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Abstract—Understanding foggy image sequence in driving
scene is critical for autonomous driving, but it remains a
challenging task due to the difficulty in collecting and annotating
real-world images of adverse weather. Recently, self-training
strategy has been considered as a powerful solution for unsu-
pervised domain adaptation, which iteratively adapts the model
from the source domain to the target domain by generating
target pseudo labels and re-training the model. However, the
selection of confident pseudo labels inevitably suffers from the
conflict between sparsity and accuracy, both of which will lead
to suboptimal models. To tackle this problem, we exploit the
characteristics of the foggy image sequence of driving scenes to
densify the confident pseudo labels. Specifically, based on the
two discoveries of local spatial similarity and adjacent temporal
correspondence of the sequential image data, we propose a
novel Target-Domain driven pseudo label Diffusion (TDo-Dif)
scheme. It employs superpixels and optical flows to identify the
spatial similarity and temporal correspondence, respectively, and
then diffuses the confident but sparse pseudo labels within a
superpixel or a temporal corresponding pair linked by the flow.
Moreover, to ensure the feature similarity of the diffused pixels,
we introduce local spatial similarity loss and temporal contrastive
loss in the model re-training stage. Experimental results show
that our TDo-Dif scheme helps the adaptive model achieve
51.92% and 53.84% mean intersection-over-union (mIoU) on
two publicly available natural foggy datasets (Foggy Zurich and
Foggy Driving), which exceeds the state-of-the-art unsupervised
domain adaptive semantic segmentation methods. The proposed
method can also be applied to non-sequential images in the target
domain by considering only spatial similarity. Models and data
can be found at https://github.com/velor2012/TDo-Dif.

Index Terms—Natural foggy scene, semantic segmentation,
unsupervised domain adaptation, self-training, label diffusion

I. INTRODUCTION

SEMANTIC segmentation refers to the task of assigning se-
mantic labels to each pixel of an input image [1]–[3]. This

task has been active in the field of computer vision for decades
due to its broad range of downstream applications, such as
autonomous driving [4], [5], medical image analysis [6], [7],
and image restoration and image restoration [8], [9]. Recently,
convolutional neural networks (CNNs) have achieved great
success in semantic scene understanding and high accuracy
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Fig. 1. (a) The unsupervised self-training framework for domain adaptation
using the proposed TDo-Dif scheme. The spatial and temporal pseudo label
diffusion modules are proposed by exploiting the spatial similarity and
temporal correspondences in the target domain data. In addition to the initial
pseudo labels generated by knowledge transfer from the source domain, labels
are diffused to the unknown pixels by exploiting the knowledge from the target
domain. All pseudo labels are then used to re-train the segmentation model,
helping the model better adapt to the distribution of the target domain. In
(b) and (c), the initial pseudo labels are overlaid on top of the input foggy
images, and the arrows indicate the directions of diffusion.

on standard vision benchmarks [10]–[12]. However, most
learning-based algorithms are developed under clear visibility
and often encounter challenges in real-life scenarios, especially
in outdoor applications under “bad” weather conditions [13]–
[16]. In this paper, we will focus on the understanding of foggy
weather scenarios.

One of the issues that hinder the performance of learning-
based algorithms under foggy weather is the difficulty in col-
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lecting and annotating real-world images of adverse weather.
The reason is that the manual annotation is hardly scalable to
so many scenarios, and it is much harder to provide precise
manual annotations due to poor visibility. An alternative way is
to simulate real foggy scenarios using synthetic datasets, which
renders the available clear-weather images with some physical
models (e.g., atmospheric scattering model) [17]–[19] or by
generative adversarial networks (GANs) based image-to-image
translation [20]. Nevertheless, it is difficult to approximate fog
in complex natural environments because existing physical
models for fog synthesis tend to assume that the fog is
homogeneous. In addition, the subtle differences in texture,
color and illumination conditions between clear-weather and
foggy-weather images pose a challenge for performing image
translation. As a result, there remains a domain gap between
the synthetic images and the real foggy images, resulting in a
significant performance degradation when applying the model
trained on synthetic data to real scenes.

Deep self-training approaches emerge as powerful solutions
for unsupervised domain adaptation and have been commonly
used in cross-domain semantic segmentation [21]–[26]. They
typically adopt an iterative two-step pipeline: 1) predicting
the pseudo labels of the target domain; and 2) re-training
the segmentation network by using the source labels and the
target pseudo labels. However, the pseudo labels predicted
by models trained on the source domain (i.e., clear-weather
images) usually suffer from inaccurate predictions for the
target domain (i.e., foggy-weather images). Although some
works set confidence thresholds to neglect the low-confidence
predictions, this often leads to very sparse pseudo labels,
which may further result in sub-optimal models [21], [27]. The
problem of sparse labels is exacerbated in the foggy scenarios,
as both the scene and weather conditions change.

In this paper, we address domain adaptive semantic seg-
mentation for foggy driving scenarios based on self-training
from a novel perspective, i.e., by casting it as a pseudo label
diffusion problem from the target domain. In the driving
scenario, sequence data is collected from the forward-looking
dash-board camera of a car (examples of image sequence
shown in Fig. 1), and the object in the later image is closer
to the camera than the previous image. By exploiting the
sequential data in the foggy target domain, we have made
two discoveries. Discovery 1 (Spatial Similarity): As shown
in Fig. 1(b), only a small portion of a category is assigned
confident pseudo labels, but the texture of adjacent pixels
within the category looks similar. Thus, we can diffuse the
pseudo labels to their adjacent similar pixels. Discovery 2
(Temporal Correspondence): As shown in Fig. 1(c), when
sequential data is available in some cases, the pseudo labels
of an object are more confident in the near-view image than
in the corresponding far-view image (the near-view image
is captured later than the far-view image), probably due to
higher resolution and lighter fog. Taking the Traffic Sign as an
example, it is neglected in pseudo labels of the far-view image,
but labeled in the near-view image. Thus we can diffuse its
pseudo labels from near-view to far-view image.

Based on these discoveries, we propose a self-training
framework based on Target Domain driven pseudo label

Diffusion (TDo-Dif), in which we first exploit the spatial simi-
larity in terms of color and structures to propagate the sparsely
labeled pixels to their similar neighbours. Since the sequential
data is available, we also exploit the temporal correspondence
to propagate labels from near-view images to far-view images.
In particular, we develop spatial and temporal pseudo label
diffusion modules to propagate the initial sparse pseudo labels,
and integrate them into the self-training framework (Fig. 1).
In spatial diffusion, we employ a superpixel-based approach
to discard the use of deep features from the source model,
since the deep features are error-prone for domain gaps. We
propagate pseudo labels in these small clusters containing
confident pixels under the assumption that each superpixel
tends to share the same semantic label. In temporal diffusion,
we establish temporal correspondence between near-far image
pairs and propagate reliable labels from the near-view image
to the corresponding pixels in the far-view image. In this way,
pseudo labels can be diffused by adaptively combining the
initial predictions with spatially and temporally diffused labels.

To further boost the accuracy of re-training stage using the
diffused pseudo labels, we propose two spatial and temporal
constraint losses to drive the proximity of deep features of
the same class. The spatial loss measures local spatial simi-
larity to encourage identical features between pixels within a
superpixel, while the temporal loss encourages the features of
corresponding pixels in a near-far image pair to be identical
through a contrastive way. By imposing these two newly
proposed losses, we are able to strengthen the pixel-level
similarity in an unsupervised manner, encouraging the model
to better identify pixel similarity in the target domain. Please
note that if the images do not form a sequence in the target
domain, we can independently implement the spatial label
diffusion and loss for self-training.

In summary, the main contributions of this paper are:
1) We are the first to exploit spatial and temporal knowledge

of the target domain for unsupervised domain adaption, and
propose a pseudo label diffusion method named TDo-Dif
that propagates the highly confident pseudo labels to the
unlabeled pixels by establishing spatial similarity and temporal
correspondence.

2) We also propose two losses in the re-training stage to
encourage the learned features to be similar within the same
semantic category, which can effectively help the model to be
better adapted to the target domain.

3) Experimental results demonstrate that TDo-Dif can ef-
fectively balance the density and accuracy of diffused pseudo
labels, and outperforms the state-of-the-art methods on real
foggy scene understanding.

In the rest of the paper, we present the related work in
Section II and the proposed pseudo label diffusion scheme
and the self-training framework in Section III. In section IV,
we elaborate experimental settings and extensive experimental
results. Finally, conclusions are drawn in Section V.

II. RELATED WORK

In this section, we briefly review related work in each of
the three sub-fields: semantic segmentation, semantic foggy
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scene understanding, unsupervised domain adaptive semantic
segmentation.

A. Semantic Segmentation

As a widely studied means of inferring the semantic con-
tent of images, semantic segmentation can predict labels at
pixel level. After the typical works such as FCN [28] and
SegNet [29] that employ CNNs to boost the semantic segmen-
tation performance by extracting deep semantic features, most
of the top-performing methods are built on CNNs. The sub-
sequent works attempt to aggregate scene context to improve
the performance of semantic segmentation, for example, by
assembling multi-scale visual clues or convolutional features
of different sizes [30], [31], adopting atrous spatial pyramid
pooling [32], employing neural attention to exchange context
between paired pixels [33], [34], and iteratively optimizing the
results using Markov decision process [35]. For a comprehen-
sive overview of semantic segmentation algorithms, we point
the reader to Taghanaki et al. [7] or Shervin et al. [3].

Although impressive, most semantic segmentation models
are trained with fully labeled and clear-weather datasets. Some
general datasets include PASCAL VOC 2012 Challenge [36]
and MS COCO Challenge [11] for visual object segmentation,
and Cityscapes [12] for urban scene understanding. However,
the performance of current vision algorithms, even the best
performing ones, undergoes a severe performance degradation
under adverse conditions, which are crucial for outdoor appli-
cations. Therefore, this work focuses on semantic foggy scene
understanding, which is introduced below.

B. Semantic Foggy Scene Understanding

An early work on semantic foggy scene understanding is
SFSU [17]. It builds a synthetic foggy dataset by rendering
the Cityscapes dataset [12] with an atmosphere scattering
model [37], and a follow-up semi-supervised learning ap-
proach based on RefineNet [38] is proposed. To improve the
quality of synthetic fog, Hahner et al. [39] propose to utilize
the pure synthetic data with segmentation labels, which is
unrestricted in dataset size and employ accurate depth maps for
fog synthesis. Similarly, Dai et al. [18] propose a curriculum
model adaptation method called CMAda with two adaptation
steps to learn from both synthetic and unlabeled real foggy
images, and later extend this idea to accommodate multiple
adaptation steps to gradually deal with light and dense fog
[19]. Although these methods improve model adaptation by
generating pseudo labels in an easy-to-hard manner, their
direct use of the noise predictions from models trained on the
source domain as pseudo labels leads to degraded performance
for re-training.

C. Unsupervised Domain Adaptive Semantic Segmentation

Unsupervised domain adaptation (UDA) has been exten-
sively investigated in computer vision tasks [40]–[42]. The
main idea for domain adaptation is to alleviate the gap between
the source and target domains. For the semantic segmentation
task, we expect to use domain adaptation to improve the

segmentation performance of real images by models trained
on synthetic images. To deal with this problem, adversarial
training methods have received significant attention. These
methods attempt to mitigate the domain gap from the im-
age level, such as adversarial training based image-to-image
translation [43]–[45], or from the representation level, such
as making features or network predictions indistinguishable
between domains through a series of adversarial losses [46],
[47]. The focus of such approaches is on learning and aligning
the shared knowledge between the source and target domains,
but domain-specific information is usually ignored.

Self-training based UDA methods tend to improve segmen-
tation performance in semi-supervised learning manner [21],
[22]. These works iteratively train the model by using both
labeled source domain data and the generated pseudo labels
from target domain to achieve alignment between the source
and target domains. PyCDA [22] constructs the pyramidal
curriculum to provide various properties about the target
domain to guide the training. To deal with the imbalance
of pseudo labels between easy and hard classes, CBST [21]
scheme is proposed, showing comparable domain adaptation
performance to the adversarial training based methods. Later,
CRST [23] is proposed to make self-training less sensitive to
noise pseudo labels using soft pseudo labels and smoothing
network predictions. It also integrates a variety of confidence
regularizers to CBST. Furthermore, some works [48], [49]
resort to self-training as the second stage of training to further
boost their adaptive performance. However, the current self-
training strategy relies heavily on the performance of predicted
segmentation map of the pre-trained model, which is limited
by the domain gap between the source and target domains.

III. PROPOSED METHOD

In this section, we describe the proposed pseudo label
diffusion method for semantic foggy scene understanding.
Below we first review the general self-training method and
then provide an overview of our framework. Next, we dissect
the individual modules and the associated objective functions
for model re-training.

A. Formulation of Self-training for UDA

Following the common self-training setting in UDA, there
are two datasets: a labeled dataset of source domain XS =
{xi

s}
Ns
i=1 with its segmentation labels YS = {yi

s}
Ns
i=1, and an

unlabeled dataset of target domain XT = {xi
t}

Nt
i=1 without

accessing its labels YT , where Ns and Nt indicate the total
number of images in the source and target domains, respec-
tively. yi

s(p) ∈ {1, ..., C} is the label of pixel p of image xi
s

and C is the total number of classes. Unsupervised domain
adaptive semantic segmentation assumes that the target domain
shares the same C classes with the source domain, and its aim
is to train a segmentation network that transfers knowledge
from the source dataset and achieves high performance on the
target dataset.

Typically, a model trained on a source dataset with su-
pervised labels can achieve satisfactory performance on test
data from the same dataset, but it does not generalize well to
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the target data due to domain gaps. To transfer knowledge,
self-training techniques use a pre-trained source model Φ
to test on the target dataset and infer target pseudo labels,
ŶT = {ŷi

t}
Nt
i=1. Then they re-train and optimize the model Φ

by supervision of the source labels YS and the target pseudo
labels ŶT .

min
wΦ

LSt =
1

Ns

∑
xs∈XS

Lseg(Φ(xs),ys)+

αt
1

Nt

∑
xt∈XT

Lseg(Φ(xt), ŷt),
(1)

where αt is a hyper-parameter balancing the contributions of
the two dataset, wΦ is the model weights, and Lseg denotes
the loss function for semantic segmentation.

Pseudo labels are typically generated from the model pre-
dictions by selecting the most confident labels. The original
prediction ỹt on the target image xt is generated by:

ỹt = arg max
c

p (c | xt,Φ) , (2)

where p (c | xt,Φ) is the probability of class c in the model
prediction. Since it only picks the most confident predictions
as pseudo labels, which can be obtained finally by:

ŷt =

{
ỹt if p (c | xt,Φ) > λc

0 otherwise
, (3)

where λc denotes the confidence threshold for class c. This
means that if the segmentation probability value of class c is
greater than λc, these pixels will be considered as confident
regions (pseudo-labeled regions) and the rest will be ignored.
λc = 0 means that the whole predicted segmentation map is
used as pseudo labels. For each class c, we determine λc by the
confidence value chosen from the most confident p percentage
of the prediction of class c in the entire target set [21]. To
ensure that the pseudo labels are mostly reliable, the hyper-
parameter p is usually set to a very low value, i.e., 0.2.

B. Framework Overview

In this paper, we attempt to exploit the properties of the
target domain data and introduce target domain knowledge into
the self-training framework for UDA, which has been rarely
exploited in current methods. In the driving scene, the cameras
are usually mounted at the front window of a vehicle, facing
forward. Along the travel path, the vehicle take a sequence of
image. Thus, the objects along the road will appear in multiple
images, and the object in a later image will be closer to the
camera than in the previous images. In the foggy scene, the
deep features of the pixels are changed by the fog, leading to
a very sparse and discrete pseudo labels. Therefore, we exploit
the spatial and temporal relations between pixels in the target
domain images to diffuse the pseudo labels to unknown pixels
so as to densify the pseudo labels.

The framework is shown in Fig. 1. The self-training process
is solved by iteratively alternating the pseudo-label genera-
tion and model re-training steps in one self-training round.

Step 1: Pseudo-label generation. The pseudo labels of the
target domain are initialized by inferring segmentation labels
using the pre-trained model and selecting high confident labels
from the predicted segmentation maps. Then, the initialized
sparse pseudo labels are densified by label diffusion. We
propose a novel label-diffusion method, i.e., TDo-Dif, to
diffuse pseudo labels from spatial and temporal perspectives
for improving the performance of self-training-based domain
adaptive semantic segmentation. In spatial diffusion, we adopt
a superpixel-based clustering method to divide each image
into small clusters. Under the assumption that the pixels
within a superpixel are similar, the reliable pseudo labels
is expanded in the superpixel regarding the presence of any
reliable label in the clusters. In temporal diffusion, we propose
to register temporally adjacent frames by optical flow. Based
on the property of the foggy data and established pixel-level
correspondence, pseudo labels in the far-view images can be
refined by their corresponding pixel labels in the near-view
images.

Step 2: Model re-training. After the pseudo label dif-
fusion, the diffused pseudo labels are then used to re-train
the semantic segmentation model. In this step, based on the
spatial similarity and temporal correspondence, two new loss
functions, a local spatial similarity loss and a contrastive loss,
are designed to constrain the feature similarity of the target
domain to assist the unsupervised domain adaptive semantic
segmentation.

In the following, we address each part of our framework in
detail.

C. Spatial Diffusion of Pseudo Labels

In this section, we attempt to increase the number of pseudo
labels by using spatial similarity within the target image.
Considering that the learned model is not optimized for the
target foggy scene, the discrimination of deep features cannot
precisely reveal the semantic similarities in the foggy images.
Therefore, we employ a superpixel-based clustering method to
exploit the local spatial similarity present in target images.

1) Spatial Clustering by Superpixels: Superpixels [50] are
defined by clustering a set of pixels with similar visual
properties, e.g., pixel intensity, which have been used as pre-
processing for lots of applications such as image stitching,
image colorization and view synthesis [51]–[53]. In this paper,
we utilize the visual similarity property within a superpixel to
extend reliable pseudo labels. Specifically, we adopt the well-
known SLIC algorithm [54] to generate superpixels, which
generates superpixels by k-means clustering strategy. SLIC
measures the color and spatial difference between each pixel
and its superpixel center is defined as:

D(pspi
, spctri ) = (

dc
Mc

)2 + (
ds
Ms

)2, (4)

where dc and ds denote the color distance and spatial distance
between pixel pspi

and the superpixel center spctri in the
i-th superpixel spi, respectively. Mc is the maximum color
distance, which is usually set as a constant. Ms =

√
M/K,

M denotes the total number of pixels of this image and K is a
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Fig. 2. Illustration of the superpixel-based spatial diffusion, which is conducted in the “pseudo-label generation” step during each round of re-training.
Superpixels are first generated from the target foggy image, and then spatial diffusion is performed in a superpixel-wise order in the initial pseudo label map
ŷt. In Case 1, if there is only one category in a superpixel, we copy all labels of that category within the superpixel from the initial predicted segmentation
map ỹt to the diffused superpixel map ŷsd

t . This strategy is in line with the assumption that superpixel tends to cluster pixels of same category together, but
also considers the possible clustering errors in superpixels. In Case 2, if there are more categories in a superpixel, we copy the labels of all existing categories
from ỹt to ŷsd

t , considering that small objects tend to be mixed with large objects due to the set size of superpixels.

hyper-parameter indicating the number of superpixels, which
is the only parameter we need to set.

After the spatial clustering, the target image xt is divided
into a superpixel set SP = {spi}Si=1, where S is the total
number of superpixels.

2) Superpixel-based Spatial Label Diffusion: The spatial
label diffusion process starts with the initial pseudo labels,
which are collected from the high confident labels of the
original predicted segmentation map ỹt. The superpixels con-
taining initial pseudo labels in the set SP are picked out
for further spatial label diffusion. We then densify the labels
in each picked superpixel by diffusing the labels from the
original predicted segmentation map, under the assumption
that visually clustered pixels within a superpixel have a high
probability of belonging to the same class.

The particular diffusion process of each superpixel spi is
presented in Fig. 2, and can be formulated as follows:

ŷsd
spi

(p) =

{
ỹspi(p) if ∃ ŷspi(q) = ỹspi(p)

0 otherwise
(5)

where ỹspi and ŷspi are the predicted labels and initial pseudo
labels of superpixel spi, and p and q denote a pixel within
spi of these maps, respectively. All the pixels in the target
superpixel spi are traversed to check whether the label of a
pixel p in ỹspi

is the same as the label of any pixel q in the
initial pseudo labels ŷspi . If yes, we copy the label of ỹspi(p)
to ŷsd

spi
(p) so as to diffuse the initial pseudo label on q to p in

ŷsd
spi

. The densified pseudo labels of all superpixels ŷsd
spi

form
the diffused pseudo label ŷsd.

Considering that there could still be some clustering errors
in a superpixel, especially in the case of small objects, we
do not directly diffuse the class of high-confidence pixels to
the entire superpixel, but only pass the same class present
in the predicted segmentation map ỹspi to the pseudo labels
ŷsd
spi

(Fig. 2 Case 1). In case there exist pseudo labels for
multiple classes in one superpixel, we diffuse all existing
classes. This is especially designed to handle small objects
which are usually smaller than the size of a superpixel (Fig. 2
Case 2).

D. Temporal Diffusion of Pseudo Labels

We exploit temporal correspondence between neighboring
images to densify pseudo labels. It is motivated by the as-
sumption that the closer an object is to the camera, the higher
resolution and the less it is affected by fog, thus resulting in a
more reliable prediction. On this basis, we diffuse the labels
of an object from a closer view to a more distant view.

1) Temporal Correspondence by Optical Flow: We take
a near-far view pair for the temporal diffusion, where the
far-view image is the target image denoting as xt and the
close-view image is the diffusion reference denoting as xr

t .
The first step for temporal diffusion is building the temporal
correspondence between the image pair. We employ one of
the latest optical flow estimation methods, PDC-Net [55],
to estimate the dense flow field with a coupled pixel-wise
confidence map to indicate the reliability and accuracy of the
flow field prediction. The optical estimation process can be
simplified to the following form:
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Fig. 3. Illustration of the optical flow-based temporal diffusion. The near-view image is taken as the reference image to propagate its warped pseudo labels
to optimize the pseudo labels of the target image, under the assumption that the near-view image is less affected by fog. (a) shows the overall process the
temporal diffusion, and (b) shows the label diffusion on each pixel.

F, PF = φ(xr
t ,xt), (6)

MF (p) =

{
1 PF (p) > T

0 otherwise
, (7)

where F = (u, v) ∈ R2 is the predicted flow vector from xr
t

to xt. PF and MF are the confidence map and the confident
binary map of the true flow, respectively. p is the pixel index.
The threshold T is set to 0.5, the same as in [55].

2) Flow-based Temporal Label Diffusion: The illustration
of flow-based temporal diffusion is shown in Fig. 3. After
generating the temporal correspondence, we warp the pseudo
labels ŷr

t and the predicted segmentation probability map
prt (xr

t ,Φ) of xr
t by the guidance of the estimated flow F and

its confident binary map MF .

ŷr
warp = MF � warp(ŷr

t , F ), (8)

prwarp (xr
t ,Φ) = MF � warp(prt (xr

t ,Φ) , F ), (9)

where warp(·) denotes a warping function and � denotes
element-wise multiplication. MF acts as a binary mask.

After aligning the pseudo labels of the reference image to
the target image, we handle the temporal diffusion according
to the following situations:

1) If the warped pseudo label in ŷr
warp falls on a pixel p

that already has a label in ŷt, we update the pseudo label
for ŷt(p) by fusing the soft segmentation prediction of
semantic segmentation and re-select the class label with
the highest confidence score.

ŷtd
t = arg max

c
(p(c | xt,Φ) + prwarp (c | xr

t ,Φ)). (10)

2) If the warped pseudo label in ŷr
warp falls on a pixel p

and there is no specified pseudo label in ŷt, we copy the
label from ŷr

warp(p) to ŷt(p). It increases the number
of pseudo labels.

ŷtd
t = ŷr

warp. (11)

Algorithm 1: Training and Testing Step of TDo-Dif
(Temporal Diffusion Followed by Spatial Diffusion)

// Training procedure
Input : 1. Unlabeled target dataset XT = {xi

t}
Nt
i=1;

2. Labeled source dataset XS = {xi
s}

Ns
i=1

with
its labels YS = {yi

s}
Ns
i=1;

3. Semantic segmentation model Φ that has
been pretrained on {XS , YS}.

Output: Domain adaptive model Φ on target domain.
while Iter=1 to num round do

1) Generate the original prediction ỹt for target
training image xt with Φ by Eq. (2);

2) Pick the confident pseudo labels ŷt according to
ỹt and λc by Eq. (3);

3) Perform temporal diffusion on ŷt, and generate
the temporal densified pseudo labels ŷtd

t by
Eq. (10) and Eq. (11);

4) Perform spatial diffusion on ŷtd
t , and generate

the final densified pseudo labels ŷt by Eq. (5),
then target pseudo labels ŶT = {ŷi

t}
Nt
i=1;

5) while epoch=1 to num epoch do
a) Calculate LSt, LSpa, and LTem based on
XT and ŶT ;

b) Update Φ according to Eq. (16);

// Testing procedure
Input : 1. Testing image xtst of target domain;

2. Domain adaptive model Φ.
Output: The predicted segmentation map ytst.

1) Feed target testing image xtst into model Φ;
2) Generate the semantic segmentation map ytst.

E. Re-training Strategy

After obtaining the diffused pseudo labels, we re-train the
segmentation model to adapt it to the target domain. To further
utilize the knowledge of the target domain, we propose two
new losses for the model re-training.
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We first propose a local spatial similarity loss based on the
assumption that a superpixel should belong to a single object.
In particular, we encourage the distances between the pixel
features in each superpixel to be small. Let f(xt) represent the
deep feature map of image xt, and spi ↓ is the downsamped
version of the superpixel with the same spatial resolution of
f(xt). spi ↓ is used to indicate the coressponding locations of
the feature map for the superpixel spi. We define the feature
distances in a superpixel as follows:

Dspi↓ =
1

|spi ↓ |
∑

p∈spi↓

Dc(f(p), ηspi↓)

=
1

|spi ↓ |
∑

p∈spi↓

<
f(p)

||f(p)||
,
ηspi↓

||ηspi↓||
>,

(12)

ηspi↓ =
1

|spi ↓ |
∑

p∈spi↓

f(p), (13)

where f(p) is the deep feature at pixel p, and ηspi↓ is the
feature centroid of Dspi↓. We adopt Dc as the cosine similarity
between features to measure the pixel-wise similarity, so that
Dspi↓ is the average feature distance. Then we define the local
spatial similarity loss as:

LSpa =
1

S

S∑
i=1

Dspi↓. (14)

Temporally, we try to maximize the similarity of associated
pixels via a contrastive loss. The objective is to distinguish
between the tight correspondence (different views of the
same pixel) and incompatible one (different views of different
pixels). For each pixel p which has found a correspondence
p′, we construct a set of random negative pixels N . Then the
temporal loss function for pixel p and N can be written as:

LTem =

− 1

||P||
∑
p∈P

log
eDc(f(p),f(p′))

eDc(f(p),f(p′)) +
∑

n∈N eDc(f(p),f(n)))

,

(15)
where P is the set of positive pixels.

Therefore, the overall training loss function for model re-
training is defined as the weighted sum of the segmentation
loss LSt, the spatial loss LSpa and the temporal loss LTem:

LFinal = LSt + αspaLSpa + αtemLTem, (16)

where αspa and αtem are the weights for the local spatial
similarity loss and temporal contrastive loss, respectively. The
details about the overall training and testing procedure can be
seen in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets: We validate our method on real foggy
datasets, Foggy Zurich [19] and Foggy Driving [17], as the
target domain datasets. The source domain for the pre-training

is the synthetic dataset Foggy Cityscapes [17] that derived
from Cityscapes [12] with fine segmentation labels.

Foggy Cityscapes [17]. It is synthesized with the at-
mospheric scattering model [37] for fog simulation based
on Cityscapes. Three distinct fog densities are generated
by controlling a constant simulated attenuation coefficient
β ∈ {0.005, 0.01, 0.02}, where higher β corresponding to
denser fog. Each version shares the same semantic labels
with Cityscapes, which contains 5000 images (2048× 1024)
belonging to 20 categories with 2975 images for training, 500
for validation, and 1525 for testing.

Foggy Zurich [19]. It is a realistic foggy scene dataset
consisting of 3808 images with a resolution of 1920 × 1080
collected in the city of Zurich and its suburbs. It was recorded
as four large video sequences, and sequential images were
extracted at a rate of one frame per second. It provides pixel
level annotations for 40 images with dense fog. We use the 40
annotated images for testing and the rest without annotations
for training.

Foggy Driving [17]. It consists of 101 color images de-
picting real-world foggy driving scenes. 51 of these images
were taken with a cell phone camera under foggy conditions
at different areas of Zurich, and the remaining 50 images were
collected from the web. Image resolutions in the dataset range
from 500× 339 to 1280× 960.

2) Baseline Methods: We compare our method with
the state-of-the-art foggy scene understanding methods
and domain adaptive segmentation methods. Among them,
SFSU [17] is a supervised learning-based approach on foggy
scene understanding by training segmentation model with the
labeled source dataset Foggy Cityscapes. CMAda [19] re-
trains the segmentation model with the labeled source dataset
Foggy Cityscapes and unlabeled real foggy weather dataset
Foggy Zurich, gradually adapting the model from light fog to
dense fog in multiple steps. AdSegNet [56] is a representative
adversarial learning strategy for domain adaptive semantic
segmentation. CBST [21] and CRST [27] are two represen-
tative self-training strategies for domain adaptive semantic
segmentation. Recent methods CuDA-Net [57], FIFO [58]
and CMDIT [59] focus on bridging the domain gap between
the clear images and foggy images to improve the performance
of foggy scene segmentation. FogAdapt+ [60] combines the
scale-invariance and uncertainty to minimize the domain shift
in foggy scenes segmentation.

We directly use the released models of SFSU1 and CMAda2

and re-train the segmentation models of the three domain
adaptive training strategies, including AdSegNet, CBST and
CRST, on our dataset. We collect the results of CuDA-Net
from its authors and the results of the last three methods from
their papers.

B. Implementation Details

Similar with SFSU and CMAda, we adopt the RefineNet
[30] with ResNet-101 as the backbone in all experiments and
initialize it with the weights pre-trained by Foggy Cityscapes.

1http://people.ee.ethz.ch/˜csakarid/SFSU synthetic/
2http://people.ee.ethz.ch/˜csakarid/Model adaptation SFSU dense/
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TABLE I
QUANTITATIVE COMPARISON ON FOGGY ZURICH DATASET. NOTICE THAT WE EXCLUDE THE STATISTICS OF CLASS Train BECAUSE IT IS NOT INCLUDED

IN THE TEST SET, AND WE CALCULATE CLASS Truck ALTHOUGH IT CANNOT BE DETECTED BY ANY METHOD. THE NUMBERS IN RED AND BLUE
REPRESENT THE BEST AND SECOND BEST SCORES.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Motor Bike mIoU
SFSU [17] 64.94 51.25 37.95 28.46 20.87 41.69 60.13 55.11 34.20 31.22 27.03 3.55 38.04 77.54 0.00 11.08 13.63 4.75 33.41

CMAda [19] 84.68 57.65 42.27 27.03 21.28 47.77 61.88 62.95 62.26 35.73 70.93 8.47 35.92 85.03 0.00 45.32 37.65 9.97 44.27
AdSegNet [56] 21.31 31.53 26.11 14.84 23.45 30.64 48.52 46.75 56.69 22.78 43.52 3.51 20.34 10.86 0.00 4.20 38.49 4.00 24.86

CBST [21] 91.64 57.09 29.92 55.96 31.54 42.32 54.88 60.07 73.35 53.61 52.62 8.71 43.06 87.52 0.00 16.60 53.90 11.48 45.79
CRST [27] 91.16 57.81 36.23 54.53 31.19 41.99 51.43 63.29 75.04 54.40 61.21 7.84 40.92 86.89 0.00 25.36 45.01 12.21 46.47

CuDA-Net [57] 91.47 51.64 40.07 55.99 28.37 46.38 58.22 63.07 77.38 59.47 67.9 2.87 45.74 86.74 0 54.52 50.72 3.98 49.14
FIFO [58] - - - - - - - - - - - - - - - - - - 48.40

CMDIT [59] - - - - - - - - - - - - - - - - - - 41.69
FogAdapt+ [60] - - - - - - - - - - - - - - - - - - 49.80
TDo-Dif (SD) 91.01 55.03 66.95 52.11 36.14 35.53 54.24 60.05 73.35 57.96 90.58 6.67 42.70 84.44 0.00 40.61 57.42 7.23 50.67

TDo-Dif (SD+SL) 89.52 53.29 66.69 56.65 39.97 36.92 53.22 59.20 73.94 58.48 90.26 4.45 33.19 83.79 0.00 42.03 57.86 18.10 50.92
TDo-Dif (TD) 91.57 58.72 34.12 54.28 31.86 41.00 50.87 60.91 74.64 59.10 58.45 9.49 44.32 87.60 0.00 26.21 47.03 12.19 46.80

TDo-Dif (TD+TL) 90.89 58.58 41.14 54.86 28.59 42.19 51.83 59.49 74.93 57.40 68.78 6.17 41.22 86.66 0.00 40.72 42.17 12.56 47.68
TDo-Dif

(SD→TD+SL+TL) 89.81 54.38 68.79 56.70 44.25 36.54 51.72 58.85 74.48 59.66 90.12 4.19 44.09 84.82 0.00 41.51 58.06 13.85 51.77

TDo-Dif
(TD→SD+SL+TL) 89.41 51.43 67.49 55.93 44.64 37.70 52.06 60.10 75.23 58.48 89.79 4.88 44.68 86.17 0.00 42.03 59.15 15.38 51.92

TABLE II
QUANTITATIVE COMPARISON ON FOGGY DRIVING DATASET. THE NUMBERS IN RED AND BLUE REPRESENT THE BEST AND SECOND BEST SCORES.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
SFSU [17] 90.26 28.83 72.13 25.23 13.41 42.84 52.03 58.97 64.27 5.78 76.71 57.26 44.02 70.41 13.42 27.73 58.48 19.29 46.48 45.66

CMAda [19] 91.51 29.24 74.77 28.37 15.10 49.36 51.35 59.26 74.76 7.82 92.29 62.63 47.67 72.90 19.38 32.48 52.05 24.62 52.81 49.39
AdSegNet [56] 45.82 13.52 43.34 0.63 8.94 25.97 37.57 35.92 54.12 0.53 80.70 30.73 27.08 56.74 0.73 12.58 0.40 11.19 26.47 27.00

CBST [21] 91.68 31.35 68.63 25.61 15.98 48.14 49.48 60.02 67.85 10.37 82.18 62.22 41.62 73.30 36.96 15.69 31.69 29.90 46.95 46.82
CRST [27] 91.82 36.34 70.59 23.93 16.33 46.02 49.66 56.92 70.84 12.68 86.36 64.25 42.17 75.07 30.72 13.24 31.32 35.06 45.70 47.32

CuDA-Net [57] 90.14 45.52 71.47 43.63 44.23 43.83 46.30 52.24 72.63 36.18 91.19 59.90 47.90 72.04 48.58 40.96 32.81 33.47 44.09 53.50
FIFO [58] - - - - - - - - - - - - - - - - - - - 50.70

CMDIT [59] - - - - - - - - - - - - - - - - - - - 45.35
FogAdapt+ [60] - - - - - - - - - - - - - - - - - - - 52.40

TDo-Dif†
(SD→TD+SL+TL) 92.12 31.84 74.82 28.44 17.91 43.72 52.45 56.12 71.40 12.86 86.71 64.31 47.98 73.11 38.40 23.19 55.34 27.43 53.46 50.08

TDo-Dif†
(TD→SD+SL+TL) 92.09 31.80 74.87 27.72 17.93 45.01 52.77 57.92 71.33 13.73 86.63 64.62 48.09 73.69 38.69 24.59 60.25 28.11 52.45 50.65

TDo-Dif? (SD+SL) 93.03 39.26 76.72 33.35 18.77 48.35 50.17 64.41 79.99 2.32 92.66 61.87 46.64 78.31 44.63 28.22 70.78 41.58 51.58 53.84
TDo-Dif† and TDo-Dif? denote the results from the model trained on Foggy Zurich and Foggy Driving, respectively.
Note that the images in Foggy Driving dataset are non-sequential images, thus we only use the spatial diffusion and spatial loss.

TABLE III
SETTINGS OF DIFFERENT VARIANTS

Variants Characteristics

Group I

TDo-Dif (SD) Superpixel-based spatial diffusion only
TDo-Dif (SD+SL) Superpixel-based spatial diffusion plus spatial loss

TDo-Dif (TD) Flow-based temporal diffusion only
TDo-Dif (TD+TL) Flow-based temporal diffusion plus temporal loss

Group II
TDo-Dif

(SD→TD+SL+TL) Spatial diffusion followed by temporal diffusion

TDo-Dif
(TD→SD+SL+TL) Temporal diffusion followed by spatial diffusion

We implement our method using the Pytorch toolbox and opti-
mize it using Adam algorithm with β1 = 0.5, β2 = 0.999, and
a learning rate of 0.0001 following [17]. In all experiments, we
use a batch size of 2 and set the self-training round number to
4 and the training epochs in each round to 10. The loss weights
αt, αspa, and αtem are set to 1, 0.1 and 5, respectively. As
similar to CBST and CRST, we set the hyper-parameter p of
confident portion to 0.2 so as to pick the top 20% of high
confidence predictions as pseudo labels. We set the number
of superpixels K in each images to 500. The threshold T for
reliable dense matching is set to 0.5, the same as in [55]. The
number of positive samples used for computing the temporal
contrasive loss is set to 20, which are randomly selected from
pixels with temporal correspondence. The number of negative

samples for each positive pixels is set to 1, chosen from pixels
of different predicted categories.

C. Comparisons with State-of-the-Art Methods

In this section, we compare the proposed method with the
baselines on the semantic segmentation of foggy scene, from
both quantitative and qualitative aspects.

1) Quantitative Comparisons: We first focus on the testing
of the proposed four components based on two core motiva-
tions: superpixel-based spatial label diffusion (SD) and local
spatial similarity loss (SL) for spatial similarity, and flow-
based temporal label diffusion (TD) and temporal contrastive
loss (TL) for temporal correspondence. In general, we design
two groups of model variants to sort out the most optimal
combination of the proposed diffusion schemes, and the details
of the variants are listed in Table III. The comparison results
with the baselines on Foggy Zurich and Foggy Driving are
shown in Table I and Table II, respectively.

Comparison with SOTA. In general, the best variant of
TDo-Dif with label diffusion outperform all baselines on
Foggy Zurich and Foggy Driving, owning to the introduction
of the target-domain knowledge for domain adaptation. On
Foggy Zurich, the best variant of TDo-Dif reaches 51.92%
mIoU, surpassing both the SFSU [17] and the curriculum
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Fig. 4. Subjective quality comparison of test results on image samples from Foggy Zurich [19]

learning model CMAda [19], which are specifically designed
for foggy scene understanding, with significant gains of
18.51% and 7.65%, respectively. It indicates that while the
curriculum learning strategy is effective in adapting the model
to foggy data, the large number of false pseudo labels in
the whole segmentation predictions leads to a degradation in
performance. Although CBST [21] and CRST [27] adopt a
small portion of pseudo labels for model re-training to avoid
false labels, our method obtains additional gains of 6.13% and
5.45% mIoU, respectively, with a significant positive impact
on some large objects (e.g., Building, Fence and Sky) and small
objects (e.g., Rider, Motor and Bike). In contrast to methods

that attempt to bridge the gap between the source and target
domains, i.e., CuDA-Net, FIFO, CMDIT, and FogAdapt+, our
proposed TDo-Dif explicitly exploits the self-similarity present
in the target data to increase the correct labels for these classes
and therefore achieves the best performance on the foggy scene
segmentation.

Comparison among variants of TDo-Dif. By comparing
the performance among variants, we evaluate the effectiveness
of each component on semantic segmentation performance.
The variants in the first group show that all components
have a positive impact on the understanding of foggy scenes.
Comparing TDo-Dif (SD+SL) with TDo-Dif (TD+TL), spatial
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Fig. 5. Subjective quality comparison of test results on image samples from Foggy Driving [17].
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Fig. 6. Confusion matrices for CMAda (left) and Ours (TDo-Dif) (right) for the semantic segmentation on Foggy Zurich.

Fig. 7. Statistical comparison of the effect of diffused pseudo labels quality on
segmentation performance. The bar and blue line show the average percentage
of pixels and the average accuracy of pseudo labels at each diffused stage.
The red line shows the segmentation performance of the model trained with
the corresponding diffused pseudo labels.

similarity shows a higher performance improvement over
temporal correspondence, with a gain of 2.87% mIoU. This
can be attributed to the fact that the spatial diffused area is
much larger than the temporal one. The local spatial similarity
loss and temporal contrastive loss also contribute additional
0.25% and 0.88% mIoU, repectively, through comparing TDo-
Dif (SD+SL) with TDo-Dif (SD) and TDo-Dif (TD+TL) with
TDo-Dif (TD). We also investigate the impact of different
spatial and temporal diffusion orders through the variants of
the second group. The two strategies are comparable in terms
of segmentation performance and selection of pseudo labels
as well as mIoU of pseudo labels.

Model Generalization. Since the adaptive models with both
spatial and temporal diffusion achieve the best performance on
Foggy Zurich, we test them on the Foggy Driving dataset. As

shown in Table II, our model achieves 50.65% mIoU, which
exceeds most of state-of-the-art methods and demonstrates the
good generality of our model.

Moreover, since TDo-Dif (TD→SD+SL+TL) reaches the
highest scores on both datasets, we use this model as our final
model and denote it as TDo-Dif in the following experiments.

2) Qualitative Comparisons: Fig. 4 and Fig. 5 give some
examples of qualitative comparison on Foggy Zurich and
Foggy Driving, respectively. Trained on a synthetic foggy
dataset, SFSU [18] has limited generalization ability on the
real-world foggy scenarios, e.g., Sky and Building are incor-
rectly predicted as Road and Vegetation. The performance of
CMAda [19] is relatively good by re-training on the target
domain data, but its results also have many segmentation er-
rors, such as categories of Sky, Wall and Sidewalk. CRST [27],
trained with sparse and confident pseudo labels, presents better
results than CMAda in terms of semantic mis-recognition.
CuDA-Net achieves the excellent performance in some small
objects, such as the Pole and Traffic Sign, but the performance
of the large objects still needs to be improved, especially
Building and Road. Benefiting from the spatial and temporal
pseudo label diffusion, the proposed method achieves the best
results, especially for large objects, e.g., Sky and Vegetation.
According to the underlying characteristics of fog, Sky is most
affected by fog at the farthest distance from the camera, which
explains the poor performance of all baselines on this class, but
our method performs well on it owning to the label diffusion.

3) Confusion between Classes: In this part, we provide
more informative analysis by comparing the confusion matri-
ces of the baseline and ours in Fig. 6. Considering the space
limitation, we only show the comparison between CMAda
[19] (the one with best performance among all baselines) and
ours. An obvious observation from the confusion matrices of
CMAda is that most categories tend to be misclassified into
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(a) Foggy image (b) Initial labels (c) TDo-Dif (TD) (d) TDo-Dif (SD) (e) Whole labels

Fig. 8. Comparison of subjective results for various pseudo labels on image samples from Cityscapes. The black solid line and red dashed line represent the
pixel number distribution of every category, and the blue line represent the value of mIoU of every pixel.

Building, especially the classes of Truck, Fence, Person, and
Bus, which is consistent with the visualization in Fig. 4. This
may be due to the fact that noisy pseudo labels from the source
model are used to re-train the model for the foggy scenes. This
issue is greatly alleviated by our method, by which most of the
classes are accurately classified with much smaller probability
of belonging to other classes than to the same class. Some
classes such as Bike, Truck, and Person are difficult to be
correctly classified, probably due to their small portion of pixel
numbers in the overall dataset.

D. Ablation Study

1) Quality of Diffused Label and Its Impacts on Segmen-
tation: The success of self-training-based domain adaptation
relies heavily on the quality of pseudo labels (i.e., the percent-
age of valid pixels and the accuracy of pseudo labels). In this
section, we assess the quality of diffused labels and how the
quality of diffusion labels will affect the final performance of
semantic segmentation.

Assessment on Overall Statistics. The statistics for quality
assessment of pseudo labels are calculated from all the 40
test images of Foggy Zurich. As shown in Fig. 7, we adopt
three pseudo-label generation strategies: 1) initial sparse labels
without diffusion, 2) diffused labels from four variants of
our method, and 3) an entire predicted labels with noise. all
variants in this evaluation are with their corresponding losses,
but loss notations are omitted for short in the figure.

The accuracy of the pseudo labels is measured by two
terms: the average percentage of pseudo labels in the image
(blue bar) and the mIoU of pseudo labels (blue line). In
general, temporal diffusion (TD) results in a small increase in
the number of labeled pixels (percentage increases by 0.5%-
1.2%) and improvement in label accuracy (mIoU increases

by 1.1%-1.5%), while spatial diffusion (SD) results in a large
growth of the pseudo labels (percentage increases by 25%-
27%) but a drop of label accuracy (mIoU decreases by 12%-
13%). The original predicted labels covers the entire image,
but the accuracy is nearly half of the selected pseudo labels,
namely more than half of the labels are wrongly predicted.
Note that the percentage of initial pseudo labels in the test set
(i.e., 0.109), which captured in dense fog, is typically much
lower than 0.2 since their confidence scores are much lower
than that of light foggy images.

The impact of pseudo labels quality on the final semantic
segmentation is measured by the mIoU of the test data (red
line). The accuracy of the final segmentation is the result of
the combined effect of the number and accuracy of pseudo
labels. As shown in the figure, within the proposed label
diffusion strategies, the final performance improves with the
percentage increment of labels, but the performance gains are
slowed down by the accuracy drop. The extremely noisy labels
from the original prediction lead to a dramatic decrease in
segmentation accuracy. This proves that although our label
diffusion strategy may introduce some noise into the labels,
the positive effects from the newly added correct labels plays
a dominant role on the final performance.

Assessment on Sample Images. Two samples demonstrat-
ing the detailed assessment on the quality of pseudo label
diffusion are shown in Fig. 8, whose statistical patterns are
quite consistent with the overall statistics. The initial pseudo
labels are quite accurate (almost overlapped number distri-
bution of ground-truth and pseudo labels in the distribution
diagram), but they are quite sparse. The temporal diffusion
(TD) brings slight increment in the valid pixel labels and
maintains a high accuracy, bringing additional reliable labels
for further amplification by spatial diffusion. Compared to
the initial labels, the spatial diffused (SD) labels are much
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Fig. 9. Visual comparisons on spatial diffused pseudo labels between
superpixels and deep feature.

denser. The number of pixels per class and their accuracy
shown in the distribution diagram indicate that the valid labels
are largely expanded, while the accuracy is still kept to some
extent. The distribution of pixel counts in the pseudo labels
is almost identical to that in the ground-truth labels. For the
entire original prediction, the accuracy is too low to be used
for re-training, although the number of valid labels is large.

2) Superpixel Versus Deep Feature for Spatial Diffusion:
The superpixel-based spatial diffusion is performed under the
assumption that local spatial similarity in the target domain
can be measured more reliably by superpixels than by deep
feature extracted by segmentation models. Here we attempt
to justify this assumption by visually comparing the pesudo
labels in Fig. 9. The original predictions represents the se-
mantic clustering from the deep features. In order to compare
with the result from superpixels, we select 50% of the best
predictions as the result from deep features. We can notice that
the there are obvious incorrect labels, which is much better in
the superpixel-based spatial diffusion. Another advantage of
adopting super-pixels is that it adaptively adjust the extent of
diffusion according to the difficulty of the scene. For example,
the diffused labels are fewer for a heavy fog in the first
column than for a light fog in the third column, but a fixed
selection ratio from deep feature will inevitably introduce
wrongly predicted labels.

3) Impact of the Number of Superpixels: The success of
spatial label diffusion largely relies on the clustering of super-
pixels. Here we conduct experiment to validate the impact of
hyper-parameter K for number of superpixels on the pseudo
labels diffusion. With experiments ranging from 100 to 800,
we plot the normalized distribution of accuracy of pseudo
labels, accuracy of superpixels (i.e., the percentage of super-
pixels with uniquely segmentation labels), computational cost
of spatial diffusion and spatial loss in Fig. 10. The plot shows
that the proportion of good-fidelity labels and superpixels

Fig. 10. Statistical comparisons of the number of superpixels.

TABLE IV
QUANTITATIVE COMPARISONS OF THE RANGE OF CONFIDENT FLOWS

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Percentage 0.122 0.119 0.117 0.116 0.114 0.110 0.110 0.110

mIoU 0.841 0.843 0.843 0.844 0.844 0.845 0.845 0.845

generally increases with the number of superpixels, while
computational complexity for diffusing labels and calculating
losses also increases. In our experiments, we adopt 500 as
the number of superpixels per image, considering that the
increment of accuracy is approaching saturation at 500, but
computational cost is linearly growing for full range of K.

4) Impact of the Range of Confident Flows: For a sanity
check, we study the impact of the threshold of confident flows
by changing T from 0.1 to 0.8. The percentages of pixels and
mIoU of pseudo labels are shown in Table IV, which shows
the inclement of valid pixels and the degradation of mIoU are
not significant because the initial pseudo labels is very sparse.
In our experiment, we adopt the radius T of 0.5, the same as
in [55].

5) Effects of Number of Target Domain Samples: To
investigate the effectiveness of the number of target domain
samples on the segmentation performance, we test six variants

Fig. 11. Effectiveness of number of target domain samples. The total number
of target domain samples is 3808.
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(a) Pre-trained model (b) Adaptive model after
round 1

(c) Adaptive model after
round 2

(d) Adaptive model after
round 3

(e) Adaptive model after
round 4

Fig. 12. Visualization of embedded features via t-SNE from two image samples of Foggy Zurich test set. The features (from left to right) are extracted
from the pre-trained model on source domain and the adaptive models after each self-training round. Features are colored according to class labels.

of randomly selected target sample numbers, which are 0%,
20%, 40%, 60%, 80%, 100% of all target domain samples.
The results in Fig. 11 shows that increasing the target domain
samples will highly improve the segmentation performance.
With only 761 sample images from target domain (20% of
the total number), the performance in mIoU increases from
40.02% to 49.00%, and it continues to increase with the
number increment of target domain samples. But when the
number of samples exceeds 60% (around 2284 target domain
samples), the performance almost reaches the saturation and
fluctuates between 51.50% to 52.00%.

6) Feature Visualization: We use t-SNE [61] to visualize
the feature representation of the domain adaptive process in
Fig. 12. Since we re-train the model for four rounds, we show
the features in five phrases, i.e., the pre-trained model on
the source domain and four adaptive models after each self-
training round. It can be observed that the classes containing
large number of pixels, such as Road, Sky and Building, are
not well clustered by the pre-trained model. Since our method
can select most reliable pseudo labels, the feature distributions
are gradually refined as the number of self-training rounds
increases. The feature presentation exhibits much clearer after
round 4, revealing that our TDo-Dif method can provide
correct supervision labels for target domain data.

V. CONCLUSION

In this paper, we have shown the benefits of using target
domain knowledge in an self-training framework to improve
the performance of state-of-the-art domain adaptive semantic
segmentation models in real foggy scene. To achieve this,
we propose a superpixel-based spatial diffusion and an op-
tical flow-based temporal diffusion scheme that exploit the
characteristics of the target data to generate reliable and
dense pseudo labels. When the former better increases the

number of pseudo labels and the latter better maintain the
confidence of the diffused labels. In addition, two new losses
are proposed to restrain the spatial and temporal consistency
of the features in the re-training stage to help the model better
adapt to the characteristics of the target domain. Experiments
on real foggy images show that the proposed TDo-Dif method
significantly densify the pseudo labels and further boost the
performance of semantic segmentation beyond the state-of-
the-art counterparts.

REFERENCES

[1] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.

[2] W. Zhou, Y. Wang, J. Chu, J. Yang, X. Bai, and Y. Xu, “Affinity space
adaptation for semantic segmentation across domains,” IEEE Trans.
Image Process., vol. 30, pp. 2549–2561, 2021.

[3] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021.

[4] J. Wu, J. Jiao, Q. Yang, Z. Zha, and X. Chen, “Ground-aware point
cloud semantic segmentation for autonomous driving,” in Proc. ACM
Int. Conf. Multimedia, 2019, pp. 971–979.

[5] W. Zhou, J. S. Berrio, S. Worrall, and E. M. Nebot, “Automated
evaluation of semantic segmentation robustness for autonomous driving,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5, pp. 1951–1963, 2020.

[6] D. Ravı̀, H. Fabelo, G. M. Callicó, and G. Yang, “Manifold embedding
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