hx s.t. 

GxHxpxO  ,)( . So, result is again true. 

Let p  is not divisor of )(HO .  

Since )./()( HGOGO   )(HO  and )(| GOp , we find )(.| HO
H

G
Op 








 

But p  is not divisor of )(HO , hence )/(| HGOp . Also )(GO
H

G
O 








 as }{eH  and G is abelian 

means 
H

G
 is abelian. 

So, by induction hypothesis 
H

G
has an element Hy of order p . 

 HHy p )(  

HHy p   

Hy p   

ey tp  )(   where )(HOt   

ey pt  )(  

pyO t |)(  

1)(  tyO   or p  
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If  ey t     (i.e. )1)(( tyO then HHeHy t   

HHy t  )(  

tHyO |)(  

)(| HOtp  , which is a contradiction 

GypyO tt  ,)(  

Hence for this case result is true. 

By induction, result is true for all abelian groups. 

Let now G be a any group. We again use induction on )(GO . The result is vacuously true for 

1)( GO . Assume result is true for all groups with order less then )(GO . If GT   and )(| TOp  then 

by induction hypothesis Tx s.t. pxO )( . So, result is true in this case. Assume p is not divisor of 

)(TO  for all GT  . Consider the class equation of G  





)( ))((

)(
))(()(

GZa aNO

GO
GZOGO  

Now GaNGZa  )()(  

p  is not divisor of ))(( aNO  

))((

)(
|

aNO

GO
p         [as ))((.

))((

)(
)( aNO

aNO

GO
GO  ] 





)( ))((

)(

GZa aNO

GO
p  

Since )(| GOp , we have ))((
))((

)(
)(|

)(

GZO
aNO

GO
GOp

GZa

 


 

But p  is not divisor of GTTO )(  

And GGGZ )(  is abelian. 

But result is true for abelian groups. Hence, by induction, result is true for all groups.  

Example 6: Prove that an abelian group of order pq  (where qp, are distinct primes) is cyclic.  

Solution: Using the Cauchy’s theorem, Gba  ,  s.t., qbOpaO  )(,)( . Also as 

baabqp  ,1),gcd(  

pqbOaOabO  )().()(  

i.e., ab is an element of G having order equal to )(GO . Hence by theorems G is cyclic groups.  

For e.g., abelian group of order 6, 10, 15 are all cyclic 

Example 7: Any group )(G of order n2 , where n is odd integer )1( , is not simple. 
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Solution: Let a be any element of the group G . Define, 

GGfa :  s.t., 

axxfa )(  

Then af  is 11  onto map, i.e., a permutation 

Let 'G Collection of such permutations then 'G forms a group and 'GG  . 

Since )(|2 GO , then by Cauchy’s theorem there exist an element Gg , s.t., 2)( gO and 'Gf g  . 

As we know every permutation can be written as product of disjoint cycles either 1-cycle or 2-cycle as 

2)( gO  i.e., eg 2  

Notice )())(()( 22
xIxxgxfgfxf gg   

If g 
2

 

For permutation of 3-cycle Icbacba 2)(),( . 

Since, permutation gf in the cycle form cannot have any 1-cycle also, as suppose (x) is a 1-cycle then 

xx   

i.e., egxgxxxf g )(  

not true as 2)( gO . 

Hence gf  as permutation can be expressed as product of 2-cycles only. Since nGO 2)(  there can be 

n two cycles. 

So gf can be expressed as product of n (odd) number of transposition or that gf is an odd permutation. 

Thus in the even permutation 'G has 2/n elements. 'Gf g  , gf is odd, so 'G contains both even and 

odd permutations. 

If H  contains only even permutations then, 

2
)(

)(

2

)(
)(

''


HO

GOGO
HO  

H is of index 2 in 'G and is, therefore, normal. 

Since GG '  and 'G has a normal subgroup, G will have a normal subgroup or that G is not simple.  

For e.g., any group having order 30 is not simple as 15.230)( GO .  

Check your progress 

Problem 1: Check that the group having order 34 is simple or not? 

Problem 2: Check that the abelian group having order 34 is cyclic or not? 
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Problem 3: Which of the following external direct product of groups are cyclic and why? 

                    (i)    64 ZZ                                                                 (ii)    32 ZZ   

 

5.6 SUMMARY 

In this unit, we have studied about the external direct products, internal direct products and Cauchy’s 

theorem for finite abelian group and also there related theorems and examples. After completions of 

this unit learners are able to memorise the following things: 

 External direct product of groups is also a group and this direct product does not affected by the 

operations of each individual groups.  

 External direct product of infinite cyclic groups is not cyclic group and also external direct 

product of finite cyclic groups may or may not be cyclic. 

 Any group of order n2 , where n is odd integer )1( , is not simple 

5.7 GLOSSARY 

 
nGGGG  ...321
 denotes the external direct product of the groups 

nGGGG ,...,,, 321
 

 If  are normal subgroup of . Then is the internal direct product of 

 iff  and  for each  
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5.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. If 
1G  and 

2G are two finite groups. Then prove that for each element 
1Ga and 

2Gb , the 

order of the element ),( ba in the group 
21 GG   is ))(),(( bOaOlcm . 

2. If 
1G  and 

2G are two groups. Then 
22121 }{/ GeGGG   and 

12121 }/{ GGeGG   

3. If 
1G  and 

2G are two groups and
21, HH  are two normals of 

21,GG respectively then prove that

21 HH  is normal in 
21 GG  and 

22112121 /// HGHGHHGG   and 

12121 }/{ GGeGG   

4. Let  are normal subgroup of . Then prove that is the internal direct product 

of  iff 

(i)  and 

(ii) for each  

5. If nGGG ,...,, 21
 are the family of groups s.t.,  and 

 for each . Then prove that 

(i)  is a normal in and  

(ii) Every element of can be expresses uniquely as where  for each . 

6. Prove that if any group G is internal direct product of normal subgroups kHHHH ,...,,, 321  

then, kHHHHG  ...321  

7. If any prime p divides the order of any group G then  s.t.,  

8. Prove that for any group )(G having order n2 , where n is odd integer )1( , is not simple. 

9. Prove that mnnm ZZZ   if and only if 1),gcd( nm  

Short Answer Type Question: 

10. Prove that ZS 3 non-commutative and non-cyclic infinite group. 

11. Prove that the external direct product of two cyclic groups 
4Z and 6Z is not cyclic. 

kHHH ,...,, 21 G G

kHHH ,...,, 21

kHHHG ...21

}{)......( 1121 eHHHHHH kiii   ki ,...,2,1

nGGGG  ...21

  iiniiii GaeeaeeeH   |,...,,,,...,, 1121 ni ...,,2,1

iH G ntoiGHi 1

G nhhh ...21 ii Hh  ni ...,,2,1

Gx .)( pxO 
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12. Prove that the external direct product 
21 GG  of two groups 

1G and 
2G is abelian if and only if 

1G and 
2G both are abelian. 

13. Prove that external direct product of two infinite cyclic group is not cyclic. 

14. If H and K are two normal subgroup of G . Then G is internal direct product of H and K if and 

only if HKG  and }{eKH  .  

Fill in the blanks: 

15. 32 ZZ   is isomorphic to  ………….  

16. Group of order 74 is …………………. group. 

17. Any abelian group of order 35 is …………. 

18. The external direct product of N (set of natural numbers) and Z (set of integers) is…… 

19. mnnm ZZZ   iff ),gcd( nm ……… 

5.11 ANSWERS 

Answer of self cheque question: 

1. No  2. Yes  3.       is cyclic because gcd(2,3) = 1. 

Answer of terminal question: 

15. 
6Z  16. Simple  17. Cyclic  

18. not a group 19. 1   

 

 

 

 

 

 

 

 

 

 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 82  

Unit-6: SYLOW SUBGROUPS, SYLOW’S THEOREM AND 

THEIR APPLICATIONS 

 

CONTENT: 

6.1 Introduction  

6.2  Objectives 

6.3  p- Group 

6.4  Sylow’s Theorems 

 6.4.1 Sylow’s First Theorem 

 6.4.2  Sylow’s Second Theorem 

 6.4.3 Sylow’s Third Theorem 

6.5 Summary 

6.6  Glossary  

6.7   References 

6.8  Suggested Readings 

6.9  Terminal Questions 

6.10 Answers 

6.1 INTRODUCTION 

Norwegian mathematician Peter Ludwig Mejdell Sylow (12 December 1832 – 7 September 1918) 

established key ideas in group theory. 

He was born and passed away in Christiania, which is now Oslo. Sylow was the brother of Carl Sylow, 

a military commander and sports figure, and the son of government minister Thomas Edvard von 

Westen Sylow. He attended Christiania Cathedral School in 1850 and Christiania University in 1856. 

Sylow taught in the high school at Hartvig Nissen School before going on to lead Halden as its 

headmaster from 1858 to 1898. 
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Peter Ludwig Mejdell Sylow 

12 December 1832 –7 September 1918 
https://en.wikipedia.org/wiki/Peter_Ludwig_Mejdell_Sylow#:~:text=Sylow%20was%20a%20high%20school,his%20theorems%20regarding%20Sylow%

20subgroups 
 

In 1862, he taught Galois theory as a guest lecturer at Christiania University. He then raised the 

query that resulted in his theorems concerning Sylow subgroups. After publishing the Sylow theorems 

in 1872, Sylow spent the next eight years of his life working with Sophus Lie to edit his countryman's 

mathematical writings, Niels Henrik Abel. He was appointed as a professor at the University of 

Christiania in 1898. 

He received the Kronprinsens gullmedalje (Crown Prince's Gold Medal) from the University of 

Oslo in 1853. He was chosen for admission to the Norwegian Academy of Science and Letters in 

1868. He received an honorary degree from the University of Copenhagen in 1894, and he afterwards 

joined Acta Mathematica as an editor. 

Three conclusions on the structure of finite groups were proven by the French mathematician 

M. L. Sylow, and they are used to describe simple groups. It's noteworthy to note that M. L. Sylow 

was able to demonstrate same conclusions for permutation groups. George Frobenious was inspired by 

the Cayley's Theorem to demonstrate the Sylow Theorems in a broader context. Here, we demonstrate 

the Sylow Theorems using group action methods. To do this, we must first demonstrate the following 

two findings on group behaviour. 

We will talk about Sylow's three theorems, p-groups, and their applications in this unit. The 

concepts created are so valuable that much about a group's nature may be understood just by knowing 

its arrangement.  

6.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the Sylow’s group which is the extension of Lagrange’s theorem. 

 Implementation of Sylow’s theorems to find the number of subgroups of the group on the basis 

of order of the group. 

https://en.wikipedia.org/wiki/Peter_Ludwig_Mejdell_Sylow#:~:text=Sylow%20was%20a%20high%20school,his%20theorems%20regarding%20Sylow%20subgroups
https://en.wikipedia.org/wiki/Peter_Ludwig_Mejdell_Sylow#:~:text=Sylow%20was%20a%20high%20school,his%20theorems%20regarding%20Sylow%20subgroups
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 Analyze the theorems related to Sylow’s theorem and Sylow groups.  

6.3 p-Group 

Definition: Any group is called p-group if its each element has order rp where p prime. Here it 

should be remember that p will be same for all element of group and only r may different for different 

elements.  

e.g., In the  )32)(41(),42)(31(),43)(21(,4 IK   group and the Quaternian group 

 kjiQ  ,,,18
, each elements are of order r2 . So, these groups are called 2-group. 

Here we will learn about mainly about the finite groups. 

Theorem 1: Any finite group G is p-group iff npGO )( . 

Proof: Let we assume that G is p-group then there exist prime q s.t., )(| GOq . Then by Cauchy’s 

theorem there exist an element Ga s.t., qaO )( . But according to definition of p-group rpaO )( . 

rpq   

pq   i.e., p is the only element s.t., )(| GOp . Thus npGO )(  

Conversely, let we consider npGO )(  and any element Ga . Then by Lagrange’s theorem 

rn pxOpGOxO  )()(|)(  

Hence, order of each element of group is of the form rp . So, G is p-group. 

Note (i): Each p-group has non-trivial centre because each group of order np , 1))(( GZO . 

(ii): Any p-group may or may not be abelian. For e.g., 4K is abelian and 8Q is not abelian while both 

are 2-group. 

Example 1: Let KH , are two subgroup of finite group G then either KH  or HK  . Then prove 

that G is p-group. 

Solution: If G is a cyclic group of prime order and G has no proper subgroup, thus result is true. 

Let us suppose that )( GH   is a proper subgroup of G . 

First we will prove that G will be cyclic. 

Since ,, GxGH 


s.t., Hx . 

Let , xK  then HK  as HxKx  ,  

So, according to given condition, KH   

If GK   then G is cyclic (as K is cyclic) 

Suppose GK   then Gy s.t., Ky  
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Let  yL  then KL  and by given condition LK   

If GL  , G  will be cyclic, GL  proceed as above and as G  is finite, after a finite steps, we find that 

G is cyclic. 

 To prove that G is p-group, suppose two distinct primes qp, s.t., )(|, GOqp . Since G is cyclic, 

  subgroup H and K of G with qKOpHO  )(,)(  (For the cyclic group convers of Lagrange’s 

theorem holds) 

Now, KH  as )(|)( KOHO   

HK  as )(|)( HOKO   

Wherever there is a conflict with the claimed statement. 

Hence only one prime dividing )(GO or that G is a p-group. 

Converse of this example also holds. 

Example 2: If H and K are two subgroup of a finite cyclic p- group G then either HK  or KH  . 

Proof: Let  xG is cyclic group and x is its generator, then npxOGO  )()(  where p prime. 

Let  mxH  

Let ),gcd( npmd   

Then Hxxxxx
ann mbpmabpmad   )(.  [as npxO )( ] 

Thus, Hxd   

Again as md | , dqm   

So,  dqdm xxx )(  

Or that  dm xxH  

And hence  dxH  where npd |  

And so 
ipxH  

Let K is another subgroup of G , then 
kpxK . Suppose ki  and let tki  where 0t  is an 

integer. 

Now   Kxxx
t

ktki p
ppp 



 

KxH
ip   

If ,ik   then HK   

Hence prove the result.  

Example 3: Prove that each proper subgroup is proper subgroup of its normalizer in finite p-group G .  

OR 
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If ,,,)( GHGHpGO n  then ,, HgGg  s.t. HgHg 1  

Solution: We will prove result by induction method on n . Let 1n . Then pGO )( . Since GH  , 

1)( HO . 

}{eH   or .}{}{ 11 GgeHegeggHg    

Hgeg   

Thus it is true for 1n . Let it is true for all groups which have order less than np . Let npGO )( . 

Suppose )(HNH  . 

Since GHHHNGZ  ,)()(  

)(GZ

H
is a proper subgroup of 

)(GZ

G
  

Now, nmp
GZ

G
O m 








,

)(
 

For convenience, we write NGZ )( , then by induction hypothesis, 
N

G
Ng  , 

N

H
Ng  , s.t. 

 
N

H
Ng

N

H
Ng 

1
 

Hh
N

H
NgNhNg  1  

1

1 NhNghg   for some Hh 1
 

HGZNhghg 
 )(

1

1

1
 

HhHghg  1  

HgHg  1  

HgHg  1  as )()( 1 HOgHgO    

Thus )(HNg  and as Hg
N

H
Ng  , , or that HHN )( , a contradiction. Hence )(HNH   

Thus result is true for n also. 

By induction, result is true for all 1n . 

Example 4: Let for a prime ( p ) npGO )( . If GH  s.t. 1)(  npHO , then show that H is normal 

subgroup in G.  

Solution: GHNH  )(  

Since nn pGOHNpHO   )(|)(|)( 1  
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1))((  npHNO or np  

If )())(( GopHNO n   

Then GHN )(  

And so H is normal in G . 

If 1))((  npHNO  

Then HHN )(  

Since HHNGZ  )()(  

mnp
GZ

H
O 







 1

)(
, where  0,))((  mpGZO m  

and mnp
GZ

G
O 









)(
, 

Now we will prove result by induction method on n . When }{,1 eHn   and so H is normal in G . 

Assume result to be true for all p groups with order less then )(GO . Here 
)(GZ

G
is a p group s.t., 

nmnp
GZ

G
O mn 







  ,
)(

 (as 0m ) and .
)(

1






 mnp
GZ

H
O By induction hypothesis, 

)(GZ

H
is 

normal H
GZ

G


)(
is normal in G . So GHGHN )( , a contradiction. Thus, 1))((  npHNO . 

So result is true for n also. Hence, result is true for all 0n  

Lemma 1: Let G be a group of order np , p be a prime and S  be a finite G -set. If 

 GgagaSaS  |0 , then )(mod|||| 0 pSS   

Proof: Let Sa . Then 0Sa  if and only if the orbit }{][ aa  , equivalently 1|][| a  . Hence 

S  can be written as a disjoint union ][...][][ 210 kaaaSS   where ][],...,[],[ 21 kaaa  are 

distinct orbits of G on S  and disjoint with 0S . Then |][|...|][||][||||| 210 kaaaSS  . Since 

0Sai  , so there is Gg  such that 
iaii Ggaga  and so |||| GG

ia  . Thus 1
||

||
||][| 

ia

i
G

G
a . 

Then 1||][| ia  and kiappGGGa i

n

ai i
 1|][|||||]:[|][| . Hence 



k

i

iap
1

][| and it follows that

)(mod0 pSS  . 

Recall that if every element of a group G has order 0; np n for some fixed prime p , then G  
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is called a p - group. With the help of Cauchy's Theorem we have proved that a finite group G  is a p - 

group if and only if npG  for some 0n . 

We call a subgroup H  of a group G a p -subgroup if H  is a p -group. In particular, for every 

prime p , }{e is a p -subgroup of every group G , since 01}{ pe  . 

Lemma 2: If H is a p -subgroup of a finite group G , then )(mod]:[]:)([ pHGHHNG  . 

Proof: Let S  be the set of all left cosets of H  in G. Then SSH  given by HgaaHg )(),(  is an 

action of H on S . Since H  is a p -group, )(mod0 pSS  . 

Here ]:[ HGS  . Now for Ga , 

GggaHSaH  0
 

GgHgaa  1  

HHaa  1  

)(HNa G  

shows that 0S is the set of all left cosets aH such that that )(HNa G , that is HHNS G :)([0  . 

Hence )(mod]:)([]:[ pHHNHG G . 

Corollary 1: Let p  be a prime and H  be a p -subgroup of a finite group G . If ]:[| HGp , then 

HHNG )( . 

Proof: Since G  is a finite group and H  is a p -subgroup of G , so 

)(mod]:)([]:[ pHHNHG G  

Then ].:)([|]:[| HHNpHGp G  Since 0]:)([ HHNG it follows that pHHNG ]:)([ and the 

result follows. 

6.4 SYLOW’S THEOREMS 

Now we will discuss about the three main fundamental theorem of Sylow’s named as Sylow’s theorem 

and also their implementation in various examples.  

6.4.1 SYLOW'S FIRST THEOREM 

Theorem 2: (Sylow's First Theorem) Let G be a finite  group of order mpn , where p  is a prime, 

0n  and 1),gcd( mp . Then G has a subgroup of order nipi 1 . Moreover, for every 

subgroup of order nip i  , there is a subgroup K  of order 1ip such that H is normal in K . 
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Proof:  We prove that G has a subgroup H of order nipi 1 by induction on i . Since 

Gpn |,0  and it follows from the Cauchy's Theorem that G has a subgroup H of order p .  

Assume that H is a subgroup of order nipi 1, . Since H is a subgroup of order ip , so 

)](mod:)([]:[ pHHNHG  . Then HHNHHNpHGp /)(]:)([|]:[|  , and 

it follows from the Cauchy's Theorem that the quotient group HHN /)( has a subgroup HK / of 

order p . Thus G has a subgroup K such that 1./  ipHHKK . Hence, by the principle 

of mathematical induction, G  has a subgroup of order ip for every ni 1 . Finally, )(HNK   

shows that H is normal in K . 

As an immediate consequence we have following extension of Cauchy's Theorem: 

Corollary:  Let G be a finite  group and p  be a prime. If || Gpn , then G has a subgroup H  of order 

np . The second part of the Sylow's first  theorem motivates us to introduce the notion of maximal 

p -subgroups. 

Definition: Let p be a prime, then a subgroup P of G is called a Sylow p -subgroup if it is a 

maximal p -subgroup of G , that is, if H is a p -subgroup of G and GHP   then HP  . If G is 

a finite group then G can have only finitely many subgroups and a maximal p -subgroup. 

If G is infinite then, also G has a maximal p -subgroup, by the Zorn's Lemma. Thus, for every prime 

p every group G  has a Sylow p -subgroup, though they may be trivial. 

We have following equivalent characterization of Sylow p -subgroups. 

Theorem 3: Let G be a finite group of order 0, nmpn and 1),gcd( mp . Then a subgroup H is a 

Sylow p -subgroup of G  if and only if npH || . 

Proof: First assume that H is a subgroup of G such that npH || . Let K be a p -subgroup of G such 

that KH  . Since K  is a p -subgroup, so 
rpK  for some 0r . Now by the Lagrange's Theorem, 

GK  i.e. mpp nr   and 1),gcd( mn together implies that nr  . Also rnKH  . Thus nr 

and 
npKH  . Hence KH   and H is a maximal p subgroup. 

Conversely, suppose that H  is a Sylow p -subgroup. Then 
rpH  for some 0r . Now, by the 

Lagrange's Theorem, ,GH  that is mpp nr |  and nrmn 1),gcd( . If nr   

then, the Sylow's first theorem H is contained in a subgroup K of order 1rp which contradicts that H  

is a maximal p -subgroup of G . Thus nr  and 
npH   
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Following result has an important role to characterize the nilpotent groups. 

Theorem 4: Let G be a finite group. If every Sylow subgroup of G is normal, then G is a direct 

product of its Sylow subgroups. 

Proof: Let kn

k

nn
pppG ...21

21 where ip are distnict primes. Since each Sylow subgroups of G  is 

normal, so G has unique Sylow ip -subgroup for every ip , say iP . Let ii Pa   and jj Pa  , where 

ji  . Since both iP and jP are normal, so jijiji PPaaaa  11 . 

Now   1,gcd ji PP  

by the Lagrange's Theorem, that 1 ji PP  and so }{ePP ji  . Thus ijji aaaa  . Now let 

 krrr PPPPPPa ...... !121  . Then 
krr aaaaaa ...... !121   

where ii Pa  . Now ii PaO |)( , that is in

ii paO |)( . Thus rn

rpaO |)( and jiaaaa ijji   

krr n

k

n

r

n

r

n
ppppaO ......|)( 111

111


 . Since   1......,gcd 111

111 


krrr n

k

n

r

n

r

nn

r ppppp . So 1)( aO  and 

ea  . Thus   }{...... !121 ePPPPPP krrr  
 

||......||...||||...||||...... 111

111!121!121 GppppPPPPPPPPPP krr n

k

n

r

n

r

n

krrkrr  

  

Hence 
krr PPPPPG ...... !121  and G is an internal direct product of the Sylow subgroups 

krr PPPPP ,...,,,...,, !121 
. 

Lemma: Let G be a finite group of order mpn , where p is a prime, 0n and 1),gcd( nm . 

(i) Every conjugate of a Sylow p -subgroup is also a Sylow p -subgroup. 

(ii)  If G has unique Sylow p -subgroup P , then P is normal in G . 

Proof (i): Let H be a Sylow p -subgroup of G  and K  be a conjugate of H . Then 1 aHaK for 

some Ga which implies that npHK  . Hence K is a Sylow p -subgroup of G . 

(ii): Let H be the unique Sylow p -subgroup of G . Then 1,  gHgGg , is a Sylow p -subgroup and 

uniqueness of H implies that HgHg 1 . Hence H is a normal subgroup of G . 

The converse of this results is also true and can be verified by following theorems. 

6.4.2 SYLOW'S SECOND THEOREM 

Theorem 5: (Sylow's Second Theorem) Let G be a finite group of order mpn , where p is a prime, 

0n  and 1),gcd( nm . Then any two Sylow p -subgroups of G are conjugate, and also isomorphic. 

Proof: Let K  and H are two Sylow p -subgroups of G .  
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Denote  GaaHS  and define an action of K on S by HkaaHk )(),(  . Since K  is a p -group, 

so it follows that 

)(mod0 pSS  , where 

     HKaaSaHKkHkaaSaHKkaHHkaSaHS   11

0 ||)(| . 

Now   Spm
H

G
HGS |

||

||
:  , since 1),gcd( mp  and 0| Sp  . Thus 00 S . Let 0SaH  . 

Then HKaa 1 . Since ||||1 HpKKaa n  , so HKaa 1 . Hence K and H are conjugate. 

We have following useful corollaries. 

Corollary:  Let K  be a finite group and P  be a Sylow p -subgroup of G . Then P is normal inG  iff it 

is the unique Sylow p -subgroup of G . 

Proof: First assume that P is normal. Let Q be a Sylow p -subgroup of G . Then P and Q are 

conjugate, by the Sylow's second theorem. Hence there is Ga  such that 1 apaQ . Since P is 

normal in G , so PaPa 1 . Therefore PQ   and G has unique Sylow p -subgroup. 

The converse follows from the Lemma 1. 

Corollary: Let G be a finite group. Then for every Sylow p -subgroup P  of G  

)())(( PNPNN   

Proof: Let ))(( PNNa  then )()( 1 PNaPaN  and so )(1 PNaPa  .  

Now  1aPaP both P and 1aPa are Sylow p -subgroup of G and hence )(PN . 

Since P  is normal in )(PN , so P is the unique Sylow p -subgroup of )(PN , and it follows that 

1 aPaP . Thus )(PNa and )())(( PNPNN  . Therefore )())(( PNPNN   

The number of Sylow p -subgroups within a group G  has been defined via Sylow's third theorem. 

Assume S  is the collection of all Sylow p -subgroups. Every Sylow p -subgroup's conjugate is 

likewise a Sylow p -subgroup, hence for any subgroup H  of G , 

SSH  , given by 

1),(  aPaPa , is an action of H  on S . Also any two Sylow p -subgroup are conjugate on S , which 

implies that if G acts on S  by conjugation then there is single orbit of G  on S . 

6.4.3 SYLOW'S THIRD THEOREM 

Theorem 6: (Sylow's Third Theorem) Let G be a finite group of order mpn , where p  is a prime, 

0n and 1),gcd( pm .  
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Then the number of Sylow p-subgroup ( pn ) is of the form kp1  for some 0k  and is such that 

mpn n

p | . 

Proof: Let S  be the set of all Sylow p -subgroups of G  and P  be a Sylow p -subgroup. Consider 

action of P  on S  by conjugation, that is 

1),(  pHpHp  

Since P is a p -group, so )(mod0 pSS  , where  PpHpHpSHS  1

0 |  =

 )(| HNPSH  . Then 0SP and 0S . Let 0SQ then )(QNP  . Since both QP,  are 

Sylow p - subgroups of G , so they are Sylow p -subgroups of )(QN  and are conjugate in )(QN . Let 

)(QNa such that 1 aQaP . But then QP  , since QaQa 1 . Hence }{0 PS  and it follows that 

)(mod1|| pS  , that is kpS 1|| for some 0k . 

To prove the second part, consider action of G on S  by conjugation. Then there is only one 

orbit of G on S , and so ][ pS   for every Sylow p -subgroup P  of G . Thus 

]:[|][||| pp GGPSn   

and hence Gnp |  

Applications of Sylow’s theorem for finite group are given below, 

Example 5: Let G be a group of order 5.345 2 . Denote the number of Sylow 3-subgroups of G  by 

3n . Then 133  kn for some 0k and 45|3n . Hence 13 n  and G  has unique Sylow 3-subgroup  

H . Thus H  is a normal subgroup of G  of order 932  . 

Example 6: We will prove that each group having order 99 is abelian. 

Let G  be a group of order 23.1199  . Let 3n  be the number of Sylow 3-subgroups of G . Then, 

133  kn  for some integer 0k and 99|3n . It follows that G  has unique Sylow 3-subgroup, say H  

which is normal in G  and .9|| H  Similarly G has unique Sylow 11-subgroup, say K which is 

normal in G and 11|| K . Then }{eKH   and 99||||||  KHHK  implies that HKG  . Thus G  

is an internal direct product of H  and K . Hence KHG  . Since 23|| H , so H  is abelian and 

11|| K implies that K  is abelian. Therefore G  is abelian. Also note that 99ZG   or 333 ZZ  . 

Example 7: We will prove that each group having order 15 is cyclic. 

Let G  be a group of order 5315  . Denote the number of Sylow 3-subgroups of G by 3n . 

Then kn 313  for some 0k  and 15|3n . Hence 13 n and G has unique Sylow 3-subgroup, 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 93  

say H . Then H  is normal in G . Similarly G has unique Sylow 5-subgroup K  and so K  is normal in 

G . Since ,1|)||,gcd(| KH so 1|| KH and we have 

15
||

||||
|| 




KH

KH
HK  

Thus HKG  and G becomes an internal direct product of K  and H . Now 3|| H , a prime 

implies that 3ZH  . Similarly 5ZK  . Therefore, 

1553 ZZZKHG   

Example 8: Prove that each group having order 255 is cyclic. 

Let G be a group of order 3.5.17255  . Let 17n be the number of Sylow 17-subgroups. Then 

11717  kn for some integer 0k  and 255|17n implies that 117 n . Thus G  has unique Sylow 17- 

subgroup, say H  which is normal in G  and 17|| H . Then the normalizer of H  is GHN )( . Since 

)(

)(

HC

HN
 is isomorphic to a subgroup of )(HAut , so 

)(

)(

HC

HN
 divides .|)(||)(| 17ZAutHAut   Now 

1717 )( UZAut   implies that 
)(HC

G
 divides 16. Also 255||

)(
G

HC

G
. Then 1)255,16gcd(   

1
)(


HC

G
 and )(HCG  . Thus every element of H  commutes with every element of G , whence 

)(GZH  . Then |)(|17 GZ , which also divides 255. Hence 25585,51,17|)(| orGZ   and so 

.13,5,15
)

or
ZG

G
  But every group of order 13,5,15 or is cyclic; and it follows that G  is abelian.  

Now, by the fundamental theorem for finite abelian groups, 2553517 ZZZZG  . 

Now we characterize all groups of order p2 , where p  is a prime. 

Theorem 7:  Let p be an odd prime. If G is a group of order p2 , then pZG 2 or pDG  .  

Proof: Let G  be a group of order p2 . Then Cauchy's Theorem implies that G  has an element a of 

order p  and an element b  of order 2. Denote  aH . Then 2]:[ HG  implies that H  is normal 

in G . So Hbabbab  1  which implies that iabab   for some pi 0 . Then 

bbababbabaa iiiiii   )()()( 12

.  Also  iabab  bbababa ii   11 . Thus aai 
2

, that is, 

ea i 12

 and so )1)(1(1| 2  iiip , since paO )( . Since p is a prime so 1| ip  or 1| ip . 

If 1| ip , then 01 ipi  i.e. 1i . Then ;abab  and so ababba  1 , forcing 

pplcmbOaOlcmabO 2),2())(),(()(  , since p  is an odd prime. Hence pZG 2 . 
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If 1| ip  then 1 pki  for some integer k , and we have 11   pi aaabab that 

is, bababa pp 111   . Also we have  aH is normal in G such that 2
H

G
. Since 

|||2)( HpbO  , so Hb and HbH  . Thus  bHHHG ,/ . Therefore every element of G  

can be written as nmab and so  baG , . Since 2)(,)(  bOpaO and ,1baba p it follows 

that pDG  .  

Example 9: Let 30)( GO . Then show that 

(i) Either Sylow 3-subgroup or Sylow 5-subgroup is normal in G . 

(ii) G has a normal subgroup of order 15. 

(iii) Both Sylow 3-subgroup and Sylow 5-subgroup are normal in G. 

Solution: 53230)( GO  

The number of sylow 3-subgroup is k31  and 010|)31(  kk  or 3  

If 0k , then sylow 3-subgroup is normal. 

Let 0k , then 3k . This gives 10 Sylow 3-subgroup iH of order 3 and so we have 20 elements of 

order 3.  

[For ji  , 1)(3)(|)(  jiiji HHOHOHHO  only and so these 20 elements are different. 

Each iH has one element e of order 1 and other two of order 3. 

3,1)(3)(|)(  aOHOaOHa ii ]. 

The number of sylow 5-subgroup is '51 k and 06|)51( ,'  kk  or 1. 

If 0' k . Then sylow 5-subgroup is normal. 

Let 0' k . Then 1' k . This gives 6 Sylow 5 subgroup each of order 5 and we get 24 elements of 

order 5. But we have already counted 20 elements of order 3. Thus we have more than 44 elements in 

G , a contradiction. So, either 0k or 0' k . 

i.e., either Sylow 3-subgroup or Sylow 5-subgroup is normal in G . 

Which proves (i). 

Let H  be a Sylow 3-subgroup of order 3 and K , a Sylow 5-subgroup of oder 5. 

By (i), either H is normal in G or K is normal in G . 

In any case, 15)(,  HKOGHK as )( KHO  divides 3)( HO  and  5)(KO 1)( KHO . 

Since index of HK in G is 2, HK is normal in G . This proves (ii). 

Suppose, H is normal in G , K is not normal in G . By (i) G has 6 Sylow 5-subgroup and so 24 

element of order 5. But HKHKO 15)( is cyclic 
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HK has 8)15(   elements of order 15. 

Thus G has 32824   elements, a contradiction.  

K  is normal in G . 

If H is not normal in G , they by (i), G  has 10 sylow 3-subgroup and so 20 elements of order 3. From 

above HK has 8 elements of order 15 and K has 4 elements of order 5. This gives 324820   

elements in G , a contradiction. 

H  is normal in G . So both H and K are normal in G . 

This proves (iii). 

Check your progress 

Problem 1: Check that 








)(GZ

G
O  cannot be 77. 

Problem 2: Check that 4S  has Sylow 2-subgroup or not? 

Problem 3: Check that groups have following order must contain normal Sylow subgroup? 

                    (i)   12                                           (ii)   28                                   (iii)   56 

 

6.5 SUMMARY 

In this unit, we have studied about the p groups and three fundamental Sylow’s theorem ( Sylow 

first, second and third theorem) and also their applications and implementation on various examples. 

After completions of this unit learners are able to memorise the following things: 

 Sylow’s theorems are the extension of Lagrange’s theorem.  

 Using the Sylow’s theorem we can find mainly normal subgroups or sugroups in any finite 

groups. 

6.6 GLOSSARY 

 Any group is called p-group if its each element has order where prime. 

 Sylow's First Theorem: Let be a finite  group of order , where  is a prime,  

and . Then has a subgroup of order . 

 Sylow's Second Theorem: Let be a finite group of order , where is a prime,  

and . Then any two Sylow -subgroups of are conjugate, and also 

isomorphic. 

rp p

G mpn p 0n

1),gcd( mp G nipi 1

G mpn p 0n

1),gcd( nm p G
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 Sylow's Third Theorem: Let be a finite group of order , where  is a prime, 

and . Then the number of Sylow p-subgroup ( ) is of the form  for some 

 and is such that . 
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6.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. If G be a group of order np , p be a prime and S be finite G - set. If 

 GgagaSaS  |0
, then prove that )(mod0 pSS   

2. State and prove the Sylow first theorem. 

3. State and prove the Sylow second theorem. 

4. State and prove the Sylow third theorem. 

5. If G be a finite group and every Sylow subgroup of G is normal then prove that G is direct 

product of its Sylow subgroup.  

6. Prove that for a odd prime , if is a group of order , then or . 

G mpn p 0n

1),gcd( pm pn kp1

0k mpn n

p |

p G p2 pZG 2 pDG 
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7. If G be a finite group of order 0, nmpn and 1),gcd( mp then prove that H is Sylow p

subgroup of G if and only if npH || . 

8. Let G be a finite group then prove that for each Sylow p subgroup P of G )())(( PNPNN   

9. Let G be a finite group and P be a Sylow p subgroup G . Then P is normal in G if and only 

if it is the unique Sylow p subgroup of G . 

Short Answer Type Question: 

10. Prove that group G having order 30 has a normal subgroup of order 15. 

11. Prove that the group G having order 255 is cyclic. 

12. Prove that the group G having order 33 is cyclic. 

13. Prove that group G having order 45 has unique Sylow 3-subgroup. 

14. Prove that each proper subgroup is proper subgroup of its normalizer in finite p-group.  

Fill in the blanks: 

15. Any group having each element of order  rp is called ………….  

16. If every Sylow subgroup of finite group is normal, then is a direct product of its 

…………... 

17. If G has unique Sylow p subgroup P , then P is …………… in G . 

18. If G is a non-abelian group having order 14 then G …………. 

19.  iff ……… 

6.10 ANSWERS 

Answer of self cheque question: 

1. No  2. Yes  

Answer of terminal question: 

15. group 16. Sylow subgroups 17. Normal  

18.  19. 1  

 

 

 

 

 

G G

mnnm ZZZ  ),gcd( nm

p

7D
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Unit-7: NORMAL AND SUBNORMAL SERIES, 

COMPOSITION SERIES 

 

CONTENT: 

7.1 Introduction  

7.2   Objectives 

7.3  Normal series 

7.4  Composition series 

7.5 Summary 

7.6  Glossary  

7.7   References 

7.8  Suggested Readings 

7.9  Terminal Questions 

7.10 Answers 

7.1 INTRODUCTION 

A composition series in abstract algebra offers a technique to decompose an algebraic structure, 

such as a group or a module, into manageable parts. Since many naturally occurring modules are not 

semi-simple, they cannot be broken down into a straight sum of simple modules, necessitating the 

consideration of composition series in the context of modules. The direct sum decomposition of a 

module M into its simple constituents is replaced by a finite growing filtration of M by submodules 

such that the subsequent quotients are simple. 

There may not be a composition series, and if there is, it need not be unique. However, a 

collection of findings together referred to as the Jordan-Hölder theorem states that wherever 

composition series exist, the isomorphism classes of simple pieces and their multiplicities are defined 

uniquely (albeit possibly not their exact locations within the composition series in issue). Thus, 

Artinian modules and finite groups' invariants may be defined using composition series. 
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A related but distinct concept is a chief series: a composition series is a 

maximal subnormal series, while a chief series is a maximal normal series. 

7.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the maximal subgroup and simple group. 

 Analyze of normal and subnormal series and composition series. 

 Analyze the theorems and application of normal and composition series.  

7.3 NORMAL SERIES 

Definition: In a group G any normal subgroup GH  is called a maximal normal subgroup of G if 

there does not exist any normal subgroup K  of G such that GKH  . 

Thus normal subgroup GH  is maximal in G if whenever GK  such that GKH   then either 

HK  or GK  . 

In fact, any subgroup GH  is maximal in G whenever GKH  then either HK  or GK  . 

 Similarly, any normal subgroup M of G is called minimal or minimal normal subgroup of G

which are contained in M are }{e and M . Thus, if N is normal subgroup of G s.t., MNe }{ then 

either }{eN   or MN  . 

Example 1: 
3A is a maximal normal subgroup of 3S . 3)( 3 AO  whereas 6)( 3 SO . Clearly there 

cannot be any subgroup of order 4 or 5 in 3S . We also notice that 2
3

3 








A

S
O , a prime and thus 

3

3

A

S
is 

a simple group. 

Example 2: If G is a simple group then it has no non trivial normal subgroup and so {e} will be a (and 

only) maximal normal subgroup in G . 

Theorem 1: H is maximal normal subgroup of G iff HG / is simple. 

Proof:  Let H be maximal normal in G . Any subgroup of HG / is of the form HK / where GK   

and KH  and also HK / is normal in GKHG / . 

 Thus any subgroup HK / will be non trivial normal subgroup of HG / if GKH  , which 

is not true as H is maximal normal. So HG / has no non trivial normal subgroup and is, therefore 

simple. 

https://en.wikipedia.org/wiki/Chief_series
https://en.wikipedia.org/wiki/Subnormal_series
https://en.wikipedia.org/wiki/Normal_series
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Conversely, let HG / be simple. Suppose H  is not maximal normal, then   a normal subgroup K of 

G s.t.,  

GKH   and thus HK / will be normal subgroup of HG / where HGHK //  , a 

contradiction as HG / is simple. 

Example 3: Any finite group G (with at least two elements) has a maximal normal subgroup. 

Solution: If G is simple then it has no proper normal subgroup except }{e and thus }{e is a maximal 

normal subgroup of G . 

 Suppose G is not simple. Then it has at least one normal subgroup }{, eNGN  . If N is 

maximal normal, we are done. If not, then there exist at least one normal subgroup M where 

GMN  . If M is maximal normal, we are done. We continue in this way if not. Given that and 

only allow a finite number of subgroups, the aforementioned procedure must end after a finite number 

of steps. A maximal normal subgroup will thus exist. 

Example 4: Illustrate example of maximal normal subgroup while it is not a maximal subgroup. 

Solution: Consider 
52 AZG   

Then }{2 IZH  is normal in G and 
5/ AHG  and so HG / will be simple and hence maximal 

normal subgroup of G . 

Since   GIIH

 )132,0(),123,0(),,1(),,0(  

Hence H is not a maximal subgroup of G . 

Example 5: Let KH , be two distinct maximal normal subgroup of G then HKG  and KH  is a 

maximal normal subgroup of H as well as K . 

Solution: Since KH , are normal, HK is normal in G . 

Since GHKH  and HK is normal in G . 

We must have HHK   or G  

Similarly KHK   or  GHK   

Hence GHK   (as KHKHKHHKGHK  , ). 

Again by isomorphism theorem 

KH

K

H

HK


  

Thus 
H

G

KH

K



 

Since H is maximal normal, 
H

G
is simple 
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i.e., 
KH

K


is simple 

KH   is maximal normal in K  

Similarly, it is maximal normal in H . 

Example 6: Show that  ,Q  has no maximal normal subgroup. 

Solution: Suppose H is a maximal normal subgroup of  ,Q , then 
H

Q
 is simple and so 

H

Q
 has no 

non trivial normal subgroup i.e., it will have no non trivial subgroup ( Q being abelian, all subgroups 

are normal). Thus 
H

Q
is a cyclic group of prime order p . 

Let 
H

Q
xH   be any element 

Then HxHp  )(  

i.e., HpxH   or that QxHpx   

let now Qy  be any element, then Q
p

y
  

If x
p

y
  then Hypxy   or that 

QHQHQ  , a contradiction 

Hence the result follows. 

Definition: Let G be a group and sequence of subgroups  

GHHHHe n  ......}{ 210  

is called a normal series of G if iH is normal subgroup of 1iH , 1...,,2,1,0  ni  

The factor (quotient) groups )(1 i
H

H

i

i   are called the factors of normal series. 

Here each iH is normal in 1iH , although it may not be normal in G . Also it is possible that 1 ii HH  

for some i . The number of distinct number of (1) excluding G is called the length of the normal series. 

The above is expressed in short by saying that  nHHHN ,...,, 10  is a normal series of G . If N and 

M are two normal series of G s.t., MN   then M is called a refinement of N (a proper refinement if 

)( MN

 . 

Remark: Some author mostly prefer to name the above subnormal series. It is then called a normal 

series if iH  is normal in .iG  
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If G is any group then  

GHHe  10}{  

Is an general example of a normal series. 

Example 7: 
33}{ SAI  is a normal series of 3S . 

444}{ SAKEI   is a normal series of 4S , where 

)}43)(21(,{IE  , )}32)(41(),42)(31(),43)(21(,{4 IK   

We have seen earlier that
4KE , but E is not normal in 

4A  (and so in 4S ). 

7.4 COMPOSITION SERIES 

Definition: Let G a group. A sequence of subgroup  

GHHHHe n  ......}{ 210
 

of G is called a composition series of G if 

(i) every iH is normal subgroup of 1iH )1...,,1,0(  ni  

(ii) 1 ii HH  for any i and 

(iii) 
i

i

H

H 1 is a simple group i . 

The quotient groups 
i

i

H

H 1 are called factors of the series. 

By using the theorem 1 condition (iii) can be replaced by iH  is a maximal normal subgroup of 

iH i 1 . 

We notice that aforesaid composition series is a normal series. Converse of above is not true and that 

composition series has no gaps.  

It is possible that group may have more than one composition series. 

Example 8: In the group ),( Z  

Z 48}0{ is a normal series while it is not a composition series as  4 is not maximal in 

Z . It is also to be notify that Z 24 . 

Example 9: In the Quaternion group 8Q , 

8},,1,1{}1,1{}1{ Qii   

8},,1,1{}1,1{}1{ Qjj   

8},,1,1{}1,1{}1{ Qkk   
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All are the composition series of 
8Q . If we rewrite the first series as }1,1{},1{ 10  GG

},,1,1{2 iiG   then GGGG  210
 

So, 2
1

2
,2

2

4
,2

4

8

0

1

1

2

2




























G

G
O

G

G
O

G

G
O  

i.e., all quotient groups are of prime order and thus have no trivial normal subgroup and hence are 

simple. 

Theorem 2: Each finite group G has a composition series. (Here group has more than one element) 

Proof: We prove this by induction method on order of the group. 

If 2)( GO  then the only composition series of G is GGGe  10}{ . Since G
e

G

G

G


}{0

1  and as 

2)( GO , a prime it is simple group and therefore 
0

1

G

G
is simple.  

Suppose for the groups with order less than )(GO result holds. Now we will show results holds for G . 

If G is simple then Ge }{ is the composition series for G . Suppose G is not simple. 

Although G is finite, it has a maximal normal subgroup GN   and as )()( GONO  , results holds for 

N which then has a composition series, say 

NNNe  ...}{ 21
 

Then the series  

GNNNe  ...}{ 21
 will be a composition series for G . 

Hence results holds. 

Remark: If 1)( GO , Sometimes, we claim that the results holds trivially since ( G ) is a composition 

series of G . 

Check your progress 

Problem 1: Check composition series of 
24Z  

Problem 2: Check out example of maximal normal subgroup while it is not a maximal 

subgroup. 

 

7.5 SUMMARY 

In this unit, we have studied about following major topics and their related theorems and examples.  

 Maximal subgroup and on the basis of it to described the simple group.  
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 Illustration of normal series, subnormal series and on the basis of these to describe the 

composition series. 

7.6 GLOSSARY 

 Sequence of subgroup of the group G, GHHHHe n  ......}{ 210
is called a normal 

series of G if iH is normal subgroup of 1iH , 1...,,2,1,0  ni  

 GHHHHe n  ......}{ 210
of G is called a composition series of G if 

(i) every iH is normal subgroup of 1iH )1...,,1,0(  ni  

(ii) 1 ii HH  for any i and 

(iii) 
i

i

H

H 1 is a simple group i , where  
i

i

H

H 1 are called factors of the series. 
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 Michael Artin: Algebra (2
nd

 edition), Pearson, 2014. 

7.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Define normal series and also prove that H is maximal normal subgroup of G iff  HG / is 

simple. 
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2. Define maximal subgroup and prove that finite group has maximal subgroup. 

3. Prove that if KH , be two distinct maximal normal subgroup of G then HKG  and KH  is a 

maximal normal subgroup of H as well as K . 

4. Prove that group of rational number has no maximal normal subgroup. 

5. Define the composition series and also prove that each finite group G has a composition series.  

Short Answer Type Question: 

6. Prove that alternating group 4A is maximal normal subgroup of 4S . 

7. Give an example of maximal normal subgroup while it is not a maximal subgroup. 

8. Define maximal subgroup, simple group, normal series, composition series. 

9. Find normal series of 3S . 

10. Find the composition series of 
8Q .  

Fill in the blanks: 

11. 
3A is maximal normal subgroup of ………….  

12. If G is a simple group then it has no non trivial …………... 

13. Each finite group has a ………………….. 

7.10 ANSWERS 

Answer of self cheque question: 

1. 
2424 2412}0{,248}0{ ZZ  , 

2424 3612}0{,2612}0{ ZZ   2. See example 4 

Answer of terminal question: 

7. 
52 AZ   9. 33}{ SAI    17. Normal  11. 3S   

12. Normal subgroup 13. Composition series  
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Unit-8: JORDAN HOLDER THEOREM 

 

CONTENT: 

8.1 Introduction  

8.2  Objectives 

8.3  Jordan-Holder theorem 

8.4 Summary 

8.5  Glossary  

8.6   References 

8.7  Suggested Readings 

8.8  Terminal Questions 

8.9 Answers 

8.1 INTRODUCTION 

German mathematician Ludwig Otto Hölder was born in 

Stuttgart on December 22, 1859, and he passed away on 

August 29, 1937. 

In addition to being the grandson of professor Christian 

Gottlieb Hölder (1776–1847) and the youngest of three sons 

of professor Otto Hölder (1811–1890), Hölder also had two 

brothers who went on to become professors. He began his 

education at what is now the University of Stuttgart's 

Polytechnikum before moving to Berlin in 1877 to study 

under Leopold Kronecker, Karl Weierstrass, and Ernst 

Kummer. 

 

Ludwig Otto Hölder 

December 22, 1859 – August 29, 1937 
https://en.wikipedia.org/wiki/Otto_H%C3%B6lder  

He enrolled in the University of Berlin in 1877, and in 1882, he received his doctorate from the 

University of Tübingen. His PhD dissertation was titled "Beiträge zur Potentialtheorie" (translation: 

"Contributions to potential theory"). His next stop was the University of Leipzig, but he was unable to 
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complete his habilitation there. Instead, he earned a second doctorate and habilitation at the University 

of Göttingen, both in 1884. 

He was given a job as an exceptional professor at Tübingen in 1889 after failing to obtain 

government clearance for a teaching seat in Göttingen. Despite a temporary mental impairment 

delaying his admission, he started working there in 1890. He assumed Sophus Lie's previous position 

as a full professor at the University of Leipzig in 1899. He served there as rector in 1918 after serving 

as dean from 1912 to 1913.  

In 1899, he wed Helene, a politician's and a bank director's daughter. They have two girls and 

two boys. His daughter Irmgard married a mathematician named Aurel Wintner, and his son Ernst 

Hölder went on to become another mathematician.   

Hölder ratified the German university and high school professors' oath of loyalty to Adolf Hitler and 

the National Socialist State in 1933. 

Leonard James Rogers established Holder's inequality, which bears Hölder's name, first. It is 

named after a publication in which Hölder criticises it while referencing Rogers. This paper also 

contains a demonstration of what is now known as Jensen's inequality, along with certain side 

conditions that Jensen eventually deleted. Other theorems by Hölder include the Jordan-Hölder 

theorem, which states that every linearly ordered group satisfying an Archimedean property is 

isomorphic to a subgroup of the additive group of real numbers, the classification of simple groups 

with orders up to 200, the anomalous outer automorphisms of the symmetric group S6, and Hölder's 

theorem, which states that the Gamma function does not satisfy any algebraic differential equation. 

The Hölder condition (or Hölder continuity), another concept bearing his name, is applied in many 

analytical fields, including the theories of partial differential equations and function spaces. 

8.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the Jordan- Hölder theorem. 

 Analyze the theorems related to Jordan- Hölder theorem. 

8.3 JORDAN-HOLDER THEOREM 

Theorem 1: Let G be a finite group with two composition series 

}{,...,,, 21 eHHHG n                                                            …(1) 

and }{,...,,, 21 eKKKG m                                                      …(2) 
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Then mn   and the two equivalent series of composition quotient groups., viz., 

nn HHHHHG /,...,/,/ 1211 
 

And 
mm KKKKKG /,...,/,/ 1211 

 

are abstractly identical i.e., they can be put into 11  correspondence such that the corresponding 

quotient groups are isomorphic.  

Proof: By using the induction technique on the order of the group G , we will demonstrate the 

theorem. We will demonstrate that the theorem also holds true for G  by making the assumption that it 

holds true for all groups with orders lower than G . The theorem is obviously valid for every group of 

order one; therefore we need not be concerned about where to begin the induction.  

There are two cases arise: 

Case I: 11 KH  . In this case, after removing G  from (1) and (2), we obtain the remaining series as 

two composition series for 1H . However, because 1H  is a proper normal subgroup of G , its order is 

lower than that of G . Therefore, the theorem holds true for 1H  according to our induction hypothesis. 

Since 11 // KGHG  , therefore the theorem will remain true if we replace G in each of the series (1) 

and (2). 

Case II: 11 KH  . Using the third law of isomorphism, we have 

111111 // KHKHKH   

And 111111 // KHHKKH   

Also 11KH  is a normal subgroup of G containing 1H . Since 1H  is maximal in G , therefore we must 

have GKH 11  

DKHG // 11   where 11 KHD   

and DHKG // 11   

 Now 1H  is a maximal in G implies that 1/ HG is simple. Therefore DK /1 is simple and this 

implies that D is a maximal normal subgroup of 1K . Similarly D  is a maximal normal subgroup of 1H

.  

Let }{,...,,, 21 eDDDD t   be a composition series for D . Then 

}{,...,,,,, 211 eDDDDHG t                              …(3) 

and }{,...,,,,, 211 eDDDDKG t                        …(4) 

are two composition series for G . Let us write the composition quotient groups of (3) and (4) in the 

order 
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tt DDDDDDDHHG /,...,/,/,/,/ 121111 
        …(5) 

and 
tt DDDDDDKGDK /,...,/,/,/,/ 121111 
   …(6) 

The quotient groups in (5) and (6) are equal in number and the corresponding quotient groups 

isomorphic i.e., 1/ HG  and DK /1 , DH /1 and 11 /,/ DDKG  and ...,,/ 1DD  are isomorphic. 

The two composition series for G  at this point, (1) and (3), each have 1H  in the second position. Due 

to instance 1, it is possible to place the quotient groups described by (1) and (3) into 1-1 

correspondence, making the respective quotient groups isomorphic. To make the respective quotient 

groups isomorphic, it is possible to put the quotient groups described by (2) and (4) into 1- 1 

correspondence. As a result, the quotient groups defined by (1) and (2) are equal in number and are 

isomorphic in some order since the relation of isomorphism in the set of all groups is an equivalence 

relation. This completes the theorem's proof. 

8.4 SUMMARY 

After completing this unit we analyze that for any finite group (G) two composition series are always 

identical i.e., they can be put into one-one correspondence such that the corresponding quotient groups 

are isomorphic. 

8.5 GLOSSARY 

 For a finite group (G) the Jordan- Hölder theorem states that two composition series 

                                                          … (1) 

and                                                     … (2) 

the two corresponding series of composition quotient groups, 

nn HHHHHG /...,,/,/ 1211 
 

mm KKKKKG /...,,/,/ 1211 
, where nm   

are abstractly identical. 

8.6 REFERENCES 

 Joseph A Gallian, (1999), Contemporary Abstract Algebra (4
th 

Edition), Narosa, 1999. 

 N. Herstein,(1975), Topics in Algebra, Wiley Eastern Ltd., New Delhi. 

 V. K. Khanna and S. K. Bhambri (2021 ), A Course in Abstract Algebra (5
th

 Edition), Vikas 

Publication House. 

}{,...,,, 21 eHHHG n 

}{,...,,, 21 eKKKG m 
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 Vasishtha, A. R., & Vasishtha, A. K. (2006). Modern Algebra (Abstract Algebra). Krishna 

Prakashan Media. 

 RamjiLal, Algebra 1: Groups, Rings, Fields and Arithmetic, Springer, 2017. 

8.7 SUGGESTED READING 

 P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge Press, 1994. 

 David S. Dummit and Richard M. Foote: Abstract Algebra (3
rd

 Edition), Wiley, 2011. 

 Michael Artin: Algebra (2
nd

 edition), Pearson, 2014. 

8.8 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. State and prove the Jordan- Hölder theorem.  

Short Answer Type Question: 

2. Write the statement of Jordan- Hölder theorem. 

Fill in the blanks: 

3. For a finite group (G) two composition series, the two composition quotient groups are 

………….  

8.9 ANSWERS 

3. Identical  
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Unit-9: SOLVABLE GROUPS, SIMPLICITY OF )5( nAn , 

NILPOTENT GROUPS 

 

CONTENT: 

9.1 Introduction  

9.2  Objectives 

9.3  Nilpotent group 

9.4  Solvable group-I 

9.5 Solvable group-II 

9.6 Summary 

9.7  Glossary  

9.8   References 

9.9  Suggested Readings 

9.10  Terminal Questions 

9.11 Answers 

9.1 INTRODUCTION 

A group having an upper central series that ends with G is referred to as a nilpotent group G in 

mathematics, more especially group theory. In other words, either its lower central series ends in 1 or 

its central series has a limited length. A group that is "almost abelian" is what we would term a 

nilpotent group. The fact that nilpotent groups may be solved and that for finite nilpotent groups, two 

members with relatively prime orders must commute serves as the inspiration for this concept. 

Additionally, it is true that supersolvable finite nilpotent groups exist. The Russian mathematician 

Sergei Chernikov is credited with developing the idea in the 1930s. Nilpotent groups appear in both 

group classification and Galois theory. They play a significant role in the categorization of Lie groups 

as well. 
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A group that can be created from abelian groups via extensions is referred to as a solvable 

group or soluble group in mathematics, more especially in the subject of group theory. A group is 

solvable if its derived series terminates in the trivial subgroup, to put it another way. 

9.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the Nilpotent group. 

 Analyze the definition and important theorems related to Solvable groups.  

 Analyze the further theorems on the alternating group . 

9.3 NILPOTENT GROUP 

On commutative groups, the converse of the Lagrange's Theorem is true. In this chapter, we 

characterise a broader category of groups called nilpotent groups, which satisfy the opposite of 

Lagrange's Theorem. Additionally, every nilpotent group is a direct result of the subgroups of Sylow, 

and vice versa. 

Definition (i): Let G be a group and denote  

)()(},{)( 10 GZGZeGZ   and )()(1 GZGZi 
 is the unique normal subgroup of G such that 

)()( 1 GZGZ i  and ))(/()(/)(1 GZGZGZGZ iii 
 

Then the chain of normal subgroups  

...)()(}{ 21  GZGZe  

is called upper central series and ascending central of G . 

Definition (ii): A group G is defined to be nilpotent if GGZn )(  for some Nn  

Example 1: Each abelian group G is also a nilpotent group, since GGZGZ  )()(1 . Converse of this 

is also not true which shows in following result. 

Theorem 1: Each finite p-group is nilpotent. 

Proof: Let G be a finite p group. If 1|| G , then G is nilpotent. Suppose that 1|| G . Then G being 

a nontrivial p group, it follows that }{)()(1 eGZGZ  . If GGZ )(1 , then )(/ 1 GZG is a nontrivial

p group and 1|))(/(| 1 GZGZ . This implies )(2 GZ contains )(1 GZ  properly, that is 

).()( 21 GZGZ

  If GGZ )(2 , then similarly )()( 32 GZGZ  . If for all Nn , GGZn )( , then we 

get an infinite number of strictly ascending chain of subgroups 

)5,( nAn
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...)()(}{ 21

 GZGZe  

But it is not possible because G is finite group. Thus there is Zn such that GGZn )(  and G is 

nilpotent. 

Now we give an example of a subgroup which is not nilpotent. 

Example 2: We know that }{)( 3 eSZ  . Thus }{)( 31 eSZ  and 
3313 )(/ SSZS  . This implies 

  }}{{)(/ 313 eSZSZ  . Since )( 32 SZ  is the unique normal subgroup of 3S such that 

}}{{))(/()(/)( 3133132 eSZSZSZSZ  , so it follows that }{)(/)( 3132 eSZSZ  . Similarly, 

NneSZn  }{)( 3
. Hence 3S is not nilpotent. 

Theorem 2: The direct product of finite number of nilpotent groups is nilpotent. 

Proof: It will be sufficient to prove the result for the direct product of two groups. Let H  and K be 

two nilpotent groups and denote KHG  . 

First we prove that NnKZHZGZ nnn  )()()( by the induction on n . We have already proved 

that the external direct product of groups and results holds for 1n . Assume that 

)()()( KZHZGZ nnn   for some 1n . Since )()()( KZHZKHZ nnn  , so there is an 

isomorphism 
)(

)(/)(/:
KHZ

KH
KZKHZH

n

nn



 . 

Now we have, 

 

)))(/)(/(( KZKHZHZ nn    

)))(/)(/(( KZKHZHZ nn   

)))(/())(/(( KZKZHZHZ nn   

))(/)())(/)(( 11 KZKZHZHZ nnnn    

))()(/)()( 11 KZHZKZHZ nnnn  
 

)(/)()( 11 KHZKZHZ nnn  
 

It follows that )()()( 111 KZHZGZ nnn   because )(1 GZn
is the only normal subgroup of G such that 

))(/()(/)(1 GZGZGZGZ nnn 
. 

Accordingly, for all ...,2,1,0n  )()()( KZHZGZ nnn  according to the principle of mathematical 

induction. 

There is a positive integer n such that HHZn )( and KKZn )(  since H  and K are both nilpotent. 

Hence 

))(/())(/( KHZKHZGZGZ nn 
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As KH  is nilpotent, )()()( KZHZKHZ nnn  . 

 Using a descending central series, we now provide an alternate equivalent characterisation of nilpotent 

groups. Assume G  is a group and H  and K are its two subgroups. The subgroup produced by all 

elements of the form 11  khkh  for every Hh  and all Kk is denoted by ][ KH . Next, we have 

Lemma 1:  Let G  be a group, KH , be two subgroups of G  and K  normal inG .  Then 

KGH ],[ if and only if )/(/ KGZKHK  . 

Definition: Let G be a group. Define inductively 

GG ]1[  

],[ ][]1[ GGG ii  for all 1i  

Then the chain of normal subgroups 

...]2[]1[  GGG  

is called the descending central series of G . 

Theorem 3: Let G be a group. Then G is nilpotent if and only if }{]1[ eG n  for some integer 

0n . 

Proof: First assume that there is an integer 0n such that }{]1[ eG n  . Consider the series 

GGGGe nn   ]1[][]1[ ...}{  

it is easy to check that )/(/ ]1[]1[][   iii GGZGG  for all ni ,...,2,1  and )(]1[ GZG i

in 
for all  

ni ,...,2,1 . Thus )(]1[ GZGG n , and so G is nilpotent. 

Conversely, suppose that G is nilpotent. Then there is an integer 1n  such that GGZn )(

Thus we have a series of normal subgroups 

GGZGZGZe n  )(...)()(}{ 10
 

Then  it  follows  that  1,...,2,1)(1

][   niGZG in

i
. Thus }{)(0

]1[ eGZG n 
,  and so 

}{]1[ eG n  . 

Theorem 4:  Each subgroup of a nilpotent group is nilpotent. 

Proof: Let G be a group and H be a subgroup of G.  Since G is nilpotent, so there is an 

integer 0n  such  that }{]1[ eG n  .    Now  we  show  that 
][][ ii GH  by  the  induction  on i . Now 

]1[]1[ GGHH  .   Assume  that  
][][ ii GH  .   Then ]1[][][]1[ ],[],[   iiii GGGHHH and 

hence, by the principle of mathematical induction,  
][][ ii GH   for  all 1,...,2,1  ni . Hence

}{]1[]1[ eGH nn   , and so H is nilpotent. 
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i i 

1 2 k 

Example 3: Let ZSG  3
. Since 3S  is not nilpotent, so G is not nilpotent. Thus G is an 

infinite group which is not nilpotent. 

Theorem 5: A finite group G is nilpotent if and only if it is the direct product of its Sylow 

subgroups. 

Proof: Let G be a nilpotent group. First we show that every Sylow subgroup of G is normal. If 

possible,  let P be  a  Sylow  subgroup of G such  that GPN )( . Denote )(PNH  .   Since G  

nilpotent, there is Nn such that 

GGZGZGZe n  )(...)()(}{ 10
 

Since H is proper and HGZ )(0
, so there is the largest index nm  such that HGZm )( . Then 

HGZm


 )(1 . Consider HGZa m \)(1 , then )(\)(1 GZGZ mm implies that 

))(/()( GZGZGaZ mm   and so )()( GahZGhaZ mm  for every Hh . Hence 

HGZhaah m  )(11
which implies that Hhaahhhaa   )( 111 . Thus HHaa 1

and )(HNa

.  Therefore )(HNH

 that is ))(()( PNNPN


 , which contradicts that P is a Sylow subgroup. 

Thus GPN )( and every Sylow subgroup of G is normal. Hence,G is a direct product of its 

Sylow subgroups. 

Conversely, let G be a direct product of its Sylow subgroups 
kPPP ,...,, 21

. Since iP  is a ip -group for 

some prime ip , so iP  is nilpotent for every ki ,...,2,1  Hence their direct product G is also 

nilpotent. 

The result that follows now demonstrates that the converse of Lagrange's Theorem is true for all 

nilpotent groups. 

Corollary 1: Let G be a finite nilpotent group. Then for every positive divisor m of || G , G

has a subgroup of order m . 

Proof: Let kn

k

nn
pppG ...|| 21

21 . Since G is nilpotent, so 
kPPPG  ...21
,  where iP is the sylow 

ip subgroup of G for ki ,...,2,1 .  Also ik

ii pP || .  Let m be a positive integer such that Gm | . 

Then km

k

mm
pppG ...|| 21

21 , where 
ii nm 0 .  Since iP is ip group of order in

ip  and 
ii nm  , so

iP  has  a  subgroup iH  of  order im

ip ,  by  the  Sylow’s  first  theorem. Then 
kHHHH  ...21
 is  a 

subgroup of G of order mpppHHH km

k

mm

k  ...||...|||| 21

2121 .  
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9.4 SOLVABLE GROUP-I 

Solvable groups first appeared in the setting of Galois theory. Galois developed this idea to explore the 

quintics' radical solvability over an extended period of time. Solvable groups are a class of groups that 

are fascinating in and of themselves, particularly in relation to the idea of finite groups. Here, we treat 

the solvable groups using only group theory. 

Definition 1: Let G be a group. Then a chain  

}{... 110 eHHHHG nn  
 

of subgroups is called a solvable series of G if 1iH is normal in iH and 
1/ ii HH is commutative for 

every 1,...,1,0  ni . 

A group G is called a solvable group if G has a solvable series. 

Each abelian group is solvable. For, if G is abelian, then }{10 eHHG   is a solvable series for G  

Example 4: }{)}132(),123(,{03 eeHS  is a solvable series for 3S . Thus 3S is a solvable group 

while 3S is not nilpotent. 

Theorem 6: Every nilpotent group is solvable. 

Proof: Let G be a nilpotent group. Then GGZn )( for some positive integer n . Then the series of 

normal subgroups 

}{)(...)()( 01 eGZGZGZG nn  
 

is a solvable series, since ))(/()(/)( 11 GZGZGZGZ iii    which is abelian for every ni ,...,2,1 . 

Hence G is a solvable group. 

 Now, taking into account subgroups and homomorphic images, we demonstrate that the class 

of all solvable groups is closed under finite direct product.  

Theorem 7: Each finite direct product of solvable group is solvable. 

Proof: This is adequate to establish the conclusion regarding the direct product of two solvable groups. 

Let G and H be two solvable groups. Then both G and H have a series of subgroups that can be 

solved, say 

}{...10 eGGGG n   

And }{...10 eHHHH m   

Consider following series of subgroups of HG : 

}{}{...}{}{... 100100 eHeHeHeHGHGHG m  . 
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This is a solvable series for HG , since 01 HGi   is normal in 0HGi  and 
1}{  iHe  is normal in 

iHe }{ , and both 1

01

0 / 







ii

i

i GG
HG

HG
 and 1

1

/
}{

}{








ii

i

i HH
He

He
 are abelian. 

Hence HG  is a solvable group. 

Theorem 8: Let G be a solvable group. Then every subgroup of G is solvable. 

Proof: Let H be a subgroup of G . Since G is solvable, so it has a solvable series, say 

}{...10 eGGGG n   

Then 1iG is a normal subgroup of iG which implies that 1 iGH  is normal subgroup of iGH  . 

Denote 
ii GHH   and consider the series  

}{...10 eHHHG n   

Of subgroup of H . Now 

1111   iiiiii GHGGHGHH  

Then using the second isomorphism theorem, that 
1

1

11 









i

ii

ii

i

i

i

G

GH

GH

H

H

H
. Since the quotient 

group 
1

1





i

ii

G

GH
is a subgroup of the abelian group 

1/ ii GG , so it is abelian group. Thus  

Is a solvable series for H  and the subgroup H is a solvable group. 

Theorem 9: Let G be a solvable group. Then the quotient group HG / is solvable for every normal 

subgroup H  of G . 

Proof: Let }{...10 eGGGG n   be a solvable series of G . Since H is a normal subgroup, so 

HGi is a subgroup of G and HGH i for each i . Consider the series 

}{/...//// 210 HHHGHHGHHGHGHG n   

Of subgroup of HG / . Also 1iG is normal in iG  and hence HGi 1  is a normal subgroup of HGi . 

Thus HHGi /1  is a normal subgroup of HHGi / . 

Now using the third isomorphism theorem 

HGHG
HHG

HHG
ii

i

i
1

1

/
/

/




 . 

Define HGHGGG iiii 11 //:   by 

  HaGaG ii 11   . 

Then HGG ii 11   implies that   is well-defined and for every HGah i , 

    11111   iiiii aGHaGHhGHaGHahG   
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 is onto.  

Also   is a homomorphism. Since 
1/ ii GG  is abelian it follows that  11 //   iiii GGHGHG   is 

abelian. Thus the series  

}{/...//// 210 HHHGHHGHHGHGHG n   is a solvable series and the quotient 

group HG / is solvable group. 

Corollary 2: Each homomorphic image of solvable group is solvable. 

Proof: Let G be a solvable group and GGf :  be an epimorphism. Then by the first isomorphism 

theorem GfG ker/ . Since G is solvable, the quotient fG ker/ is a solvable group. Hence G is 

solvable. 

Theorem 10: If H be a normal subgroup of a group G . If both H and HG / are solvable, then G is 

solvable.  

Proof: The correspondence theorem implies that every subgroup of HG / is of the form HK / , where 

K is a subgroup of G such that KH  , and HK / is normal in HG / if and only if K is normal in G . 

Since HG / is a solvable group, so it has a solvable series, say 

}{/.../// 10 HHKHKHKHG m  . 

Since HKi /1
 is normal in HK i / , so 

1iK  is normal in 
iK  and 

11 /

/




i

i

i

i

K

K

HK

HK
, by the third 

isomorphism theorem. Thus 1/ ii KK is abelian. 

Since H  is a solvable group, it has a solvable series, say 

}{...10 eHHHH n   

Hence 

}{...... 110 eHHHKKKG nm   

is solvable series for G and G is solvable. 

Now we have the following two intersection consequences. 

Corollary 3: Let G be a group, H and K be two subgroup of G and H  be normal in G . If both H  

and K are solvable then HK is solvable. 

Proof: First note that HK is a subgroup of G , since H is normal inG . Now, using the second 

isomorphism theorem, we have KHKHHK  // . Since KH  is a subgroup of the solvable 

group K , it is solvable; and so KHK / is a solvable group. Then both H and HHK / are solvable, 

whence HK is solvable. 
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Corollary 4: Let G be a solvable group and KH ,  be two normal subgroup of G such that both the 

quotients HG /  and KG / are solvable. Then G is solvable if and only if KH  is solvable. 

Proof: Let G be a solvable group. Since KH   is a subgroup of G , so it is solvable. 

Conversely, assume that KH  is a solvable group. Both H and K are normal. Now using second 

isomorphism theorem, KHKHHK  // . Since HHK / is a subgroup of the solvable group HG /

, so it is and hence KHK /  is solvable. Then it follows that K is solvable, Since KH  is solvable. 

Thus both KG / and K are solvable, and hence G is solvable. 

Example 5: Let G be a group of order 2714  . Then it follows from the Sylow theorems that G has 

a normal Sylow 7-subgroup 7 subgroup H . Since 7|| H  which is a prime, so H is a solvable 

group. Similarly,  2|/| HG the quotient HG / is solvable. Hence G is solvable. 

Example 6: Let G be a group of order 271432002  . Then it follows from the Sylow theorem 

that G has a normal Sylow 143 subgroup H . Since 143|| H  which is a prime, so H is asolvable 

group. Now 14|/| HG  and hence it is solvable. Thus G is a solvable group. 

9.5  SOLVABLE GROUP-II 

In this section, we characterise solvable groups in a way that is equivalent to the series of derived 

subgroups. This similar characterization aids in our demonstration that nS  cannot be solved for all

5n . A discussion of the opposite of Lagrange's Theorem on solvable groups marks the end of this 

section.  

Definition: Let G be a group. Then subgroup generated by the set },|{ 11 Gbababa   is called the 

commutator subgroup of G . 

 It is denoted by 'G and the elements of the form Gbababa  ,|11  are called commutators. 

 If G is an abelian group, then for each ebabaGba   11,,  and hence }{' eG  . Conversely, 

if }{' eG   then Gbabaabebaba  ,11 . Thus G is abelian. Hence G is abelian if and only 

if }{' eG  . In some sense 'G is a reverse measure of how much G is commutative. 

Theorem 11: Let G be a group. Then the derived subgroup 'G is a normal subgroup of G and the 

quotient group '/ GG is abelian. 

Proof: Let 'Gx and Gg . Then '11 Gxgxg  . Since 'G is a subgroup,   '111 Gxxgxggxg   . 

Hence 'G is a normal subgroup of G . 
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 Let Gba , . Then '''111)( baGabGGbababaab   , i.e., ))(())(( '''' aGbGbGaG  . 

Hence '/ GG is abelian. 

Theorem 12: Let G be a group and N be a normal subgroup of G . Then NG / is abelian if and only if 

NG '
. 

Proof: Initialy first we assume that NG / is abelian, then NbaaNbNbNaN  ,))(())(( , and so 

baNabN  . Hence GbaNbaabbaba   ,)( 111  

N  contains all commutators of G and so NG '
 

 Conversely, if NG '
, then .,11 GbabaNabNNbaba  Hence NG / is abelian. 

Definition: Let G be a group and we define the following, 

')1( GG   

')()1( ii GG   

Then )(iG is called the thi  commutator subgroup or derived subgroup of G . 

Thus a sequence of subgroups ...
'' )2()1(  GGG , where each 

')1( iG is a normal subgroup of 
')(iG

and 
'' )1()( / ii GG is abelian for every ,...2,1i  

Theorem 13: Let G be a group. Then G is solvable if and only if there is a positive integer n  such that

}{
')( eG n  . 

Proof: If }{
')( eG n  , then the chain }{...

''' )()2()1( eGGGG n   become a solvable series for .G  

Hence G is solvable. 

Conversely assume that G is a solvable group. Then G has a solvable series, say 

}{...210 eGGGGG n  . Since for every 
iGi, is normal subgroup of 1iG  and 

ii GG /1
is 

abelian, so ii GG 1
'

. Hence 

2

'

1

)2(

1

'

0

')1( , GGGGGGG   and so on. 

Thus we get }{)( eGG n

n   and so }{)( eG n  . 

Now we will prove that permutation group nS  is not solvable for 5n . 

Lemma 2: If H is a subgroup of nS ( 5n ) that contains all 3-cycles, then 'H contains all 3-cycles in 

.nS  

Proof: Let )(abc be a 3-cycle in nS . Since 5n , we have two symbols x and y such that 

yxcba ,,,, are distinct. Denote )(abx  and )(acy . Then  

       '11, HcyabxaycaxbacbaH     
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Hence 'H contains all 3-cycles in nS . 

Theorem 14: nS  is not solvable for 5n . 

Proof: Let A be the set containing all 3 cycle in nS . Since 5n , so by the above lemma 
'

nSA  . 

Applying the same repeatedly, we get 
)(k

nSA  for each Nk .  Hence }{)( eS k

n  for each Nk  and 

nS  is not solvable. 

The Sylow theorems, which are valid for finite solvable groups, are now generalised as follows. P. 

Hall demonstrated this outcome in 1928. 

Definition: Let G be a group. A subgroup H  of G is called a characteristic in G if HH )( for 

every automorphism GG : ; and H is called fully invariant if HHf )( for all endomorphism 

GGf : . 

Let H be a characteristic of G and GG : be an automorphism. Then HH )( . Also 

GG  :1 is an automorphism and hence HH  )(1 . Then   )()(1 HHH     and hence 

HH )( . 

Lemma 3: Let G be a group and KH , be two subgroup of G . 

(i) If H is characteristic in K and K is normal inG , then H  is normal in G . 

(ii) Every normal Sylow subgroup is fully invariant. 

(iii) If G is solvable and N is a minimal normal subgroup of G , then N is an abelian p group for 

some prime p . 

Proof (i): Let Ga . Then GG : defined by 1)(  agag  is an automorphism. Since K  is 

normal in G , so KKK :|  is an automorphism. Then HHK )(| , since H is a characteristic in 

K . Thus HhHaha 1 and so H is normal in G . 

(iii): Since the commutator subgroup 'N is fully invariant in N and N is normal in G , so it follows 

that 'N is normal in G . Then, the minimality of N implies that }{' eN  or NN ' . Since N is 

solvable, NN ' and so }{' eN  . Hence N is an abelian group. Also, by the minimality of 1||, NN

. Let p be a prime such that || Np  and P be a Sylow p subgroup of N . Then 1|| P . Since N  is 

abelian, so P is normal; and it follows that P is fully invariant. Hence P is normal inG . Then 

minimally of N implies that PN  . 

We also require the conclusion regarding Sylow subgroups, which we declare here without providing 

any evidence. 
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Lemma 5: (Frattini Argument) Let K be a normal subgroup of a finite group G . If P is a Sylow p

subgroup of K and )(PNM G , then KMG  . 

Proof: We prove this result by induction on || G . The result is trivial for all groups G with 5|| G . 

Consider a group G and assume that the result holds for all groups of order || G . Let mnG || and 

1),gcd( nm . 

Now two cases are arises: 

Case I: G has a proper normal subgroup N such that ||| Nn  . By Lagrange’s theorem, 11|| nmN   

where mm |1  and nn |1 . Also ||| Nn   implies that nn 1 . Since G is solvable, so NG / is a solvable 

group and mn
n

n

m

m
NG 

11

.|/|  together with 1,gcd
11










n

n

m

m
 implies, by the induction hypothesis 

that, NG /  has a subgroup NK /  of order
1m

m
, where K is a subgroup of G . Then K is solvable, and 

mnmnnm
m

m
NNKK  111

1

.||.|/|||  

K has a subgroup H of order m . 

Case II: n  divides the order of every normal subgroup of G . Since G is finite, it has a minimal 

normal subgroup, say H . Then H is abelian and rpH ||  for some prime p , Since G is solvable. 

Now, using Lagrange’s theorem, mnGp r ||| . Then rpn | and H  is a Sylow p subgroup of G . 

Since H is normal inG , it is the unique Sylow p subgroup of G . If K is minimal normal subgroup 

of G , then arguing similarly we have 8|| qK  for some prime q and K is the unique Sylow q

subgroup of .G  Since || Hn and || Kn , so qp, cannot be distnict. Thus H is the unique minimal 

normal subgvroup of G , that is H is contained in every proper normal subgroup of G .  

 Let HK / be a minimal normal subgroup of HG / . Since HG / is solvable, 8|/| qHG  for 

some prime pq  . Then K is a normal subgroup of G such that 8|| qpK r . If Q is a Sylow q

subgroup of K , then KHQ  and ||||.||
||

||.||
|| 8 KqpQH

QH

QH
HQ r 


  

HQK  . Let )(QNM G . We shall show that mM || . 

 Set )(QNKMN K . Then Fratini argument gives us us KMG   and we have 

.///
N

M
MKMKKMKG   Then 

||

||.||
||

K

NG
M  . Now KNQ 

KHNHQK  , that is HNK  . Thus, 
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||

||.||
||

K

NG
M   

||

||.||

HN

NG
  

||

||.||

H

NHG 
  

.|| NH   

]||[||. npHNHm r    

Thus it is only to show 1|| NH , which will prove in two parts 

(i) )(KZNH     and     (ii) }{)( eKZ   

(i) Let NHa  . Since HQK  , every element of K is of the form hb where QbHh  , . 

Since H is abelian, a commutes with h . So it suffices to show that a commutes  with every Qb . 

Now Qbaba  11)( , since )(QNNa k and Hbaba  11)( , since H is normal in G . Thus 

}{11 eQHbaba  and hence baab  . 

(ii) Since GK  , so GKZ )( , if }{)( eKZ  . Then it contains a minimal subgroup, say U . 

Since )(KZU  , so U is normal in G and becomes a minimal normal subgroup of G . Since H is 

unique subgroup which is normal in G . Thus )(KZHU  . Now HQK  ,  

P  is a character subgroup of K . 

Since GK  , it follows by Lemma that GQ . 

Since H is the unique minimal normal subgroup of G , so QH   

Which is a contradiction. Hence }{)( eKZ  . 

Check your progress 

Problem 1: Check that for which value of n, nS  is solvable. 

Problem 2: Check that 
14Z  is solvable or not? 

Problem 3: Give an example of a group which is solvable group but not nilpotent group? 

 

9.6 SUMMARY 
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In this unit, we have studied about major topics in group theory like nilpotent group, solvable group 

and symmetric groups nS  for )5( n  and their related theorems and examples. After completion of 

this unit we have learned the following important concepts:  

 Each abelian group is also a nilpotent group and solvable group.  

 Each finite p-group is nilpotent. 

 Direct product of finite number of nilpotent groups is nilpotent. 

 Each subgroup of a nilpotent group is nilpotent. 

 Each nilpotent group is solvable. 

 Finite direct product of solvable group is solvable. 

 Each subgroup of solvable group is solvable. 

 Homomorphic image of solvable group is solvable. 

  is not solvable for . 

9.7 GLOSSARY 

 Nilpotent group: Any group is nilpotent if  for some  

 Solvable group: Let be a group. Then a chain  

of subgroups is called a solvable series of if is normal in and is 

commutative for every . 

A group is called a solvable group if has a solvable series. 
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G G
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9.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that every finite p group is abelian. 

2. Prove that a finite group G is nilpotent if and only if it is the direct product of its Sylow 

subgroups. 

3. If G be a solvable group. Then the quotient group HG / is solvable for every normal subgroup 

H of G . 

4. If G be a group, H and K be two subgroup of G and H be normal in G . If both H  and K are 

solvable then HK is solvable. 

5. If G be a group, H and K be two normal subgroup of G such that both the quotients HG / and 

KG /  are solvable. Then G is solvable if and only if KH  is solvable. 

6. nS  is not solvable for every 5n . 

Short Answer Type Question: 

7. Prove that direct product of a finite number of nilpotent groups is nilpotent. 

8. Prove that every subgroup of a nilpotent group is nilpotent. 

9. If G be a finite nilpotent group then prove that for every positive divisor m of || G , G has a 

subgroup of order m.  

10. Prove that every nilpotent group is solvable. 

11. Every homomorphic image of a solvable group is solvable.  

12. If H be a normal subgroup of a group G . If both H and HG / are solvable, then G is solvable. 

13. If G be a solvable group. If mnG ||  such that 1),gcd( nm , then G has a subgroup of order 

m . 

14. If G be a group. Then prove that G is solvable if and only if there is a positive integer n  such 

that }{)( eG n  . 

Fill in the blanks: 

15. Every finite p group is………….  

16. 3S  is …………….. nilpotent group 

17. Direct product of finite number of nilpotent group is …………….. 
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18. Every subgroup of nilpotent group is ……………….. 

19. nS  is not solvable for every ……………….. 

20. Every nilpotent group is …………………… 

21. Every finite direct product of solvable groups is …………….. 

22. Every subgroup of solvable group is …………………… 

9.11 ANSWERS 

Answer of self cheque question: 

1. 4,3,2,1n   2. Solvable  3. 3S  

Answer of terminal question: 

15. Nilpotent  16. Not  17. Nilpotent  

18. Nilpotent  19. 5n   20. Solvable  

21. Solvable  22. Solvable 
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UNIT-10: RING AND IDEALS  
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10.24    Answers 
 

10.1 INTRODUCTION 

In algebra, the study of rings is known as ring theory. In rings, addition and multiplication are 

defined and have characteristics in common with those of the operations specified for integers. Ring 

theory explores the structure of rings, their representations, or in other words, modules, special classes 

of rings (such as group rings, division rings), as well as a variety of properties that have proven useful 

both for the theory's own purposes and for its practical applications, such as homological properties 

and polynomial identities. Rings that are commutative are significantly easier to understand than those 

that are not.  

Commutative ring theory, often known as commutative algebra, is a significant branch of 

modern mathematics that has its roots in algebraic geometry and algebraic number theory, which offer 

several natural instances of commutative rings. The relationship between these three disciplines 
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algebraic geometry, algebraic number theory, and commutative algebra is so close that it is sometimes 

impossible to determine which discipline a given result belongs to. A basic theorem for algebraic 

geometry is, for instance, Hilbert's Nullstellensatz, which is formulated and proven in terms of 

commutative algebra. 

Noncommutative rings have a very distinct character since they have a greater potential for 

strange behaviour. Although the theory has grown on its own, a relatively recent tendency has 

attempted to mirror the commutative growth by geometrically modelling the theory of some classes of 

noncommutative rings as if they were rings of functions on (inexistent) "noncommutative spaces." 

With the advancement of noncommutative geometry and the discovery of quantum groups, this 

movement began in the 1980s. Noncommutative rings, particularly noncommutative Noetherian rings, 

have been better understood as a result. 

An ideal of a ring in mathematics, and more specifically in ring theory, is a unique subset of its 

constituent parts. Certain subsets of the integers, such as the even numbers or the multiples of 3, are 

generalized by ideals. The defining characteristics of an ideal are closure and absorption: adding and 

subtracting even numbers maintains evenness, and multiplication an even number by any integer (even 

or odd) yields an even number. Similar to how a normal subgroup may be used to create a quotient 

group in group theory, an ideal can be used to create a quotient ring. 

The ideals are the non-negative integers that correspond one-to-one with the integers; each 

ideal in this ring is a main ideal made up of multiples of a single non-negative number. However, in 

other rings, the ideals might not exactly match the ring components, and when certain integer qualities 

are generalized to rings, they tend to attach to the ideals rather than the ring components more 

naturally. For instance, the Chinese remainder theorem may be used to ideals and the prime ideals of a 

ring are comparable to prime integers. The ideals of a Dedekind domain, a significant type of ring in 

number theory, have a variant of unique prime factorization.  

10.2 OBJECTIVES 

The study of rings is a deep and multifaceted field with applications in various areas of mathematics 

and beyond, the importance of ideals in the study of rings and algebraic structures. Ideals provide a 

powerful framework for understanding the algebraic properties of rings and their connections to 

various mathematical fields. 
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10.3 RING 

Let R be a non empty set and         be arbitrary.The set R with two binary operations addition 

and multiplication is called a ring if the following conditions are satisfied: 

i.       is an abelian group. 

ii.       is semi group. 

iii. Distributive laws holds, i.e.,  

                          [Right dstributive law]        

                                                                     [Left DISTRIBUTIVE law]    

 

10.4 RING WITH UNITY 

A ring having multiplicative identity element is called Ring with Unity or Ring with identity element. 

10.5 COMMUTATIVE RING 

A ring for which multiplicative is commutative is called commutative ring. 

Example: 

1.         is a ring. This ring is called ring of integers. 

2.          is a ring,   being fixed integer. This ring is Commutative ring. 

3.         is a ring. This ring is called ring of real numbers.This ring is a commutative ring with 

unity element. 

4.         is a commutative ring. This ring is called ring of rational numbers. 

 

10.6 BOOLEAN RING 

A ring         is called Boolean ring if all elements are indempotent.i.e., 

                      

10.7 p- RING 

A ring         is called p-ring if 

                    
Similarly we define 2-ring. 

 

10.8  ZERO DIVISOR 
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 The non zero elements a,b of a ring R are knows as proper divisors of zero or zero divisors if      

or     . 

Example: 

1. The ring has matrices has zero divisors, for example if  

   
    
     

     
      
     

  

 

Then 

    
    
     

    

Hence the ring                     of matrices has zero divisors. 

2. The rings of a number do not have zero divisors. For  no two non-zero numbers such that their 

product is zero. 

10.9 RING WITHOUT ZERO DIVISORS 

 A ring is called without zero divisors if product of two non-zero elements of R is not zero if       

where                   both     and    . 

If we say that R is aring with zero divisors                     

10.10  CHARACTERISTIC OF A RING 

The characteristic of a ring R is explained as the smallest positive in integer . s.t.         . If 

their exist no positive integer, then R is called characteristic zero. Therefore R is of characteristic zero 

if          and for any positive integer . 

Theorem 1: (Elementary properties of ring) If       are arbitrary elements of a ring R, then  

Prove that. 

i.         

Solution: Let                                                

                                                                                          by left distribution law 

         

                         
Now we get 

                                                                                                                                 
Again 

      

                                                                                          by right distribution law 

         

              
By cancellation law in (R,+), we obtain 

                                                                                                                                   
ii.                   
Solution: From (1) and (2) ,we obtain the results 

                                                                               For         
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Since the additive inverse of    is a      
Similarly 

                                                                        
         and      

           

Since the additive inverse of    is a     . 

                                                                                                               
From (3) and (4), we obtain 

                  
iii.              

     Solution: Let                    by (ii) 

                                                           again by (ii) 

                                                                                  For –               
iv.  

Solution:                        
                                                              
                                                              

                                         
v.  

Solution:                          

                                              

                                              
                                           

Theorem 2: If R is a ring with unity element 1, then  

                               and             
 

Proof:                                                        

              

          

Since         ,  [For           ] 

Again                                            

                                                             

                                                            

This implies          Also          

               
Now taking     in above equation 

                        
                 

For         in additive group or           . 

 

Theorem 3: A ring without zero divisors iff the cancellation laws hold in  . 

Proof: Suppose R be a ring without zero divisors. 

To prove that cancellation laws hold in R.  

Since let                            . 

Then                     
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Also     and   has no zero divisors. 

Hence            

Thus                

Similarly we can show that               

Conversely,  Let R be a ring s.t. cancellation laws hold in R. 

To prove that R has no zero divisors. 

Suppose the contrary. Then R has zero divisors, then 

                and       

                for a.0=0       By left cancellation law 

 A Contradiction, for     

Similarly            . A Contradiction, for    . 

Theorem 4: If R is a Boolean ring then  

(i)            

(ii)               is commutative. 

 

PROOF: 

(i) Suppose 

       

                                     is Boolean ring,            

                 

              

5 

      

                                        (R is Boolean) 

         

      or      . 

(ii) Now 

                                                             is Boolean 

                

                   

                                       By distributive law 

                                                       

Finally,                   

                    . 

Left cancellation law of addition in R gives       . 

Taking                           , we get 
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                           ,             by left cancellation law 

                           . 

Theorem 5: If R is any ring with identity 1, show that R has positive characteristic    iff    is the at 

least positive integer for which      , 0 being additive identity of R.  

Proof: Let R be a ring with unity element e. 

        characteristic of R is 0. 

Suppose          finite number so that n is at least positive integer s.t.     . Let a be any 

element of R. Then 

            For        . 

           . 

Thus   is the least positive integer s.t.     .  

This proves that the characteristic of R is n. 

SOLVED EXAMPLE 

 

Example 1: Let   and   be arbitrary elements of a ring R whose characteristic is two and      . 

Then prove that,                     

Solution: Suppose           

 The characteristic of R is two             

       

                                

                                 

       

                                

                                 

       

Hence,                     

Example 2:If any element a has the multiplicative inverse, then a cannot be a divisor of zero, where 

the underlying set of a ring. 

Solution: Suppose let R be a ring and     s.t.   has the inverse       so     

To prove that   is not zero divisor of zero. Suppose not then 

  is divisor  of zero so   the element                  and       
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Contrary   . Hence required the solution. 

 

10.11 SUBRING 

Let R be a ring. A non empty subset s of the set R is said to be a subring of R if S is closed under 

addition and multiplication in R and S itself is a ring for those operations. 

iff   is closed for compositions in R 

iff                     . 

Theorem 1: The necessary and sufficient conditions for a non empty subset S of a ring R to be a 

subring of R are            (i) a,b   S   a-b S.              (ii) ) a,b   S   ab  S. 

Proof: Let S be a Subring of a ring R so that S itself is a ring. 

To prove that 

(i) a,b   S   a-b   S.          (ii) a,b  S   ab  S. 

S is ring   (S, +) is an abelian group. 

Hence a,b   S   a, -b   S [Each elemant of S has additive inverse in S] 

                         a+(-b)  S [S is closed w.r.t.(+)] 

                               a-b   S. Hence the condition (i) 

Again S is ring  (S,    is a semi group 

                            is closed w.r.t. multiplication 

                          ab S   a,b S. Hence the condition (ii) 

Conversely, let S is non empty subset of R s.t. the conditions (i) and (ii) hold. 

To prove that S is a subring of R, it is enough to show that S is a ring. 

The condition (i) says that  

                          a,a   S   a-a  S  0  S. 

Again                0  S, a S   0-a  S  -a S. 

i.e.                     a   S  -a   S. 

Consequently, a, b  S  a, -b  S 

                                    a-(-b)  S      by condition (i) 

                                     a+b  S 

                        a,b  S  a,b   

                                   a+b= b+a.                       Fot (R, +) is a abelian group. 

Similarly, we can show that 
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a+ (b+c) = (a+b)+c    a,b, c  S. 

Hence the above facts prove that (S, +) is an abelian group. Associatively of multiplication over  

addition holds in S. Since they hold in R. Finally we have show that (S, +,   ) is a ring. 

Theorem 2: The intersection of two subring is again a subring. 

Proof: Let    and    be two subring of ring R. 

Since 0   and 0    at least 0      . Therefore       is non-empty. 

Let a,b       , then 

                                 a       a    and a    

and                            b       b   and b   . 

But    and    are subring of R, therefore 

                                  a, b     a-b    and ab    

and                            a, b     a-b    and ab   . 

Consequently, a,b        a-b       and ab         

Hence       is a subring of R. 

10.12 PROPER AND IMPROPER SUBRING 

If R is any ring, then     and R are always subring of R. These are said to be improper subrings. The 

subrings of R other than these two, if any, are said to be proper subrings of R. 

Example: 

(i) The ring of Gaussian integers is a subring of ring of complex numbers. 

(ii) The ring of rational numbers is a subring of ring of real numbers. 

The ring of integers is a subring of a ring of rational numbers. 

10.13 IDEALS 

A non empty Subset S of a ring R is called a left ideal of R if:  

(i) S is additive Subgroup of R. 

(ii)   r  R,     s  S  rs  S. 

A non empty subset S of a ring R is called a right ideal of R if: 

(i) S is additive subgroup of R. 

(ii)   r R,     s S   rs  S. 

A non empty subset of a ring R is called an ideal or two sides ideal if it is both left ideal and right 

ideal, i.e. if: 
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(i) S is additive Subgroup of R. 

(ii)   r  R,    s  S   rs  S,  sr  S. 

Example: 

(i) The subring of even integers is an ideal of ring integers. 

(ii) The set          is an ideal of the ring of integers. M being any fixed integer. 

(iii) If R is a ring, then the set            is a right ideal of R. a being any fixed element 

of R. 

(iv) If R is a ring, then the set            is a left ideal of R.  a being any fixed element of 

R. 

10.14 IMPROPER AND PROPER IDEALS 

Let         be a ring. The ideal R and     are called improper or trivial ideals of R. Any ideal other 

than these two ideals is called a proper (or non trivial) ideal of R. 

10.15  PRINCIPAL IDEAL 

A left ideal generated by single element a  R is also called principal left ideal of R. The set 

                                                    

is a principal left ideal of R.  a being fixed element of R.  

If R is a ring with unity element e, and a  R, then Ra is principal left ideal of R. 

A right ideal generated by single element a  R is also called right principal ideal of R. The set 

                

is a principal right ideal of R.  a being fixed element of R. 

If R is a ring with unity element e, then aR is defined as right ideal generated by an element a  R.  aR 

is also defined as principal right ideal of R. 

An ideal of a ring R is called principal ideal of R, if it is generated by single element of R. 

That is to say, the set 

                       

is a principal ideal of R, generated by single element a  R. This set is also called ideal generated by an  

element a  R. The expression for principal ideal can be simplified if R is a ring with unity element e. 

In this case 

                                           .       For       

                                                , where          

                                       =            
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                                       =      , where          . 

Hence a principal ideal of R is the set                 if   is a ring with unity element  . 

10.16  PRINCIPAL IDEAL RING 

A commutative ring with unity for which every ideal is a principal ideal is said to be a principal ideal 

ring. 

10.17  PRIME IDEAL 

Let R be a commutative ring. An ideal S of ring R is said to be a prime ideal of R if  

                                   S   S or    . 

If an ideal S of a ring R is generated by an element   , then we write 

                                            . 

Similarly if an ideal S of a ring R is generated by elements     , then we write 

                                             . 

Example: The ideal            is prime. 

Solution: Let            is prime ideal of R generated by 3 and we also write        

Here                              .  Also 3 is prime 

                                              and     

                                              or     

                                            is prime 

 Theorem: If R is a commutative ring with unity and    , then             is a principal ideal 

of R, generated by a. 

Proof: Let R be a commutative ring with unity element e and    ,  

            

(i) To prove that Ra is ideal of R. 

(ii) To prove that Ra = (a), i.e., the ideal Ra is generated by a. 

Let S be an ideal generated by an element of a, so that       

                              

                                                     . For R is commutative. 

                                                                         . 

                                                                  , where            

                                                                   

                                                                 , where           . 
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Finally,                . 

Hence,                

But      . 

 Hence       . 

Now we have shown that Ra is an ideal generated by a single element a. By definition, Ra is a 

principal ideal of R. 

10.18   QUOTIENT RING 

Let R be a ring and S be an ideal of R. Let     denote the family of cosets of S in R, i.e.,  

 

 
            

Let          be arbitrary elements of    . Define the operations of addition and multiplication on 

     as follows:  

                   

                                                                    . 

Then R/S is a ring w.r.t. these operations. This ring           is called quotient ring or factor ring. 

Theorem: The intersection of two ideals is an ideal. 

Proof: 

(i)    and    both are additive subgroups of R. 

(ii)                   

and                             . 

To prove that       is an ideal of R. For this we have to prove the following: 

(iii)       is additive subgroup of R. 

(iv)                         

Evidently           

                     and      

          and          

          and           ,    by (ii) 

                 . 

Check your progress 

Problem 1: Check that the singleton set }0{ is ring or not? 

Problem 2: Check that the singleton set contain the identity element form a ring? 
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Problem 3: Check that the set }1,0{ is ring with unity or not? 

 

10.19 SUMMARY 

In this unit, we have studied the basic terminology used in ring theory. We have also read about the 

basic idea of ring with some theorems and examples. We have defined commutative and non 

commutative. In this unit first we have defined subring, Boolean ring, characteristic of ring with 

examples. After that we have described the definition of ideal, prime ideal, principal ideal and quotient 

ring with examples then important theorem related to these topic described. This unit is basic outlook 

of ring theory and concepts of this unit will be beneficial for the learners in the upcoming units. 

10.20 GLOSSARY 

 Ring 

 Characteristic of ring 

 Subring 

 Ideal 

 Principal ideal 

 Quotient ring 
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10.23 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that set of integers is a commutating ring ‘or’ ,.),( Z  is a commutative ring. 

2. Prove that set of rational numbers is a commutative ring. 

3. Prove that ring without zero divisors iff the cancellation laws hold in   

4. State and prove the necessary and sufficient condition for any subset of ring to be a subring. 

5. Prove that set of rational numbers is a subring of set of real number. 

6. Prove that subring of even integers is an ideal of ring of integers. 

Short Answer Type Question: 

7. If R is any ring with identity 1, then prove that R has positive characteristic    iff    is the at 

least positive integer for which       , 0 being additive identity of R. 

8. In any ring (R) any element a has the multiplicative inverse, then prove that a cannot be a 

divisor of zero. 

9. Prove that intersection of two subring of a ring is also a subring. 

10. Prove that intersection of two ideal of a ring is also an ideal of ring. 

11. Define the ring and subring with example. 

12. Define the ideal, prime ideal and principal ideal with example. 

13. Define proper and improper ideal with example. 

14. Let   and   be arbitrary elements of a ring R whose characteristic is two and      . Then 

prove that, 

                    

Fill in the blanks: 

15. Intersection of two subring of any ring is also a ………….  

16. Intersection of two ideal of any ring is also an …………. 

17. Set of rational number is subring of set of …………….. 

18. A ring (R) without zero divisors iff the cancellation laws ……………….. in  . 

19. Set of integers is a ……………….. ring with unity 

10.24 ANSWERS 

Answer of self cheque question: 

1. Yes 2. Yes 3. Yes 

Answer of terminal question: 

15. Subring 16. Ideal  17. Real  18. R       19. Commutative 
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Unit-11: INTEGRAL DOMAIN AND FIELDS 
 

CONTENT: 

11.1 Introduction  

11.2   Objectives 

11.3  Integral domain 

11.4  Field 

 11.4.1 Subfield 

11.5 Division ring or skew-field 

11.6 Summary 

11.7  Glossary  

11.8   References 

11.9  Suggested Readings 

11.10  Terminal Questions 

11.11 Answers 

11.1 INTRODUCTION 

In this unit we will learned about the more important tools used in the ring theory like integral domain, 

field and division ring or skew field. A field in mathematics is a set on which the operations addition, 

subtraction, multiplication, and division are defined and function in the same manner as they do for 

rational and real numbers. As a result, a field is a basic algebraic structure that is often utilised in 

number theory, algebra, and many other branches of mathematics. 

The domains of rational numbers, real numbers, and complex numbers are the most well-

known ones. Mathematicians frequently utilise and study a variety of different fields, notably in 

number theory and algebraic geometry, including fields of rational functions, algebraic function fields, 

algebraic number fields, and p-adic fields. On finite fields, or fields with a finite number of elements, 

the majority of cryptographic procedures are based. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 144  

The idea of a field extension expresses the relationship between two fields. The goal of the 

Galois theory, which Évariste Galois founded in the 1830s, is to comprehend the symmetries of field 

extensions. This theory demonstrates, among other things, that it is impossible to square a circle and 

trisect an angle with a compass and straightedge. Additionally, it demonstrates that quintic equations 

are typically algebraically intractable. 

In many areas of mathematics, fields are fundamental concepts. This comprises many 

mathematical analysis disciplines that are based on fields with extra structure. Analysis's fundamental 

theorems rely on the real numbers' structural characteristics. What's more, any field may be utilised as 

the scalars for a vector space, which is the usual generic setting for linear algebra. In-depth research is 

done on number fields, the siblings of the subject of rational numbers. Geometric object attributes may 

be described with the use of function fields. 

11.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the integral domain which is the extension of ring.  

 Analyze about the field which further essential tool used is Linear Algebra. 

 Memorized the concept of division ring or skew field. 

 Implementation of the concept of integral domain, field and division ring or skew field.  

11.3 INTEGRAL DOMAIN 

Definition: Any ring )(R is called integral domain, if it satisfies the following conditions 

(i) R  should be commutative ring 

(ii) R has unit element 

(iii) R  should be without zero divisors. 

Some authors defining to integral domain in a different way that an integral domain is a commutative 

ring without zero divisors. They do not demand that an integral domain have the unit element without 

a doubt. 

Set of integer ( I ) is a most common example of a ring to be an integral domain. We know that I is a 

commutative ring with unity and also I  does not possess zero divisors. We know that if ba, are 

integers such that 0ab , then either a or b must be zero. 
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The other rings which are examples of infinite integral domains are ,.),(,.),,(,.),,(  RQC  and the 

example of finite integral domain is ),},4,3,2,1,0({ 55  . 

Inversible elements in a ring with unity: In a ring )(R  each element possess additive inverse. 

Therefore when we talking about inversible of an element, we only asking about invertiablity with 

respect to the operation multiplication. If R is a ring with unity, then an element Ra  is called 

inversible, if there exist Rb  such that baab 1 . Then we rewrite 1 ab . 

Examples (i): In the ring of integers 1 and -1 are the only two inversible elements. 

(ii): In the set of nn  non singular matrices with real numbers as elements are the only inversible 

elements of the ring of all nn matrices with elements as real numbers. 

Theorem 1: A commutative ring R is an integral domain iff )0(,,  aRcba  

 cbacab   

Proof: Let R is an integral domain. 

Also let )0(  aacab  

Then 0 acab  

0)(  cba  

00  cbora  

Since 0a , we get cb   

Conversely, let the given condition holds good. 

Let Rba , be a arbitrary elements with 0a . 

Suppose 0ab  

Then 0.aab   

0 b  using given condition 

Hence 00  bab  whenever 0a  or that R is an integral domain. 

Remark: Any ring )(R  is said to satisfy left cancellation law if )0(,,  aRcba  

cbacab   

Similarly we can talk of right cancellation law. It is to notify that cancellation is of only non zero 

elements. 

11.4 FIELD 

Definition: A ring )(R  with at least two elements is called a field )(F  if it satisfies following 

conditions, 

(i) It should be commutative 
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(ii) It has unity 

(iii) Each non-zero element possess multiplicative inverse. 

For example, ring of rational numbers .),,( Q  is a field because it satisfies aforementioned following 

conditions. Similarly, rings of real numbers .),,( R  and complex numbers .),,( C are also common 

example of fields.  

),},4,3,2,1,0({ 55  is an example of finite fields 

If ba 0, are elements of a finite field ,F then we shall often write 

ab
b

a
ab 11   . In a field F , we have 

)]())[()(()()( 11111   cdabbdbdcdab
d

c

b

a
 

bd

bcad
bcadbdcdbdbdabbdbd


  ))(()])()(())()[(( 11111  

[Because in the field ( F ) multiplication is commutative] 

Also 
bd

ac
bdacdbaccdab

d

c

b

a
  11111 ))(())(())(( . 

11.4.1  SUBFIELDS 

Definition: A non-empty subset K of a field F is said to be subfield if K is closed w.r.to. operation 

addition and multiplication in F and K itself is a field for these operation.  

Conditions for a subfield: The necessary and sufficient condition for a non-empty subset K of field 

F to be subfield are 

(i) KbaKbKa  ,  

(ii) KabKbKa  10,  

Proof: Necessary condition: Let the subset K  of field F is itself a field.  

K is a group w.r.to. addition i.e. for each  KbaKba ,  

Now each non-zero element of K possesses multiplicative inverse. Therefore 

KabKbKa  10,  

Hence condition is necessary. 

Sufficient condition: Suppose K is non-empty subset of F and satisfying the condition (i) and (ii). As 

similar we have proved in case of subring that ),( K  is abelian group, in similar we will prove (i) that 

),( K  is abelian group.  
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Now let a be any non-zero element of K . Then from (ii) we have 

KKaaKaKa   10, 1  

Now K1 , therefore again from (ii), we have  

KaKaKaK   1110,1 . 

Each non-zero element of K possesses multiplicative inverse. 

Now let Ka and Kb0 . Then Kb 1 . From (ii), we have 

KabKbaKbKa   111 )(0,  

Also if ,0b then 0ab  and K0  

KbaKab  ,  

Associativity of multiplication and distributivity of multiplication over addition must hold in K since 

they hold in F  

11.5 DIVISION RING AND SKEW FIELD 

Definition: A ring )(R  with at least two elements is called a division ring or a skew field if is satisfies 

following conditions 

(i) Has unity 

(ii) Each non-zero element possesses its multiplicative inverse. 

Thus a commutative division ring is a field.  

A division ring is a field if it is also commutative but every field is also a division ring.  

Theorem: Every field is an integral domain. 

Proof: As we know that a field )(F is a commutative ring with unity, therefore to prove that every field 

is an integral domain we have only to prove that a field has no zero divisors. 

Let ba,  be elements of F with 0a such that 0ab  

Since 1,0  aa  exists and we have 

0)(0 11   aabaab  

 0)( 1   baa  

 01  b                                                            [ 11  aa ] 

 0 b                                                             [ bab  ] 

Similarly, let 0ab  and 0b  

Since 1,0  bb  exists and we have 

11 0)(0   bbabab  
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 0010)( 1   aabba  

Hence in a field 00  aab  or 0b . Since field has no zero divisors therefore every field is an 

integral domain.  

The converse of this theorem is not true i.e., every integral domain is not a field. For example, ring of 

integer is an integral domain while it is not a field because only inversible element in the ring of 

integer are 1 and -1.  

Note: In the field unity and zero are different elements i.e., 01 . Let a be any non-zero element of a 

field. Then 1a exists and is also non-zero. For, 0010100 11   aaaaaaa  

This is a contradiction. Now, field has no zero divisors. Therefore, 01 1   aa . 

Remarks: As we know field has no zero divisors. Therefore in the field product of two non-zero 

elements will again a non-zero element. Also each non-zero element and unit element possesses non-

zero multiplicative inverse. Since multiplication is commutative as well as associative, therefore the 

non-zero elements of a field form abelian group w.r.to. multiplication.  

Theorem 2: A skew field )(D has no zero divisors. 

Proof: Let D be a skew-field. Then D is a ring with unit element 1 and each non-zero element of D

possesses multiplicative inverse. 

Let ba,  be elements of D with 0a s.t. 0ab  

Since 1,0  aa exists and we have 

0)(0 11   aabaab  

             0010)( 1   bbbaa  

Similarly, let 0ab  with 0b  

Since 1,0  bb  exists and we have 

11 0)(0   bbabab  

              0010)( 1   aabba  

Hence a skew field has no zero divisors. 

Theorem 3: Every finite integral domain is a field ‘OR’ A finite commutative ring without zero 

divisor is a field. 

Proof: Let D be a finite commutative ring without zero divisor having n elements naaa ,...,,, 21 . In 

order to prove that D is a field, we must produce an element D1 such that Daaa 1 . Also we 

should show that for every element Da  0 there exist an element Db such that 1ba .  

Let Da  0 . Consider the n products naaaaaaaa ,...,,, 321 . 
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All these are element of D . Also they are all distinct. For suppose that ji aaaa  for ji  . 

Then 0)(  ji aaa                                                      … (1) 

Since D is without zero divisors and ,0a therefore (1) implies  

jiji aaaa  0 , contradicting ji  . 

 naaaaaaaa ,...,,, 321
are all n distinct elements of D placed in some order. So one of these elements 

will be equal to a . Thus there exists an element, say, D1 such that 

aaa 11         [ D is commutative] 

We shall show that this element 1 is the multiplicative identity of D . Let y be any element of D . 

Then from the above discussion for some Dx , we shall have xayax   

Now, )(11 axy        [ yax  ] 

xa)1(  

ax        [ aa 1 ] 

y        [ yax  ] 

1y        [ D is commutative] 

Thus Dyyyy  ,11 . Therefore 1is the unit element of the ring .D  

Now D1 . Therefore from the above discussion one of the n  products 
naaaaaaaa ,...,,, 321

will be 

equal to 1. Thus there exists an element, say Db  such that 

baab 1  

b  is the multiplicative inverse of the non-zero element Da . Thus every non-zero element of D is 

inversible. 

D is a field.  

Definition: In a ring R any element a is said to be idempotent if aa 2 . Any ring R will be called 

Boolean Ring if and only if all of its elements are idempotent i.e., if Raaa 2 . 

Example 1: In the ring of set M of 22 matrices over the field of real number with respect to matrix 

addition and multiplication evaluate the following: 

(i) Is it a commutating ring with unity elements? 

(ii) Find the zero elements. 

(iii) Does this ring possess zero divisors? 

Solution: Let MBA , . Then MBA   and MAB . Therefore M is closed with respect addition 

and multiplication of matrices. 

As we know that both addition and multiplication of matrices are associative composition. 
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MCBACBACBA  ,,)()(  

and MCBACABBCA  ,,)()(  

Commutative property holds in addition of matrices. Hence, MBA  , , we have ABBA  . 

If O be the null matrix of the type 22 , then MO and MAAAO  . 

Further multiplication of matrices is distributes w.r.to. addition. 

ACABCBA  )(  

and MCBACABAACB  ,,)(  

M  is a ring with respect to the given compositions. 

Multiplication of matrices is not in general a commutative composition. For example, if 




















10

21
,

53

42
BA  

Then, 









113

82
AB  and 










53

148
BA  

Thus BAAB  and so the ring is a non-commutative ring 

If I be the unit matrix of the type 22  i.e., 









10

01
I  then MI  . Also we have 

MAIAAAI   

I  is the multiplicative identity.  

Thus the ring possesses the unit element and we have 1I  (the unit element of the ring) 

The ring possesses zero divisors. For example if 

,
00

32
,

10

10

















 BA then 










00

00
AB  

Thus the product of two non-zero elements of the ring is equal to the zero element of the ring. 

Example 2: DO the following sets from integral domains w.r.to. ordinary addition and multiplication? 

If so state if they are fields. 

(i) The set of numbers of the form 2b  with b rational. 

(ii) The set of even integers. 

(iii) The set of positive integers. 

Solution (i): Let  QbbA  :2 . 

We have A23  and A25 . Then    302523  . Now 30 can not be put in the form 2b

where b is rational number. Therefore A30 . Thus A is not closed with respect to multiplication. 

Therefore the question of A becoming a ring does not arises. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 151  

(ii): Let  R be set of all even integers. Then R is a ring with respect to addition and multiplication 

of integers. Additionally, the composition of multiplication is commutative. Since the product of two 

non-zero even integers cannot equal zero, which is the zero element of this ring, R has no zero 

divisors. Since the integer ,1 R  therefore R is a ring without unity. If the presence of the unit clement 

is not a requirement for an integral domain, then R will be one. However, since the multiplicative 

identity does not exist, R is not a field. 

(iii): N should be the collection of positive integers. The additive identity does not exist since the 

number N0 . N  won't be a ring, then. 

Example 3: Show that collection of numbers of the form 2ba  , with a and b as rational numbers 

is a field.  

Solution: Let  QbabaR  ,:2  

Let Rba  211  and Rba  222  where Qbaba 2211 ,,,  

We have       Rbbaababa  2)(22 21212211 . Since     Qbbaa  2121 ,  

Also  211 ba        Rbababbaaba  222 1221212122 .  

Since Qbababbaa  12212121 ,2  

Thus R is closed w.r.to. addition and multiplication. 

We know that addition and multiplication are both associative and commutative compositions in the 

set of real numbers since all the components of R are real numbers. 

Further we have R 200 since Q0 . 

If Rba  2 , then 

    22)0(02200 bababa   

200  is the additive identity. 

Now again if Rba  2 , then Rba  2)()( and we have 

200]2[]2)()[(  baba  

 each element of R  posses its own additive inverse. 

Since multiplication is distributive w.r.to. addition in the set of real number. 

Again R 201 and we have 

      Rbababa  201222201  
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So,  201  is the multiplicative identity. Thus R is commutative ring with unity and the zero 

element of the ring is 200   and 201  is the unit element. If each non-zero element of R has a 

multiplicative inverse, then R  will now be a field. 

Let 2002  ba  be any element of this ring i.e., one of the element a and b  is not zero. 

Then 
22 2

2

)2)(2(

2

2

1

ba

ba

baba

ba

ba 










 

2
22 2222 























ba

b

ba

a
 

Now if a , b are rational numbers, then we can have 22 2ba   only if 0,0  ba . As we know that at 

least one of the rational numbers a and b is not 0 . There we cannot have 22 2ba  i.e., 02 22  ba . 

 Both numbers
22 2ba

a


and 

22 2ba

b


 are rational number and not both of them are zero. 

2
22 2222 























ba

b

ba

a
is non-zero multiplicative inverse of 2ba  . Hence the given 

system is a field.  

Example 4: Give an example of an infinite commutative ring without zero divisors which is not a 

field. 

Solution: Let Z be the set of integers. Then .),,( Z  is an infinite commutating ring without zero 

divisors and is not a field.  

Example 5: If .),,( R be a ring with n  elements, 2n with no zero divisors, show that R is a 

division ring. 

Solution: Let R be a finite consisting of n elements, where 2n s.t., R has no divisor of zero. 

To prove that R is a division ring we have enough to prove that. 

(i) R  has a unit element 1. 

(ii) Every non-zero element of R has multiplicative inverse in R . 

(i) Prove of  (i) is the part of Theorem 3.  

(ii) RxaR j 1  s.t. njxa j  1,1  

 a is left inverse of jx in R . 

But left inverse = Right inverse. 

a is the multiplicative inverse of jx in R  

Theorem 4: In the ordered integral domain D , the unity element is a positive element of D . 
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Proof: Let P be the collection of positive elements of integral domain D . We have to prove that P1

, for it we assume that P1 . 

Since P1 , P 101    [By definition of P ] 

P )1)(1(  

P1 , which is a contradiction. 

Hence the unity element is positive element of D . 

Theorem 5: The field ),,( pppI   is not ordered, where }1,...,2,1,0{  pI p and p prime. 

Proof: To prove ),,( pppI   is not ordered. 

Suppose the contrary. Then ),,( pppI   is ordered. Let P be the set of positive element of pI . Since 

additive identity of pI is '0' . By definition of ,P PI1  

only one of the following is true: 

P 1,01 or additive inverse of P1 . 

Evidently 01 . Hence P1  or additive inverse of P1 . Since P is closed w.r.to p . 

PPPPP pp  3122111  

Repeating this process, we find that PpP  11 , i.e., P1  

additive inverse of 1 belongs to P . Which is a contradiction.  

For both the possibilities PpP  1,1 cannot holds simultaneously.  

Here our initial assumption is wrong. 

Therefore the required result follows. 

Theorem 6: The set of complex number is not ordered integral domain. 

Proof: Let C be the set of complex numbers. We know that .),,( C is an integral domain. Let P be the 

set of positive element of C . Evidently Ci and 0i .  

Hence either PiorPi  . 

PiiPi  . , by definition of P  

.1 P  For 12 i . 

A contradiction . For P1 , by theorem 4. 

Pi . 

Again, PPiPiiPi  1))(( 2 . 

Again we get a contradiction, Pi . 
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Thus ,,,0 PiPii  i.e., any one of the following: 

,,,0 PiPii   

does not hold. Hence C is not an ordered integral domain. 

Theorem 7: The characteristic of a ring with unity is zero or 0n  according as the unity element 

regarded as a member of additive group of R of order 0 or n . 

OR 

If R is any ring with identity 1, shows that R has positive characteristic niffn  is the least positive 

integer for which 0,01. n being additive identity of R . 

Proof: Let R be a ring with unity element .e   

 0)(eO Characteristic of R is 0. 

Suppose aneO )( finite number so that n is the least positive integer s.t. 0ne . Let a  be any 

element of R . Then 

).(eanna  1For aeaea   

00)(  aane  

Thus n is the least positive integer s.t. 0na . Hence the characteristics of R is n . 

Theorem 8: Every finite integral domain D is of finite characteristics. 

Proof: Let .),,( D be a finite integral domain so that .),,( D is a finite abelian group. We also known 

that characteristic of D is the order of unity element e  of .),,( D . 

.),,( D  is finite group )(eO  finite. 

  Characteristic of D is finite. 

Theorem 9(a): The characteristic of an integral domain is either 0 or a prime number according as the 

unity element e regarded as a member of the additive group of integral domain is of order 0 or a prime 

number. 

Proof: (i) Let D be an integral domain. Then we prove that characteristic of D is either 0 or 0p .                                                                                                

[Proved in theorem 8] 

(ii) If the characteristic is zero, the proof is complete. 

Let the characteristic be 0p . We have to show that p is a prime number. 

Suppose p is not prime. Then p is composite integer. So we can write 
21 ppp  : where ppp  21,1 . 

Characteristic of D is p order of e of the group ),( D is p .         [ e is unity element of D ] 

0)(  pepeo  

0)(0 2121  eppepp  
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0))(( 21  epep  

00 21  eporep                                               [For D  has no zero divisor] 

 Characteristic of D is either 1p  or pp 2
 

pDCh  . . A contradiction. 

Hence p is not composite. 

Therefore p is prime.  

Theorem 9(b): The characteristic of an integral domain is 0 or 0n  according as the order of any 

non-zero element regarded as member of the additive group of the integral is either 0 or n .  

Proof: Let .),,( D be an integral domain and Da and 0a  and 0)( aO or n  regarded as a 

member of ),( D . 

Then   00,0  ana                                                                                       ...(1) 

Aim: Characteristic of D is 0 or n . 

For this have to show that Dxnx  0 . 

If Dx , then (1) 0)...(0)(  xtermsntoaaaxna  

     0)...(  termsntoaaxax  

     0,0)(0)....(  anxatermsntoxxa  

0nx as D is free from zero divisors. Hence n is the least positive integer, according to (1). 

Example 6: If there exist a positive integer m such that Fama  0 , then show that m is a prime. 

What is this integer? F being a field.  

Answer: Let F be a field and Fa be arbitrary. Also let  

   0ma                                                                                               …(1) 

where m is a positive integer. Let e  be the multiple identity of F .  

Then    0 eaae  

(1)  000))((0)(  aormeameeam  

 in particular 0me                                                                                                     …(2) 

For F has no divisor of zero 

F is field F is integral domain s.t. (2) holds. 

It means that m is the characteristic of F . To prove that m is prime.  

Now write proof of theorem 9a.  
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Theorem 10: Each non-zero element of an integral domain D , regarded as an element of the additive 

group D , is of the same order.  

Proof: Let ba,  be arbitrary non-zero elements of an integral domain D  s.t. ba  . 

Let mbOnaO  )(,)( , where ba,  are regarded as element of ),( D  so that 0,0  mbna , 

D is an integral domain D  has no zero divisors. 

    cancellation law hold in D . 

0...0  termsnuptoaana  

  00....  btermsnuptoaab  

0...  termsnuptobaba  

aanbaanbban 0)(00)(0)(   

0nb , by cancellation law 

.)( nmnbO  For mbO )(  

0...0  termsnuptobbmb  

  00....  atermsnuptobba  

0...  termsnuptoabab  

babm 00)(   

bbma 0)(  . Also 0b  

0ma , By cancellation law 

mnmaO  )( . For naO )(  

Thus we have shown that nmmn  , .  

,nm   i.e., )()( bOaO  . 

When considered as members of an additive group, any two non-zero components of D have the same 

order. 

Therefore, when considered a member of ),( D , every non-zero element of D is of the same order.  

Example 7: Give an example of skew-field which is not field.  

Solution: Let R  be a set of matrices of the form, 

   











ab

ba
A  

Where a  and b are complex numbers. 
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Let    











cd

dc
B , 

   











pq

qp
C  be any two member of R . Then 

   













cadb

dbca
BA

(
 

   













acdbdacb

cbaddbac
AB

(
 

If we take cbaddbacdbca   ,,, , then we have  

    RBA 














 

    RAB 














 

(i) ),( R is an abelian group. 

Closure axiom: RBA  (already proved) 

Commutativity: ABBA  .  

This flows from the fact that abba   

Existence of identity: RO 









00

00
 

is additive identity s.t. AAOOA   

Associative law: CBACBA  )()(  

It follows from the fact that 

 cbacba  )()(  

Existence of inverse: R
ac

ca
A 












  

is inverse of A s.t. OAA  )(  

(ii) .),(R  is a group 

Closure axioms: RAB (already proved) 

Existence of identity: RI 









10

01
is  identity s.t. AIAAI  . 
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Associative law: )()( BCACAB   

For   )()( bcacab   

Existence of inverse: If OA  , then 

R
ab

ba

bbaaA

adjA
A 







 




)(

1

||

1  

is inverse of A s.t. IAAAA   11
 

Commutative law: BAAB   is not satisfied here. 

For 





















ab

ba

dd

dc
BA  

BA
cadbcbda

dabcdbac













 , by (1) 

Or ABBA  

(iii) Distributive law: ACABCBA  )(  

            CABAACB  )(  

It is true in general in case of matrices. 

These fact show that .),,( R  is askew field but not field.  

Example 8: Prove that the set }6...,,2,1,0{7 I  forms a field w.r.t. addition and multiplication modulo 

7.  

Solution: Let }6...,,2,1,0{7 I . 

Let 
7,, Icba   

We define 









7

7
7

baifr

baifba
ba  

Where r is remainder when ba   is divided by 7, 

60  r  

Evidently, 77 Iba   

(i) First, we have to prove that ),( 77 I  is an abelian group. 

Closure axioms: 77 Iba   (already proved) 

Existence of identity: 70 I , called additive identity s.t. 
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  aaa  77 00  

Commutative law: abba 77  . 

This follow from the fact that, abba   

Associative law:   )( 7777 cbacba   

Since )()( cbacba   

Therefore each side leaves the same remainder when divided by 7. 

)()( 77 cbacba   

Or  )()( 777 cbacba   

Existence of inverse:  ,7Ia its inverse 

7)7( Ia   (if 0a ) s.t. 

0)7()7( 77  aaaa . 

Inverse of 0 is 0 itself. 

(ii) Write }0{}6...,,3,2,1{ 77
'  II . 

Let 7
',, Icba  . Define  

 









7

7
7

abifs

abifab
ba  

Where s is the remainder when ab is divisible by 7. 

60  s  

abs  0  is divisible by 7. 

But 7 has divisor a  or b is divisible by 7 

  7,7  ba . 

A contradiction as 7, ba . 

.0 s Consequently 60  s . 

This '

7Is '

77 Iba   

Aim: Now we have to prove that ),( 7

'

7 I is an abelian group. 

Closure axioms: '

77 Iba    (already proved) 

Commutative law: abba 77   
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Associative law: )()( 7777 cbacba  . 

Since )()( bcacab   

Existence of identity: '

71 I  is identity element s.t. 

            aaa  11 77
. 

Existence of inverse: '

7Ia , we have its inverse '

7Ix  s.t. 

           177  axxa . 

For the equation )(mod1 pax   has a solution x  if p  is prime. 

[Inverse of 1, 2, 3, 4, 5, 6 are respectively 1, 4, 5, 2, 3, 6] 

Thus ),( 7

'

7 I  is an abelian group. 

(iii) Distributive law: )()()( 77777 cabacba   

   )()()( 77777 acabacb   

This follows from the fact that  

acabcba  )(  and cabaacb  )(  

Above arguments lead to the fact that ),,( 777 I is a field. 

Similar example 9: Let p be a positive prime number. Prove that the set }1...,,1,0{  pI p  forms a 

field w.r.t. addition and multiplication modulo p ’OR’Ring of integers modulo a prime number p , is a 

field. 

Example 10: If }4,3,2,1,0{5 I  then prove that ),,( 555 I  is a field, where 
5 and 5  respectively 

denote addition and multiplication modulo 5. 

Answer: The composition tables for two operations are given below: 

(i) Closure axiom: From the two composition tables it is quite clear that all the entries in both 

composition tables belong to 5I . Hence 5I is closed w.r.to. both operation 

(ii) Commutative law: The entries in the 1
st
, 2

nd
, 3

rd
, 4

th
 rows are coincident with the corresponding 

element of the 1
st
, 2

nd
, 3

rd
, 4

th 
columns respectively relative to the both operations. Hence 5  and 5  

both are commutative in 5I . 

(iii) Associative law: It is easy to verify that the associative law holds for , 

i.e., . 

Similarly,  

 

5

55555 ,,)()( Icbacbacba 

55555 ,,)()( Icbacbacba 
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5  43210  

4

3

2

1

0

 

32104

21043

10432

04321

43210

 

 

5  4321  

4

3

2

1

 

1234

2413

3142

4321

 

 

 (iv) 0 is the additive identity and 1 is the multiplicative identity for 5I . 

For   
550 Iaaa   

551 Iaaa   s.t. 0a   

This follows from the composition tables. 

(v) Existence of inverse: The additive inverse of 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively. The 

multiplicative inverses of non-zero elements 1, 2, 3, 4 are 1, 3, 2, 4 respectively. 

(vi) Distributive law: Multiplication is distributive over addition, i.e.,  

555555 ,,)( Icbacabacba   

5555555 ,,)( Icbaacaabacb   

For ).()( 555 cbacba  For )5(mod5 cbcb   

                                 least positive remainder when )( cba  is divided by 5. 

                                 least positive remainder when acab   is divided by 5. 

                                 acab 5  

                                 caba 555  . For )5(mod5 baba   

In similar way, we can prove other distributive law. 

Hence ),,( 555 I  is a field. 

Example 10: The set of all residue classes modulo a positive integer p is an integral domain iff p is 

prime. 

Solution:  Let R denote the set of all residue classes modulo a positive integer p so that 

 1...,,3,2,1,0:][  pxxR  

Then we know that R is a commutative ring with unity element [1], [0] being the zero element of R . 

Let Rba ][],[ be arbitrary so that 

1,0  pba  

R will be an integral domain iff it is free from zero divisors, i.e., iff 
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0][]0[][]0[]][[  boraba  

So we have to show that p is prime iff 

0][]0[][]0[]][[  boraba  

(i) p is prime, pba  ]0[]][[ is prime, )(mod0 pab   

)(mod0 pa  or )(mod0 pb   

]0[][]0[][  bora or )(mod0 pb   

(ii) Conversely supplies, 

].0[][]0[][]0[]][[  boraba  

Now we have to prove that p is prime. For it let p is of composite order. 

If p is of composite order p is expressible as, ,21 ppp  where ppp  21,1  

                                               ]0[][],0[][],.[][ 2121  ppppp  

                                               ].0[].[ 21  pp For ]0[][ p  

                                               ],0[][0][ 21  porp  by assumption. 

Which is a contradiction. 

For                                         0][ 1 p  and ].0[][ 2 p  

Which shows our assumption is wrong. Therefore p  is prime. 

Similar problem 11: The set of all integers modulo a positive integer p is an integral domain iff p is 

prime. 

Hint: ),,( pppI   is integral domain, where }1...,,3,2,1,0{  pI p . 

Check your progress 

Problem 1: Check  is field or not? 

Problem 2: Check that the set }1,0{ form a field? 

Problem 2: Check that the singleton set }0{  form a field and why? 

 

11.6 SUMMARY 

In this unit, we have studied about the integral domain, field, division ring or skew field in a ring. 

Throughout the all units we have learned about the basic definitions and their related theorems and 

examples on these major topics. In many areas of mathematics, fields are fundamental concepts. This 

}3,2,1,0{4 I
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comprises many mathematical analysis disciplines that are based on fields with extra structure. 

Analysis's fundamental theorems rely on the real numbers' structural characteristics. What's more, any 

field may be utilised as the scalars for a vector space, which is the usual generic setting for linear 

algebra. In-depth research is done on number fields, the siblings of the subject of rational numbers. 

Geometric object attributes may be described with the use of function fields. The overall 

summarization of this units are as follows:  

 A nonzero commutative ring without any nonzero zero divisors is referred to as an integral 

domain. 

 Having no nonzero zero divisors, an integral domain is a nonzero commutative ring. 

 Every field is an integral domain. 

 Every finite integral domain is field. 

11.7 GLOSSARY 

 Integral Domain: Any ring without zero divisor is called integral domain 

 Field: A commutative ring with unity having each non-zero element possess its multiplicative 

inverse is called field. 

 Division ring: A ring with unity having each non-zero element possess its multiplicative 

inverse is called division ring. 
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11.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Show that in an integral domain all non-zero elements generate additive cyclic groups of the 

same order which is equal to the characteristic of the integral domain. 

2. Give without proof, an example of an integral domain which contains only five elements. Is 

this an ordered integral domain? Give reason? 

3. Show that the matrices 








 ab

ba
, a, b real, forms a field. 

4. Prove that a non-zero finite integral domain is a field. 

5. Prove that ),,( 777 I  is a field, where 
7 and 7  respectively denote addition and 

multiplication modulo 5. 

6. Give an example of skew-field which is not field. 

7. Show that collection of numbers of the form 2ba  , with a and b as rational numbers is a 

field 

Short Answer Type Question: 

8. If D is a non-zero integral domain, then characteristic of D is either zero or a prime number. 

9. The set of complex number is not ordered integral domain 

10. Prove that a skew field has no zero divisor. 

11. Write the definition of following with suitable example. 

 (i) Field 

 (ii) Integral domain 

 (iii) Skew-field 

12. A commutative ring R is an integral domain iff )0(,,  aRcba  

 cbacab   

Fill in the blanks: 

13. A commutative R is an integral domain iff ……………………. 

14. Every field is an …………….. 

15. A skew field has no …………………. 

16. Every finite integral domain is ……… 

17. The set of all residue classes modulo a positive integer p is an integral domain iff p is 

……………….. 
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11.11 ANSWERS 

Answer of self cheque question: 

1. No 2. Yes 3. No, because it does not contain unity element 

Answer of terminal question: 

13. Cancellation law holds 14. Integral domain 15. Zero divisor  

16. Field    17. Prime    
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Unit-12: UNIQUE FACTORIZATION DOMAIN, PRINCIPAL 

IDEAL DOMAIN, EUCLIDEAN DOMAIN 

 

CONTENT: 

12.1 Introduction 

12.2  Objectives 

12.3  Isomorphism of rings 

12.4  Field of quotient 

12.5 Ideals 

12.5.1 More about ideals 

12.6  Principal ideals 

12.7   Euclidean and principal ideal domain 

12.8  Unique factorization domain 

12.9 Summary 

12.10  Glossary  

12.11   References 

12.12  Suggested Readings 

12.13  Terminal Questions 

12.14 Answers 

12.1 INTRODUCTION 

In this unit we will learn about the more important tool in ring theory is that isomorphic 

relation between two rings, ideals of the ring and their applications and theorems. 

The existence of gcd, Euclid's Lemma and Unique Factorization Theorem in Z and in F[x], 

where F is a field, all are consequences of the Division Algorithm. In this unit, we consider integral 
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domains having a division algorithm. In this we will learn the fundamental theorem of arithmetic states 

that every integer n > 1 is a product of primes and this product is unique up to the order of the prime 

factors. Here we characterize the integral domains D such that every nonzero non unit element of D 

can be expressed as product of irreducible elements uniquely in some sense. We call such integral 

domains UFD. In a UFD, irreducible and prime elements are precisely the same. Thus every nonzero 

non unit element of a UFD is a product of prime elements also. 

12.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the isomorphism of two rings.  

 Analyze about the ideals of the ring. 

 Memorized about the Euclidean domain (ED), principal ideal domain (PID) and unique 

factorization domain (UFD). 

 Analyze the relation between ED, PID and UFD.  

12.3 ISOMORPHISM OF RINGS 

Definition: Any ring R  is said to be isomorphic to other ring 'R if there exists a one-one and onto 

mapping f from R to 'R such that 

(i) )()()( bfafbaf   

(ii) Rbabfafabf  ,)()()( . 

Also such a mapping f is said to be an isomorphism of R onto 'R . Symbolically it is denoted as 

'RR  , also R is said to be isomorphic image of 'R .  

Note: The compositions in the two rings have been represented by the identical symbols in the 

aforementioned definition of ring isomorphism. The constituent parts of any composition are revealed 

to us by the elements. For example, Rba , . When we write abba ,  then the respective 

compositions are addition and multiplication of R . Again ')(),( Rbfaf  . When we write 

)()(),()( bfafbfaf   then the respective compositions are addition and multiplication of 'R  

Relation of isomorphism in the set of all rings. 

We can demonstrate that the relation of isomorphism in the set of all rings is an equivalence relation, 

as we have done in groups. In order to ensure that rings of the same class are all isomorphic to one 

another and rings of other classes are not, the set of all rings will be divided into disjoint equivalence 

classes. One can say that any two rings in the same equivalence class are abstractly similar. 
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Properties of isomorphism of rings:  

Theorem 1: If f is an isomorphism of a ring R onto a ring 'R , then 

(i) The image of R0  is '0 R  i.e., the additive identity element of ring R map into additive 

identity of the ring 'R . 

(ii) The negative of the image of an element of R is that element's image of its negative i.e.,  

Raafaf  )()( . 

(iii) If R  is the commutative ring, then 'R is also a commutative a commutative ring. 

(iv) If R is without zero divisors, then 'R is also without zero divisors. 

(v) If R is with unit element, then 'R is also with unit element. 

(vi) If R is field, then 'R is also a field. 

(vii) If R is skew field, then 'R is also a skew field.  

Proof (i): Let Ra . Then ')( Raf  . Let '0 denote the zero element of 'R . To prove that '0)0( f . 

We have ).0()()0()(0)( ' fafafafaf   By cancellation law for addition in 'R , we get 

from ),0()(0)( ' fafaf  the result that ).0(0 ' f  

(ii) We have '0)0()]([)()(  faafafaf  

)( af  is the additive inverse inverse of )(af in 'R . Thus )()( afaf   

(iii) Let )(af and )(bf  be any two elements of 'R . Then Rba ,  

We have )()()()( bafabfbfaf           [ R is commutative baab  ] 

                               )()( afbf . 

'R is also commutative. 

(iv) We have '0)0( f . Also f is one-one. Therefore 0 is the only element of R whose f -image is '0

. 

(v) Let 1 be the unit element of R . Then ')1( Rf  . If )(af  is any element of 'R , we have  

)()1()()1( afafaff   and ).()1()1()( afaffaf   

)1(f  is the unit element of 'R . 

(vi) R  is commutative with unity if R  is a field, and each non-zero element of R will have a 

multiplicative inverse. Now that this has been shown in (iii) and (v), 'R will be commutative and 

possess the unit element i.e., )1(f . 

Let )(af  be any non-zero element of 'R . Then 
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 '0)(af
10  aa  exists. 

Now '1)( Raf  and we have 

)1()()()( 11 faafafaf    and ).1()()()( 11 faafafaf    

)( 1 af  is the multiplicative inverse of ).(af  

Hence 'R is a field. 

(vii) As shown in (v) 'R will be with unit element i.e., )1(f  as shown in (vi) each non-zero element of 

'R will be inversible. Therefore 'R is a skew-field.  

Imbedding of a ring: A ring R is said to be imbedded in a ring 'R  if there is a subring 'S of 'R s.t. R  

is isomorphic to 'S .  

Any ring R is imbedded to other ring 'R if there exists a one-one and onto mapping f from R to 'R

such that,  

Rbabfafabfbfafbaf  ,)()()(),()()( . 

Theorem 2: Any ring R without a unity element may be imbedded in a ring that contains a unity 

element.  

Proof: Let R be any ring without unity element. Let Z is the ring of integers and 

},:),{(' ZmRamaZRR  . 

When appropriate binary operations have been specified in ZR , then it becomes a ring with a unity 

element containing a subring, isomorphic to R . 

If ),( ma  and ),( nb  are any two elements of ZR , then we define addition in ZR by the equation 

),(),(),( nmbanbma                                                                           …(1) 

And multiplication in ZR  by the equation 

),(),)(,( mnmbnaabnbma                                                                     … (2) 

Since Rba   and Znm  , therefore ZRnmba  ),( . Thus ZR is closed w. r. to addition. 

Further, RmbnaabRmbnaab ,, . Also Zmn . Therefore ZRmnmbnaab  ),( and 

ZR is closed w. r. to. multiplication.  

 Now let ),(),,(),,( pcnbma be any element of ZR . Then we observe: 

Associativity in addition: We have 

),(),(),()],(),[( pcnmbapcnbma   

])[],[()][,]([ pnmcbapnmcba   

)],(),[(),(),(),( pcnbmapncbma   

Commutativity in addition: We have 
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),(),(),( nmbanbma   

                      ),( mnab                           [Commutativity holds in addition] 

                      ),(),( manb  . 

Existence of identity: We have ZR)0,0( . Here the first 0 is the zero element of R and the second 

0 is the zero integer. 

Since, ),()0,0(),()0,0( mamama   

)0,0(  is the additive identity. 

Existence of inverse: If ZRma ),( , then 

ZRma  ),(  and we have 

)0,0(),(),(),(  mmaamama . 

),( ma   is additive inverse of ),( ma  

Associativity of multiplication: We have  

),)(,(),)](,)(,[( pcmnmbnaabpcnbma   

))(,)()()(( pmncmnmbnaabpcmbnaab   

))(,)()()()()()(( pmncmrbpmapnabpbcmacnabc   

Also ),)(,()],)(,)[(,( npncpbbcmapcnbma   

))(),()()(( npmncpbbcmanpncpbbca   

))(),()()()()()(( pmnncmpbmbcmanpncapbaabc   

))(),()()()()()(( pmnncmpbmbcmanpncapbaabc   

).)(,)()()()()()(( pmncmnbmpbcmanpacnabpabc   

We see that, )],)(,)[(,(),)](,)[(,( pcnbmapcnbma   

Distributive law: We have  

),)(,()],(),)[(,( pncbmapcnbma   

))(),()()(( pnmcbmapncba   

),( mpmnmcmbpanaacab   

),)(,(),)(,( pcmanbma   

In a similar manner, we may demonstrate that the other distributive law is equally valid. 

In light of the operations described on it, ZR  is a ring. 

Existence of identity: We have 

ZR)1,0( . If ZRma ),( , then 

),(),00()1,100(),()1,0( mamamamama   
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Also ),(),00()1,010()1,0)(,( mamammaama  . 

)1,0( is the multiplicative identity. So, ZR  is a ring with unity element (0, 1). 

Now consider the subset }0{'  RS of ZR which consists of all pairs of the form )0,(a . We shall 

show that }0{R is a subring of ZR . Let )0,(),0,( ba be any two elements of }0{R . 

Then }.0{)0,()0,()0,()0,()0,(  Rbababa  

Also, }0{)0,()0,00()00,00()0,)(0,(  Rababbaabba . 

}0{R is a subring of ZR . 

Finally we have to show that }0{ RR . Let   be a mapping from R to }0{R defined as 

Raaa  )0,()( .  

  is one-one: For it, let   bababa )0,()0,()()(  is one-one. 

  is onto: Let }0{)0,( Ra . Then Ra and we have )0,()( aa  . Therefore   is onto. 

  preserves addition and multiplication: If Rba , , then 

)()()0,()0,()0,()( babababa   . 

Hence   preserve the composition. i.e., }0{ RR . 

12.4 FIELD OF QUOTIENT 

Definition: If ring S has a subset 'S such that ring R is isomorphic to ring S , then the two rings can 

be embedded.  

We shall demonstrate that D  can be embedded in a field F , i.e., there exists a field F  that includes a 

subset 'D isomorphic to D , if D  is a commutative ring without zero divisors. The elements of D  will 

be used to build a field F , and this field F  will have a subset 'D  such that D  and 'D are isomorphic. 

The "field of quotients" of D , or simply the "quotient field" of D , is referred to as this field F . 

 We can claim that D  and 'D are abstractly the same since D  is isomorphic onto 'D . We can 

then state that the quotient field F  of D is a field containing D  if we identify 'D with D . We will 

also see that the smallest field that contains D  is F .  

Construction of quotient field: The ring of integer I is well known to all of us. Additionally, the set 

of quotients of the components of I  is the same as our familiar set Q of rational numbers. 
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Thus 








 IqIp
q

p
Q 0,: . Since set of rational numbers ( Q ) are ,...

1

3
,

1

2
,

1

1
,

1

0
,

1

1
,

1

2
,

1

3
...,



with the integers ( I ) ,...3,2,1,0,1,2,3...,  then QI  . Also .),,( Q  is a field. It is the smallest 

field containing I . Also if 
b

a
and Q

d

c
 , then we remember that 

(i) bcadiff
d

c

b

a
  (ii) 

bd

bcad

d

c

b

a 
  (iii) 

bd

ac

d

c

b

a
  

These facts serve as our inspiration as we move on with creating the quotient field of any integral 

domain. The following theorem applies. 

Theorem 3: A commutative ring without zero divisors can be imbedded in a field. 

OR 

Each integral domain can be imbedded in a field. 

OR 

It is feasible to create a field F from the components of an integral domain D that has a subset 'D that 

isomorphic to D . 

Proof: Let us suppose that D is a commutative ring without zero divisors. Let 0D  be the collection of 

all non-zero elements of D . Let 
0DDS   i.e., let S be the set of all ordered pairs ),( ba  where 

Dba ,  and 0b . Let us define a relation (~)  in S s.t.,  

bcadiffdcba ),(~),( . Now we have to show that this relation is an equivalence relation. 

Reflexivity: As we know D  is commutative, therefore Dbabaab  ,  

Thus, Sbaabba  ),(),(~),(  

Transitivity: Let ),(~),( dcba  and ),(~),( fedc  

bcad   and decf   

bcfadf   and bdebcf  . 

bdeadf   

bdeadf              [ D is a commutative ring] 

0)(0  dbeafbdeadf  

0 beaf            [ 0d and D is without zero divisors] 

),(~),( febabeaf  . 

  given relation is an equivalence relation ~  in S . 
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 S can be partitioned into disjoint equivalence classes and we denote the equivalence classes 

containing ),( ba by 
b

a
 and other notations are ),( ba  or ],[ ba . 

Then  .),(~),(|),( badcSdc
b

a
  

Obviously, ),(~),( badciff
d

c

b

a
 i.e., iff bcad   

Also, .0Dx
bx

ax

b

a
  The reason is that ),(~),( bxaxba  since baxabx  . 

These equivalence classes are quotients. Let F be the set of all such quotients i.e., 








 Sba
b

a
F ),(:  

Now defines operations addition and multiplication in F as follows: 

bd

bcad

d

c

b

a 
  and 

bd

ac

d

c

b

a
.  

Since D is without zero, therefore 00,0  bddb . Since both the element 
bd

bcad 
 and 

bd

ac
are 

belongs to field. F is therefore closed in terms of addition and multiplication. Now, we'll demonstrate 

that addition and multiplication in F  have clear definitions. For it we have to show that if, 

'

'

b

a

b

a
  and 

'

'

d

c

d

c
 , then 

'

'

'

'

d

c

b

a

d

c

b

a
  and 

'

'

'

'

d

c

b

a

d

c

b

a
  

We have ''

'

'

baab
b

a

b

a
  and ''

'

'

dccd
d

c

d

c
  

Now to show that ,
'

'

'

'

d

c

b

a

d

c

b

a
 we are to show that 

''

''''

db

cbda

bd

bcad 



i.e., ).()( '''''' cbdabddbbcad   

Now '''''''''')( cdbbddabdbcbdadbdbbcad   

'''' dcbbddba                                                 [ '' baab   and '' dccd  ] 

)( '''''''' cbdabdcbdbdbda  , which was desired. 

Again we have to show that 
'

'

'

'

d

c

b

a

d

c

b

a
  we have to show 

''

''

db

ca

bd

ac
  i.e., '''' cbdadacb   

Now '''''''' cbdadcbacdabdacb  , which was desired. 
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Hence both operations addition and multiplication are well defined on .F Now we have that F is a 

field. 

Associativity of addition: We have, 

bdf

bdefbcad

f

e

bd

bcad

f

e

d

c

b

a 














)(
 

















f

e

d

c

b

a

bdf

decfbadf

bdf

bdebcfadf )(

 

Commutativity in addition: We have 

b

a

d

c

db

dacb

bd

bcad

d

c

b

a






  

Existence of identity: We have 

 F
a


0
where 0a . If 

d

c
 is any element of ,F then 

d

c

ad

ac

ad

acd

ad

acd

d

c

a








000
       [ adcacd  ] 

So, F
a


0
is the identity element. It is also noted tthat, 

.,
00

0Dba
ba

 Also 0
0

dcaiff
bd

c
  i.e., 0c  

Existence of inverse: If ,F
b

a
 then .F

b

a



 

Also we have, 
abb

baba

b

a

b

a 00)(
22






      [ ]00 2ba   

b

a
 is the additive inverse of 

b

a
 

Associativity of multiplication: 

















f

e

d

c

b

a

af

ce

b

a

dfb

cea

fbd

eac

bdf

ace

f

e

d

c

b

a

)(

)(

)(

)(
.  

Commutativity of multiplication: We have  

b

a

d

c

db

ca

bd

ac

d

c

b

a
. . 

Existence of multiplicative identity: We have 

F
a

a
  where 0a . Also if F

d

c
 , then 
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d

c

aa

ac

d

c

a

a
                                   [ ),(~),( dcadac  because adcacd  ] 

a

a
  is the multiplicative identity. It is also notify that 

0, Dba
b

b

a

a
  

Existence of multiplicative inverse: Let F
b

a
0 . Then    . 

  
 

 
  . Since we have  

  
 

 

 

 
 

  

  
 

  

  
 

 

 
  the unity element 

  
 

 
 is the inverse of  

 

 
  w.r. to. the operation multiplication.  

Distribution of multiplication over addition: We have 

 

 
 
 

 
 

 

 
  

 

 

       

  
 

       

   
 

            

       
 

             

       
 

 
   

   
 

   

   
 

  

  
 

  

  
 

 

 

 

 
 

 

 

 

 
 

In similar way other distributive law also holds. 

Under the definitions of addition and multiplication given above, F is a field. The field of quotients of 

D is the name given to this field, F. We will now demonstrate that the field F includes a subset D' such 

that D and D' are isomorphic. 

Let D'   
  

 
           . Then     . If         are element of  , then 

  

 
 

  

 
 

Since        . Therefore if   is any non-zero fixed element of D, we re-write 

D'   
  

 
       . 

Let us defined the function        s.t., 

     
  

 
      is an isomorphism of   onto   . 

  is one-one: Since we have,           
  

 
 

  

 
                 

           

                since      

                                                                    

    is one-one.  

  is onto: If 
  

 
   , then    . Also we have      

  

 
. Thus   is onto   . 
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Also        
      

 
 

       

  
 

       

  
 

       

  
 

    
  

 
 

  

 
            

and       
     

 
 

      

   
        

   
  

 

  

 
          .  

    is an isomorphism from D onto     i.e.,     .  

12.5 IDEALS 

Definition (a): In a ring )(R a non empty subset )(S is said to be left ideal of R if: 

(i) S should be subgroup of R w.r.to addition. 

(ii) SsRrSrs  ,  

Definition (b): In a ring )(R a non empty subset )(S is said to be right ideal of R if: 

(i) S should be subgroup of R w.r.to addition. 

(ii) SsRrSsr  ,  

Definition (Ideal): A non-empty subset S of a ring R is said to be an ideal (also a two-sided ideal or 

left ideal/right ideal) if and only if it is both a left ideal and a right ideal. As a result, it may be claimed 

that a non-empty subset S  of a ring R  is an ideal of R . If, 

(i) S  is a subgroup of the additive group of R , or a subgroup of R  under addition. 

(ii) Srs  and SsRrSrs  , .  

S  is a subring of R  if S  is an ideal of the ring R  because S  is a subgroup of R  under addition and 

from condition (ii), we have SsxSxs  , because .RxSx   S is hence closed in terms of 

multiplication. S is a subring of R as a result.  Each ideal of a ring R  is a subring of R  as a result. 

However, not all subrings are perfect. A stronger closure feature than the subring is necessary for an 

ideal. If S  is a subgroup of R  under addition, then S will be a subring if S is closed under 

multiplication, meaning that the result of two components of S is once more contained in S . However, 

S will be an ideal if S  contains the result of any element of S and any element of R . 

Every left ideal will also be a right ideal if R  is a commutative ring. Thus, every left (right) ideal is an 

ideal in a commutative ring.  

Note: Every ring R always has two improper ideals: one that is R itself and the other that is made up 

entirely of zeros. These are referred to as the unit ideal and the null ideal, respectively. Other ideals 

are called proper ideal. Any ring having no proper ideals is called simple ring.  

Theorem 4: The intersection of two left ideals/right ideals of a ring is again left ideals/right ideals of 

the ring. 
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Proof: Let R be a ring and 
1I , 2I be two ideals of the ring. Then we have to prove that 

21 II   

is also an ideal of R . For it, we will first show that 
21 II  is left ideal of R i.e., 

2121, IIrsIIsRr  . 

We have,
2121 , IsIsIIs  . 

Since both  
1I , 2I are left ideals of the ring )(R . Therefore, 

11, IrsIsRr   and 
22, IrsIsRr   

Now, 
2121, IIrsIrsIrs   

Hence, 
21 II  is a left ideal of R . 

In a similar way we can prove that 
21 II  is also a right ideal of R .  

Theorem 5: Arbitrary intersection of left ideal/right ideal of a ring is also left ideal/right ideal of the 

ring. 

Proof: Let R  be a ring and let  TtSt : be the family of left ideal of R where T is the index set such 

that Tt . tS  be the left ideal of .R  Let  TtSxRxS t
Tt




:  be the intersection of family of 

left ideal of R . We will prove this theorem same as theorem 4.  

Example 1: The set N of all 22  matrices of the form 








0

0

b

a
, where ba, are integers is a left ideal 

but not a right ideal in the ring ( R ) of all 22 matrices with elements as integers. In this case, N is 

the portion of R that consists of all the entries with zeros in the second column. 

Answer: Let 


















0

0
,

0

0

d

c
B

b

a
A  be any two elements of N .  

Then, N
db

ca

d

c

b

a
BA 
































0

0

0

0

0

0
. 

N is a subgroup of R under addition. 

Now let 









zy

xw
U  be any element of R and 










0

0

b

a
A  be any element of N .  

Then 









zy

xw
UA  be any element of R and 










0

0

b

a
A  be any element of .N  

Then N
zbya

xbwa

b

a

zy

xw
UA 































0

0

0

0
 

Therefore N is a left ideal of R . It is not a right ideal, since 
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,
10

21
,

01

01
RN 

















 

And the product 

























21

21

10

21

01

01
 is not an element of .N  

Theorem 6: A field has no proper ideals i.e., any field ( F ) has only two ideals )0( and F is itself. 

Proof: Let S be any non-zero ideal of the field F and let a be any non-zero element of .S We have 

Fa 1 . Since S is an ideal, therefore 

SSaaFaSa   1, 11  

Now let Fx . Then 

SxSxFxS  1,1  

Thus each element of field )(F  belongs to S . Therefore SF  . Since we know that FS  . 

Therefore FS   

Hence the only ideals of the field )(F  are 0 and F itself. 

Theorem 7: If R is a commutative ring and Ra , then  

 RrraRa  :  is an ideal of R . 

Proof: In order to prove that Ra is an ideal of R , we should prove that Ra is a subgroup of R under 

addition and that if Rau and Rx then xu and ux are also in Ra . Since R is a commutative ring, 

therefore uxxu  . Thus we only need to check that xu is in Ra . 

Now, let Ravu , . Then arvaru 21 ,,   for some Rrr 21, . 

We have Raarrararvu  )( 2121
 since Rrr  21

. Thus RavuRavu , . 

Ra  is a subgroup of R under addition. 

Now again, Rx . 

Then Raaxrarxxu  )()( 11
. Since Rxr 1

. 

Ra is an ideal of R . 

Theorem 8: A commutative ring with unity is a field if it has no proper ideals.  

Proof: Assume that R  is a commutative ring of unity with no appropriate ideals, meaning that the 

only two ideals of R  are (0) and R . We must demonstrate that each nonzero element of R has a 

multiplicative inverse in order to prove that R is a field. 

Let a be any non-zero element of R . 

The set  RrraRa  :  is an ideal of .R Since R1 , therefore Raaa 1 . Thus Raa0 . 

Therefore the ideal )0(Ra . Since R has no proper ideals, therefore the only possibility is that 
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RRa  . Thus each element of R is a multiple of a by some element of R . In particular, R1 so it can 

be realised as a multiple of a . Thus there exist an element Rb such that 1ba . 

ba 1 .  Hence each non-zero element of R possesses multiplicative inverse.  

Hence R is a field.  

12.5.1 MORE ABOUT IDEALS 

In a ring )(R ideal generated ideal generated by given subset of R : We can locate ideals containing 

M if M is any subset of a ring. As an illustration, the ring R is an ideal that may include any subset of 

R. 

Smallest ideal containing subset: Let M represent any arbitrary subset of a ring. The smallest ideal of 

R containing M if is therefore an ideal S of if, 

SM  , 

and if every ideal of R containing M contains S. 

Definition: Let M be any arbitrary subset of R and let R be a ring. The ideal created by M is stated to 

be the smallest ideal of R containing M, and it is indicated by the symbol (M).  

In particular, we write (a) in instead of M if M only consists of one element, let's say a, of the 

ring R. A principal ideal is an ideal like (a) that is produced by just one ring element.  

12.6 PRINCIPAL IDEAL 

Definition: Any ideal S of a ring R will be called principal ideal if there exist an element Sa s.t. 

any ideal T of R that contain a also contains S i.e., ).(aS   

Therefore, the principal ideal is an ideal generated by a single element in itself. 

 In a ring )(R  if R1 , then the ideal generated by 1 is whole ring i.e., R)1( , since each 

element of R can be expressed as 1r . Ring itself is referred to be the unit ideal for this reason. The null 

ideal is the ideal produced by the zero element of R, or (0), which only contains the zero element. 

Every ring R has (0) as at least one of its primary ideals. Every ring with unity has two primary ideals 

at a minimum, namely (0) and (1). 

Theorem 9: If a  is an element in a commutative ring R with unity, then the set  RrraS   is a 

principal ideal of R generated by the element a i.e., )(aS  . 

Proof: First we have to prove that Sa . Since R is ring with unit element 1, therefore Saa 1 . 
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We must now demonstrate that S is an ideal of R. Therefore, we must first demonstrate that S is a 

subgroup of R under addition. Let the two element of S are vu, . Then arvaru 21 ,  for some 

Rrr 21, . 

We have Sarrararvu  )( 2121
. Since Rrr  21

. 

Since S  is a subgroup of R under addition. 

Now we have to prove that SxuSuRx  , and Sux . But R is a commutating ring then, 

uxxu   and thus we have only to prove that Sxu . 

We have Saxrarxxu  )()( 11
.  

As we know Rxr 1
 

S is an ideal of R and .Sa  

Now to prove that S is an ideal which is generated by the element a , We have only to show that if T

is an ideal of R and Ta , then TS  . 

Let Sra then Rr . If T is an ideal of R s.t. Ta  then TraTaRr  , . Thus TS  . 

Hence S is principal ideal of R s.t. )(aS  . 

Example 2: To find the principal ideal in the ring )(R of integer generated by 5. 

Solution: Since we know ring of integer )(I  is a commutative ring with unity.  

Since  Irr  |5)5(  

Thus, principal ideal of R generated by 5 is  

 ...,10,5,0,5,10...,)5(   

and obviously, )5()5(   

12.7 EUCLIDEAN AND PRINCIPAL IDEAL DOAMIN (PID) 

Definition: Let E be an integral domain. A function #*: ZEv   is called a Euclidean 

valuation on E if 

(i) for all Eba , with 0a , there exist Erq , such that raqb  , where either 0r  or 

)()( avrv   and 

(ii) )()( abvrv  , for all *, Eba   

An integral domain E  together with a valuation v on E is called a Euclidean domain. It is denoted by 

),( vE . 

Example 3: The ring Z of all integers can be considered as a Euclidean domain with the valuation 

#*: ZZv   defined by 0,)(  aaav . 
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Example 4: Consider polynomial ring F[x], where F is a field. Then F[x] is an integral domain. 

Define as #}0{\][: ZxFv  by 

}.0{\][)(),(deg))(( xFxfxfxfv   

Let 0)(),()(),(  xgxFxgxf . Since F is a field, so every nonzero element in F and hence the 

leading coefficient of g(x) is a unit. It follows, by the Division Algorithm for polynomials, that there 

exist unique ][)(),( xFxrxq   such that )()()()( xrxgxqxf  where either 0)( xr or 

)(deg)(deg xgxr  . Hence, we have )()()()( xrxgxqxf  , where either 

))(())((0)( xgvxrvorxr  . 

Since there is no zero divisors in F, so for any two nonzero elements f(x) and g(x) in F[x], we have 

),(deg)(deg)(deg))()(deg( xfxgxfxgxf  i.e. )).(())()(( xfvxgxfv   Hence, F[x] is a 

Euclidean domain. 

Now we show that every field is a Euclidean domain. In search of a suitable Euclidean valuation on a 

field, we first prove the following result: 

Theorem 10: Let E be a Euclidean domain with the valuation v. Then for every )1()(,* vavEa  if 

and only if a is a unit in E. 

Proof: For all ).1()1()(,* vavavEa   

Suppose a is a unit. Then there exists an element Eb  such that 1ab which implies that 

)()()1( avabvv  . Hence ).1()( vav   

Conversely, suppose that *)1()( Eavav  . Now 0a  implies that there exist Erq , such that 

rqa 1 , where )1()()(0 vavrvorr  r = 0 . Since )1()( vrv  is impossible, we have r = 0. 

Thus qa1 and hence a  is a unit. Hence, if it is possible to define a Euclidean valuation v on a field 

F, then )1()( vav  for every ,*Fa  since every nonzero element of F is a unit. Thus v is a constant 

mapping. 

Example 5: Let F be a field. Then #*: ZFv  given by: 

*2)( Faav   

is a Euclidean valuation. (Note that image of v may be any nonnegative integer.) Thus C, R and Q all 

are Euclidean domain. Every ideal of Z is a principal ideal. Now we consider the integral domains 

such that every ideal is a principal ideal. 

Definition: An integral domain R is called a principal ideal domain (PID) if every ideal of R is a 

principal ideal. Thus Z is a PID. Also every field is a PID. 

Theorem 11: Every Euclidean domain is a principal ideal domain. 
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Proof: Let ),( vE be a Euclidean domain. Consider an ideal I of E. If }0{I , then  0I . Let 

}0{I . Then  0,|)(  xIxxvN  is a nonempty set of non negative integers; and so, by the well-

ordering principle, it has the least element. Let 0,  aIa be such that )(av  is the least element of N, 

i.e. 0,)()(  xIxxvav . We show that I = Ea. Since Ia , it follows that IaE )( . Let Ib b 

2 I. Since E is a Euclidean domain, there exist Erq , such that rqab  , where 

)()(0 avrvorr  . If 0r , then Iaqbr  shows that Nrv )( ; and since )()( avrv  this 

contradicts the minimality of )(av  in N. Therefore, r = 0 and so Eaaqb  . Thus EaI  , and hence 

I = Ea. 

Now we characterize the polynomial rings which are Euclidean domains. 

Theorem 12: Let F be a commutative ring with 1. Then the following conditions are equivalent: 

1. F is a field; 

2. F[x] is a Euclidean domain; 

3. F[x] is a principal ideal domain. 

Proof    :21  Follows from Example 4. 

   :32   Follows from Theorem 11. 

   :13   First note that F[x] is an integral domain, since F is so. Let Fa be a nonzero element of F. 

Consider ,,  xaI the ideal of F[x] generated by a and x. Since F[x] is a principal ideal domain, 

there exists ][)( xFxu   such that  .][)(|)()()( xFxfxfxuxuI  Now  )(, xuxa implies 

that there exist ][)(),( xFxhxg  such that axgxu )()( and xxhxu )()( . 

Since F is an integral domain, axgxu )()(  shows that )(xu is nonzero and 0))(deg( xu  which 

implies that Fbxu )( . Again, 1)(  bcxxbh  for some Fc . Thus b is a unit and so 

][xFbI  . Then )()(11 21 xxfxafI  for some ][)(),( 21 xFxfxf  . This implies that 

da1  for some Fd  . Thus a is a unit in F and hence F is a field. 

Since Z is not a field, It follows that Z[x] is not a principal ideal domain. In the following example we 

give an example of an ideal of Z[x], which is not principal. 

Example 6: In Z[x], we show that the ideal  2,x is not a principal ideal. On the contrary, if 

possible, assume that  2,x  is a principal ideal and ][)(,)(2, xZxuxux  . Now 

 )(2 xu  implies that )()(2 xfxu  for some ][)( xZxf  . Since Z is an integral domain, so 

0)(deg xu  and Zaxu )(  . Since , ax there is ][)( xZxg  such that )(xagx  . It follows 

that 1ab for some Zb , and so .2,1  xa Hence there are ][)(),( xZxkxh   such that 

cxkxxh 21)(2)(1  for some Zc , a contradiction. Therefore  2,x is not a principal ideal. 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 183  

Theorem 13: Let R be a Euclidean domain (principal ideal domain) and Rba ,  not both zero. Then 

a and b have a gcd d.  

Proof: For every gcd d of a and b, there exist Rts ,  such that tbsad  . a, b are relatively prime if 

and only if there exist Rts , such that tbsa 1 . Now we show that the irreducible elements and the 

prime elements coincide in a PID. 

Theorem 14: Let R be a principal ideal domain and Rp . Then p is irreducible if and only if it is 

prime. 

Proof: As we know that every prime element is irreducible in an integral domain. Suppose that p  is 

an irreducible element in R . Consider Rba , and assume that .| abp  Then pcab  for some Rc . 

Since R is a principal ideal ring, there is Rd  such that  dbp, . Then there exists Rq such 

that dqp  . Since p  is irreducible, either d or q must be a unit. If d is a unit, then Rddp  ,

. Hence  bp,1  and so 1 = sp + tb for some Rts , . This implies that 

ptcastcpaspatbaspa )(  . Thus ap | . If q is a unit, then   ppqd 1 . This implies 

that .,  dbppd  Hence  bpp , and so  pb . Thus bp | . Recall that if 

F is a field then a polynomial p(x) is irreducible if and only if  )(/][ xpxF is a field. Hence p(x) is 

irreducible if and only if  )(xp  is a maximal ideal in F[x]. We show that this result holds in every 

PID. 

Theorem 15: Let R be a principal ideal domain. Then M is a maximal ideal of R if and only if 

 qM for some irreducible element Rq . 

Proof: Already we know that if  qM is a maximal ideal then q is an irreducible element. 

Conversely, suppose that q is an irreducible element and . qM Consider an ideal I of R such that 

.RIM   Since R is a principal ideal domain, there exists Ra  such that . aI  Now 

 aMq shows that abq  for some Rb . Irreducibility of q implies that either a or b is a unit. 

If a is a unit then RaI  . If b is a unit then Mqqba  1 . This implies that Ma 

and hence IM  . Thus M is a maximal ideal of R. 

If a ring R becomes a PID then primality and irreducibility are no longer different, and as a 

consequence we have the following important corollary. 

Corollary: Let R be a principal ideal domain. Then a nonzero proper ideal P of R is prime if and only 

if it is maximal.  
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12.8 UNIQUE FACTORIZATION DOAMINS (UFDs) 

Definition : An integral domain D is called a factorization domain if every nonzero non unit element a 

of D can be expressed as a product mppppa ...321 of irreducible elements. 

2: A factorization domain D is called a unique factorization domain (UFD) if for every nonzero non 

unit element a of D, 
mm qqqqppppa ...... 321321   are two irreducible factorizations of a then nm 

and there is a permutation   such that each ip  is an associate of )(iq . 

The fundamental theorem of arithmetic shows that the ring Z of integers is a unique factorization 

domain. Later we see that every principal ideal domain is a unique factorization domain. 

Recall that in an integral domain every prime element is irreducible. Now we have the following 

theorem: 

Theorem 16: In a unique factorization domain, every irreducible element is prime. 

Proof: Suppose that D is a unique factorization domain and let p be an irreducible element of D . 

Consider Dba ,  and assume that abp | . Then pcab  for some Dc . If 0a  then ap |  and if a 

is a unit then cpab 1 shows that bp | . Similarly for b. Now we assume further that a and b are 

neither zero nor units. Then 0c . Also c is not a unit, otherwise pc is irreducible and then either a or b 

becomes a unit which is against our assumption. Since D is a unique factorization domain, ba, and c  

have irreducible factorizations, say sr bbbbbaaaaa ...,... 321321   and tccccc ...321 . Then 

tsr cccpcbbbbaaaaa ......... 321321321   implies that p is associate of one of the irreducible elements 

.,...,,,,...,,, 321321 sr bbbbaaaa  If p is associate of some ia ,  say puai  , u is a unit, then 

rii aaaaapuaa ...... 11321  shows that aP | . Similarly, if p is associate of some jb  , then bp | . Thus p 

is a prime element. 

Theorem 17: Let a and b be two nonzero elements in a unique factorization domain D. Then 

),gcd( ba  exists in D. 

Proof: If either of a and b, say a is a unit, then ba | implies that a is a ),gcd( ba . Suppose that neither 

a nor b is a unit and rl

r

ll
PPPa ...21

21 and rm

r

mm
PPPb ...21

21 where rpppp ,...,,, 321 are irreducible 

elements, 
rr mmmlll ...,,,,...,, 2121

are nonnegative integers (most likely some of them are zero). Let 

}.,min{ iii mln  We show that rn

r

nn
PPPd ...21

21 is a ),gcd( ba . It follows directly that ad | and bd | . 

Let ac |  and bc | . If c is a unit, then dc | . Otherwise the uniqueness of the irreducible factorizations 
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of a and b implies that rk

r

kk
ppupc ...21

21 where imlk iii  ,0 . Then ii nk  and it follows that dc | . 

Hence ),gcd( bad   

Now we show that every principal ideal domain is a unique factorization domain. For this let us first 

prove a series of lemmas: 

Lemma 1: Every ascending chain of ideals in a principal ideal domain is finite. 

Proof: Let D  be a principal ideal domain. Let ...321  aaa be an ascending chain of 

ideals in D . Then  ii aI is an ideal of D  and so, since D  is a principal ideal domain, there is 

Da  such that  aI . Now  ii aa  implies that  kaa for some Nk . Then 

 jaa  and so  jaa for all kj  . Also  aa j . Thus  jaa for all kj  . 

Thus the sequence of ideals is finite. 

Lemma 2: A factorization domain is a unique factorization domain if and only if every irreducible 

element is prime. 

Proof: The necessary part follows from the Theorem 16. 

Conversely, suppose that D is a factorization domain in which every irreducible element is a prime 

element. Since D is a factorization domain, every nonzero nonunit element of D has an irreducible 

factorization. We prove that this factorization is unique (up to associates and order of the factors) by 

induction on the number n of irreducible factors in irreducible factorization of an element. If 1n  then 

the result follows from the definition of irreducible elements. Assume that the result is true for sn  . 

Suppose Da  and assume that ts qqqpppa ...... 2121   be two irreducible factorizations of a. Now 

sp  is prime; and so ts qqqp ...| 21 which implies that ts qp | , upon rearrangement. Since both sp and tq

are irreducible elements in D, this implies that st upq   for some unit u. Then we have 

uqqqppp ts 121121 ......    

which implies, by the induction hypothesis, that 11  ts  and each ip  is associate to some jq , 

11,11  tjsi . Also sp is associate to tq . Thus the result follows. 

Now we prove the main theorem. 

Theorem 18: Every principal ideal domain is a unique factorization domain. 

Proof: In a principal ideal domain, every irreducible element is prime; and so due to the Lemma 2 it is 

sufficient to show that every principal ideal domain is a factorization domain. Let D be a principal 

ideal domain and Da be a nonzero and non unit element of D. We show that a is a product of 

irreducible elements. If possible, let a be not a product of irreducibles. Then a is not an irreducible 
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element, and so there are two non units Daa 
'

11, such that 
'

11 aaa   and at least one, say 
1a is not a 

product of irreducible element. Since 
'

1a is not a unit, we have 


1aa . 

Again since 
1a  is not a product of irreducibles, similarly we get Da 2

such that 




21 aaa and 2a is not a product of irreducibles. We continue and get a strictly 

ascending infinite chain of ideals 

...21

 aaa  

in D. This contradicts that D is a principal ideal domain. Thus a has an irreducible factorization. The 

converse of the above theorem is not true, in general. We know that Z[x] is not a principal ideal 

domain; in the following we show that Z[x] is a UFD. In fact, we prove a more general result that D[x] 

is a UFD whenever D is so. 

Definition: Let D be a unique factorization domain and n

nn axaxaxf   ...)( 1

10  be a nonzero 

polynomial on D. Then ),...,,gcd( 10 naaa is called content of )(xf . 

This is denoted by ).( fc  

Since gcd is not unique, in fact it is unique up to associates, it follows that )( fc  is unique up to 

associates. 

Definition: Let D be a unique factorization domain. A nonzero polynomial ][)( xDxf  is called a 

primitive polynomial if )( fc is unit. 

If D is a unique factorization domain, and ][...)( 1

1

10 xDaxaxaxaxf nn

nn  


 be a nonzero 

polynomial. Since some ia is nonzero the ),...,,gcd( 10 naaa exists in D, say ),...,,gcd( 10 naaad  . Then 

there are Dai 
'

such that 
'

ii daa  and 1),...,,gcd( ''

1

'

0 naaa . Thus 
''

1

'

01 ..)( n

nn axaxaxf   is 

primitive and )()()( 1 xffcxf   

Lemma 3: Product of two primitive polynomials is primitive. 

Proof: Let D be a unique factorization domain and mm

mm axaxaxaxf  



1

1

10 ...)(  and

nn

nn bxbxbxbxg  



1

1

10 ...)( be two primitive polynomials over D. If possible, let 







nm

i

in

i xcxgxfxh
0

)()()( be not primitive. Then ),...,,gcd( 10 nmcccd  is not a unit and so there is 

an irreducible element p  in D such that .| icp i   Suppose k, l be the smallest nonnegative integers 

such that kap | and lbp | . Then lklklklklklklk babababababacp   01111110 ......|  

and lklklklklklk babababababap   01111110 ......|  
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lk bporap || . This contradicts the choice of k and l. 

 

Lemma 4: Let R be a UFD and ][)(),( xRxgxf   be two primitive polynomials. Then f(x) and g(x) 

are associates in R[x] if and only if they are associates in Q(R)[x]. 

Proof: Let f(x) and g(x) be associates in Q(R)[x]. Since Q(R) is a field, so the units in Q(R)[x] are 

precisely the nonzero elements of Q(R). Hence there is a unit )(1 RQabw    such that 

)()( 1 xfabxg   which implies that )()( xafxbg  . It follows that bua   for some unit Ru , since 

both f(x) and g(x) are primitive in R[x]. Therefore )()( xufxg  and so f(x) and g(x) are associates in 

R[x]. 

Converse is trivial, since every unit in R[x] is a unit in Q(R)[x]. 

Lemma 5: Let R be a UFD and ][)( xRxf   be a non constant primitive polynomial. If f(x) is 

irreducible over R then it is irreducible over Q(R). 

Proof: On the contrary, if possible, let f(x) be reducible over Q(R). Since Q(R) is a field, so the units in 

])[( xRQ are precisely the nonzero elements of ).(RQ  Hence there are two non constant polynomials 

])[()(),( xRQxhxg   such that )()()( xhxgxf  . Let n

nn xbaxbabaxg
11

11

1

00 ...)(


 . Then for 

].[)(,...210 xRxbgRbbbbb n   Denote ))((( xgbconta  in R. Then )()( * xagxbg  where 

][)(* xRxg   is a primitive polynomial. Similarly there are Rdc , such that )()( * xahxdh  where 

][)(* xRxh  is a primitive polynomial. Thus )()()( ** xhxacgxbdf  . Since product of two primitive 

polynomials is primitive, it follows that both )(xf  and )()( ** xhxg  are primitive. Hence ubdac  for 

some unit Ru , and )()()( ** xhxugxf   which shows that f(x) is reducible over R, a contradiction. 

Therefore f(x) is irreducible in Q(R)[x]. 

Lemma 6: If R is a unique factorization domain, then the polynomial ring R[x] is also a unique 

factorization domain. 

Proof: We first show that R[x] is a factorization domain. We apply induction on deg f(x), where f(x) is 

a nonzero non unit element of R[x]. If deg f(x) = 0, then Rxf )( and it is a product of irreducibles, 

since R is a UFD. Let 0)(deg xf . Then )()( * xfcxf f  where ][)(* xRxf   is a primitive 

polynomial. Since Rc f   so fc  is either unit or a product of irreducible elements in R. If )(* xf is 

irreducible, we are done. Otherwise, there are two nonzero non units ][)(),( xRxhxg  such that

)()()(* xhxgxf  . Since )(* xf is primitive, so neither )(xg  nor )(xh is a constant. Hence 

)(deg)(deg)(deg * xfxfxg  and )(deg)(deg)(deg * xfxfxh  . Then both )(xg  and )(xh  are 
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products of irreducible elements in R[x], by induction hypothesis. Therefore, 

)()...()(...)( 2121 xpxpxpaaaxf nr where Raaa r ,...,, 21
 and ][)(),...,(),( 21 xRxpxpxp n   are 

irreducible elements. 

To prove the uniqueness of the factorization, assume that 

)()...()(...)()...()(...)( 21212121 xqxqxqbbbxpxpxpaaaxf nsmr   

Where Rbbbaaa sr ,...,,,,...,, 2121
 and ][)(),...,(),(),(),...,(),( 2121 xRxqxqxqxpxpxp nm   are 

irreducible elements. Since fsr cbbbaaa  ...... 2121 , so it follows that 

)()...()()()...()( 2121 xqxqxuqxpxpxp nm   

for some unit Ru . Since ][RQ  is a field, so ])[( xRQ is a UFD. Also the irreducible polynomials 

][)(),...,(),(),(),...,(),( 2121 xRxqxqxqxpxpxp nm   are primitive, which implies that they are also 

irreducible in ])[( xRQ . Hence it follows that nm  and there is a permutation nS  such that )(xpi

is an associate of )()( xq i  in ])[( xRQ  and so )(xpi
 is an associate of )()( xq i in ][xR , by Lemma 4. 

Therefore the factorization f(x) in R[x] is unique. 

This result shows that Z[x] is a unique factorization domain. Similar result is not true for principal 

ideal domain or Euclidean domain; e.g. Z is a principal ideal domain but Z[x] is not. 

Unlike to the PID, Bezout's identity does not hold in UFD. For example, consider the UFD Z[x]. Then 

1)4,2gcd(  xx , but there are no ][)(),( xZxgxf  such that 

)()4()()2(1 xgxxfx   

otherwise 00 421 ba   

In most of the deductions regarding divisibility in Z, we prefer to use B_ezout's identity, hardly we use 

the Fundamental Theorem of Arithmetic. Here we show that the Fundamental Theorem of Arithmetic 

can also be used in these deductions. 

Example 7: Let D be a UFD and cba ,,  be there non zero elements of D such that bca | and 

1),gcd( ba . We show that ca | . If a or b is a unit, the result follows trivially. Assume that neither a 

nor b is a unit. Let rn

r

nn
aaaa ...21

21 and sm

s

mm
bbbb ...21

21  where ia and jb are irreducible elements and 

ji mn ,1   for every ri ,...,2,1  and sj ,...,2,1 . Since 1),gcd( ba , so no ia is an associate of any 

jb . If c is a unit then Dqaqbc  , implies that .1 aqcb This contradicts that D is a UFD, since no 

ia  is an associate of any jb . Thus c is a non unit. Let tl

t

ll
cccc ...21

21  be an irreducible factorization of c. 
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Then aqbc  implies that .......... 212121

212121 qaaacccbbb rts n

r

nnl

t

llm

s

mm
  Since no ia  is an associate of any jb , so 

every ia is an associate to some kc  and 
ki ln  . Hence .| ca  

Check your progress 

Problem 1: What are the ideals of the set }4,3,2,1,0{5 I ? 

Problem 2: Check out the principal ideal in the ring of integer generated subgroup while it is not a 

maximal subgroup. 

 

12.9 SUMMARY 

In this unit, we have learned about the important relation between two rings name as isomorphic 

relation. If two ring are isomorphic to each other then we can unfold the information about the 

unknown ring on the basis of known ring.  In this unit we have also learned about the ideals of the 

ring. On the basis of ideals we have further learned about the principal ideal domain. The other 

important topics of this unit are Euclidean domain and unique factorization domain. The overall 

summarization of this units are as follows:  

 Every field has no proper ideal. 

 Each integral domain can be imbedded in a field. 

 In a unique factorization domain, every irreducible element is prime. 

 Every principal ideal domain (PID) is unique factorization domain (UID). 

 Arbitrary intersection of ideals of ring is again an ideal of the ring. 

 Each field has no proper ideal. 

 Commutative ring with unity is a field if it has no proper ideals 

 Every Euclidean domain is a PID. 

12.10 GLOSSARY 

 :'RR   Denotes two rings 
', RR are isomorphism to each other. 

 UFD: Unique factorization domain. 

 PID: Principal ideal domain. 

 ED: Euclidean domain. 
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12.13 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that any ring R without a unity element may be imbedded in a ring that contains a unity 

element. 

2. Prove that each integral domain can be imbedded in a field? 

3. In a unique factorization domain, every irreducible element is prime. 

4. Prove that every principal ideal domain (PID) is unique factorization domain (UID). 

5. If a  is an element in a commutative ring R with unity, then prove that the set  RrraS   is 

a principal ideal of R generated by the element a i.e., )(aS  . 

Short Answer Type Question: 

6. Prove that intersection of two ideal of a ring is again a ideal of the ring. 

7. Prove that arbitrary intersection of ideals of ring is again an ideal of the ring. 

8. Prove that each field has no proper ideal 

9. Prove that a commutative ring with unity is a field if it has no proper ideals. 

10. To find the principal ideal in the ring )(R of integer generated by 7. 

11. Prove that product of two primitive polynomials is primitive. 

12. Let a and b be two nonzero elements in a unique factorization domain D. Then prove that 

),gcd( ba  exists in D. 

Fill in the blanks: 
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13. In a UFD, every irreducible element is ……………………. 

14. Every PID is …………….. 

15. Product of two primitive polynomials is …………………. 

16. Every Euclidean domain is a ……… 

17. If every ideal of integral domain is principal ideal then an integral domain is called ….. 

12.14 ANSWERS 

Answer of self cheque question: 

1.  }0{  and F itself 2. ,...}14,7,0,7,14{...,7   

Answer of terminal question: 

13. Prime  14. UFD  15. Primitive 16. PID  17. PID
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Unit-13: POLYNOMIAL RINGS AND IRREDUCIBILITY 

CRITERIA, EINESTEIN’S CRITERIA OF IRREDUCIBILITY 

 

CONTENT: 

 

13.1 Introduction  

13.2  Objectives 

13.3  Introduction of polynomials 

13.4  Division algorithm 

13.5 Arithmetic of polynomial 

13.6  Irreducibility of polynomial 

13.7   Eisenstein's criteria for rreducibility 

13.8 Summary 

13.9  Glossary  

13.10   References 

13.11 Suggested Readings 

13.12  Terminal Questions 

13.13 Answers 

13.1 INTRODUCTION 

In this unit we give some results to test irreducibility of polynomials over a field, specially over 

the field Q  of all rational numbers. If K  is a subfield of F , then every polynomial )(xp  over K  can 

also be considered as a polynomial over F . It follows that if )(xp  is irreducible over F  then it is so 

over K , but the converse is not true. For example, 32 x  is irreducible over Q but reducible over R   

Eisenstein's criteria in mathematics provides a necessary condition for a polynomial with 

integer coefficients to be irreducible over the rational numbers, that is, not factorizable into the product 

of non-constant polynomials with rational coefficients. This condition does not apply to all 

polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow 

irreducibility to be shown with minimum effort in certain crucial examples. It can be used immediately 
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or after the original polynomial has been transformed. This criteria is named after Gotthold Eisenstein. 

It was known as the Schönemann-Eisenstein theorem in the early twentieth century since Theodor 

Schönemann was the first to publish it. 

Theodor Schönemann, commonly known as Schoenemann, was a German mathematician who 

produced numerous significant discoveries in number theory involving the theory of congruences, 

which are published in Crelle's journal volumes 17 to 40. Notably, he obtained Hensel's lemma before 

to Hensel, Scholz's reciprocity rule prior to Scholz, and Eisenstein's criteria prior to Eisenstein. He also 

investigated what are now known as finite fields (more general than those of prime order) in the form 

of integer polynomials modulo both a prime number and an irreducible polynomial (remaining 

irreducible modulo that prime number). 

13.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the polynomial ring.  

 Analyze about the division algorithm in terms of polynomials. 

 Analyze about the irreducibility criteria of polynomials 

 Analyze the Eisenstein’s criteria for irreducibility over Q . 

13.3 INTRODUCTION OF POLYNOMIALS 

Let R  be a commutative ring with unity 1. A polynomial over R  is defined as an infinite sequence 

,...),,( 210 aaa such that all but finitely many ia  are 0, i.e. there is a nonnegative integer n  (depending 

on the sequence ,...),,( 210 aaa  under consideration) such that 0ia for all ni  ; and the set of all 

polynomials on R  is denoted by ][xR . Thus 

  imanyfinitelybutallforaandRaaaaxR ii 0|,...,,][ 210   

We now define addition and multiplication on ][xR  as follows: 

,...),,(,...),,(,...),,( 221100210210 babababbbaaa 
 

and ,...),,,(,...),,,...).(,,( 210210210 cccbbbaaa   

where 



i

r

riri bac
0

 for ...,2,1,0i  
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We leave it to the reader to verify that  .,],[ xR is a commutative ring with unity  ...,0,0,1 . Also 

 ...,0,0,0 is the zero element of ][xR  and the additive inverse of ,...),,( 210 aaa is ,...),,( 210 aaa  The 

mapping 

,...)0,0,(aa   

is a monomorphism of the ring R  into ][xR . Thus, R  can be considered as a subring of R[x] and we 

no longer distinguish between a and ,...)0,0,(a . 

The particular element ...)0,0,0,1,0(  is called the indeterminate over R and is usually denoted by x . 

Then according to the definitions of addition and multiplication in ][xR , we have 

    ...,0,0,1,0...,0,0,1,0...,0,0,1,02 x  

    ...,0,1,0,0,0...,0,0,1,0...,0,0,1,03 x  

. 

. 

. 

and then 

    ...,0,0,0,,0...,0,0,1,0...,0,0,0, 111 aaxa   

    ...,0,0,,0,0...,0,1,0,0...,0,0,0, 22

2

2 aaxa   

. 

. 

. 

Thus we have 

...),0,,0,...,0(......),0,0,,0(...),0,0,(...),0,,...,,,( 10210 nn aaaaaaa   

n

n xaxaxaa  ...2

210  

The elements naaaa ,...,,, 210  are called the coefficients of the polynomial 

n

n xaxaxaaxP  ...)( 2

210 . If 0na , then na  is called the leading coefficient and if the leading 

coefficient 1na , then )(xp  is called a monic polynomial. We define the zero element ...),0,0,0(  of 

the ring ][xR as the zero polynomial, and it will be denoted by 0. Thus a polynomial

n

n xaxaxaaxP  ...)( 2

210  is zero if and only if 0...210  naaaa . 

Example 1: Consider the polynomial ring ][6 xZ . Then 3]2[)( xxf  and 
2]3[)( xxg  are two nonzero 

elements of ][6 xZ  but ]0[)()( xgxf . This shows that ][6 xZ is not an integral domain. 

Now we characterize the rings R for which the associated polynomial ring R[x] is an integral domain. 
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Theorem 1: Let R be a commutative ring with unity 1. The ][xR  is an integral domain if and only if R  

is an integral domain. 

Proof: First assume that R  is an integral domain. Then ][xR  is a commutative ring with 1. Let 

n

n xaxaxaaxf  ...)( 2

210 and 
n

n xbxbxbbxg  ...)( 2

210 be two nonzero polynomials in 

][xR . Then, we may consider 0na and 0mb  and so 0mnba , since R is an integral domain. Then 

the polynomial 
mn

mn xcxcxccxgxf 

 ...)()( 2

210 is such that 0 mnmn bac . This implies 

that 0)()( xgxf . Thus, ][xR  is an integral domain. 

The converse follows directly. 

In fact, even if R  is a field then also ][xR  is not a field, for x has no multiplicative inverse. 

Definition: Let
n

n xaxaxaaxf  ...)( 2

210 be a nonzero polynomial in ][xR . If 0na then na is 

called the leading coefficient of )(xp ; and n is called the degree of )(xp . It is denoted by )(deg xf . In 

this case, na  is called the leading coefficient of )(xf . If the leading coefficient is 1, then )(xf is called 

a monic polynomial. 

We do not define degree of the zero polynomial. 

Example 2: Consider the polynomial ring ][6 xZ . Then ]1[]2[)( 3  xxxf  and ]2[]3[)( 2  xxg are 

two nonzero polynomials of degree 3 and 2, respectively. Now ]2[]2[]3[)()( 23  xxxxgxf  

shows that )(deg)(deg)()( xgxfxgxf   

In general, we have the following inequality. 

Theorem 2: Let be a commutative ring with unity and )(),( xgxf be two nonzero polynomials in ][xR  

1. If ,0)()( xgxf then )(deg)(deg)()(deg xgxfxgxf  . Equality holds if R is an 

integral domain. 

2. If ,0)()(  xgxf , then })(deg),(max{deg))()(deg( xgxfxgxf   

Proof 1: If 
n

n xaxaxaaxf  ...)( 2

210 and 
n

m xbxbxbbxg  ...)( 2

210 , then 

mn

mn xbaxbababaxgxf  ...)()()( 011000 . If 0)()( xgxf , then at least one of the coefficients 

of )()( xgxf is nonzero. Suppose 0mnba , then )(deg)(deg))()(deg( xgxfmnxgxf  . If

0mnba  (which can hold if R  has zero divisors), then )(deg)(deg))()(deg( xgxfmnxgxf  . 

2: If )(deg)(deg xgxf  , then 
n

n

m

mn xaxbaxbabaxgxf  ...)(...)()()()( 1100  

shows that the leading coefficient of )()( xgxf   is 0na and so 

)}(deg),(max{deg))()(deg( xgxfnxgxf  .  If ),(deg)(deg xgxf  then 
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n

nn xbaxbabaxgxf )(...)()()()( 1100  shows that either 0)()(  xgxf or 

)}(deg),(max{deg))()(deg( xgxfnxgxf  )00(  orbayaccordinglor nn  

Now we characterize the units in a polynomial ring ][xR . 

Theorem 3: Let R be a commutative ring with 1. Then ][...)( 2

210 xRxaxaxaaxf n

n   is a 

unit if and only if 0a is a unit and ia  is nilpotent in niR ...,,2,1  

Proof: First assume that 0a is a unit and naaa ,...,, 21 an are nilpotents in R . Then 
n

n xaxaxa ,...,, 2

21 are 

nilpotents and so 
n

n xaxaxa  ...2

21  is a nilpotent in ][xR . Since 0a  is a unit, so it follows that 

n

n xaxaxaa  ...2

210  is a unit. 

We prove the converse by induction on the ).(deg xf If 0)(deg xf , then the result follows directly. 

Let us make our induction hypothesis that the result holds for every nonzero polynomial of degree less 

than n  . Let 
n

n xaxaxaaxf  ...)( 2

210 be a unit in ][xR . Then there is a polynomial 

][...2

210 xRxbxbxbb m

m  such that 

1...)(...( 2

210

2

210  m

m

n

n xbxbxbbxaxaxaa  

This implies that 

100 ba                                                        (1) 

00110  baba                                             (2) 

0021120  bababa                                       (3) 

. 

. 

. 

02112   mnmnmn bababa                       (4) 

011   mnmn baba             (5) 

0mnba              (6) 

We multiply na to both sides of (5) and get 

01

2
mn ba  

Again multiplying 
2

na  to both sides of (4), we get 

    02

3
mn ba  
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Proceeding similarly we get 00

1



ba

m

n . Since, by (1), 0b  is a unit, so 01 m

na . Thus 0na  is a 

nilpotent and so is 0n

n xa . Then it follows that 
1

110 ...)()( 

 n

n

n

n xaxaaxaxfxg is a unit, 

since )(xf is a unit. Since nxg )(deg , so 0a is a unit and 
121 ,...,, naaa are nilpotents in R , by the 

induction hypothesis. Thus the result follows. 

13.4 DIVISION ALGORITHM 

In the ring Z of all integers, for any two nonzero integers m and n , we have unique integers q and r  

such that rmqn  , where ||0 mr  . The usual process, we do for computing q and r , is known as 

long division (Division Algorithm). 

Let us define divisibility first. Let )(xf and )(xg be two nonzero polynomials in ][xR . If there exists 

][)( xRxq   such that )()()( xgxqxf  , then we say that )(xg  divides )(xf  or that )(xg  is a factor of 

)(xf . It is denoted by )(|)( xfxg  

Theorem 4 (Division Algorithm): Let R be a commutative ring with 1and )(),( xgxf  be two nonzero 

polynomials in ][xR such that the leading coefficient of )(xg is a unit in R . Then there exist unique 

polynomials ][)(),( xRxrxq  such that 

)()()()( xrxgxqxf   

where either 0)( xr  or )(deg)(deg xgxr   

Proof: We initially prove the existence of such polynomials )(xq and )(xr . Note that )(xg is a 

nonzero polynomial, since the leading coefficient is nonzero. If )(|)( xfxg , then there exists 

][)( xRxq   s.t. )()()( xqxgxf   which gives the desired presentation where 0)( xr . If )(|)( xfxg  , 

then consider the set 

 ][)(|)()()( xRxqxgxqxfS  . 

Now, by the well-ordering principle, the set })(|)({deg SxhxhN  (since ),(|)( xfxg  so S does not 

contain the zero polynomial), we have a polynomial )(xr having the least degree among all 

polynomials in S . Then there exists ][)( xRxq  such that )()()()( xrxqxgxf  . So it is sufficient to 

show that )(deg)(deg xgxr  . Let 
n

n xaxaaxg  ...)( 10  and 
m

m xbxbbxr  ...)( 10 . Since 

na  is a unit so 
1

na exists in R . Suppose, on the contrary, )(deg)(deg xgxr  . Let we define  

)()()( 1 xgxabxrxs nm

nm

 . 
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Then 0)( xs , otherwise )()( 1 xgxabxr nm

nm

  and )())(()( 1 xgxabxqxf nm

nm

 which contradicts 

)(|)( xfxg  . Now )())(()()( 1 xgxabxqxfxs nm

nm

 shows that Sxs )( and then 

)(deg)(deg xrxs   

contradicts the choice of )(xr in S . Therefore )(deg)(deg xgxr  . 

To prove the uniqueness of )(xq and )(xr , assume that there are polynomials ][)(),( '' xRxrxq   such 

that 

)()()()()()()( '' xrxgxqxrxgxqxf   

where 0)( xr or 0)(),(deg)(deg '  xrxgxr or )(deg)(deg ' xgxr   . Then 

).())()(()()( '' xgxqxqxrxr   

If 0)()( '  xrxr then 0)()('  xqxq , and since the leading coefficient of )(xg  is a unit,  

)(deg)(deg))()(deg()())()(deg(( '' xgxgxqxqxgxqxq  , that is  

),(deg))()(deg( ' xgxrxr   

Which is impossible since )(deg)(deg),(deg ' xgxrxr  . Thus, 0)()( '  xrxr . Then 

),())()((0 ' xgxqxq   

0)()('  xqxq , since the leading coefficient of )(xg  is a unit. 

Thus )()( ' xrxr   and )()(' xqxq   

Definition: Let R be a commutative ring with 1 and )(),( xgxf be two nonzero polynomials in ][xR

such that the leading coefficient of )(xg is a unit in .R Then the unique polynomials ][)(),( xRxrxq   

in the above Theorem, are called the quotient and remainder, respectively, after dividing )(xf by

)(xg . 

Let R be a commutative ring with 1 and ][...)( 10 xRxaaaaaf n

n  . For all Ra  we define 

n

naaaaaaf  ...)( 10  

Definition: Let R be a commutative ring with 1and ][)( xRxf   be two nonzero polynomials. If Rr

is such that ,0)( rf then r is called a root or zero of )(xf . A root r  is said to be of multiplicity 

1m  if )()()( xgrxxf m  where ][)( xRxg  is such that 0)( rg . 

Theorem 5 (Remainder theorem): Let R be a commutative ring with1, ][)( xRxf  be a nonzero 

polynomial and Ra . Then there exists unique ][)( xRxq   such that 

)()()()( afxqaxxf   

Proof: Denote )()( axxg  . Then the leading coefficient of )(xg  is 1, a unit in R , and so there are 
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unique ][)(),( xRxrxq  such that )()()()( xrxqaxxf  , where 0)( xr  or )(deg)(deg xgxr  . 

Now if 0)( xr , then deg 1)( xr shows that Rxr )( . Thus in either case ,)( Rbxr  , and we 

have bxqaxxf  )()()( . This implies that , and hence  

Corollary 1(Factorization Theorem): Let be a commutative ring with , a non zero 

polynomial and . Then if and only if  is a root of . 

Thus a is a root of if and only if for some . This 

immediately 

gives us the following result 

Theorem 6: If is an integral domain and  is a nonzero polynomial in of degree , then

 has at most  roots in  counted according to multiplicity. 

Proof: We will prove this theorem by induction on . If 0n , then )(xf is a nonzero 

constant in R and hence has no roots. Let us assume 0n . If )(xf has no roots in R , the result holds. 

Suppose )(xf has a root, say Ra . Then )()()( 1 xfaxxf  . Since R is an integral domain, so 

1)(deg 1  nxf . Then )(1 xf has at most 1n roots in , by the induction hypothesis. Also, if ab   

is a root of  in R , then )()()( 1 bfabbf   

0)(1  bf  

since R is an integral domain, that is, b is a root of )(1 xf . Therefore )(xf  has at most n  roots in . 

Corollary 2: Let be an integral domain and ][)(),( xRxgxf  such that nxgxf )(deg),(deg . 

If )()( agaf   for 1n  elements Ra , then )()( xgxf   

Proof:  If, on the contrary, )()( xgxf  , then )()()( xgxfxh  is a nonzero polynomial over R  

such that nxh )(deg and )(xh  has at least 1n roots in R . This theorem is the contradiction of 

theorem 6. Therefore ).()( xgxf   

13.5 ARITHMETIC OF POLYNOMIAL 

Theorem 7: Every ideal in ][xF  is principal ideal, where F is principal ideal. 

Proof: Let I be an ideal of ][xF . If }0{I , then  0I . Suppose }0{I . By the well-ordering 

principle on the set  ][)(0|)(deg xFxfxfN   we have a polynomial, say Ixd )(  with the 

least degree in I . Then  Ixd  )( . For the reverse inclusion, let Ixf )( . By the Division 

Algorithm, there are ][)(),( xFxrxq   such that )()()()( xrxqxdxf  where either 0)( xr or

)(deg)(deg xdxr  . If 0)( xr , then Ixqxdxfxr  )()()()( contradicts that )(xd is a polynomial 

baf )( ).()()()( afxqaxxf 

R 1 ][)( xRxf 

Ra )(| xfax  a )(xf

)(xf )()()( xqaxxf  ][)( xRxq 

R )(xf ][xR n

)(xf n R

nxf )(deg

R

)(xf

R

R
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of least degree in I . Hence  )()()()(,0)( xdxqxdxfxr , and so .)(  xdI Thus 

.)(  xdI is a principal ideal. 

Suppose ][)(),( xFxgxf  be two polynomials. A nonzero polynomial ][)( xFxd  is called a 

common divisor of )(xf and )(xg if )(|)( xfxd and )(|)( xgxd . If )(xf  and )(xg are not both zero, 

then the ideal  )(),( xgxf  is a principal ideal and so there is ][)( xFxd  such that 

 )()(),( xdxgxf  then )(|)( xfxd and )(|)( xgxd . This shows that every divisor of )(xd is a 

common divisor of )(xf  and )(xg . Thus common divisor of polynomials )(xf  and )(xg  exists in 

)(xF  and there may be several common divisors. To introduce a polynomial equivalent of the concept 

of the greatest common divisor (gcd) of two integers, the first difficulty is that there is no natural or 

standard partial ordering between polynomials that allows us to make our choice unique by 

considering the 'greatest' among all common divisors. If )(xd  and )(' xd are two gcd of )(xf  and 

)(xg , then our experience in Z shows that )(|)( ' xdxd and  )(|)(' xdxd  

)()(' xadxd   for some *Fa  

To get some degree of uniqueness, we need begin with the monic common divisors. 

Definition: Let ][)(),( xFxgxf  be two polynomials not both zero. Then a polynomial ][)( xFxd  is 

called a greatest common divisor of )(),( xgxf  if )(xd is a monic polynomial such that: 

1.  )(|)( xfxd and )(|)( xgxd  

2. )(|)( xfxc  and )(|)( xgxc  )(|)( xdxc  

Now we have to show that the gcd of )(),( xgxf  exists in ][xF uniquely. 

Theorem 8: Let ][)(),( xFxgxf  be two polynomials not both zero. Then gcd of )(),( xgxf  exists in 

][xF and it is unique. 

Moreover, if )(xd  is the gcd of )(),( xgxf , then there exist ][)(),( xFxvxu   such that 

)()()()()( xvxgxuxfxd   

Proof:  Consider ]}[)(),(|)()()()({ xFxsxrxsxgxrxfI  . Then I is the ideal  )(),( xgxf of 

][xF generated by )(xf and )(xg . It is a nonzero ideal since either of )(xf and )(xg  is nonzero. Since 

F is a field, every ideal of ][xF is principal. Suppose 0],[...)( 101  n

n

n axFxaxaaxd  is 

such that .)(1  xdI  Since F is a field, so that
1

na exists in F and ][)()( 1

1
xFxdaxd n 


 is a 

monic polynomial such that .)(),()()( 1  xgxfxdxd  Then  )()(),( xdxgxf  

)(xd d(x) is common divisor of the polynomials )(),( xgxf . Now  )(),()( xgxfxd  

)()()()()( xvxgxuxfxd   
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for some ][)(),( xFxvxu  . If ][)( xFxh  is a common divisor of )(),( xgxf , then 

)()()()()(|)( xdxvxgxuxfxh  . Thus )(xd  is a greatest common divisor of )(),( xgxf . 

To prove the uniqueness of gcd, consider a gcd ][)( xFxc   of )(),( xgxf . Then )(|)( xdxc and 

)(|)( xcxd , and so )()( xacxd  for some a *Fa . Since both )(xc and )(xd  are monic, it follows 

that )()( xdxc   

We denote the gcd of )(),( xgxf  by )).(),(gcd( xgxf  

Example 3: Consider two polynomials )2)(1(2)(  xxxf and )3)(2(2)(  xxxg  over R . Then 

2)(  xxd  is the monic common divisor of )(xf  and )(xg of greatest degree. Thus 

.2))(),(gcd(  xxgxf  

Definition: Let )(xf and )(xg two polynomials in ][xF not both zero. If 1))(),(gcd( xgxf , then 

)(),( xgxf  are said to be relatively prime. 

Theorem 9: Two polynomials ][)(),( xFxgxf  are relatively prime if and only if 

)()()()(1 xvxgxuxf  for some ][)(),( xFxvxu  . 

Proof: Let )()()()(1 xvxgxuxf  , where ][)(),( xFxvxu  . If ))(),(gcd()( xgxfxd  , then 

)(|)(),(|)( xgxdxfxd  

1|)(xd  

Since )(xd is monic, so it follows that 1)( xd . Hence )(xf and )(xg are relatively prime. 

Converse of this theorem will be follows from Theorem 8. 

Corollary 3: Let K be a subfield of F and ][)(),( xKxgxf  . Then )(xf  and )(xg are relatively 

prime in ][xK if and only if so in ][xF . 

Proof: Let )(xf and )(xg be relatively prime in ][xK . Then )()()()(1 xvxgxuxf   for some 

][)(),( xKxvxu  . Since ][][ xFxK  , it follows that ))(),(gcd(1 xgxf in ][xF , by Theorem 9. 

Conversely, assume that )(xf and )(xg be relatively prime in ][xF . Then 

)()()()(1 xvxgxuxf  for some ][)(),( xFxvxu  . Let ))(),(gcd()( xgxfxd  in ][xK . Then 

)(|)(),(|)( xgxdxfxd and )()()()(|)( xvxgxuxfxd  in ][xF . It follows that 1|)(xd , and since )(xd

is monic, so 1)( xd . Thus )(xf and )(xg are relatively prime in ][xK . 

Definition: Let F be a field. A nonconstant polynomial ][)( xFxf  of degree n  is called irreducible 

over F  if there is no factorization )()()( xhxgxf  in ][xF such that nxf )(deg  and nxg )(deg . 

In the other way )(xf  is said to be reducible. 
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Thus, a nonconstant polynomial )(xp  is irreducible iff it has only two monic divisors 1 and 

)(1 xpa  where, a is leading coefficient of )(xp . 

Theorem 10: Let F be a field and ][)(),( xFxpxf  . If )(xp  is irreducible, then 

1))(),(gcd( xfxp                    if )(|)( xfxp   

  )(1 xpa           if )(|)( xfxp   

Where, a  is leading cofficient of )(xp . 

Proof: Let )(|)( xfxp  . Since )(xp is irreducible, so it has no monic divisors other than 1 and 

)(1 xpa  

Where, a is leading coefficient of )(xp . But )(1 xpa  is not a divisor of )(xf , since )(|)( xfxp  . 

Hence 1))(),(gcd( xfxp  

If )(|)( xfxp , then )(1 xpa is the monic common divisor of highest degree. It follows that 

)())(),(gcd( 1 xpaxfxp  . 

Theorem 11: Let F be a field and ][)( xFxp  . Then )(xp is irreducible iff for any 

)()(|)(],[)(),( xgxfxpxFxgxf   implies either )(|)( xfxp or )(|)( xgxp . 

Proof: Let )()(|)( xgxfxp and )(|)( xfxp  . Since )(xp is irreducible, so ))(),(gcd(1 xfxp . Then  

)()()()(1 xvxfxuxp  for some ][)(),( xFxvxu  . It follows that 

)()()()()()()( xvxgxfxuxgxpxg  . Now )()(|)( xgxfxp  

),()()()()()(|)( xvxgxfxuxgxpxp  i.e., )(|)( xgxp  

Conversely, let )()()( xgxfxp  . Then either )(|)( xfxp  or )(|)( xgxp . If )(|)( xfxp , then 

)(deg)(deg)(deg)(deg)(deg xpxgxfxfxp   

)(deg)(deg xgxp  . 

Similarly, if )(|)( xgxp , then )(deg)(deg xgxp  . Thus )(xp is an irreducible polynomial. 

The relevance of prime integers is undeniably demonstrated in the Fundamental Theorem of 

Arithmetic. A similar conclusion is obtained here, demonstrating that every nonconstant polynomial 

over a field may be represented as a combination of irreducible polynomials. 

Theorem 12: Let F  be a fied. Then every non constant polynomial ][)( xFxf   can be written 

uniquely as a product of a nonzero constant and monic irreducible polynomials in ][xF up to the order 

of the irreducible factors. 

Proof: We initially prove that, the existence of such factorization by using the mathematical induction 

on )(deg xfn  . If 1n  then 0;)(  abaxxf . Since F  is a field, so 1a 1 exists in F  and 
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bax 1 is a monic irreducible polynomial in ][xF . Then )()( 1baxaxf  shows that we are done 

for 1n . Let )(xf  be a polynomial of degree 1n and leading coefficient a . If )(xf is irreducible, 

then ))(()( 1 xfaaxf  is a desired factorization. If )(xf is reducible then ][)()()( xFxhxgxf  in 

F[x] with )(deg)(deg xfxg  and )(deg)(deg xfxh  . By the induction hypothesis, 

)()...()()(),()...()()( 2121 xqxqxcqxhxpxpxbpxg sr   and 

)()...()()()...()()( 2121 xqxqxqxpxpxbcpxf sr  where Fcb , and )(),( xqxp ii
are monic irreducible 

polynomials in ][xF . 

Now, to prove the uniqueness of the factorization, let us suppose 

)()...()()()...()( 2121 xqxqxbqxpxpxap nm   

where Fba , and )(),( xqxp ii  are monic irreducible polynomials in ][xF . Since all )(),( xqxp ii  are 

monic, so ba  . Then )()...()()()...()( 2121 xqxqxqxpxpxp nm   

)()...()(|)( 211 xpxpxpxq m  

Since )(1 xq is irreducible, so either of )()...()( 21 xpxpxp m is divisible by )(1 xq , say )(|)( 11 xpxq . It 

follows that )()( 11 xqxp  , since both )(1 xp  and )(1 xq are monic and irreducible 

)()...()()...( 22 xqxqxpxp nm        (By the cancellation property) 

Continuing cancelation of irreducible factors, we get 1)()...()( 21  xpxpxp mn if nm   or 

1)()...()( 21  xqxqxq nm if mn  , which is a contradiction, since every irreducible polynomial is non 

constant. Thus nm  and after reindexing, )()( xqxp ii  . 

13.6 IRREDUCIBILITY OF POLYNOMIAL 

There is a simple characterization on irreducibility of polynomials of degree 2 or 3. 

Theorem 13: Let ][)( xFxf   be a polynomial of degree 2 or 3. Then )(xf is reducible over F if and 

only if )(xf  has a root in F . 

Proof: First suppose that 3)(deg xf and )(xf has a root in F , say a . Then ax   divides )(xf in 

][xF  and so )()()( xqaxxf   for some ][)( xFxq  . Thus )(xf  is reducible over F . 

Conversely suppose that )(xf is reducible over F . Then )()()( xhxgxf  for some ][)(),( xFxhxg 

with 1)(deg xg  and 1)(deg xh . Now 3))()(deg( xhxg shows that either 1)(deg xg and 

2)(deg xh  or 2)(deg xg and 1)(deg xh . If 1)(deg xg , then baxxg )(  for some 
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0,,  aFba . Now Fba  1  shows tha 0)( 1   bag  shows that 0)( 1   baf has a root in F . If 

1)( xh , then similarly )(xf  has a root in F . 

A similar argument can be used for the case when 2)(deg xf . 

Example 4: Consider ][]1[)( 2

2 xZxxxf  . Then ]0[]1[]0[]0[])0([ 2 f  and

]0[]1[]1[]1[])1([ 2 f shows that )(xf has no roots in 
2Z . Also 2)(deg xf . Thus, by theorem 

13, )(xf  is irreducible over 
2Z . 

Example 5: Consider ][)2)(1()( 22 xQxxxf  . Then )(xf has no root in Q , still it is reducible 

over Q . Thus the above result does not hold for polynomials of degree more than 3. 

Theorem 13 is an appropriate criteria for assessing polynomial irreducibility over finite fields. Because 

the nonexistence of roots in an infinite field is difficult to verify, it does not operate well over an 

infinite field. Now we demonstrate a lovely strategy for checking the nonexistence of roots of a 

polynomial over Q  in a finite number of steps. We'll start with a well-known lemma known as Gauss's 

Lemma. 

If ][...)( 10 xZxaxaaxf n

n  , then for any Nm denote 

][][...][][)( 10 xZxaxaaxf m

n

n  . Since mZZ :  defined by  aa )(  is a ring 

homomorphism, so it follows that ][][:* xZxZ m  given by )())((* xfxf  is a ring 

homomorphism. 

Lemma 1: Let ][)( xZxf  . If )()()( xHxGxf   over Q  where )(deg)(deg),(deg xfxHxG   then 

there are ][)(),( xZxhxg  with )(deg)(deg xgxG   and )(deg)(deg xhxH  s.t. )()()( xhxgxf  . 

Proof: Let Znn 21, be such that ][)(),( 21 xZxHnxGn   . Consider )()(),()()( 2111 xHnxhxGxnxg 

and 
21nnn  . Then 

)()()()( 1121 xhgxHnxGnxnf   

If p is a prime divisor of n , then the identity )()()( 11 xhxgxnf   becomes 0)()( 11 xhxg  in ][xZ p . 

Since ][xZ p  is an integral domain, so at least one of )(1 xg and )(1 xh  say is 0. Hence p divides all the 

coefficients of )(1 xg , that is, )()( 21 xpgxg  for some ][)(2 xZxg  . If pmn  , then 

)()()( 12 xhxpgxpmf   
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)()()( 12 xhxgxmf  . Note that )(deg)(deg)(deg 12 xGxgxg  and )(deg)(deg 1 xHxh  . 

Continuing cancelation of prime factors of n , we reach our desired factorization )()()( xhxgxf  in

][xZ . 

Theorem 14: Let ][...)( 10 xZxaxaaxf n

n   be a polynomial of degree 1n . If there exists a 

prime p such that n

n xaxaaxf ][...][][)( 10  is of degree n and irreducible over pZ , then )(xf is 

irreducible over Q . 

Proof: Suppose that p is a prime such that )(deg xf is n and )(xf  is irreducible over pZ . If possible, 

let )(xf  be reducible over Q . Then there exist polynomials 
k

k xbxbbxg  ...)( 10 and 

l

l xcxccxh  ...)( 10  in ][xZ , nlk  ,0 such that )()()( xhxgxf  . Then lkn  . Since degree 

of )][...][])([][...][]([)( 1010

l

l

k

k xcxccxbxbbxf   is lkn  , it follows that ]0[]][[ lk cb  

in pZ , and hence ]0[][ kb  and ]0[][ lc . Consequently, )(xg and )(xh are nonconstant polynomials 

in ][xZ p .  )(xg and )(xh are non units, since the nonzero elements 

of Zp are the only units of ][xZ p . Hence )(xf is reducible over pZ , a contradiction. Thus )(xf  is 

irreducible over Q . 

Example 6: Suppose the polynomial 287)( 3  xxxf over Q . Then in ][3 xZ , 

]2[]2[)( 3  xxxf . Now ]2[])1([],2[])0([  ff and ]2[])2([ f  shows that )(xf  has no root in 

][3 xZ . Thus )(xf is irreducible over 3Z and hence )(xf is irreducible over Q . 

13.7 EISENSTEIN’S CRITERIA FOR IRREDUCIBLITY 

Now we will learn about the famous Eisenstein's criterion for irreducibility of polynomials over Q .  

Theorem 15: Eisenstein's irreducibility criterion (EIC) Let ][...)( 10 xZxaxaaxf n

n  . If 

there is a prime integer p such that iap | for all ni  , nap |  and nap |2
 , then )(xf is irreducible over 

Q . 

Proof: Assume, on the contrary, that )(xf is reducible over Q . Then by Gauss's lemma 

)...)(...()( 1010

m

m

k

k xcxccxbxbbxf   
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in ][xZ where nmk , . Let 
k

k xbxbbxg  ...)( 10 and 
m

m xcxccxh  ...)( 10 . Then we have 

)()()( xhxgxf   in ][xZ p . Since nap | , so ][ na is a unit in pZ . Then iap | for all ni   implies 

nuxxf )( . Because irreducible polynomial factorization over a field is unique, so we have and 

kuxxg )( and mvxxh )( where u  and v  are units in pZ . Thus ][]0[][ 00 cb  in pZ , 

0| bp  and 0| cp . Then 000

2 | acbp  , a contradiction. Hence )(xf  is irreducible in ][xQ . 

Example 7: Let 6912)( 245  xxxxf . Then 6|3,1|3,12|3,9|3,6|3 2
  shows that )(xf  is 

irreducible over Q , by Eisenstein's criterion. 

Corollary 4: For every prime integer p , the p -th cyclotomic polynomial 

1...1)(  p

p xxx  

is irreducible over Q . 

Proof: Note that 
1

1
)(






x

x
x

p

p which implies 

pxxx pp

p   ...)1( 21  

Since p is prime, we have piip  0,| . Hence )1( xp  is irreducible in ][xQ , by 

Eisenstein's criterion and it follows that )(xp is irreducible over Q . 

Irreducible polynomials are commonly utilised in abstract algebra applications such as coding theory, 

Galois theory, and so on. We show how to employ irreducible polynomials to build finite fields of 

non-prime order. First, we show the following fact, which is essential for building finite fields. 

Theorem 16: Let F  be a field and )(xp  be a nonzero polynomial over F . Then the following 

conditions are equivalent: 

(i)  )(xp is irreducible; 

(ii)   )(/][ xpxF is an integral domain; 

(iii)   )(/][ xpxF  is a field. 
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Proof: )()( iiii  :  )(/][ xpxF  is a commutative ring with unity, since ][xF  is so. Consider a 

nonzero element  )(][ xpxF  of  )(/][ xpxF . Then  )()( xpxf and so )(|)( xfxp   in 

][xF . Since )(xp  is irreducible, so ))(),(gcd(1 xfxp . Then 1)()()()(  xpxvxfxu , for some 

][)(),( xFxvxu   

 )(1))()()()()(( xpxpxfxpxu . Thus 

 )()( xpxf  is a unit in  )(/][ xpxF and hence  )(/][ xpxF is a field. 

)()( iiiii  : Follows trivially. 

)()( iii   (ii) ):  )(/][ xpxF  is an integral domain and so contains at least two elements. Thus

 )(][ xpxF  and so )(xp  is a non constant. Suppose that )()()( xgxfxp  , for some 

][)(),( xFxgxf  . Then  )()(),( xpxgxf  

  )(0))()()()()(( xpxpxgxpxf .  

Since  )(/][ xpxF  contains no zero divisor, it follows that  )(0)()( xpxpxf or 

 )(0)()( xpxpxg , equivalently  )()()()( xpxgorxpxf . If  )()( xpxf  

then there is  )()( xpxq  such that )()()( xqxpxf  . Hence )()()()()()( xgxqxpxgxfxp   and 

so 0)(deg xg . Thus )(xg  is a unit. Similarly, if  )()( xpxg , then )(xf  is a unit. Thus )(xp  is 

irreducible over F . 

Example 8: Consider the irreducible polynomial ][]1[)( 2

2 xZxxxf  . Then it follows that 

]}[)(|]1[)({]1[/][ 2

22

2 xZxfxxxfxxxZF   is a field. We show that this is a 

field of four elements. Now the Division Algorithm implies that for every ][)( 2 xZxf   there are 

unique polynomials ][)(),( 2 xZxrxq   such that 

)()(])1[()( 2 xrxqxxxf   

where 0)( xr r(x) = 0 or 2])1[deg()(deg 2  xxxr . Then ][][)( bxaxr  for some 

2][],[ Zba  . Now  ]1[)(])1[(])[]([)( 22 xxxqxxbxaxf  

 ]1[/][ 2

2 xxxZF  

]}[)(|]1[)({ 2

2 xZxfxxxf   



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 208  

}][],[|]1[])[]{([ 2

2 Zbaxxbxa   

}]1[]1[,]1[,]1[]1[,]1[0{ 2222  xxxxxxxxxx . 

Thus F  is a field of four elements. 

Check your progress 

Problem 1: Check the polynomial 4321)( xxxxxf   is irreducible over Q ? 

Problem 2: Check the polynomial 51015)( 245  xxxxf  is irreducible over Q ? 

 

13.8 SUMMARY 

In this unit, we have learned about the important definition of polynomial ring, irreducible polynomial 

and important concept of Eisenstein's criteria of irreducibility of a polynomial over Q . The overall 

summarization of this units are as follows:  

 If F is a field then every ideal in ][xF  is principal ideal. 

 ][xR  is an integral domain if and only if R  is an integral domain. 

 Two polynomials in ][xF , )(xf and )(xg  not both zero are said to be relatively prime if 

1))(),(gcd( xgxf . 

 A nonconstant polynomial )(xp  is irreducible iff it has only two monic divisors 1 and )(1 xpa  

where, a is leading coefficient of )(xp . 

 Eisenstein's irreducibility criterion: Let ][...)( 10 xZxaxaaxf n

n  . If there is a prime 

integer p such that iap | for all ni  , nap |  and nap |2
 , then )(xf is irreducible over Q . 

13.9 GLOSSARY 

 GCD: Greatest common divisor 

 EIC: Eisenstein's irreducibility criterion 

 Eisenstein's irreducibility criterion: Let ][...)( 10 xZxaxaaxf n

n  . If there is a prime 

integer p such that iap | for all ni  , nap |  and nap |2
 , then )(xf is irreducible over Q . 
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13.12 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. State and prove the Eisenstein’s criteria for irreduciblity over Q . 

2. If F be a field and ][)( xFxp  . Then prove that )(xp is irreducible iff for any 

)()(|)(],[)(),( xgxfxpxFxgxf   implies either )(|)( xfxp or )(|)( xgxp . 

3. Prove that, if K  be a subfield of F and ][)(),( xFxgxf  . Then )(),( xgxf  are relative prime 

in ][xK  iff so in ][xF . 

4. If F be a field and ][)( xFxp  . Then prove that )(xp is irreducible iff 

)()(|)(],[)(),( xgxfxpxFxgxf  implies that either )(|)( xfxp  or )(|)( xgxp  

5. Prove that each non constant polynomial ][)( xFxf   can be expressed uniquely as a product 

of a nonzero constant and monic irreducible polynomials in ][xF  up to the order of the 

irreducible factors. 

6. Prove that every ideal in ][xF  is principal ideal, where F is field. 

Short Answer Type Question: 

7. Show that the polynomial 51015)( 245  xxxxf  is irreducible over Q . 

8. Prove that p -th cyclotomic polynomial 
1...1)(  p

p xxx  is irreducible over Q . 

9. Prove that two polynomials ][)(),( xFxgxf   are relatively prime if and only if 

)()()()(1 xvxgxuxf  for some ][)(),( xFxvxu  . 

10. Find the gcd of the polynomials )2)(1(2)(  xxxf  and )3)(2(2)(  xxxg . 
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11. If D is an integral domain and 0)( xf  is a polynomial in ][xD  of degree n , then prove that 

)(xf  has at most n roots in D  counted according to multiplicity. 

12. Prove that in a commutative ring R with unity, ][)( xRxfD   and Ra  then )(| xfax  iff 

a is root of )(xf . 

Fill in the blanks: 

13. If F is a field then every ideal in ][xF  is ……………………. 

14. A non constant polynomial )(xp  is irreducible iff it has only two monic divisors )(1 xpa  and 

……. 

15. Two polynomials )(),( xgxf are said to be relative prime if ))(),(gcd( xgxf ……………… 

13.13 ANSWERS 

Answer of self cheque question: 

1. Yes  2. Yes 

Answer of terminal question: 

9. )2( x  13. Principal ideal  14. 1  15. 1 
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Unit-14:  FIELD EXTENSION, GALOIS GROUPS 

AND GALOIS EXTENSION 

 

CONTENT: 
 

14.1 Introduction  

14.2  Objectives 

14.3  Extension of fields  

14.4  Minimal polynomial 

14.5 Galois group 

14.6 Summary 

14.7  Glossary  

14.8   References 

14.9 Suggested Readings 

14.10  Terminal Questions 

14.11 Answers 

14.1 INTRODUCTION 

A field extension in mathematics, specifically algebra, is a pair of fields LK  where the 

operations of K are L operations confined to K. In this instance, K is a subfield of L and L is an 

extension field of K. For instance, under the conventional definitions of addition and multiplication, 

the real numbers are a subfield of the complex numbers, which are an extension field of the real 

numbers. 

The Galois group of a certain kind of field extension is a particular group connected to the field 

extension in mathematics's branch of abstract algebra known as Galois theory. Galois theory is the 

study of field extensions and how they relate to the polynomials that give birth to them via Galois 

groups. It is named after Évariste Galois who made the initial discovery of field extensions. 

In algebraic number theory, the study of polynomial roots via Galois theory, and algebraic 

geometry, field extensions play a key role. 
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14.2 OBJECTIVES 

After reading this unit learners will be able to  

 Memorized about the extension of fields.  

 Analyze about the minimal polynomial in terms of field extension. 

 Analyze about the Galois group of polynomial over a field . 

14.3 EXTENSION OF FIELDS 

As we know that complex numbers are generally ordered pair of real numbers i.e., RRC  , and so, 

in its strict sense CR  . Still R  is considered as a subfield of C . We can identifying each real 

number a  with the complex number )0,(a . 

So, what is the justification in doing this? 

In the sense of isomorphism. Let we define a mapping CRf : , for all Ra  s.t., 

)0,()( aaf   

Then f  is a monomorphism and }|)0,{()( RaaRfR   which is a subfield of C . 

Definition: Let F  and K  be two fields. F is called an extension or a field extension of K if there is a 

monomorphism 

FKf :  

It is denoted by KF /  

Since, K  is a field and we also know that a field has no ideal other than }0{ and F itself, every 

homomorphism FKf : is either a zero homomorphism or a one-to-one homomorphism. Thus F is 

a field extension of K  iff there is a nonzero homomorphism FKf : . 

Example 1: The mapping CRf :  defined by for all ,Ra  

)0,()( aaf   

is a monomorphism. Thus C is a field extension of R . 

Similarly, R is a field extension of Q . There are more several field extensions of Q . Now we give 

some examples. 

Example 2: Consider 1)( 2  xxp  on R . Since )(xp is irreducible over R ,  1/][ 2xxRF  is a 

field. Also we have ]}[)(|1)({ 2 xRxfxxfF  . Since R  is a field, by the division algorithm  

),()()1()( 2 bxaxqxxf  where Rba , . Then  1)()1()()( 22 xxqxbxaxf  implies 

that  11)( 22 xbxaxxf . Thus 

F
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},|1{ 2 RbaxbxaF   

Define a mapping FRf : by: for all Ra , 

 1)( 2xaaf  

Then f is a homomorphism. Now for Rba , , 

 11)()( 22 xbxabfaf  

 12xba  

)()1( 2 xqxba   

for some ][)( xRxq  . If 0ba then Rba   

0)deg(  ba , and )(xq  is nonzero. 

Then 2)(deg)1deg())()1deg(( 22  xqxxqx  leads to a contradiction. Thus ba  and so f is a 

monomorphism. Hence F  is an extension of R . 

Also note that CF : defined by: 

ibaxbxa  )1( 2  

for every Fxbxa  12  is an isomorphism. Thus CF  . 

Example 3: Let  2/][ 2xxQF . Since 22 x  is irreducible over Q , F  is a field. Also, by the 

Division Algorithm on ][xQ , we have 

},|2{ 2 QbaxbxaF   

Define a mapping  2/][: 2xxQQf  by Qa  

 2)( 2xaaf  

Then f is a homomorphism. Since Q  is a field, so f  is either a zero homomorphism or a 

monomorphism. Now 021)1( 2  xf implies that f is a nonzero homomorphism. Thus f  is a 

monomorphism. Hence F  is an extension of Q . 

Also note that )2(: QF   defined by 

2)2( 2 baxbxa   

for every Fxbxa  22 is an isomorphism. Thus )2(QF  . 

Example 4: Give examples of two fields which are not an extension of a field. 

1. Q has no proper subfield. 

Let K  be a subfield of Q . Then K1 , and so K1 . This shows that for all nonzero Za , 

0),(1...11  aiftimesaa  
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0),)(1(...)1()1(  aiftimesa  

and hence Ka . Thus KZ  which shows that KZQQ  )( . 

2.  pZ  has no proper subfield 

If pZK  is a subfield of pZ , then K]1[  

Ktimesaa  )(]1[...]1[]1[][  

for every pZa ][ . Thus pZK   

Definition: A field K is called a prime field if it has no proper subfield. 

In other words, such domains cannot be thought of as extensions of other disciplines. Q  and pZ are 

prime fields for any prime integer p . We will now demonstrate that any prime field is isomorphic to 

any of these fields. 

Theorem 1: Every field F is either an extension of Q  or an extension of pZ , for some prime p . 

Proof: Define a mapping FZf :   

s.t., Znnnf  ,1)(  

Then f is a homomorphism. Now either 0Fchar or pFchar   for some prime integer p . 

Assume that pcharF  . Then, 01p  

fp ker  

 fker  

Hence, mZf ker  for some 0m  

Again fIm being a subring of F with the same unity, pFcharfchar Im . Then 

mZfZf  ker/Im shows that pfcharm  Im . Thus pZf Im , and hence F has a subfield 

which is isomorphic to pZ . 

Now assume that 0Fchar . In this case, }0{ker f , and so f  is one-to-one. Now we shall 

show that this f induces an one-to-one homomorphism 

    FQ :  

s.t., 1)()( 







bfaf

b

a
 , where Q

b

a
                              [Since f is 1-1, 00)(  bbf ] 

Let Q
d

c

b

a
, . Then 1)()()()()()()()(  bfafcfbfdfafbcfadfbcad

d

c

b

a
 


















 

d

c

b

a
dfcf 1)()(  
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  is one-one and as well as defined. 

Now 111 )()())()()()(()()(  






 









 dfbfcfbfdfafbdfbcadf

bd

bcad

d

c

b

a
  


















 

d

c

b

a
dfcfbfaf 11 )()()()(  and 1)()( 

















bdfacf

bd

ac

d

c

b

a
  

















 

d

c

b

a
dfcfbfafdfbfafdfbfcfaf 111111 )()()()()()()()()()()( .  

Thus F has a subfield which is isomorphic to Q . 

Corollary 1: Let F  be a prime field. 

1.  If 0Fchar , then QF  . 

2.  If pFchar  , then pZF  . 

Let KF / be a field extension. Then there is a monomorphism FK : , and so K  is isomorphic to 

)(K , a subfield of F . Also, if K  is a subfield of F , then the inclusion mapping FKf : is a 

monomorphism. Hence F is an extension of K . Thus it is of no harm to identify K and its isomorphic 

image )(K  is an extension F . 

Let KF /  be a field extension. As we know that arbitrary intersection of subfields of F is a subfield of

F , given any Fccc n ,...,, 21
there is the smallest subfield that contains },...,,{ 21 ncccK  . This is 

called the subfield of F  generated by nccc ,...,, 21 over K  and is denoted by ),...,,( 21 ncccK . For 

)(, cKFc  is of our special interest. 

Definition: A field extension KF /  is called a simple extension if there is Fc such that )(cKF  . 

Now let us look after the explicit form of the elements of )(cK . Now )(,..., 2 cKcc   

 )(cK contains the elements of the form 
n

nckckk  ...10 . Thus for any ],[)( xKxf 

),()( cKcf  i.e., )(]}[)(|)({][ cKxKxfcfcK  . Since ][cK is an integral domain, the field of 

quotients ])[( cKQ  of ][cK  exists, and if follows from the fact ][cK is the smallest subfield that 

contains },...,,{ 21 ncccK  that ])[(][ cKQcK  . Thus we have: 

 0)(],[)(),(|)()()( 1   cgxKxgxfcgcfcK  

Example 5: Consider 












 0)2(],[)(),(
)2(

)2(
)2( gxQxgxf

g

f
Q . Let 

][...)( 10 xQxaxaaxf n

n  . Then 

)2(f n

naaaaa )2(...2252 3210   
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              2...)2(...)2( 3120  aaaa  

              2ba  ,where Qba  ,  

Prove that if )2(Q , then 

)2(

)2(

g

f
  

2

2

dc

ba




  

2sr   for some Qsr ,  

Also QsrQsr  ,)2(2 . Thus we have },|2{)2( QbabaQ  . 

We demonstrate in the example below how extensions produced by many parts might be 

straightforward extensions. 

Example 6: Let us consider the extension )5,3(Q of Q . Then )5,3(5,3 Q  

)5,3(35 Q . Since )35( Q  is the smallest field which contains Q and 35  , 

which follows that )5,3()35( QQ  . 

Again, )35(35  Q  

)35(
35

1



 Q  i.e., )35()35(

2

1
 Q  

 35)35(
2

1
)35(

2

1
3  Q  and  35)35(

2

1
)35(

2

1
5  Q  

)35()5,3(  QQ . 

Thus )35()5,3(  QQ  

Recall that C is a vector space over R  of dimension 2  and },1{ i  is a basis of C over R . Also )2(Q  

is a vector space over Q  and }2,1{  is a basis. 

Let KF /  be a field extension. Then the multiplication in F induces an external composition 

FFK  . Then for all Kc and F, , we have 

(i)  dcdc  )( , (right distributivity law of multiplication over addition in F ) 

(ii) )()(  dccd  , (associativity of multiplication in F ) 

(iii)  ccc  )( , (left distributivity law of multiplication over addition in F ) 

(iv) ,.1    
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which shows that F  is a vector space over K . 

Definition: Let KF /  be a field extension. Then the dimension of F as a vector space over K  is called 

the degree of the extension of KF / . 

It is denoted by ]:[ KF . 

Thus ]:[ RC  = 2 and 2]:)2([ QQ  

Example 7: Now we prove that 1]:[ KF iff  FK  . 

If KF  , then 1dim F  as a vector space over K . Hence 1]:[ KF . 

Conversely, let 1]:[ KF . Consider Fc and 0c . Then }{c is linearly independent and so a basis 

of F over K . Then there is Kk such that kc1 . This implies that 0k and Kkc  1 . Thus 

KF   and hence KF   

Definition: A field extension KF / is called finite if ]:[ KF is so, otherwise KF / is called an infinite 

extension. 

If 2]:[ KF , then F  is called a quadratic extension of K . 

Example 8: 1. QQRCQQ /)2(,/,/)2( 3 are finite extension of fields. 

2. QR /  is an infinite extension. 

3. RCQQ /,/)2(  are quadratic extension. 

4. QQ /)2(3  is not a quadratic extension. 

Following results are very important to find the degree of field extension and also known as tower rule. 

Theorem 2: Let LF / and KL / be two finite extensions of fields. Then KF /  is also a finite 

extension and    ]:][:[]:[ KLLFKF   

Moreover, if },...,,,{ 321 muuuu is a basis of LF / and },...,,,{ 321 nvvvv is a basis of KL / , then 

}1,1|{ njmivuB ji   is a basis of KF / . 

Proof: Suppose that mLF ]:[  = m and nKL ]:[ . Consider bases },...,,,{ 321 muuuu of F  over L  

and 

},...,,,{ 321 nvvvv  of L over K . Then for any Fa , there are Llull n ,...,,, 321  such that 

mmulululula  ...332211 . 

Since for each Lli  there are Kkkk inii ,...,, 21 such that 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 218  

niniii vkvkvkl  ...2211
 

                                 

                                              

muuuu ,...,,, 321  

  

 

 

nmmm

n

n

vuvuvu

vuvuvu

vuvuvu

,...,,

.

.

.

,,...,,

,,...,,

21

22212

12111

 

 

 

                                               

nvvvv ,...,,, 321  

Thus, 

nn vukvukvuka 1121121111 ...  

             nn vukvukvuk 2222221221 ...  

               . 

               . 

               . 

             ....2211 nmmnmmmm vukvukvuk   

which shows that }1,1|{ njmivuB ji  generates F as a vector space over K . This is left for 

learners to checking that  njmivuB ji  1,1| is linearly independent. Thus 

 njmivuB ji  1,1|  is a basis of F over K . 

Note: Let KF / be a field extension of finite degree and L is an intermediate field. Then aforesaid 

theorem implies that KL / is finite extension and ]:][:[]:[ KLLFKF   

]:[|]:[ KFKL  

Corollary 2: If KF / is a finite field extension and L  is an intermediate field, then ]:[|]:[ KFKL . 

There are several uses for the tower rule. We demonstrate its application to determine the degree of an 

extension in the further books. Let's now think about the case below. 

Example 9: Let L and M be two intermediate fields of a field extension KF / . If ]:[ KL  is prime, 

then either KML   or ML   

Denote MLN  . Then LNK    

N  is an intermediate field of KL / , and 

hence ]:][:[]:[ KNNLKL   . Since ]:[ KL  is prime, 1]:[ NL = 1 or 1]:[ KN . Then LN   or 

KN  , i.e., ML  or KML  . 

F 

L 

K 
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14.4 MINIMAL POLYNOMIAL 

In this unit we defined degree ]:[ KF of a field extension KF / to be the dimension of F as a vector 

space over K . Though we have results ensuring existence of basis of every vector space, but there is 

no for finding a basis in general. In this unit we set the theory a step forward to find  ]:[ KF . The 

degree of a simple extension KcK /)(  is finite if and only if c  is a root of some nonconstant 

polynomial )(xf  over K . Here we discuss how to find a basis and dimension of such simple 

extensions KcK /)( . 

Definition: Let KF /  be a field extension. Then Fc  is called an algebraic element over K , if there 

is a non constant polynomial ][)( xKxf   s.t. 0)( cf , i.e. if there exists Kkkk n ,...,, 10
not all 

0ik  s.t., 

0...10  n

nckckk  

Otherwise c is called a transcendental element over K . 

Example 10: 1, 2 , 53 , i etc are algebraic over Q and eee ,,  are transcendental over Q .  

Definition:  A complex number  is called an algebraic number if   is an algebraic element over Q

that is, if there is a non constant polynomial )(xf  with rational coefficients such that 

                                                                       0)( f  

Otherwise C is called a transcendental number. 

Let F be an algebraic element over K .  Now we show that uniqueness can be imposed to the 

polynomials ][)( xKxf  such that 0)( f up to some restrictions. 

Theorem 3: Let KF / be a field extension and F be algebraic over K . Then there is a unique 

monic polynomial ][)( xKxm  of least degree such that 0)( m  

Proof: Since  is algebraic over K , there is a nonconstant polynomial ][)( xKxf  such that 0)( f . 

)(|][)({ xfxKxfP  is nonconstant and }0)( f is nonempty and hence 

})(|)({deg PxfxfN  is a nonempty subset of N . By the well-ordering principle of natural 

numbers, N has the least element, say n and correspondingly a polynomial 

][... 1

1

10 xKkxkxkxk nn

nn  


 of degree n  in P . Then 00 k and hence )()( 1

0 xfkxm   

becomes a monic polynomial of the least degree n  such that 0)( m . 

Suppose )(xp is a monic polynomial of degree n  and 0)( p . Since K  is a field, there 
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are ][)(),( xKxrxq   such that )()()()( xrxqxmxp  where 0)( xr  or )(deg)(deg xmxr  . If 

)(deg)(deg xmxr  , then )(xr becomes a non constant polynomial such that 

0)()()()(   qmrr , which contradicts the choice of )(xm as a polynomial of least degree 

such that .0)( m  Thus 0)( xr  and we have )()()( xqxmxp   which implies that 0)(deg xq , i.e. 

Kkxq )( . Since both )(xp  and )(xm  are monic, )()( xkmxp  implies that 1k  and thus the 

uniqueness of )(xm  is established. 

Definition: Let KF /  be a field extension and F algebraic over K . Then the unique monic 

polynomial ][)( xKxm   of least degree such that 0)( m  is called the minimal polynomial of   

over K . 

If )(deg xmn  , then  is called algebraic of degree n  over K . 

Example 11: Consider the extension QR / . Then 32 x  is the minimal polynomial of R3  over 

Q . Thus 3  is algebraic of degree 2 over Q .  

Example 12: Let KF /  be a field extension and c  be algebraic over K  of degree 5. We show that 

)()( 2cKcK  . 

Let 01

2

2

3

3

4

4

5)( kxkxkxkxkxxm  be the minimal polynomial of c over K . Then c  can not 

be a root of any polynomial of degree less than 5, and so 01

2

3

4  kckc . Then

001

2

2

3

3

4

4

5  kckckckckc  

)( 2

42

31

4

4

2

20 cK
cckk

ckckk
c 




 , and hence )()( 2cKcK   

Although the aforementioned evidence for the existence and uniqueness of the minimum polynomial

)(xm  is inherent, it does not offer any guidance on how to go about locating the minimal polynomial. 

We now present evidence that irreducibility may serve as an effective comparable criteria for our 

practical goal. 

Let's start by demonstrating the lemma that follows, which follows directly from the minimum 

polynomial's leastness in degree such that 0)( m  

Lemma 1: Let KF / be a field extension F and algebraic over K . Then for every 

)(|)(0)(],[)( xfxmfxKxf    

Proof: By the Division Algorithm, there are ][)(),( xKxrxq  such that )()()()( xrxqxmxf   

where 0)( xr  or )(deg)(deg xmxr  . If )(deg)(deg xmxr  , then )(xr  becomes a non constant 

polynomial such that 0)()()()(   qmpr , which contradicts the choice of )(xm as a 
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polynomial of least degree such that 0)( m . Thus 0)( xr and we have 

)(|)()()()( xfxmxqxmxf  . 

If )(xf is a nonconstant polynomial such that 0)( f , then the above lemma shows that some 

factor of )(xf  is the minimal polynomial of  . Thus if we have some irreducible polynomial )(xp  

such 

that 0)( p , then this must be the monic polynomial up to a unit multiple, that is )()( xupxm  . 

Since ][xK is a UFD, there are irreducible polynomials ][)(),...,(),( 21 xKxpxpxp m   s.t. 

).(),...,(),()( 21 xpxpxpxf m  Then 0)( f  

0)()...()( 21   mppp  and hence 0)( ip  for some i. Thus we have an irreducible polynomial

)(xpi
having a root  . Now we show that irreducibility is enough to characterize minimal 

polynomials. 

Theorem 4: Let KF / be a field extension and F  algebraic over K . Then ][)( xKxm   is the 

minimal polynomial of  over K  iff it is a monic irreducible polynomial such that 0)( m . 

Proof: First, let us assume that ][)( xKxm   is the minimal polynomial of  over K . Suppose 

][)(),(),()()( xKxvxuxvxuxm   . Then 0)( m  

either 0)( u  or 0)( v . If 0)( u , then )(deg xu can never be less than )(deg xm and hence 

)(deg)(deg xmxu  . 

0)(deg  xv and hence )(xv  is a unit. Similarly 0)( v  

 )(xu is a unit. Thus )(xm  is irreducible. 

Conversely, consider a monic and irreducible polynomial ][)( xKxp  such that 0)( p . Then 

)()()( xqxmxp  . Then the irreducibility of )(xp implies that either )(xm  is a unit or )(xq is a unit. 

Since )(xm  is non constant, it is not a unit. Thus )(xq  is a unit. Since both )(xp  and )(xm  are monic 

we have 1)( xq . Thus )()( xmxp  . 

Corollary 3: Let KF / be a field extension and F . Then   is algebraic over K  if and only 

if )(][  KK  . Moreover in this case, .)(/][)(][  xmxKKK   

Proof: First assume that  is algebraic over K . Define ][][:  KxK   by for every ][)( xKxf  , 

 )())((  fxf   

Then   is an onto homomorphism. Now,  

}0)(|][)({ker   fxKxf  

          )}(|)(|][)({ xfxmxKxf   



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 222  

           )(xm  

Now, by first isomorphism theorem, that ].[)(/][ KxmxK  Since )(xm is irreducible, it follows 

that  )(/][ xmxK  is a field forcing ][K to be a field. Hence )(][  KK  . 

Conversely, suppose that )(][  KK  . That 0  is algebraic follows directly. Let 0 . 

Since )(K is a field, ][)(1  KK   and hence Kksomeforkkk i

n

n   ...10

1 , 

where, niki ...,,2,1,0,   not all ik are zero. Then 01... 01

1  

  kkk n

n

n

n which shows that 

is algebraic over K . 

In the following we show that )(cK  is an infinite extension of K  for every transcendental element c . 

Corollary 4: Let KF / be a field extension and Fc . Then c is transcendental over K  if and 

only if )(][ cKcK

 . In this case, ][][ xKcK   and )()( xKcK  . 

Proof:  First part of this result follows from the above corollary, since )(][ cKcK  . For the second 

part, consider the onto homomorphism ][][: cKxK  for every ][)( xKxf  , 

   )())(( cfxf    

Since c  is transcendental over K , there is no nonzero polynomial ][)( xKxf  such that 0)( cf  

Thus }0{ker  showing that   is one-to-one. Thus ][][ cKxK   

Since )(xK and )(cK are the quotient fields of ][xK and ][cK  respectively, ][][: cKxK   induces 

an isomorphism )()(:' cKxK  defined by, for every )(
)(

)(
xK

xg

xf
  

)(

)(

)(

)('

cg

cf

xg

xf









 . Therefore )()( xKcK  . 

If )(xm is a polynomial of degree n , then by division algorithm for polynomial over the field defined 

that  )(/][ xmxK is a n  dimension vector space over the field K having basis 

   )(,...,)(,)(1 1 xmxxmxxm n .  

If )(xm  is irreducible over K , then  

 )(/][ xmxKF  is a field and Fxmxc  )( is a root of )(xm . Thus, by the Corollary 3, we 

have the results. 

Theorem 5: Let KF /  be a field extension, Fc  be algebraic over K  and )(xm  be the minimal 

polynomial of c  over K . If nxm )(deg , then },...,,,1{ 12 nccc is a basis of )(cK  over K . Thus 

)(deg]:)([ xmKcK  . 

Proof:  Let )(cK . Since c is algebraic over K , ][)( cKcK  .  
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Which shows that )(cf for some ][)( xKxf  . By division algorithm ][)(),( xKxrxq  , s.t. 

)()()()( xrxqxmxf   

where 0)( xr or )(deg)(deg xmxr  . In other case we will assume that  

1

110 ...)( 

 n

n xrxrrxr , where Kri  . Then 0)( cm  

1

110 ...)()( 

 n

n crcrrcrcf  

Thus,  },...,,,1{ 12 nccc generates )(cK  over K . By the definition of linearly independent if there are  

0... 1

110  



n

n ckckk  

Then ][...)( 1

110 xKxkxkkxp n

n  

  will be non zero polynomial s.t. its degree will be less 

)(deg xm  

s.t. 0)( cp which is the contradict that )(xm is minimal polynomial of c over K . Thus 

},...,,,1{ 12 nccc is a basis of )(cK  over the field K . 

Example 13: Let us consider the extension )2(3Q over Q . The minimal polynomial of 3 2  over Q is 

given by 2)( 3  xxm . So 3]:)2([ 3 QQ  and })2(,2,1{ 233  is a basis of )2(3Q  over Q . Thus  

 QcbacbaQ  ,,|22)2( 3/23/13  

Example 14: Consider )3,2(Q  as )2)(3(Q . Since 22 x  is irreducible over )3(Q , the 

minimal polynomial 2 over )3(Q  is 22 x . Then 2)]3(:)2)(3([ QQ  and }2,1{  is basis of 

)2)(3(Q  over )3(Q . Also 4]:)3()][3(:)3,2([]:)3,2([  QQQQQQ  

 

                                 

                                                  }2,1{  

  

 

 

}6,3,2,1{

}3,1{}2,1{




  

 

                                                  }3,1{  

Since }2,1{ is basis of )2)(3(Q  over )3(Q  and }3,1{  is a basis of )3(Q  over Q, it follows 

that }6,3,2,1{  is a basis of )3,2(Q  over Q . Thus 

 QdcbadcbaQ  ,,,|632)3,2( . 

F 

L 

K 
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14.5 GALOIS GROUP 

In this section we will discuss important definition of Galois group of polynomial over a field 

Splitting Field: If ][)( xFxf  , a finite extension E of F is said to be a splitting field over F for )(xf  

if over E  (i.e., in ])[xE , but not over any proper subfield of E , )(xf  can be factored as a product of 

linear (first degree) factors.  

The field F is called the base field or the initial field. 

Theorem 6: There exist a splitting field for every ][)( xFxf  . 

Proof:  Let n  degree polynomial ][)( xFxf  . Initially, we will prove that   finite extension E  of 

F of degree at most !n  in which )(xf has n roots. 

Let .0,...)( 0

1

10   aaxaxaxf n

nn
 

Let n ,...,1  be n  root in E  of )(xf . Then )(xf  can be factored as 

))...()(()( 210 nxxxaxf    

As a product of first degree factors, )(xf  divides up fully across E  in this manner. Thus, we can 

show that there is a finite extension of F  called E  that decomposes )(xf  into a linear product. As a 

result, there is a finite extension of F  of minimum degree that shares this feature. Because no suitable 

subfield of this minimal extension can divide )(xf  as a product of linear factors, this minimal 

extension will operate as a splitting field for )(xf . 

Another way 

An extension E of a field F is said to be a splitting field of ][)( xFxf  , if ][)( xExf   is expressible 

as  

))...()(()( 210 nxxxaxf   , where EFa n   ,...,,, 210
 and ),...,,( 21 nFE  . 

Note. Uniqueness of splitting field: This is to note that a polynomial's splitting field is distinct from 

isomorphism. Let 1E  and 
2E  be two splitting field of ][)( xFxf   s.t. 

))...()(()( 21 nxxxaxf    over 1E  

and ))...()(()( 21 nxxxaxf    over 
2E  

Here, fields ),...,,( 21 nF  and ),...,,( 21 nF   are isomorphic by an isomorphism leaving every 

element of F fixed.  

Normal extension: A finite extension K of a field F is name as a normal extension of F if the fixed 

field of ),( FKG  is F . 
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By the definition it is obvious that if any element of K which is not in F , then we must have some 

automorphism   in ),( FKG  s.t., aa )(  

Definition (Galois group): Let )(xf  be polynomial in ][xF  and let K  be its splitting field over .F  

The Galois group of )(xf is the group ),( FKG  of all those automorphisms of K which leave every 

element of F is fixed.  

Note: If K  is an extension of a field F , then an automorphism of K which leaves every element of 

F fixed is also called an F automorphism of K . If K is a normal extension of a field F of 

characteristic 0, then K is the splitting field of some polynomial )(xf  in ][xF . The group ),( FKG  of 

F automorphism of K is also called the Galois group of K over F .  

Theorem 7: The Galois group of a polynomial is isomorphic to a group of permutations of its roots. 

Proof: Let the polynomial )(xf over the field F and K be the splitting field of )(xf  over F . Then K

is normal extension of F . Thus the Galois group ),( FKG  of )(xf is of finite order n i.e., nFK ],[ . 

Let n distinct element of ),( FKG are n ,...,, 21 . Let us suppose that in K , )(xf  has m distinct 

roots. It can be possible that )(xf  has multiple roots. Assume that },...,,{ 21 mS  be the collection 

of m distinct root of )(xf  in K . Let P be the collection of all those permutation on S  such that 

which are not in F i.e., P  contain those element of S in which element of F is fixed (if any exist). If 

21, pp  are two element of P then 
21 pp  should also in P because 

21 pp will also leave each element of 

F fixed. So we can say that P is closed w.r.to product of two permutation. Thus P is subgroup of 

group of all permutation on S . Now we have to prove that group ),( FKG  is isomorphic to group P . 

Let the permutation ),( FKG  and * be the restriction of  to S . As we know that if M is the 

extension of F and if ][)( xFxf   and if   is an smautomorphi of M s.t. it leaving each element of 

F fixed then  must take a root of )(xf lying in M into a root of )(xf in M . Using this theorem we 

can say that if a  is any root of )(xf  in K , then )(a  is also a root of )(xf  in K . 

Therefore SaaSa  )()( *  

*  is function from S  to S . 

Further * is one-one because   is one-one. As we know that S is finite set then, 

* is one-one * is also a onto function. 

* is also a permutation on S . 

Since   leaves each element of F fixed, in similar way * will also leave each element of F fixed.  

P * . 
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Let us consider PFKG ),(:  

s.t. ),()( * FKG   

  is one-one: Let us consider ),(, 21 FKG . Then 

)()( 21    

*

2

*

1    

Saaa  )()(
*

2

*

1   

Saaa  )()( 21   

Now ),...,,( 21 maaaFK  . Each element of K may therefore be obtained by performing a limited 

number of addition, subtraction, multiplication, and division operations on the components of F  and 

on ),...,,( 21 maaa , but 1 and 
2  are automorphisms of K . Each one maps every element of S  the 

same way while leaving every element of F  fixed.  

  is onto: Let Pb  then b  is a permutation on S  while keeping fixed the S  elements that are in F . 

Now consider there is an automorphism of K  that maps each element of S  in the same way as b  

maps it while leaving every element of F  fixed. The automorphism   of K  will be fully determined 

since each element of K may be obtained by performing a limited number of addition, subtraction, 

multiplication, and division operations on the elements F  and ),...,,( 21 maaa . 

  preserve the composition: Let ),(, 21 FKG  be arbitrary. Then  

*

2121 )()(   , the restriction of 
21 to S . Since Sa , we have 

))(()()( 21

*

21 aa    

                      )]([ 21 a  

                      )]([
*

21 a  

                      ))(()]([
*

2

*

1

*

2

*

1 aa    

*

2

*

1

*

21 )(    

)()()( 21

*

2

*

121    

Thus   is an isomorphic mapping. Hence PFKG ),( . 
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Now we will discuss about fundamental theorem of Galois group. 

Theorem 8:  Let K be the normal extension in a field F with characteristic 0. Prove that there exist a 

one to one correspondence between set of subgroups of ),( FKG  and set of subfield of K . Further, 

show that if M is any subfield of K which contains F , then 

(i) )),((]:[ MKGOMK  , and ),(),(]:[ FKGinMKGofindexFM   

(ii) M is normal extension in F iff ),( MKG is normal subgroup of ),( FKG  

(iii) If M is a normal extension of F , then ),( FMG is isomorphic to ),(/),( MKGFKG  

Proof:  For any subfield M  of K which contains F , consider ),( MKG  be the group of all 

automorphism of K which leave each element of M fixed. We have 

  ),( MKG  leaves each element of M fixed 

                             leaves each element of F fixed 

Since MF   

),( FKG  

Thus ),(),( FKGMKG   

),( MKG is subgroup of ),( FKG  

So, for any subfield T of K who contains F we will found a subgroup ),( MKG  of ),( FKG . Now 

define a mapping   between set of subfields of K which contains F into set of subgroup of ),( FKG  

s.t., 

),()( MKGM   for each subfield M of K which contains F .  

  is on-to:  Let })(:{ HxxKxKH    denote the fixed field of H , where H is any 

subgroup of ),( FKG . Then 
HK  is a subfield of K . Also 

),( FKGH   . Since H is subset of ),( FKG . 

Faaa  )( . 

Thus if H , then Faaa )( . Therefore 
HKF   and so 

HK  is a subfield of K containing 

F . Since we have ),()( HH KKGK                   [By definition] 



ADVANCED ABSTRACT ALGEBRA  MAT501 

Department of Mathematics 

Uttarakhand Open University Page 228  

[By the Theorem: If K is the finite extension of a field F with characteristic 0 and H is subgroup of 

),( FKG . Let 
HK  be the fixed field of . Then (i)  (ii) ] 

By using this theorem we can say that, 

.  

 is onto. 

 is one-one: As we know that  is the normal extension with characteristic 0 of a field . 

is the splitting field for some polynomial . If is any subfield of containing 

then will also the splitting field of regarded as a polynomial over . Then by using the 

theorem ( is the normal extension with characteristic zero of a field iff is the splitting field of 

some polynomial over ) is normal extension of . Thus according to the definition of normal 

extension the fixed field of  is . 

 

Let us consider two subfield of are  which contain .  

Then consider,  

                           [By definition] 

The fixed field of The fixed field of  

 

 

 is one-one. 

Thus we can say that  gives the one to one correspondence. Now we have only to prove that (i), (ii) 

and (iii). 

(i) If is any subfield containing , then as in previous part we have prove that is normal 

extension of . Therefore we have . Since is normal extension of , 

therefore 

 

H )(]:[ HOKK H  ),( HKKGH 

HKH )(



 K F

 K ][)( xFxf  M K F

K )(xf M

K F K

F K M

),( MKG M

MK MKG  ),(

K 21, MM F

)()( 21 MM  

),(),( 21 MKGMKG 

 ),( 1MKG ),( 2MKG

 ),(),( 21 MKGMKG KK 

21 MM 





M F K

M ]:[)),(( MKMKGO  K F

]:[)),(( FKFKGO 
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(ii) Let is subfield of containing . Then is normal extension of 

 

i.e.,  

i.e.,  

                                                                     [Note that ] 

i.e.,  

i.e.,  

i.e.,  

                                                                   [Note that ] 

i.e., iff  is normal subgroup of                  (By definition of normal subgroup) 

(iii) If is normal extension of , then for any , we have 

 

 

Therefore induces an automorphism of , defined as 

 

Since leaves each element of fixed, therefore also leaves each element of fixed. 

. If  then , we have 

 

                       

]:][:[ FMMK

]:))[,(( FMMKGO

).,(),(
)),((

)),((
]:[ FKGinMKGofindex

MKGO

FKGO
FM 

M K F M F

),()( FKGMM  

),()( FKGandMmMm  

),(),(,)()]([ MKGandFKGMmmm  

MmmmMKG  )(),( 

),(),(,)]([)]]([[ 11 MKGandFKGMmmm   

),(),(,))(( 1 MKGandFKGMmmm   

),(),(),(1 MKGandFKGMKG   

MmmmMKG   ))((),( 11 

),( MKG ),( FKG

M F ),( FKG

MM )(

 * M

Mmmm )(*

 F * F

),(* FMG ),(, 21 FKG Mm

mm )()()( 21

*

21  

)][()][()][(
*

2

*

1

*

2121 mmm  

MmMt  )(
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So we conclude that the mapping  defined as is a 

homomorphism. The  of this homomorphism consists all such element  in s.t. 

is the identity of the group  and the identity of the group  is identity map 

on . Therefore, 

 

But . Therefore kernel of  is exactly . Now using 

fundamental theorem on homomorphism of groups, image of  in  under the mapping 

 is isomorphic to the quotient group . 

Now,  

                                                         

                                                        [By part (i) of theorem] 

                                                 [ is normal over ] 

Thus image of in  is isomorphic to a group of order . Since image of 

in  is a subgroup of , therefore it is all of . Hence 

. 

Check your progress 

Problem 1: Check that  is linearly independent? 

Problem 2: Check that Q  and pZ  has proper subfield or not? 

 

14.6 SUMMARY 

In this unit, we have learned about the important concept of extension of field, minimal polynomial 

over a field of extension field and important group name as Galois group of a polynomial over a field. 

The overall summarization of this units are as follows:  

))((
*

2

*

1 m

*

2

*

1

*

21 )(  

),(),(: FMGFKG  ),()( * FKG 

nelker  ),( FKG

*)(   ),( FMG ),( FMG

M

})()(|),({)(ker * MmmmmFKGnel  

),()( MKGMmmm    ),( MKG

),( FKG ),( FMG

 ),(/),( MKGFKG

)),((

)),((
)),(/),((

MKGO

FKGO
MKGFKGO 

),(),( FKGinMKGofindex

]:[ FM

)),(( FMGO T F

),( FKG ],[ FMG )),(( FMGO

),( FKG ],[ FMG ],[ FMG ],[ FMG

),(),(/),( FMGMKGFKG 

 njmivuB ji  1,1|
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 R is a field extension of Q . 

 pZQ, has no proper subfield. 

 Each field F is either an extension of Q  or an extension of pZ . 

 If F is prime field and if char(F) = 0 then QF  and if char(F) = p then pZF  . 

 QR /  is an infinite extension. 

 RC /  finite extension of field and quadratic extension. 

 For every ][)( xFxf  there exist a splitting field. 

 The Galois group of a polynomial is isomorphic to a group of permutations of its roots. 

14.7 GLOSSARY 

 KF / : F is called field extension of K  

 ]:[ KF : Denote degree of the extension of KF /  ’or’ the dimension of F as a vector space 

over K  

 ),( FKG : Called the Galois group of all those automorphisms of K which leave every element 

of F is fixed. 
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14.10 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that every field F is either an extension of Q  or an extension of pZ , for some prime p . 
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2. Let KF / be a field extension and F be algebraic over K . Then prove that there is a unique 

monic polynomial ][)( xKxm  of least degree such that 0)( m . 

3. If KF / be a field extension F and algebraic over K . Then prove that for every 

)(|)(0)(],[)( xfxmfxKxf    

4. Let KF / be a field extension and F  algebraic over K . Then prove that ][)( xKxm   is the 

minimal polynomial of  over K  iff it is a monic irreducible polynomial such that 0)( m . 

5. If KF /  be a field extension, Fc  be algebraic over K  and )(xm  be the minimal polynomial 

of c  over K . If nxm )(deg , then prove that },...,,,1{ 12 nccc is a basis of )(cK  over K . Thus 

)(deg]:)([ xmKcK  . 

6. Prove that the Galois group of a polynomial is isomorphic to a group of permutations of its 

roots. 

7. State and prove the fundamental theorem of Galois group. 

Short Answer Type Question: 

 

8. Let KF / be a field extension and F . Then prove that   is algebraic over K  if and only 

if )(][  KK  . Moreover in this case, .)(/][)(][  xmxKKK   

9. Prove that for every ][)( xFxf   there exist a splitting field. 

10. Prove that 1]:[ KF iff  FK  . 

11. Prove that if L and M be two intermediate fields of a field extension KF / . If ]:[ KL  is prime, 

then either KML   or ML   

12. If KF /  be a field extension and c  be algebraic over K  of degree 5. Then prove that 

)()( 2cKcK  . 

13. Define the following. 

 (i) Field extension 

 (ii) Normal extension 

 (iii) Galois group 

Fill in the blanks: 

14. Q  
has ………….. proper subfield 

15. pZ
 
has ………..……… proper subfield 

16. A field K is called a prime field if it has no proper …….……….. 
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14.11 ANSWERS 

Answer of self cheque question: 

1. Yes   2. Yes 

Answer of terminal question: 

14. No   15. No   16. Subfield  

 

 



 

 
 

 
Teen Pani Bypass Road, Transport Nagar 

Uttarakhand Open University, Haldwani, Nainital-263139 

Phone No. 05946-261122, 261123 

Toll free No. 18001804025 

Fax No. 05946-264232,  

E-mail:info@uou.ac.in 

                                        Website: https://www.uou.ac.in/ 

mailto:info@uou.ac.in
https://www.uou.ac.in/

