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Abstract 

 

The global transcriptional regulator mexT, is a mutational hotspot; the 
sequence variants commonly seen to co-exist within the P. aeruginosa 
population are: drug susceptible (e.g. PAO1) and chloramphenicol and 
norfloxacin non-susceptible (nfxC mutant). The nfxC phenotype, selected for 
on chloramphenicol agar is characterised by reduced virulence. The 
conversion between PAO1 and nfxC phenotypes is associated with an 8-bp 
repeat sequence in mexT. To investigate the effects of the 8-bp repeat on 
the adaptive mode of survival of P. aeruginosa, isogenic mutants were 
generated: PA (8-bp, two copies) and PAdel (8-bp, one copy). The mutants 
were characterised using phenotypic microarrays (PM), motility, antibiotic 
susceptibility, Galleria virulence models and RNA-seq in defined media. PM 
revealed differences in central metabolism indicating that PAdel/PAnfxC 
were associated with a biological metabolic cost. Strains with the single copy 
of the 8-bp sequence showed reduced motility and virulence. Transcriptome 
analysis revealed that mexT, in PA, consists of two regulatory elements 
defined by an intact helix-turn-helix motif (across the repeat region) which 
is capable of regulating the downstream LysR region via repressor and auto-
regulative mechanisms. Whole genome sequencing identified regions of 
compensatory mutations that were associated with differences in 
phenotype between PAdel (genetically modified) and PAnfxC (selected). To 
link phenotype and genotype and to understand the metabolic effects of this 
mutation, a genome wide metabolic reconstruction was performed. This 
revealed differences in key metabolic pathways such as glycolysis, 
gluconeogenesis and oxidative phosphorylation. This study has shown that 
an 8-bp repeat in mexT is a driver of genetic diversity. Regulatory elements 
linked to the effect of the 8-bp sequence on antibiotic resistance, central 
metabolism, chemotaxis, motility and virulence have also been identified. 
These methods can be used to define phenotype in any pair of isogenic 
mutants, at the genome level, and to investigate the clinical risk of strains.  
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 1    Introduction 

CHAPTER 1 
P. aeruginosa is renowned for being a ubiquitous bacterial species which has 

an extraordinary ability to adapt and colonize various ecological niches. This 

is reflected in the genetic repertoire of this organism. Isolates have been 

found in an array of ecological environments, from those adapted to plants 

and animals to those that thrive in human hosts (Favero et al., 1971, Mena 

and Gerba, 2009). The adaptability is provided by genes that regulate 

metabolic pathways with a large number of transcriptional regulators and 

two-component systems (Stover et al., 2000). It is because of this that P. 

aeruginosa has served as a paradigm for the study of genotype and 

phenotype  (Frank, 2012).  

 

1.1 Classification and taxonomy of Pseudomonas 
 

The genus Pseudomonas is defined as a Gram negative, rod-shaped γ-

proteobacterium that was first described in 1895 (Klein and Migula, 1895, 

Spiers et al., 2000). Since then it has gone through multiple taxonomic 

revisions.  Early studies based on rRNA-DNA hybridisation led to the 

formation of five RNA subdivisions whereby rRNA group I included 

Pseudomonas aeruginosa (Palleroni et al., 1973, Palleroni, 1993). The 

analysis of 16S rRNA gene sequences was later performed on 128 

Pseudomonas species leading to the classification of seven sub clusters;  P. 
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syringae, P. chlororaphis, P. fluorescens, P. putida, P. stutzeri, P. aeruginosa  

and P. pertucinogena group (Anzai et al., 2000).  Debates regarding the poor 

resolution of phylogenetic analysis and the fact that closely related species 

cannot be differentiated solely based on the 16S RNA gene, led to the 

reclassification and identification of subgroups involving 16S rRNA sequence 

comparison,  gene markers (e.g. gryB, rpoD, oprI, oprF sequences), 

housekeeping genes and siderotyping (Figure 1-1) (Bodilis et al., 2006, De 

Vos et al., 1998, Yamamoto et al., 2000, Frapolli et al., 2007, Ozen and 

Ussery, 2012, Gomila et al., 2015).  

Currently 202 species have been assigned to the genus Pseudomonas 

according to the Approved List of Bacterial Names. The classification method 

depends not just on 16S rRNA but analysis of cellular fatty acids with 

physiological and biochemical tests (Tindall et al., 2006). 

 

 

1.2    Species typing  
 

Typing can involve various techniques depending on the discriminatory 

power, reproducibility and biological basis for grouping similar strains (Jong 

Wu et al., 2004). Methods can be divided into those that are related to 

phenotypic or genotypic analysis.  
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Figure 1-1 Phylogenetic tree of Pseudomonas 
Figure adapted from (Gomila et al., 2015). Phylogenetic tree of 
Pseudomonas based on the analysis of four concatenated genes (16S rRNA, 
gyrB, rpoB, and rpoD using neighbor-joining. Numbers indicate bootstrap 
values for each branch and distance matrices are calculated using the Jukes-
Cantor method. The bar indicates sequence divergence. 
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1.2.1    Phenotypic species typing 
 

Serotyping is based on the phenotypic diversity of the O-polysaccharide 

moieties on the surface lipopolysaccharide whereby P. aeruginosa can be 

categorized into 20 unique O serotypes according to the International 

Antigenic Typing System (Knirel, 1990). One example includes serotype O6 

which is one of the most frequently isolated strains accounting for 17 to 29 

% of P. aeruginosa infections in patients (Lu et al., 2014, Estahbanati et al., 

2002). 

P. aeruginosa is characteristically resistant to specific antibiotics and as such 

agar incorporated with these antibiotics acts as a selective media for this 

species.  Quantitative analysis of antibiograms using disk zone sizes is 

another form of phenotypic typing (Giacca and Monti-Bragadin, 1987). 

Biochemical tests can also identify distinct biotypes of P. aeruginosa (Freitas 

and Barth, 2004). Analysis of carbohydrate utilization rates such as 

galactose, mannose, mannitol and rhamnose are a method of typing. 

Although some strains are non-pigmented, P. aeruginosa is known for the 

characteristic blue-green virulence pigment it produces on agar, indicating 

production of pyocyanin and pyoverdine. Positive results from oxidase and 

catalase tests are also another indicator of P. aeruginosa. These methods of 

identification are used in water testing as well as clinical laboratories (Penna 

et al., 2002). Other markers used to identify P. aeruginosa include hydrolysis 
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of urea and haemolysis of blood (Freitas and Barth, 2004) in clinical 

laboratories.  

 

1.2.2    Molecular species typing 
 

Since traditional phenotypic markers are unstable and do not offer 

satisfactory resolution power for discrimination of strains, the need for new 

methods led to the introduction of molecular typing.  Some of these 

techniques included PCR (Polymerase Chain Reaction) based methods such 

as Random Amplification of Polymorphic DNA (RAPD) and ribotyping  

(Mahenthiralingam et al., 1996, Syrmis et al., 2004, Blanc et al., 1993). Pulse 

field gel electrophoresis (PFGE) involves restriction endonuclease analysis of 

the total genome and has been used as a DNA fingerprinting technique 

intended for outbreak situations. PFGE restriction profiles however can 

change according to mutations that modify these restriction sites making 

this technique impractical (Fothergill et al., 2010). To fulfill these 

shortcomings, Multi Locus Sequence Typing (MLST) was introduced. This 

technique is based on allelic variation in housekeeping genes making it 

highly discriminating (Kidd et al., 2011). Multilocus Variable Number Tandem 

Repeat Analysis (MLVA) has also successfully been implemented in 

epidemiological studies and was first developed with the use of seven 

variable number tandem repeat markers. This has however now been 
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improved to include new discriminative markers leading to its use as an 

outbreak detection tool (Maatallah et al., 2013). 

Whole genome sequences can provide valuable information on the 

taxonomic relationships between species (Figure 1-2). These methods have 

evolved to replace DNA-DNA hybridization methods by creating databases 

of whole genome sequences.  Such methods can include analysis using tetra 

nucleotide usage patterns, average nucleotide identity and genome-to- 

genome distance (Gomila et al., 2015).  

 

 

 

 

 
 
 
Figure 1-2 Phylogenetic tree of P. aeruginosa 
Unrooted maximum likelihood tree of 389 P. aeruginosa genomes based on 
variations on SNPs within the core genome as defined by the bioinformatics 
tool Harvest (100 bootstraps). Genomes include environmental, clinical and 
animal strains from various sites. Those indicated in purple are reference 
strains. Strains are divided into three major groups; group 1 (blue), group 2 
(pink) and group 3 (green) with the number of strains for each group shown. 
Purple circles indicate references strains. The phylogenetic tree shows that 
group 1 strains, including PAO1, are more abundant than those found in 
group 2, which includes PA14. Figure adapted from Freshchi et al., 2015. 
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The introduction of standardized matrix assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS) platforms in the medical 

microbiological practice has revolutionized the way microbial species 

identification is performed. However, the low resolution and dynamic range 

of the MALDI-TOF profiles have shown limited applicability for the 

discrimination of different bacterial strains. This is because only proteins 

within a small mass-to-charge ratio are detected which mostly only include 

highly-abundant proteins such as ribosomal proteins. Ultrahigh resolution 

MALDI-FTICR (Fourier transform ion cyclotron resonance)  MS allows the 

measurement of small proteins at isotopic resolution and can be used to 

analyse complex mixtures with increased dynamic range (m/z-range from 

3497 to about 15 000) and higher precision than MALDI-TOF MS (Fleurbaaij 

et al., 2016). This is important when associating strains with virulence or 

antibiotic resistance.   

 

1.3 Methods for integrating genotypic and phenotypic 

interactions 
 

The genotype–phenotype relationship is one that is important. 

Understanding the genetic basis of complex traits has been an on-going 

quest as this relationship is subjected to critical analysis. To elucidate the 

genetic elements of a bacterium, the typing and characterization of P. 

aeruginosa (as described above) has relied on methods that address defined 

regions of the bacterial genome. Such methods can include PCR with the aid 
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of multiplex primer pairs to ensure high throughput sequencing of selected 

amplified fragments. Another method is hybrid capture whereby DNA 

fragments from a whole genome library are hybridized to complementary 

probe sequences, created with a high specificity for matching regions of the 

test genome. These probes are designed to capture known coding regions 

and therefore form a bias (Koboldt et al., 2013). 

The advent of genomic sequencing in the mid-1990s began to change the 

way fundamental genotype-phenotype links were made (Lewis et al., 2012). 

Full genome sequences not only provide comprehensive information about 

genetic compositions but they also allow analysis of inter- and intra-

individual genome variation within a species (Gresham et al., 2008). 

Differences at the level of DNA sequence are the most abundant source of 

genomic variation and allow the prediction of phenotype (Lindsey et al., 

2016). There is a limit however as to how well phenotypic traits such as 

virulence and antimicrobial profiles can be predicted since there are no 

comprehensive whole genome sequence and phenotype databases to 

compare to. It is therefore essential to perform phenotypic experiments 

alongside genotypic tests. Genotypic techniques provide a genetic 

fingerprint that is independent of the physiological state of an organism i.e. 

the results are not influenced by growth conditions such as media 

composition or growth phase. Phenotypic techniques, however, can yield 

more direct functional information that reveals what metabolic activities are 
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taking place to aid the survival, growth, and development of an organism 

(Emerson et al., 2008).  

Genotyping and phenotyping can be carried out using a range of methods 

depending on the subject of interest and resources available. Techniques 

that link genotype to phenotype involve transcriptome studies. 

Hybridization based technologies such as FISH (Fluorescence in situ 

hybridization) or microarray based methods suffer limitations. These involve 

dependence on the existing knowledge of genomic sequences and signal 

saturation for particular transcripts (with a high abundance and high 

background noise) due to non-specific hybridization. Recent technological 

advances have expanded the breadth of transcriptomics. RNA-seq allows 

genome wide mapping and annotation of the transcriptome, analysis of the 

functional structure of each gene and quantification of changes in gene 

expression (Qian et al., 2014).  

 

1.3.1    Data integration 
 

New integration methods are now emerging that aim to bridge the gap 

between the ability to generate vast amounts of data with an understanding 

of the regulatory systems involved in the biology of the organism. The 

primary motivation behind integrated data analysis is to identify key 

genomic factors and interactions that explain or predict the risk of infection.  
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New approaches to data integration involve the development of models that 

predict phenotypic traits and outcomes using omic,  transcriptomic, 

methylomic and metabolomic data (Ritchie et al., 2015). Incorporating omic 

data with phenotypic data, such as those acquired through high throughput 

phenotypic microarrays achieves a more thorough and informative 

interrogation of genotype–phenotype associations than an analysis that 

relies solely on a single data source. This technique can also compensate for 

false positives, missing or unreliable information from any single data set. 

Futhermore, to be able to truly understand the complete biological model 

of a microorganism, the study of genetic, transcriptomic and proteomic 

regulation, at different levels, is required. 

 

1.3.2    Methods for cellular modelling 
 

Over the years there has been significant improvement for high throughput 

methods that characterise phenotype. One such method involves Biolog's 

Phentoype MicroArray technology which is capable of evaluating nearly 

2000 phenotypes in a single experiment using cellular assays, growth 

kinetics and robotics (Zhou et al., 2003). The advent of genomics and high 

throughput sequencing has meant that more is now known about the 

individual molecules and interactions that drive cell function. This combined 

with the advancement of computational methods has meant that 
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compressive metabolic network modelling is now possible enabling the 

prediction of phenotype in defined environments.  

Metabolic pathways typically involve reactions comprising of metabolites 

such as cofactors and by-products.  The conversion of nutrients through 

catabolism into cell components includes the regeneration of cofactors and 

recycling of by-products. These reactions are dependent on the 

stoichiometry and rates of the reactions. Manual approaches such as those 

involving the metabolism reference database BioCyc are unable to assess 

the feasibility of a given network as metabolic networks require quantitative 

analysis and are often too large and complex to analyze (Durot et al., 2009).  

Recent developments to the BioCyc database now means that this web 

interface is also capable of incorporating the PathoLogic component of the 

Pathway Tools software to computationally predict the metabolic network 

of any organism based on an annotated genome (Caspi et al., 2012). 

However new methods are required to bridge the gap between predicted 

and observed metabolic phenotypes. This is where metabolic 

reconstructions become beneficial. This technique incorporates constraint-

based genome scale models of metabolism to identify metabolic fluxes and 

determine the physiological state of a cell (Durot et al., 2009). It is through 

comprehensive and precise quantitation of phenotypes, that researchers 

are able to obtain an unbiased perspective of the effect on cells of genetic 
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differences, environmental change, exposure to chemicals or drugs, and 

more. 

 

1.4    P. aeruginosa genome structure and diversity 
 

Whole genome sequences of P. aeruginosa strains show that this bacterium 

is larger than most prokaryotic organisms with genome sizes varying 

between 5.5 to 7 Mbp within species (Schmidt et al., 1996, Lee et al., 2006). 

The metabolic versatility of P. aerugionsa and it’s ability to adapt to new 

environmental conditions would suggest there is variability in the genome 

content, reflective of where a strain has been isolated from. However 

despite differences in phenotype among P. aerguinosa strains, the core 

genome of clinical and environmental isolates is highly conserved (Wolfgang 

et al., 2003, Grosso-Becerra et al., 2014). Within conserved regions, 

nucleotide diversity is as low as 0.5-0.7% among clonal strains (excluding 

regions that are subject to diversification). This similarity at the genome level 

is not observed in bacteria such Escherichia coli or even other Pseudomonas 

species. (Lee et al., 2006, Spencer et al., 2003, Cramer et al., 2011).  

The accessory genome is the main cause of variability in genome size. It 

comprises of plasmids or genetic elements that exist external to the 

chromosome and are acquired through horizontal gene transfer. While the 

ongoing acquisition of new foreign DNA, mutational events and 

chromosomal inversions drive genome modification it is the composition of 
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the accessory genome that accounts for most of the intra- and interclonal 

genome diversity in P. aeruginosa (Klockgether et al., 2011). This diversity 

leads to the generation of ‘high risk clones’ which are more prone to 

disseminate and lead to dominant phenotypes such as those related to 

antibiotic resistance in clinical settings (Valot et al., 2015).  

 

1.5    Clinical significance of P. aeruginosa 
 

Pseudomonas aeruginosa is the causative agent of healthcare associated 

infections (House of Commons Public Accounts Committee, 2009)  and is 

responsible for approximately 10% of infections (2004, Morrison and 

Wenzel, 1984) with mortality rates ranging from 18-61%  (Vidal et al., 1996, 

Siegman-Igra et al., 1998, Lodise et al., 2007) . 

Found to inhabit natural and aquatic environments, in clinical settings this 

species can colonize a variety of hospital surfaces including taps and medical 

devices with the ability to cause severe infection as an opportunistic 

pathogen (Ramsey and Whiteley, 2004, Gellatly and Hancock, 2013b, Bodey 

et al., 1985). Infections associated with this bacterium include those with 

artificial prosthesis, severe burns wounds, urinary tract infections, AIDS, lung 

cancer, chronic obstructive pulmonary disease, bronchiectasis and cystic 

fibrosis (Kerr and Snelling, 2009, Valderrey et al., 2010, Bouza et al., 2002, 

Manfredi et al., 2000, Balasubramanian et al., 2013). 
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P. aeruginosa infections are notoriously difficult to treat due to antibiotic 

resistance and the ability to evade host defences and form biofilms. This 

bacterium has intrinsic resistance and the ability to acquire further 

mechanisms of resistance to antibiotics by adaption (Strateva and Yordanov, 

2009). P. aeruginosa also employs a range of mechanisms to evade human 

host immune responses, particularly in acute infection. Flagella, type 4 pili 

and lipopolysaccharide aid adhesion to host cells (Gellatly and Hancock, 

2013a). Exoproteins also have a variety of roles in pathogenesis. Along with 

virulence, they allow bacteria to interact with the environment and with 

other microorganisms. There are six secretion systems in P. aeruginosa. 

Some examples of their roles include regulation of cell-surface signalling, 

haeme uptake, injection of cytotoxins into the host cell and the secretion of 

effector molecules that are crucial for evading the host phagocytic response 

(Filloux, 2011, Chakraborty et al., 2013, Lovewell et al., 2014). Virulence 

factors, capable of degrading and promoting host cell injury, can be 

categorised into proteases, lipases and phospholipases. Siderophores such 

as pyocyanin and pyoverdine cause host cell oxidative stress and allow iron 

chelation (Gellatly and Hancock, 2013a, Smith et al., 2006).  Chronic infection 

arises as the bacterial population adapt in a co-ordinated manner to 

environmental changes.  
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1.6    Biofilms  
 

Bacteria can survive as planktonic cells but they predominantly exist as 

biofilms (Costerton et al., 1987). Bacterial cells that attach to a surface and 

form an enclosed microbial community within a extracellular polymeric 

matrix (EPM) are known as biofilms (Hall-Stoodley et al., 2004). P. 

aeruginosa infections caused by implants (i.e. catheters and mechanical 

ventilators) and those diagnosed in burn victims and cystic fibrosis patients 

have been attributed to biofilm formation (Hoiby et al., 2011).  

While biofilms were first described in 1936 (Zobell and Anderson, 1936), 

there are a number of hypotheses as to why bacteria form biofilms. The 

primary reason is defence. Microorganisms inside the EPM are able to avoid 

antimicrobial agents; in some cases a 100-fold increase in antibiotic 

concentration is required to kill sessile bacteria compared with the same 

microbes in planktonic form (Jefferson, 2004). As a biofilm community, 

organisms can withstand host immune responses such as phagocytosis and 

endure pH changes and starvation of nutrients. Moreover, subsequent 

growth and expansion allows nearby planktonic bacteria to attach and form 

a diverse multi-species biofilm (Jenkinson and Lamont, 2005). Biofilms may 

grow on sites with a constant supply of nutrients. Therefore growing as a 

biofilm is preferential for survival and remaining as an attached community 

(Jefferson, 2004). 
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Bacteria in biofilms exhibit behaviour similar to a multi-cellular organism; 

biofilm architecture is built with strain diversification, providing numerous 

micro-environments in which bacteria can interact with their surroundings. 

Factors which affect biofilm architecture include cell proliferation and 

migration in response to environmental nutrients,  intercellular signal 

molecules, EPS structure and fluid channels within the biofilm (Davey et al., 

2003, Miller et al., 2012, Sanchez et al., 2013, Pamp and Tolker-Nielsen, 

2007, Yang et al., 2011, Parsek and Tolker-Nielsen, 2008).  These structures 

enable bacteria to adjust their metabolic processes to maximize the use of 

available substrates and to protect themselves from detrimental conditions 

(Jenkinson and Lamont, 2005). 

Biofilm development is a complex process which can be divided into four 

stages (Figure 1-3): initial attachment, irreversible attachment, maturation 

and detachment (Renner and Weibel, 2011). Once a bacterium approaches 

the substrate it is to attach to, initial attachment occurs as electrostatic 

forces bring the bacterium close enough to allow pili and adhesins to interact 

with the surface (Hermansson, 1999). Type IV pili and flagella allow 

irreversible attachment to the surface. Biofilm development is regulated by 

quorum sensing and as the micro-colony develops and matures it becomes 

encapsulated by the extracellular matrix, which is composed of proteins, 

nucleic acids and polysaccharide. 
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Throughout biofilm formation, cell differentiation takes place forming 

oxygen and water filled channels which provide nutrients to cells, deep 

within the biofilm. The EPS confers biofilm-mediated antimicrobial 

resistance and acts as a barrier to diffusion of antibiotics. Bacterial diversity 

  Irreversible  
  attachment  
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• Quorum sensing 
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Figure 1-3 Stages of biofilm formation.  
Stage 1. Initial attachment brings planktonic cells to the surface via 

electrostatic forces. Stage 2. Irreversible attachment. Once in close 

proximity with the surface, adhesive factors such as type VI pili initiate 

attachment. Stage 3. Maturation. Quorum sensing permits cell aggregate 

growth and EPM production within the biofilm. The biofilms are 

interspersed with fluid-filled channels which act as a primitive circulatory 

system, allowing the exchange of nutrients and waste products. Numerous 

microenvironments that differ with respect to pH, oxygen concentration, 

nutrient availability and cell density exist within the biofilm colony and lead 

to cell diversity. Stage 4. Detachment. Quorum sensing allows the dispersal 

of cells, ensuring regeneration of the biofilm life cycle. 
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within microenvironments means that metabolically inactive cells residing 

deep within the biofilm maybe resistant to antimicrobials agents that target 

actively growing cells (Mah and O'Toole, 2001, Kaplan, 2010). 

  

1.6.1    Regulation of quorum sensing 
 

Quorum sensing (QS) or cell-to-cell communication has a pivotal role in the 

co-ordination of virulence. It is a process that involves production, detection 

and response to extracellular signaling molecules known as autoinducers.  As 

the bacterial population density increases, autoinducer concentrations 

increases in the environment. It is this process that allows groups of bacteria 

to act in synchronized manner by monitoring changes in cell density and 

collectively regulating expression of beneficial genes. Processes controlled 

by QS include bioluminescence, sporulation, competence, antibiotic 

production, biofilm formation, and virulence factor secretion (Rutherford 

and Bassler, 2012). 

P. aeruginosa utilises two AHL (Acyl Homserine Lactone) based quorum 

sensing systems; Las and Rhl and a non AHL mechanism, the Pseudomonas 

Quinolone Signal (PQS) system (Figure 1-4). The Las system is comprised of 

the transcriptional regulator LasR, which is constitly expressed, and its 

cognate AHL signal molecule, N-(3-oxododecanoyl)-L-homoserine lactone 

(3-oxo-C12-HSL). As cell density increases so do AHL molecules. Upon 

reaching a high concentration, 3-oxo-C12-HSL binds to the LasR protein and 
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activates it. The LasR-3- oxo- C12-HSL bound complex can now bind to the 

promoter sequence (LasBox) and facilitate transcription. Similarly, the Rhl 

system comprised of RhlR and its cognate AHL, N-butyryl-L-homoserine 

lactone (C4-HSL) activate the Rhl-box (Dandekar and Greenberg, 2013, de 

Kievit, 2009). Quorum sensing involves multiple signals and receptors with 

LasR regulating the activity of RhlR and PqsR as well.   

P. aeruginosa produces the signalling molecule, 2-heptyl-3-hydroxy-4(1H)-

quinolone (PQS) by oxidising the precursor 2-heptyl-4-quinolone (HHQ) via 

pqsH. PQS is positively regulated by the las system but negatively regulated 

by the Rhl system. In P. aeruginosa HHQ is formed via the condensation of 

anthranilate and a β-keto-fatty acid. Anthranilate is produced from 

tryptophan degradation via the kynurenine pathway (metabolic pathway: 

tryptophan to N-formylkynurenine to kynurenine to anthranilate) (Olivares 

et al., 2012). 

PQS enhances binding of the LysR-type transcription regulator, PqsR (also 

known as MvfR) to the pqsABCDE operon (Kirisits and Parsek, 2006, Sakuragi 

and Kolter, 2007). Downstream regulation of this gene involves various 

targets whereby PqsR mutant strains have been shown to differentially 

express 141 genes pertaining to transcriptional regulation (Deziel et al., 

2005). PQS also acts independently of PqsR to induce expression of the Fur 

regulon via membrane vesicle formation and iron binding caused by 
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membrane curvature (Diggle et al., 2007, Bredenbruch et al., 2006, 

Mashburn and Whiteley, 2005, Schertzer and Whiteley, 2012).  

Many global regulators are known to modulate QS dependant genes. RpoS 

for instance affects 40% of the QS regulon (Schuster et al., 2004, Schuster 

and Greenberg, 2007) by modulating key transcriptional regulators such as  

LasR, RhlR and various other QS transcriptional regulators (PA2588, PA4778, 

PvdS, VqsR and RsaL) (Gilbert et al., 2009).  RsaL expression is mediated by 

the LysR transcriptional regulator (LTR) OxyR and is involved in las signalling 

homeostasis (Wei et al., 2012). RsaL binds to the lasI promoters thus 

preventing LasR activation. Expression of this gene affects 130 genes relating 

to pyocyanin and hydrogen cyanide. In an intricate network regulated by 

quorum sensing, this is one example of the role LTRs can play.  

 

1.6.2    Two component systems 
 

Two-component systems (TCS) are signal transduction systems that enable 

bacteria to respond to specific stimuli. This allows adaption to a variety of 

environments, stressors and growth conditions. The general structure of a 

TCS consists of sensory histidine kinase (HK) that is integrated in the 

membrane and a response regulator (RR) that is situated within the 

cytoplasm and involved in eliciting a transmitter (Rodrigue et al., 2000, 

Mitrophanov and Groisman, 2008). While there are variations to this model, 
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generally once a signal is received, two HK monomers dimerize and cross-

phosphorylate at the histidine residue. The phosphate is subsequently 

transferred to an aspartate residue in the receiver domain of the cognate 

RR. The receiver domain then catalyzes the phosphotransfer which causes a 

conformational change. This activates downstream processes which can 

involve modulation of gene expression or enzymatic activity 

(Balasubramanian et al., 2013).  

P. aeruginosa PAO1 possesses 55 histidine kinases, 89 response regulators 

and 14 histidine kinases-response regulator hybrid like structures, one of the 

largest collections of TCS’s in any microorganism (Stover et al., 2000).  The 

GacS-GacA system is one TCS that is critical to the regulation of virulence, 

secondary metabolite, QS and biofilm formation.  (Kitten et al., 1998, Pessi 

et al., 2001). The GacS system is however under the control of two hybrid 

sensors kinases. The RetS sensor prevents phosphorylation whereas LadS is 

capable or phosphorylating GacS. Phosphorylated GacA positively regulates 

the transcription of two small regulatory RNAs, rgRsmZ and rgRsmY, which 

block the negative regulator RNA-binding protein RsmA. RsmA positively 

regulates genes of the Type 3 secretion system, type IV pili formation and 

iron homeostasis while repressing QS, Type 6 secretion and potentially other 

transcription factors. The GacSA TCS is also involved in antibiotic resistance 

to three different families of antibiotics, tobramycin, ciprofloxacin and 

tetracycline, through RsmA/rgRsmZ (Balasubramanian et al., 2013).  
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1.6.3    Cyclic di-GMP signalling 
 

Cyclic di-GMP (c-di-GMP) is another signalling molecule that has a pivotal 

role as a secondary messenger. Enzymes responsible for c-di-GMP synthesis 

are known as diguanylate cyclases (DGCs) and contain the consensus 

sequence motif GGDEF within the active site. Enzymes with 

phosphodiesterase activity are governed by EAL domains that catalyse c-di-

GMP degradation (Jimenez et al., 2012). Together these enzymes regulate 

cell phenotype. In simplified terms, high levels of intracellular c-di-GMP 

levels correlate with a sessile state while low levels are associated with 

planktonic growth (Ha et al., 2014) as illustrated in Figure 1-4. 

 

1.7    Metabolism 

The ability to metabolize various substrates endows P. aeruginosa with high 

environmental adaptability. A knowledge of the metabolic processes that 

allow bacteria to grow and colonize specific environments are therefore of 

great importance. However, in most P. aeruginosa niche adapted sites these 

metabolic pathways are not known. For instance, the synthesis of trehalose 

by P. aeruginosa is required for pathogenesis in Arabidopsis, but not in 

nematodes, insects, or mice. Since trehalose promotes the acquisition of 

nitrogen-containing nutrients in a process that involves xyloglucan (plant cell 

wall component), this may allow P. aeruginosa to colonise intercellular leaf 

compartments (Djonovic et al., 2013). 
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In terms of host-pathogen responses and biofilm development, the 

nutritional cues for proliferation affect production of extracellular virulence 

factors, surface motility and alginate production  (Palmer et al., 2005, 

Cutruzzolà and Frankenberg-Dinkel, 2016, Vasil and Ochsner, 1999). P. 

Figure 1-4 The basics of quorum sensing and biofilm genetics 
A simplified diagram of the genetics involved in biofilm formation. Lines terminated 

with an arrow indicate activation but lines terminated with a circle illustrate 

inhibition. Quorum sensing is regulated by the Las, Rhl and PQS systems.  AHL 

molecules diffuse across the cell membrane or are transported via efflux pumps 

compared to the PQS signal which is transported via membrane bound vesicles.  

PQS regulates its own production by controlling the expression of pqsABCDE, but is 

also negatively regulated by the Las system, via the transcriptional regulators QscR 

and VqsR. Biofilm production is additionally linked with increased levels of c-di-GMP 

which up-regulates expression of genes involved in fimbrial assembly (cup), alginate 

and EPS (Pel, Psl) production. Biofilm production is additionally mediated by WspR 

signalling through its cognate sensor WspA.Reduced c-di-GMP levels favors cell 

motility by increasing expression of genes associated with flagella, acute virulence 

factors (pyocyanin) and dispersal. The two-component systems, GacS/GacA and 

RetS/LadS, consists of the histidine kinases which control biofilm associated genes 

and the AHL systems. Figure from (Correia) 

pqsABCDE 
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aeruginosa biofilm formation is prevented and dispersal enhanced by the D-

enantiomers of tyrosine, leucine, tryptophan, and methionine. Since this 

effect was not also observed by the L-enantiomers of these amino acids, it 

was shown that D-amino acids act by modulating stationary phase cell wall 

remodeling, indicating that this may be a mechanism by which bacteria 

adapt to changing environmental conditions (Lam et al., 2009, Moe, 2013). 

In a clinical environment, it has been reported that lung mucus which is rich 

in amino acids promotes the growth of auxtrophic strains during chronic 

infection (Barth and Pitt, 1995, Jørgensen et al., 2015). Virulence studies also 

implicate the kynurenine pathway as a source of anthranilate for PQS 

synthesis (Farrow and Pesci, 2007) and acetyl-CoA as regulator of the type 

III secretion system (Rietsch and Mekalanos, 2006). Bacterial resistance is 

concerningly not always associated with a metabolic burden but rather 

changes in specific pathways. For instance a Stenotrophomonas 

maltophilia mutant that overexpresses a MDR efflux pump is better at 

metabolising sugars such as gentibiose, dextrin and mannose and formic 

acid compared to the wild-type (Alonso et al., 2004, Alonso and Martinez, 

2000). Carbon sources can also alter the susceptibility to antibiotics. It has 

been shown that a P. aeruginosa mutant with a defective crc gene (global 

regulator of carbon metabolism) is more susceptible to imipenem and 

fosfomycin. This is because it expresses high levels of the membrane 

transporters OprD and GlpT, which are involved in transport of basic amino 
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acids and glycerol-3-phosphate (Martinez and Rojo, 2011, Linares et al., 

2006). It is clear that central metabolism has a large impact on bacterial 

phenotype. 

1.8    Respiration 

The energy producing system in P. aeruginosa is mainly dependant on 

oxidative substrate catabolism which utilizes the proton motive force for 

adenosine triphosphate (ATP) synthesis. P. aeruginosa is also capable of 

thriving in anaerobic conditions via external electron acceptors or 

fermentation of arginine or pyruvate. Catabolite repressor control ensures 

that P. aeruginosa facilitates catabolism of preferred substrates over others 

in a culture. Preferred sources of carbon or nitrogen include short-chain fatty 

acids, amino acids and polyamines. Sugars, which are also efficiently 

metabolized, are less preferred since there are degraded via the Entner-

Doudoroff pathway (Entner and Doudoroff, 1952, Goldbourt et al., 2007, 

Frimmersdorf et al., 2010). This may have an advantage for soil based P. 

aeruginosa where the concentration of organic compounds exceeds sugars, 

due to decomposing plant and animal matter. P. aeruginosa is also capabale 

of growing on xenobiotics such as n-alkanes and (halogenated) aromatic 

compounds with an ability to produce secondary metabolites (Frimmersdorf 

et al., 2010). 
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Aerobic respiration occurs via electron donors and acceptors whereby 17 

respiratory dehydrogenases are predicted to be responsible for feeding 

electrons from respiratory substrates into the quinone pool, including three 

types of NADH dehydrogenases and a succinate dehydrogenase (Williams et 

al., 2007). P. aeruginosa has five terminal oxidases which catalyse the 

reduction of molecular oxygen to water (Arai, 2011). Three of them are 

cytochrome coxidases that receive electrons via the 

cytochrome bc1 complex and c-type cytochromes; cbb3-1 oxidase (Cbb3-

1), cbb3-2 oxidase (Cbb3-2), and aa3 oxidase (Aa3). The remaining two are 

quinol oxidases that receive electrons from ubiquinol; 

cytochrome bo3oxidase (Cyo) and the cyanide-insensitive oxidase (CIO). 

These terminal oxidases have a specific affinity for oxygen, proton-

translocation efficiency and resistance to stresses such as cyanide and 

reactive nitrogen species (Jo et al., 2014, Arai, 2011).  

1.8.1    Regulation of respiration  

The redox-responsive transcriptional regulators, ANR (anaerobic regulation 

of arginine deiminase and nitrate reduction), RoxSR and the stationary phase 

sigma factor RpoS, are known to regulate terminal oxidase gene expression. 

In P. aeruginosa ANR is an oxygen sensor and global regulator for anaerobic 

gene expression (Zimmermann et al., 1991, Galimand et al., 1991). RoxSR is 

a two-component transcriptional regulator that includes RoxR, the 
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membrane-bound sensor kinase and RoxR, the response regulator (Arai, 

2011).  

It is thought that the redox status of the respiratory chain acts as a sensing 

signal of RoxSR in P. aeruginosa. The enzyme Cbb3-2, is active under low 

oxygen conditions and is activated by ANR. This regulator, ANR however 

represses CIO and Cyo which are low affinity enzymes. RoxSR regulates all 

five terminal oxidases and other genes related to respiratory function such 

as hemB and nuoAL illustrating its important role in respiratory regulation. 

RpoS plays a role in regulating Aa3 and CIO. The cox promoter is activated 

by the sigma factor RpoS but is simultaneously repressed by the active RoxSR 

in hypoxic high-cell-density stationary phase cultures. RoxSR and ANR are 

able to fine tune multiple enzymes capable of terminal oxidase regulation 

since the redox status is also regulated by nutritional respiratory conditions. 

Figure 1-5 illustrates the regulatory pathways involved in controlling 

terminal oxidases (Arai, 2011).  

 

 

 

 
Figure 1-5 Schematic network involving regulators of P. aeruginosa 
terminal oxidases  
Figure from (Arai, 2011). On the left; sensing signals for regulators. On the 
right; terminal oxidase affinity of oxygen and conditions that are required 
for up-regulation. Arrows show activation whereas dotted lines show 
inhibition.  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3153056_fmicb-02-00103-g002.jpg
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1.8.2     Genetics of nitrate metabolism 

P. aeruginosa is capable of growing in the absence of oxygen using 

dissimilatory nitrate respiration whereby nitrogen oxides are used as an 

alternative terminal electron acceptor in the respiratory chain. This process 

is known as denitrification whereby soluble nitrate (NO−3) and nitrite (NO−2) 

are reduced causing the release of nitrous oxide (N2O) or dinitrogen (N2) 

(Arai, 2011).  

NO−3 reductase catalyzes the first step of denitrification, involving reduction 

of NO−3 to NO−2. There are three types of NO−3 reductases, Nar, Nap, and 

Nas, which are localized to the cytoplasmic membrane, periplasm and 

cytoplasm (Stover et al., 2000, Berks et al., 1995). The membrane-bound Nar 

is the enzyme responsible for anaerobic NO−3 respiration of P. aeruginosa in 

cystic fibrosis sputum (Palmer et al., 2007). Nar is encoded in 

the narK1K2GHJI gene cluster which comprises the structural subunits of the 

enzymes (NarG, NarH, and NarI), assembly (NarJ) and NO−3/NO−2 

transporters (narK1 and narK2). The gene cluster is regulated by the two 

component transcriptional regulator NarXL. Reduction of NO−3 by Nar is 

coupled to quinol oxidation and consumes two protons from the cytoplasm, 

thereby contributing to the proton gradient across the membrane (Zumft, 

1997). 

The napEFDABC gene cluster comprises the Nap quinol oxidase which also 

contributes towards NO−3 reduction. The physiological function of this gene 

http://journal.frontiersin.org/article/10.3389/fmicb.2011.00103/full#B94
http://journal.frontiersin.org/article/10.3389/fmicb.2011.00103/full#B148
http://journal.frontiersin.org/article/10.3389/fmicb.2011.00103/full#B148
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family is however unknown in P. aeruginosa but appears to have a role in 

redox balancing since it does not contribute to the generation of a proton 

gradient. The nasC gene is involved in NO−3 assimilation and is clustered with 

nirBD which encodes NO−2 reductase (Arai, 2011).   

The second step of denitrification involves NO−2 reductase and the catalysis 

of NO−2 to nitric oxide (NO) via the nirSMCFDLGHJEN gene cluster. This 

operon consists of nitrite reductase (nirS) and cytochromes (nirM, nirC, nirN) 

which mediate electron transfer from the cytochrome complex to nitrite 

reductase and genes regulating biosynthesis of heme d (nirFDLGHJE) (Arai, 

2011). 

Reduction of NO to N2O is catalysed by NO reductase and is encoded by the 

norCBD operon.  The genes norB and norC encode cytochrome subunits of 

NO reductase whereby NorC mediates electron transfer from soluble 

cytochrome c to NorB, which contains the heme catalytic centre. 

The nirQOP operon ensure genes regulating nitrite reductase and NO 

reductase are tightly regulated to prevent the accumulation of the cytotoxic 

intermediates (Arai et al., 1997, Arai et al., 1998). This is important during 

infection when P. aeruginosa cells are subjected to nitrosative stress by 

attack of the host immune system. 

Reduction of N2O to N2 is the final stage of denitrification and is catalysed by 

N2O reductase, a periplasmic enzyme that receives electrons from 
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cytochrome bc1 via soluble cytochrome c.  While the gene nosZ encodes for 

the structural N2O reductase, enzyme activity is also encoded by the 

nosRDFYL operon (Arai, 2011). 

Denitrification enzymes are induced under anaerobic or low oxygen 

conditions in the presence of NO−3 or NO−2. Two transcriptional regulators, 

ANR and DNR (dissimilatory NO−3 respiration regulator), belong to the 

CRP/FNR superfamily of transcriptional regulators and are required for full 

expression of all denitrification genes (Figure 1-6). Denitrification is also 

regulated by the two-component nitrate sensing regulator NarXL and by 

quorum-sensing signal molecules (Yoon et al., 2002, Toyofuku et al., 2008). 

 

 
 
 
 
 
 
 
 
 

Figure 1-6 A simplified regulatory network illustrating control of 
denitrification genes in P. aeruginosa.  
In conditions of low oxygen ANR activates expression of DNR. In the 

presence of nitric oxide (NO) DNR then can activate expression of the 

denitrication genes; NAR (nitrate reductase), NIR (nitrite reductase), NirQ, 

NOR (nitric oxide reductase), N2OR (nitrous oxide reductase) DNR. ANR, DNR 

and NarXL (in the presence or nitrate) are capable of activating NAR. The role 

of NirQ includes the fine tuning of NIR and NOR regulation.  
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The versatile functions of P. aeruginosa involving respiratory and 

fermentative energy generating systems contribute to the ubiquitous nature 

of P. aeruginosa in both aerobic and anaerobic environments. Moreover the 

virulence systems highlighted here provide mere insight into the vast 

complexity of the intricately interlinked regulatory systems of P. aeruginosa.  

Expression of individual virulence and metabolic networks cross-regulate 

each other whereby signalling cascades fine tune acute and chronic 

virulence phenotypes. Given the complexity of these global systems and 

networks, it is expected that the cellular response to stress conditions is 

elaborate.  

 

1.9    Mode of action of antibiotics 
 

Antibiotics are classified primarily on whether they induce cell death 

(bactericidal) or inhibit cell growth (bacteriostatic drugs). In addition, 

antibiotics can be further grouped based on the system or cellular 

component they interact with. The majority of antibiotics in use today inhibit 

DNA synthesis, RNA synthesis, protein synthesis or cell wall synthesis (Von 

Döhren, 2004). Bacteria can develop resistance to antibiotics by preventing 

antibiotic access to the target site either by mutations that change the 

antibiotic target or via the modification and thus protection of the target 

(Billal et al., 2011, Leclercq, 2002) . Bacteria are also capable of destroying 

or modifying antibiotics, thus resisting their action (Woodford et al., 2011, 

Johnson and Woodford, 2013, Wright, 2005) 
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1.9.1    Reduced permeability 

Gram-negative bacteria, compared to Gram-positive bacteria are 

intrinsically less permeable to a number of antibiotics due to the structure 

of the outer membrane and ability to form a barrier, thus reducing 

permeability. Hydrophilic antibiotics are capable of passing through the 

outer membrane via diffusion through outer membrane porin proteins (Blair 

et al., 2015). To limit antibiotic entry in to the bacterial cell, bacteria down 

regulate porins or replace them with more selective channels thus reducing 

the permeability of the outer membrane (Vargiu and Nikaido, 2012). This 

has been observed in Enterobacteriaceae, Pseudomonas spp. and 

Acinetobacter spp., whereby antibiotic resistance to carbapenems and 

cephalosporins, which is usually mediated by enzymatic degradation has 

been facilitated by reductions in porin expression (Blair et al., 2015).  

1.9.2    Increased antibiotic efflux 

Bacterial efflux pumps are transporters which can actively transport many 

antibiotics out of the cell and thus play a pivotal role in intrinsic resistance 

of bacteria to many drugs. P. aeruginosa PAO1 has 12 efflux systems of the 

Resistance-Nodulation-Cell Division (RND) family. Intrinsic multidrug 

resistance is attributed to its low permeability outer membrane combined 

with a number of broadly specific multidrug efflux (Mex) systems, of which 

include MexAB-OprM and MexXY-OprM.  In addition to this intrinsic 

resistance, MexCD-OprJ, MexEF-OprN and MexJK-OprM allow acquired 
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multidrug resistance via mutations that promote hyper-expression of efflux 

genes (Figure 1-7) (Schweizer, 2003, Livermore, 2002). These pumps consist 

of three component systems that include proton motive force driven 

antiporters, belonging to the RND family (MexB, MexD, MexF and MexY), 

outer membrane factors (OprM, OprJ and OprN) and periplasmic membrane 

fusion proteins  (MexA, MexC, MexF and MexX) (Morita et al., 2012). 

1.10    Efflux mediated cellular activities 
 

As depicted in Figure 1-7, efflux pumps are capable of extruding an array of 

toxic substances which are not just limited to antibiotics. Efflux pumps are 

thus involved in various cellular activities, ranging from detoxification of 

intracellular metabolites, virulence, cell homeostasis and intercellular signal 

trafficking. While this has now been made evident little is known about how 

efflux pump expression is affected within innate genetic networks to allow 

these various functions and ensure adaptability in different environments. 

The expression of RND pumps can be regulated in response to various 

external stress factors such as reactive oxygen (MexAB-OprM, MexXY-

OprM), reactive nitrogen (MexEF-OprN) compounds that cause stress and 

damage to the cell membrane (MexCD-OprJ) or those that block ribosome 

activity (MexXY-OprM) (Morita et al., 2012, Grkovic et al., 2002, Lister et al., 

2009, Poole, 2014, Fetar et al., 2011, Dreier and Ruggerone, 2015). Thus, 

efflux pumps have a key role against cellular stress that provides protection 
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against antibiotics and naturally occurring signals (Dreier and Ruggerone, 

2015). 

 

 

 

 

 

 

 

Figure 1-7 Schematic diagram of Mex efflux systems in P. aeruginosa  
 

Overview of characterized Mex pumps in P. aeruginosa and the regulated 
pathways. Red and blue arrows represent activation and repression, 
respectively. Substrates for each pump are indicated in black for 
antimicrobials and green for non-anti-microbials. Abbreviations: AG, 
aminoglycosides; AMPs, antimicrobial peptides; BL, beta-lactams;  CA, 
carbapenems; CI, ciprofloxacin; CM, chloramphenicol; CP, cationic peptides; 
EM, erythromycin; FQ, fluoroquinolones; ML, macrolides; NB, novobiocin; 
TC, tetracycline; TI, ticarcillin; TM, trimethoprim; IM, inner membrane; OM, 
outer membrane; C4-HSL, N-butyryl-l-homoserine lactone; ROS, reactive 
oxygen species, VA, vanadium, TR, triclosan. EB, ethidium bromide; AH, 
aromatic hydrocarbons; SDS, CE, cerulenin; AHL, aceylated homserine 
lactones; CV, crystal violet; AC, acrifalvine; HHQ, PQS precurosr 4-hydroxy-
2-heptylquinoline. Figure adapted from (Schweizer, 2003, Fernández and 
Hancock, 2012, Fargier et al., 2012, Liao et al., 2013)    
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1.11    Regulation of MexT 
 

The MexEF-OprN tripartite system is a multi-drug efflux pump, which is 

activated by the LysR-type transcriptional regulator MexT. The mexT gene is 

located immediately upstream and transcribed in the same direction as the 

mexEF-oprN pump in all P. aeruginosa strains. Unlike other RND pumps in P. 

aeruginosa, the mexEF system is the only one that is regulated by an 

activator as the remaining RND systems are regulated by repressors.  

It has been reported that MexT regulates two further Mex independent 

cascade systems. The first involves expression of membrane proteins 

involved in the transport of antibiotics, such as the MexEF‐OprN efflux pump 

and the imipenem permeable porin OprD. The second is cancellation of 

quorum‐sensing (C4‐HSL)‐mediated up‐regulation of mexAB‐oprM (Uwate 

et al., 2013, Maseda et al., 2004). The phenotype of these regulatory 

pathways is of particular interest in strains termed nfxC-type mutants where 

MexEF pump induction is known to confer resistance to norfloxacin. In these 

mutants, an active mexT is known to increase expression of mexEF and is 

associated with resistance to chloramphenicol and ciprofloxacin.   Reduced 

C4‐HSL production is associated with reduced virulence factor production 

(pyocyanin, elastase and rhamnolipid), type III secretion, motility and biofilm 

formation (Maseda et al., 2000, Lamarche and Deziel, 2011, Köhler et al., 

1999, Kohler et al., 1997, Kohler et al., 2001). The results obtained from 

these studies have however relied on reductive science and on a bias of 
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selected genes using reverse transcription polymerase chain reaction (RT-

PCR RT-PCR. It is therefore unclear how the specific regulatory pathways in 

such mutants regulate phenotype independently of the mexEF pump. 

Overexpressed mexT in wild-type PAO1 and in a mexEF deleted isogenic 

mutant showed that mexT regulates diverse virulence phenotypes 

dependent and independent of the mexEF-oprN pump.  Figure 1-8 shows 

that independent of its role in regulating mexEF-oprN, mexT also regulates 

the type III secretion system and early attachment (Tian et al., 2009a). Aside 

of its role in mexEF regulation, this is the first study to identify MexT as a 

global regulator.   

 

 

 

 

 

 

 

 

 

Figure 1-8 Regulatory role of mexT on virulence phenotypes, independent 
and dependant of mexEF-Oprn.  
A positive effect is illustrated by an arrow while negative effects are 

indicated by a bar. Solid lines indicate already known links and dashed lines 

show links that are yet to be determined. Genes associated with phenotype 

are labelled according to results obtained from microarray data (Jin et al., 

2011, Tian et al., 2009a). 
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The gene mexS is located before and adjacent to mexT, but divergently 

transcribed. PAO1 strains overexpressing mexT have shown increased 

transcript level expression of mexS and of mexEF-oprN when introduced in 

trans on a multicopy plasmid. One study has revealed that mexS represses 

the mexEF-oprN efflux pump in a clinical isolate of P. aeruginosa while in 

another study both a functional mexS and mexT are required for mexEF-

OprN activation.  This discrepancy illustrates the use of different strain 

backgrounds (Jin et al., 2011). 

 
Further research has led authors to believe that mexS is a mexEF 

independent target of mexT (Tian et al., 2009a), a theory which has 

previously been reported (Köhler et al., 1999). While mexS can act on mexT 

in a inhibitory manner there are two separate pathways in mexT‐mediated 

regulation of mexEF-oprN expression, either via mexS or by passing mexS 

(Uwate et al., 2013). It is known that antibiotic, disulphide and nitrosative 

stress causes mexEF overexpression via mexT. However it has also been 

shown that overexpression of mexEF due to other forms of stress, for 

instance metabolic stress is caused by a mexT independent mechanism 

(Fetar et al., 2011). While the nature of mexT mediated regulation of mexEF 

is not fully understood, it is clear that the role of mexT and its regulatory 

pathways are varied. 
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1.11.1    MexT, a LysR transcriptional regulator 
 

LysR-type transcriptional regulators (LTTRs) comprise one of the largest 

groups of prokaryotic transcriptional regulators characterized to date. They 

are known to regulate biofilm formation, virulence, antibiotic resistance, 

catabolism and carbon fixation (Vercammen et al., 2015, Kukavica-Ibrulj et 

al., 2008, McCarthy et al., 2014, Wade et al., 2005). As such, LTTRs are rapidly 

emerging as a key family of regulators that influence a wide variety of 

processes in P. aeruginosa (Reen et al., 2013, Caille et al., 2014).  LTTR 

proteins consist of a conserved helix-turn-helix (HTH) DNA binding motif 

located in the N-terminal portion of the polypeptide (Brennan & Matthews, 

1989; Huffman & Brennan, 2002; Aravind et al., 2005). Those that have the 

HTH located at the C terminus are transcriptional activators whereas those 

with the HTH at the N terminus are transcriptional repressors (Pe´rez-Rueda 

& Collado-Vides, 2000). Dual regulators which activate and repress 

transcription of itself or the gene(s) it is regulating, consist of a HTH that is 

located 20–90 amino acids from the N terminus (Maddocks and Oyston, 

2008). 

 

The C terminus of LTTRs includes the inducer (co-factor) binding site. Co-

factors are usually intermediates formed by metabolic reactions that act as 

co-inducers by binding to the LTTR to activate or repress transcription 

(Deghmane et al., 2004, Heroven and Dersch, 2006, Celis, 1999, van Keulen 
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et al., 2003, Maddocks and Oyston, 2008).  LTTRs bind to two distinct binding 

sites known as the recognition binding site (RBS) and the activation binding 

site (ABS). The RBS is usually located upstream of the target gene's promoter 

and can allow regulator binding without a co-inducer. The LTTR binds to the 

ABS near the −35 region of the target gene. This typically occurs in the 

presence of a co-effector along with RNA polymerase to regulate 

transcription (Schell, 1993).  A palindromic DNA sequence has been 

identified to which LTTRs are known to bind (LTTR box); this typically forms 

part of an imperfect region with dyad symmetry. The sequence ATC-N9-GAT, 

250 -275 bp upstream of the nod gene in Rhizobium spp was the first 

identified LTTR box and was referred to as the ‘Nod-box’ (Goethals et al., 

1992). This led to the identification of the LTTR box which consists of the 

sequence T-N11-A, usually found at the RBS site (Maddocks and Oyston, 

2008). The presence of a co-inducer affects the binding affinity of an LTTR to 

its binding site. The protein without the co-inducer will only bind to the RBS. 

Once the co-inducer binds to the protein, this causes the ABS site to also 

bind to the LTTR. This results in bending of DNA as dimeric proteins on the 

ABS and RBS form a tetramer. As the co-inducer binds, a larger complex with 

RNA polymerase is formed and transcription is initiated (Maddocks and 

Oyston, 2008).  

The recognition site characteristically contains an LTTR-box, suggesting that 

this recognition sequence is associated with auto regulatory activity.  LTTRs 
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are divergently transcribed from a promoter that is close or overlapping a 

promoter of a regulated target gene.  This allows simultaneous bidirectional 

control of transcription enabling LTTRs to repress their own transcription 

(negative auto regulation), most likely to maintain a constant level (Beck and 

Warren, 1988). The environmental stimuli for positive autoregulation 

however remains undefined. 
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1.12   Objective and Strategy: 

The main objectives of this study were to: 

- Identify differences in the phenotypic capabilities of different strains of P. 

aeruginosa 

- Link genotype to phenotype by integrating data from genomic, 

transcriptomics and phenotypic results to predict the biological impact of a 

strain.  

 

 

We had access to a range of P. aeruginosa strains including four lineages of 

the laboratory strain PAO1 and clinical strains from Norwich and Norfolk 

University Hospitals (NNUH) and Public Health England (PHE). 

 

Figure 1-9 A schematic view of the research strategy employed in this study 
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 The strategy for investigation, as outlined in Figure 1-9, was as follows: 

1. Optimise phenotypic models to characterise PAO1 lineages, as a 

model organism. One phenotype of interest will include biofilm 

formation.  

2. Use the biofilm model to identify differences in biofilm formation 

between PAO1 lineages. 

3. Identify reasons for variance between PAO1 lineages using 

comparative genomics. 

4. Perform an epidemiological screening test to establish whether 

mutations present in PAO1 have a clinical significance. 

5. Study the genetic mutations of interest in isogenic mutants and 

investigate the phenotype. 

6. Perform comparative transcriptomic analysis on selected strains of 

interests. 

7. Integrate genomic and phenomic data to gain an understanding of 

the regulatory pathways involved in the mutation of interest.  
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2 Phenotypic and genotypic variation of 

Pseudomonas aeruginosa PAO1 

 

CHAPTER 2 

2.1    Introduction 
 

P. aeruginosa is an incredibly versatile pathogen. Being a ubiquitous 

environmental organism and a consummate opportunistic pathogen the 

success of this organism is owed to its metabolic versatility, resistance to 

antimicrobials and ability to evade host immune responses. Consistent with 

its remarkable adaptability the P. aeruginosa genome is large and complex 

and is one of the largest bacterial pathogens to infects humans (Ozer et al., 

2012). The first strain of P. aeruginosa sequenced was PAO1 in 2000 (Stover 

et al., 2000, Weiss Nielsen et al., 2011). With a genome size of 6.3 Mbp and 

5,570 predicted open reading frames (Stover et al., 2000), this reflects the 

numerous and distinct gene families that this bacterium contains (Kung et 

al., 2010).  

Comparative genomic analysis of clinical strains has revealed that P. 

aeruginosa consists of a relatively conserved core genome with interspersed 

accessory genetic material  (Kung et al., 2010). The accessory genome 

consists of genes that are not present in all P. aeruginosa strains. These tend 

to cluster in particular loci whereby genomic mutations within these regions 

of genomic plasticity (Mathee et al., 2008) may contribute towards the 

niche-based adaptation of particular strains.  
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The population structure of P. aeruginosa in vivo is not fully understood. It 

is clear however that the adaptation and stress response of P. aeruginosa in 

different conditions is facilitated by the microevolution and genomic 

diversity of strains (Bezuidt et al., 2013, Fox et al., 2008). Biofilms and static 

cultures for example consist of multiple types of differentiated cells, even 

when grown in vitro from a single clonal lineage (Fox et al., 2008). P. 

aeruginosa clearly has the ability to undergo myriad genotypic 

transformations that provide the natural population with profound 

phenotypic changes in clinical conditions (Darch et al., 2015, Bianconi et al., 

2015, Workentine et al., 2013) some of which have a reproductive 

advantage. 

Phenotypic diversification in P. aeruginosa is a common phenomenon that 

leads to the generation of small colony variants (SCVs) and large colony 

variants (LCVs). Compared to the wild type, SCVs have a rough small colony 

morphology and are associated with autoaggregation, hyper-adherence 

and increased extracellular polymeric matrix (EPM) production (Alhede et 

al., 2011, Barraud et al., 2006). They show increased sensitivity to 

fluoroquinolones but reduced susceptibility to the aminoglycosides (Wei et 

al., 2011). Moreover they show reduced pyocyanin production (Nelson et 

al., 2010, Haussler et al., 2003, Kirisits et al., 2005).  

Slow growth rates are another trait observed in SCVs. Sabra et al. found that 

for unknown reasons, under iron limited conditions, the growth rate of the 
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SCV decreased compared to the wild type (Sabra et al., 2014). There is 

however a debate surrounding the effect of oxygen tension on wild type 

PAO1 growth. Under increased oxidative stress, P. aeruginosa PAO1 has 

shown reduced growth rates and pyocyanin production in one study (Sabra 

et al., 2002) but increased growth in another (Alvarez-Ortega and 

Harwood, 2007).   The increased growth observed by Alvarez-Ortega and 

Harwood may be explained by the high iron concentration used in their 

growth media, which was nearly double the iron amount utilised by Sambra 

et al. 

SCV development is associated with elevated c-di-GMP levels, which can 

occur via mutations in wspF and those that enhance the activity of the 

diguanylate cyclase  (DGC), which is associated with c-di-GMP synthesis 

(Hickman et al., 2005).   T he yfiBNR (PA1119 to PA1121) operon has also 

been identified as a regulator of c-di-GMP, EPS production and 

autoaggregation via the pel and psl genes. This operon consists of membrane 

proteins and a repressed integral membrane DGC which increases c-di-GMP 

levels and causes SCV formation (Malone et al., 2012, Malone et al., 2010). 

LCVs have not been extensively investigated; however this colony variant is 

comparable to the mucoid phenotype (Li et al., 2005, Lam et al., 1980). A 

phenotypic switch to a mucoid colony is characterized by the 

overproduction of the exopolysaccharide alginate (Evans and Linker, 
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1973, Linker and Jones, 1966) which is known to develop in response to 

harsh conditions such as oxidative stress  (Davey et al., 2003). 

P. aeruginosa PAO1 was originally isolated from a wound in Australia in the 

1950s (Holloway, 1955, Holloway et al., 1979).  Since then PAO1 has been 

distributed worldwide to major tissue culture collections and has been the 

major reference for phenotypic and genotypic studies on P. aeruginosa. 

Sequences and their annotations are deposited in the National Center for 

Biotechnology Information (NCBI) genome database (Refseq. no. 

NC_002516) and in the Pseudomonas Genome Database, which is 

continuously updated.  

The aim of this study was to investigate and identify differences in P. 

aeruginosa PAO1 isolated from different tissue culture collections. To 

understand the response of P. aeruginosa to different environments and its 

adaptive mode of survival, it is important to first recognise the phenotypic 

and genotypic differences of the reference strain PAO1. 
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2.2    Materials and methods 
 

Table 2-1 Strain collection 

Strain Provider 
Site of  
isolation 

Phenotype 

PAO1-DM DSMZ DSMZ 19880 Medium sized colony 

PAO1-AM Jake Malone, JIC ATCC 15692 Medium sized colony 

PAO1-AL Cambridge ATCC 15692 Large colony 

PAO1-AS Cambridge ATCC 15692 Small colony 
Pa 11451 Cambridge NCTC 11451 Unknown 

W1236011 NNUH Water Unknown 

W1236012 NNUH Water Unknown 

W1236011 NNUH Water Unknown 

W1236012 NNUH Water Unknown 

W1236013 NNUH Water Unknown 

W1236014 NNUH Water Unknown 

W1236015 NNUH Water Unknown 

W1236016 NNUH Water Unknown 

W1236017 NNUH Water Unknown 

W1236018 NNUH Water Unknown 

W1236019 NNUH Water Unknown 

W1236020 NNUH Water Unknown 

W1236021 NNUH Water Unknown 

W1236022 NNUH Water Unknown 

W1236023 NNUH Water Unknown 

W1236024 NNUH Water Unknown 

W1236025 NNUH Water Unknown 

W1236026 NNUH Water Unknown 
W1236027 NNUH Water Unknown 

W1236028 NNUH Water Unknown 

W1236029 NNUH Water Unknown 

W1236030 NNUH Water Unknown 

H125160273 PHE Blood ST111 MBL* positive 
(012) 

H125180570 PHE Environment 
ST111 MBL* positive 
(012) 

H043280559 PHE Blood ST235 MBL* positive 
(011) 
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*MBL (Metallo-β-actamase) and † VIM (Verona integron-encoded metallo-
β-lactamase). 
 

2.2.1 Bacterial strains and culture conditions 
 

PAO1 (referred to as PAO1‐DM, M meaning medium sized colony) was 

obtained from the Leibniz Institut DSMZ German Collection of 

Microorganisms and Cell Cultures. PAO1 strains from the American Type 

Culture Collection (ATCC) were provided by different laboratories (Table 2-

1). PAO1 ATCC (referred to as PAO1-AM), PAO1‐ATCC Large (PAO1‐AL) and 

PAO1‐ATCC Small (PAO1‐AS) were named according to the colony size. NNUH 

and PHE provided P. aeruginosa strains from various sources, as listed in 

Table 2-1. All strains were stored in glycerol stocks at ‐80 °C. 

2.2.2 Phenotypic characterization 
 

2.2.2.1 Colony morphology 
 

PAO1 variants were cultured on Columbia agar from glycerol stocks and 

incubated overnight prior to imaging with a Leica MZ16 stereoscopic 

microscope (Leica, Germany). 

H120420213 PHE Water 
Belfast epidemic 
strain 

H120420202 PHE Blood Belfast epidemic 
strain H132500175 PHE Blood PA14 clone 

H133620473 PHE Water PA14 clone 
H132640707 PHE Unknown PA14 clone VIM† 

positive ENV1 This study WS1/1 pipe Unknown 
ENV2 
 

This study WS1/2 pipe Unknown 

ENV3 This study Sink Unknown 
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2.2.2.2 Growth curve analysis 
 

From frozen stocks, strains were cultured on Columbia agar overnight and in 

10 ml Luria Bertani (LB) broth (Oxoid Ltd, Hampshire, UK) the following day 

at 37 °C. This culturing technique was utilised in all experiments. Overnight 

cultures were diluted to 1:1000 in fresh LB and re‐incubated for 1 h. Cultures 

were aliquoted in 100 µl volumes and mixed with equal measures of fresh 

LB in micro‐titre plates before incubation at 37 °C with agitation (180 rpm) 

rpm). Automated optical density readings (600 nm) were taken as a measure 

of growth using a FLUOstar Omega plate reader (BMG Labtech GmbH, 

Germany). Experiments were carried out in triplicate and repeated three 

times. 

Growth curves performed with minimal medium (M9) were carried out in the 

same manner, replacing LB with supplemented M9 (Oxoid).  M9 medium 

was supplemented with 22.2 mM glucose, 2mM MgSO4, 0.1mM CaCl2,  

24.4mM casamino acids and 1mM thiamine hydrochloride (Sigma-Aldrich, 

U.S.).  

Bacterial growth was analysed in the presence of oxygen limiting and 

aerobic conditions. Oxygen‐limiting conditions were initiated in a 96 well 

plate sealed with an adhesive film. Sealed wells were pricked with a sterile 

needle to imitate aerobic conditions.  Automated readings were taken every 

7 minutes over the course of 24-28 hours. Growth was analysed using area 
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under the curve (AUC) analysis, calculated according to the trapezoidal rule 

(Jones, 1997). 

 

2.2.2.3     Pyocyanin production 
 

PAO1 lineages grown in aerobic conditions (described above), were visually 

inspected 48 hours after starting the experiment for the characteristic green 

colour change, indicative of pyocyanin production. 

2.2.2.4    Biofilm formation 
 

2.2.2.4.1    Static biofilms 
 

Biofilms were quantified using the mirotiter plate assay method (Merritt et 

al., 2005). This protocol was modified such that plates were incubated for 48 

hr and stained with 1% crystal violet (CV, Sigma-Aldrich) for 30 min. 

2.2.2.4.2    Dynamic biofilms 
 

Different models were employed to study biofilm growth. The first was from 

Cellix Ltd (Dublin, Ireland) and the second from DTU (Technical University of 

Denmark, Kongens Lyngby, Denmark). Both models are shown in Figure 2-1 

and 2-2. PAO1 cultures were cultured in LB and diluted to 106 CFU/ml in LB 

using a spectrophotometer. Each channel within the Cellix biochip was 

seeded with 5 µl inoculum and the DTU flow cell injected with 250 µl of the 
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inoculum. Flow cells were then incubated for 1 hour. LB medium was then 

allowed to flow through the flow cell at a rate of 3 mL/h. Flow cells were 

incubated at 37 °C for 24 hours using the Cellix model and 48 hours with the 

DTU model. Biofilms were imaged by staining with SYTO 9 and propidium 

iodide (Molecular Probes, Inc. U.S.) and visualized using a Leica TCS-4D 

confocal microscope (Leica, Germany). Images were analysed using 

COMSTAT (Heydorn et al., 2000) to study biofilm thickness, roughness and 

surface area parameters to allow architectural comparisons of the different 

lineages. Roughness measures biofilm heterogeneity while surface area 

indicates how large a portion of the biofilm is exposed to media flow. 

 

 

 

 

 
 
Figure 2-1 Flow cell model 1 by Cellix Ltd.  

a) Biofilms were grown in biochips that consisted of 8 channels. Each 
channel could be inoculated with up to 5 µl.  

b) The biofilm model incorporated a Kima pump that passed media from a 
bottle, through the pump and biochip (seeded with bacteria) and into a 
waste flask. 
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Figure 2-2  Flow cell model 2 from DTU. 

a) Biofilms were grown in flow cells consisting of 3 channels. Each channel 
could be seeded with up to 250 µl of the inoculum. 

b) A 16 channel peristaltic pump allowed media to be fed into seeded 
channels (within the flow cell) and waste collected in the waste bottle. 
Bubble traps prevented bubbles from being introduced into the flow cell. 
Figure adapted from (Tolker-Nielsen and Sternberg, 2014). 

 

2.2.2.5    Antimicrobial susceptibility testing 
 

PAO1 lineages were subjected to susceptibility testing against a panel of 

antibiotics at PHE using the agar dilution method and at NNUH with the Vitek 

2 Compact (bioMérieux, France). MICs was determined after 24 hours of 

growth against; amikacin, gentamicin, tobramycin, aztreonam, ceftazidime, 

imipenem, meropenem, piperacillin, carbenicillin, colistin and ciprofloxacin. 

 

a)  

 

 

  

 

 

b) 
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2.2.2.6    Biotyping 
 

PAO1 sublineages and P. aeruginosa 11451 (utilised as a control) were 

cultivated on Columbia agar. Approximately ten colonies of each strain were 

subjected to analysis using the Matrix-assisted laser desorption/ionization 

Mass Spectrometry (MALDI- MS) and BioTyper 3.0 software (Buker, 

Germany), following previously described protocols (Berrazeg et al., 2013). 

 

2.2.3    Whole genome sequencing 
 

Bacterial cells from 1ml of overnight culture were harvested and DNA 

extracted using the MagNA Pure bacterial lysis kit and MagNA Pure Compact 

instrument (Roche). Samples were sent to Nick Loman’s group at 

Birmingham University and underwent Nextera XT sample preparation 

before deep sequencing on the MiSeq v2 and/or v3 chemistry. Adapter and 

quality trimming of reads was performed with Trimmomatic. Reads were 

then mapped onto the reference genome (P. aeruginosa PAO1 GenBank 

accession no. NC002516.2) and variants called using Burrows-Wheeler 

Aligner-MEM. Variant calling included single nucleotide polymorphisms 

(SNPs), insertions and deletions (indels), and/or structural variants (such as 

frameshifts). Variant calling files (VCF) were generated with Samtools 

mpileup and VarScan. Variants were then annotated with a snpEff Python 

script to convert the annotated VCF to a table. 
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2.2.4    Screening of strains 
 

The presence of the 8-bp mexT deletion and PA5017 mutation (found in 

PAO1-AL) were tested in strains from the strain collection (Table 2-1) using 

PCR (polymerase chain reaction) based techniques. DNA was extracted from 

strains, as detailed above.  To screen strains for the mexT 8-bp deletion, DNA 

extracts were subjected to PCR in the following conditions: 95 °C for 10 sec, 60 

°C for 30 sec (45 cycles) followed by melt curve analysis.  Strains showing a 

drop in melting temperature (of approximately 1.5 °C) compared to the 

negative control (strain known not to harbour the 8-bp deletion) were 

thought to contain the 8-bp deletion. Mutant and wild type (WT) probe 

based techniques were used for the PA5017 mutation using the following 

PCR conditions (95 °C for 5 min, 60 °C for 30 sec, 40 cycles) for amplification 

of the mutation. Primers and probes are listed in Table 2-2.   

 

 

 

 

Table 2-2 Primer and probe list 

Gene  Primer/Probe Forward sequence Reverse sequence 

PA5017 Primer GCGACGCAATGTCTCC CGGTCGATCAGCAGGA 

PA5017 Mutant Probe [6FAM]GCGCTAGAACAGGTGCAG[OQA]  

PA5017  WT Probe [6FAM]CTGCACCTGTTCCAGCG[OQA]  

8-bp mexT Primer CGCAGAGAAACTGTTCCT  GGTACGGACGAACAGC 
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2.3    Results 
 

2.3.1    Phenotypic results 
 

2.3.1.1    Colony Morphology 
 

All four strains, PAO1-DM, PAO1-AM, PAO1-AL and PAO1-AS exhibited a 

round colony with a smooth surface and lobated margin (Figure 2-3). As 

inferred by their names, PAO1-DM and PAO1-AM produced medium sized 

colonies, 2.5 mm and 3 mm, respectively. PAO1-AL appeared larger (4.5 mm) 

and PAO1-AS smaller (1mm) than PAO1-AM. Cell density within the colony of 

PAO1-AL also visually appeared lower while in PAO1-AS cells appeared 

aggregated.  

 

1mm                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAO1‐AM PAO1-DM 

PAO1‐AL PAO1‐AS 

 
Figure 2-3 Colony morphology of the different PAO1 variants: a) PAO1–DM, 
b) PAO1–AM, c) PAO1‐AL and d) PAO1‐AS. Colonies were imaged 24 hours 
after growth on Columbia agar. PAO1-AS was approximately half the size of 
PAO1-DM and PAO1-AM. PAO1–AL and PAO1-AS illustrated 3 distinct sub-
areas within the colony in contrast to the other colonial variants.  
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2.3.1.2    Growth curve analysis and pyocyanin formation 
 

Growth of the PAO1 lineages were examined in oxygen limiting and aerobic 

conditions (Figure 2-4). PAO1-AS showed increased growth in aerobic 

conditions (as opposed to oxygen limiting conditions) but only after 23 hr, 

compared to the remaining lineages which showed increased growth after 

10 hr.  A similar phenotype was seen in supplemented M9.  To verify this, 

colony counts were performed. However, results showed no differences 

between the lineages in oxygen limiting and aerobic conditions. It is  

hypothesised that the growth profile of PAO1-AS was actually caused by 

pellicle formation. Area under the curve analysis revealed that PAO1-AS 

growth curves were statistically different to the remaining lineages (P<0.05) 

in both LB and defined media. PAO1-AS was also the only lineage that failed 

to produce pyocyanin in aerobic conditions (Table 2-3).  
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Figure 2-4  Growth curves of PAO1 lineages in 1) LB and 2) defined media 
(supplemented M9): PAO1-DM (orange), PAO1-AM (blue), PAO1-AL 
(green) and PAO1-AS (red) investigated under a) oxygen limiting and b) 
aerobic conditions. Error bars shows standard deviation (n=3).    

 

 

Table 2-3 Pyocyanin production among the PAO1 lineages. 

Lineage  Pyocyanin Production 

PAO1-DM  ✓ 
PAO1-AM  ✓ 
PAO1-AL  ✓ 
PAO1-AS  0 

 

 

 

 

2.3.1.3    Biofilm formation  
 

PAO1 lineages grown in aerobic conditions were inspected for pyocyanin 

production, characterised by blue-green pigmentation. PAO1-AS was the 

only lineage that failed to visually produce pyocyanin. The above image 

represents the green colour change, characteristic of pyocyanin 

production 
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2.3.1.3.1     Static biofilms 
 

Quantifying biofilms using the crystal violet (CV) technique allowed 

phenotypic characterisation of biofilm growth in a static model. Figure 2-5 

shows that PAO1-AS out of all four PAO1 lineages was visibly capable of 

producing more biofilm (p<0.05). 

Figure 2-5  CV biofilm assay  

PAO1-AS showed higher biofilm forming capabilities compared to PAO1-DM, 

PAO1-AM and PAO1-AL (**P<0.05). Error bars are standard deviation for 

experiments performed in triplicate. 

 

2.3.1.3.2     Dynamic biofilms 
 

Strains grown in model 1 initially produced viable biofilms but after two tests 

(24 hr culture) showed cell death.  Images clearly showed biofilm growth. It 

was hypothesised that during biofilm maturation or the staining process 

there was an event that lead to cell death. Efforts were made to investigate 

this (Table 2‐4). The design of the Kima pump meant there was no visual 
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access to check for contamination. The pump cannot be autoclaved but 

sterilised only by flushing with ethanol. Contaminants present within the 

pump could have therefore been the reason for bacterial cell death. 

 

Table 2-4 Techniques used to investigate the cause of biofilm death in 

model 1 

Reason for biofilm 

death 

Technique utilised Result 

The seeding process Bacterial cells prior to seeding 

and after seeding were 

subjected to live/dead stain 

Cells were viable before and 

after seeding (1-2h) 

Media contaminated 

by the pump 

Bacterial cells were subjected 

to live/dead stain 

Cells were viable 

Blockages caused by 

biofilm growth 

Media flow through the output 

tubes was observed and 

measured per min 

Media flow remained 

constant at the end of  the 

experiment 

Bacterial cells were subjected 

to  live/dead stain within a 

channel  

The entire length of the 

channel was stained 

suggesting that the media, 

like the stain, would have 

been able to pass through 

Biofilms were quantified Biofilms were not thicker than 

the channel and were not 

thick enough to causes 

blockages 

Live/dead stain 

efficacy 

Planktonic bacteria 

with/without ethanol were 

stained with live/dead stain and 

visualised 

Cell death only observed after 

treatment with ethanol. 

Bacteriophage 

activated upon cell 

starvation when cells 

reach a critical 

concentration 

Biofilm effluent was dropped 

onto a lawn of P. aeruginosa 

No effect on P. aeruginosa 

growth 
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Figure 2-6 i)  Biofilm images of different PAO1 lineages:  a) PAO1-DM, b) 

PAO1-AM, c) PA11451, d) PAO1-AL, e) PAO1-AS. Biofilms were imaged 48 hours 

after seeding. 

d) 
 

e) 
 

c) 
 

a) 
 

b) 
 

Figure 2-6 ii) Quantification of biofilm structures 
Biofilm analysis using COMSTAT showed differences in biofilm structure among the 

PAO1 lineages. PAO1-AL and PAO1-AS produced thicker biofilms when compared 

to the remaining PAO1 lineages (**P<0.05). PAO1-DM and PAO1-AM showed 

increased biofilm roughness (**P<0.05) but PAO1-AS biofilms exhibited an 

increased surface area to volume ratio (**P<0.05). Error bars indicate standard 

deviation, n=3.  
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Flow cell model 2 was optimised to ensure that biofilms produced were 

matured to a point that would allow comparison between different lineages. 

Representative images of biofilms from all lineages are illustrated in Figure 

2‐6 i). Lineages which produced thicker biofilms (PAO1‐AL and PAO1‐AS) 

showed reduced roughness suggesting that thicker biofilms are more 

compact and uniform in terms of distribution of cells within the biofilm 

(Figure 2‐6.ii)).  

 

2.3.1.4    Antimicrobial susceptibility testing 
 

PAO1 lineages were tested against a range of antimicrobials. There was no 

difference in antimicrobial susceptibility observed among the variants 

(Figure 2-7). 

 

 

 

 

 

 

 

 

Figure 2-7 Antibiotic minimum inhibitory concentrations for PAO1 
lineages.  
There were no statistically significant differences observed between susceptibility 

to antibiotics, among the four PAO1 lineages (n=3). 
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2.3.1.5    MALDI biotyping 
 

 

 

 

 

 

 

 

All four PAO1 lineages and PA11451 were analysed using MALDI-MS. 

PA11451 was included as a control and clustered significantly apart, verifying 

that all four PAO1 lineages were not contaminants (Figure 2-8). 

2.3.1.6    Summary of phenotypic characterization  
 

Table 2-5 PAO1 lineages and phenotype. 

Phenotypic traits among the four PAO1 lineages were compared and graded (low 

to high, 0, +1, +2) according to strength and deviation from PAO1-AM. 

Phenotypic comparison (Table 2‐5) of the PAO1 lineages showed that PAO1‐

AS was the only lineage to exhibit slow growth rates (Fig 2‐4) and reduced 

 Phenotype 

Lineage Biofilm  

(CV assay) 

Biofilm 

(flow cell) 

Increased growth in 

aerobic conditions 

Pyocyanin 

production 

Antimicrobial 

susceptibility 

PAO1-DM 0 0 0 0 0 

PAO1-AM 0 0 0 0 0 

PAO1-AL 0 +1 0 0 0 

PA01-AS +1 +2 +1 +1 0 

PAO1‐DM 

PAO1‐AM & PAO1‐AL 

PAO1‐AS 

PA 11451 

Figure 2-8 MALDI Biotyping for PAO1 lineages  

MALDI-MS classifies strains, generating a spectral profile by measuring high 

abundance proteins, mostly ribosomal proteins. PCA classified the PAO1 

lineages into 3 sub-classes. PAO1-DM and PAO1-AS clustered apart. 

However PAO1-AM and PAO1-AL actually clustered together suggesting 

similarities between these lineages was not found in the remaining 

lineages. 
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pyocyanin production (Table 2‐3) in aerobic conditions. CV biofilm assays 

revealed PAO1‐AS as a hyper‐biofilm forming lineage (Figure 2‐5). This was 

corroborated by flow cell biofilm analysis which additionally showed that 

PAO1‐AL was also capable of producing a thicker biofilm (Figure 2‐6). Since 

flow cells are the gold standard (Crusz et al., 2012) for quantifying biofilms, 

biofilm analysis carried out using flow cell technology was considered as a 

true measure of bacterial growth. MIC data revealed no differences between 

lineages (Figure 2‐7).  

 

2.3.2    Whole genome sequencing 
 

The four PAO1 variants were compared to P. aeruginosa PAO1 (GenBank 

accession no. NC_002516.2). Figure 2-9 shows the lineage specific SNPs and 

indels among the different variants. Mutations were characterised as low 

mean synonymous. Non-synoumous mutations were characterised as 

moderate, modifier and high, meaning missense, indel or frame shift/stop 

mutations, respectively.  

 Comparative sequencing revealed two mutations among the four lineages 

that were categorised as having high strength, non-synonymous effects, 

both of which were found in the high biofilm-forming strains PAO1-AL and 

PAO1-AS.  It was therefore concluded that the effects of the C→T SNP in 

PA5017 and the mexT 8-bp deletion would be investigated further in the 
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clinical population since these genes have already been linked to biofilm 

related phenotypes (Roy et al., 2012, Favre-Bonté et al., 2003).   

 

 
Figure. 2-9  Venn diagram of strain specific SNPs and indels among 
the PAO1 variants  
Mutation strength type has been categorised by low (synonymous mutation, 

□), moderate (missense variant, ▣), modifier (insertion/deletion, ▦) and high 
(frameshift/stop gained, ■). * 174 mutations were found in the ATCC 
variants; PAO1‐AM, PAO1‐AL and PAO1‐AS. * 46 mutations were shared by 
all PAO1 variants. Details of all mutations are provided in Appendix 8.1.1. 
 

2.3.3    Screening of strains in strain collection  
 

Strains in the strain collection (38 strains) were screened for the PA5017 

mutation and mexT 8-bp deletion. None of these strains, except PAO1-AL, 

had the PA5017 mutation. All strains however (except PAO1-DM and PAO1-

AM) revealed the presence of the mexT 8-bp deletion.  
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2.4    Discussion 
 

The motivation for this work was to define the genetic basis of the different 

biofilm phenotypes seen in P. aeruginosa. Establishment of the biofilm 

model allowed the identification of differences in biofilm phenotype among 

four lineages of PAO1: PAO1-DM, PAO1-AM, PAO1-AL and PAO1-AS. PAO1-

AL and PAO1-AS exhibited increased biofilm formation compared to PAO1-

DM and PAO1-AM. Comparative genomics and further investigation led to 

the identification of an 8-bp mexT deletion, present within both of these 

hyper-biofilm forming lineages. The data presented here suggests that mexT 

is associated with biofilm formation. 

Comparative genomics, compared to the reference genome, revealed that 

46 mutations were found in all four PAO1 lineages at identical genomic 

positions (Figure 2-9 and Appendix 8.1.1), similar to previous findings 

(Klockgether et al., 2010). Perhaps these sites are hotspots for genomic 

plasticity. The genome sequencing also revealed 174 mutations unique to 

the ATCC sublineages. Driven by the individual handling of the strain and 

microevolution, these mutations probably occurred after the first PAO1 

strain was deposited by the original investigators (Holloway, 1955) in public 

strain collections. Although genomic variations were found among PAO1-

DM and PAO1-AM, there were no major phenotypic differences identifed 

(Table 2-5).  
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Colony morphology and genomic analysis revealed two sublineages of PAO1 

from the ATCC; a larger (PAO1-AL) and a smaller colony variant (PAO1-AS). 

PAO1-AL was distinguished from PAO1-AM by non-synonymous mutations 

found in PA5017 and mexT.  PA5017 has been described as a key component 

in biofilm dispersal. Similar to the results in this study, a PA5017 knockout 

previously exhibited increased biofilm production in flow cell experiments 

(Roy et al., 2012, Li et al., 2007). Consistent with this, the protein encoded 

by PA5017 has phosphodiesterase activity (Kulasekara et al., 2013) and a 

role in chemotaxis. Since phosphodiesterase activity is associated with 

reduced ci-di-GMP activity and increased motility (Simm et al., 2004), 

inactivation of the phosphodiesterase PA5017 in PAO1-AL was possibly 

associated with increased biofilm production through increased levels of c-

di-GMP.   

PAO1-AS contained four mutations that were specific to this strain: single 

SNPs found in PA0295, PA0602 and wspF, and a 3-bp TCC insertion within 

the mexT gene. Mutations within wspF affect methylation of the methyl-

accepting chemotaxis protein WspA and modulate the biofilm phenotype 

(Hickman et al., 2005, D'Argenio et al., 2002). This is likely the cause of 

increased biofilm formation observed in PAO1-AS.  

Increased growth in aerobic conditions for all PAO1 lineages apart from 

PAO1-AS was observed (Fig 2-4). PAO1-AS exhibited an autoaggregative 

phenotype in liquid media, particularly at the culture surface. Similar to 
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biofilms, the formation of autoaggregates in liquid culture can create 

anaerobic pockets (Starkey et al., 2009) which may actually inhibit growth. 

However, this autoaggregative trait could have produced a pellicle and 

caused inaccurate O.D. readings. Nevertheless, the data here describe a 

clear phenotypic difference between PAO1 sublineages.  Increased PAO1 

growth in aerobic conditions seems logical and compatible with a scenario 

that ensures propagation in a nutrient rich environment. Perhaps strains 

with increased biofilm forming capabilities, such as PAO1-AS, behave 

differently in response to oxidative stress. 

MexT, a mutational hotspot, (Klockgether et al., 2010, Luong et al., 2014, 

Olivas et al., 2012) contained an 8-bp deletion within both PAO1-AL and 

PAO1-AS, a SNP upstream in PAO1-AL and a TCC insert downstream in PAO1-

AS. Both ATCC variants showed increased biofilm capabilities along with an 

8-bp deletion in mexT (absent in PAO1-DM and PAO1-AM). The phenotype 

of the SNP in PAO1-AL and TCC insert in PAO1-AS is unknown. The 8-bp 

deletion within mexT has been associated with reduced swarming ability 

(Luong et al., 2014). Perhaps this mutation is also responsible for the hyper-

biofilm forming phenotype observed in PAO1-AL and PAO1-AS. Interestingly, 

mexT mutations also confer resistance to ciprofloxacin yet no differences in 

antimicrobial susceptibly among the PAO1 lineages were identified. 

Reduced pyocyanin production is another phenotype seen in strains with 

this mutation, yet results here indicate that the 8-bp deletion had differing 

effects on pyocyanin production in aerobic conditions in both lineages. The 
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additional mexT mutations in the ATCC variants may alternatively be having 

a compensatory effect. Further investigation led to an epidemiological 

screening of clinical strains in search of the mexT 8-bp deletion. Similar to 

PAO1-AL and PAO1-AS, all samples within the strain collection harboured 

the 8-bp deletion (Ocampo-Sosa et al., 2012).  A sequence alignment of 78 

P. aeruginosa strains available at NCBI shows that 6 contain a full copy of the 

mexT repetitive sequence (CGGCCAGCCGGCCAGCCGGCCATC) while the 

remaining harbour a mexT 8-bp deletion which has been identified as 

CGGCCAGC--------CGGCCATC or CGGCCAGCCGGCCA--------TC, both of which 

reside within the repetitive region. Ocampo found an 8-bp deletion 

(GCCGGCCA) at position 240 whereas our deletion (CGGCCAGC) was found 

at position 225 alike to the deletion found in nfxC-type mutants (Maseda et 

al., 2000).  All of these strains have a deletion but due to the repetitive 

nature of the sequence it is unclear where the exact deletion point is and if 

these alignments truly represent two distinct types of an 8-bp deletion. 

Furthermore it is unclear if the epidemiological assay carried out in this study 

may in fact represent different deletions at multiple sites within the mexT 

gene. This variability between strains highlights the importance of this mexT 

region.  

It is well known that pyocyanin production by P. aeruginosa is increased in 

response to iron limitation  and oxygen transfer (Kim et al., 2003). In these 

conditions (aerobic growth tests), this was applicable to all PAO1 lineages 

apart from PAO1-AS, which failed to produce pyocyanin.   There was no 
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phenotypic link between PAO1-AS and the putative membrane mutations in 

PA0295 or PA0602. Perhaps these mutations have an impact on growth, 

transport of small molecules and pyocyanin production since previous 

findings show ABC transporters have varied roles in molecule transport  

(Köster, 2001, Brillet et al., 2012). Since wspF mutations also cause wrinkled 

and rough small colony morphologies (Starkey et al., 2009, D'Argenio et al., 

2002), it is possible the PA0295 mutation confers a compensatory 

mechanism by which membrane function is modulated and acts as counter 

mutation to the wspF SNP, therefore producing a smooth round colony.  
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2.5    Conclusion 
 

Comparative genomics and epidemiology studies led to the identification of 

an 8-bp deletion in mexT as a possible regulator of biofilm formation. Results 

here indicate that the accumulation of SNPs and the microevolution of P. 

aeruginosa is a multifactorial process with strain dependent effects. 

Mutations have been identified in naturally occurring variants of the 

laboratory strain PAO1. Differences in morphology, growth and biofilm 

phenotype have been shown in strains traditionally perceived to be 

identical. Phenotypic and genotypic analyses have illustrated that without 

characterisation, these mutations would have gone unnoticed. Such 

variations, accumulating over time and sub-culturing, are a cause for 

concern. It is recommended that researchers routinely perform WGS of their 

standard strains such as PAO1, publishing these data alongside their 

experimental results, to allow other researchers to assess the likely impact 

of any genetic diversity on reproducibility. 
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3  Phenotypic characterisation of the 8-bp deletion 

in mexT variants 
CHAPTER 3 

3.1    Introduction 
 

The pathogenicity of P. aeruginosa is attributed to a plethora of phenotypes, 

one of them being antibiotic resistance. P. aeruginosa is intrinsically 

resistant to several antibiotics and has the ability to acquire multi-drug 

resistance. One such mechanism involves the activation of mexT, a regulator 

of the multi-drug efflux pump MexEF-OprN. Interestingly in PAO1, mexT and 

the MexEF-OprN system are typically quiescent but are both highly induced 

in  mutants which harbour a mexT 8-bp deletion (Maseda et al., 2000). NfxC 

mutants exhibit increased resistance to chloramphenicol, trimethoprim and 

fluoroquinolones and susceptibility to certain β-lactam and aminoglycoside 

antibiotics (Maseda et al., 2000, Kohler et al., 1997, Köhler et al., 1997). 

While antibiotics were orginally developed for their antimicrobial 

properties, their biological functions may have different roles in nature and 

act as intercellular signaling molecules which modulate the collective 

behavior of microbial populations (Davies, 2006, Linares et al., 2006, 

Aminov, 2013). It is clear that antimicrobial efflux is not the only function of 

the MexEF pump; P. aeruginosa recovered from an experimental model of 

rat pneumonia in the absence of antibiotic selection overexpressed MexEF-

OprN (Join-Lambert et al., 2001). Interestingly, strains isolated from the 

intestines of rats during surgical injury conversely showed a lack of mexE or 
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mexF expression due to a mutational loss (acquisition of a stop codon) in 

mexT (Olivas et al., 2012, Luong et al., 2014). Increased mexEF expression 

has also been observed in strains and conditions that function as an 

antagonist of quorum sensing and virulence, including those involving 

nitrosative stress  (Juhas et al., 2004, Hentzer et al., 2003, Fetar et al., 2011). 

In agreement with studies performed on nfxC mutants, the induction of the 

MexEF pump is also associated with reduced levels of homoserine lactone-

dependent virulence traits (Kohler et al., 2001) (Favre-Bonté et al., 2003) and 

reduced expression of TTSS effector proteins  (Linares et al., 2005, Olivares 

et al., 2012). It has been suggested that MexEF-OprN mediates these effects 

via efflux of cell-signalling intermediates, which ultimately commits the cell 

to a state of reduced virulence (Kohler et al., 2001). These studies indicate 

the involvement of a complex regulatory network which is still not fully 

understood.  

The results from the previous chapter revealed an 8-bp deletion within mexT 

as a possible regulator of biofilm formation. NfxC mutants can arise though 

multifactorial mutations (Sobel et al., 2005, Maseda et al., 2000) yet the 

physiological effects of this 8-bp deletion alone in P. aeruginosa remain to 

be elucidated. To investigate this mutation further, mutants were 

engineered solely with the 8-bp deletion to clarify the phenotype of this 

mutation. 
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3.2    Methods 
 

3.2.1    Bacterial strains and culture conditions   
 

All strains (listed in Table 3-1) were initially grown on Columbia agar (Oxoid, 

UK) and then incubated at 37°C for 16h at 180 rpm in M9 medium 

supplemented with 22.2 mM glucose, 2mM MgSO4, 0.1mM CaCl2, 24.4mM 

casamino acids and 1mM thiamine hydrochloride (Sigma-Aldrich, USA). 

 

Table 3-1 Strains and plamids used in this study 

Strain/Plasmid Genotype or relevant 

characteristic 

Source  

Strains 
  

PA PA parent with double 8-bp 
sequence, originally known as 
PAO1-AM 

John Innes 
Centre 

PAdel PA with single 8-bp sequence 
(isogenic mutants of PA) 

This study 

PAnfxC PA with single 8-bp sequence 
cultured onto sub MIC 
chloramphenicol agar 

This study 

Plasmid   

pTS 8.8-kb broad-host-range 
cloning/shuttle vector 
(Tetr,oriColE1, sacB) 

Dr Jacob 
Malone, 
John Innes 
Centre 

 
 

 



 
 
 
 

CHAPTER 3 

 
 

74 
 

3.2.2    Generation of the isogenic mutant PAdel with the 8-bp 

deletion 
 

DNA was extracted as per manufacturer’s instructions using the Roche 

MagNA pure Compact system (Roche, Switzerland) and from PA and PAO1-

AS. MexT was PCR-amplified using Phusion DNA polymerase and Phusion GC 

Reaction Buffer (New England Biolobs, Massachusetts, U.S.A.) combined 

with DNTPs and primers listed below (Table 2). PCR conditions: 

Denaturation:  98 °C (5min), Annealing: 98 °C (10sec), 55 °C (30 sec), 

Elongation: 72 °C (20sec), (32 cycles) 72 °C (5min) before being left at 10 °C.   

Plasmid DNA from the suicide vector, pTS, was extracted using the 

NucleoSpin Plasmid kit (Macherey-Nagel, Germany). Amplified mexT DNA 

was digested with Mfe I and Bam HI and pTS DNA with Eco RI and Bam HI, as 

per manufacturer’s instructions (New England Biolabs Ltd, UK). The vector 

was treated with alkaline phosphatase and ligated with the insert in a ratio 

of 3:1 (insert to vector) using T4 ligase (New England Biolabs) before 

incubating overnight at 4 °C. The pTSmexT constructs were individually 

transformed into E. coli DH5α by heat shocking: pTSmexT and E. coli DH5α 

were mixed on ice, heated at 42 °C for 1 min before being placed back onto 

ice for 2 min. LB broth was added prior to incubation at 37 °C for 2 hrs. This 

was then plated onto tetraycline agar to confirm the presence of E. coli DH5α 

colonies with the construct and tetracycline resistance marker. Colony PCR 

(primers listed in Table 3-2) and gel electrophoresis was performed to screen 

colonies for the required insert. PCR steps included: 95 °C for 5 min, 95 °C 
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for 30 sec, 55 °C for 30 sec, 72 °C for 2 min (30 cycles) 72 °C 10 min. Overnight 

PA cultures were washed in 300 mM sucrose. Transformation of the 

construct into PA was carried out in a Gene Pulser Electroporation System 

(Bio-Rad, U.S.A.) with the following settings: 200 Ω, 2.5 kV before plating 

onto sucrose agar.  Colonies with the insert were then confirmed by 

sequencing (Eurofins Scientific, Luxembourg) and thereafter named PAdel. 

 

Table 3-2 Primers utilised to construct PAdel 

Name  Forward sequence Reverse sequence 
mexT ATGGATCCGTTCGAAGCCGAGACCG  

 

ATGAATTCCTCCTCGTCGACGAAGC  

pTS CGGCAGGTATATGTGATGGG  
 

CCATGAGTGACGACTGAATCCG  

 
 

3.2.3    Generation of the natural mutant PAnfxC with the 8-bp 

deletion 
 

To generate PAnfxC, PA overnight cultures were diluted to 108 CFU/ml and 

plated onto LB agar (Oxoid, UK) containing 0.05 µg/ml ciprofloxacin as 

previously described (Kumar and Schweizer, 2011). Following incubation 

overnight at 37°C, resistant colonies were screened for the mexT 8-bp 

deletion using colony PCR. Each PCR template was prepared by mixing a 

single colony with distilled water and heating at 95 °C for 5 min. Each 20 ul 

PCR reaction consisted of 10 µl Roche Lightcycler 480 SYBR Green I 

Mastermix (Roche Diagnostics, GmbH, Mannheim, Germany), 0.5 ul (20 µM) 

forward (CGCAGAGAAACTGTTCCT) and reverse primer 

(GGTACGGACGAACAGC) (Sigma-Aldrich, Dorset, UK), 4 µl molecular water 
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(Sigma-Aldrich) and 5 µl template. DNA amplification was carried out in a 

Roche LightCycler® 480 Instrument II (Roche) using an initial denaturation 

step at 95°C for 10 sec followed by 45 cycles of amplification (denaturation 

at 95°C for 0.5 min, annealing at 60 °C for 30 sec) followed by melt curve 

analysis. One colony out 18 was identified with a single 8-bp sequence within 

its genome and was termed PAnfxC.  

 

3.2.4    Antibiotic susceptibility profiles 
 

Antimicrobial susceptibility was tested against a range of antibiotics using 

the liquid broth micro-dilution method. Cultures were grown at 180 rpm in 

supplemented M9 at 37 ℃. Cultures were then sub-cultured for 3 hours to 

achieve a concentration of 2×105 CFU/mL. Stock solutions for Gentamicin, 

Ceftazidime, Meropenem, Piperacillin, Ciprofloxacin and Chloramphenicol 

(Sigma) were made according to the manufacturer’s protocol and two fold 

serial dilutions of each antibiotic prepared in a 96 well microtiter plate with 

supplemented M9 media. An equal volume of log phase culture was then 

added to each well. Plates were incubated overnight at 37°C, and then 

examined for bacterial growth and turbidity, visually. The minimum 

inhibitory concentration (MIC) was identified by the lowest concentration of 

antibiotic that prevented growth. 
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3.2.5    Motility testing  
 

Swimming, swarming and twitching phenotypes were tested in LB agar 

concentrations of 0.3%, 0.5% and 1% respectively (O'May and Tufenkji, 

2011, Rashid and Kornberg, 2000). For swimming tests, 5 ul of inoculum 

representing 108 CFU/ml, was placed into the center of the agar. For swarm 

plates, 5ul of the inoculum was placed onto the agar surface. For twitching, 

the inoculum was pelleted and a toothpick used to inoculate the agar-petri 

dish interface.  Plates were incubated for 18 h at 37°C before the diameters 

of the motility zones were measured.  

 

3.2.6    Virulence testing 
 

The relative virulence of each P. aeruginosa strain was assessed in the 

Galleria. mellonella model according to a protocol modified from McMillan 

et al. (2015). Briefly, larvae (UK Waxworms Ltd, Sheffield, UK) in groups of 

12 were injected with PBS suspensions containing 10 total CFU per larva. In 

addition, one control group did not undergo any manipulation to control for 

background larval mortality (no manipulation control) while another group 

(uninfected control) was injected with PBS only to control for the impact of 

physical trauma. Larvae were kept in petri dishes in the dark at 37°C for up 

to 24 h and inspected every 6 h so that percentage survival could be 

calculated for each group. Larvae were considered dead if they did not move 

after being stimulated with a sterile inoculation loop. The experiment was 
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repeated in triplicate and performed by Dr Andre Desbois’ research group at 

the University of Stirling.  

 

3.2.7    Phenotypic microarray  
 

The utilisation of 626 substrates were tested using phenotype microarray 

(PM) plates and protocols supplied by Biolog Inc, USA. Briefly, strains were 

serially cultured on Columbia agar twice and incubated at 37°C for 18 hr. 

Bacterial colonies were suspended in inoculation fluid-0 and dye A, and 100 

ul was aliquoted into each well of PM plates 1-2. Sodium succinate, 540 

mg/ml (Sigma-Aldrich) and ferric citrate, 0.049 mg/ml (Sigma-Aldrich) were 

added to the inoculating fluid for PM plates 3, 4 and 6-8. Further 

optimization of the growth parameters were required for PM plates 3, 6, 7, 

and 8 to prevent growth in the negative controls.  This involved reducing the 

inoculum and sodium succinate concentration by a 1 in 10 dilution factor for 

PM plates 3, 6, 7, ad 8. All plates were incubated at 30°C for 96 h in the 

OmniLog reader.  

The signal value (SV) for each substrate was calculated (Homann et al., 2005) 

and replicates averaged, with negative controls subtracted from the results. 

Resultant negative values were assigned a value of 0, indicating no growth.  

To enable fold change (FC) calculations all results (0 and positive) were 

adjusted by adding a value of 1. The FC was then calculated between PA vs 

PAdel and PA vs PAnfxC.  
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The final analysis was carried out by applying a normal distribution to all 

results from all of the plates (PM1-3, 6-8). This was to see where the major 

differences were. Results outside of the 95% confidence interval were 

subjected to a paired Student’s T-test and those with a P value of < 0.05 were 

considered significant.  

Uridine and inosine were used to validate some of the Biolog results as these 

substrates were available in the laboratory. Overnight cultures of the mexT 

variants were grown at 37°C in M9 minimal medium supplemented with 22.2 

mM glucose, 2mM MgSO4, 0.1mM CaCl2, 24.4mM casamino acids and 

1mM thiamine hydrochloride. Cells were centrifuged and resuspended in 

M9 minimal medium containing inosine or uridine (30 mM) to a 

concentration of 105 CFU/ml.  The optical density of cultures were measured 

at a wavelength of 600 nm in a FLUOstar Omega plate reader (BMG Labtech 

GmbH, Germany) over the course of 24 hours. Experiments were performed 

in triplicate. 
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3.3    Results 
 

3.3.1    Antimicrobial susceptibility 

Variants of mexT with the single copy of the 8-bp sequence showed 

increased resistance to ciprofloxacin and chloramphenicol, a characteristic 

of nfxC type mutants (Llanes et al., 2011, Li et al., 1994) (Table 3-3). NfxC 

mutants show increased susceptibility to certain β-lactams, as observed with 

PAdel and PAnfxC when exposed to piperacillin. Meropenem on the other 

hand has been linked to reduced susceptibility in strains with an active mexT. 

However, no change was observed with the cephalosporin ceftazidime. 

Increased susceptibility to the aminoglycoside gentamicin was also 

observed, as previously reported (Köhler et al., 1999, Kohler et al., 1997).  

Table 3-3 Antimicrobial susceptibility profile for PA, PAdel and PAnfxC 

Minimum inhibitory concentrations (ug/ml) for gentamcin, ceftazidime, 

meropenem, piperacillin and ciprofloxacin against PA, PAdel and PAnfxC 

(n=2).  

 

 

 

 

 

 

 

 

 

 

  
  

Average MIC (ug/ml) 

PA PAdel PAnfxC 

Gentamicin 3  1.5  1.5  

Ceftazidime 4 4 4 

Meropenem 0.125 0.25 0.25 

Piperacillin 2 1 1 

Ciprofloxacin  256 4096  4096  

Chloramphenicol 100 1600 1600 
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3.3.2    Motility 
 

The absence of the 8-bp sequence in PAdel and PAnfxC significantly reduced 

swarming and swimming behavior (Figure 3-1). No differences in twitching 

were identified. 

 

Figure 3-1 Motility phenotype of mexT variants 
Strains with the 8-bp deletion showed reduced swarming and swimming 

traits (P< 0.05). Error bars are standard deviation (n=3). 

 

 

3.3.3    Virulence testing 
 

Strains were exceptionally virulent in the G. mellonella model, as it required 

fewer than 100 cells for death to ensue quickly. To address this, inoculum 

concentrations were kept consistent, as small variations had an impact on 

how virulent a strain would appear. Final inoculum concentrations are 

provided in Figure 3-2. 
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Figure 3-2 Virulence testing of the mexT variants in a G. mellonella model 
of infection 
Kaplin-Meyer graph (n=12) showing PA was the most virulent among the 

mexT variants (P < 0.005). PAdel was significantly less virulent than PA 

(P<0.005), however PAnfxC was not significantly virulent compared to PA. 

Inoculum concentrations are shown in brackets with standard error from the 

mean. 
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3.3.4    Phenotypic microarray 
 

Table 3-4 Fold change of 33 substrates differentially utilized by the mexT 

variants.  A normal distribution and t-test were applied to the SV (signal 

value) across all plates and strains (PA vs Padel PA vs PAnfxC). Results 

where the p value was < 0.05 was indicated by * (n=2).  

PM plate Substrate 
Average 
PA SV 

Average 
PAdel 
 SV 

Average 
PAnfxC 
SV 

Fold  
change 
PA vs PAdel 

Fold  
change 
PA vs 
PAnfxC 

8 Ile-Leu 102.1 1.0 1.0 102.1* 102.1* 
6 Ile-His 78.6 1.0 2.6 78.6* 29.8* 
8 Leu-Leu-Leu 46.9 1.0 1.9 46.9* 24.7* 
7 Ser-Leu 46.4 1.0 1.0 46.4* 46.4* 
8 Ser-Gln 52.2 1.1 1.4 45.9* 38.1* 
8 Pro-Ser 40.4 1.0 1.0 40.4* 40.4* 
6 lle-Trp 32.4 1.0 1.0 32.4* 32.4* 
6 Ile-Phe 80.9 2.6 3.6 30.9* 22.8* 
6 Glu-Val 23.1 1.0 1.5 23.1* 15.4* 
8 Val-Glu 22.1 1.0 1.4 22.1* 15.5* 
6 Ile-Val 86.3 4.3 5.1 20.1* 16.9* 

8 Thr-Phe 19.2 1.0 1.0 19.2* 19.2* 
7 Trp-Tyr 18.4 1.0 1.0 18.4* 18.4* 
6 Asp-Trp 17.6 1.0 1.0 17.6* 17.6* 
3 Gly-Glu 15.7 1.0 1.0 15.7* 15.7* 
6 Asp-Leu 15.6 1.0 1.0 15.6* 15.6* 
7 Met-Ile 15.5 1.0 1.0 15.5* 15.5* 
7 Trp-Leu 23.8 1.6 1.3 15.2* 18.4* 
3 Ala-Gly 17.6 1.2 1.0 15.1* 17.6* 
6 His-Val 88.9 5.9 4.0 15.0* 22.2* 
8 Leu-Gly-Gly 29.7 2.1 4.0 14.2* 7.4* 
6 Glu-Trp 103.5 7.4 9.9 14.0* 10.4* 
7 Ser-Phe 75.4 5.4 5.7 14.0* 13.3* 

3 L-Leucine 74.3 4.0 1.0 18.6 74.3* 
7 Met-Trp 13.1 1.0 1.0 13.1 13.1* 
6 Ile-Tyr 110.5 8.5 3.4 13.0 32.4* 
6 Gly-Leu 12.8 1.0 1.0 12.8 12.8* 
8 Pro-Val 82.9 7.9 5.4 10.5 15.3* 
6 Ala-Trp 25.4 2.9 1.5 8.7 16.7* 
1 Uridine 45.2 5.8 2.9 7.8 15.6* 
6 Glu-Tyr 18.8 3.2 1.0 5.8 18.8* 
8 Ala-lle 43.2 22.6 1.8 1.9 23.4* 
3 L-Lysine 91.3 57.9 3.0 1.6 30.9* 
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Phenotypic microarray results showed that PAdel and PAnfxC were 

particularly defective in protein, amino acid and nucleoside compound 

metabolism based on results that lay outside of the 95% confidence level of 

a normal distribution. The purpose of this statistical analysis was to identify 

the major differences between the mexT variants across all PM plates. 

Strains with the single copy of the 8-bp sequence also showed a reduced 

ability to grow on sugars, carboxylic acids and phosphorus based 

compounds, however these results lay outside of the 95% confidence level 

of a normal distribution.   Biolog results were validated using uridine and 

inosine growth in M9. A full list of fold change differences between all 

substrates tested are listed in Appendix 8.2.1. 

Results here also indicated that PAdel and PAnfxC were able to grow in the 

presence of acids (α-Hydroxy Butyric Acid Phospho-Glycolic Acid). Although 

reduced metabolism was observed in the presence of glycyl-L-aspartic acid, 

γ-hydroxy butryic acid and glycl-L- glutamic acid, signal values of 

approximately 10 indicated inefficient growth and may not be enough to 

suggest that there was a profound difference in metabolism of these 

substrates.  

A twofold (aprox) difference in the utilization of the central metabolism 

metabolites such as oxalomalic acid and methyl pyruvate (p<0.1) was also 

observed. Oxalomalic acid, a sodium salt, inhibits both aconitase and NADP-

dependent isocitrate dehydrogenase in the conversion of citrate to 
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isocitrate. The results for this substrate showed that the average SV for PA 

was 12.6 and for PAdel, 5.9. Again these small signal values among strains 

may not represent sufficient growth to identify differences.  Interestingly, 

methyl pyruvate, a key player in central metabolism, also supported the 

growth of PAdel and PAnfxC despite being less metabolically active on other 

substrate groups.  

Although PM results indicated differences in peptide utilisation there were 

no significant differences in the specific amino acids that form these 

peptides. This indicates that differences in peptide utilisation maybe caused 

by transporters that allow import of specific substrates, rather than 

differences in cytosolic pathways or reactions.  

Reduced growth on nucleoside based media was also observed in PAdel and 

PAnfxC. Differences in uridine metabolism were highly significant when 

compared to PA. Reduced growth with was also noted on adenosine, 

cytidine and inosine sources (12 – 5 fold differences) although these were 

not within the 95% confidence level (listed in Appendix 3-1.2). 

Mutants with the single copy of the 8-bp sequence exhibited reduced 

virulence in the Galleria mellonella model. Tryptophan, a known precursor 

of PQS synthesis (Palmer et al., 2013) illustrated a 3-4 fold reduction in 

utilization in PAdel and PAnfxC, which may explain the reduced virulence 

phenotype of these strains. A two to threefold fold reduction was also shown 

in gelatin utilization in PAdel and PAnfxC suggesting that the reduced 
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production of virulence factors such as gelatinase and other proteases may 

hinder the breakdown of peptides and therefore import into the cell. This 

could also be a contributing factor leading to the reduced metabolism of 

peptides since virulence factors can be proteases. 
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3.4    Discussion 

The gene, mexT is considered a mutational hotspot (Klockgether et al., 2010) 

that leads to phenotypic variation. Sequence variants of mexT have been 

well documented, in terms of mexT-mediated regulation of the MexEF-OprN 

efflux pump, with several studies having looked at the 8-bp deletion in nfxC 

mutants. There is however is no evidence of this being performed on 

isogenic mutants but on a strain termed PT149 or PAO-7H (Kohler et al., 

1997)  which was originally isolated as an nfxC mutant (selected for on 

ciprofloxacin) with a single copy of the 8-bp sequence. It is well known that 

various mutations arise in nfxC mutants (Luong et al., 2014, Maseda et al., 

2000, Sobel et al., 2005), not solely in mexT but also in neighbouring genes 

such as mexS, mexE and mexEF (Köhler et al., 1999, Dumas et al., 2006, 

Cosson et al., 2002, Ocampo-Sosa et al., 2012, Llanes et al., 2011). Therefore 

the aim was to characterise differences between the parent, the isogenic 

mutant PAdel, which was genetically engineered with the 8-bp deletion, and 

a naturally selected nfxC mutant, PAnfxC. 

Characteristically resistant to chloramphenicol and ciprofloxacin, the 

antimicrobial susceptibility profiles of PAdel and PAnfxC were similar to that 

of an nfxC mutant (Maseda et al., 2000, Kohler et al., 1997, Köhler et al., 

1997).   

The identification of the mexT 8-bp deletion in the previous chapter was 

linked to the differential regulation of biofilm formation among the PAO1 
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lineages.  Therefore investigation of motility behaviour of all mexT variants 

was also required. Similar to nfxC mutants which are associated with 

reduced levels of homoserine lactone-dependent virulence traits, reduced 

motility was also observed in the strains harbouring the 8-bp deletion. 

Hence, it was anticipated that a difference in biofilm formation would also 

be identified and so efforts were made to characterise biofilms using 

standard techniques such as those employed in the first chapter. Contrary 

to previous studies indicating that mexT has a role in attachment (Favre-

Bonté et al., 2003, Tian et al., 2009b), in this study a stable phenotype or 

difference associated with biofilm formation was not found among the mexT 

variants.  

Virulence testing in the G. mellonella model revealed that PAdel was less 

virulent than PA. However PAnfxC was not significantly different to PA, a 

result that differs to previous findings (Olivares et al., 2012). It was 

hypothesized that differences in compensatory genomic mutations were 

likely the cause of phenotypic variations between PAdel and PAnfxC, 

highlighting the importance of isogenic studies. PT149, a commonly studied 

nfxC mutant, has been shared between laboratories worldwide and has 

most likely acquired additional mutations beyond the 8-bp deletion over 

time. With no genome wide data available to contradict this, the phenotype 

of PT149 is unreliable. 
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It is generally thought that acquisition of antibiotic resistance and efflux in 

general is associated with a metabolic burden (Sanchez et al., 2002, Alonso 

et al., 2004, Piddock, 2006). This theory has been challenged by one study 

showing that nfxC type mutants co-exist with the wildtype in mixed cultures 

(Olivares et al., 2012). The 8-bp insertion known to render mexT inactive can 

be likened to a strain termed MPAO1-P2 which had a truncated and inactive 

form of mexT. However, MPAO1-P2 outcompeted MPAO1-P1 (precursor 

strain of MPAO1-P2 with an active mexT) in competition assays  (Luong et 

al., 2014). The variation in the literature highlights the need for defined 

media and conditions to corroborate findings.  In this study a metabolic 

burden associated with mutants with the 8-bp deletion was identified. 

Nucleoside, amino acid, sugar, carbohydrate and phosphate based 

compounds that supported the growth of the parent strain, did not support 

the growth of PAdel and PAnfxC. These strains, which display antimicrobial 

resistance, were however capable of robust growth on acid based 

compounds. 

It seems that PA is adapted to an environment that nurtures growth. A 

laboratory environment would provide the perfect conditions for such a 

strain, especially as the 8-bp insertion was originally identified in PAO1-DM 

and PAO1-AM (Chapter 2). The ability to utilise nucleosides indicates a 

scavenging phenotype that, when associated with quorum sensing related 

traits, ensures propagation. Perhaps the generation of the additional 8-bp 

sequence was also promoted by the specific utilisation of nucleoside based 



 
 
 
 

CHAPTER 3 

 
 

90 
 

substrates. PAdel and PAnfxC represent the effect of stress induced 

responses on mexT and as such were capable of thriving in acidic conditions 

such as those identified by phenotypic microarray tests. It remains unclear 

whether these phenotypes were mexEF dependant. 
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3.5    Conclusion 
 

There is accumulating evidence that multi-drug efflux pumps have a greater 

range of function than is usually attributed to them. It was shown that a 

single 8-bp change in the transcriptional regulator mexT is not only capable 

of mediating antibiotic resistance but also motility, virulence and central 

metabolism.  The phenotype of the 8-bp deletion and its role in nfxC mutants 

has been clarified. It is hypothesised that differences shown between PAdel 

and PAnfxC, and previously published nfxC mutants, were likely the result of 

different compensatory mutations.  To identify compensatory mutations, 

whole genome sequencing is essential. Interrogating the genome sequence 

and transcriptome will help identify the mexT regulon and the role of the 

mexEF pump on the phenotype that has been characterised here.   
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4   Effect of the mexT 8-bp sequence on the 

transcriptome 
CHAPTER 4 

4.1    Introduction 
 

The genetic diversity of four colonial variants of PAO1 was previously 

examined, characterising differences in phenotype based on antibiotic 

resistance, microaerophilic growth, motility and biofilm formation. This 

phenotypic diversity was driven by an 8-bp sequence variation found within 

the LysR transcriptional regulator, mexT, a modulator of the MexEF efflux 

pump.  

This gene, mexT, is a mutational hotspot (Klockgether et al., 2010) which is 

known to lead to phenotypic variation in P. aeruginosa, yet little is known 

about the global influence of this mutation and its role in nfxC mutants.  The 

nfxC phenotype is known to occur as a result of mutations within mexT, one 

of them being the 8-bp deletion which is known to activate the gene.  The 

gene mexT, classified as a transcriptional regulator is located upstream and 

in the same orientation as the mexEF-oprN pump (Köhler et al., 1999).  While 

other RND pumps are regulated by transcriptional repressors, the MexEF 

pump is modulated by the transcriptional activator, MexT. Induction of the 

MexEF-OprN pump is dependent upon an ‘active’ form of mexT, which is 

essential to the survival of the cell. Thus much research on nfxC mutants has 

featured the phenotype associated with the mexEF efflux pump.  
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A study looking solely at the mexT-mexE intergenic region in P. aeruginosa 

found that the mexT-proximal 114-bp region contained a MexT-binding site 

that comprised of two nod boxes. The protein MexT was capable of binding 

to the mexT-proximal nod box but not to the mexT-distal nod box. The 

proposal of a mexT binding consensus sequence 

(ATCA(N5)GTCGTA(N4)ACYAT) in an earlier study was therefore ruled out 

since this sequence contained the mexT-distal nod box (Tian et al., 2009a). 

Although the mexT-distal nod box DNA was −10 to −50 bp from the 

transcriptional initiation site, a region known to contain a promoter, this 

region lacked any major promoter-binding sequence known in P. 

aeruginosa. It is was thought that this site may contain a new promoter-

binding sequence or is acted on by an uncharacterized sigma factor.  Also 

within the mexT-mexE intergenic region is a 13 bp inverted repeat separated 

by a 10-bp space. This is located in the mexE-proximal 27-bp region which 

has been identified as a repressor-binding site since deletion of this region 

increased MexE production (Maseda et al., 2010).   

Increased expression of the MexEF–OprN efflux pump is known to reduce 

rhlI and rhlAB transcription which lowers C4-HSL and surfactant production, 

respectively. In this case, expression of lasR and rhlR was not affected 

(Daniels et al., 2004). Besides the mexEF-oprN operon, MexT can activate 

expression of mexS which is characteristically located adjacent to mexT and 

transcribed in the opposite direction (Köhler et al., 1999). There has however 

been no report of a nod box in the promoter region of mexS. The regulation 
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of the mexT regulon appears to be complex as it exerts its effects not just on 

adjacent genes but as global regulator; MexT represses MexAB‐OprM 

thereby decreasing the auto inducer C4‐HSL (Uwate et al., 2013, Maseda et 

al., 2004) whilst induction of the MexEF-OprN efflux pump is associated with 

reduced levels of virulence factor production (Sobel et al., 2005, Tian et al., 

2009b) and transport of cell-signalling intermediates (Tian et al., 2009b). The 

MexAB–OprM efflux system also contributes to 3O,C12-HSLsecretion 

(Pearson et al., 1999). Mutants with the nfxC phenotype are therefore less 

virulent.  

As indicated in chapter 1, independent of MexEF-OprN,  MexT can down 

regulate the TTSS system, pyocyanin formation and early surface 

attachment (Tian et al., 2009b). It is evident that MexT has a wider role than 

just regulation of the mexEF pump. It is unclear how the MexT regulatory 

network affects the transcriptome of strains with and without the 8-bp 

deletion. Understanding the physiological role of the 8-bp sequence and its 

related stress response is key to understanding this adaptive mode of 

survival. To investigate this, the aim was to use RNA-seq to compare gene 

expression levels in a defined medium for two otherwise isogenic mexT 

variants.  
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4.2    Methods 
 

4.2.1    Whole genome DNA extraction and sequencing 
 

To define all mutations per strain, DNA was extracted from 1 mL of overnight 

culture using the MagNA pure Bacterial lysis kit with RNAse (Qiagen, Hilden, 

Germany) on the MagNA Pure Compact instrument (Roche, Switzerland). 

Nextera XT library preparation was carried out before deep sequencing on 

the MiSeq with v3 chemistry (Illumina, California, U.S.A). 

 

4.2.2    DNA Single nucleotide variant calls 
 

To identify single nucleotide variants, DNA sequence reads in fastq gzipped 

format were aligned to the reference genome.  The reference genome used 

was P. aeruginosa PAO1, obtained from NCBI Genbank with the accession 

number NC002516. Reads were aligned to the reference using Bowtie2 

(Langmead and Salzberg, 2012) and alignments were sorted, indexed and 

stored in BAM file format using samtools (Li et al., 2009).  Variants (including 

synonymous and non-synonymous mutations) were called using Bayesian 

inference with freebayes (Garrison, 2012), using the the samtools calmd 

setting for BAQ quality filtering.  A further filtering step was employed to 

remove SNPs in windows of very high SNP density. Variants were stored in 

Samtools VCF file format. Bioinformatics analysis was performed by 

SequenceAnalysis.co.uk. 
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4.2.3    RNA Extraction 
 

Five colonies from each strain grown on Columbia agar were used to 

inoculate 10 ml of Luria-Bertani (LB) broth and incubated at 37°C for 24 hrs.  

Cultures were diluted to 1:1000 in fresh M9 (supplemented with 22.2 mM 

glucose, 2mM MgSO4, 0.1 mM CaCl2, 24.4 mM casamino acids and 1mM 

thiamine hydrochloride) and grown for 24 hr at 37°C, 180 rpm then diluted 

again 1:100 in fresh M9 and incubated for 5 h to ensure the cells were in log 

phase. The following steps represent the final protocol used; considerable 

optimisation was needed to ensure RNA of sufficient quantity and quality 

were obtained, as detailed in Appendix 8.3.1. The final step of the procedure 

was to mix cultures with RNAprotect Bacterial Reagent (Qiagen) and 

centrifuge according to the manufacturer’s protocol. Bacterial pellets were 

stored at –70°C. TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) containing 15 

mg/ml lysozyme (Fisher Scientific Ltd, UK) and proteinase K (Roche, 

Switzerland) were added to cell pellets and incubated for 10 min at ambient 

temperature. Samples were then processed using the RNeasy mini Kit 

(Qiagen) according to the manufacturer’s protocol, with the inclusion of on-

column DNAse treatment from the RNase free DNase kit (Qiagen). Samples 

were also treated with DNase using the Turbo DNA-free Kit (Life 

Technologies Ltd, UK) and washed with the RNeasy mini kit.  
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4.2.4    RNA-sequencing (performed by Genomed, Poland) 
 

Ribo-depletion was performed using the Ribo-Zero rRNA removal kit 

(Bacteria) (Epicentre, Chicago, U.S.A) and the NEBNext® Ultra™ RNA Library 

Preparation Kit.  Sequencing was carried out on the Hi-Seq (Illumina) using 

paired-end sequencing (2x 100 bp) and V3 chemistry reagents. 

 

4.2.5    RNA transcriptomic analysis  
 

4.2.5.1    Analysis at Genomed 
 

Transcriptome reads were aligned to the reference genome as above by 

Genomed using TopHat (Kim and Salzberg, 2011) and stored in a Samtools 

bam file format.  Analysis results were provided in FPKM value output.   

4.2.5.2    Analysis at UEA 
 

Reads were counted and normalised in R using simple log fold change, edgeR 

(Robinson et al., 2010) glm, and edgeR classic formats, as well as using 

DESeq2 (Love, 2014) methods.  Results from the analyses were output as 

sorted excel files.    DESeq2 output was used for downstream analysis after 

verification that other transcriptomics methods provided similar results. This 

was performed by SequenceAnalysis.co.uk (Norwich, UK). 

Sequence alignment and Protein family (Pfam) analysis of the mexT gene 

sequence was performed using the NCBI Blast Analysis database 
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(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and The European Bioinformatics 

Institute supported protein family database (http://pfam.xfam.org/).  

To categorise genes differentially expressed between PA, PAdel and PAnfxC, 

clusters of orthologous group (COG) analysis was carried out using 

annotations downloaded from the Pseudomonas Genome Database (Winsor 

et al., 2016). Some genes have not yet been annotated with COG categories: 

this included 47 and 132 genes up and down-regulated in PAdel and 43 and 

111 genes up and down-regulated in PAnfxC. 

 

4.2.6    Network and metabolic analysis 
 

Pathway analysis was performed using the BioCyc Pathway/Genome 

Database Collection whereby gene lists with expression values were 

submitted (Latendresse and Karp, 2011, Paley and Karp, 2006). To analyse 

networks/pathways and gene enrichment in STRING (http://string-db.org/), 

log2 fold changes over 1 in genes differently expressed between PA and 

PAdel or PA and PAnfxC were submitted and the output analysed. Results 

were filtered and the settings adjusted so that gene associations were made 

using experimental, co-expression, gene fusion and co-occurrence data only. 

A medium confidence level of 0.4 was used.  

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.3    Results 
 

4.3.1    Comparative genomics 
 

Figure 4-1 illustrates the non-synonymous SNPS and indels among the mexT 

variants.  The genes PA4684 and PA4685 have not been previously 

uncharacterized but appear to be sites of genomic mutational hotspots in P. 

aeruginosa (Klockgether et al., 2010), perhaps with compensatory functions 

for the mexT 8-bp deletion. In PA and PAnfxC, a mutation in PA5024 was 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Non-synonymous SNPS and indels among the mexT variants; PA 

(double copy of the 8-bp sequence), PAdel and PAnfxC (single copy of the 

8-bp sequence). WGS sequencing results identified only non-synonymous 

among the three mexT variants.  In PAdel, a side of the 8-bp repeat region, 

this included 1 mutation in PA4684, unique to this strain. Unique to PAnfxC, 

a single mutation in PA4684 was identifed, along with two mutations in 

PA4685 were identified. In PA4684 another mutation was found, present in 

both PAdel and PAnfxC. A detailed view is available in Appendix 8.3.2. 

PA4684 T→C  

 

PA4684 A→C  

 

PA4684 T→G 

PA4685 G→C 
PA4685 A→C 

 

PA5024 G→GG 
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found. It is hypothesized that since the generation of PAnfxC occurred after 

PAdel, a mutation present in PA was passed on to PAnfxC. 

4.3.2    Transcriptome results 
 

When compared to the parent strain, 657 genes showed reduced expression 

with 382 illustrating increased expression in PAdel (Appendix 8.3.3). In 

PAnfxC there were 568 genes showing reduced expression and 317 showing 

increased expression compared to the parent (PA). Of these datasets, 547 

were commonly down-regulated by both PAdel and PAnfxC with 278 

commonly up-regulated. Figure 4-2 shows the similarities in gene expression 

between PAdel and PAnfxC, whereby differentiation between the two 

strains was indiscernible according to phylogenetic analysis.   

Similar to previous reports of nfxC phenotypic mutants, genes 

overexpressed in PAdel/PAnfxC included the mexEF operon, mexS and genes 

involved with ABC transporters. Down regulated genes included the nitrate 

respiratory chain and phenazine,  rhlamnolipid and hydrogen cyanide 

production (Tian et al., 2009b, Kohler et al., 2001, Llanes et al., 2011, Uwate 

et al., 2013, Maseda et al., 2010). New genes implicated by the 8-bp deletion 

were also identified. These up-regulated genes controlled iron transport, 

adaption to toxic substances and translation (Figure 4-2 and 4-4). Genes 

linked to motility, cell adhesion, chemotaxis, oxidative stress and 

metabolism were down-regulated (Figure 4-2 and 4-5). 
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Changes between the single and double copy of the of 8-bp sequence in 

mexT causes a frame shift. The gene could start in the same place in all mexT 

variants and finish out of frame or the genes could start in different places 

in PA and PAdel/PAnfxC and finish in the same frame. To align raw reads 

against the genome, multiple alignment programs were used. All indicated 

a dip in expression at position 280700 bp, just before the site of the 8-bp 

sequence (Figure 4-3). While it was not entirely clear that the dip in 

expression measured by the read alignments was a result of the frame shift 

mutation, it was evident that this was not an artefact since the expression 

profile of PA still contained the first expression peak, symmetrical to PAdel 

and PAnfxC.    

Blast analysis revealed that the deletion of the 8-bp sequence in PAdel and 

PAnfxC abolished the HTH in P. aeruginosa and activated the lysR region. 

This suggested that the double copy of the 8-bp sequence in PA, was a 

repressor of the lysR region. Increased expression was noticed at the N-

terminus of mexT in all three mexT variants. Further analysis of this region 

revealed that there was no stop codon or transcriptional start site sequence 

present in this region to explain this expression profile. The 8-bp repeat 

sequence however showed high GC content; spikes in GC-content can 

represent important compositional factors that define different functional 

genomic units, particularly transcription boundaries which are a unique 

feature for in silico gene identification (Yeramian and Jones, 2003, Zhang et 

al., 2004). Interestingly this expression profile was also noticed in PA 11451, 
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with a stop codon present indicating the presence of two genes (data not 

shown.  
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Figure 4-2 Transcriptome results 
a) Heat map of the relative expression of genes (RPKM, Reads Per 

Kilobase of transcript per Million mapped reads values) in PAdel or 

PAnfxC compared to PA (n=3). Genes that showed ≥ 2-fold changes in 

expression were hierarchically clustered. b) Genes up‐regulated (red) and 

down‐regulated (blue) in PAdel and PAnfxC were categorised according to 

GO term.  Bars indicate the percentage of the genome total for each COG 

category. COG categories are labelled a follows; A: amino acid transport 

and metabolism; B: carbohydrate transport and metabolism; C: cell cycle 

control, cell division, chromosome partitioning; D:cell 

wall/membrane/envelope biogenesis; E: coenzyme transport and 

metabolism; F: defence mechanisms; G: energy production and 

conversion; H: function unknown; I: general function prediction only; J: 

inorganic ion transport and metabolism; K: intracellular trafficking, 

secretion, and vesicular transport; L: lipid transport and metabolism; M: 

nucleotide transport and metabolism; N: post‐translational modification, 

protein turnover, chaperones; O: replication, recombination and repair; P: 

secondary metabolites biosynthesis, transport and catabolism; Q: signal 

transduction mechanisms; R: transcription; S: translation, ribosomal 

structure and biogenesis. 
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Figure 4-3 Expression of the mexT gene in PA and PAdel. 
The 8-bp insertion located in the helix-turn helix in PA reduced expression 
of the lysR binding site by 1.7 log2 fold. Two peaks of increased expression 
in mexT of both strains was noticed, the first of which remained unaffected 
in PA. PAdel and PAnfxC mexT expression were similar. 

 

4.3.3    Pathway analysis and metabolic capability of the mexT 

variants 
 

To gain a deeper understanding of the pathways that were differentially 

regulated between mexT variants with the single and double copy of the 8-

bp sequence, protein-protein interactions (PPIs) were examined between 

protein products of all mexT influenced genes based on experimental, co-

expression, gene fusion and co-occurrence data evidence from the STRING 

Database33. The PPI network for genes up and down regulated in PAdel are 

shown in Figure 4-4 and 4-5. The nodes represent proteins and the edges 

represent the predicted functional associations. A similar method was used 

to gain an overview of which genes were differently regulated by PAnfxC but 
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the analysis did not illustrate differences between PAdel and PAnfxC. This 

may be because although distinct genes were differentially expressed, the 

regulated pathways may be similar, perhaps due to compensatory 

mutations. 

As expected a subset of genes contributed towards the function of ABC 

transporters.  A large proportion of highly expressed genes in PAdel and 

PAnfxC were also related to the Ton system (siderophore transport), iron 

acquisition and heme transport along with sigma and anti-sigma factors 

associated with these functions (FoxR, FemR, PA4896, PA3410, PA1363). 

Increased expression of the type III secretion system was also observed 

along with PQS (pseudomonas quinolone signal) catalytic enzymes. The 

central gene cluster in Figure 4-4 illustrates the large proportion of genes 

linked to gene regulation. 

Genes down regulated in PAdel compared to PA involved those related to 

the type II and VI secretion system, pilli assembly, alginate formation and 

oxidative stress (Figure 4-5). 
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Figure 4-4 Up-regulated genes associated with PAdel 
A. Bra group -branched-chain amino acid ABC transporter; Component of 

the high affinity leucine, isoleucine, valine, transport system (LIV-I), which 
is operative without Na(+) and is specific for alanine and threonine, in 
addition to branched-chain amino acids. 

B. ABC transporter ATP-binding protein, ABC transporter permease 
C. Enzymes related to PQS biosynthetic pathways (methylcitrate synthase, 

2-methylisocitrate lyase, citrate synthase, amino acid permease, 
adenylosuccinate lyase, coenzyme A ligase; formation of anthraniloyl-
CoA)  

D. Virulence down regulation: Degrades 3-oxo-C12-HSL, one of the two main 
AHL signal molecules of P. aeruginosa, and thereby functions as a quorum 
quencher, inhibiting the las quorum-sensing system, pyoverdine 
biosynthesis protein, thioesterase activity 

E. ABC sugar transporter permease 
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F. Antibiotic efflux pump  
G. Bi functional enzymes that catalyze the oxidative decarboxylation of UDP-

glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and 
the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose 
(UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). 
The modified arabinose is attached to lipid A and is required for 
resistance to polymyxin and cationic antimicrobial peptides  

H. Biosynthesis of corrinoids  
I. Iron transport: and sigma factor regulator: ferric pyoverdine receptor, 

anti-sigma factor, transmembrane sensors, Ferrioxamine receptor, 
denitrification process 

J. Type III secretion apparatus 
K. Amino acid (lysine/arginine/ornithine/histidine/octopine) transporter  
L. metalloprotease secretion protein and heme uptake 
M. Transporters: glucose/carbohydrate outer membrane porin Substrate-

selective channel for a variety of different sugars. Involved in the 
transport of glucose, mannitol, fructose and glycerol (sugars able to 
support the growth of P.aeruginosa). Facilitates glucose diffusion across 
the outer membrane 

N. purine ribonucleotide biosynthetic process, nucleotide biosynthesis 
process, glycine biosynthetic processes 

O. Iron biding, heat shock proteins 
P. Hypothetical: synthesis of the polyamines spermine and spermidine from 

putrescine 
Q. Type III export proteins  
R. Gene regulation: 30S and 50 S ribosomal proteins, elongation factors, 

trigger factors, methyl transferase (translation and termination release 
factors), bose-phosphate pyrophosphokinase, cell adhesion, type 3 
secretion 
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Figure 4-5 Down-regulated gene associations in PAdel 
A. Type II secretion system and zinc ion binding 
B. Probable glutamine aminotransferase and actyl trasnferase enzymes 
C. Anaerobic ribonucleoside triphosphate reductases and cation efflux 
system protein   
D. Nitrate reductase and cytochrome C protein 
E. Phytochorme and heme oxygenase, cytochrome C, phenazine production 
F. Xanthine dehydrogenase , oxidoreductase 
G. Pili assembly 
H. Arginine/ ornithine catabolic pathways 
I. metal transporting P-type ATPase, epoxide hydrolase, alginate 
biosynthesis, signal transduction  
J. Sulphur transfer 
K. Chemotaxis methyltransferase, chemotactic transducers, aerotaxis 
transducer  
L. Protein secetion type VI 
M. Malonate metabolism 
N. SpoVR like protein, response to oxidative stress 
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Table 4-1 Up and down regulated pathways in PAdel and PAnfxC 

(compared to PA).  

A detailed view of genes associated with each pathway are shown in 

Appendix 8.3.4. 

 

Up regulated  Down regulated  

Two-component system*  Oxidative phosphorylation† 

Purine metabolism†  Bacterial secretion system * 

Arginine and proline metabolism * Biosynthesis of amino acids *   

Protein export* Purine metabolism*    

Inter-pathway connection 

between Pyruvate metabolism and 

Glyoxylate and dicarboxylate 

metabolism† 

Nitrogen metabolism* 

Nitrogen metabolism † Styrene degradation† 

Propanoate metabolism Aminobenzoate degradation *   

Glyoxylate and dicarboxylate 

metabolism† 

Tyrosine metabolism† 

Pyruvate metabolism* Sulphur metabolism * 

Inter-pathway connection 

between Citrate cycle (TCA cycle) 

and Alanine, aspartate and 

glutamate metabolism† 

Pyruvate metabolism * 

Glycine, serine and threonine 

metabolism  N    

Arginine and proline metabolism  N 

Catalytic complex  N Citrate cycle (TCA cycle) N 

One carbon pool by folate N Glycolysis / Gluconeogenesis  N 

Methane metabolism  N  

Aminoacyl-tRNA biosynthesis  N  

Cysteine and methionine 

metabolism N 

 

Pathways present in *PAdel and PAnfxC, † PAdel only and N PAnfxC only.  
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Pathway analysis (Table 4-1 and Figure 4-6) revealed that deletion of one of 

the 8-bp sequences had a genome wide effect on the metabolic network of 

the cell.  Genes involved in protein and amino acid metabolism were up 

regulated in both variants with the single copy of the 8-bp sequence. Down 

regulated pathways were associated with the bacterial secretion system, 

amino acid biosynthesis and purine and sulphur metabolism. Differences 

between PAdel and PAnfxC were few but included those related to folate, 

tRNA, specific amino acid transport, styrene metabolism and reactions 

within glycolysis and the TCA (tricarboxylic acid cycle). While STRING analysis 

can be ideal for identifying differences in pathways the analysis provides an 

output of the top 10 enriched pathways which is likely to exclude other 

pathways of interest. Pathway analysis also showed that pyruvate, arginine, 

proline and nitrogen metabolism were both up and down regulated. Indeed 

these pathways maybe be differentially regulated, however it is difficult to 

determine which specific metabolites and bio-reactions within a pathway 

were differentially expressed.     
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Figure 4-6 Cell overview of genes differentially regulated by PA and PAdel 
Each node in the diagram (such as the small circles and triangles) represents a single metabolite or protein, with each blue line representing a single 

bioreaction. Catabolic pathways (on the right) are separated from pathways of anabolism and intermediary metabolism (on the left) by the pathways 

representing glycolysis and tricarboyxylic acid (TCA) cycle. Reactions of small-molecule metabolism that have not been assigned to any pathway have 

been omitted from the above diagram. Periplasmic pathways and reactions are shown on the right side in between the two membranes. Bioreactions 

where the difference in expression between PA and PAdel was greater than 1 log2 fold (2) or less than -1  log2 fold  (0.5) are shown. Genes down 

regulated in PAdel are indicated in red and genes up-regulated in purple. 
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4.4    Discussion 
 

The gene mexT is a key regulator of the mexEF pump and as such the mexT 

8-bp deletion has been the foundation for much research in terms of 

antibiotic resistance and virulence. Sequence variants were identifed: the 

double copy of the 8-bp sequence (PA), found in most strains of PAO1 and 

the single copy of the 8-bp sequence (PAdel and PAnfxC) which was found in 

most clinical isolates.  Each appears to be adapted to a very different 

environment (please see discussion in chapter 3). While nfxC mutants such 

as  PT149 (a derivative of PAO1 selected through antibiotic resistance) are 

known to harbour an 8-bp deletion it is unclear whether any additional 

mutations had been selected for aside of the 8-bp sequence without WGS 

evidence, especially since this strain has been passed between researchers 

worldwide, a known cause of genetic diversity (Klockgether et al., 2010). To 

understand the genome wide molecular impact of the deletion, of one copy 

of the 8-bp sequence, whole genome DNA and RNA sequencing was 

performed. Transcriptome analysis provided greater insight into the mexT 

regulon and expression of mexT itself. The role of the mexT 8-bp deletion 

exceeds that of antibiotic resistance and virulence. Identifying targets other 

than the mexEF-oprN, which may be in high demand in natural environments 

and known to promote the nfxC phenotype was therefore deemed 

important.  
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WGS of the mexT variants revealed non-synonymous mutations in known 

mutational hotspots (Klockgether et al., 2010, Dötsch et al., 2009). As 

expected, PAnfxC, a strain naturally selected for in the presence of 

antibiotics contained more mutations compared to PAdel. It would seem 

that the PA4684 and PA4685 operon were sites of compensatory mutations 

in strains with a mexT 8-bp deletion (P<0.05). While the functions of these 

genes were unknown it is likely that these mutations caused the phenotypic 

differences between PAdel and PAnfxC. Despite these mutations, the 

transcriptome of PAdel and PAnfxC were very similar with 547 genes 

commonly up regulated by both PA and PAnfxC and 278 commonly down 

regulated.  

Mutants with the nfxC phenotype and mexT 8-bp deletion are deemed to 

have an active mexT, since the MexEF-OprN efflux system is over expressed 

(Maseda et al., 2000, Tian et al., 2009b, Kumar and Schweizer, 2011, Kohler 

et al., 2001).  Contrary to other studies (Köhler et al., 1999, Olivares et al., 

2014), this study shows that the transcriptional levels of mexT in PAdel and 

PAnfxC were not comparable to those of the wild type (Olivares et al., 2012).  

PAdel and PAnfxC displayed increased expression of mexT by 1.2 log 2 fold 

compared to PA.   Although the lysR region (identified through sequence 

alignment) was inactive in PA, this study shows that the N-terminus was still 

active suggesting that mexT may actually be functional in the wild type 

(Figure 4-3). Furthermore the number of genes exhibiting reduced 

expression (11.7%) was nearly two times more than those displaying 
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increased expression (6.8%) in PAdel and PAnfxC (Figure 4-2). A set of genes 

differentially expressed in an nfxC mutant and its isogenic mutant 

overexpressing MexT (Tian et al., 2009a) were also analysed.  It was found 

that 50.5% of the genes mentioned by Tian (2009a) showed no difference in 

expression between PA and PAdel (O’Gara et al.).  These results show that 

although the 8-bp insert prevents expression of the mexEF pump it does not 

in fact render mexT inactive in PA. 

Protein family analysis revealed that the deletion of the 8-bp sequence 

abolishes the HTH that lies within the lysR region of PAdel. The 

consequential activation of the lysR domain was reflected in the expression 

of genes pertaining to gene activation (30S and 50S ribosomal proteins, 

elongation factors, trigger factors).  In PA, it is clear that the double copy of 

the 8-bp sequence acts as a repressor; an intact HTH reduces expression of 

the mexT lysR region.  In line with  previous research on LTTRs and if the HTH 

is considered the site of another gene (as indicated by the increase in gene 

expression within this region of mexT), the HTH in mexT is located 66 amino 

acids from the N terminus, indicative of a repressor with auto regulative 

functions  (Maddocks and Oyston, 2008).  

Since two peaks of expression across mexT was observed it is hypothesised 

that mexT consists of two entities. While it unclear what effect this has on 

mexT gene regulation, a GC spike found in the region of the 8-bp sequence 

may have a bi regulative function (Yeramian and Jones, 2003, Zhang et al., 
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2004.  RNA-seq analysis also revealed that the mexT binding site consensus 

sequence (Tian et al., 2009a, Köhler et al., 1999) was identified solely in the 

mexT-mexEF intergenic region and could not be used to identify mexT 

dependent genes.  

Co-factors have the ability to modify the LysR-type regulator protein 

conformation resulting in numerous protein targets with the ability to act as 

an activator or repressor (Maddocks and Oyston, 2008). MexT may also bind 

to a modified binding site under different conditions whereby different co-

factors modify the conformation of the LTTR causing the protein to bind to 

different targets depending on the conformation. To date the co-factor(s) of 

MexT have not been identified. Differences in phenotypic microarray 

substrates in chapter 3 may provide some insight into this.  Studies have 

previously shown that small repeated genomic sequences (e.g. miniature 

inverted-repeat transposable elements (MITEs), repetitive extragenic 

palindromic (REP) sequences have the potential to fold into secondary 

structures at the DNA and or RNA level whereby gene expression is regulated 

(Croucher et al., 2011). Repeated sequences have varied roles in bacterial 

cell physiology and cell-host interactions. MITEs for instance inactivate 

genes via insertions within a protein coding sequence (Delihas, 2011).  The 

8-bp duplicated sequence in mexT is located on a helix-turn-helix ensuring 

access to transcriptional regulators (Aravind et al., 2005). Perhaps the 8-bp 

insertion forms a hairpin loop which exerts a supercoiling effect on the helix-

turn-helix. Differences in sigma factor expression (algU and iron scavenging 



 
  
 
 
  CHAPTER 4 

 

115 
 

genes) and small RNAs were also found between strains harbouring the 

double and single copy of the 8-bp sequence, which may have had 

differential effects as a global regulator.  

Variants with the single copy of the  mexT 8-bp sequence showed increased 

resistance to ciprofloxacin and chloramphenicol, indicative of 

overexpression of the MexEF pump (Llanes et al., 2011, Li et al., 1994) which, 

in turn, reduces expression of the carbapenem-specific OprD porin protein 

(Ochs et al., 1999, Livermore, 1992) thus endowing the mutant strains with 

reduced susceptibility to meropenem.  

We also observed increased susceptibility to gentamicin and pipercillin, as 

previously reported (Köhler et al., 1999, Kohler et al., 1997).  β-lactam hyper 

susceptibility in nfxC-type mutant cells is caused by MexT-mediated 

cancellation of C4-HSL-mediated enhancement of MexAB-OprM expression 

(Maseda et al., 2004). In this study however, no significant change in mexAB 

expression was found between strains which may explain why the MIC of 

ceftazidime remained the same; MexAB activity is associated with 

ceftazidime resistance (Du et al., 2010). It is not clear why piperacillin, also a 

beta lactam remained affected. It is possible that there may be other 

mechanisms of resistance against β-lactams, which may work in concert in 

these strains. 

Reduced virulence factor production and swarming is a phenotype 

commonly seen in strains with a non-functional mexT (Luong et al., 2014, 
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Olivas et al., 2012). Overproduction of MexEF–OprN correlates with reduced 

C4-HSL concentrations, controlled by the las and rhl quorum sensing systems 

(Kohler et al., 2001). This study showed reduced expression of all genes in 

the las and rhl operon in PAdel and PAnfxc, except rhlG and las). This would 

explain the reduced swimming, swarming and virulence observed in these 

strains (Kohler et al., 2000, Kohler et al., 2001). RhlG does not affect C4-HSL 

production (Campos-Garcia et al., 1998) but it was not clear why lasl 

expression remained the same in all mexT variants. Type III and VI secretion 

in nfxC mutants are known to be reduced (Olivares et al., 2012, Jin et al., 

2011). The work here shows that this was not the case. Type III secretion was 

increased in PAdel and PAnfxC with type II secretion also increased in PAdel.  

Reduced PQS production is associated with increased mexEF expression 

(Tian et al., 2009a). In previous studies, reduced virulence factor production 

in nfxC mutants was linked to reduced levels of intracellular PQS, due to 

extrusion of HHQ (4-hydroxy-2-heptylquinoline) though the pump or 

reduced amounts of its metabolic precursor, kynurenine (via the anthrialnte 

pathway). Genes related to the PQS operon (pqsB, pqsC, pqsD and pqsE) in 

this study were not significantly different in PA and PAdel/PAnfxC, apart 

from pqsA which actually showed a twofold increase in expression in PAdel 

and PAnfxC (P< 0.05). Chapter 3 revealed a threefold reduction in 

tryptophan utilization (Biolog results from chapter3), a known precursor of 

PQS synthesis yet no differences were found in expression of genes encoding 

anthranilate synthases (trpEG, phnAB, kyn) (Knoten et al., 2014, Palmer et 
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al., 2013). It is speculated that since mexAB-oprM, the majority of the pqs 

operon genes and genes encoding typtophan degradation are not differently 

expressed between mexT variants, reduced virulence and motility in PA is 

not due to quorum sensing specific genes but instead quorum sensing 

regulatory pathways associated with lasR and genes in the phenazine 

operon (which are down regulated) (Dietrich et al., 2006).  

Transcriptome analysis revealed the reduced expression of genes in the alg 

operon (algZ, algR, algA, algB), che operon (cheB, cheY), mcpA, wspA (wspR, 

wspD, wspF, wspC, wspE, wspb > 1.5 fold difference) and pil operon (pilU, 

pilM).  These genes affect alginate production (Baynham et al., 1999), 

flagella assembly and polysaccharide production. Genes regulating 

chemotaxis (cheB and mcpA) (Ferrandez et al., 2002, Garcia-Fontana et al., 

2014) and phosphodiesterase activity and hence motility (McCarter and 

Gomelsky, 2015) were also down regulated. Perhaps these traits are the 

reason for the reduced virulence and motility traits reported in mexT 

mutants (Lamarche and Deziel, 2011, Kohler et al., 2001).  

Figure 4-6 reflects the effects of the 8-bp deletion across various metabolic 

pathways. Phenotypic microarray results from Chapter 3 showed that PAdel 

and PAnfxC were defective in protein, amino acid, nucleoside, sugar, 

carboxylic acid and phosphorus based compound metabolism.  

Overexpression of mexEF-oprN in PAdel is linked to decreased amounts of 

the outer membrane OprD porin (Ochs et al., 1999), an important 
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mechanism which prevents transport of amino acids, proteins and drugs. A 

0.8 log2 fold difference in oprD expression between PAdel and PAnfxC 

compared to PA was observed. RNA-seq data additionally showed that 

within the bra (branched-chain amino acid transport protein) operon, two 

integral membrane proteins (BraD and BraE) and two ATP-binding proteins 

(BraF and BraG) expected to be part of the LIV (leucine, isoleucine, valine, 

alanine, threonine, and possibly serine) transport system were highly 

expressed in PAdel and PAnfxC (Hoshino et al., 1992, Adams et al., 1990, 

Hosie et al., 2002). In agreement, reduced growth of PAdel and PAnfxC was 

observed in the presence of L-valine, isoleucine (plate 3 but not2) and L-

serine (plate1 but not 3).   

Glycolysis and the TCA cycle, key components of central metabolism were 

deferentially regulated by the mexT variants. It would seem that although 

variants with the 8-bp deletion were associated with a metabolic burden, 

PAdel and PAnfxC were more capable of metabolizing methyl pyruvate.  In 

contrast PA3416 and PA3417 which are associated with pyruvate 

decarboxylation (to acetyl CoA) were up regulated in PA. Various other 

discrepancies were observed. For instance, although PAdel and PAnfxC 

showed reduced growth on carboxylic acids the mqo gene responsible for 

the oxidation of malate to oxaloacetate was up regulated. These 

discrepancies represent the need for improved methods to identify specific 

bioreactions within pathways that are differentially altered, an issue that 

was previously highlighted in Table 4-1.  
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In Chapter 3 it was shown that nucleoside media did not support the growth 

of the mexT mutants (PAdel and PAnfxC) and this result was corroborated 

by the reduced expression of genes regulating purine metabolism (xdhA, 

xdhB) inosine, guanosine and adenosine biosynthesis (purB, purH, spuA, 

nrdD, nrdB, ndk, dut). 

Another function of ABC (ATP-binding cassette) transporters is the related 

uptake of iron. (Koster, 2001, Brillet et al., 2012, Danese et al., 2004). This 

was a prominent feature observed in the 8-bp deleted mutants whereby 

genes associated with the Ton family, heme uptake and associated sigma 

factors were highly expressed in mutants with the 8-bp deletion.  

It is thought that mutants with the single copy of the 8-bp sequence are 

adapted to anaerobic environments as elements of the nitrate respiratory 

chain were deferentially regulated (Olivares et al., 2012, Olivares et al., 

2014). In this study, nitrate to nitrite conversion was down regulated by 

genes not only belonging to the nar but also nap operon whereas genes 

converting nitrite to nitrogen such as those involving the nir and nos operon 

were highly expressed. One study hypothesized that the increased oxygen 

consumption rate of nfxC mutants in aerobic conditions may actually lead to 

a decrease in environmental oxygen in cultures, thus enabling cells to sense 

this environmental change and activate the nitrate respiratory chain to 

prevent the deleterious effect associated with overexpression of MexEF-

OprN (Olivares et al., 2014). This is interesting since genes down regulated 
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by the mexT mutants in this study involved those related to oxidative stress, 

superoxide radical degradation and cytochrome C (cco and cox operon), key 

regulators of aerobic respiration. 
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4.5    Conclusion 
 

Different opinions have been expressed as to whether strains containing one 

or two copies of the 8-bp sequence in mexT are “wild types” or “mutants”. 

Although PA is the parent in this study, it would seem incongruous that a 

strain would arise where functionality is blocked in the first instance. 

Transcriptome analysis indicated that mexT is actually an auto regulative 

repressor rather than an activator with an interesting expression profile 

suggesting that mexT may actually consist of two regulatory elements. It was 

also shown that the 8-bp insertion does not inactivate mexT. A 

comprehensive list of differentially expressed genes were also identified, 

that contributed towards the phenotype of PAdel and PAnfxC, 

acknowledging differences between strains as the result of compensatory 

mutations. Results also indicated that the majority of proteins are 

interconnected using String analysis.  This could explain how the regulation 

of distinct genes in multiple pathways may have a similar phenotypic effect, 

if they act on a similar set of genes in key pathways in PAdel and PAnfxC. This 

chapter has defined the link between the 8-bp sequence and antibiotic 

resistance, motility, virulence and metabolism through gene expression 

networks. Cellular processes are regulated by complex networks of 

functionally interacting genes. Differential activity of genes in these 

networks largely determines the state of the cell and cellular phenotypes. 
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Understanding these processes using metabolic reconstruction will allow 

assessment of the impact of such strains in clinical environments.   
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5  Genome scale metabolic reconstruction of 

Pseudomonas aeruginosa 
CHAPTER 5 

5.1    Introduction  
 

The metabolic versatility of P. aeruginosa and its ability to thrive in a range 

of natural environments renders the systemic study of this microorganism 

crucial to the understanding of it’s flexibile nature. Chapter 3 and 4 showed 

that there were differences in the metabolic capability of P. aeruginosa 

based on a genomic 8-bp sequence difference. Phenotypic results showed 

that growth on nucleosides, amino-acids and peptides were not supported. 

Transcriptomic data showed that there were more down-regulated genes 

than there were up-regulated genes relating to metabolism in an array of 

metabolic sub-systems. Unravelling the myriad of systems and pathways 

that contribute towards phenotype and disease is one of the most important 

applications. In order to elucidate the basic principles of metabolic versatility 

and identify the differences in pathways between PA and PAdel, a genome-

scale reconstruction is required.   

The combination of genomic data with biochemical knowledge leads to the 

generation of genome scale metabolic network models. With the aid of 

experimental phenotypic data and computational analysis these models 

allow the exploration and prediction of physiological responses in context of 

defined environments and genetic constraints (Heinemann et al., 2005, 

Oberhardt et al., 2010, Oberhardt et al., 2008).  These models have 
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previously been successfully implemented and yielded clinically relevant 

results. Examples include drug target discovery, early diagnosis of diseased 

phenotypes and the metabolic engineering of cells to enable the production 

of metabolites of industrial interest (Beste et al., 2007, Jamshidi and Palsson, 

2007, Triana et al., 2014, Bro et al., 2006, Bordbar and Palsson, 2012).  

The availability of sequenced genomes has greatly improved over the years 

along with the continuous and updated annotation of genes. The first 

genome-scale metabolic reconstruction of P. aeruginosa PAO1 accounted 

for 1056 genes, 1030 proteins and 883 reactions. The model was tested 

against Biolog PM and genome scale transposon knockout data and led to 

the re-annotation of several open reading frames. These metabolic models 

allow the prediction of a microbe’s entire metabolic map, starting with the 

whole genome sequence (Cuevas et al., 2016). This is the first step in the 

metabolic reconstruction process, creating a draft model. Assembled 

genome sequences can be annotated by software such as Rapid Annotation 

Subsystem Technology (RAST), PROKKA, BG7, Blast2Go and BASys (Aziz et 

al., 2008, Overbeek et al., 2014, Seemann, 2014, Tobes et al., 2015, Conesa 

et al., 2005, Van Domselaar et al., 2005).  Protein and RNA encoding genes 

are assigned functional roles along with Enzyme Commission numbers (E.C.), 

in doing so functional roles are associated to enzymes and then to reactions. 

The cofactors specific to each enzyme are also annotated. Unknown 

cofactors are annotated as standard cofactors (e.g. NAD+) which can lead to 
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inaccuracies in the model (Cuevas et al., 2016, Henry et al., 2010). These 

connections can be obtained from public resources such as EXPASY, the 

KEGG dataset, MetaCyc and BRENDA (Gasteiger et al., 2003, Kanehisa et al., 

2004, Caspi et al., 2014, Schomburg et al., 2002).  

The draft model which consists of a list of reaction equations, compounds 

and compartments is then converted to a stoichiometric matrix. This is also 

known as constraint based modelling as this matrix only contains reactions 

and associated metabolites present within the model. In doing so, the 

boundaries and feasible space which contribute towards phenotype are 

defined (Cuevas et al., 2016). 

Predicting the phenotypic response and fluxes through a reaction in a 

metabolic network allow the confirmation of biochemical reactions. 

Confirmation of complete biochemical reactions present within a 

microorganism and prediction of a phenotypic response requires 

phenotypic, transcriptomic, proteomic, fluxomic, taxonomic, or 

metagenomic verification (Fondi and Liò, 2015). These results are then 

applied along with constraint based modelling, to predict the fluxes through 

a reaction in a process called flux balance analysis (FBA). The processes 

involved in metabolic reconstruction are outlined in Figure 5-1. 

FBA is the linear programming technique that uses metabolic models to 

simulate growth and predict the phenotypic response imposed by 

environmental factors.  Cell growth is simulated by estimating ATP 
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consumption and biomass (e.g. amino acids, lipids, nucleotides and 

cofactors) whereby the product of a biomass reaction is one gram of biomass 

(Henry et al., 2010). FBA and growth simulation are performed using defined 

media compositions which act as another form of constraint set upon the 

model (Cuevas et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1 Metabolic Reconstruction pipeline and programs available  
The genome sequence is first annotated using RAST, metaSHARK or 
AUTOGRAPH. The annotated sequence can then be imported into Model 
SEED or SuBliMinaL Toolbox. A preliminary metabolic model is generated 
using annotated genes and reactions. The model is then refined, by adding 
additional missing or mis-annotated reactions to create a draft 
reconstruction. FBA is then used to simulate biomass and link phenotype 
predictions. Further refinement of the model leads to fitting phenomic 
data such as Biolog PM and/or transcriptomic data into the model. 
 

Phenomic data 
(OptFlux, 

MeaNetX, RAVEN, 
COBRA, 

CellNetAnalyzer) 

DRAFT RECONSTRUCTION MODEL 
 

ANNOTATION SERVER  
RAST, metaSHARK, AUTOGRAPH 

 

ASSEMBLED GENOME 
 

PRELIMINARY MODEL 
Model SEED, SuBliMinaL Toolbox 

 

MODEL REFINEMENT 
Gap-filling and removal/addition of reactions from the model 

 

 FBA  
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In this study the aim was to identify the differences in the metabolic 

capability of PA and PAdel by incorporating genotypic and phenotypic data. 

FBA was used to represent metabolic states, leading to the identification of 

pathways specific to each strain.  
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5.2    Methods 
 

5.2.1    Genome annotation and curation 
 

Whole genome sequences for PA were assembled using Velvet Optimser and 

submitted as FASTA sequences into RAST (http://rast.nmpdr.org/), using the 

below parameters listed in Table 5.1. The automatic process can run into 

problems such as gene candidates that overlap RNAs, or genes that are 

embedded within genes. These issues are automatically corrected by RAST, 

by the deletion of gene candidates. The pipeline also involved fixing 

frameshifts and blasting large gaps for missing genes to prevent errors. 

Protein encoding genes were identified and assigned functions based on 

FIGfams/kmers. Upon completion, the RAST-annotated genome was 

automatically imported into Model SEED (http://modelseed.org/) to 

perform preliminary reconstructions.  

Table 5-1 RAST annotation settings 

 

Settings  

RAST annotation scheme Classic RAST 
Gene caller RASt 
FIGfam (protein family) 
version 

Release70 

Automatically fix error Yes 
Fix frameshifts Yes 
Backfill gaps Yes 
Reference genome PAO1 GenBank accession no.  

NC002516.2 
Verbosity level 0 
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5.2.2    Preliminary reconstruction 
 

In this study, RAST was used to generate annotations and connect 

biochemical reactions to E.C. numbers, encoded by Model SEED. Model 

SEED underlies the RAST platform as a single database and both of these 

publically available sources are frequently updated. While EC numbers are 

not capable of covering all reactions, using a single database platform was 

useful in preventing errors in the reconstruction process since they use the 

same annotation conventions and nomenclature and are therefore more 

consistent (Cuevas et al., 2016).  

 

In Model Seed preliminary reconstructions were performed.  Out of 190 

carbon sources available on the Biolog PM plates, 159 were available on 

Model SEED (listed in Table 5.2). Preliminary reconstructions were carried 

out only on carbon sources that PA was capable of utilising, based on Biolog 

PM results. To identify these carbon sources, an arbitrary cut-off was 

applied. To identify growth on a substrate, the signal value (SV) had to be 

greater than half of the maximum signal value for any substrate in that PM 

plate.  For instance in PM 1 the highest SV produced was 261.58. Therefore 

any substrate that had a signal value greater than 130.79 (half of 261.58) 

was categorized as showing growth. The maximum SV in PM2 was 228.67 

therefore the cut-off for growth of substrates in PM2 was 114.33. Substrates 
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categorized as showing growth were assigned a value of 1 and are listed in 

Table 5.2 as ‘Observed growth’.  

Each reconstruction consisted of a reaction network with gene-protein-

reaction-enzyme associations, predicting Gibbs free energy for organism 

specific biomass reactions involving cofactors, lipids, proteins, DNA, RNA and 

cell wall components. Biomass was predicted using the Biomass 

Composition Reaction (BCR) where the quantity of all metabolite molecules 

required to generate 1 g of biomass was calculated. The small metabolite 

molecules that contributed towards biomass varied depending upon the 

metabolic pathways present in the model (e.g bacterial cell wall type and 

electron transport chain). Each metabolite was associated with a specific 

condition that had to be satisfied if the metabolite was to be included in the 

model. Since some metabolites were universal they were included in all 

models (e.g. nucleotides and amino acids). Some, however were only 

included in the model if the genome annotation included evidence for the 

functional role associated with the utilisation and synthesis of that 

metabolite (Henry et al., 2010).  

 

5.2.3    Merging the preliminary reconstruction models 
 

Once reconstructions for each substrate were complete, the models were 

merged into a single one using a Java script. This merged model represented 

all reactions and compartments relative to the genome and PM carbon 
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sources. This process can incur inconsistencies such as those relating to 

unbalanced reactions which can lead to the false synthesis of ATP  or protons 

(Thiele and Palsson, 2010). The merged model was therefore also validated 

using the Systems Biology Markup Language (SBML) validator 

(http://sbml.org/validator/). Unbalanced reactions or those causing errors 

were removed.   

 

5.2.4    Simulating multiple growth phenotypes using FBA 
 

The annotated genome from RAST and the merged model were then 

imported into K-base (https://kbase.us/). The merged model was imported 

as a “FBA model” in a SBML format. The biomass reaction identifier was 

called “Biomass0” since this was reserved as the identifier used to represent 

biomass in the model. Media compositions representing PM carbon sources 

were imported from the “Public” K-base database.  Phenotypic data was also 

imported as a “Phenotype set” in a tab-separated value format. This file 

consisted of identifiers for each carbon media composition and a phenotype 

consisting of either 1 (growth) or 0 (no growth) based on the cut-off 

previously described. Table 5-2 illustrates the file used to import the 

Phenotype dataset.  

The simulation of growth phenotype was performed in a set of media 

conditions. The draft metabolic model was therefore curated using PM 

growth in specific media conditions allowing the identification of differences 

http://sbml.org/validator/)
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between growth predictions and experimental PM growth. This was 

performed to test the accuracy of the draft model in replicating 

experimental phenotypes. Growth of the model was simulated using FBA for 

each media composition in the phenotype dataset (Table 5-2). The lower 

bounds of exchange reactions were set to −1000 mmol g−1 × h−1, to mimic 

non-limiting conditions. The model was subjected to gap filling to allow 

some reconciliation of the model with PM data.  

Table 5-2 Phenotype data set imported into K-base 

Gene knockout (geneko) referred to a list of genes knocked out. Since the 
parent (PA) was being studied here, this was left blank. Workspace 
information or medilaws included the workspace narrative details used to 
import media compositions. Additional compounds and their workspace ID 
could also be added alongside primary media formulations if required. 
Observed growth indicated growth using PM microarrays results after 
applying the cut-off.  
  

Geneko Mediaws Media 
Additional 
compounds 

Observed 
growth 

  

annapaula:1471110739173 Carbon-1-2-Propanediol 0 

annapaula:1471110739173 Carbon-2-3-Butanediol 0 

annapaula:1471110739173 Carbon-2-3-Butanone 0 

annapaula:1471110739173 Carbon-2-Deoxy-Adenosine 0 

annapaula:1471110739173 Carbon-2-Deoxy-D-Ribose 0 

annapaula:1471110739173 Carbon-2-Hydroxy-Benzoic-Acid 0 

annapaula:1471110739173 Carbon-3-Hydroxy-2-Butanone 0 

annapaula:1471110739173 Carbon-4-Hydroxy-Benzoic-Acid 1 

annapaula:1471110739173 Carbon-4-Hydroxy-L-Proline-trans 1 

annapaula:1471110739173 Carbon-a-D-Glucose 1 

annapaula:1471110739173 Carbon-a-D-Lactose 0 

annapaula:1471110739173 Carbon-a-Hydroxy-Butyric-Acid 0 

annapaula:1471110739173 Carbon-a-Keto-Butyric-Acid 0 

annapaula:1471110739173 Carbon-a-Keto-Glutaric-Acid 1 

annapaula:1471110739173 Carbon-a-Keto-Valeric-Acid 0 

annapaula:1471110739173 Carbon-a-Methyl-D-Galactoside 0 

annapaula:1471110739173 Carbon-a-Methyl-D-Glucoside 0 

annapaula:1471110739173 Carbon-Acetamide 0 

annapaula:1471110739173 Carbon-Acetic-Acid 1 
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annapaula:1471110739173 Carbon-Acetoacetic-Acid 0 

annapaula:1471110739173 Carbon-Adenosine 0 

annapaula:1471110739173 Carbon-Adonitol 0 

annapaula:1471110739173 Carbon-Amygdalin 0 

annapaula:1471110739173 Carbon-Arbutin 0 

annapaula:1471110739173 Carbon-b-D-Allose 0 

annapaula:1471110739173 Carbon-b-Hydroxy-Butyric-Acid 1 

annapaula:1471110739173 Carbon-b-Methyl-D-Galactoside 0 

annapaula:1471110739173 Carbon-b-Methyl-D-Glucoside 0 

annapaula:1471110739173 Carbon-b-Phenylethylamine 0 

annapaula:1471110739173 Carbon-Butylamine-sec 0 

annapaula:1471110739173 Carbon-Butyric-Acid 1 

annapaula:1471110739173 Carbon-Capric-Acid 0 

annapaula:1471110739173 Carbon-Caproic-Acid 1 

annapaula:1471110739173 Carbon-Chondroitin-Sulfate-C 0 

annapaula:1471110739173 Carbon-Citraconic-Acid 0 

annapaula:1471110739173 Carbon-Citric-Acid 1 

annapaula:1471110739173 Carbon-D-Alanine 1 

annapaula:1471110739173 Carbon-d-Amino-Valeric-Acid 1 

annapaula:1471110739173 Carbon-D-Arabinose 0 

annapaula:1471110739173 Carbon-D-Arabitol 1 

annapaula:1471110739173 Carbon-D-Aspartic-Acid 0 

annapaula:1471110739173 Carbon-D-Cellobiose 0 

annapaula:1471110739173 Carbon-D-Fructose 1 

annapaula:1471110739173 Carbon-D-Fructose-6-Phosphate 0 

annapaula:1471110739173 Carbon-D-Galactonic-Acid-g-Lactone 0 

annapaula:1471110739173 Carbon-D-Galactose 0 

annapaula:1471110739173 Carbon-D-Galacturonic-Acid 0 

annapaula:1471110739173 Carbon-D-Gluconic-Acid 1 

annapaula:1471110739173 Carbon-D-Glucosamine 0 

annapaula:1471110739173 Carbon-D-Glucosaminic-Acid 0 

annapaula:1471110739173 Carbon-D-Glucose-1-Phosphate 0 

annapaula:1471110739173 Carbon-D-Glucose-6-Phosphate 0 

annapaula:1471110739173 Carbon-D-Glucuronic-Acid 0 

annapaula:1471110739173 Carbon-D-L-a-Glycerol-Phosphate 0 

annapaula:1471110739173 Carbon-D-L-Carnitine 1 

annapaula:1471110739173 Carbon-D-L-Citramalic-Acid 1 

annapaula:1471110739173 Carbon-D-L-Malic-Acid 1 

annapaula:1471110739173 Carbon-D-L-Octopamine 1 

annapaula:1471110739173 Carbon-D-Lactitol 0 

annapaula:1471110739173 Carbon-D-Malic-Acid 0 

annapaula:1471110739173 Carbon-D-Mannitol 1 

annapaula:1471110739173 Carbon-D-Mannose 0 

annapaula:1471110739173 Carbon-D-Melezitose 0 
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annapaula:1471110739173 Carbon-D-Melibiose 0 

annapaula:1471110739173 Carbon-D-Psicose 0 

annapaula:1471110739173 Carbon-D-Raffinose 0 

annapaula:1471110739173 Carbon-D-Ribose 0 

annapaula:1471110739173 Carbon-D-Saccharic-Acid 0 

annapaula:1471110739173 Carbon-D-Serine 0 

annapaula:1471110739173 Carbon-D-Sorbitol 0 

annapaula:1471110739173 Carbon-D-Tagatose 0 

annapaula:1471110739173 Carbon-D-Tartaric-Acid 0 

annapaula:1471110739173 Carbon-D-Threonine 0 

annapaula:1471110739173 Carbon-D-Trehalose 0 

annapaula:1471110739173 Carbon-D-Xylose 0 

annapaula:1471110739173 Carbon-Dextrin 0 

annapaula:1471110739173 Carbon-Dihydroxy-Acetone 0 

annapaula:1471110739173 Carbon-Dulcitol 0 

annapaula:1471110739173 Carbon-Ethanolamine 1 

annapaula:1471110739173 Carbon-Formic-Acid 0 

annapaula:1471110739173 Carbon-Fumaric-Acid 1 

annapaula:1471110739173 Carbon-g-Amino-Butyric-Acid 1 

annapaula:1471110739173 Carbon-g-Hydroxy-Butyric-Acid 0 

annapaula:1471110739173 Carbon-Gelatin 0 

annapaula:1471110739173 Carbon-Gentiobiose 0 

annapaula:1471110739173 Carbon-Glycerol 1 

annapaula:1471110739173 Carbon-Glycine 0 

annapaula:1471110739173 Carbon-Glycogen 0 

annapaula:1471110739173 Carbon-Glycolic-Acid 0 

annapaula:1471110739173 Carbon-Glycyl-L-Aspartic-Acid 0 

annapaula:1471110739173 Carbon-Glycyl-L-Glutamic-Acid 0 

annapaula:1471110739173 Carbon-Glycyl-L-Proline 1 

annapaula:1471110739173 Carbon-Glyoxylic-Acid 0 

annapaula:1471110739173 Carbon-i-Erythritol 0 

annapaula:1471110739173 Carbon-Inosine 1 

annapaula:1471110739173 Carbon-Inulin 0 

annapaula:1471110739173 Carbon-Inulin 0 

annapaula:1471110739173 Carbon-Itaconic-Acid 1 

annapaula:1471110739173 Carbon-L-Alanine 1 

annapaula:1471110739173 Carbon-L-Alanyl-Glycine 0 

annapaula:1471110739173 Carbon-L-Arabinose 0 

annapaula:1471110739173 Carbon-L-Arabitol 0 

annapaula:1471110739173 Carbon-L-Arginine 1 

annapaula:1471110739173 Carbon-L-Asparagine 1 

annapaula:1471110739173 Carbon-L-Aspartic-Acid 1 

annapaula:1471110739173 Carbon-L-Fucose 0 

annapaula:1471110739173 Carbon-L-Glutamic-Acid 1 
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annapaula:1471110739173 Carbon-L-Glutamine 1 

annapaula:1471110739173 Carbon-L-Histidine 1 

annapaula:1471110739173 Carbon-L-Homoserine 0 

annapaula:1471110739173 Carbon-L-Isoleucine 1 

annapaula:1471110739173 Carbon-L-Lactic-Acid 1 

annapaula:1471110739173 Carbon-L-Leucine 1 

annapaula:1471110739173 Carbon-L-Lysine 1 

annapaula:1471110739173 Carbon-L-Lyxose 0 

annapaula:1471110739173 Carbon-L-Malic-Acid 1 

annapaula:1471110739173 Carbon-L-Methionine 0 

annapaula:1471110739173 Carbon-L-Ornithine 1 

annapaula:1471110739173 Carbon-L-Phenylalanine 0 

annapaula:1471110739173 Carbon-L-Proline 1 

annapaula:1471110739173 Carbon-L-Pyroglutamic-Acid 1 

annapaula:1471110739173 Carbon-L-Rhamnose 0 

annapaula:1471110739173 Carbon-L-Serine 1 

annapaula:1471110739173 Carbon-L-Sorbose 0 

annapaula:1471110739173 Carbon-L-Tartaric-Acid 0 

annapaula:1471110739173 Carbon-L-Threonine 0 

annapaula:1471110739173 Carbon-L-Valine 0 

annapaula:1471110739173 Carbon-Lactulose 0 

annapaula:1471110739173 Carbon-Laminarin 0 

annapaula:1471110739173 Carbon-m-Inositol 0 

annapaula:1471110739173 Carbon-m-Tartaric-Acid 0 

annapaula:1471110739173 Carbon-Malonic-Acid 1 

annapaula:1471110739173 Carbon-Maltose 0 

annapaula:1471110739173 Carbon-Maltotriose 0 

annapaula:1471110739173 Carbon-Mannan 0 

annapaula:1471110739173 Carbon-Mucic-Acid 0 

annapaula:1471110739173 Carbon-N-Acetyl-b-D-Mannosamine 0 

annapaula:1471110739173 Carbon-N-Acetyl-D-Galactosamine 0 

annapaula:1471110739173 Carbon-N-Acetyl-D-Glucosamine 1 

annapaula:1471110739173 Carbon-N-Acetyl-L-Glutamic-Acid 1 

annapaula:1471110739173 Carbon-N-Acetyl-Neuraminic-Acid 0 

annapaula:1471110739173 Carbon-Oxalic-Acid 0 

annapaula:1471110739173 Carbon-Oxalomalic-Acid 0 

annapaula:1471110739173 Carbon-Palatinose 0 

annapaula:1471110739173 Carbon-Pectin 0 

annapaula:1471110739173 Carbon-Propionic-Acid 1 

annapaula:1471110739173 Carbon-Putrescine 1 

annapaula:1471110739173 Carbon-Pyruvic-Acid 1 

annapaula:1471110739173 Carbon-Quinic-Acid 1 

annapaula:1471110739173 Carbon-Salicin 0 

annapaula:1471110739173 Carbon-Sebacic-Acid 1 
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annapaula:1471110739173 Carbon-Stachyose 0 

annapaula:1471110739173 Carbon-Succinic-Acid 1 

annapaula:1471110739173 Carbon-Sucrose 0 

annapaula:1471110739173 Carbon-Thymidine 0 

annapaula:1471110739173 Carbon-Tween-20 1 

annapaula:1471110739173 Carbon-Tween-80 1 

 annapaula:1471110739173 Carbon-Tyramine 1 

 annapaula:1471110739173 Carbon-Uridine 0 

 annapaula:1471110739173 Carbon-Xylitol 0 

 

Missing or miss-annotated reactions can cause problems that prevent the 

model from accurately predicting and generating biomass. Such 

irregularities include imbalanced and irregular formulations (e.g. undefined 

compounds, thermodynamics and reactions). To prevent this, reactions 

within the model were compared to those present within the K-base 

biochemistry database. Attempts were made to find the minimal set of 

reactions required to produce biomass and growth. These reactions were 

then incorporated into the model. This is known as gap filling (Henry et al., 

2010). 

 

5.2.5    Identification of different pathways in PA and PAdel 
 

To identify the pathways which were differentially regulated, FBA was 

performed with the draft model, incorporating RNA expression results. Prior 

to RNA extraction, bacterial cells were grown in supplemented M9 including 

disodium phosphate, monopotassium phosphate, ammonium chloride, 

sodium chloride, glucose, casamino acids, and thiamine hydrochloride. This 
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media composition was not available on K-base. Instead the closest media 

resembling supplemented M9 was used, Argonne LB media.  Details for this 

media composition are included in Table 5-3. Transcriptome data included 

normalized RNA-seq results for each gene in PA and PAdel (Appendix 8.3.3). 

FBA was also performed using the following parameters; expression 

threshold: 0.5 and expression uncertainty: 0.1. Reactions with gene 

expression values in the percentile above this threshold were considered on, 

or off if they were below. The ‘expression of uncertainty’ described the 

range of uncertainty for reaction classifications based on the gene 

expression threshold. Reactions below the level of uncertainty were 

described as unknown. FBA was consequently performed using the draft 

reconstruction model, gene expression results for PA and PAdel, the 

parameters described above and growth conditions incorporating Argonne 

LB media. The results from the FBA for PA and PAdel were then compared. 

Figure 5-2 shows a summary of the metabolic reconstruction method. 
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Table 5-3 Media composition for Argonne LB media. 

The min uptake for all compounds was -100 mol/g cell dry weight (CDW) 
hr and the max uptake 100 mol/g CDW hr. 

 

Compound Name Formula Charge 

cpd00001 H2O H2O 0 
cpd00007 O2 O2 0 
cpd00009 Phosphate HO4P -2 
cpd00013 NH3 H4N 1 
cpd00018 AMP C10H13N5O7P -1 

cpd00023 L-Glutamate C5H8NO4 -1 
cpd00027 D-Glucose C6H12O6 0 
cpd00028 Heme C34H30FeN4O4 -2 
cpd00030 Mn2+ Mn 2 
cpd00033 Glycine C2H5NO2 0 
cpd00034 Zn2+ Zn 2 
cpd00035 L-Alanine C3H7NO2 0 
cpd00039 L-Lysine C6H15N2O2 1 
cpd00041 L-Aspartate C4H6NO4 -1 
cpd00046 CMP C9H13N3O8P -1 
cpd00048 Sulfate O4S -2 
cpd00051 L-Arginine C6H15N4O2 1 

cpd00054 L-Serine C3H7NO3 0 
cpd00058 Cu2+ Cu 2 
cpd00060 L-Methionine C5H11NO2S 0 
cpd00063 Ca2+ Ca 2 
cpd00065 L-Tryptophan C11H12N2O2 0 

cpd00066 L-Phenylalanine C9H11NO2 0 
cpd00067 H+ H 1 
cpd00069 L-Tyrosine C9H11NO3 0 
cpd00091 UMP C9H12N2O9P -1 
cpd00092 Uracil C4H4N2O2 0 
cpd00099 Cl- Cl -1 
cpd00107 L-Leucine C6H13NO2 0 

cpd00119 L-Histidine C6H9N3O2 0 
cpd00126 GMP C10H13N5O8P -1 
cpd00129 L-Proline C5H8NO2 -1 
cpd00149 Co2+ Co 2 
cpd00156 L-Valine C5H11NO2 0 
cpd00161 L-Threonine C4H9NO3 0 
cpd00182 Adenosine C10H13N5O4 0 
cpd00184 Thymidine C10H14N2O5 0 
cpd00205 K+ K 1 
cpd00215 Pyridoxal C8H9NO3 0 
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cpd00218 Niacin C6H4NO2 -1 
cpd00220 Riboflavin C17H20N4O6 0 
cpd00226 HYXN C5H4N4O 0 
cpd00239 H2S H2S 0 
cpd00244 Ni2+ Ni 2 
cpd00246 Inosine C10H12N4O5 0 
cpd00249 Uridine C9H12N2O6 0 
cpd00254 Mg Mg 2 
cpd00311 Guanosine C10H13N5O5 0 
cpd00322 L-Isoleucine C6H13NO2 0 
cpd00381 L-Cystine C6H12N2O4S2 0 

cpd00393 Folate C19H17N7O6 -2 
cpd00438 Deoxyadenosine C10H13N5O3 0 
cpd00531 Hg2+ Hg 2 
cpd00541 Lipoate C8H13O2S2 -1 
cpd00644 PAN C9H16NO5 -1 
cpd00654 Deoxycytidine C9H13N3O4 0 
cpd00793 Thiamine 

phosphate 
C12H17N4O4PS 0 

cpd00971 Na+ Na 1 
cpd01012 Cd2+ Cd 2 
cpd01048 Arsenate HO4As -2 

cpd03424 Vitamin B12 C61H86CoN13O14PR 6 
cpd10515 Fe2+ Fe 2 
cpd10516 fe3 Fe 3 
cpd11574 Molybdate H2MoO4 0 
cpd11595 chromate H2O4Cr -2 
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Figure 5-2 Summary of the metabolic reconstruction pipeline 
The assembled genome sequence was first annotated in RAST and 
automatically imported into Model SEED. Preliminary models were then 
generated in Model Seed whereby intracellular and transport reactions were 
assigned genes according to RAST annotations and organism-specific 
biomass reactions. The preliminary models were merged and refined using 
SMBL validator. Missing or mis-annotated reactions were also added to 
create a draft reconstruction. FBA was then carried out to simulate biomass 
with Biolog and transcriptomic data to create the refined model. 
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5.3    Results 
 

5.3.1    Genome annotation and curation 
 

P. aeruginosa FASTA sequences were aligned to P. aeruginosa PAO1 

GenBank accession no. NC002516.2. The curated and annotated P. 

aeruginosa PAO1 genome was 6,191,479 bp in size. There were 5711 coding 

sequences and 63 RNAs. The RAST annotation results are shown in Figure 5-

3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3 RAST genome annotation results 
Results from the subsystem analysis revealed numerous genes were annotated 
with function relating to metabolism. 
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5.3.2    P. aeruginosa PAO1 model validation 
 

Table 5-4 Experimental and computational growth incorporated in the 
model and used to predict growth phenotype.  
0 indicates no growth and 1 means growth.  Predicted growth rates were 
compared to those experimentally determined and allocated a class 
according to how consistent the results were; CAP—correct positive (the 
model was predicted to grow and showed this), CN—Correct negative (the 
model was predicted to not grow and did not), FP—False positive (model 
was predicted to grow, but it did not) and FN — False negative (model was 
predicted not to grow, but it did). If a cut-off of 0 had been used, a tick was 
assigned showing observed and predicted growth was consistent, leaving 40 
inconsistent results. 

  

Media 
Observed 
PM SV 

Observed 
growth 

In silico 
growth 

Phenotype 
class 

 

1-2-Propanediol 21.53 0 0 CN 

 

✓ 

2-3-Butanediol 16.83 0 0 CN ✓ 

2-Deoxy-Adenosine 0.00 0 0 CN ✓ 

2-Deoxy-D-Ribose 11.19 0 0 CN ✓ 

3-Hydroxy-2-Butanone 7.45 0 0 CN ✓ 

Acetamide 21.90 0 0 CN ✓ 

Adenosine 43.36 0 0 CN ✓ 

α-D-Lactose 0.00 0 0 CN ✓ 

Adonitol 0.00 0 0 CN ✓ 

Amygdalin 0.00 0 0 CN ✓ 

Arbutin 0.00 0 0 CN ✓ 

ß-Methyl-D-Glucoside 0.00 0 0 CN ✓ 

Chondroitin-Sulfate-C 0.00 0 0 CN ✓ 

Citraconic Acid 0.00 0 0 CN ✓ 

D-Arabinose 0.00 0 0 CN ✓ 

D-Aspartic Acid 0.00 0 0 CN ✓ 

D-Cellobiose 0.00 0 0 CN ✓ 

D-Fructose-6-Phosphate 0.00 0 0 CN ✓ 

D-Galactose 0.00 0 0 CN ✓ 

D-Galacturonic Acid 0.00 0 0 CN ✓ 

D-Glucosaminic Acid 0.00 0 0 CN ✓ 

D-Glucose-1-Phosphate 0.00 0 0 CN ✓ 

D-Glucose-6-Phosphate 0.17 0 0 CN ✓ 

D-Glucuronic Acid 0.00 0 0 CN ✓ 

4-Hydroxy-Benzoic Acid 247.13 1 1 CP ✓ 

4-Hydroxy-L-Proline-
trans 244.90 1 1 CP 

 

✓ 
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Media 
Observed 

PM SV 
Observed 

growth 
In silico 
growth 

Phenotype 
class 

 

Acetic Acid 219.48 1 1 CP ✓ 

α-D-Glucose 244.53 1 1 CP ✓ 

ß-Hydroxy-Butyric Acid 218.93 1 1 CP ✓ 

Caproic Acid 228.37 1 1 CP ✓ 

Citric Acid 238.60 1 1 CP ✓ 

D-Alanine 132.00 1 1 CP ✓ 

D-Arabitol 207.02 1 1 CP ✓ 

D-Fructose 226.80 1 1 CP ✓ 

D-Gluconic Acid 258.02 1 1 CP ✓ 

D-L-Citramalic Acid 176.03 1 1 CP ✓ 

D-L-Malic Acid 241.25 1 1 CP ✓ 

D-L-Octopamine 248.10 1 1 CP ✓ 

D-Mannitol 230.00 1 1 CP ✓ 

Ethanolamine 235.34 1 1 CP ✓ 

Fumaric Acid 246.23 1 1 CP ✓ 

γ-Amino-Butyric Acid 255.97 1 1 CP ✓ 

Glycerol 206.24 1 1 CP ✓ 

Glycyl-L-Proline 235.93 1 1 CP ✓ 

Inosine 151.61 1 1 CP ✓ 

Itaconic Acid 248.54 1 1 CP ✓ 

L-Alanine 208.00 1 1 CP ✓ 

L-Arginine 226.71 1 1 CP ✓ 

L-Asparagine 259.19 1 1 CP ✓ 

L-Aspartic Acid 245.06 1 1 CP ✓ 

L-Glutamic Acid 239.91 1 1 CP ✓ 

L-Glutamine 261.58 1 1 CP ✓ 

L-Histidine 246.28 1 1 CP ✓ 

L-Isoleucine 222.24 1 1 CP ✓ 

L-Lactic Acid 114.84 1 1 CP ✓ 

L-Leucine 158.18 1 1 CP ✓ 

L-Lysine 144.87 1 1 CP ✓ 

L-Malic Acid 235.20 1 1 CP ✓ 

L-Ornithine 147.09 1 1 CP ✓ 

L-Proline 258.74 1 1 CP ✓ 

L-Pyroglutamic Acid 253.21 1 1 CP ✓ 

L-Serine 93.92 1 1 CP ✓ 

Malonic Acid 172.91 1 1 CP ✓ 

N-Acetyl-D-Glucosamine 190.58 1 1 CP ✓ 
N-Acetyl-L-Glutamic 
Acid 245.16 1 1 CP 

✓ 

Propionic Acid 241.90 1 1 CP ✓ 

Putrescine 211.50 1 1 CP ✓ 
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Media 
Observed 

PM SV 
Observed 

growth 
In silico 
growth 

Phenotype 
class 

 

Quinic Acid 244.66 1 1 CP ✓ 

Pyruvic Acid 165.49 1 1 CP ✓ 

Sebacic Acid 211.58 1 1 CP ✓ 

Succinic Acid 175.11 1 1 CP ✓ 

Tween-20 185.15 1 1 CP ✓ 

Tween-80 230.83 1 1 CP ✓ 

Tyramine 249.32 1 1 CP ✓ 

δ-Amino Valeric Acid 237.53 1 1 CP ✓ 

2-3-Butanone 14.47 0 1 FP ✓ 

Acetoacetic Acid 4.52 0 1 FP ✓ 

α-Hydroxy-Butyric Acid 8.75 0 1 FP ✓ 

α-Keto-Butyric Acid 13.15 0 1 FP ✓ 

α-Keto-Valeric Acid 7.02 0 1 FP ✓ 

Capric Acid 33.06 0 1 FP ✓ 

Dextrin 4.60 0 1 FP ✓ 

D-Glucosamine 14.65 0 1 FP ✓ 

Dihydroxy-Acetone 19.64 0 1 FP ✓ 
D-L-a-Glycerol-
Phosphate 17.58 0 1 FP 

✓ 

D-Malic Acid 1.46 0 1 FP ✓ 

D-Raffinose 1.68 0 1 FP ✓ 

D-Ribose 25.99 0 1 FP ✓ 

D-Serine 2.27 0 1 FP ✓ 

D-Tartaric Acid 0.19 0 1 FP ✓ 

D-Threonine 1.14 0 1 FP ✓ 

D-Trehalose 52.72 0 1 FP ✓ 

Dulcitol 4.55 0 1 FP ✓ 

D-Xylose 1.78 0 1 FP ✓ 

Formic Acid 7.87 0 1 FP ✓ 

Gelatin 29.44 0 1 FP ✓ 

Gentiobiose 0.79 0 1 FP ✓ 

γ-Hydroxy-Butyric Acid 8.79 0 1 FP ✓ 

Glycine 16.23 0 1 FP ✓ 

Glycogen 2.15 0 1 FP ✓ 

Glycyl-L-Aspartic Acid 8.83 0 1 FP ✓ 

Glycyl-L-Glutamic Acid 15.64 0 1 FP ✓ 

i-Erythritol 1.58 0 1 FP ✓ 

L-Alanyl-Glycine 43.59 0 1 FP ✓ 

L-Arabinose 2.61 0 1 FP ✓ 

L-Lyxose 70.77 0 1 FP ✓ 

L-Methionine 1.84 0 1 FP ✓ 

L-Phenylalanine 36.11 0 1 FP ✓ 
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Media 
Observed 

PM SV 
Observed 

growth 
In silico 
growth 

Phenotype 
class 

 

L-Threonine 6.69 0 1 FP ✓ 

L-Valine 47.00 0 1 FP ✓ 

L-Tartaric Acid 5.45 0 1 FP ✓ 
N-Acetyl-D-
Galactosamine 1.37 0 1 FP 

✓ 

Oxalomalic Acid 11.63 0 1 FP ✓ 

Palatinose 2.37 0 1 FP ✓ 

Pectin 2.72 0 1 FP ✓ 

Salicin 0.21 0 1 FP ✓ 

Sec-Butylamine 1.14 0 1 FP ✓ 

Thymidine 1.26 0 1 FP ✓ 

Uridine 44.24 0 1 FP ✓ 

Butyric Acid 110.73 1 0 FN  

D-L-Carnitine 153.10 1 0 FN  

α-Keto-Glutaric Acid 250.82 1 0 FN  

2-Hydroxy-Benzoic Acid 0.00 0 1 FP  

α-Methyl-D-Galactoside 0.00 0 1 FP  

α-Methyl-D-Glucoside 0.00 0 1 FP  

ß-D-Allose 0.00 0 1 FP  

ß-Methyl-D-Galactoside 0.00 0 1 FP  

ß-Phenylethylamine 0.00 0 1 FP  

D-Galactonic Acid-γ-
Lactone 0.00 0 1 FP 

 

D-Lactitol 0.00 0 1 FP  

D-Mannose 0.00 0 1 FP  

D-Melezitose 0.00 0 1 FP  

D-Melibiose 0.00 0 1 FP  

D-Psicose 0.00 0 1 FP  

D-Saccharic Acid 0.00 0 1 FP  

D-Sorbitol 0.00 0 1 FP  

D-Tagatose 0.00 0 1 FP  

Glycolic Acid 0.00 0 1 FP  

Glyoxylic Acid 0.00 0 1 FP  

Inulin 0.00 0 1 FP  

Lactulose 0.00 0 1 FP  

Laminarin 0.00 0 1 FP  

L-Arabitol 0.00 0 1 FP  

L-Fucose 0.00 0 1 FP  

L-Homoserine 0.00 0 1 FP  

L-Rhamnose 0.00 0 1 FP  

L-Sorbose 0.00 0 1 FP  

Maltose 0.00 0 1 FP  
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Media 
Observed 

PM SV 
Observed 

growth 
In silico 
growth 

Phenotype 
class 

 

Mannan 0.00 0 1 FP  

Maltotriose 0.00 0 1 FP  

M-Tartaric Acid 0.00 0 1 FP  

Mucic Acid 0.00 0 1 FP  

N-Acetyl-b-D-
Mannosamine 0.00 0 1 FP 

 

N-Acetyl-Neuraminic 
Acid 0.00 0 1 FP 

 

Oxalic Acid 0.00 0 1 FP  

Stachyose 0.00 0 1 FP  

Sucrose 0.00 0 1 FP  

Xylitol 0.00 0 1 FP  

 

 

To assess the accuracy of the model and the ability to predict growth, 

simulated growth was compared to PM growth using in silico prediction. 

Among the 192 carbon substrates utilised on the Biolog PM Carbon plates, 

159 carbon sources had a metabolic reaction assigned in the model. The 

carbon sources were appropriate for in silico predictions, but predicting the 

FBA for substrates in the Nitrogen (PM3), Phosphorus (PM4) and Peptide 

Nitrogen (PM6-8) plates could not be performed. This meant that that 

refinement of the model incorporating substrates in PM3-8 to improve the 

accuracy of the model, could not be performed at this present time. The 

experimental media utilised for growth in PM3, 4 and 6-8 were 

supplemented with succinate instead of glucose. The media composition on 

Model Seed and K-base required modifications which when applied caused 

the program to fail since these programs are still in the early developmental 

stages and there is no reaction data available for every co-factor in each 
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cellular compartment of the model. There were additionally no media 

compositions available for substrates in the Peptide-Nitrogen plates. This 

may be because the reactions assigned to dipeptides and tripeptides are 

mostly unknown.  

Carbon sources that were included in the model are listed in Table 5-4 along 

with their experimental and computational growth phenotype. Simulation 

of growth was performed using FBA in K-Base. Experimental growth was 

determined using a cut-off whereby SV’s (signal values) for each substrate, 

greater than half of the maximum SV in the corresponding plate were 

considered as growth. This cut-off led to an underestimation of the overall 

agreement between PM outcomes and computational predictions. For 

example 2-3-Butanone had a signal value of 14.47 which was below the cut-

off and was assigned a ‘False Positive’ phenotype according to the model. A 

cutoff of 0 would have provided a better indication of growth. To improve 

the accuracy of the model, new reconstructions (represented by an SBML 

file for each carbon source) could have been added to the model for carbon 

sources above the cut-off of 0. This was not carried at the time since each 

SBML file (representing a FBA for each carbon source) already in the model 

covered most of the reactions available in the metabolic framework.  A cut-

off of ‘0’ meant that 120 out of 192 carbon sources were consistent with the 

experimental data, confirming the accuracy of the model. A tick confirmed 

an agreement between the experimental and computational results if a cut-

off of 0 had been applied. This is shown in Table 5-4. 
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5.3.3    Integrating transcriptomics with the metabolic model 
 

Omics-derived data was used to refine, validate and integrate with the 

merged metabolic model. FBA was performed, as described in the methods 

using the merged metabolic model and gene expression values to associate 

genes to a metabolic pathway or reaction.  The final model carried out on 

supplemented LB media included 156 compounds and 1673 reactions. 

Results showed that PA had a biomass of 30.27 g and PAdel a biomass of 

20.17, demonstrating that the model grew less with the mutant strain 

(PAdel).  Exchange (transporter) based reactions most likely also contributed 

to this result since there were 3 less compounds available to PAdel 

(compared to PA) with 1 more compound excreted (Table 5-5 and 5-6). 

Although there were less compounds available to PAdel, 29 were involved 

in uptake (2 more than PAdel). This could be caused by differences in the 

catabolism and anabolism of compounds available in the media. 

Transporters are difficult to annotate because there are very similar to each 

other and only differ in substrate specificity. This may have been a 

contributing factor (Marger and Saier, 1993, Saier, 1994). During gap-filling 

it is also important to recognize that not all reactions are equal. Transporters 

for instance and non-KEGG reactions are penalized along with missing 

structures or unknown thermodynamic values (Henry et al., 2010). 

Reactions were categorised as ‘on’ (meaning active), ‘off’ (meaning inactive) 

or ‘unknown’. A full list of reactions in each strain are available upon request. 
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The reaction states in both PA and PAdel were identical; 615 were active, 

613 were inactive and 448 were unknown. Out of the 1673 reactions, 372 

were found to be different between PA and PAdel. Unknown reactions were 

omitted, including those that had been identified as unknown for one strain 

but active/inactive for another. The analysis was therefore performed using 

reactions that were specifically identified as ‘on’ and ‘off’. This left 18 

reactions that were categorically different between PA and PAdel, all of 

which were active in PA but inactive in PAdel. Details of these reactions are 

listed in Table 5-7 along with gene associations. 

Table 5-5 Compound exchange results 

Available compounds refers to compounds and co-factors in the media that were 
present and could be metabolised by the cell. Uptake refers to compounds that 
were capable of entering the cell. Excretion indicates the number of compounds 
that were expelled from the cell. Exchange reactions were classified as blocked 
(not present in the model), negative (excretion), negative variable (a zero maximal, 
and a negative minimal, meaning it can either be zero, or it can go from right to 
left), positive (uptake), positive variable (reaction has a positive maximal, and a 
zero minimal, meaning that it can either be zero, or it can go from left to right) and 
variable (means that the reaction has positive maximal and negative minimal 
values, meaning that it can go in either direction). 

 

Overview of compounds PA PAdel 

Available 111 108 
Uptake 27 29 
Excretion 18 19 

Reaction classification of compound exchanges (transporters) that varied 
between PA and PAdel 

Negative 1 1 
Negative variable 1 3 
Blocked 3 1 
Positive 1 3 
Positive variable 3 2 
Variable 2 1 
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Table 5-6  Differences in compound exchange reactions (transporters).  
All exchanges are related to the extracellular compartment of the cell. The state of the exchange was described as being involved in UP (uptake) or EX (excretion) or being IA 

(inactive). Exchange reactions were classified as blocked (not present in the model), negative (excretion), negative variable (a zero maximal, and a negative minimal, meaning 

it can either be zero, or it can go from right to left), positive (uptake), positive variable (reaction has a positive maximal, and a zero minimal, meaning that it can either be zero, 

or it can go from left to right) and variable (means that the reaction has positive maximal and negative minimal values, meaning that it can go in either direction). Max flux 

defined the maximum allowed uptake/excretion of a compound while the min flux defined the minimum allowed uptake or excretion of a compound. Results highlighted in 

yellow showed differences in reaction classification between strains. The remaining results did not show a differences in reaction classifications but there were differences in 

reaction states between strains. 

Compound 
compound 
ID 

Compound 
charge 

Max 
flux 

Min 
flux 

PA reaction 
states 

PA reaction 
classification 

PAdel reaction 
state 

PAdel reaction 
classification 

Urea cpd00073 0 0 -1000 EX Negative variable EX Negative 

L-Proline cpd00129 0 100 -100 UP Variable UP Positive 

3-Hydroxybutanoate cpd00797 -1 0 -1000 IA Blocked IA Negative variable 

L-Arginine cpd00051 1 100 -100 EX Variable UP Positive variable 

Fe2+ cpd10515 2 100 -100 IA Positive variable UP Positive 

L-Methionine cpd00060 0 100 -100 UP Positive UP Positive variable 

Xanthine cpd00309 0 0 -1000 EX Negative EX Negative variable 

Fe3 cpd10516 3 100 -100 UP Positive variable UP Positive 

Hypoxanthine cpd00226 0 100 -100 IA Blocked EX Variable 

Uracil cpd00092 0 100 -100 UP Positive variable IA Blocked 

4-Hydroxy-benzylalcohol cpd15378 0 0 -1000 IA Blocked IA Negative variable 

H+ cpd00067 1 100 -100 UP Variable EX Variable 

L-Glutamate cpd00023 -1 100 -100 EX Variable UP Variable 
Acetoacetate cpd00142 -1 0 -1000 IA Negative variable EX Negative variable 

O2 cpd00007 0 100 -100 EX Variable UP Variable 
CO2 cpd00011 0 0 -1000 IA Negative variable EX Negative variable 
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Table 5-7 Predicted pathways that are active in PA and inactive in PAdel. All reactions were related to the cytosol compartment (c0). 
Each K-base reaction has been assigned a KEGG ID, gene and Enzyme Commission number (E.C.). Gene expression values have also 
been provided for PA and PAdel. All of the below 18 reactions were inactive in PAdel but active in PA. A full list of reactions for each 
strain are available upon request. 

 

Reaction ID 

 
 

Pathway Reaction name Kegg ID Reaction 
 
Gene  

PAdel 
gene 
expression 

PA gene 
expression 

E. C. 
Number 

rxn02201 

 
 
 
 
-Folate biosynthesis 

2-amino-4-hydroxy-6-
hydroxymethyl-7,8-
dihydropteridine-
diphosphate:4-
aminobenzoate 2-amino-
4-
hydroxydihydropteridine-
6-methenyltransferase R03067 

ABEE + 7,8-
Dihydropterin 
pyrophosphate <=> PPi + 
Dihydropteroate PA3361 99.24 6201.84 2.5.1.15 

 
rxn00953 

 

 

-Glycine, serine and 

threonine metabolism  

-Cysteine and 

methionine 

metabolism  

-Antibiotic biosynthesis   

-Amino acids 

biosynthesis 

 
L-Serine hydro-lyase 
(adding homocysteine) R01290 

Serine + L-Homocysteine 
<=> H2O + Cystathionine PA5208   439.71 1623.38 4.2.1.22 
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Reaction ID 

 
 

Pathway Reaction name Kegg ID Reaction Gene 

PAdel 
gene 

expression 
PA gene 

expression 
E. C. 

Number 

rxn01268 

 
-Antibiotic biosynthesis   

-Biosynthesis of amino 
acids 
-Novobiocin 
biosynthesis  
-Biosynthesis of 
secondary metabolites 

Prephenate:NAD+ 
oxidoreductase(decarboxy
lating) R01728 

NAD + Prephenate <=> 
NADH + CO2 + 4-
Hydroxyphenylpyruvate PA1784 255.57 1480.71 

1.3.1.12 
1.3.1.43 
1.3.1.52 

rxn00068 

 
 
--- 

Fe2+:NAD+ 
oxidoreductase R00092 

NAD + H+ + 2 Fe2+ <=> 
NADH + 2 fe3 PA2079 390.75 342.82 1.16.1.7 

rxn01269 

-Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 
-Biosynthesis of 
secondary metabolites 
- Antibiotic 

biosynthesis   

Prephenate:NADP+ 
oxidoreductase(decarboxy
lating) 
 
 R01730 

TPN + Prephenate <=> 
TPNH + CO2 + 4-
Hydroxyphenylpyruvate PA1784 255.57 1480.71 

1.3.1.13 
1.3.1.43 

 

rxn00555 

-Antibiotic biosynthesis   

-Alanine, aspartate and 
glutamate metabolism  
-Amino sugar and 
nucleotide sugar 
metabolism  
-Metabolic pathways 

L-glutamine:D-fructose-6-
phosphate isomerase 
(deaminating) R00768 

L-Glutamine + Neuberg 
ester <=> GLU + D-
Glucosamine phosphate 

PA1263 
or 
PA5473 

644.65 or 
579.12 

482.72 or 
1560.20 2.6.1.16 
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Reaction ID 

 
 

Pathway 
Reaction name Kegg ID Reaction Gene 

PAdel 

gene 

expression 
PA gene 

expression 
E. C. 

Number 

rxn01642 

 
 
-Histidine metabolism 

4-imidazolone-5-
propanoate 
amidohydrolase R02288 

H2O + 4-Imidazolone-5-
propanoate <=> N-
Formimino-L-glutamate PA4108 409.48 1730.16 3.5.2.7 

rxn02971 

-Benzoate degradation  
-Microbial metabolism 
in diverse 
environments  
-Degradation of 
aromatic compounds 

5-oxo-2,5-dihydrofuran-2-
acetate delta3-delat2-
isomerase R06990 

Muconolactone <=> 3-
Oxoadipate enol-lactone PA1733 674.40 1322.15 5.3.3.4 

rxn02200 

 
 
 
-Folate biosynthesis 

2-amino-4-hydroxy-6-
hydroxymethyl-7,8-
dihydropteridine:4-
aminobenzoate 2-amino-
4-
hydroxydihydropteridine-
6-methenyltransferase R03066 

ABEE + 6-hydroxymethyl 
dihydropterin <=> H2O + 
Dihydropteroate PA3361 99.24 6201.84 2.5.1.15 

rxn03380 

 
--- 

L-Serine hydro-lyase 
(adding homocysteine) R04942 

Serine + 
Selenohomocysteine <=> 
H2O + 
Selenocystathionine PA5208   439.71 1623.38 4.2.1.22 



 
 

CHAPTER 5 

 

154 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction ID 

 
 

Pathway Reaction name Kegg ID Reaction Gene 

PAdel 
gene 

expression 
PA gene 

expression 
E. C. 

Number 

rxn05909 

-Glycine, serine and 
threonine metabolism  
- Antibiotic 

biosynthesis   

L-serine hydro-lyase 
(adding hydrogen sulfide, 
L-cysteine-forming) R00891 

Serine + H2S <=> H2O + 
L-Cysteine PA5208   439.71 1623.38 4.2.1.22 

 
rxn00056 

Porphyrin and 
chlorophyll 
metabolism 

Fe(II):oxygen 
oxidoreductase R00078 

O2 + 4 H+ + 4 Fe2+ <=> 2 
H2O + 4 fe3 PA2079 390.75 342.82 1.16.3.1 

rxn07841 

 
-Zeatin biosynthesis  
-Biosynthesis of 
secondary metabolites 

2-Isopentenyl-
diphosphate:ATP delta2-
isopentenyltransferase R08051 

ATP + DMAPP <=> PPi + 
Isopentenyl-ATP PA3361 99.24 6201.84  

rxn02473 

-Histidine metabolism  
-Biosynthesis of 
secondary metabolites  
-Biosynthesis of amino 
acids 

D-erythro-1-(Imidazol-4-
yl)glycerol 3-phosphate 
hydro-lyase R03457 

D-erythro-imidazol-
glycerol-phosphate <=> 
H2O + Imidazole-acetol 
phosphate 

PA0524 
or 
PA5208 

5031.17 or 
439.71 

1321.39 or 
1623.38 4.2.1.19 

rxn05596 

 Potassium transport out 

via proton antiport  H+[e] + K+ <=> H+ + 
K+[e] 

PA2618 
or 
PA1228 

481.36 or  
77.11 

1940.00 or 
34.74 

TC-2.A.37 
2.A.37 

rxn00567 

-Nitrogen metabolism  
-Microbial metabolism 
in diverse 
environments 

Nitric-
oxide:ferricytochrome-c 
oxidoreductase R00783 

H2O + Cytochrome c3+ + 
NO <=> 2 H+ + Nitrite + 
Cytochrome c2+ PA2193 124.30 1484.07 1.7.2.1 

 
rxn07842 

-Zeatin biosynthesis 2-Isopentenyl-
diphosphate:ADP delta2-
isopentenyltransferase R08052 

ADP + DMAPP <=> PPi + 
Isopentenyl-ADP PA3361 99.24 6201.84  
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5.4    Discussion 
 

In this study computational systems biology was integrated with genomic 

and phenomic data to predict the impact of the mexT 8-bp repeat 

sequence on metabolic capability. Differences in the metabolic pathways 

relating to glycolysis, gluconeogenesis, oxidative phosphorylation and 

biomass were identified, illustrating the complex processes underlying P. 

aeruginosa adaption.  

A draft metabolic reconstruction model incorporating constraint-based 

modelling was created using the parent strain (PA) combined with its 

genomic and PM (phenotypic microarray) derived data. A high cut-off value 

was initially chosen for cellular growth to allow differentiation between 

growth phenotypes in PA and PAdel. Although 75% of the PM substrates 

were accurately predicted using in silico modelling and despite 

modification of the cut-off value there were still discrepancies. These 

inconsistencies were most likely caused by missing or mis-annotated genes 

in the initial draft reconstruction which prevented the model from testing 

specific carbon sources. The identification of these gaps or missing 

transport reactions is a necessary refinement of the model in the future. 

To overcome this, genomic annotations need improvement and the 

reactions involved in the metabolism of specific substrates need to be 

defined better. 
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According to the RNA-seq results from chapter 4 and the Panther Gene 

Ontology database (http://www.pantherdb.org/) it was shown that 99 of 

the up-regulated genes in PAdel were linked to metabolic processes and 31 

genes linked to transporters. Down-regulated genes related to metabolism 

accounted for 125 genes while 26 were linked to transporters. It was 

unclear from this data which pathways and transporters were specifically 

altered since RNA-seq identifies genes that are differentially regulated but 

it does assign these to a pathway. The draft metabolic model was therefore 

used to refine and integrate omics derived data. FBA was performed and 

growth simulated using supplemented LB media to validate the model. The 

modified metabolically reconstructed model contained 156 compounds 

and 1673 reactions, the largest, up-to-date and most refined model 

reported for any Pseudomonad (or even any strain) (Oberhardt et al., 

2008).  PA showed increased growth and produced a larger biomass of 

30.27 g compared to 20.17 g by PAdel. Pathway analysis also identified 18 

reactions unique to PA, confirming previous findings from Chapter 3 and 4 

using PM and transcriptomic results, that PA is more metabolically active 

compared to PAdel. This also highlights the predictive capability of this 

method.   

Reactions that displayed differences between strains were related to 

virulence, antibiotic and amino acid biosynthesis and the ability to 

metabolise in diverse environments. These reactions are likely to increase 

http://www.pantherdb.org/
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the efficiency of metabolism by influencing processes such as glycolysis, 

gluconeogenesis and oxidative phosphorylation. All of these gene-reaction 

associations showed a ≥2 fold change difference in gene expression 

between the parent and mutant strain. The exception was the oxido-

reductase reactions which were assigned to PA2079 where the difference 

in expression between PA and PAdel was 0.9 fold change.  The reason for 

this maybe that the model was refined using stoichiometric results and gap 

filling or there was an annotation issue.  Again, further refinement of the 

model will reveal gaps in the metabolic framework which can be corrected 

to increase the accuracy. 

Analysis of compounds exchanged through transporters revealed 

differences in 11 exchange reactions between PA and PAdel. These 

compounds were not identified in the pathway analysis suggesting these 

differences are due to the catabolism and metabolism of cofactors within 

reactions altering between compartments.  

RNA-seq data showed that there were more transporters up-regulated 

then there were down-regulated in PAdel. This would explain the results 

observed in Table 5-5 and 5-6 whereby PAdel was predicted to contain 2 

less blocked reactions, 2 more positive and 2 more negative variable 

reactions, contributing to the increased uptake and excretion of 

compounds during efflux. 
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Biolog phenotypic analysis indicated that PAdel was not capable of 

efficiently growing on nucleoside based media. In agreement, the model 

showed uracil (formed from uridine) was involved in uptake in PA while 

this pathway was blocked in PAdel. Furthermore hypoxanthine, also a 

constituent of nucleic acids (inosine) was up-taken but also excreted by 

PAdel. Hypoxanthine was therefore expected to be linked to uptake in PA, 

yet this reaction was actually completely blocked. PM results illustrated 

that growth on butyric-acid based media was marginally increased in 

PAdel. Results from the hydroxyl-butanoate compound exchange (a 

hydroxyl-butryic derivative) in the model suggest that this maybe because 

this reaction was blocked in PA but excreted by PAdel. L-arginine and L-

proline are amino acids that are synthesised by similar pathways yet is 

unclear why L-proline and L-arginine were involved in uptake in PAdel but 

only L-proline was transported into PA. Iron related compounds were also 

positively transported into PAdel but by PA there were variably up-taken 

suggesting a form of siderophore regulation pertaining to increased 

virulence, as previously observed. 

The D-fructose-6-phosphate isomerase pathway with L-glutamine in PAdel 

was inactive within the cell in the model.  This may be caused by the 

positive flux caused by glutamate import through transporters. Glutamine 

is formed by the condensation of glutamate and ammonia. Since hydrolysis 

of urea produces ammonia in the predicted media, ammonia was capable 
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of reacting with glutamate to produce glutamine which could then pass 

into glycolysis via D-fructose-6-phosphate isomerase. This may explain why 

no difference was observed between PA and PAdel when grown solely on 

L-glutamine or L-glutamate media (PM data). 

Further refinement is underway to increase the accuracy of the metabolic 

model. This includes the modification of the draft model to incorporate the 

genomic content and specific mutations found in PAdel and PAnfxC. The 

removal of inaccurate annotations, inconsistent phenotypes (observed vs 

predicted) and un-balanced reactions will increase the predictive 

capability. The incorporation of new reactions, thermodynamic 

information and related compounds to the modelling database will allow 

the addition of new media compositions relating to sources in PM 4-8, 

further increasing the complexity and predictability power of the model. 

The metabolic reconstruction was performed using supplemented LB 

(Argonne LB) since the media composition required to mimic 

supplemented M9 (which was used experimentally) could not be 

performed. Model SEED and K-base are not in their present form 

compressive nor flexible enough to perform the detailed analysis required 

to define differences in the metabolic and regulatory network. It does 

however provide a way of predicting differences in pathway utilisation 

among mutants. 
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5.5    Conclusion 
 

This study has shown that using metabolic reconstruction the pathways 

unique to PA and PAdel have been defined. The acquisition of antibiotic 

resistance caused by the deletion of an 8-bp sequence in the transcription 

regulator mexT is associated with increased efflux of metabolites which 

inactivates specific cytosolic pathways that are no longer required.  It is this 

process that contributes towards the reduced metabolic capability of 

PAdel.  Reduced pathway activity relating to iron transport intraceullarly 

and via transporters may explain the reduced virulence phenotype 

previously observed. This metabolic model is the most up to date version 

for P. aeruginosa PAO1, integrating genotypic and phenotypic data to 

successfully predict biomass or growth in defined media. 
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6  Final Discussion 
CHAPTER 6 

 

The aim of this thesis was to identify and characterise mutations that cause 

diversity in the Pseudomonas aeruginosa population. In doing so it is hoped 

that high risk strains can be identified to aid new diagnostics techniques. 

To investigate this hypothesis a collection of P. aeruginosa PAO1 strains 

were used as a test population. A region consisting of repeats of the 

sequence CGGCCAGC found within the transcriptional regulation mexT was 

identified as a key driver of genetic diversity. A single copy of this mexT 8-

bp sequence was linked to increased antimicrobial resistance, reduced 

motility, virulence and ability to grow on specific substrates.  It was also 

shown that the transcriptional effects of this repeat region were not solely 

constrained to mexT but also the whole genome,  with the majority of 

genes differentially expressed linked to the phenotype and the metabolic 

capability of the cell.  These results clearly show a difference in the niche 

adapted response caused by this mexT mutation.   

Since the advent of sequencing, the falling costs of genome sequencing 

along with the vast amounts of data it generates, has meant that this 

technique has large potential not just in diagnostics and routine 

surveillance but in linking phenotype to genotype. The databases required 

to understand the effects of mutations on phenotype is however still 

lagging behind. Comparative genomics was used in this study and 
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combined with phenotypic analysis revealed differences among variants of 

the strain PAO1, which prior to this study were all thought to be the same.  

While mexT was identified as a mutational hotspot, the deletion of an 8-bp 

sequence was of particular interest since this was found only in the 

hyperbiofilm forming strains. To elucidate the role of this mutation (8-bp 

deletion) alone, an isogenic mutant was created termed PAdel, along with 

a naturally selected mutant also found to harbour the 8-bp deletion, called 

PAnfxC.  

Phenotypic analysis of the parent strain compared to mutants with the 

single copy of the 8-bp sequence showed reduced virulence, motility and 

antimicrobial susceptibility. Previous studies have shown that mexT has a 

role in biofilm formation (Tian et al., 2009b, Favre-Bonté et al., 2003). In 

this study although a difference in motility (probably due to chemotaxis) 

was found, there was no reproducible difference in biofilm formation 

between the parent and mutant strains. Whole genome sequencing results 

revealed that compensatory mutations may be responsible for this. These 

results highlight the need for researchers to publish the whole genome 

sequences of isogenic mutants alongside their results to ensure 

reproducibility and thorough analysis of results.  

The effect of a mutation on the phenotype of a cell can be predicted based 

on the nucleotide and codon change. We are approaching an era where 
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predictive modelling has the ability to not just predict the effect of a 

mutation on phenotype but predict the composite phenotype from 

multiple mutations. This is part of the planned future work that will 

increase predictability of clinically relevant phenotypes such as antibiotic 

susceptibility, virulence, motility and spread of infection. 

Transcriptomic data showed that the single copy of the 8-bp sequence 

activates the LysR encoding region of the mexT gene in PAdel and PAnfxC 

whilst the double copy reduces expression across the LysR region. 

Expression across the whole coding sequence of mexT revealed that this 

gene may in fact consist of two genes since a dip in expression was 

identified across the 8-bp sequence region in PA. There was however no 

shine-dalgarno sequence ahead of this region to prove this hypothesis. It is 

likely that mexT in PAO1 consists of a single gene with a novel form of gene 

regulation. Since the 8-bp sequence lies on a helix-turn-helix it is concluded 

that mexT actually has an auto-regulative function and is a repressor that 

represses the lysR region in PA.  The helix-turn-helix is located 66 amino 

acids from the N-terminus confirming this is a site for auto-regulatory 

elements. This repetitive mexT region may also encode RNAse activity and 

enable transcript degradation along the 3’ region, another mechanism that 

aids repressor activity.  
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It is clear that mexT is a key regulator capable of altering the cell phenotype 

through regulation of the 8-bp sequence. PAnfxC was selected from a 

population primarily thought to consist of cells with the double copy of the 

8-bp sequence. The phenotypic switch from PA to PAnfxC is a clear 

indicator of this, endowing the strain with antimicrobial resistance and 

reduced virulence when selected for in an antibiotic related environment.  

It would seem that strains with the single copy of the 8-bp sequence are 

adapted to clinically relevant environments. Transcriptomic data showed 

that genes associated with iron uptake were up-regulated in PAdel and 

PAnfxC, indicating adaption to sites of human infection which have a rich 

supply of blood. Genes up-regulated also included those required for 

survival in toxic environments, suggesting an adaption to antibiotic 

exposure.  

Since antibiotic use is a selective pressure for the single copy of the 8-bp 

sequence, it would explain why all strains screened for this mexT genotype 

had the 8-bp deletion. This was because strains in this screen were all 

collected from sites of human contact. Collecting environmental strains 

from unpopulated areas would be beneficial in identifying the true genetic 

diversity of mexT.  Identifying the conditions required to switch the single 

copy of the 8-bp sequence back to the double copy is also the next step.  

Controlling the conditions that promote growth in niche adapted sites will 

aid the treatment of P. aeruginosa infections.  
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In this thesis the techniques required to link phenotype to genotype have 

also been described. Using whole genome genomics and transcriptomics 

along with high throughput phenotypic methods, the metabolic capability 

and effect of the 8-bp sequence has been defined. Key pathways relating 

to glycolysis, gluconeogenesis and oxidative phosphorylation were 

predicted to be differentially regulated by PA and PAdel. This explains the 

reasons for the reduced metabolic activity identified in PAdel and PAnfxC, 

based on phenotypic microarray results. In line with the theory that strains 

with the single copy of the 8-bp sequence are clinically adapted, it would 

seem that PA with the duplicate copy of the sequence is adapted to 

nutrient rich environments. Metabolic reconstructions identified peptide 

utilisation and bacteriocin production related pathways that were active in 

PA but inactive in PAdel and PAnfxC. P. aeruginoisa is commonly isolated 

from soil and aquatic environments, both of which are nutritionally and 

ecologicaly versatile. Survival in such environments is dependant on 

competition with other microbes. Increased utilisation of nutrients and 

production of bacteriocins against other inhabiting bacteria would be 

beneficial in such environments. 

Future work will lead to the use of computational modelling to predict 

regulatory pathways that affect not just the metabolic capability but 

clinically relevant phenotypes such a virulence, biofilm formation and 

antibiotic resistance. Since the mexT variants in this study were shown to 
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co-exist in a population, community based modelling using for instance 

single cell genome sequencing and transcriptomics could identify the 

genetic and environmental cues of phenotypic diversity particularly in 

biofilms where cell expansion and clonal diversity is common. This could 

also be applied to multi-species community based modelling and aid the 

prediction of antibiotic treatment and resistance over time. Understanding 

the metabolic profile of a cell may also have a role in diagnostics to identify 

the stage of infection. 

The predictive capability of such models is increased with the addition of 

phenomic based data such as high throughput genome-wide transposon 

mutant libraries which identify gene essentiality. This will form part of the 

future work on this study. The effects of a single 8-bp sequence within an 

isogenic mutant have been characterised in this study. Incorporating 

numerous strains from different environments and using biologically 

relevant conditions will allow us to truly understand the genetic diversity 

of P. aeruginosa and predict the clinical outcome of high risk strains.  
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8  Appendicies 
APPENDICIES 

8.1 Chapter 2 

8.1.1 Whole genome sequencing results 
 

SNP and indel differences among PAO1 lineages: The four PAO1 lineages were compared to P. aeruginosa PAO1 (GenBank accession no.  

NC002516.2). Results indicated in: orange are strain specific mutations, green are mutations found in the ATCC lineages and blue are mutations 

found in all PAO1 lineages. *167 mutations were found within bacteriophage linked genes only in the ATCC lineages. Genes with variation were 

named or denoted as PA number; other SNPs were denoted by P_ positions within the genome. 0 is indicated when there was no sequence 

coverage.  

 
Position 

P
A

0
1

-D
M

 

P
A

0
1

-A
M

 

P
A

0
1

-A
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P
A

0
1

-A
S Gene 

name Encoded product Ref Alt Effect AA change 

332051       ✓ PA0295 
Probable periplasmic polyamine binding 
protein A G missense  p.Phe258Ser/c.773T>C 

66 3845       ✓ PA0602 
Probable binding protein component of 
ABC transporter G A missense  p.Val111Ile/c.331G>A 

720551     ✓   tyrZ Tyrosyl-tRNA synthetase 2 A G synonymous  p.Gly65Gly/c.195A>G 

790429     ✓   PA0720 
Helix destabilizing protein of 
bacteriophage Pf1 C T synonymous  p.Gly88Gly/c.264C>T 

790447     ✓   PA0720 
Helix destabilizing protein of 
bacteriophage Pf1 G A synonymous  p.Gln94Gln/c.282G>A 

792152     ✓   PA0724 
Probable coat protein A of 
bacteriophage Pf1 T C synonymous  p.Asn261Asn/c.783T>C 
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792275 0   ✓   PA0724 
Probable coat protein A of 
bacteriophage Pf1 C T synonymous  p.Asn302Asn/c.906C>T 

1078735 ✓   ✓   pqsA Probable coenzyme A ligase C T synonymous  p.Leu92Leu/c.274C>T 

1237197 ✓       PA1145 Probable transcriptional regulator T C missense  p.Leu185Pro/c.554T>C 

2807665     ✓   mexT Transcriptional regulator G C missense  p.Arg66Pro/c.197G>C 

2807693     ✓ ✓ mexT Transcriptional regulator TCGGCCAGC T frameshift  
p.Arg76fs/c.226 
233delCGGCCAGC 

2807985       ✓ mexT Transcriptional regulator G GTCC 
inframe 
insertion 

p.Val173 
Leu174insValLeu/c.518 
519insTCC 

4144991       ✓ wspF Probable methylesterase T G missense  p.Gln319Pro/c.956A>C 

5642054     ✓   PA5017 conserved hypothetical protein C T stop gained p.Gln349*/c.1045C>T 

183697   ✓ ✓ ✓ PA0159 probable transcriptional regulator T G missense  p.Cys310Trp/c.930T>G 

2342110   ✓ ✓ ✓     C CT intergenic region   

2807982   ✓ ✓ ✓ mexT Transcriptional regulator T A missense  p.Phe172Ile/c.514T>A 

4869855   ✓ ✓ ✓ PA4341 Probable transcriptional regulator T G missense  p.Glu158Asp/c.474A>C 

5036891   ✓ ✓ ✓     A C intergenic region   

5071543   ✓ ✓ ✓     AACTG A intergenic region   

6079222   ✓ ✓ ✓ dgcB DgcB, Dimethylglycine catabolism A G synonymous  p.Leu393Leu/c.1179A>G 

789170-795768*   ✓ ✓ ✓ 

PA0717-
PA0727 
coaB 

coat protein B of bacteriophage Pf1, 
hypothetical protein from 
bacteriophage Pf1         

169283 ✓ ✓ ✓ ✓     CG C intergenic region  

411125 ✓ ✓ ✓ ✓     AC A intergenic region   
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413850 ✓ ✓ ✓ ✓     T C intergenic region   

667028 ✓ ✓ ✓ ✓     G GC intergenic region   

740419 ✓ ✓ ✓ ✓ PA0683 
Probable type II secretion system 
protein G GC frameshift  

p.Val73 Arg74fs/c.218 
219insC 

816529 ✓ ✓ ✓ ✓     G GC intergenic region   

891099 0 ✓ 0 ✓     A AC intergenic region   

1116213 ✓ ✓ ✓ ✓     G GC intergenic region   

1215657 ✓ ✓ ✓ ✓     A AG intergenic region   

1275766 ✓ ✓ ✓ ✓ napA 
Periplasmic nitrate reductase protein 
NapA GA G frameshift  p.Phe11fs/c.32delT 

1440622 ✓ ✓ 0 ✓ PA1327 Probable protease CA C frameshift  p.Lys640fs/c.1918delA 

1445357 ✓ ✓ ✓ ✓     A AG intergenic region   

1467482 ✓ ✓ ✓ ✓     A AGC intergenic region   

1467483 ✓ ✓ ✓ ✓     C G intergenic region   

1589438 ✓ ✓ ✓ ✓ PA1459 Probable methyltransferase G C missense  p.Gly34Ala/c.101G>C 

1835045 ✓ ✓ ✓ ✓ masA 
Enolase-phosphatase E-1 

G GC frameshift  
p.Ser218 Ser219fs/c.654 
655insC 

2169348 ✓ ✓ ✓ ✓     A AG intergenic region   

2186927 ✓ ✓ ✓ ✓     G GC intergenic region   

2195457 ✓ ✓ ✓ ✓     G GC intergenic region   

2239547 ✓ ✓ ✓ ✓     T G intergenic region   

2239555 ✓ ✓ ✓ ✓     A AG intergenic region   

2355771 ✓ ✓ ✓ ✓     A AG intergenic region   
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2356681 ✓ ✓ ✓ ✓ PA2141 Hypothetical protein GC G frameshift  p.Ala172fs/c.515delC 

2532046 ✓ ✓ ✓ ✓     G GC intergenic region   

2669175 ✓ ✓ ✓ ✓ pvdJ Pyoverdine biosynthesis G C missense  p.Pro819Ala/c.2455C>G 

2753522 ✓ ✓ ✓ ✓     G GC intergenic region   

3016844 ✓ ✓ ✓ ✓     G GC intergenic region   

3083196 ✓ ✓ ✓ ✓     A AG intergenic region   

3919508 ✓ ✓ ✓ ✓     G GC intergenic region   

4212201 ✓ ✓ ✓ ✓ PA3760 
N-Acetyl-D-Glucosamine 
phosphotransferase system transporter A G missense  p.His636Arg/c.1907A>G 

4344266 ✓ ✓ ✓ ✓ narK1 Nitrite extrusion protein 1 A G synonymous  p.Leu190Leu/c.570T>C 

4448855 ✓ ✓ ✓ ✓     C G intergenic region   

4448856 ✓ ✓ ✓ ✓     G C intergenic region   

4539468 ✓ ✓ ✓ ✓     G GC intergenic region   

4888194 ✓ ✓ ✓ ✓     A AG intergenic region   

4924552 ✓ ✓ ✓ ✓ PA4394 Hypothetical protein C G missense  p.Val178Leu/c.532G>C 

4924553 ✓ ✓ ✓ ✓ PA4394 Hypothetical protein G C synonymous  p.Pro177Pro/c.531C>G 

5033101 ✓ ✓ ✓ ✓     G GC intergenic region   

5472415 ✓ ✓ ✓ ✓     C CG intergenic region   

5655220 ✓ ✓ ✓ ✓ PA5024 
Conserved hypothetical protein 

C CCGG 
inframe 
insertion 

p.Ala222 
Gly223insAlaGly/c.666 
667insCGG 

5743461 ✓ ✓ ✓ ✓ hutU Urocanase C G synonymous  p.Thr431Thr/c.1293G>C 

5743462 ✓ ✓ ✓ ✓ hutU Urocanase G C missense  p.Thr431Arg/c.1292C>G 
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6098781 ✓ ✓ ✓ ✓ soxA Sarcosine oxidase alpha subunit G C synonymous  p.Gly586Gly/c.1758G>C 

6115455 ✓ ✓ ✓ ✓ mtr Tryptophan permease T G missense  p.Lys286Asn/c.858A>C 

816529 ✓ ✓ ✓ ✓ PA0748 
Still frameshift probable transcriptional 
regulator  G GC     
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8.2 Chapter 3 

8.2.1  Fold change between test groups PA vs PAdel and PA vs PAnfxC 
Signal values for each strain with replicate results (n=2). Negative controls were subtracted from the tests. A value of 1 was added to all results 

to ensure the fold change could be calculated. A student t-test was applied to SV (signal value) results with p-values shown. 
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1 Uridine 45.8 44.7 45.2 5.2 6.5 5.8 4.1 1.7 2.9 7.8 0.000 15.6 0.001 

1 Inosine 159.0 146.2 152.6 29.7 28.0 28.9 33.1 31.5 32.3 5.3 0.003 4.7 0.003 

1 D-Ribose 25.3 28.6 27.0 5.1 7.3 6.2 6.9 4.3 5.6 4.4 0.009 4.8 0.010 

1 Adenosine 41.5 47.2 44.4 19.7 20.9 20.3 19.7 15.7 17.7 2.2 0.015 2.5 0.017 

1 D-Malic Acid 2.7 2.3 2.5 2.9 3.5 3.2 1.0 1.0 1.0 0.8 0.199 2.5 0.017 

1 D,L-Malic Acid 243.2 241.3 242.3 242.7 231.5 237.1 235.4 235.1 235.3 1.0 0.463 1.0 0.019 

1 L-Serine 100.1 89.8 94.9 57.1 53.7 55.4 55.8 50.1 52.9 1.7 0.018 1.8 0.019 

1 Glycyl-L-Aspartic Acid 9.4 10.2 9.8 1.0 4.8 2.9 4.1 2.3 3.2 3.4 0.069 3.1 0.023 

1 Mono Methyl Succinate 170.9 175.1 173.0 196.0 185.0 190.5 187.4 190.7 189.1 0.9 0.097 0.9 0.026 

1 Glycyl-L-Glutamic Acid 18.6 14.6 16.6 3.1 7.6 5.4 6.1 3.6 4.8 3.1 0.064 3.4 0.037 

1 D-Fructose 228.9 226.7 227.8 220.3 202.2 211.3 208.7 197.4 203.1 1.1 0.210 1.1 0.051 

1 Tween 40 239.0 241.9 240.5 237.7 236.9 237.3 229.7 233.4 231.6 1.0 0.166 1.0 0.063 

1 L-Asparagine 265.3 255.1 260.2 244.9 231.7 238.3 241.5 234.2 237.8 1.1 0.120 1.1 0.071 

1 D-Trehalose 64.8 42.7 53.7 10.4 12.5 11.4 20.3 1.0 10.6 4.7 0.062 5.0 0.099 

1 Pyruvic Acid 188.3 144.7 166.5 219.9 228.0 223.9 231.4 223.4 227.4 0.7 0.122 0.7 0.111 
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1 Tyramine 252.4 248.2 250.3 193.2 194.7 193.9 216.4 174.6 195.5 1.3 0.002 1.3 0.121 

1 Fumaric Acid 248.1 246.4 247.2 253.9 238.8 246.4 252.5 249.8 251.2 1.0 0.921 1.0 0.130 

1 L-Glutamic Acid 240.6 241.2 240.9 240.5 214.8 227.6 231.4 218.8 225.1 1.1 0.410 1.1 0.130 

1 α-Hydroxy Butyric Acid 9.0 10.6 9.8 34.6 27.1 30.9 35.4 20.4 27.9 0.3 0.032 0.3 0.137 

1 Methyl Pyruvate 18.3 80.7 49.5 126.7 112.6 119.7 127.2 120.6 123.9 0.4 0.160 0.4 0.141 

1 Tween 20 177.3 195.0 186.2 226.6 198.9 212.7 206.4 204.4 205.4 0.9 0.247 0.9 0.164 

1 L-Threonine 5.4 10.0 7.7 4.7 2.0 3.4 1.0 3.5 2.2 2.3 0.249 3.4 0.174 

1 D-Gluconic Acid 259.3 258.7 259.0 259.0 250.4 254.7 256.7 251.5 254.1 1.0 0.422 1.0 0.205 

1 L-Aspartic Acid 240.4 251.7 246.1 235.0 228.9 232.0 236.7 219.3 228.0 1.1 0.160 1.1 0.225 

1 α-D-Glucose 246.6 244.5 245.5 246.4 238.2 242.3 244.1 242.8 243.4 1.0 0.524 1.0 0.230 
1 Acetic Acid 212.4 228.6 220.5 209.6 195.7 202.7 214.4 188.8 201.6 1.1 0.236 1.1 0.339 
1 1,2-Propanediol 8.1 37.0 22.5 58.7 46.3 52.5 76.0 33.1 54.5 0.4 0.197 0.4 0.341 
1 Glycerol 192.2 222.3 207.2 241.4 217.1 229.2 228.8 223.0 225.9 0.9 0.373 0.9 0.348 
1 Glycolic Acid 1.0 1.0 1.0 1.0 8.3 4.7 3.6 28.7 16.2 0.2 0.423 0.1 0.350 

1 α-Keto-Butyric Acid 18.2 10.1 14.1 38.6 29.9 34.2 57.2 16.6 36.9 0.4 0.078 0.4 0.386 

1 L-Malic Acid 244.7 227.7 236.2 210.4 220.7 215.5 233.0 204.0 218.5 1.1 0.173 1.1 0.402 

1 D-Threonine 1.0 3.3 2.1 1.0 1.0 1.0 1.0 1.0 1.0 2.1 0.423 2.1 0.423 

1 α-Hydroxy Glutaric Acid-

γ-Lactone 

1.1 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 0.423 1.1 0.423 

1 Thymidine 3.5 1.0 2.3 1.0 5.0 3.0 1.0 1.0 1.0 0.8 0.782 2.3 0.423 

1 D,L-α-Glycerol-

Phosphate 

26.1 11.1 18.6 3.7 16.7 10.2 15.7 2.8 9.3 1.8 0.487 2.0 0.445 

1 2-Aminoethanol 267.5 205.2 236.3 197.3 204.0 200.6 217.7 193.3 205.5 1.2 0.372 1.2 0.453 

1 N-Acetyl-DGlucosamine 217.5 165.7 191.6 231.5 187.5 209.5 221.2 206.3 213.8 0.9 0.651 0.9 0.497 

1 Propionic Acid 242.0 243.8 242.9 243.4 238.1 240.8 245.6 219.1 232.3 1.0 0.526 1.0 0.510 

1 α-Keto-Glutaric Acid 245.3 258.3 251.8 256.3 241.1 248.7 245.6 248.7 247.2 1.0 0.784 1.0 0.555 

1 L-Arabinose 3.9 3.3 3.6 2.9 3.8 3.4 3.6 3.1 3.3 1.1 0.721 1.1 0.558 
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1 L-Glutamine 264.9 260.3 262.6 253.2 258.1 255.6 264.6 250.6 257.6 1.0 0.174 1.0 0.566 

1 Formic Acid 12.4 5.3 8.9 10.1 21.8 15.9 16.7 8.0 12.3 0.6 0.411 0.7 0.599 

1 L-Lyxose 73.9 69.6 71.8 63.6 52.8 58.2 74.9 58.6 66.7 1.2 0.144 1.1 0.610 

1 p-Hydroxy Phenyl Acetic 

Acid 

268.6 249.9 259.2 250.9 260.5 255.7 262.6 239.1 250.8 1.0 0.769 1.0 0.632 

1 D-Glucose-6-Phosphate 1.0 1.3 1.2 1.0 7.1 4.0 1.0 1.8 1.4 0.3 0.445 0.8 0.651 

1 D-Mannitol 229.9 232.1 231.0 236.2 224.0 230.1 230.8 230.1 230.4 1.0 0.899 1.0 0.678 

1 Succinic Acid 180.8 171.5 176.1 173.7 141.8 157.7 182.2 157.9 170.0 1.1 0.383 1.0 0.687 

1 Bromo Succinic Acid 77.8 93.6 85.7 97.9 94.0 95.9 92.1 86.5 89.3 0.9 0.337 1.0 0.711 

1 D-Serine 1.7 4.8 3.3 6.9 5.0 5.9 2.2 3.3 2.7 0.6 0.284 1.2 0.776 

1 L-Proline 263.5 256.0 259.7 258.1 258.7 258.4 262.0 254.0 258.0 1.0 0.755 1.0 0.782 

1 D-Alanine 193.8 72.2 133.0 176.2 60.9 118.6 168.5 48.0 108.2 1.1 0.879 1.2 0.800 

1 Acetoacetic Acid 1.0 10.0 5.5 11.3 1.6 6.4 3.7 5.2 4.5 0.9 0.902 1.2 0.838 

1 Dulcitol 10.1 1.0 5.5 4.8 10.5 7.6 8.0 1.0 4.5 0.7 0.736 1.2 0.869 

1 Citric Acid 246.9 232.3 239.6 233.5 241.1 237.3 244.3 231.6 238.0 1.0 0.805 1.0 0.881 

1 Tween 80 232.4 231.3 231.8 234.7 228.5 231.6 234.7 229.8 232.2 1.0 0.941 1.0 0.891 

1 L-Alanyl-Glycine 80.0 9.1 44.6 143.2 126.0 134.6 1.0 102.2 51.6 0.3 0.132 0.9 0.920 

1 Glycyl-L-Proline 252.7 221.1 236.9 237.2 240.3 238.8 244.8 226.2 235.5 1.0 0.919 1.0 0.945 

1 D-Xylose 4.6 1.0 2.8 1.0 6.7 3.8 4.5 1.0 2.7 0.7 0.781 1.0 0.988 

1 L-Lactic Acid 116.4 115.3 115.8 106.6 109.0 107.8 119.5 112.2 115.9 1.1 0.026 1.0 0.997 

1 L-Alanine 210.0 208.0 209.0 217.6 197.8 207.7 205.2 212.8 209.0 1.0 0.907 1.0 1.000 

1 Adonitol 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 0.423 1.0 N/A 

1 α-Methyl-DGalactoside 1.0 1.0 1.0 1.0 1.5 1.2 1.0 1.0 1.0 0.8 0.423 1.0 N/A 

1 D-Galactose 1.0 1.0 1.0 1.0 1.8 1.4 1.0 1.0 1.0 0.7 0.423 1.0 N/A 

1 D-Melibiose 1.0 1.0 1.0 1.0 2.4 1.7 1.0 1.0 1.0 0.6 0.423 1.0 N/A 

1 L-Rhamnose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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1 D-Glucose-1-Phosphate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Psicose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Sorbitol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Glyoxylic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Glucosaminic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Aspartic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Galacturonic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Glucuronamide 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 2-Deoxy Adenosine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Mannose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 M-Inositol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Glucuronic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 M-Tartaric Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Sucrose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Maltose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 α-D-Lactose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 m-Hydroxy Phenyl 

Acetic Acid 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Lactulose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Galactonic Acid-γ-

Lactone 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Saccharic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Mucic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 L-Fucose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Phenylethylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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1 L-Galactonic Acid-γ-

Lactone 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 β-Methyl-D Glucoside 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Tricarballylic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 Maltotriose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 N-Acetyl-β-

DMannosamine 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Fructose-6-Phosphate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

1 D-Cellobiose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 D-Fucose 1.5 1.4 1.4 1.9 1.0 1.5 3.3 3.3 3.3 1.0 0.960 0.4 0.001 

2 δ-Amino Valeric Acid 241.7 235.4 238.5 193.8 199.7 196.7 201.5 202.6 202.1 1.2 0.010 1.2 0.008 

2 Butyric Acid 110.7 112.8 111.7 129.3 142.4 135.9 148.3 156.1 152.2 0.8 0.068 0.7 0.010 

2 D-Tartaric Acid 1.4 1.0 1.2 4.1 1.0 2.6 3.8 3.4 3.6 0.5 0.476 0.3 0.012 

2 β-Hydroxy Butyric Acid 218.9 220.9 219.9 240.5 239.3 239.9 247.8 242.2 245.0 0.9 0.003 0.9 0.014 

2 Malonic Acid 176.1 171.7 173.9 146.8 134.5 140.7 139.2 130.2 134.7 1.2 0.037 1.3 0.016 

2 D-Arabitol 210.9 205.2 208.0 183.9 186.3 185.1 186.9 177.1 182.0 1.1 0.018 1.1 0.044 

2 Itaconic Acid 251.4 247.7 249.5 263.7 253.3 258.5 256.8 258.6 257.7 1.0 0.244 1.0 0.058 

2 Sebacic Acid 217.2 208.0 212.6 179.2 174.5 176.8 186.2 171.9 179.0 1.2 0.020 1.2 0.059 

2 L-Arginine 229.7 225.7 227.7 220.8 219.6 220.2 215.1 207.2 211.1 1.0 0.070 1.1 0.064 

2 a-Keto-Valeric Acid 8.3 7.7 8.0 9.9 6.9 8.4 17.2 13.1 15.2 1.0 0.836 0.5 0.077 

2 γ-Hydroxy Butyric Acid 10.5 9.1 9.8 4.8 1.5 3.1 4.8 6.8 5.8 3.1 0.064 1.7 0.081 

2 N-Acetyl-Lglutamic Acid 244.2 248.2 246.2 259.0 248.5 253.7 252.6 253.2 252.9 1.0 0.311 1.0 0.081 

2 Gelatin 26.5 34.4 30.4 19.0 5.2 12.1 9.8 17.7 13.8 2.5 0.148 2.2 0.096 

2 L-Alaninamide 34.5 24.8 29.7 16.9 15.5 16.2 17.1 14.8 16.0 1.8 0.110 1.9 0.110 

2 Oxalomalic Acid 14.2 11.1 12.6 5.3 6.4 5.9 8.6 8.2 8.4 2.2 0.055 1.5 0.115 

2 Dihydroxy Acetone 22.8 18.5 20.6 11.3 12.6 11.9 14.5 15.8 15.2 1.7 0.062 1.4 0.137 
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2 L-Pyroglutamic Acid 252.2 256.2 254.2 274.9 255.4 265.1 260.2 266.9 263.6 1.0 0.387 1.0 0.141 

2 D.L-Octopamine 257.3 240.9 249.1 209.9 157.5 183.7 207.6 148.1 177.9 1.4 0.140 1.4 0.147 

2 L-Valine 61.4 34.6 48.0 11.4 17.3 14.4 22.5 12.3 17.4 3.3 0.134 2.8 0.167 

2 Putrescine 220.0 205.0 212.5 187.4 175.2 181.3 191.9 160.0 175.9 1.2 0.084 1.2 0.174 

2 Hydroxy-LProline 249.0 242.8 245.9 234.0 236.3 235.1 240.1 230.6 235.4 1.0 0.084 1.0 0.205 

2 L-Histidine 249.8 244.8 247.3 258.8 253.6 256.2 257.0 251.0 254.0 1.0 0.131 1.0 0.227 

2 Caproic Acid 233.4 225.3 229.4 220.5 223.8 222.1 223.7 225.2 224.4 1.0 0.238 1.0 0.352 

2 γ-Amino Butyric Acid 263.6 250.3 257.0 243.5 244.2 243.9 252.4 238.5 245.4 1.1 0.188 1.0 0.352 

2 Glycine 25.2 9.3 17.2 1.0 9.1 5.0 11.5 1.0 6.3 3.4 0.304 2.8 0.368 

2 L-Phenylalanine 42.3 31.9 37.1 27.2 23.5 25.4 33.2 27.2 30.2 1.5 0.168 1.2 0.371 

2 5-Keto-Dgluconic Acid 8.1 1.0 4.5 4.9 4.5 4.7 7.7 9.6 8.7 1.0 0.967 0.5 0.375 

2 L-Isoleucine 231.4 215.1 223.2 210.2 212.0 211.1 216.9 209.2 213.1 1.1 0.278 1.0 0.377 

2 4-Hydroxy Benzoic Acid 252.9 243.4 248.1 246.5 232.5 239.5 246.3 233.3 239.8 1.0 0.417 1.0 0.409 

2 L-Ornithine 155.3 140.8 148.1 146.3 122.8 134.5 155.6 155.2 155.4 1.1 0.429 1.0 0.418 

2 Citramalic Acid 179.0 175.1 177.0 172.7 163.8 168.3 176.7 160.7 168.7 1.1 0.214 1.0 0.420 

2 Melibionic Acid 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.423 1.0 0.423 

2 Laminarin 1.0 1.0 1.0 1.6 1.0 1.3 1.0 2.3 1.6 0.8 0.423 0.6 0.423 

2 Mannan 1.0 1.0 1.0 3.6 1.0 2.3 4.2 1.0 2.6 0.4 0.423 0.4 0.423 

2 Citraconic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.3 1.0 N/A 0.8 0.423 

2 Xylitol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.1 1.0 N/A 0.9 0.423 

2 D-Arabinose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 N/A 1.0 0.423 

2 γ-Cyclodextrin 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 N/A 0.9 0.423 

2 α-Methyl-DMannoside 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.2 1.0 N/A 0.8 0.423 

2 β-Methyl-Dglucuronic 

Acid 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 N/A 1.0 0.423 

2 Acetamide 32.3 13.5 22.9 10.0 9.6 9.8 11.3 15.5 13.4 2.3 0.298 1.7 0.427 
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2 Sorbic Acid 165.6 145.5 155.6 142.0 153.9 148.0 146.7 144.9 145.8 1.1 0.581 1.1 0.435 

2 Sec-Butylamine 2.9 1.4 2.1 1.0 5.1 3.1 9.0 1.9 5.5 0.7 0.714 0.4 0.461 

2 Salicin 1.0 1.4 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.2 0.423 1.2 0.470 

2 D,L-Carnitine 159.3 148.9 154.1 145.0 154.5 149.8 150.3 148.9 149.6 1.0 0.603 1.0 0.485 

2 β-Methyl-DXyloside 1.0 1.4 1.2 2.0 1.0 1.5 1.0 3.7 2.3 0.8 0.638 0.5 0.491 

2 Gentiobiose 1.0 2.6 1.8 1.0 1.0 1.0 1.0 1.3 1.1 1.8 0.423 1.6 0.499 

2 Quinic Acid 253.2 238.1 245.7 250.7 253.6 252.2 254.8 248.9 251.8 1.0 0.488 1.0 0.526 

2 Glycogen 1.0 5.3 3.1 8.9 2.5 5.7 8.3 3.1 5.7 0.6 0.576 0.6 0.532 

2 2,3-Butanediol 24.6 11.1 17.8 14.3 19.0 16.7 31.8 18.1 25.0 1.1 0.885 0.7 0.535 

2 2,3-Butanone 18.4 12.6 15.5 12.6 8.6 10.6 15.0 10.7 12.9 1.5 0.303 1.2 0.548 

2 3-0-β-D-

Galactopyranosyl-

Darabinose 

13.3 5.6 9.4 7.7 2.8 5.2 2.8 9.2 6.0 1.8 0.452 1.6 0.563 

2 D-Glucosamine 14.0 17.3 15.7 10.7 8.1 9.4 9.7 16.6 13.2 1.7 0.096 1.2 0.585 

2 2-Deoxy-DRibose 9.2 15.1 12.2 15.5 8.9 12.2 11.2 18.1 14.7 1.0 0.998 0.8 0.639 

2 D-Lactic Acid Methyl 

Ester 

10.0 7.0 8.5 3.9 5.1 4.5 7.4 13.1 10.2 1.9 0.130 0.8 0.646 

2 3-Hydroxy 2-Butanone 13.3 3.6 8.4 8.3 6.5 7.4 11.0 10.7 10.9 1.1 0.853 0.8 0.670 

2 Succinamic Acid 224.2 235.1 229.7 235.3 219.7 227.5 221.9 230.8 226.4 1.0 0.838 1.0 0.685 

2 L-Lysine 153.7 138.1 145.9 142.1 124.8 133.5 131.9 149.0 140.5 1.1 0.398 1.0 0.685 

2 Pectin 4.6 2.8 3.7 8.4 2.3 5.3 1.0 11.1 6.1 0.7 0.661 0.6 0.694 

2 Palatinose 2.9 3.8 3.4 7.4 1.0 4.2 1.0 8.4 4.7 0.8 0.824 0.7 0.755 

2 N-Acetyl-D 

Galactosamine 

1.2 3.5 2.4 1.0 1.0 1.0 2.2 1.7 2.0 2.4 0.347 1.2 0.756 

2 I-Erythritol 1.0 4.2 2.6 5.0 1.0 3.0 1.0 6.1 3.5 0.9 0.889 0.7 0.780 

2 L-Methionine 4.7 1.0 2.8 1.6 1.0 1.3 1.3 6.1 3.7 2.2 0.489 0.8 0.806 
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2 Capric Acid 38.0 30.1 34.1 21.7 32.0 26.9 27.7 45.4 36.6 1.3 0.384 0.9 0.821 

2 Dextrin 1.0 10.2 5.6 8.5 1.0 4.7 5.1 8.1 6.6 1.2 0.897 0.9 0.859 

2 L-Tartaric Acid 10.9 2.0 6.4 1.5 1.8 1.7 5.8 7.9 6.9 3.8 0.397 0.9 0.935 

2 D-Raffinose 1.0 4.4 2.7 1.0 1.0 1.0 1.0 4.0 2.5 2.7 0.423 1.1 0.939 

2 L-Leucine 171.5 146.9 159.2 160.2 172.3 166.3 157.8 159.7 158.7 1.0 0.657 1.0 0.974 

2 α-Cyclodextrin 1.0 1.0 1.0 1.6 1.0 1.3 1.0 1.0 1.0 0.8 0.423 1.0 N/A 

2 D-Ribono-1,4- Lactone 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 N-Acetyl-

DGlucosaminitol 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 L-Homoserine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 L-Glucose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Stachyose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Chondroitin Sulfate C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Maltitol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 β-Cyclodextrin 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Turanose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Sedoheptulosan 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Oxalic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 D-Melezitose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 D-Tagatose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Lactitol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 β-Methyl-DGalactoside 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 L-Arabitol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 3-Methyl Glucose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 N-Acetyl-Neuraminic 

Acid 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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2 a-Methyl-DGlucoside 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Amygdalin 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 β-D-Allose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 L-Sorbose 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 2-Hydroxy Benzoic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Arbutin 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

2 Inulin 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Adenosine 136.5 136.0 136.2 9.2 12.9 11.0 13.6 14.7 14.1 12.3 0.000 9.6 0.000 

3 L-Lysine 90.7 91.9 91.3 58.2 57.7 57.9 4.9 1.0 3.0 1.6 0.000 30.9 0.001 

3 L-Isoleucine 171.9 167.2 169.5 74.3 76.4 75.3 76.2 77.2 76.7 2.2 0.001 2.2 0.001 

3 L-Valine 43.1 43.1 43.1 16.0 18.0 17.0 18.1 19.4 18.7 2.5 0.001 2.3 0.001 

3 Ala-Leu 132.9 139.8 136.4 13.2 21.1 17.2 14.8 13.0 13.9 7.9 0.002 9.8 0.001 

3 Inosine 75.6 73.1 74.3 24.0 29.7 26.8 31.4 30.9 31.1 2.8 0.004 2.4 0.001 

3 Ala-Gly 18.1 17.1 17.6 1.0 1.3 1.2 1.0 1.0 1.0 15.1 0.001 17.6 0.001 

3 N-Acetyl-

DMannosamine 

3.0 2.9 3.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 0.001 3.0 0.001 

3 Glycine 1.0 1.0 1.0 7.0 3.7 5.3 5.2 5.0 5.1 0.2 0.120 0.2 0.001 

3 Gly-Glu 16.4 15.0 15.7 1.0 1.0 1.0 1.0 1.0 1.0 15.7 0.002 15.7 0.002 

3 L-Tryptophan 66.9 63.7 65.3 24.0 16.1 20.0 12.3 17.9 15.1 3.3 0.009 4.3 0.004 

3 Ala-Gln 113.8 129.2 121.5 10.9 40.9 25.9 7.1 9.8 8.4 4.7 0.030 14.4 0.005 

3 D,L-α-Amino-Nbutyric 

Acid 

11.2 10.3 10.7 1.0 4.0 2.5 4.5 4.1 4.3 4.3 0.034 2.5 0.006 

3 D-Lysine 1.5 1.6 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.5 0.011 1.5 0.011 

3 Ala-Thr 9.9 10.0 10.0 1.0 1.0 1.0 1.0 2.8 1.9 10.0 0.000 5.2 0.013 

3 Ala-Asp 15.5 18.0 16.7 4.2 1.0 2.6 1.0 3.8 2.4 6.5 0.020 7.0 0.016 

3 Uridine 98.3 76.1 87.2 17.2 14.0 15.6 13.6 14.4 14.0 5.6 0.024 6.2 0.022 
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3 Cytidine 37.0 26.8 31.9 1.0 5.5 3.3 6.5 3.9 5.2 9.7 0.036 6.1 0.037 

3 L-Cysteine 17.7 13.8 15.8 8.1 9.2 8.7 6.1 5.0 5.6 1.8 0.074 2.8 0.038 

3 D,L-Lactamide 142.1 133.7 137.9 173.2 164.4 168.8 168.2 180.4 174.3 0.8 0.036 0.8 0.039 

3 L-Leucine 90.6 57.9 74.3 7.0 1.0 4.0 1.0 1.0 1.0 18.6 0.052 74.3 0.046 

3 Met-Ala 25.1 25.3 25.2 1.0 5.2 3.1 2.0 11.4 6.7 8.1 0.009 3.8 0.058 

3 Ala-His 130.7 144.0 137.3 68.7 86.8 77.7 63.8 12.6 38.2 1.8 0.034 3.6 0.064 

3 L-Alanine 52.9 56.9 54.9 42.7 32.4 37.6 43.3 34.3 38.8 1.5 0.089 1.4 0.082 

3 α-Amino-Nvaleric Acid 14.6 16.0 15.3 6.8 3.6 5.2 7.9 11.2 9.6 2.9 0.028 1.6 0.085 

3 N-Acetyl-DGlucosamine 186.3 172.6 179.4 159.4 156.4 157.9 159.6 154.0 156.8 1.1 0.092 1.1 0.093 

3 N-Acetyl-D,Lglutamic 

Acid 

113.9 120.9 117.4 133.0 135.3 134.1 135.0 128.3 131.7 0.9 0.045 0.9 0.099 

3 Uric Acid 27.4 22.6 25.0 32.2 27.9 30.1 31.3 32.1 31.7 0.8 0.257 0.8 0.110 

3 Ethanolamine 161.0 156.9 159.0 141.3 154.6 148.0 153.7 153.2 153.5 1.1 0.255 1.0 0.118 

3 L-Tyrosine 79.5 75.8 77.6 53.2 49.7 51.4 61.8 39.5 50.6 1.5 0.009 1.5 0.140 

3 Adenine 12.6 8.7 10.7 14.6 15.8 15.2 18.4 14.5 16.4 0.7 0.153 0.6 0.169 

3 L-Ornithine 138.7 121.6 130.2 118.6 108.5 113.5 114.4 112.2 113.3 1.1 0.236 1.1 0.189 

3 D-Asparagine 1.0 1.0 1.0 7.3 2.3 4.8 6.5 2.8 4.6 0.2 0.267 0.2 0.192 

3 Gly-Gln 114.0 39.7 76.9 3.3 8.3 5.8 9.4 9.1 9.2 13.2 0.197 8.3 0.210 

3 Ammonia 12.1 10.0 11.1 14.0 7.3 10.6 9.2 9.4 9.3 1.0 0.913 1.2 0.226 

3 Thymine 7.9 2.8 5.3 1.0 1.0 1.0 1.0 1.0 1.0 5.3 0.235 5.3 0.235 

3 L-Pyroglutamic Acid 162.2 168.0 165.1 170.1 168.0 169.0 175.8 168.1 171.9 1.0 0.328 1.0 0.293 

3 Histamine 107.3 112.3 109.8 105.0 106.8 105.9 102.8 107.3 105.1 1.0 0.282 1.0 0.295 

3 L-Phenylalanine 32.8 31.2 32.0 30.7 15.3 23.0 29.4 11.7 20.6 1.4 0.367 1.6 0.327 

3 L-Aspartic Acid 107.9 102.8 105.4 114.8 104.6 109.7 103.4 99.4 101.4 1.0 0.527 1.0 0.348 

3 Gly-Asn 14.5 15.2 14.9 8.5 15.2 11.9 14.5 10.8 12.7 1.3 0.469 1.2 0.363 

3 Putrescine 134.6 123.0 128.8 132.7 124.4 128.6 123.2 121.3 122.2 1.0 0.977 1.1 0.380 
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3 Ethylenediamine 4.9 1.0 2.9 6.9 10.8 8.8 14.0 3.6 8.8 0.3 0.166 0.3 0.401 

3 Tyramine 153.7 146.6 150.2 162.7 157.1 159.9 154.2 153.3 153.8 0.9 0.163 1.0 0.418 

3 Allantoin 14.2 12.7 13.4 3.9 13.3 8.6 19.8 13.6 16.7 1.6 0.418 0.8 0.418 

3 L-Homoserine 1.0 1.0 1.0 4.4 1.9 3.1 1.0 1.3 1.2 0.3 0.231 0.9 0.423 

3 Guanosine 1.0 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 0.423 1.1 0.423 

3 L-Threonine 1.0 1.0 1.0 4.3 1.0 2.6 1.0 1.0 1.0 0.4 0.423 1.0 0.423 

3 Nitrite 1.0 1.0 1.0 5.6 1.0 3.3 3.7 1.0 2.3 0.3 0.423 0.4 0.423 

3 Urea 1.0 1.0 1.0 13.1 1.0 7.0 6.3 1.0 3.7 0.1 0.423 0.3 0.423 

3 L-Histidine 183.1 173.2 178.1 192.5 184.6 188.5 202.2 178.1 190.1 0.9 0.242 0.9 0.455 

3 Guanine 23.6 23.0 23.3 25.5 43.5 34.5 21.9 37.3 29.6 0.7 0.339 0.8 0.497 

3 L-Arginine 133.5 126.2 129.9 137.1 116.3 126.7 131.9 106.1 119.0 1.0 0.799 1.1 0.502 

3 L-Serine 16.3 10.7 13.5 25.2 13.9 19.5 16.5 15.1 15.8 0.7 0.444 0.9 0.513 

3 L-Glutamine 169.0 164.0 166.5 164.7 166.1 165.4 180.2 164.8 172.5 1.0 0.700 1.0 0.536 

3 L-Glutamic Acid 149.9 132.3 141.1 144.8 149.4 147.1 136.2 135.1 135.6 1.0 0.574 1.0 0.597 

3 N-Acetyl-

DGalactosamine 

2.3 1.0 1.7 1.0 1.0 1.0 1.0 1.5 1.3 1.7 0.407 1.3 0.625 

3 L-Proline 148.9 140.4 144.7 158.8 149.2 154.0 156.7 142.1 149.4 0.9 0.281 1.0 0.630 

3 δ-Amino-Nvaleric Acid 129.4 124.7 127.0 135.1 128.7 131.9 125.2 134.8 130.0 1.0 0.349 1.0 0.633 

3 Xanthine 60.9 66.7 63.8 67.8 68.6 68.2 61.9 71.3 66.6 0.9 0.276 1.0 0.667 

3 L-Asparagine 132.3 130.3 131.3 131.6 128.4 130.0 134.1 124.5 129.3 1.0 0.551 1.0 0.719 

3 γ-Amino-Nbutyric Acid 137.3 126.1 131.7 120.9 132.0 126.4 139.3 130.0 134.6 1.0 0.573 1.0 0.722 

3 D-Glutamic Acid 129.3 127.0 128.2 126.9 124.6 125.8 139.0 122.7 130.9 1.0 0.285 1.0 0.774 

3 D-Alanine 27.9 24.6 26.2 17.2 26.8 22.0 29.2 20.5 24.8 1.2 0.495 1.1 0.792 

3 Uracil 3.4 1.0 2.2 2.1 1.7 1.9 2.6 1.0 1.8 1.2 0.815 1.2 0.797 

3 Acetamide 60.1 32.9 46.5 48.9 46.1 47.5 47.4 48.5 48.0 1.0 0.947 1.0 0.922 

3 Ala-Glu 43.0 40.7 41.8 112.8 65.6 89.2 1.0 74.7 37.9 0.5 0.183 1.1 0.924 
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3 Agmatine 153.0 148.7 150.9 166.2 140.7 153.4 164.2 137.5 150.8 1.0 0.862 1.0 0.998 

3 Formamide 1.0 1.0 1.0 3.0 1.0 2.0 1.0 1.0 1.0 0.5 0.423 1.0 N/A 

3 Xanthosine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Gly-Met 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Cytosine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Parabanic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 ε-Amino-Ncaproic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Glucosamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Alloxan 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 β-Phenylethylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Mannosamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Thymidine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Galactosamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 N-Amylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Hyroxylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Methylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Glucuronamide 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 N-Butylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D,L-α-Amino- Caprylic 

Acid 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Serine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Ethylamine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Aspartic Acid 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 D-Valine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 L-Citrulline 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 L-Methionine 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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3 N-Phthaloyl-Lglutamic 

Acid 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Biuret 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

3 Nitrate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

4 Hypophosphite 22.3 22.9 22.6 8.5 11.2 9.8 8.5 9.2 8.8 2.3 0.011 2.6 0.001 

4 Cytidine- 2’-

monophosphate 

234.1 232.7 233.4 252.5 249.9 251.2 258.0 259.1 258.6 0.9 0.007 0.9 0.001 

4 Guanosine- 2’-

monophosphate 

234.2 231.9 233.1 249.8 253.8 251.8 256.3 255.8 256.0 0.9 0.015 0.9 0.003 

4 Uridine- 2’-

monophosphate 

231.8 234.6 233.2 254.9 253.4 254.2 260.9 261.7 261.3 0.9 0.006 0.9 0.003 

4 Phospho-Glycolic Acid 105.3 100.1 102.7 189.6 176.1 182.9 201.9 191.0 196.5 0.6 0.008 0.5 0.004 

4 Cytidine- 2’,3’-

cyclicmonophosphate 

221.6 225.0 223.3 246.8 238.9 242.9 252.4 250.7 251.5 0.9 0.045 0.9 0.004 

4 D-2-Phospho-Glyceric 

Acid 

232.8 237.0 234.9 261.5 258.7 260.1 265.8 264.6 265.2 0.9 0.010 0.9 0.005 

4 Adenosine- 2’,3’-

cyclicmonophosphate 

233.4 230.7 232.1 248.6 249.1 248.9 255.6 253.4 254.5 0.9 0.007 0.9 0.006 

4 Uridine- 2’,3’-cyclic 

monophosphate 

233.7 229.9 231.8 249.8 252.5 251.2 256.0 253.7 254.9 0.9 0.014 0.9 0.009 

4 Trimetaphosphate 232.6 236.7 234.7 249.5 258.9 254.2 254.2 254.7 254.5 0.9 0.063 0.9 0.011 

4 Uridine- 3’-

monophosphate 

232.5 232.7 232.6 254.0 247.6 250.8 260.4 255.1 257.7 0.9 0.029 0.9 0.011 

4 Thymidine- 5’-

monophosphate 

240.5 242.6 241.5 248.6 250.5 249.5 254.6 256.8 255.7 1.0 0.030 0.9 0.011 
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4 Cytidine- 3’,5’-cyclic 

monophosphate 

228.3 224.5 226.4 242.3 243.8 243.0 249.8 246.3 248.1 0.9 0.015 0.9 0.014 

4 Phospho-LArginine 230.7 237.5 234.1 254.7 258.4 256.5 261.1 260.9 261.0 0.9 0.028 0.9 0.015 

4 D-Glucose-1-Phosphate 241.9 237.1 239.5 253.7 246.1 249.9 258.7 257.7 258.2 1.0 0.146 0.9 0.016 

4 Adenosine- 3’-

monophosphate 

241.2 239.6 240.4 251.2 254.0 252.6 255.4 252.2 253.8 1.0 0.018 0.9 0.017 

4 2-Deoxy-Dglucose 6 

Phosphate 

248.8 252.2 250.5 257.8 258.0 257.9 265.8 264.0 264.9 1.0 0.050 0.9 0.018 

4 Cytidine- 3’-

monophosphate 

233.8 238.3 236.1 247.9 246.4 247.2 252.1 251.7 251.9 1.0 0.044 0.9 0.020 

4 Guanosine- 3’,5’-

cyclicmonophosphate 

229.8 234.3 232.1 247.4 236.0 241.7 254.1 250.2 252.2 1.0 0.259 0.9 0.022 

4 Phosphoryl Choline 243.7 239.1 241.4 252.2 258.9 255.5 257.2 260.0 258.6 0.9 0.073 0.9 0.023 

4 Cytidine- 5’-

monophosphate 

223.9 231.0 227.5 244.3 237.6 241.0 250.8 249.5 250.1 0.9 0.111 0.9 0.025 

4 D,L-α-

GlycerolPhosphate 

233.1 241.8 237.5 258.2 252.3 255.3 264.0 263.8 263.9 0.9 0.077 0.9 0.026 

4 Uridine- 3’,5’-cyclic 

monophosphate 

237.0 234.9 235.9 240.5 249.3 244.9 247.7 244.8 246.2 1.0 0.184 1.0 0.029 

4 β-GlycerolPhosphate 243.0 249.6 246.3 259.0 262.2 260.6 264.9 264.5 264.7 0.9 0.060 0.9 0.031 

4 o-Phospho-LSerine 248.0 254.1 251.1 262.4 257.8 260.1 268.5 267.8 268.2 1.0 0.143 0.9 0.031 

4 Adenosine- 3’,5’-

cyclicmonophosphate 

226.3 232.8 229.6 248.6 232.4 240.5 256.9 250.9 253.9 1.0 0.335 0.9 0.031 

4 PhosphoenolPyruvate 233.5 227.0 230.2 250.1 245.5 247.8 255.8 250.6 253.2 0.9 0.047 0.9 0.031 

4 Adenosine- 2’-

monophosphate 

239.3 231.6 235.4 250.4 253.3 251.8 255.4 258.0 256.7 0.9 0.057 0.9 0.034 
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4 6-Phospho-Gluconic 

Acid 

243.8 247.4 245.6 259.6 250.7 255.1 264.3 259.1 261.7 1.0 0.186 0.9 0.037 

4 Thymidine 3’,5’-cyclic 

monophosphate 

234.2 231.9 233.1 241.2 241.3 241.2 250.1 244.6 247.3 1.0 0.020 0.9 0.041 

4 D-Mannose-6-

Phosphate 

235.0 228.2 231.6 249.2 247.2 248.2 254.2 248.5 251.3 0.9 0.042 0.9 0.046 

4 Adenosine- 5’-

monophosphate 

239.5 232.7 236.1 246.8 254.1 250.5 254.4 251.2 252.8 0.9 0.102 0.9 0.047 

4 D-3-Phospho-Glyceric 

Acid 

246.2 242.6 244.4 257.8 255.1 256.5 263.5 257.3 260.4 1.0 0.033 0.9 0.047 

4 Guanosine- 3’-

monophosphate 

238.4 231.8 235.1 250.0 254.1 252.1 255.2 250.6 252.9 0.9 0.049 0.9 0.047 

4 O-Phospho-DTyrosine 243.7 237.3 240.5 252.1 255.5 253.8 258.6 254.9 256.8 0.9 0.068 0.9 0.049 

4 Dithiophosphate 239.6 235.4 237.5 245.2 240.9 243.0 253.4 248.6 251.0 1.0 0.207 0.9 0.052 

4 D-Glucosamine-6-

Phosphate 

246.7 254.3 250.5 263.5 258.0 260.7 267.0 265.8 266.4 1.0 0.163 0.9 0.055 

4 Guanosine- 5’-

monophosphate 

234.4 241.3 237.9 246.1 247.2 246.6 254.1 251.6 252.8 1.0 0.132 0.9 0.056 

4 o-Phospho-LThreonine 241.8 249.0 245.4 260.3 254.2 257.3 266.1 260.8 263.5 1.0 0.127 0.9 0.056 

4 D-Mannose-1-

Phosphate 

220.0 225.6 222.8 228.2 229.9 229.0 233.7 232.8 233.2 1.0 0.167 1.0 0.066 

4 Uridine- 5’-

monophosphate 

226.3 240.1 233.2 251.0 248.4 249.7 258.0 259.0 258.5 0.9 0.143 0.9 0.067 

4 O-Phospho-LTyrosine 241.6 233.2 237.4 247.2 254.7 251.0 252.6 251.7 252.2 0.9 0.136 0.9 0.072 

4 Phosphocreatine 241.7 238.0 239.8 252.1 250.0 251.1 259.0 250.6 254.8 1.0 0.034 0.9 0.082 
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4 Guanosine- 2’,3’-

cyclicmonophosphate 

232.3 241.5 236.9 248.7 239.2 243.9 252.1 250.7 251.4 1.0 0.402 0.9 0.090 

4 o-Phospho-DSerine 249.6 257.7 253.7 258.7 256.4 257.5 265.3 266.6 265.9 1.0 0.453 1.0 0.095 

4 2-Aminoethyl 

Phosphonic Acid 

241.6 244.0 242.8 254.5 254.6 254.5 260.3 251.8 256.1 1.0 0.010 0.9 0.096 

4 Thymidine- 3’-

monophosphate 

239.9 245.2 242.5 253.0 249.1 251.0 259.3 251.2 255.3 1.0 0.122 1.0 0.119 

4 Phosphate 245.1 231.6 238.4 246.0 245.9 246.0 256.7 252.3 254.5 1.0 0.376 0.9 0.151 

4 D-Glucose-6-Phosphate 245.5 257.9 251.7 258.5 260.5 259.5 264.0 264.5 264.2 1.0 0.343 1.0 0.183 

4 Tripolyphosphate 249.5 235.7 242.6 248.9 258.9 253.9 254.8 255.2 255.0 1.0 0.317 1.0 0.214 

4 O-Phosphoryl-

Ethanolamine 

242.8 257.6 250.2 256.6 257.9 257.3 262.8 260.1 261.4 1.0 0.441 1.0 0.272 

4 Pyrophosphate 211.2 240.8 226.0 234.4 225.5 230.0 248.8 244.4 246.6 1.0 0.822 0.9 0.303 

4 Phosphono Acetic Acid 250.4 253.7 252.0 245.1 242.5 243.8 250.7 248.2 249.5 1.0 0.061 1.0 0.342 

4 Thiophosphate 209.8 197.7 203.7 205.1 197.9 201.5 221.8 207.6 214.7 1.0 0.781 0.9 0.361 

4 Inositol Hexaphosphate 246.8 242.8 244.8 236.0 238.4 237.2 243.3 240.6 242.0 1.0 0.083 1.0 0.368 

4 Triethyl Phosphate 7.4 1.0 4.2 1.0 5.5 3.2 1.0 1.0 1.0 1.3 0.830 4.2 0.423 

4 Carbamyl Phosphate 245.7 238.3 242.0 235.2 238.9 237.1 240.2 239.1 239.7 1.0 0.353 1.0 0.594 

4 Methylene 

Diphosphonic Acid 

6.6 8.9 7.8 2.3 5.9 4.1 7.9 5.8 6.9 1.9 0.228 1.1 0.613 

4 Cysteamine-S-

Phosphate 

246.8 254.6 250.7 244.0 243.2 243.6 250.3 249.5 249.9 1.0 0.214 1.0 0.856 

6 Gly-Thr 5.4 5.4 5.4 1.0 1.0 1.0 1.0 1.0 1.0 5.4 0.000 5.4 0.000 

6 Glu-Tyr 18.5 19.1 18.8 5.4 1.0 3.2 1.0 1.0 1.0 5.8 0.020 18.8 0.000 

6 Asp-Trp 18.2 17.0 17.6 1.0 1.0 1.0 1.0 1.0 1.0 17.6 0.001 17.6 0.001 

6 His-Val 94.1 83.8 88.9 6.4 5.5 5.9 6.9 1.1 4.0 15.0 0.004 22.2 0.005 
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6 Leu-Met 11.9 10.4 11.2 1.0 1.0 1.0 1.0 1.0 1.0 11.2 0.005 11.2 0.005 

6 lle-Trp 34.7 30.2 32.4 1.0 1.0 1.0 1.0 1.0 1.0 32.4 0.005 32.4 0.005 

6 Ala-Leu 50.1 55.7 52.9 9.7 7.7 8.7 10.7 6.9 8.8 6.1 0.005 6.0 0.006 

6 Asp-Phe 12.5 10.9 11.7 1.0 1.0 1.0 1.0 1.0 1.0 11.7 0.006 11.7 0.006 

6 Ile-Tyr 118.8 102.2 110.5 14.1 2.9 8.5 3.1 3.7 3.4 13.0 0.009 32.4 0.006 

6 Ile-Val 91.6 81.0 86.3 7.6 1.0 4.3 9.2 1.0 5.1 20.1 0.006 16.9 0.007 

6 Ala-Trp 27.3 23.4 25.4 4.4 1.4 2.9 2.0 1.0 1.5 8.7 0.012 16.7 0.007 

6 Glu-Trp 111.4 95.6 103.5 11.7 3.1 7.4 12.2 7.6 9.9 14.0 0.009 10.4 0.008 

6 Leu-Phe 62.8 57.6 60.2 26.1 28.0 27.0 32.5 31.2 31.9 2.2 0.007 1.9 0.009 

6 Leu-Ile 82.8 72.6 77.7 8.2 11.1 9.6 17.3 9.8 13.6 8.1 0.006 5.7 0.010 

6 Ala-Ala 12.9 11.8 12.3 7.5 4.8 6.1 7.1 7.2 7.2 2.0 0.050 1.7 0.010 

6 Asp-Leu 17.1 14.0 15.6 1.0 1.0 1.0 1.0 1.0 1.0 15.6 0.011 15.6 0.011 

6 Glu-Glu 4.8 4.1 4.4 1.0 1.0 1.0 1.0 1.0 1.0 4.4 0.011 4.4 0.011 

6 Leu-Glu 39.9 38.2 39.1 1.0 1.0 1.0 8.6 1.0 4.8 39.1 0.001 8.2 0.013 

6 Glu-Val 25.6 20.6 23.1 1.0 1.0 1.0 2.0 1.0 1.5 23.1 0.013 15.4 0.014 

6 Ala-Tyr 129.1 119.4 124.2 81.8 78.2 80.0 81.7 84.1 82.9 1.6 0.014 1.5 0.014 

6 Leu-Arg 185.2 180.1 182.7 144.7 133.0 138.9 139.8 148.3 144.1 1.3 0.021 1.3 0.016 

6 Gly-Lys 12.2 10.5 11.4 1.0 1.0 1.0 2.9 1.0 1.9 11.4 0.007 5.8 0.018 

6 Asn-Val 75.5 65.2 70.3 16.8 18.4 17.6 23.4 13.8 18.6 4.0 0.010 3.8 0.018 

6 Ile-Ser 33.9 28.0 31.0 1.0 2.1 1.5 9.0 5.0 7.0 20.0 0.010 4.4 0.022 

6 Asp-Lys 45.0 37.8 41.4 14.9 14.5 14.7 14.7 17.8 16.3 2.8 0.017 2.5 0.023 

6 Ile-His 90.7 66.5 78.6 1.0 1.0 1.0 4.3 1.0 2.6 78.6 0.023 29.8 0.025 

6 His-Leu 130.4 112.1 121.3 56.9 59.7 58.3 63.5 54.9 59.2 2.1 0.021 2.0 0.026 

6 Asn-Glu 2.1 2.5 2.3 1.0 1.0 1.0 1.0 1.0 1.0 2.3 0.026 2.3 0.026 

6 Gly-Leu 14.8 10.8 12.8 1.0 1.0 1.0 1.0 1.0 1.0 12.8 0.028 12.8 0.028 

6 Ile-Phe 94.8 67.1 80.9 4.2 1.0 2.6 6.1 1.0 3.6 30.9 0.030 22.8 0.032 
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6 Leu-Ala 68.6 56.5 62.5 25.4 30.6 28.0 32.6 27.5 30.1 2.2 0.034 2.1 0.038 

6 Ala-Phe 85.5 63.7 74.6 29.9 20.1 25.0 22.2 17.6 19.9 3.0 0.054 3.8 0.039 

6 Gly-Phe 22.1 15.5 18.8 1.0 1.0 1.0 3.3 1.0 2.1 18.8 0.033 8.7 0.041 

6 Arg-Leu 161.6 152.0 156.8 126.1 119.7 122.9 133.2 126.9 130.0 1.3 0.028 1.2 0.043 

6 Ile-Gly 36.9 25.8 31.3 1.0 1.0 1.0 5.6 1.0 3.3 31.3 0.032 9.4 0.043 

6 His-Tyr 131.6 130.8 131.2 128.4 121.2 124.8 124.2 120.3 122.2 1.1 0.219 1.1 0.047 

6 Arg-Tyr 210.4 202.6 206.5 107.8 163.7 135.8 178.5 164.8 171.7 1.5 0.129 1.2 0.048 

6 Ile-Ala 77.6 70.5 74.0 13.5 1.0 7.2 27.4 1.0 14.2 10.2 0.011 5.2 0.048 

6 Leu-Leu 36.6 25.1 30.8 1.0 1.0 1.0 6.7 1.0 3.8 30.8 0.035 8.1 0.052 

6 His-Pro 27.0 16.2 21.6 48.4 1.0 24.7 46.7 43.5 45.1 0.9 0.910 0.5 0.053 

6 Ala-Glu 14.0 21.8 17.9 20.1 2.1 11.1 1.4 2.1 1.8 1.6 0.561 10.2 0.055 

6 Ile-Gln 114.9 88.6 101.8 46.7 47.8 47.2 49.7 36.2 42.9 2.2 0.054 2.4 0.058 

6 Ala-His 54.2 42.9 48.6 19.3 3.8 11.6 10.7 22.2 16.5 4.2 0.061 3.0 0.058 

6 His-Trp 69.6 51.1 60.4 21.6 17.5 19.5 26.8 19.6 23.2 3.1 0.050 2.6 0.065 

6 Ile-Ile 33.7 19.3 26.5 1.0 1.0 1.0 1.0 1.0 1.0 26.5 0.072 26.5 0.072 

6 His-Gly 15.8 9.1 12.5 1.0 1.0 1.0 1.0 1.0 1.0 12.5 0.075 12.5 0.075 

6 His-Asp 18.6 10.4 14.5 1.0 1.0 1.0 1.8 1.0 1.4 14.5 0.081 10.3 0.087 

6 His-Lys 113.3 93.1 103.2 67.7 58.0 62.8 71.6 54.0 62.8 1.6 0.069 1.6 0.095 

6 Gly-Tyr 12.2 6.6 9.4 1.0 1.0 1.0 1.0 1.0 1.0 9.4 0.097 9.4 0.097 

6 Arg-Asp 113.9 111.8 112.9 97.3 99.3 98.3 100.8 106.8 103.8 1.1 0.009 1.1 0.104 

6 Gly-Trp 9.6 4.9 7.3 1.0 1.0 1.0 1.0 1.0 1.0 7.3 0.119 7.3 0.119 

6 Leu-Asp 34.4 20.9 27.6 1.4 1.0 1.2 11.2 1.0 6.1 23.1 0.059 4.5 0.125 

6 Arg-Arg 200.5 201.0 200.7 180.2 162.5 171.4 186.7 167.9 177.3 1.2 0.079 1.1 0.130 

6 Gly-Ser 17.3 13.4 15.4 1.0 3.4 2.2 9.5 3.5 6.5 6.9 0.028 2.4 0.131 

6 Gly-His 6.3 3.1 4.7 1.0 1.0 1.0 1.0 1.0 1.0 4.7 0.147 4.7 0.147 

6 His-Met 55.5 38.4 47.0 23.8 23.9 23.9 32.4 16.0 24.2 2.0 0.113 1.9 0.194 
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6 His-Ser 64.6 29.8 47.2 11.0 34.6 22.8 17.0 10.2 13.6 2.1 0.365 3.5 0.198 

6 Leu-Gly 31.9 17.5 24.7 1.0 1.0 1.0 13.2 1.0 7.1 24.7 0.081 3.5 0.204 

6 Ala-Gly 5.1 10.0 7.5 1.0 1.0 1.0 1.3 3.7 2.5 7.5 0.117 3.0 0.206 

6 Arg-Ser 92.2 75.6 83.9 19.9 64.3 42.1 71.5 60.3 65.9 2.0 0.220 1.3 0.214 

6 Glu-Gly 5.5 2.3 3.9 1.0 1.0 1.0 1.0 1.0 1.0 3.9 0.215 3.9 0.215 

6 Gly-Arg 96.8 83.0 89.9 72.0 75.1 73.5 81.2 73.7 77.5 1.2 0.148 1.2 0.255 

6 Arg-Phe 196.8 137.6 167.2 125.4 101.3 113.4 133.8 101.7 117.8 1.5 0.234 1.4 0.280 

6 Gln-Gly 63.4 36.9 50.1 35.6 19.7 27.6 34.0 26.0 30.0 1.8 0.282 1.7 0.283 

6 Ala-Lys 59.6 59.0 59.3 57.7 54.8 56.2 29.1 54.2 41.7 1.1 0.171 1.4 0.295 

6 Gly-Ala 4.9 1.6 3.2 1.0 1.0 1.0 1.0 1.0 1.0 3.2 0.316 3.2 0.316 

6 Arg-Val 161.4 143.1 152.2 129.9 127.0 128.5 144.5 128.7 136.6 1.2 0.125 1.1 0.325 

6 Gly-Val 11.5 2.3 6.9 1.0 1.0 1.0 1.0 1.0 1.0 6.9 0.329 6.9 0.329 

6 Glu-Ser 8.9 1.8 5.3 1.0 1.0 1.0 1.4 1.0 1.2 5.3 0.346 4.5 0.364 

6 Ile-Met 15.0 1.0 8.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0 0.423 8.0 0.423 

6 Gly-Gly 1.0 3.7 2.4 1.0 1.0 1.0 1.0 1.0 1.0 2.4 0.423 2.4 0.423 

6 Asp-Val 3.5 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 2.3 0.423 2.3 0.423 

6 Ala-Asn 7.5 19.7 13.6 6.1 7.1 6.6 1.0 10.8 5.9 2.1 0.367 2.3 0.427 

6 Ala-Ser 23.3 14.6 19.0 12.2 13.3 12.7 18.1 9.0 13.6 1.5 0.290 1.4 0.481 

6 Gln-Gln 151.4 135.3 143.3 149.2 146.9 148.0 161.7 144.5 153.1 1.0 0.621 0.9 0.495 

6 Arg-Met 63.6 53.6 58.6 50.7 64.1 57.4 67.7 59.7 63.7 1.0 0.897 0.9 0.508 

6 Ile-Arg 198.2 173.5 185.8 170.9 160.2 165.5 183.6 163.3 173.5 1.1 0.271 1.1 0.520 

6 Arg-Trp 94.9 65.0 79.9 60.3 62.8 61.6 75.6 59.8 67.7 1.3 0.344 1.2 0.543 

6 Ile-Pro 105.1 94.5 99.8 107.1 105.7 106.4 102.2 105.4 103.8 0.9 0.343 1.0 0.548 

6 Arg-Ile 154.3 131.6 142.9 133.3 126.9 130.1 138.7 129.7 134.2 1.1 0.389 1.1 0.548 

6 Gly-Pro 96.5 76.6 86.5 75.6 70.5 73.0 82.5 77.1 79.8 1.2 0.320 1.1 0.582 

6 Ala-Arg 129.7 130.1 129.9 133.4 125.7 129.6 130.9 126.0 128.4 1.0 0.933 1.0 0.604 
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6 Ala-Pro 106.9 94.8 100.9 102.0 96.3 99.2 101.7 93.6 97.6 1.0 0.823 1.0 0.701 

6 Arg-Gln 147.1 129.9 138.5 142.0 136.3 139.2 150.3 135.8 143.1 1.0 0.948 1.0 0.726 

6 Arg-Lys 207.9 180.7 194.3 184.1 165.7 174.9 199.4 176.3 187.9 1.1 0.358 1.0 0.753 

6 Arg-Ala 134.6 123.0 128.8 125.7 124.1 124.9 130.7 123.1 126.9 1.0 0.573 1.0 0.806 

6 Arg-Glu 169.6 150.6 160.1 164.7 150.7 157.7 167.8 146.0 156.9 1.0 0.857 1.0 0.845 

6 Ala-Thr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Asp-Glu 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Gly-Met 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Gly-Cys 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Glu-Asp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Asp-Asp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

6 Cys-Gly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

7 Val-Val 43.3 43.2 43.3 6.1 9.4 7.7 10.8 11.3 11.1 5.6 0.002 3.9 0.000 

7 Met-Leu 6.9 7.1 7.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 0.000 7.0 0.000 

7 Val-Leu 123.1 119.2 121.1 10.9 17.0 13.9 16.6 18.5 17.5 8.7 0.001 6.9 0.000 

7 Met-Ile 15.8 15.1 15.5 1.0 1.0 1.0 1.0 1.0 1.0 15.5 0.001 15.5 0.001 

7 Val-Ile 79.3 82.9 81.1 9.2 13.8 11.5 11.1 13.8 12.5 7.1 0.002 6.5 0.001 

7 Phe-Ser 33.9 36.0 34.9 8.7 5.0 6.8 5.8 5.7 5.7 5.1 0.006 6.1 0.001 

7 ϒ-Glu-Gly 32.4 33.2 32.8 12.7 15.9 14.3 23.8 23.1 23.5 2.3 0.007 1.4 0.003 

7 Val-Asp 28.0 25.9 27.0 1.0 8.0 4.5 8.2 7.7 7.9 6.0 0.025 3.4 0.003 

7 Trp-Leu 25.1 22.5 23.8 2.1 1.0 1.6 1.0 1.6 1.3 15.2 0.004 18.4 0.003 

7 Thr-Glu 11.8 11.5 11.6 3.7 4.5 4.1 4.1 3.2 3.6 2.8 0.003 3.2 0.004 

7 Lys-Pro 27.8 26.9 27.3 12.9 12.9 12.9 12.2 10.0 11.1 2.1 0.001 2.5 0.005 

7 Thr-Ala 17.8 16.7 17.2 2.2 7.4 4.8 7.5 8.3 7.9 3.6 0.043 2.2 0.006 

7 Trp-Lys 118.3 105.2 111.7 24.1 29.8 27.0 31.5 31.8 31.6 4.1 0.007 3.5 0.007 

7 Trp-Tyr 19.9 16.9 18.4 1.0 1.0 1.0 1.0 1.0 1.0 18.4 0.007 18.4 0.007 
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7 Lys-Glu 29.6 26.3 27.9 10.4 5.9 8.1 7.6 5.4 6.5 3.4 0.019 4.3 0.008 

7 Pro-Gly 12.1 10.3 11.2 1.4 1.0 1.2 1.0 1.0 1.0 9.5 0.009 11.2 0.008 

7 Pro-Asp 10.9 9.1 10.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 0.010 10.0 0.010 

7 Ser-Phe 82.6 68.2 75.4 8.1 2.7 5.4 5.2 6.1 5.7 14.0 0.012 13.3 0.011 

7 Ser-His 64.1 54.2 59.1 9.0 7.5 8.3 10.6 7.0 8.8 7.2 0.010 6.7 0.011 

7 Ser-Val 22.9 19.7 21.3 4.1 4.2 4.1 6.1 6.6 6.3 5.1 0.009 3.4 0.012 

7 Tyr-Glu 95.6 87.2 91.4 36.5 54.2 45.4 52.6 54.0 53.3 2.0 0.043 1.7 0.012 

7 Met-His 57.1 51.7 54.4 28.3 24.4 26.4 25.0 20.0 22.5 2.1 0.014 2.4 0.013 

7 Pro-Ala 47.1 49.5 48.3 31.7 23.1 27.4 17.3 23.4 20.4 1.8 0.042 2.4 0.014 

7 Tyr-His 167.8 167.2 167.5 140.2 142.4 141.3 142.0 147.5 144.7 1.2 0.002 1.2 0.014 

7 Val-Gly 21.6 20.0 20.8 1.5 7.8 4.6 5.0 8.0 6.5 4.5 0.039 3.2 0.014 

7 Phe-Pro 62.1 52.8 57.5 23.1 16.0 19.5 20.8 17.1 18.9 2.9 0.023 3.0 0.017 

7 Met-Trp 14.7 11.5 13.1 1.0 1.0 1.0 1.0 1.0 1.0 13.1 0.017 13.1 0.017 

7 Trp-Gly 10.1 7.9 9.0 1.0 1.0 1.0 1.0 1.0 1.0 9.0 0.018 9.0 0.018 

7 Phe-Gly 24.2 20.4 22.3 10.2 4.2 7.2 7.3 4.9 6.1 3.1 0.051 3.6 0.018 

7 Leu-Trp 111.1 92.5 101.8 38.7 38.8 38.8 37.5 36.5 37.0 2.6 0.021 2.8 0.020 

7 Leu-Ser 52.5 63.8 58.2 22.8 23.9 23.4 19.3 14.8 17.1 2.5 0.026 3.4 0.021 

7 Val-Tyr 124.0 135.3 129.6 81.7 68.7 75.2 63.0 78.0 70.5 1.7 0.024 1.8 0.024 

7 Tyr-Gly 75.6 70.7 73.1 12.1 18.9 15.5 11.5 27.8 19.6 4.7 0.005 3.7 0.025 

7 Phe-Phe 49.7 47.2 48.5 24.2 20.4 22.3 27.2 19.2 23.2 2.2 0.007 2.1 0.027 

7 Trp-Ser 11.5 8.6 10.1 1.0 1.0 1.0 1.5 1.0 1.2 10.1 0.026 8.0 0.028 

7 Ser-Ala 19.0 15.0 17.0 3.9 5.1 4.5 6.2 4.6 5.4 3.7 0.026 3.2 0.031 

7 Leu-Val 114.4 109.2 111.8 58.9 46.0 52.4 54.1 28.9 41.5 2.1 0.013 2.7 0.032 

7 Met-Lys 8.8 6.7 7.8 1.0 3.4 2.2 1.5 2.2 1.8 3.5 0.072 4.2 0.032 

7 Val-Arg 108.4 98.4 103.4 135.8 121.3 128.6 130.4 133.9 132.1 0.8 0.103 0.8 0.033 

7 Lys-Trp 110.8 101.4 106.1 61.8 50.6 56.2 56.3 35.8 46.0 1.9 0.021 2.3 0.034 
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7 Trp-Ala 10.9 7.7 9.3 1.0 1.0 1.0 1.0 1.0 1.0 9.3 0.035 9.3 0.035 

7 Val-His 88.8 112.2 100.5 23.3 34.1 28.7 26.5 38.1 32.3 3.5 0.031 3.1 0.035 

7 Ser-Leu 37.7 55.2 46.4 1.0 1.0 1.0 1.0 1.0 1.0 46.4 0.035 46.4 0.035 

7 Met-Gln 10.4 8.1 9.2 10.2 1.0 5.6 2.9 1.0 1.9 1.7 0.521 4.8 0.038 

7 Lys-Leu 122.1 123.7 122.9 64.5 61.4 63.0 51.9 15.6 33.8 2.0 0.001 3.6 0.039 

7 Lys-Val 83.3 78.9 81.1 41.6 35.8 38.7 34.6 10.9 22.8 2.1 0.007 3.6 0.040 

7 Lys-Tyr 175.2 163.8 169.5 149.5 143.8 146.7 137.6 127.2 132.4 1.2 0.070 1.3 0.040 

7 Met-Pro 11.8 8.1 9.9 3.6 1.0 2.3 1.0 1.0 1.0 4.3 0.078 9.9 0.041 

7 Tyr-Trp 67.3 72.4 69.8 69.2 48.0 58.6 45.4 52.5 48.9 1.2 0.410 1.4 0.041 

7 Thr-Gly 4.4 3.2 3.8 1.0 1.0 1.0 1.0 1.0 1.0 3.8 0.044 3.8 0.044 

7 Lys-Thr 10.9 10.7 10.8 9.7 2.8 6.3 5.3 2.2 3.8 1.7 0.319 2.9 0.045 

7 Pro-Gln 100.5 103.4 101.9 72.8 72.8 72.8 63.9 78.1 71.0 1.4 0.003 1.4 0.051 

7 Pro-Pro 102.6 101.8 102.2 113.9 126.4 120.2 115.0 123.4 119.2 0.9 0.102 0.9 0.056 

7 Ser-Gly 6.3 4.2 5.2 1.0 1.0 1.0 1.0 1.0 1.0 5.2 0.057 5.2 0.057 

7 Thr-Pro 106.5 102.7 104.6 74.6 83.6 79.1 81.5 90.3 85.9 1.3 0.035 1.2 0.060 

7 Ser-Ser 8.8 6.0 7.4 1.0 1.0 1.0 2.2 1.0 1.6 7.4 0.047 4.6 0.066 

7 Trp-Phe 24.8 14.5 19.6 1.0 1.0 1.0 1.0 1.0 1.0 19.6 0.068 19.6 0.068 

7 Phe-Trp 100.3 92.8 96.5 67.3 52.2 59.7 71.3 53.6 62.4 1.6 0.049 1.5 0.071 

7 Lys-Ala 36.6 47.9 42.2 42.1 28.9 35.5 22.2 15.1 18.6 1.2 0.519 2.3 0.072 

7 Thr-Leu 29.2 16.7 23.0 1.0 1.0 1.0 1.1 1.0 1.1 23.0 0.072 21.8 0.072 

7 Tyr-Tyr 118.6 106.1 112.4 90.7 58.9 74.8 82.4 59.7 71.1 1.5 0.158 1.6 0.085 

7 Ser-Pro 104.6 103.0 103.8 89.4 91.5 90.4 97.3 100.2 98.8 1.1 0.009 1.1 0.090 

7 Ser-Tyr 66.3 62.0 64.2 26.3 16.4 21.4 23.5 45.3 34.4 3.0 0.016 1.9 0.115 

7 Met-Val 5.9 3.1 4.5 1.0 1.0 1.0 1.0 1.0 1.0 4.5 0.130 4.5 0.130 

7 Lys-Phe 87.1 89.5 88.3 71.5 73.7 72.6 63.0 27.7 45.4 1.2 0.010 1.9 0.136 

7 Met-Phe 9.9 7.0 8.4 9.1 1.3 5.2 4.8 1.4 3.1 1.6 0.517 2.7 0.138 
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7 Pro-Tyr 127.4 119.6 123.5 79.7 88.1 83.9 57.3 96.3 76.8 1.5 0.020 1.6 0.144 

7 Met-Glu 8.0 4.4 6.2 10.4 1.0 5.7 2.5 1.0 1.7 1.1 0.925 3.6 0.146 

7 Lys-Lys 33.2 29.5 31.4 40.1 31.1 35.6 21.4 6.9 14.1 0.9 0.478 2.2 0.149 

7 Lys-Ser 24.8 40.1 32.4 19.3 19.3 19.3 16.2 4.1 10.1 1.7 0.230 3.2 0.150 

7 Lys-Ile 142.7 136.9 139.8 120.2 113.5 116.8 109.4 33.9 71.7 1.2 0.035 2.0 0.214 

7 Phe-Ile 98.0 94.2 96.1 64.1 77.7 70.9 59.9 86.1 73.0 1.4 0.070 1.3 0.222 

7 Tyr-Leu 143.0 134.1 138.6 119.6 125.9 122.7 119.5 132.1 125.8 1.1 0.101 1.1 0.240 

7 Tyr-Gln 114.3 107.5 110.9 95.0 105.8 100.4 100.0 109.8 104.9 1.1 0.243 1.1 0.420 

7 Trp-Trp 6.0 1.0 3.5 1.0 1.0 1.0 1.0 1.0 1.0 3.5 0.423 3.5 0.423 

7 Trp-Glu 2.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.5 0.423 1.5 0.423 

7 Met-Asp 1.8 1.0 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.4 0.423 1.4 0.423 

7 Met-Gly 2.2 1.0 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.5 0.437 1.6 0.423 

7 Thr-Arg 84.9 74.4 79.6 60.8 70.2 65.5 62.8 78.8 70.8 1.2 0.181 1.1 0.451 

7 Met-Arg 93.5 86.0 89.7 93.2 87.0 90.1 91.3 43.9 67.6 1.0 0.950 1.3 0.454 

7 Tyr-Phe 151.9 98.0 124.9 120.9 71.3 96.1 121.3 77.0 99.1 1.3 0.514 1.3 0.537 

7 Pro-Leu 81.3 90.9 86.1 38.2 83.8 61.0 48.9 92.0 70.5 1.4 0.393 1.2 0.552 

7 Tyr-Lys 192.8 176.3 184.6 192.8 169.1 181.0 184.8 167.6 176.2 1.0 0.826 1.0 0.555 

7 Pro-Phe 128.0 117.9 122.9 122.7 114.8 118.7 122.3 116.8 119.5 1.0 0.581 1.0 0.615 

7 Lys-Arg 188.5 182.3 185.4 193.8 178.5 186.2 191.5 163.3 177.4 1.0 0.932 1.0 0.636 

7 Trp-Arg 135.8 117.0 126.4 118.6 123.5 121.0 135.8 127.8 131.8 1.0 0.635 1.0 0.652 

7 Val-Asn 29.3 1.0 15.2 3.2 10.5 6.8 9.0 10.6 9.8 2.2 0.627 1.5 0.743 

7 Phe-Ala 63.8 58.2 61.0 49.6 53.8 51.7 62.6 58.7 60.6 1.2 0.118 1.0 0.932 

7 Tyr-Ala 114.2 107.4 110.8 98.8 113.8 106.3 107.0 114.3 110.7 1.0 0.638 1.0 0.984 

7 Ser-Met 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

7 Trp-Asp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

7 Thr-Met 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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7 Pro-Hyp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

7 Met-Met 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Val-Tyr-Val 123.2 119.5 121.3 27.1 21.1 24.1 23.4 23.7 23.6 5.0 0.001 5.1 0.000 

8 Gln-Glu 94.0 94.6 94.3 64.9 72.3 68.6 74.6 73.1 73.9 1.4 0.021 1.3 0.002 

8 ϒ-Glu-Gly 17.7 19.4 18.6 1.9 4.9 3.4 2.4 2.4 2.4 5.5 0.013 7.8 0.003 

8 Val-Lys 88.7 88.1 88.4 38.8 41.9 40.4 47.2 51.5 49.3 2.2 0.001 1.8 0.003 

8 Pro-Val 78.7 87.2 82.9 7.2 8.6 7.9 3.7 7.1 5.4 10.5 0.003 15.3 0.003 

8 Pro-Arg 81.3 78.7 80.0 109.2 112.0 110.6 115.6 119.3 117.5 0.7 0.004 0.7 0.004 

8 Thr-Phe 17.9 20.5 19.2 1.0 1.0 1.0 1.0 1.0 1.0 19.2 0.005 19.2 0.005 

8 Val-Gln 78.1 89.2 83.6 7.2 6.4 6.8 8.3 5.5 6.9 12.3 0.005 12.1 0.006 

8 Ile-Leu 94.3 109.9 102.1 1.0 1.0 1.0 1.0 1.0 1.0 102.1 0.006 102.1 0.006 

8 Ser-Gln 48.1 56.2 52.2 1.3 1.0 1.1 1.0 1.7 1.4 45.9 0.006 38.1 0.006 

8 Phe-β-Ala 23.6 20.5 22.1 1.0 1.0 1.0 2.7 1.0 1.9 22.1 0.005 11.8 0.008 

8 Val-Met 8.7 10.1 9.4 1.5 1.0 1.2 1.4 1.0 1.2 7.6 0.009 7.8 0.008 

8 Tyr-Gly-Gly 82.0 77.0 79.5 42.0 39.2 40.6 36.5 41.9 39.2 2.0 0.005 2.0 0.008 

8 Thr-Asp 6.4 5.4 5.9 1.0 1.0 1.0 1.0 1.0 1.0 5.9 0.009 5.9 0.009 

8 Lys-Asp 31.4 28.2 29.8 7.5 6.7 7.1 3.5 7.4 5.5 4.2 0.005 5.5 0.010 

8 Glu-Ala 34.5 30.4 32.4 20.3 5.8 13.0 7.1 10.0 8.6 2.5 0.123 3.8 0.011 

8 Val-Ser 19.6 21.5 20.5 6.9 7.7 7.3 3.1 6.1 4.6 2.8 0.006 4.5 0.012 

8 Ser-Glu 12.3 14.3 13.3 1.0 1.0 1.0 3.0 1.0 2.0 13.3 0.006 6.6 0.015 

8 Thr-Gln 25.7 23.1 24.4 8.2 5.3 6.8 4.2 8.1 6.2 3.6 0.012 3.9 0.016 

8 Leu-Leu-Leu 41.2 52.6 46.9 1.0 1.0 1.0 2.8 1.0 1.9 46.9 0.015 24.7 0.016 

8 Pro-Ser 34.8 45.9 40.4 1.0 1.0 1.0 1.0 1.0 1.0 40.4 0.019 40.4 0.019 

8 Leu-Gly-Gly 32.9 26.4 29.7 2.4 1.8 2.1 6.3 1.7 4.0 14.2 0.014 7.4 0.023 

8 Leu-β-Ala 50.1 65.0 57.5 3.6 4.2 3.9 10.8 2.4 6.6 14.8 0.019 8.8 0.027 

8 Gly-Gly-lle 13.8 10.1 12.0 1.0 1.0 1.0 1.0 1.0 1.0 12.0 0.028 11.7 0.028 
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8 Gly-Gly-Phe 11.0 8.1 9.5 1.0 1.0 1.0 1.0 1.0 1.0 9.5 0.028 9.5 0.028 

8 Lys-Gly 21.3 24.7 23.0 8.0 7.7 7.9 11.3 8.2 9.7 2.9 0.012 2.4 0.029 

8 Trp-Val 6.9 9.4 8.1 1.0 1.0 1.0 1.0 1.0 1.0 8.1 0.031 8.1 0.031 

8 Gly-Gly-Ala 11.2 12.8 12.0 3.9 3.8 3.8 5.2 2.7 4.0 3.1 0.010 3.0 0.031 

8 Val-Phe 88.8 79.9 84.4 54.4 29.4 41.9 53.8 43.1 48.5 2.0 0.085 1.7 0.036 

8 Pro-Asn 35.5 30.9 33.2 14.7 12.6 13.6 13.5 18.4 16.0 2.4 0.016 2.1 0.036 

8 Val-Glu 18.1 26.2 22.1 1.0 1.0 1.0 1.9 1.0 1.4 22.1 0.035 15.5 0.036 

8 His-Ala 64.8 77.8 71.3 20.6 8.4 14.5 27.1 8.6 17.8 4.9 0.024 4.0 0.042 

8 Ala-lle 34.4 52.0 43.2 27.7 17.4 22.6 1.0 2.7 1.8 1.9 0.181 23.4 0.043 

8 Met-Tyr 29.8 35.7 32.7 17.5 14.8 16.2 12.1 17.2 14.6 2.0 0.036 2.2 0.043 

8 Phe-Gly-Gly 38.9 31.7 35.3 13.2 10.3 11.8 17.6 12.6 15.1 3.0 0.026 2.3 0.044 

8 Ile-Asn 57.2 72.5 64.8 4.8 4.1 4.5 21.1 4.5 12.8 14.5 0.016 5.1 0.044 

8 Pro-lle 59.9 81.1 70.5 42.2 6.9 24.5 17.2 23.5 20.3 2.9 0.155 3.5 0.045 

8 His-Glu 15.4 23.5 19.5 1.0 2.2 1.6 1.0 2.3 1.6 12.1 0.049 11.9 0.049 

8 Ala-Gln 43.0 56.9 50.0 16.9 7.5 12.2 6.6 17.6 12.1 4.1 0.046 4.1 0.051 

8 Ala-Ala-Ala 56.0 59.8 57.9 10.4 5.1 7.7 5.3 25.1 15.2 7.5 0.004 3.8 0.051 

8 β-Ala-Ala 5.2 6.0 5.6 1.0 1.0 1.0 2.6 1.0 1.8 5.6 0.008 3.1 0.054 

8 Gly-Asp 4.8 3.2 4.0 1.8 1.0 1.4 1.0 1.1 1.1 2.9 0.096 3.7 0.063 

8 Gly-lle 10.5 17.4 13.9 1.0 1.0 1.0 1.0 1.0 1.0 13.9 0.065 13.9 0.065 

8 Phe-Val 84.4 79.8 82.1 72.0 59.2 65.6 72.8 68.6 70.7 1.3 0.137 1.2 0.068 

8 D-Leu-Tyr 2.1 1.6 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.8 0.069 1.8 0.069 

8 Asp-Gln 10.6 17.4 14.0 1.2 1.0 1.1 2.3 2.0 2.1 12.7 0.064 6.5 0.074 

8 β-Ala-His 6.3 3.9 5.1 1.0 1.0 1.0 1.0 1.0 1.0 5.1 0.075 5.1 0.075 

8 His-His 79.9 94.4 87.2 60.2 54.8 57.5 47.9 62.1 55.0 1.5 0.061 1.6 0.087 

8 Val-Pro 91.2 92.2 91.7 90.6 91.1 90.8 93.7 93.1 93.4 1.0 0.264 1.0 0.093 

8 Ala-Val 13.1 23.8 18.4 2.4 2.6 2.5 3.1 3.0 3.0 7.4 0.098 6.0 0.104 
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8 Pro-Glu 12.1 23.0 17.6 3.9 2.6 3.2 1.0 3.6 2.3 5.4 0.121 7.7 0.112 

8 D-Ala-Leu 6.5 3.5 5.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 0.117 5.0 0.117 

8 Leu-Asn 58.8 72.6 65.7 44.0 49.4 46.7 47.8 46.8 47.3 1.4 0.125 1.4 0.118 

8 Val-Ala 23.7 51.5 37.6 1.0 1.0 1.0 1.6 1.0 1.3 37.6 0.119 28.5 0.121 

8 Asp-Ala 8.3 15.6 11.9 1.4 1.0 1.2 2.2 2.8 2.5 10.1 0.098 4.8 0.123 

8 Gly-Gly-Leu 18.3 8.6 13.5 1.0 1.0 1.0 1.0 1.0 1.0 13.5 0.124 13.5 0.124 

8 D-Ala-D-Ala 84.3 80.3 82.3 83.9 92.2 88.1 87.7 92.4 90.0 0.9 0.338 0.9 0.130 

8 Lys-Met 3.6 7.3 5.4 1.0 1.0 1.0 1.0 1.0 1.0 5.4 0.135 5.4 0.135 

8 Ser-Asp 3.3 7.6 5.5 1.0 1.0 1.0 1.0 1.0 1.0 5.5 0.175 5.5 0.175 

8 Pro-Lys 42.7 109.9 76.3 9.5 9.1 9.3 7.0 11.6 9.3 8.2 0.184 8.2 0.185 

8 Ala-Asp 5.2 12.9 9.0 1.0 1.2 1.1 2.0 1.0 1.5 8.2 0.173 5.9 0.190 

8 β-Ala-Gly 6.4 2.7 4.5 1.0 1.0 1.0 1.0 1.0 1.0 4.5 0.196 4.5 0.196 

8 Pro-Trp 24.8 81.2 53.0 1.1 1.0 1.1 1.0 1.1 1.0 49.6 0.207 50.7 0.207 

8 Ser-Asn 3.9 11.8 7.9 3.0 3.1 3.0 1.0 1.0 1.0 2.6 0.348 7.9 0.225 

8 Leu-His 107.8 127.9 117.9 93.1 94.5 93.8 94.1 104.6 99.3 1.3 0.140 1.2 0.245 

8 Phe-Asp 4.7 17.7 11.2 1.0 1.0 1.0 1.0 1.0 1.0 11.2 0.258 11.2 0.258 

8 Thr-Ser 1.4 3.2 2.3 1.0 1.0 1.0 1.0 1.0 1.0 2.3 0.273 2.3 0.273 

8 Tyr-lle 113.1 121.1 117.1 107.3 111.3 109.3 104.7 112.9 108.8 1.1 0.223 1.1 0.286 

8 Gly-Gly-Gly 13.8 6.9 10.3 1.0 1.2 1.1 7.0 1.0 4.0 9.4 0.117 2.6 0.299 

8 Phe-Tyr 96.4 99.8 98.1 76.2 60.7 68.5 97.1 61.7 79.4 1.4 0.065 1.2 0.404 

8 Asp-Gly 1.0 3.3 2.1 1.0 1.0 1.0 1.0 1.0 1.0 2.1 0.423 2.1 0.423 

8 Gly-D-Ala 1.0 2.8 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.9 0.423 1.9 0.423 

8 Gly-Gly-D-Leu 1.0 1.8 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.4 0.423 1.4 0.423 

8 Tyr-Val 109.3 119.6 114.5 106.6 108.4 107.5 105.3 111.6 108.5 1.1 0.313 1.1 0.424 

8 Ala-Met 1.0 8.7 4.9 1.3 1.0 1.1 1.6 1.0 1.3 4.3 0.436 3.7 0.455 

8 Leu-Pro 86.0 98.5 92.2 62.7 82.1 72.4 85.4 88.7 87.1 1.3 0.228 1.1 0.509 
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8 Gly-Asn 15.8 18.1 17.0 20.5 18.5 19.5 1.0 19.0 10.0 0.9 0.246 1.7 0.525 

8 Phe-Met 7.1 12.1 9.6 5.7 4.0 4.9 9.5 5.2 7.4 2.0 0.212 1.3 0.564 

8 Leu-Tyr 115.2 110.6 112.9 101.6 99.3 100.5 112.4 110.4 111.4 1.1 0.040 1.0 0.607 

8 Phe-Glu 11.5 17.2 14.4 25.6 3.8 14.7 16.9 5.7 11.3 1.0 0.977 1.3 0.675 

8 D-Ala-Gly-Gly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 D-Ala-Gly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Gly-D-Asp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Met-β-Ala 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Leu-D-Leu 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 D-Leu-Gly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 β-Ala-Phe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 D-Leu-D-Leu 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Gly-D-Val 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 ϒ-D-Glu-Gly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Met-Thr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Gly-D-Ser 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Gly-D-Thr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 

8 Gly-Phe-Phe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A 1.0 N/A 
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8.3   Chapter 4 

8.3.1  RNA extaction method optimisation 
RNA extraction optimisation performed with the strain PA. Where PCR cycle threhold (CT) values were not shown, PCR was not performed. 

Method Sample Nanodrop Tape-

station 
PCR    Conclusion 
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R  Neasy extraction with 

different volumes of 

cultures  

1ml 8.23 

7.23         

8.45 

9.32 

0.7 

0.7 

0.8 

0.9 

0.5 

0.5 

0.8 

0.8 
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The column was not saturated when increased culture volumes was 

used. Nanodrop integrity scores were very poor. The eluted RNA also 

visibly appeared cloudy. Perhaps this was due to incomplete cell 

lysis. Since the RNeasy lysis (RLT) buffer alone was insufficient to lyse 

all bacterial cells additional cell lysis treatment was required. E.g. 

mechanical or enzymatic. The RIN score were also low  

2.5 ml 

5 ml 

10 ml 

RNAprotect Bacterial 

reagent was added to the 

cell pellet and stored at -

70 °C overnight 

RNA protect 

Bacterial reagent 

10.45 0.9 1.2 7 - RNA protect bacterial reagent improved the RIN score and increased 

the RNA concentration.  

Without RNA 

protect bacterial 

reagent   

 

10.32 0.8 0.9 4  
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RNeasy extraction with 

bead beating vs roche 

nucleic lysis buffer  using 5 

ml culture 

Bead beating 10.12 1.2 1.7 6 - 5 ml of culture did not yield the required amount of RNA. Bead 

beating was carried out as as per the manufacturers protocol, but 

yielded reduced RNA concentrations compared to treatment with 

lysis buffer. Nucleic lysis buffer treatment did however reduce the 

RIN score and caused RNA degradation perhaps due to heating at 

65°C for 10 min. The extraction needed to be repeated at room temp 

to increase RIN scores. 

 

Roche Nucleic lysis 

buffer 

10.56 1.8 1.7 5  

RNeasy kit extraction with 

5ml culture and nucleic 

lysis buffer with and 

without heating at 65°C for 

10 min. 

Nucleic lysis buffer 

and proteinase K 

for 10 min at 65°. 

12.50 1.5 1.9 5 - Nanodrop integrity scores and RNA concentrations were still subpar 

for both samples. However the RIN score for the extraction 

performed at room temp was good. RNA concentrations from 5 ml 

of culture were still subpar. 
Nucleic lysis buffer 

and proteinase K 

for 10 min at room 

temp. 

10.12 1.9 1.8 6  

RNeasy extraction kits 

with buffer (either TE 

buffer or RLT) and 

lysozyme and proteinase 

k) using 5 ml culture. TE 

buffer solubilises 

contaminants. 

TE buffer for 10 

min at room temp 

 

 

15.78 2.0 2.1 8.2 - Nanodrop quantity and tapestation integrity scores were very good. 

However RNA concentrations were still below the amount that was 

required. The initial culture volume needed to be increased i.e. to 10 

ml or the the cell lysis step needed to be optimised. 

RLT buffer for 10 

min at room temp 

11.25 1.9 1.7 7.5  
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RNeasy extraction kits 

with TE buffer and 

lysozyme and proteinase K 

10 min at room temp vs 37 

°C 

Room temp 

 

 

12.21 1.9 2.2 8 - Increasing the incubation temp during the cell lysis step had no effect 

on RNA concentration and integrity.  

37°C 12.88 2.1 2.2 7.8  

RNeasy extraction with 

two on-column DNAse 

treatment vs one 

treatment with 10 ml of 

culture 

One DNase 

treatment 

35.88 2.1 2.2 8.5 10.5 Increasing the number of on-column DNase treatments reduced the 

amount of contaminating DNA but the RNA integrity was also 

reduced. Perhaps this was due to the RNA being left on the column 

filter too long. A different type of DNAse treatment was required. 

 

Two DNase 

treatments 

39.45 2.1 2.4 8 25.7 

RNeasy extraction with 

Turbo DNase treatment vs 

without turbo DNase  

treatment 

Tubro DNase 

treatment 

30.48 2.2 2.3 7 32.5 The additional DNase treatment reduced the concentration of DNA 

contamination. The RIN score dropped yet there seemed to be no 

contamination present when the RNA was quantified on the 

nanodrop.  Perhaps the reduced RIN score was due to non-enzymatic 

catalytic degradation caused by contaminating ions found in the 

DNAse inactivation step. The RNA was likely to have degraded when 

the samples was heated to 72 °C prior to quantification on the 

tapestation.  Perhaps cleaning the samples by passing through the 

column may remove contamination ions. 

Without Turbo 

DNase treatment 

32.48 1.9 2.2 8.8 28.5 

RNeasy extraction with 

and without clean-up.  

RNA clean-up 29.48 2.1 2.4 8.8 35.5 RNA samples that were cleaned up by passing the sample through 

the column again had good quality and quantity results. 
Without RNA-clean 

up 

37.45 2.2 2.3 8 32.8 
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8.3.2  SNPS and indels identified among the mexT variants 
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PAdel  5253698 5253698 + A C 

 

1.04E-

02 314 PA4684 GAG GCG E A 

PAnfxC 5253694 5253694 + T G 

 

1.31E-

05 313 PA4684 TTC GTC F V 

PA & 
PAnfxC 5655220 5655230 + CCGGCGGCGGC CCGGCGGCGGCGGC 

 

1.06E-

02 
222, 
225 PA5024 GCCGGCGGCGGC GCCGGCGGCGGCGGC AGGG AGGGG 

PAdel 
& 
PAnfxC 5253695 5253695 + T C 

 

 

3.52E-

04 313 PA4684 TTC TCC F S 

PAdel 
& 
PAnfxC 5253695 5253695 + T C 

 

 

1.40E-

06 313 PA4684 TTC TCC F S 
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8.3.3. Genes transcriptionally altered in PAdel and PAnfxC  
Fold changes in gene expression of PAdel compared to PA. Log2 fold changes over 1 

(2 fold) indicated increased expression in PAdel. Log2 fold changes under -1 indicated 

reduced expression in PAdel. 
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PA4211 phzB1 9706 62 52 -7.3 9.3E-26 -7.6 3.8E-27 

PA1902 phzD2 17927 142 125 -7 2.0E-10 -7.2 8.3E-11 

PA4213 phzD1 17927 142 125 -7 2.0E-10 -7.2 8.3E-11 

PA1900 phzB2 10355 69 92 -7.2 4.3E-15 -6.8 2.1E-14 

PA4215 phzF1 19063 180 172 -6.7 1.6E-20 -6.8 4.4E-21 

PA1904 phzF2 18751 177 170 -6.7 2.6E-20 -6.8 7.6E-21 

PA1903 phzE2 44411 418 416 -6.7 4.8E-11 -6.7 3.1E-11 

PA4214 phzE1 44411 418 416 -6.7 4.8E-11 -6.7 3.1E-11 

PA2069 - 8683 108 109 -6.3 3.6E-20 -6.3 1.8E-20 

PA4141 - 89192 1489 1188 -5.9 
2.7E-

123 
-6.2 

1.6E-
133 

PA3361 lecB 6202 99 92 -6 2.9E-68 -6.1 2.6E-70 

PA1899 phzA2 2958 41 45 -6.2 2.8E-49 -6 1.6E-48 

PA4210 phzA1 1837 24 30 -6.2 3.3E-54 -5.9 9.8E-53 

PA4216 phzG1 13759 305 294 -5.5 4.7E-21 -5.5 1.5E-21 

PA1905 phzG2 13821 314 296 -5.5 3.4E-21 -5.5 6.9E-22 

PA2570 lecA 1343 24 30 -5.8 1.5E-98 -5.5 4.5E-93 

PA3479 rhlA 16240 350 372 -5.5 
4.6E-

109 
-5.4 

1.2E-
108 

PA3330 - 5517 232 127 -4.6 1.8E-15 -5.4 5.8E-20 

PA0122 - 33340 776 806 -5.4 
2.0E-

100 
-5.4 

8.7E-
101 

PA3332 - 3365 130 93 -4.7 1.2E-17 -5.2 7.3E-21 

PA2300 chiC 6422 162 179 -5.3 7.0E-37 -5.2 7.9E-36 

PA1901 phzC2 33614 1011 999 -5.1 1.4E-08 -5.1 9.0E-09 

PA4212 phzC1 32995 1010 989 -5 1.1E-08 -5.1 6.4E-09 

PA4209 phzM 8462 286 258 -4.9 5.0E-91 -5 5.7E-96 

PA3329 - 5597 278 176 -4.3 1.8E-25 -5 6.9E-32 

PA3333 fabH 4549 237 146 -4.3 1.3E-39 -5 7.3E-50 

PA3328 - 4242 181 145 -4.6 2.6E-19 -4.9 1.2E-21 
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PA3334 - 1531 72 53 -4.4 2.4E-49 -4.8 3.1E-58 

PA4140 - 5956 237 221 -4.7 1.4E-69 -4.8 2.0E-73 

PA3331 - 7546 351 280 -4.4 6.0E-22 -4.8 2.7E-25 

PA4142 - 3427 136 134 -4.7 8.0E-81 -4.7 1.1E-83 

PA2068 - 2193 88 90 -4.6 1.2E-14 -4.6 1.0E-14 

PA4208 opmD 4260 215 194 -4.3 2.5E-37 -4.5 1.1E-39 

PA1906 - 3535 181 168 -4.3 6.3E-31 -4.4 6.2E-32 

PA3335 - 2282 150 119 -3.9 2.0E-61 -4.3 2.2E-71 

PA3724 lasB 53270 3669 2849 -3.9 4.7E-18 -4.2 1.6E-20 

PA3336 - 2821 206 152 -3.8 5.9E-18 -4.2 1.7E-21 

PA3478 rhlB 10030 520 574 -4.3 3.0E-72 -4.1 1.3E-70 

PA3327 - 14028 1185 993 -3.6 2.2E-08 -3.8 2.5E-09 

PA2193 hcnA 1484 124 106 -3.6 4.0E-13 -3.8 2.6E-14 

PA2195 hcnC 6287 466 451 -3.8 7.9E-06 -3.8 5.7E-06 

PA0123 - 6534 514 478 -3.7 6.6E-55 -3.8 1.8E-57 

PA3362 - 1437 117 107 -3.6 8.6E-19 -3.7 6.3E-20 

PA1871 lasA 14214 1008 1118 -3.8 8.0E-17 -3.7 4.4E-16 

PA2067 - 1772 138 141 -3.7 5.8E-26 -3.7 7.5E-27 

PA2194 hcnB 5176 478 423 -3.4 2.4E-04 -3.6 1.3E-04 

PA1216 - 995 89 83 -3.5 8.1E-12 -3.6 2.0E-12 

PA1914 - 4358 354 369 -3.6 4.0E-54 -3.6 1.4E-54 

PA1869 - 1157 102 102 -3.5 1.8E-07 -3.5 1.1E-07 

PA3520 - 266 23 24 -3.5 5.5E-37 -3.5 2.3E-35 

PA1221 - 698 62 66 -3.5 1.2E-14 -3.4 1.8E-14 

PA4143 - 1478 157 146 -3.2 9.1E-43 -3.3 1.7E-46 

PA2566 - 3798 294 389 -3.7 8.1E-22 -3.3 6.2E-18 

PA4206 mexH 1687 198 178 -3.1 2.0E-09 -3.2 1.9E-10 

PA4205 mexG 821 100 89 -3 9.0E-11 -3.2 5.8E-12 

PA1215 - 587 67 66 -3.1 2.3E-09 -3.1 2.3E-09 

PA4917 - 3313 355 389 -3.2 5.7E-13 -3.1 3.1E-12 

PA4294 - 4202 471 499 -3.2 9.3E-08 -3.1 1.5E-07 

PA3326 - 12632 1656 1528 -2.9 5.3E-39 -3 1.3E-43 

PA0852 cbpD 11412 1416 1406 -3 1.5E-21 -3 1.2E-21 

PA1907 - 2055 312 255 -2.7 5.0E-34 -3 3.0E-39 

PA1131  1222 144 156 -3.1 6.0E-38 -3 2.2E-38 

PA4144 - 591 82 79 -2.9 3.1E-11 -2.9 3.7E-11 

PA1214 - 495 67 69 -2.9 1.9E-09 -2.9 4.8E-09 

PA4207 mexI 3327 482 464 -2.8 2.6E-08 -2.8 6.3E-09 

PA3337 rfaD 1750 247 246 -2.8 4.2E-24 -2.8 3.1E-23 

PA0052 - 1014 161 143 -2.7 1.2E-07 -2.8 4.0E-08 

PA3734 - 1007 135 142 -2.9 5.5E-08 -2.8 1.2E-07 

PA5220 - 1780 241 257 -2.9 4.3E-12 -2.8 1.6E-11 

PA0179 - 5259 670 766 -3 4.3E-12 -2.8 4.9E-11 

PA1137 - 1407 341 208 -2 1.0E-02 -2.8 1.0E-03 

PA2066 - 1105 139 163 -3 1.4E-15 -2.8 2.9E-14 
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PA4648 - 2860 401 427 -2.8 2.2E-10 -2.7 6.0E-10 

PA0200 - 517 99 77 -2.4 1.1E-06 -2.7 2.1E-07 

PA1217 - 1850 287 280 -2.7 2.5E-08 -2.7 7.4E-09 

PA3719 armR 118 22 18 -2.4 7.4E-04 -2.7 4.2E-04 

PA3418 - 4757 685 731 -2.8 1.7E-05 -2.7 3.5E-05 

PA1874 - 47257 6712 7316 -2.8 8.2E-18 -2.7 1.2E-16 

PA5482 - 430 71 67 -2.6 1.8E-27 -2.7 1.4E-28 

PA2565 - 780 92 123 -3.1 3.3E-38 -2.7 2.2E-31 

PA3720 - 562 97 91 -2.5 3.4E-05 -2.6 3.2E-05 

PA1220 - 298 49 49 -2.6 9.3E-07 -2.6 7.6E-07 

PA4078 - 2920 434 494 -2.8 1.4E-10 -2.6 1.0E-09 

PA1213 - 259 43 44 -2.6 9.0E-11 -2.6 4.2E-09 

PA5170 arcD 10439 1728 1793 -2.6 7.0E-18 -2.5 3.9E-17 

PA1656 - 1737 273 299 -2.7 5.1E-20 -2.5 1.5E-18 

PA0187 - 217 31 38 -2.8 9.6E-26 -2.5 1.2E-22 

PA1218 - 876 143 154 -2.6 1.1E-12 -2.5 8.3E-12 

PA1130 rhlC 2007 362 357 -2.5 1.6E-11 -2.5 4.8E-12 

PA1930 - 4051 666 721 -2.6 2.6E-10 -2.5 9.2E-10 

PA0713 - 1224 161 219 -2.9 2.5E-12 -2.5 5.8E-09 

PA3325 - 854 150 155 -2.5 1.9E-27 -2.5 1.6E-28 

PA4573 - 1135 188 206 -2.6 3.4E-07 -2.5 1.3E-06 

PA4916 - 3325 607 616 -2.5 4.9E-20 -2.4 1.3E-19 

PA0178 - 9547 1461 1784 -2.7 7.7E-35 -2.4 7.2E-30 

PA1898 qscR 549 96 103 -2.5 2.5E-26 -2.4 2.1E-25 

PA5481 - 1262 204 237 -2.6 5.6E-24 -2.4 3.9E-21 

PA5027 - 1551 255 294 -2.6 2.5E-16 -2.4 1.0E-14 

PA2024 - 1297 247 248 -2.4 3.9E-03 -2.4 4.4E-03 

PA3691 - 2340 429 461 -2.4 7.1E-18 -2.3 3.8E-17 

PA4133 - 11987 2914 2380 -2 1.3E-09 -2.3 2.5E-13 

PA4649 - 732 136 145 -2.4 4.1E-26 -2.3 4.9E-25 

PA2937 - 615 133 122 -2.2 1.2E-04 -2.3 1.0E-04 

PA3688 - 1682 306 338 -2.5 1.1E-14 -2.3 2.0E-13 

PA1784 - 1481 256 298 -2.5 4.5E-15 -2.3 1.8E-13 

PA4293 pprA 7640 1436 1546 -2.4 2.2E-28 -2.3 1.7E-27 

PA4217 phzS 20452 4593 4217 -2.2 8.6E-15 -2.3 2.6E-16 

PA4739 - 3374 591 696 -2.5 6.6E-30 -2.3 5.8E-26 

PA4348 - 906 189 188 -2.3 4.4E-14 -2.3 4.2E-13 

PA4577 - 461 102 97 -2.2 3.7E-04 -2.3 3.8E-04 

PA1894 - 1586 289 334 -2.5 5.7E-08 -2.2 6.6E-07 

PA3692 lptF 4010 861 849 -2.2 6.4E-19 -2.2 1.2E-18 

PA1877 - 2461 474 523 -2.4 3.4E-26 -2.2 1.4E-23 

PA0177 - 3032 519 649 -2.5 2.5E-30 -2.2 6.8E-25 

PA2564 - 1376 217 295 -2.7 2.1E-14 -2.2 4.7E-11 

PA1870 - 148 26 32 -2.5 6.9E-10 -2.2 1.6E-08 

PA1324 - 1650 339 356 -2.3 3.9E-13 -2.2 1.3E-12 
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PA5475 - 3764 671 813 -2.5 4.5E-17 -2.2 3.2E-13 

PA3986 - 1548 333 339 -2.2 6.2E-06 -2.2 1.4E-05 

PA4359 - 211 48 46 -2.1 1.0E-02 -2.2 1.1E-02 

PA1212 - 302 73 67 -2 3.4E-16 -2.2 1.9E-18 

PA4306 - 14011 3103 3107 -2.2 6.6E-09 -2.2 3.9E-09 

PA2274 - 203 45 45 -2.2 1.1E-04 -2.2 5.5E-05 

PA2788 - 5623 882 1255 -2.7 3.0E-34 -2.2 1.2E-23 

PA1323 - 1172 249 262 -2.2 4.4E-23 -2.2 1.4E-22 

PA1895 - 2042 427 469 -2.3 1.5E-08 -2.1 8.4E-08 

PA3417 - 3698 727 850 -2.3 4.5E-22 -2.1 1.2E-19 

PA1557 ccoN 3837 745 887 -2.4 5.0E-09 -2.1 4.6E-07 

PA1524 xdhA 938 227 218 -2 1.7E-05 -2.1 1.6E-05 

PA2174 - 370 76 86 -2.3 1.2E-06 -2.1 5.2E-06 

PA1177 napE 1924 339 447 -2.5 9.9E-10 -2.1 2.9E-07 

PA1875 - 3002 602 698 -2.3 1.5E-26 -2.1 1.4E-21 

PA0176 - 11560 2092 2701 -2.5 3.2E-29 -2.1 1.2E-22 

PA0208 mdcA 3361 689 789 -2.3 1.1E-03 -2.1 2.0E-03 

PA2142 - 207 58 49 -1.8 5.2E-14 -2.1 8.7E-17 

PA4108 - 1730 409 409 -2.1 8.7E-04 -2.1 9.1E-04 

PA0484 - 2509 583 604 -2.1 3.5E-06 -2.1 7.0E-06 

PA3945 - 1887 410 454 -2.2 2.8E-06 -2.1 9.4E-06 

PA4305 rcpC 6360 1360 1534 -2.2 3.8E-16 -2.1 2.4E-14 

PA1415 - 1092 241 267 -2.2 1.2E-06 -2 6.9E-06 

PA4311 - 3896 844 962 -2.2 9.2E-25 -2 5.4E-21 

PA5429 aspA 7746 1988 1918 -2 1.5E-03 -2 1.5E-03 

PA2618 - 1940 481 481 -2 1.3E-02 -2 1.4E-02 

PA4352 - 4078 745 1023 -2.5 1.1E-16 -2 1.8E-11 

PA2501 - 372 89 93 -2.1 1.0E-03 -2 1.5E-03 

PA5383 - 4093 1008 1031 -2 3.3E-02 -2 2.9E-02 

PA2573 - 7267 1668 1834 -2.1 3.3E-21 -2 4.9E-19 

PA3939 - 707 201 179 -1.8 9.2E-11 -2 4.4E-12 

PA1289 - 556 135 141 -2 3.5E-03 -2 5.7E-03 

PA3451 - 965 215 248 -2.2 1.0E-06 -2 3.5E-06 

PA2192 - 65 18 17 -1.9 1.6E-08 -2 2.2E-08 

PA1876 - 4701 1066 1210 -2.1 4.0E-12 -2 2.6E-10 

PA1657 - 699 160 180 -2.1 4.7E-14 -2 3.5E-12 

PA5446 - 4202 908 1084 -2.2 1.5E-06 -2 1.5E-05 

PA4738 - 1626 316 420 -2.4 6.1E-26 -2 6.0E-19 

PA1176 napF 1596 312 413 -2.4 2.0E-17 -1.9 1.1E-12 

PA0442 - 1 0 0 -1 7.5E-01 -1.9 5.5E-01 

PA4651 - 1882 460 491 -2 2.1E-05 -1.9 3.3E-05 

PA3930 cioA 5902 840 1541 -2.8 1.9E-37 -1.9 2.9E-19 

PA2919 - 222 69 58 -1.7 1.3E-07 -1.9 9.5E-09 

PA0451 - 965 220 252 -2.1 1.2E-05 -1.9 3.5E-05 

PA4925 - 1575 382 413 -2 1.3E-08 -1.9 7.8E-08 
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PA4384 - 478 147 126 -1.7 2.8E-07 -1.9 1.8E-08 

PA0788 - 3541 881 940 -2 3.8E-09 -1.9 2.1E-08 

PA2588 - 1773 479 478 -1.9 6.6E-19 -1.9 3.7E-18 

PA4915 - 5014 1261 1356 -2 1.0E-11 -1.9 5.8E-11 

PA2747 - 1202 309 326 -2 2.2E-19 -1.9 1.4E-18 

PA3974 ladS 2583 711 710 -1.9 1.3E-18 -1.9 1.8E-18 

PA1837 - 1203 316 331 -1.9 1.7E-07 -1.9 6.3E-07 

PA4130 - 14848 4256 4096 -1.8 6.8E-16 -1.9 2.0E-18 

PA5208 - 1623 440 448 -1.9 3.7E-03 -1.9 4.8E-03 

PA4781 - 3427 845 954 -2 7.0E-12 -1.8 2.2E-10 

PA2071 fusA2 9879 2328 2751 -2.1 1.5E-22 -1.8 3.3E-19 

PA3416 - 3430 850 955 -2 1.5E-20 -1.8 4.0E-19 

PA2072 - 3407 777 950 -2.1 2.3E-13 -1.8 9.4E-11 

PA2571 - 3301 804 922 -2 1.0E-21 -1.8 1.1E-18 

PA4650 - 511 127 143 -2 9.9E-13 -1.8 1.4E-10 

PA2433 - 306 83 86 -1.9 1.5E-15 -1.8 1.9E-13 

PA4129 - 3510 1063 981 -1.7 2.7E-11 -1.8 2.4E-14 

PA1551 - 3797 660 1062 -2.5 1.2E-14 -1.8 1.6E-08 

PA2779 - 1345 379 377 -1.8 3.8E-09 -1.8 1.4E-09 

PA4351 - 1760 359 493 -2.3 3.8E-18 -1.8 6.1E-12 

PA0051 phzH 486 117 137 -2.1 7.6E-11 -1.8 1.2E-08 

PA1897 - 488 127 138 -1.9 2.8E-16 -1.8 1.9E-15 

PA0007 - 3355 816 949 -2 1.2E-21 -1.8 5.8E-18 

PA1728 - 4366 1142 1237 -1.9 3.1E-20 -1.8 1.5E-18 

PA1878 - 980 275 278 -1.8 2.9E-17 -1.8 2.5E-16 

PA4128 - 1566 489 445 -1.7 2.1E-11 -1.8 3.3E-14 

PA4523 - 18564 4733 5279 -2 8.4E-18 -1.8 1.4E-15 

PA2168 - 59 20 17 -1.5 3.1E-06 -1.8 9.7E-08 

PA1355 - 183 51 53 -1.8 1.7E-07 -1.8 2.0E-07 

PA2070 - 925 256 266 -1.9 6.2E-17 -1.8 3.2E-17 

PA4703 - 319 83 92 -1.9 6.6E-07 -1.8 6.3E-06 

PA1896 - 737 193 213 -1.9 1.5E-08 -1.8 8.1E-08 

PA4702 - 687 193 200 -1.8 2.8E-11 -1.8 4.0E-11 

PA4681 - 607 199 177 -1.6 1.7E-13 -1.8 4.1E-16 

PA1673 - 767 228 225 -1.8 6.9E-07 -1.8 1.7E-06 

PA1414 - 4045 957 1186 -2.1 5.6E-04 -1.8 4.7E-03 

PA4304 rcpA 6902 1778 2039 -2 1.3E-08 -1.8 1.5E-07 

PA3369 - 308 95 91 -1.7 5.0E-10 -1.8 7.0E-11 

PA2173 - 59 20 17 -1.6 1.4E-03 -1.8 5.8E-04 

PA2166 - 121 28 36 -2.1 1.3E-07 -1.7 7.4E-06 

PA4682 - 851 265 254 -1.7 6.8E-05 -1.7 6.3E-05 

PA3465 - 3224 926 962 -1.8 3.0E-16 -1.7 2.9E-15 

PA0588 - 96277 24587 28900 -2 6.7E-21 -1.7 1.2E-17 

PA4115 - 3598 1121 1085 -1.7 9.5E-12 -1.7 2.1E-12 

PA2572 - 5370 1497 1622 -1.8 7.8E-11 -1.7 6.8E-10 
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PA2753 - 272 85 82 -1.7 3.7E-04 -1.7 4.5E-04 

PA2746 - 671 228 203 -1.6 2.0E-02 -1.7 1.3E-02 

PA2939 - 25925 6816 7902 -1.9 1.0E-04 -1.7 5.9E-04 

PA0188 - 135 35 41 -1.9 1.1E-10 -1.7 9.0E-10 

PA2746 - 674 194 206 -1.8 1.1E-04 -1.7 2.5E-04 

PA3311 - 2739 720 841 -1.9 8.3E-19 -1.7 2.0E-15 

PA3858 - 3684 1061 1131 -1.8 1.6E-13 -1.7 3.7E-12 

PA1659 - 176 49 54 -1.8 2.1E-12 -1.7 8.9E-12 

PA1658 - 1804 478 558 -1.9 6.0E-07 -1.7 6.9E-06 

PA2799 - 904 285 280 -1.7 5.5E-04 -1.7 7.6E-04 

PA1892 - 400 117 124 -1.8 3.1E-14 -1.7 1.1E-13 

PA2920 - 2436 723 763 -1.8 1.5E-17 -1.7 3.0E-16 

PA5171 arcA 25883 5516 8119 -2.2 2.9E-12 -1.7 4.3E-07 

PA0108 coI 2360 926 741 -1.3 3.0E-09 -1.7 7.0E-14 

PA1129 - 392 128 123 -1.6 1.3E-04 -1.7 4.5E-05 

PA0209  417 138 131 -1.6 3.9E-02 -1.7 2.9E-02 

PA3723 - 7864 2266 2478 -1.8 1.8E-14 -1.7 4.1E-13 

PA3309 - 13233 2344 4176 -2.5 2.6E-17 -1.7 5.5E-08 

PA1662 - 1159 357 366 -1.7 7.4E-06 -1.7 1.7E-05 

PA1891 - 103 35 32 -1.5 1.9E-08 -1.7 4.5E-09 

PA4295 fppA 326 110 103 -1.6 5.1E-11 -1.7 4.1E-12 

PA1175 napD 1608 352 514 -2.2 7.9E-21 -1.6 1.2E-12 

PA3920 - 1450 426 464 -1.8 3.7E-11 -1.6 2.5E-10 

PA0059 osmC 480 153 154 -1.6 3.1E-13 -1.6 3.7E-12 

PA2786 - 472 124 152 -1.9 1.6E-02 -1.6 2.9E-02 

PA2778 - 1426 497 460 -1.5 7.0E-14 -1.6 1.9E-15 

PA3089 - 1058 352 342 -1.6 2.0E-07 -1.6 1.2E-07 

PA0109 - 873 307 283 -1.5 1.7E-05 -1.6 2.0E-06 

PA2938 - 888 252 288 -1.8 3.8E-07 -1.6 4.0E-06 

PA0201 - 2261 768 734 -1.6 2.7E-06 -1.6 1.4E-06 

PA2118 - 288 89 94 -1.7 2.7E-07 -1.6 1.3E-06 

PA1888 - 4191 1000 1371 -2.1 2.2E-09 -1.6 1.4E-06 

PA2182 - 243 68 80 -1.8 2.2E-11 -1.6 1.1E-09 

PA2142 - 438 117 144 -1.9 5.3E-17 -1.6 5.3E-14 

PA4131 - 5028 1442 1657 -1.8 8.0E-09 -1.6 3.0E-07 

PA1118 - 1762 519 581 -1.8 7.6E-06 -1.6 4.5E-05 

PA2062 - 3895 1181 1284 -1.7 3.5E-08 -1.6 1.7E-07 

PA4084 cupB 724 215 239 -1.8 9.6E-06 -1.6 3.6E-05 

PA1860 - 1438 438 476 -1.7 3.2E-14 -1.6 2.7E-13 

PA4296 pprB 10253 3512 3475 -1.5 2.1E-14 -1.6 2.8E-15 

PA5424 - 2925 808 991 -1.9 1.1E-08 -1.6 1.0E-06 

PA4302 tadA 5400 1547 1844 -1.8 2.4E-15 -1.6 2.2E-12 

PA3476 rhlI 5470 1895 1869 -1.5 2.8E-03 -1.5 2.4E-03 

PA4175 - 31355 10382 10734 -1.6 1.9E-10 -1.5 4.3E-10 

PA1730 - 1645 503 565 -1.7 2.6E-15 -1.5 1.4E-12 
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PA4358 - 3047 910 1047 -1.7 2.3E-08 -1.5 1.7E-06 

PA1111 - 85 35 29 -1.3 3.6E-05 -1.5 9.4E-06 

PA2504 - 2495 717 861 -1.8 6.8E-06 -1.5 9.8E-05 

PA1668 - 355 113 123 -1.7 2.7E-12 -1.5 2.9E-10 

PA3370 - 82 24 28 -1.8 1.4E-09 -1.5 2.2E-08 

PA3914 moeA 183 70 63 -1.4 7.8E-05 -1.5 3.8E-06 

PA5219 - 913 297 316 -1.6 5.9E-09 -1.5 2.0E-08 

PA2500 - 743 242 258 -1.6 1.5E-09 -1.5 9.3E-09 

PA0355 pfpI 452 151 158 -1.6 9.1E-12 -1.5 3.8E-11 

PA5384 - 186 69 65 -1.4 8.9E-02 -1.5 7.2E-02 

PA3366 amiE 4208 1666 1479 -1.3 6.3E-12 -1.5 1.0E-12 

PA1663 - 460 129 162 -1.8 2.9E-15 -1.5 4.1E-11 

PA1664 - 24 6 9 -1.9 1.3E-04 -1.5 8.2E-04 

PA1523 xdhB 2059 642 726 -1.7 5.6E-15 -1.5 6.0E-13 

PA2146 - 22 6 8 -1.9 3.6E-05 -1.5 1.6E-03 

PA1041 - 24101 6598 8538 -1.9 1.2E-15 -1.5 2.5E-11 

PA3415 - 2521 815 895 -1.6 1.2E-14 -1.5 1.3E-13 

PA3919 - 8947 3027 3175 -1.6 1.4E-14 -1.5 5.3E-14 

PA2415 - 170 76 61 -1.2 6.6E-06 -1.5 6.1E-09 

PA2310 - 437 137 155 -1.7 9.7E-03 -1.5 1.3E-02 

PA4328 - 998 318 355 -1.7 7.6E-11 -1.5 5.0E-09 

PA2592 - 4690 1687 1682 -1.5 4.0E-05 -1.5 2.9E-05 

PA4236 katA 6604 2186 2372 -1.6 2.7E-11 -1.5 4.2E-10 

PA2364 - 1292 427 466 -1.6 1.3E-07 -1.5 1.1E-06 

PA2574 alkB 760 247 274 -1.6 2.6E-08 -1.5 2.4E-07 

PA4303 tadZ 4638 1426 1675 -1.7 1.1E-07 -1.5 7.3E-07 

PA5527 - 1659 590 601 -1.5 1.9E-08 -1.5 2.5E-08 

PA0175 - 1328 289 483 -2.2 1.8E-22 -1.5 4.2E-11 

PA2754 - 696 217 253 -1.7 1.1E-14 -1.5 5.1E-12 

PA1429 - 1196 418 435 -1.5 2.7E-09 -1.5 3.3E-08 

PA0830 - 1061 389 388 -1.4 3.4E-12 -1.5 1.8E-12 

PA4134 - 807 301 295 -1.4 2.6E-10 -1.5 1.9E-11 

PA4680 - 206 81 76 -1.4 1.6E-08 -1.4 2.8E-09 

PA1745 - 826 282 303 -1.5 8.6E-06 -1.4 2.6E-05 

PA0105 coxB 3723 1575 1369 -1.2 2.7E-06 -1.4 3.0E-08 

PA1556 ccoO 1557 360 574 -2.1 5.7E-04 -1.4 3.1E-02 

PA0180 cttP 2997 1027 1107 -1.5 1.1E-13 -1.4 1.4E-12 

PA5172 arcB 24143 5511 8923 -2.1 1.3E-12 -1.4 6.4E-06 

PA3957 - 1338 440 495 -1.6 1.8E-10 -1.4 3.4E-09 

PA5207 - 767 254 284 -1.6 4.0E-06 -1.4 3.6E-05 

PA3341 - 2587 826 958 -1.6 1.7E-08 -1.4 9.0E-07 

PA5261 algR 8397 2935 3111 -1.5 5.8E-14 -1.4 7.3E-13 

PA4301 tadB 2371 634 881 -1.9 2.6E-17 -1.4 1.6E-10 

PA0506 - 4314 1856 1605 -1.2 1.5E-07 -1.4 5.3E-10 

PA0199 exbD 531 169 198 -1.7 3.2E-09 -1.4 6.4E-08 
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PA3385 amrZ 10756 3853 4024 -1.5 6.3E-13 -1.4 4.5E-12 

PA1211 - 136 53 51 -1.4 7.9E-07 -1.4 4.9E-07 

PA1660 - 764 260 287 -1.6 2.2E-11 -1.4 1.7E-09 

PA3689 - 1137 399 427 -1.5 1.6E-13 -1.4 2.1E-12 

PA1174 napA 3334 882 1253 -1.9 2.0E-18 -1.4 3.8E-11 

PA0714 - 217 66 81 -1.7 4.3E-04 -1.4 3.4E-03 

PA4377 - 2237 774 841 -1.5 3.4E-09 -1.4 5.6E-08 

PA0543 - 499 182 188 -1.5 4.1E-11 -1.4 6.7E-11 

PA2563 - 761 252 287 -1.6 1.8E-12 -1.4 1.7E-10 

PA3877 narK1 193 70 73 -1.5 2.6E-04 -1.4 1.5E-04 

PA3846 - 1359 477 512 -1.5 5.5E-13 -1.4 2.5E-11 

PA4297 tadG 3850 1263 1455 -1.6 5.5E-14 -1.4 3.0E-11 

PA2176 - 126 45 48 -1.5 1.5E-08 -1.4 1.7E-08 

PA4369 - 1395 474 529 -1.6 5.6E-04 -1.4 1.3E-03 

PA0575 - 2520 847 955 -1.6 1.3E-13 -1.4 2.2E-11 

PA3929 cioB 3612 812 1370 -2.2 1.8E-22 -1.4 1.9E-10 

PA1872 - 2228 803 848 -1.5 5.8E-12 -1.4 3.1E-11 

PA1661 - 379 136 144 -1.5 1.8E-10 -1.4 7.1E-09 

PA2633 - 1798 661 686 -1.4 1.1E-03 -1.4 1.4E-03 

PA2136 - 28 7 11 -1.9 1.0E-02 -1.4 4.1E-02 

PA2312 - 471 154 180 -1.6 1.4E-02 -1.4 2.7E-02 

PA0202 - 906 363 346 -1.3 1.4E-05 -1.4 3.3E-06 

PA1136 - 465 227 178 -1 3.6E-02 -1.4 8.5E-03 

PA1879 - 494 167 189 -1.6 3.3E-12 -1.4 7.1E-10 

PA1873 - 235 84 90 -1.5 1.6E-10 -1.4 1.9E-09 

PA1887 - 2357 678 906 -1.8 1.5E-08 -1.4 2.5E-06 

PA2181 - 203 76 78 -1.4 2.3E-09 -1.4 1.2E-09 

PA2787 - 1642 525 632 -1.6 3.5E-14 -1.4 1.1E-10 

PA4041 - 834 298 321 -1.5 1.4E-12 -1.4 9.4E-11 

PA5427 adhA 5500 1261 2121 -2.1 4.2E-18 -1.4 6.7E-08 

PA1881 - 526 167 203 -1.7 4.0E-06 -1.4 5.0E-05 

PA5473 - 1560 579 603 -1.4 5.9E-12 -1.4 2.6E-11 

PA2170 - 7 5 3 -0.7 3.3E-01 -1.4 3.0E-02 

PA3275 - 219 75 85 -1.6 6.1E-05 -1.4 2.2E-04 

PA3876 narK2 213 96 83 -1.1 1.4E-06 -1.4 8.3E-08 

PA3371 - 304 115 118 -1.4 1.6E-08 -1.4 2.2E-08 

PA5262 algZ 4674 1648 1821 -1.5 1.1E-12 -1.4 9.0E-11 

PA2231 pslA 3749 1267 1462 -1.6 5.6E-11 -1.4 4.4E-08 

PA0121 - 660 273 258 -1.3 1.2E-09 -1.4 3.9E-11 

PA0587 - 26619 8807 10408 -1.6 2.7E-14 -1.4 3.6E-12 

PA1893 - 1222 411 479 -1.6 1.1E-09 -1.4 1.5E-07 

PA4298 - 545 158 214 -1.8 6.1E-08 -1.4 5.1E-05 

PA4299 tadD 2555 792 1002 -1.7 2.2E-14 -1.4 1.3E-09 

PA1922 - 146 69 57 -1.1 5.3E-05 -1.4 7.3E-07 

PA2359 - 1026 381 403 -1.4 4.0E-03 -1.3 5.1E-03 
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PA1327 - 2812 987 1110 -1.5 6.2E-12 -1.3 5.5E-10 

PA2448 - 928 380 367 -1.3 1.2E-05 -1.3 6.1E-06 

PA0743 - 2630 1198 1040 -1.1 5.3E-05 -1.3 3.0E-06 

PA1951 - 1927 701 764 -1.5 1.4E-12 -1.3 5.7E-11 

PA3347 - 2631 928 1045 -1.5 1.1E-06 -1.3 7.6E-06 

PA0951 - 718 297 286 -1.3 8.0E-04 -1.3 4.6E-04 

PA2167 - 147 46 59 -1.7 1.4E-08 -1.3 1.5E-06 

PA0483 - 1040 344 416 -1.6 3.0E-06 -1.3 8.7E-05 

PA4312 - 2107 750 843 -1.5 1.1E-11 -1.3 2.1E-09 

PA4637 - 14452 4756 5790 -1.6 5.2E-14 -1.3 5.0E-10 

PA1666 - 254 92 102 -1.5 1.3E-05 -1.3 7.1E-05 

PA4300 tadC 2439 763 980 -1.7 1.0E-13 -1.3 1.3E-08 

PA0106 coxA 2402 1210 967 -1 2.7E-04 -1.3 3.7E-07 

PA4683 - 479 195 193 -1.3 3.0E-02 -1.3 3.1E-02 

PA1880 - 3250 1085 1309 -1.6 1.2E-10 -1.3 1.6E-08 

PA5103 - 1860 740 750 -1.3 6.1E-05 -1.3 3.7E-05 

PA4876 osmE 1343 460 543 -1.5 1.8E-12 -1.3 8.8E-10 

PA3931 - 1178 430 476 -1.5 5.7E-03 -1.3 8.7E-03 

PA3446 - 1782 760 723 -1.2 8.3E-03 -1.3 5.7E-03 

PA0776 - 222 75 90 -1.6 7.9E-05 -1.3 5.6E-04 

PA1550 - 1792 441 730 -2 2.1E-11 -1.3 1.8E-05 

PA1191 - 559 206 228 -1.4 1.1E-06 -1.3 1.4E-05 

PA2114 - 979 396 400 -1.3 5.2E-09 -1.3 1.5E-08 

PA0704 - 1811 697 740 -1.4 3.3E-10 -1.3 2.4E-09 

PA0983 - 502 208 205 -1.3 3.3E-08 -1.3 4.5E-08 

PA1408 - 1277 453 522 -1.5 8.5E-09 -1.3 2.1E-07 

PA5108 - 1334 568 547 -1.2 3.9E-09 -1.3 3.2E-10 

PA4127 hpcG 368 158 151 -1.2 2.6E-07 -1.3 6.0E-09 

PA2299 - 442 192 182 -1.2 4.1E-09 -1.3 1.2E-09 

PA2311 - 285 101 117 -1.5 1.3E-02 -1.3 2.2E-02 

PA2620 clpA 37243 14947 15359 -1.3 6.4E-11 -1.3 1.9E-10 

PA5379 sdaB 315 131 130 -1.3 1.9E-04 -1.3 2.4E-04 

PA2196 - 618 238 255 -1.4 1.0E-09 -1.3 1.7E-08 

PA2506 - 20 12 8 -0.7 2.4E-02 -1.3 4.2E-03 

PA4653 - 728 287 301 -1.3 1.3E-05 -1.3 5.3E-05 

PA3307 - 466 180 193 -1.4 2.0E-06 -1.3 4.1E-06 

PA2717 - 1064 375 440 -1.5 9.3E-12 -1.3 1.1E-08 

PA0038 - 1466 543 608 -1.4 2.1E-12 -1.3 1.8E-10 

PA2119 - 1208 505 501 -1.3 2.7E-09 -1.3 3.5E-09 

PA5212 - 786 341 329 -1.2 7.1E-08 -1.3 1.0E-08 

PA0732 - 1570 628 658 -1.3 8.3E-11 -1.3 6.3E-10 

PA3613 - 2588 882 1089 -1.6 4.1E-06 -1.2 3.7E-04 

PA3928 - 444 97 188 -2.2 1.1E-12 -1.2 5.7E-05 

PA0173 - 464 140 196 -1.7 1.8E-07 -1.2 4.4E-04 

PA2169 - 37 15 16 -1.3 1.0E-04 -1.2 5.0E-04 
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PA5173 arcC 14535 3467 6140 -2.1 2.8E-08 -1.2 2.1E-03 

PA5058 phaC 3688 1370 1562 -1.4 2.3E-07 -1.2 1.1E-05 

PA4929 - 2795 1086 1184 -1.4 3.1E-10 -1.2 8.9E-09 

PA1561 - 2565 1024 1088 -1.3 1.6E-10 -1.2 2.1E-09 

PA5496 nrdJb 8449 1428 3584 -2.6 3.5E-07 -1.2 1.1E-02 

PA5304 dadA 5520 2508 2345 -1.1 1.5E-02 -1.2 1.0E-02 

PA4139 - 363 172 154 -1.1 1.5E-06 -1.2 1.2E-08 

PA2589 - 360 155 153 -1.2 2.9E-07 -1.2 7.5E-08 

PA3261 - 2427 921 1038 -1.4 5.7E-07 -1.2 6.1E-06 

PA1925 - 42 21 18 -1 2.4E-03 -1.2 2.1E-03 

PA0459 - 13304 3893 5705 -1.8 2.3E-11 -1.2 4.4E-06 

PA4658 - 1016 407 436 -1.3 1.5E-08 -1.2 3.1E-08 

PA4812 fdnG 1973 817 848 -1.3 6.2E-10 -1.2 2.5E-09 

PA1546 hemN 4040 1614 1737 -1.3 1.4E-10 -1.2 3.5E-09 

PA4652 - 1122 407 483 -1.5 3.5E-10 -1.2 9.0E-08 

PA1747 - 138 50 59 -1.4 7.2E-07 -1.2 8.9E-05 

PA0174 - 338 93 146 -1.9 2.3E-10 -1.2 5.6E-05 

PA3458 - 651 262 281 -1.3 1.7E-06 -1.2 1.3E-05 

PA1219 - 167 67 72 -1.3 1.9E-07 -1.2 3.5E-06 

PA2059 - 76 28 33 -1.4 7.5E-04 -1.2 3.7E-03 

PA1667 - 791 313 342 -1.3 2.9E-09 -1.2 5.0E-08 

PA4017 - 2357 1019 1023 -1.2 3.3E-04 -1.2 4.0E-04 

PA0656 - 1059 381 460 -1.5 2.0E-12 -1.2 3.2E-09 

PA3298 - 105 34 46 -1.6 3.0E-04 -1.2 5.0E-03 

PA0256 - 1377 531 600 -1.4 1.3E-11 -1.2 2.2E-09 

PA0769 - 2198 872 959 -1.3 2.3E-06 -1.2 1.6E-05 

PA1181 - 1986 748 867 -1.4 4.7E-11 -1.2 1.1E-08 

PA3431 - 157 68 68 -1.2 7.0E-06 -1.2 8.0E-06 

PA1789 - 4139 1603 1809 -1.4 4.8E-08 -1.2 2.2E-06 

PA1665 - 356 149 155 -1.3 4.7E-07 -1.2 2.2E-06 

PA5439 - 1563 679 684 -1.2 5.5E-05 -1.2 7.6E-05 

PA0710 gloA 121 51 53 -1.3 4.6E-05 -1.2 8.7E-05 

PA0838 - 2885 1149 1264 -1.3 7.7E-07 -1.2 6.7E-06 

PA2179 - 55 25 24 -1.1 7.3E-04 -1.2 5.2E-04 

PA5497 nrdJa 26387 5527 11639 -2.3 4.3E-08 -1.2 3.2E-03 

PA5213 gcvP1 6020 2310 2670 -1.4 7.6E-06 -1.2 1.1E-04 

PA1366 - 1671 667 742 -1.3 1.8E-04 -1.2 4.9E-04 

PA4132 - 4658 1798 2076 -1.4 1.7E-05 -1.2 2.1E-04 

PA3430 - 318 133 142 -1.3 1.5E-07 -1.2 8.5E-07 

PA1562 acnA 6250 2515 2787 -1.3 7.1E-10 -1.2 2.2E-08 

PA3216 - 259 109 115 -1.3 4.3E-07 -1.2 3.3E-07 

PA2232 pslB 7445 2690 3321 -1.5 1.2E-11 -1.2 8.7E-08 

PA2228 - 431 218 193 -1 1.1E-03 -1.2 1.7E-04 

PA1931 - 326 125 146 -1.4 2.7E-09 -1.2 2.8E-07 

PA4608 - 1616 666 724 -1.3 2.9E-05 -1.2 1.3E-04 
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PA1670 - 230 103 103 -1.2 3.1E-06 -1.2 1.6E-06 

PA2555 - 3335 2075 1496 -0.7 1.1E-03 -1.2 3.3E-07 

PA2190 - 168 61 75 -1.5 5.9E-09 -1.2 2.3E-06 

PA1753 - 1733 700 780 -1.3 3.5E-06 -1.2 2.4E-05 

PA0958 oprD 32077 17958 14466 -0.8 3.4E-03 -1.1 7.9E-05 

PA2090 - 362 126 163 -1.5 9.0E-11 -1.1 6.6E-07 

PA4067 oprG 20473 4926 9240 -2.1 7.6E-13 -1.1 1.3E-04 

PA3432 - 87 35 39 -1.3 2.7E-04 -1.1 2.2E-03 

PA3450 - 8628 3847 3899 -1.2 7.0E-03 -1.1 5.7E-03 

PA3040 - 5634 1792 2548 -1.7 7.2E-15 -1.1 1.0E-07 

PA2621 - 6505 2912 2942 -1.2 2.2E-08 -1.1 2.9E-08 

PA5359 - 3864 1563 1748 -1.3 1.9E-10 -1.1 1.2E-08 

PA3733 - 387 164 175 -1.2 7.7E-07 -1.1 2.1E-06 

PA3449 - 215 67 98 -1.7 1.2E-06 -1.1 1.9E-04 

PA4535 - 1969 864 894 -1.2 5.0E-07 -1.1 1.6E-06 

PA2092 - 250 100 114 -1.3 2.7E-08 -1.1 3.8E-06 

PA0107 - 567 324 258 -0.8 1.2E-03 -1.1 1.1E-06 

PA4607 - 83284 31295 37963 -1.4 3.3E-11 -1.1 1.2E-07 

PA1167 - 812 322 371 -1.3 1.7E-07 -1.1 7.5E-06 

PA3041 - 3072 1005 1405 -1.6 6.6E-14 -1.1 2.0E-07 

PA3340 - 4890 2382 2239 -1 2.9E-07 -1.1 5.0E-08 

PA2091 - 292 107 134 -1.4 4.5E-04 -1.1 7.4E-03 

PA3343 - 1198 552 549 -1.1 8.0E-07 -1.1 4.7E-07 

PA2791 - 212 78 98 -1.4 2.2E-10 -1.1 3.6E-07 

PA0959 - 3354 1539 1546 -1.1 1.6E-06 -1.1 1.3E-06 

PA1774 crfX 966 407 446 -1.2 6.0E-07 -1.1 6.4E-06 

PA2475 - 1128 500 521 -1.2 4.9E-08 -1.1 1.7E-07 

PA4112 - 6646 2745 3072 -1.3 2.2E-09 -1.1 1.2E-07 

PA0854 fumC 3015 1416 1394 -1.1 2.0E-07 -1.1 8.0E-08 

PA0276 - 173 79 80 -1.1 4.3E-04 -1.1 2.6E-04 

PA3944 - 771 323 357 -1.3 2.1E-09 -1.1 6.0E-08 

PA5546 - 11144 4236 5159 -1.4 1.2E-10 -1.1 1.2E-07 

PA1732 - 1008 428 468 -1.2 2.1E-08 -1.1 1.3E-07 

PA3519 - 64 27 30 -1.3 3.6E-05 -1.1 9.4E-05 

PA1208 - 840 355 390 -1.2 1.1E-07 -1.1 2.8E-06 

PA0332 - 864 413 402 -1.1 1.3E-06 -1.1 6.6E-07 

PA3938 - 2711 1103 1262 -1.3 8.1E-02 -1.1 9.3E-02 

PA0468 - 1187 568 554 -1.1 3.2E-07 -1.1 2.2E-07 

PA0531 - 278 124 130 -1.2 2.3E-03 -1.1 5.7E-03 

PA0191 - 598 240 280 -1.3 1.3E-02 -1.1 2.5E-02 

PA2127 - 806 339 378 -1.2 3.1E-09 -1.1 1.1E-07 

PA3857 - 1850 861 867 -1.1 1.1E-06 -1.1 1.3E-06 

PA2149 - 5 4 3 -0.5 5.5E-01 -1.1 3.2E-01 

PA4654 - 213 99 100 -1.1 1.6E-06 -1.1 5.6E-06 

PA2375 - 624 251 293 -1.3 3.8E-09 -1.1 3.6E-07 
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PA0861 - 5182 2204 2438 -1.2 1.6E-09 -1.1 4.0E-08 

PA3973 - 641 284 302 -1.2 3.4E-07 -1.1 2.9E-06 

PA2562 - 2725 1210 1284 -1.2 1.6E-08 -1.1 1.2E-07 

PA0586 - 22379 8614 10574 -1.4 2.0E-10 -1.1 1.7E-07 

PA4024 eutB 1228 634 580 -1 3.3E-06 -1.1 2.0E-07 

PA4350 - 543 183 257 -1.6 9.6E-09 -1.1 1.6E-04 

PA1183 dctA 311 232 147 -0.4 6.0E-01 -1.1 8.7E-02 

PA2275 - 258 129 122 -1 8.8E-06 -1.1 8.7E-07 

PA0547 - 11372 4523 5383 -1.3 6.6E-11 -1.1 1.3E-07 

PA3346 - 4058 1759 1922 -1.2 3.8E-09 -1.1 5.3E-08 

PA3932 - 786 325 373 -1.3 4.3E-08 -1.1 8.4E-07 

PA2180 - 48 22 23 -1.1 2.2E-02 -1.1 2.8E-02 

PA1173 napB 147 52 70 -1.5 6.3E-08 -1.1 6.4E-05 

PA4116 bphO 726 349 346 -1.1 5.1E-08 -1.1 5.1E-08 

PA3891 - 348 176 166 -1 1.9E-04 -1.1 1.5E-04 

PA1166 - 934 390 446 -1.3 2.9E-09 -1.1 3.6E-07 

PA3572 - 582 272 278 -1.1 4.2E-03 -1.1 1.2E-02 

PA4117 bphP 4061 1942 1941 -1.1 1.4E-07 -1.1 9.6E-08 

PA2150 - 57 24 27 -1.2 3.1E-04 -1.1 2.4E-03 

PA4636 - 158 76 76 -1 7.0E-06 -1.1 1.4E-05 

PA0460 - 2906 1063 1395 -1.5 8.6E-12 -1.1 8.2E-07 

PA5107 - 2535 1139 1224 -1.2 1.3E-08 -1 1.1E-07 

PA4126 - 231 109 112 -1.1 8.4E-06 -1 4.4E-06 

PA4027 - 737 362 356 -1 3.9E-06 -1 1.5E-06 

PA1921 - 54 30 26 -0.9 2.3E-03 -1 4.5E-04 

PA4877 - 547 218 265 -1.3 7.9E-09 -1 1.7E-06 

PA2177 - 1139 537 552 -1.1 3.6E-07 -1 1.4E-06 

PA5061 - 5480 2467 2656 -1.2 2.8E-08 -1 2.0E-07 

PA3690 - 8351 3901 4055 -1.1 7.6E-08 -1 1.4E-07 

PA0788 - 305 164 148 -0.9 2.3E-03 -1 8.6E-04 

PA5474 - 3305 1505 1606 -1.1 3.1E-08 -1 6.5E-07 

PA4536 - 986 475 479 -1.1 7.0E-07 -1 7.6E-07 

PA1107 - 553 228 269 -1.3 1.2E-08 -1 6.4E-07 

PA0329 - 4991 2083 2429 -1.3 1.6E-09 -1 8.9E-07 

PA2088 - 433 136 211 -1.7 1.3E-08 -1 2.0E-04 

PA0436 - 1687 805 822 -1.1 1.2E-05 -1 1.9E-05 

PA1430 lasR 12553 5976 6123 -1.1 4.8E-07 -1 6.1E-07 

PA4913 - 1270 691 620 -0.9 6.8E-06 -1 5.6E-07 

PA2883 - 508 258 248 -1 5.5E-07 -1 2.4E-07 

PA0397 - 1143 531 559 -1.1 2.8E-07 -1 1.2E-06 

PA0210 mdcC 126 60 61 -1.1 6.0E-06 -1 3.4E-05 

PA1349 - 197 74 96 -1.4 9.9E-10 -1 7.1E-06 

PA0396 pilU 4048 1966 1987 -1 2.3E-07 -1 4.8E-07 

PA4635 - 272 131 134 -1.1 7.0E-05 -1 1.6E-04 

PA0452 - 320 148 157 -1.1 2.3E-06 -1 2.5E-06 
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PA4362 - 1334 613 655 -1.1 1.7E-07 -1 8.4E-07 

PA2121 - 509 226 250 -1.2 5.2E-08 -1 1.5E-06 

PA3006 psrA 2268 1161 1115 -1 3.2E-02 -1 2.4E-02 

PA3910 eddA 183 94 90 -1 1.8E-04 -1 1.9E-04 

PA2134 - 62 39 31 -0.7 7.0E-03 -1 5.8E-04 

PA1731 - 822 339 404 -1.3 5.3E-06 -1 1.8E-04 

PA3274 - 70 34 35 -1 5.8E-04 -1 1.1E-03 

PA1915 - 1314 603 650 -1.1 1.6E-07 -1 2.0E-06 

PA2632 - 821 388 406 -1.1 7.6E-06 -1 2.4E-05 

PA2233 pslC 2453 972 1213 -1.3 3.1E-10 -1 1.2E-06 

PA0284 - 1600 784 793 -1 6.3E-02 -1 5.4E-02 

PA3305 - 1208 547 601 -1.1 1.0E-07 -1 1.6E-06 

PA2781 - 681 321 339 -1.1 1.1E-07 -1 1.3E-06 

PA1920 nrdD 467 179 233 -1.4 1.4E-08 -1 5.0E-05 

PA4049 - 750 371 375 -1 9.4E-07 -1 4.0E-06 

PA1979 eraS 55 26 27 -1.1 3.9E-03 -1 1.0E-02 

PA2302 ambE 20130 9979 10111 -1 5.2E-06 -1 1.1E-05 

PA4048 - 653 347 329 -0.9 1.7E-05 -1 9.4E-06 

PA2864 - 1855 848 938 -1.1 3.6E-08 -1 4.9E-07 

PA4368 - 1554 731 786 -1.1 5.3E-07 -1 2.5E-06 

PA5408 - 171 92 87 -0.9 9.9E-04 -1 7.5E-05 

PA0843 plcR 65 28 33 -1.2 2.0E-05 -1 1.8E-04 

PA5428 - 1149 519 584 -1.1 2.1E-08 -1 1.6E-06 

PA1555 ccoQ 690 215 351 -1.7 6.2E-03 -1 1.6E-01 

PA5409 - 899 480 457 -0.9 1.6E-05 -1 7.6E-06 

PA5060 phaF 27997 14323 14242 -1 2.5E-06 -1 2.7E-06 

PA0366 - 809 419 412 -0.9 6.5E-06 -1 2.4E-06 

PA3042 - 1467 497 748 -1.6 6.7E-13 -1 1.2E-05 

PA2591 - 2537 1243 1294 -1 7.7E-07 -1 1.5E-06 

PA0250 - 1480 713 756 -1.1 5.5E-06 -1 1.2E-05 

PA2175 - 118 55 61 -1.1 8.3E-06 -1 5.7E-05 

PA1385 - 442 203 226 -1.1 1.4E-06 -1 6.3E-06 

PA2606 - 736 359 377 -1 1.3E-04 -1 3.2E-04 

PA3354 - 1799 929 922 -1 2.0E-06 -1 3.4E-06 

PA2047 - 643 359 330 -0.8 1.1E-05 -1 2.8E-06 

PA0736 - 97 55 50 -0.8 5.4E-03 -1 7.9E-04 

PA3459 - 1536 683 790 -1.2 6.1E-08 -1 3.0E-06 

PA0960 - 796 421 410 -0.9 9.6E-05 -1 8.1E-05 

PA3677 - 874 568 450 -0.6 3.5E-03 -1 4.7E-05 

PA3460 - 1451 725 747 -1 5.5E-04 -1 6.0E-04 

PA0806 - 151 71 78 -1.1 2.1E-06 -1 6.3E-05 

PA3461 - 1173 548 605 -1.1 5.9E-07 -1 8.5E-06 

PA2600 - 446 241 230 -0.9 3.3E-03 -1 1.9E-03 

PA2780 - 583 289 301 -1 1.0E-06 -1 4.9E-06 

PA3289 - 541 241 280 -1.2 2.0E-06 -1 5.5E-05 
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PA4717 - 2178 1149 1127 -0.9 2.0E-06 -1 1.3E-06 

PA2303 ambD 2665 1391 1380 -0.9 1.7E-05 -0.9 1.7E-05 

PA2178 - 179 90 93 -1 3.5E-04 -0.9 9.0E-04 

PA4610 - 279 146 145 -0.9 2.6E-05 -0.9 1.6E-05 

PA2087 - 241 95 125 -1.3 2.0E-07 -0.9 3.8E-04 

PA3386 - 184 84 96 -1.1 3.6E-06 -0.9 1.1E-04 

PA0853 - 822 403 427 -1 6.2E-06 -0.9 2.5E-05 

PA3420 - 252 128 131 -1 3.7E-05 -0.9 5.3E-05 

PA1431 rsaL 9124 4461 4746 -1 1.5E-07 -0.9 1.1E-06 

PA1473 - 478 235 249 -1 2.4E-03 -0.9 6.1E-03 

PA3273 - 47 23 25 -1 1.2E-03 -0.9 1.6E-03 

PA0198 exbB 483 224 252 -1.1 8.2E-06 -0.9 1.0E-04 

PA5211 - 433 190 226 -1.2 1.8E-07 -0.9 4.3E-05 

PA2007 maiA 2462 1047 1287 -1.2 3.3E-04 -0.9 1.8E-02 

PA3462 - 961 453 503 -1.1 5.8E-07 -0.9 1.3E-05 

PA0982 - 642 312 336 -1 1.2E-06 -0.9 1.6E-05 

PA1356 - 611 284 320 -1.1 1.0E-06 -0.9 2.7E-05 

PA0195 pntA 2277 1010 1198 -1.2 1.0E-08 -0.9 3.0E-06 

PA2771 - 2085 998 1097 -1.1 3.1E-07 -0.9 8.8E-06 

PA5101 - 609 301 321 -1 3.2E-04 -0.9 1.1E-03 

PA5210 - 4575 2162 2413 -1.1 2.2E-07 -0.9 1.6E-05 

PA0742 - 256 114 135 -1.2 2.9E-07 -0.9 1.8E-05 

PA3323 - 185 95 98 -1 7.6E-05 -0.9 1.4E-04 

PA1669 - 954 494 507 -1 1.2E-05 -0.9 3.6E-05 

PA2301 - 806 396 428 -1 1.8E-06 -0.9 1.4E-05 

PA1348 - 710 305 378 -1.2 5.4E-07 -0.9 6.3E-05 

PA1555 ccoP 2492 752 1337 -1.7 1.8E-03 -0.9 1.4E-01 

PA2183 - 77 36 41 -1.1 8.5E-05 -0.9 8.0E-04 

PA3049 - 46083 15590 24789 -1.6 1.3E-11 -0.9 2.4E-04 

PA4611 - 1685 718 908 -1.2 1.7E-09 -0.9 1.4E-05 

PA2605 - 1301 598 702 -1.1 4.3E-06 -0.9 1.7E-04 

PA3316 - 731 375 396 -1 7.3E-05 -0.9 4.3E-04 

PA3839 - 749 380 406 -1 3.5E-06 -0.9 3.1E-05 

PA5495 thrB 4503 1667 2460 -1.4 6.6E-12 -0.9 3.2E-05 

PA2699 - 811 355 443 -1.2 2.7E-06 -0.9 1.1E-03 

PA2534 - 473 235 259 -1 2.5E-04 -0.9 6.7E-04 

PA2360 - 1921 797 1054 -1.3 8.3E-09 -0.9 1.7E-04 

PA0424 mexR 2040 949 1123 -1.1 3.4E-07 -0.9 2.1E-05 

PA3678 - 1780 892 982 -1 4.9E-07 -0.9 4.4E-06 

PA1470 - 613 314 339 -1 8.1E-06 -0.9 1.2E-04 

PA4111 - 652 293 363 -1.2 1.2E-07 -0.8 5.8E-05 

PA5178 - 15374 6911 8554 -1.2 2.7E-08 -0.8 5.0E-05 

PA2086 - 360 155 201 -1.2 5.9E-04 -0.8 1.7E-02 

PA2607 - 878 415 490 -1.1 7.8E-06 -0.8 2.1E-04 

PA0585 - 306 157 171 -1 7.8E-05 -0.8 1.3E-03 
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PA5358 ubiA 3551 1775 1989 -1 1.4E-06 -0.8 3.6E-05 

PA1886 polB 1963 1001 1100 -1 7.1E-06 -0.8 6.4E-05 

PA1350 - 390 200 219 -1 4.6E-05 -0.8 3.9E-04 

PA3304 - 521 266 293 -1 8.5E-06 -0.8 1.5E-04 

PA3051 - 1396 550 787 -1.3 1.3E-10 -0.8 2.6E-04 

PA1733 - 1322 674 746 -1 8.4E-06 -0.8 8.6E-05 

PA1290 - 208 102 118 -1 2.4E-05 -0.8 1.7E-04 

PA3023 - 827 428 468 -1 5.0E-06 -0.8 8.1E-05 

PA2474 - 184 94 104 -1 1.5E-02 -0.8 4.2E-02 

PA3875 narG 496 236 281 -1.1 2.7E-06 -0.8 6.2E-04 

PA2234 pslD 2287 1135 1296 -1 1.3E-06 -0.8 2.4E-04 

PA2918 - 725 365 411 -1 2.4E-06 -0.8 3.8E-05 

PA2371 - 7570 2955 4301 -1.4 1.5E-09 -0.8 4.0E-04 

PA2240 pslJ 1635 798 930 -1 5.5E-05 -0.8 4.3E-03 

PA3874 narH 314 131 179 -1.3 4.8E-06 -0.8 6.4E-03 

PA1076 - 2688 1266 1536 -1.1 1.2E-07 -0.8 6.9E-05 

PA2239 pslI 1662 812 951 -1 1.6E-05 -0.8 1.9E-03 

PA2593 qteE 344 166 197 -1.1 7.8E-06 -0.8 2.4E-04 

PA1643 - 842 430 484 -1 3.9E-06 -0.8 1.0E-04 

PA5303 - 2023 932 1163 -1.1 1.6E-03 -0.8 2.5E-02 

PA2008 fahA 5457 2436 3138 -1.2 7.5E-04 -0.8 1.7E-02 

PA2700 opdB 368 176 213 -1.1 6.4E-04 -0.8 1.1E-02 

PA2236 pslF 2543 1247 1475 -1 9.8E-07 -0.8 7.2E-04 

PA2370 - 2055 844 1192 -1.3 2.0E-04 -0.8 2.9E-02 

PA0197 tonB 174 88 101 -1 2.0E-04 -0.8 1.0E-03 

PA2094 - 259 133 151 -1 8.4E-05 -0.8 6.9E-04 

PA4736 - 1162 577 679 -1 2.7E-06 -0.8 8.6E-05 

PA4874 - 4441 2118 2603 -1.1 4.8E-07 -0.8 2.6E-04 

PA2093 - 184 90 108 -1 1.1E-05 -0.8 1.7E-03 

PA2368 - 1817 790 1072 -1.2 8.8E-05 -0.8 1.2E-02 

PA1746 - 1842 883 1087 -1.1 4.1E-03 -0.8 1.0E-01 

PA0141 - 2808 844 1661 -1.7 1.8E-08 -0.8 3.2E-02 

PA3786 - 554 283 329 -1 3.0E-05 -0.8 1.4E-03 

PA2608 - 1021 516 609 -1 9.8E-03 -0.7 3.3E-02 

PA2089 - 1171 589 701 -1 1.1E-05 -0.7 7.5E-04 

PA5059 - 837 426 503 -1 1.8E-05 -0.7 1.1E-03 

PA2238 pslH 1996 1031 1214 -1 7.6E-06 -0.7 1.8E-03 

PA1344 - 2147 1108 1310 -1 4.3E-04 -0.7 1.1E-02 

PA0546 metK 26569 13462 16248 -1 1.0E-04 -0.7 8.3E-03 

PA2374 - 707 327 433 -1.1 1.2E-06 -0.7 1.9E-03 

PA0026 plcB 3652 1881 2242 -1 5.1E-06 -0.7 4.5E-04 

PA2009 hmgA 5543 2707 3410 -1 2.6E-03 -0.7 2.0E-02 

PA2237 pslG 2136 1084 1317 -1 7.1E-06 -0.7 3.8E-03 

PA3032 - 536 245 331 -1.1 3.5E-06 -0.7 2.0E-03 

PA2369 - 4924 2260 3058 -1.1 2.5E-04 -0.7 3.0E-02 
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PA2235 pslE 6966 3556 4369 -1 1.1E-04 -0.7 1.8E-02 

PA5395 - 287 147 181 -1 7.4E-05 -0.7 3.8E-03 

PA0049 - 822 382 519 -1.1 2.3E-02 -0.7 2.2E-01 

PA2367 - 4029 1862 2555 -1.1 7.3E-04 -0.7 4.0E-02 

PA2365 - 3491 1761 2231 -1 9.3E-06 -0.6 2.5E-03 

PA2366 - 11151 5753 7125 -1 4.3E-02 -0.6 1.7E-01 

PA2061 - 205 106 132 -1 1.1E-04 -0.6 1.9E-03 

PA0050 - 918 311 593 -1.6 8.3E-13 -0.6 8.7E-03 

PA5115 - 151 75 99 -1 9.4E-04 -0.6 5.9E-02 

PA1544 - 9194 4343 6073 -1.1 5.5E-04 -0.6 5.3E-02 

PA4495 - 6808 3398 4509 -1 2.1E-06 -0.6 6.0E-03 

PA1172 napC 240 124 163 -1 4.3E-05 -0.6 2.4E-02 

PA1919 nrdG 413 184 281 -1.2 2.5E-07 -0.6 1.7E-02 

PA2373 - 4618 2216 3190 -1.1 8.2E-06 -0.5 3.4E-02 

PA1924 - 38 19 26 -1 1.3E-02 -0.5 2.0E-01 

PA3788 - 306 138 215 -1.1 5.4E-04 -0.5 1.7E-01 

PA2381 - 1612 509 1164 -1.7 5.8E-07 -0.5 2.9E-01 

PA0135 - 6 2 4 -1.3 1.3E-01 -0.4 8.0E-01 

PA0572 - 13036 6506 9948 -1 5.9E-04 -0.4 3.5E-01 

PA5169 - 481 1022 422 1.1 5.6E-02 -0.2 8.6E-01 

PA1123 - 525 241 464 -1.1 7.2E-03 -0.2 9.1E-01 

PA1155 nrdB 28942 11035 27918 -1.4 6.6E-04 -0.1 8.3E-01 

PA1156 nrdA 42491 21426 41150 -1 1.5E-02 0 8.0E-01 

PA0793 - 706 1386 746 1 4.3E-02 0.1 1.0E+00 

PA3569 mmsB 2480 4906 2689 1 6.4E-02 0.1 9.1E-01 

PA3570 mmsA 6015 11723 7205 1 2.1E-02 0.3 5.6E-01 

PA3186 oprB 8350 21895 10331 1.4 1.8E-02 0.3 5.6E-01 

PA0516 nirF 337 730 424 1.1 1.2E-03 0.3 2.4E-01 

PA0513 - 99 201 127 1 1.2E-02 0.4 3.2E-01 

PA0519 nirS 2014 5407 2583 1.4 1.5E-03 0.4 3.6E-01 

PA0512 nirJ 149 292 193 1 8.3E-03 0.4 2.4E-01 

PA1073 braD 892 1899 1155 1.1 2.8E-05 0.4 1.6E-01 

PA0517 nirC 127 316 167 1.3 5.5E-04 0.4 2.5E-01 

PA0753 - 40 79 53 1 1.3E-02 0.4 2.3E-01 

PA0866 aroP 365 810 488 1.2 1.1E-02 0.4 3.5E-01 

PA1071 braF 956 1978 1282 1 2.6E-04 0.4 1.3E-01 

PA0522 - 51 177 68 1.8 5.4E-03 0.4 5.5E-01 

PA0521 - 80 225 109 1.5 7.2E-04 0.4 4.3E-01 

PA3568 - 857 2062 1161 1.3 9.9E-03 0.4 3.4E-01 

PA1072 braE 1107 2518 1499 1.2 9.4E-05 0.4 8.4E-02 

PA0518 nirM 192 539 265 1.5 6.6E-05 0.5 1.2E-01 

PA0523 norC 600 1862 838 1.6 1.2E-03 0.5 3.9E-01 

PA3811 hscB 1109 2291 1550 1 5.3E-03 0.5 2.3E-01 

PA3812 iscA 1261 2607 1765 1 1.0E-03 0.5 1.5E-01 

PA1070 braG 567 1354 797 1.3 9.9E-06 0.5 7.5E-02 
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PA2459 - 84 203 117 1.3 2.7E-01 0.5 6.1E-01 

PA0795 prpC 2801 6362 3991 1.2 8.7E-03 0.5 1.8E-01 

PA5096 - 531 1264 756 1.3 5.7E-02 0.5 5.4E-01 

PA0525 - 929 3123 1336 1.7 9.5E-05 0.5 1.6E-01 

PA3814 iscS 6679 14428 9620 1.1 3.8E-05 0.5 5.4E-02 

PA3392 nosZ 447 1376 661 1.6 3.4E-04 0.6 1.4E-01 

PA3809 - 552 1249 816 1.2 1.4E-06 0.6 2.7E-02 

PA3810 hscA 2413 5423 3585 1.2 9.3E-06 0.6 1.7E-02 

PA3813 iscU 2025 4576 3038 1.2 3.8E-05 0.6 4.2E-02 

PA5530 - 330 819 502 1.3 2.9E-04 0.6 8.3E-02 

PA3182 - 1586 3243 2434 1 1.5E-03 0.6 5.6E-02 

PA0235 pcaK 29 58 45 1 1.7E-02 0.6 1.4E-01 

PA3187 - 3834 11759 6003 1.6 7.1E-04 0.6 1.4E-01 

PA0524 norB 1321 5031 2094 1.9 5.7E-05 0.7 1.5E-01 

PA3192 gltR 512 1055 816 1 2.0E-04 0.7 5.5E-03 

PA5098 hutH 963 2596 1538 1.4 4.9E-03 0.7 1.9E-01 

PA1588 sucC 19020 38478 30560 1 2.9E-07 0.7 2.7E-04 

PA3836 - 1831 3742 2985 1 2.0E-04 0.7 1.0E-02 

PA1911 femR 1005 1970 1664 1 5.2E-07 0.7 4.9E-05 

PA5153 - 2778 7264 4616 1.4 1.5E-03 0.7 7.4E-02 

PA5099 - 643 1516 1071 1.2 2.8E-06 0.7 4.2E-03 

PA2129 cupA 20 45 34 1.2 1.1E-03 0.7 3.3E-02 

PA5137 - 521 1129 886 1.1 7.8E-07 0.8 4.1E-04 

PA4170 - 146 322 248 1.1 1.6E-05 0.8 2.4E-03 

PA4588 gdhA 661 1498 1126 1.2 1.6E-07 0.8 3.4E-04 

PA2322 - 257 600 446 1.2 3.5E-03 0.8 5.1E-02 

PA3554 arnA 397 817 689 1 6.7E-06 0.8 4.1E-04 

PA5097 - 481 1446 838 1.6 2.7E-03 0.8 1.2E-01 

PA2951 etfA 11300 22630 19686 1 1.8E-07 0.8 1.2E-05 

PA0707 toxR 975 1912 1702 1 7.8E-06 0.8 2.1E-04 

PA1696 pscO 37 74 65 1 9.5E-03 0.8 2.0E-02 

PA2391 opmQ 2792 5460 4919 1 6.4E-06 0.8 6.3E-05 

PA3188 - 1299 4464 2299 1.8 6.2E-06 0.8 2.1E-02 

PA1276 cobC 238 470 423 1 6.7E-06 0.8 2.0E-04 

PA4169 - 175 401 313 1.2 1.8E-06 0.8 4.8E-04 

PA0168 - 280 551 502 1 2.2E-06 0.8 2.4E-05 

PA2450 - 493 954 887 1 8.3E-06 0.8 6.2E-05 

PA2411 - 15893 32938 28699 1.1 5.8E-07 0.9 2.4E-05 

PA4823 - 1 0 3 -1.9 1.0E+00 0.9 3.6E-01 

PA3642 rnhB 187 384 338 1 1.4E-04 0.9 1.3E-03 

PA1273 cobB 354 686 640 1 2.4E-03 0.9 2.7E-03 

PA5127 - 283 558 512 1 4.5E-06 0.9 3.0E-05 

PA3887 nhaP 627 1227 1139 1 5.3E-06 0.9 4.7E-05 

PA3553 arnC 162 340 296 1.1 5.0E-06 0.9 7.8E-05 

PA5100 hutU 4427 10975 8081 1.3 1.4E-04 0.9 8.4E-03 
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PA5074 - 464 944 847 1 2.5E-04 0.9 8.4E-04 

PA3263 - 627 1320 1145 1.1 2.9E-06 0.9 6.6E-05 

PA0552 - 1540 3010 2826 1 9.6E-06 0.9 2.4E-05 

PA3283 - 131 273 241 1.1 2.6E-06 0.9 9.2E-05 

PA5052 - 383 764 706 1 4.5E-03 0.9 6.4E-03 

PA5135 - 255 507 470 1 1.1E-05 0.9 4.3E-05 

PA0996 pqsA 9781 19565 18067 1 1.6E-07 0.9 1.9E-06 

PA4370 icmP 18850 36738 34995 1 6.7E-07 0.9 2.2E-06 

PA2385 pvdQ 7093 14739 13188 1.1 1.0E-04 0.9 3.4E-04 

PA0757 - 260 503 487 1 2.1E-05 0.9 2.2E-05 

PA3470 - 182 360 340 1 7.9E-06 0.9 2.9E-05 

PA4259 rpsS 4346 8443 8146 1 4.2E-03 0.9 2.8E-03 

PA4934 rpsR 2489 4850 4701 1 1.2E-03 0.9 9.0E-04 

PA1909 - 151 331 286 1.1 5.9E-07 0.9 3.1E-05 

PA2019 - 259 523 490 1 1.3E-06 0.9 3.4E-06 

PA2466 foxA 550 1063 1042 1 1.4E-06 0.9 1.7E-06 

PA1805 ppiD 5057 9942 9589 1 1.3E-06 0.9 3.9E-06 

PA2952 etfB 8897 18379 16875 1 1.4E-07 0.9 1.6E-06 

PA2998 nqrB 1152 2293 2186 1 2.4E-03 0.9 2.5E-03 

PA0659 - 2215 4410 4204 1 8.7E-07 0.9 3.9E-06 

PA4389 speA 1641 3378 3120 1 7.1E-07 0.9 1.1E-05 

PA4229 pchC 15235 32579 28963 1.1 2.5E-05 0.9 1.2E-04 

PA3666 dapD 1378 2730 2621 1 1.2E-06 0.9 2.5E-06 

PA1725 pscL 131 289 251 1.1 2.9E-07 0.9 3.3E-05 

PA0930 - 545 1097 1039 1 5.4E-07 0.9 2.9E-06 

PA5076 - 914 1860 1749 1 1.6E-06 0.9 6.3E-06 

PA0341 - 529 1042 1013 1 1.8E-06 0.9 4.1E-06 

PA2945 - 1538 3234 2950 1.1 8.7E-08 0.9 1.2E-06 

PA2948 cobM 415 848 796 1 4.9E-07 0.9 3.6E-06 

PA1580 gltA 8993 18264 17275 1 1.5E-07 0.9 1.1E-06 

PA2634 aceA 4101 8003 7887 1 2.5E-07 0.9 1.0E-06 

PA1274 - 172 345 332 1 1.4E-05 0.9 2.0E-05 

PA3483 - 319 621 614 1 1.1E-05 0.9 8.2E-06 

PA4705 prrF 573 1244 1105 1.1 1.4E-05 0.9 7.0E-05 

PA3807 - 3406 6903 6576 1 4.1E-05 0.9 5.3E-05 

PA4274 rplK 6966 14789 13450 1.1 3.3E-05 0.9 1.1E-04 

PA3117 - 1143 2497 2207 1.1 1.0E-07 0.9 3.4E-06 

PA2900 - 653 1183 1262 0.9 1.3E-05 1 6.1E-07 

PA5049 rpmE 1730 3227 3345 0.9 1.2E-03 1 7.0E-04 

PA0047 - 141 273 274 0.9 3.4E-04 1 2.7E-04 

PA2774 - 208 410 403 1 1.2E-05 1 1.4E-05 

PA3865 - 747 1407 1449 0.9 3.8E-05 1 4.0E-05 

PA1365 - 714 1268 1385 0.8 3.7E-05 1 2.7E-06 

PA3980 - 1477 2654 2865 0.8 3.9E-04 1 5.3E-05 

PA1812 mltD 2833 5586 5512 1 3.9E-05 1 2.7E-05 
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PA1012 - 1066 1959 2075 0.9 9.3E-04 1 1.8E-04 

PA2660 - 443 915 862 1 8.6E-07 1 3.5E-06 

PA4724 - 212 418 412 1 4.8E-05 1 2.2E-05 

PA0085 - 1553 2929 3024 0.9 3.4E-05 1 1.9E-05 

PA1011 - 4153 7956 8091 0.9 1.6E-06 1 5.6E-07 

PA5154 - 342 1146 667 1.7 9.1E-11 1 7.9E-04 

PA2467 foxR 902 1816 1760 1 2.1E-07 1 4.8E-07 

PA1702 - 14 32 27 1.2 1.8E-02 1 5.1E-02 

PA4802 - 63 123 123 1 7.8E-05 1 1.3E-04 

PA3635 - 5024 9895 9823 1 4.9E-03 1 2.5E-03 

PA4234 uvrA 2766 5483 5418 1 5.2E-07 1 2.5E-07 

PA4439 trpS 1504 2968 2946 1 1.6E-06 1 1.6E-06 

PA4686 - 1697 3278 3328 0.9 5.1E-03 1 2.6E-03 

PA2977 murB 633 1143 1241 0.9 3.5E-04 1 6.1E-05 

PA0009 glyQ 1378 2634 2706 0.9 3.1E-06 1 7.5E-07 

PA1790 - 211 380 416 0.8 2.6E-03 1 5.0E-04 

PA4730 panC 640 1223 1261 0.9 2.8E-07 1 8.2E-08 

PA1721 pscH 139 352 274 1.3 7.9E-09 1 6.1E-05 

PA1720 pscG 214 535 422 1.3 1.6E-07 1 2.0E-04 

PA3603 dgkA 116 181 229 0.6 3.5E-03 1 1.9E-05 

PA0390 metX 1140 2102 2254 0.9 2.6E-05 1 2.7E-06 

PA3284 - 190 384 375 1 9.9E-06 1 1.0E-04 

PA0955 - 1007 1914 1993 0.9 4.5E-06 1 1.2E-06 

PA2964 pabC 393 775 778 1 4.0E-03 1 2.2E-03 

PA3769 guaA 2368 4396 4692 0.9 3.3E-04 1 4.8E-05 

PA2390 pvdT 3699 7846 7337 1.1 1.6E-08 1 1.6E-07 

PA3134 gltX 2315 4395 4597 0.9 1.8E-06 1 1.9E-07 

PA2876 pyrF 255 468 507 0.9 3.2E-03 1 4.6E-04 

PA3716 - 1390 2772 2764 1 3.3E-06 1 2.3E-06 

PA1159 - 1863 3539 3718 0.9 4.9E-06 1 9.2E-07 

PA4849 - 86 148 172 0.8 4.0E-03 1 2.1E-04 

PA4271 rplL 6874 15303 13726 1.2 9.6E-08 1 2.0E-06 

PA5155 - 178 572 356 1.7 2.1E-09 1 4.3E-04 

PA0944 purN 825 1548 1652 0.9 1.4E-04 1 1.4E-05 

PA0088 - 403 797 806 1 3.0E-06 1 3.2E-06 

PA0888 aotJ 7411 15789 14845 1.1 1.7E-07 1 8.0E-07 

PA3189 - 1248 4944 2509 2 1.2E-07 1 4.0E-03 

PA3736 - 1502 3032 3022 1 6.4E-07 1 4.7E-07 

PA2446 gcvH 555 1086 1118 1 1.5E-03 1 2.5E-04 

PA4897 - 725 1464 1460 1 2.7E-06 1 1.8E-06 

PA4228 pchD 53874 118883 108856 1.1 1.5E-08 1 7.9E-08 

PA4054 ribB 826 1688 1670 1 2.1E-02 1 1.4E-02 

PA0350 folA 276 544 559 1 3.3E-05 1 1.8E-05 

PA0377 - 215 435 436 1 3.0E-06 1 2.0E-06 

PA4244 rplO 8037 16730 16267 1.1 1.1E-03 1 7.7E-04 
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PA1475 ccmA 350 663 710 0.9 5.8E-04 1 1.3E-04 

PA1723 pscJ 262 612 532 1.2 1.4E-08 1 1.2E-05 

PA4894 - 338 774 687 1.2 4.2E-04 1 9.1E-04 

PA0889 aotQ 908 1964 1846 1.1 6.8E-05 1 1.3E-04 

PA1272 cobO 430 857 875 1 1.7E-03 1 6.1E-04 

PA3925 - 565 1552 1151 1.5 1.3E-07 1 6.0E-05 

PA5342 - 212 426 432 1 4.2E-07 1 1.2E-07 

PA3471 - 2834 5975 5784 1.1 3.6E-08 1 7.1E-08 

PA3604 erdR 654 1260 1337 0.9 3.6E-05 1 4.0E-06 

PA5426 purE 509 971 1040 0.9 4.7E-04 1 7.5E-05 

PA5391 - 17 34 35 1 1.4E-02 1 6.9E-03 

PA3019 - 1173 2170 2406 0.9 3.7E-04 1 2.8E-05 

PA3968 - 208 419 428 1 5.9E-06 1 2.3E-06 

PA4266 fusA1 42026 87901 86242 1.1 2.1E-06 1 1.6E-06 

PA2321 - 127 313 260 1.3 3.3E-06 1 9.3E-05 

PA2063 - 284 572 585 1 7.1E-07 1 2.5E-07 

PA1722 pscI 158 408 326 1.4 8.3E-09 1 1.9E-05 

PA5136 - 848 1863 1748 1.1 1.7E-08 1 1.2E-07 

PA5569 rnpA 2856 5449 5891 0.9 1.6E-03 1 4.2E-04 

PA3552 arnB 226 520 467 1.2 7.7E-08 1 3.9E-06 

PA2395 pvdO 7418 16595 15328 1.2 4.7E-09 1 5.4E-08 

PA4568 rplU 4335 9011 8963 1.1 3.2E-05 1 3.2E-05 

PA0660 - 2752 6114 5691 1.2 2.8E-09 1 4.3E-08 

PA2203 - 211 470 436 1.2 2.0E-05 1 2.5E-04 

PA4260 rplB 9767 21759 20215 1.2 3.7E-03 1 3.9E-03 

PA4855 purD 708 1533 1465 1.1 1.8E-02 1 1.2E-02 

PA0083 - 496 1154 1027 1.2 5.6E-09 1 2.4E-07 

PA0040 - 574 1137 1189 1 1.2E-06 1.1 3.9E-07 

PA4852 - 2538 4588 5257 0.9 1.1E-03 1.1 5.4E-05 

PA4731 panD 183 374 380 1 3.4E-06 1.1 2.2E-06 

PA4390 - 901 1971 1869 1.1 1.3E-07 1.1 1.6E-06 

PA0945 purM 1679 3301 3488 1 1.2E-04 1.1 1.7E-05 

PA5046 - 6292 14503 13071 1.2 2.7E-09 1.1 3.9E-08 

PA0347 glpQ 447 1002 928 1.2 5.6E-08 1.1 4.6E-07 

PA1700 - 31 78 64 1.3 8.1E-07 1.1 3.7E-05 

PA3245 minE 1769 3415 3677 0.9 5.0E-07 1.1 1.0E-07 

PA4706 - 762 1669 1585 1.1 2.2E-06 1.1 2.6E-06 

PA4853 - 702 1322 1462 0.9 5.0E-04 1.1 4.6E-05 

PA4372 - 1445 2867 3010 1 6.7E-05 1.1 8.4E-06 

PA0948 - 278 567 579 1 1.7E-04 1.1 7.1E-05 

PA5570 rpmH 1940 3577 4047 0.9 2.5E-05 1.1 2.8E-07 

PA1767 - 2315 4742 4836 1 1.4E-06 1.1 6.4E-07 

PA1620 - 22 37 47 0.7 3.6E-02 1.1 6.9E-04 

PA0245 aroQ 17 35 35 1.1 6.9E-04 1.1 1.3E-03 

PA2320 gntR 573 1275 1202 1.2 1.1E-07 1.1 3.3E-07 



 
 

APPENDICIES 

 

245 
 

PA3866 - 10620 23470 22320 1.1 1.1E-08 1.1 1.4E-07 

PA0381 thiG 1181 2264 2484 0.9 1.5E-05 1.1 5.8E-07 

PA1275 cobD 136 349 287 1.4 1.5E-08 1.1 3.5E-06 

PA2202 - 198 451 416 1.2 7.5E-08 1.1 9.9E-07 

PA0756 - 172 356 363 1 5.1E-06 1.1 2.2E-06 

PA1674 folE 1276 2462 2695 0.9 2.1E-04 1.1 3.6E-05 

PA0903 alaS 3254 6700 6873 1 2.3E-05 1.1 7.7E-06 

PA4684 - 488 959 1031 1 5.3E-04 1.1 8.3E-05 

PA5425 purK 703 1390 1490 1 4.2E-04 1.1 6.4E-05 

PA0750 - 633 1340 1340 1.1 9.0E-08 1.1 6.8E-08 

PA4745 nusA 5955 12129 12643 1 2.2E-03 1.1 7.7E-04 

PA2662 - 487 1022 1035 1.1 4.5E-06 1.1 2.0E-06 

PA5129 - 634 1338 1349 1.1 7.0E-07 1.1 3.1E-07 

PA5118 thiI 793 1493 1690 0.9 3.4E-03 1.1 4.6E-04 

PA2619 infA 668 1236 1423 0.9 2.5E-02 1.1 4.4E-03 

PA0151 - 185 394 395 1.1 5.9E-07 1.1 1.9E-07 

PA3837 - 424 1191 910 1.5 2.7E-11 1.1 6.1E-07 

PA4055 ribC 543 1088 1166 1 1.9E-02 1.1 6.6E-03 

PA1193 - 299 602 642 1 3.5E-06 1.1 2.7E-07 

PA2792 - 127 263 273 1 9.6E-07 1.1 5.7E-07 

PA1161 rrmA 564 1267 1214 1.2 3.7E-09 1.1 1.3E-08 

PA1714 exsD 952 2448 2054 1.4 5.6E-10 1.1 6.1E-07 

PA1717 pscD 231 696 499 1.6 4.2E-06 1.1 7.9E-04 

PA3746 - 2421 4678 5233 1 8.2E-07 1.1 7.5E-09 

PA0169 - 230 605 498 1.4 7.4E-11 1.1 3.8E-08 

PA3232 - 192 395 416 1 2.0E-05 1.1 1.1E-05 

PA4272 rplJ 7125 17500 15426 1.3 3.5E-10 1.1 5.6E-08 

PA4632 - 1043 2203 2262 1.1 6.3E-08 1.1 7.3E-09 

PA2392 pvdP 9330 20996 20257 1.2 1.1E-09 1.1 4.8E-09 

PA5075 - 485 1126 1055 1.2 9.0E-05 1.1 1.2E-04 

PA5128 secB 3546 8301 7722 1.2 4.9E-10 1.1 8.1E-09 

PA1638 - 117 226 254 1 9.0E-05 1.1 7.1E-06 

PA4709 - 3110 7119 6783 1.2 5.2E-09 1.1 1.5E-08 

PA3790 oprC 1406 1747 3067 0.3 4.3E-01 1.1 1.2E-02 

PA3838 - 376 1024 821 1.4 1.2E-09 1.1 1.4E-06 

PA3824 queA 371 776 811 1.1 7.4E-04 1.1 2.1E-04 

PA4567 rpmA 2452 4874 5360 1 7.4E-06 1.1 1.3E-07 

PA4774 - 228 605 500 1.4 1.8E-08 1.1 1.8E-06 

PA3408 hasR 4165 9626 9126 1.2 6.9E-10 1.1 1.6E-08 

PA1293 - 988 2228 2166 1.2 3.6E-09 1.1 1.3E-08 

PA4664 hemK 467 1022 1024 1.1 3.8E-03 1.1 2.1E-03 

PA2463 - 702 1570 1543 1.2 1.5E-08 1.1 2.8E-08 

PA3162 rpsA 29676 65638 65590 1.1 1.3E-06 1.1 1.1E-06 

PA0774 - 337 696 747 1 8.8E-05 1.1 1.2E-05 

PA4264 rpsJ 9000 18190 19954 1 4.3E-04 1.1 7.6E-05 
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PA0802 - 75 161 167 1.1 3.5E-04 1.2 1.8E-04 

PA0389 - 463 1011 1028 1.1 7.0E-09 1.2 1.6E-09 

PA4245 rpmD 3896 8612 8657 1.1 3.5E-04 1.2 1.6E-04 

PA0800 - 192 452 426 1.2 5.0E-05 1.2 9.9E-05 

PA3823 - 535 1147 1191 1.1 7.7E-03 1.2 3.6E-03 

PA4708 phuT 2085 5461 4641 1.4 1.5E-05 1.2 9.7E-05 

PA2828 - 843 1751 1882 1.1 9.7E-07 1.2 8.1E-08 

PA2663 ppyR 103 230 232 1.2 1.0E-04 1.2 6.7E-05 

PA4895 - 1047 2618 2348 1.3 2.9E-06 1.2 1.4E-05 

PA2397 pvdE 6632 15316 14938 1.2 2.4E-10 1.2 1.6E-09 

PA3237 - 68 160 154 1.2 8.7E-07 1.2 4.1E-06 

PA1743 - 19 43 43 1.2 1.9E-04 1.2 2.9E-04 

PA5117 typA 997 2542 2253 1.4 3.0E-03 1.2 4.4E-03 

PA5296 - 1071 2195 2423 1 1.1E-05 1.2 9.4E-07 

PA1687 speE 299 636 678 1.1 5.0E-04 1.2 9.7E-05 

PA2969 plsX 654 1237 1484 0.9 3.4E-02 1.2 5.7E-03 

PA2413 pvdH 22318 58299 50747 1.4 3.0E-12 1.2 7.2E-10 

PA1724 pscK 64 171 145 1.4 6.2E-09 1.2 1.5E-06 

PA0421 - 1568 3755 3586 1.3 6.9E-10 1.2 2.5E-09 

PA5204 argA 2769 6266 6348 1.2 5.5E-09 1.2 4.1E-09 

PA4263 rplC 11828 26269 27119 1.2 9.0E-04 1.2 3.1E-04 

PA4249 rpsH 6709 14538 15403 1.1 1.0E-05 1.2 2.2E-06 

PA2971 - 3078 6246 7094 1 9.9E-03 1.2 2.6E-03 

PA4707 - 781 1952 1801 1.3 5.4E-06 1.2 1.0E-05 

PA4333 - 978 2039 2257 1.1 4.0E-06 1.2 1.6E-07 

PA1713 exsA 1831 4435 4240 1.3 8.6E-10 1.2 2.2E-08 

PA0970 tolR 1679 3975 3890 1.2 1.0E-04 1.2 1.0E-04 

PA4602 glyA3 2006 4470 4658 1.2 4.4E-05 1.2 8.6E-06 

PA4246 rpsE 9014 21277 20972 1.2 1.7E-04 1.2 1.1E-04 

PA2664 - 731 1564 1702 1.1 4.2E-06 1.2 1.9E-07 

PA0346 - 313 861 729 1.5 3.2E-11 1.2 8.8E-09 

PA3984 - 768 1842 1795 1.3 3.9E-10 1.2 6.9E-10 

PA1757 thrH 277 641 647 1.2 3.1E-06 1.2 1.3E-06 

PA1718 pscE 142 416 332 1.6 2.0E-06 1.2 2.6E-04 

PA2393 - 8324 20396 19496 1.3 5.3E-11 1.2 4.0E-10 

PA2913 - 258 670 605 1.4 3.8E-07 1.2 1.9E-06 

PA0801 - 501 1277 1177 1.4 7.2E-08 1.2 2.7E-07 

PA0796 prpB 1147 3195 2700 1.5 1.5E-03 1.2 4.2E-03 

PA3903 prfC 1530 3419 3604 1.2 2.4E-07 1.2 3.0E-08 

PA4031 - 2444 5684 5768 1.2 5.4E-09 1.2 9.5E-10 

PA4854 purH 1407 3172 3326 1.2 1.3E-02 1.2 5.0E-03 

PA0969 tolQ 3199 7906 7585 1.3 2.9E-05 1.2 3.9E-05 

PA4481 mreB 2559 6086 6076 1.3 8.7E-07 1.2 4.9E-07 

PA3174 - 136 278 323 1 2.3E-05 1.2 2.7E-06 

PA3822 - 1221 2776 2907 1.2 5.5E-07 1.3 1.3E-07 
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PA1715 pscB 83 252 198 1.6 1.7E-11 1.3 9.0E-08 

PA4438 - 806 1663 1944 1 5.7E-04 1.3 3.9E-05 

PA3406 hasD 1047 2417 2533 1.2 2.2E-09 1.3 7.3E-10 

PA1228 - 35 77 84 1.2 3.0E-03 1.3 1.1E-03 

PA4267 rpsG 7683 18941 18698 1.3 1.2E-08 1.3 7.1E-09 

PA4247 rplR 4840 11778 11792 1.3 5.0E-04 1.3 2.1E-04 

PA2851 - 4694 11067 11445 1.2 1.1E-06 1.3 3.3E-07 

PA3308 hepA 1413 3080 3447 1.1 2.4E-03 1.3 4.1E-04 

PA0170 - 154 421 375 1.5 3.7E-09 1.3 3.4E-08 

PA3165 hisC 1850 4909 4516 1.4 1.1E-08 1.3 6.8E-08 

PA2394 pvdN 6107 15580 14932 1.4 1.3E-08 1.3 4.8E-08 

PA4262 rplD 10128 24263 24808 1.3 1.2E-03 1.3 4.7E-04 

PA5201 - 1412 3274 3458 1.2 1.2E-03 1.3 3.4E-04 

PA3409 - 1109 2872 2719 1.4 1.8E-11 1.3 2.1E-10 

PA4268 rpsL 6820 16056 16725 1.2 1.2E-08 1.3 1.4E-09 

PA3405 hasE 701 1584 1720 1.2 1.8E-07 1.3 1.1E-08 

PA5316 rpmB 2920 7066 7178 1.3 9.9E-05 1.3 3.7E-05 

PA4773 - 127 346 312 1.5 2.2E-09 1.3 6.1E-08 

PA5194 - 378 923 930 1.3 1.1E-09 1.3 5.0E-10 

PA4248 rplF 8062 19877 19894 1.3 5.6E-05 1.3 2.6E-05 

PA3176 gltS 88 234 218 1.4 1.6E-08 1.3 4.5E-07 

PA0797 - 512 1246 1266 1.3 9.9E-04 1.3 6.5E-04 

PA2970 rpmF 1078 2209 2664 1 2.8E-03 1.3 2.7E-04 

PA1271 - 808 1992 2004 1.3 1.1E-05 1.3 4.2E-06 

PA4513 - 684 1752 1702 1.4 2.4E-05 1.3 1.9E-05 

PA1719 pscF 250 750 624 1.6 1.8E-10 1.3 1.6E-07 

PA3700 lysS 1694 4176 4243 1.3 2.3E-04 1.3 8.8E-05 

PA4896 - 1004 2618 2516 1.4 7.4E-11 1.3 2.2E-10 

PA2661 - 242 607 608 1.3 1.6E-07 1.3 1.3E-07 

PA3745 rpsP 1848 4036 4652 1.1 9.7E-04 1.3 1.1E-04 

PA4261 rplW 4788 11388 12072 1.2 2.2E-03 1.3 6.4E-04 

PA3744 rimM 4692 10047 11849 1.1 7.3E-03 1.3 1.0E-03 

PA4673 - 1329 3312 3371 1.3 2.1E-05 1.3 6.9E-06 

PA5192 pckA 3100 7898 7884 1.3 3.2E-07 1.3 1.5E-07 

PA2042 - 1395 3581 3548 1.4 1.4E-08 1.3 7.7E-09 

PA5131 - 3138 8667 8003 1.5 8.6E-14 1.4 2.2E-12 

PA4433 rplM 6234 15233 15989 1.3 2.2E-05 1.4 4.3E-06 

PA0931 pirA 1237 3251 3176 1.4 2.3E-05 1.4 1.4E-05 

PA2490 - 46 110 118 1.3 1.4E-07 1.4 2.0E-08 

PA0578 - 401 843 1032 1.1 8.0E-03 1.4 8.8E-04 

PA0382 micA 265 654 684 1.3 3.3E-04 1.4 1.0E-04 

PA2758 - 226 585 583 1.4 1.1E-10 1.4 2.4E-10 

PA1363 - 382 945 992 1.3 1.4E-07 1.4 3.7E-08 

PA4432 rpsI 4160 9878 10804 1.2 2.0E-04 1.4 2.6E-05 

PA3001 - 5763 14449 14980 1.3 5.2E-10 1.4 7.8E-11 
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PA4669 - 2730 6022 7105 1.1 3.3E-03 1.4 3.6E-04 

PA4840 - 180 414 469 1.2 8.7E-08 1.4 2.7E-10 

PA3743 trmD 4139 9826 10823 1.2 8.8E-03 1.4 2.7E-03 

PA5139 - 158 366 413 1.2 2.3E-06 1.4 2.0E-08 

PA0172 - 347 1015 911 1.5 1.1E-13 1.4 4.2E-12 

PA0775 - 309 699 812 1.2 2.9E-04 1.4 2.0E-05 

PA3209 - 28 58 75 1 9.2E-05 1.4 1.3E-06 

PA4672 - 358 887 952 1.3 5.9E-03 1.4 2.1E-03 

PA2445 gcvP2 3106 8545 8266 1.5 6.9E-09 1.4 4.3E-09 

PA0968 - 1678 4314 4477 1.4 1.3E-04 1.4 5.6E-05 

PA2629 purB 1128 2682 3012 1.2 9.2E-05 1.4 7.6E-06 

PA1800 - 9793 24702 26403 1.3 8.1E-07 1.4 9.8E-08 

PA4665 prfA 633 1554 1710 1.3 1.6E-07 1.4 4.3E-09 

PA1697  93 274 251 1.6 2.7E-04 1.4 4.0E-04 

PA4640 mqoB 2379 6684 6442 1.5 4.8E-06 1.4 4.7E-06 

PA1716 pscC 349 1079 947 1.6 4.0E-14 1.4 8.4E-12 

PA1701 - 15 42 41 1.5 4.4E-04 1.4 3.0E-04 

PA5315 rpmG 366 767 997 1.1 1.3E-03 1.4 3.8E-05 

PA4480 mreC 458 1254 1259 1.5 6.2E-04 1.5 3.5E-04 

PA2760 - 9579 34269 26328 1.8 1.6E-12 1.5 5.8E-09 

PA5568 - 2347 6451 6494 1.5 2.4E-04 1.5 1.4E-04 

PA2911 - 617 1921 1709 1.6 9.6E-08 1.5 5.5E-07 

PA1771 estX 140 340 387 1.3 1.6E-02 1.5 5.1E-03 

PA2759 - 341 1016 948 1.6 8.0E-07 1.5 2.2E-06 

PA2396 pvdF 11305 34063 31636 1.6 3.2E-15 1.5 1.0E-13 

PA0579 rpsU 1637 3629 4621 1.1 8.5E-03 1.5 7.1E-04 

PA2487 - 60 158 169 1.4 4.5E-08 1.5 2.8E-09 

PA0789 - 596 1926 1684 1.7 1.5E-10 1.5 5.3E-09 

PA4671 - 3319 9976 9396 1.6 3.5E-08 1.5 5.6E-08 

PA3411 - 90 280 259 1.6 1.7E-06 1.5 7.2E-06 

PA3231 - 20 51 58 1.3 9.3E-05 1.5 5.1E-06 

PA0046 - 90 266 259 1.6 9.8E-05 1.5 6.9E-05 

PA3656 rpsB 6638 18092 19193 1.4 3.5E-06 1.5 4.3E-07 

PA4622 - 149 489 434 1.7 4.7E-14 1.5 3.1E-11 

PA4563 rpsT 2071 5359 6053 1.4 1.2E-03 1.5 1.9E-04 

PA2912 - 135 464 395 1.8 2.9E-06 1.5 2.0E-05 

PA0171 - 182 623 533 1.8 9.3E-16 1.6 1.0E-12 

PA1699 pcr1 31 105 92 1.7 2.1E-06 1.6 9.4E-06 

PA4355 - 246 658 728 1.4 2.8E-10 1.6 9.4E-13 

PA3820 secF 922 2904 2742 1.7 1.3E-04 1.6 1.5E-04 

PA2326 - 119 317 356 1.4 6.2E-10 1.6 1.5E-11 

PA0045 - 205 580 612 1.5 7.1E-06 1.6 1.3E-06 

PA1364 - 170 490 514 1.5 1.8E-12 1.6 5.3E-13 

PA4479 mreD 88 277 268 1.7 1.0E-03 1.6 1.0E-03 

PA4670 - 4523 12171 13965 1.4 2.0E-04 1.6 1.7E-05 
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2PA2492 - 488 1573 1516 1.7 3.8E-14 1.6 3.1E-13 

PA3641 - 1161 3605 3623 1.6 4.6E-08 1.6 2.3E-08 

PA3655 - 3915 11853 12241 1.6 4.6E-04 1.6 1.7E-04 

PA4675 - 1730 6745 5540 2 1.6E-11 1.7 1.2E-09 

PA2444 glyA2 438 1355 1425 1.6 1.8E-03 1.7 5.5E-04 

PA1333 - 104 354 340 1.8 2.1E-13 1.7 1.4E-12 

PA1791 - 298 816 978 1.5 7.8E-12 1.7 1.0E-15 

PA4356 xenB 1710 4808 5632 1.5 1.2E-12 1.7 3.1E-16 

PA3821 secD 2267 7748 7501 1.8 2.6E-07 1.7 2.5E-07 

PA1698 popN 72 235 239 1.7 1.1E-06 1.7 3.8E-07 

PA2496 - 85 306 295 1.8 6.5E-15 1.8 3.1E-14 

PA2398 fpvA 21716 83134 76262 1.9 2.0E-21 1.8 1.9E-19 

PA1744 - 22 67 84 1.6 5.6E-06 1.9 8.9E-09 

PA3410 - 749 2955 2817 2 1.4E-17 1.9 2.1E-16 

PA4168 fpvB 2156 11650 8293 2.4 4.3E-12 1.9 4.5E-09 

PA4354 - 87 295 348 1.8 1.4E-12 2 3.4E-15 

PA2812 - 1140 4314 4712 1.9 3.4E-20 2 4.3E-22 

PA2333 - 161 674 674 2.1 2.9E-15 2.1 2.0E-14 

PA2811 - 633 2601 2731 2 1.2E-24 2.1 1.3E-25 

PA2813 - 672 2924 2966 2.1 1.7E-22 2.1 4.5E-23 

PA2327 - 459 1970 2063 2.1 6.4E-16 2.2 4.4E-16 

PA3268 - 457 1961 2200 2.1 1.0E-03 2.3 3.0E-04 

PA4710 phuR 4537 26773 25760 2.6 8.1E-09 2.5 6.0E-09 

PA2328 - 831 4981 5151 2.6 6.8E-13 2.6 1.6E-12 

PA2485 - 146 1023 1062 2.8 2.1E-33 2.9 1.3E-34 

PA2491 - 1765 12975 13941 2.9 2.5E-38 3 8.6E-42 

PA2329 - 614 5135 4964 3.1 4.6E-16 3 5.4E-15 

PA1970 - 61 404 504 2.7 1.4E-30 3 2.5E-37 

PA2330 - 1133 10245 9752 3.2 3.1E-23 3.1 8.9E-22 

PA2331 - 1109 9950 9748 3.2 1.6E-22 3.1 1.8E-21 

PA2486 - 71 603 731 3.1 6.3E-35 3.4 1.4E-41 

PA3230 - 592 6615 6562 3.5 1.7E-53 3.5 7.5E-53 

PA1942 - 113 1953 1867 4.1 3.8E-38 4 4.8E-38 

PA4623 - 53 3200 2461 5.9 
3.8E-

110 
5.5 1.3E-98 

PA4881 - 23 1162 1167 5.7 1.3E-35 5.7 1.6E-36 

PA3229 - 123 12131 11934 6.6 
9.1E-

140 
6.6 

1.8E-
138 

PA2494 mexF 356 74861 62437 7.7 
5.5E-

177 
7.5 

3.5E-
169 

PA2495 oprN 117 26480 21369 7.8 
5.7E-

178 
7.5 

3.4E-
169 

PA2493 mexE 76 43561 37687 9.2 
1.2E-

213 
8.9 

1.3E-
207 
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8.3.4  Genes assoicated with pathways 
 

Up regulated genes in PAdel and associated genes, compared to PA: 
 

Two-component system: nirM    PA0753    PA0756    PA0757    amrA    maeA    

arnB    phaA    PA5169    dnaA    PA0112    dctA1    cheB2    cheR2    aer2    

PA0177    PA0178    PA0179    cttP    spuI    spuB    pilG    pilH    pilI    pilJ    pilK    

chpA    chpB    chpC    creB    creC    vfr    PA0749    PA0752    PA0754    PA0885    

PA0886    csrA    gacS    oprD    flaC    fleQ    fleS    fleR    PA1157    PA1158    

phoP    phoQ    dctA2    PA1335    PA1336    ansB    PA1339    PA1340    PA1341    

PA1342    bdlA    PA1437    PA1438    fliA    cheY    cheA    cheB1    motC    orf4    

cheW    ccoP1    ccoQ1    ccoO1    ccoN1    ccoP2    ccoO2    ccoN2    aer    

PA1566    PA1608    kdbF    kdpA    kdpB    kdpC    kdpD    kdpE    PA1646    

PA1736    parS    parR    PA1856    PA1930    eraR    atoB    PA2002    amrB    

PA2040    czrR    czcS    PA2526    PA2527    PA2528    PA2548    PA2553    ctpH    

PA2573    PA2583    PA2652    PA2654    copR    copS    PA2920    PA3045    

phoA    cheR1    PA3349    PA3356    algD    PA3589    glnD    wspR    cheB3    

wspE    wspD    wspC    wspB    wspA    PA3714    narI    narJ    narH    narG    

narX    narL    eddA    cioB    cioA    rocS1    rocA1    PA4080    ampC    PA4133    

PA4290    pctC    pctA    pctB    PA4429    PA4430    PA4431    rpoN    roxR    

roxS    PA4520    pil    pilS    pilR    PA4633    O1O_06561    PA4785    irlR    

PA4886    PA4915    motA    PA5072    PA5082    glnA    ntrB    ntrC    PA5165    

PA5166    PA5167    PA5168    amgS    amgR    algR    O1O_17699    phoB    

phoR    O1O_21737    algB    kinB    PA5508    mifR    mifS    PA5522  

 
Purine metabolism:    purM    purB    PA3232    ndk    prs    purH    purD    

purK    dnaN    PA0134    nuh    PA0148    PA0387    apaH    relA    mazG    purN    

purC    dgt    PA1140    nrdB    nrdA    cysC    pykF    allA    alc    PA1518    PA1521    

xdhB    xdhA    dnaX    apt    dnaQ    nrdD    PA1931    PA1932    PA1933    holB    

dgt2    purF    PA3516    PA3517    surE    dnaE    adk    purT    purL    guaA    

guaB    holC    amn    holA    rpoA    rpoC    rpoB    pykA    cysNC    cysD    PA4645    

pnp    ureA    ureB    ureC    purA    aspP    arcC    nudE    ppx    cyaA    xpt    algC    

gmk    rpoZ    spoT    purE    polA    nrdJa  

 
Arginine and proline metabolism: PA0421    glsA    speE1    gdhA    speH    
speE2    argA    PA0202    PA0219    gpuA    aguA    aguB    spuI    spuB    spuC    
proC    codA    PA0530    speD    argC    PA0704    putA    argD    astA    aruG    
astD    astB    astE    PA1027    PA1268    ansB    gbuA    PA1566    ldcA    PA2040    
PA2317    PA2776    gdhB    PA3356    amiE    argG    argF    spdH    dauB    proA    



 
 

APPENDICIES 

 

251 
 

PA4114    PA4163    PA4189    PA4342    argJ    speC    proB    PA4839    ureA    
ureB    ureC    PA4899    PA4908    aruH    aruI    PA5080    glnA    arcA    arcB    
arcC    argE    argH    PA5312    argB    PA5390    PA5508    PA5522 
 
Protein export:   ffh    secF    secD    yajC    secB    yidC    ftsY    lepB    
PA1303    secY    secE    secA    lspA    secG    tatA    tatB    tatC 
 
Inter-pathway connection between 'Pyruvate metabolism' and 'Glyoxylate 
and dicarboxylate metabolism':   gltA    maeA    PA4333    mqo2    
PA5046    pckA    glcB    fumC2    kynB    mqo1    ppc    purU    fumC1    fdnI    
fdnH    fdnG    purU2    PA5435    PA5436 
 
Nitrogen metabolism   nir    norC    norB    PA0660    nosZ    gdhA    PA0102    

spuI    spuB    PA0440    PA1024    napB    napA    PA1566    PA1779    O1O_12798    

nasR    nasA    PA1786    PA2040    cynS    cynT    gdhB    PA3356    narI    narJ    

narH    narG    narK2    narK1    PA4202    PA4676    gltD    gltB    glnA    arcC    

PA5508    PA5522  

Propanoate metabolism prpC    prpB    sucC    PA3568    mmsA    phaA    
PA0130    PA0132    PA0494    PA0747    prpD    pta    ackA    PA0879    acsA1    
PA1027    PA1187    PA1535    sucD    PA1736    PA1737    PA1748    acnB    
PA1821    exaA    atoB    PA2550    PA2553    PA2555    fadB    accD    PA3426    
PA3589    accA    PA4435    acsA2    PA4785    accB    accC    PA4899    PA4994    
PA5313  
  
Glyoxylate and dicarboxylate metabolism gltA    O1O_08108    gcvH1    
PA2634    phaA    glyA3    PA0065    spuI    spuB    glcB    PA0550    gph1    
PA0794    PA1052    PA1499    PA1500    PA1501    gcl    acnA    PA1566    
PA1736    acnB    atoB    PA2040    kynB    katE    PA2553    PA2974    PA3131    
gph2    eda    PA3356    PA3589    katA    purU    katB    hprA    PA4785    fdnI    
fdnH    fdnG    glnA    gcvH2    glcF    glcE    glcD    glyA1    purU2    PA5508    
PA5522  
 
Pyruvate metabolism  maeA    phaA    PA4333    mqo2    PA5046    pckA    glcB    
PA0494    gloA2    pta    ackA    fumC2    acsA1    ldhA    acyP    PA1027    hchA    
PA1217    pykF    lpd    PA1736    ppsA    gloB    exaC    atoB    PA2108    lpdV    
lldA    PA2553    PA2555    accD    PA3415    PA3416    PA3417    mqo1    gloA1    
PA3589    accA    ppc    leuA    PA4022    PA4150    acoB    PA4152    pykA    
fumC1    acsA2    lldD    PA4785    lpd3    accB    accC    PA4899    aceE    aceF    
gloA    O1O_21382    PA5435    PA5436    PA5445  
  
Inter-pathway connection between 'Citrate cycle (TCA cycle)' and 'Alanine, 
aspartate and glutamate metabolism' gltA    purB    gdhA    mqo2    
pckA    gabD    PA0440    O1O_19361    sucA    icd    idh    gdhB    mqo1    PA3516    
PA3517    gltD    gltB    argH    aspA    PA5435    PA5436 
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Down regulated pathways in PAdel and associated genes (compared to 
PA): 
 
Oxidative phosphorylation coxB    coxA    coIII    ccoP2    ccoO2    ccoN2    

cioB    cioA    PA4133    PA0107    PA0112    cyoE1    cyoA    cyoB    cyoC    cyoD    

cyoE2    ccoP1    ccoQ1    ccoO1    ccoN1    sdhC    sdhD    sdhA    sdhB    PA1856    

nuoA1    nuoA2    nuoB    nuoC    nuoE    nuoF    nuoG    nuoH    nuoI    nuoJ    

nuoK    nuoL    nuoM    nuoN    PA2691    ppa    PA4429    PA4430    PA4431    

ndh    ppk    atpC    atpD    atpG    atpA    atpH    atpF    atpE    atpB   

 Bacterial secretion system PA1662    PA1666    PA1668    PA1669    stp1    

PA2367    PA2371    PA4144    PA5210    O1O_24470    pppA    icmF1    PA0078    

PA0080    fha1    hcp1    clpV1    PA0262    PA0263    ftsY    PA0677    PA0678    

PA0679    PA0680    PA0681    PA0682    PA0683    PA0684    PA0685    PA0686    

PA0687    PA1382    PA1511    PA1512    pscU    pscT    PA1692    pscR    pscQ    

pscP    pscO    pscN    popN    pcr3    pcrD    pscC    pscF    pscJ    pscL    xphA    

xqhA    PA2361    PA2362    PA2672    PA2673    PA2674    PA2675    PA2676    

PA2677    xcpZ    xcpY    xcpX    xcpW    xcpV    xcpU    xcpT    xcpS    xcpR    xcpP    

xcpQ    PA3294    PA3486    ffh    secF    secD    yajC    secY    secE    secA    secG    

opmH    tatA    tatB    tatC    secB    PA5266    hcpA    yidC  

 Biosynthesis of amino acids   metK    PA1217    acnA    PA1901    phzC    arcB    

sdaB    thrB    PA0025    trpA    trpB    PA0223    O1Q_16377    aroQ2    spuI    

spuB    serA    rpiA    ilvA1    ilvD    proC    PA0399    PA0400    PA0440    PA0530    

tktA    pgk    fba    rpe    trpE    trpG    trpD    trpC    argC    PA0794    PA0851    

phhC    phhA    argD    gly1    lysC    cysM    phnA    phnB    dapA    PA1061    

dapE    PA1254    ilvA2    PA1417    pykF    PA1566    gltA    aroC    PA1750    

thrH    acnB    metH    metE    PA2035    PA2040    PA2104    PA2105    pvdH    

sdaA    O1O_08108    PA2531    icd    idh    PA2683    cysK    tal    PA2828    

PA2843    PA2943    PA3001    trpF    asd    leuB    leuD    leuC    aspC    hisF2    

hisH2    hisC2    pheA    serC    gap    PA3356    pheC    PA3506    argG    argF    

eno    PA3659    dapD    thrC    hom    leuA    cysE    dauB    proA    PA4180    

PA4188    pykA    argJ    hisC1    hisD    hisG    proB    glyA3    prs    ilvC    ilvH    

ilvI    tpiA    dapB    aroQ1    PA4908    hisZ    PA4960    ilvE    gltD    gltB    aroB    

aroK    hisI    hisE    glnA    gpmI    hisF    hisA    hisH1    hisB    O1O_18099    

argA    argE    argH    lysA    dapF    argB    PA5390    ltaE    glyA1    PA5435    

PA5436    PA5508    PA5522 

 Purine metabolism    nrdB    nrdA    xdhB    xdhA    nrdD    PA1931    arcC    

nrdJa    dnaN    PA0134    nuh    PA0148    PA0387    apaH    relA    mazG    purN    

purM    purC    dgt    PA1140    cysC    pykF    allA    alc    PA1518    PA1521    

dnaX    apt    dnaQ    PA1932    PA1933    purB    holB    dgt2    purF    PA3232    

PA3516    PA3517    surE    dnaE    adk    purT    purL    guaA    guaB    ndk    holC    
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amn    holA    rpoA    rpoC    rpoB    pykA    cysNC    cysD    PA4645    prs    pnp    

purH    purD    ureA    ureB    ureC    purA    aspP    nudE    ppx    cyaA    xpt    

algC    gmk    rpoZ    spoT    purK    purE    polA  

 Nitrogen metabolism napB    napA    narH    narG    narK2    narK1    

arcC    PA0102    spuI    spuB    PA0440    nir    norC    norB    PA0660    PA1024    

PA1566    PA1779    O1O_12798    nasR    nasA    PA1786    PA2040    cynS    

cynT    gdhB    PA3356    nosZ    narI    narJ    PA4202    gdhA    PA4676    gltD    

gltB    glnA    PA5508    PA5522   

 Styrene degradation    PA0202    PA0704    maiA    fahA    hmgA    amiE    

PA0226    PA0227    PA2473    PA4073    PA4163    PA4342   

 Aminobenzoate degradation   PA0202    PA0704    PA2475    PA3331    

amiE    eddA    acyP    PA1748    PA1821    antA    antB    antC    phoA    PA3426    

PA4163    PA4342    mdlC    vanA    vanB  

Tyrosine metabolism    maiA    fahA    hmgA    hpcG    PA4128    adhA    PA0242    

gabD    PA0421    hpd    phhC    PA1200    PA1966    gtdA    PA2471    PA2473    

PA2531    aspC    hisC2    adhC    hpaA    hpaC    PA4121    PA4122    hpcC    

hpcB    hpcD    hisC1 

Sulfur metabolism    PA2310    CP84    PA3446    PA3449    PA3938    

PA4130    atsC    PA0185    atsR    PA0193    cysA    cysW    cysT    O1O_06686    

nirM    glpE    cysM    PA1061    sseA    cysC    cysP    cysH    cysI    PA2104    

PA2105    PA2345    msuD    algY    PA2594    PA2595    PA2596    PA2598    

PA2600    cysK    metZ    ssuB    PA3443    PA3444    PA3445    ssuB2    PA3448    

cysE    tauD    PA3936    tauB    PA3954    cysNC    cysD    piuB    rhdA    cysQ  

 Pyruvate metabolism   gloA2    fumC2    PA1217    PA3415    PA3416    PA3417    

glcB    PA0494    pta    ackA    acsA1    ldhA    acyP    PA1027    hchA    pykF    

lpd    PA1736    ppsA    gloB    exaC    atoB    PA2108    lpdV    lldA    PA2553    

PA2555    accD    mqo1    maeA    gloA1    PA3589    accA    ppc    leuA    phaA    

PA4022    PA4150    acoB    PA4152    pykA    PA4333    fumC1    mqo2    acsA2    

lldD    PA4785    lpd3    accB    accC    PA4899    aceE    aceF    PA5046    gloA    

pckA    O1O_21382    PA5435    PA5436    PA5445 

 

Up regulated pathways 9and associated genes) in PAnfxC: 

Glycine, serine and threonine metabolism:   PA0421    thrH    pvdH    

O1O_08108    gcvP1    gcvH1    hom    glyA3    gpmI    trpA    trpB    serA    ilvA1    

PA0399    PA0400    PA0851    gly1    lysC    PA1052    ilvA2    PA1499    lpd    

lpdV    gcvT2    sdaA    PA2683    asd    serC    dsdA    PA3504    PA3710    thrC    

hprA    pssA    lpd3    PA4960    gcvP2    gcvH2    gcvT    betA    betB    sdaB    

ltaE    glyA1    soxB    soxD    soxA    soxG    thrB 
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Protein export:   ffh    secF    secD    yajC    secB    yidC    ftsY    lepB    

PA1303    secY    secE    secA    lspA    secG    tatA    tatB    tatC  

Pyruvate metabolism:   maeA    phaA    PA4333    mqo2    PA5046    

pckA    glcB    PA0494    gloA2    pta    ackA    fumC2    acsA1    ldhA    acyP    

PA1027    hchA    PA1217    pykF    lpd    PA1736    ppsA    gloB    exaC    atoB    

PA2108    lpdV    lldA    PA2553    PA2555    accD    PA3415    PA3416    PA3417    

mqo1    gloA1    PA3589    accA    ppc    leuA    PA4022    PA4150    acoB    

PA4152    pykA    fumC1    acsA2    lldD    PA4785    lpd3    accB    accC    PA4899    

aceE    aceF    gloA    O1O_21382    PA5435    PA5436    PA5445  

Arginine and proline metabolism:PA0421    glsA    speE1    speH    speE2    

argA    PA0202    PA0219    gpuA    aguA    aguB    spuI    spuB    spuC    proC    

codA    PA0530    speD    argC    PA0704    putA    argD    astA    aruG    astD    

astB    astE    PA1027    PA1268    ansB    gbuA    PA1566    ldcA    PA2040    

PA2317    PA2776    gdhB    PA3356    amiE    argG    argF    spdH    dauB    proA    

PA4114    PA4163    PA4189    PA4342    argJ    speC    proB    gdhA    PA4839    

ureA    ureB    ureC    PA4899    PA4908    aruH    aruI    PA5080    glnA    arcA    

arcB    arcC    argE    argH    PA5312    argB    PA5390    PA5508    PA5522 

Catalytic complex: ccmA    macB    gcvH1    eno    uvrA    hmuV    dnaN    potA1    

cysA    ruvA    sucB    gpsA    modC    metN1    uvrC    nuoC    nuoE    lolD    accD    

leuD    phnC1    phnC2    ssuB    ssuB2    glpD    potA2    accA    xseA    tauB    

xseB    ribH    rpoC    rpoB    accB    msbA    aceF    gcvH2    ppk    pstB    znuC    

metN  

One carbon pool by folate:  folA    purN    O1O_08108    glyA3    purH    fmt    

thyA    metF    folD    metH    gcvT2    folM    purT    purU    gcvT    PA5228    

glyA1    purU2  

Methane metabolism: thrH    O1O_08108    eno    glyA3    gpmI    serA    

fba    pta    ackA    acsA1    ppsA    PA2555    serC    PA3628    adhC    ppc    hprA    

acsA2    fdnI    fdnH    fdnG    PA4960    fbp    glyA1    fdhA 

Aminoacyl-tRNA biosynthesis:   glyQ    alaS    gltX    lysS    trpS    glyS    

fmt    tyrS2    proS    aspS    glnS    cysS    serS    pheT    pheS    thrS    metG    

hisS    valS    leuS    tyrS1    gatC    gatA    gatB    ileS    selA    argS  

Cysteine and methionine metabolism    metX    speE1    hom    speH    

speE2    PA0399    PA0400    ahcY    metK    speD    phhC    lysC    cysM    PA1061    

sseA    mtnB    mtnD    mtnC    metH    metE    PA2104    PA2105    sdaA    cysK    

nucP    metZ    asd    aspC    mtnA    cysE    rhdA    metY    sdaB  

 Two-component system:   PA0756    maeA    arnB    phaA    dnaA    PA0112    

dctA1    cheB2    cheR2    aer2    PA0177    PA0178    PA0179    cttP    spuI    

spuB    pilG    pilH    pilI    pilJ    pilK    chpA    chpB    chpC    creB    creC    nirM    
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vfr    PA0749    PA0752    PA0753    PA0754    PA0757    PA0885    PA0886    

csrA    gacS    oprD    flaC    fleQ    fleS    fleR    PA1157    PA1158    phoP    phoQ    

dctA2    PA1335    PA1336    ansB    PA1339    PA1340    PA1341    PA1342    

bdlA    PA1437    PA1438    fliA    cheY    cheA    cheB1    motC    orf4    cheW    

ccoP1    ccoQ1    ccoO1    ccoN1    ccoP2    ccoO2    ccoN2    aer    PA1566    

PA1608    kdbF    kdpA    kdpB    kdpC    kdpD    kdpE    PA1646    PA1736    parS    

parR    PA1856    PA1930    eraR    atoB    PA2002    amrB    amrA    PA2040    

czrR    czcS    PA2526    PA2527    PA2528    PA2548    PA2553    ctpH    PA2573    

PA2583    PA2652    PA2654    copR    copS    PA2920    PA3045    phoA    cheR1    

PA3349    PA3356    algD    PA3589    glnD    wspR    cheB3    wspE    wspD    

wspC    wspB    wspA    PA3714    narI    narJ    narH    narG    narX    narL    eddA    

cioB    cioA    rocS1    rocA1    PA4080    ampC    PA4133    PA4290    pctC    pctA    

pctB    PA4429    PA4430    PA4431    rpoN    roxR    roxS    PA4520    pil    pilS    

pilR    PA4633    O1O_06561    PA4785    irlR    PA4886    PA4915    motA    

PA5072    PA5082    glnA    ntrB    ntrC    PA5165    PA5166    PA5167    PA5168    

PA5169    amgS    amgR    algR    O1O_17699    phoB    phoR    O1O_21737    

algB    kinB    PA5508    mifR    mifS    PA5522 

 
 

 

 


